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1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or
technology ("Product”) to interface with an AMD product in compliance with the requirements as set forth in the Specification and

(b) to provide Feedback about the information disclosed in the Specification to AMD.
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give You any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You may not (i) duplicate
any part of the Specification; (ii) remove this Agreement or any notices from the Specification, or (iii) give any part of the

Specification, or assign or otherwise provide Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary information.
Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at any time without
notice. The Specification is provided entirely "AS IS." AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS,
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surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may

occur.

5. You have no obligation to give AMD any suggestions, comments or feedback ("Feedback") relating to the Specification. However,
any Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of confidentiality. Accordingly, if
You do give AMD Feedback on any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and
otherwise commercialize Your Feedback in any product, as well as has the right to sublicense third parties to do the same. Further,
You will not give AMD any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual
property claim or right of any third party; or (i) subject to license terms which seek to require any product or intellectual
property incorporating or derived from Feedback or any Product or other AMD intellectual property to be licensed to or otherwise

provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export
Administration Regulations ("EAR"), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May
2009. Further, pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted by the United
States Department of Commerce Bureau of Industry and Security or as otherwise permitted pursuant to a License Exception under
the U.S. Export Administration Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in
Country Groups D:1, E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or (2) export to Country
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Preface

About This Document

This document describes the current environment, organization and program state of AMD
"RDNA" Generation devices. It details the instruction set and the microcode formats native to
this family of processors that are accessible to programmers and compilers.

The document specifies the instructions (include the format of each type of instruction) and the
relevant program state (including how the program state interacts with the instructions). Some
instruction fields are mutually dependent; not all possible settings for all fields are legal. This
document specifies the valid combinations.

The main purposes of this document are to:

1. Specify the language constructs and behavior, including the organization of each type of
instruction in both text syntax and binary format.

2. Provide a reference of instruction operation that compiler writers can use to maximize
performance of the processor.

Audience

This document is intended for programmers writing application and system software, including
operating systems, compilers, loaders, linkers, device drivers, and system utilities. It assumes
that programmers are writing compute-intensive parallel applications (streaming applications)
and assumes an understanding of requisite programming practices.

Organization

This document begins with an overview of the AMD RDNA processors' hardware and
programming environment (Chapter 1).

Chapter 2 describes the organization of RDNA programs.

Chapter 3 describes the program state that is maintained.

Chapter 4 describes the program flow.

Chapter 5 describes the scalar ALU operations.

Chapter 6 describes the vector ALU operations.

Chapter 7 describes the scalar memory operations.

Chapter 8 describes the vector memory operations.

Chapter 9 provides information about the flat memory instructions.

Chapter 10 describes the data share operations.

Chapter 11 describes exporting the parameters of pixel color and vertex shaders.
Chapter 12 describes instruction details, first by the microcode format to which they belong,

About This Document 1 of 289
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then in alphabetic order.
Finally, Chapter 13 provides a detailed specification of each microcode format.

Conventions

The following conventions are used in this document:

mono-spaced font A filename, file path or code.

* Any number of alphanumeric characters in the name of a code format,
parameter, or instruction.

<> Angle brackets denote streams.

[1,2) Arange that includes the left-most value (in this case, 1), but excludes the right-
most value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values.

x|y} One of the multiple options listed. In this case, X or Y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

74 A bit range, from bit 7 to bit 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream
computing.

Related Documents

« Intermediate Language (IL) Reference Manual. Published by AMD.

« AMD Accelerated Parallel Processing OpenCL™ Programming Guide. Published by AMD.
» The OpenCL™ Specification. Published by Khronos Group. Aaftab Munshi, editor.

* OpenGL® Programming Guide, at http://www.glprogramming.com/red/

* Microsoft DirectX® Reference Website, at hitps://msdn.microsoft.com/en-us/library/
windows/desktop/ee663274(v=vs.85).aspx

New Features of RDNA Devices
These architectural changes affect how code is scheduled for performance:

Single cycle instruction issue

Previous generations issued one instruction per wave once every 4 cycles, but now
instructions are issued every cycle.
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Wave32

Previous generations used a wavefront size of 64 threads (work items). This generation
supports both wavefront sizes of 32 and 64 threads.

Workgroup Processors

Previously the shader hardware was grouped into "compute units" ("CUs") which contained
ALU, LDS and memory access. Now the "workgroup processor" ("WGP") replaces the
compute unit as the basic unit of computing. This allows significantly more compute power
and memory bandwidth to be directed at a single workgroup.

Programming Model Changes

* FLAT_SCRATCH and XNACK_MASK are no longer in SGPRs
They are in dedicated hardware registers accessed via S_GETREG_B32 and
S_SETREG_B32

» Added a scalar source enum: NULL (reads zero and writes nothing).

« Image operations add a DIMension field

» Memory operations gain DLC bit (Device Level Coherence) to control level-1 caching
 Buffer clamping rules in MUBUF/MTBUF is explicitly controlled by the buffer resource
» Separated dependency counters for vector memory loads from stores

« Moved POPS_PACKER from mode to a hardware register accessed via S_ GETREG_B32
and S_SETREG_B32

« SGPRs are no longer allocated: every wave gets a fixed number of SGPRs

Instruction Changes

« DS_PERMUTE/DS_BPERMUTE are limited to 32-lane permutation
« DPP (renamed to DPP16) is limited to 16-lane access
* VALU ops can use two SGPR inputs instead of just one
* VALU VOP3 format can use a literal constant
* VALU V_CMPX writes only EXEC, not also an SGPR
* VALU Add & Sub instructions have change names to clarify carry-in and carry-out
* VALU all float-16 math uses FMA instead of MAD
« T# and V# (resource constants) have some bit changes
* Added SALU ops to quickly set float round & denormal modes
* Removed:
o S_SET_GPR_IDX family of instructions (use V_MOVREL for GPR indexing)
o CBRANCH_FORK and CBRANCH_JOIN
> All non-reverse VALU V_SHIFT opcodes
o VSKIP
o Removed non-volatile instruction control

New Features of RDNA Devices 3 of 289
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Additional Information

For more information on AMD GPU architectures please visit https://GPUOpen.com
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Chapter 1. Introduction

The AMD RDNA processor implements a parallel micro-architecture that provides an excellent
platform not only for computer graphics applications but also for general-purpose data parallel
applications. Data-intensive applications that require high bandwidth or are computationally
intensive may be run on an AMD RDNA processor.

The figure below shows a block diagram of the AMD RDNA Generation series processors

Host CPU

Host Application MMIO ACCESS
Compute Driver

I RDNA Series Processor

Return W N
Buffers Constant Cache
Private »

Data

i

A
A

System Memory Y
4—»{ Command Processors H Ultra-Threaded Dispatch Processor ‘
Commands |« > | l |
i ; 1 1 t
Instructions | N v \4 v v v WGP
and Constants [ - - < Compute Uni|
] s—>| | VGPR | [ sGPR | VGPR | [ sGPR J—— Progra
rogram
Inputs . R LocalDatal | ["aLy | | saLu ALY | [ sALu 4«‘ Counter >
and Outputs [~ v L
[Compute Unit
Local Dat ||
_ o ocal Data VGPR | [ sGPR | VGPR | [ sGPR J¢ Program °
5 © P VI T ! | vALU | [ saw | vALU | [ sALU | | Counter >S5
ol 3 < ] < |- > <
. R g| £ o S 7] o
Device Memory 3§ g S gl L : . .\ DPPAmay ! ' 4|5
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[Compute Unit
— Local Data vGPR | [ sGPR | vGPR | [ sGPR J¢1— B
P P - Share Program (<& >
and Outputs [~ - | »( | VALU sALU VALU SALU | <&— Counter
< <<
>

*Discrete GPU — Physical Device Memory; APU — Region of system for GPU direct access

Figure 1. AMD RDNA Generation Series Block Diagram

The RDNA device includes a data-parallel processor (DPP) array, a command processor, a
memory controller, and other logic (not shown). The RDNA command processor reads
commands that the host has written to memory-mapped RDNA registers in the system-memory
address space. The command processor sends hardware-generated interrupts to the host when
the command is completed. The RDNA memory controller has direct access to all RDNA device
memory and the host-specified areas of system memory. To satisfy read and write requests, the
memory controller performs the functions of a direct-memory access (DMA) controller, including
computing memory-address offsets based on the format of the requested data in memory. In the
RDNA environment, a complete application includes two parts:

e a program running on the host processor, and
e programs, called kernels, running on the RDNA processor.

The RDNA programs are controlled by host commands that

« set RDNA internal base-address and other configuration registers,
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« specify the data domain on which the RDNA GPU is to operate,
« invalidate and flush caches on the RDNA GPU, and
» cause the RDNA GPU to begin execution of a program.

The RDNA driver program runs on the host.

The DPP array is the heart of the RDNA processor. The array is organized as a set of
workgroup processor pipelines, each independent from the others, that operate in parallel on
streams of floating-point or integer data. The workgroup processor pipelines can process data
or, through the memory controller, transfer data to, or from, memory. Computation in a
workgroup processor pipeline can be made conditional. Outputs written to memory can also be
made conditional.

When it receives a request, the workgroup processor pipeline loads instructions and data from
memory, begins execution, and continues until the end of the kernel. As kernels are running, the
RDNA hardware automatically fetches instructions from memory into on-chip caches; RDNA
software plays no role in this. RDNA kernels can load data from off-chip memory into on-chip
general-purpose registers (GPRs) and caches.

The AMD RDNA devices can detect floating point exceptions and can generate interrupts. In
particular, they detect IEEE floating-point exceptions in hardware; these can be recorded for
post-execution analysis. The software interrupts shown in the previous figure from the command
processor to the host represent hardware-generated interrupts for signaling command-
completion and related management functions.

The RDNA processor hides memory latency by keeping track of potentially hundreds of work-
items in different stages of execution, and by overlapping compute operations with memory-
access operations.

1.1. Terminology

Table 1. Basic Terms
Term Description

RDNA Processor The RDNA shader processor is a scalar and vector ALU designed to run complex
programs on behalf of a wavefront.

Dispatch A dispatch launches a 1D, 2D, or 3D grid of work to the RDNA processor array.

Workgroup A workgroup is a collection of wavefronts that have the ability to synchronize with each
other quickly; they also can share data through the Local Data Share.

Wavefront A collection of 32 or 64 work-items that execute in parallel on a single RDNA processor.

Work-item A single element of work: one element from the dispatch grid, or in graphics a pixel or
vertex.

Literal Constant A 32-bit integer or float constant that is placed in the instruction stream.

Scalar ALU (SALU) The scalar ALU operates on one value per wavefront and manages all control flow.

1.1. Terminology 6 of 289



"RDNA 1.0" Instruction Set Architecture

Term

Vector ALU (VALU)
Workgroup Processor
(WGP)

Compute Unit (CU)

Microcode format

Instruction

Quad

Texture Sampler (S#)

Texture Resource (T#)

Buffer Resource (V#)

uTC

1.1. Terminology

AMDZ1

Description

The vector ALU maintains Vector GPRs that are unique for each work item and execute

arithmetic operations uniquely on each work-item.

The basic unit of shader computation hardware, including scalar & vector ALU’s and
memory, as well as LDS and scalar caches.

One half of a WGP. Contains 2 SIMD32’s which share one path to memory.

The microcode format describes the bit patterns used to encode instructions. Each
instruction is either 32 or more bits, in units of 32-bits.

An instruction is the basic unit of the kernel. Instructions include: vector ALU, scalar
ALU, memory transfer, and control flow operations.

A quad is a 2x2 group of screen-aligned pixels. This is relevant for sampling texture
maps.

A texture sampler is a 128-bit entity that describes how the vector memory system
reads and samples (filters) a texture map.

A texture resource descriptor describes an image in memory: address, data format,
stride, etc.

A buffer resource descriptor describes a buffer in memory: address, data format, stride,
etc.

Universal (Address) Translation Cache : used for virtual memory translating logical to
physical addresses.
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Chapter 2. Program Organization

RDNA kernels are programs executed by the RDNA processor. Conceptually, the kernel is
executed independently on every work-item, but in reality the RDNA processor groups 32 or 64
work-items into a wavefront, which executes the kernel on all 32 or 64 work-items in one pass.

The RDNA processor consists of:

» A scalar ALU, which operates on one value per wavefront (common to all work items).

» Avector ALU, which operates on unique values per work-item.

 Local data storage, which allows work-items within a workgroup to communicate and share
data.

e Scalar memory, which can transfer data between SGPRs and memory through a cache.

« Vector memory, which can transfer data between VGPRs and memory, including sampling
texture maps.

All kernel control flow is handled using scalar ALU instructions. This includes if/else, branches
and looping. Scalar ALU (SALU) and memory instructions work on an entire wavefront and
operate on up to two SGPRs, as well as literal constants.

Vector memory and ALU instructions operate on all work-items in the wavefront at one time. In
order to support branching and conditional execute, every wavefront has an EXECute mask that
determines which work-items are active at that moment, and which are dormant. Active work-
items execute the vector instruction, and dormant ones treat the instruction as a NOP. The
EXEC mask can be changed at any time by Scalar ALU instructions.

Vector ALU instructions can take up to three arguments, which can come from VGPRs, SGPRs,
or literal constants that are part of the instruction stream. They operate on all work-items
enabled by the EXEC mask. Vector compare and add with- carryout return a bit-per-work-item
mask back to the SGPRs to indicate, per work-item, which had a "true" result from the compare
or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item
supplies its own memory address and supplies or receives unigue data. These instructions are
also subject to the EXEC mask.

2.1. Wave32 and Wave64

The shader hardware supports both wavefronts of 32 workitems ("wave32") and wavefronts of
64 workitems ("wave64"). Both wave sizes are supported for all operations, but shader
programs must be compiled for a particular wave size. The underlying hardware is primarily
natively wave32, and wave64 vector ALU and memory operations are executed by issuing the
instruction twice: once for the low 32 workitems, and then again for the high 32 workitems.
Either half of the execution of a wave64 may be skipped if there is no work to do for that half
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(i.e. EXEC == 0 for that half). Wave64 VALU instructions which return a scalar (SGPR or VCC)
value never skip either pass. Wave64 Vector Memory instructions can skip either pass, but
never skip both passes.

The upper half of EXEC and VCC are ignored for wave32 waves.

2.2. Compute Shaders

Compute kernels (shaders) are generic programs that can run on the RDNA processor, taking
data from memory, processing it, and writing results back to memory. Compute kernels are
created by a dispatch, which causes the RDNA processors to run the kernel over all of the work-
items in a 1D, 2D, or 3D grid of data. The RDNA processor walks through this grid and
generates wavefronts, which then run the compute kernel. Each work-item is initialized with its
unique address (index) within the grid. Based on this index, the work-item computes the
address of the data it is required to work on and what to do with the results.

2.3. Data Sharing

The AMD RDNA stream processors are designed to share data between different work-items.
Data sharing can boost performance. The figure below shows the memory hierarchy that is
available to each work-item.
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Figure 2. Shared Memory Hierarchy

2.3.1. Local Data Share (LDS)

Each workgroup processor (WGP) has a 128 kB memory space that enables low-latency
communication between work-items within a workgroup, or the work-items within a wavefront;
this is the local data share (LDS). This memory is configured with 64 banks, each with 512
entries of 4 bytes. The AMD RDNA processors use a 128 kB local data share (LDS) memory for
each WGP; this enables 128 kB of low-latency bandwidth to the processing elements. The
shared memory contains 64 integer atomic units to enable fast, unordered atomic operations.
This memory can be used as a software cache for predictable re-use of data, a data exchange
machine for the work-items of a workgroup, or as a cooperative way to enable efficient access
to off-chip memory. A single workgroup may allocate up to 64kB of LDS space.

LDS Allocation Modes

When a workgroup is dispatched or a graphics draw is launched, the waves can be allocated
LDS space in one of two modes: CU or WGP mode. The shader can simultaneously execute
some waves in LDS mode and other waves in CU mode.

* CU mode: in this mode, the LDS is effectively split into a separate upper and lower LDS,

2.3. Data Sharing 10 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

each serving two SIMD32’s.
Wave are allocated LDS space within the half of LDS which is associated with the SIMD the
wave is running on.
For workgroups, all waves will be assigned to the pair of SIMD32’s. This mode may provide
faster operation since both halves run in parallel, but limits data sharing
(upper waves cannot read data in the lower half of LDS and vice versa).
When in CU mode, all waves in the workgroup are resident within the same CU.

« WGP mode: in this mode, the LDS is one large contiguous memory that all waves on the
WGP can access.
In WGP mode, waves of a workgroup may be distributed across both CU’s (all 4 SIMD32’s)
in the WGP.

2.3.2. Global Data Share (GDS)

The AMD RDNA devices use a 64 kB global data share (GDS) memory that can be used by
wavefronts of a kernel on all WGPss. This memory provides 128 bytes per cycle of memory
access to all the processing elements. The GDS is configured with 32 banks, each with 512
entries of 4 bytes each. It is designed to provide full access to any location for any processor.
The shared memory contains 32 integer atomic units to enable fast, unordered atomic
operations. This memory can be used as a software cache to store important control data for
compute kernels, reduction operations, or a small global shared surface. Data can be preloaded
from memory prior to kernel launch and written to memory after kernel completion. The GDS
block contains support logic for unordered append/consume and domain launch ordered
append/consume operations to buffers in memory. These dedicated circuits enable fast
compaction of data or the creation of complex data structures in memory.

2.4. Device Memory

The AMD RDNA devices offer several methods for access to off-chip memory from the
processing elements (PE) within each WGP. On the primary read path, the device consists of
multiple channels of L2 cache that provides data to Read-only L1 caches, and finally to LO
caches per WGP. Specific cache-less load instructions can force data to be retrieved from
device memory during an execution of a load clause. Load requests that overlap within the
clause are cached with respect to each other. The output cache is formed by two levels of
cache: the first for write-combining cache (collect scatter and store operations and combine
them to provide good access patterns to memory); the second is a read/write cache with atomic
units that lets each processing element complete unordered atomic accesses that return the
initial value. Each processing element provides the destination address on which the atomic
operation acts, the data to be used in the atomic operation, and a return address for the
read/write atomic unit to store the pre-op value in memory. Each store or atomic operation can
be set up to return an acknowledgment to the requesting PE upon write confirmation of the
return value (pre-atomic op value at destination) being stored to device memory.

This acknowledgment has two purposes:
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 enabling a PE to recover the pre-op value from an atomic operation by performing a cache-
less load from its return address after receipt of the write confirmation acknowledgment,
and

 enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel maintains order. The
acknowledgment enables one processing element to implement a fence to maintain serial
consistency by ensuring all writes have been posted to memory prior to completing a
subsequent write. In this manner, the system can maintain a relaxed consistency model
between all parallel work-items operating on the system.

2.5. Shader Padding Requirement

Due to aggressive instruction prefetching used in some graphics devices, all shaders must be
padded out with 64 extra dwords (256 bytes) of data past the end of the shader. It is
recommended to use the S_CODE_END instruction as padding. This ensures that if the
instruction prefetch hardware goes beyond the end of the shader, it will not reach into
uninitialized memory (or unmapped memory pages).
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This chapter describes the kernel states visible to the shader program.

3.1. State Overview

The table below shows all of the hardware states readable or writable by a shader program.

Table 2. Readable and Writable Hardware States

Abbrev. Name

PC Program Counter
V0-V255 VGPR

S0-S105 SGPR

LDS Local Data Share
EXEC Execute Mask

EXECZ EXEC is zero

VCC Vector Condition Code
VCCZ VCC is zero

SCC Scalar Condition Code

FLAT_SCRATCH Flat scratch address

XNACK_MASK Address translation failure.

STATUS Status

MODE Mode

MO Memory Reg
TRAPSTS Trap Status

TBA Trap Base Address
TMA Trap Memory Address

3.1. State Overview

Size
(bits)

48

32
32

64kB

64

64

64

32

32
32

32

32

64

64

Description

Points to the memory address of the next shader
instruction to execute.

Vector general-purpose register.
Scalar general-purpose register.

Local data share is a scratch RAM with built-in
arithmetic capabilities that allow data to be shared
between threads in a workgroup.

A bit mask with one bit per thread, which is applied to
vector instructions and controls that threads execute
and that ignore the instruction.

A single bit flag indicating that the EXEC mask is all
zeros.

A bit mask with one bit per thread,; it holds the result
of a vector compare operation.

A single bit-flag indicating that the VCC mask is all
zeros.

Result from a scalar ALU comparison instruction.
The base address of scratch memory.

Bit mask of threads that have failed their address
translation.

Read-only shader status bits.
Writable shader mode bits.

Atemporary register that has various uses, including
GPR indexing and bounds checking.

Holds information about exceptions and pending
traps.

Holds the pointer to the current trap handler program.

Temporary register for shader operations. For
example, can hold a pointer to memory used by the
trap handler.
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Abbrev. Name Size Description
(bits)
TTMPO-TTMP15 Trap Temporary SGPRs 32 16 SGPRs available only to the Trap Handler for
temporary storage.

VMCNT Vector memory instruction 6 Counts the number of VMEM load instructions issued
count but not yet completed.

VSCNT Vector memory instruction 6 Counts the number of VMEM store instructions
count issued but not yet completed.

EXPCNT Export Count 3 Counts the number of Export and GDS instructions

issued but not yet completed. Also counts VMEM
writes that have not yet sent their write-data to the
last level cache.

LGKMCNT LDS, GDS, Constant and 4 Counts the number of LDS, GDS, constant-fetch
Message count (scalar memory read), and message instructions
issued but not yet completed.

3.2. Program Counter (PC)

The program counter (PC) is a byte address pointing to the next instruction to execute. When a
wavefront is created, the PC is initialized to the first instruction in the program.

The PC interacts with three instructions: S GET_PC, S _SET PC, S_SWAP_PC. These transfer
the PC to, and from, an even-aligned SGPR pair.

Branches jump to (PC_of_the_instruction_after_the_branch + offset). The shader program
cannot directly read from, or write to, the PC. Branches, GET_PC and SWAP_PC, are PC-

relative to the next instruction, not the current one. S_TRAP saves the PC of the S TRAP
instruction itself.

3.3. EXECute Mask

The Execute mask (64-bit) determines which threads in the vector are executed:
1 = execute, 0 = do not execute.

EXEC can be read from, and written to, through scalar instructions; it also can be written as a
result of a vector-ALU compare (V_CMPX). This mask affects vector-ALU, vector-memory, LDS,
GDS, and export instructions. It does not affect scalar (ALU or memory) execution or branches.

A helper bit (EXECZ) can be used as a condition for branches to skip code when EXEC is zero.

Wave32: the upper 32-bit of EXEC are ignored, and EXECZ represents the status of only the
lower 32-bits of EXEC.
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This GPU can optimize instruction execution when EXEC = 0.
The shader hardware can skip vector ALU and memory instructions if EXEC is known to
be zero, but with some limitations:

* VALU instructions can be skipped, unless they write SGPRs (never skipped)
» Wave64 memory instructions: can skip one half but never entire instruction
» Wave32 memory instructions: never skip

Use CBRANCH to rapidly skip over code when it is likely that the EXEC mask is zero.

3.4. Status registers

Status register fields can be read, but not written to, by the shader. These bits are initialized at
wavefront-creation time. The table below lists and briefly describes the status register fields.

Field

SCC

SPI_PRIO

USER_PRIO

PRIV

TRAP_EN

TTRACE_EN

EXPORT_RDY

EXECZ
VCCZz

IN_WG

3.4. Status registers

Bit
Position

1

2:1

4:3

10

11

Table 3. Status Register Fields

Description

Scalar condition code. Used as a carry-out bit. For a comparison instruction,
this bit indicates failure or success. For logical operations, this is 1 if the
result was non-zero.

Wavefront priority set by the shader processor interpolator (SPI) when the
wavefront is created. See the S_SETPRIO instruction (page 12-49) for
details. 0 is lowest, 3 is highest priority.

User settable wave-priority set by the shader program. See the
S_SETPRIO instruction (page 12-49) for details.

Privileged mode. Can only be active when in the trap handler. Gives write
access to the TTMP, TMA, and TBA registers.

Indicates that a trap handler is present. When set to zero, traps are not
taken.

Indicates whether thread trace is enabled for this wavefront. If zero, also
ignore any shader-generated (instruction) thread-trace data.

This status bit indicates if export buffer space has been allocated. The
shader stalls any export instruction until this bit becomes 1. Itis setto 1
when export buffer space has been allocated. Before a Pixel or Vertex
shader can export, the hardware checks the state of this bit. If the bit is 1,
export can be issued. If the bit is zero, the wavefront sleeps until space
becomes available in the export buffer. Then, this bit is set to 1, and the
wavefront resumes.

Exec mask is zero.
Vector condition code is zero.

Wavefront is a member of a work-group of more than one wavefront.

15 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Field Bit Description
Position
IN_BARRIER 12 Wavefront is waiting at a barrier.
HALT 13 Wavefront is halted or scheduled to halt. HALT can be set by the host

through wavefront-control messages, or by the shader. This bit is ignored
while in the trap handler (PRIV = 1); it also is ignored if a host-initiated trap
is received (request to enter the trap handler).

TRAP 14 Wavefront is flagged to enter the trap handler as soon as possible.

TTRACE_SIMD_EN 15 Enables/disables thread trace for this SIMD. This bit allows more than one
SIMD to be outputting USERDATA (shader initiated writes to the thread-
trace buffer). Note that wavefront data is only traced from one SIMD per
shader engine. Wavefront user data (instruction based) can still be output if
this bit is zero.

VALID 16 Wavefront is active (has been created and not yet ended).
ECC_ERR 17 An ECC error has occurred.
SKIP_EXPORT 18 For Vertex Shaders only. 1 = this shader is never allocated export buffer

space; all export instructions are ignored (treated as NOPs). Formerly
called VS_NO_ALLOC. Used for stream-out of multiple streams (multiple
passes over the same VS), and for DS running in the VS stage for
wavefronts that produced no primitives.

