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Foreword

In the foreword to the VAX Architecture Reference Manual, Sam Fuller, Digital’s Vice
President for Research and Architecture, wrote, “Computer design continues to be
a dynamic field; I expect we will see more rather than less change and innovation
in the decades ahead.” The Alpha Architecture Reference Manual demonstrates the
accuracy of that prediction.

Alpha follows VAX by about fifteen years. Those fifteen years have witnessed a torrent
of change in computer technology, one that shows no sign of abating:

» More than a 1000-fold increase in the performance of microprocessors

« More than a 1000-fold increase in the density of semiconductor memories
« More than a 500-fold increase in the density of magnetic storage devices
« More than a 100-fold increase in the speed of network connections

During the same period, the internal organization of computer systems has changed
as well, based on developments such as RISC architecture, symmetric multipro-
cessing, and coherent distributed systems. Moreover, the fundamental paradigms
of computing have changed not once, but several times, with the introduction of
personal computers, graphics workstations, local area networks, and client/server
computing.

These developments present an enormous challenge for computing in the 21st cen-
tury. Future computers will be called upon to solve problems of great scale and
complexity, worldwide, in a distributed manner. They will have to provide unprece-
dented performance, flexibility, reliability, and scalability in order to implement a
global infrastructure of information, and to give users an untrammeled window on
the world.

Alpha is Digital’s response to the challenges of 21st-century computing. It represents
the culmination of the company’s knowledge and belief about how the next genera-
tions of computers should be built. Alpha is based on a decade’s experimental and
engineering work in RISC architecture, high-speed implementation, software com-
patibility and migration, and system serviceability. It provides the foundation for
implementations ranging from mobile computing units to massively parallel super-
computers.

Alpha is designed to handle the largest computing problems of today and tomorrow.
When the Alpha architecture is compared to its predecessor, the VAX architecture,
two differences stand out immediately. First, Alpha is a 64-bit architecture; VAX is
a 32-bit architecture. This means that Alpha’s virtual address extends to a 64-bit
linear range of bytes in memory. Supporting this extended virtual address space
are an extended maximum physical address range (up to 48 bits) and larger pages
(8KB to 64KB). Alpha’s extended virtual address range allows direct manipulation

vii



viii

of the gigabytes and terabytes of data produced in electrical and mechanical design,
database and transaction processing, and imaging.

Second, Alpha is a RISC architecture; VAX is a CISC architecture. RISC stands for
Reduced Instruction Set Computer, CISC for Complex Instruction Set Computer.
RISC architectures are characterized by simple, fixed-length instruction formats;
a small number of addressing modes; large register files; a load-store instruction
set model; and direct hardware execution of instructions. CISC architectures are
characterized by variable-length instruction formats; a large number of addressing
modes; small-to-medium-sized register files; a full set of register-to-memory (or
even memory-to-memory) instructions; and microcoded execution of instructions.
Alpha’s streamlined organization facilitates high-speed implementation in a variety
of technologies, while providing strong compatibility with today’s programs and data.

The following tabulation contrasts the architectural differences between VAX and
Alpha:

VAX Alpha
Architecture CISC RISC
Virtual address range 32 bits Up to 64 bits
Physical address range Up to 32 bits Up to 48 bits
Page size 512 bytes 8KB—-64KB
Instruction lengths 1-51 bytes 4 bytes
General registers 16 x 32 bits 64 x 64 bits
Addressing modes 21 3
Instruction set architecture General Load-store
Directly supported data types Integer, floating, bit Integer, floating

field, queue, character
string, decimal string

This book is the culmination of an effort begun three years ago. In that time, Alpha
has grown from a paper specification to a cohesive set of chips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of many
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing.
This book is documentation of, and a tribute to, the outstanding work they have
done.

Bob Supnik
Corporate Consultant,
Vice President

Foreword



Preface

The Alpha architecture is a RISC architecture that was designed for high per-
formance and longevity. Following Amdahl, Blaauw, and Brooks,! we distinguish
between architecture and implementation:

« Computer architecture is defined as the attributes of a computer seen by a machine-
language programmer. This definition includes the instruction set, instruction
formats, operation codes, addressing modes, and all registers and memory locations
that may be directly manipulated by a machine-language programmer.

