
MIL-STD-1750A

Military Standard Sixteen-Bit Computer
Instruction Set Architecture

www.xgc.com

MIL-STD-1750A
Military Standard Sixteen-Bit Computer
Instruction Set Architecture

Order Number: XGC-MIL-STD-1750A-030122

XGC Technology

London
UK
Web: <www.xgc.com>

MIL-STD-1750A: Military Standard Sixteen-Bit Computer Instruction Set
Architecture

Publication date January 2003
© 1980, 1982 USAF

Abstract

This document is provided for use with XGC compilation systems targeted to the MIL-STD-1750A and
specifies the 1750A instruction set and architecture.

The text of this document is based on MIL-STD-1750A, 2 Jul 1980, with updated Notice 1, 21 May 1982.

Contents

About This Document xiii
1 Reader's Comments xiii

Scope and Purpose 1Chapter 1

1.1 Scope 1
1.2 Purpose 1
1.3 Applicability 1
1.4 Benefits 2

Referenced Documents 3Chapter 2

Definitions 5Chapter 3

General Requirements 11Chapter 4

4.1 Data Formats 11
4.1.1 Single Precision Fixed Point Data 11

iii

4.1.2 Double Precision Fixed Point Data 12
4.1.3 Fixed Point Operands 13
4.1.4 Results on Fixed Point Overflow 13
4.1.5 Floating Point Data 14
4.1.6 Extended Precision Floating Point Data 15
4.1.7 Floating Point Operands 16
4.1.8 Truncation of Floating Point Results 16
4.1.9 Results of Division 16

4.2 Instruction Formats 17
4.2.1 Register-to-Register Format 17
4.2.2 Instruction Counter Relative Format 17
4.2.3 Base Relative Format 17
4.2.4 Base Relative Indexed Format 18
4.2.5 Long Instruction Format 19
4.2.6 Immediate Opcode Extension Format 19
4.2.7 Special Format 19

4.3 Addressing Modes 20
4.3.1 Register Direct (R) 20
4.3.2 Memory Direct (D) 20
4.3.3 Memory Direct-Indexed (DX) 21
4.3.4 Memory Indirect (I) 21
4.3.5 Memory Indirect with Pre-Indexing
(IX) 21
4.3.6 Immediate Long (IM) 21
4.3.7 Immediate Short (IS) 21
4.3.8 Instruction Counter Relative (ICR) 22
4.3.9 Base Relative (B) 22
4.3.10 Base Relative-Indexed (BX) 22
4.3.11 Special (S) 23

4.4 Registers and Support Features 23
4.4.1 General Registers 23
4.4.2 Special Registers 24
4.4.3 Stack 29
4.4.4 Processor Initialization 30
4.4.5 Interval Timers (optional) 31

4.5 Memory 32
4.5.1 Memory Addressing 32
4.5.2 Expanded Memory Addressing
(optional) 32
4.5.3 Memory Parity (optional) 37
4.5.4 Memory Block Protect (optional) 37

iv

MIL-STD-1750A

4.5.5 References to Unimplemented Memory 37
4.5.6 Start up ROM (optional) 38
4.5.7 Reserved Memory Locations 38

4.6 Interrupt Control 38
4.6.1 Interrupts 38

4.7 Input/Output 41
4.7.1 Input 41
4.7.2 Output 41
4.7.3 Input/Output Commands 42
4.7.4 Input/Output Command Partitioning 42
4.7.5 Input/Output Interrupts (optional) 42
4.7.6 Dedicated I/O Memory Locations 43

4.8 Instructions 43
4.8.1 Invalid Instructions 43
4.8.2 Mnemonic Conventions 43
4.8.3 Instruction Matrix 45
4.8.4 Instruction Set Notation 45

Detailed Requirements 53Chapter 5

5.1 Execute Input/Output 53
5.2 Vectored Input/Output 60
5.3 Set Bit 61
5.4 Reset Bit 62
5.5 Test Bit 63
5.6 Test and Set Bit 64
5.7 Set Variable Bit in Register 64
5.8 Reset Variable Bit in Register 65
5.9 Test Variable Bit in Register 66
5.10 Shift Left Logical 66
5.11 Shift Right Logical 67
5.12 Shift Right Arithmetic 68
5.13 Shift Left Cyclic 69
5.14 Double Shift Left Logical 70
5.15 Double Shift Right Logical 72
5.16 Double Shift Right Arithmetic 73
5.17 Double Shift Left Cyclic 74
5.18 Shift Logical, Count in Register 75
5.19 Shift Arithmetic, Count in Register 76
5.20 Shift Cyclic, Count in Register 78
5.21 Double Shift Logical, Count in Register 79

v

MIL-STD-1750A

5.22 Double Shift Arithmetic, Count in Register 80
5.23 Double Shift Cyclic, Count in Register 82
5.24 Jump on Condition 83
5.25 Jump to Subroutine 84
5.26 Subtract One and Jump 85
5.27 Branch Unconditionally 86
5.28 Branch if Equal to (Zero) 86
5.29 Branch if Less Than (Zero) 87
5.30 Branch to Executive 87
5.31 Branch if Less Than or Equal to (Zero) 88
5.32 Branch if Greater Than (Zero) 89
5.33 Branch if Not Equal to (Zero) 90
5.34 Branch if Greater Than or Equal to (Zero) 90
5.35 Load Status 91
5.36 Stack IC and Jump to Subroutine 92
5.37 Unstack IC and Return from Subroutine 92
5.38 Single Precision Load 93
5.39 Double Precision Load 94
5.40 Load Multiple Registers 95
5.41 Extended Precision Floating Point Load 96
5.42 Load from Upper Byte 97
5.43 Load from Lower Byte 97
5.44 Pop Multiple Registers off the Stack 98
5.45 Single Precision Store 99
5.46 Store a Non-Negative Constant 100
5.47 Move Multiple Words, Memory-to-Memory 101
5.48 Double Precision Store 102
5.49 Store Register Through Mask 102
5.50 Store Multiple Registers 103
5.51 Extended Precision Floating Point Store 104
5.52 Store into Upper Byte 104
5.53 Store into Lower Byte 105
5.54 Push Multiple Registers onto the Stack 106
5.55 Single Precision Integer Add 107
5.56 Increment Memory by a Positive Integer 109
5.57 Single Precision Absolute Value of Register 110
5.58 Double Precision Absolute Value of Register 110
5.59 Double Precision Integer Add 111
5.60 Floating Point Add 112
5.61 Extended Precision Floating Point Add 114
5.62 Floating Point Absolute Value of Register 115

vi

MIL-STD-1750A

5.63 Single Precision Integer Subtract 116
5.64 Decrement Memory by a Positive Integer 118
5.65 Single Precision Negate Register 119
5.66 Double Precision Negate Register 119
5.67 Double Precision Integer Subtract 120
5.68 Floating Point Subtract 121
5.69 Extended Precision Floating Point Subtract 123
5.70 Floating Point Negate Register 124
5.71 Single Precision Integer Multiply with 16-Bit
Product 125
5.72 Single Precision Integer Multiply with 32-Bit
Product 127
5.73 Double Precision Integer Multiply 128
5.74 Floating Point Multiply 129
5.75 Extended Precision Floating Point Multiply 130
5.76 Single Precision Integer Divide with 16-Bit
Dividend 132
5.77 Single Precision Integer Divide with 32-Bit
Dividend 133
5.78 Double Precision Integer Divide 134
5.79 Floating Point Divide 135
5.80 Extended Precision Floating Point Divide 137
5.81 Inclusive Logical OR 138
5.82 Logical AND 139
5.83 Exclusive Logical OR 140
5.84 Logical NAND 141
5.85 Convert Floating Point to 16-Bit Integer 141
5.86 Convert 16-Bit Integer to Floating Point 142
5.87 Convert Extended Precision Floating Point to
32-Bit Integer 143
5.88 Convert 32-bit Integer to Extended Precision
Floating Point 144
5.89 Exchange Bytes in Register 145
5.90 Exchange Words in Registers 146
5.91 Single Precision Compare 146
5.92 Compare Between Limits 147
5.93 Double Precision Compare 148
5.94 Floating Point Compare 149
5.95 Extended Precision Floating Point Compare 150
5.96 No Operation 151
5.97 Break Point 151

vii

MIL-STD-1750A

5.98 Built-In-Function 152

Index 153

viii

MIL-STD-1750A

Figures
1 Expanded Memory Mapping Diagram 36
2 Interrupt System Flowchart 51
3 Interrupt Vectoring System 51

ix

x

Tables
I Single Precision Fixed Point Numbers 12
II Double Precision Fixed Point Numbers 13
III 32-Bit Floating Point Numbers 14
IV 48-Bit Extended Floating Point Numbers 15
V Addressing Modes and Instruction Formats 20
VI Processor Reset State 30
VII AL Code to Access Key Mapping 35
VIII Interrupt Definitions 39
IX Input/Output Channel Groups 44
X Operation Code Matrix (Left) 48
Xr Operation Code Matrix (Right) 49
XI Extended Operation Codes (Left) 50
XIr Extended Operation Codes (Right) 50
XII Mandatory XIO Command Fields and Mnemonics 54
XIII Optional XIO Command Fields and Mnemonics 55

xi

xii

About This Document

This document contains the text of the military standard
MIL-STD-1750A. This second edition is nearly complete, lacking
only table V, which is too large to reproduce here. Tables X and
XI are split into left and right halves.

This document is in no way intended to supersede the
MIL-STD-1750A Specification, which is the definitive document
describing the architecture of 1750 computers.

1. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

xiii

Please include the following information along with your
comments:

• The full title of the book.

• The section numbers and page numbers of the information on
which you are commenting.

• The software version you are using.

xiv

About This Document

Scope and PurposeChapter 1

1.1. Scope

This standard defines the instruction set architecture (ISA) for
airborne computers. It does not define specific implementation
details of a computer.

1.2. Purpose

The purpose of this document is to establish a uniform instruction
set architecture for airborne computers which shall be used in Air
Force avionic weapon systems.

1.3. Applicability

This standard is intended to be used to define only the ISA of
airborne computers. System-unique requirements such as speed,
weight, power, additional input/output commands, and

1

environmental operating characteristics are defined in the computer
specification for each computer. Application is not restricted to
any particular avionic function or specific hardware implementation
by this standard. Generally, the ISA is applicable to, and shall be
used for, computers that perform such functions as moderate
accuracy navigation, computed air release points, weapon delivery,
air rendezvous, stores management, aircraft guidance, and aircraft
management. This standard is not restricted to implementations of
“stand-alone” computers such as a mission computer or a fire
control computer. Application to the entire range of avionics
functions is encouraged such as stability and control, display
processing and control, thrust management, and electrical power
control.

1.4. Benefits

The expected benefits of this standard ISA are the use and re-use
of available support software such as compilers and instruction
level simulators. Other benefits may also be achieved such as: (a)
reduction in total support software gained by the use of the standard
ISA for two or more computers in a weapon system, and (b)
software development independent of hardware development.

2

Chapter 1. Scope and Purpose

Referenced DocumentsChapter 2

Not applicable.

3

4

DefinitionsChapter 3

Accumulator A register in the arithmetic logic
unit used for intermediate storage,
algebraic sums and other
arithmetic and logical results.

Address A number which identifies a
location in memory where
information is stored.

Arithmetic Logic Unit (ALU) That portion of hardware in the
central processing unit in which
arithmetic and logical operations
are performed.

Avionics All the electronic and
electro-mechanical systems and
subsystems (hardware and
software) installed in an aircraft
or attached to it. Avionics
systems interact with the crew or

5

other aircraft systems in these
functional areas:
communications, navigation,
weapons delivery, identification,
instrumentation, electronic
warfare, reconnaissance, flight
control, engine control, power
distribution, and support
equipment.

Base Register Any general register used to
provide the base address portion
of the derived address for
instructions using the base
relative or base relative-indexed
addressing modes.

Bit Contraction of binary digit; may
be either zero or one. In
information theory, a binary digit
is equal to one binary decision or
the designation of one of two
possible values or states of
anything used to store or convey
information.

Byte A group of eight binary digits.

Central Processing Unit
(CPU)

That portion of a computer that
controls and performs the
execution of instructions.

Control Unit That portion of hardware in the
CPU that directs sequence of
operations, interprets coded
instructions, and initiates proper
commands to other parts of the
computer.

General Purpose Register A register that may be used for
arithmetic and logical operations,
indexing, shifting, input, output,

6

Chapter 3. Definitions

and general storage of temporary
data.

Index Register A register that contains a quantity
for modification of an address
without permanently modifying
the address.

Input/Output (I/O) That portion of a computer which
interfaces to the external world.

Instruction A program code which tells the
computer what to do.

Instruction Counter (IC) A register in the CPU that holds
the address of the next instruction
to be executed.

Instruction Set Architecture
(ISA)

The attributes of a digital
computer as seen by a machine
(assembly) language programmer.
ISA includes the processor and
input/output instruction sets, their
formats, operation codes, and
addressing modes; memory
management and partitioning if
accessible to the machine
language programmer; the speed
of accessible clocks; interrupt
structure; and the manner of use
and format of all registers and
memory locations that may be
directly manipulated or tested by
a machine language program.
This definition excludes the time
or speed of any operation, internal
computer partitioning, electrical
and physical organization, circuits
and components of the computer,
manufacturing technology,
memory organization, memory

7

cycle time, and memory bus
widths.

Interrupt A special control signal that
suspends the normal flow of the
processor operations and allows
the processor to respond to a
logically unrelated or
unpredictable event.

Memory That portion of a computer that
holds data and instructions and
from which they can be accessed
at a later time.

Operation Code (OPCODE) That part of an instruction that
defines the machine operation to
be performed.

Operand That part of an instruction that
specifies the address of the
source, the address of the
destination, or the data itself on
which the processor is to operate.

Page Register A register which is used to supply
additional address bits in paged
memory addressing schemes.

Programmed Input/Output
(PIO)

A type of I/O channel that allows
program control of information
transfer between the computer
and an external device.

Register A device in the CPU for the
temporary storage of one or more
words to facilitate arithmetical,
logical, or transfer operations.

Register Transfer Language
(RTL)

A language used to describe
operations (upon registers) which

8

Chapter 3. Definitions

are caused by the execution of
each instruction.

Reserved Must not be used.

Spare A framework for usage is defined
by the standard with particulars
to be defined by the application
requirements.

Stack A sequence of memory locations
in which data may be stored and
retrieved on a last-in-first-out
(LIFO) basis.

Stack Pointer A register that points to the last
item on the stack.

Status Word Register A register whose state is defined
by some prior event occurrence
in the computer.

Word Sixteen bits.

9

10

General RequirementsChapter 4

4.1. Data Formats

The instruction set shall support 16-bit fixed point single precision,
32-bit fixed point double precision, 32-bit floating point and 48-bit
floating point extended precision data in 2's complement
representation.

4.1.1. Single Precision Fixed Point Data

Single precision 16-bit fixed point data shall be represented as a
16-bit 2's complement integer number with the most significant bit
(MSB) as the sign bit:

 MSB LSB

| S| |

11

 0 1 15

Examples of single precision fixed point numbers are shown in
Table I, “Single Precision Fixed Point Numbers” [12].

Table I. Single Precision Fixed Point Numbers

16-Bit Hexadecimal WordInteger

7 F F F32767

4 0 0 016384

1 0 0 04096

0 0 0 22

0 0 0 11

F F F F-1

F F F E-2

F 0 0 0-4096

C 0 0 0-16384

8 0 0 1-32767

8 0 0 0-32768

4.1.2. Double Precision Fixed Point Data

Double precision 32-bit fixed point data shall be represented as a
32-bit 2's complement integer number with the most significant bit
(MSB) of the first word as the sign bit.

 MSB LSB

| S| (MSH) | (LSH) |

 0 1 15 16 31

12

Chapter 4. General Requirements

Examples of machine representation for double precision fixed
point numbers are shown in Table II, “Double Precision Fixed
Point Numbers” [13].

Table II. Double Precision Fixed Point Numbers

32-Bit Hexadecimal WordInteger

7 F F F F F F F2,147,483,647

4 0 0 0 0 0 0 01,073,741,824

0 0 0 0 0 0 0 22

0 0 0 0 0 0 0 11

0 0 0 0 0 0 0 00

F F F F F F F F-1

F F F F F F F E-2

C 0 0 0 0 0 0 0-1,073,741,825

8 0 0 0 0 0 0 1-2,147,483,647

8 0 0 0 0 0 0 0-2,147,483,648

4.1.3. Fixed Point Operands

All operands for fixed point adds, subtracts, multiplies and divides
are integer. A fixed point overflow shall be defined as arithmetic
overflow if the result is greater than 7FFF16 or less than 800016 for
single precision and greater than 7FFF FFFF16 or less than 8000
000016 for double precision.

4.1.4. Results on Fixed Point Overflow

On fixed point operations which cause overflow, the operation
shall be performed to completion as if the MSBs are present and
the 16 LSBs for single precision or the 32 LSBs for double
precision shall be retained in the proper register(s). Division by
zero shall produce a fixed point overflow and return results of all
zeros.

13

Fixed Point Operands

4.1.5. Floating Point Data

Floating point data shall be represented as a 32-bit quantity
consisting of a 24-bit 2's complement mantissa and an 8-bit 2's
complement exponent.

 MSB LSB MSB LSB
--
| S| Mantissa | Exponent |
--
 0 1 23 24 31

Floating point numbers are represented as a fractional mantissa
times 2 raised to the power of the exponent. All floating point
numbers are assumed normalized or floating point zero at the
beginning of a floating point operation and the results of all floating
point operations are normalized (a normalized floating point number
has the sign of the mantissa and the next bit of opposite value) or
floating point zero. A floating point zero is defined as 0000 000016,
that is, a zero mantissa and a zero exponent (0016). An extended
floating point zero is defined as 0000 0000 000016, that is, a zero
mantissa and a zero exponent. Some examples of the machine
representation for 32-bit floating point numbers are shown in
Table III, “32-Bit Floating Point Numbers” [14].

Table III. 32-Bit Floating Point Numbers

Hexadecimal NotationDecimal Number

Mantissa Exp

7FFF FF 7F0.9999998 x 2127

4000 00 7F0.5 x 2127

5000 00 040.625 x 24

4000 00 010.5 x 21

4000 00 000.5 x 20

4000 00 FF0.5 x 2-1

4000 00 800.5 x 2-128

0000 00 000.0 x 20

14

Chapter 4. General Requirements

Hexadecimal NotationDecimal Number

Mantissa Exp

8000 00 00-1.0 x 20

BFFF FF 80-0.5000001 x 2-128

9FFF FF 04-0.7500001 x 24

4.1.6. Extended Precision Floating Point Data

Extended floating point data shall be represented as a 48-bit
quantity consisting of a 40-bit 2's complement mantissa and an
8-bit 2's complement exponent. The exponent bits 24 to 31 lay
between the split mantissa bits 0 to 23 and bits 32 to 47. The most
significant bit of the mantissa is the sign bit 0, and the least
significant bit of the mantissa is bit 47.

--
|S| Mantissa MS |Exponent| Mantissa LS |
--
 0 1 23 24 31 32 47

Some examples of the machine representation of 48-bit extended
floating point numbers are shown in Table IV, “48-Bit Extended
Floating Point Numbers” [15].

Table IV. 48-Bit Extended Floating Point Numbers

Mantissa
(LS)

ExpMantissa
(MS)

Decimal Number

00007F4000000.5 x 2127

0000004000000.5 x 20

0000FF4000000.5 x 2-1

0000804000000.5 x 2-128

00007F800000-1.0 x 2127

000000800000-1.0 x 20

0000FF800000-1.0 x 2-1

15

Extended Precision Floating Point Data

Mantissa
(LS)

ExpMantissa
(MS)

Decimal Number

000080800000-1.0 x 2-128

0000000000000.0 x 20

0000FFA00000-0.75 x 2-1

For both floating point and extended floating point numbers, an
overflow is defined as an exponent overflow and an underflow is
defined as an exponent underflow.

4.1.7. Floating Point Operands

All operands for floating point instructions must be normalized or
a floating point zero. A floating point overflow shall be defined as
exponent overflow if the exponent is greater than 7F16. The results
of an operation which causes a floating point overflow shall be the
largest positive number if the sign of the resulting mantissa was
positive, or shall be the smallest negative number if the sign of the
resulting mantissa was negative. Underflow shall be defined as
exponent underflow if the exponent is less than 8016. The results
of an operation which causes a floating point underflow shall be
floating point zero. Separate interrupts are set for overflow and
underflow. Only the floating point instructions shall set the
underflow interrupt.

4.1.8. Truncation of Floating Point Results

All floating point results shall be truncated toward negative infinity.

4.1.9. Results of Division

The sign of any non-zero remainder is the same as the dividend
for all division instructions; the remainder is only accessible for
single precision integer divides with 16 bit dividends and for single
precision integer divides with 32 bit dividends.

16

Chapter 4. General Requirements

4.2. Instruction Formats

Six basic instruction formats shall support 16 and 32-bit
instructions. The operation code (opcode) shall normally consist
of the 8 most significant bits of the instruction.