PERF_EN 19 Performance counters are enabled for this wavefront.

COND_DBG_USER 20 Conditional debug indicator for user mode

COND_DBG_SYS 21 Conditional debug indicator for system mode.

FATAL_HALT 23 Set if the wave experienced a fatal error.

MUST_EXPORT 27 This wavefront is required to perform an export with Done=1 before
terminating.

3.5. Mode register

Mode register fields can be read from, and written to, by the shader through scalar instructions.
The table below lists and briefly describes the mode register fields.

Table 4. Mode Register Fields

Field Bit Description
Position
FP_ROUND 3:0 [1:0] Single precision round mode. [3:2] Double/Half-precision round mode.

Round Modes: O=nearest even, 1= +infinity, 2= -infinity, 3= toward zero.

FP_DENORM 7:4 [1:0] Single denormal mode. [3:2] Double/Half-precision denormal mode.
Denorm modes:
0 = flush input and output denorms.
1 = allow input denorms, flush output denorms.
2 = flush input denorms, allow output denorms.
3 = allow input and output denorms.

3.5. Mode register 16 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Field Bit Description
Position
DX10_CLAMP 8 Used by the vector ALU to force DX10-style treatment of NaNs: when set,

clamp NaN to zero; otherwise, pass NaN through.

IEEE 9 Floating point opcodes that support exception flag gathering quiet and
propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10
become IEEE 754-2008 compliant due to signaling NaN propagation and

quieting.

LOD_CLAMPED 10 Sticky bit indicating that one or more texture accesses had their LOD
clamped.

DEBUG 11 Forces the wavefront to jump to the exception handler after each instruction is

executed (but not after ENDPGM). Only works if TRAP_EN = 1.

EXCP_EN 20:12 Enable mask for exceptions. Enabled means if the exception occurs and
TRAP_EN==1, a trap is taken.
[12] : invalid.

[13] : inputDenormal.
[14] : float_divO.

[15] : overflow.

[16] : underflow.

[17] : inexact.

[18] : int_divO.

[19] : address watch
[20] : memory violation

FP16 OVFL 23 If set, an overflowed FP16 result is clamped to +/- MAX_FP16, regardless of
round mode, while still preserving true INF values.

DISABLE_PERF 27 1 = disable performance counting for this wave

3.6. GPRs and LDS

This section describes how GPR and LDS space is allocated to a wavefront, as well as how out-
of-range and misaligned accesses are handled.

3.6.1. Out-of-Range behavior

This section defines the behavior when a source or destination GPR or memory address is
outside the legal range for a wavefront.

Out-of-range can occur through GPR-indexing or bad programming. It is illegal to index from
one register type into another (for example: SGPRs into trap registers or inline constants). It is
also illegal to index within inline constants.

The following describe the out-of-range behavior for various storage types.

* SGPRs
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° SGPRs cannot be "out of range".
However, it is illegal to index from one range to another, or for a 64-bit operand to

straddle two ranges.
The ranges are: [ SGPRs 0-105 and VCCH, VCCL], [ Trap Temps 0-15 ], [ all other

values ]
* VGPRs
o Itis illegal to index from SGPRs into VGPRs, or vice versa.
o Qut-of-range = (vgpr < 0 || (vgpr >= vgpr_size))
o If a source VGPR is out of range, VGPRO is used.
o If a destination VGPR is out-of-range, the instruction is ignored and nothing is written
(treated as an NOP).
* LDS
o If the LDS-ADDRESS is out-of-range (addr < 0 or > (MIN(Ids_size, m0)):
= Writes out-of-range are discarded; it is undefined if SIZE is not a multiple of write-
data-size.
» Reads return the value zero.
o If any source-VGPR is out-of-range, the VGPRO value is used.
o If the dest-VGPR is out of range, nullify the instruction (issue with exec=0)
* Memory, LDS, and GDS: Reads and atomics with returns.
o If any source VGPR or SGPR is out-of-range, the data value is undefined.
o If any destination VGPR is out-of-range, the operation is nullified by issuing the
instruction as if the EXEC mask were cleared to 0.
= This out-of-range check must check all VGPRs that can be returned (for example:
VDST to VDST+3 for a BUFFER_LOAD_DWORDx4).

= This check must also include the extra PRT (partially resident texture) VGPR and
nullify the fetch if this VGPR is out-of-range, no matter whether the texture system
actually returns this value or not.

= Atomic operations with out-of-range destination VGPRs are nullified: issued, but
with exec mask of zero.

Instructions with multiple destinations (for example: V_ADDC): if any destination is out-of-range,
no results are written.

3.6.2. SGPR Allocation and storage
Every wavefront is allocated a fixed number of SGPRs:

¢ 106 normal SGPRs
* VCCh and VCCI (stored in SGPRs 106 and 107)
« 16 Trap-temporary SGPRs, meant for use by the trap handler

3.6. GPRs and LDS 18 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

3.6.3. SGPR Alignment

Even-aligned SGPRs are required in the following cases.

» When 64-bit data is used. This is required for moves to/from 64-bit registers, including the
PC.

* When scalar memory reads that the address-base comes from an SGPR-pair (either in
SGPR).

Quad-alignment is required for the data-GPR when a scalar memory read returns four or more
Dwords. When a 64-bit quantity is stored in SGPRs, the LSBs are in SGPR[n], and the MSBs
are in SGPR[n+1].

3.6.4. VGPR Allocation and Alignment

VGPRs are allocated in groups of four Dwords for wave64, and 8 Dwords for wave32.
Operations using pairs of VGPRs (for example: double-floats) have no alignment restrictions.
Physically, allocations of VGPRs can wrap around the VGPR memory pool.

3.6.5. Wave Shared VGPRs

Wave64's can be allocated wave-private and wave-shared VGPRs. Private GPRs are the
normal ones where each lane has a unique value. Shared VGPRS are shared between the high
and low halves of a wave64. This can be useful to reduce overall VGPR usage when combined
with subvector execution. Shared VGPRs are allocated in blocks of 8 Dwords.

Shared VGPRs logically occupy the VGPR addresses immediately following the private VGPRs.
E.g. if a wave has 8 private VGPRs, they are V0-V7 and shared VGPRs start at V8. If there are
16 shared VGPRs, they are accessed as V8-23.

Shared VGPRs cannot be used for: Exports or GDS.

3.6.6. LDS Allocation and Clamping

LDS is allocated per work-group or per-wavefront when work-groups are not in use. LDS space
is allocated to a work-group or wavefront in contiguous blocks of 128 Dwords on 128-Dword
alignment. LDS allocations do not wrap around the LDS storage. All accesses to LDS are
restricted to the space allocated to that wavefront/work-group.

Clamping of LDS reads and writes is controlled by two size registers, which contain values for
the size of the LDS space allocated by SPI to this wavefront or work-group, and a possibly
smaller value specified in the LDS instruction (size is held in M0O). The LDS operations use the
smaller of these two sizes to determine how to clamp the read/write addresses.
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3.7. M# Memory Descriptor

There is one 32-bit M# (MO) register per wavefront, which can be used for:

» Local Data Share (LDS)
o Interpolation: holds { 1’'b0, new_prim_mask[15:1], parameter_offset[15:0] } // in bytes

o LDS direct-read offset and data type: { 13'b0, DataType[2:0], LDS_address[15:0] } //
addr in bytes

o LDS addressing for Memory/Vfetch - LDS: {16’'h0, Ids_offset[15:0]} // in bytes
o LDS “add_TID” read/write: { 16'h0, Ids_offset[15:0] } // offset in bytes
Global Data Share (GDS)
> { base[15:0], size[15:0] } // base and size are in bytes
Indirect GPR addressing for both vector and scalar instructions. MO is an unsigned index.
« Send-message value. EMIT/CUT use MO and EXEC as the send-message data.
Index value used by S_ MOVREL and V_MOVREL

3.8. SCC: Scalar Condition code

Most scalar ALU instructions set the Scalar Condition Code (SCC) bit, indicating the result of the
operation.

Compare operations: 1 = true

Arithmetic operations: 1 = carry out
Bit/logical operations: 1 = result was not zero
Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the
selector for conditional moves and branches.

3.9. Vector Compares: VCC and VCCZ

Vector ALU comparisons set the Vector Condition Code (VCC) register (1=pass, 0=fail). Also,
vector compares have the option of setting EXEC to the VCC value.

There is also a VCC summary bit (vccz) that is set to 1 when the VCC result is zero. This is
useful for early-exit branch tests. VCC is also set for selected integer ALU operations (carry-
out).

Vector compares have the option of writing the result to VCC (32-bit instruction encoding) or to

any SGPR (64-bit instruction encoding). VCCZ is updated every time VCC is updated: vector
compares and scalar writes to VCC.

3.7. M# Memory Descriptor 20 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

The EXEC mask determines which threads execute an instruction. The VCC indicates which
executing threads passed the conditional test, or which threads generated a carry-out from an
integer add or subtract.

V_CMP_* = VCCI[n] = EXEC[n] & (test passed for thread[n])

VCC is fully written; there are no partial mask updates.

VCC physically resides in the SGPR register file, so when an instruction

0 sources VCC, that counts against the limit on the total number of SGPRs that
can be sourced for a given instruction. VCC physically resides in the highest
two user SGPRs.

When used by a wave32, the upper 32 bits of VCC are unused and only the lower 32 bits of
VCC contribute to the value of VCCZ.

3.10. Trap and Exception registers

Each type of exception can be enabled or disabled independently by setting, or clearing, bits in
the TRAPSTS register's EXCP_EN field. This section describes the registers which control and
report kernel exceptions.

All Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in
the trap handler (status.priv = 1). When not privileged, writes to these are ignored. TMA and
TBA are read-only; they can be accessed through S_ GETREG_B32.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware
generates an S_TRAP instruction. This loads trap information into a pair of SGPRS:

{TTMP1, TTMP@} = {1'h®, pc_rewind[5:0], HT[@],trapID[7:8], PC[47:08]}.

HT is set to one for host initiated traps, and zero for user traps (s_trap) or exceptions. TRAP_ID
is zero for exceptions, or the user/host traplD for those traps. When the trap handler is entered,
the PC of the faulting instruction will be: (PC - PC_rewind*4).

STATUS . TRAP_EN - This bit indicates to the shader whether or not a trap handler is present.
When one is not present, traps are not taken, no matter whether they’re floating point, user-, or
host-initiated traps. When the trap handler is present, the wavefront uses an extra 16 SGPRs for
trap processing. If trap_en == 0, all traps and exceptions are ignored, and s_trap is converted
by hardware to NOP.

MODE . EXCP_EN([8:0] - Floating point exception enables. Defines which exceptions and
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events cause a trap.

Bit

Exception

Invalid

Input Denormal
Divide by zero
Overflow

Underflow

Inexact

Integer divide by zero

Address Watch - the cache has witnessed a thread access to an
‘address of interest'

3.10.1. Trap Status register

The trap status register records previously seen traps or exceptions. It can be read and written

by the kernel.

Field Bits
EXCP 8:0
SAVECTX 10
ILLEGAL_INST 11
ADDR_WATCH1-3 14:12
BUFFER_OOB 15

3.10. Trap and Exception registers

Table 5. Exception Field Bits
Description

Status bits of which exceptions have occurred. These bits are sticky and
accumulate results until the shader program clears them. These bits are
accumulated regardless of the setting of EXCP_EN. These can be read or
written without shader privilege.

Bit Exception

0 invalid

1 Input Denormal

2 Divide by zero

3 overflow

4 underflow

5 inexact

6 integer divide by zero

7 address watch

8 memory violation

A bit set by the host command indicating that this wave must jump to its trap
handler and save its context. This bit must be cleared by the trap handler using
S_SETREG. Note - a shader can set this bit to 1 to cause a save-context trap,
and due to hardware latency the shader may execute up to 2 additional
instructions before taking the trap.

An illegal instruction has been detected.

Indicates that address watch 1, 2, or 3 has been hit. Bit 12 is address watch 1;
bit 13 is 2; bit 14 is 3.

A buffer instruction has addresses data which is out of range.

22 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Field Bits Description

EXCP_CYCLE 19:16 When a float exception occurs, this tells the trap handler on which cycle the
exception occurred in.

EXCP_GROUP_MASK 23:20 When a float exception occurs, this bit mask tells the trap handler which of the
4 quadrants experienced the exception.

EXCP_WAVEG64HI 24 Indicates if a float ALU exception occurred in the second half of a wave64.
XNACK_ERROR 28 A memory address translation error has occurred.
DP_RATE 31:29 Determines how the shader interprets the TRAP_STS.cycle. Different Vector

Shader Processors (VSP) process instructions at different rates.

3.11. Memory Violations

A Memory Violation is reported from:

LDS alignment error.
* Memory read/write/atomic alignment error.

Flat access where the address is invalid (does not fall in any aperture).
» Write to a read-only surface.

GDS alignment or address range error.

 GWS operation aborted (semaphore or barrier not executed).

Memory violations are not reported for instruction or scalar-data accesses.

Memory Buffer to LDS does NOT return a memory violation if the LDS address is out of range,
but masks off EXEC bits of threads that would go out of range.

When a memory access is in violation, the appropriate memory (LDS or cache) returns
MEM_VIOL to the wave. This is stored in the wave’s TRAPSTS.mem_viol bit. This bit is sticky,
so once set to 1, it remains at 1 until the user clears it.

Memory violations are fatal: if a trap handler is present and the wave is not already in the trap
handler, the wave will jump to the trap handler; otherwise it will signal an interrupt and halt.

Memory violations are not precise. The violation is reported when the LDS or cache processes
the address; during this time, the wave may have processed many more instructions. When a
mem_viol is reported, the Program Counter saved is that of the next instruction to execute; it
has no relationship the faulting instruction.

3.12. Initial Wave State

When a wave is launched, some of the state data is pre-initialized. This section describes what
state is initialized per shader stage. Note that as usual in this spec, the shader stages refer to
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hardware shader stages and these often are not identical to software shader stages.

State initialization is controlled by state registers which are defined in other documentation.

3.12.1. State Registers

Table 6. State Register Initialization
Program Counter (PC) program start — from SPI_SHADER_PGM_LO/HI

Execute mask (EXEC) workitem valid mask. Indicates which workitems are valid for this wavefront.
Wave32 uses only bits 31-0. The combined ES+GS, HS+LS loads a dummy
non-zero value into EXEC, and the shader must calculate the real value from
initialized SGPRs.

Trap Status (TRAPSTS) 0

MODE.round/denorm Round and denormal modes are initialized from:
SPI_SHADER_PGM_RSRC1_*.{float,round}_mode

MODE.debug/dx_clamp Similar for "debug" and "dx10_clamp".

EXCP_EN Initalized from SPI_SHADER_PGM_RSRC2_*.excp_en

3.12.2. SGPR Initialization

SGPRs are initialized based on various SPI_PGM_RSRC?* register setting. It is important to
know that only the enabled values will be loaded, and they will be packed into consecutive
SGPRs.

Pixel Shader (PS)

SGPR Order Description Enable

First 0..32 of User data registers SPI_SHADER_PGM_RSRC2_PS.user_sgpr
then {bc_optimize, prim_mask[14:0] , Ids_offset[15:0]} N/A

then {ps_wave_id[9:0], ps_wave_index[2:0]} SPI_SHADER_PGM_RSRC2_PS.wave_cnt_en
then POPS collision wave 1D SPI_SHADER_PGM_RSRC2_PS.load_collision

{DidOverlap, 2'b0, Packer ID[0], 4'b0, Newest _wavelD
Overlapped WavelD[11:0], WavelD[11:0]}

then {16’b0, Intra-Wave Quad Overlap[15:0]} SPI_SHADER_PGM_RSRC2_PS.load_intrawav
e_collisions
then Scratch offset, in bytes SPI_SHADER_PGM_RSRC2_PS.scratch_en

Vertex Shader (VS)
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SGPR Order
First 0.. 32 of

then

then
then
then
then
then
then

then

then

then

Description
User data registers

{stream_id[1:0], is_offchip,
streamout_vtx_count[6:0] ,
streamout_enable[15:0]}

streamout_write_index[31:0]
streamout_offset0[31:0]
streamout_offset1[31:0]
streamout_offset2[31:0]
streamout_offset3[31:0]
offchip_lds_pointer[31:0] in bytes

wavelD (dispatch draw term)

pc_base

Scratch offset (in bytes)

Geometry Shader (ES+GS)

SGPR Order

0

then 0.. 32 of

Description

GS User Data Address Low ([31:0])
comes from:
SPI_SHADER_USER_DATA LO_GS

GS User Data Address High ([47:32]}
comes from:
SPI_SHADER_USER_DATA_HI_GS

GS2VS Ring buffer offset[31:0] (byte) OR
Control SB offset | Ordered Wave 1D
{wave_crawler_inc[2:0], 16’h0,
ordered_wave_id[12:0]}

{ TGsize[3:0], WavelnSubgroup[3:0],
GSWavelDJ[7:0], GSPrimCount[7:0],
ESVertCount[7:0]}

Off-chip LDS base [31:0]
Shared Scratch Offset

GS Shader address low comes from:
SPI_SHADER_PGM_LO_GS

GS Shader address high comes from:
SPI_SHADER_PGM_HI_GS

User data registers of GS shader

3.12. Initial Wave State
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Enable
SPI_SHADER_PGM_RSRC2_VS.user_sgpr

SPI_SHADER_PGM_RSRC2_VS.so_en ||
SPI_SHADER_PGM_RSRC2 _VS.oc_lds_en

SPI_SHADER_PGM_RSRC2_VS.so_en
SPI_SHADER_PGM_RSRC2_VS.so_base0 _en
SPI_SHADER_PGM_RSRC2_VS.so_basel_en
SPI_SHADER_PGM_RSRC2_VS.so_base2_en
SPI_SHADER_PGM_RSRC2_VS.so_base3 _en
SPI_SHADER_PGM_RSRC2_VS.oc_lds_en

SPI_SHADER_PGM_RSRC2_VS.dispatch_draw

_en

SPI_SHADER_PGM_RSRC2_VS.pc_base_en

SPI_SHADER_PGM_RSRC2_VS.scratch_en

Enable

always loaded

always loaded

VGT_SHADER_STAGES.primgen_en

always loaded

SPI_SHADER_PGM_RSRC2_GS.oc_lds_en
SPI_SHADER_PGM_RSRC2_GS.scratch_en

always loaded

always loaded

SPI_SHADER_PGM_RSRC2_GS.user_sgpr
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Front End Shader (LS+HS)

SGPR Order

0

6
7

then 0.. 32 of

Description

HS User Data Address Low ([31:0])
HS User Data Address High ([47:32])
Off-chip LDS base [31:0]

{first_wave, Ishs_TGsize[6:0],
Ishs_PatchCount[7:0], HS_vertCount[7:0],
LS_vertCount[7:0]}

TF buffer base [15:0]
Shared Scratch Offset
HS Shader address low
HS Shader address high

User data registers of HS shader

Compute Shader (CS)

SGPR Order
First 0.. 16 of
then
then
then

then

then

Description

User data registers
threadgroup_id0[31:0]
threadgroup_id1[31:0]
threadgroup_id2[31:0]

{first_wave, 14’h0000,
ordered_append_term[11:0],
threadgroup_size_in_waves[5:0]}

Scratch offset (in bytes)

AMDZ1

Enable
SPI_SHADER_USER_DATA_LO_HS
SPI_SHADER_USER_DATA HI_HS
always loaded

always loaded

always loaded
SPI_SHADER_PGM_RSRC2_HS.scratch_en
SPI_SHADER_PGM_LO_HS
SPI_SHADER_PGM_HI_HS

SPI_SHADER_PGM_RSRC2_HS.user_sgpr

Enable

COMPUTE_PGM_RSRC2.user_sgpr
COMPUTE_PGM_RSRC2.tgid_x_en
COMPUTE_PGM_RSRC2.tgid_y_en
COMPUTE_PGM_RSRC2.tgid_z_en

COMPUTE_PGM_RSRC2.tg_size_en

COMPUTE_PGM_RSRC2.scratch_en

Compute shaders have up to 3 VGPRs initialized as well:

¢ VGPRO = thread ID in group, X dimension
* VGPRL1 = thread ID in group, Y dimension
* VGPR2 = thread ID in group, Z dimension

3.12. Initial Wave State
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Chapter 4. Program Flow Control

All program flow control is programmed using scalar ALU instructions. This includes loops,
branches, subroutine calls, and traps. The program uses SGPRs to store branch conditions and
loop counters. Constants can be fetched from the scalar constant cache directly into SGPRs.

4.1. Program Control

The instructions in the table below control the priority and termination of a shader program, as
well as provide support for trap handlers.

Table 7. Control Instructions

Instructions Description
S _ENDPGM Terminates the wavefront. It can appear anywhere in the kernel and can appear multiple
times.

S_ENDPGM_SAVED Terminates the wavefront due to context save. It can appear anywhere in the kernel and can
appear multiple times.

S _NOP Does nothing; it can be repeated in hardware up to eight times.

S_TRAP Jumps to the trap handler.

S_RFE Returns from the trap handler

S_SETPRIO Modifies the priority of this wavefront: O=lowest, 3 = highest.

S _SLEEP Causes the wavefront to sleep for 64 - 960 clock cycles.

S _SENDMSG Sends a message (typically an interrupt) to the host CPU.

S_CLAUSE Define a clause of instructions which will be executed together.

S _VERSION Does nothing (treated as S_NOP), but can be used as a code comment to indicate the

hardware version the shader is compiled for (using the SIMM16 field).

S _CODE_END Treated as an illegal instruction. Used to pad past the end of shaders.

4.1.1. Instruction Clauses

An instruction clause is a group of instructions of the same type which are to be executed in
an uninterruped sequence. Normally the shader hardware may interleave instructions from
different waves in order to maintain performance, but a clause can be used to override that
behavior and force the hardware to service only one wave for a given instruction type for the
duration of the clause.

Clauses are defined by the S_CLAUSE instructions, which specifies the number of instructions
that make up the clause. The clause-type is implicitly defined by the type of instruction
immediately following the clause. Clause types are:
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VALU
SMEM
LDS
FLAT

Texture, buffer, global and scratch

Clauses must contain only one instruction type. If a different instruction type is encountered
during the clause, the clause is immediately terminated.

4.2. Branching

Branching is done using one of the following scalar ALU instructions.

Instructions
S _BRANCH

S _CBRANCH_<test>

S_CBRANCH_CDBGSYS
S_CBRANCH_CDBGUSER

S_CBRANCH_CDBGSYS_AND_
USER

S_SETPC
S_SWAPPC
S_GETPC

S_CALL_B64

S_SUBVECTOR_LOOP_BEGIN

S_SUBVECTOR_LOOP_END

Table 8. Branch Instructions

Description
Unconditional branch.

Conditional branch. Branch only if <test> is true. Tests are VCCZ, VCCNZ,
EXECZ, EXECNZ, SCCZ, and SCCNZ.

Conditional branch, taken if the COND_DBG_SYS status bit is set.
Conditional branch, taken if the COND_DBG_USER status bit is set.

Conditional branch, taken only if both COND_DBG_SYS and
COND_DBG_USER are set.

Directly set the PC from an SGPR pair.
Swap the current PC with an address in an SGPR pair.
Retrieve the current PC value (does not cause a branch).

Jump to a subroutine, and save return address. SGPR_pair = PC+4; PC =
PC+4+SIMM16*4.

Starts a subvector execution loop. The SIMML16 field is the branch offset to the
instruction after S_SUBVECTOR_LOOP_END, and the SGPR is used for
temporary EXEC storage.

Marks the end of the subvector execution loop. The SIMM16 field points back to
the instruction after S SUBVECTOR_LOOP_BEGIN, and the SGPR is used for
temporary EXEC storage.

For conditional branches, the branch condition can be determined by either scalar or vector
operations. A scalar compare operation sets the Scalar Condition Code (SCC), which then can
be used as a conditional branch condition. Vector compare operations set the VCC mask, and
VCCZ or VCCNZ then can be used to determine branching.

4.2. Branching
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4.2.1. Subvector Execution

“Subvector execution” is an alternate method of handling wave64 instruction execution. The
normal method is to issue each half of a wave64 as two wave32 instructions, then move on to
the next instruction. This alternative method is to issue a group of instructions, all for the first 32
workitems and then come back and execute the same instructions but for the second 32
workitems. This has two potential advantages:

* Memory operations are for smaller units of work and may cache better
o example: reading multiple entries from a strided buffer
« Wave-temporary VGPRs are available:
> In Wave64 each wave may declare N normal VGPRs (the wave gets 64 * N dwords,
with N per work-item), and M temp VGPRs which may only be used in this mode. The
temp VGPRs are physically adjacent to the normal ones, but logically are from just after
the private VGPRs. These can be used on each pass of the subvector execution.

This mode is explicitly declared in shader code as a loop:

S_subvector_loop_begin SO, skip_all
loop_start:

< vec32 code >

S_subvector_loop_end SO, loop_start

skip_all:
Table 9. SubVector Execution Order
Shader Normal Execution Sequence Subvector Loop Execution Sequence
Program
inst0 instO - low instO - low
instl instO - high instl - low
inst2 instl - low inst2 - low
inst3 instl - high inst3 - low
inst2 - low instO - high
inst2 - high instl - high
inst3 - low inst2 - high
inst3 — high inst3 — high

Subvector execution is simply a loop construct where half of the EXEC mask is zero for each
pass over the body of the code. All wave64 rules still apply. The loop will execute zero, one or
two times, depending on the initial state of the EXEC mask. During each pass of the loop, one
half of EXEC is forced to zero (after being saved in an SGPR). The EXEC mask is restored at
the end of the loop.

