


Alpha 
Architecture 
Reference 
Manual 



This page intentionally left blank



Contributing Authors 

Richard Witek 
Alpha co-architect 

and 
Ellen M. Batbouta 
Richard A. Brunner 
Wayne M. Cardoza 
Daniel W. Dobberpuhl 
Robert A. Giggi 
Henry N. Grieb 
Richard B. Grove 
Robert H. Halstead, Jr. 
Michael S. Harvey 
Nancy P. Kronenberg 
Raymond J. Lanza 
Stephen J. Morris 
William B. Noyce 
Charles G. Nylander 
Mary H. Payne 
Audrey R. Reith 
Robert M. Supnik 
Benjamin J. Thomas 
Catharine Van Ingen 

α 

Alpha 
Architecture 
Reference 
Manual 

Edited by 

Richard L. Sites 
Alpha co-architect 

EHHUDSD D I G I T A L P R E S S 



Copyright © 1992 by Digital Equipment Corporation 

All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by 
any means, electronic, mechanical, photocopying, recording, or 
otherwise, without prior written permission of the publisher. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1 

Order number EY-L520E-DP 
ISBN 1-55558-098-X 

Technical Writer: Charles Greenman 
Production Editor: Kathe Rhoades 
Technical Illustrator: Lynne Kenison 
Cover Design: Marshall Henrichs 

The following are trademarks of Digital Equipment Corporation: 
DEC, the Digital logo, OpenVMS, PALcode, PDP-11, VAX, VMS, 
and ULTRIX. Cray is a registered trademark of Cray Research, Inc. 
IBM is a registered trademark of International Business Machines 
Corporation. OSF/1 is a registered trademark of Open Software 
Foundation, Inc. UNIX is a registered trademark of UNIX System 
Laboratories, Inc. 

Digital believes the information in this book is accurate as of its 
publication date; such information is subject to change without 
notice. Digital is not responsible for any inadvertent errors. 



Contents 

Foreword 

Preface 

Part I / Common Architecture 

1 In t roduc t i on 

2 Bas ic Arch i t e c tu r e 

3 I n s t r u c t i o n F o r m a t s 

4 I n s t r u c t i o n Desc r ip t ions 

5 S y s t e m Arch i t ec tu r e a n d P r o g r a m m i n g Impl i ca t ions 

6 C o m m o n PALcode A r c h i t e c t u r e 

7 Console S u b s y s t e m Overv iew 

8 I n p u t / O u t p u t 

Part II / OpenVMS Alpha Software 

1 In t roduc t ion to O p e n V M S A l p h a 

2 O p e n V M S PALcode I n s t r u c t i o n Descr ip t ions 

3 O p e n V M S M e m o r y M a n a g e m e n t 

4 O p e n V M S Process S t r u c t u r e 

5 O p e n V M S I n t e r n a l Processor Reg i s t e r s 

6 O p e n V M S Excep t ions , I n t e r r u p t s , a n d M a c h i n e C h e c k s 

Part III / DEC OSF/1 Alpha Software 

1 In t roduc t ion to D E C OSF/1 A l p h a 

2 OSF/1 PALcode I n s t r u c t i o n Desc r ip t ions 

3 OSF/1 M e m o r y M a n a g e m e n t 

4 OSF/1 Process S t r u c t u r e 

5 OSF/1 Excep t ions a n d I n t e r r u p t s 

ν 



Appendixes 

A Software Cons ide ra t ions 

Β I E E E F loa t ing-Po in t Conformance 

C In s t ruc t i on Encod ings 

Index 

vi Contents 



Foreword 

In the foreword to the VAX Architecture Reference Manual, Sam Fuller , Digital 's Vice 
Pres iden t for Research a n d Archi tecture , wrote, "Computer design continues to be 
a dynamic field; I expect we will see more r a t h e r t h a n less change and innovation 
in t he decades ahead." The Alpha Architecture Reference Manual demons t ra tes the 
accuracy of t h a t prediction. 

Alpha follows VAX by about fifteen years . Those fifteen years have witnessed a to r ren t 
of change in computer technology, one t h a t shows no sign of abat ing: 

• More t h a n a 1000-fold increase in t he performance of microprocessors 

• More t h a n a 1000-fold increase in t h e densi ty of semiconductor memories 

• More t h a n a 500-fold increase in t he densi ty of magnet ic s torage devices 

• More t h a n a 100-fold increase in t h e speed of ne twork connections 

Dur ing the same period, the in te rna l organizat ion of computer sys tems h a s changed 
as well, based on developments such as RISC archi tecture , symmetr ic mult ipro-
cessing, and coherent d is t r ibuted systems. Moreover, t he fundamenta l paradigms 
of computing have changed not once, bu t several t imes , wi th t h e introduction of 
personal computers , graphics worksta t ions , local a rea networks , and client/server 
computing. 

These developments p resen t an enormous challenge for computing in t he 21st cen-
tury . F u t u r e computers will be called upon to solve problems of g rea t scale and 
complexity, worldwide, in a dis t r ibuted manner . They will have to provide unprece-
dented performance, flexibility, reliability, and scalability in order to implement a 
global infras t ructure of information, and to give users a n u n t r a m m e l e d window on 
the world. 

