-
N
MIL-STD-1750A

Military Standard Sixteen-Bit Computer
Instruction Set Architecture

WWW.Xgc.com

MIL-STD-1/50A

Military Standard Sixteen-Bit Computer
Instruction Set Architecture

Order Number: XGC-MIL-STD-1750A-030122

XGC Technology

London
UK
Web: <www. xgc. coms

MIL-STD-1750A: Military Standar d Sixteen-Bit Computer Instruction Set
Architecture

Publication date January 2003
© 1980, 1982 USAF

Abstract

This document is provided for use with XGC compilation systems targeted to the MIL-STD-1750A and
specifies the 1750A instruction set and architecture.

Thetext of this document is based on MIL-STD-1750A, 2 Jul 1980, with updated Notice 1, 21 May 1982.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

About This Document xiii
1 Reader's Comments xiii

Scope and Purpose 1

1.1 Scope 1

12 Purpose 1

1.3 Applicability 1
1.4 Benefits 2

Referenced Documents 3
Definitions 5

General Requirements 11

4.1 DataFormats 11
411 Single Precision Fixed Point Data 11

MIL-STD-1750A

4.2

4.3

4.4

4.5

4.1.2
413
414
415
4.1.6
4.1.7
4.1.8
4.1.9

Double Precision Fixed Point Data 12
Fixed Point Operands 13

Results on Fixed Point Overflow 13
Floating Point Data 14

Extended Precision Floating Point Data 15
Floating Point Operands 16

Truncation of Floating Point Results 16
Results of Division 16

Instruction Formats 17

421
422
423
424
425
4.2.6
4.2.7

Register-to-Register Format 17
Instruction Counter Relative Format 17
Base Relative Format 17

Base Relative Indexed Format 18

Long Instruction Format 19

Immediate Opcode Extension Format 19
Special Format 19

Addressing Modes 20

431
432
4.3.3
434
4.35

Register Direct (R) 20
Memory Direct (D) 20
Memory Direct-Indexed (DX) 21
Memory Indirect (1) 21
Memory Indirect with Pre-Indexing

(IX) 21

4.3.6
4.3.7
4.3.8
4.3.9

Immediate Long (IM) 21

Immediate Short (I1S) 21

Instruction Counter Relative (ICR) 22
Base Relative (B) 22

4.3.10 BaseRelative-Indexed (BX) 22
4311 Specia (S) 23
Registers and Support Features 23

441
442
443
444
445

General Registers 23
Special Registers 24

Stack 29

Processor Initialization 30
Interval Timers (optional) 31

Memory 32

451
452

Memory Addressing 32
Expanded Memory Addressing

(optional) 32

453
454

Memory Parity (optional) 37
Memory Block Protect (optional) 37

MIL-STD-1750A

4.6

4.7

4.8

455
4.5.6
457

References to Unimplemented Memory 37
Start up ROM (optional) 38
Reserved Memory Locations 38

Interrupt Control 38

46.1

Interrupts 38

Input/Output 41

471
4.7.2
4.7.3
474
4.7.5
4.7.6

Input 41

Output 41

Input/Output Commands 42
Input/Output Command Partitioning 42
Input/Output Interrupts (optional) 42
Dedicated I/0 Memory Locations 43

Instructions 43

481
482
4.8.3
484

Invalid Instructions 43
Mnemonic Conventions 43
Instruction Matrix 45
Instruction Set Notation 45

Chapter 5 Detailed Requirements 53

Execute Input/Output 53

Vectored Input/Output 60

Set Bit 61

Reset Bit 62

Test Bit 63

Test and Set Bit 64

Set Variable Bit in Register 64

Reset Variable Bit in Register 65

Test Variable Bit in Register 66
Shift Left Logical 66
Shift Right Logical 67
Shift Right Arithmetic 68
Shift Left Cyclic 69
Double Shift Left Logical 70
Double Shift Right Logical 72
Double Shift Right Arithmetic 73
Double Shift Left Cyclic 74
Shift Logical, Count in Register 75
Shift Arithmetic, Count in Register 76
Shift Cyclic, Count in Register 78
Double Shift Logical, Count in Register 79

5.1
5.2
5.3
5.4
55
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521

MIL-STD-1750A

5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
531
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
541
542
543
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62

Double Shift Arithmetic, Count in Register 80
Double Shift Cyclic, Count in Register 82
Jump on Condition 83

Jump to Subroutine 84

Subtract One and Jump 85

Branch Unconditionally 86

Branch if Equal to (Zero) 86

Branch if Less Than (Zero) 87

Branch to Executive 87

Branch if Less Than or Equal to (Zero) 88
Branch if Greater Than (Zero) 89

Branch if Not Equal to (Zero) 90

Branch if Greater Than or Equal to (Zero) 90
Load Status 91

Stack IC and Jump to Subroutine 92

Unstack I1C and Return from Subroutine 92
Single Precision Load 93

Double Precision Load 94

Load Multiple Registers 95

Extended Precision Floating Point Load 96
Load from Upper Byte 97

Load from Lower Byte 97

Pop Multiple Registers off the Stack 98
Single Precision Store 99

Store a Non-Negative Constant 100

Move Multiple Words, Memory-to-Memory 101
Double Precision Store 102

Store Register Through Mask 102

Store Multiple Registers 103

Extended Precision Floating Point Store 104
Store into Upper Byte 104

Storeinto Lower Byte 105

Push Multiple Registers onto the Stack 106
Single Precision Integer Add 107

Increment Memory by a Positive Integer 109
Single Precision Absolute Value of Register 110
Double Precision Absolute Value of Register 110
Double Precision Integer Add 111

Floating Point Add 112

Extended Precision Floating Point Add 114
Floating Point Absolute Value of Register 115

Vi

MIL-STD-1750A

5.63 Single Precision Integer Subtract 116

5.64 Decrement Memory by a Positive Integer 118
5.65 Single Precision Negate Register 119

5.66 Double Precision Negate Register 119

5.67 Double Precision Integer Subtract 120

5.68 Hoating Point Subtract 121

5.69 Extended Precision Floating Point Subtract 123
5.70 Floating Point Negate Register 124

5.71 Single Precision Integer Multiply with 16-Bit
Product 125

5.72 Single Precision Integer Multiply with 32-Bit
Product 127

5.73 Double Precision Integer Multiply 128

5.74 Foating Point Multiply 129

5.75 Extended Precision Floating Point Multiply 130
5.76 Single Precision Integer Divide with 16-Bit
Dividend 132

5.77 Single Precision Integer Divide with 32-Bit
Dividend 133

5.78 Double Precision Integer Divide 134

5.79 Foating Point Divide 135

5.80 Extended Precision Floating Point Divide 137
5.81 Inclusive Logica OR 138

5.82 Logica AND 139

5.83 ExclusiveLogica OR 140

5.84 Logical NAND 141

5.85 Convert Floating Point to 16-Bit Integer 141
5.86 Convert 16-Bit Integer to Floating Point 142
5.87 Convert Extended Precision Floating Point to
32-Bit Integer 143

5.88 Convert 32-bit Integer to Extended Precision
Floating Point 144

5.89 ExchangeBytesin Register 145

590 ExchangeWordsin Registers 146

591 Single Precision Compare 146

5.92 Compare Between Limits 147

5.93 Double Precision Compare 148

5.94 Foating Point Compare 149

5.95 Extended Precision Floating Point Compare 150
5.96 No Operation 151

5.97 Break Point 151

Vii

MIL-STD-1750A

5.98 Built-In-Function 152

Index 153

viii

Figures

1 Expanded Memory Mapping Diagram 36
2 Interrupt System Flowchart 51
3 Interrupt Vectoring System 51

Tables

| Single Precision Fixed Point Numbers 12

I Double Precision Fixed Point Numbers 13

11 32-Bit Floating Point Numbers 14

IV 48-Bit Extended Floating Point Numbers 15

V Addressing Modes and Instruction Formats 20

VI Processor Reset State 30

VIl AL Codeto Access Key Mapping 35

VI Interrupt Definitions 39

IX Input/Output Channel Groups 44

X Operation Code Matrix (Left) 48

Xr Operation Code Matrix (Right) 49

X1 Extended Operation Codes (Left) 50

Xlr Extended Operation Codes (Right) 50

X1l Mandatory X10 Command Fields and Mnhemonics 54
X1l Optional X10 Command Fields and Mnemonics 55

Xi

Xii

About This Document

This document contains the text of the military standard
MIL-STD-1750A. This second edition is nearly complete, lacking
only tableV, which istoo large to reproduce here. Tables X and
Xl are split into left and right halves.

This document isin no way intended to supersede the
MIL-STD-1750A Specification, which is the definitive document
describing the architecture of 1750 computers.

1. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC manuals.

You can send your comments in the following ways:

 |Internet electronic mail: r eaders_coment s@gc. com

Xiii

About This Document

Please include the following information along with your
comments:

o Thefull title of the book.

» The section numbers and page numbers of the information on
which you are commenting.

» The software version you are using.

Xiv

Chapter 1 Scope and Purpose

1.1. Scope
This standard defines the instruction set architecture (1SA) for
airborne computers. It does not define specific implementation
details of acomputer.

1.2. Purpose
The purpose of this document isto establish a uniform instruction
set architecture for airborne computers which shall be used in Air
Force avionic weapon systems.

1.3. Applicability

This standard is intended to be used to define only the ISA of
airborne computers. System-unigue requirements such as speed,
weight, power, additional input/output commands, and

Chapter 1. Scope and Purpose

environmental operating characteristics are defined in the computer
specification for each computer. Application is not restricted to
any particular avionic function or specific hardwareimplementation
by this standard. Generally, the I SA is applicable to, and shall be
used for, computers that perform such functions as moderate
accuracy navigation, computed air release points, weapon delivery,
air rendezvous, stores management, aircraft guidance, and aircraft
management. This standard is not restricted to implementations of
“stand-alone” computers such as a mission computer or afire
control computer. Application to the entire range of avionics
functions is encouraged such as stability and control, display
processing and control, thrust management, and electrical power
control.

1.4. Benefits

The expected benefits of this standard | SA are the use and re-use
of available support software such as compilers and instruction
level simulators. Other benefits may also be achieved such as: (a)
reductionin total support software gained by the use of the standard
ISA for two or more computers in aweapon system, and (b)
software devel opment independent of hardware devel opment.

Chapter 2 Referenced Documents

Not applicable.

Chapter 3

Definitions

Accumulator

Address

Arithmetic Logic Unit (ALU)

Avionics

A register in the arithmetic logic
unit used for intermediate storage,
algebraic sums and other
arithmetic and logical results.

A number which identifies a
location in memory where
information is stored.

That portion of hardware in the
central processing unit in which
arithmetic and logical operations
are performed.

All the electronic and
electro-mechanical systems and
subsystems (hardware and
software) installed in an aircraft
or attached to it. Avionics
systems interact with the crew or

Chapter 3. Definitions

Base Register

Bit

Byte
Central Processing Unit
(CPU)

Control Unit

General Purpose Register

other aircraft systemsin these
functional areas:
communications, navigation,
weapons delivery, identification,
instrumentation, electronic
warfare, reconnaissance, flight
control, engine control, power
distribution, and support
equipment.

Any general register used to
provide the base address portion
of the derived address for
instructions using the base
relative or base relative-indexed
addressing modes.

Contraction of binary digit; may
be either zero or one. In
information theory, abinary digit
isequal to one binary decision or
the designation of one of two
possible values or states of
anything used to store or convey
information.

A group of eight binary digits.

That portion of acomputer that
controls and performs the
execution of instructions.

That portion of hardware in the
CPU that directs sequence of
operations, interprets coded
instructions, and initiates proper
commands to other parts of the
compulter.

A register that may be used for
arithmetic and logical operations,
indexing, shifting, input, output,

Index Register

Input/Output (1/0)

Instruction

Instruction Counter (I1C)

Instruction Set Architecture
(1SA)

and general storage of temporary
data.

A register that contains aquantity
for modification of an address
without permanently modifying
the address.

That portion of acomputer which
interfaces to the external world.

A program code which tells the
computer what to do.

A register in the CPU that holds
the address of the next instruction
to be executed.

The attributes of a digital
computer as seen by amachine
(assembly) language programmey.
I SA includes the processor and
input/output instruction sets, their
formats, operation codes, and
addressing modes; memory
management and partitioning if
accessible to the machine
language programmer; the speed
of accessible clocks; interrupt
structure; and the manner of use
and format of all registers and
memory locations that may be
directly manipulated or tested by
amachine language program.
This definition excludes the time
or speed of any operation, internal
computer partitioning, electrical
and physical organization, circuits
and components of the computer,
manufacturing technology,
memory organization, memory

Chapter 3. Definitions

Interrupt

Memory

Operation Code (OPCODE)

Operand

Page Register

Programmed | nput/Output
(PIO)

Register

Register Transfer Language
(RTL)

cycle time, and memory bus
widths.

A special control signal that
suspends the normal flow of the
processor operations and alows
the processor to respond to a
logically unrelated or
unpredictable event.

That portion of a computer that
holds data and instructions and
from which they can be accessed
at alater time.

That part of an instruction that
defines the machine operation to
be performed.

That part of an instruction that
specifies the address of the
source, the address of the
destination, or the data itself on
which the processor isto operate.

A register which isused to supply
additional address bitsin paged
memory addressing schemes.

A typeof 1/0O channel that allows
program control of information
transfer between the computer
and an external device.

A devicein the CPU for the
temporary storage of one or more
words to facilitate arithmetical,
logical, or transfer operations.

A language used to describe
operations (upon registers) which

Reserved

Spare

Stack

Stack Pointer

Status Word Register

Word

are caused by the execution of
each instruction.

Must not be used.

A framework for usageisdefined
by the standard with particulars
to be defined by the application
requirements.

A sequence of memory locations
in which data may be stored and
retrieved on alast-in-first-out
(LIFO) basis.

A register that pointsto the last
item on the stack.

A register whose state is defined
by some prior event occurrence
in the computer.

Sixteen bits.

10

Chapter 4 General Requirements

4.1. Data Formats

Theinstruction set shall support 16-bit fixed point single precision,
32-hit fixed point double precision, 32-bit floating point and 48-bit
floating point extended precision datain 2's complement
representation.

4.1.1. Single Precision Fixed Point Data

Single precision 16-bit fixed point data shall be represented asa
16-bit 2'scomplement integer number with the most significant bit
(MSB) asthe sign bit:

11

Chapter 4. General Requirements

Examples of single precision fixed point numbers are shown in
Tablel, “Single Precision Fixed Point Numbers’ [12].

Tablel. Single Precision Fixed Point Numbers

I nteger 16-Bit Hexadecimal Word
32767
16384
4096

-
n

1

=
© o O M M T © © = »
O O o O M M o o o o
O O O o M M o o o o
O B, O O m T E, N O O T

4.1.2. Double Precision Fixed Point Data

Double precision 32-bit fixed point data shall be represented as a
32-bit 2's complement integer number with the most significant bit
(MSB) of thefirst word as the sign hit.

VBB LsB
| Sl (MBH) | (LSH |
01 15 16 31

12

Fixed Point Operands

Examples of machine representation for double precision fixed
point numbers are shown in Table I1, “Double Precision Fixed
Point Numbers’ [13].

Tablell. Double Precision Fixed Point Numbers

I nteger 32-Bit Hexadecimal Word
2,147,483,647 TFFFFFFF
1,073,741,824 40000000
2 00000002
1 00000001
0 00000000
-1 FFFFFFFF
-2 FFFFFFFE
-1,073,741,825 cooo00000
-2,147,483,647 80000001
-2,147,483,648 80000000

4.1.3. Fixed Point Operands

All operandsfor fixed point adds, subtracts, multiplies and divides
areinteger. A fixed point overflow shall be defined as arithmetic
overflow if theresult isgreater than 7FFF;¢ or less than 8000, for
single precision and greater than 7FFF FFFFg or less than 8000
0000, for double precision.

4.1.4. Results on Fixed Point Overflow

On fixed point operations which cause overflow, the operation
shall be performed to completion asif the MSBs are present and
the 16 L SBsfor single precision or the 32 L SBs for double
precision shall be retained in the proper register(s). Division by
zero shall produce afixed point overflow and return results of all
zZeros.

13

Chapter 4. General Requirements

4.1.5. Floating Point Data

Floating point data shall be represented as a 32-bit quantity
consisting of a 24-bit 2's complement mantissa and an 8-bit 2's
complement exponent.

Floating point numbers are represented as a fractional mantissa
times 2 raised to the power of the exponent. All floating point
numbers are assumed normalized or floating point zero at the
beginning of afloating point operation and theresultsof al floating
point operations are normalized (anormalized floating point number
has the sign of the mantissa and the next bit of opposite value) or
floating point zero. A floating point zero is defined as 0000 00004,
that is, a zero mantissa and a zero exponent (00,6). An extended
floating point zero is defined as 0000 0000 0000, that is, a zero
mantissa and a zero exponent. Some examples of the machine
representation for 32-bit floating point numbers are shown in
Tablelll, “32-Bit Floating Point Numbers’ [14].

Tablelll. 32-Bit Floating Point Numbers

Decimal Number Hexadecimal Notation
Mantissa Exp
0.9999998 x 214 7FFF FF 7F
0.5 x 2% 4000 00 7F
0.625x 2* 5000 00 04
05x 2! 4000 00 01
05x 2° 4000 00 00
05x 27 4000 00 FF
05x 2% 4000 00 80
0.0x 2° 0000 00 00

14

Extended Precision Floating Point Data

Decimal Number Hexadecimal Notation
Mantissa Exp

-1.0x 2° 8000 00 00

-0.5000001 x 2128 BFFF FF 80

-0.7500001 x 2* 9FFF FF 04

4.1.6. Extended Precision Floating Point Data

Extended floating point data shall be represented as a 48-bit
guantity consisting of a 40-hit 2's complement mantissaand an
8-hit 2's complement exponent. The exponent bits 24 to 31 lay
between the split mantissa bits 0 to 23 and bits 32 to 47. The most
significant bit of the mantissaisthe sign bit 0, and the least
significant bit of the mantissais hit 47.

01 23 24 31 32 47

Some examples of the machine representation of 48-bit extended
floating point numbers are shown in Table IV, “48-Bit Extended
Floating Point Numbers’ [15].

Table | V. 48-Bit Extended Floating Point Numbers

Decimal Number Mantissa Exp Mantissa
M) (L9
0.5 x 2%/ 400000 7F 0000
05x 2° 400000 00 0000
05x 27 400000 FF 0000
05x 2% 400000 80 0000
-1.0x 2% 800000 7F 0000
-1.0x 2° 800000 00 0000
-1.0x 2t 800000 FF 0000

15

Chapter 4. General Requirements

Decimal Number Mantissa Exp Mantissa
(MS) (L9
-1.0x 218 800000 80 0000
0.0x 2° 000000 00 0000
-0.75x 21 A00000 FF 0000

For both floating point and extended floating point numbers, an
overflow is defined as an exponent overflow and an underflow is
defined as an exponent underflow.

4.1.7. Floating Point Operands

All operandsfor floating point instructions must be normalized or
afloating point zero. A floating point overflow shall be defined as
exponent overflow if the exponent is greater than 7F6. The results
of an operation which causes afloating point overflow shall bethe
largest positive number if the sign of the resulting mantissa was
positive, or shall be the smallest negative number if the sign of the
resulting mantissa was negative. Underflow shall be defined as
exponent underflow if the exponent is less than 80,¢. The results
of an operation which causes a floating point underflow shall be
floating point zero. Separate interrupts are set for overflow and
underflow. Only the floating point instructions shall set the
underflow interrupt.

4.1.8. Truncation of Floating Point Results

All floating point results shall be truncated toward negative infinity.

4.1.9. Results of Division

The sign of any non-zero remainder is the same as the dividend
for al division instructions; the remainder is only accessible for
single precision integer divideswith 16 bit dividendsand for single
precision integer divides with 32 bit dividends.

16

Instruction Formats

4.2. Instruction Formats

Six basic instruction formats shall support 16 and 32-bit
instructions. The operation code (opcode) shall normally consist
of the 8 most significant bits of the instruction.

4.2.1. Register-to-Register Format

The register-to-register format is a 16-bit instruction consisting of
an 8-bit opcode and two 4-bit general register (GR) fields that
typically specify any of 16 general registers. In addition, these
fields may contain ashift count, condition code, opcode extension,
bit number, or the operand for immediate short instructions.

4.2.2. Instruction Counter Relative Format

The Instruction Counter (IC) Relative Format isa 16-bit instruction
consisting of an 8-bit opcode and an 8-bit displacement field.

4.2.3. Base Reative For mat

The baserelativeinstruction format isa 16-bit instruction consisting
of a 6-bit opcode, a 2-bit base register field and an 8-hit

17

Chapter 4. General Requirements

displacement field. The base register (BR) field allows the
designation of one of four different registers.

0 5 67 8 15
BR=10 inplies general register 12
BR=1 inplies general register 13
BR=2 inplies general register 14
BR =3 inplies general register 15

4.2.4. Base Relative | ndexed For mat

The base relative indexed instruction format is a 16-bit instruction
consisting of a 6-bit opcode, a 2-bit base register field, a 4-bit
opcode extension and a4-bit index register field. The base register
(BR) field allows the designation of one of four different base
registers and the index register (RX) field allows the designation
of one of fifteen different index registers.

0 5 67 8 11 12 15

inplies general register 12
inplies general register 13
inplies general register 14
inplies general register 15
i nplies no indexing

O wnMN - O

18

Long Instruction Format

4.2.5. Long Instruction For mat

The Long Instruction Format is a 32-bit instruction consisting of
an 8-bit opcode, a4-bit genera register field, a4-bit index register
field and a 16-bit addressfield.

0 7 8 11 12 15 16 31

Typicaly, GR1 is one of the 16 general registers on which the
instruction is performing the operation. RX isone of the 15 general
registers being used as an index register. The 16-bit address field
iseither afull 16-bit memory address or a 16-bit operand if the
instruction specifies immediate addressing.

4.2.6. Immediate Opcode Extension For mat

The immediate opcode extension format is a 32-bit instruction
consisting of an 8-bit opcode, a 4-bit general register field, a4-bit
opcode extension and a 16-bit datafield. Typicaly, GR1 is one of
the 16 general registers on which the instruction is performing the
operation. Op.Ex. is an opcode extension.

0 7 8 11 12 15 16 31

4.2.7. Special Format

The special instruction format is a 16-bit instruction consisting of
an 8-bit opcode followed by an 8-bit opcode extension (Op.EX.).