If EXECHI = 0: the body is executed only once: EXECLO is stored in SO and restored at the
end, but it was zero anyway. If EXEC_LO was zero at the start, the same thing happens. If both
halves of EXEC are non-zero, do the low pass first (storing EXECHI in S0), then restore
EXECHI and save off EXECLO and do it again. Restore EXECLO at the end of the second
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pass. The “pass #” is encoded by observing which half of EXEC is zero.

Subvector looping imposes a rule that the “body code” cannot let the working half of the exec
mask go to zero. If it might go to zero, it must be saved at the start of the loop and be restored
before the end since the S_SUBVECTOR_LOOP_* instructions determine which pass they're in
by looking at which half of EXEC is zero.

4.3. Workgroups

Work-groups are collections of wavefronts running on the same workgroup processor which can
synchronize and share data. Up to 1024 work-items (16 wave64’s or 32 wave32’s) can be
combined into a work-group. When multiple wavefronts are in a workgroup, the S_BARRIER
instruction can be used to force each wavefront to wait until all other wavefronts reach the same
instruction; then, all wavefronts continue. Any wavefront may terminate early using S_ ENDPGM,
and the barrier is considered satisfied when the remaining live waves reach their barrier
instruction.

4.4. Data Dependency Resolution

Shader hardware resolves most data dependencies, but a few cases must be explicitly handled
by the shader program. In these cases, the program must insert S_WAITCNT instructions to
ensure that previous operations have completed before continuing.

The shader has four counters that track the progress of issued instructions. S_ WAITCNT waits
for the values of these counters to be at, or below, specified values before continuing.

These allow the shader writer to schedule long-latency instructions, execute unrelated work,
and specify when results of long-latency operations are needed.

Instructions of a given type return in order, but instructions of different types can complete out-
of-order. For example, both GDS and LDS instructions use LGKM_cnt, but they can return out-
of-order. VMEM loads return in the order they were issued, but loads and stores are unordered
with each other.

VM_CNT

Vector memory count (reads, atomic with return). Determines when memory reads have
returned data to VGPRs.

 Incremented every time a vector-memory read or atomic-with-return (MIMG, MUBUF,
MTBUF, or FLAT/Scratch/Global format) instruction is issued.

* Decremented for reads when the data has been written back to the VGPRs.
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VS_CNT

Vector memory store count (writes, atomic without return). Determines when memory writes
have completed.

« Incremented every time a vector-memory write or atomic-without-return (MIMG, MUBUF,
MTBUF, or Flat/Scratch/Global format) instruction is issued.
* Decremented for writes when the data has been written to the L2 cache.

LGKM_CNT

(LDS, GDS, (K)constant, (M)essage) Determines when one of these low-latency instructions
have completed.

¢ Incremented by 1 for every LDS or GDS instruction issued, as well as by Dword-count
for scalar-memory reads. For example, s_memtime counts the same as an
s_load_dwordx2.
» Decremented by 1 for LDS/GDS reads or atomic-with-return when the data has been
returned to VGPRs.
* Incremented by 1 for each S_SENDMSG issued. Decremented by 1 when message is
sent out.
« Decremented by 1 for LDS/GDS writes when the data has been written to LDS/GDS.
* Decremented by 1 for each Dword returned from the data-cache (SMEM).
Ordering:
o Instructions of different types are returned out-of-order.
o Instructions of the same type are returned in the order they were issued, except
scalar-memory-reads, which can return out-of-order (in which case only
S _WAITCNT 0 is the only legitimate value).

EXP_CNT

VGPR-export count. Determines when data has been read out of the VGPR and sent to
GDS, at which time it is safe to overwrite the contents of that VGPR.

* Incremented when an Export/GDS instruction is issued from the wavefront buffer.

« Decremented for exports/GDS when the last cycle of the export instruction is granted
and executed (VGPRs read out). Ordering

o Exports are kept in order only within each export type (color/null, position,
parameter cache).

4.5. Manually Inserted Wait States (NOPSs)

Inserting S_NOP is never required to achieve correct operation.
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Chapter 5. Scalar ALU Operations

Scalar ALU (SALU) instructions operate on a single value per wavefront. These operations
consist of 32-bit integer arithmetic and 32- or 64-bit bit-wise operations. The SALU also can
perform operations directly on the Program Counter, allowing the program to create a call stack
in SGPRs. Many operations also set the Scalar Condition Code bit (SCC) to indicate the result
of a comparison, a carry-out, or whether the instruction result was zero.

5.1. SALU Instruction Formats

SALU instructions are encoded in one of five microcode formats, shown below:

31 0
I T T I T T T T
sopt |1 0[11"1

I I [ I I I I I I I I I I I I
171 001] SDST, | OPs | SSRCO0s

Figure 3. Scalar ALU format with one source operand

31 0
I I I I I I [ [ [ I I I I I I
sop2 |1 0] OP, ] SDST, I SSRC1s \ SSRCOs

Figure 4. Scalar ALU format with two source operands

31 0
sork |1 0]1'1] " or, || | sDST; | " sium1s |

Figure 5. Scalar ALU format with one immediate value source operands

31 0
T I I T T I I I | T T I I I I I | I
sorc (1 0]1'1' 1 11 170] OP; \ SSRCTs | SSRCOs

Figure 6. Scalar ALU format for compares, with two sources but no destinaton

31 0
I I T T T I T | T T T T T T T T I T
sopp [1'0]1 1" | siMM16

T T
171 104 oP;

Figure 7. Scalar ALU format for program flow operations

Each of these instruction formats uses some of these fields:

Field Description

OoP Opcode: instruction to be executed.
SDST Destination SGPR.

SSRCO First source operand.

SSRC1 Second source operand.

SIMM16 Signed immediate 16-bit integer constant.

The lists of similar instructions sometimes use a condensed form using curly braces { } to
express a list of possible names. For example, S_AND_{B32, B64} defines two legal
instructions: S_AND_B32 and S_AND_B64.
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5.2. Scalar ALU Operands

Valid operands of SALU instructions are:

* Mode register.

SGPRs, including trap temporary SGPRs.

Status register (read-only).
MO register.
TrapSts register.
EXEC mask.
VCC mask.

» SCC.

AMDZ1

« Inline constants: integers from -16 to 64, and a some floating point values.

VCCZ, EXECZ, and SCC.
e Hardware registers.
« 32-bit literal constant.

In the table below, 0-127 can be used as scalar sources or destinations; 128-255 can only be
used as sources.

Scalar
Dest
(7 bits)

Code
0- 105
106

107
108-123

124

125
126
127
128
129-192
193-208
209-234
235
236
237

238

5.2. Scalar ALU Operands

Table 10. Scalar Operands

Meaning

SGPR 0 to 105
VCC_LO

VCC_HI

TTMPO to TTMP15

MO

NULL
EXEC_LO
EXEC_HI

0

int 1 to 64

int -1 to -16
reserved
SHARED_BASE
SHARED_LIMIT
PRIVATE_BASE

PRIVATE_LIMIT

Description

Scalar GPRs

Holds the low Dword of the vector condition code
Holds the high Dword of the vector condition code
Trap temps (privileged)

Holds the low Dword of the flat-scratch memory
descriptor

Reads return zero, writes are discarded.
Execute mask, low Dword

Execute mask, high Dword

zero

Positive integer values.

Negative integer values.

Unused.

Memory Aperture definition. Values are affected by
system addressing mode: 32 or 64 bit.
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Code Meaning Description
239 POPS_EXITING_WAVE_ID Primitive Ordered Pixel Shading wave ID.
240 0.5 single or double floats
241 -0.5
242 1.0
243 -1.0
244 2.0
245 -2.0
246 4.0
247 -4.0
248 1.0/ (2 *Pl)
249-250 reserved unused
251 VCCz { zeros, VCCZ}
252 EXECZ { zeros, EXECZ }
253 SCC { zeros, SCC}
254 reserved unused
255 Literal constant 32-bit constant from instruction stream.

The SALU cannot use VGPRs or LDS. SALU instructions can use a 32-bit literal constant. This
constant is part of the instruction stream and is available to all SALU microcode formats except
SOPP and SOPK. Literal constants are used by setting the source instruction field to "literal”
(255), and then the following instruction dword is used as the source value.

If the destination SGPR is out-of-range, no SGPR is written with the result. However, SCC and
possibly EXEC (if saveexec) will still be written.

If an instruction uses 64-bit data in SGPRs, the SGPR pair must be aligned to an even

boundary. For example, it is legal to use SGPRs 2 and 3 or 8 and 9 (but not 11 and 12) to
represent 64-bit data.

5.3. Scalar Condition Code (SCC)

The scalar condition code (SCC) is written as a result of executing most SALU instructions.
The SCC is set by many instructions:

« Compare operations: 1 = true.
* Arithmetic operations: 1 = carry out.

o SCC = overflow for signed add and subtract operations. For add, overflow = both
operands are of the same sign, and the MSB (sign bit) of the result is different than the
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sign of the operands. For subtract (AB), overflow = A and B have opposite signs and
the resulting sign is not the same as the sign of A.
* Bit/logical operations: 1 = result was not zero.

5.4. Integer Arithmetic Instructions

This section describes the arithmetic operations supplied by the SALU. The table below shows
the scalar integer arithmetic instructions:

Table 11. Integer Arithmetic Instructions

Instruction Encoding Sets SCC? Operation

S ADD 132 SOP2 y D = S0 + S1, SCC = overflow.

S _ADD_U32 SOP2 y D =S0 + S1, SCC = carry out.

S_ADDC_U32 SOP2 y D = SO + S1 + SCC = overflow.

S_SUB_132 SOP2 y D = S0 - S1, SCC = overflow.

S _SUB_U32 SOP2 y D =S0 - S1, SCC = carry out.

S SUBB_U32 SOP2 y D =S0-S1 - SCC = carry out.

S_ABSDIFF_132 SOP2 y D = abs (SO - S1), SCC = result not zero.

S MIN_I32 SOP2 y D=(S0<S1)?S0:S1. SCC =1 if SO was min.

S_MIN_U32

S _MAX_132 SOP2 y D =(S0>S1)?S0:S1. SCC =1 if SO was max.

S_MAX_U32

S _MUL_I32 SOP2 n D = S0 * S1. Low 32 bits of result.

S _ADDK 132 SOPK y D =D + simm16, SCC = overflow. Sign extended
version of simm16.

S_MULK_I32 SOPK n D = D * simm16. Return low 32bits. Sign extended
version of simm16.

S _ABS_132 SOP1 y D.i = abs (S0.i). SCC=result not zero.

S_SEXT _132_18 SOP1 n D = { 24{SO0[7]}, SO[7:0] }.

S_SEXT_132_116 SOP1 n D = { 16{S0[15]}, SO[15:0] }.

5.5. Conditional Instructions

Conditional instructions use the SCC flag to determine whether to perform the operation, or (for
CSELECT) which source operand to use.

Table 12. Conditional Instructions
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Instruction Encoding Sets SCC? Operation
S_CSELECT_{B32, B64} SOP2 n D=SCC?S0:S1.

S CMOVK_132 SOPK n if (SCC) D = signext(simm16).
S_CMOV_{B32,B64} SOP1 n if (SCC) D = S0, else NOP.

5.6. Comparison Instructions

These instructions compare two values and set the SCC to 1 if the comparison yielded a TRUE
result.

Table 13. Conditional Instructions

Instruction Encoding Sets Operation

Scc?
S_CMP_EQ_U64, SOPC y Compare two 64-bit source values. SCC = S0 <cond>
S_CMP_LG_U64 Si.
S _CMP_{EQ,LG,GT,GE,LE,LT} SOPC y Compare two source values. SCC = SO <cond> S1.
{132,U32}
S_CMPK_{EQ,LG,GT,GE,LE,LT} SOPK y Compare Dest SGPR to a constant. SCC = DST
_{132,U32} <cond> simm16. simm16 is zero-extended (U32) or

sign-extended (132).

S_BITCMPO_{B32,B64} SOPC y Test for "is a bit zero". SCC = 1S0[S1].
S_BITCMP1_{B32,B64} SOPC y Test for "is a bit one". SCC = SO[S1].

5.7. Bit-Wise Instructions

Bit-wise instructions operate on 32- or 64-bit data without interpreting it has having a type. For
bit-wise operations if noted in the table below, SCC is set if the result is nonzero.

Table 14. Bit-Wise Instructions

Instruction Encoding Sets Operation

Scc?
S_MOV_{B32,B64} SOP1 n D=S0
S_MOVK_I32 SOPK n D = signext(simm16)
{S_AND,S_OR,S_XOR}_{B32,B64} SOP2 y D =S0 & S1, SO0 OR S1, SO XOR S1
{S_ANDN2,S_ORNZ2} {B32,B64} SOP2 y D =S50 & ~S1, SO OR ~S1, SO XOR ~S1,
{S_NAND,S_NOR,S_XNOR}_{B32,B64} SOP2 y D =~(S0 & S1), ~(SO OR S1), ~(S0 XOR S1)
S_LSHL_{B32,B64} SOP2 y D = SO << S1[4:0], [5:0] for B64.
S_LSHR_{B32,B64} SOP2 y D = S0 >> S1[4:0], [5:0] for B64.
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Instruction

S_ASHR {132,164}
S_BFM_{B32,B64}

S_BFE_U32, S _BFE_U64
S_BFE_I32, S_BFE_l64
(signed/unsigned)

S_NOT _{B32,B64}

S_WQM_{B32,B64}

S_QUADMASK_{B32,B64}

S_BITREPLICATE_B64_B32

S_BREV_{B32,B64}
S_BCNTO_I32_{B32,B64}
S_BCNT1_I32_{B32,B64}

S_FF0_I32_{B32,B64}

S_FF1_132_{B32,B64}

S_FLBIT_I32_{B32,B64}

S_FLBIT_[32
S_FLBIT_I32_I64

S_BITSETO_{B32,B64}
S_BITSET1_{B32,B64}

S_{and,or,xor,andnl,andn2,0rnl,0rn2,n
and, nor,xnor}_SAVEEXEC_{B32,B64}

5.7. Bit-Wise Instructions

Encoding

SOP2
SOP2

SOP2

SOP1

SOP1

SOP1

SOP1

SOP1
SOP1
SOP1

SOP1

SOP1

SOP1

SOP1

SOP1
SOP1

SOP1

Sets
SCC?

n

n

y

AMDZ1

Operation

D = sext(S0 >> S1[4:0]) ([5:0] for 164).
Bit field mask. D = ((1 << S0[4:0]) - 1) << S1[4:0].

Bit Field Extract, then sign-extend result for 132/64
instructions.

SO = data,

S1[5:0] = offset, S1[22:16]= width.

D =~S0.

D = wholeQuadMode(S0). If any bit in a group of
four is set to 1, set the resulting group of four bits
all to 1.

D[0] = OR(S0[3:0]), D[1]=OR(S0[7:4]), etc.

Replicate each bit in 32-bit SO twice:

D ={... SO[1], SO[1], SO[0], SO[0] }.

Two of these instructions is the inverse of
S _QUADMASK.

D = S0[0:31] are reverse bits.
D = CountZeroBits(S0).
D = CountOneBits(S0).

D = Bit position of first zero in SO starting from
LSB. -1 if not found.

D = Bit position of first one in SO starting from LSB.
-1 if not found.

Find last bit. D = the number of zeros before the
first one starting from the MSB. Returns -1 if none.

Count how many bits in a row (from MSB to LSB)
are the same as the sign bit. Return -1 if the input
is zero or all 1's (-1). 32-bit pseudo-code:
if(S0==0]|SO==-1)D=-1

else

D=0

for(1=31..0)

if (SO[I] == SO[31])

D++

else break

This opcode behaves the same as V_FFBH_I32.

D[SO[4:0], [5:0] for B64] = 0
D[S0[4:0], [5:0] for B64] = 1

Save the EXEC mask, then apply a bit-wise
operation to it.

D = EXEC

EXEC = S0 <op> EXEC

SCC = (exec = 0)
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Instruction Encoding Sets Operation

S_{ANDN{1,2} WREXEC_B{32,64} SOP1

S_MOVRELS_{B32,B64} SOP1
S_MOVRELD_{B32,B64}

SCC?

y N1: EXEC, D = ~S0 & EXEC
N2: EXEC, D = SO & ~EXEC
Both D and EXEC get the same result. SCC =

(result = 0).
n Move a value into an SGPR relative to the value in
MO.

MOVERELS: D = SGPR[S0+M0]
MOVERELD: SGPR[D+M0] = SO

Index must be even for 64. MO is an unsigned
index.

5.8. Access Instructions

These instructions access hardware internal registers.

Table 15. Hardware Internal Registers

Instruction Encoding Sets
SCC?

S _GETREG_B32 SOPK* n

S _SETREG_B32 SOPK* n

S_SETREG_IMM32_B32 SOPK* n

S_ROUND_MODE SOPP n

S_DENORM_MODE SOPP n

Operation

Read a hardware register into the LSBs of D.

Write the LSBs of D into a hardware register. (Note that D is a
source SGPR.) Must add an S_NOP between two consecutive
S_SETREG to the same register.

S_SETREG where 32-bit data comes from a literal constant (so
this is a 64-bit instruction format).

Set the round mode from an immediate: simm16[3:0]

Set the denorm mode from an immediate: simm16[3:0]

The hardware register is specified in the DEST field of the instruction, using the values in the
table above. Some bits of the DEST specify which register to read/write, but additional bits
specify which bits in the register to read/write:

SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is @..31, size is 1..32.

Table 16. Hardware Register Values

Code Register Description
0 reserved

1 MODE R/W.

2 STATUS Read only.
3 TRAPSTS R/W.

5.8. Access Instructions
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Code Register
5 GPR_ALLOC
6 LDS_ALLOC
7 IB_STS
8-14
15 SH_MEM_BASES
16 TBA_LO
17 TBA_HI
18 TMA_LO
19 TMA_HI
20 FLAT_SCRATCH_LO
21 FLAT_SCRATCH_HI
22 XNACK_MASK
25 POPS_PACKER
Code Register
VM_CNT 23:22,

3:0
EXP_CNT 6:4
LGKM_CNT 11:8

FIRST_REPLA 15

AMDZ1

Description

Read only. {sgpr_size, sgpr_base, vgpr_size, vgpr_base }.
Read only. {lds_size, Ids_base}.

Read only. {valu_cnt, Igkm_cnt, exp_cnt, vm_cnt}.
reserved.

Bits [15:0] = Private Base; [31:16] = Shared Base.

Trap base address register [31:0].

Trap base address register [47:32].

Trap memory address register [31:0].

Trap memory address register [47:32].

Flat Scratch memory address, bits [31:0]

Flat Scratch memory address, bits [63:32]

Bit mask of which workitems received an XNACK (address translation failure)

Bit [0] = POPS enabled for this wave; bits [2:1] = Pops Packer ID

Table 17. IB_STS

Description

Number of VMEM load instructions issued but not yet returned.

Number of Exports issued but have not yet read their data from VGPRs.

LDS, GDS, Constant-memory and Message instructions issued-but-not-completed

count.

Indicates this is the first instruction to be replayed.

Y
REPLAY_W64H 25 For wave64, indicates that it was the high half of the wave that encountered the first
xnack.
VS_CNT 31:26 Number of VMEM store instructions issued but not yet returned.
Table 18. GPR_ALLOC
Code Register Description
VGPR_BASE 5:0 Physical address of first VGPR assigned to this wavefront, as [7:2]
VGPR_SIZE 13:8 Number of VGPRs assigned to this wavefront, as [7:2]+4. 0=4 VGPRs, 1=8 VGPRs, etc.
SGPR_BASE 21:16 Physical address of first SGPR assigned to this wavefront, as [7:3].
Table 19. LDS_ALLOC
Code Register Description
LDS_BASE 7:0 Physical address of first LDS location assigned to this wavefront, in

5.8. Access Instructions

units of 64 Dwords.
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Code Register Description

LDS_SIZE 20:12 Amount of LDS space assigned to this wavefront, in units of 64
Dwords.
VGPR_SHARED_SIZE 27:24 Number of shared VGPRs allocate to this wave, in units of 8 VGPRs.

(0=0vgprs, 1=8vgprs, ...)
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Chapter 6. Vector ALU Operations

Vector ALU instructions (VALU) perform an arithmetic or logical operation on data for each of 32
or 64 threads and write results back to VGPRs, SGPRs or the EXEC mask.

Parameter interpolation is a mixed VALU and LDS instruction, and is described in the Data
Share chapter.

6.1. Microcode Encodings

Most VALU instructions are available in two encodings: VOP3 which uses 64-bits of instruction,
and one of three 32-bit encodings that offer a restricted set of capabilities. A few instructions are
only available in the VOP3 encoding.

When an instruction is available in two microcode formats, it is up to the user to decide which to
use. It is recommended to use the 32-bit encoding whenever possible.

The microcode encodings are shown below:

VOP2 is for instructions with two inputs and a single vector destination. Instructions that have a
carry-out implicitly write the carry-out to the VCC register.

31 0
[ [ I I [ I I I I [ [ I I [ [
vorz 0| OPs || VDST, | ] VSRCg | ] SRCO0,

VOP1 is for instructions with no inputs or a single input and one destination.

31
[ I T I I I I I I I I I I I [ I
vort  o]1 1 1 1] ] VDSTs | | OPs | SRCO0s

VOPC is for comparison instructions.

31 0
I I I [ I I [ [ I I [ I [ [
vorc |o]1' 1 1'1"1 0] | OPs | VSRC1s || SRCOs

VINTRP is for parameter interpolation instructions.

31 0

T T T T T [ das T T T [ L[ T L T T [afR | [ T Tl T 1
vintre [ 1710 01 0] VDST; (accum) | op, | ATTRs AR VSRCs (1,J)
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VOP3 is for instructions with up to three inputs, input modifiers (negate and absolute value), and
output modifiers. There are two forms of VOP3: one which uses a scalar destination field (used
only for div_scale, integer add and subtract); this is designated VOP3b. All other instructions
use the common form, designated VOP3a.

31 0
T T T 1 T T T__ T T T T 1 T 1 1 T T 1T T 1
11 0 1 0 1 ‘ ‘ OPg cimp| OP_SEL,4 ‘ ABS VDSTg
VOP3A 1 T I [agan! | T T T T T 1 T 1 T T __ T _ T T 1
NEG ‘ OMOD‘ SRC2, SRC1, SRCO0,
63 32
3 0
T T T 1 L N DU B B B B T T T T 1 L N R A
11 0 1 0 1 ‘ OP1o clmp‘ SDST; VDSTsg
VOP3B ] ] L B T T T T T T T T T __ T T T 1
NEG ‘ OMOD‘ SRC2 ‘ SRC1y ‘ SRCO0s
63

Any of the 32-bit microcode formats may use a 32-bit literal constant, as well VOP3. Note
however that VOP3 plus a literal makes a 96-bit instruction and excessive use of this
combination may reduce performance.

VOP3P is for instructions that use "packed math": These instructions perform an operation on a
pair of input values that are packed into the high and low 16-bits of each operand; the two 16-bit
results are written to a single VGPR as two packed values.

31 0

1

T

17001 1]

T P_SE

I I
EG_HI

VOP3P

NEG

[ [OPSEL
_Hlto

[T 1
clmr.;:i_‘p."2 OP_SELZ:O‘ N
‘ T T T T I

‘ SRC1,

63

6.2. Operands

All VALU instructions take at least one input operand (except V_NOP and V_CLREXCP). The
data-size of the operands is explicitly defined in the name of the instruction. For example,
V_MAD_F32 operates on 32-bit floating point data.

Table 20. Instruction Operands

Value Name Description

0-105 SGPR 0..105

106 VCC_LO vee[31:0].

107 VCC_HI vee[63:32].

108-123 TTMPO to TTMP 15 Trap handler temps (privileged).

124 MO MO register

125 NULL Reads return zero, writes are discarded.
126 EXEC_LO exec[31:0].

127 EXEC_HI exec[63:32].

128 0 Zero

6.2. Operands
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Value
129-192
193-208
209-232
233

234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249-250
249
250
251
252
253
254
255

256-511

Name
int1..64
int-1..-16
reserved
DPP8

DPPSFI

SHARED_BASE
SHARED_LIMIT
PRIVATE_BASE
PRIVATE_LIMIT
POPS_EXITING_WAVE_ID
0.5

-0.5

1.0

-1.0

2.0

-2.0

4.0

-4.0

1/(2*P1)
reserved

SDWA

DPP16

VCCzZ

EXECZ

SCC

LDS direct
Literal

VGPR

6.2.1. Instruction Inputs

AMDZ1

Description

Integer inline constants.

Unused.
DPP - 8 lane transfer. (only valid as source-0)

DPP - 8 lane transfer with fetch from invalid lanes. (only valid as source-
0)

Memory Aperture definition.

Primitive Ordered Pixel Shading wave ID.

Single, double, or half-precision inline floats.

1/(2*PI) is 0.15915494.

The exact value used is:
half: 0x3118

single: 0x3e22f983

double: 0x3fc45f306dc9c882

Unused.

Sub Dword Address (only valid as Source-0)

DPP over 16 lanes (only valid as Source-0)

{ zeros, VCCZ}

{ zeros, EXECZ }

{ zeros, SCC}

Use LDS direct read to supply 32-bit value Vector-alu instructions only.
constant 32-bit constant from instruction stream.

0..255

VALU instructions can use any of the following sources for input, subject to restrictions listed

below:

6.2. Operands
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* VGPRs

* SGPRs

« Inline constants - constant selected by a specific VSRC value
Literal constant - 32-bit value in the instruction stream.

LDS direct data read

« MO

EXEC mask

Limitations

< At most two scalar values can be read per instructions, but the values can be used for more
than one operand.

o Scalar values include: SGPRs, VCC, EXEC (used as data), and literal constants

o Some instructions implicitly read an SGPR (which includes VCC), and this implicit read
counts agains the total supported limit.