Alpha is Digital 's response to t he challenges of 21st-century computing. I t represents 
t h e culminat ion of t h e company's knowledge and belief about how t h e next genera-
t ions of computers should be built . Alpha is based on a decade's exper imenta l and 
engineering work in RISC archi tecture , high-speed implementa t ion, software com-
patibil i ty and migrat ion, and sys tem serviceability. I t provides t he foundation for 
implementa t ions rang ing from mobile computing un i t s to massively paral lel super-
computers . 

Alpha is designed to handle the largest computing problems of today a n d tomorrow. 
When the Alpha archi tecture is compared to i ts predecessor, t he VAX archi tecture, 
two differences s t and out immediately. Fi rs t , Alpha is a 64-bit archi tecture; VAX is 
a 32-bit archi tecture . This m e a n s t h a t Alpha 's v i r tua l address extends to a 64-bit 
l inear range of bytes in memory. Suppor t ing th is extended vi r tua l address space 
a re a n extended m a x i m u m physical address range (up to 48 bits) and larger pages 
(8KB to 64KB). Alpha's extended v i r tua l address r ange allows direct manipula t ion 

vii 



of the gigabytes and terabytes of da t a produced in electrical and mechanical design, 
da tabase and t ransact ion processing, and imaging. 

Second, Alpha is a RISC archi tecture; VAX is a CISC archi tecture . RISC s tands for 
Reduced Instruct ion Set Computer , CISC for Complex Instruct ion Set Computer . 
RISC archi tectures a re characterized by simple, fixed-length instruct ion formats; 
a small number of address ing modes; large register files; a load-store instruct ion 
set model; and direct ha rdware execution of instruct ions. CISC archi tectures are 
characterized by variable-length instruct ion formats; a large number of address ing 
modes; small-to-medium-sized register files; a full set of register-to-memory (or 
even memory-to-memory) instruct ions; and microcoded execution of instruct ions. 
Alpha's s t reamlined organization facilitates high-speed implementa t ion in a variety 
of technologies, while providing s t rong compatibility wi th today's programs and da ta . 

The following tabula t ion contras ts the archi tectural differences between VAX and 
Alpha: 

Architecture 

Virtual address range 

Physical address range 

Page size 

Instruction lengths 

General registers 

Addressing modes 

Instruction set architecture 

Directly supported data types 

VAX 

CISC 

32 bits 

Up to 32 bits 

512 bytes 

1-51 bytes 

16 χ 32 bits 

21 

General 

Integer, floating, bit 
field, queue, character 
string, decimal string 

Alpha 

RISC 

Up to 64 bits 

Up to 48 bits 

8KB-64KB 

4 bytes 

64 χ 64 bits 

3 

Load-store 

Integer, floating 

This book is the culmination of an effort begun th ree years ago. In t h a t t ime, Alpha 
h a s grown from a paper specification to a cohesive set of chips, systems, and software, 
spanning the computer spectrum. This achievement is due to the efforts of m a n y 
hundreds of people in Engineering, Market ing , Sales, Service, and Manufactur ing. 
This book is documentat ion of, and a t r ibute to, t he ou ts tanding work they have 
done. 

Bob Supnik 
Corporate Consul tant , 
Vice Pres ident 

Foreword viii 



Preface 

The Alpha archi tecture is a RISC archi tecture t h a t was designed for high per-
formance and longevity. Following Amdahl , Blaauw, and Brooks,

1
 we dist inguish 

between archi tecture and implementa t ion: 

• Computer archi tecture is defined as t h e a t t r ibu tes of a computer seen by a machine-
language programmer . This definition includes t he ins t ruct ion set, instruct ion 
formats, operat ion codes, address ing modes, and all regis ters and memory locations 
t h a t m a y be directly manipu la ted by a machine- language programmer . 

• Implementa t ion is defined as the actual h a r d w a r e s t ruc ture , logic design, and data-
p a t h organization. 

This archi tecture book describes the required behavior of all Alpha implementa t ions , 
as seen by the machine- language programmer . The archi tecture does not speak to 
implementa t ion considerations such h a s how fast a p rogram r u n s , w h a t specific 
bit p a t t e r n is left in a h a r d w a r e regis ter after a n unpredictable operation, how 
to schedule code for a par t icu lar chip, or how to wire up a given chip; those 
considerations a re described in implementation-specific documents . 

Various Alpha implementa t ions a re expected over t he coming years , s t a r t ing wi th 
t he Digital 21064 chip. 

Goals 

When we s ta r ted the Alpha project in the fall of 1988, we h a d a small n u m b e r of 
goals: 

1. High performance 

2. Longevity 

3. Run VMS and UNIX 

4. Easy migrat ion from VAX (and soon-to-be MIPS) customer base 

As principal architects , Rich Witek and I m a d e design decisions t h a t were driven 
directly by these goals. 

We assumed t h a t h igh performance was needed to m a k e a new archi tecture a t t ract ive 
in the marketp lace , and to keep Digital competitive. 

We set a 15 -25 year design horizon (longevity) and t r ied to avoid any design e lements 
t h a t we thought would become l imitat ions dur ing th i s t ime. The design horizon 
led directly to t he conclusion t h a t Alpha could not be a 32-bit archi tecture: 32-
bit addresses will be too small wi th in 10 years . We t h u s adopted a full 64-bit 

1. Amdahl, G.M., G A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/SeO." IBM 
Journal of Research and Development, vol. 8, no. 2 (April 1964): 87-101. 

ix 



archi tecture, wi th a minimal number of 32-bit operat ions for backward compatibility. 
Wherever possible, 32-bit operands a re pu t in regis ters in a 64-bit canonical form 
and operated upon wi th 64-bit operations. 