4.2.1. Register-to-Register Format

The register-to-register format is a 16-bit instruction consisting of
an 8-bit opcode and two 4-bit general register (GR) fields that
typically specify any of 16 general registers. In addition, these
fields may contain a shift count, condition code, opcode extension,
bit number, or the operand for immediate short instructions.

 MSB LSB

| Opcode | GR1 | GR2 |

 0 7 8 11 12 15

4.2.2. Instruction Counter Relative Format

The Instruction Counter (IC) Relative Format is a 16-bit instruction
consisting of an 8-bit opcode and an 8-bit displacement field.

 MSB LSB

| Opcode | Displacement |

 0 7 8 15

4.2.3. Base Relative Format

The base relative instruction format is a 16-bit instruction consisting
of a 6-bit opcode, a 2-bit base register field and an 8-bit

17

Instruction Formats

displacement field. The base register (BR) field allows the
designation of one of four different registers.

 MSB LSB

| Opcode | BR | Displacement |

 0 5 6 7 8 15

BR = 0 implies general register 12
BR = 1 implies general register 13
BR = 2 implies general register 14
BR = 3 implies general register 15

4.2.4. Base Relative Indexed Format

The base relative indexed instruction format is a 16-bit instruction
consisting of a 6-bit opcode, a 2-bit base register field, a 4-bit
opcode extension and a 4-bit index register field. The base register
(BR) field allows the designation of one of four different base
registers and the index register (RX) field allows the designation
of one of fifteen different index registers.

MSB LSB

| Opcode | BR | Op.Ex. | RX |

 0 5 6 7 8 11 12 15

BR = 0 implies general register 12
BR = 1 implies general register 13
BR = 2 implies general register 14
BR = 3 implies general register 15
RX = 0 implies no indexing

18

Chapter 4. General Requirements

4.2.5. Long Instruction Format

The Long Instruction Format is a 32-bit instruction consisting of
an 8-bit opcode, a 4-bit general register field, a 4-bit index register
field and a 16-bit address field.

MSB LSB
--
| Opcode | GR1 | RX | 16-Bit Address Field |
--
 0 7 8 11 12 15 16 31

Typically, GR1 is one of the 16 general registers on which the
instruction is performing the operation. RX is one of the 15 general
registers being used as an index register. The 16-bit address field
is either a full 16-bit memory address or a 16-bit operand if the
instruction specifies immediate addressing.

4.2.6. Immediate Opcode Extension Format

The immediate opcode extension format is a 32-bit instruction
consisting of an 8-bit opcode, a 4-bit general register field, a 4-bit
opcode extension and a 16-bit data field. Typically, GR1 is one of
the 16 general registers on which the instruction is performing the
operation. Op.Ex. is an opcode extension.

MSB LSB
--
| Opcode | GR1 | Op.Ex. | 16-Bit Immediate Data |
--
 0 7 8 11 12 15 16 31

4.2.7. Special Format

The special instruction format is a 16-bit instruction consisting of
an 8-bit opcode followed by an 8-bit opcode extension (Op.Ex.).

19

Long Instruction Format

MSB LSB

| Opcode | Op.Ex. |

 0 7 8 15

4.3. Addressing Modes

Table V, “Addressing Modes and Instruction Formats” [20]
specifies the instruction word format, the Derived Address (DA),
and the Derived Operand (DO) for each addressing mode that shall
be implemented. The smallest addressable memory word is 16 bits:
hence, the 16-bit address fields allow direct addressing of 64K
(65,536) words. There is no restriction on the location of double
word operands in memory.

Table V. Addressing Modes and Instruction Formats

 See original
MIL-STD-1750A

TBS

4.3.1. Register Direct (R)

An addressing mode in which the instruction specified register
contains the required operand. (With the exception of this address
mode, DA denotes a memory address.)

4.3.2. Memory Direct (D)

An addressing mode in which the instruction contains the memory
address of the operand.

20

Chapter 4. General Requirements

4.3.3. Memory Direct-Indexed (DX)

An addressing mode in which the memory address of the required
operand is specified by the sum of the content of an index register
and the instruction address field. Registers R1, R2, ..., R15 may
be specified for indexing.

4.3.4. Memory Indirect (I)

An addressing mode in which the instruction specified memory
address contains the address of the required operand.

4.3.5. Memory Indirect with Pre-Indexing (IX)

An addressing mode in which the sum of the content of a specified
index register and the instruction address field is the address of the
address of the required operand. Registers R1, R2, ..., R15 may be
specified for pre-indexing.

4.3.6. Immediate Long (IM)

There shall be two methods of Immediate Long addressing: one
which allows indexing and one which does not. The indexable form
of immediate addressing is defined in Table V, “Addressing Modes
and Instruction Formats” [20]. If the specified index register, RX,
is not equal to zero, the content of RX is added to the immediate
field to form the required operand; otherwise the immediate field
contains the required operand.

4.3.7. Immediate Short (IS)

An addressing mode in which the required (4-bit) operand is
contained within the (16-bit) instruction. There shall be two
methods of Immediate Short addressing: one which interprets the
content of the immediate field as positive data, and a second which
interprets the content of immediate field as negative data.

21

Memory Direct-Indexed (DX)

4.3.7.1. Immediate Short Positive (ISP)

The immediate operand is treated as a positive integer between 1
and 16.

4.3.7.2. Immediate Short Negative (ISN)

The immediate operand is treated as a negative integer between 1
and 16. Its internal form shall be a 2's complement, sign-extended
16-bit number.

4.3.8. Instruction Counter Relative (ICR)

This addressing mode is used for 16-bit branch instructions. The
contents of the instruction counter minus one (i.e., the address of
the current instruction) is added to the sign extended 8-bit
displacement field of the instruction. The sum points to the memory
address to which control may be transferred if a branch is executed.
This mode allows addressing within a memory region of 8016 to
7F16 words relative to the address of the current instruction.

4.3.9. Base Relative (B)

An addressing mode in which the content of an instruction specified
base register is added to the 8-bit displacement field of the (16-bit)
instruction. The displacement field is taken to be a positive number
between 0 and 255. The sum points to the memory address of the
required operand. This mode allows addressing within a memory
region of 256 words beginning at the address pointed to by the base
register.

4.3.10. Base Relative-Indexed (BX)

The sum of the contents of a specified index register and a specified
base register is the address of the required operand. Registers R1,
R2, ..., R15 may be specified for indexing.

22

Chapter 4. General Requirements

4.3.11. Special (S)

The special addressing mode is used where none of the other
addressing modes are applicable.

4.4. Registers and Support Features

4.4.1. General Registers

The instruction set shall support a minimum of 16 registers (R0
through R15). The registers may be used as accumulators, index
registers, base registers, temporary operand memory, and stack
pointers with the following restrictions:

• Only registers R1, R2, ..., R15 may be used as index registers
(RX).

• Only four registers, R12, R13, R14, and R15 may be used as
base registers for instructions having the Base Relative address
mode.

• R15 is the implicit stack pointer for the Push and Pop Multiple
instructions (Opcode 8F16 and 9F16).

• The general registers are not in the logical memory address space.

• Instructions having the Base Relative addressing mode have a
single accumulator. The register pair (R0,R1) is the accumulator
for double precision and floating point operations. Register R2
is the accumulator for single precision operations, except
multiply and divide base relative also use R3.

The general registers shall functionally appear to be 16 bits in
length. For instructions requiring a 32-bit operation, adjacent
registers shall be concatenated to form effective 32-bit registers.
Instructions requiring 48-bit operation shall concatenate three
adjacent registers to form an effective 48-bit register.

23

Special (S)

When registers are concatenated, the register specified by the
instruction shall represent the most significant word. The register
set wraps around, that is, R15 concatenates with R0 for 32-bit
operations and R15 concatenates with R0 and R1 for 48-bit
operations.

4.4.2. Special Registers

The instructions shall make use of the following special registers:
instruction counter, status word, fault register, interrupt mask,
pending interrupt register, and input/output interrupt code registers.

4.4.2.1. Instruction Counter (IC)

A 16-bit register used for program sequencing. It allows instructions
within a range of 65,536 words to be executed. It is external to the
general registers. It is saved in memory when an interrupt is
serviced.

4.4.2.2. Status Word (SW)

The instruction set shall reference a 16-bit status word register
whose state is defined by some prior event occurrence in the
computer. The figure below indicates the format for the SW with
the following paragraphs describing the meaning of the Condition
Status (CS) field, reserved bits, the Processor State (PS) field, and
the Address State (AS) field.

| CS | Reserved | PS | AS |

 0 3 4 7 8 11 12 15

CS Bits:
A four-bit field (bits 0 through 3) of the status word shall be
dedicated to instruction result (i.e., instruction status bits) and
is defined as condition status (CS). Bits 0, 1, 2, and 3 shall be
identified as C, P, Z, and N, respectively, and their meanings
are given by the following register transfer description:

24

Chapter 4. General Requirements

C = (CS)0 = 1 if result generates a carry from an addition or
no borrow from a subtraction

P = (CS)1 = 1 if result is greater than (zero)

Z = (CS)2 = 1 if result is equal to (zero)

N = (CS)3 = 1 if result is less than (zero)

Reserved Bits:
Bits 4 through 7 of the status word shall be reserved.

PS Bits:
A four-bit field (bits 8 through 11) of the status word shall be
dedicated to the processor state (PS) code. The code value
defined by the PS shall be used for the following two functions:

For implementations which include the memory access lock
feature of the expanded memory addressing option (see
Section 4.5.2.2, “Page Register Word Format” [33]), PS shall
define the memory access key code for all instructions and
operand references to memory. References to memory during
the interrupt recognition sequence for vector table pointer
fetches and linkage/service parameter store/read references
shall not use PS to define the memory access key code, but
shall use an implied PS = 0 value.

PS shall determine the legal/illegal criteria for privileged
instructions. When PS = 0 and a privileged instruction
execution is attempted, the instruction shall be legal and shall
be executed properly as defined. When PS /= 0 and a privileged
instruction execution is attempted, the instruction shall be
illegal, shall be aborted, and the privileged instruction fault bit
in the fault register (FT10) shall be set to one.

AS bits:
A four-bit field (bits 12 through 15) of the status word shall
be dedicated to the address state (AS) code. For
implementations which do not include the expanded memory
addressing option, an address state fault shall be generated for
any operation which attempts to modify AS to a non-zero value.
For implementations which include the expanded memory

25

Special Registers

addressing option, AS shall define the group (pair) of page
register sets to be used for all instruction and operand references
to memory. References to memory during the interrupt
recognition sequence for vector table pointer fetches and service
parameter load references shall not use AS to define the
operand page register set, but shall use an implied AS = 0 value.
The linkage parameter store references shall use the AS field
of the new status word. For partial implementations which
include less than 16 groups of page register sets for the
expanded memory addressing option (see Section 4.5.2.3,
“Partial Implementations of Expanded Memory
Addressing” [37]), the address state fault bit in the fault register
(FT11) shall be set to one if any operation attempts to establish
an AS value that is not implemented.

4.4.2.3. Fault Register (FT)

The fault register is a 16-bit register used for indicating machine
error conditions. The logical OR of the fault register bits is used
to generate the machine error interrupt. The fault register shall be
read and cleared by an XIO instruction. If a particular fault bit is
not implemented, then the bit shall be set to zero. The fault bits
shall be assigned as specified in the following:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|Memory | Parity | I/O |Spa| Illegal |Res| BITE |
|Protect| | | re| |rvd| |

The bits shall have the following meaning when set to one (1) :

Bit 0:
CPU Memory Protection Fault. The CPU has encountered an
access fault, write protect fault, or execute protect fault.

Bit 1:
DMA Memory Protection Fault. A DMA device has
encountered an access fault or a write protect fault.

26

Chapter 4. General Requirements

Bit 2:
Memory Parity Fault.

Bit 3:
PIO Channel Parity Fault.

Bit 4:
DMA Channel Parity Fault.

Bit 5:
Illegal I/O Command Fault. An attempt has been made to
execute an unimplemented or reserved I/O command.

Bit 6:
PIO Transmission Fault. Other I/O error checking devices, if
used, may be ORed into this bit to indicate an error.

Bit 7:
Spare.

Bit 8:
Illegal Address Fault. A memory location has been addressed
which is not physically present.

Bit 9:
Illegal Instruction Fault. An attempt has been made to execute
a reserved code.

Bit 10:
Privileged Instruction Fault. An attempt has been made to
execute a privileged instruction with PS /= 0.

Bit 11:
Address State Fault. An attempt has been made to establish an
AS value for an unimplemented page register set.

Bit 12:
Reserved.

Bit 13:
Built-in Test Fault. Hardware built-in test equipment (BITE)
error has been detected.

27

Special Registers

Bit 14-15:
Spare BITE. These bits are for use by the designer for future
defining (coding, etc.) the BITE error which is detected. This
can be used with Bit 13 to give a more complete error
description.

4.4.2.4. Interrupt Mask (MK)

The interrupt mask register is software controlled and contains a
mask bit for each of the system interrupts. The interrupt system is
defined in Section 4.6, “Interrupt Control” [38].

4.4.2.5. Pending Interrupt Register (PI)

The pending interrupt request register is software and hardware
controlled and contains the pending interrupts that are attempting
to vector the instruction counter. A pending interrupt is set by a
system interrupt signal. The pending interrupt bit that generates
the interrupt request is cleared by hardware action during the
interrupt processing prior to initiating software at the address
defined by the new IC value. The register may be set, cleared, and
read by the I/O instructions.

4.4.2.6. Input/Output Interrupt Code Registers (IOIC) (optional)

The input/output interrupt code registers, if implemented, are used
to indicate which channel generated the input/output interrupt. One
register is assigned for each of the two input/output interrupts. Each
register is set by hardware to reflect the address of the highest
priority channel requesting that level of interrupt. The address shall
be 0016 for channel number 0, 0F16 for channel number 15, 7F16
for channel number 127, etc. The IOICs shall not be altered once
the interrupt sequence has commenced until they are read by an
I/O instruction.

| Spare | Channel Code |

 0 7 8 15

28

Chapter 4. General Requirements

4.4.2.7. Page Registers (optional)

Up to 512 sixteen bit registers for optional expanded memory
addressing.

4.4.2.8. Memory Fault Status Register (MFSR) (optional)

The memory fault status register provides the page register selection
designators associated with memory faults. The page register
designators (below) captured by the MFSR are valid for the memory
reference causing the fault. The faults setting bits 0, 1, 2, or 8 of
the Fault Register (FT) shall cause MFSR to be set.

| LPA | RESERVED |IO| AS |

 0 3 4 10 11 12 15

LPA:
Address of page register within the set.

RESERVED:
Must not be used.

IO:
Instruction/operand page set selector (1 = instruction).

AS:
Address of selected group.

4.4.3. Stack

The instruction set shall support a stack mechanism. The operation
of the stacking mechanism shall be such that the “last-in, first-out”
concept is used for adding items to the stack and the Stack Pointer
(SP) register always contains the memory address where the last
item is stored on the stack. The stack provides for nested subroutine
linkage using register 15. The stack shall also reside in a user
defined memory area. Two instructions shall use register number

29

Stack

15 (R15) as the implied system stack pointer: Push Multiple
registers, PSHM (see Section 5.54, “Push Multiple Registers onto
the Stack” [106]), and Pop Multiple registers, POPM (see
Section 5.44, “Pop Multiple Registers off the Stack” [98]). The
stack expands linearly toward zero as items are added to it.

Two instructions, Stack IC and Jump to Subroutine, SJS (see
Section 5.36, “Stack IC and Jump to Subroutine” [92]), and Unstack
IC and Return from Subroutine, URS (see Section 5.37, “Unstack
IC and Return from Subroutine” [92]), allow the programmer to
specify any of the 16 general registers as the stack pointer. The
memory block immediately preceding the stack area may be
protected (by user using memory protect RAM), thus providing a
means of knowing (memory protect interrupt) when the stack limit
is exceeded. The stack shall be addressed by the Stack IC and Jump
to Subroutine, Unstack IC and Return from Subroutine, Push
Multiple, and Pop Multiple instructions.

4.4.4. Processor Initialization

4.4.4.1. Processor Reset State

Table VI, “Processor Reset State” [30] defines the processor reset
state:

Table VI. Processor Reset State

Condition After ResetRegister/Device/Function

All zerosInstruction Counter

All zerosStatus Word

All zerosFault Register

All zerosPending Interrupt Register

All zerosInterrupt Mask Register

IndeterminateGeneral Registers

DisabledInterrupts

Started and all zeros aTimers A & B

Group 0 enabled aPage Registers

30

Chapter 4. General Requirements

Condition After ResetRegister/Device/Function

All zeros aPage Registers AL Field

Zero aPage Registers W Field

Zero aPage Registers E Field

Exact logical to physical aPage Registers PPA Field

Disabled and all zeros abMemory Protect RAM

Enabled aStart Up ROM

Disabled aDMA Enable

Indeterminate aInput Discretes

Started aTrigger Go Indicator

All zeros aDiscrete Outputs
aIf implemented (optional)
bMain Memory Globally Protected

4.4.4.2. Power Up

Upon application of power, the processor shall enter the reset state,
the normal power up discrete shall be set (if implemented), and
execution shall begin.

4.4.5. Interval Timers (optional)

If implemented, then two interval timers shall be provided in the
computer and shall be referred to as Timer A and Timer B. Both
timers can be loaded, stopped, started, and read with the commands
described in the XIO paragraph (see Section 5.1, “Execute
Input/Output” [53]). The two timers shall be 16-bit counters which
operate as follows. Effectively, a one is automatically added to the
least significant bit of the timer. Bit fifteen is the least significant
bit and shall represent the specified increment value of that timer,
i.e., either 10 or 100 microseconds. An interrupt request is generated
when a timer increments from FFFF to 000016. After power up, if
the timers are not loaded by software, then an interrupt request is
generated after 65,536 counts. A sample of the 16-bit counting
sequence (shown in hex) is 0000, 0001, ..., 7FFF, 8000, ..., FFFF,
0000, ...,. At system reset or power up, the timers are initialized in
accordance with Section 4.4.4.1, “Processor Reset State” [30]. The

31

Interval Timers (optional)

timers are halted when a breakpoint, BPT (see Section 5.97, “Break
Point” [151]), instruction is executed and the console is connected.

4.5. Memory

4.5.1. Memory Addressing

The instruction set shall use 16-bit logical addresses to provide for
referencing of 65,536 words. When the expanded memory option
(see Section 4.5.2, “Expanded Memory Addressing (optional)” [32])
is not implemented, physical addresses shall equal logical addresses.

4.5.1.1. Memory Addressing Arithmetic

Arithmetic performed on memory logical addresses shall be modulo
65,536 such that references to the maximum logical address of
FFFF16 plus 1 shall be to logical address 000016.

4.5.1.2. Memory Addressing Boundary Constraints

There shall be no odd or even memory address boundary
constraints.

4.5.2. Expanded Memory Addressing (optional)

If used, then expanded memory addressing shall be performed via
a memory paging scheme as depicted in Figure 1, “Expanded
Memory Mapping Diagram” [36]. There shall be a maximum of
512 page registers in the page file (not in logical memory space).
These shall functionally be partitioned into 16 groups with 2 sets
per group and 16 page registers per set. Within a group, one set
shall be designated for instruction references and the other set for
operand references. The page size shall be 4096 words such that
one set of 16 page registers shall be capable of mapping 65,536
words defined by a 16-bit logical address. The page group shall be
selected by the 4-bit Address State (AS) field of the Status Word
(SW). The instruction/operand set within the group shall be selected
by the hardware that differentiates between instruction and operand

32

Chapter 4. General Requirements

memory references. The 4 most significant bits of any 16-bit logical
address shall select the page register within that set. The 8-bit
Physical Page Address (PPA) within the page register shall be
concatenated with the 12 least significant bits of the logical address
to form a 20-bit physical address, allowing addressing of 1,048,576
words of physical memory. If expanded memory addressing is
implemented, then devices other than the CPU which access
memory may utilize either an unmapped 20-bit physical address
or a mapped 16-bit logical address. If the devices other than the
CPU which access memory utilize 16-bit addressing, a separate
address state value must be provided.

4.5.2.1. Group Selection

During instruction and operand references to memory, the address
state (AS) field of the status word shall be used to designate the
page file group. During an interrupt recognition sequence, the
operand set of group zero shall be used for vector table and service
pointer references to memory; while the linkage pointer references
to memory shall use the operand set specified by the AS of the new
status word. During memory accesses by devices other than the
CPU which utilize 16-bit logical addressing, the address state value
provided by the device shall be used to designate the page register
group. Device accesses shall utilize the operand set of the selected
group.

4.5.2.2. Page Register Word Format

Each page register shall be 16 bits. The figure below indicates the
format for the page register words with the following paragraphs
describing the meaning of the access lock (AL) field, the execute
protect (E) bit, the write protect (W) bit, reserved bits, and the
Physical Page Address (PPA) field.

| AL |EW| Reserved | PPA |

 0 3 4 5 7 8 15

33

Expanded Memory Addressing (optional)

AL Field:
The access lock and key feature is optional if expanded memory
addressing is implemented. If the access lock and key feature
is not implemented, then the AL field shall always be zero. If
it is implemented, then a 4-bit field (bits 0 through 3) of each
page register shall contain the access lock (AL) code for the
associated page register, which shall be used with the access
key codes to determine access permission. If the access lock
and key feature is implemented, the access key code is normally
supplied by the PS field of the status word. However, during
memory accesses by devices other than a CPU which utilize
16-bit logical addressing, the access code must be supplied by
the device.