» These are: Add/sub with carry-in, FMAS and CNDMASK
> 64-bit shift instructions can use only a single scalar value, not two
¢ At most one literal constant can be used
« Inline constants are free, and do not count against these limits
¢ Only SRCO can use LDS_DIRECT (see Chapter 10, "Data Share Operations")

Instructions using the VOP3 form and also using floating-point inputs have the option of

applying absolute value (ABS field) or negate (NEG field) to any of the input operands.

Literal Expansion to 64 bits

Literal constants are 32-bits, but they can be used as sources which normally require 64-bit
data. They are expanded to 64 bits following these rules:

64 bit float: the lower 32-bit are padded with zero.
* 64-bit unsigned integer: zero extended to 64 bits
* 64-bit signed integer: sign extended to 64 bits

6.2.2. Instruction Outputs

VALU instructions typically write their results to VGPRs specified in the VDST field of the
microcode word. A thread only writes a result if the associated bit in the EXEC mask is set to 1.

All V_CMPX instructions write the result of their comparison (one bit per thread) the EXEC
mask.

Instructions producing a carry-out (integer add and subtract) write their result to VCC when used
in the VOP2 form, and to an arbitrary SGPR-pair when used in the VOP3 form.
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When the VOP3 form is used, instructions with a floating-point result can apply an output
modifier (OMOD field) that multiplies the result by: 0.5, 1.0, 2.0 or 4.0. Optionally, the result can
be clamped (CLAMP field) to the range [0.0, +1.0].

Output modifiers apply only to floating point results and are ignored for integer or bit results.
Output modifiers are not compatible with output denormals: if output denormals are enabled,
then output modifiers are ignored. If output demormals are disabled, then the output modifier is
applied and denormals are flushed to zero. Output modifiers are not IEEE compatible: -0 is
flushed to +0. Output modifiers are ignored if the IEEE mode bit is set to 1.

In the table below, all codes can be used when the vector source is nine bits; codes 0 to 255
can be the scalar source if it is eight bits; codes 0 to 127 can be the scalar source if it is seven
bits; and codes 256 to 511 can be the vector source or destination.

6.2.3. Waveb64 use of SGPRs

VALU instructions may use SGPRs as a uniform input, shared by all workitems. If the value is
used as simple data value, then the same SGPR is distributed to all 64 workitems. If, on the
other hand, the data value represents a mask (e.g. carry-in, mask for CNDMASK), then each
workitem receives a separate value, and two consecutive SGPRs will be read.

6.2.4. Waveb64 Destination Restrictions

When a VALU instruction is issued from a wave64, it is actually issued twice as two wave32
instructions. While in most cases the programmer need not be aware of these, it does impose a
prohibition on wave64 VALU instructions which both write and read the same SGPR value.
Doing this will lead to unpredictable results. Specifically, the first pass of a wave64 VALU
instruction must not overwrite a scalar value used by the second half.

6.2.5. OPSEL Field Restrictions

The OPSEL field (of VOP3) is usable only for a subset of VOP3 instructions, and not for VOP1,
VOP2 or VOPC instructions using the VOP3 encoding (these should use SDWA instead).

Table 21. Opcodes usable with OPSEL

V_MAD_{F16, I16} V_INTERP_P2_F16 V_ADD_NC_U16
V_FMA_F16 V_CVT_PKNORM_I16_F16 V_SUB_NC_U16
V_ALIGNBIT_B32 V_CVT_PKNORM_U16_F16 V_MUL_LO_U16
V_ALIGNBYTE_B32 V_MAD_U32_U16 V_LSHLREV_B16
V_DIV_FIXUP_F16 V_MAD_I32_I16 V_LSHRREV_B16
V_MIN3_{F16,I16,U16} V_ASHRREV_I16
V_MAX3_{F16,I16,U16} V_MAX_U16
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V_MED3_{F16,I16,U16} V_MAX_I16
V_PACK_F16 V_MIN_U16
V_MIN_I16

6.2.6. Out-of-Range GPRs

When a source VGPR is out-of-range, the instruction uses as input the value from VGPRO.

When the destination GPR is out-of-range, the instruction executes but does not write the
results.

6.3. Instructions

The table below lists the complete VALU instruction set by microcode encoding, except for
VOP3P instructions which are listed in a later section.

Table 22. VALU Instruction Set
VOP3 VOP3 - 1-2 operand opcodes  VOP2 VOP1

V_ADD_LSHL_U32 One Operand: V_ADD_{F16, F32} V_BFREV_B32

V_ADD3_U32 V_LDEXP_F32 V_ADD_CO_CI_U32 V_CEIL_{ F16,F32, F64}
V_ALIGNBIT_B32 V_LDEXP_F64 V_ADD_NC_U32 V_CLREXCP
V_ALIGNBYTE_B32 V_AND_B32 V_COS_ {F16,F32}

V_AND_OR_B32 Two Operands: V_ASHRREV_B32 V_CVT_{I32,U32,F16,
F64}_F32

V_BFE_{U32 , I32 } V_ADD_CO_U32 V_CNDMASK_B32 V_CVT_{I32,U32}_F64

V_BFI_B32 V_ADD_F64 V_CVT_PKRTZ_F16_F32 V_CVT_{U16, I16}_F16

V_CUBEID_F32

V_CUBEMA_F32

V_CUBESC_F32

V_CUBETC_F32

V_CVT_PK_U8_F32

V_DIV_FIXUP_{
F16,F32,F64}

V_DIV_FMAS_{F32,F64}

V_DIV_SCALE_{F32,F64}

V_FMA_{ F16,
F64}

6.3. Instructions

V_ADD_NC_{I32, U16, I16}

V_ASHRREV_{I16, I64}

V_BCNT_U32_B32

V_BFM_B32
V_CVT_PK_{I16, U16}_U32

V_CVT_PKNORM_{I16,

U16}_F16

V_CVT_PKNORM_{I16,

U16}_F32

V_INTERP_MOV_F32

V_INTERP_P1_F32

V_FMAAK_F16

V_FMAAK_F32

V_FMAC_F16

V_FMAC_F32
V_FMAMK_F16

V_FMAMK_F32

V_LDEXP_F16

V_LSHLREV_B32

V_LSHRREV_B32

V_CVT_F16_{U16, I16}

V_CVT_F32_{I32,U32,F16
,F64}

V_CVT_F32_UBYTE{0,1,2,
3}

V_CVT_F64_{I32,U32}
V_CVT_FLR_I32_F32

V_CVT_NORM_I16_F16

V_CVT_NORM_U16_F16

V_CVT_OFF_F32_14

V_CVT_RPI_I32_F32
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VOP3
V_LERP_US8
V_LSHL_ADD_U32
V_LSHL_OR_B32

V_MAD_{ I16,U16,F32}

V_MAD_{U64_U32,
I64_I32}

V_MAD_I32_I16

V_MAD_I32_I24
V_MAD_LEGACY_F32

V_MAD_U32_U16

V_MAD_U32_U24
V_MAX3_{F16,I16,U16}
V_MAX3_{F32,132,U32}

V_MED3_{F16,I16,U16}

V_MED3_{F32,1I32,U32}
V_MIN3_{F16,I16,U16}
V_MIN3_{F32,1I32,U32}
V_MQSAD_PK_U16_U8
V_MQSAD_PK_U32_U8
V_MSAD_U8

V_MULLIT_F32

V_OR3_B32
V_PERM_B32
V_PERMLANE16_B32
V_PERMLANEX16_B32
V_QSAD_PK_U16_U8

V_SAD_{U8, HI_Us,
ule, U32}

V_TRIG_PREOP_F64

V_XAD_U32

V_XOR3_B32

6.3. Instructions

VOP3 - 1-2 operand opcodes

V_INTERP_P1LL_F16
V_INTERP_P1LV_F16
V_INTERP_P2_F16

V_INTERP_P2_F32

V_LSHLREV_{B16, B64}

V_LSHRREV_{B16, B64}

V_MAX_{u16, I16, F64}
V_MBCNT_HI_U32_B32

V_MBCNT_LO_U32_B32

V_MIN_ {U16, I16, F64}
V_MUL_F64
V_MUL_HI_{I32,U32}

V_MUL_LO_{u16, U32}

V_PACK_B32_F16
V_READLANE_B32
V_SUB_CO_U32
V_SUB_NC_{I32, U16, I16}
V_SUBREV_C0_U32

V_WRITELANE_B32

VOP2

V_MAC_{ F16,F32}
V_MAC_LEGACY_F32
V_MADAK_{ F16,F32}

V_MADMK_{ F16,F32}

V_MAX_{ F16,
F32,132,U32}

V_MIN_{ F16,
F32,132,U32}

V_MUL_{F16, F32}
V_MUL_HI_I32_I24

V_MUL_HI_U32_U24

V_MUL_I32_I24
V_MUL_LEGACY_F32
V_MUL_U32_U24

V_OR_B32

V_SUB_{F16, F32}
V_SUB_CO_CI_U32
V_SUB_NC_U32
V_SUBREV_{F16, F32}
V_SUBREV_C0_CI_U32
V_SUBREV_NC_U32

V_XNOR_B32

V_XOR_B32

AMDZ1

VOP1

V_EXP_{ F16,F32}
V_FFBH_{U32, I32}
V_FFBL_B32

V_FLOOR_{ F16,F32,
F64}

V_FRACT_{ F16,F32,F64}

V_FREXP_EXP_I16_F16

V_FREXP_EXP_I32_F32
V_FREXP_EXP_I32_F64

V_FREXP_MANT_{
F16,F32,F64}

V_LOG_ {F16,F32}
V_MOV_B32
V_MOV_FED_B32

V_MOVREL{S, D, SD,
SD_2}_B32

V_NOP

V_NOT_B32
V_PIPEFLUSH

V_RCP_{ F16,F32,F64}
V_RCP_IFLAG_F32
V_READFIRSTLANE_B32

V_RNDNE_{ F16,F32,
F64}

V_RSQ_{ F16,F32, F64}
V_SAT_PK_U8_I16
V_SIN_ {F16,F32}
V_SQRT_{ F16,F32,F64}
V_SWAP_B32

V_SWAPREL_B32

V_TRUNC_{ F16,F32,
F64)
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The next table lists the compare instructions.

Table 23. VALU Instruction Set

Op Formats Functions
V_CMP 116, 132, 164, U16, F LT, EQ, LE, GT, LG, GE, T
U32, U4
V_CMPX
V_CMP F16, F32, F64 F LT, EQ, LE, GT, LG, GE, T,
O, U, NGE, NLG, NGT, NLE, NEQ, NLT
V CMPX (o = total order, u = unordered,
a N = NaN or normal compare)
V_CMP_CLASS F16, F32, F64 Test for one of: signaling-NaN, quiet-NaN,
positive or negative: infinity, normal,
V_CMPX_CLASS subnormal, zero.

6.4. Denormalized and Rounding Modes

AMDZ1

Result

Write VCC..
Write exec.

Write VCC.

Write exec.

Write VCC.

Write exec.

The shader program has explicit control over the rounding mode applied and the handling of
denormalized inputs and results. The MODE register is set using the S_SETREG instruction; it
has separate bits for controlling the behavior of single and double-precision floating-point

numbers.

Round and denormal modes can also be set using S ROUND_MODE and
S _DENORM_MODE.

Table 24. Round and Denormal Modes

Field Bit Position Description

FP_ROUND 3:0 [1:0] Single-precision round mode.
[3:2] Double/Half-precision round mode.

Round Modes: O=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.

FP_DENORM  7:4 [5:4] Single-precision denormal mode.
[7:6] Double/Half-precision denormal mode.
Denormal modes:
0 = Flush input and output denorms.
1 = Allow input denorms, flush output denorms.
2 = Flush input denorms, allow output denorms.
3 = Allow input and output denorms.

6.5. ALU Clamp Bit Usage

The clamp bit has multpiple uses. For V_CMP instructions, setting the clamp bit to 1 indicates
that the compare signals if a floating point exception occurs. For integer operations, it clamps
the result to the largest and smallest representable value. For floating point operations, it

6.4. Denormalized and Rounding Modes
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clamps the result to the range: [0.0, 1.0].

6.6. VGPR Indexing

VGPR indexing allows a value stored in the MO register to act as an index into the VGPRs for
either the source operand, destination or both for certain MOVE operations.

The table below describes the instructions which enable, disable and control VGPR indexing.

Table 25. VGPR Indexing Instructions

Instruction Encoding Operation

V_MOVRELD_B32 VOP1 Move with relative destination: VGPR[D+MO0] = VGPR[SO0].

V_MOVRELS_B32 VOP1 Move with relative source: VGPR[D] = VGPR[S0+M0O].

V_MOVRELSD_B32 VOP1 Move with relative source and destination: VGPR[D+MOQ] =
VGPR[S0+MO].

V_MOVRELSD_2_B32 VOP1 Move with relative source and destination, each different:

VGPR[D+MO0[25:16]] = VGPR[S0+MO[7:0]].

V_SWAPREL_B32 VOP1 Swap two VGPRs, each relative to a separate index: swap
VGPR[D+MO0[25:16]] with VGPR[S0+MO[7:0]].

6.7. Packed Math

Packed math is a form of operation which acclerates arithmetic on two values packed into the
same VGPR. It performs operations on two 16-bit values within a DWORD as if they were
separate threads. For example, a packed add of VO=V1+V2 is really two separate adds: adding
the low 16 bits of each Dword and storing the result in the low 16 bit s of VO, and adding the
high halves.

Packed math uses the instructions below and the microcode format "VOP3P". This format adds
op_sel and neg fields for both the low and high operands, and removes ABS and OMOD.

Table 26. Packed Math Opcodes:

V_PK_MAD_116 V_PK_MUL_LO_U16 V_PK_ADD_|16 V_PK_SUB_I16
V_PK_LSHLREV_B16 V_PK_LSHRREV_B16 V_PK_ASHRREV |16 V_PK_MAX_I16
V_PK_MIN_I16 V_PK_MAD_U16 V_PK_ADD_U16 V_PK_SUB_U16
V_PK_MAX_U16 V_PK_MIN_U16 V_PK_FMA F16 V_PK_ADD_F16
V_PK_MUL_F16 V_PK_MIN_F16 V_PK_MAX_F16 V_MAD_MIX_F32
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V_MAD_MIX_* are not packed math, but perform a single MAD operation on
e a mixture of 16- and 32-bit inputs. They are listed here because they use the
VOP3P encoding.

6.8. Sub-Dword Addressing (SDWA)

Sub DWord Addressing allows a VOP1, VOP2 and VOPC instruction to reference 16 bits of data
in a 32-bit VGPR either the upper or lower half, or any of 4 bytes in the DWORD. The actual
SRCO operand will be supplied by the SRCO field of the SDWA word. Each operand can select
the high or low 16-bits or any byte as the destination portion of a VGPR. SDWA is indicated by
setting the SRCO to the inline constant: SQ_SRC_SDWA. VOPC instructions use a slightly
different version of the SDWA instruction word which as “SD” and “SDST” fields, but not:

OMOD, CLMP, DST_U and DST_SEL.

6.9. Data Parallel Processing (DPP)

Data Parallel ALU operations allow VALU instruction to select operands from different lanes
(threads) rather than just using a thread’s own lane. DPP is compatible only with: VOP1 and
VOP2. There are no new instructions, but there are two new instruction formats in the form of an
extra DWORD of instruction: DPP8 or DPP16.

There are two forms of the DPP instruction word:

DPP8 allows arbitrary swizzling between groups of 8 lanes

DPP16 allows a set of predefined swizzles between groups of 16 lanes

A scan operation is one which computes a value per thread which is based on the values of the
previous threads and possibly itself. E.g. a running sum is the sum of the values from previous
threads in the vector. A reduction operation is essentially a scan which returns a single value
from the highest numbered active thread. These operations take the SP multiple instruction
cycles (at least 8 times what an ADD_F32 takes). Rather than make these a single macro in
SQ, the shader program will have unique instructions for each pass of the scan. This prevents
any instruction scheduling issues (any other waves may execute in between these individual
stage instruction) and allows more general flexibility.

Use of DPP is indicated by setting the SRCO operand to a literal constant: DPP8 or DPP16.
Note that since SRC-0 is set to the literal value, the actual VGPR address for Source-0 comes
from the literal constant (DPP). The scan operation requires the EXEC mask to be set to all 1's
for proper operation. Unused threads (lanes) must be set to a value which will not change the
result prior to the scan. Readlane, readfirstlane and writelane cannot be used with DPP.
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6.10. PERMLANE Specific Rules

V_PERMLANE must not occur immediately after a V_CMPX. To prevent this, any other VALU
opcode may be inserted (e.g. v_mov_b32 vO0, v0).
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Chapter 7. Scalar Memory Operations

Scalar Memory Read (SMEM) instructions allow a shader program to load data from memory
into SGPRs through the Scalar Data Cache. Instructions can read from 1 to 16 Dwords, or write
1 to 4 Dwords at a time. Data is read directly into SGPRs without any format conversion.

The scalar unit reads consecutive Dwords from memory to the SGPRs. This is intended
primarily for loading ALU constants and for indirect T#/S# lookup. No data formatting is
supported, nor is byte or short data.

7.1. Microcode Encoding

Scalar memory read instructions are encoded using the SMEM microcode format.

31 0
I I I I I T I [ I I I I I I I I
171 1 1 0 1 ‘ SDATA; | ‘ SBASEg (sgpr-pair)
I [ I I [ | I I I I [ I I I [ I
SOFFSET; l 4 ‘ OFFSET4 (signJed)
63 32

SMEM

The fields are described in the table below:

Table 27. SMEM Encoding Field Descriptions

Field Size Description
oP 8 Opcode.
GLC 1 Globally Coherent.

Controls L1 cache policy: 0=hit_Iru, 1=miss_evict.
DLC 1 Device Coherent. "1" indicates to bypass the GL1 cache.

SDATA 7 SGPRs to return read data to.
Reads of two Dwords must have an even SDST-sgpr.
Reads of four or more Dwords must have their DST-gpr aligned to a multiple of 4.
SDATA must be: SGPR or VCC. Not: exec or mO.

SBASE 6 SGPR-pair (SBASE has an implied LSB of zero) which provides a base address, or for BUFFER
instructions, a set of 4 SGPRs (4-sgpr aligned) which hold the resource constant. For BUFFER
instructions, the only resource fields used are: base, stride, num_records.

OFFSET 21  Animmediated signed byte offset. Must be positive with s_buffer operations.

SOFFSET 7 The address of an SGPR which supplies an unsigned byte address offset. Set this to NULL to
disable.

7.2. Operations
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7.2.1.S_LOAD_DWORD

These instructions load 1-16 Dwords from memory. The data in SGPRs is specified in SDATA,
and the address is composed of the SBASE, OFFSET, and SOFFSET fields.

Scalar Memory Addressing

S_LOAD:
ADDR = SGPR[base] + inst_offset + { MO or SGPRJoffset] or zero }
S_SCRATCH_LOAD :
ADDR = SGPR[base] + inst_offset + { MO or SGPR]offset] or zero } * 64

All components of the address (base, offset, inst_offset, MO) are in bytes, but the two LSBs are
ignored and treated as if they were zero.

Itis illegal and undefined if the inst_offset is negative and the resulting
(inst_offset + (MO or SGPRJoffset])) is negative.

Scalar access to private (scratch) space must either use a buffer constant or manually convert
the address.

A scalar instruction must not overwrite its own source registers because the possibility of the
instruction being replayed due to an UTC XNACK. Similarly, instructions in scalar memory
clauses must not overwrite the sources of any of the instructions in the clause. A clause is
defined as a string of memory instructions of the same type. A clause is broken by any non-
memory instruction.

Reads using Buffer Constant

Buffer constant fields used: base_address, stride, num_records. Other fields are ignored.

Scalar memory read does not support "swizzled" buffers. Stride is used only for memory
address bounds checking, not for computing the address to access.

The SMEM supplies only a SBASE address (byte) and an offset (byte or Dword). Any "index *
stride” must be calculated manually in shader code and added to the offset prior to the SMEM.

The two LSBs of V#.base and of the final address are ignored to force Dword alignment.
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"m_*" components come from the buffer constant (V#):

offset = OFFSET + SOFFSET (M@, SGPR or zero)

m_base = { SGPR[SBASE * 2 +1][15:0], SGPR[SBASE*2] }
m_stride = SGPR[SBASE * 2 +1][31:16]

m_num_records = SGPR[SBASE * 2 + 2]

m_size = (m_stride == 8) ? 1 : m_num_records

addr = (m_base + offset) & ~@x3

SGPR[SDST] = read_Dword_from_dcache(base, m_size)

If more than 1 dword is being read, it is returned to SDST+1, SDST+2, etc,
and the offset is incremented by 4 bytes per DWORD.

7.2.2. S_DCACHE_INV

This instruction invalidates the entire scalar cache. It does not return anything to SDST.

7.2.3. S_MEMTIME

This instruction reads a 64-bit clock counter into a pair of SGPRs: SDST and SDST+1.

7.2.4.S_MEMREALTIME

This instruction reads a 64-bit "real time-counter" and returns the value into a pair of SGPRS:
SDST and SDST+1. The time value is from a clock for which the frequency is constant (not
affected by power modes or core clock frequency changes).

7.3. Dependency Checking

Scalar memory reads can return data out-of-order from how they were issued; they can return
partial results at different times when the read crosses two cache lines. The shader program
uses the LGKM_CNT counter to determine when the data has been returned to the SDST
SGPRs. This is done as follows.

* LGKM_CNT is incremented by 1 for every fetch of a single Dword.
« LGKM_CNT is incremented by 2 for every fetch of two or more Dwords.
« LGKM_CNT is decremented by an equal amount when each instruction completes.

Because the instructions can return out-of-order, the only sensible way to use this counter is to

implement S_WAITCNT 0; this imposes a wait for all data to return from previous SMEMs
before continuing.
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7.4. Scalar Memory Clauses and Groups

A “clause” is a sequence of instructions starting with S_CLAUSE and continuing for 2-63
instructions. Clauses lock the instruction arbiter onto this wave until the clause completes.

A “group” is a set of the same type of instruction that happen to occur in the code but are not
necessarily executed as a clause. A group ends when there a non-SMEM instruction.

Scalar memory instructions are issued in groups. A group is a sequence of SMEM instructions,
and any non-SMEM instruction breaks the group. The hardware does not enforce that a single
wave will execute an entire group before issuing instructions from another wave.

Group restrictions:

1. Reads and writes must not be in the same group if they might access the same addresses
2. INV must be in a group by itself
3. “TIME” instructions are considered as reads for group rules

Instruction ordering

The data cache is free to re-order instructions. The only assurance of ordering comes when the
shader executes an S_WAITCNT LGKMcnt==0. Cache invalidate instructions are not assured to
have completed until the shader waits for LGKMcnt==0.

7.5. Alighment and Bounds Checking

SDST

The value of SDST must be even for fetches of two Dwords (including S_MEMTIME), or a
multiple of four for larger fetches. If this rule is not followed, invalid data can result. If SDST
is out-of-range, the instruction is not executed.

SBASE

The value of SBASE must be even for S BUFFER_LOAD (specifying the address of an
SGPR which is a multiple of four). If SBASE is out-of-range, the value from SGPRO is used.

OFFSET
The value of OFFSET has no alignment restrictions.

Memory Address : If the memory address is out-of-range (clamped), the operation is not
performed for any Dwords that are out-of-range.
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Chapter 8. Vector Memory Operations

Vector Memory (VMEM) instructions read or write one piece of data separately for each work-
item in a wavefront into, or out of, VGPRs. This is in contrast to Scalar Memory instructions,
which move a single piece of data that is shared by all threads in the wavefront. All Vector
Memory (VM) operations are processed by the texture cache system (level 1 and level 2
caches).

Software initiates a load, store or atomic operation through the texture cache through one of
three types of VMEM instructions:

* MTBUF: Memory typed-buffer operations.
« MUBUF: Memory untyped-buffer operations.
* MIMG: Memory image operations.

The instruction defines which VGPR(s) supply the addresses for the operation, which VGPRs
supply or receive data from the operation, and a series of SGPRs that contain the memory
buffer descriptor (V# or T#). Also, MIMG operations supply a texture sampler (S#) from a series
of four SGPRs; this sampler defines texel filtering operations to be performed on data read from
the image.

8.1. Vector Memory Buffer Instructions

Vector-memory (VM) operations transfer data between the VGPRs and buffer objects in memory
through the texture cache (TC). Vector means that one or more piece of data is transferred
uniquely for every thread in the wavefront, in contrast to scalar memory reads, which transfer
only one value that is shared by all threads in the wavefront.

Buffer reads have the option of returning data to VGPRs or directly into LDS.

Examples of buffer objects are vertex buffers, raw buffers, stream-out buffers, and structured
buffers.

Buffer objects support both homogeneous and heterogeneous data, but no filtering of read-data
(no samplers). Buffer instructions are divided into two groups:

« MUBUF: Untyped buffer objects.
- Data format is specified in the resource constant.
> Load, store, atomic operations, with or without data format conversion.
« MTBUF: Typed buffer objects.
o Data format is specified in the instruction.
o The only operations are Load and Store, both with data format conversion.

Atomic operations take data from VGPRs and combine them arithmetically with data already in
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memory. Optionally, the value that was in memory before the operation took place can be
returned to the shader.

All VM operations use a buffer resource constant (V#) which is a 128-bit value in SGPRs. This
constant is sent to the texture cache when the instruction is executed. This constant defines the
address and characteristics of the buffer in memory. Typically, these constants are fetched from
memory using scalar memory reads prior to executing VM instructions, but these constants also
can be generated within the shader.