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years . Over the pas t 25 years , computers have become 
about 1000 t imes faster. This suggested to us t h a t Alpha implementa t ions would 
need to do the same, or we would have to bet t h a t t he indus t ry would fall off t he 
historical performance curve. We were unwill ing to bet agains t t he industry , and 
were unwill ing to ignore the issue, so we seriously examined the consequences of 
longevity. 

We thought t h a t i t would be realistic for implementors to improve clock speeds by 
a factor of 10 over 25 years , bu t not by a factor of 100 or 1000. (Clock speeds have 
improved by about a factor of 100 over the pas t 25 years , bu t physical l imits are now 
slowing down the r a t e of increase.) 

We concluded t h a t the remain ing factor of 100 would have to come from other 
design dimensions. If you cannot m a k e the clock faster, t he next dimension is to 
do more work per clock cycle. So the Alpha archi tecture is focused on allowing 
implementat ions t h a t issue m a n y instruct ions every clock cycle. We thought t h a t 
it would be realistic for implementors to achieve about a factor of 10 over 25 years 
by us ing mult iple instruct ion issue, bu t not a factor of 100. Even a factor of 10 will 
require perhaps a decade of compiler research. 

We concluded t h a t the remain ing factor of 10 would have to come from some other 
design dimension. If you cannot m a k e the clock faster, and cannot do more work per 
clock, the next dimension is to have mult iple clocked instruct ion s t reams , t h a t is, 
mult iple processors. So the Alpha archi tecture is focused on allowing implementa-
tions t h a t apply mult iple processors to a single problem. We thought t h a t it would 
be realistic for implementors to achieve the remain ing factor of 10 over 25 years by 
us ing mult iple processors. 

Overall , the factor-of-1000 increase in performance looked reasonable, bu t required 
factor-of-10 increases in th ree different dimensions. These th ree dimensions therefore 
formed pa r t of our design framework: 

• Gracefully allow fast cycle-time implementa t ions 

• Gracefully allow multiple-instruction-issue implementa t ions 

• Gracefully allow multiple-processor implementa t ions 

The cycle-time goal encouraged us to keep the instruct ion definitions very simple, and 
to keep the interact ions between instruct ions very simple. The multiple-instruction-
issue goal encouraged us to el iminate specialized registers , architected delay slots, 
precise ar i thmet ic t r aps , and byte wri tes (with the i r embedded read-modify-write 
bottleneck). The multiple-processor goal encouraged us to consider the memory model 
and atomic-update primit ives carefully. We adopted load-locked/store-conditional 
sequences as the atomic-update primitive, and el iminated strict read-wri te ordering 
between processors. 

All of the above design decisions were driven directly by the performance and 

χ Preface 



longevity goals. The lack of byte wri tes , precise ar i thmet ic t r aps , and multiprocessor 
read/wri te ordering have been the most controversial decisions, so far. 

Clean Sheet of Paper 

To r u n both OpenVMS and UNIX wi thout burden ing the h a r d w a r e implementa-
tions wi th elaborate (and sometimes conflicting) operat ing system underpinnings , 
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for in te r rup t delivery and r e tu rn , exceptions, context switching, memory 
managemen t , and error hand l ing in a set of privileged software subrout ines called 
PALcode (privileged archi tecture l ibrary code). PALcode subrout ines have controlled 
ent r ies , r u n wi th in t e r rup t s t u r n e d off, and have access to real h a r d w a r e (implemen-
tat ion) registers . By having different sets of PALcode for different operat ing systems, 
the archi tecture itself is not biased toward a specific operat ing system or computing 
style. 

PALcode allowed us to design an archi tecture t h a t could r u n OpenVMS gracefully 
wi thout e laborate ha rdware and wi thout massively rewri t ing t he VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha archi tecture support some 
complex VAX primit ives (such as t he interlocked queue instruct ions) t h a t a re heavily 
used by OpenVMS, wi thout burden ing a UNIX implementa t ion in any way. 

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected 
various forms of "compatibility mode" ha rdware , because they would have severely 
compromised the performance and t ime-to-market of t he first implementat ion. After 
some experimentat ion, we adopted the s t ra tegy of runn ing exist ing b inary code by 
building software t rans la tors . One t r ans la to r converts OpenVMS VAX images to 
functionally identical OpenVMS Alpha images. A second t r ans la to r converts MIPS 
U L T R K images to functionally identical DEC OSF/1 Alpha images. 

Fundamenta l ly , PALcode gave us a migrat ion pa th for exist ing operat ing systems, 
and the t rans la to rs (and nat ive compilers) gave us a migrat ion pa th for existing 
user-mode code. PALcode and the t r ans la to r s provided a clean sheet of design paper 
for the bulk of the Alpha archi tecture . Othe r t h a n an ext ra set of VAX floating-point 
formats (included for good business reasons , bu t subset table later) , no specific VAX 
or MIPS features a re carried directly into t he Alpha archi tecture for compatibility 
reasons. 

These considerations substant ia l ly shaped the archi tecture described in the res t of 
th is book. 

Organization 

The first p a r t of th is book describes t he instruct ion-set archi tecture , and is largely 
self-contained for readers who a re involved wi th compilers or wi th assembly language 
programming. The second and th i rd pa r t s describe the support ing PALcode rout ines 
for each operat ing sys tem—the specific opera t ing system PALcode archi tecture. 