For each of the possible 16 values of the AL code, access shall
be permitted for the reference according to Table VII, “AL
Code to Access Key Mapping” [35]. References supplying an
unacceptable access key code shall not modify any memory
location or general registers and an access fault shall be
generated. An access fault resulting from a CPU reference
attempt shall set fault register bit 0 to cause a machine error
interrupt. An access fault resulting from a DMA attempt shall
set fault register bit 1 to cause a machine error interrupt. Note
that the access lock and key codes defined in the above table
have the following characteristics:

• An access lock code of F16 is an "unlocked" lock code and
allows any and all access key codes to be acceptable.

• An access key code of 0 is a "master" key code and is
acceptable to any and all access lock codes.

• Access key codes 1 through E16 are acceptable to only their
own "matched" lock code or the "unlocked" lock code of
F16.

• An access key code of F16 is acceptable to only the
“unlocked” lock code of F16.

E Bit:
For instruction page register sets only, bit 4 shall be defined
as the E bit and shall determine the acceptable/unacceptable

34

Chapter 4. General Requirements

criteria for read references for instruction fetches. When E=1,
any attempted instruction read reference designating that
associated page register shall be terminated and an execute
protect fault shall be generated. An execute protect fault shall
set fault register bit 0 to cause a machine error interrupt.

W Bit:
For operand page registers only, bit 4 shall be defined as the
W bit and shall determine the acceptable/unacceptable criteria
for write references. When W=1, any attempted write reference
designating that associated page register shall not modify any
memory location and a write protect fault shall be generated.
A write protect fault resulting from a CPU reference attempt
shall set fault register bit 0 to cause a machine error interrupt.
A write protect fault resulting from a DMA reference attempt
shall set fault register bit 1 to cause a machine error interrupt.

Reserved Bits:
Bits 5 through 7 of all the page registers shall be reserved and
shall always be 0.

PPA Field:
An eight-bit field (bits 8 through 15) of each page register shall
be dedicated to the physical page address which is used to
define the physical address as depicted in Figure 1, “Expanded
Memory Mapping Diagram” [36].

Table VII. AL Code to Access Key Mapping

Acceptable Access Key CodesAL Code

00

0,11

0,22

0,33

0,44

0,55

0,66

0,77

0,88

35

Expanded Memory Addressing (optional)

Figure 1. Expanded Memory Mapping Diagram

Acceptable Access Key CodesAL Code

0,99

0,AA

0,BB

0,CC

0,DD

0,EE

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,FF

36

Chapter 4. General Requirements

4.5.2.3. Partial Implementations of Expanded Memory Addressing

A given implementation of this standard may include a partial
implementation of the expanded addressing option. That partial
implementation may use 2, 4, or 8 groups of page registers as
follows:

AS Group CodesNumber of Groups

0 and 12

0 through 34

0 through 78

Within any full or partial implementation, the lock feature may or
may not be included.

4.5.3. Memory Parity (optional)

If used, then bit 2 in the fault register shall be set to indicate a
memory parity error.

4.5.4. Memory Block Protect (optional)

If used, shall be as described by the input/output instructions. For
operations which contain multiple memory references, each store
operation shall be as defined by the memory protection for that
specific memory address.

4.5.5. References to Unimplemented Memory

Attempted access to physical addresses which are not implemented
shall generate an illegal address fault and shall cause the referencing
action to terminate. An illegal address fault shall set fault register
bit 8 to cause a machine error interrupt.

37

Memory Parity (optional)

4.5.6. Start up ROM (optional)

If used, the start up read only memory (ROM) address range shall
be contiguous starting from physical address 0 up to a maximum
of 65,536, as required by the system application. When the start
up ROM is enabled, if an I/O or CPU store function is executed
whose address is within the start up ROM, then the store is
attempted into the main memory. When the start up ROM is
enabled, if a read function (instruction or operand) is executed from
either I/O or the CPU whose address is to the start up ROM, then
the read shall be from the start up ROM. When disabled, the start
up ROM cannot be accessed.

4.5.7. Reserved Memory Locations

Locations 2 through 1F16 are reserved. Locations 2016 through 3F16
are used by the hardware and the stored program as defined by
Table VIII, “Interrupt Definitions” [39].

4.6. Interrupt Control

4.6.1. Interrupts

The instruction set shall support a minimum of sixteen (16)
interrupts as shown in Table VIII, “Interrupt Definitions” [39]. An
interrupt request may occur at any time; however, the interrupt
processing must wait until the current instruction is completed. An
exception to this is the Move Multiple Word which may be
interrupted after each single word transfer. The overall procedure
for acceptance of, responding to, and processing of an interrupt
shall be as illustrated by the flow chart of Figure 2, “Interrupt
System Flowchart” [51].

4.6.1.1. Interrupt Acceptance

The interrupt system shall have the capability to accept external
and internal interrupts. Figure 2, “Interrupt System Flowchart” [51]
indicates the relationship between the interrupt signals, the pending

38

Chapter 4. General Requirements

interrupt register, the interrupt signals and the fundamental
communications between the interrupt system and the CPU.

4.6.1.2. Interrupt Software Control

Software shall be able to input from or output to the interrupt mask
register as well as the pending interrupt register. Also, software
shall be able to disallow recognition of interrupts via the “disable
interrupts” signal (without inhibiting interrupt acceptance into the
pending interrupt register) and to allow recognition of interrupts
via the "enable interrupts" signal. The disabling shall not allow any
interrupt after the beginning of the disable instruction. The CPU's
interrupt service hardware shall continue to “disable interrupts”
for one instruction after the Enable Interrupts instruction has
completed. Full descriptions of the interrupt instructions are given
in the input/output instruction repertoire.

Table VIII. Interrupt Definitions

 Interrupt
Service
Pointer
Address

(Hex)

Interrupt
Linkage
Pointer
Address

(Hex)

Interrupt
Mask Bit
Number

Interrupt
Number

Power Down (cannot be masked
or disabled)

212000

Machine Error (cannot be
disabled)

232211

Spare252422

Floating Point Overflow272633

Fixed Point Overflow292844

Executive Call (cannot be
masked or disabled)

2B2A55

Floating Point Underflow2D2C66

Timer A (if implemented)2F2E77

Spare313088

Timer B (if implemented)333299

Spare35341010

39

Interrupts

 Interrupt
Service
Pointer
Address

(Hex)

Interrupt
Linkage
Pointer
Address

(Hex)

Interrupt
Mask Bit
Number

Interrupt
Number

Spare37361111

Input/Output Level 1 (if
implemented)

39381212

Spare3B3A1313

Input/Output Level 2 (if
implemented)

3D3C1414

Spare3F3E1515

Note Interrupt number 0 has the highest priority. Priority
decreases with increasing interrupt number.

4.6.1.3. Interrupt Priority Definitions

The priority definitions of the interrupts and their required
relationship to the interrupt mask and interrupt pointer addresses
are illustrated in Table VIII, “Interrupt Definitions” [39], Interrupt
Definitions. The power down interrupt shall initiate the power
down sequence and cannot be masked or disabled during normal
operation of the computer. The executive call interrupt, used with
the Branch to Executive instruction, BEX, (see Section 5.30,
“Branch to Executive” [87]) also cannot be masked or disabled.
The machine error interrupt cannot be disabled but can be masked
during normal operation of the computer. All other interrupts can
be disabled and masked. If a floating point overflow/underflow or
fixed point overflow condition occurs, then the instruction
generating that condition shall be interrupted at its completion if
the interrupt is unmasked and enabled.

4.6.1.4. Interrupt Vectoring Mechanism

The vectoring mechanism shall be as illustrated on Figure 3,
“Interrupt Vectoring System” [51]. For each interrupt there shall
be two fixed memory locations in the “vector table”: (1) the first
memory location (Linkage Pointer) shall be defined as the address

40

Chapter 4. General Requirements

of where to store the current (old) state of the computer (i.e., “old
interrupt mask”,“old status word”, and “old instruction counter”);
and (2) the second memory location (Service Pointer) shall be
defined as the address of the next (new) state of the computer (i.e.,
“new interrupt mask”, “new status word”, and “new instruction
counter”). Returning from interrupts may be accomplished by
executing the Load Status (LST/LSTI) instruction with the
value/address of the Linkage Pointer for an address field.

4.7. Input/Output

In conjunction with the spare command codes, the I/O interrupts,
and the I/O interrupt code registers, the I/O instructions provide a
framework within which the user can implement his system
interfaces. The particulars of the system interfaces outside of this
framework (such as dedicated memory locations, channel register
definitions, command code assignments/definitions, multiple
channel priorities, page register access, etc.) are not included in
this standard.

4.7.1. Input

The input instructions transfer data from an external I/O device or
an internal special register to a CPU general register. This command
is used to read data from peripheral devices, timers, status word,
fault register, discretes, interrupt mask, etc. A full description of
the input instructions is given in the instruction repertoire.

4.7.2. Output

The output instructions transfer data from a CPU general register
to an external I/O device or special register. This command is used
to write data to peripheral devices, discretes, start and stop timers,
enable and disable interrupts and DMA, set and clear interrupt
requests, masks and pending interrupt bits, etc. A full description
of the output instructions is given in the instruction repertoire.

41

Input/Output

4.7.3. Input/Output Commands

Input/output commands are classified as mandatory, optional,
reserved, or spare. Mandatory I/O commands must be implemented
as defined. Optional I/O commands must be implemented as
defined, if implemented. Reserved I/O commands must not be
implemented. Spare I/O commands may be implemented as required
by the application. Attempted execution of an unimplemented
optional or spare I/O command or a reserved I/O command shall
cause the illegal I/O command fault to be set in the fault register
(FT5) causing a machine error interrupt.

Input/output command words shall be fully decoded. "TBDs" in
input/output instruction descriptions refer to parameters to be
determined by the application system requirements. Within these
classifications, the use of the command is defined in the instruction
description.

4.7.4. Input/Output Command Partitioning

The I/O command space shall be divided into 128 channels. Up to
512 commands within each channel group (256 input and 256
output) may be used with each I/O interface. Table IX,
“Input/Output Channel Groups” [44] lists the 128 I/O channel
groups. The attempted execution of an unimplemented I/O
command shall cause bit 5 of the fault register to be set, generate
a machine error interrupt, and abort to completion.

4.7.5. Input/Output Interrupts (optional)

Input/output level 1 and level 2 interrupts are available to the user.
Either interrupt level or both may be implemented for an interface
as defined by the particular application specification. The interrupts
shall be used in conjunction with the input/output interrupt code
registers to provide I/O channel to process communications. Two
levels of interrupts allow easy differentiation of normal reporting
from error reporting.

42

Chapter 4. General Requirements

4.7.6. Dedicated I/O Memory Locations

If dedicated memory locations are used to communicate information
to and/or from an I/O channel, these locations shall be consecutive
memory locations starting at an implementation defined location.
Locations 4016 through 4F16 are optional for I/O usage.

4.8. Instructions

4.8.1. Invalid Instructions

Attempted execution of an instruction whose first 16 bits are not
defined by this standard shall cause the invalid instruction bit in
the fault register (FT9) to be set, generating a machine error
interrupt. The Built-In-Function is an exception; implemented
Built-In-Functions do not cause FT9 to be set or the machine error
interrupt to be generated. All undefined bit patterns in the first 16
bits of an instruction are reserved.

4.8.2. Mnemonic Conventions

Each instruction has an associated mnemonic convention. In
general, the operation is one or two letters, e.g., L for load, A for
add, ST for store.

Floating point operations have a prefix of F, e.g., FL for floating
load, FA for floating add.

Double precision operations have a prefix of D, e.g., DL for double
load, DA for double add.

Extended precision floating point operations have a prefix of EF,
e.g., EFA for extended precision floating point add.

Register-to-register operations have a suffix of R, e.g., AR for
single precision add register-to-register, FAR for floating add
register-to-register.

43

Dedicated I/O Memory Locations

Indirect memory reference is indicated by a suffix I, e.g., LI for
Load Indirect.

Immediate addressing, using the address field as an operand, is
indicated by a suffix of IM, e.g., AIM for single precision add
immediate. Use of indexing is specified in assembly language by
the occurrence of the operational field after the address field, e.g.,
FA A2,ALPHA,A5: floating add to register A2 from memory
location ALPHA indexed by register A5.

Table IX. Input/Output Channel Groups

UsageInputOutput

PIO80XX00XX

PIO83XX03XX

Spare84XX04XX

Spare9FXX1FXX

Processor & Auxiliary Register ControlA0XX20XX

ReservedA1XX21XX

ReservedAFXX2FXX

SpareB0XX30XX

SpareBFXX3FXX

Processor & Auxiliary Register ControlC0XX40XX

ReservedC1XX41XX

ReservedCFXX4FXX

Memory Protect RAMD0XX50XX

Memory Address Extension (page
register commands)

D1XX51XX

Memory Address Extension (page
register commands)

D2XX52XX

SpareD3XX53XX

SpareFFXX7FXX

44

Chapter 4. General Requirements

4.8.3. Instruction Matrix

Table X, “Operation Code Matrix (Left)” [48] contains the order
type matrix which relates each instruction operation code to an
assigned symbol. The numbers shown across the top of the matrix
are hexadecimal numbers which represent the higher order four
bits of the operation code, and the hexadecimal numbers along the
left side represent the lower order four bits of the operation code.
Table XI, “Extended Operation Codes (Left)” [50] contains the
order types and assigned mnemonics for the extended Operation
Code instructions.

4.8.4. Instruction Set Notation

The text and register transfer descriptions are intended to
complement each other. Ambiguities or omissions in one are
resolved by the other. The following definitions and special symbols
are associated with the instruction descriptions.

 CPU Registers

The 16, 16-bit general registersR0, R1, ..., R15

Instruction CounterIC

Status WordSW

Condition Status. A 4-bit quantity that is set
according to the result of instruction
executions.

CS

Linkage PointerLP

Stack Pointer; R15 for the Push and Pop
Multiple instructions

SP

Service PointerSVP

Interrupt Mask RegisterMK

Pending Interrupt RegisterPI

An unspecified general registerRA, RB

 Addressing Modes

Register DirectR

45

Instruction Matrix

Memory Direct, Memory Direct-IndexedD, DX

Memory Indirect, Memory Indirect with
Pre-Indexing

I, IX

Immediate Long, Immediate Long with
Indexing

IM, IMX

Immediate Short with Positive Operand,
Immediate Short with Negative Operand

ISP, ISN

IC-RelativeICR

Base Relative, Base Relative with IndexingB, BX

SpecialS

 Data Quantities

Most Significant Half, Least Significant
Half

MSH,LSH

Most Significant Bit, Least Significant BitMSB,LSB

Abbreviation for “Single Precision,”
“Double Precision,” “Floating Point,” and

S.P., D.P., Ft.P.,
E.F.P

“Extended Floating Point” operations
respectively.

Floating Point Derived Operand mantissa
(fractional part): DO0-23 (Ft.P), DO0-23
DO32-47 (E.F.P.)

MO

Floating point 8-bit 2's complement Derived
Operand characteristic (exponent): DO24-31

EO

Floating point register accumulator mantissa
(fractional part): (RA,RA+1)0-23 (Ft.P.),
(RA,RA+1)0-23 (RA+2)32-47 (E.F.P.)

MA

Floating point 8-bit 2's complement register
accumulator characteristic (exponent):
(RA,RA+1)24-31

EA

An entity used for register level transfer
description clarification. These registers are
not part of the general register file.

RQ, MP, MQ

 Miscellaneous

Contents of Register X(X)

46

Chapter 4. General Requirements

Contents of concatenated Registers X and
X+1

(X,X+1)

Contents of memory address X[X]

Contents of sequential memory locations X
and X+1

[X,X+1]

Mantissa (fractional part) overflowOVM

Indicates termination of present register
transfer operation (except the setting of the
CS bits)

Exit

Derived AddressDA

Derived OperandDO

An integer numberN,M,n

DisplacementDSPL

If X is a CPU register or a data quantity (see
above), then n specifies a bit position in X.

Xn

If X is not a CPU register or a data quantity,
then the number X is to the base n. If X is
a number and n=16, then X is a 2's
complement hexadecimal number.

If X is a CPU register or a memory address,
then i specifies the state of X. This notation

Xi

is used in the register transfer descriptions
to refer to the contents of a CPU register or
a memory address at different times (states)
of the execution of the instruction. If X is
not a CPU register or a memory address,
then the number X is raised to the ith power.

 Symbols

Unilateral transfer designator<--

Bilateral transfer designator<-->

Comparison Designator:

Indicates a “don't care” bit when used in a
binary number

x

Greater than>

Less than<

47

Instruction Set Notation

Equals=

Greater than or equal>=

Less than or equal<=

Logical AND^

Logical ORv

Exclusive ORxor

Logical NOT~

Absolute value||

Table X. Operation Code Matrix (Left)

JumpShiftBitOpcode
Extensions

Logic
Compare

Floating
Point

Integer
Arithmetic

Load
Store

76543210

JCSLLSBBRX
BR12a

ORB BR12FAB
BR12

AB
BR12

LB
BR12

0

CRSRLSBRBRX
BR13a

ORB BR13FAB
BR13

AB
BR13

LB
BR13

1

CISPSRASBIBRX
BR14a

ORB BR14FAB
BR14

AB
BR14

LB
BR14

2

CISMSLCRBBRX
BR15a

ORB BR15FAB
BR15

AB
BR15

LB
BR15

3

CBL RBR ANDB
BR12

FSB
BR12

SBB
BR12

DLB
BR12

4

 DSLLRBI ANDB
BR13

FSB
BR13

SBB
BR13

DLB
BR13

5

DCDSRLTB ANDB
BR14

FSB
BR14

SBB
BR14

DLB
BR14

6

DCRDSRATBR ANDB
BR15

FSB
BR15

SBB
BR15

DLB
BR15

7

FCDSLCTBIXIOabCB BR12FMB
BR12

MB
BR12

STB
BR12

8

FCR TSBVIOabCB BR13FMB
BR13

MB
BR13

STB
BR13

9

48

Chapter 4. General Requirements

JumpShiftBitOpcode
Extensions

Logic
Compare

Floating
Point

Integer
Arithmetic

Load
Store

76543210

EFCSLRSVBRIMMLCB BR14FMB
BR14

MB
BR14

STB
BR14

A

EFCRSAR CB BR15FMB
BR15

MB
BR15

STB
BR15

B

LSTIbSCRRVBR FCB BR12FDB
BR12

DB
BR12

DSTB
BR12

C

LSTbDSLR FCB BR13FDB
BR13

DB
BR13

DSTB
BR13

D

SJSDSARTVBR FCB BR14FDB
BR14

DB
BR14

DSTB
BR14

E

URSDSCR BIFcFCB BR15FDB
BR15

DB
BR15

DSTB
BR15

F

aThese order types represent instructions which have “extended” operation codes and are fully described
in the instruction specifications and in Table V, “Addressing Modes and Instruction Formats” [20].
bPrivileged instructions
cUser Defined Built-In Function Opcode.

Table Xr. Operation Code Matrix (Right)

CompareLogicalDivideMultSubAddStoreLoad

FEDCBA98

CORDVMSSASTL0

CRORRDVRMSRSRARSTCLR1

CISPANDDISPMISPSISPAISPSTCILISP2

CISMANDRDISNMISNDECMINCMMOVLISN3

CBLXORDMNEGABSSTILI4

 XORRDRMRDNEGDABS LIM5

DCNDDDMDSDADSTDL6

DCRNRDDRDMRDSRDARSRMDLR7

FCFLXFDFMFSFADSTIDLI8

FCRFLTFDRFMRFSRFARSTMLM9

EFCEFLXEFDEFMEFSEFAEFSTEFLA

49

Instruction Set Notation

CompareLogicalDivideMultSubAddStoreLoad

FEDCBA98

EFCREFLTEFDREFMREFSREFARSTUBLUBB

 XBR FNEGFABSSLTBLLBC

 XWR SUBILUBID

 SLBILLBIE

NOP PSHMPOPMF

Table XI. Extended Operation Codes (Left)

76543210FormatbMSHa

DBXMBXSBBXABXDSTXSTBXDLBXLBXBRX BR1240

DBXMBXSBBXABXDSTXSTBXDLBXLBXBRX BR1341

DBXMBXSBBXABXDSTXSTBXDLBXLBXBRX BR1442

DBXMBXSBBXABXDSTXSTBXDLBXLBXBRX BR1543

ANDMDVIMDIMMSIMMIMSIMAIM IMM4A
aMost Significant Half
bBase Relative Indexed Format

Table XIr. Extended Operation Codes (Right)

FEDCBA98FormatbMSHa

ORBXANDXFCBXCBXFDBXFMBXFSBXFABXBRX BR1240

ORBXANDXFCBXCBXFDBXFMBXFSBXFABXBRX BR1341

ORBXANDXFCBXCBXFDBXFMBXFSBXFABXBRX BR1442

ORBXANDXFCBXCBXFDBXFMBXFSBXFABXBRX BR1543

 NIMCIMXORMORIMIMM4A
aMost Significant Half
bBase Relative Indexed Format

50

Chapter 4. General Requirements

Figure 3. Interrupt Vectoring System

51

Instruction Set Notation

52

Detailed RequirementsChapter 5

5.1. Execute Input/Output

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
IM XIO RA,CMD --------------------------------------
IMX XIO RA,CMD,RX | 48 | RA | RX | | CMD |

Description. The input/output instruction transfers data between
an external/internal device and the register RA. The Derived
Operand, DO, specifies the operation to be performed or the device
to be addressed. The immediate operand field may be viewed as
an operation code extension field. Note that if indexing is specified,
then the input/output operation or device address is formed by
summing the contents of the register RX and the immediate field.
This is a privileged instruction.