8.1.1. Simplified Buffer Addressing

The equation below shows how the hardware calculates the memory address for a buffer
access:

ADDR= Base + baseOffset + Inst offset + Voffset + Stride * (Vindex + TID)
V# SGPR Instr VGPR Vi# VGPR 0..63

Voffset is ignored when instruction bit “OFFEN” ==
Vindex is ignored when instructino bit “IDXEN” ==
TID is a constant value (0..63) unique to each thread in the wave. It is ignored when resource bit ADD_TID_ENABLE ==

8.1.2. Buffer Instructions

Buffer instructions (MTBUF and MUBUF) allow the shader program to read from, and write to,
linear buffers in memory. These operations can operate on data as small as one byte, and up to
four Dwords per work-item. Atomic arithmetic operations are provided that can operate on the
data values in memory and, optionally, return the value that was in memory before the arithmetic
operation was performed.

The D16 instruction variants convert the results to packed 16-bit values. For example,
BUFFER_LOAD_FORMAT_D16_XYZW will write two VGPRSs.

Table 28. Buffer Instructions
Instruction Description

MTBUF Instructions

TBUFFER_LOAD_FORMAT_{X,xy,xyz,xyzw} Read from, or write to, a typed buffer object. Also used for a
TBUFFER_STORE_FORMAT_{x,Xxy,xyz,xyzw} vertex fetch.
TBUFFER_LOAD_FORMAT_D16_{x,Xy,Xyz,Xxyzw}

TBUFFER_STORE_FORMAT_D16_{x,xy,xyz,xyzw}

MUBUF Instructions

BUFFER_LOAD_FORMAT_{x,xy,xyz,xyzw} Read to, or write from, an untyped buffer object.
BUFFER_STORE_FORMAT_{x,xy,xyz,xyzw} <size> = byte, ubyte, short, ushort, Dword, Dwordx2, Dwordx3,
BUFFER_LOAD_FORMAT_D16_{x,xy,Xyz,xyzw} Dwordx4

BUFFER_STORE_FORMAT_D16_{x,xy,xyz,xyzw} BUFFER_ATOMIC_<op>

BUFFER_LOAD_<size> BUFFER_ATOMIC_<op>_ x2

BUFFER_STORE_<size>
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Table 29. Microcode Formats

Bit Size Description

4 MTBUF: Opcode for Typed buffer instructions.

7 MUBUF: Opcode for Untyped buffer instructions.

8 Address of VGPR to supply first component of address (offset or index). When both index and
offset are used, index is in the first VGPR, offset in the second.

8 Address of VGPR to supply first component of write data or receive first component of read-
data.

8 SGPR to supply unsigned byte offset. Must be an SGPR, MO, or inline constant.

5 Specifies which SGPR supplies V# (resource constant) in four consecutive SGPRs. This field
is missing the two LSBs of the SGPR address, since this address must be aligned to a multiple
of four SGPRs.

7 Data Format of data in memory buffer. See: Buffer Image format Table

12 Unsigned byte offset.

1 1 = Supply an offset from VGPR (VADDR). 0 = Do not (offset = 0).

1 1 = Supply an index from VGPR (VADDR). 0 = Do not (index = 0).

1 Globally Coherent. Controls how reads and writes are handled by the LO texture cache.
READ
GLC = 0 Reads can hit on the LO and persist across wavefronts
GLC = 1 Reads miss the LO and force fetch to L2. No LO persistence across waves.

WRITE

GLC = 0 Writes miss the LO, write through to L2, and persist in LO across wavefronts.
GLC = 1 Writes miss the LO, write through to L2. No persistence across wavefronts.
ATOMIC

GLC = 0 Previous data value is not returned. No LO persistence across wavefronts.
GLC =1 Previous data value is returned. No LO persistence across wavefronts.
Note: GLC means "return pre-op value" for atomics.

1 Device Level Coherent. When set, accesses are forced to miss in level 1

1 System Level Coherent. Used in conjunction with DLC to determine L2 cache policies.

1 Texel Fail Enable for PRT (partially resident textures). When set to 1, fetch can return a NACK
that causes a VGPR write into DST+1 (first GPR after all fetch-dest GPRs).

1 MUBUF-ONLY: 0 = Return read-data to VGPRs. 1 = Return read-data to LDS instead of

VGPRs.
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8.1.3. VGPR Usage

VGPRs supply address and write-data; also, they can be the destination for return data (the
other option is LDS).

Address

Zero, one or two VGPRs are used, depending of the offset-enable (OFFEN) and index-
enable (IDXEN) in the instruction word, as shown in the table below:

Table 30. Address VGPRs

IDXEN OFFEN VGPRn VGPRn+1

0 0 nothing

0 1 uint offset

1 0 uint index

1 1 uintindex  uint offset

Write Data : N consecutive VGPRs, starting at VDATA. The data format specified in the
instruction word (FORMAT for MTBUF, or encoded in the opcode field for MUBUF) determines
how many Dwords to write.

Read Data : Same as writes. Data is returned to consecutive GPRs.

Read Data Format : Read data is 32 bits, based on the data format in the instruction or
resource. Float or normalized data is returned as floats; integer formats are returned as integers
(signed or unsigned, same type as the memory storage format). Memory reads of data in
memory that is 32 or 64 bits do not undergo any format conversion.

Atomics with Return : Data is read out of the VGPR(s) starting at VDATA to supply to the
atomic operation. If the atomic returns a value to VGPRSs, that data is returned to those same
VGPRs starting at VDATA.

8.1.4. Buffer Data

The amount and type of data that is read or written is controlled by the following: the resource
format field, destination-component-selects (dst_sel), and the opcode. FORMAT can come from
the resource, instruction fields, or the opcode itself. Dst_sel comes from the resource, but is
ignored for many operations.

Table 31. Buffer Instructions

Instruction Data Format Num Format DST SEL
TBUFFER_LOAD FORMAT * instruction instruction identity
TBUFFER_STORE_FORMAT_* instruction instruction identity

8.1. Vector Memory Buffer Instructions 59 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Instruction Data Format Num Format DST SEL
BUFFER_LOAD_<type> derived derived identity
BUFFER_STORE_<type> derived derived identity
BUFFER_LOAD_FORMAT_* resource resource resource
BUFFER_STORE_FORMAT _* resource resource resource
BUFFER_ATOMIC_* derived derived identity

Instruction : The instruction’s format field is used instead of the resource’s fields.

Data format derived : The data format is derived from the opcode and ignores the resource
definition. For example, buffer_load_ubyte sets the data-format to 8 and number-format to uint.

The resource’s data format must not be INVALID; that format has specific
meaning (unbound resource), and for that case the data format is not
replaced by the instruction’s implied data format.

DST_SEL identity : Depending on the number of components in the data-format, this is: X000,
XYO00, XYZ0, or XYZW.

The MTBUF derives the data format from the instruction. The MUBUF
BUFFER_LOAD_FORMAT and BUFFER_STORE_FORMAT instructions use dst_sel from the
resource; other MUBUF instructions derive data-format from the instruction itself.

D16 Instructions : Load-format and store-format instructions also come in a "d16" variant. For
stores, each 32-bit VGPR holds two 16-bit data elements that are passed to the texture unit.
This texture unit converts them to the texture format before writing to memory. For loads, data
returned from the texture unit is converted to 16 bits, and a pair of data are stored in each 32-bit
VGPR (LSBs first, then MSBs). Control over int vs. float is controlled by FORMAT.

8.1.5. Buffer Addressing

A buffer is a data structure in memory that is addressed with an index and an offset. The index
points to a particular record of size stride bytes, and the offset is the byte-offset within the
record. The stride comes from the resource, the index from a VGPR (or zero), and the offset
from an SGPR or VGPR and also from the instruction itself.

Table 32. BUFFER Instruction Fields for Addressing
Field Size Description
inst_offset 12  Literal byte offset from the instruction.
inst_idxen 1 Boolean: get index from VGPR when true, or no index when false.

inst_offen 1 Boolean: get offset from VGPR when true, or no offset when false. Note that inst_offset is
present, regardless of this bit.

8.1. Vector Memory Buffer Instructions 60 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

The "element size" for a buffer instruction is the amount of data the instruction transfers. It is the
number of contiguous bytes of a record for a given index, and is fixed at 4 bytes.

Table 33. V# Buffer Resource Constant Fields for Addressing

Field Size Description
const_base 48 Base address, in bytes, of the buffer resource.
const_stride 14 Stride of the record in bytes (0 to 16,383 bytes, or 0 to

262,143 bytes).

const_num_records 32 Number of records in the buffer.
In units of:
Bytes if: const_stride == 0 || or const_swizzle_enable == false

Otherwise, in units of "stride".

const_add_tid_enable 1 Boolean. Add thread_ID within the wavefront to the index
when true.

const_swizzle_enable 1 Boolean. Indicates that the surface is swizzled when true.

const_index_stride 2 Used only when const_swizzle _en = true. Number of

contiguous indices for a single element (of element_size)
before switching to the next element. There are 8, 16, 32, or
64 indices.

Table 34. Address Components from GPRs
Field Size Description
SGPR_offset 32 An unsigned byte-offset to the address. Comes from an SGPR or MO.
VGPR_offset 32 An optional unsigned byte-offset. It is per-thread, and comes from a VGPR.

VGPR_index 32 An optional index value. It is per-thread and comes from a VGPR.

The final buffer memory address is composed of three parts:

« the base address from the buffer resource (V#),
« the offset from the SGPR, and

* a buffer-offset that is calculated differently, depending on whether the buffer is linearly
addressed (a simple Array-of-Structures calculation) or is swizzled.
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Address Calculation for a Linear Buffer

ADDRESS = const_base + sgpr_offset + buffer_offset

V# SGPR
(soffset)

“Offset” “Index”

y
Buffer_Offset= Gst_offset + vgpr_offset) + const_stride * Gvgpr_index + ThreadIDD

Instr. VGPR V# VGPR 0..63

Full equations:
Index = (inst _idxen? vgpr index: 0)+ (const add tid enable ? thread id[5:0]: 0)

Offset = (inst_offen ? vgpr_offset : 0) + inst_offset

Figure 8. Address Calculation for a Linear Buffer

Range Checking

Range checking determines if a given buffer memory address is in-range (valid) or out of range.
When an address is out of range, writes are ignored (dropped) and reads return zero. Range
checking is controlled by a 2-bit field in the buffer resource: OOB_SELECT (Out of Bounds
select).

Table 35. Buffer Out Of Bounds Selection

0o0OB Out of Bounds Check Description or use
SELECT
0 (index >= NumRecords) | (offset > stride) structured buffers
1 (index >= NumRecords) Raw buffers
2 (NumRecords == 0) never check bounds
3 Bounds check: Raw
In this mode,
“num_records” is
if (swizzle_en & const_stride != 0x0) reduced by
00B = (index >= NumRecords() || (offset+payload > stride)) “sgpr_offset”
else

00B = (offset+payload > NumRecords)

Where “payload” is the number of dwords the instruction transfers.

Notes:
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1. Reads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1
that return 1).

2. Writes that are out-of-range do not write anything.

3. Load/store-format-* instruction and atomics are range-checked "all or nothing" - either
entirely in or out.

4. Load/store-Dword-x{2,3,4} and range-check per component.

Swizzled Buffer Addressing

Swizzled addressing rearranges the data in the buffer and can help provide improved cache
locality for arrays of structures. Swizzled addressing also requires Dword-aligned accesses. The
buffer's STRIDE must be a multiple of element_size.

Index = (inst_idxen ? vgpr_index : 8) +
(const_add_tid_enable ? thread_id[5:0] : @)

Offset = (inst_offen ? vgpr_offset : @) + inst_offset

index_msb = index / const_index_stride
index_lsb = index % const_index_stride

offset_msb =
offset_1lsb =

buffer_offset

Final Address

offset / element_size
offset % element_size

(index_msb * const_stride + offset_msb *
element_size) * const_index_stride + index_1sb =*
element_size + offset_lsb

const_base + sgpr_offset + buffer_offset

Remember that the "sgpr_offset" is not a part of the "offset" term in the above equations.
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Original Buffer

0| vo|zowo|uo|vo|x1]Y1]z1Wi1[ut|v1[x2|v2|z2wW2u2)v2| @ @ @ x31y31231w31u31p31]

v N -
" Stride = 24 bytes Element Size =
4 bytes

Swizzled Buffer

const_index_stride =8 // how many consecutive indices to group together
const_element_size =4 bytes  // the size of a single element, in bytes

index_msb =index / const_index_stride
index_Isb  =index % const_index_stride
offset_msb = offset / const_element_size
offset_Isb = offset % const_element_size

Buffer_offset = (index_msb * const_stride + offset_msb * const_element_size) * const_index_stride +
index_Isb * const_element_size + offset_Isb

which simplifies to...

Buffer_offset = (index/8 * const_stride + (offset/4)*4) * 8 + index%8 * 4 + offset%4
Note that because we are dealing with dwords, offset%4 is always == 0.

— N I N
—~—

J
Index_stride span #0 Index_stride span #1 Index_stride span #2
An alternate way to visualize Swizzled Buffers
Swizzled Buffer Swizzled Buffer

byte address: 4. Original Buffer

03 0 (elem size =4) 31 0 (elem_size =8) 31
> Ixo|Yo|zolwo|uo|vo[x1]v1 X0 |X1|X2|X3 X7 X0 Y2|X3|Y3
32|71 {W1jU1|V1|X2|Y2|Z2|W2 32|Y0|Y1|Y2|Y3 Y7 32|X4 Y6|X7|Y7
64 |U2|V2|X3|Y3|Z3|wW3|U3|V3 64|z0|z1(22|23 z7 64|70 W2 Z3 W3
96| X4|Y4|z4 \w4u4|v4 REINE 9 wowiw2w3| eee |w7 96 |Z4 we|z7|w7
128 (X X 128|U0|U1|U2|U3 u7 128|U0 V3
16 16 — 16 o006 ——
VO|V1|Vv2|V3 Y U4 V7
189 18 o 18 —
X8|Y8|Zz8 |W8|us|V8 X8 2 X8|Y8
2% 2% 2% Ix1
4 4|Y8 4l V12
Z8 Z8\W8

Figure 9. Example of Buffer Swizzling

Proposed Use Cases for Swizzled Addressing

Here are few proposed uses of swizzled addressing in common graphics buffers.

Table 36. Swizzled Buffer Use Cases
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DX11 Raw Dx11 Structured Dx11 Structured Scratch Ring / Const
Uav OpenCL (literal offset) (gpr offset) stream-out Buffer
Buffer Object

inst_vgpr_offset_ T F T T T T

en

inst_vgpr_index_ F T T F F F

en

const_stride na <api> <api> scratchSize na na

const_add_tid en F F F T T F

able

const_buffer_swiz F T T T = =

Zle

8.1.6. 16-bit Memory Operations

The D16 buffer instructions allow a kernel to load or store just 16 bits per work item between
VGPRs and memory. There are two variants of these instructions:

* D16 loads data into or stores data from the lower 16 bits of a VGPR.
« D16_HI loads data into or stores data from the upper 16 bits of a VGPR.

For example, BUFFER_LOAD UBYTE_D16 reads a byte per work-item from memaory, converts
it to a 16-bit integer, then loads it into the lower 16 bits of the data VGPR.

8.1.7. Alighment

For Dword or larger reads or writes, the two LSBs of the byte-address are ignored, thus forcing
Dword alignment.

LDS alignment enforcement is controlled by a configuration register:
SH_MEM_CONFIG.alignment_mode.

DWORD: Automatic alignment to multiple of the smaller of element size or a dword.
DWORD_STRICT: Require alignment to multiple of the smaller of element size or a dword.
STRICT: Require alignment to multiple of element size.

UNALIGNED: No alignment requirements.

8.1.8. Buffer Resource

The buffer resource describes the location of a buffer in memory and the format of the data in
the buffer. It is specified in four consecutive SGPRs (four aligned SGPRs) and sent to the
texture cache with each buffer instruction.
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The table below details the fields that make up the buffer resource descriptor.

Bits
47:0
61:48
62

63

95:64
98:96
101:99
104:102
107:105
114:108
118:117
119

120
125:124

127:126

Size
48

14

Table 37. Buffer Resource Descriptor

Name
Base address
Stride
Cache swizzle

Swizzle enable

Num_records
Dst_sel_x
Dst_sel_y
Dst_sel_z
Dst_sel w
Format

Index stride
Add tid enable
Resource Level

OOB_SELECT

Type

Description

Byte address.

Bytes O to 16383

Buffer access. Optionally, swizzle texture cache TC LO cache banks.

Swizzle AOS according to stride, index_stride, and element_size,
else linear (stride * index + offset).

In units of stride if (stride \>=1), else in bytes.

Destination channel select:
0=0, 1=1, 4=R, 5=G, 6=B, 7=A

Memory data type.

8, 16, 32, or 64. Used for swizzled buffer addressing.
Add thread ID to the index for to calculate the address.
Must be set to 1.

Out of bounds select.

Value == 0 for buffer. Overlaps upper two bits of four-bit TYPE field in
128-bit V# resource.

Aresource set to all zeros acts as an unbound texture or buffer (return 0,0,0,0).

8.1.9. Memory Buffer Load to LDS

The MUBUF instruction format allows reading data from a memory buffer directly into LDS
without passing through VGPRs. This is supported for the following subset of MUBUF

instructions.

e BUFFER_LOAD_{ubyte, sbyte, ushort, sshort, dword, format_x}.
« ltis illegal to set the instruction’s TFE bit for loads to LDS.

LDS_offset = 16-bit unsigned byte offset from MO[15:0].

Mem_offset = 32-bit unsigned byte offset from an SGPR (the SOFFSET SGPR).
idx_vgpr = index value from a VGPR (located at VADDR). (Zero if idxen=0.)

off_vgpr = offset value from a VGPR (located at VADDR or VADDR+1). (Zero if offen=0.)

The figure below shows the components of the LDS and memory address calculation:
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LDS_ADDR = LDSbase + LDS_offset + inst_offset + (TIDinWave * 4)
HW-Alloc MO0[15:0] Instr. 0..63 bytes-per-dword

Zero — no vgpr 4 bytes Zero

MEM_ADDR = Base + mem_offset + inst_offset + off vgpr + stride * (idx_vgpr + TIDinWave)

T# SGPR Instr. VGPR T# VGPR 0..63
(soffset)

TIDinWave is only added if the resource (V#) has the ADD_TID_ENABLE field set to 1, whereas
LDS adds it. The MEM_ADDR M# is in the VDATA field; it specifies MO.

Clamping Rules

Memory address clamping follows the same rules as any other buffer fetch. LDS address
clamping: the return data must not be written outside the LDS space allocated to this wave.

 Set the active-mask to limit buffer reads to those threads that return data to a legal LDS
location.

» The LDSbase (alloc) is in units of 32 Dwords, as is LDSsize.
e MO[15:0] is in bytes.

8.1.10. GLC, DLC and SLC Bits Explained

GLC

The GLC bit means different things for loads, stores, and atomic ops.
GLC Meaning for Loads

e For GLC==0

> The load can read data from the GPU LO.

o Typically, all loads (except load-acquire) use GLC==0.
e For GLC==1

> The load intentionally misses the GPU L0 and reads from L2. If there was a line in the
GPU LO that matched, it is invalidated; L2 is reread.

o NOTE: L2 is not re-read for every work-item in the same wave-front for a single load
instruction. For example: b=uav[N+tid] // assume this is a byte read w/ glc==1 and N is
aligned to 64B In the above op, the first Tid of the wavefront brings in the line from L2
or beyond, and all 63 of the other Tids read from same cache line in the LO.

GLC Meaning for Stores
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e For GLC==0 This causes a write-combine across work-items of the wavefront store op;
dirtied lines are written to the L2 automatically.

o If the store operation dirtied all bytes of the 64 B line, it is left clean and valid in the LO;
subsequent accesses to the cache are allowed to hit on this cache line.

o Else do not leave write-combined lines in LO.

e For GLC==1 Same as GLC==0, except the write-combined lines are not left in the line,
even if all bytes are dirtied.

Atomics
e For GLC == 0 No return data (this is "write-only" atomic op).

e For GLC == 1 Returns previous value in memory (before the atomic operation).

DLC and SLC

The Device Level Coherent bit (DLC) and System Level Coherent (SLC) bits control the
behavior of the second and third level caches.

Table 38. Vector Load Operations

SLC DLC L2Cache L1 Cache

0 0 LRU Hit LRU - reads can hit on previous data
0 1 LRU Miss Evict - reads miss

1 0 Stream Hit LRU

1 1 Hit No Allocate Miss Evict

Table 39. Vector Store & Atomic Operations
SLC DLC L2Cache
0 0 LRU
0 1 Bypass
1 0 Stream - Hit leaves line in cache but do not reset age.

1 1 Hit No Allocate

For stores and atomics, the L1 cache is bypassed (but is coherent).
For stores the LO cache is controlled by GLC: 0 = Miss-LRU (leave completely directly
cachelines valid in the cache), 1 = Miss-Evict.

8.2. Vector Memory (VM) Image Instructions

Vector Memory (VM) operations transfer data between the VGPRs and memory through the
texture cache (TC). Vector means the transfer of one or more pieces of data uniquely for every
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work-item in the wavefront. This is in contrast to scalar memory reads, which transfer only one
value that is shared by all work-items in the wavefront.

Examples of image objects are texture maps and typed surfaces.

Image objects are accessed using from one to four dimensional addresses; they are composed
of homogeneous data of one to four elements. These image objects are read from, or written to,
using IMAGE_* or SAMPLE_* instructions, all of which use the MIMG instruction format.
IMAGE_LOAD instructions read an element from the image buffer directly into VGPRS, and
SAMPLE instructions use sampler constants (S#) and apply filtering to the data after it is read.
IMAGE_ATOMIC instructions combine data from VGPRs with data already in memory, and
optionally return the value that was in memory before the operation.

All VM operations use an image resource constant (T#) that is a 128-bit or 256-bit value in
SGPRs. This constant is sent to the texture cache when the instruction is executed. This
constant defines the address, data format, and characteristics of the surface in memory. Some
image instructions also use a sampler constant that is a 128-bit constant in SGPRs. Typically,
these constants are fetched from memory using scalar memory reads prior to executing VM
instructions, but these constants can also be generated within the shader.

Texture fetch instructions have a data mask (DMASK) field. DMASK specifies how many data
components it receives. If DMASK is less than the number of components in the texture, the
texture unit only sends DMASK components, starting with R, then G, B, and A. if DMASK
specifies more than the texture format specifies, the shader receives data based on T#.dst_sel
for the missing components.

8.2.1. Image Instructions

This section describes the image instruction set, and the microcode fields available to those
instructions.

Table 40. Image Instructions

MIMG Description
SAMPLE_* Read and filter data from a image object.
IMAGE_LOAD_<op> Read data from an image object using one of the following: image_load,

image_load_mip, image_load_{pck, pck_sgn, mip_pck, mip_pck_sgn}.

IMAGE_STORE Store data to an image object. Store data to a specific mipmap level.
IMAGE_STORE_MIP

IMAGE_ATOMIC_<op> Image atomic operation, which is one of the following: swap, cmpswap, add, sub,
rsub, {u,s{min,max}, and, or, xor, inc, dec, fcmpswap, fmin, fmax.
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Table 41. Instruction Fields
Field Bit Description
Size

OoP 8 Opcode. Formed by joining the OPM and OP fields together.

NSA 2 Number of additional dwords of instruction: O - 3. 0 = instruction is 2 dwords in total; 3 =
instruction is 5 dwords in total. Values other than zero imply the "MIMG-NSA" usage of
addressing VGPRs.

VADDR 8 Address of VGPR to supply first component of address.

ADDR1 - 8 12 additional VGPR address fields, used by the MIMG-NSA format. (VADDR acts as

ADDR12 ADDRO).

VDATA 8 Address of VGPR to supply first component of write data or receive first component of
read-data.

SSAMP 5 SGPR to supply S# (sampler constant) in four consecutive SGPRs. Missing two LSBs of
SGPR-address since must be aligned to a multiple of four SGPRs.

SRSRC 5 SGPR to supply T# (resource constant) in four or eight consecutive SGPRs. Missing two
LSBs of SGPR-address since must be aligned to a multiple of four SGPRs.

UNRM 1 Force address to be un-normalized regardless of T#. Must be set to 1 for image stores
and atomics.

R128 1 Texture buffer resource size: 0 = 256 bits, 1 = 128 bits.

DIM 3 Specifies the dimension of the surface:
0:1D
1. 2D
2:3D
3: Cube
4: 1D-array
5: 2D-array
6: 2D-msaa
7: 2D-msaa-array

DMASK 4 Data VGPR enable mask: one to four consecutive VGPRs. Reads: defines which

8.2. Vector Memory (VM) Image Instructions

components are returned.

0 =red, 1 = green, 2 = blue, 3 = alpha

Writes: defines which components are written with data from VGPRs (missing
components get 0). Enabled components come from consecutive VGPRSs.

For example: DMASK=1001: Red is in VGPRn and alpha in VGPRn+1. For D16 writes,
DMASK is used only as a word count: each bit represents 16 bits of data to be written,
starting at the LSBs of VADDR, the MSBs, VADDR+1, etc. Bit position is ignored.
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Field Bit Description
Size
GLC 1 Globally Coherent. Controls how reads and writes are handled by the LO texture cache.
READ:

GLC = 0 Reads can hit on the LO and persist across waves.

GLC = 1 Reads miss the L0 and force fetch to L2. No LO persistence across waves.
WRITE:

GLC = 0 Writes miss the LO, write through to L2, and persist in LO across wavefronts.
GLC = 1 Writes miss the L0, write through to L2. No persistence across wavefronts.
ATOMIC:

GLC = 0 Previous data value is not returned. No LO persistence across wavefronts.
GLC = 1 Previous data value is returned. No LO persistence across wavefronts.

DLC 1 Device Level Coherent. When set, accesses are forced to miss in level 1 texture cache.
SLC 1 System Level Coherent. Used in conjunction with DLC to determine L2 cache policies.
TFE 1 Texel Fail Enable for PRT (partially resident textures). When set, a fetch can return a

NACK, which causes a VGPR write into DST+1 (first GPR after all fetch-dest GPRS).
LWE 1 LOD Warning Enable. When set to 1, a texture fetch may return "LOD_CLAMPED = 1".