19

Chapter 4. General Requirements

4.3. Addressing Modes

Table V, “Addressing Modes and I nstruction Formats® [20]
specifies the instruction word format, the Derived Address (DA),
and the Derived Operand (DO) for each addressing mode that shall
beimplemented. The smallest addressable memory word is 16 bits:
hence, the 16-bit address fields allow direct addressing of 64K
(65,536) words. Thereis no restriction on the location of double
word operands in memory.

TableV. Addressing Modes and I nstruction Formats

TBS See original
MIL-STD-1750A

4.3.1. Register Direct (R)

An addressing mode in which the instruction specified register
contains the required operand. (With the exception of this address
mode, DA denotes a memory address.)

4.3.2. Memory Direct (D)

An addressing mode in which the instruction contains the memory
address of the operand.

20

Memory Direct-Indexed (DX)

4.3.3. Memory Direct-Indexed (DX)

An addressing mode in which the memory address of the required
operand is specified by the sum of the content of an index register
and the instruction address field. Registers R1, R2, ..., R15 may
be specified for indexing.

4.3.4. Memory Indirect (1)

An addressing mode in which the instruction specified memory
address contains the address of the required operand.

4.3.5. Memory Indirect with Pre-Indexing (1 X)

An addressing mode in which the sum of the content of a specified
index register and theinstruction addressfield isthe address of the
address of the required operand. RegistersR1, R2, ..., R15 may be
specified for pre-indexing.

4.3.6. Immediate Long (IM)

There shall be two methods of Immediate Long addressing: one
which allowsindexing and one which does not. Theindexableform
of immediate addressing isdefined in Table V, “Addressing Modes
and Instruction Formats’ [20]. If the specified index register, RX,
isnot equal to zero, the content of RX is added to the immediate
field to form the required operand; otherwise the immediate field
contains the required operand.

4.3.7. Immediate Short (1S)

An addressing mode in which the required (4-bit) operand is
contained within the (16-bit) instruction. There shall be two
methods of Immediate Short addressing: one which interprets the
content of theimmediate field as positive data, and a second which
interprets the content of immediate field as negative data.

21

Chapter 4. General Requirements

4.3.7.1. Immediate Short Positive (I SP)

The immediate operand is treated as a positive integer between 1
and 16.

4.3.7.2. Immediate Short Negative (I SN)
The immediate operand is treated as a negative integer between 1

and 16. Itsinternal form shall be a 2's complement, sign-extended
16-bit number.

4.3.8. Instruction Counter Relative (ICR)

This addressing mode is used for 16-bit branch instructions. The
contents of the instruction counter minus one (i.e., the address of
the current instruction) is added to the sign extended 8-hit
displacement field of theinstruction. The sum pointsto the memory
addressto which control may betransferred if abranch isexecuted.
This mode allows addressing within a memory region of 80,4 to
7F,6 words relative to the address of the current instruction.

4.3.9. Base Relative (B)

An addressing modein which the content of an instruction specified
base register is added to the 8-bit displacement field of the (16-hit)
instruction. The displacement field istaken to be apositive number
between 0 and 255. The sum points to the memory address of the
reguired operand. This mode allows addressing within a memory
region of 256 words beginning at the address pointed to by the base
register.

4.3.10. Base Relative-lndexed (BX)

The sum of the contents of a specified index register and aspecified
base register is the address of the required operand. Registers R1,
R2, ..., R15 may be specified for indexing.

22

Special (S)

4.3.11. Special (S)

The special addressing mode is used where none of the other
addressing modes are applicable.

4.4. Registers and Support Features

4.4.1. General Registers

The instruction set shall support a minimum of 16 registers (RO
through R15). The registers may be used as accumulators, index
registers, base registers, temporary operand memory, and stack

pointers with the following restrictions:

Only registers R1, R2, ..., R15 may be used as index registers
(RX).

Only four registers, R12, R13, R14, and R15 may be used as
base registers for instructions having the Base Relative address
mode.

R15 isthe implicit stack pointer for the Push and Pop Multiple
instructions (Opcode 8F;¢ and 9F ;).

Thegeneral registersare not in thelogical memory address space.

Instructions having the Base Relative addressing mode have a
singleaccumulator. Theregister pair (RO,R1) isthe accumulator
for double precision and floating point operations. Register R2
is the accumulator for single precision operations, except
multiply and divide base relative also use R3.

The general registers shall functionally appear to be 16 bitsin
length. For instructions requiring a 32-bit operation, adjacent
registers shall be concatenated to form effective 32-bit registers.
Instructions requiring 48-bit operation shall concatenate three
adjacent registersto form an effective 48-bit register.

23

Chapter 4. General Requirements

When registers are concatenated, the register specified by the
instruction shall represent the most significant word. The register
set wraps around, that is, R15 concatenates with RO for 32-bit
operations and R15 concatenates with RO and R1 for 48-bit
operations.

4.4.2. Special Registers

The instructions shall make use of the following special registers:
instruction counter, status word, fault register, interrupt mask,
pending interrupt register, and input/output interrupt code registers.

4.4.2.1. Instruction Counter (IC)

A 16-hit register used for program sequencing. It allowsinstructions
within arange of 65,536 wordsto be executed. It is external to the
general registers. It is saved in memory when an interrupt is
serviced.

4.4.2.2. StatusWord (SW)

The instruction set shall reference a 16-bit status word register
whose state is defined by some prior event occurrence in the
computer. The figure below indicates the format for the SW with
the following paragraphs describing the meaning of the Condition
Status (CS) field, reserved bits, the Processor State (PS) field, and
the Address State (AS) field.

CSBits:
A four-bit field (bits O through 3) of the status word shall be
dedicated to instruction result (i.e., instruction status bits) and
is defined as condition status (CS). Bits 0, 1, 2, and 3 shall be
identified as C, P, Z, and N, respectively, and their meanings
are given by the following register transfer description:

24

Special Registers

C=(CY)g = 1if result generates a carry from an addition or
no borrow from a subtraction

P=(CS), = 1if result is greater than (zero)
Z=(CS), =1if result isequal to (zero)
N = (CS); = 1if result isless than (zero)

Reserved Bits:
Bits 4 through 7 of the status word shall be reserved.

PS Bits:
A four-bit field (bits 8 through 11) of the status word shall be
dedicated to the processor state (PS) code. The code value
defined by the PS shall be used for the following two functions:

For implementations which include the memory access lock
feature of the expanded memory addressing option (see
Section 4.5.2.2, “Page Register Word Format” [33]), PS shall
define the memory access key code for all instructions and
operand references to memory. References to memory during
the interrupt recognition sequence for vector table pointer
fetches and linkage/service parameter store/read references
shall not use PS to define the memory access key code, but
shall use an implied PS =0 value.

PS shall determine the legal/illegal criteriafor privileged
instructions. When PS = 0 and a privileged instruction
execution is attempted, the instruction shall be legal and shall
be executed properly asdefined. When PS /= 0 and a privileged
instruction execution is attempted, the instruction shall be
illegal, shall be aborted, and the privileged instruction fault bit
in the fault register (FTo) shall be set to one.

ASbits:
A four-hit field (bits 12 through 15) of the status word shall
be dedicated to the address state (AS) code. For
implementations which do not include the expanded memory
addressing option, an address state fault shall be generated for
any operation which attemptsto modify ASto anon-zero value.
For implementations which include the expanded memory

25

Chapter 4. General Requirements

addressing option, AS shall define the group (pair) of page
register setsto be used for al instruction and operand references
to memory. References to memory during the interrupt
recognition sequencefor vector table pointer fetchesand service
parameter load references shall not use AS to define the
operand pageregister set, but shall useanimplied AS=0value.
The linkage parameter store references shall use the ASfield
of the new status word. For partial implementations which
include less than 16 groups of page register sets for the
expanded memory addressing option (see Section 4.5.2.3,
“Partial Implementations of Expanded Memory

Addressing” [37]), the address state fault bit in the fault register
(FT414) shal be set to oneif any operation attemptsto establish
an AS value that is not implemented.

4.4.2.3. Fault Register (FT)

The fault register is a 16-bit register used for indicating machine
error conditions. The logical OR of the fault register bitsis used
to generate the machine error interrupt. The fault register shall be
read and cleared by an XIO instruction. If a particular fault bit is
not implemented, then the bit shall be set to zero. The fault bits
shall be assigned as specified in the following:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| Memory | Parity | /0O |Spa| [l egal | Res| BITE |
| Protect| | | re| | rvd| |

The bits shall have the following meaning when set to one (1) :

Bit O:
CPU Memory Protection Fault. The CPU has encountered an
access fault, write protect fault, or execute protect fault.

Bit 1:
DMA Memory Protection Fault. A DMA device has
encountered an access fault or awrite protect fault.

26

Special Registers

Bit 2:
Memory Parity Fault.

Bit 3:
PIO Channel Parity Fault.

Bit 4:
DMA Channel Parity Fault.

Bit 5:
Illegal 1/0 Command Fault. An attempt has been made to
execute an unimplemented or reserved 1/O command.

Bit 6:
PIO Transmission Fault. Other I/O error checking devices, if
used, may be ORed into this bit to indicate an error.

Bit 7:
Spare.

Bit 8:
Illegal Address Fault. A memory location has been addressed
which is not physically present.

Bit 9:
[llegal Instruction Fault. An attempt has been made to execute
areserved code.

Bit 10:
Privileged Instruction Fault. An attempt has been made to
execute a privileged instruction with PS /= 0.

Bit 11:
Address State Fault. An attempt has been made to establish an
AS value for an unimplemented page register set.

Bit 12
Reserved.

Bit 13:
Built-in Test Fault. Hardware built-in test equipment (BITE)
error has been detected.

27

Chapter 4. General Requirements

Bit 14-15:
Spare BITE. These bits are for use by the designer for future
defining (coding, etc.) the BITE error which is detected. This
can be used with Bit 13 to give a more complete error
description.

4.4.2.4. Interrupt Mask (MK)

The interrupt mask register is software controlled and contains a
mask bit for each of the system interrupts. The interrupt systemis
defined in Section 4.6, “Interrupt Control” [38].

4.4.2.5. Pending Interrupt Register (PI)

The pending interrupt request register is software and hardware
controlled and contains the pending interrupts that are attempting
to vector the instruction counter. A pending interrupt is set by a
system interrupt signal. The pending interrupt bit that generates
the interrupt request is cleared by hardware action during the
interrupt processing prior to initiating software at the address
defined by the new IC value. The register may be set, cleared, and
read by the I/O instructions.

4.4.2.6. Input/Output Interrupt Code Registers (101C) (optional)

Theinput/output interrupt code registers, if implemented, are used
to indicate which channel generated the input/output interrupt. One
register isassigned for each of the two input/output interrupts. Each
register is set by hardware to reflect the address of the highest
priority channel requesting that level of interrupt. The address shall
be 00, for channel number 0, OF,¢ for channel number 15, 7F4¢
for channel number 127, etc. The |OICs shall not be altered once
the interrupt sequence has commenced until they are read by an
I/O instruction.

28

Stack

4.4.2.7. Page Registers (optional)

Up to 512 sixteen bit registers for optional expanded memory
addressing.

4.4.2.8. Memory Fault Status Register (MFSR) (optional)

The memory fault status register providesthe page register selection
designators associated with memory faults. The page register
designators (bel ow) captured by the MFSR arevalid for the memory
reference causing the fault. The faults setting bits 0, 1, 2, or 8 of
the Fault Register (FT) shall cause MFSR to be set.

| LPA | RESERVED |IQ AS |
0 3 4 10 11 12 15
LPA:
Address of page register within the set.
RESERVED:
Must not be used.
10:
Instruction/operand page set selector (1 = instruction).
AS:
Address of selected group.
4.4.3. Stack

Theinstruction set shall support a stack mechanism. The operation
of the stacking mechanism shall be such that the “last-in, first-out”
concept isused for adding itemsto the stack and the Stack Pointer
(SP) register always contains the memory address where the last
item isstored on the stack. The stack providesfor nested subroutine
linkage using register 15. The stack shall also reside in a user
defined memory area. Two instructions shall use register number

29

Chapter 4. General Requirements

15 (R15) asthe implied system stack pointer: Push Multiple
registers, PSHM (see Section 5.54, “Push Multiple Registers onto
the Stack” [106]), and Pop Multiple registers, POPM (see
Section 5.44, “Pop Multiple Registers off the Stack” [98]). The
stack expands linearly toward zero asitems are added to it.

Two instructions, Stack 1C and Jump to Subroutine, SJS (see
Section 5.36, “ Stack 1C and Jump to Subroutine” [92]), and Unstack
IC and Return from Subroutine, URS (see Section 5.37, “Unstack
IC and Return from Subroutine” [92]), allow the programmer to
specify any of the 16 general registers as the stack pointer. The
memory block immediately preceding the stack area may be
protected (by user using memory protect RAM), thus providing a
means of knowing (memory protect interrupt) when the stack limit
isexceeded. The stack shall be addressed by the Stack I C and Jump
to Subroutine, Unstack 1C and Return from Subroutine, Push
Multiple, and Pop Multiple instructions.

4.4.4. Processor Initialization

4.4.4.1. Processor Reset State

Table VI, “Processor Reset State” [30] defines the processor reset
state:

TableVI. Processor Reset State

Register/Device/Function Condition After Reset

Instruction Counter All zeros

Status Word All zeros

Fault Register All zeros

Pending Interrupt Register All zeros

Interrupt Mask Register All zeros

General Registers Indeterminate
Interrupts Disabled

TimersA & B Started and all zeros?
Page Registers Group 0 enabled 2

30

Interval Timers (optional)

Register/Device/Function

Condition After Reset

Page RegistersAL Field
Page Registers W Field
Page Registers E Field
Page Registers PPA Field
Memory Protect RAM
Start Up ROM

DMA Enable

Input Discretes

Trigger Go Indicator
Discrete Outputs

All zeros?

Zero?

Zero?

Exact logical to physical &
Disabled and all zeros®
Enabled 2

Disabled &

Indeterminate 2

Started &

All zeros?

8 implemented (optional)
BMain M emory Globally Protected

4.4.4.2. Power Up

Upon application of power, the processor shall enter the reset state,
the normal power up discrete shall be set (if implemented), and
execution shall begin.

4.45. Interval Timers (optional)

If implemented, then two interval timers shall be provided in the
computer and shall be referred to as Timer A and Timer B. Both
timers can beloaded, stopped, started, and read with the commands
described in the X10 paragraph (see Section 5.1, “ Execute
Input/Output” [53]). Thetwo timersshall be 16-bit counterswhich
operate asfollows. Effectively, aoneis automatically added to the
least significant bit of the timer. Bit fifteen is the least significant
bit and shall represent the specified increment value of that timer,
i.e., either 10 or 100 microseconds. Aninterrupt request isgenerated
when atimer increments from FFFF to 0000,¢. After power up, if
the timers are not loaded by software, then an interrupt request is
generated after 65,536 counts. A sample of the 16-bit counting
seguence (shown in hex) is 0000, 0001, ..., 7FFF, 8000, ..., FFFF,
0000, ...,. At system reset or power up, thetimersareinitialized in
accordancewith Section 4.4.4.1, “ Processor Reset State” [30]. The

31

Chapter 4. General Requirements

timers are halted when abreakpoint, BPT (see Section 5.97, “ Break
Point” [151]), instruction is executed and the consol e is connected.

4.5. Memory

45.1. Memory Addressing

Theinstruction set shall use 16-bit logical addressesto provide for
referencing of 65,536 words. When the expanded memory option
(see Section 4.5.2, “Expanded Memory Addressing (optional)” [32])
isnot implemented, physical addressesshall equal logical addresses.

45.1.1. Memory Addressing Arithmetic

Arithmetic performed on memory logical addresses shall be modulo
65,536 such that references to the maximum logical address of
FFFF6 plus 1 shall be to logical address 00004.

4.5.1.2. Memory Addressing Boundary Constraints

There shall be no odd or even memory address boundary
constraints.

4.5.2. Expanded Memory Addressing (optional)

If used, then expanded memory addressing shall be performed via
amemory paging scheme as depicted in Figure 1, “ Expanded
Memory Mapping Diagram” [36]. There shall be a maximum of
512 page registersin the pagefile (not in logical memory space).
These shall functionally be partitioned into 16 groups with 2 sets
per group and 16 page registers per set. Within agroup, one set
shall be designated for instruction references and the other set for
operand references. The page size shall be 4096 words such that
one set of 16 page registers shall be capable of mapping 65,536
words defined by a 16-bit logical address. The page group shall be
selected by the 4-bit Address State (AS) field of the Status Word
(SW). Theinstruction/operand set within the group shall be selected
by the hardware that differentiates between instruction and operand

32

Expanded Memory Addressing (optional)

memory references. The 4 most significant bits of any 16-bit logical
address shall select the page register within that set. The 8-hbit
Physical Page Address (PPA) within the page register shall be
concatenated with the 12 |east significant bits of thelogical address
to form a20-bit physical address, allowing addressing of 1,048,576
words of physical memory. If expanded memory addressing is
implemented, then devices other than the CPU which access
memory may utilize either an unmapped 20-bit physical address
or amapped 16-bit logical address. If the devices other than the
CPU which access memory utilize 16-bit addressing, a separate
address state value must be provided.

4.5.2.1. Group Selection

During instruction and operand references to memory, the address
state (AS) field of the status word shall be used to designate the
page file group. During an interrupt recognition sequence, the
operand set of group zero shall be used for vector table and service
pointer referencesto memory; whilethelinkage pointer references
to memory shall use the operand set specified by the AS of the new
status word. During memory accesses by devices other than the
CPU which utilize 16-bit logical addressing, the address state value
provided by the device shall be used to designate the page register
group. Device accesses shall utilize the operand set of the selected

group.
4.5.2.2. Page Register Word Format

Each page register shall be 16 bits. The figure below indicates the
format for the page register words with the following paragraphs
describing the meaning of the access lock (AL) field, the execute
protect (E) bit, the write protect (W) bit, reserved bits, and the
Physical Page Address (PPA) field.

33

Chapter 4. General Requirements

AL Field:

The accesslock and key featureisoptional if expanded memory
addressing isimplemented. If the access lock and key feature
is not implemented, then the AL field shall always be zero. If
it isimplemented, then a 4-bit field (bits O through 3) of each
page register shall contain the access lock (AL) code for the
associated page register, which shall be used with the access
key codes to determine access permission. If the access lock
and key featureisimplemented, the accesskey codeisnormally
supplied by the PSfield of the status word. However, during
memory accesses by devices other than a CPU which utilize
16-bit logical addressing, the access code must be supplied by
the device.

For each of the possible 16 values of the AL code, access shall
be permitted for the reference according to Table VII, “AL
Codeto Access Key Mapping” [35]. References supplying an
unacceptabl e access key code shall not modify any memory
location or general registers and an access fault shall be
generated. An access fault resulting from a CPU reference
attempt shall set fault register bit O to cause a machine error
interrupt. An access fault resulting from aDMA attempt shall
set fault register bit 1 to cause amachine error interrupt. Note
that the access lock and key codes defined in the above table
have the following characteristics:

» An accesslock code of F;gisan "unlocked" lock code and
alows any and all access key codes to be acceptable.

» Anaccess key code of Oisa"master" key codeand is
acceptable to any and all accesslock codes.

» Access key codes 1 through E;¢ are acceptable to only their
own "matched" lock code or the "unlocked" lock code of

F16.

» An access key code of Fyg isacceptable to only the
“unlocked” lock code of Fyg.

E Bit:
For instruction page register sets only, bit 4 shall be defined
asthe E bit and shall determine the acceptable/unacceptable

Expanded Memory Addressing (optional)

criteriafor read references for instruction fetches. When E=1,
any attempted instruction read reference designating that
associated page register shall be terminated and an execute
protect fault shall be generated. An execute protect fault shall
set fault register bit O to cause a machine error interrupt.

W Bit:

For operand page registers only, hit 4 shall be defined as the
W bit and shall determine the acceptabl e/unacceptable criteria
for writereferences. When W=1, any attempted writereference
designating that associated page register shall not modify any
memory location and a write protect fault shall be generated.
A write protect fault resulting from a CPU reference attempt
shall set fault register bit O to cause a machine error interrupt.
A write protect fault resulting from a DMA reference attempt
shall set fault register bit 1 to cause a machine error interrupt.

Reserved Bits:

Bits 5 through 7 of all the page registers shall be reserved and
shall always be 0.

PPA Field:

Aneight-bit field (bits 8 through 15) of each page register shall
be dedicated to the physical page address which is used to
definethe physical address asdepicted in Figure 1, “ Expanded
Memory Mapping Diagram” [36].

TableVII. AL Codeto Access Key Mapping

AL Code Acceptable Access Key Codes

0 N O 0ol W N B O

0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

35

Chapter 4. General Requirements

Lodk & key
acCess
protect

F

L/

Execute protect
(instruction access)

Processor Status Word

I 20-bit
Werite protect A physical
(operand access) Address
1 1
AL [ewd PPA
1
1
AL Jew PPA
AL e | PPA
-
A a A 12
1
16-bit
[ea | | togical
I AS | Instrucﬁonfc!perand address
access designator \ Logical address Address of
from hardware of 4K page word within Gk
page

Figure 1. Expanded Memory Mapping Diagram

AL Code

Acceptable Access Key Codes

mmoOO W >» o

09
0,A
0,B
0.C
0D
0,E
0,1,2,3,45,6,7,89A,B,CDEF

36

Memory Parity (optional)

4.5.2.3. Partial Implementationsof Expanded M emory Addressing

A given implementation of this standard may include a partial
implementation of the expanded addressing option. That partial
implementation may use 2, 4, or 8 groups of page registers as

follows:
Number of Groups AS Group Codes
2 Oand 1
4 0 through 3
8 0 through 7

Within any full or partial implementation, the lock feature may or
may not be included.

4.5.3. Memory Parity (optional)

If used, then bit 2 in the fault register shall be set to indicate a
memory parity error.

4.5.4. Memory Block Protect (optional)

If used, shall be as described by the input/output instructions. For
operations which contain multiple memory references, each store
operation shall be as defined by the memory protection for that
specific memory address.

4.5.5. Referencesto Unimplemented Memory

Attempted accessto physical addresseswhich are not implemented
shall generate anillegal addressfault and shall causethereferencing
action to terminate. Anillegal address fault shall set fault register
bit 8 to cause a machine error interrupt.