Acknowledgments 

My collaboration wi th Rich Witek over the pas t few years ha s been extremely 
rewarding, both personally and professionally. By combining our backgrounds and 
viewpoints, we have produced an archi tecture t h a t is substant ia l ly be t te r t h a n ei ther 
of u s could have produced alone. T h a n k you, Rich. 

Preface xi 



A work of th is magni tude cannot be done on a shoestr ing or in isolation. Rich and 
I were blessed wi th a rich environment of dozens and la ter hundreds of bright , 
thoughtful, and outspoken professional peers . I t h a n k the managemen t of Digital 
Equipment Corporation for providing t h a t rich environment , and those peers for 
mak ing the archi tecture so much more robust and well-considered. 

Three people have especially influenced my views of computer archi tecture , th rough 
personal interact ion and l a n d m a r k machine design: Fred Brooks, J o h n Cocke, and 
Seymour Cray. This work is buil t directly upon thei rs , and could not exist without 
them. 

The organization, editing, and production of th is text in final form is largely the work 
of Charl ie Greenman, whose clear wri t ing is much appreciated. 

Richard L. Sites 
May 1992 

xii Preface 



A Note on the Structure of This Book 

The Alpha Architecture Reference Manual is divided into th ree pa r t s , th ree ap-
pendixes, and an index. Each pa r t describes a major portion of the Alpha archi tecture. 
Each contains i ts own table of contents . 

The following tabula t ion outl ines the book's contents: 

Name Contents 

Par t I Common Architecture 

This part describes the instruction-set architecture tha t is common to 
and required by all implementations. 

Par t II OpenVMS Alpha Software 

This part describes how the OpenVMS operating system relates to the 
Alpha architecture. 

Par t III DEC OSF/1 Alpha Software 

This par t describes how the DEC OSF/1 operating system relates to the 
Alpha architecture. 

Appendixes The appendixes describe implementation considerations, IEEE floating-
point conformance, and instruction encodings. 

Index Index entries are called out by the symbol (I), (II), or (III). Each symbol is 
associated with the corresponding Part . Index entries for the appendixes 
are called out by appendix name and page number. 

xiii 



This page intentionally left blank



Parti Common Architecture 

Thi s p a r t descr ibes t h e common A l p h a a r c h i t e c t u r e 
a n d c o n t a i n s t h e following c h a p t e r s : 

1. I n t roduc t i on 

2. Bas ic A r c h i t e c t u r e 

3 . I n s t r u c t i o n F o r m a t s 

4. I n s t r u c t i o n Descr ip t ions 

5. S y s t e m A r c h i t e c t u r e a n d P r o g r a m m i n g 
Impl i ca t ions 

6. C o m m o n PALcode Arch i t e c tu r e 

7. Console S u b s y s t e m Overv iew 

8. I n p u t / O u t p u t 



This page intentionally left blank



Contents 

Common Architecture (I) 

Chapter 1 Introduction (I) 

1.1 The Alpha Approach to RISC Architecture 1-1 
1.2 Data Format Overview 1-3 
1.3 Instruction Format Overview 1-4 
1.4 Instruction Overview 1-5 
1.5 Instruction Set Characteristics 1-6 
1.6 Terminology and Conventions 1-7 
1.6.1 Numbering 1-7 
1.6.2 Security Holes 1-7 
1.6.3 UNPREDICTABLE and UNDEFINED 1-7 
1.6.4 Ranges and Extents 1-8 
1.6.5 ALIGNED and UNALIGNED 1-8 
1.6.6 Must Be Zero (MBZ) 1-9 
1.6.7 Read As Zero (RAZ) 1-9 
1.6.8 Should Be Zero (SBZ) 1-9 
1.6.9 Ignore (IGN) 1-9 
1.6.10 Implementation Dependent (IMP) 1-9 
1.6.11 Figure Drawing Conventions 1-9 
1.6.12 Macro Code Example Conventions 1-9 

Chapter 2 Basic Architecture (I) 

2.1 Addressing 2-1 
2.2 Data Types 2-1 
2.2.1 Byte 2-1 
2.2.2 Word 2-1 
2.2.3 Longword 2-2 
2.2.4 Quadword 2-2 
2.2.5 VAX Floating-Point Formats 2-3 
2.2.5.1 F.floating 2-3 
2.2.5.2 G_floating 2-5 
2.2.5.3 D.floating 2-6 
2.2.6 IEEE Floating-Point Formats 2-7 
2.2.6.1 S_Floating 2-8 
2.2.6.2 T.floating 2-10 

Iii 



2.2.7 Longword Integer Format in Floating-Point Unit 2-11 
2.2.8 Quadword Integer Format in Floating-Point Unit 2-12 
2.2.9 Data Types with No Hardware Support 2-13 

Chapter 3 Instruction Formats (I) 

3.1 Alpha Registers 3-1 
3.1.1 Program Counter 3-1 
3.1.2 Integer Registers 3-1 
3.1.3 Floating-Point Registers 3-2 
3.1.4 Lock Registers 3-2 
3.1.5 Optional Registers 3-2 
3.1.5.1 Memory Prefetch Registers 3-2 
3.1.5.2 VAX Compatibility Register 3-2 
3.2 Notation 3-2 
3.2.1 Operand Notation 3-3 
3.2.2 Instruction Operand Notation 3-4 
3.2.3 Operators 3-5 
3.2.4 Notation Conventions 3-8 
3.3 Instruction Formats 3-8 
3.3.1 Memory Instruction Format 3-9 
3.3.1.1 Memory Format Instructions with a Function Code 3-9 
3.3.1.2 Memory Format Jump Instructions 3-10 
3.3.2 Branch Instruction Format 3-10 
3.3.3 Operate Instruction Format 3-10 
3.3.4 Floating-Point Operate Instruction Format 3-12 
3.3.4.1 Floating-Point Convert Instructions 3-12 
3.3.5 PALcode Instruction Format 3-13 