Al6 1 Address components are 16-bits (instead of the usual 32 bits). When set, all address
components are 16 bits (packed into two per Dword), except:
Texel offsets (three 6-bit uint packed into one Dword).
PCF reference (for _C instructions).
Address components are 16-bit uint for image ops without sampler; 16-bit float with
sampler.

D16 1 VGPR-Data-16bit. On loads, convert data in memory to 16-bit format before storing it in
VGPRs (2 16bit values per VGPR). For stores, convert 16-bit data in VGPRs to memory
data format before going to memory. Whether the data is treated as float or int is
decided by format. Allowed only with these opcodes:

IMAGE_SAMPLE*
IMAGE_GATHER4*
IMAGE_LOAD
IMAGE_LOAD_MIP
IMAGE_STORE
IMAGE_STORE_MIP

8.2.2. Image Non-Sequential Address (NSA)

To avoid having many move instructions to pack image address VGPRs together, MIMG
supports a “Non Sequential Address” version of the instruction where the VGPR of every
address component is uniquely defined. Data components must still be packed. This new format
creates a larger instruction word, which can be up to 5 dwords long. The first address goes in
the VADDR field, and subsequent addresses go into ADDR1-12. The 3 dword form of the
instruction can supply up to 5 addresses; the 4 dword form 9 addresses and the 5 dword form
13 addresses which is the maximum any texture instruction can require.

When using 16-bit addresses, each VGPR holds a pair of addresses and these cannot be
located in different VGPRs.
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For image opcodes with no sampler, all VGPR address values are taken as uint. For cubemaps,

face_id = slice * 6 + face.

The table below shows the contents of address VGPRs for the various image opcodes.

Image Opcode
(Resource wio
Sampler)

get_resinfo

load / store / atomics

load_mip / store_mip

Acnt

dim

Any

1D

1D Array
2D

2D MSAA
2D Array
2D Array MSAA
3D

Cube

1D

1D Array
2D

2D Array
3D

Cube

VGPRn

mipid

8.2.4. Image Opcodes with a Sampler

Table 42. Image Opcodes with No Sampler

VGPRn+1

slice

< KK KK K K

mipid

slice

< <K <K X

VGPRNn+2

fragid
slice
slice
z

face_id

mipid
mipid
slice
z

face_id

VGPRNn+3

fragid

mipid
mipid
mipid

For image opcodes with a sampler, all VGPR address values are taken as float. For cubemaps,

face_id = slice * 8 + face.

Certain sample and gather opcodes require additional values from VGPRs beyond what is
shown. These values are: offset, bias, z-compare, and gradients.

Table 43. Image Opcodes with Sampler

8.2. Vector Memory (VM) Image Instructions
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Image Opcode Acnt dim VGPRn VGPRn+1 VGPRn+2 VGPRNn+3
(wl Sampler)
sample 0 1D X

1 1D Array X slice

1 2D X y

2 2D interlaced X y field

2 2D Array X y slice

2 3D X y z

2 Cube X y face_id
sample_| 1 1D X lod

2 1D Array X slice lod

2 2D X y lod

3 2D interlaced X y field lod

3 2D Array X y slice lod

3 3D X y z lod

3 Cube X y face_id lod
sample_cl 1 1D X clamp

2 1D Array X slice clamp

2 2D X y clamp

3 2D interlaced X y field clamp

3 2D Array X y slice clamp

3 3D X y z clamp

3 Cube X y face_id clamp
gather4 1 2D X y

2 2D interlaced X y field

2 2D Array X y slice

2 Cube X y face_id
gather4_| 2 2D X y lod

3 2D interlaced X y field lod

3 2D Array X y slice lod

3 Cube X y face_id lod
gather4_cl 2 2D X y clamp

3 2D interlaced X y field clamp

3 2D Array X y slice clamp

3 Cube X y face_id clamp
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1. Sample includes sample, sample_d, sample_b, sample_lz, sample_c, sample_c_d,
sample_c_b, sample_c_lz, and getlod.

2. Sample_I includes sample_| and sample_c_|.

3. Sample_cl includes sample_cl, sample_d_cl, sample_b_cl, sample_c_cl, sample_c_d_cl,
and sample_c_b_cl.

4. Gather4 includes gather4, gather4 Iz, gather4 _c, and gather4_c_|z.

The table below lists and briefly describes the legal suffixes for image instructions:

Table 44. Sample Instruction Suffix Key

Suffix Meaning Extra Description
Addresses

L LOD - LOD is used instead of computed LOD.

B LOD BIAS 1:lod bias Add this BIAS to the LOD computed.

_CL LOD - Clamp the LOD to be no larger than this value.

CLAMP

D Derivative 2,4 or 6: Send dx/dv, dx/dy, etc. slopes to TA for it to used in LOD
slopes computation.

Lz Level O -

Force use of MIP level _C PCF 1: z-comp

0.

Percentage closer o) Offset 1: offsets

filtering.

8.2.5. VGPR Usage

Address: The address consists of up to four parts:

{ offset } { bias } { z-compare } { derivative } { body }

These are all packed into consecutive VGPRs.

* Offset: SAMPLE*O*, GATHER*O*

One Dword of offset_xyz. The offsets are six-bit signed integers: X=[5:0], Y=[13:8], and
Z=[21:16].

Bias: SAMPLE*B*, GATHER*B*. One Dword float.

e Z-compare: SAMPLE*C*, GATHER*C*. One Dword.

Derivatives (sample_d): 2, 4, or 6 Dwords, packed one Dword per derivative as:
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Image Dim VgprN N+1 N+2 N+3 N+4 N+5

1D DX/DH DX/DV -
2D DX/DH DY/DH DX/DV DY/DV
3D DX/DH DY/DH Dz/DH DX/DV DY/DV DZ/DV

* Body: One to four Dwords, as defined by the table: [Image Opcodes with Sampler] Address
components are X,Y,Z,W with X in VGPR_M, Y in VGPR_M+1, etc. The number of
components in "body" is the value of the ACNT field in the table, plus one.

« Data: Written from, or returned to, one to four consecutive VGPRs. The amount of data read
or written is determined by the DMASK field of the instruction.

* Reads: DMASK specifies which elements of the resource are returned to consecutive
VGPRs. The texture system reads data from memory and based on the data format
expands it to a canonical RGBA form, filling in zero or one for missing components. Then,
DMASK is applied, and only those components selected are returned to the shader.

* Writes: When writing an image obiject, it is only possible to write an entire element (all
components), not just individual components. The components come from consecutive
VGPRs, and the texture system fills in the value zero for any missing components of the
image’s data format; it ignores any values that are not part of the stored data format. For
example, if the DMASK=1001, the shader sends Red from VGPR_N, and Alpha from
VGPR_N+1, to the texture unit. If the image object is RGB, the texel is overwritten with Red
from the VGPR_N, Green and Blue set to zero, and Alpha from the shader ignored.

< Atomics: Image atomic operations are supported only on 32- and 64-bit-per pixel surfaces.
The surface data format is specified in the resource constant. Atomic operations treat the
element as a single component of 32- or 64-bits. For atomic operations, DMASK is set to
the number of VGPRs (Dwords) to send to the texture unit. DMASK legal values for atomic
image operations: no other values of DMASK are legal.
0x1 = 32-bit atomics except cmpswap.
0x3 = 32-bit atomic cmpswap.
0x3 = 64-bit atomics except cmpswap.

Oxf = 64-bit atomic cmpswap.

« Atomics with Return: Data is read out of the VGPR(S), starting at VDATA, to supply to the
atomic operation. If the atomic returns a value to VGPRs, that data is returned to those
same VGPRs starting at VDATA.

D16 Instructions

Load-format and store-format instructions also come in a "d16" variant. For stores, each 32-bit
VGPR holds two 16-bit data elements that are passed to the texture unit. The texture unit
converts them to the texture format before writing to memory. For loads, data returned from the
texture unit is converted to 16 bits, and a pair of data are stored in each 32- bit VGPR (LSBs
first, then MSBs). The DMASK bit represents individual 16- bit elements; so, when
DMASK=0011 for an image-load, two 16-bit components are loaded into a single 32-bit VGPR.

8.2. Vector Memory (VM) Image Instructions 75 of 289



"RDNA 1.0" Instruction Set Architecture

A16 Instructions

AMDZ1

The A16 instruction bit indicates that the address components are 16 bits instead of the usual
32 bits. Components are packed such that the first address component goes into the low 16 bits
([15:0Q]), and the next into the high 16 bits ([31:16]).

8.2.6. Image Resource

The image resource (also referred to as T#) defines the location of the image buffer in memory,
its dimensions, tiling, and data format. These resources are stored in four or eight consecutive
SGPRs and are read by MIMG instructions.

Bits

Size

Table 45. Image Resource Definition

Name

Comments

128-bit Resource: 1D-tex, 2d-tex, 2d-msaa (multi-sample anti-aliasing)

39:0

51:40

60:52

77:62

93:78

95

98:96

101:99

104:102

107:105

111:108

115:112

120:116

123:121

127:124

40
12
9

16

16

base address
min lod

format

width

height
Resource level
dst_sel x
dst_sel y
dst_sel z
dst_sel w

base level

last level

SW mode

BC Swizzle

type

256-byte aligned (represents bits 47:8). Also used for fmask-ptr.
4.8 (four uint bits, eight fraction bits) format.

Memory Data format

width-1 of mip O in texels

height-1 of mip 0 in texels

Must be set to 1.

0=0,1=1,4=R,5=G,6=B,7=A.

largest mip level in the resource view. For MSAA, this should be set
to0

smallest mip level in resource view. For MSAA, holds log2(number of
samples).

swizzling (tiling) mode

Specifies channel ordering for border color data independent of the
T# dst_sel_*s. Internal xyzw channels will get the following border
color channels as stored in memory. O=xyzw, 1=xwyz, 2=wzyX,
3=wxyz, 4=zyxw, 5=yxwz

0 =buf, 8 =1d, 9 = 2d, 10 = 3d, 11 = cube, 12 = 1d-array, 13 = 2d-
array, 14 = 2d-msaa, 15 = 2d-msaa-array. 1-7 are reserved.

256-bit Resource: 1d-array, 2d-array, 3d, cubemap, MSAA

143:128

159:144

8.2. Vector Memory (VM) Image Instructions
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16

depth

base array

Depth-1 of Mip0 for a 3D map; last array slice for a 2D-array or 1D-
array or cube-map.

First slice in array of the resource view.
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Bits

163:160

167:164

179:168
182:180

183

185

199:192

208:207

210:209

211

212

213

214
215

255:216

Size

14

12

40

Name

array pitch

max mip

min lod warn
perf mod

corner samples
mod

LOD hardware
count enable

Counter Bank ID

Max
Uncompressed
block size

Max Compressed
block size

Meta Pipe Aligned

Write compression
enable

Compression
Enable

Alpha is on MSB
Color Transform

Meta Data Address

8.2.7. Image Sampler
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Comments

For Arrays, array pitch for quilts, encoded as trunc(log2(array
pitch))+1. values 8..15 reserved

For 3D, bit 0 indicates SRV or UAV:

0: SRV (base_array ignored, depth w.r.t. base map)

1: UAV (base_array and depth are first and last layer in view, and
w.r.t. mip level specified)

Resource MipLevels-1. Describes the resource, as opposed to base-
level and last-level which describes the resource-view. For MSAA,
holds the number of samples.

feedback trigger for LOD
scales sampler’s perf Z, perf mip, aniso-bias, lod-bias-sec

Describes how texels were generated in the resource. O=center
sampled, 1 = corner sampled.

Partially resident texture hardware counter enable

PRT counter ID

Maximum uncompressed block size used for compressed shader
writes

Maximum compressed block size used for compressed shader writes

Maintains pipe alignment in metadata addressing (DCC and tiling)

Enable compressed writes from shader
enable delta color compression (DCC)

Set to 1 if the surface’s component swap is not reversed (DCC)
Auto=0, none=1 (DCC)

Upper bits of meta-data address (DCC) [47:8]

The sampler resource (also referred to as S#) defines what operations to perform on texture
map data read by sample instructions. These are primarily address clamping and filter options.
Sampler resources are defined in four consecutive SGPRs and are supplied to the texture
cache with every sample instruction.

Table 46. Image Sampler Definition

8.2. Vector Memory (VM) Image Instructions
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Bits Size Name

2:0 3 clamp x

5:3 3 clampy

8:6 3 clamp z

11:9 3 max aniso ratio
14:12 3 depth compare func
15 1 force unnormalized
18:16 3 aniso threshold

19 1 mc coord trunc

20 1 force degamma
26:21 6 aniso bias

27 1 trunc coord

28 1 disable cube wrap
30:29 2 filter_mode

31 1 skip degamma
43:32 12 min lod

55:44 12 max lod

59:56 4 perf_mip

63:60 4 perf z

75:64 12 lod bias

8.2. Vector Memory (VM) Image Instructions
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Description

Clamp/wrap mode:

: Wrap

: Mirror

: ClampLastTexel

: MirrorOncelLastTexel

: ClampHalfBorder

: MirrorOnceHalfBorder
: ClampBorder

: MirrorOnceBorder

~N o o0~ WDNBRE O

=11
=2:1
=4:1
=81
=16:1

A WODNPFE O

Never

Less

Equal

: Less than or equal

: Greater

: Not equal

: Greater than or equal
: Always

NoahkwhROQ

Force address cords to be unorm: 0 = address coordinates are
normalized, in [0,1); 1 = address coordinates are
unnormalized:[0,dim).

threshold under which floor(aniso ratio) determines number of
samples and step size

enables bilinear blend fraction truncation to 1 bit for motion
compensation

force num_format to srgb if data_format allows
6 bits, in ul.5 format.
selects texel coordinate rounding or truncation.

disables seamless DX10 cubemaps, allows cubemaps to clamp
according to clamp_x and clamp_y fields

0 = Blend (lerp); 1 = min, 2 = max.

disabled degamma (sRGB - Linear) conversion.

minimum LOD ins resource view space (0.0 = T#.base_level) u4.8.
maximum LOD ins resource view space

defines range of lod fractions that snap to nearest mip only when
mip_filter=Linear

defines range of z fractions that snap to nearest z layer
z_filter=Linear

s6.8. This is bits[11:0] of the LOD bias.
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Bits

77:76
83:78
85:84
87:86
89:88

91:90

92
93
94
95
107:96

127:126

Size  Name

2 lod bias high

6 lod bias sec

2 Xy mag filter

2 Xy min filter

2 z filter

2 mip filter

1 mip_point_preclamp
1 Aniso_override

1 blend_zero_prt
1 reserved

12 border color ptr
2 border color type

8.2.8. Data Formats
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Description

This is bits [13:12] of the LOD bias.

bias added to computed LOD, scaled by T#.perf_modulation. s2.4.
Magpnification filter: O=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
Minification filter: O=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
Volume Filter: 0=none (use XY min/mag filter), 1=point, 2=linear

Mip level filter: 0=none (disable mipmapping,use base-leve),
1=point, 2=linear

When mipfilter = point, add 0.5 before clamping.
Disable Aniso filtering if base_level = last_level
For PRT fetches, zero out texel if not resident

reserved. set to zero.

Opaque-black, transparent-black, white, use border color ptr.

The table below details all the data formats that can be used by image and buffer resources.

10

11

12

13

8.2. Vector Memory (VM) Image Instructions

Table 47. Buffer and Image Data Formats

Buffer and Image
Formats

INVALID
8_UNORM
8_SNORM
8_USCALED
8_SSCALED
8_UINT
8_SINT
16_UNORM
16_SNORM
16_USCALED
16_SSCALED
16_UINT
16_SINT

16_FLOAT

#

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Buffer and Image # Image Formats
Formats

11_11_10_UNORM 128 8_SRGB

11 11 10 SNORM 129 8 8 SRGB

11 11 10 USCALED 130 8 8 8 8 SRGB
11_11_10_SSCALED 131 6E4_FLOAT

11 11 10 UINT 132 59 9 9 FLOAT
11_11_10_SINT 133 5 6_5 UNORM
11 11 10 FLOAT 134 1.5 5 5 UNORM
10_10_10_2_UNORM 135 5.5 5 1 UNORM
10 10 10 2 SNORM 136 4 4 4 4 UNORM
10 10 10 2 USCALED 137 4 4 UNORM

10 10 10 2 SSCALED 138 1_UNORM

10_10_10_2 UINT 139 1_REVERSED_UNORM
10_10_10_2_SINT 140 32_FLOAT_CLAMP
210 10_10_UNORM 141 8_24 _UNORM
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

8.2. Vector Memory (VM) Image Instructions

Buffer and Image
Formats

8_8_UNORM
8_8_SNORM

8_8 USCALED
8_8 _SSCALED

8 8 UINT

8 8 SINT
32_UINT
32_SINT
32_FLOAT
16_16_UNORM
16_16_SNORM
16_16_USCALED
16_16_SSCALED
16_16_UINT
16_16_SINT
16_16_FLOAT

10_11_11_UNORM

10_11_11_SNORM

10_11_11 USCALED
10_11 11 SSCALED
10_11_11 UINT
10_11_11_SINT

10_11_11 FLOAT

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Buffer and Image
Formats

210 10_10_SNORM
2 10 10 10 _USCALED
210 10 10 _SSCALED
210 10 10 UINT
2.10_10_10_SINT

8 8 8 8 UNORM

8.8 8 8 SNORM

8 8 8 8 _USCALED

8 8 8 8 SSCALED

8 8 8 8 UINT

8 8 8 8 SINT
32_32_UINT
32_32_SINT

32 32 FLOAT
16_16_16_16_UNORM
16_16_16_16_SNORM

16_16_16_16_USCALE
D

16_16_16_16_SSCALE
D

16_16_16_16_UINT
16_16_16_16_SINT
16_16_16_16_FLOAT
32 32 32_UINT

32 32 32 SINT
32_32_32_FLOAT

32 32 32 32 UINT
32 32 32 32 SINT

32 32 32 32 FLOAT

142

143

144

145

146

147

148

149

150

151

152

153

154

169

170

171

172

173

174

175

176

177

178

179

180

181

182

AMDZ1

Image Formats

8 24 UINT
24 8 UNORM

24 8 UINT

X24 8 32 UINT
X24_8 32 _FLOAT
GB_GR_UNORM
GB_GR_SNORM
GB_GR_UINT
GB_GR_SRGB
BG_RG_UNORM
BG_RG_SNORM
BG_RG_UINT

BG_RG_SRGB

Compressed Formats
BC1_UNORM

BC1_SRGB
BC2_UNORM

BC2_SRGB
BC3_UNORM
BC3_SRGB

BC4_UNORM
BC4_SNORM
BC5_UNORM
BC5_SNORM
BC6_UFLOAT
BC6_SFLOAT
BC7_UNORM

BC7_SRGB
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8.2.9. Vector Memory Instruction Data Dependencies

When a VM instruction is issued, it schedules the reads of address and write-data from VGPRs
to be sent to the texture unit. Any ALU instruction which attempts to write this data before it has
been send to the texture unit will be stalled.

The shader developer’s responsibility to avoid data hazards associated with VMEM instructions
include waiting for VMEM read instruction completion before reading data fetched from the TC
(VMCNT and VSCNT).

This is explained in the section: Data Dependency Resolution
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Chapter 9. Flat Memory Instructions

Flat Memory instructions read, or write, one piece of data into, or out of, VGPRs; they do this
separately for each work-item in a wavefront. Unlike buffer or image instructions, Flat
instructions do not use a resource constant to define the base address of a surface. Instead,
Flat instructions use a single flat address from the VGPR; this addresses memory as a single
flat memory space. This memory space includes video memory, system memory, LDS memory,
and scratch (private) memory. It does not include GDS memory. Parts of the flat memory space
may not map to any real memory, and accessing these regions generates a memory-violation
error. The determination of the memory space to which an address maps is controlled by a set
of "memory aperture" base and size registers.

9.1. Flat Memory Instruction

Flat memory instructions let the kernel read or write data in memory, or perform atomic
operations on data already in memory. These operations occur through the texture L2 cache.
The instruction declares which VGPR holds the address (either 32- or 64-bit, depending on the
memory configuration), the VGPR which sends and the VGPR which receives data. Flat
instructions also use MO as described in the table below:

Table 48. Flat, Global and Scratch Microcode Formats

Field Bit Size Description

OoP 7 Opcode. Can be Flat, Scratch or Global instruction. See next table.
ADDR 8 VGPR which holds the address. For 64-bit addresses, ADDR has the LSBs, and ADDR+1 has
the MSBs.

As an offset a single VGPR has a 32 bit unsigned offset.

For FLAT_*: specifies an address.

For GLOBAL_* and SCRATCH_* when SADDR is NULL: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is not NULL: specifies an offset.

DATA 8 VGPR which holds the first Dword of data. Instructions can use 0-4 Dwords.

VDST 8 VGPR destination for data returned to the kernel, either from LOADs or Atomics with GLC=1
(return pre-op value).

SLC 1 System Level Coherent. Used in conjunction with DLC to determine L2 cache policies.

DLC 1 Device Level Coherent. Controls GL1 cache bypass.

GLC 1 Global Level Coherent. For Atomics, GLC: 1 means return pre-op value, 0 means do not return
pre-op value.

SEG 2 Memory Segment: 0=FLAT, 1=SCRATCH, 2=GLOBAL, 3=reserved.

LDS 1 When set, data is moved from memory to LDS instead of to VGPRs. Available only for loads.

For Global and Scratch only; must be zero for Flat.

OFFSET 12 Address offset.
Scratch, Global: 12-bit signed byte offset.
Flat: must be positive.
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Field Bit Size Description
SADDR 7 Scalar SGPR that provides an offset address. To disable use, set this field to NULL or Ox7f
(exec_hi).
Meaning of this field is different for Scratch and Global:
Flat: Unused.
Scratch: Use an SGPR (instead of VGPR) for the address.
Global: Use the SGPR to provide a base address; the VGPR provides a 32-bit offset.
MO 16 Implied use of MO for SCRATCH and GLOBAL only when LDS=1. Provides the LDS address-
offset.
31 0
I [ [ [ [ ‘ I I I I I I I ‘ I [ I I [ I
110 1 1 1 } 1 ‘ OP7 ‘SLC‘GLC SEG ‘LDS‘DLC OFFSET;,
FLAT 171 71__ 1 1 T 1 T T T [ T T 1T T T T T T T T 1 __T T T
VDSTs [ ’ SADDR, DATAs | ADDRg

63

Flat Opcodes

FLAT

FLAT_LOAD_UBYTE

FLAT _LOAD UBYTE_D16
FLAT_LOAD_UBYTE_D16_HI
FLAT_LOAD_SBYTE

FLAT _LOAD_SBYTE_D16
FLAT_LOAD_SBYTE_D16_HI
FLAT _LOAD_USHORT
FLAT_LOAD_SSHORT

FLAT LOAD_ SHORT D16
FLAT_LOAD_SHORT_D16_HI
FLAT_LOAD_DWORD

FLAT _LOAD_DWORDX2
FLAT_LOAD_DWORDX3
FLAT_LOAD_DWORDX4
FLAT_STORE_BYTE

FLAT STORE_BYTE_D16_HI
FLAT _STORE_SHORT
FLAT_STORE_SHORT_D16_HlI
FLAT _STORE_DWORD
FLAT_STORE_DWORDX2
FLAT_STORE_DWORDX3

FLAT_STORE_DWORDX4

9.1. Flat Memory Instruction
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Table 49. Flat, Global and Scratch Opcodes

Global Opcodes

GLOBAL
GLOBAL_LOAD_UBYTE
GLOBAL_LOAD _UBYTE_D16
GLOBAL_LOAD_UBYTE_D16_HlI
GLOBAL_LOAD_SBYTE
GLOBAL_LOAD_SBYTE_D16
GLOBAL_LOAD_SBYTE_D16_Hl
GLOBAL_LOAD_USHORT
GLOBAL_LOAD_SSHORT
GLOBAL_LOAD_SHORT D16
GLOBAL_LOAD_SHORT_D16_HI
GLOBAL_LOAD_DWORD
GLOBAL_LOAD_DWORDX2
GLOBAL_LOAD_DWORDX3
GLOBAL_LOAD_DWORDX4
GLOBAL_STORE_BYTE
GLOBAL_STORE_BYTE_D16_HI
GLOBAL_STORE_SHORT
GLOBAL_STORE_SHORT_D16_Hl
GLOBAL_STORE_DWORD
GLOBAL_STORE_DWORDX2
GLOBAL_STORE_DWORDX3

GLOBAL_STORE_DWORDX4

Scratch Opcodes

SCRATCH
SCRATCH_LOAD_UBYTE
SCRATCH_LOAD_UBYTE_D16
SCRATCH_LOAD_UBYTE_D16_HI
SCRATCH_LOAD_SBYTE
SCRATCH_LOAD_SBYTE_D16
SCRATCH_LOAD_SBYTE_D16_HI
SCRATCH_LOAD_USHORT
SCRATCH_LOAD_SSHORT
SCRATCH_LOAD_SHORT_D16
SCRATCH_LOAD_SHORT_D16_HI
SCRATCH_LOAD_DWORD
SCRATCH_LOAD_DWORDX2
SCRATCH_LOAD_DWORDX3
SCRATCH_LOAD_DWORDX4
SCRATCH_STORE_BYTE
SCRATCH_STORE_BYTE_D16_HI
SCRATCH_STORE_SHORT
SCRATCH_STORE_SHORT_D16_HlI
SCRATCH_STORE_DWORD
SCRATCH_STORE_DWORDX2
SCRATCH_STORE_DWORDXS3

SCRATCH_STORE_DWORDX4
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Flat Opcodes

FLAT_ATOMIC_SWAP

FLAT_ATOMIC_CMPSWAP

FLAT_ATOMIC_ADD
FLAT_ATOMIC_SUB
FLAT_ATOMIC_SMIN
FLAT _ATOMIC_UMIN
FLAT_ATOMIC_SMAX
FLAT_ATOMIC_UMAX
FLAT_ATOMIC_AND
FLAT_ATOMIC_OR
FLAT_ATOMIC_XOR
FLAT_ATOMIC_INC
FLAT _ATOMIC_DEC
FLAT_ATOMIC_FMIN

FLAT_ATOMIC_FMAX

Global Opcodes

GLOBAL_ATOMIC_SWAP

GLOBAL_ATOMIC_CMPSWAP

GLOBAL_ATOMIC_ADD
GLOBAL_ATOMIC_SUB
GLOBAL_ATOMIC_SMIN
GLOBAL_ATOMIC_UMIN
GLOBAL_ATOMIC_SMAX
GLOBAL_ATOMIC_UMAX
GLOBAL_ATOMIC_AND
GLOBAL_ATOMIC_OR
GLOBAL_ATOMIC_XOR
GLOBAL_ATOMIC_INC
GLOBAL_ATOMIC_DEC
GLOBAL_ATOMIC_FMIN

GLOBAL_ATOMIC_FMAX

AMDZ1

Scratch Opcodes
none
none
none
none
none
none
none
none
none
none
none
none
none
none

none

FLAT_ATOMIC_FCMPSWAP GLOBAL_ATOMIC_FCMPSWAP none

The atomic instructions above are also available in "_X2" versions (64-bit).