37

Chapter 4. General Requirements

4.5.6. Start up ROM (optional)

If used, the start up read only memory (ROM) address range shall
be contiguous starting from physical address 0 up to a maximum
of 65,536, as required by the system application. When the start
up ROM isenabled, if an 1/O or CPU store function is executed
whose address is within the start up ROM, then the store is
attempted into the main memory. When the start up ROM is
enabled, if aread function (instruction or operand) is executed from
either 1/0 or the CPU whose addressiis to the start up ROM, then
the read shall be from the start up ROM. When disabled, the start
up ROM cannot be accessed.

4.5.7. Reserved Memory L ocations

Locations 2 through 1F, are reserved. L ocations 20,4 through 3F;¢
are used by the hardware and the stored program as defined by
Table VI, “Interrupt Definitions’ [39].

4.6. Interrupt Control

4.6.1. Interrupts

The instruction set shall support a minimum of sixteen (16)
interrupts as shown in Table V111, “Interrupt Definitions’ [39]. An
interrupt request may occur at any time; however, the interrupt
processing must wait until the current instruction iscompleted. An
exception to thisis the Move Multiple Word which may be
interrupted after each single word transfer. The overall procedure
for acceptance of, responding to, and processing of an interrupt
shall be asillustrated by the flow chart of Figure 2, “Interrupt
System Flowchart” [51].

4.6.1.1. Interrupt Acceptance

The interrupt system shall have the capability to accept external
andinterna interrupts. Figure 2, “ Interrupt System Flowchart” [51]
indicatesthe relationship between the interrupt signals, the pending

38

Interrupts

interrupt register, the interrupt signals and the fundamental
communications between the interrupt system and the CPU.

4.6.1.2. Interrupt Software Control

Software shall be ableto input from or output to the interrupt mask
register as well as the pending interrupt register. Also, software
shall be able to disallow recognition of interrupts viathe “disable
interrupts’ signal (without inhibiting interrupt acceptance into the
pending interrupt register) and to allow recognition of interrupts
viathe"enableinterrupts® signal. The disabling shall not allow any
interrupt after the beginning of the disable instruction. The CPU's
interrupt service hardware shall continue to “ disable interrupts’
for one instruction after the Enable Interrupts instruction has
completed. Full descriptions of the interrupt instructions are given
in the input/output instruction repertoire.

TableVIII. Interrupt Definitions

Interrupt Interrupt Interrupt Interrupt
Number Mask Bit Linkage Service

Number Pointer Pointer
Address Address

(Hex) (Hex)

0 0 20 21 Power Down (cannot be masked
or disabled)

1 1 22 23 Machine Error (cannot be
disabled)

2 2 24 25 Spare

3 3 26 27 Floating Point Overflow

4 4 28 29 Fixed Point Overflow

5 5 2A 2B Executive Call (cannot be
masked or disabled)

6 6 2C 2D Floating Point Underflow

7 7 2E 2F Timer A (if implemented)

8 8 30 31 Spare

9 9 32 33 Timer B (if implemented)

10 10 34 35 Spare

39

Chapter 4. General Requirements

Interrupt Interrupt Interrupt Interrupt
Number Mask Bit Linkage Service

Number Pointer Pointer
Address Address

(Hex) (Hex)

11 11 36 37 Spare

12 12 38 39 Input/Output Level 1 (if
implemented)

13 13 3A 3B Spare

14 14 3C 3D Input/Output Level 2 (if
implemented)

15 15 3E 3F Spare

Note Interrupt number O has the highest priority. Priority

decreases with increasing interrupt number.

4.6.1.3. Interrupt Priority Definitions

The priority definitions of the interrupts and their required
relationship to the interrupt mask and interrupt pointer addresses
areillustrated in Table V111, “Interrupt Definitions’ [39], Interrupt
Definitions. The power down interrupt shall initiate the power
down sequence and cannot be masked or disabled during normal
operation of the computer. The executive call interrupt, used with
the Branch to Executive instruction, BEX, (see Section 5.30,
“Branch to Executive” [87]) also cannot be masked or disabled.
The machine error interrupt cannot be disabled but can be masked
during normal operation of the computer. All other interrupts can
be disabled and masked. If afloating point overflow/underflow or
fixed point overflow condition occurs, then the instruction
generating that condition shall be interrupted at its completion if
the interrupt is unmasked and enabled.

4.6.1.4. Interrupt Vectoring M echanism

The vectoring mechanism shall be asillustrated on Figure 3,
“Interrupt Vectoring System” [51]. For each interrupt there shall
be two fixed memory locations in the “vector table”: (1) the first
memory location (Linkage Pointer) shall be defined asthe address

40

Input/Output

of where to store the current (old) state of the computer (i.e., “old
interrupt mask” ,“ old status word”, and “old instruction counter”);
and (2) the second memory location (Service Pointer) shall be
defined as the address of the next (new) state of the compuiter (i.e.,
“new interrupt mask”, “new status word”, and “new instruction
counter”). Returning from interrupts may be accomplished by
executing the Load Status (L ST/LSTI) instruction with the
value/address of the Linkage Pointer for an addressfield.

4.7. Input/Output

In conjunction with the spare command codes, the 1/O interrupts,
and the I/O interrupt code registers, the I/O instructions provide a
framework within which the user can implement his system
interfaces. The particulars of the system interfaces outside of this
framework (such as dedicated memory locations, channel register
definitions, command code assignments/definitions, multiple
channel priorities, page register access, etc.) are not included in
this standard.

4.7.1. Input

The input instructions transfer data from an external 1/0O device or
aninternal special register to aCPU general register. Thiscommand
is used to read data from peripheral devices, timers, status word,
fault register, discretes, interrupt mask, etc. A full description of
the input instructions is given in the instruction repertoire.

4.7.2. Output

The output instructions transfer data from a CPU general register
to an external 1/O device or special register. Thiscommand is used
to write data to peripheral devices, discretes, start and stop timers,
enable and disable interrupts and DMA, set and clear interrupt
reguests, masks and pending interrupt bits, etc. A full description
of the output instructionsis given in the instruction repertoire.

41

Chapter 4. General Requirements

4.7.3. Input/Output Commands

Input/output commands are classified as mandatory, optional,
reserved, or spare. Mandatory 1/0O commands must beimplemented
as defined. Optional 1/0 commands must be implemented as
defined, if implemented. Reserved |/O commands must not be
implemented. Spare 1/O commands may beimplemented asrequired
by the application. Attempted execution of an unimplemented
optional or spare 1/0 command or areserved 1/O command shall
cause theillegal 1/0 command fault to be set in the fault register
(FTsg) causing a machine error interrupt.

Input/output command words shall be fully decoded. "TBDs" in
input/output instruction descriptions refer to parameters to be
determined by the application system requirements. Within these
classifications, the use of the command is defined in theinstruction
description.

4.7.4. Input/Output Command Partitioning

The 1/O command space shall be divided into 128 channels. Up to
512 commands within each channel group (256 input and 256
output) may be used with each I/O interface. Table I X,
“Input/Output Channel Groups’ [44] lists the 128 1/O channel
groups. The attempted execution of an unimplemented 1/0O
command shall cause bit 5 of the fault register to be set, generate
amachine error interrupt, and abort to completion.

4.7.5. Input/Output Interrupts (optional)

Input/output level 1 and level 2 interrupts are available to the user.
Either interrupt level or both may be implemented for an interface
asdefined by the particul ar application specification. Theinterrupts
shall be used in conjunction with the input/output interrupt code
registersto provide I/O channel to process communications. Two
levels of interrupts allow easy differentiation of normal reporting
from error reporting.

42

Dedicated I/O Memory Locations

4.7.6. Dedicated 1/0 Memory L ocations

If dedicated memory locations are used to communicateinformation
to and/or from an /O channel, these locations shall be consecutive
memory locations starting at an implementation defined location.
L ocations 40, through 4F,¢ are optional for 1/0 usage.

4.8. Instructions

4.8.1. Invalid Instructions

Attempted execution of an instruction whose first 16 bits are not
defined by this standard shall cause the invalid instruction bit in
the fault register (FTg) to be set, generating a machine error
interrupt. The Built-In-Function is an exception; implemented
Built-In-Functions do not cause FT4 to be set or the machine error
interrupt to be generated. All undefined bit patternsin the first 16
bits of an instruction are reserved.

4.8.2. Mnemonic Conventions

Each instruction has an associated mnemonic convention. In
general, the operation is one or two letters, e.g., L for load, A for
add, ST for store.

Floating point operations have a prefix of F, e.g., FL for floating
load, FA for floating add.

Doubl e precision operations have aprefix of D, e.g., DL for double
|load, DA for double add.

Extended precision floating point operations have a prefix of EF,
e.g., EFA for extended precision floating point add.

Register-to-register operations have a suffix of R, e.g., AR for
single precision add register-to-register, FAR for floating add
register-to-register.

43

Chapter 4. General Requirements

Indirect memory reference isindicated by a suffix I, e.g., LI for
Load Indirect.

Immediate addressing, using the address field as an operand, is
indicated by a suffix of IM, e.g., AIM for single precision add
immediate. Use of indexing is specified in assembly language by
the occurrence of the operational field after the addressfield, e.g.,
FA A2,ALPHA,AS: floating add to register A2 from memory
location ALPHA indexed by register A5.

Table I X. Input/Output Channel Groups

Output Input Usage

00X X 80X X PIO

03XX 83XX PIO

04X X 84X X Spare

1IFXX 9FXX Spare

20X X AOXX Processor & Auxiliary Register Control

21XX A1XX Reserved

2FXX AFXX Reserved

30XX BOXX Spare

3FXX BFXX Spare

40X X COXX Processor & Auxiliary Register Control

41X X C1XX Reserved

4FXX CEXX Reserved

50X X DOXX Memory Protect RAM

51XX D1XX Memory Address Extension (page
register commands)

52X X D2XX Memory Address Extension (page
register commands)

53XX D3XX Spare

TEXX FFXX Spare

Instruction Matrix

4.8.3. Instruction Matrix

Table X, “Operation Code Matrix (Left)” [48] contains the order
type matrix which relates each instruction operation code to an
assigned symbol. The numbers shown across the top of the matrix
are hexadecimal numbers which represent the higher order four
bits of the operation code, and the hexadecimal numbers along the
left side represent the lower order four bits of the operation code.
Table XI, “Extended Operation Codes (Left)” [50] contains the
order types and assigned mnemonics for the extended Operation
Code instructions.

4.8.4. Instruction Set Notation

The text and register transfer descriptions are intended to
complement each other. Ambiguities or omissionsin one are
resolved by the other. Thefollowing definitions and specia symbols
are associated with the instruction descriptions.

CPU Registers

RO, R1, ..., R15 The 16, 16-bit general registers

IC Instruction Counter

SW Status Word

CS Condition Status. A 4-bit quantity that is set
according to the result of instruction
executions.

LP Linkage Pointer

SP Stack Pointer; R15 for the Push and Pop
Multiple instructions

SVP Service Pointer

MK Interrupt Mask Register

PI Pending Interrupt Register

RA, RB An unspecified general register

Addressing Modes

R Register Direct

45

Chapter 4. General Requirements

D, DX Memory Direct, Memory Direct-Indexed

[, IX Memory Indirect, Memory Indirect with
Pre-Indexing

IM, IMX Immediate Long, Immediate Long with
Indexing

ISP ISN Immediate Short with Positive Operand,
Immediate Short with Negative Operand

ICR IC-Relative

B, BX Base Relative, Base Relative with Indexing

S Specia

Data Quantities

MSH,LSH Most Significant Half, Least Significant
Half

MSB,LSB Most Significant Bit, Least Significant Bit

SP,D.P, F.P, Abbreviation for “Single Precision,”

EFP “Double Precision,” “Floating Point,” and
“Extended Floating Point” operations
respectively.

MO Floating Point Derived Operand mantissa
(fraCtional part) DOO_23 (Ftp), DOo_23
DOs,.47 (E.F.P)

EO Floating point 8-bit 2'scomplement Derived
Operand characteristic (exponent): DO54.31

MA Floating point register accumulator mantissa
(fractiona part): (RA,RA+1)q.03 (Ft.P),
(RARA+1)0.23 (RA+2)3.47 (E.F.P)

EA Floating point 8-bit 2's complement register
accumulator characteristic (exponent):
(RARA+L)24.31

RQ, MP, MQ An entity used for register level transfer

description clarification. Theseregistersare
not part of the general register file.

Miscellaneous

X)

Contents of Register X

46

Instruction Set Notation

(X, X+1)

[X]
[X,X+1]

OVvM
Exit

DA
DO
N,M,n
DSPL

Contents of concatenated Registers X and
X+1

Contents of memory address X

Contents of sequential memory locations X
and X+1

Mantissa (fractional part) overflow

Indicates termination of present register
transfer operation (except the setting of the
CS bits)

Derived Address
Derived Operand
An integer number
Displacement

If X isaCPU register or adataquantity (see
above), then n specifies a bit positionin X.
If X isnot aCPU register or adataquantity,
then the number X istothe basen. If X is
anumber and n=16, then X isa?2's
complement hexadecimal number.

If X isaCPU register or amemory address,
theni specifiesthe state of X. Thisnotation
isused in the register transfer descriptions
to refer to the contents of a CPU register or
amemory address at different times (states)
of the execution of theinstruction. If X is
not a CPU register or amemory address,
then the number X israised to theith power.

Symbols

<--

<-->

Unilateral transfer designator
Bilateral transfer designator
Comparison Designator

Indicates a“don't care” bit when used in a
binary number

Greater than
Lessthan

47

Chapter 4. General Requirements

= Equals

>= Greater than or equal
<= Less than or equa

A Logical AND

% Logical OR

xor Exclusive OR

~ Logical NOT

[Absolute value

Table X. Operation Code Matrix (L eft)

Load Integer Floating Logic Opcode Bit Shift Jump
Store Arithmdic Point Compare BExtendans
0 1 2 3 4 5 6 7

0LB AB FAB ORB BR12 BRX SB SLL JC
BR12 BR12 BRI12 BR12%

1LB AB FAB ORB BR13 BRX SBR SRL CR
BR13 BR13 BR13 BR13?

2 LB AB FAB ORB BR14 BRX SBlI SRA CISP
BR14 BR14 BR14 BR14?

3LB AB FAB ORB BR15 BRX RB SLC CISM
BR15 BR15 BRI15 BR15%

4 DLB SBB FSB ANDB RBR CBL
BR12 BR12 BR12 BRI12

5 DLB SBB FSB ANDB RBI DSLL
BR13 BR13 BR13 BR13

6 DLB SBB FSB ANDB TB DSRL DC
BR14 BR14 BR14 BR14

7 DLB SBB FSB ANDB TBR DSRA DCR
BR15 BR15 BR15 BRI15

8 STB MB FMB CBBR12 XIO® TBI DSLCFC
BR12 BR12 BR12

9 STB MB FMB CBBRI13 VIO® TSB FCR
BR13 BR13 BR13

48

Instruction Set Notation

Load Integer Floating Logic Opcode Bit Shift Jump
Store Arithmdic Point Compare BExtendons

0 1 2 3 4 5 6 7

A STB MB FMB CBBR14 IMML SVBR SLR EFC
BR14 BR14 BR14

B STB MB FMB CB BR15 SAR EFCR
BR15 BR15 BRI15

CDSTB DB FDB FCB BR12 RVBR SCR LSTI?
BR12 BR12 BR12

DDSTB DB FDB FCB BR13 DSLR LST®
BR13 BR13 BR13

EDSTB DB FDB FCB BR14 TVBR DSAR SIS
BR14 BR14 BR14

F DSTB DB FDB FCB BR15 BIF° DSCR URS

BR15 BR15 BR15

&These order types represent instructions which have “extended” operation codes and are fully described
in the instruction specifications and in Table V, “Addressing Modes and Instruction Formats® [20].

Bprivi leged instructions
“User Defined Built-In Function Opcode.

Table Xr. Operation Code Matrix (Right)

Load Store Add Sub Mult Divide Logical Campare
8 9 A B C D E F
oL ST A S MS DV OR C
1LR STC AR SR MSR DVR ORR CR
2LISP STCI AISP SISP MISP DISP AND CISP
3LISN MOV INCM DECM MISN DISN ANDR CISM

4 LI STI ABS NEG M D XOR CBL
5LIM DABS DNEG MR DR XORR
6 DL DST DA DS DM DD N DC

7DLR SRM DAR DSR DMR DDR NR DCR
8 DLI DSTI FA FS FM FD FLX FC

9 LM STM FAR FSR FMR FDR FLT FCR
A EFL EFST EFA EFS EFM EFD EFLX EFC

49

Chapter 4. General Requirements

Load Store Add Sub Mult Divide Logical Campare

8 9 A B C D E F
BLUB STUB EFAR EFSR EFMR EFDR EFLT EFCR
CLLB SLTB FABS FNEG XBR
DLUBI SUBI XWR
ELLBI SLBI
F POPM PSHM NOP

Table XI. Extended Operation Codes (L eft)

MSH2 Format® 0 1 2 3 4 5 6 7

40 BRXBR12 LBX DLBX STBX DSTX ABX SBBX MBX DBX
41 BRX BR13 LBX DLBX STBX DSTX ABX SBBX MBX DBX
42 BRX BR14 LBX DLBX STBX DSTX ABX SBBX MBX DBX
43 BRX BR15 LBX DLBX STBX DSTX ABX SBBX MBX DBX

4A IMM AIM SIM MIM MSM DIM DVIM ANDM

M ost Significant Half
PBase Relative Indexed Format

Table XIr. Extended Operation Codes (Right)

MSH?Forma®® 8 9 A B C D E F

40 BRXBRI2 FABX FSBX AVIBX FDBX CBX FCBX ANDX ORBX
41 BRXBR13 FABX FSBX AVIBX FDBX CBX FCBX ANDX ORBX
42 BRXBR14 FABX FSBX AVIBX FDBX CBX FCBX ANDX ORBX
43 BRXBR15 FABX FSBX AVIBX FDBX CBX FCBX ANDX ORBX
47 IMM ORIM XCRVl CIM NIM

M ost Significant Half
bBase Relative Indexed Format

50

Instruction Set Notation

Irterrupt 0 —— Linkage Pointer 0 2 Old Interrupt Mask
Service Pointer 0 Qld StatusWord
Irterrupt 17— Linkage Pointer 1 Qld Instruction Counter

Service Pointer 1

2 Meww [nterrupt Mask

Interrupt 15— Linkane Pointer 15 MNew Status Word

Service Pointer 14 Mew Instruction Counter

Figure 3. Interrupt Vectoring System

Computer
status at time
of interrupt

Computer
statusto start
SErViCE
routine

51

52

Chapter 5

Detailed Requirements

5.1. Execute Input/Output

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
IM XIO RAICMD mmmimmmm e
MK XIO RA CMVD, RX | 48 | RA | RX | | C\D |

Description. Theinput/output instruction transfers data between
an external/internal device and the register RA. The Derived
Operand, DO, specifiesthe operation to be performed or the device
to be addressed. The immediate operand field may be viewed as
an operation code extension field. Notethat if indexing is specified,
then the input/output operation or device addressis formed by
summing the contents of the register RX and the immediate field.
Thisisaprivileged instruction.

53

Chapter 5. Detailed Requirements

The mandatory and optional input/output immediate command
fields are listed below.

Table XI1. Mandatory X1O Command Fields and M nemonics

Code

Mnemonic

Description

0YXX

2000

2001

2002

2003

2004

2005

PO

SWK

CLIR

ENBL

DSBL

RP

SP

Programmed Output: This command outputs
16 bits of datafrom RA to aprogrammed 1/0
port. Y may be from O through 3.

Set Interrupt Mask: This command outputs
the 16-bit contents of the register RA to the
interrupt mask register. A "1" in the
corresponding bit position alowstheinterrupt
to occur and a"0" prevents the interrupt from
occurring except for those interrupts that are
defined such that they cannot be masked.

Clear Interrupt Request: All interrupts are
cleared (i.e., the pending interrupt register is
cleared to all zeros) and the contents of the
fault register are reset to zero.

Enable Interrupts: This command enables all
interrupts which are not masked out. The
enable operation takes place after execution
of the next instruction.

Disable Interrupts: Thiscommand disablesall
interrupts (except those that are defined such
that they cannot be disabled) at the beginning
of the execution of the DSBL instruction.

Reset Pending Interrupt: The individual
interrupt bit to be reset shall be designated in
register RA asaright justified four bit code.
(046 represents interrupt number 0, Fig
represents interrupt number 15). If interrupt
1,5 isto be cleared, then the contents of the
fault register shall also be set to zero.

Set Pending Interrupt Register: Thiscommand
ORs the 16-bit contents of RA with the

pending interrupt register. If thereisaonein
the corresponding bit position of theinterrupt

Execute Input/Output

Code

M nemonic

Description

200E

8YXX

A000

A004

AOOE

AOOF

VW

Pl

RWK

RPI R

RSW

mask (samebit set in both the Pl and the MK),
and the interrupts are enabled, then an
interrupt shall occur after execution of the next
instruction. If Plgisset to 1, then N isassumed
to be 0 (see Section 5.30, “Branch to
Executive” [87]).

Write Status Word: This command transfers
the contents of RA to the status word.

Programmed Input: This command inputs 16
bits of datainto RA from the programmed |/O
port. Y may be from O through 3.

Read Interrupt Mask: The current interrupt
mask is transfered into register RA. The
interrupt mask is not atered.

Read Pending Interrupt Register: This
command transfersthe contents of the pending
interrupt register into RA. The pending
interrupt register is not altered.

Read Status Word: This command transfers
the 16-bit status word into register RA. The
status word remains unchanged.

Read and Clear Fault Register: Thiscommand
inputs the 16-bit fault register to register RA.
The contents of the fault register are reset to
zero. Bit 1 in the pending interrupt register is
reset to zero.

Table XI11. Optional XIO Command Fields and M nemonics

Code Mnemonic Description

OYXX PO Programmed Output: This command outputs
16 bits of datafrom RA to aprogrammed 1/0
port. Y may be from O through 3.

2008 oD Output Discretes: This command outputs the

16-bit contents of the register RA to the
discrete output buffer. A "1" indicatesan "on"

55

Chapter 5. Detailed Requirements

Code

M nemonic

Description

200A

4000

4001

4003

4004

4005

4006

4007

4008

4009

400A

CLC

MPEN

ESUR

DSUR

DMAE

DMAD

TAS

TAH

OrA

condition and a"0" indicates an "of f"
condition.

Reset Normal Power Up Discrete: This
command resetsthe normal power up discrete
bit.

Console Output: The 16-hit contents (2 bytes)
of register RA are output to the console. The
eight most significant bits (byte) are sent first.
If no consoleis present, then this command
istreated as a NOP (see Section 5.96, “No
Operation” [151]).