53

The mandatory and optional input/output immediate command
fields are listed below.

Table XII. Mandatory XIO Command Fields and Mnemonics

DescriptionMnemonicCode

Programmed Output: This command outputs
16 bits of data from RA to a programmed I/O
port. Y may be from 0 through 3.

PO0YXX

Set Interrupt Mask: This command outputs
the 16-bit contents of the register RA to the

SMK2000

interrupt mask register. A "1" in the
corresponding bit position allows the interrupt
to occur and a "0" prevents the interrupt from
occurring except for those interrupts that are
defined such that they cannot be masked.

Clear Interrupt Request: All interrupts are
cleared (i.e., the pending interrupt register is

CLIR2001

cleared to all zeros) and the contents of the
fault register are reset to zero.

Enable Interrupts: This command enables all
interrupts which are not masked out. The

ENBL2002

enable operation takes place after execution
of the next instruction.

Disable Interrupts: This command disables all
interrupts (except those that are defined such

DSBL2003

that they cannot be disabled) at the beginning
of the execution of the DSBL instruction.

Reset Pending Interrupt: The individual
interrupt bit to be reset shall be designated in

RPI2004

register RA as a right justified four bit code.
(016 represents interrupt number 0, F16
represents interrupt number 15). If interrupt
116 is to be cleared, then the contents of the
fault register shall also be set to zero.

Set Pending Interrupt Register: This command
ORs the 16-bit contents of RA with the

SPI2005

pending interrupt register. If there is a one in
the corresponding bit position of the interrupt

54

Chapter 5. Detailed Requirements

DescriptionMnemonicCode

mask (same bit set in both the PI and the MK),
and the interrupts are enabled, then an
interrupt shall occur after execution of the next
instruction. If PI5 is set to 1, then N is assumed
to be 0 (see Section 5.30, “Branch to
Executive” [87]).

Write Status Word: This command transfers
the contents of RA to the status word.

WSW200E

Programmed Input: This command inputs 16
bits of data into RA from the programmed I/O
port. Y may be from 0 through 3.

PI8YXX

Read Interrupt Mask: The current interrupt
mask is transfered into register RA. The
interrupt mask is not altered.

RMKA000

Read Pending Interrupt Register: This
command transfers the contents of the pending

RPIRA004

interrupt register into RA. The pending
interrupt register is not altered.

Read Status Word: This command transfers
the 16-bit status word into register RA. The
status word remains unchanged.

RSWA00E

Read and Clear Fault Register: This command
inputs the 16-bit fault register to register RA.

RCFRA00F

The contents of the fault register are reset to
zero. Bit 1 in the pending interrupt register is
reset to zero.

Table XIII. Optional XIO Command Fields and Mnemonics

DescriptionMnemonicCode

Programmed Output: This command outputs
16 bits of data from RA to a programmed I/O
port. Y may be from 0 through 3.

POOYXX

Output Discretes: This command outputs the
16-bit contents of the register RA to the

OD2008

discrete output buffer. A "1" indicates an "on"

55

Execute Input/Output

DescriptionMnemonicCode

condition and a "0" indicates an "off"
condition.

Reset Normal Power Up Discrete: This
command resets the normal power up discrete
bit.

RNS200A

Console Output: The 16-bit contents (2 bytes)
of register RA are output to the console. The

CO4000

eight most significant bits (byte) are sent first.
If no console is present, then this command
is treated as a NOP (see Section 5.96, “No
Operation” [151]).

Clear Console: This command clears the
console interface.

CLC4001

Memory Protect Enable: This command
allows the memory protect RAM to control
memory protection.

MPEN4003

Enable Start Up ROM: This command enables
the start up ROM (i.e., the ROM overlays
main memory).

ESUR4004

Disable Start Up ROM: This command
disables the start up ROM.

DSUR4005

Direct Memory Access Enable: This command
enables direct memory access (DMA).

DMAE4006

Direct Memory Access Disable: This
command disables DMA.

DMAD4007

Timer A, Start: This command starts timer A
from its current state. The timer is incremented
every 10 microseconds.

TAS4008

Timer A, Halt: This command halts timer A
at its current state.

TAH4009

Output Timer A: The contents of register RA
are loaded (i.e., jam transfered) into timer A

OTA400A

and the timer automatically starts operation
by incrementing from the loaded timer in steps
of ten microseconds. Bit fifteen is the least

56

Chapter 5. Detailed Requirements

DescriptionMnemonicCode

significant bit and shall represent ten
microseconds.

Trigger Go Indicator: This command restarts
a counter which is connected to a discrete

GO400B

output. The period of time from restart to
time-out shall be determined by the system
requirements. When the Go timer is started,
the discrete output shall go high and remain
high for TBD milliseconds, at which time the
output shall go low unless another GO is
executed. The Go discrete output signal may
be used as a software fault indicator.

Timer B, Start: This command starts timer B
from its current state. The timer is incremented
every 100 microseconds.

TBS400C

Timer B, Halt: This command halts timer B
at its current state.

TBH400D

Output Timer B: The contents of register RA
are loaded (i.e., jam transfered) into timer B

OTB400E

and the timer automatically starts operation
by incrementing from the loaded timer in steps
of one hundred microseconds. Bit fifteen is
the least significant bit and shall represent one
hundred microseconds.

Load Memory Protect RAM (5000 + RAM
address): This command outputs the 16-bit

LMP50XX

contents of register RA to the memory protect
RAM. A "1" in a bit provides write protection
and a "0" in a bit permits writing to the
corresponding 1024 word physical memory
block. The RAM word MSB (bit 0) represents
the lowest number block and the RAM word
LSB (bit 15) represents the highest block (i.e.,
bit 0 represents locations 0 through 1023 and
bit 15 represents locations 15360 through
16383 for word zero). Each word represents
consecutive 16K blocks of physical memory.

57

Execute Input/Output

DescriptionMnemonicCode

The RAM words of 0 through 63 apply to
processor write protect and words 64 through
127 apply to DMA write protect.

Write Instruction Page Register: This
command transfers the contents of register

WIPR51XY

RA to page register Y of the instruction set
group X.

Write Operand Page Register: This command
transfers the contents of register RA to page
register Y of the operand set of group X.

WOPR52XY

Programmed Input: This command inputs 16
bits of data into RA from the programmed I/O
port. Y may be from 0 through 3.

PI8YXX

Read Input/Output Interrupt Code, Level 1:
This command inputs the contents of the level

RIC1A001

1 IOIC register into register RA. The channel
number is right justified.

Read Input/Output Interrupt Code, Level 2:
This command inputs the contents of the level

RIC2A002

2 IOIC register into register RA. The channel
number is right justified.

Read Discrete Output Register: This command
inputs the 16-bit discrete output buffer into
register RA.

RDORA008

Read Discrete Input: This command inputs
the 16-bit discrete input word into register RA.

RDIA009

A "1" indicates an "on" condition and a "0"
indicates an "off" condition.

Test Programmed Output: This command
inputs the 16-bit contents of the programmed

TPIOA00B

output buffer into register RA. This command
may be used to test the PIO channel by means
of a wrap around test.

Read Memory Fault Status: This command
transfers the 16-bit contents of the memory

RMFSA00D

fault status register to RA. The fields within

58

Chapter 5. Detailed Requirements

DescriptionMnemonicCode

the memory fault status register shall delineate
memory related fault types and shall provide
the page register designators associated with
the designated fault.

Console Input: This command inputs the
16-bits (2 bytes) from the console into register

CIC000

RA. The eight most significant bits of RA
shall represent the first byte.

Read Console Status: This command inputs
the console interface status into register RA.
The status is right justified.

RCSC001

Input Timer A: This command inputs the
16-bit contents of timer A into register RA.

ITAC00A

Bit fifteen is the least significant bit and
represents a time increment of ten
microseconds.

Input Timer B: This command inputs the
16-bit contents of timer B into register RA.

ITBC00E

Bit fifteen is the least significant bit and
represents a time increment of one hundred
microseconds.

Read Memory Protect RAM (D000 + RAM
address): This command inputs the appropriate

RMPD0XX

memory protect word into register RA. A "1"
in a bit provides write protection and a "0" in
a bit permits writing to the corresponding 1024
word physical memory block. The RAM
words MSB (bit 0) represents the lowest
number block and the RAM word LSB (bit
15) represents the highest block (i.e., bit 0
represents locations 0 through 1023 and bit
15 represents locations 15360 through 16383
for word zero). Each word represents
consecutive 16K blocks of physical memory.
The RAM words of 0 through 63 apply to
processor write protect and words 64 through
127 apply to DMA write protect.

59

Execute Input/Output

DescriptionMnemonicCode

Read Instruction Page Register: This
command transfers the 16-bit contents of the

RIPRD1XY

page register Y of the instruction set of group
X to register RA.

Read Operand Page Register: This command
transfers the 16-bit contents of page register

ROPRD2XY

Y of the operand set of group X to register
RA.

Note **** **** User defined XIO functions (see Table IX,
“Input/Output Channel Groups” [44]).

Register Transfer Description. Varies depending on the
command field.

Registers Affected. Varies depending on the command field.

5.2. Vectored Input/Output

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D VIO RA,ADDR --------------------------------------
DX VIO RA,ADDR,RX | 49 | RA | RX | | ADDR |

Description. The vectored input/output instruction performs the
I/O operation as specified by the input/output vector table starting
at the derived address, DA, as shown below:

DA | CMD |

DA + 1 | Vector Select |

DA + 2 | Data | } one data word for each bit

60

Chapter 5. Detailed Requirements

 --------------------- set in the vector select
... | ... |

The input/output operation or device address is specified by the
sum of the CMD and the product of the bit number of the bit set
in the vector select times the contents of RA. This device address
is then interpreted as specified by the XIO instruction (see
Section 5.1, “Execute Input/Output” [53]) with the exception that
I/O data is transfered to or from DA + 2 + i rather than RA (where
i starts at zero and is incremented after each transfer). This is a
privileged instruction. If an illegal XIO command is encountered
as part of a VIO chain, the following actions occur:

• The illegal I/O command bit of the fault register (FT5) is set to
a one.

• The VIO chain is terminated, and the illegal XIO is treated as a
NOP. This termination shall not affect execution of preceding
XIO commands which are part of the VIO chain being executed.

Register Transfer Description.

Step 1. n <-- 0 and i <-- 0;
Step 2. if [DA + 1]n = 1, then I/O command = [DA] + n x (RA);
Step 3. FT5 <-- 1, exit, if XIO = illegal command;
Step 4. if [DA + 1]n = 1, then I/O data = [DA + 2 + i];
Step 5. if [DA + 1]n = 1, then i <-- i + 1;
Step 6. n <-- n + 1, exit, if n = 16;
Step 7. go to step 2;

Registers Affected. None

5.3. Set Bit

Addr
Mode Mnemonic Format/Opcode
 8 4 4

61

Set Bit

R SBR N,RB | 51 | N | RB |

 8 4 4 16
D SB N,ADDR --------------------------------------
DX SB N,ADDR,RX | 50 | N | RX | | ADDR |

 8 4 4 16
I SBI N,ADDR --------------------------------------
IX SBI N,ADDR,RX | 52 | N | RX | | ADDR |

Description. Bit number N of the Derived Operand, DO, is set
to one. The MSB is designated bit number zero and the LSB is
designated bit number fifteen.

Register Transfer Description.

DON <-- 1;

Registers Affected. RB

5.4. Reset Bit

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R RBR N,RB | 54 | N | RB |

 8 4 4 16
D RB N,ADDR --------------------------------------
DX RB N,ADDR,RX | 53 | N | RX | | ADDR |

 8 4 4 16
I RBI N,ADDR --------------------------------------
IX RBI N,ADDR,RX | 55 | N | RX | | ADDR |

62

Chapter 5. Detailed Requirements

Description. Bit number N of the Derived Operand, DO, is set
to zero. The MSB is designated bit number zero and the LSB is
designated bit number fifteen.

Register Transfer Description.

DON <-- 0;

Registers Affected. RB

5.5. Test Bit

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R TBR N,RB | 57 | N | RB |

 8 4 4 16
D TB N,ADDR --------------------------------------
DX TB N,ADDR,RX | 56 | N | RX | | ADDR |

 8 4 4 16
I TBI N,ADDR --------------------------------------
IX TBI N,ADDR,RX | 58 | N | RX | | ADDR |

Description. Bit number N (0 <= N <= 15) of the Derived
Operand, DO, is tested. Then the Condition Status, CS, is set to
indicate non-zero if bit number N of the DO contains a one.
Otherwise CS is set to indicate zero. The MSB of the DO is
designated bit number zero and the LSB of the DO is designated
bit number fifteen.

Register Transfer Description.

63

Test Bit

(CS) <-- 0010 if DON = 0 and 0 <= N <= 15;
(CS) <-- 0001 if DON = 1 and N = 0;
(CS) <-- 0100 if DON = 1 and 1 <= N <= 15;

Registers Affected. CS

5.6. Test and Set Bit

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D TSB N,ADDR --------------------------------------
DX TSB N,ADDR,RX | 59 | N | RX | | ADDR |

Description. Bit number N (0 <= N <= 15) of the Derived
Operand, DO, is tested and set to one. The CS is set according to
the test.

Note External memory accesses shall be inhibited until this
instruction is complete.

Register Transfer Description.

(CS) <-- 0010 and (DON) <-- 1 if DON = 0 and 0 <= N <= 15;
(CS) <-- 0001 if (DON) = 1 and N = 0;
(CS) <-- 0100 if (DON) = 1 and 1 <= N <= 15;

Registers Affected. CS

5.7. Set Variable Bit in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

64

Chapter 5. Detailed Requirements

R SVBR RA,RB | 5A | RA | RB |

Description. Bit number N (0 <= N <= 15) of the register RB
is set to one where the least significant four bits of the contents of
register RA is N. Bits (RA)0-11 have no effect on the operation. If
RA = RB, then the count is determined first and then the appropriate
bit is changed.

Register Transfer Description.

(RB)N <-- 1 where N = (RA)12-15;

Registers Affected. RB

5.8. Reset Variable Bit in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R RVBR RA,RB | 5C | RA | RB |

Description. Bit number N (0 <= N <= 15) of register RB is set
to zero where the least significant four bits of the contents of
register RA is N. Bits (RA)0-11 have no effect on the operation. If
RA = RB, then the count is determined first and then the appropriate
bit is changed.

Register Transfer Description.

(RB)N <-- 012-15 where N = (RA) ;

Registers Affected. RB

65

Reset Variable Bit in Register

5.9. Test Variable Bit in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R TVBR RA,RB | 5E | RA | RB |

Description. Bit number N (0 <= N <= 15) of register RB is
tested where the least significant four bits of the contents of register
RA is N. The Condition Status, CS, is then set to indicate non-zero
if bit number N of register RB is a one. Otherwise, CS is set to
indicate zero.

Register Transfer Description.

N = (RA)12-15;
(CS) <-- 0010 if (RBN) = 0 and 0 <= N <= 15;
(CS) <-- 0001 if (RBN) = 1 and N = 0;
(CS) <-- 0100 if (RBN) = 1 and 1 <= N <= 15;

Registers Affected. CS

5.10. Shift Left Logical

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SLL RB,N | 60 | N-1 | RB | 1 <= N <= 16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB) are shifted left logically N positions. The
shifted result is stored in RB. The logical shift left operation is as

66

Chapter 5. Detailed Requirements

follows: zeros enter the least significant bit position (bit 15) and
bits shifted out of the sign bit position (bit 0) are lost. The condition
status, CS, is set based on the result in register RB.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 0 15

RB Before Shift | sabc | defg | hijk | lmnp |

RB After Shift (N=4) | defg | hijk | lmnp | 0000 |

Register Transfer Description.

(RB) <-- (RB) Shifted left logically by N positions;
(CS) <-- 0010 if (RB) = 0;
(CS) <-- 0001 if (RB) < 0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.11. Shift Right Logical

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SRL RB,N | 61 | N-1 | RB | 1 <= N <= 16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted right logically N positions.
The shifted result is stored in RB. The logical shift right operation

67

Shift Right Logical

is as follows: zeros enter the sign bit position (bit 0) and bits shifted
out of the least significant bit position (bit 15) are lost. The
condition status, CS, is set based on the result in register RB.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 0 15

RB Before Shift | sabc | defg | hijk | lmnp |

RB After Shift (N=4) | 0000 | sabc | defg | hijk |

Register Transfer Description.

(RB) <-- (RB) Shifted right logically by N positions;
(CS) <-- 0010 if (RB) = 0;
(CS) <-- 0001 if (RB) < 0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.12. Shift Right Arithmetic

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SRA RB,N | 62 | N-1 | RB | 1 <= N <= 16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted right arithmetically N positions.
The shifted result is stored in RB. The arithmetic right shift

68

Chapter 5. Detailed Requirements

operation is as follows: the sign bit, which is not changed, is copied
into the next position for each position shifted and bits shifted out
of the least significant bit position (bit 15) are lost. The condition
status, CS, is set based on the result in register RB.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 0 15

RB Before Shift | sabc | defg | hijk | lmnp |

RB After Shift (N=4) | ssss | sabc | defg | hijk |

Register Transfer Description.

(RB) <-- (RB) Shifted right arithmetically by N positions;
(CS) <-- 0010 if (RB) = 0;
(CS) <-- 0001 if (RB) < 0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.13. Shift Left Cyclic

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SLC RB,N | 63 | N-1 | RB | 1 <= N <= 16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted left cyclically N positions. The

69

Shift Left Cyclic

shifted result is stored in RB. The cyclic left shift operation is as
follows: bits shifted out of the sign bit position (bit 0) enter the
least significant bit position (bit 15) and, consequently, no bits are
lost. The condition status, CS, is set based on the result in RB.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 0 15

RB Before Shift | sabc | defg | hijk | lmnp |

RB After Shift (N=4) | defg | hijk | lmnp | sabc |

Register Transfer Description.

(RB) <-- (RB) Shifted left cyclically by N positions;
(CS) <-- 0010 if (RB) = 0;
(CS) <-- 0001 if (RB) < 0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.14. Double Shift Left Logical

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSLL RB,N | 65 | N-1 | RB | 1 <= N <= 16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),

70

Chapter 5. Detailed Requirements

are shifted left logically N positions. The shifted results are stored
in RB and RB+1. The double left shift logical operation is as
follows: zeros enter the least significant bit position of RB+1, bits
shifted out of the sign bit position of RB+1 enter the least
significant bit of RB and bits shifted out of the sign bit of RB are
lost. The condition status, CS, is set based on the result in registers
RB and RB+1.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 RB, RB+1 Before Shift
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| sabc | defg | hijk | lmnp | | sqrs | tuvw | xyzz | zzzz |
| 1 | | | | | 2 | | | |
----------------------------- -----------------------------

 RB, RB+1 After Shift (N=4)
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| defg | hijk | lmnp | sqrs | | tuvw | xyzz | zzzz | 0000 |
| | | | 2 | | | | | |
----------------------------- -----------------------------

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted left logically by N positions;
(CS) <-- 0010 if (RB,RB+1) = 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

71

Double Shift Left Logical

5.15. Double Shift Right Logical

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSRL RB,N | 66 | N-1 | RB | 1 <= N <= 16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
are shifted right logically N positions. The shifted results are stored
in RB and RB+1. The double logical right shift operation is as
follows: zeros enter the sign bit position of RB, bits shifted out of
the least significant bit position of RB enter the sign bit position
of RB+1 and bits shifted out of the least significant bit position of
RB+1 are lost. The condition status, CS, is set based on the result
in register RB and RB+1.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 RB, RB+1 Before Shift
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| sabc | defg | hijk | lmnp | | sqrs | tuvw | xyzz | zzzz |
| 1 | | | | | 2 | | | |
----------------------------- -----------------------------

 RB, RB+1 After Shift (N=4)
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| 0000 | sabc | defg | hijk | | lmnp | sqrs | tuvw | xyzz |
| | 1 | | | | | 2 | | |
----------------------------- -----------------------------

Register Transfer Description.

72

Chapter 5. Detailed Requirements

(RB,RB+1) <-- (RB,RB+1) Shifted right logically by N positions;
(CS) <-- 0010 if (RB,RB+1) = 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

5.16. Double Shift Right Arithmetic

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSRA RB,N | 67 | N-1 | RB | 1 <= N <= 16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
are shifted right arithmetically N positions. The shifted results are
stored in RB and RB+1. The double right shift arithmetic operation
is as follows: the sign bit of RB, which is not changed, is copied
into the next position for each position shifted, bits shifted out of
the least significant position of RB enter the sign bit position of
RB+1, and bits shifted out of the least significant bit position of
RB+1 are lost. The condition status, CS, is set based on the result
in register RB and RB+1.