Chapter 4 Instruction Descriptions (I) 

4.1 Instruction Set Overview 4-1 
4.1.1 Subsetting Rules 4-2 
4.1.1.1 Floating-Point Subsets 4-2 
4.1.2 Software Emulation Rules 4-2 
4.1.3 Opcode Qualifiers 4-3 
4.2 Memory Integer Load/Store Instructions 4-4 
4.2.1 Load Address 4-5 
4.2.2 Load Memory Data into Integer Register 4-6 
4.2.3 Load Unaligned Memory Data into Integer Register 4-7 
4.2.4 Load Memory Data into Integer Register Locked 4-8 
4.2.5 Store Integer Register Data into Memory Conditional 4-11 
4.2.6 Store Integer Register Data into Memory 4-13 
4.2.7 Store Unaligned Integer Register Data into Memory 4-14 
4.3 Control Instructions 4-15 

iv 



4.3.1 Conditional Branch 4-17 
4.3.2 Unconditional Branch 4-19 
4.3.3 Jumps 4-20 
4.4 Integer Arithmetic Instructions 4-22 
4.4.1 Longword Add 4-23 
4.4.2 Scaled Longword Add 4-24 
4.4.3 Quadword Add 4-25 
4.4.4 Scaled Quadword Add 4-26 
4.4.5 Integer Signed Compare 4-27 
4.4.6 Integer Unsigned Compare 4-28 
4.4.7 Longword Multiply 4-29 
4.4.8 Quadword Multiply 4-30 
4.4.9 Unsigned Quadword Multiply High 4-31 
4.4.10 Longword Subtract 4-32 
4.4.11 Scaled Longword Subtract 4-33 
4.4.12 Quadword Subtract 4-34 
4.4.13 Scaled Quadword Subtract 4-35 
4.5 Logical and Shift Instructions 4-36 
4.5.1 Logical Functions 4-37 
4.5.2 Conditional Move Integer 4-38 
4.5.3 Shift Logical 4^-40 
4.5.4 Shift Arithmetic 4-41 
4.6 Byte-Manipulation Instructions 4-42 
4.6.1 Compare Byte 4-44 
4.6.2 Extract Byte 4-46 
4.6.3 Byte Insert 4-50 
4.6.4 Byte Mask 4-52 
4.6.5 Zero Bytes 4-55 
4.7 Floating-Point Instructions 4-56 
4.7.1 Floating Subsets and Floating Faults 4-56 
4.7.2 Definitions 4-57 
4.7.3 Encodings 4-58 
4.7.4 Floating-Point Rounding Modes 4-59 
4.7.5 Floating-Point Trapping Modes 4-60 
4.7.5.1 Imprecise /Software Completion Trap Modes 4-62 
4.7.5.2 Invalid Operation Arithmetic Trap 4-63 
4.7.5.3 Division by Zero Arithmetic Trap 4-63 
4.7.5.4 Overflow Arithmetic Trap 4-63 
4.7.5.5 Underflow Arithmetic Trap 4-63 
4.7.5.6 Inexact Result Arithmetic Trap 4-64 
4.7.5.7 Integer Overflow Arithmetic Trap 4-64 
4.7.6 Floating-Point Single-Precision Operations 4-64 
4.7.7 FPCR Register and Dynamic Rounding Mode 4-64 
4.7.7.1 Accessing the FPCR 4-66 
4.7.7.2 Default Values of the FPCR 4-67 

ν 



4.7.7.3 Saving and Restoring the FPCR 4-67 
4.7.8 IEEE Standard 4-67 
4.8 Memory Format Floating-Point Instructions 4-68 
4.8.1 Load F_floating 4-69 
4.8.2 Load G.floating 4-70 
4.8.3 Load S.floating 4-71 
4.8.4 Load T.floating 4-72 
4.8.5 Store F_floating 4-73 
4.8.6 Store G.floating 4-74 
4.8.7 Store S_floating 4-75 
4.8.8 Store T_floating 4-76 
4.9 Branch Format Floating-Point Instructions 4-77 
4.9.1 Conditional Branch 4-78 
4.10 Floating-Point Operate Format Instructions 4-80 
4.10.1 Copy Sign 4-83 
4.10.2 Convert Integer to Integer 4-84 
4.10.3 Floating-Point Conditional Move 4-85 
4.10.4 Move from/to Floating-Point Control Register 4-87 
4.10.5 VAX Floating Add 4-88 
4.10.6 IEEE Floating Add 4-89 
4.10.7 VAX Floating Compare 4-91 
4.10.8 IEEE Floating Compare 4-92 
4.10.9 Convert VAX Floating to Integer 4-94 
4.10.10 Convert Integer to VAX Floating 4-95 
4.10.11 Convert VAX Floating to VAX Floating 4-96 
4.10.12 Convert IEEE Floating to Integer 4-98 
4.10.13 Convert Integer to IEEE Floating 4-99 
4.10.14 Convert IEEE Floating to IEEE Floating 4-100 
4.10.15 VAX Floating Divide 4-102 
4.10.16 IEEE Floating Divide 4-104 
4.10.17 VAX Floating Multiply 4-106 
4.10.18 IEEE Floating Multiply 4-107 
4.10.19 VAX Floating Subtract 4-109 
4.10.20 IEEE Floating Subtract 4-111 
4.11 Miscellaneous Instructions 4-113 
4.11.1 Call Privileged Architecture Library 4-114 
4.11.2 Prefetch Data 4-115 
4.11.3 Memory Barrier 4-117 
4.11.4 Read Process Cycle Counter 4-118 
4.11.5 Trap Barrier 4-120 
4.12 VAX Compatibility Instructions 4-121 
4.12.1 VAX Compatibility Instructions 4-122 