« Implementation is defined as the actual hardware structure, logic design, and data-
path organization.

This architecture book describes the required behavior of all Alpha implementations,
as seen by the machine-language programmer. The architecture does not speak to
implementation considerations such has how fast a program runs, what specific
bit pattern is left in a hardware register after an unpredictable operation, how
to schedule code for a particular chip, or how to wire up a given chip; those
considerations are described in implementation-specific documents.

Various Alpha implementations are expected over the coming years, starting with
the Digital 21064 chip.

Goals

When we started the Alpha project in the fall of 1988, we had a small number of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migration from VAX (and soon-to-be MIPS) customer base

As principal architects, Rich Witek and I made design decisions that were driven
directly by these goals.

We assumed that high performance was needed to make a new architecture attractive
in the marketplace, and to keep Digital competitive.

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements
that we thought would become limitations during this time. The design horizon
led directly to the conclusion that Alpha could not be a 32-bit architecture: 32-
bit addresses will be too small within 10 years. We thus adopted a full 64-bit

1. Amdahl, G.M,, G.A. Blaauw, and F.P. Brooks, Jr. “Architecture of the IBM System/360.” IBM
Journal of Research and Development, vol. 8, no. 2 (April 1964): 87-101.
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architecture, with a minimal number of 32-bit operations for backward compatibility.
Wherever possible, 32-bit operands are put in registers in a 64-bit canonical form
and operated upon with 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years. Over the past 25 years, computers have become
about 1000 times faster. This suggested to us that Alpha implementations would
need to do the same, or we would have to bet that the industry would fall off the
historical performance curve. We were unwilling to bet against the industry, and
were unwilling to ignore the issue, so we seriously examined the consequences of
longevity.

We thought that it would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of 100 over the past 25 years, but physical limits are now
slowing down the rate of increase.)

We concluded that the remaining factor of 100 would have to come from other
design dimensions. If you cannot make the clock faster, the next dimension is to
do more work per clock cycle. So the Alpha architecture is focused on allowing
implementations that issue many instructions every clock cycle. We thought that
it would be realistic for implementors to achieve about a factor of 10 over 25 years
by using multiple instruction issue, but not a factor of 100. Even a factor of 10 will
require perhaps a decade of compiler research.

We concluded that the remaining factor of 10 would have to come from some other
design dimension. If you cannot make the clock faster, and cannot do more work per
clock, the next dimension is to have multiple clocked instruction streams, that is,
multiple processors. So the Alpha architecture is focused on allowing implementa-
tions that apply multiple processors to a single problem. We thought that it would
be realistic for implementors to achieve the remaining factor of 10 over 25 years by
using multiple processors.

Overall, the factor-of-1000 increase in performance looked reasonable, but required
factor-of-10 increases in three different dimensions. These three dimensions therefore
formed part of our design framework:

« Gracefully allow fast cycle-time implementations
« Gracefully allow multiple-instruction-issue implementations

« Gracefully allow multiple-processor implementations

The cycle-time goal encouraged us to keep the instruction definitions very simple, and
to keep the interactions between instructions very simple. The multiple-instruction-
issue goal encouraged us to eliminate specialized registers, architected delay slots,
precise arithmetic traps, and byte writes (with their embedded read-modify-write
bottleneck). The multiple-processor goal encouraged us to consider the memory model
and atomic-update primitives carefully. We adopted load-locked/store-conditional
sequences as the atomic-update primitive, and eliminated strict read-write ordering
between processors.

All of the above design decisions were driven directly by the performance and
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longevity goals. The lack of byte writes, precise arithmetic traps, and multiprocessor
read/write ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To run both OpenVMS and UNIX without burdening the hardware implementa-
tions with elaborate (and sometimes conflicting) operating system underpinnings,
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for interrupt delivery and return, exceptions, context switching, memory
management, and error handling in a set of privileged software subroutines called
PALcode (privileged architecture library code). PALcode subroutines have controlled
entries, run with interrupts turned off, and have access to real hardware (implemen-
tation) registers. By having different sets of PALcode for different operating systems,
the architecture itself is not biased toward a specific operating system or computing
style.