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 RB, RB+1 Before Shift
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| sabc | defg | hijk | lmnp | | sqrs | tuvw | xyzz | zzzz |
| 1 | | | | | 2 | | | |
----------------------------- -----------------------------

73

Double Shift Right Arithmetic

 RB, RB+1 After Shift (N=4)
 0 RB 15 0 RB+1 15
----------------------------- -----------------------------
| ssss | sabc | defg | hijk | | lmnp | sqrs | tuvw | xyzz |
| 1111 | 1 | | | | | 2 | | |
----------------------------- -----------------------------

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted right arithmetically by N positions;
(CS) <-- 0010 if (RB,RB+1) = 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

5.17. Double Shift Left Cyclic

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSLC RB,N | 68 | N-1 | RB | 1 <= N <= 16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
are shifted left cyclically N positions. The shifted results are stored
in RB and RB+1. The double left shift cyclic operation is as
follows: bits shifted out of the sign bit position of RB enter the
least significant bit position of RB+1, bits shifted out of the sign
bit position of RB+1 enter the least significant bit position of RB,
and, consequently, no bits are lost. The condition status, CS, is set
based on the result in RB and RB+1.

74

Chapter 5. Detailed Requirements

Note N-1 = 0 represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

 RB, RB+1 Before Shift
 0 RB 15 0 RB+1 15
------------------------------ ------------------------------
| s abc | defg | hijk | lmnp | | s qrs | tuvw | xyzz | zzzz |
| 1 | | | | | 2 | | | |
------------------------------ ------------------------------

 RB, RB+1 After Shift (N=4)
 0 RB 15 0 RB+1 15
------------------------------ ------------------------------
| defg | hijk | lmnp | s qrs | | tuvw | xyzz | zzzz | s abc |
| | | | 2 | | | | | 1 |
------------------------------ ------------------------------

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted left cyclically by N positions;
(CS) <-- 0010 if (RB,RB+1) = 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

5.18. Shift Logical, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SLR RA,RB | 6A | RA | RB | |(RB)| <= 16

Description. The contents of register RA are shifted logically
N positions, where N is the contents of register RB. If N is positive

75

Shift Logical, Count in Register

((RB0)=0), then the shift direction is left; if N is negative (2's
complement notation, (RB0)=1), then the shift direction is right.
The condition status, CS, is set based on the result in RA.

Note N = 0 represents a shift of zero positions.

Note If |N| >= 16, the fixed point overflow occurs, no shifting
takes place, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event the contents are shifted N positions.

Note (See "Description" of the logical shift instructions, SLL
and SRL (see Section 5.10, “Shift Left Logical” [66])
and Section 5.11, “Shift Right Logical” [67]), for the
definition of shift operations.)

Register Transfer Description.

PI4 <-- 1, exit,
 if |N| >= 16
(RA) <-- (RA) Shifted left logically by (RB) positions,
 if 0 < (RB) <= 16;
(RA) <-- (RA) Shifted right logically by -(RB) positions,
 if 0 >= (RB) >== -16;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RB, CS, PI

5.19. Shift Arithmetic, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

76

Chapter 5. Detailed Requirements

R SAR RA,RB | 6B | RA | RB | |(RB)| <= 16

Description. The contents of register RA are shifted
arithmetically N positions, where N is the contents of register RB.
If N is positive ((RB0) = 0), then the shift direction is left; if N is
negative (2's complement notation, (RB0) = 1), then the shift
direction is right. The condition status, CS, is set based on the result
in RA.

Note N = 0 represents a shift of zero positions.

Note If |N| >= 16, the fixed point overflow occurs, no shifting
takes place, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Note (See “Description” of the arithmetic shift instruction
SRA (see Section 5.12, “Shift Right Arithmetic” [68])
for definition of the right shift operation. Left shift
causes “zeros” to be shifted into low order position of
result.)

Note Fixed point overflow occurs if the sign bit changes
during a left shift.

Register Transfer Description.

PI4 <-- 1, exit,
 if |N| >= 16;
(RA) <-- (RA) Shifted left arithmetically (RB) positions,
 if 16 >== (RB) > 0;
(RA) <-- (RA) Shifted right arithmetically -(RB) positions,
 if 0 >= (RB) >== -16;
PI4 <-- 1,
 if (RA0) changes during the shift;
(CS) <-- 0010 if (RA) = 0;

77

Shift Arithmetic, Count in Register

(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RB, CS, PI

5.20. Shift Cyclic, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SCR RA,RB | 6C | RA | RB | |(RB)| <= 16

Description. The contents of register RA are shifted cyclically
N positions, where N is the contents of register RB. If N is positive
((RB0) = 0), then the shift direction is left; if N is negative (2's
complement notation, (RB0) = 1), then the shift direction is right.
The condition status, CS, is set based on the result in RA.

Note N = 0 represents a shift of zero positions.

Note If |N| >= 16, the fixed point overflow occurs, no shifting
takes place, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note (See "Description" of the cyclic shift instruction, SLC
(see Section 5.13, “Shift Left Cyclic” [69]), for
definition of shift operations.)

Note The contents of RB remain unchanged, unless RA = RB
in this event, the contents are shifted N positions.

Register Transfer Description.

PI4 <-- 1, exit,
 if |N| >= 16;
(RA) <-- (RA) Shifted left cyclically by (RB) positions,

78

Chapter 5. Detailed Requirements

 if 0 < (RB) <= 16;
(RA) <-- (RA) Shifted right cyclically by -(RB) positions,
 if 0 >= (RB) >== -16;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RB, CS, PI

5.21. Double Shift Logical, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSLR RA,RB | 6D | RA | RB | |(RB)| <= 32

Description. The concatenated contents of register RA and
RA+1 are shifted logically N positions where register RB contains
the count, N. If the count is positive ((RB0) = 0), then the shift
direction is left. If the count is negative (2's complement notation,
(RB0) = 1), then the shift direction is right. The condition status,
CS, is set based on the result in RA and RA+1.

79

Double Shift Logical, Count in Register

Note N = 0 represents a shift of zero positions.

Note If |N| >= 32, the fixed point overflow occurs, no shifting
occurs, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note (See "Description" of the double shift logical
instructions, DSRL and DSLL (see Section 5.15,
“Double Shift Right Logical” [72] and Section 5.14,
“Double Shift Left Logical” [70]), for definition of shift
operations.)

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Register Transfer Description.

PI4 <-- 1, exit,
 if |N| >= 32;
(RA,RA+1) <-- (RA,RA+1) Shifted left logically by (RB) positions

if 32 >== (RB) > 0;
(RA,RA+1) <-- (RA,RA+1) Shifted right logically by -(RB) positions

if 0 >= (RB) >== -32;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, RB, CS, PI

5.22. Double Shift Arithmetic, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

80

Chapter 5. Detailed Requirements

R DSAR RA,RB | 6E | RA | RB | |(RB)| <= 32

Description. The concatenated contents of register RA and
RA+1 are shifted arithmetically N positions where register RB
contains the count, N. If the count is positive ((RB0)=0), then the
shift direction is left. If the count is negative (2's complement
notation, (RB0)=1), then the shift direction is right. The condition
status, CS, is set based on the result in RA and RA+1.

Note N = 0 represents a shift of zero positions.

Note If |N| >= 32, the fixed point overflow occurs, no shifting
occurs, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Note (See "Description" of the double shift arithmetic
instruction, DSRA (see Section 5.16, “Double Shift
Right Arithmetic” [73]), for the definition of the right
shift operation. Left shift causes "zeros" to be shifted
into low order position of result.)

Note Fixed point overflow occurs if the sign bit is changed
during a left shift.

Register Transfer Description.

PI4 <-- 1, exit,
 if |N| >= 32;
(RA,RA+1) <-- (RA,RA+1) Shifted left arithmetically (RB) positions,
if 32 >= (RB) >== 0;
(RA,RA+1) <-- (RA,RA+1) Shifted right arithmetically -(RB) positions,
if 0 >= (RB) >== -32;
PI4 <-- 1,
 if (RA0) changes during the shift;
(CS) <-- 0010 if (RA,RA+1) = 0;

81

Double Shift Arithmetic, Count in Register

(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, RB, CS, PI

5.23. Double Shift Cyclic, Count in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSCR RA,RB | 6F | RA | RB | |(RB)| <= 32

Description. The concatenated contents of registers RA and
RA+1 are shifted cyclically N positions, where register RB contains
the count, N. If the count is positive ((RB0)=0), the shift direction
is left.

If the count is negative (2's complement notation, (RB0)=1), the
shift direction is right. The condition status, CS, is set based on the
result in RA and RA+1.

Note N = 0 represents a shift of zero positions.

Note If |N| >= 32, the fixed point overflow occurs, no shifting
occurs, and this instruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note (See "Description" of the double shift cyclic instruction,
DSLC (see Section 5.17, “Double Shift Left
Cyclic” [74]), for the definition of shift operations.)

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Register Transfer Description.

82

Chapter 5. Detailed Requirements

PI4 <-- 1, exit,
 if |N| >= 32;
(RA,RA+1) <-- (RA,RA+1) Shifted left cyclically by (RB) positions
 if 32 >= (RB) >== 0;
(RA,RA+1) <-- (RA,RA+1) Shifted right cyclically by -(RB) positions
 if 0 >= (RB) >== -32;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, RB, CS, PI

5.24. Jump on Condition

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D JC C,LABEL --------------------------------------
DX JC C,LABEL,RX | 70 | C | RX | | LABEL |

 8 4 4 16
I JCI C,ADDR --------------------------------------
IX JCI C,ADDR,RX | 71 | C | RX | | ADDR |

Description. This is a conditional jump instruction wherein the
instruction sequence jumps to the Derived Address, DA, if a logical
one results from the following operation:

1. The 4-bit C field is bit-by-bit ANDed with the 4-bit condition
status, CS

2. The resulting 4-bits are ORed together

3. or if C = 7 or C = F.

Otherwise, the next sequential instruction is executed.

Condition Codes.

83

Jump on Condition

C2 C16 Jump Condition Mnemonic
0000 0 NOP -- -- --
0001 1 less than (zero) LT LZ M
0010 2 equal to (zero) EQ EZ --
0011 3 less than or equal to (zero) LE LEZ NP
0100 4 greater than (zero) GT GZ P
0101 5 not equal to (zero) NE NZ --
0110 6 greater than or equal to (zero) GE GEZ NM
0111 7 unconditional -- -- --
1000 8 carry CY -- --
1001 9 carry or LT -- -- --
1010 A carry or EQ -- -- --
1011 B carry or LE -- -- --
1100 C carry or GT -- -- --
1101 D carry or NE -- -- --
1110 E carry or GE -- -- --
1111 F unconditional -- -- --

Register Transfer Description.

(IC) <-- DA if C = 7, or
 if C = F, or
 if (C0 ^ CS0) v (C1 ^ CS1) v (C2 ^ CS2) v (C3 ^ CS3) = 1;

Registers Affected. IC (if jump is executed)

5.25. Jump to Subroutine

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D JS RA,LABEL --------------------------------------
DX JS RA,LABEL,RX | 72 | RA | RX | | LABEL |

Description. The value of the instruction counter (the address
of the next sequential instruction) is stored into register RA. Then,
the IC is set to the derived address, DA, thus effecting the jump.

84

Chapter 5. Detailed Requirements

This sets up the return from subroutine to the address stored in the
register RA, i.e., an indexed unconditional jump from location zero
using RA as the index register shall transfer control to the
instruction following the JS instruction.

Note If RA = RX, then the derived address, DA, is calculated
before the IC is stored in RA.

Register Transfer Description.

(RA) <-- (IC);
(IC) <-- DA;

Registers Affected. RA, IC

5.26. Subtract One and Jump

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D SOJ RA,LABEL --------------------------------------
DX SOJ RA,LABEL,RX | 73 | RA | RX | | LABEL |

Description. The 16 bit contents of register RA are decremented
by one. Then if the content of register RA is zero, the next
sequential instruction is executed. If the content of register RA is
non-zero, then a jump to the Derived Address, DA, occurs.

Note If RA = RX, then the derived address, DA, is calculated
before RA is decremented.

Register Transfer Description.

(RA) <-- (RA) - 1;
(IC) <-- DA if (RA) /= 0;
(CS) <-- 0010 if (RA) = 0;

85

Subtract One and Jump

(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, IC (if the jump is executed)

5.27. Branch Unconditionally

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BR LABEL | 74 | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA.

Register Transfer Description.

(IC) <-- DA;

Registers Affected. IC

5.28. Branch if Equal to (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BEZ LABEL | 75 | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that

86

Chapter 5. Detailed Requirements

the previous result which set the CS is equal to (zero). Otherwise,
the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X010;

Registers Affected. IC (if the jump is executed)

5.29. Branch if Less Than (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BLT LABEL | 76 | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CS is less than (zero). Otherwise,
the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X001;

Registers Affected. IC (if the jump is executed)

5.30. Branch to Executive

Addr
Mode Mnemonic Format/Opcode
 8 4 4

87

Branch if Less Than (Zero)

S BEX N | 77 | 0000 | N |

Description. This instruction provides a means to jump to a
routine in another address state, AS. It is typically used to make
controlled, protected calls to an executive. The 4-bit literal N selects
one of 16 executive entry points to be used. Execution of this
instruction causes an interrupt to occur using the EXEC call
interrupt vector (interrupt 5). The new IC is loaded from the Nth
location following the SW in the new processor state. The linkage
pointer (LP), service pointer (SVP), and the new processor state
(new MK, new SW, and new IC) are fetched from address state
zero. The current processor state (old MK, old SW, and old IC)
are stored in the address state specified by the new SW AS field.
Interrupts are disabled when BEX is executed. The EXEC call
interrupt cannot be masked or disabled. Arguments associated with
the BEX instruction are passed by software convention. The
processor lock and key function is ignored when this instruction
is executed. An attempt to branch into an execute protected area
of memory shall result in FT being set to 1.

Register Transfer Description.

(RQ,RQ+1,RQ+2) <-- (MK,SW,IC);
(SVP) <-- [2B16], where AS = 0;
(MK,SW,IC) <-- [(SVP),(SVP)+1,(SVP)+2+N)], where AS = 0;
(LP) <-- [2A16], where AS = 0;
[(LP),(LP)+1,(LP)+2] <-- (RQ,RQ+1,RQ+2), where AS = SW12-15;

Registers Affected. MK, SW, IC, PI

5.31. Branch if Less Than or Equal to (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

88

Chapter 5. Detailed Requirements

ICR BLE LABEL | 78 | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CS is less than or equal to (zero).
Otherwise, the next sequential instruction in executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X010 or (CS) = X001;

Registers Affected. IC (if the jump is executed)

5.32. Branch if Greater Than (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BGT LABEL | 79 | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CS is greater than (zero).
Otherwise, the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X100;

Registers Affected. IC (if the jump is executed)

89

Branch if Greater Than (Zero)

5.33. Branch if Not Equal to (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BNZ LABEL | 7A | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CS is not equal to (zero).
Otherwise, the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X100 or (CS) = X001;

Registers Affected. IC (if the jump is executed)

5.34. Branch if Greater Than or Equal to (Zero)

Addr
Mode Mnemonic Format/Opcode
 8 8

ICR BGE LABEL | 7B | D | -128 <= D <= 127

Description. A program branch is made to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CS is greater than or equal to
(zero). Otherwise, the next sequential instruction is executed.

Register Transfer Description.

90

Chapter 5. Detailed Requirements

(IC) <-- DA if (CS) = X100 or (CS) = X010;

Registers Affected. IC (if the jump is executed)

5.35. Load Status

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D LST ADDR --------------------------------------
DX LST ADDR,RX | 7D | 0000 | RX | | ADDR |

 8 4 4 16
I LSTI ADDR --------------------------------------
IX LSTI ADDR,RX | 7C | 0000 | RX | | ADDR |

Description. The contents of the Derived Address, DA, and
DA+1, and DA+2 are loaded into the Interrupt Mask register, Status
Word register and Instruction Counter, respectively. This is a
privileged instruction.

Note This instruction is an unconditional jump and is typically
used to exit from an interrupt routine. DA, DA+1, and
DA+2, in this typical case, contain the Interrupt Mask,
Status Word, and Instruction Counter values for the
interrupted program and the execution of LST causes
the program to return to its status prior to being
interrupted.

Register Transfer Description.

(MK, SW, IC) <-- [DA, DA+1, DA+2];

Registers Affected. MK, SW, IC

91

Load Status

5.36. Stack IC and Jump to Subroutine

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D SJS RA,LABEL --------------------------------------
DX SJS RA,LABEL,RX | 7E | RA | RX | | LABEL |

Description. The contents of register RA are decremented by
one. The address of the instruction following the SJS instruction
is stored into the memory location pointed to by RA. Program
control is then transferred to the instruction at the Derived Address,
DA. RA is the stack pointer and can be selected by the programmer
as any one of the 16 general registers.

Note If RA = RX, then the derived address, DA, is calculated
before RA is decremented.

Register Transfer Description.

(RA) <-- (RA) - 1;
[(RA)] <-- (IC);
(IC) <-- DA;

Registers Affected. IC, RA

5.37. Unstack IC and Return from Subroutine

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S URS RA | 7F | RA | 0 |

92

Chapter 5. Detailed Requirements

Description. The contents of the memory location pointed to
by register RA is loaded into the instruction counter, IC. RA is
then incremented by one. Any one of the 16 general registers may
be designated as the stack pointer. This instruction is the subroutine
return for SJS, Stack and Jump to Subroutine.

Register Transfer Description.

(IC) <-- [(RA)];
(RA) <-- (RA) + 1;

Registers Affected. RA, IC

5.38. Single Precision Load

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R LR RA,RB | 81 | RA | RB |

 4 2 2 8 12<=BR<=15

B LB BR,DSPL | 0 | 0 | BR' | DSPL | BR'=BR-12
 ------------------------------ RA=R2
 4 2 2 4 4 12<=BR<=15

BX LBX BR,RX | 4 | 0 | BR' | 0 | RX | BR'=BR-12
 ------------------------------ RA=R2
 8 4 4

ISP LISP RA,N | 82 | RA | N-1 | 1<=N<=16

 8 4 4

ISN LISN RA,N | 83 | RA | N-1 | 1<=N<=16

 8 4 4 16
D L RA,ADDR --------------------------------------

93

Single Precision Load

DX L RA,ADDR,RX | 80 | RA | RX | | ADDR |

 8 4 4 16
IM LIM RA,DATA --------------------------------------
IMX LIM RA,DATA,RX | 85 | RA | RX | | DATA |

 8 4 4 16
I LI RA,ADDR --------------------------------------
IX LI RA,ADDR,RX | 84 | RA | RX | | ADDR |

Description. The single precision Derived Operand, DO, is
loaded into the register RA. The Condition Status, CS, is set based
on the result in register RA.

Register Transfer Description.

(RA) <-- DO;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.39. Double Precision Load

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DLR RA,RB | 87 | RA | RB |

 4 2 2 8 12<=BR<=15

B DLB BR,DSPL | 0 | 1 | BR' | DSPL | BR'=BR-12
 ------------------------------ RA=R0
 4 2 2 4 4 12<=BR<=15

94

Chapter 5. Detailed Requirements

BX DLBX BR,RX | 4 | 0 | BR' | 1 | RX | BR'=BR-12
 ------------------------------ RA=R0
 8 4 4 16
D DL RA,ADDR --------------------------------------
DX DL RA,ADDR,RX | 86 | RA | RX | | ADDR |

 8 4 4 16
I DLI RA,ADDR --------------------------------------
IX DLI RA,ADDR,RX | 88 | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, is
loaded into the register RA and RA+1 such that the MSH of DO
is in RA. The Condition Status, CS, is set based on the result in
RA and RA+1.

Register Transfer Description.

(RA,RA+1) <-- DO;
(CS) <-- 0010 if (RA,RA+1) = 0 (Double fixed point zero);
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS

5.40. Load Multiple Registers

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D LM N,ADDR -------------------------------------
DX LM N,ADDR,RX | 89 | N | RX | | ADDR |

 0 <= N <= 15

Description. The contents of the Derived Address, DA, are
loaded into register R0, then the contents of the DA+1 are loaded
into register R1, ..., finally, the contents of DA+N are loaded into

95

Load Multiple Registers

RN. Effectively, this instruction allows the transfer of (N+1) words
from memory to the register file.

Register Transfer Description.

(R0) <-- [DA];
(R1) <-- [DA + 1];
(R2) <-- [DA + 2];
(RN) <-- [DA + N];

Registers Affected. R0 through RN

5.41. Extended Precision Floating Point Load

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D EFL RA,ADDR --
DX EFL RA,ADDR,RX | 8A | RA | RX | | ADDR |
 --

Description. The extended precision floating point Derived
Operand, DO, is loaded into registers RA, RA+1, and RA+2 such
that the most significant 16-bits of the word are loaded into register
RA. The condition status, CS, is set based on the results in registers
RA, RA+1, and RA+2.

Register Transfer Description.