vi 



Chapter 5 System Architecture and Programming Implications (I) 

5.1 Introduction 5-1 
5.2 Physical Memory Behavior 5-1 
5.2.1 Coherency of Memory Access 5-1 
5.2.2 Granularity of Memory Access 5-2 
5.2.3 Width of Memory Access 5-2 
5.2.4 Memory-Like Behavior 5-3 
5.3 Translation Buffers and Virtual Caches 5-3 
5.4 Caches and Write Buffers 5-4 
5.5 Data Sharing 5-5 
5.5.1 Atomic Change of a Single Datum 5-5 
5.5.2 Atomic Update of a Single Datum 5-6 
5.5.3 Atomic Update of Data Structures 5-6 
5.5.4 Ordering Considerations for Shared Data Structures 5-8 
5.6 Read/Write Ordering 5-9 
5.6.1 Alpha Shared Memory Model 5-9 
5.6.1.1 Architectural Definition of Processor Issue Sequence 5-10 
5.6.1.2 Definition of Processor Issue Order 5-11 
5.6.1.3 Definition of Memory Access Sequence 5-11 
5.6.1.4 Definition of Location Access Order 5-11 
5.6.1.5 Definition of Storage 5-12 
5.6.1.6 Relationship Between Issue Order and Access Order 5-12 
5.6.1.7 Definition of Before 5-12 
5.6.1.8 Definition of After 5-13 
5.6.1.9 Timeliness 5-13 
5.6.2 Litmus Tests 5-13 
5.6.2.1 Litmus Test 1 (Impossible Sequence) 5-13 
5.6.2.2 Litmus Test 2 (Impossible Sequence) 5-13 
5.6.2.3 Litmus Test 3 (Impossible Sequence) 5-14 
5.6.2.4 Litmus Test 4 (Sequence Okay) 5-14 
5.6.2.5 Litmus Test 5 (Sequence Okay) 5-14 
5.6.2.6 Litmus Test 6 (Sequence Okay) 5-14 
5.6.2.7 Litmus Test 7 (Impossible Sequence) 5-15 
5.6.2.8 Litmus Test 8 (Impossible Sequence) 5-15 
5.6.2.9 Litmus Test 9 (Impossible Sequence) 5-15 
5.6.3 Implied Barriers 5-16 
5.6.4 Implications for Software 5-16 
5.6.4.1 Single-Processor Data Stream 5-16 
5.6.4.2 Single-Processor Instruction Stream 5-16 
5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O) . . . 5-16 
5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O) 5-17 
5.6.4.5 Multiple-Processor Context Switch 5-17 
5.6.4.6 Multiple-Processor Send/Receive Interrupt 5-20 
5.6.5 Implications for Hardware 5-20 

vii 



5.7 Arithmetic Traps 5-21 

Chapter 6 Common PALcode Architecture (I) 

6.1 PALcode 6-1 
6.2 PALcode Instructions and Functions 6-1 
6.3 PALcode Environment 6-2 
6.4 Special Functions Required for PALcode 6-2 
6.5 PALcode Effects on System Code 6-3 
6.6 PALcode Replacement 6-3 
6.7 Required PALcode Instructions 6-4 
6.7.1 Drain Aborts 6-5 
6.7.2 Halt 6-6 
6.7.3 Instruction Memory Barrier 6-7 

Chapter 7 Console Subsystem Overview (I) 

Chapter 8 Input/Output (I) 

8.1 Introduction 8-1 
8.2 Local I/O Space Access 8-2 
8.2.1 Read/Write Ordering 8-2 
8.3 Remote I/O Space Access 8-2 
8.3.1 Mailbox Posting 8-3 
8.3.2 Mailbox Pointer Register (MBPR) 8-4 
8.3.3 Mailbox Structure 8-5 
8.3.4 Mailbox Access Synchronization 8-6 
8.3.5 Mailbox Read/Write Ordering 8-7 
8.3.6 Remote I/O Space Access Granularity 8-7 
8.3.7 Remote I/O Space Read Accesses 8-8 
8.3.8 Remote I/O Space Write Accesses 8-9 
8.4 Direct Memory Accesss (DMA) 8-10 
8.4.1 Access Granularity 8-10 
8.4.2 Read/Write Ordering 8-11 
8.4.3 Device Address Translation 8-12 
8.5 Interrupts 8-12 
8.6 I/O Bus-Specific Mailbox Usage 8-12 
8.6.1 Mailbox Field Checking 8-12 
8.6.2 CMD Field 8-13 
8.6.3 Special Commands 8-13 