Clear Console: This command clears the
console interface.

Memory Protect Enable: This command
allows the memory protect RAM to control
memory protection.

Enable Start Up ROM: Thiscommand enables
the start up ROM (i.e., the ROM overlays
main memory).

Disable Start Up ROM: This command
disables the start up ROM.

Direct Memory Access Enable: Thiscommand
enables direct memory access (DMA).

Direct Memory Access Disable: This
command disables DMA.

Timer A, Start: This command starts timer A
fromitscurrent state. Thetimer isincremented
every 10 microseconds.

Timer A, Halt: This command halts timer A
at its current state.

Output Timer A: The contents of register RA
are loaded (i.e., jam transfered) into timer A
and the timer automatically starts operation
by incrementing from the loaded timer in steps
of ten microseconds. Bit fifteen isthe least

56

Execute Input/Output

Code

M nemonic

Description

400B

400C

400D

400E

50XX

TBS

TBH

OrB

LWP

significant bit and shall represent ten
microseconds.

Trigger Go Indicator: This command restarts
acounter which is connected to a discrete
output. The period of time from restart to
time-out shall be determined by the system
requirements. When the Go timer is started,
the discrete output shall go high and remain
high for TBD milliseconds, at which time the
output shall go low unless another GO is
executed. The Go discrete output signal may
be used as a software fault indicator.

Timer B, Start: This command starts timer B
fromitscurrent state. Thetimer isincremented
every 100 microseconds.

Timer B, Halt: This command halts timer B
at its current state.

Output Timer B: The contents of register RA
are loaded (i.e., jam transfered) into timer B
and the timer automatically starts operation
by incrementing from the loaded timer in steps
of one hundred microseconds. Bit fifteen is
theleast significant bit and shall represent one
hundred microseconds.

Load Memory Protect RAM (5000 + RAM
address): This command outputs the 16-bit
contents of register RA to the memory protect
RAM. A "1" inabit provideswrite protection
and a"0" in abit permits writing to the
corresponding 1024 word physical memory
block. The RAM word M SB (bit 0) represents
the lowest number block and the RAM word
L SB (bit 15) representsthe highest block (i.e.,
bit O represents locations 0 through 1023 and
bit 15 represents locations 15360 through
16383 for word zero). Each word represents
consecutive 16K blocks of physical memory.

57

Chapter 5. Detailed Requirements

Code

M nemonic

Description

S1IXY

52XY

8YXX

A001

A002

A008

A009

A0OB

AOOD

W PR

WOPR

Pl

R C1

R C2

RDCR

TPIO

RVFS

The RAM words of 0 through 63 apply to
processor write protect and words 64 through
127 apply to DMA write protect.

Write Instruction Page Register: This
command transfers the contents of register
RA to pageregister Y of the instruction set
group X.

Write Operand Page Register: Thiscommand
transfers the contents of register RA to page
register Y of the operand set of group X.

Programmed Input: This command inputs 16
bitsof datainto RA from the programmed 1/0
port. Y may be from O through 3.

Read Input/Output Interrupt Code, Level 1:
Thiscommand inputsthe contents of thelevel
110IC register into register RA. The channel
number isright justified.

Read Input/Output Interrupt Code, Level 2:
Thiscommand inputsthe contents of thelevel
2 10IC register into register RA. The channel
number isright justified.

Read Discrete Output Register: Thiscommand
inputs the 16-bit discrete output buffer into
register RA.

Read Discrete Input: This command inputs
the 16-bit discreteinput word into register RA.
A "1" indicates an "on" condition and a"0"
indicates an "off" condition.

Test Programmed Output: This command
inputs the 16-bit contents of the programmed
output buffer into register RA. Thiscommand
may be used to test the PIO channel by means
of awrap around test.

Read Memory Fault Status: This command
transfers the 16-bit contents of the memory
fault status register to RA. The fields within

58

Execute Input/Output

Code Mnemonic Description

thememory fault status register shall delineate
memory related fault types and shall provide
the page register designators associated with
the designated fault.

Q000 a Console Input: This command inputs the
16-bits (2 bytes) from the consoleinto register
RA. The eight most significant bits of RA
shall represent the first byte.

0001 RCS Read Console Status: This command inputs
the console interface status into register RA.
The status is right justified.

C00A | TA Input Timer A: This command inputs the
16-bit contents of timer A into register RA.
Bit fifteen is the least significant bit and
represents atime increment of ten
microseconds.

CO0E | TB Input Timer B: This command inputs the
16-bit contents of timer B into register RA.
Bit fifteen isthe least significant bit and
represents a time increment of one hundred
microseconds.

DOXX RMVP Read Memory Protect RAM (D000 + RAM
address): Thiscommand inputsthe appropriate
memory protect word into register RA. A "1"
in abit provideswrite protectionand a"0" in
abit permitswriting to the corresponding 1024
word physical memory block. The RAM
words MSB (bit 0) represents the lowest
number block and the RAM word LSB (bit
15) represents the highest block (i.e., bit 0
represents locations 0 through 1023 and bit
15 represents locations 15360 through 16383
for word zero). Each word represents
consecutive 16K blocks of physical memory.
The RAM words of 0 through 63 apply to
processor write protect and words 64 through
127 apply to DMA write protect.

59

Chapter 5. Detailed Requirements

Code

Mnemonic Description

D1XY

D2XY

RI PR Read Instruction Page Register: This
command transfers the 16-bit contents of the
pageregister Y of the instruction set of group
X to register RA.

ROPR Read Operand Page Register: This command
transfers the 16-bit contents of page register
Y of the operand set of group X to register
RA.

Note *xkx xkxx User defined X10 functions (see Table IX,
“Input/Output Channel Groups’ [44]).

Register Transfer Description. Varies depending on the
command field.

Registers Affected. Varies depending on the command field.

5.2. Vectored | nput/Output

Addr
Mobde

DX

Mhenoni ¢ For mat / Gpcode

8 4 4 16
VIO RAADDR - mmmmm
VIO RAVADDRRX | 49 | RA | RX | | ADDR |

Description. Thevectored input/output instruction performsthe
1/O operation as specified by the input/output vector table starting
at the derived address, DA, as shown below:

| Dat a | } one data word for each bit

60

Set Bit

--------------------- set in the vector select

The input/output operation or device addressis specified by the
sum of the CMD and the product of the bit number of the bit set
in the vector select times the contents of RA. This device address
isthen interpreted as specified by the X10O instruction (see
Section 5.1, “Execute Input/Output” [53]) with the exception that
I/O dataistransfered to or from DA + 2 + i rather than RA (where
i starts at zero and isincremented after each transfer). Thisisa
privileged instruction. If anillegal X1O command is encountered
as part of aVI0O chain, the following actions occur:

» Theillegal I/0 command bit of the fault register (FTs) is set to
aone.

» TheVIO chainisterminated, and theillegal XIO istreated asa
NOP. This termination shall not affect execution of preceding
X10 commandswhich are part of theV 10 chain being executed.

Register Transfer Description.

Stepl.n<--0andi <-- 0;

Step 2. if [DA + 1],, = 1, then I/O command = [DA] + n x (RA);
Step 3. FT5 <-- 1, exit, if XIO =illegal command,;

Step 4. if [DA + 1],,=1, then /O data=[DA + 2 +i];

Step 5. if [DA + 1],,=1, theni <--i + 1,

Step 6. n<-- n+ 1, exit, if n=16;

Step 7. go to step 2;

Registers Affected. None

5.3. Set Bit

Addr

Mbde

Mhenoni ¢ Format / Opcode

8 4 4

61

Chapter 5. Detailed Requirements

R SBR N RB | 51 | N | RB |
8 4 4 16
D SB N ADDR cmmmmmmmmmmmmm oo
DX SB NADDRRX | 50 | N | RX | | ADDR |
8 4 4 16
| SBI N ADDR cmmmmmmmmmmmmme e
IX SBI NADDRRX | 52 | N | RX | | ADDR |
Description. Bit number N of the Derived Operand, DO, is set
to one. The MSB is designated bit number zero and the LSB is
designated bit number fifteen.
Register Transfer Description.
DOy <-- 1;
Registers Affected. RB
5.4. Reset Bit
Addr
Mode Mhenonic For mat / Qpcode
8 4 4
R RBR N, RB | 54 | N | RB |
8 4 4 16
D RB. N ADDR ---smmmmmmeeme e
DX RB NADDRRX | 5 | N | RX | | ADDR |
8 4 4 16
| RBI N ADDR =~ == smemmmmmmemee e
IX RBI NADDRRX | 5 | N | RX | | ADDR |

62

Test Bit

Description. Bit number N of the Derived Operand, DO, is set
to zero. The MSB is designated bit number zero and the LSB is
designated bit number fifteen.

Register Transfer Description.

DOy, <-- 0;

Registers Affected. RB

5.5. Test Bit

Addr
Mode

Mhenoni ¢ For mat / Qpcode
8 4 4
TBR N RB | 57 | N | RB |
8 4 4 16
TB N, ADDR mmmmmmmm e
TB NADDRRX | 56 | N | RX | | ADDR |
8 4 4 16
TBI N ADDR smo i
TBI NADDRRX | 58 | N | RX | | ADDR |

Description. Bit number N (0 <= N <= 15) of the Derived
Operand, DO, istested. Then the Condition Status, CS, is set to
indicate non-zero if bit number N of the DO contains a one.
Otherwise CSis set to indicate zero. The MSB of the DO is
designated bit number zero and the LSB of the DO is designated
bit number fifteen.

Register Transfer Description.

63

Chapter 5. Detailed Requirements

(CS) <-- 0010 if DOy =0and 0<= N <= 15;
(CS) <-- 0001 if DOy =1and N =0;
(CS) <~ 0100 if DOy =1 and 1 <= N <= 15;

Registers Affected. CS

5.6. Test and Set Bit

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
D TSB N ADDR smommmmmm e
DX TSB NADDRRX | 59 | N | RX | | ADDR |

Description. Bit number N (0 <= N <= 15) of the Derived
Operand, DO, istested and set to one. The CSis set according to
the test.

Note External memory accesses shall be inhibited until this
instruction is compl ete.

Register Transfer Description.

(CS) <-- 0010 and (DOy) <-- 1if DOy =0and 0<= N <= 15;
(CS) <-- 0001 if (DOy) =1 and N =0;
(CS) <-- 0100 if (DOy) = 1 and 1 <= N <= 15;

Registers Affected. CS

5.7. St Variable Bit in Register

Addr
Mode Mhenonic Format / Opcode
8 4 4

Reset Variable Bit in Register

R SVBR RARB | 5A | RA | RB |

Description. Bit number N (0 <= N <= 15) of the register RB
is set to one where the least significant four bits of the contents of
register RA isN. Bits (RA)q.11 have no effect on the operation. If
RA = RB, then the count is determined first and then the appropriate
bit is changed.

Register Transfer Description.

(RB)y <-- Lwhere N = (RA)15.15;

Registers Affected. RB

5.8. Reset Variable Bit in Register

Addr
Mode Mhenonic For mat / Qpcode
8 4 4
R RVBR RA RB | 5C | RA | RB |

Description. Bit number N (0 <= N <= 15) of register RB is set
to zero where the least significant four bits of the contents of
register RA is N. Bits (RA)q.11 have no effect on the operation. If
RA = RB, then the count is determined first and then the appropriate
bit is changed.

Register Transfer Description.

(RB)N <-- 012_15 where N = (RA) ;

Registers Affected. RB

65

Chapter 5. Detailed Requirements

5.9. Test Variable Bit in Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R TVBR RA RB | 58 | RA | RB |

Description. Bit number N (0 <= N <= 15) of register RB is
tested wheretheleast significant four bits of the contents of register
RA isN. The Condition Status, CS, isthen set to indicate non-zero
if bit number N of register RB isaone. Otherwise, CSis set to

indicate zero.

Register Transfer Description.

N = (RA)12-15;

(CS) <-- 0001 if (RBy) =1and N =0;

(CS) <-- 0010 if (RBy) =0and 0<=N <= 15

(CS) <-- 0100 if (RBy) =1land 1<=N <=15;

Registers Affected. CS

5.10. Shift Left Logical

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R SLL RB,N | 60 | N1 | RB |

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB) are shifted |eft logically N positions. The
shifted result is stored in RB. The logical shift left operationisas

66

Shift Right Logical

follows: zeros enter the least significant bit position (bit 15) and
bits shifted out of the sign bit position (bit 0) arelost. The condition
status, CS, is set based on the result in register RB.

Note N-1 = 0O represents a shift of one position.
Note N-1 = 15 represents a shift of sixteen positions.
0 15
RB Before Shift | sabc | defg | hijk | I'mp |
RB After Shift (N=4) | defg | hijk | I'mp | 0000 |

Register Transfer Description.

(RB) <-- (RB) Shifted left logically by N positions;
(CS) <-- 0010 if (RB) =0;
(CS) <-- 0001 if (RB) <O0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.11. Shift Right Logical

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R SRL RB,N | 61 | N1 | RB | 1<=N<=16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted right logically N positions.
The shifted result is stored in RB. Thelogical shift right operation

67

Chapter 5. Detailed Requirements

isasfollows. zeros enter the sign bit position (bit 0) and bits shifted
out of the least significant bit position (bit 15) are lost. The
condition status, CS, is set based on the result in register RB.

Note N-1 = 0O represents a shift of one position.
Note N-1 = 15 represents a shift of sixteen positions.
0 15
RB Before Shift | sabc | defg | hijk | I'mp |
RB After Shift (N=4) | 0000 | sabc | defg | hijk |

Register Transfer Description.

(RB) <-- (RB) Shifted right logically by N positions;
(CS) <-- 0010 if (RB) =0;
(CS) <-- 0001 if (RB) <O0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.12. Shift Right Arithmetic

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R SRA RB,N | 62 | N1 | RB | 1<=N<=16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted right arithmetically N positions.
The shifted result is stored in RB. The arithmetic right shift

68

Shift Left Cyclic

operationisasfollows: the sign bit, which is not changed, is copied
into the next position for each position shifted and bits shifted out
of the least significant bit position (bit 15) are lost. The condition
status, CS, is set based on the result in register RB.

Note N-1 = 0O represents a shift of one position.
Note N-1 = 15 represents a shift of sixteen positions.
0 15
RB Before Shift | sabc | defg | hijk | I'mp |
RB After Shift (N=4) | ssss | sabc | defg | hijk |

Register Transfer Description.

(RB) <-- (RB) Shifted right arithmetically by N positions;
(CS) <-- 0010 if (RB) =0;
(CS) <-- 0001 if (RB) <O0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.13. Shift Left Cyclic

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R SLC RB N | 63 | N1 | RB | 1<=N<=16

Description. The contents of the Derived Address, DA (i.e., the
contents of register RB), are shifted left cyclically N positions. The

69

Chapter 5. Detailed Requirements

shifted result is stored in RB. The cyclic left shift operationis as
follows: bits shifted out of the sign bit position (bit 0) enter the
least significant bit position (bit 15) and, consequently, no bits are
lost. The condition status, CS, is set based on the result in RB.

Note N-1 = 0O represents a shift of one position.
Note N-1 = 15 represents a shift of sixteen positions.
0 15
RB Before Shift | sabc | defg | hijk | I'mp |
RB After Shift (N=4) | defg | hijk | I'mp | sabc |

Register Transfer Description.

(RB) <-- (RB) Shifted left cyclically by N positions;
(CS) <-- 0010 if (RB) =0;
(CS) <-- 0001 if (RB) <O0;
(CS) <-- 0100 if (RB) > 0;

Registers Affected. RB,CS

5.14. Double Shift Left Logical

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R DSLL RB,N | 65 | N1 | RB | 1<=N<=16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),

70

Double Shift Left Logical

are shifted left logically N positions. The shifted results are stored
in RB and RB+1. The double left shift logical operationis as
follows: zeros enter the least significant bit position of RB+1, bits
shifted out of the sign bit position of RB+1 enter the least
significant bit of RB and bits shifted out of the sign bit of RB are
lost. The condition status, CS, is set based on theresult in registers

RB and RB+1.
Note N-1 = 0O represents a shift of one position.
Note N-1 = 15 represents a shift of sixteen positions.

RB, RB+1 Before Shift
0 RB 15 0 RB+1 15

| sabc | defg | hijk | I'mp | | sqrs | tuvw | xyzz | zzzz |

r+ - rrrz 1

0 RB 15 0 RB+1 15

| defg | hijk | Imp | sgrs | | tuvw | xyzz | zzzz | 0000 |
I I I 2 | | I I I I

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted left logically by N positions;
(CS) <-- 0010 if (RB,RB+1) =0;
(CS) <-- 0001 if (RB,RB+1) <0;
(CS) <-- 0100 if (RB,RB+1) >0;

Registers Affected. RB, RB+1, CS

71

Chapter 5. Detailed Requirements

5.15. Double Shift Right Logical

Addr
Mbde Mhenonic For mat / Opcode
8 4 4

R DSRL RB N | 66 | N1 | RB |

1 <=N<=16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
areshifted right logically N positions. The shifted resultsare stored
in RB and RB+1. The double logical right shift operation is as
follows: zeros enter the sign bit position of RB, bits shifted out of
the least significant bit position of RB enter the sign bit position
of RB+1 and bits shifted out of the least significant bit position of
RB+1 are lost. The condition status, CS, is set based on the result

in register RB and RB+1.

Note N-1 = O represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

RB, RB+1 Before Shift

I -

RB, RB+1 After Shift (N=4)

I I R e A N I

0 RB 15 0 RB+1

| sabc | defg | hijk | I'mp | | sars | tuvw | xyzz | zzzz |
0 RB 15 0 RB+1

| 0000 | sabc | defg | hijk | | Imp | sqrs | tuvw | xyzz |

Register Transfer Description.

72

Double Shift Right Arithmetic

(RB,RB+1) <-- (RB,RB+1) Shifted right logically by N positions,
(CS) <-- 0010 if (RB,RB+1) =0;
(CS) <-- 0001 if (RB,RB+1) <O0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

5.16. Double Shift Right Arithmetic

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R DSRA RB,N | 67 | N1 | RB | 1 <=N<=16

Description. The concatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
are shifted right arithmetically N positions. The shifted results are
stored in RB and RB+1. The doubleright shift arithmetic operation
isasfollows: the sign bit of RB, which is not changed, is copied
into the next position for each position shifted, bits shifted out of
the least significant position of RB enter the sign bit position of
RB+1, and bits shifted out of the least significant bit position of
RB+1 are lost. The condition status, CS, is set based on the result
in register RB and RB+1.

Note N-1 = O represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

RB, RB+1 Before Shift
0 RB 15 0 RB+1 15

| sabc | defg | hijk | I'mp | | sars | tuvw | xyzz | zzzz |

r+ - rrz 1

73

Chapter 5. Detailed Requirements

| ssss | sabc | defg | hijk | | Immp | sqrs | tuvw | xyzz |
| 1111 | | I 2 I |

RB, RB+l After Shift (N=4)
RB 15 0 RB+1 15

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted right arithmetically by N positions;
(CS) <-- 0010 if (RB,RB+1) =0;
(CS) <-- 0001 if (RB,RB+1) <0;
(CS) <-- 0100 if (RB,RB+1) > 0;

Registers Affected. RB, RB+1, CS

5.17. Double Shift Left Cyclic

Addr
Mbde

R

Mhenoni ¢ For mat / Qpcode
8 4 4
DSLC RB,N | 68 | N1 | RB | 1 <=N<=16

Description. Theconcatenated contents of the Derived Address,
DA, and DA+1 (i.e., the concatenated contents of RB and RB+1),
areshifted left cyclically N positions. The shifted resultsare stored
in RB and RB+1. The double left shift cyclic operation is as
follows: bits shifted out of the sign bit position of RB enter the
least significant bit position of RB+1, bits shifted out of the sign
bit position of RB+1 enter the least significant bit position of RB,
and, consequently, no bitsare lost. The condition status, CS, is set
based on the result in RB and RB+1.

74

Shift Logical, Count in Register

Note N-1 = 0O represents a shift of one position.

Note N-1 = 15 represents a shift of sixteen positions.

RB, RB+1 Before Shift
0 RB 15 0 RB+1 15

| s abc | defg | hijk | Imp | | s aqrs | tuvw | xyzz | zzzz |

e O L

0 RB 15 0 RB+1 15

| defg | hijk | Imp | s qgrs | | tuvw | xyzz | zzzz | s abc |

r ! vz 1 - 11 |

Register Transfer Description.

(RB,RB+1) <-- (RB,RB+1) Shifted left cyclically by N positions;
(CS) <-- 0010 if (RB,RB+1) =0;
(CS) <-- 0001 if (RB,RB+1) <0;
(CS) <-- 0100 if (RB,RB+1) >0;

Registers Affected. RB, RB+1, CS

5.18. Shift Logical, Count in Register

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R SLR RARB | 6A | RA | RB | | (RB)| <= 16

Description. The contents of register RA are shifted logically
N positions, where N isthe contents of register RB. If N is positive

75

Chapter 5. Detailed Requirements

((RBg)=0), then the shift direction isleft; if N is negative (2's
complement notation, (RBg)=1), then the shift direction isright.
The condition status, CS, is set based on the result in RA.

Note N = O represents a shift of zero positions.

Note If IN| >= 16, the fixed point overflow occurs, no shifting
takes place, and thisinstructionistreated asaNOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event the contents are shifted N positions.

Note (See"Description” of thelogical shiftinstructions, SLL
and SRL (see Section 5.10, “ Shift Left Logical” [66])
and Section 5.11, “ Shift Right Logical” [67]), for the
definition of shift operations.)

Register Transfer Description.

Pl, <-- 1, exit,
if IN|>=16
(RA) <-- (RA) Shifted left logically by (RB) positions,
if 0<(RB) <= 16;
(RA) <-- (RA) Shifted right logically by -(RB) positions,
if 0>= (RB) >==-16;
(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA)<O;
(CS) <-- 0100 if (RA) >0;

Registers Affected. RA,RB, CS, Pl

5.19. Shift Arithmetic, Count in Register

Addr
Mode

Mhenoni ¢ For mat / Opcode

8 4 4

76

Shift Arithmetic, Count in Register

R SAR RARB | 68 | RA | RB | | (RB)| <= 16

Description. The contents of register RA are shifted
arithmetically N positions, where N isthe contents of register RB.
If N is positive ((RBg) = 0), then the shift direction isleft; if N is
negative (2's complement notation, (RBq) = 1), then the shift
directionisright. The condition status, CS, is set based on the result

in RA.