(RA, RA+1, RA+2) <-- DO;
(CS) <-- 0010 if (RA, RA+1, RA+2) = 0;
(CS) <-- 0001 if (RA, RA+1, RA+2) < 0;
(CS) <-- 0100 if (RA, RA+1, RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS

96

Chapter 5. Detailed Requirements

5.42. Load from Upper Byte

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D LUB RA,ADDR --------------------------------------
DX LUB RA,ADDR,RX | 8B | RA | RX | | ADDR |

 8 4 4 16
I LUBI RA,ADDR --------------------------------------
IX LUBI RA,ADDR,RX | 8D | RA | RX | | ADDR |

Description. The MSH (upper byte) of the Derived Operand,
DO, is loaded into the LSH (lower byte) of register RA. The MSH
(upper byte) of RA is unaffected. The condition status, CS, is set
based on the result in RA.

Register Transfer Description.

(RA)8-15 <-- DO0-7;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.43. Load from Lower Byte

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D LLB RA,ADDR --------------------------------------
DX LLB RA,ADDR,RX | 8C | RA | RX | | ADDR |

 8 4 4 16

97

Load from Upper Byte

I LLBI RA,ADDR --------------------------------------
IX LLBI RA,ADDR,RX | 8E | RA | RX | | ADDR |

Description. The LSH (lower byte) of the Derived Operand,
DO, is loaded into the LSH (lower byte) of register RA. The MSH
(upper byte) of RA is unaffected. The condition status, CS, is set
based on the result in RA.

Register Transfer Description.

(RA)8-15 <-- DO8-15;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.44. Pop Multiple Registers off the Stack

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S POPM RA,RB | 8F | RA | RB |

Description. For RA <= RB, registers RA through RB are loaded
sequentially from a stack in memory using R15 as the stack pointer.
For RA > RB, registers RA through R14 and then R0 through RB
are loaded sequentially from the stack.

In both cases,

• as each word is popped from the stack, R15 is incremented by
one;

• if R15 is included in the transfer, then it is effectively ignored;

98

Chapter 5. Detailed Requirements

• on completion, R15 points to the top word of the stack remaining.

Register Transfer Description.

if RA <= RB then
 for i = 0 thru RB - RA do
 begin
 if RA + i /= 15 then (RA + i) <-- [(R15)];
 (R15) <-- (R15) + 1;
 end;
else
 begin
 for i = 0 thru 15 - RA do
 begin
 if RA + i /= 15 then (RA + i) <-- [(R15)];
 (R15) <-- (R15) + 1;
 end;
 for i = 0 thru RB do
 begin
 (i) <-- [(R15)];
 (R15) <-- (R15) + 1;
 end;
 end;

Registers Affected. RA through R14, R0 through RB, R15

5.45. Single Precision Store

Addr
Mode Mnemonic Format/Opcode
 4 2 2 8 12<=BR<=15

B STB BR,DSPL | 0 | 2 | BR' | DSPL | BR'=BR-12
 ------------------------------ RA=R2
 4 2 2 4 4 12<=BR<=15

BX STBX BR,RX | 4 | 0 | BR' | 2 | RX | BR'=BR-12
 ------------------------------ RA=R2

99

Single Precision Store

 8 4 4 16
D ST RA,ADDR --------------------------------------
DX ST RA,ADDR,RX | 90 | RA | RX | | ADDR |

 8 4 4 16
I STI RA,ADDR --------------------------------------
IX STI RA,ADDR,RX | 94 | RA | RX | | ADDR |

Description. The contents of the register RA are stored into the
Derived Address, DA.

Register Transfer Description.

[DA] <-- (RA);

Registers Affected. None

5.46. Store a Non-Negative Constant

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D STC N,ADDR -------------------------------------
DX STC N,ADDR,RX | 91 | N | RX | | ADDR |

 8 4 4 16
I STCI N,ADDR -------------------------------------
IX STCI N,ADDR,RX | 92 | N | RX | | ADDR |

Description. The constant N, where N is an integer (0 <= N <=
15) is stored at the Derived Address, DA. For the special case of
storing zero into memory the mnemonics STZ ADDR,RX for direct
addressing and STZI ADDR,RX for indirect addressing may be
used. In this special case, the N field equals 0.

Register Transfer Description.

100

Chapter 5. Detailed Requirements

[DA] <-- N, where 0 <= N <= 15;

Registers Affected. None

5.47. Move Multiple Words, Memory-to-Memory

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S MOV RA,RB | 93 | RA | RB |

Description. This instruction allows the memory-to-memory
transfer of N words where N is an integer between zero and 216 -
1 and is represented by the contents of RA+1. The contents of RB
are the address of the first word to be transferred and the contents
of RA are the address of where the first word is to be transferred.
After each word transfer, RA and RB are incremented, and RA+1
is decremented.

Note Any pending interrupts are honored after each single
word transfer is completed. The IC points to the current
instruction location until the last transfer is completed.

Note RA has a final value of the last stored address plus one;
RA+1 has a final value of zero.

Note RB has a final value equal to the address of the last word
transferred plus one.

Register Transfer Description.

Step 1: [(RA)] <-- [(RB)] if (RA+1) ≥= 0; Go to Step 4 otherwise;
Step 2: (RA) <-- (RA)+1, (RB) <-- (RB)+1, (RA+1) <-- (RA+1)-1;
Step 3: REPEAT STEPS 1 and 2;
Step 4: Set IC to next instruction address;

101

Move Multiple Words, Memory-to-Memory

Registers Affected. RA, RA+1, RB

5.48. Double Precision Store

Addr
Mode Mnemonic Format/Opcode
 4 2 2 8 12<=BR<=15

B DSTB BR,DSPL | 0 | 3 | BR' | DSPL | BR'=BR-12
 ------------------------------ RA=R0
 4 2 2 4 4 12<=BR<=15

BX DSTX BR,RX | 4 | 0 | BR' | 3 | RX | BR'=BR-12
 ------------------------------ RA=R0
 8 4 4 16
D DST RA,ADDR --------------------------------------
DX DST RA,ADDR,RX | 96 | RA | RX | | ADDR |

 8 4 4 16
I DSTI RA,ADDR --------------------------------------
IX DSTI RA,ADDR,RX | 98 | RA | RX | | ADDR |

Description. The contents of registers RA and RA+1 are stored
at the Derived Address, DA, and DA+1, respectively.

Register Transfer Description.

[DA, DA+1] <-- (RA, RA+1);

Registers Affected. None

5.49. Store Register Through Mask

Addr
Mode Mnemonic Format/Opcode

102

Chapter 5. Detailed Requirements

 8 4 4 16
D SRM RA,ADDR --------------------------------------
DX SRM RA,ADDR,RX | 97 | RA | RX | | ADDR |

Description. The contents of register RA are stored into the
Derived Address, DA, through the mask in register RA+1. For each
position in the mask that is a one, the corresponding bit of register
RA is stored into the corresponding bit of the DA. For each position
in the mask that is a zero no change is made to the corresponding
bit stored in the DA.

Register Transfer Description.

[DA] <-- {[DA] ^ ~(RA+1)} v {[RA] ^ [RA+1]};
(RA+1) = MASK, (RA) = DATA;
or, equivalently,
(RQ) <-- [DA];
(RQ)i <-- (RA)i if (RA+1)i = 1 for i = 0, 1, ..., 15;
[DA] <-- (RQ);

Registers Affected. None

5.50. Store Multiple Registers

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D STM N,ADDR --------------------------------------
DX STM N,ADDR,RX | 99 | N | RX | | ADDR |

Description. The contents of register R0 are stored into the
Derived Address, DA; then the contents of R1 are stored into
DA+1; ...; finally, the contents of RN are stored into DA+N where
N is an integer, 0 <= N <= 15. Effectively, this instruction allows
the transfer of (N+1) words from the register file to memory.

103

Store Multiple Registers

Register Transfer Description.

[DA] <-- (R0);
[DA+1] <-- (R1);
[DA+2] <-- (R2);
[DA+N] <-- (RN) 0 <= N <= 15;

Registers Affected. None

5.51. Extended Precision Floating Point Store

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D EFST RA,ADDR --------------------------------------
DX EFST RA,ADDR,RX | 9A | RA | RX | | ADDR |

Description. The contents of registers RA, RA+1, RA+2 are
stored at the Derived Address, DA, DA+1, and DA+2.

Register Transfer Description.

[DA, DA+1, DA+2] <-- (RA, RA+1, RA+2);

Registers Affected. None

5.52. Store into Upper Byte

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D STUB RA,ADDR --------------------------------------
DX STUB RA,ADDR,RX | 9B | RA | RX | | ADDR |

104

Chapter 5. Detailed Requirements

 8 4 4 16
I SUBI RA,ADDR --------------------------------------
IX SUBI RA,ADDR,RX | 9D | RA | RX | | ADDR |

Description. The LSH (lower byte) of register RA is stored into
the MSH (upper byte) of the Derived Address, DA. The LSH (lower
byte) of the DA is unchanged.

Register Transfer Description.

[DA]0-7 <-- (RA)8-15;

Registers Affected. None

5.53. Store into Lower Byte

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D STLB RA,ADDR --------------------------------------
DX STLB RA,ADDR,RX | 9C | RA | RX | | ADDR |

 8 4 4 16
I SLBI RA,ADDR --------------------------------------
IX SLBI RA,ADDR,RX | 9E | RA | RX | | ADDR |

Description. The LSH (lower byte) of register RA is stored into
the LSH (lower byte) of the Derived Address, DA. The MSH (upper
byte) of the DA is unchanged.

Register Transfer Description.

[DA]8-15 <-- (RA)8-15;

Registers Affected. None

105

Store into Lower Byte

5.54. Push Multiple Registers onto the Stack

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S PSHM RA,RB | 9F | RA | RB |

Description. For RA <= RB, the contents of RB through RA
are pushed onto a stack in memory using R15 as the stack pointer.
As each register contents are pushed onto the memory stack, R15
is decremented by one word for each word pushed. On completion,
R15 points to the last item on the stack, the contents of RA.

For RA > RB, the contents of RB through R0, and then the contents
of R15 through RA, are pushed onto the stack. On completion, R15
points to the last item on the stack, the contents of RA.

In both cases, successive increasing addresses on the stack
correspond to successive increasing register addresses, with a point
discontinuity between R15 and R0 in the latter case.

PSHM R3,R5 results in:

(R15) -->= | (R3) |

 | (R4) |

 | (R5) |

PSHM R14,R2 results in:

(R15) -->= | (R14) |

106

Chapter 5. Detailed Requirements

 | (R15) |

 | (R0) |

 | (R1) |

 | (R2) |

Register Transfer Description.

if RA <= RB then
 for i = 0 thru RB - RA do
 begin
 (R15) <-- (R15) - 1;
 [(R15)] <-- (RB - i);
 end;
else
 begin
 for i = 0 thru RB do
 begin
 (R15) <-- (R15) - 1;
 [(R15)] <-- (RB - i);
 end;
 for i = 0 thru 15 - RA do
 begin
 (R15) <-- (R15) - 1;
 [(R15)] <-- (R15 - i);
 end;
 end;

Registers Affected. R15

5.55. Single Precision Integer Add

Addr

107

Single Precision Integer Add

Mode Mnemonic Format/Opcode
 8 4 4

R AR RA,RB | A1 | RA | RB |

 4 2 2 8 12<=BR<=15

B AB BR,DSPL | 1 | 0 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX ABX BR,RX | 4 | 0 | BR' | 4 | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4

ISP AISP RA,N | A2 | RA | N-1 | 1<N<16

 8 4 4 16
D A RA,ADDR --------------------------------------
DX A RA,ADDR,RX | A0 | RA | RX | | ADDR |

 8 4 4 16

IM AIM RA,DATA | 4A | RA | 1 | | DATA |

Description. The Derived Operand (DO) is added to the contents
of the RA register. The result (a 2's complement sum) is stored in
register RA. The condition status (CS) is set based on the result in
register RA and carry. A fixed point overflow occurs if both
operands are of the same sign and the sum is of opposite sign.

Register Transfer Description.

(RA)2 <-- (RA)1 + DO;
PI4 <-- 1,
 if (RA0)1 = DO0 and (RA0)1 /= (RA0)2

(CS) <-- 0010 if carry = 0 and (RA) = 0;
(CS) <-- 0001 if carry = 0 and (RA) < 0;
(CS) <-- 0100 if carry = 0 and (RA) > 0;
(CS) <-- 1010 if carry = 1 and (RA) = 0;

108

Chapter 5. Detailed Requirements

(CS) <-- 1001 if carry = 1 and (RA) < 0;
(CS) <-- 1100 if carry = 1 and (RA) > 0;

Registers Affected. RA, CS, PI

5.56. Increment Memory by a Positive Integer

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D INCM N,ADDR ---------------------------------------
DX INCM N,ADDR,RX | A3 | N-1 | RX | | ADDR |

Description. The contents of the memory location specified by
the Derived Address, DA, is incremented by N, where N is an
integer, 1 <= N <= 16. This instruction adds a positive constant to
memory. The condition status, CS, is set based on the results of
the addition and carry. A fixed point overflow occurs if the operand
in memory is positive and the result is negative. The memory
location specified is updated to contain the result of the addition
process even if a fixed point overflow occurs.

Register Transfer Description.

[DA]2 <-- [DA]1 + N, where 1 <= N <= 16;
PI4 <-- 1,
 if [DA]2 < 0 < [DA]1;
(CS) <-- 0010 if carry = 0 and [DA] = 0;
(CS) <-- 0001 if carry = 0 and [DA] < 0;
(CS) <-- 0100 if carry = 0 and [DA] > 0;
(CS) <-- 1010 if carry = 1 and [DA] = 0;
(CS) <-- 1001 if carry = 1 and [DA] < 0;
(CS) <-- 1100 if carry = 1 and [DA] > 0;

Registers Affected. CS, PI

109

Increment Memory by a Positive Integer

5.57. Single Precision Absolute Value of Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R ABS RA,RB | A4 | RA | RB |

Description. If the sign bit of the Derived Operand, DO (i.e.,
the sign bit of register RB), is a one, its negative or 2's complement
is stored into register RA. However, if the sign bit of DO is a zero,
it is stored, unchanged, into RA. The condition status, CS, is set
based on the result in register RA.

Note RA may equal RB.

Note The absolute value of a number with a 1 in the sign bit
and all other bits zero is the same word, and causes fixed
point overflow to occur.

Register Transfer Description.

(RA) <-- |DO|;
PI4 <-- 1, exit, if DO = 800016;
(CS) <-- 0001 if (RA) = 800016;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, PI

5.58. Double Precision Absolute Value of Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

110

Chapter 5. Detailed Requirements

R DABS RA,RB | A5 | RA | RB |

Description. If the sign bit of the double precision Derived
Operand, DO (i.e., the sign bit of register (RB,RB+1)), is a one,
its negative or 2's complement is stored into register RA and RA+1,
such that register RA contains the MSH of the result. However, if
the sign bit of DO is a zero, it is stored, unchanged, into RA and
RA+1. The condition status, CS, is set based on the result in register
RA and RA+1.

Note RA may equal RB.

Note The absolute value of a number with a 1 in the sign bit
and all other bits zero is the same word, and causes fixed
point overflow to occur.

Register Transfer Description.

(RA, RA+1) <-- |DO|;
PI4 <-- 1, exit, if DO = 8000 000016;
(CS) <-- 0001 if (RA,RA+1) = 8000 000016;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.59. Double Precision Integer Add

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DAR RA,RB | A7 | RA | RB |

 8 4 4 16
D DA RA,ADDR --------------------------------------

111

Double Precision Integer Add

DX DA RA,ADDR,RX | A6 | RA | RX | | ADDR |

Description. The double precision Derived Operand (DO) is
added to the contents of registers RA and RA+1. The result (a 2's
complement 32-bit sum) is stored in registers RA and RA+1. The
MSH is in RA. The condition status (CS) is set based on the double
precision results in RA and RA+1, and carry. A fixed point
overflow occurs if both operands are of the same sign and the sum
is of opposite sign.

Register Transfer Description.

(RA,RA+1)2 <-- (RA,RA+1)1 + DO;
PI4 <-- 1 if (RA0)1 = DO0 and (RA0)1 /= (RA0)2

(CS) <-- 0010 if carry = 0 and (RA,RA+1) = 0;
(CS) <-- 0001 if carry = 0 and (RA,RA+1) < 0;
(CS) <-- 0100 if carry = 0 and (RA,RA+1) > 0;
(CS) <-- 1010 if carry = 1 and (RA,RA+1) = 0;
(CS) <-- 1001 if carry = 1 and (RA,RA+1) < 0;
(CS) <-- 1100 if carry = 1 and (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.60. Floating Point Add

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FAR RA,RB | A9 | RA | RB |

 4 2 2 8
 ---------------------- 12<=BR<=15
B FAB BR,DSPL | 2 | 0 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R0
 4 2 2 4 4
 ------------------------ 12<=BR<=15

112

Chapter 5. Detailed Requirements

BX FABX BR,RX | 4 | 0 | BR' | 8 | RX | BR'=BR-12
 ------------------------ RA=R0
 8 4 4 16
D FA RA,ADDR --------------------------------------
DX FA RA,ADDR,RX | A8 | RA | RX | | ADDR |

Description. The floating point Derived Operand, DO, is floating
point added to the contents of registers RA and RA+1. The result
is stored in registers RA and RA+1. The process of this operation
is as follows: the mantissa of the number with the smaller algebraic
exponent is shifted right and the exponent incremented by one for
each bit shifted until the exponents are equal. The mantissas are
then added. If the sum overflows the 24-bit mantissa, then the sum
is shifted right one position, the sign bit restored, and the exponent
incremented by one. If the exponent exceeds 7F16 as a result of
this incrementation, overflow occurs and the operation is
terminated. If the sum does not result in exponent overflow, the
result is normalized. If in the normalization process the exponent
is decremented below 8016, then underflow occurs and a zero is
inserted for the result.

Register Transfer Description.

N = EA - E0;
EA <-- E0,
 if MA = 0;
MO <-- MO Shifted Right Arithmetic n positions,
 if n > 0 and MA /= 0;
MA <-- MA Shifted Right Arithmetic -n positions, EA <-- E0,
 if n < 0 and MO /= 0;
MA <-- MA + MO;

MA <-- MA Shifted Right Arithmetic 1 position, MA0 <-- ~MA0, EA <-- EA+1,
 if OVM = 1;
PI3 <-- 1, EA <-- 7F16 , MA <-- 7FFF FF16 , exit,
 if EA >= 7F16 and MA0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if EA >= 7F16 and MA0 = 1;
EA, MA <-- normalized EA, MA;

113

Floating Point Add

PI6 <-- 1, EA <-- 0, MA <-- 0,
 if EA < 8016;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.61. Extended Precision Floating Point Add

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFAR RA,RB | AB | RA | RB |

 8 4 4 16
D EFA RA,ADDR --------------------------------------
DX EFA RA,ADDR,RX | AA | RA | RX | | ADDR |

Description. The extended precision floating point Derived
Operand, DO, is extended floating point added to the contents of
register RA, RA+1, and RA+2. The result is stored in register RA,
RA+1, and RA+2. The process of this operation is as follows: the
mantissa of the number with the smaller algebraic exponent is
shifted right and the exponent is incremented by one for each bit
shifted. When the exponents are equal, the mantissas are added. If
the sum overflows the 39-bit mantissa, then the sum is shifted right
one position, the sign bit restored, and the exponent is incremented
by one. If the exponent exceeds 7F16 as a result of this
incrementation, overflow occurs and the operation is terminated.
If the sum does not result in exponent overflow, the result is
normalized. If in the normalization process the exponent is
decremented below 8016, then underflow occurs and a zero is
inserted for the result.

Register Transfer Description.

114

Chapter 5. Detailed Requirements

n = EA - EO;
EA <-- E0,
 if MA = 0;
MO <-- MO Shifted Right Arithmetic n positions,
 if n > 0 and MA /= 0;
MA <-- MA Shifted Right Arithmetic -n positions, EA <-- E0,
 if n < 0 and MO /= 0;
MA <-- MA + MO;

MA <-- MA Shifted Right Arithmetic 1 position, MA0 <-- ~MA0, EA <-- EA+1,
 if OVM = 1;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,
 if EA >= 7F16 and MA0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 000016, exit,
 if EA >= 7F16 and MA0 = 1;
EA, MA <-- normalized EA, MA;
PI6 <-- 1, EA <-- 0, MA <-- 0,
 if EA < 8016;
(CS) <-- 0010 if (RA, RA+1, RA+2) = 0;
(CS) <-- 0001 if (RA, RA+1, RA+2) < 0;
(CS) <-- 0100 if (RA, RA+1, RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.62. Floating Point Absolute Value of Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FABS RA,RB | AC | RA | RB |

Description. If the sign bit of the mantissa of the Derived
Operand, DO (i.e., the contents of registers RB and RB+1), is a
one, its floating point negative is stored in registers RA and RA+1.
The negative of DO is computed by taking the 2's complement of
the mantissa and leaving the exponent unchanged. Exceptions to

115

Floating Point Absolute Value of Register

this are negative powers of two: -1.0 x 20, -1.0 x 21, The
absolute value of these are: 0.5 x 21, 0.5 x 22, ..., in other words,
the DO mantissa is shifted logically right one position and the
exponent incremented. A floating point overflow shall occur if DO
is the smallest negative number, -1.0 x 2127. If the sign bit of DO
is a zero, it is stored unchanged into RA and RA+1. The condition
status, CS, is set based on the result in register RA and RA+1.