PALcode allowed us to design an architecture that could run OpenVMS gracefully
without elaborate hardware and without massively rewriting the VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha architecture support some
complex VAX primitives (such as the interlocked queue instructions) that are heavily
used by OpenVMS, without burdening a UNIX implementation in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of “compatibility mode” hardware, because they would have severely
compromised the performance and time-to-market of the first implementation. After
some experimentation, we adopted the strategy of running existing binary code by
building software translators. One translator converts OpenVMS VAX images to
functionally identical OpenVMS Alpha images. A second translator converts MIPS
ULTRIX images to functionally identical DEC OSF/1 Alpha images.

Fundamentally, PALcode gave us a migration path for existing operating systems,
and the translators (and native compilers) gave us a migration path for existing
user-mode code. PALcode and the translators provided a clean sheet of design paper
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point
formats (included for good business reasons, but subsettable later), no specific VAX
or MIPS features are carried directly into the Alpha architecture for compatibility
reasons.

These considerations substantially shaped the architecture described in the rest of
this book.

Organization

The first part of this book describes the instruction-set architecture, and is largely
self-contained for readers who are involved with compilers or with assembly language
programming. The second and third parts describe the supporting PALcode routines
for each operating system—the specific operating system PALcode architecture.

Acknowledgments

My collaboration with Rich Witek over the past few years has been extremely
rewarding, both personally and professionally. By combining our backgrounds and
viewpoints, we have produced an architecture that is substantially better than either
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Three people have especially influenced my views of computer architecture, through
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Richard L. Sites
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A Note on the Structure of This Book

The Alpha Architecture Reference Manual is divided into three parts, three ap-
pendixes, and an index. Each part describes a major portion of the Alpha architecture.
Each contains its own table of contents.

The following tabulation outlines the book’s contents:

Name Contents

Part I Common Architecture
This part describes the instruction-set architecture that is common to
and required by all implementations.

Part II OpenVMS Alpha Software
This part describes how the OpenVMS operating system relates to the
Alpha architecture.

Part III DEC OSF/1 Alpha Software
This part describes how the DEC OSF/1 operating system relates to the
Alpha architecture.

Appendixes The appendixes describe implementation considerations, IEEE floating-
point conformance, and instruction encodings.

Index Index entries are called out by the symbol (I), (II), or (III). Each symbol is
associated with the corresponding Part. Index entries for the appendixes
are called out by appendix name and page number.
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Part |

Common Architecture

This part describes the common Alpha architecture
and contains the following chapters:

. Introduction

. Basic Architecture

. Instruction Formats

. Instruction Descriptions

o s N -

. System Architecture and Programming
Implications

6. Common PALcode Architecture

7. Console Subsystem Overview

8. Input/Output
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Chapter 1
Introduction ()

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and
all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations

The instructions are very simple. All instructions are 32 bits in length. Memory
operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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Alpha’s Approach to Byte Manipulation
The Alpha architecture does byte shifting and masking with normal 64-bit register-
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

* Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

* Alpha’s approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

* Alpha’s approach can make it easier to pipeline multiple byte operations.

Alpha’s Approach to Arithmetic Traps

Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise—they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha’s Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

e (Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

* There are prefetching hints for the memory system that can allow much higher
cache hit rates.
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¢ There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version of PALcode lets Alpha implementations run the full OpenVMS operating
system by mirroring many of the OpenVMS VAX features. The OpenVMS PALcode
instructions let Alpha run OpenVMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/1 operating
system by mirroring many of the RISC ULTRIX features. Other versions of PAlLcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

¢ Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

e Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview
Alpha is a load/store RISC architecture with the following data characteristics:
e All operations are done between 64-bit registers.
¢ Memory is accessed via 64-bit virtual little-endian byte addresses.
* There are 32 integer registers and 32 floating-point registers.

¢ Longword (32-bit) and quadword (64-bit) integers are supported.

Introduction (I) 1-3