Note N = O represents a shift of zero positions.

Note If IN| >= 16, the fixed point overflow occurs, no shifting
takes place, and thisinstructionistreated asaNOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Note (See “Description” of the arithmetic shift instruction
SRA (see Section 5.12, “ Shift Right Arithmetic” [68])
for definition of the right shift operation. Left shift
causes “zeros’ to be shifted into low order position of
result.)

Note Fixed point overflow occursif the sign bit changes

during aleft shift.

Register Transfer Description.

Pl, <-- 1, exit,
if [IN|>=16;
(RA) <-- (RA) Shifted left arithmetically (RB) positions,
if 16 >==(RB) >0;
(RA) <-- (RA) Shifted right arithmetically -(RB) positions,
if 0>= (RB) >==-16;
Ply<--1,
if (RAg) changes during the shift;
(CS) <-- 0010 if (RA)=0;

77

Chapter 5. Detailed Requirements

(CS) <-- 0001 if (RA) <0;
(CS) <-- 0100 if (RA) > O;

Registers Affected. RA,RB, CS, Pl

5.20. Shift Cyclic, Count in Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R SCR RARB | 6C | RA | RB | | (RB)| <= 16

Description. The contents of register RA are shifted cyclically
N positions, where N isthe contents of register RB. If N ispositive
((RBg) = 0), then the shift direction isleft; if N is negative (2's
complement notation, (RBg) = 1), then the shift direction is right.
The condition status, CS, is set based on the result in RA.

Note N = 0 represents a shift of zero positions.

Note If IN| >= 16, thefixed point overflow occurs, no shifting
takes place, and thisinstruction istreated asaNOP (see
Section 5.96, “No Operation” [151]).

Note (See"Description” of the cyclic shift instruction, SLC
(see Section 5.13, “ Shift Left Cyclic” [69]), for
definition of shift operations.)

Note The contentsof RB remain unchanged, unlessRA = RB
in this event, the contents are shifted N positions.

Register Transfer Description.

Pl <-- 1, exit,
if [IN|>=16;
(RA) <-- (RA) Shifted left cyclically by (RB) positions,

78

Double Shift Logical, Count in Register

if 0<(RB) <= 16;

(RA) <-- (RA) Shifted right cyclically by -(RB) positions,
if 0>= (RB) >==-16;

(CS) <-- 0010 if (RA) =0;

(CS) <-- 0001 if (RA)<O;

(CS) <-- 0100 if (RA) >0;

Registers Affected. RA,RB, CS, Pl

5.21. Double Shift Logical, Count in Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R DSLR RARB | 6D | RA | RB | | (RB)| <= 32

Description. The concatenated contents of register RA and
RA+1 are shifted logically N positionswhereregister RB contains
the count, N. If the count is positive ((RBg) = 0), then the shift
direction isleft. If the count is negative (2's complement notation,
(RBp) = 1), then the shift direction is right. The condition status,
CS, isset based on theresult in RA and RA+1.

79

Chapter 5. Detailed Requirements

Note N = 0 represents a shift of zero positions.

Note If IN| >= 32, thefixed point overflow occurs, no shifting
occurs, and thisinstruction istreated as a NOP (see
Section 5.96, “No Operation” [151]).

Note (See "Description” of the double shift logical
instructions, DSRL and DSLL (see Section 5.15,
“Double Shift Right Logical” [72] and Section 5.14,
“Double Shift Left Logica” [70Q]), for definition of shift
operations.)

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Register Transfer Description.

Pl, <-- 1, exit,
if IN| >=32;
(RA,RA+1) <-- (RA,RA+1) Shifted left logically by (RB) positions

if 32 >==(RB) > 0;
(RA,RA+1) <-- (RA,RA+1) Shifted right logically by -(RB) positions

if 0>=(RB) >==-32;

(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, RB, CS, P

5.22. Double $hift Arithmetic, Count in Register

Addr
Mode

Mhenoni ¢ For mat / Opcode
8 4 4

80

Double Shift Arithmetic, Count in Register

R DSAR RARB | 6E | RA | RB | | (RB)| <= 32

Description. The concatenated contents of register RA and
RA+1 are shifted arithmetically N positions where register RB
contains the count, N. If the count is positive ((RBg)=0), then the
shift direction isleft. If the count is negative (2's complement
notation, (RBg)=1), then the shift direction isright. The condition
status, CS, is set based on the result in RA and RA+1.

Note N = O represents a shift of zero positions.

Note If IN| >= 32, thefixed point overflow occurs, no shifting
occurs, and thisinstruction is treated as a NOP (see
Section 5.96, “No Operation” [151]).

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Note (See"Description” of the double shift arithmetic
instruction, DSRA (see Section 5.16, “Double Shift
Right Arithmetic” [73]), for the definition of the right
shift operation. Left shift causes "zeros" to be shifted
into low order position of resuilt.)

Note Fixed point overflow occursif the sign bit is changed
during aleft shift.

Register Transfer Description.

Pl <-- 1, exit,
if IN|>=32;
(RA,RA+1) <-- (RA,RA+1) Shifted left arithmetically (RB) positions,
if 32>=(RB) >==0;
(RA,RA+1) <-- (RA,RA+1) Shifted right arithmetically -(RB) positions,
if 0>= (RB) >==-32;
Ply<--1,
if (RAg) changes during the shift;
(CS) <-- 0010 if (RA,RA+1) =0;

81

Chapter 5. Detailed Requirements

(CS) <-- 0001 if (RA,RA+1) < O;
(CS) <~ 0100 if (RA,RA+1) > O;

Registers Affected. RA, RA+1, RB, CS, PI

5.23. Double Shift Cyclic, Count in Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R DSCR RARB | 6F | RA | RB | | (RB)| <= 32

Description. The concatenated contents of registers RA and
RA+1 areshifted cyclically N positions, whereregister RB contains
the count, N. If the count is positive ((RBg)=0), the shift direction
isleft.

If the count is negative (2's complement notation, (RBg)=1), the
shift directionisright. The condition status, CS, is set based on the
result in RA and RA+1.

Note N = 0 represents a shift of zero positions.

Note If IN| >= 32, the fixed point overflow occurs, no shifting
occurs, and thisinstruction istreated as a NOP (see
Section 5.96, “No Operation” [151]).

Note (See"Description” of the double shift cyclic instruction,
DSLC (see Section 5.17, “Double Shift Left
Cyclic” [74]), for the definition of shift operations.)

Note The contents of RB remain unchanged, unless RA =
RB; in this event, the contents are shifted N positions.

Register Transfer Description.

82

Jump on Condition

Pl, <-- 1, exit,
if [IN|>=32;
(RA,RA+1) <-- (RA,RA+1) Shifted left cyclically by (RB) positions
if 32>=(RB) >==0;
(RA,RA+1) <-- (RA,RA+1) Shifted right cyclically by -(RB) positions
if 0>=(RB) >==-32;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) >0;

Registers Affected. RA, RA+1, RB, CS, PI

5.24. Jump on Condition

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
D JC CLABEL --emieeee e
DX JC CLABEL,LRX | 70 | C | RX | | LABEL |
8 4 4 16
[JO C ADDR smeeeee i
I X JC C ADDR, RX | 71 | C | RX | | ADDR |

Description. Thisisaconditional jump instruction wherein the
instruction sequence jumpsto the Derived Address, DA, if alogical
one results from the following operation:

1. The 4-hit Cfield is bit-by-bit ANDed with the 4-hit condition
status, CS

2. Theresulting 4-bits are ORed together
.orifC=70rC=F
Otherwise, the next sequential instruction is executed.

Condition Codes.

83

Chapter 5. Detailed Requirements

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

6 Junp Condition Mhenoni ¢
NOP -- -- --
 ess than (zero) LT Lz M
equal to (zero) EQ EZ --
ess than or equal to (zero) LE LEZ NP
greater than (zero) Gr & P
not equal to (zero) NE N --
greater than or equal to (zero) GE GZ N
carry cY

LT
EQ
LE
GT

carry or
carry or
carry or
carry or
carry or N
carry or G

G
0
1
2
3
4
5
6
7 uncondi ti onal
8
9
A
B
C
D
E
F uncondi ti onal

Register Transfer Description.

(IC)<--DA if C=7,0r
if C=For
if (Co"CS)V(Ci"CS)V(CNCSy) vV (C3NCS) =1,

Registers Affected. IC (if jJump is executed)

5.25. Jump to Subroutine

Addr
Mbde

D
DX

Mhenoni ¢ For mat / Qpcode

8 4 4 16

JS
JS

RA, LABEL
RA, LABEL, RX |

Description. The value of the instruction counter (the address
of the next sequentia instruction) is stored into register RA. Then,
the IC is set to the derived address, DA, thus effecting the jump.

Subtract One and Jump

This sets up the return from subroutine to the address stored in the
register RA, i.e., anindexed unconditional jump from location zero
using RA as the index register shall transfer control to the
instruction following the JS instruction.

Note If RA = RX, then the derived address, DA, is calcul ated
beforethe IC is stored in RA.

Register Transfer Description.

(RA) <--(IC);
(IC) <-- DA;

Registers Affected. RA,IC

5.26. Subtract One and Jump

Addr
Mode Mhenonic Format / Qpcode
8 4 4 16
D SOJ RA LABEL == s omm s e
DX SOJ RALABEL,RX| 73 | RA | RX | | LABEL |

Description. The 16 bit contents of register RA are decremented
by one. Then if the content of register RA is zero, the next
sequentia instruction is executed. If the content of register RA is
non-zero, then ajump to the Derived Address, DA, occurs.

Note If RA = RX, then thederived address, DA, is calcul ated
before RA is decremented.

Register Transfer Description.

(RA)<--(RA) - 1;
(IC) <-- DA if (RA) /=0;
(CS) <-- 0010 if (RA) =0;

85

Chapter 5. Detailed Requirements

(CS) <-- 0001 if (RA) <0;
(CS) <-- 0100 if (RA) > O;

Registers Affected. RA, CS, IC (if the jump is executed)

5.27. Branch Unconditionally

Addr
Mbde Mhenonic For mat / Opcode
8 8
ICR BR LABEL | 74 | D | -128 <= D <= 127

Description. A program branch ismade to LABEL, i.e., the
Derived Address, DA.

Register Transfer Description.

(IC) <-- DA;

Registers Affected. IC

5.28. Branch if Equal to (Zero)

Addr
Mode Mhenonic Format / Qpcode
8 8
ICR BEZ LABEL | 75 | D | -128 <= D<= 127

Description. A program branch ismadeto LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that

86

Branch if Less Than (Zero)

the previous result which set the CSis equal to (zero). Otherwise,
the next sequential instruction is executed.

Register Transfer Description.

(IC) <~ DA if (CS) = X010;

Registers Affected. 1C (if the jump is executed)

5.29. Branch if Less Than (Zero)

Addr
Mode Mhenonic For mat / Qpcode
8 8
ICR BLT LABEL | 76 | D | -128 <= D <= 127

Description. A program branch ismadeto LABEL, i.e.,, the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CSisless than (zero). Otherwise,
the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X001,

Registers Affected. IC (if the jump is executed)

5.30. Branch to Executive

Addr
Mbde Mhenonic Format / Opcode
8 4 4

87

Chapter 5. Detailed Requirements

BEX

Description. Thisinstruction provides ameansto jump to a
routine in another address state, AS. It istypically used to make
controlled, protected callsto an executive. The4-bit literal N selects
one of 16 executive entry points to be used. Execution of this
instruction causes an interrupt to occur using the EXEC call
interrupt vector (interrupt 5). The new IC isloaded from the Nth
location following the SW in the new processor state. The linkage
pointer (LP), service pointer (SVP), and the new processor state
(new MK, new SW, and new IC) are fetched from address state
zero. The current processor state (old MK, old SW, and old IC)
are stored in the address state specified by the new SW ASfield.
Interrupts are disabled when BEX is executed. The EXEC call
interrupt cannot be masked or disabled. Arguments associated with
the BEX instruction are passed by software convention. The
processor lock and key function isignored when thisinstruction
is executed. An attempt to branch into an execute protected area
of memory shall resultin FT being set to 1.

Register Transfer Description.

(RQ,RQ+1,RQ+2) <-- (MK,SW,IC);

(SVP) <-- [2B1g], Wwhere AS=0;

(MK,SW,IC) <-- [(SVP),(SVP)+1,(SVP)+2+N)], where AS = O;
(LP) <-- [2A1¢], Where AS=0;

[(LP),(LP)+1,(LP)+2] <-- (RQ,RQ+1,RQ+2), where AS = SW1,_15;

Registers Affected. MK, SW, IC, PI

5.31. Branch if Less Than or Equal to (Zero)

Addr
Mode

Mhenoni ¢ Format / Qpcode

8 8

88

Branch if Greater Than (Zero)

ICR BLE LABEL | 78 | D | -128 <= D <= 127

Description. A program branch ismade to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CSislessthan or equal to (zero).
Otherwise, the next sequential instruction in executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X010 or (CS) = X001;

Registers Affected. 1C (if the jump is executed)

5.32. Branch if Greater Than (Zero)

Addr
Mode Mhenonic For mat / Qpcode
8 8
ICR BGT LABEL | 79 | D | -128 <= D <= 127

Description. A program branch ismadeto LABEL, i.e.,, the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CSis greater than (zero).
Otherwise, the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X100;

Registers Affected. IC (if the jump is executed)

89

Chapter 5. Detailed Requirements

5.33. Branch if Not Equal to (Zero)

Addr
Mbde Mhenonic For mat / Opcode
8 8
ICR BNZ LABEL | 7A | D | -128 <= D <= 127

Description. A program branch ismade to LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CSis not equal to (zero).
Otherwise, the next sequential instruction is executed.

Register Transfer Description.

(IC) <-- DA if (CS) = X100 or (CS) = X001;

Registers Affected. IC (if the jump is executed)

5.34. Branch if Greater Than or Equal to (Zero)

Addr
Mode Mhenonic Format / Qpcode
8 8
ICR BGE LABEL | 7B | D | -128 <= D <= 127

Description. A program branch ismadeto LABEL, i.e., the
Derived Address, DA, if the condition status, CS, indicates that
the previous result which set the CSis greater than or equal to
(zero). Otherwise, the next sequential instruction is executed.

Register Transfer Description.

90

Load Status

(IC) <-- DA if (CS) = X100 or (CS) = X010;

Registers Affected. IC (if the jump is executed)

5.35. Load Satus

Addr
Mode

DX

Mhenoni ¢ For mat / Opcode
8 4 4 16
LST ADDR --immmmmmmimmi e
LST ADDR RX | 7D | 0000 | RX | | ADDR |
8 4 4 16
LSTI ADDR --immmmmmmii i
LSTI ADDR RX | 7C | 0000 | RX | | ADDR |

Description. The contents of the Derived Address, DA, and
DA+1, and DA+2 areloaded into the Interrupt Mask register, Status
Word register and Instruction Counter, respectively. Thisisa
privileged instruction.

Note Thisinstructionisan unconditional jump and istypically
used to exit from an interrupt routine. DA, DA+1, and
DA+2, inthistypical case, contain the Interrupt Mask,
Status Word, and Instruction Counter values for the
interrupted program and the execution of LST causes
the program to return to its status prior to being
interrupted.

Register Transfer Description.

(MK, SW, IC) <-- [DA, DA+1, DA+2];

Registers Affected. MK, SW, IC

91

Chapter 5. Detailed Requirements

5.36. Sack IC and Jump to Subroutine

Addr
Mbde Mhenonic For mat / Opcode

8 4 4

DX SIS RALABEL,RX| 7E | RA | RX

D SIS RALABEL -----crrrrsemmmmaaaaaaaaas

Description. The contents of register RA are decremented by
one. The address of the instruction following the SJS instruction
is stored into the memory location pointed to by RA. Program
control isthen transferred to theinstruction at the Derived Address,
DA. RA isthe stack pointer and can be sel ected by the programmer

as any one of the 16 general registers.

Note If RA = RX, thenthederived address, DA, is calcul ated

before RA is decremented.

Register Transfer Description.

(RA) < (RA) - L;
[(RA)] < (1C);
(IC) <-- DA;

Registers Affected. IC, RA

5.37. Unstack 1C and Return from Subroutine

Addr
Mode Mhenonic Format / Opcode
8 4 4
S URS RA | 7F | RA | 0 |

92

Single Precision Load

Description. The contents of the memory location pointed to
by register RA isloaded into the instruction counter, IC. RA is
then incremented by one. Any one of the 16 general registers may
be designated asthe stack pointer. Thisinstruction isthe subroutine
return for SJS, Stack and Jump to Subroutine.

Register Transfer Description.

(1C) < [(RA)];
(RA) <--(RA) +1;

Registers Affected. RA,IC

5.38. Sngle Precision Load

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R LR RA, RB | 81 | RA | RB |
4 2 2 8 12<=BR<=15
B LB BR, DSPL | 0] 0 | BR | DSPL | BR=BR12
------------------------------ RA=R2
4 2 2 4 4 12<=BR<=15
BX LBX BR RX | 4] 0] BR | 0] RX| BR=BRI12
------------------------------ RA=R2
8 4 4
ISP LISP RAN | 82 | RA | N1 | 1<=N<=16
8 4 4
ISN LISN RAN | 83 | RA | N1 | 1<=N<=16
8 4 4 16
D L RA, ADDR -ommmmmm s

93

Chapter 5. Detailed Requirements

DX L RAADDRRX | 80 | RA | RX | | ADDR |
8 4 4 16

IM LIM RADATA <orrrrmmmmmommmoeeeeaaaaaaaae

IM LIM RADATARX | 8 | RA | RX | | DATA |
8 4 4 16

! LI RAADDR <mrrrrmmmmmmimmeeaaaaaaaee

IX LI RAADDRRX | 8 | RA | RX | | ADDR |

Description. Thesingle precision Derived Operand, DO, is
loaded into the register RA. The Condition Status, CS, is set based
on theresult in register RA.

Register Transfer Description.

(RA) <-- DG;

(CS) <-- 0010 if (RA)=0;
(CS) <-- 0001 if (RA)<O;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.39. Double Precision Load

Addr
Mode Mhenonic For mat / Qpcode
8 4 4
R DLR RARB | 87 | RA | RB |
4 2 2 8 12<=BR<=15
B DLB BR, DSPL | 0] 1 | BR | DSPL | BR=BR12
------------------------------ RA=R0O
4 2 2 4 4 12<=BR<=15

94

Load Multiple Registers

BX DLBX BR RX | 4] 0] BR | 1| RX| BR=BR12
.............................. RA=R0O
8 4 4 16
D DL RAADDR - mmmmmmmmmmmmmmm e
DX DL RAADDRRX | 8 | RA | RX | | ADDR |
8 4 4 16
| DLl RAADDR === mmmmmmmmmmmmmmmm e
IX DI RAADDRRX | 8 | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, is
loaded into the register RA and RA+1 such that the MSH of DO
isin RA. The Condition Status, CS, is set based on the result in
RA and RA+1.

Register Transfer Description.

(RA,RA+1) <-- DO;

(CS) <-- 0010 if (RA,RA+1) = 0 (Double fixed point zero);
(CS) <-- 0001 if (RA,RA+1) <0;

(CS) <-- 0100 if (RA,RA+1) >0,

Registers Affected. RA, RA+1, CS

5.40. Load Multiple Registers

Addr
Mode Mhenonic For mat / Qpcode
8 4 4 16
D LM N ADDR sommmmmm i
DX LM N, ADDR RX | 8 | N | RX | | ADDR |
0 <=N<=15

Description. The contents of the Derived Address, DA, are
loaded into register RO, then the contents of the DA+1 are |loaded
into register R1, ..., finally, the contents of DA+N are loaded into

95

Chapter 5. Detailed Requirements

RN. Effectively, thisinstruction allowsthetransfer of (N+1) words
from memory to the register file.

Register Transfer Description.

(RO) < [DA];
(R1) <-- [DA + 1];
(R2) <-- [DA + 2];
(RN) <-- [DA + NI;

Registers Affected. RO through RN

5.41. Extended Precision Floating Point Load

Addr
Mode Mhenonic For mat / Qpcode
8 4 4 16
D EFL RA ADDR ---mmmmmm i
DX EFL RAADDRRX | 8A | RA | RX | | ADDR |

Description. The extended precision floating point Derived
Operand, DO, isloaded into registers RA, RA+1, and RA+2 such
that the most significant 16-hits of the word are loaded into register
RA. The condition status, CS, is set based on theresultsin registers
RA, RA+1, and RA+2.

Register Transfer Description.

(RA, RA+1, RA+2) <-- DO;

(CS) <-- 0010 if (RA, RA+1, RA+2) =0;
(CS) <-- 0001 if (RA, RA+1, RA+2) <0;
(CS) <-- 0100 if (RA, RA+1, RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS

96

Load from Upper Byte

5.42. Load from Upper Byte

Addr

Mbde Mhenonic For mat / Opcode
8 4

D LUB RAADDR -------me------

DX LB RAADDRRX | 8B | RA
8 4

[LUBI RA ADDR -------me------

I X LUBI RAADDRRX | 8D | RA

4 16
R | AR
T
R | AR

Description.

The MSH (upper byte) of the Derived Operand,

DO, isloaded into the LSH (lower byte) of register RA. The MSH
(upper byte) of RA is unaffected. The condition status, CS, is set

based on the result in RA.

Register Transfer Description.

(RA)g.15 <-- DOq.7;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <O0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.43. Load from Lower Byte

Addr
Mode Mhenonic Format / Qpcode
8 4
D LLB RA ADDR -----ieieae---
DX LLB RAADDRRX | 8C | RA

4 16
4 16

97

Chapter 5. Detailed Requirements

! LLBI RA ADDR =rrrrrmmmmmmimmmeeaaaaaaaae
IX LLBI RAADDRRX | 8E | RA | RX | | ADDR |

Description. The LSH (lower byte) of the Derived Operand,
DO, isloaded into the LSH (lower byte) of register RA. The MSH
(upper byte) of RA is unaffected. The condition status, CS, is set
based on the result in RA.

Register Transfer Description.

(RA)g.15 <-- DOg 15;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <O0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

5.44. Pop Multiple Registers off the Sack

Addr
Mode Mhenonic For mat / Qpcode
8 4 4
S POPM RA RB | 8F | RA | RB |

Description. For RA <=RB, registers RA through RB areloaded
sequentially from astack in memory using R15 asthe stack pointer.
For RA > RB, registers RA through R14 and then RO through RB
are loaded sequentially from the stack.