Note RA may equal RB.

Note DO is assumed to be a normalized number or floating
point zero.

Register Transfer Description.

EA <-- EA+1, MA <-- 4000 0016,
 if MO = 8000 0016;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if EA >= 7F16;
EA <-- EO, MA <-- -MO,
 if MO < 0,
 if MO /= 8000 0016;
EA <-- EO, MA <-- MO,
 if MO > 0;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.63. Single Precision Integer Subtract

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R SR RA,RB | B1 | RA | RB |

116

Chapter 5. Detailed Requirements

 4 2 2 8 12<=BR<=15

B SBB BR,DSPL | 1 | 1 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX SBBX BR,RX | 4 | 0 | BR' | 5 | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4

ISP SISP RA,N | B2 | RA | N-1 | 1<=N<=16

 8 4 4 16
D S RA,ADDR --------------------------------------
DX S RA,ADDR,RX | B0 | RA | RX | | ADDR |

 8 4 4 16

IM SIM RA,DATA | 4A | RA | 2 | | ADDR |

Description. The Derived Operand (DO) is subtracted from the
contents of the RA register. The result, a 2's complement difference,
is stored in RA. The condition status (CS) is set based on the result
in register RA and carry. A fixed point overflow occurs if both
operands are of opposite signs and the derived operand is the same
as the sign of the difference.

Register Transfer Description.

(RA)2 <-- (RA)1 - DO,
i.e., (RA) - DO means {(RA) + ~DO} + 1;
PI4 <-- 1,
 if (RA0)1 /= DO0 and (RA0)2 = DO0
(CS) <-- 0010 if carry = 0 and (RA) = 0;
(CS) <-- 0001 if carry = 0 and (RA) < 0;
(CS) <-- 0100 if carry = 0 and (RA) > 0;
(CS) <-- 1010 if carry = 1 and (RA) = 0;
(CS) <-- 1001 if carry = 1 and (RA) < 0;
(CS) <-- 1100 if carry = 1 and (RA) > 0;

117

Single Precision Integer Subtract

Registers Affected. RA, CS, PI

5.64. Decrement Memory by a Positive Integer

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D DECM N,ADDR ---------------------------------------
DX DECM N,ADDR,RX | B3 | N-1 | RX | | ADDR |

Description. The contents of the memory location specified by
the Derived Address, DA, are decremented by N, where N is an
integer, 1 <= N <= 16. This is equivalent of a
"subtract-from-memory instruction". The condition status, CS, is
set based on the results of the subtraction and carry. A fixed point
overflow occurs if the operand in memory is negative and the result
is positive. The memory location specified is updated to contain
the result of the subtraction process even if a fixed point overflow
occurs.

Register Transfer Description.

[DA]2 <-- [DA]1 - N, where 1 <= N <= 16;
PI4 <-- 1,
 if [DA0]1 < 0 < [DA0]2;
(CS) <-- 0010 if carry = 0 and [DA] = 0;
(CS) <-- 0001 if carry = 0 and [DA] < 0;
(CS) <-- 0100 if carry = 0 and [DA] > 0;
(CS) <-- 1010 if carry = 1 and [DA] = 0;
(CS) <-- 1001 if carry = 1 and [DA] < 0;
(CS) <-- 1100 if carry = 1 and [DA] > 0;

Registers Affected. CS, PI

118

Chapter 5. Detailed Requirements

5.65. Single Precision Negate Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R NEG RA,RB | B4 | RA | RB |

Description. The negative (i.e., the 2's complement) of the
Derived Address, DO (i.e., the contents of register RB), is stored
into register RA. The condition status, CS, is set based on the result
in register RA.

Note The negative of zero is zero.

Note The negative of a number with a 1 in the sign bit and
all other bits zero is the same word, and causes fixed
point overflow to occur.

Register Transfer Description.

(RA) <-- -DO;
PI4 <-- 1, exit, if DO = 800016;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, PI

5.66. Double Precision Negate Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

119

Single Precision Negate Register

R DNEG RA,RB | B5 | RA | RB |

Description. The negative (i.e., the 2's complement) of the
Derived Operand, DO (i.e., the contents of register RB and RB+1),
is stored into register RA and RA+1 such that register RA contains
the MSH of the result. The condition status, CS, is set based on the
result in register RA and RA+1.

Note The negative of zero is zero.

Note The negative of a number with a 1 in the sign bit and
all other bits zero is the same word, and causes fixed
point overflow to occur.

Register Transfer Description.

(RA, RA+1) <-- -DO;
PI4 <-- 1, exit, if DO = 8000 000016;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.67. Double Precision Integer Subtract

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DSR RA,RB | B7 | RA | RB |

 8 4 4 16
D DS RA,ADDR --------------------------------------
DX DS RA,ADDR,RX | B6 | RA | RX | | ADDR |

120

Chapter 5. Detailed Requirements

Description. The double precision Derived Operand, DO, is
subtracted from the contents of registers RA and RA+1. The results,
a 2's complement 32-bit difference, is stored in registers RA and
RA+1. The MSH is RA. The condition status (CS) is set based on
the double precision results in RA and RA+1, and carry. A fixed
point overflow occurs if both operands are of opposite sign and
the derived operand is the same as the sign of the difference.

Register Transfer Description.

(RA,RA+1)2 <-- (RA,RA+1)1 - DO,
 i.e., (RA,RA+1) - DO means {(RA,RA+1) + ~DO} + 1;
PI4 <-- 1,
 if (RA0)1 /= DO0 and (RA0)2 = DO0;
(CS) <-- 0010 if carry = 0 and (RA,RA+1) = 0;
(CS) <-- 0001 if carry = 0 and (RA,RA+1) < 0;
(CS) <-- 0100 if carry = 0 and (RA,RA+1) > 0;
(CS) <-- 1010 if carry = 1 and (RA,RA+1) = 0;
(CS) <-- 1001 if carry = 1 and (RA,RA+1) < 0;
(CS) <-- 1100 if carry = 1 and (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.68. Floating Point Subtract

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FSR RA,RB | B9 | RA | RB |

 4 2 2 8 12<=BR<=15

B FSB BR,DSPL | 2 | 1 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R0
 4 2 2 4 4 12<=BR<=15

BX FSBX BR,RX | 4 | 0 | BR' | 9 | RX | BR'=BR-12

121

Floating Point Subtract

 ------------------------ RA=R0
 8 4 4 16
D FS RA,ADDR --------------------------------------
DX FS RA,ADDR,RX | B8 | RA | RX | | ADDR |

Description. The floating point Derived Operand, DO, is floating
point subtracted from the contents of registers RA and RA+1. The
result is stored in registers RA and RA+1. The process of this
operation is as follows: the mantissa of the number with the smaller
algebraic exponent is shifted right and the exponent incremented
by one for each bit shifted until the exponents are equal. The
mantissa of the DO is then subtracted from (RA,RA+1). If the
difference overflows the 24-bit mantissa, then it is shifted right
one position, the sign bit restored, and the exponent incremented
by one. If the exponent exceeds 7F16 as a result of this
incrementation, overflow occurs and the operation is terminated.
If the sum does not result in exponent overflow, the result is
normalized. If during the normalization process the exponent is
decremented below 8016, then underflow occurs and a zero is
inserted for the result.

Register Transfer Description.

n = EA - EO;
EA <-- E0,
 if MA = 0;
MO <-- MO Shifted Right Arithmetic n positions,
 if n > 0 and MA /= 0;
MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EO,
 if n < 0 and MO /= 0;
MA <-- MA - MO;
MA <-- MA Shifted Right Arithmetic 1 position, MA0 <-- ~MA0, EA <-- EA+1,
 if OVM = 1;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if EA >= 7F16 and MA0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if EA >= 7F16 and MA0 = 1;
EA, MA <-- normalized EA, MA;
PI6 <-- 1, EA <-- 0, MA <-- 0,

122

Chapter 5. Detailed Requirements

 if EA < 8016;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.69. Extended Precision Floating Point Subtract

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFSR RA,RB | BB | RA | RB |

 8 4 4 16
D EFS RA,ADDR --------------------------------------
DX EFS RA,ADDR,RX | BA | RA | RX | | ADDR |

Description. The extended precision floating point Derived
Operand, DO, is extended floating point subtracted from the
contents of registers RA, RA+1, and RA+2. The result is stored in
registers RA, RA+1, and RA+2. The process of this operation is
as follows: The mantissa of the number with the smaller algebraic
exponent is shifted right and the exponent is incremented by one
for each bit shifted. When the exponents are equal, the mantissas
are subtracted. If the difference overflows the 39-bit mantissa, then
the difference is shifted right one position, the sign bit restored,
and the exponent is incremented. If the exponent exceeds 7F16 as
a result of this incrementation, overflow occurs and the operation
is terminated. If the difference does not result in exponent overflow,
the result is normalized. If during the normalization process the
exponent is decremented below 8016, then underflow occurs and
a zero is inserted for the result.

Register Transfer Description.

123

Extended Precision Floating Point Subtract

n = EA - E0;
EA <-- E0,
 if MA = 0;
MO <-- MO Shifted Right Arithmetic n positions,
 if n > 0 and MA /= 0;
MA <-- MA Shifted Right Arithmetic -n positions, EA <-- E0,
 if n < 0 and MO /= 0;
MA <-- MA - MO;
MA <-- MA Shifted Right Arithmetic 1 position, MA0 <-- ~MA0, EA <-- EA+1,
 if OVM = 1;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,
 if EA >= 7F16 and MA0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 000016, exit,
 if EA >= 7F16 and MA0 = 1;
EA, MA <-- normalized EA, MA;
PI6 <-- 1, EA <-- 0, MA <-- 0,
 if EA < 8016;
(CS) <-- 0010 if (RA,RA+1,RA+2) = 0;
(CS) <-- 0001 if (RA,RA+1,RA+2) < 0;
(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.70. Floating Point Negate Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FNEG RA,RB | BC | RA | RB |

Description. The 24-bit mantissa of the Derived Operand, DO,
i.e., the floating point number in registers RB and RB+1, is 2's
complemented. The exponent remains unchanged. The result, the
negative of the original number, is stored in RA and RA+1. The
2's complement of a floating point zero is a floating point zero.
Exceptions to this are all powers of two: -1.0 x 2n and 0.5 x 2n-1,

124

Chapter 5. Detailed Requirements

i.e., when the mantissa either 8000 0016 or 4000 0016. The negation
of 0.5 x 2n is -1.0 x 2n-1, i.e., the mantissa is shifted left one position
and the exponent decremented by one. Conversely, the negation
of -1.0 x 2n is 0.5 x 2n-1; i.e., the mantissa is shifted right one
position and the exponent is incremented by one. A floating point
overflow occurs for the negation of the smallest negative number,
-1.0 x 2127. A floating point underflow occurs for the negation of
the smallest positive number, 0.5 x 2-128, and causes the result to
be zero. The condition status, CS, is set based on the result in
registers RA and RA+1.

Note RA may equal RB.

Register Transfer Description.

PI3 <-- 1, EA <-- 7F16, MO <-- 7FFF FF16, exit,
 if DO = 8000 007F16;
PI3 <-- 1, EA <-- 0, MA <-- 0, exit,
 if DO = 4000 008016;
EA <-- EO+1, MA <-- 4000 0016,
 if MO = 8000 0016;
EA <-- EO-1, MA <-- 8000 0016,
 if MO = 4000 0016;
EA <-- EO, MA <-- -MO,
 if MO /= 8000 0016 or 4000 0016;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.71. Single Precision Integer Multiply with 16-Bit Product

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R MSR RA,RB | C1 | RA | RB |

125

Single Precision Integer Multiply with 16-Bit Product

 8 4 4

ISP MISP RA,N | C2 | RA | N-1 | 1 <= N <= 16

 8 4 4

ISN MISN RA,N | C3 | RA | N-1 | 1 <= N <= 16

 8 4 4 16
D MS RA,ADDR --------------------------------------
DX MS RA,ADDR,RX | C0 | RA | RX | | ADDR |

 8 4 4 16

IM MSIM RA,DATA | 4A | RA | 4 | | DATA |

Description. The Derived Operand, DO, is multiplied by the
contents of register RA. The LSH of the result, a 16-bit, 2's
complement integer, is stored in register RA. The Condition Status,
CS, is set based on the result in register RA. A fixed point overflow
occurs if (1) both operands are of the same sign and the MSH of
the product is not zero, or the sign bit of the LSH is not zero, or
(2) if the operands are of opposite sign and the MSH of the product
is not FFFF16, or the sign bit of the LSH is not one. A fixed point
overflow does not occur if either of the operands is zero.

Register Transfer Description.

(RQ,RQ+1)1 <-- (RA) x DO;
(RA)2 <-- (RQ+1);
PI4 <-- 1,
 if {(RA0)1 = DO0 and {(RQ) /= 0 or (RQ+10) = 1}} or
 {(RA0)1 /= DO0 and {(RQ) /= FFFF16 or (RQ+10) = 0} and
 {(RA)1 /= 0 and DO /= 0}};
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, PI

126

Chapter 5. Detailed Requirements

5.72. Single Precision Integer Multiply with 32-Bit Product

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R MR RA,RB | C5 | RA | RB |

 4 2 2 8 12<=BR<=15

B MB BR,DSPL | 1 | 2 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX MBX BR,RX | 4 | 0 | BR' | 6 | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4 16
D M RA,ADDR --------------------------------------
DX M RA,ADDR,RX | C4 | RA | RX | | ADDR |

 8 4 4 16

IM MIM RA,DATA | 4A | RA | 3 | | DATA |

Description. The Derived Operand, DO, is multiplied by the
contents of register RA. The result, a 32-bit, 2's complement integer,
is stored in registers RA and RA+1 with the MSH of the product
in register RA. The Condition Status, CS, is set based on the result
in registers RA and RA+1.

SPECIAL CASE: DO = (RA) = 8000 (the largest negative number),
then DO x (RA) = 4000 0000.

Register Transfer Description.

(RA,RA+1) <-- (RA) x DO;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

127

Single Precision Integer Multiply with 32-Bit Product

Registers Affected. RA, RA+1, CS

5.73. Double Precision Integer Multiply

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DMR RA,RB | C7 | RA | RB |

 8 4 4 16
D DM RA,ADDR --------------------------------------
DX DM RA,ADDR,RX | C6 | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, a
32-bit 2's complement number, is multiplied by the contents of
registers RA and RA+1, a 32-bit 2's complement number, with the
MSH in RA. The LSH of the product is retained in RA and RA+1
as a 32-bit, 2's complement number. The MSH is lost. The
Condition Status, CS, is set based on the double precision result
in registers RA and RA+1. A fixed point overflow occurs if (1)
both operands are of the same sign and the MSH of the product is
not zero, or the sign bit of the LSH is not zero, or (2) if the operands
are of opposite sign and the MSH of the product is not FFFF
FFFF16, or the sign bit of the LSH is not one. A fixed point
overflow does not occur if either of the operands is zero.

Register Transfer Description.

(RQ,RQ+1,RQ+2,RQ+3) <-- (RA,RA+1)i1 x DO;
(RA,RA+1)2 <-- (RQ+2,RQ+3);
PI4 <-- 1,
 if {(RA0)1 = DO and {(RQ,RQ+1) /= 0 or (RQ+20) = 1}} or
 {(RA0)1 /= DO0 and
 {(RQ,RQ+1) /= FFFF FFFF16 or (RQ+20) = 0} and
 {(RA)1 /= 0 and DO /= 0}};
(CS) <-- 0010 if (RA,RA+1) = 0;

128

Chapter 5. Detailed Requirements

(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.74. Floating Point Multiply

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FMR RA,RB | C9 | RA | RB |

 4 2 2 8 12<=BR<=15

B FMB BR,DSPL | 2 | 2 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R0
 4 2 2 4 4 12<=BR<=15

BX FMBX BR,RX | 4 | 0 | BR' | A | RX | BR'=BR-12
 ------------------------ RA=R0
 8 4 4 16
D FM RA,ADDR --------------------------------------
DX FM RA,ADDR,RX | C8 | RA | RX | | ADDR |

Description. The floating point Derived Operand, DO, is floating
point multiplied by the contents of register RA and RA+1. The
result is stored in register RA and RA+1. The process of the
operation is as follows: the exponents of the operands are added.
If the sum exceeds 7F16, a floating point overflow occurs. If the
sum is less than 8016, then underflow occurs and the result set to
zero. The operand mantissas are multiplied and the result
normalized and stored in RA and RA+1. An exceptional case is
when both operands are negative powers of two: (-1.0 x 2n) x (-1.0
x 2m); the result is a 0.5 x 2n+m+1. If n+m = 7F16, this shall yield
an exponent overflow, floating point overflow occurs. Also, if is
possible that the normalization process may yield an exponent

129

Floating Point Multiply

underflow; if this occurs, then the result is forced to zero. The
condition status, CS, is set based on the result in RA and RA+1.

Register Transfer Description.

n = EA + EO;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if n >= 7F16 and MA0 = MO0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if n >= 7F16 and MA0 /= MO0;
PI6 <-- 1, EA <-- 0, MA <-- 0, exit,
 if n < 8016;
MP <-- MA x MO; (integer multiply)
MP <-- MP shift left 1 position;
n <-- n + 1, MP0-23 <-- 4000 0016,
 if MP0-23 = 8000 0016;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if n >= 7F16 and MP0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if n >= 7F16 and MP0 = 1;
n,MP <-- normalized n,MP;
PI6 <-- 1, EA <-- 0, MA <-- 0, exit,
 if n < 8016;
EA <-- n;
MA <-- MP0-23;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.75. Extended Precision Floating Point Multiply

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFMR RA,RB | CB | RA | RB |

130

Chapter 5. Detailed Requirements

 8 4 4 16
D EFM RA,ADDR --------------------------------------
DX EFM RA,ADDR,RX | CA | RA | RX | | ADDR |

Description. The extended precision floating Derived Operand,
DO, is extended floating point multiplied by the contents of
registers RA, RA+1, and RA+2. The result is stored in registers
RA, RA+1, and RA+2. The process of the operation is as follows:
the exponent of the operands are added. If the sum exceeds 7F16,
a floating point overflow occurs. If the sum is less than 8016, then
underflow occurs and the result set to zero. The operand mantissas
are multiplied and the result normalized and stored in RA, RA+1,
and RA+2. The condition status, CS, is set based on the result in
RA, RA+1, and RA+2.

Register Transfer Description.

n = EA + EO;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,
 if n >= 7F16 and MA0 = MO0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 000016, exit,
 if n >= 7F16 and MA0 /= MO0;
PI6 <-- 1, EA <-- 0, MA <-- 0, exit,
 if n < 8016;
MP <-- MA x MO; (integer multiply)
MP <-- MP shift left 1 position;
n <-- n + 1, MP0-39 <-- 4000 00 000016,
 if MP0-39 = 8000 00 000016;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,
 if n >= 7F16 and MP0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 0000 , exit,
 if n >= 7F16 and MP0 = 1;
n, MP <-- normalized n, MP;
PI6 <-- 1, EA <-- 0, MA <-- 0,
 if n < 8016;
EA <-- n;
MA <-- MP0-39;
(CS) <-- 0010 if (RA,RA+1,RA+2) = 0;

131

Extended Precision Floating Point Multiply

(CS) <-- 0001 if (RA,RA+1,RA+2) < 0;
(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.76. Single Precision Integer Divide with 16-Bit Dividend

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DVR RA,RB | D1 | RA | RB |

 8 4 4

ISP DISP RA,N | D2 | RA | N-1 | 1 <= N <= 16

 8 4 4

ISN DISN RA,N | D3 | RA | N-1 | 1 <= N <= 16

 8 4 4 16
D DV RA,ADDR --------------------------------------
DX DV RA,ADDR,RX | DO | RA | RX | | ADDR |

 8 4 4 16

IM DVIM RA,DATA | 4A | RA | 6 | | DATA |

Description. The contents of register RA are divided by the
Derived Operand, DO, a single precision, 2's complement number.
The result is stored in registers RA and RA+1 such that RA stores
the single precision integer quotient and RA+1 stores the remainder.
The Condition Status, CS, is set based on the result in RA. A fixed
point overflow occurs if the divisor, DO, is zero, or if the dividend
is 800016 and the divisor is FFFF16.

132

Chapter 5. Detailed Requirements

Note The sign of the non-zero remainder is the same as the
sign of the dividend.

Register Transfer Description.

(RA,RA+1) <-- (RA) / DO;
PI4 <-- 1,
 if DO = 0 or {RA = 800016 and DO = FFFF16};
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RA+1, CS, PI

5.77. Single Precision Integer Divide with 32-Bit Dividend

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DR RA,RB | D5 | RA | RB |

 4 2 2 8 12<=BR<=15

B DB BR,DSPL | 1 | 3 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX DBX BR,RX | 4 | 0 | BR' | 7 | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4 16
D D RA,ADDR --------------------------------------
DX D RA,ADDR,RX | D4 | RA | RX | | ADDR |

 8 4 4 16

IM DIM RA,DATA | 4A | RA | 5 | | DATA |

133

Single Precision Integer Divide with 32-Bit Dividend

Description. The contents of registers RA and RA+1, a double
precision 2's complement number, are divided by the Derived
Operand, DO, a single precision, 2's complement number. RA
contains the MSH of the 32-bit dividend. The result is stored in
registers RA and RA+1 such that RA stores the single precision
integer quotient and RA+1 stores the remainder. The Condition
Status, CS, is set based on the result in RA. A fixed point overflow
occurs if the divisor equals zero or if a positive quotient exceeds
7FFF16 or a negative quotient is less than 800016.