9.2. Instructions

The FLAT instruction set is nearly identical to the Buffer instruction set, but without the FORMAT
reads and writes. Unlike Buffer instructions, FLAT instructions cannot return data directly to
LDS, but only to VGPRs.

FLAT instructions do not use a resource constant (V#) or sampler (S#); however, they do require
a additional register (FLAT_SCRATCH) to hold scratch-space memory address information in
case any threads' address resolves to scratch space. See the scratch section for details.

Internally, FLAT instruction are executed as both an LDS and a Buffer instruction; so, they
increment both VM_CNT/VS_CNT and LGKM_CNT and are not considered done until both
have been decremented. There is no way beforehand to determine whether a FLAT instruction
uses only LDS or texture memory space.

9.2.1. Ordering

Flat instructions can complete out of order with each other. If one flat instruction finds all of its
data in Texture cache, and the next finds all of its data in LDS, the second instruction might
complete first. If the two fetches return data to the same VGPR, the result are unknown.
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9.2.2. Important Timing Consideration

Since the data for a FLAT load can come from either LDS or the texture cache, and because
these units have different latencies, there is a potential race condition with respect to the
VM_CNT/VS_CNT and LGKM_CNT counters. Because of this, the only sensible S_WAITCNT
value to use after FLAT instructions is zero.

9.3. Addressing

FLAT instructions support both 64- and 32-bit addressing. The address size is set using a mode
register (PTR32), and a local copy of the value is stored per wave.

The addresses for the aperture check differ in 32- and 64-bit mode; however, this is not covered
here.

64-bit addresses are stored with the LSBs in the VGPR at ADDR, and the MSBs in the VGPR at
ADDR+1.

For scratch space, the texture unit takes the address from the VGPR and does the following.

Address = VGPR[addr] + TID_in_wave * Size
- private aperture base (in SH_MEM_BASES)
+ offset (from flat_scratch)

9.3.1. Legal Addressing Combinations

Not every combination of addressing modes is legal for each type of instruction. The legal
combinations are:

* FLAT

a. VGPR (32 or 64 bit) supplies the complete address. SADDR must be NULL.
* Global

a. VGPR (32 or 64 bit) supplies the address. Indicated by: SADDR == NULL.

b. SGPR (64 bit) supplies an address, and a VGPR (32 bit) supplies an offset
* SCRATCH

a. VGPR (32 bit) supplies an offset. Indicated by SADDR==NULL.

b. SGPR (32 bit) supplies an offset. Indicated by SADDR!=NULL.

Every mode above can also add the "instruction immediate offset” to the address.
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9.4. Global

Global instructions are similar to Flat instructions, but the programmer must ensure that no
threads access LDS space; thus, no LDS bandwidth is used by global instructions.

Global instructions offer two types of addressing:

* Memory_addr = VGPR-address + instruction offset.
* Memory_addr = SGPR-address + VGPR-offset + instruction offset.

The size of the address component is dependent on ADDRESS MODE: 32-bits or 64-bit
pointers. The VGPR-offset is 32 bits.

These instructions also allow direct data movement to LDS from memory without going through
VGPRs.

Since these instructions do not access LDS, only VM_CNT/VS_CNT is used, not LGKM_CNT. If
a global instruction does attempt to access LDS, the instruction returns MEM_VIOL.

9.5. Scratch

Scratch instructions are similar to Flat, but the programmer must ensure that no threads access
LDS space, and the memory space is swizzled. Thus, no LDS bandwidth is used by scratch
instructions.

Scratch instructions also support multi-Dword access and mis-aligned access (although mis-
aligned is slower).

Scratch instructions use the following addressing:

* Memory_addr = flat_scratch.addr + swizzle(V/ISGPR_offset + inst_offset, threadID)
The offset can come from either an SGPR or a VGPR, and is a 32- bit unsigned byte.

The size of the address component is dependent on the ADDRESS MODE: 32-bits or 64-bit
pointers. The VGPR-offset is 32 bits.

These instructions also allow direct data movement to LDS from memory without going through
VGPRs.

Since these instructions do not access LDS, only VM_CNT/VS_CNT is used, not LGKM_CNT. It

is not possible for a Scratch instruction to access LDS; thus, no error or aperture checking is
done.
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9.6. Memory Error Checking

Both the texture unit and LDS can report that an error occurred due to a bad address. This can
occur for the following reasons:

invalid address (outside any aperture)

* write to read-only surface

misaligned data

 out-of-range address:

o LDS access with an address outside the range: [ 0, MIN(MO, LDS_SIZE)-1 ]
o Scratch access with an address outside the range: [0, scratch-size -1 ]

The policy for threads with bad addresses is: writes outside this range do not write a value, and
reads return zero.

Addressing errors from either LDS or texture are returned on their respective "instruction done"
busses as MEM_VIOL. This sets the wave’'s MEM_VIOL TrapStatus bit and causes an
exception (trap) if the corresponding EXCPEN bit is set.

9.7. Data

FLAT instructions can use zero to four consecutive Dwords of data in VGPRs and/or memory.
The DATA field determines which VGPR(s) supply source data (if any), and the VDST VGPRs
hold return data (if any). No data-format conversion is done.

“D16” instructions use only 16-bit of the VGPR instead of the full 32bits. “D16_HI” instructions
read or write only the high 16-bits, while “D16” use the low 16-bits. Scratch & Global D16 load
instructions with LDS=1 will write the entire 32-bits of LDS.

9.8. Scratch Space (Private)

Scratch (thread-private memory) is an area of memory defined by the aperture registers. When
an address falls in scratch space, additional address computation is automatically performed by
the hardware. The kernel must provide additional information for this computation to occur in the
form of the FLAT_SCRATCH register.

The wavefront must supply the scratch size and offset (for space allocated to this wave) with
every FLAT request. Prior to issuing any FLAT or Scratch instructions, the shader program must
initialize the FLAT_SCRATCH register with the base address of scratch space allocated this
wave.

FLAT _SCRATCH is a 64-bit, byte address. The shader composes the value by adding together
two separate values: the base address, which can be passed in via an initialized SGPR, or
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perhaps through a constant buffer, and the per-wave allocation offset (also initialized in an
SGPR).
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Chapter 10. Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for temporary data with at least
one order of magnitude higher effective bandwidth than direct, uncached global memory. It
permits sharing of data between work-items in a work-group, as well as holding parameters for
pixel shader parameter interpolation. Unlike read-only caches, the LDS permits high-speed
write-to-read re-use of the memory space (gather/read/load and scatter/write/store operations).

10.1. Overview

The figure below shows the conceptual framework of the LDS is integration into the memory of
AMD GPUs using OpenCL.

(WorkGroup (WorkGroup

Private Private Private Private
Memory Memory Memory Memory

Work- Work- Work- Work-
Item Item ltem ltem

y y A A

\J \J

Global/Constant Memory

Frame Buffer

| Host Memory I

Figure 10. High-Level Memory Configuration

Physically located on-chip, directly adjacent to the ALUs, the LDS is approximately one order of
magnitude faster than global memory (assuming no bank conflicts).

There are 128kB memory per workgroup processor split up into 64 banks of dword-wide RAMs.
These 64 banks are further sub-divided into two sets of 32-banks each where 32 of the banks
are affiliated with a pair of SIMD32'’s, and the other 32 banks are affiliated with the other pair of
SIMD32’s within the WGP. Each bank is a 512x32 two-port RAM (1R/1W per clock cycle).
Dwords are placed in the banks serially, but all banks can execute a store or load
simultaneously. One work-group can request up to 64kB memory.
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The high bandwidth of the LDS memory is achieved not only through its proximity to the ALUs,
but also through simultaneous access to its memory banks. Thus, it is possible to concurrently
execute 32 write or read instructions, each nominally 32-bits; extended instructions,
read2/write2, can be 64-bits each. If, however, more than one access attempt is made to the
same bank at the same time, a bank conflict occurs. In this case, for indexed and atomic
operations, hardware prevents the attempted concurrent accesses to the same bank by turning
them into serial accesses. This decreases the effective bandwidth of the LDS. For increased
throughput (optimal efficiency), therefore, it is important to avoid bank conflicts. A knowledge of
request scheduling and address mapping is key to achieving this.

10.2. Dataflow in Memory Hierarchy

The figure below is a conceptual diagram of the dataflow within the memory structure.

Workgroup Processor
Private Private
Memo Memo
bl H Buffers and
Work- Work- Images
ltem ltem
(Per Texture
Compute- L1
LDS Unit)
Color Buffer/Depth Buffer Texture
Write-Only Coherence Cache (Global) L2
Global Memory VRAM

Data can be loaded into LDS either by transferring it from VGPRs to LDS using "DS"
instructions, or by loading in from memory. When loading from memory, the data may be loaded
into VGPRs first or for some types of loads it may be loaded directly into LDS from memory. To
store data from LDS to global memory, data is read from LDS and placed into the workitem’s
VGPRs, then written out to global memory. To make effective use of the LDS, a kernel must
perform many operations on what is transferred between global memory and LDS.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are not directly used for
these operations, latency is incurred by the LDS executing this function.)

10.3. LDS Modes and Allocation: CU vs. WGP Mode

Workgroups of waves are dispatched in one of two modes: CU or WGP. This mode controls
whether the waves of a workgroup are distributed across just two SIMD32’s (CU mode), or
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across all 4 SIMD32’s (WGP mode) within a WGP.

In CU mode, waves are allocated to two SIMD32’s which share a texture memory unit, and are
allocated LDS space which is all local (on the same side) as the SIMDs. This mode can provide
higher LDS memory bandwidth than WGP mode.

In WGP mode, the waves are distributed over all 4 SIMD32’s and LDS space maybe allocated
anywhere within the LDS memory. Waves may access data on the "near" or "far" side of LDS
equally, but performance may be lower in some cases. This mode provides more ALU and
texture memory bandwidth to a single workgroup (of at least 4 waves).

10.4. LDS Access

There are 3 forms of Local Data Share access:

« Direct Read — reads a single dword from LDS and broadcasts the data as input to a vector
ALU op.

« Indexed Read/write and Atomic ops — read/write address comes from a VGPR and data
to/from VGPR.

o LDS-ops require up to 3 inputs: 2data+laddr and immediate return VGPR.
« Parameter Interpolation — similar to direct read but with specific addressing.

> Reads up to 2 parameters (PO, P1-PO0) or (P2-P0) from one attribute to be supplied to a
muladd.

> Also supplies individual parameter read for general interpolation (or select 1,J=0.0)

The following subsections describe these methods.

10.4.1. LDS Direct Reads

Direct reads are only available in LDS, not in GDS.

LDS Direct reads occur in vector ALU (VALU) instructions and allow the LDS to supply a single

DWORD value which is broadcast to all threads in the wavefront and is used as the SRCO input
to the ALU operations. A VALU instruction indicates that input is to be supplied by LDS by using
the LDS_DIRECT for the SRCO field.

The LDS address and data-type of the data to be read from LDS comes from the MO register:
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LDS_addr = MB[15:0] (byte address and must be Dword aligned)
DataType = MB[18:16]
0 unsigned byte
unsigned short
Dword

unused
signed byte
signed short

a b WN =

10.4.2. LDS Parameter Reads

Parameter reads are only available in LDS, not in GDS.

Pixel shaders use LDS to read vertex parameter values; the pixel shader then interpolates them
to find the per-pixel parameter values. LDS parameter reads occur when the following opcodes
are used.

« V_INTERP_P1 F32 D =P10 * S + PO Parameter interpolation, first step.
* V_INTERP_P2_F32D = P20 * S + DParameter interpolation, second step.
* V_INTERP_MOV_F32D = {P10,P20,P0O}[S]Parameter load.

The typical parameter interpolation operations involves reading three parameters: PO, P10, and
P20, and using the two barycentric coordinates, | and J, to determine the final per-pixel value:

Final value = PO + P10 * | + P20 * J

Parameter interpolation instructions indicate the parameter attribute number (0 to 32) and the

component number (0=x, 1=y, 2=z and 3=w).

Table 50. Parameter Instruction Fields

Field Size Description
VDST 8 Destination VGPR. Also acts as source for v_interp_p2_f32.
OoP 2 Opcode:

0: v_interp_p1_f32 VDST = P10 * VSRC + PO

1: v_interp_p2_f32 VDST = P20 * VSRC + VDST
2:v_interp_mov_f32 VDST = (PO, P10 or P20 selected by VSRC[1:0])
PO, P10 and P20 are parameter values read from LDS

ATTR 6 Attribute number: 0 to 32.
ATTRCHAN 2 0=X, 1=Y, 2=7, 3=W

VSRC 8 Source VGPR supplies interpolation "I" or "J" value. For OP==v_interp_mov_f32: 0=P10,
1=P20, 2=P0O
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Field Size Description

(MO) 32  Use of the MO register is automatic. MO must contain: { 1’b0, new_prim_mask[15:1],
lds_param_offset[15:0] }

Parameter interpolation and parameter move instructions must initialize the MO register before
using it. The Ids_param_offset[15:0] is an address offset from the beginning of LDS storage
allocated to this wavefront to where parameters begin in LDS memory for this wavefront.

The new_prim_mask is a 15-bit mask with one bit per quad; a one in this mask indicates that
this quad begins a new primitive, a zero indicates it uses the same primitive as the previous
quad. The mask is 15 bits, not 16, since the first quad in a wavefront begins a new primitive and
so it is not included in the mask.

Parameter Interpolation on 16-bit data

The above parameter interpolation opcodes use the VINTRP microcode format, but for
interpolation on 16-bit data, the VOP3 format is used. The opcodes supported are:

Opcode Operation Description

V_INTERP_PI1LL_F16 d.f32 =1ds.f16 * vgpr.f32 + Ids.f16 attr_word selects LDS high or low 16bits. “LL" is
for “two LDS arguments.”

V_INTERP_P2_F16 d.f16 = Ids.f16 * vgpr.f32 + vgpr.f32 Final computation. attr_word selects LDS high or
low 16bits. Result is written to the 16 LSB’s of the
dest-vgpr.

In the VOP3 encoding, the following fields are overloaded:

¢ SRCL1 : this field holds the VINTERP VSRC value (I or J)

* SRCO : this is treated as a set of bit-fields: {attr_word[1], attr_chan[2], attr[6]}
“attr_word” is a bit to select the low or high half of the LDS word. 1=high, O=low.

10.4.3. Data Share Indexed and Atomic Access

Both LDS and GDS can perform indexed and atomic data share operations. For brevity, "LDS"
is used in the text below and, except where noted, also applies to GDS.

Indexed and atomic operations supply a unique address per work-item from the VGPRs to the
LDS, and supply or return unique data per work-item back to VGPRs. Due to the internal
banked structure of LDS, operations can complete in as little as one cycle (for wave32, or 2
cycles for wave64), or take as many 64 cycles, depending upon the number of bank conflicts
(addresses that map to the same memory bank).

Indexed operations are simple LDS load and store operations that read data from, and return
data to, VGPRs.
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Atomic operations are arithmetic operations that combine data from VGPRs and data in LDS,
and write the result back to LDS. Atomic operations have the option of returning the LDS "pre-

op" value to VGPRs.

The table below lists and briefly describes the LDS instruction fields.

Table 51. LDS Instruction Fields

Field Size Description

OoP 7 LDS opcode.

GDS 1 0=LDS, 1=GDS.

OFFSETO 8 Immediate offset, in bytes. Instructions with one address combine the offset fields into a single 16-

bit unsigned offset: {offsetl, offset0}. Instructions with two addresses (for example: READ2) use
OFFSET1 8  the offsets separately as two 8- bit unsigned offsets.

VDST 8 VGPR to which result is written: either from LDS-load or atomic return value.

ADDR 8 VGPR that supplies the byte address offset.

DATAO 8 VGPR that supplies first data source.

DATA1 8 VGPR that supplies second data source.

The MO register is not used for most LDS-indexed operations: only the "ADD_TID" instructions
read MO and for these it represents a byte address.

Table 52. LDS Indexed Load/Store

Load / Store
DS_READ_{B32,B64,B96,8128,U8,18,U16,116}
DS_READ2_{B32,B64}

DS_READ2ST64 {B32,B64}
DS_WRITE_{B32,B64,B896,B8128,B8,B16}
DS_WRITE2_{B32,B64}
DS_WRITE2ST64_{B32,B64}
DS_WRXCHG2_RTN_{B32,B64}
DS_WRXCHG2ST64 RTN_{B32,B64}

DS_PERMUTE_B32

DS_BPERMUTE_B32

Single Address Instructions

10.4. LDS Access

Description

Read one value per thread; sign extend to Dword, if signed.
Read two values at unique addresses.

Read 2 values at unique addresses; offset *= 64.

Write one value.

Write two values.

Write two values, offset *= 64.

Exchange GPR with LDS-memory.

Exchange GPR with LDS-memory; offset *= 64.

Forward permute. Does not write any LDS memory.
LDSJ[dst] = srcO

returnVal = LDS[thread_id]

where thread_id is 0..63.

Backward permute. Does not actually write any LDS memory.
LDSJthread_id] = srcO
where thread_id is 0..63, and returnVal = LDS[dst].
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LDS_Addr = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}

Double Address Instructions

LDS_Addre LDS_BASE + VGPR[ADDR] + InstrOffset@*ADJ +
LDS_Addr1 = LDS_BASE + VGPR[ADDR] + InstrOffset1*ADJ
Where ADJ = 4 for 8, 16 and 32-bit data types; and ADJ = 8 for 64-bit.

Note that LDS_ADDRL1 is used only for READ2*, WRITE2*, and WREXCHG2*.
The address comes from VGPR, and both ADDR and InstrOffset are byte addresses.

At the time of wavefront creation, LDS_BASE is assigned to the physical LDS region owned by
this wavefront or work-group.

Specify only one address by setting both offsets to the same value. This causes only one read
or write to occur and uses only the first DATAO.

DS_{READ,WRITE}_ADD_TID Addressing

LDS_Addr = LDS_BASE + {Inst_offset1, Inst_offset@} + TID(@..63)*4 + MO
Note: no part of the address comes from a VGPR. M@ must be dword-aligned.

The "ADD_TID" (add thread-id) is a separate form where the base address for the instruction is
common to all threads, but then each thread has a fixed offset added in based on its thread-ID
within the wave. This allows a convenient way to quickly transfer data between VGPRs and LDS
without having to use a VGPR to supply an address.

LDS Atomic Ops

DS_<atomicOp> OP, GDS=0, OFFSETO0, OFFSET1, VDST, ADDR, Data0, Datal

Data size is encoded in atomicOp: byte, word, Dword, or double.

LDS_AddrO0 = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}

ADDR is a Dword address. VGPRs 0,1 and dst are double-GPRs for doubles data.

VGPR data sources can only be VGPRs or constant values, not SGPRs.
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10.4.4. LDS Lane-permute Ops

DS_PERMUTE instructions allow data to be swizzled arbitrarily across 32 lanes. Two versions
of the instruction are provided: a forward (scatter) and backward (gather).

Note that in wave64 mode the permute operates only across 32 lanes at a time of each half of a
wave64. In other words, it executes as if were two independent wave32's. Each half-wave can
use indices in the range 0-31 to reference lanes in that same half-wave.

These instructions use the LDS hardware but do not use any memory storage, and may be
used by waves which have not allocated any LDS space. The instructions supply a data value
from VGPRs and an index value per lane.

e ds_permute_b32 : Dst[index[0..31]] = src[0..31] Where [0..31] is the lane number
e ds_bpermute_b32 : Dst[0..31] = src[index[0..31]]

The EXEC mask is honored for both reading the source and writing the destination. Index
values out of range will wrap around (only index bits [6:2] are used, the other bits of the index
are ignored). Reading from disabled lanes returns zero.

In the instruction word: VDST is the dest VGPR, ADDR is the index VGPR, and DATAO is the
source data VGPR. Note that index values are in bytes (so multiply by 4), and have the ‘offset0’
field added to them before use.

PERMUTE: BPERMUTE:
(Scatter) (Gather)
For each source lane, get its index which says which dest lane Index values For each dest lane, get its index which says which source lane
to send data to. are in bytes but must be read data from.
(Multiple writes to the same dest get the value from the dword aligned Some sources may be unused.
highest numbered source lane). hence the multiply by 4
Some dests may be unused and return 0. (Index/4 is shown in
parenthesis)
) DST  EXEC IDX EXEC SRC i DST  EXEC IDX SRC EXEC
ane ane
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10.5. Global Data Share

Global data share is similar to LDS, but is a single memory accessible by all waves on the GPU.
Global Data share uses the same instruction format as local data share (indexed operations
only — no interpolation or direct reads). Instructions increment the LGKM_cnt for all reads, writes
and atomics, and decrement LGKM_cnt when the instruction completes.
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MO is used for:

* [15:0] holds SIZE, in bytes
 [31:16] holds BASE address in bytes
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Chapter 11. Exporting Pixel and Vertex
Data

The export instruction copies pixel or vertex shader data from VGPRs into a dedicated output
buffer. The export instruction outputs the following types of data.

» Vertex Position

¢ Vertex Parameter
« Pixel color

Pixel depth (Z)
Primitive Data

11.1. Microcode Encoding

The export instruction uses the EXP microcode format.

31 0
1 | 1 l 1 [ 1 | 1 | 0 ’13' VM |done ,O(QQW ‘ [Tal"getS‘ | I E‘N4 |
EXP T T T T | T T T L — T T 1 T T 1
VSRC3g I VSRC2s \ VSRC1s I VSRCOg
63 32
Table 53. EXP Encoding Field Descriptions
Field Size Description
VM 1 Valid Mask. When set to 1, this indicates that the EXEC mask represents the

valid-mask for this wavefront. It can be sent multiple times per shader (the final
value is used), but must be sent at least once per pixel shader.

DONE 1  This is the final pixel shader or vertex-position export of the program. Used only
for pixel and position exports. Set to zero for parameters.

COMPR 1 Compressed data. When set, indicates that the data being exported is 16-bits
per component rather than the usual 32-bit.

TARGET 6  |ndicates type of data exported.

..7 MRT 0..7

z

Null (no data)
12-16 Position 0. .4
20 Primitive data
32-63 Param 0. .31

O 0 o
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Field Size Description

EN 4 COMPR==1: export half-Dword enable. Valid values are: 0x0,3,C,F.
[0] enables VSRCO : R,G from one VGPGR
[2] enables VSRCL1 : B,A from one VGPR
COMPR==0: [0-3] = enables for VSRCO..3.
EN can be zero (used when exporting only valid mask to NULL target).

VSRC3 8  yGPR from which to read data.
VSRC2 8 Pos & Param: vsrc0=X, 1=Y, 2=Z7, 3=W

VSRC1 8 MRT: vsrcO=R, 1=G, 2=B, 3=A

VSRCO 8

11.2. Operations

11.2.1. Pixel Shader Exports

Export instructions copy color data to the MRTs. Data has up to four components (R, G, B, A).
Optionally, export instructions also output depth (Z) data.

Every pixel shader must have at least one export instruction. The last export instruction
executed must have the DONE bit set to one.

The EXEC mask is applied to all exports. Only pixels with the corresponding EXEC bit set to 1
export data to the output buffer. Results from multiple exports are accumulated in the output
buffer.

At least one export must have the VM bit set to 1. This export, in addition to copying data to the
color or depth output buffer, also informs the color buffer which pixels are valid and which have
been discarded. The value of the EXEC mask communicates the pixel valid mask. If multiple
exports are sent with VM set to 1, the mask from the final export is used. If the shader program
wants to only update the valid mask but not send any new data, the program can do an export
to the NULL target.

11.2.2. Vertex Shader Exports

The vertex shader uses export instructions to output vertex position data and vertex parameter
data to the output buffer. This data is passed on to subsequent pixel shaders.

Every vertex shader must output at least one position vector (X, y, z; w is optional) to the POS0

target. The last position export must have the DONE bit set to 1. A vertex shader can export
zero or more parameters. For improved performance, it is recommended to output all position
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data as early as possible in the vertex shader.

11.3. Primitive Shader Exports

The primitive shader may export Position and Primitive data. Before exporting, the shader must
request that space be allocated in the output buffer using the ALLOC_REQ message.

11.4. Dependency Checking

Export instructions are executed by the hardware in two phases. First, the instruction is selected
to be executed, and EXPCNT is incremented by 1. At this time, the hardware requests the use
of internal busses needed to complete the instruction.