viii 



Figures 

1-1 Instruction Format Overview 1-4 
2-1 Byte Format 2-1 
2-2 Word Format 2-2 
2-3 Longword Format 2-2 
2—4 Quadword Format 2-3 
2-5 F.floating Datum 2-3 
2-6 F_floating Register Format 2-4 
2-7 G_floating Datum 2-5 
2-8 G.floating Format 2-5 
2-9 D Jloating Datum 2-6 
2-10 D_floating Register Format 2-6 
2-11 S.floating Datum 2-8 
2-12 S.floating Register Format 2-8 
2-13 T.floating Datum 2-10 
2-14 T.floating Register Format 2-10 
2-15 Longword Integer Datum 2-11 
2-16 Longword Integer Floating-Register Format 2-11 
2-17 Quadword Integer Datum 2-12 
2-18 Quadword Integer Floating-Register Format 2-12 
3-1 Memory Instruction Format 3-9 
3-2 Memory Instruction with Function Code Format 3-9 
3-3 Branch Instruction Format 3-10 
3—4 Operate Instruction Format 3-11 
3-5 Floating-Point Operate Instruction Format 3-12 
3-6 PALcode Instruction Format 3-13 
4-1 Floating-Point Control Register (FPCR) Format 4-65 
8-1 Alpha System Overview 8-1 
8-2 Mailbox Pointer Register Format 8-4 
8-3 Mailbox Data Structure Format 8-5 

Tables 

2-1 F l o a t i n g Load Exponent Mapping 2-4 
2-2 S_floating Load Exponent Mapping 2-9 
3-1 Operand Notation 3-3 
3-2 Operand Value Notation 3-3 
3-3 Expression Operand Notation 3-3 
3—4 Operators 3-5 
4-1 Opcode Qualifiers 4-3 
4-2 Memory Integer Load/Store Instructions 4-4 
4-3 Control Instructions Summary 4-16 
4-4 Jump Instructions Branch Prediction 4-21 
4-5 Integer Arithmetic Instructions Summary 4-22 
4-6 Logical and Shift Instructions Summary 4-36 

ix 



4-7 Byte-Manipulation Instructions Summary 4-42 
4-8 Floating-Point Control Register (FPCR) Bit Descriptions 4-65 
4-9 Memory Format Floating-Point Instructions Summary 4-68 
4-10 Floating-Point Branch Instructions Summary 4-77 
4-11 Floating-Point Operate Instructions Summary 4-80 
4-12 Miscellaneous Instructions Summary 4-113 
4-13 VAX Compatibility Instructions Summary 4-121 
5-1 Processor Issue Order 5-11 
5-2 Location Access Order 5-12 
6-1 PALcode Instructions that Require Recognition 6—4 
6-2 Required PALcode Instructions 6—4 
8-1 Mailbox Pointer Register Format 8-4 
8-2 Mailbox Data Structure Format 8-5 

x 



Chapter 1 

Introduction (I) 

Alpha is a 64-bit load/store RISC archi tecture t h a t is designed wi th par t icular 
emphas is on t he th ree e lements t h a t most affect performance: clock speed, mult iple 
instruct ion issue, and mult iple processors. 

The Alpha architects examined and analyzed cur ren t and theoretical RISC 
archi tecture design e lements and developed high-performance a l ternat ives for the 
Alpha archi tecture. The architects adopted only those design e lements t h a t appeared 
valuable for a projected 25-year design horizon. Thus , Alpha becomes the first 21st 
century computer archi tecture . 

The Alpha archi tecture is designed to avoid bias toward any par t icular operat ing 
system or p rogramming language. Alpha initially supports the OpenVMS Alpha 
and DEC OSF/1 operat ing systems, and supports simple software migrat ion from 
applications t h a t r u n on those operat ing systems. 

This m a n u a l describes in detai l how Alpha is designed to be t he leadership 64-bit 
archi tecture of the computer industry. 

1.1 The Alpha Approach to RISC Architecture 

Alpha Is a True 64-Bit Architecture 

Alpha was designed as a 64-bit archi tecture . All regis ters a re 64 bi ts in length and 
all operat ions a re performed be tween 64-bit regis ters . I t is not a 32-bit archi tecture 
t h a t was la ter expanded to 64 bits . 

Alpha Is Designed for Very High-Speed Implementations 

The instruct ions a re very simple. All inst ruct ions a re 32 bits in length. Memory 
operat ions a re e i ther loads or stores. All da t a manipula t ion is done between 
regis ters . 

The Alpha archi tecture facilitates pipelining mult iple ins tances of t h e same 
operat ions because the re a re no special regis ters and no condition codes. 

The instruct ions in terac t wi th each other only by one instruct ion wri t ing a register 
or memory and another instruct ion reading from the same place. Tha t makes it 
par t icular ly easy to build implementa t ions t h a t issue mult iple instruct ions every 
CPU cycle. (The first implementa t ion issues two instruct ions per cycle.) 

Alpha makes it easy to ma in t a in b inary compatibility across mult iple 
implementa t ions and easy to ma in t a in full speed on mult iple-issue implementat ions . 
For example, the re a re no implementation-specific pipeline t iming hazards , no load-
delay slots, and no branch-delay slots. 

Introduction (I) 1-1 



Alpha's Approach to Byte Manipulation 

The Alpha archi tecture does byte shifting and mask ing wi th normal 64-bit register-
to-register instruct ions, crafted to keep instruct ion sequences short . 