Note The sign of the non-zero remainder is the same as that
of the dividend.

Register Transfer Description.

(RQ, RQ+1, RR) <-- (RA,RA+1) / DO;
PI4 <-- 1,
 if DO = 0 or (RQ, RQ+1) > 0000 7FFF16 or (RQ, RQ+1) < FFFF 800016
(RA) <-- (RQ+1)
(RA+1) <-- (RR)
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RA+1, CS, PI

5.78. Double Precision Integer Divide

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DDR RA,RB | D7 | RA | RB |

 8 4 4 16
D DD RA,ADDR --------------------------------------
DX DD RA,ADDR,RX | D6 | RA | RX | | ADDR |

134

Chapter 5. Detailed Requirements

Description. The contents of registers RA and RA+1, a double
precision 2's complement number, are divided by the Derived
Operand, DO, a double precision 2's complement number. RA
contains the MSH of the 32-bit dividend. The quotient part of the
integer result is stored in registers RA and RA+1 (with the MSH
in RA) and the remainder is lost. The Condition Status, CS, is set
based on the results in registers RA and RA+1. A fixed point
overflow occurs if the divisor, DO, is zero, or if the dividend is
8000 000016 and the divisor is FFFF FFFF16.

Register Transfer Description.

(RA,RA+1) <-- (RA,RA+1) / DO;
PI4 <-- 1,
 if DO = 0 or {RA, RA+1 = 8000 000016 and DO = FFFF FFFF16};
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.79. Floating Point Divide

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FDR RA,RB | D9 | RA | RB |

 4 2 2 8 12<=BR<=15

B FDB BR,DSPL | 2 | 3 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=RO
 4 2 2 4 4 12<=BR<=15

BX FDBX BR,RX | 4 | 0 | BR' | B | RX | BR'=BR-12
 ------------------------ RA=RO
 8 4 4 16
D FD RA,ADDR --------------------------------------

135

Floating Point Divide

DX FD RA,ADDR,RX | D8 | RA | RX | | ADDR |

Description. The floating point number in registers RA and
RA+1 is divided by the floating point Derived Operand, DO. The
result is stored in register RA and RA+1. A floating point overflow
occurs if the exponent result exceeds 7F16 at any point in the
calculation process. Underflow occurs if the exponent result is less
than 8016 at any point in the process. If underflow occurs, then the
quotient is forced to zero. A divide by zero yields a floating point
overflow.

Register Transfer Description.

n = EA - E0;
n <-- 0,
 if MA = 0
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if MA0 = MO0 and {n >= 7F16 or DO = 0};
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if MA0 /= MO0 and {n >= 7F16 or DO = 0};
PI6 <-- 1, EA <-- 0, MA <-- 0, exit,
 if n < 8016;
MQ <-- MA / MO;
MQ <-- MQ Shift Right Arithmetic 1 position, n <-- n + 1,
 if MQ >== 1.0;

PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF16, exit,
 if n >= 7F16 and MQ0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 0016, exit,
 if n >= 7F16 and MQ0 = 1;
EA <-- n;
MA <-- MQ0-23;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

136

Chapter 5. Detailed Requirements

5.80. Extended Precision Floating Point Divide

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFDR RA,RB | DB | RA | RB |

 8 4 4 16
D EFD RA,ADDR --------------------------------------
DX EFD RA,ADDR,RX | DA | RA | RX | | ADDR |

Description. The contents of registers RA, RA+1, and RA+2
are extended precision floating point divided by the extended
precision floating point Derived Operand, DO. The result is stored
in register RA, RA+1, and RA+2. A floating point overflow occurs
if the exponent result exceeds 7F16 at any point in the calculation
process. Underflow occurs if the exponent result is less than 8016
at any point in the process. If underflow occurs, then the quotient
is forced to zero. A divide by zero yields a floating point overflow.

Register Transfer Description.

n = EA - E0;
n <-- 0,
 if MA = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,
 if MA0 = MO0 and {n >= 7F16or DO = 0};
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 000016, exit,
 if MA0 /= MO0 and {n >= 7F16or DO = 0};
PI6 <-- 1, EA <-- 0, MA <-- 0, exit,
 if n < 8016;
MQ <-- MA / MO;
MQ <-- MQ Shift Right Arithmetic 1 position, n <-- n + 1,
 if MQ >== 1.0;

PI3 <-- 1, EA <-- 7F16, MA <-- 7FFF FF FFFF16, exit,

137

Extended Precision Floating Point Divide

 if n >= 7F16 and MQ0 = 0;
PI3 <-- 1, EA <-- 7F16, MA <-- 8000 00 000016, exit,
 if n >= 7F16 and MQ0 = 1;
EA <-- n;
MA <-- MQ0-39;
(CS) <-- 0010 if (RA,RA+1,RA+2) = 0;
(CS) <-- 0001 if (RA,RA+1,RA+2) < 0;
(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.81. Inclusive Logical OR

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R ORR RA,RB | E1 | RA | RB |

 4 2 2 8 12<=BR<=15

B ORB BR,DSPL | 3 | 0 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX ORBX BR,RX | 4 | 0 | BR' | F | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4 16
D OR RA,ADDR --------------------------------------
DX OR RA,ADDR,RX | EO | RA | RX | | ADDR |

 8 4 4 16

IM ORIM RA,DATA | 4A | RA | 8 | | DATA |

Description. The Derived Operand, DO, is bit-by-bit inclusively
ORed with the contents of RA. The result is stored in register RA.
The condition status, CS, is set based on the result in register RA.

138

Chapter 5. Detailed Requirements

Register Transfer Description.

(RA) <-- (RA) v DO;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.82. Logical AND

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R ANDR RA,RB | E3 | RA | RB |

 4 2 2 8 12<=BR<=15

B ANDB BR,DSPL | 3 | 1 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX ANDX BR,RX | 4 | 0 | BR' | E | RX | BR'=BR-12
 ------------------------ RA=R2
 8 4 4 16
D AND RA,ADDR --------------------------------------
DX AND RA,ADDR,RX | E2 | RA | RX | | ADDR |

 8 4 4 16

IM ANDM RA,DATA | 4A | RA | 7 | | DATA |

Description. The Derived Operand, DO, is bit-by-bit ANDed
with the contents of register RA. The result is stored in register
RA. The condition status, CS, is set based on the result in register
RA.

139

Logical AND

Register Transfer Description.

(RA) <-- (RA) ^ DO;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.83. Exclusive Logical OR

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R XORR RA,RB | E5 | RA | RB |

 8 4 4 16
D XOR RA,ADDR --------------------------------------
DX XOR RA,ADDR,RX | E4 | RA | RX | | ADDR |

 8 4 4 16

IM XORM RA,DATA | 4A | RA | 9 | | DATA |

Description. The Derived Operand, DO, is bit-by-bit exclusively
ORed with the contents of RA. The result is stored in RA. The
condition status, CS, is set based on the result in RA.

Register Transfer Description.

(RA) <-- (RA) XOR DO;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

140

Chapter 5. Detailed Requirements

5.84. Logical NAND

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R NR RA,RB | E7 | RA | RB |

 8 4 4 16
D N RA,ADDR --------------------------------------
DX N RA,ADDR,RX | E6 | RA | RX | | ADDR |

 8 4 4 16

IM NIM RA,DATA | 4A | RA | B | | DATA |

Description. The Derived Operand, DO, is bit-by-bit logically
NANDed with the contents of register RA. The result is stored in
RA.

Note The logical NOT of a register can be attained with a NR
instruction with RA = RB.

Register Transfer Description.

(RA) <-- ~((RA) ^ DO);
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.85. Convert Floating Point to 16-Bit Integer

Addr

141

Logical NAND

Mode Mnemonic Format/Opcode
 8 4 4

R FIX RA,RB | E8 | RA | RB |

Description. The integer portion of the floating point Derived
Operand, DO (i.e., the contents of registers RB and RB+1), is stored
into register RA. If the actual value of the DO floating point
exponent is greater than 0F16, then RA remains unchanged and a
fixed point overflow occurs. The condition status, CS, is set based
on the result in RA.

Note The algorithm truncates toward zero.

Register Transfer Description.

PI4 <-- 1, exit,
 if EO > 0F16;
(RA) <-- Integer portion of DO;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, PI

5.86. Convert 16-Bit Integer to Floating Point

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FLT RA,RB | E9 | RA | RB |

Description. The integer Derived Operand, DO (i.e., the contents
of register RB), is converted to Single Precision floating point
format and stored in register RA and RA+1. The condition status,

142

Chapter 5. Detailed Requirements

CS, is set based on the results in RA and RA+1. The operation
process is as follows: The exponent is initially considered to be
0F16. The integer value in RB is normalized, i.e., the number is left
shifted and the exponent decremented for each shift until the sign
bit and the next MSB are unequal, and the exponent and mantissa
stored in the proper fields of RA and RA+1.

Note RA may equal RB.

Register Transfer Description.

EA <-- 0, MA <-- 0, exit,
 if (RB) = 0;
EA <-- 0F16;
MA <-- (RB);
EA, MA <-- normalize EA, MA;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS

5.87. Convert Extended Precision Floating Point to 32-Bit Integer

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFIX RA,RB | EA | RA | RB |

Description. The integer portion of the floating point Derived
Operand, DO (i.e., the contents of registers RB, RB+1, and RB+2),
is stored into register RA and RA+1. If the actual value of the DO
floating point exponent is greater than 1F16, then RA and RA+1
remain unchanged and a fixed point overflow occurs. The condition
status, CS, is set based on the result in RA and RA+1.

143

Convert Extended Precision Floating Point to 32-Bit Integer

Note The algorithm truncates toward zero.

Register Transfer Description.

PI4 <-- 1, exit,
 if EO >= 1F16;
(RA,RA+1) <-- Integer portion of DO;
(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.88. Convert 32-bit Integer to Extended Precision Floating Point

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFLT RA,RB | EB | RA | RB |

Description. The double precision integer Derived Operand,
DO (i.e., the contents of registers RB and RB+1), is converted to
Extended Precision floating point format and stored in register RA,
RA+1, and RA+2. The condition status, CS, is set based on the
result in RA, RA+1, and RA+2. The operation process is as follows:
The exponent is initially considered to be 1F16. The integer value
in RB, RB+1 is normalized, i.e., the number is left shifted and the
exponent decremented for each shift until the sign bit and the next
MSB are unequal, and the exponent and mantissa stored in the
proper field of RA, RA+1, and RA+2.

Note RA may equal RB.

Register Transfer Description.

144

Chapter 5. Detailed Requirements

EA <-- 0, MA <-- 0, exit,
 if (RB,RB+1) = 0;
EA <-- 1F16, MA <-- (RB,RB+1);
EA, MA <-- normalized EA, MA;
(CS) <-- 0010 if (RA,RA+1,RA+2) = 0;
(CS) <-- 0001 if (RA,RA+1,RA+2) < 0;
(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS

5.89. Exchange Bytes in Register

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S XBR RA | EC | RA | 0 |

Description. The upper byte of register RA is exchanged with
the lower byte of register RA. The CS is set based on the result in
register RA.

Register Transfer Description.

(RA)0-7 <-->= (RA)8-15;
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

145

Exchange Bytes in Register

5.90. Exchange Words in Registers

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R XWR RA,RB | ED | RA | RB |

Description. The contents of register RA are exchanged with
the contents of register RB. The CS is set based on the result in
register RA.

Register Transfer Description.

(RA) <-->= (RB);
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RB, CS

5.91. Single Precision Compare

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R CR RA,RB | F1 | RA | RB |

 4 2 2 8 12<=BR<=15

B CB BR,DSPL | 3 | 2 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R2
 4 2 2 4 4 12<=BR<=15

BX CBX BR,RX | 4 | 0 | BR' | C | RX | BR'=BR-12

146

Chapter 5. Detailed Requirements

 ------------------------ RA=R2
 8 4 4

ISP CISP RA,N | F2 | RA | N-1 | 1<=N<=16

 8 4 4

ISN CISN RA,N | F3 | RA | N-1 | 1<=N<=16

 8 4 4 16
D C RA,ADDR --------------------------------------
DX C RA,ADDR,RX | F0 | RA | RX | | ADDR |

 8 4 4 16

IM CIM RA,DATA | 4A | RA | A | | DATA |

Description. The single precision Derived Operand, DO, is
compared to the contents of RA. Then, the Condition Status, CS,
is set based on whether the contents of RA is less than, equal to,
or greater than the DO. The contents of RA are unchanged.

Register Transfer Description.

(RA) : DO;
(CS) <-- 0010 if (RA) = DO;
(CS) <-- 0001 if (RA) < DO;
(CS) <-- 0100 if (RA) > DO;

Registers Affected. CS

5.92. Compare Between Limits

Addr
Mode Mnemonic Format/Opcode
 8 4 4 16
D CBL RA,ADDR --------------------------------------

147

Compare Between Limits

DX CBL RA,ADDR,RX | F4 | RA | RX | | ADDR |

Description. The contents of register RA are compared to two
different sixteen bit derived operands, DO1 and DO2. The derived
operands, DO1 and DO2 are located at DA and DA+1, respectively,
and their values are defined such that DO1 <= DO2. The CS is set
based on the results. If the values for DO1 and DO2 are defined
incorrectly (that is, DO1 >= DO2), then CS is set to 1000.

Register Transfer Description.

(CS) <-- 1000 if DO1 > DO2, exit;
(CS) <-- 0001 if (RA) < DO1;
(CS) <-- 0010 if DO1 ≤ (RA) ≤ DO2;
(CS) <-- 0100 if (RA) > DO2;

Registers Affected. CS

5.93. Double Precision Compare

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R DCR RA,RB | F7 | RA | RB |

 8 4 4 16
D DC RA,ADDR --------------------------------------
DX DC RA,ADDR,RX | F6 | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, is
compared to the contents of registers RA and RA+1 where RA
contains the MSH of a double precision word. Then, the Condition
Status, CS, is set based on whether the contents of RA, RA+1 is
less than, equal to, or greater than the DO. The contents of RA and
RA+1 are unchanged.

148

Chapter 5. Detailed Requirements

Register Transfer Description.

(RA,RA+1) : DO;
(CS) <-- 0010 if (RA,RA+1) = DO;
(CS) <-- 0001 if (RA,RA+1) < DO;
(CS) <-- 0100 if (RA,RA+1) >= DO;

Registers Affected. CS

5.94. Floating Point Compare

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R FCR RA,RB | F9 | RA | RB |

 4 2 2 8 12<=BR<=15

B FCB BR,DSPL | 3 | 3 | BR' | DSPL | BR'=BR-12
 ---------------------- RA=R0
 4 2 2 4 4 12<=BR<=15

BX FCBX BR,RX | 4 | 0 | BR' | D | RX | BR'=BR-12
 ------------------------ RA=R0
 4 8 8 16
D FC RA,ADDR --------------------------------------
DX FC RA,ADDR,RX | F8 | RA | RX | | ADDR |

Description. The floating point number in registers RA and
RA+1 is compared to the floating point Derived Operand, DO.
Then, the Condition Status, CS, is set based on whether the contents
of RA, RA+1 is less than, equal to, or greater than the DO. The
contents of RA and RA+1 are unchanged.

Note This instruction does not cause an overflow to occur.

Register Transfer Description.

149

Floating Point Compare

(RA, RA+1) : DO;
(CS) <-- 0010 if (RA,RA+1) = DO;
(CS) <-- 0001 if (RA,RA+1) < DO;
(CS) <-- 0100 if (RA,RA+1) >= DO;

Registers Affected. CS

5.95. Extended Precision Floating Point Compare

Addr
Mode Mnemonic Format/Opcode
 8 4 4

R EFCR RA,RB | FB | RA | RB |

 8 4 4 16
D EFC RA,ADDR --------------------------------------
DX EFC RA,ADDR,RX | FA | RA | RX | | ADDR |

Description. The extended precision floating Derived Operand,
DO, is compared to the contents of registers RA, RA+1, and RA+2
where RA contains the most significant 16-bits of the extended
precision floating point word. The condition status, CS, is set based
on whether the contents of RA, RA+1, and RA+2 are less than,
equal to or greater than the DO. The contents of RA, RA+1, and
RA+2 are unchanged.

Note This instruction does not cause overflow to occur.

Register Transfer Description.

(RA, RA+1, RA+2) : DO;
(CS) <-- 0010 if (RA, RA+1, RA+2) = DO;
(CS) <-- 0001 if (RA, RA+1, RA+2) < DO;
(CS) <-- 0100 if (RA, RA+1, RA+2) >= DO;

Registers Affected. CS

150

Chapter 5. Detailed Requirements

5.96. No Operation

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S NOP | FF | 0 | 0 |

Description. No operation is performed.

Register Transfer Description.

None

Registers Affected. None

5.97. Break Point

Addr
Mode Mnemonic Format/Opcode
 8 4 4

S BPT | FF | F | F |

Description. This instruction is typically used for halting the
processor during maintenance and diagnostic procedures when the
maintenance console is connected to the system. If the console is
not connected, this instruction is treated as a NOP (see Section 5.96,
“No Operation” [151]). Restarting the processor after a BPT can
only be done by: the maintenance console or the power on
sequence.

Register Transfer Description.

151

No Operation

None

Registers Affected. None

5.98. Built-In-Function

Addr
Mode Mnemonic Format/Opcode
 8 8

S BIF Op Ex. | 4F | Op. Ex. |

Description. This instruction invokes special operations defined
by the user. Note that this instruction may use one or more
additional words immediately following it, the number and
interpretation of which are determined by the Op. Ex.

Register Transfer Description.

User defined.

152

Chapter 5. Detailed Requirements

A
A, 107
AB, 107
ABS, 110
ABX, 107
AIM, 107
AISP, 107
AND, 139
ANDB, 139
ANDM, 139
ANDR, 139
ANDX, 139
AR, 107

B
BEX, 87
BEZ, 86
BGE, 90
BGT, 89
BIF, 152

BLE, 88
BLT, 87
BNZ, 90
BPT, 151
BR, 86

C
C, 146
CB, 146
CBL, 147
CBX, 146
CIM, 146
CISN, 146
CISP, 146
CR, 146

D
D, 133
DABS, 110
DAR, 111

Index

153

DB, 133
DBX, 133
DC, 148
DCR, 148
DD, 134
DDR, 134
DECM, 118
DIM, 133
DISN, 132
DISP, 132
DLR, 94
DM, 128
DMR, 128
DNEG, 119
DR, 133
DS, 120
DSAR, 80
DSCR, 82
DSLC, 74
DSLL, 70
DSLR, 79
DSR, 120
DSRA, 73
DSRL, 72
DST, 102
DSTB, 102
DSTI, 102
DSTX, 102
DV, 132
DVIM, 132
DVR, 132

E
EFA, 114
EFAR, 114
EFC, 150
EFCR, 150
EFD, 137
EFDR, 137
EFIX, 143

EFL, 96
EFLT, 144
EFM, 130
EFMR, 130
EFS, 123
EFSR, 123
EFST, 104

F
FA, 112
FAB, 112
FABS, 115
FABX, 112
FAR, 112
FC, 149
FCB, 149
FCBX, 149
FCR, 149
FD, 135
FDB, 135
FDBX, 135
FDR, 135
FIX, 141
FLT, 142
FM, 129
FMB, 129
FMBX, 129
FMR, 129
FNEG, 124
FS, 121
FSB, 121
FSBX, 121
FSR, 121

I
INCM, 109

J
JC, 83
JCI, 83

154

Index

JS, 84

L
LLB, 97
LLBI, 97
LM, 95
LR, 93
LST, 91
LSTI, 91
LUB, 97
LUBI, 97

M
M, 127
MB, 127
MBX, 127
MIM, 127
MISN, 125
MISP, 125
MOV, 101
MR, 127
MS, 125
MSIM, 125
MSR, 125

N
N, 141
NEG, 119
NIM, 141
NOP, 151
NR, 141

O
OR, 138
ORB, 138
ORBX, 138
ORIM, 138
ORR, 138

P
POPM, 98
PSHM, 106

R
RB, 62
RBI, 62
RBR, 62
RVBR, 65

S
S, 116
SAR, 76
SB, 61
SBB, 116
SBBX, 116
SBI, 61
SBR, 61
SCR, 78
SIM, 116
SISP, 116
SJS, 92
SLC, 69
SLL, 66
SLR, 75
SOJ, 85
SR, 116
SRA, 68
SRL, 67
SRM, 102
ST, 99
STB, 99
STBX, 99
STC, 100
STCI, 100
STI, 99
STLB, 105
STM, 103
STUB, 104
STUBI, 104

155

SVBR, 64

T
TB, 63
TBI, 63
TBR, 63
TSB, 64
TVBR, 66

U
URS, 92

V
VIO, 60

X
XBR, 145
XIO, 53
XOR, 140
XORM, 140
XORR, 140
XWR, 146

156

Index