In both cases,

 aseach word is popped from the stack, R15 isincremented by
one;

 if R15isincluded in the transfer, then it is effectively ignored;

98

Single Precision Store

» oncompletion, R15 pointsto the top word of the stack remaining.

Register Transfer Description.

if RA <= RB then
fori=0thruRB - RA do
begin
if RA +i/=15then (RA +1i) <-- [(R15)];
(R15) <-- (R15) + 1,
end;
else
begin
fori=0thrul5- RA do
begin
if RA +i/=15then (RA +1i) <-- [(R15)];
(R15) <-- (R15) + 1,
end;
for i =0thru RB do
begin
(i) <-- [(R15)];
(R15) <-- (R15) + 1,
end;
end;

Registers Affected. RA through R14, RO through RB, R15

5.45. Sngle Precision Store

Addr
Mode Mhenonic For mat / Qpcode
4 2 2 8 12<=BR<=15
B STB BR, DSPL | 0] 2 | BR | DSPL | BR=BR12
------------------------------ RA=R2
4 2 2 4 4 12<=BR<=15
BX STBX BR, RX | 4] 0| BR | 2] RX| BR=BRI12
------------------------------ =R2

99

Chapter 5. Detailed Requirements

8 4 4 16
D ST RAADDR - -mmmmmmmmmmm e
DX ST RAADDRRX | 9 | RA | RX | | ADDR |
8 4 4 16
| STl RA/ADDR - -mmmmmmmmmmm e
IX STl RAADDRRX | 94 | RA | RX | | ADDR |
Description. Thecontents of theregister RA are stored into the

Derived Address, DA.

Register Transfer Description.

[DA] <-- (RA);
Registers Affected. None
5.46. Sore a Non-Negative Constant
Addr
Mode Mhenonic For mat / Qpcode
8 4 4 16
D STC NADDR ---mmemmmmmmceeme e
DX STC NADDRRX | 91 | N | RX | | ADDR |
8 4 4 16
| STA NADDR ---mmmmmmmemceeme e
IX ST NADRRX | 92 | N | RX | | ADDR |
Description. The constant N, where N isaninteger (0<=N <=

15) is stored at the Derived Address, DA. For the special case of
storing zero into memory the mnemonics STZ ADDR,RX for direct
addressing and STZI ADDR,RX for indirect addressing may be
used. In this special case, the N field equals 0.

Register Transfer Description.

100

Move Multiple Words, Memory-to-Memory

[DA] <-- N, where 0 <= N <= 15;

Registers Affected. None

5.47. Move Multiple Words, Memory-to-Memory

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
S MV RA RB | 93 | RA | RB |

Description. Thisinstruction alows the memory-to-memory
transfer of N words where N is an integer between zero and 216
1 and isrepresented by the contents of RA+1. The contents of RB
are the address of the first word to be transferred and the contents
of RA arethe address of where the first word isto be transferred.
After each word transfer, RA and RB are incremented, and RA+1
is decremented.

Note Any pending interrupts are honored after each single
word transfer is completed. The IC pointsto the current
instruction location until the last transfer is compl eted.

Note RA hasafinal value of the last stored address plus one;
RA+1 has afinal value of zero.

Note RB hasafina value equal to the address of thelast word
transferred plus one.

Register Transfer Description.

Step 1: [(RA)] <-- [(RB)] if (RA+1) == 0; Go to Step 4 otherwise;
Step 2: (RA) <-- (RA)+1, (RB) <-- (RB)+1, (RA+1) <-- (RA+1)-1;
Step 3: REPEAT STEPS 1 and 2;

Step 4: Set |C to next instruction address;

101

Chapter 5. Detailed Requirements

RegistersAffected. RA, RA+1, RB

5.48. Double Precision Sore

Addr
Mode

BX

DX

Mhenoni ¢ For mat / Opcode
4 2 2 8 12<=BR<=15
DSTB BR, DSPL | 0] 3 | BR | DSPL | BR=BR12
------------------------------ RA=R0O
4 2 2 4 4 12<=BR<=15
DSTX BR RX | 4] 0| BR | 3| RX| BR=BRI12
------------------------------ =R0
8 4 4 16
DST RA/ ADDR - --mmmmmimmr e
DST RAADDRRX | 96 | RA | RX | | ADDR |
8 4 4 16
DSTI RA ADDR - --mmmmmiimmmm e
DSTI RAADDRRX| 98 | RA | RX | | ADDR |

Description. The contents of registers RA and RA+1 are stored
at the Derived Address, DA, and DA+1, respectively.

Register Transfer Description.

[DA, DA+1] <-- (RA, RA+1);

Registers Affected. None

5.49. Sore Register Through Mask

Addr
Mode

Mhenoni ¢ Format / Qpcode

102

Store Multiple Registers

Description. The contents of register RA are stored into the
Derived Address, DA, through the mask in register RA+1. For each
position in the mask that is a one, the corresponding bit of register
RA isstored into the corresponding bit of the DA.. For each position
in the mask that is a zero no change is made to the corresponding
bit stored in the DA.

Register Transfer Description.

[DA] <-- {[DA] * ~(RA+1)} v {[RA] " [RA+1]};
(RA+1) = MASK, (RA) = DATA;

or, equivalently,

(RQ) <-- [DA];

(RQ); <-- (RA); if (RA+1);=1fori=0,1, ..., 15;
[DA] < (RQ);

Registers Affected. None

5.50. Sore Multiple Registers

Addr
Mode Mhenonic For mat / Qpcode
8 4 4 16
D STM N, ADDR ~ mmmmmmmm i mrm o
DX STM N, ADDR, RX | 99 | N | RX | | ADDR |

Description. The contents of register RO are stored into the
Derived Address, DA ; then the contents of R1 are stored into
DA+1; ...; finally, the contents of RN are stored into DA+N where
N isan integer, 0 <= N <= 15. Effectively, thisinstruction allows
the transfer of (N+1) words from the register file to memory.

103

Chapter 5. Detailed Requirements

Register Transfer Description.

[DA] <-- (RO);

[DA+1] <-- (RY);

[DA+2] <-- (R2);

[DA+N] <-- (RN) 0<=N <=15;

Registers Affected. None

5.51. Extended Precision Floating Point Sore

Addr
Mbde Mhenonic For mat / Qpcode
8 4 4 16
D EFST RA ADDR - mmmmmmmm i mm e e
DX EFST RAADDRRX| 9A | RA | RX | | ADDR |

Description. The contents of registers RA, RA+1, RA+2 are
stored at the Derived Address, DA, DA+1, and DA+2.

Register Transfer Description.

[DA, DA+1, DA+2] <-- (RA, RA+1, RA+2);

Registers Affected. None

5.52. Sore into Upper Byte

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
D STUB RAJADDR - -mmmmimim e
DX STUB RAADDRRX| 9B | RA | RX | | ADDR |

104

Store into Lower Byte

I
I X

SUB
SUB

RA, ADDR == === mmmmmmmmmmnmmm e
RAADDRRX| 9D | RA | RX | | ADR |

Description. TheLSH (lower byte) of register RA isstored into
the MSH (upper byte) of the Derived Address, DA. The LSH (lower
byte) of the DA is unchanged.

Register Transfer Description.

[DA]o.7 <-- (RA)g.15;

Registers Affected. None

5.53. Soreinto Lower Byte

Addr
Mode

DX

Mhenoni ¢ For mat / Qpcode
8 4 4 16
STLB RA/ADDR - - -mmmmmmmm e
STLB RAADDRRX| 9C | RA | RX | | ADDR |
8 4 4 16
SLBI RA/ADDR ---mmmmmi e
SLBI RAADDRRX| 9E | RA | RX | | ADDR |

Description. TheLSH (lower byte) of register RA isstored into
the LSH (lower byte) of the Derived Address, DA. The MSH (upper
byte) of the DA is unchanged.

Register Transfer Description.

[DA]g 15 <-- (RA)g 15,

Registers Affected. None

105

Chapter 5. Detailed Requirements

5.54. Push Multiple Registers onto the Sack

Addr
Mbde Mhenonic For mat / Opcode
8 4 4

S PSHV RA RB | O9F | RA | RB |

Description. For RA <= RB, the contents of RB through RA
are pushed onto a stack in memory using R15 as the stack pointer.
As each register contents are pushed onto the memory stack, R15
isdecremented by oneword for each word pushed. On completion,
R15 points to the last item on the stack, the contents of RA.

For RA > RB, the contents of RB through RO, and then the contents
of R15 through RA, are pushed onto the stack. On completion, R15
pointsto the last item on the stack, the contents of RA.

In both cases, successive increasing addresses on the stack
correspond to successive increasing register addresses, with apoint
discontinuity between R15 and RO in the latter case.

PSHM R3,R5 resultsin:

(R15) -->=| (R14) |

106

Single Precision Integer Add

Register Transfer Description.

if RA <= RB then
fori =0thruRB - RA do
begin
(R15) <-- (R15) - 1;
[(R15)] <-- (RB - i);
end;
ese
begin
fori =0thru RB do
begin
(R15) <-- (R15) - 1;
[(R15)] <-- (RB - i);
end;
fori=0thrul5- RA do
begin
(R15) <-- (R15) - 1;
[(R15)] <-- (R15 - i);
end;
end;

Registers Affected. R15

5.55. Sngle Precision Integer Add

Addr

107

Chapter 5. Detailed Requirements

Mbde Mhenonic For mat / Opcode
8 4 4
ROAR ORARE | AL | RA| BB |
--k---é---é ------ é---- 12<=BR<=15
B AB BR, DSPL |1|0|BR|DSPL| BR =BR- 12

...................... RA=R2
4 2 2 4 4 12<=BR<=15

BX ABX BR RX | 4] 0| BR | 4| RX| BR=BR12
........................ RA=R2
8 4 4
ISP AISP RAN | A2 | RA | N1 | 1<N\K16
8 4 4 16
D A RAADDR -mmmmmmmmmmemmem e
DX A RAADDRRX | A0 | RA | RX | | ADDR |
8 4 4 16
IM AM RADATA | 4A | RA | 1 | | DATA |

Description. The Derived Operand (DO) isadded to the contents
of the RA register. The result (a 2's complement sum) is stored in
register RA. The condition status (CS) is set based on theresult in
register RA and carry. A fixed point overflow occursif both
operands are of the same sign and the sum is of opposite sign.

Register Transfer Description.

(RA)? <-- (RA)" + DO;
Pl,<-1,

if (RAg)" = DOy and (RAQ)" /= (RAp)*
(CS) <-- 0010 if carry=0and (RA) =0;
(CS) <-- 0001 if cary=0and (RA) <O0;
(CS) <-- 0100 if carry=0and (RA) >0;
(CS) <-- 1010 if cary=1and (RA) =0;

108

Increment Memory by a Positive Integer

(CS) <-- 1001 if carry =1and (RA) <O0;
(CS) <-- 1100 if carry =1and (RA) >0;

Registers Affected. RA, CS, Pl

5.56. Increment Memory by a Positive Integer

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
D INCM N, ADDR --mmmmmmm e
DX INCM N ADDRRX | A3 | N1 | RX | | ADDR |

Description. The contents of the memory location specified by
the Derived Address, DA, isincremented by N, where N isan
integer, 1 <= N <= 16. Thisinstruction adds a positive constant to
memory. The condition status, CS, is set based on the results of
the addition and carry. A fixed point overflow occursif the operand
in memory is positive and the result is negative. The memory
location specified is updated to contain the result of the addition
process even if afixed point overflow occurs.

Register Transfer Description.

[DA]? <-- [DA]* + N, where 1 <= N <= 16;
Ply<--1,
if [DA]?> <0< [DA]%;

(CS) <-- 0010 if carry=0and[DA] =0;
(CS) <-- 0001 if carry=0and[DA] <O0;
(CS) <-- 0100 if carry =0and[DA] >0;
(CS) <-- 1010 if carry=1and[DA] =0;
(CS) <-- 1001 if carry=1and[DA] <O0;
(CS) <-- 1100 if carry =1and[DA] >0;

Registers Affected. CS, Pl

109

Chapter 5. Detailed Requirements

5.57. Sngle Precision Absolute Value of Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R ABS RARB | M | RA | RB |

Description. If the sign bit of the Derived Operand, DO (i.e.,
thesign bit of register RB), isaone, its negative or 2's complement
isstored into register RA. However, if the sign bit of DO isazero,
it is stored, unchanged, into RA. The condition status, CS, is set

based on the result in register RA.

Note RA may equal RB.

Note The absolute value of a number with a1 inthe sign bit
and all other bits zero isthe sameword, and causes fixed

point overflow to occur.

Register Transfer Description.

(RA) <--|DO;

PI4 <--1, eX|t, if DO = 800016!
(CS) <-- 0001 if (RA) = 8000y
(CS) <-- 0010 if (RA) = O;

(CS) <-- 0100 if (RA) > O;

Registers Affected. RA, CS, Pl

5.58. Double Precision Absolute Value of Register

Addr
Mbde Mhenonic Format / Opcode
8 4 4

110

Double Precision Integer Add

R

Description. If the sign bit of the double precision Derived
Operand, DO (i.e., the sign bit of register (RB,RB+1)), isaone,
itsnegative or 2'scomplement isstored into register RA and RA+1,
such that register RA contains the MSH of the result. However, if
the sign bit of DO isa zero, it is stored, unchanged, into RA and
RA+1. The condition status, CS, is set based on theresult in register
RA and RA+1.

Note RA may equal RB.

Note The absolute value of a number with a1 inthe sign bit
and all other bits zero isthe sasmeword, and causesfixed
point overflow to occur.

Register Transfer Description.

(RA, RA+1) <-- IDO|;

Pl, <-- 1, exit, if DO = 8000 00004¢;

(CS) <-- 0001 if (RA,RA+1) = 8000 00004¢;
(CS) <-- 0010 if (RA,RA+1) =0;

(CS) <-- 0100 if (RA,RA+1) >0;

Registers Affected. RA, RA+1, CS, PI

5.59. Double Precision Integer Add

Addr
Mbde

Mhenoni ¢ Format / Opcode
8 4 4
DAR RARB | A7 | RA | RB |
8 4 4 16
DA RA/ADDR msmmmmmmmmmm i

111

Chapter 5. Detailed Requirements

Description. The double precision Derived Operand (DO) is
added to the contents of registers RA and RA+1. Theresult (a2's
complement 32-bit sum) is stored in registers RA and RA+1. The
MSH isin RA. The condition status (CS) is set based on the double
precision resultsin RA and RA+1, and carry. A fixed point
overflow occursif both operands are of the same sign and the sum
is of opposite sign.

Register Transfer Description.

(RA,RA+1)? <-- (RA,RA+1)! + DO;

Pl, < 1 if (RAg)} = DOy and (RA)! /= (RA)?
(CS) <-- 0010 if carry =0and (RA,RA+1) =0;
(CS) <-- 0001 if carry =0and (RA,RA+1) <0;
(CS) <-- 0100 if carry =0and (RA,RA+1) > O;
(CS) <-- 1010 if carry = 1 and (RA,RA+1) = 0O;
(CS) <-- 1001 if carry =1and (RA,RA+1) <0;
(CS) <-- 1100 if carry = 1 and (RA,RA+1) > O;

Registers Affected. RA, RA+1, CS, Pl

5.60. Floating Point Add

Addr

R

B

Mode

Mhenoni ¢ For mat / Qpcode
8 4 4
FAR RARB | A9 | RA | RB |
4 2 2 8
...................... 12<=BR<=15
BR, DSPL | 2| 0| BR | DSPL | BR =BR- 12
...................... =R0
4 2 2 4 4
------------------------ 12<=BR<=15

112

Floating Point Add

BX

D
DX

FABX BR, RX | 4] 0] BR | 8| RX| BR=BR12
........................ RA=R0
8 4 4 16
FA© RAADDR --em-cemmmmmmammen oo
FA RAADDRRX | A8 | RA | R(| | ADR |

Description. Thefloating point Derived Operand, DO, isfloating
point added to the contents of registers RA and RA+1. The result
isstored in registers RA and RA+1. The process of this operation
isasfollows: the mantissaof the number with the smaller algebraic
exponent is shifted right and the exponent incremented by one for
each bit shifted until the exponents are equal. The mantissas are
then added. If the sum overflows the 24-bit mantissa, then the sum
isshifted right one position, the sign bit restored, and the exponent
incremented by one. If the exponent exceeds 7F¢ as aresult of
thisincrementation, overflow occurs and the operation is
terminated. If the sum does not result in exponent overflow, the
result is normalized. If in the normalization process the exponent
is decremented below 80,6, then underflow occurs and azero is
inserted for the result.

Register Transfer Description.

N = EA - EQ;

EA <-- EOQ,
if MA =0;

MO <-- MO Shifted Right Arithmetic n positions,
if n>0and MA /=0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EQ,
ifn<0and MO /=0;

MA <-- MA + MO;

MA <-- MA Shifted Right Arithmetic 1 position, MAg <-- ~MAq, E
if OVM =1;
Pl3<-- 1, EA <-- 7F5, MA <-- 7TFFF FFyg, exit,
if EA >=7F;gand MAy=0;
Ply <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,
if EA >=7Fgand MAg =1,
EA, MA <-- normalized EA, MA;

A <--

113

Chapter 5. Detailed Requirements

Plg <-- 1, EA <-- 0, MA <-- 0,

if EA < 8016;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, Pl

5.61. Extended Precision Floating Point Add

Addr
Mode

DX

Mhenoni ¢ For mat / Opcode
8 4 4
EFAR RA RB | AB | RA | RB |
8 4 4 16
EFA° RA ADDR ----mmmmmiimmme s
EFA RAADDRRX | A | RA | RX | | ADDR |

Description. The extended precision floating point Derived
Operand, DO, is extended floating point added to the contents of
register RA, RA+1, and RA+2. Theresult isstored in register RA,
RA+1, and RA+2. The process of this operation is as follows: the
mantissa of the number with the smaller algebraic exponent is
shifted right and the exponent is incremented by one for each bit
shifted. When the exponents are equal, the mantissas are added. If
the sum overflows the 39-bit mantissa, then the sumis shifted right
one position, the sign bit restored, and the exponent isincremented
by one. If the exponent exceeds 7F¢ as aresult of this
incrementation, overflow occurs and the operation is terminated.
If the sum does not result in exponent overflow, the result is
normalized. If in the normalization process the exponent is
decremented below 804, then underflow occurs and azero is
inserted for the result.

Register Transfer Description.

114

Floating Point Absolute Value of Register

n=EA - EC;
EA <-- EOQ,
if MA =0;

if OVM =1;

if EA < 8016;

MO <-- MO Shifted Right Arithmetic n positions,
if n>0and MA /=0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EQ,
ifn<0and MO /=0;

MA <-- MA + MO;

Ply <-- 1, EA <-- 7F15, MA <-- 7TFFF FF FFFFg, exit,
if EA >=7F;gand MAy=0;

Pl; <-- 1, EA <-- 7F;5, MA <-- 8000 00 0000, exit,
if EA >= 7F16 and MAO = 1,

EA, MA <-- normalized EA, MA;

Plg <-- 1, EA <-- 0, MA <-- 0,

(CS) <-- 0010 if (RA, RA+1, RA+2) =0,
(CS) <-- 0001 if (RA, RA+1, RA+2) <O0;
(CS) <~ 0100 if (RA, RA+1, RA+2) > 0;

MA <-- MA Shifted Right Arithmetic 1 position, MAg <-- ~MAq, E

A <--

Registers Affected. RA, RA+1, RA+2, CS, PI

5.62. Floating Point Absolute Value of Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R FABS RA RB | AC | RA | RB |
Description. If the sign bit of the mantissa of the Derived

Operand, DO (i.e., the contents of registers RB and RB+1), isa
one, itsfloating point negativeisstored in registers RA and RA+1.
The negative of DO is computed by taking the 2's complement of
the mantissa and leaving the exponent unchanged. Exceptions to

115

Chapter 5. Detailed Requirements

this are negative powers of two: -1.0x 2°, -1.0x 2%, The
absolute value of these are: 0.5 x 21, 0.5 x 22, ..., in other words,
the DO mantissais shifted logically right one position and the
exponent incremented. A floating point overflow shall occur if DO
is the smallest negative number, -1.0 x 21?7, If the sign bit of DO
isazero, it is stored unchanged into RA and RA+1. The condition
status, CS, is set based on the result in register RA and RA+1.

Note RA may equal RB.

Note DO is assumed to be a normalized number or floating

point zero.

Register Transfer Description.

EA <-- EA+1, MA <-- 4000 004,
if MO = 8000 004;

if EA >= 7F16;
EA <-- EO, MA <-- -MO,

if MO<O,

if MO /= 8000 004g;
EA <-- EO, MA <-- MO,

if MO>0;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

PI3 <-- 1, EA <-- 7F161 MA <-- 7TFFF FF16, eX|t,

Registers Affected. RA, RA+1, CS, PI

5.63. Sngle Precision Integer Subtract

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R SR RA, RB | Bl | RA | RB |

116

Single Precision Integer Subtract

4 2 2 8 12<=BR<=15
B SBB BRDSPL | 1| 1| BR | DSPL | BR =BR- 12
...................... RA=R2
4 2 2 4 4 12<=BR<=15
BX SBBX BR RX | 4] 0] BR | 5| RX| BR=BR12
........................ RA=R2
8 4 4
ISP SISP RAN | B2 | RA | N1 | 1<=Nk=16
8 4 4 16
D S RAADDR -mmmemmemmmmmmmm e
DX S RAADDRRX | BO | RA | RX | | ADDR |
8 4 4 16
IM SIM RADATA | 4A | RA | 2 | | ADDR |

Description. The Derived Operand (DO) is subtracted from the
contents of the RA register. Theresult, a2'scomplement difference,
isstored in RA. The condition status (CS) is set based on the result
in register RA and carry. A fixed point overflow occursif both
operands are of opposite signs and the derived operand isthe same
asthe sign of the difference.

Register Transfer Description.