Alpha does not include single-byte store instruct ions. This h a s several advantages : 

• Cache and memory implementat ions need not include byte shift-and-mask logic, 
and sequencer logic need not perform read-modify-write on memory locations. 
Such logic is awkward for high-speed implementa t ion and t ends to slow down 
cache access to normal 32-bit or 64-bit aligned quant i t ies . 

• Alpha's approach to byte manipula t ion makes it easier to build a high-speed 
error-correcting write-back cache, which is often needed to keep a very fast RISC 
implementat ion busy. 

• Alpha's approach can m a k e it easier to pipeline mult iple byte operat ions. 

Alpha's Approach to Arithmetic Traps 

Alpha lets the software implementor determine t he precision of a r i thmet ic t raps . 
With the Alpha archi tecture, ar i thmet ic t r aps (such as overflow and underflow) 
are imprecise—they can be delivered an a rb i t ra ry n u m b e r of instruct ions after the 
instruction t h a t tr iggered the t r ap . Also, t r aps from m a n y different instruct ions can 
be reported a t once. Tha t makes implementa t ions t h a t use pipelining and mult iple 
issue substant ia l ly easier to build. 

However, if precise ar i thmet ic exceptions are desired, t r a p bar r ie r instruct ions can 
be explicitly inser ted in the program to force t r aps to be delivered a t specific points. 

Alpha's Approach to Multiprocessor Shared Memory 

As viewed from a second processor (including an I/O device), a sequence of reads and 
wri tes issued by one processor may be arbi t rar i ly reordered by an implementat ion. 
This allows implementa t ions to use mul t ibank caches, bypassed wri te buffers, wri te 
merging, pipelined wri tes with re t ry on error, and so forth. If s tr ict ordering 
between two accesses m u s t be mainta ined , explicit memory bar r ie r instruct ions can 
be inser ted in the program. 

The basic multiprocessor interlocking primitive is a RISC-style load jocked , modify, 
store_conditional sequence. If t he sequence r u n s without in te r rupt , exception, or 
an interfering wri te from another processor, t hen the conditional store succeeds. 
Otherwise, t he store fails and the program eventual ly m u s t branch back and re t ry 
the sequence. This style of interlocking scales well wi th very fast caches, and makes 
Alpha an especially a t t ract ive archi tecture for building multiple-processor systems. 

Alpha Instructions Include Hints for Achieving Higher Speed 

A number of Alpha instruct ions include h in t s for implementat ions , all a imed a t 
achieving higher speed. 

• Calculated j u m p instruct ions have a t a rge t h in t t h a t can allow much faster 
subrout ine calls and re tu rns . 

• There are prefetching h in t s for the memory system t h a t can allow much higher 
cache h i t ra tes . 

1-2 Common Architecture (I) 



• There are granular i ty h in t s for t he vi r tual -address mapping t h a t can allow much 
more effective use of t rans la t ion lookaside buffers for large contiguous s t ructures . 

PALcode—Alpha's Very Flexible Privileged Software Library 

A Privileged Architecture Library (PALcode) is a set of subrout ines t h a t are 
specific to a par t icular Alpha operat ing system implementat ion. These subrout ines 
provide operat ing-system primit ives for context switching, in te r rup t s , exceptions, 
and memory management . PALcode is s imilar to t he BIOS l ibraries t h a t are 
provided in personal computers . 

PALcode subrout ines a re invoked by implementa t ion ha rdware or by software 
CALL_PAL instruct ions. 

PALcode is wr i t t en in s t anda rd machine code wi th some implementation-specific 
extensions to provide access to low-level ha rdware . 

One version of PALcode lets Alpha implementa t ions r u n the full OpenVMS operat ing 
system by mirror ing m a n y of t he OpenVMS VAX features. The OpenVMS PALcode 
instruct ions let Alpha r u n OpenVMS with little more ha rdware t h a n t h a t found on 
a conventional RISC machine: the PAL mode bit itself, plus 4 ext ra protection bits 
in each Translat ion Buffer entry. 

Another version of PALcode lets Alpha implementa t ions r u n the OSF/1 operat ing 
system by mirror ing m a n y of t h e RISC ULTRIX features. Othe r versions of PALcode 
can be developed for real- t ime, teaching, and other applications. 

PALcode makes Alpha an especially a t t ract ive archi tecture for mult iple operat ing 
systems. 

Alpha and Programming Languages 

Alpha is an a t t ract ive archi tecture for compiling a large var iety of programming 
languages . Alpha h a s been carefully designed to avoid bias toward one or two 
programming languages. For example: 

• Alpha does not contain a subrout ine call instruct ion t h a t moves a regis ter window 
by a fixed amount . Thus , Alpha is a good ma tch for p rogramming languages wi th 
m a n y pa rame te r s and programming languages wi th no pa ramete r s . 

• Alpha does not contain a global in teger overflow enable bit. Such a bit would 
need to be changed a t every subrout ine boundary when a FORTRAN program 
calls a C program. 

1.2 Data Format Overview 

Alpha is a load/store RISC archi tecture wi th the following da t a characterist ics: 

• All operat ions a re done between 64-bit regis ters . 

• Memory is accessed via 64-bit v i r tua l l i t t le-endian byte addresses . 

• There a re 32 integer regis ters and 32 floating-point registers . 

• Longword (32-bit) and quadword (64-bit) integers a re supported. 

Introduction (I) 1-3 