(RA)? <~ (RA)*- DO,

i.e, (RA) - DOmeans{(RA) + ~DO} + 1;
Ply<--1,

if (RAg)! /= DOy and (RAg)% = DO,

(CS) <-- 0010 if carry=0and (RA) =0;
(CS) <-- 0001 if cary=0and (RA) <O0;
(CS) <-- 0100 if carry=0and (RA) >0;
(CS) <-- 1010 if cary=1and (RA) =0;
(CS) <-- 1001 if cary=1and (RA) <O0;
(CS) <-- 1100 if carry=1and (RA)>0;

117

Chapter 5. Detailed Requirements

Registers Affected. RA, CS, Pl

5.64. Decrement Memory by a Positive Integer

Addr
Mbde Mhenonic For mat / Opcode
8 4 4 16
D DECM N, ADDR = ---mmmmmi e
DX DECM N, ADDRRX | B3 | N1 | RX | | ADDR |

Description. The contents of the memory location specified by
the Derived Address, DA, are decremented by N, where N isan
integer, 1 <= N <= 16. Thisis equivalent of a
"subtract-from-memory instruction”. The condition status, CS, is
set based on the results of the subtraction and carry. A fixed point
overflow occursif the operand in memory is negative and the result
is positive. The memory location specified is updated to contain
the result of the subtraction process even if afixed point overflow
occurs.

Register Transfer Description.

[DA]? < [DA]* - N, where 1 <= N <= 16;
Ply<--1,
if [DA]* <0 <[DAG%

(CS) <-- 0010 if carry=0and[DA] =0;
(CS) <-- 0001 if carry=0and[DA] <O0;
(CS) <-- 0100 if carry =0and[DA] >0;
(CS) <-- 1010 if carry=1and[DA] =0;
(CS) <-- 1001 if carry=1and[DA] <O0;
(CS) <-- 1100 if carry =1and[DA] >0;

Registers Affected. CS, Pl

118

Single Precision Negate Register

5.65. Sngle Precision Negate Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R NEG RA RB | B4 | RA | RB |

Description. The negative (i.e., the 2's complement) of the

Derived Address, DO (i.e., the contents of register RB), is stored
into register RA. The condition status, CS, is set based on theresult

inregister RA.
Note The negative of zero is zero.
Note The negative of a number with a 1 in the sign bit and

all other bits zero is the same word, and causes fixed

point overflow to occur.

Register Transfer Description.

(RA) <-- -DO;

PI4 <--1, eX|t, if DO = 800016!
(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) <0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, Pl

5.66. Double Precision Negate Register

Addr
Mbde Mhenonic Format / Opcode
8 4 4

119

Chapter 5. Detailed Requirements

R DNEG RARB | B5 | RA | RB |

Description. The negative (i.e., the 2's complement) of the
Derived Operand, DO (i.e., the contents of register RB and RB+1),
isstored into register RA and RA+1 such that register RA contains
the M SH of theresult. The condition status, CS, is set based on the
result in register RA and RA+1.

Note The negative of zero is zero.

Note The negative of anumber with alin the sign bit and
al other bits zero is the same word, and causes fixed
point overflow to occur.

Register Transfer Description.

(RA, RA+1) <-- -DO;

Pl <-- 1, exit, if DO = 8000 00004¢;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.67. Double Precision Integer Subtract

Addr
Mbde Mhenonic Format / Opcode
8 4 4
R DSR RA RB | B7 | RA | RB |
8 4 4 16

D DS RAADDR <orrrrrmmmmmmeeeeeaiiaiaionn

Floating Point Subtract

Description. The double precision Derived Operand, DO, is
subtracted from the contents of registers RA and RA+1. Theresults,
a 2's complement 32-bit difference, is stored in registers RA and
RA+1. The MSH isRA. The condition status (CS) is set based on
the double precision resultsin RA and RA+1, and carry. A fixed
point overflow occursif both operands are of opposite sign and
the derived operand is the same as the sign of the difference.

Register Transfer Description.

(RA,RA+1)? <-- (RA,RA+1)! - DO,
i.e, (RA,RA+1) - DO means{(RA,RA+1) + ~DO} + 1;
Ply<—-1,
if (RAg)! /= DOy and (RA)? = DOy;

(CS) <-- 0010 if carry =0and (RA,RA+1) =0;

(CS) <-- 0001 if carry =0and (RA,RA+1) <0;

(CS) <-- 0100 if carry =0and (RA,RA+1) > O;

(CS) <-- 1010 if carry = 1 and (RA,RA+1) = 0;

(CS) <-- 1001 if carry =1and (RA,RA+1) <0;

(CS) <-- 1100 if carry = 1 and (RA,RA+1) > O;

Registers Affected. RA, RA+1, CS, Pl

5.68. Floating Point Subtract

Addr
Mode

BX

Mhenoni ¢ For mat / Gpcode
8 4 4
RA RB | B9 | RA | RB |
4 2 2 8 12<=BR<=15
BR, DSPL | 2] 1| BR | DSPL | BR =BR- 12
---------------------- RA=R0O
4 2 2 4 4 12<=BR<=15
FSBX BR, RX | 4] 0] BR | 9| RX| BR=BR12

121

Chapter 5. Detailed Requirements

D
DX

FS
FS

........................ RA=R0O

8 4 4 16
RA ADDR === e e
RAVADDRRX| B3 | RA | RC | | ADDR |

Description. Thefloating point Derived Operand, DO, isfloating
point subtracted from the contents of registers RA and RA+1. The
result is stored in registers RA and RA+1. The process of this
operationisasfollows: the mantissa of the number with the smaller
algebraic exponent is shifted right and the exponent incremented
by one for each bit shifted until the exponents are equal. The
mantissa of the DO is then subtracted from (RA,RA+1). If the
difference overflows the 24-bit mantissa, then it is shifted right
one position, the sign bit restored, and the exponent incremented
by one. If the exponent exceeds 7F¢ as aresult of this
incrementation, overflow occurs and the operation is terminated.
If the sum does not result in exponent overflow, the result is
normalized. If during the normalization process the exponent is
decremented below 804, then underflow occurs and azero is
inserted for the result.

Register Transfer Description.

n=EA - EQ;

EA <-- EOQ,
if MA =0;

MO <-- MO Shifted Right Arithmetic n positions,
if n>0and MA /=0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EO,
ifn<0and MO /=0;

MA <-- MA - MO;

MA <-- MA Shifted Right Arithmetic 1 position, MAg <-- ~MAq, E
if OVM =1;

Ply <-- 1, EA <-- 7TF15, MA <-- TFFF FF4g, exit,
if EA >=7F;gand MAy=0;

Ply <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,
if EA >=7Fgand MAg =1,

EA, MA <-- normalized EA, MA;

Plg <-- 1, EA <-- 0, MA <-- 0,

A <-- E/

122

Extended Precision Floating Point Subtract

if EA < 8016;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) >0;

Registers Affected. RA, RA+1, CS, Pl

5.69. Extended Precision Floating Point Subtract

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R EFSR RARB | BB | RA | RB |
8 4 4 16
D EFS RA/ ADDR - --mmmmmm e
DX EFS RAADDRRX| BA | RA | RX | | ADDR |

Description. The extended precision floating point Derived
Operand, DO, is extended floating point subtracted from the
contents of registersRA, RA+1, and RA+2. Theresultisstored in
registers RA, RA+1, and RA+2. The process of this operationis
asfollows: The mantissa of the number with the smaller algebraic
exponent is shifted right and the exponent is incremented by one
for each bit shifted. When the exponents are equal, the mantissas
are subtracted. If the difference overflows the 39-bit mantissa, then
the difference is shifted right one position, the sign bit restored,
and the exponent is incremented. If the exponent exceeds 7F ¢ as
aresult of thisincrementation, overflow occurs and the operation
isterminated. If the difference does not result in exponent overflow,
theresult is normalized. If during the normalization process the
exponent is decremented below 804, then underflow occurs and
azeroisinserted for the result.

Register Transfer Description.

123

Chapter 5. Detailed Requirements

n=EA - EQ;
EA <-- EOQ,
if MA =0;

if OVM =1;

if EA < 8016;

MO <-- MO Shifted Right Arithmetic n positions,
if n>0and MA /=0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EQ,
ifn<0and MO /=0;

MA <-- MA - MO;

MA <-- MA Shifted Right Arithmetic 1 position, MAg <-- ~MAq, E

Ply <-- 1, EA <-- 7F15, MA <-- 7TFFF FF FFFFg, exit,
if EA >=7F;gand MAy=0;

Pl; <-- 1, EA <-- 7F5, MA <-- 8000 00 0000, exit,
if EA >= 7F16 and MAO = 1,

EA, MA <-- normalized EA, MA;

Plg <-- 1, EA <-- 0, MA <-- 0,

(CS) <-- 0010 if (RA,RA+LRA+2) = 0;
(CS) <-- 0001 if (RA,RA+1,RA+2) <O0;
(CS) <~ 0100 if (RA,RA+LRA+2) > 0;

A <-- E/

Registers Affected. RA, RA+1, RA+2, CS, PI

5.70. Floating Point Negate Register

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R FNEG RA RB | BC | RA | RB |
Description. The 24-bit mantissa of the Derived Operand, DO,

i.e., the floating point number in registers RB and RB+1, is2's
complemented. The exponent remains unchanged. The result, the
negative of the original number, is stored in RA and RA+1. The
2's complement of afloating point zero is afloating point zero.
Exceptions to this are all powers of two: -1.0 x 2" and 0.5 x 2™,

124

Single Precision Integer Multiply with 16-Bit Product

i.e., when the mantissa either 8000 00, or 4000 004¢. The negation
of 0.5x 2"is-1.0x 2™, i.e., the mantissais shifted | eft one position
and the exponent decremented by one. Conversely, the negation
of -1.0x 2"is0.5x 2™ i.e, the mantissa is shifted right one
position and the exponent is incremented by one. A floating point
overflow occurs for the negation of the smallest negative number,
-1.0 x 2'%7_ A floating point underflow occurs for the negation of
the smallest positive number, 0.5 x 2722, and causes the result to
be zero. The condition status, CS, is set based on the result in
registers RA and RA+1.

Note RA may equal RB.

Register Transfer Description.

Pl <-- 1, EA <-- 7TF15, MO <-- 7TFFF FFy, exit,
if DO = 8000 007F;
Pl3 <-- 1, EA <-- 0, MA <-- 0, exit,
if DO = 4000 00804g;
EA <-- EO+1, MA <-- 4000 004,
if MO = 8000 00,g;
EA <-- EO-1, MA <-- 8000 004,
if MO = 4000 00,g;
EA <-- EO, MA <-- -MO,
if MO /= 8000 00,5 or 4000 004;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, PI

5.71. Sngle Precision Integer Multiply with 16-Bit Product

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R MSR RA RB | C1L | RA | RB |

125

Chapter 5. Detailed Requirements

s 4 4

ISP MSP RAN |C2|RA|N-1| 1 <= N<=16
s 4 4

ISN MSN RAN |C3|RA|N-1| 1 <= N<=16
s 4 4 16

D MBS RAADDR = - semmmm e

DX M5 RAADRRX | @ | RA | RX | | ADDR |
s 4 4 18

M MSIM RADATA | 4A | RA | 4 | | DATA |

Description. The Derived Operand, DO, is multiplied by the

contents of register RA. The LSH of the result, a 16-bit, 2's
complement integer, isstored in register RA. The Condition Status,
CS, isset based ontheresult in register RA. A fixed point overflow
occursif (1) both operands are of the same sign and the MSH of
the product is not zero, or the sign hit of the LSH is not zero, or
(2) if the operands are of opposite sign and the M SH of the product
is not FFFFg, or the sign bit of the LSH is not one. A fixed point
overflow does not occur if either of the operandsis zero.

Register Transfer Description.

(RQ,RQ+1)! <-- (RA) x DO;

(RA)? < (RQ+1);

Pl, <1,
if {(RAQ)! = DOy and {(RQ) /= 0 or (RQ+1y) = 1}} or
{(RAo)! /= DOy and { (RQ) /= FFFF;¢ or (RQ+1,) = O} and
{(RA)!/=0and DO /= 0}};

(CS) <-- 0010 if (RA) =0;

(CS) <-- 0001 if (RA) <O0;

(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS, Pl

126

Single Precision Integer Multiply with 32-Bit Product

5.72. Sngle Precision Integer Multiply with 32-Bit Product

Addr
Mode

BX

DX

Mhenoni ¢ For mat / Opcode
8 4 4
MR RA, RB | G | RA | RB |

M8 BR DSPL | 1] 2| BR | DSPL |

MBX BR RX | 4] 0| BR | 6] RX|

MM RADATA | 4A | RA | 3 |

12<=BR<=15

BR =BR- 12
RA=R2
12<=BR<=15

BR =BR- 12
-R2
16

Description. The Derived Operand, DO, is multiplied by the
contents of register RA. Theresult, a32-bit, 2'scomplement integer,
is stored in registers RA and RA+1 with the MSH of the product
inregister RA. The Condition Status, CS, is set based on the result

in registers RA and RA+1.

SPECIAL CASE: DO=(RA) = 8000 (thelargest negative number),

then DO x (RA) = 4000 0000.

Register Transfer Description.

(RA,RA+1) <-- (RA) x DO;

(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

127

Chapter 5. Detailed Requirements

RegistersAffected. RA, RA+1, CS

5.73. Double Precision Integer Multiply

Addr
Mode

Mhenoni ¢ For mat / Opcode
8 4 4
DVR RA RB | C7 | RA | RB |
8 4 4 16
DM RAJADDR --iememmm e
DM RAADDRRX | G | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, a
32-hit 2's complement number, is multiplied by the contents of
registers RA and RA+1, a 32-bit 2's complement number, with the
MSH in RA. The LSH of the product isretained in RA and RA+1
as a 32-bit, 2's complement number. The MSH islost. The
Condition Status, CS, is set based on the double precision result
in registers RA and RA+1. A fixed point overflow occursif (1)
both operands are of the same sign and the MSH of the product is
not zero, or the sign bit of the LSH isnot zero, or (2) if the operands
are of opposite sign and the MSH of the product is not FFFF
FFFF6, or the sign bit of the LSH is not one. A fixed point
overflow does not occur if either of the operandsis zero.

Register Transfer Description.

(RQ,RQ+1,RQ+2,RQ+3) <-- (RA,RA+1)il x DO;
(RA,RA+1)? <-- (RQ+2,RQ+3);
Ply<-1,
if {(RAg)* = DO and { (RQ,RQ+1) /= 0 or (RQ+2) = 1}} or
{(RAo)* /= DOy and
{(RQ,RQ+1) /= FFFF FFFFg or (RQ+2g) = 0} and
{(RA)}/=0and DO /= 0}};
(CS) < 0010 if (RA,RA+1) = 0;

128

Floating Point Multiply

(CS) <-- 0001 if (RA,RA+1) < O;
(CS) <~ 0100 if (RA,RA+1) > O;

Registers Affected. RA, RA+1, CS, Pl

5.74. Floating Point Multiply

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R FMR RARB | O | RA | RB |
4 2 2 8 12<=BR<=15
B FMB BR, DSPL | 2] 2| BR | DSPL | BR =BR- 12
---------------------- RA=R0O
4 2 2 4 4 12<=BR<=15
BX FMBX BR RX | 41 0] BR | A| RX| BR=BR12
------------------------ RA=R0O
8 4 4 16
D FM RA ADDR - --mmmmmmmmmmmmmmmm e
DX FM RAADRRX | G | RA | RX | | ADDR |
Description. Thefloating point Derived Operand, DO, isfloating

point multiplied by the contents of register RA and RA+1. The
result is stored in register RA and RA+1. The process of the
operation is as follows: the exponents of the operands are added.
If the sum exceeds 7F¢, afloating point overflow occurs. If the
sum is less than 80,6, then underflow occurs and the result set to
zero. The operand mantissas are multiplied and the result
normalized and stored in RA and RA+1. An exceptional caseis
when both operands are negative powers of two: (-1.0x 2") x (-1.0
x 2™); the result isa 0.5 x 2™™ 2 If n+m = 7F ¢, this shall yield
an exponent overflow, floating point overflow occurs. Also, if is
possible that the normalization process may yield an exponent

129

Chapter 5. Detailed Requirements

underflow; if this occurs, then the result isforced to zero. The
condition status, CS, is set based on the result in RA and RA+1.

Register Transfer Description.

n=EA + EO;
if n>= 7F16 and MAO = MOO,

if n>= 7F16 and MAO /= MOO,
Plg <-- 1, EA <-- 0, MA <-- 0, exit,
ifn< 8016;
MP <-- MA x MO; (integer multiply)
MP <-- MP shift left 1 position;
n<-n+1,M Po_23 <-- 4000 0016’
if M P0_23 = 8000 0016;

if n>= 7F16 and MPO =0;

if n>= 7F16 and MPO =1;
n,MP <-- normalized n,MP;
Plg <-- 1, EA <-- 0, MA <-- 0, exit,
ifn< 8016;
EA <--n;
MA <-- MPO_23;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) >0;

Pl3 <-- 1, EA <-- 7F5, MA <-- TFFF FF, exit,

Pl3 <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,

Pl3 <-- 1, EA <-- 7F5, MA <-- 7TFFF FF, exit,

Pl3 <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,

Registers Affected. RA, RA+1, CS, Pl

5.75. Extended Precision Floating Point Multiply

Addr
Mode Mhenonic For mat / Qpcode

8 4 4
R EFMR RA RB | B | RA | RB |

130

Extended Precision Floating Point Multiply

D
DX

EFM
EFM

RA, ADDR == === mmmmmmmmmmnmmm e
RAADDRRX| CA | RA | RX | | ADR |

Description. Theextended precision floating Derived Operand,
DO, is extended floating point multiplied by the contents of
registers RA, RA+1, and RA+2. Theresult is stored in registers
RA, RA+1, and RA+2. The process of the operation is as follows:
the exponent of the operands are added. If the sum exceeds 7F ¢,
afloating point overflow occurs. If the sum isless than 804, then
underflow occurs and the result set to zero. The operand mantissas
are multiplied and the result normalized and stored in RA, RA+1,
and RA+2. The condition status, CS, is set based on theresult in
RA, RA+1, and RA+2.

Register Transfer Description.

n=EA + EO;

Pl3 <-- 1, EA <-- 7F5, MA <-- TFFF FF FFFFg, exit,
if n>= 7F16 and MAO = MOO,

Pl; <-- 1, EA <-- 7F;5, MA <-- 8000 00 00004, exit,
if n>= 7F16 and MAO /= MOO,

Plg <-- 1, EA <-- 0, MA <-- 0, exit,
ifn< 8016;

MP <-- MA x MO; (integer multiply)

MP <-- MP shift left 1 position;

n<--n+ 1, MP, 39 <-- 4000 00 00004,
if MPg.39 = 8000 00 00004g;

Pl3 <-- 1, EA <-- 7F5, MA <-- TFFF FF FFFFg, exit,
if n>= 7F16 and MPO =0;

Pl3 <-- 1, EA <-- 7F1,, MA <-- 8000 00 0000 , exit,
if n>= 7F16 and MPO =1;

n, MP <-- normalized n, MP;

Plg <-- 1, EA <-- 0, MA <-- 0,
ifn< 8016;

EA <--n;

MA <-- MPO_39;

(CS) <-- 0010 if (RA,RA+1,RA+2) =0;

131

Chapter 5. Detailed Requirements

(CS) <-- 0001 if (RA,RA+1,RA+2) <O0;
(CS) <~ 0100 if (RA,RA+LRA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.76. Sngle Precision Integer Divide with 16-Bit Dividend

Addr

Mbde Mhenonic For mat / Opcode
8 4 4

R DVR RARB | DL | RA | RB |
8 4 4

ISP DISP RAN | D2 | RA | N1| 1 <= N<=16
8 4 4

ISN DISN RAN | D3 | RA | N1| 1 <= N<=16
8 4 4 16

D Dv RA/ ADDR -smmmmimmmm e

DX Dv RAADDRRX | DO | RA | RX | | ADDR |
8 4 4 16

M DVIM RA, DATA | 4A | RA | 6 | | DATA |

Description. The contents of register RA are divided by the
Derived Operand, DO, asingle precision, 2's complement number.
The result is stored in registers RA and RA+1 such that RA stores
the single precisioninteger quotient and RA+1 storesthe remainder.
The Condition Status, CS, is set based on theresult in RA. A fixed
point overflow occursif the divisor, DO, is zero, or if the dividend
is 8000, and the divisor is FFFF4g.

132

Single Precision Integer Divide with 32-Bit Dividend

Note

sign of the dividend.

Register Transfer Description.

The sign of the non-zero remainder is the same as the

Pl <1,

(RA,RA+1) <-- (RA) / DO;

if DO=0or {RA =8000,¢ and DO = FFFF4¢};
(CS) <-- 0010 if (RA)=0;
(CS) <-- 0001 if (RA) <O0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RA+1, CS, Pl

5.77. Sngle Precision Integer Divide with 32-Bit Dividend

Addr
Mode

BX

DX

Mhenoni ¢

DR RA, RB
DB BR, DSPL
DBX BR RX

D RA, ADDR

DM RA DATA

For mat / Qpcode
8 4 4

4 2 2 8 12<=BR<=15
| 1] 3| BR | DSPL| BR =BR 12
______________________ RA=R2

4 2 2 4 4 12<=BR<=15
| 4] 0| BR | 7| RX| BR =BR12
________________________ =R2

8 4 4 16

8 4 4 16
| 4A | RA | 5 | | DATA |

133

Chapter 5. Detailed Requirements

Description. The contents of registers RA and RA+1, adouble
precision 2's complement number, are divided by the Derived
Operand, DO, asingle precision, 2's complement number. RA
contains the MSH of the 32-bit dividend. The result is stored in
registers RA and RA+1 such that RA stores the single precision
integer quotient and RA+1 stores the remainder. The Condition
Status, CS, is set based on theresult in RA. A fixed point overflow
occursif the divisor equals zero or if a positive quotient exceeds
7FFF¢ or anegative quotient is less than 80004¢.

Note The sign of the non-zero remainder is the same as that
of the dividend.

Register Transfer Description.

(RQ, RQ+1, RR) <-- (RA,RA+1) / DO;
Ply<--1,

if DO =0 or (RQ, RQ+1) > 0000 7FFF;5 or (RQ, RQ+1) < FFFF 80004¢
(RA) <-- (RQ+1)
(RA+1) <-- (RR)
(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <0;
(CS) <-- 0100 if (RA) >0;

Registers Affected. RA, RA+1, CS, PI

5.78. Double Precision Integer Divide

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R DDR RARB | D7 | RA | RB |
8 4 4 16
D DD RA ADDR - -mmmmmmmmmmm e
DX DD RAADDRRX | D6 | RA | RX | | ADDR |

134

Floating Point Divide

Description. The contents of registers RA and RA+1, adouble
precision 2's complement number, are divided by the Derived
Operand, DO, adouble precision 2's complement number. RA
contains the MSH of the 32-bit dividend. The quotient part of the
integer result is stored in registers RA and RA+1 (with the MSH
in RA) and the remainder is lost. The Condition Status, CS, is set
based on the resultsin registers RA and RA+1. A fixed point

overflow occurs if the divisor, DO, is zero, or if thedividend is
8000 0000, and the divisor is FFFF FFFF4g.

Register Transfer Description.

Pl <-1,

(RA,RA+1) <-- (RA,RA+1) / DO;

if DO =0 or {RA, RA+1 = 8000 00004 and DO = FFFF FFFFyg};
(CS) <-- 0010 if (RA,RA+1) = O;
(CS) <-- 0001 if (RA,RA+1) < O;
(CS) <-- 0100 if (RA,RA+1) > O;

Registers Affected. RA, RA+1, CS, Pl

5.79. Floating Point Divide

Addr
Mode

BX

Mhenoni ¢ For mat / Gpcode
8 4 4
FDR RARB | D9 | RA | RB |
4 2 2 8 12<=BR<=15
FDB BR, DSPL | 2| 3| BR | DSPL | BR =BR- 12
...................... RA=RO
4 2 2 4 4 12<=BR<=15
FDBX BR, RX | 4] 0] BR | B|] RX|] BR=BR12
........................ =RO
8 4 4 16
FD RA ADDR --mmmimmmmm e

135

Chapter 5. Detailed Requirements

Description. Thefloating point number in registers RA and
RA+1 isdivided by the floating point Derived Operand, DO. The
resultisstored in register RA and RA+1. A floating point overflow
occursif the exponent result exceeds 7F4 at any point in the
calculation process. Underflow occursif the exponent result isless
than 80,4 a any point in the process. If underflow occurs, then the
quotient isforced to zero. A divide by zero yields afloating point
overflow.

Register Transfer Description.

n=EA - EOQ;
n<--0,
ifMA=0

Pl3 <-- 1, EA <-- 7F5, MA <-- TFFF FF, exit,
if MAg=MQqand {n>=7F;5 or DO = 0};
Ply <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,
if MAg/=MQqand {n>= 7F;5 or DO = 0};
Plg <-- 1, EA <-- 0, MA <-- 0, exit,
ifn< 8016;
MQ <-- MA / MO;
MQ <-- MQ Shift Right Arithmetic 1 position, n <-- n+ 1,
if MQ >==1.0;

Pl3 <-- 1, EA <-- 7F5, MA <-- 7TFFF FF, exit,
if n>= 7F16 and MQO = O,

Pl <-- 1, EA <-- 7F15, MA <-- 8000 004, exit,
if n>= 7F16 and MQO = 1,

EA <--n;

MA <-- MQqp.23;

(CS) <-- 0010 if (RA,RA+1) =0;

(CS) <-- 0001 if (RA,RA+1) <O0;

(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, Pl

136

Extended Precision Floating Point Divide

5.80. Extended Precision Floating Point Divide

Addr
Mode

DX

Mhenoni ¢ For mat / Opcode
8 4 4
EFDR RARB | DB | RA | RB |
8 4 4 16

EFD RA ADDR =--smmmmmmmmmaiiaaa e
EFD RAADDRRX| DA | RA | RX | | ADDR |

Description. The contents of registers RA, RA+1, and RA+2
are extended precision floating point divided by the extended
precision floating point Derived Operand, DO. Theresult is stored
inregister RA, RA+1, and RA+2. A floating point overflow occurs
if the exponent result exceeds 7F¢ at any point in the calculation
process. Underflow occurs if the exponent result isless than 804¢
at any point in the process. If underflow occurs, then the quotient
isforced to zero. A divide by zero yields afloating point overflow.

Register Transfer Description.

n=EA - EQ;
n<--0,
if MA =0;

Ply <-- 1, EA <-- 7F15, MA <-- 7TFFF FF FFFFg, exit,
if MAO = MOO and {n >= 7F160r DO = 0},
Pl3 <-- 1, EA <-- 7F15, MA <-- 8000 00 000044, €xit,
if MAO /= MOO and {n >= 7F160r DO = 0},
Plg <-- 1, EA <-- 0, MA <-- 0, exit,
ifn< 8016;
MQ <-- MA / MO;
MQ <-- MQ Shift Right Arithmetic 1 position, n<-- n + 1,
if MQ>==1.0;

Pl <-- 1, EA <-- TF15, MA <-- 7TFFF FF FFFFyg, exit,

137

Chapter 5. Detailed Requirements

if n>= 7F16 and MQO = O,

Pl; <-- 1, EA <-- 7F;5, MA <-- 8000 00 00004, exit,
if n>= 7F16 and MQO = 1,

EA <--n;

MA <-- MQq.39;

(CS) <-- 0010 if (RA,RA+1,RA+2) =0;

(CS) <-- 0001 if (RA,RA+1,RA+2) <0;

(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

Registers Affected. RA, RA+1, RA+2, CS, PI

5.81. Inclusive Logical OR

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R ORR RARB | E1 | RA | RB |
4 2 2 8 12<=BR<=15
B ORB BRDSPL | 3| 0| BR | DSPL | BR =BR- 12
---------------------- RA=R2
4 2 2 4 4 12<=BR<=15
BX ORBX BR RX | 41 0] BR | F| RX| BR=BR12
------------------------ =R2
8 4 4 16
D R Y
DX R RAADDRRX| EO | RA | RX | | ADDR |
8 4 4 16
IM ORIM RADATA | 4A | RA | 8 | | DATA |
Description. TheDerived Operand, DO, isbit-by-bit inclusively

ORed with the contents of RA. The result isstored in register RA.
The condition status, CS, is set based on the result in register RA.

138

Logical AND

Register Transfer Description.

(RA) <-- (RA) v DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) <O;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA,CS

5.82. Logical AND

Addr
Mbde Mhenonic Format / Gpcode
8 4 4
R ANDR RA RB | E3 | RA | RB |
4 2 2 8 12<=BR<=15
B ANDB BR, DSPL | 3| 1| BR | DSPL | BR =BR- 12
---------------------- RA=R2
4 2 2 4 4 12<=BR<=15
BX ANDX BR, RX | 4] 0] BR | E| RX| BR=BR12
------------------------ =R2
8 4 4 16
D AND RA ADDR - - mmmmmmm o
DX AND RAADDR RX | E2 | RA | RX | | ADDR |
8 4 4 16
IM ANDM RA DATA | 4A | RA | 7 | | DATA |

Description. The Derived Operand, DO, is bit-by-bit ANDed
with the contents of register RA. The result is stored in register
RA. The condition status, CS, is set based on the result in register
RA.

139

Chapter 5. Detailed Requirements

Register Transfer Description.

(RA) <-- (RA) " DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) <O;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA,CS

5.83. Exclusive Logical OR

Addr
Mbde

Mhenoni ¢ For mat / Qpcode
8 4 4
XORR RA RB | E5 | RA | RB |
8 4 4 16
XOR RA, ADDR - mrmmmm e
XOR RAADDRRX | E4 | RA | RX | | ADDR |
8 4 4 16
XORM RA, DATA | 4A | RA | 9 | | DATA |

Description. The Derived Operand, DO, ishit-by-bit exclusively
ORed with the contents of RA. Theresult isstored in RA. The
condition status, CS, is set based on the result in RA.

Register Transfer Description.

(RA) <-- (RA) XOR DO;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <O;
(CS) <-- 0100 if (RA) >0;

Registers Affected. RA, CS

140

Logical NAND

5.84. Logical NAND

Addr
Mode

Mhenoni ¢ For mat / Opcode
8 4 4
NR RARB | E7 | RA | RB |
8 4 4 16
N RA, ADDR -mmmmmmm e
N RAVADDRRX | E6 | RA | RX | | ADDR |
8 4 4 16
N'M RA DATA | 4A | RA | B | | DATA |

Description. The Derived Operand, DO, is bit-by-bit logically
NANDed with the contents of register RA. Theresult isstored in
RA.

Note Thelogical NOT of aregister can beattained withaNR
instruction with RA = RB.

Register Transfer Description.

(RA) <-- ~((RA) " DO);

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <0;
(CS) <-- 0100 if (RA) >0;

Registers Affected. RA, CS

5.85. Convert Floating Point to 16-Bit Integer

Addr

141

Chapter 5. Detailed Requirements

Mbde Mhenonic For mat / Opcode
8 4 4
R FIX RARB | E8 | RA | RB |

Description. Theinteger portion of the floating point Derived
Operand, DO (i.e., the contents of registers RB and RB+1), isstored
into register RA. If the actual value of the DO floating point
exponent is greater than OF,6, then RA remains unchanged and a
fixed point overflow occurs. The condition status, CS, is set based
on theresultin RA.

Note The a gorithm truncates toward zero.

Register Transfer Description.

Pl, <-- 1, exit,

if EO > OFlG;
(RA) <-- Integer portion of DO;
(C9) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <O;
(C9) <-- 0100 if (RA) >0;

Registers Affected. RA, CS, Pl

5.86. Convert 16-Bit Integer to Floating Point

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R FLT RA RB | E9 | RA | RB |

Description. Theinteger Derived Operand, DO (i.e., the contents
of register RB), is converted to Single Precision floating point
format and stored in register RA and RA+1. The condition status,

142

Convert Extended Precision Floating Point to 32-Bit Integer

CS, is set based on theresultsin RA and RA+1. The operation
processis as follows: The exponent isinitially considered to be
OF6. Theinteger valuein RB isnormalized, i.e., the number isleft
shifted and the exponent decremented for each shift until the sign
bit and the next MSB are unequal, and the exponent and mantissa
stored in the proper fields of RA and RA+1.

Note RA may equal RB.

Register Transfer Description.

EA <-- 0, MA <-- 0, exit,

if (RB)=0;
EA <-- 0F16;
MA <-- (RB);
EA, MA <-- normaize EA, MA;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS

5.87. Convert Extended Precision Floating Point to 32-Bit Integer

Addr
Mode Mhenonic Format / Qpcode
8 4 4
R EFIX RA RB | EA | RA | RB |

Description. Theinteger portion of the floating point Derived
Operand, DO (i.e., the contents of registersRB, RB+1, and RB+2),
isstored into register RA and RA+1. If the actual value of the DO
floating point exponent is greater than 1F5, then RA and RA+1
remain unchanged and afixed point overflow occurs. The condition
status, CS, is set based on the result in RA and RA+1.

143

Chapter 5. Detailed Requirements

Note The agorithm truncates toward zero.

Register Transfer Description.

Pl, <-- 1, exit,

if EO >= 1Fyg;
(RA,RA+1) <-- Integer portion of DO;
(CS) <-- 0010 if (RA,RA+1) =0;
(CS) <-- 0001 if (RA,RA+1) <O0;
(CS) <-- 0100 if (RA,RA+1) > 0;

Registers Affected. RA, RA+1, CS, Pl

5.88. Convert 32-bit Integer to Extended Precision Floating Point

Addr
Mode Mhenonic For mat / Qpcode
8 4 4
R EFLT RARB | EB | RA | RB |

Description. The double precision integer Derived Operand,
DO (i.e., the contents of registers RB and RB+1), is converted to
Extended Precision floating point format and stored in register RA,
RA+1, and RA+2. The condition status, CS, is set based on the
resultin RA, RA+1, and RA+2. The operation processisasfollows:
The exponent isinitially considered to be 1F¢. The integer value
in RB, RB+1isnormalized, i.e., the number isleft shifted and the
exponent decremented for each shift until the sign bit and the next
MSB are unequal, and the exponent and mantissa stored in the
proper field of RA, RA+1, and RA+2.

Note RA may equal RB.

Register Transfer Description.

144

Exchange Bytes in Register

EA <-- 0, MA <-- 0, exit,

if (RB,RB+1) =0;
EA <-- 1F5, MA <-- (RB,RB+1);
EA, MA <-- normalized EA, MA;
(CS) <-- 0010 if (RA,RA+1,RA+2) =0;
(CS) <-- 0001 if (RA,RA+1,RA+2) <0;
(CS) <-- 0100 if (RA,RA+1,RA+2) > 0;

RegistersAffected. RA, RA+1, RA+2, CS

5.89. Exchange Bytes in Register

Addr
Mode

S

Mhenoni ¢ For mat / Opcode
8 4 4
XBR RA | EC | RA | 0 |

Description. The upper byte of register RA is exchanged with
the lower byte of register RA. The CSis set based on theresult in
register RA.

Register Transfer Description.

(RA)p.7 <-->= (RA)g.15;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) <O0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, CS

145

Chapter 5. Detailed Requirements

5.90. Exchange Words in Registers

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
R XWR RA RB | ED | RA | RB |

Description. The contents of register RA are exchanged with
the contents of register RB. The CSis set based on theresult in
register RA.

Register Transfer Description.

(RA) <-->=(RB);

(CS) <-- 0010 if (RA)=0;
(CS) <-- 0001 if (RA) <O0;
(CS) <-- 0100 if (RA) > 0;

Registers Affected. RA, RB, CS

5.91. Sngle Precision Compare

Addr
Mode Mhenonic Format / Qpcode

8 4 4
R CR RARB | F1L | RA | RB |

4 2 2 8 12<=BR<=15
B CB BR DSPL | 3] 2| BR | DSPL | BR =BR- 12

______________________ RA=R2

4 2 2 4 4 12<=BR<=15

BX CBX BRRX | 41 0] BR | C| RX| BR=BR12

146

Compare Between Limits

........................ RA=R2
8 4 4
ISP ISP RAN | F2 | RA | N1 | 1<=Nk=16
8 4 4
ISN CISN RAN | F3 | RA | N1 | 1<=Nk=16
8 4 4 16
D C RAADDR -mmmemmmmmmmmmmmm e
DX C RAADDRRX | FO | RA | RX | | ADDR |
8 4 4 16
IM COM RADATA | 4A | RA | A | | DATA |

Description. Thesingle precision Derived Operand, DO, is
compared to the contents of RA. Then, the Condition Status, CS,
is set based on whether the contents of RA isless than, equal to,
or greater than the DO. The contents of RA are unchanged.

Register Transfer Description.

(RA) : DG;

(CS) <-- 0010 if (RA) =DG;
(CS) <-- 0001 if (RA) <DQG;
(CS) <-- 0100 if (RA) > DOG;

Registers Affected. CS

5.92. Compare Between Limits

Addr
Mode Mhenonic For mat / Qpcode
8 4 4 16
D CBL RA ADDR --mmmmmmmm i

147

Chapter 5. Detailed Requirements

Description. The contents of register RA are compared to two
different sixteen bit derived operands, DO1 and DO2. The derived
operands, DO1 and DO2 arelocated at DA and DA+1, respectively,
and their values are defined such that DO1 <= DO2. The CSis set
based on the results. If the values for DO1 and DO2 are defined
incorrectly (that is, DO1 >= DO2), then CSis set to 1000.

Register Transfer Description.

(CS) <-- 1000 if DO1> D02, exit;
(CS) <-- 0001 if (RA) < DO1;

(CS) <- 0010 if DO1< (RA)<DO2;
(CS) <-- 0100 if (RA) > DO2;

Registers Affected. CS

5.93. Double Precision Compare

Addr
Mode

Mhenoni ¢ For mat / Qpcode
8 4 4
DCR RARB | F7 | RA | RB |
8 4 4 16
DC RAADDR --m-mmmmeme e
DC RAADRRX | F6 | RA | RX | | ADDR |

Description. The double precision Derived Operand, DO, is
compared to the contents of registers RA and RA+1 where RA
containsthe M SH of adouble precision word. Then, the Condition
Status, CS, is set based on whether the contents of RA, RA+1is
lessthan, equal to, or greater than the DO. The contents of RA and
RA+1 are unchanged.

148

Floating Point Compare

Register Transfer Description.

(RA,RA+1) : DO;

(CS) <-- 0010 if (RA,RA+1) =DO;
(CS) <-- 0001 if (RA,RA+1) <DO;
(CS) <-- 0100 if (RA,RA+1) >=DO0;

Registers Affected. CS

5.94. Floating Point Compare

Addr
Mbde Mhenonic Format / Gpcode
8 4 4
R FCR RA, RB | F9 | RA | RB |
4 2 2 8 12<=BR<=15
B FCB BR, DSPL | 3| 3| BR | DSPL | BR =BR- 12
---------------------- RA=R0O
4 2 2 4 4 12<=BR<=15
BX FCBX BR, RX | 41 0| BR | D| RX| BR =BR- 12
------------------------ =R0
4 8 8 16
D FC RA ADDR - - mmmmmmm o
DX FC RAJADDR RX | F8 | RA | RX | ADDR |

Description. The floating point number in registers RA and
RA+1 is compared to the floating point Derived Operand, DO.

Then, the Condition Status, CS, is set based on whether the contents

of RA, RA+1 islessthan, equal to, or greater than the DO. The

contents of RA and RA+1 are unchanged.
Note This instruction does not cause an overflow to occur.

Register Transfer Description.

149

Chapter 5. Detailed Requirements

(RA, RA+1) : DO;

(CS) <-- 0010 if (RA,RA+1) =DOC;
(CS) <-- 0001 if (RA,RA+1) <DO;
(CS) <-- 0100 if (RA,RA+1) >=DO;

Registers Affected. CS

5.95. Extended Precision Floating Point Compare

Addr
Mode

DX

Mhenoni ¢ For mat / Opcode
8 4 4
EFCR RARB | FB | RA | RB |
8 4 4 16
EFC RA, ADDR --eeemcmcccmcmmcciiicceii e ceeceeeee e
EFC RAADDRRX| FA | RA | RX | | ADDR |

Description. Theextended precision floating Derived Operand,
DO, iscompared to the contents of registersRA, RA+1, and RA+2
where RA contains the most significant 16-bits of the extended
precision floating point word. The condition status, CS, is set based
on whether the contents of RA, RA+1, and RA+2 are less than,
equal to or greater than the DO. The contents of RA, RA+1, and
RA+2 are unchanged.

Note This instruction does not cause overflow to occur.

Register Transfer Description.

(RA, RA+1, RA+2) : DO;

(CS) <-- 0010 if (RA, RA+1, RA+2) = DO;
(CS) <-- 0001 if (RA, RA+1, RA+2) < DO;
(CS) <-- 0100 if (RA, RA+1, RA+2) >=DO;

Registers Affected. CS

150

No Operation

5.96. No Operation

Addr
Mbde Mhenonic For mat / Opcode
8 4 4
S NCP | FF | 0O | 0 |
Description. No operation is performed.
Register Transfer Description.
None
Registers Affected. None
5.97. Break Point
Addr
Mode Mhenonic Format / Qpcode
8 4 4
S BPT | FF | F | F |
Description. Thisinstruction istypically used for halting the

processor during maintenance and diagnostic procedureswhen the
maintenance console is connected to the system. If the consoleis
not connected, thisinstruction istreated asaNOP (see Section 5.96,
“No Operation” [151]). Restarting the processor after a BPT can
only be done by: the maintenance console or the power on
sequence.

Register Transfer Description.

151

Chapter 5. Detailed Requirements

None

Registers Affected. None

5.98. Built-In-Function

Addr
Mbde Mhenonic For mat / Opcode
8 8
S BIF Op Ex. | 4F | Op. Ex. |

Description. Thisinstruction invokes special operations defined
by the user. Note that thisinstruction may use one or more
additional words immediately following it, the number and
interpretation of which are determined by the Op. Ex.

Register Transfer Description.

User defined.

152

| ndex

A BLE, 88
A, 107 BLT, 87
AB, 107 BNZ, 90
ABS, 110 BPT, 151
ABX, 107 BR, 86
AIM, 107
AISP, 107 C
AND, 139 C, 146
ANDB, 139 CB, 146
ANDM, 139 CBL, 147
ANDR, 139 CBX, 146
ANDX, 139 CIM, 146
AR, 107 CISN, 146
CISP, 146
B CR, 146
BEX, 87
BEZ, 86 D
BGE, 90 D, 133
BGT, 89 DABS, 110
BIF, 152 DAR, 111

153

Index

DB, 133
DBX, 133
DC, 148
DCR, 148
DD, 134
DDR, 134
DECM, 118
DIM, 133
DISN, 132
DISR, 132
DLR, 94
DM, 128
DMR, 128
DNEG, 119
DR, 133
DS, 120
DSAR, 80
DSCR, 82
DSLC, 74
DSLL, 70
DSLR, 79
DSR, 120
DSRA, 73
DSRL, 72
DST, 102
DSTB, 102
DSTI, 102
DSTX, 102
Dv, 132
DVIM, 132
DVR, 132

E

EFA, 114
EFAR, 114
EFC, 150
EFCR, 150
EFD, 137
EFDR, 137
EFIX, 143

EFL, 96
EFLT, 144
EFM, 130
EFMR, 130
EFS, 123
EFSR, 123
EFST, 104

F:

FA, 112
FAB, 112
FABS, 115
FABX, 112
FAR, 112
FC, 149
FCB, 149
FCBX, 149
FCR, 149
FD, 135
FDB, 135
FDBX, 135
FDR, 135
FIX, 141
FLT, 142
FM, 129
FMB, 129
FMBX, 129
FMR, 129
FNEG, 124
FS, 121
FSB, 121
FSBX, 121
FSR, 121

I
INCM, 109

J
JC, 83
JCl, 83

154

JS, 84

L

LLB, 97
LLBI, 97
LM, 95
LR, 93
LST, 91
LSTI, 91
LUB, 97
LUBI, 97

M

M, 127
MB, 127
MBX, 127
MIM, 127
MISN, 125
MISP, 125
MOV, 101
MR, 127
MS, 125
MSIM, 125
MSR, 125

N

N, 141
NEG, 119
NIM, 141
NOR, 151
NR, 141

@)

OR, 138
ORB, 138
ORBX, 138
ORIM, 138
ORR, 138

P
POPM, 98
PSHM, 106

R

RB, 62
RBI, 62
RBR, 62
RVBR, 65

S

S, 116
SAR, 76
SB, 61
SBB, 116
SBBX, 116
SBI, 61
SBR, 61
SCR, 78
SIM, 116
SISP, 116
SJS, 92
SLC, 69
SLL, 66
SLR, 75
SOJ, 85
SR, 116
SRA, 68
SRL, 67
SRM, 102
ST, 99
STB, 99
STBX, 99
STC, 100
STCI, 100
ST, 99
STLB, 105
STM, 103
STUB, 104
STUBI, 104

155

Index

SVBR, 64

T
TB, 63
TBI, 63
TBR, 63
TSB, 64
TVBR, 66

U
URS, 92

\Y
VIO, 60

X

XBR, 145
X10, 53
XOR, 140
XORM, 140
XORR, 140
XWR, 146

156