When access to the bus is granted, the EXEC mask is read and the VGPR data sent out. After
the last of the VGPR data is sent, the EXPCNT counter is decremented by 1.

Use S_WAITCNT on EXPCNT to prevent the shader program from overwriting EXEC or the
VGPRs holding the data to be exported before the export operation has completed.

Multiple export instructions can be outstanding at one time. Exports of the same type (for
example: position) are completed in order, but exports of different types can be completed out of
order.

If the STATUS register’'s SKIP_EXPORT bit is set to one, the hardware treats all EXPORT
instructions as if they were NOPs.
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Chapter 12. Instructions

This chapter lists, and provides descriptions for, all instructions in the RDNA Generation
environment. Instructions are grouped according to their format.

Instruction suffixes have the following definitions:

* B32 Bitfield (untyped data) 32-bit

* B64 Bitfield (untyped data) 64-bit

* F16 floating-point 16-bit

* F32 floating-point 32-bit (IEEE 754 single-precision float)
* F64 floating-point 64-bit (IEEE 754 double-precision float)
* 18 signed 8-bit integer

* 116 signed 16-bit integer

* 132 signed 32-bit integer

* 164 signed 64-bit integer

* U16 unsigned 16-bit integer

* U32 unsigned 32-bit integer

* U64 unsigned 64-bit integer

If an instruction has two suffixes (for example, 132_F32), the first suffix indicates the destination
type, the second the source type.

The following abbreviations are used in instruction definitions:

* D = destination

* U = unsigned integer

* S =source

* SCC = scalar condition code
* | = signed integer

B = bitfield

Note: .u or .i specifies to interpret the argument as an unsigned or signed integer.

Note: Rounding and Denormal modes apply to all floating-point operations unless otherwise
specified in the instruction description.

12.1. SOP2 Instructions

31 0
T \ T T 1 T T T 1 \ T 1
SOP2 ’ 10 ’ OP, ‘ ‘ SDST, SSRC1g SSRCO0s
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Instructions in this format may use a 32-bit literal constant which occurs immediately after the

instruction.

Opcode Name

0 S _ADD_U32
1 S _SUB_U32
2 S_ADD_I32

3 S _SUB_ 132

4 S_ADDC_U32
5 S_SUBB_U32
6 S_MIN_I32

7 S_MIN_U32

12.1. SOP2 Instructions

Description

Add two unsigned integers with carry-out.

D.u32 = S0.u32 + S1.u32;
SCC = SO@.u32 + S1.u32 >= Ox100000000ULL ? 1 : @.

Subtract the second unsigned integer from the first with carry-
out.

D.u SO.u - S1.u;
SCC = (ST.u > S@.u ? 1 : @). // unsigned overflow or carry-out
for S_SUBB_U32.

Add two signed integers with carry-out.

This opcode is not suitable for use with S_ADDC_U32 for
implementing 64-bit operations.

D.i = S0.i + S1.1i;
SCC = (SO.u[31] == S1.u[31] && SO.u[31] !'= D.u[31]). // signed
overflow.

Subtract the second signed integer from the first with carry-out.

This opcode is not suitable for use with S_SUBB_U32 for
implementing 64-bit operations.

D.i = S0.1i - S1.1i;
SCC = (SO.u[31] '= S1.u[31] && SO.u[31] !'= D.u[31]). // signed
overflow.

Add two unsigned integers with carry-in and carry-out.

D.u32 = S@.u32 + S1.u32 + SCC;
SCC = SO.u32 + S1.u32 + SCC >= Ox180000006ULL ? 1 : @.

Subtract the second unsigned integer from the first with carry-in
and carry-out.

D.u =8S0.u - ST.u - SCC;
SCC = (ST.u + SCC > SB.u ? 1 : @). // unsigned overflow.

Minimum of two signed integers.

D.i = (S0.i < S1.1) ? $0.i : S1.1;
SCC = (S0.i < S1.i).

Minimum of two unsigned integers.

D.u
SCC

(S6.u < S1.u) ? S@.u : S1.u;
(S8.u < S1.u).
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Opcode Name

8

10

11

14

15

16

17

18

19

20

21

12.1.

S_MAX_I32

S_MAX_U32

S_CSELECT_B32

S_CSELECT_B64

S_AND_B32

S_AND_B64

S_OR_B32

S_OR_B64

S_XOR_B32

S_XOR_B64

S_ANDN2_B32

S_ANDN2_B64

SOP2 Instructions

Description

Maximum of two signed integers.

D.i = (S0.i > S1.1) ? $0.i : S1.1;
SCC = (S@.i > S1.1).

Maximum of two unsigned integers.

D.u
ScC

(S6.u > S1.u) ? SB.u : S1.u;
(S6.u > S1.u).

Conditional select based on scalar condition code.

D.u = SCC ? SB.u : S1.u.

Conditional select base on scalar condition code.

D.u64 = SCC ? SO.u64 : S1.ub4.
Bitwise AND.

D = S0 & S1;

SCC = (D '= 09).
Bitwise AND.

D =S50 & S1;

SCC = (D '= 9).

Bitwise OR.

D=2S68 | S1;
scc = (D !'= 0).

Bitwise XOR.

D =S8 * S1;
SCC = (D != @).

Bitwise XOR.

Bitwise ANDN2.

D = SO & ~S1;
scc = (D != @).

Bitwise ANDN2.

D = SO & ~S1;
scc = (D != 0).
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22 S _ORN2_B32 Bitwise ORN2.
D =S80 | ~S1;
SCC = (D !'= 0).
23 S_ORN2_B64 Bitwise ORN2.
D =S8 | ~S1;

SCC = (D != 9).
24 S_NAND_B32 Bitwise NAND.
D= ~(S0 & S1);
scc = (D !'= 0).
25 S_NAND_B64 Bitwise NAND.
D = ~(S@ & S1);
scc = (D != 9).
26 S_NOR_B32 Bitwise NOR.
D =~(S0 | S1);
scc = (D !'= 9).
27 S_NOR_B64 Bitwise NOR.
D =~(S0 | S1);
scc = (D !'= 0).
28 S_XNOR_B32 Bitwise XNOR.
D = ~(S8 * S1);
SCC = (D != 9).
29 S_XNOR_B64 Bitwise XNOR.
D= ~(S0 * S1);
scc = (D !'= @).
30 S _LSHL_B32 Logical shift left.
D.u = S@.u << S1.u[4:0];
scC = (D.u != 9).
31 S _LSHL_B64 Logical shift left.
D.u64 = S@.u64 << S1.u[5:0];
ScC = (D.ub4 != B).
32 S_LSHR_B32 Logical shift right.
D.u = S@.u >> S1.u[4:0];
ScC = (D.u != 9).
33 S_LSHR_B64 Logical shift right.

D.u64 = S@.u64 >> S1.u[5:0];
SCC = (D.u64 !'= 0).
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Opcode Name

34

35

36

37

38

39

40

41

42

12.1.

S_ASHR_[32

S_ASHR_164

S_BFM_B32

S_BFM_B64

S_MUL_I32

S BFE_U32

S_BFE_I32

S_BFE_U64

S_BFE_I64

SOP2 Instructions

Description

Arithmetic shift right (preserve sign bit).

D.i signext(S@.i) >> S1.u[4:0];
ScC = (D.i != 9).

Arithmetic shift right (preserve sign bit).
D.i64 = signext(S@.i64) >> S1.u[5:0];
SCC = (D.i64 !'= 0).

Bitfield mask.

D.u = ((1 << S@.u[4:8]) - 1) << S1.u[4:0].

Bitfield mask.

D.u64 = ((TULL << S@.u[5:8]) - 1) << S1.u[5:0].

Multiply two signed integers.

D.i = S0.i * S1.1i.

Bit field extract. SO is Data, S1[4:0] is field offset, S1[22:16]
is field width.

D.u = (S@.u >> S1.u[4:0]) & ((1 << S1.u[22:16]) - 1);
SCC = (D.u != 9).

Bit field extract. SO is Data, S1[4:0] is field offset, S1[22:16]
is field width.

D.1i
ScC

signext((S@.i >> S1.u[4:0]) & ((1 << S1.u[22:16]) - 1));
(D.i 1= 9).

Bit field extract. SO is Data, S1[5:0] is field offset, S1[22:16]
is field width.

D.u64 = (S0.u64 >> S1.u[5:0]) & ((1 << S1.u[22:16]) - 1);
ScC = (D.ub4 !'= B).

Bit field extract. SO is Data, S1[5:0] is field offset, S1[22:16]
is field width.

D.i64 = signext((S@.i64 >> S1.u[5:8]) & ((1 << S1.u[22:16]) -

)
SCC = (D.i64 != 8).
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Opcode

44

46

a7

48

49

50

51

52

53

Name

S_ABSDIFF_132

S_LSHL1 _ADD_U32

S_LSHL2_ADD_U32

S_LSHL3 ADD_U32

S_LSHL4_ADD_U32

S_PACK_LL_B32_B16

S_PACK_LH_B32_B1
6

S_PACK_HH_B32_B1
6

S_MUL_HI_U32

12.1. SOP2 Instructions

Description

Compute the absolute value of difference between two values.

D.i = S@8.1i - S1.1;

if(D.i < @) then
D.i = -D.1i;

endif;

scc = (D.i != 9).

Functional examples:

S_ABSDIFF_I32(0x00000002, 0x00000005)
S_ABSDIFF_I32(exffffffff, 0x00000000)
S_ABSDIFF_I32(0x80000000, 0x00000000)
result is negative!

S_ABSDIFF_I32(0x80000000, 0x00000001)
S_ABSDIFF_I32(0x800000008, Oxffffffff)
S_ABSDIFF_I32(0x800000008, oxfffffffe)

> 0x00000003
> 0x00000001
> 0x80000000 // Note:

> Ox7fffffff
> Ox7fffffff
> Ox7ffffffe

Logical shift left by 1 bit and then add.

D.u = (S8.u << N) + S1.u; // N is the shift value in the opcode
ScC (((S@.u << N) + S1.u) >= 0x100000000ULL ? 1 : 0). //
unsigned overflow.

Logical shift left by 2 bits and then add.

D.u = (S@.u << N) + S1.u; // N is the shift value in the opcode
SCC = (((S@.u << N) + S1.u) >= 0x100000000ULL ? 1 : @). //
unsigned overflow.

Logical shift left by 3 bits and then add.

D.u = (S@.u << N) + S1.u; // N is the shift value in the opcode
SCC (((S8.u << N) + S1.u) >= 0x100000000ULL ? 1 : 0). //
unsigned overflow.

Logical shift left by 4 bits and then add.

D.u = (SB.u << N) + S1.u; // N is the shift value in the opcode
SCC = (((S@.u << N) + S1.u) >= Ox10000608OULL ? 1 : ©). //
unsigned overflow.

Pack two short values into the destination.

D.u[31:0] = { S1.u[15:0], S@.u[15:0] }.

Pack two short values into the destination.

D.u[31:0] = { S1.u[31:16], S@.u[15:08] }.

Pack two short values into the destination.

D.u[31:0] = { S1.u[31:16], S@.u[31:16] }.

Multiple two unsigned integers and store the high 32 bits.

D.u = (S@.u * S1.u) >> 32.
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54 S_MUL_HI_I32 Multiple two signed integers and store the high 32 bits.

D.i = (S0.i * S1.i) >> 32.

12.2. SOPK Instructions

- I T T T T ‘ I | I I T T T T | ‘ I I T °
sopk |1 0]1 1] OPs | SDST, | siMm16 |

Instructions in this format may not use a 32-bit literal constant which occurs immediately after
the instruction.

Opcode Name Description

0 S_MOVK_I32 Sign extension from a 16-bit constant.

D.i32 = signext(SIMM16[15:0]).

1 S_VERSION Do nothing. Argument is ignored by hardware. This opcode is not
suitable for inserting wait states as it is possible the next
instruction will issue in the same cycle. Do not use this opcode
to resolve wait state hazards, use S_NOP instead.

This opcode is used to specify the microcode version for tools
that interpret shader microcode; it may also be used to validate
microcode is running with the correct compatibility settings in
drivers and functional models that support multiple generations.
We strongly encourage this opcode be included at the top of every
shader block to simplify debug and catch configuration errors.

This opcode must appear in the first 16 bytes of a block of shader
code in order to be recognized by external tools and functional
models. Avoid placing opcodes > 32 bits or encodings that are not
available in all versions of the microcode before the S_VERSION
opcode. If this opcode is absent then tools are allowed to make a
'best guess' of the microcode version using cues from the
environment; the guess may be incorrect and lead to an invalid
decode. It is highly recommended that this be the FIRST opcode of
a shader block except for trap handlers, where it should be the
SECOND opcode (allowing the first opcode to be a 32-bit branch to
accommodate context switch).

SIMM16[15:8] must be set to zero.
SIMM16[7:8] specifies the microcode version.

2 S_CMOVK_132 Conditional move with sign extension.
if(sce)
D.i32 = signext(SIMM16[15:8]);
endif.
3 S_CMPK_EQ 132 SCC = (S08.i32 == signext(SIMM16[15:0])).
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Opcode
4

5

10
11
12
13
14

15

16

18

19

21

Name
S_CMPK_LG_I32
S_CMPK_GT_I32
S_CMPK_GE_I32
S_CMPK_LT 132
S_CMPK_LE_[32
S CMPK_EQ U32
S _CMPK_LG_U32
S_CMPK_GT_U32
S _CMPK_GE_U32
S_CMPK_LT_U32
S _CMPK_LE_U32

S_ADDK_|32

S_MULK_I32

S_GETREG_B32

S_SETREG_B32

S_SETREG_IMM32_B

32

12.2. SOPK Instructions

AMDZ1

Description
SCC = (S0.132 != signext(SIMM16[15:0])).
SCC = (S08.i32 > signext(SIMM16[15:0])).
SCC = (S8B8.i32 >= signext(SIMM16[15:8])).
SCC = (SB.i32 < signext(SIMM16[15:8])).
SCC = (SB.i32 <= signext(SIMM16[15:8])).
SCC = (S0.u32 == SIMM16[15:0]).
SCC = (SO.u32 != SIMM16[15:0]).
SCC = (S@.u32 > SIMM16[15:0]).
SCC = (S@.u32 >= SIMM16[15:0]).
SCC = (S@.u32 < SIMM16[15:0]).
SCC = (S0.u32 <= SIMM16[15:0]).

Add a 16-bit signed constant to the destination.

int32 tmp = D.i32; // save value so we can check sign bits for
overflow later.

D.i32 = D.i32 + signext(SIMM16[15:0]);

SCC = (tmp[31] == SIMM16[15] && tmp[31] != D.i32[31]). //
signed overflow.

Multiply a 16-bit signed constant with the destination.

D.i32 = D.i32 * signext(SIMM16[15:0]).

Read some or all of a hardware register into the LSBs of D.

SIMM16 = {size[4:0], offset[4:8], hwRegId[5:08]}; offset is @..31,
size is 1..32.

uint32 offset = SIMM16[10:6];

uint32 size = SIMM16[15:11];

uint32 id = SIMM16[5:0];

D.u32 = hardware_reg[id][offset+size-1:0ffset].

Write some or all of the LSBs of S@ into a hardware register.

SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is @..31,
size is 1..32.

hardware-reg = SO.u.

Write some or all of the LSBs of IMM32 into a hardware register;
this instruction requires a 32-bit literal constant.

SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is ©..31,
size is 1..32.

hardware-reg = LITERAL.

108 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Opcode Name

22 S_CALL_B64

23 S_WAITCNT_VSCNT

24 S_WAITCNT_VMCNT

25 S_WAITCNT_EXPCN
T

12.2. SOPK Instructions

Description

Implements a short call, where the return address (the next
instruction after the S_CALL_B64) is saved to D. Long calls
should consider S_SWAPPC_B64 instead. Note that this instruction
is always 4 bytes.

D.u64 = PC + 4;
PC = PC + signext(SIMM16 * 4) + 4.

Wait for the counts of outstanding vector store events -- vector
memory stores and atomics that DO NOT return data -- to be at or
below the specified level. This counter is not used in 'all-in-
order' mode.

Waits for the following condition to hold before continuing:

vscnt <= S@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add
overflow

To wait on a literal constant only, write 'null' for the GPR
argument.

See also S_WAITCNT.

Wait for the counts of outstanding vector memory events --
everything except for memory stores and atomics-without-return --
to be at or below the specified level. When in 'all-in-order'
mode, wait for all vector memory events.

Waits for the following condition to hold before continuing:

vmcnt <= S@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add
overflow

To wait on a literal constant only, write 'null' for the GPR
argument or use S_WAITCNT.

See also S_WAITCNT.

Waits for the following condition to hold before continuing:
expcnt <= S@.u[2:0] + S1.u[2:0].
// Comparison is 3 bits, no clamping is applied for add

overflow

To wait on a literal constant only, write 'null' for the GPR
argument or use S_WAITCNT.

See also S_WAITCNT.
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Opcode Name Description
26 S _WAITCNT_LGKMC Waits for the following condition to hold before continuing:
NT

lgkmcnt <= S@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add
overflow

To wait on a literal constant only, write 'null' for the GPR
argument or use S_WAITCNT.

See also S_WAITCNT.

27 S_SUBVECTOR_LOO Begin execution of a subvector block of code. See also
P_BEGIN S_SUBVECTOR_LOOP_END.

if (EXEC[63:0] == 0)
// no passes, skip entire loop
jump LABEL
elif (EXEC_LO == @)
// execute high pass only
DB = EXEC_LO
else
// execute low pass first, either running both passes or
running low pass only

DO = EXEC_HI
EXEC_HI = @
endif.
Example:
s_subvector_loop_begin s@, SKIP_ALL
LOOP_START:
// instructions
/...
LOOP_END:
s_subvector_loop_end s@, LOOP_START
SKIP_ALL:

This opcode is intended to be used in conjunction with
S_SUBVECTOR_LOOP_END but there is no dedicated subvector state and
internally it is equivalent to an S_CBRANCH with extra math. This
opcode has well-defined semantics in wave32 mode but the author of
this document is not aware of any practical wave32 programming
scenario where it would make sense to use this opcode.

NOTE: DO is marked as an input and an output. While the initial
value of D@ is not used as part of this instruction the SGPR is
still read due to a hardware limitation. This 'phantom read' may
show up in certain diagnostics and therefore we mark D@ as an in-
out operand here.
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28 S_SUBVECTOR_LOO End execution of a subvector block of code. See also
P_END S_SUBVECTOR_LOOP_START.

if (EXEC_HI != @)

EXEC_LO = D@
elif(S6 == 0)
// done: executed low pass and skip high pass
nop
else

// execute second pass of two-pass mode
EXEC_HI = Do
D@ = EXEC_LO
EXEC_LO = ©
jump LABEL
endif.

This opcode is intended to be used in conjunction with
S_SUBVECTOR_LOOP_BEGIN but there is no dedicated subvector state
and internally it is equivalent to an S_CBRANCH with extra math.
This opcode has well-defined semantics in wave32 mode but the
author of this document is not aware of any practical wave32
programming scenario where it would make sense to use this opcode.

12.3. SOP1 Instructions

31\ I I I I I ‘ I I I I I I [ I T I I I \0
sopt |1 0]1 11" 1 1" 0l4] SDST, | OPs \ SSRCO0s |

Instructions in this format may use a 32-bit literal constant which occurs immediately after the
instruction.

Opcode Name Description

3 S_MOV_B32 Move data to an SGPR.
D.u = S0.u.

4 S MOV_B64 Move data to an SGPR.

D.u64 = S0@.u64.

5 S _CMOV_B32 Conditionally move data to an SGPR when scalar condition code is
true.

if(SCC) then
D.u = S0@.u;
endif.
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Opcode
6

10

11

12

13

Name

S_CMOV_B64

S_NOT_B32

S_NOT_B64

S_WQM_B32

S_WQM_B64

S_BREV_B32

S_BREV_B64

S_BCNTO_I132_B32

12.3. SOP1 Instructions

AMDZ1

Description

Conditionally move data to an SGPR when scalar condition code is
true.

if(SCC) then
D.u64 = S0.ub64;
endif.

Bitwise negation.
D = ~S0;
SCC = (D '= 0).
Bitwise negation.
D = ~S0;
SCC = (D != 9).

Computes whole quad mode for an active/valid mask. If any pixel
in a quad is active, all pixels of the quad are marked active.

for i in @ ... opcode_size_in_bits - 1 do
D[i] = (S6[(i & ~3):(i | 3)] != @);

endfor;

SCC = (D !'= 09).

Computes whole quad mode for an active/valid mask. If any pixel
in a quad is active, all pixels of the quad are marked active.

for i in @ ... opcode_size_in_bits - 1 do
D[i] = (SB[(i & ~3):(1 | 3)] != 8);
endfor;

SCC = (D '= 0).
Reverse bits.

D.u[31:0] = S@.u[B:31].

Reverse bits.

D.u64[63:8] = SB.u64[0:63].

Count number of bits that are zero.

D = 0;

for i in @ ... opcode_size_in_bits - 1 do
D += (S@[i] == 8 ?2 1 : @)

endfor;

SCC = (D != 0).
Functional examples:

S_BCNTB_I32_B32(0x00000000) => 32
S_BCNTB_I32_B32(@xcccceceee) => 16
S_BCNTB_I32_B32(oxffffffff) => 0
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14 S _BCNTO_I32_B64 Count number of bits that are zero.
D =0;
for i in @ ... opcode_size_in_bits - 1 do
D += (S@[i] == 8 2 1 : @)
endfor;

scC = (D !'= 8).
Functional examples:

S_BCNTB_I32_B32(0x00000000) => 32
S_BCNTB_I32_B32(@xccccceceec) => 16
S_BCNTB_I32_B32(@xffffffff) => 0

15 S BCNT1_132_B32 Count number of bits that are one.
D =0;
for i in @ ... opcode_size_in_bits - 1 do
D += (S@[i] == 1?2 1 : @)
endfor;

scc = (D != 0).
Functional examples:

S_BCNT1_I32_B32(0x00000000) => 0
S_BCNT1_I32_B32(®xcccceccee) => 16
S_BCNT1_I32_B32(eOxffffffff) => 32

16 S_BCNT1_132_B64 Count number of bits that are one.
D =9;
for i in @ ... opcode_size_in_bits - 1 do
D += (SO[i] == 1?21 : @)
endfor;

SCC = (D != 0).
Functional examples:

S_BCNT1_I32_B32(0x00000000) => 0
S_BCNT1_I32_B32(Bxcccececee) => 16
S_BCNT1_I32_B32(bxffffffff) => 32
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Opcode Name

17 S_FF0_I32_B32

18 S_FF0_I32_B64

12.3. SOP1 Instructions

AMDZ1

Description

Returns the bit position of the first zero from the LSB (least
significant bit), or -1 if there are no zeros.

D.i = -1; // Set if no zeros are found
for i in @ ... opcode_size_in_bits - 1 do // Search from LSB
if SO[i] == O then
D.i = 1;
break for;
endif;
endfor.

Functional examples:

S_FFO_I32_B32(0xaaaaaaaa) => 0
S_FF@_I32_B32(0x55555555) => 1
S_FFO_I32_B32(0x00000000) => 0
S_FFO_I32_B32(Oxffffffff) => oxffffffff
S_FFO_I32_B32(oxfffeffff) => 16

Returns the bit position of the first zero from the LSB (least
significant bit), or -1 if there are no zeros.

D.i = -1; // Set if no zeros are found
for i in @ ... opcode_size_in_bits - 1 do // Search from LSB
if SB[i] == O then
D.i = 1;
break for;
endif;
endfor.

Functional examples:

S_FFO_I32_B32(0xaaaaaaaa) => 0
S_FFO_I32_B32(0x55555555) => 1
S_FFO_I32_B32(0x00000000) => 0
S_FFO_I32_B32(Oxffffffff) => oxffffffff
S_FFO_I32_B32(oxfffeffff) => 16
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19 S_FF1 132 B32

20 S_FF1_132_B64

12.3. SOP1 Instructions

AMDZ1

Description

Returns the bit position of the first one from the LSB (least
significant bit), or -1 if there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... opcode_size_in_bits - 1 do // Search from LSB
if SO[i] == 1 then
D.i = 1;
break for;
endif;
endfor.

Functional examples:

S_FF1_I32_B32(0xaaaaaaaa) => 1
S_FF1_I32_B32(0x55555555) => 0
S_FF1_I32_B32(0x00000000) => oxffffffff
S_FF1_I32_B32(exffffffff) => 0
S_FF1_I32_B32(0x00010000) => 16

Returns the bit position of the first one from the LSB (least
significant bit), or -1 if there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... opcode_size_in_bits - 1 do // Search from LSB
if SB[i] == 1 then
D.i = 1;
break for;
endif;
endfor.

Functional examples:

S_FF1_I32_B32(0xaaaaaaaa) => 1
S_FF1_I32_B32(0x55555555) => 0
S_FF1_I32_B32(0x00000000) => oxffffffff
S_FF1_I32_B32(exffffffff) => 0
S_FF1_I32_B32(0x00010000) => 16
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21 S _FLBIT_I32_B32 Counts how many zeros before the first one starting from the MSB
(most significant bit). Returns -1 if there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... opcode_size_in_bits - 1 do
// Note: search is from the MSB
if S@[opcode_size_in_bits - 1 - i] == 1 then
D.i =1;
break for;
endif;
endfor.

Functional examples:

S_FLBIT_I32_B32(0x00000000) => Oxffffffff

)
S_FLBIT_I32_B32(@®x0000Ccccc) => 16
S_FLBIT_I32_B32(0xffff3333) => 0
S_FLBIT_I32_B32(0x7fffffff) => 1
S_FLBIT_I32_B32(0x80000000) => 0
S_FLBIT_I32_B32(exffffffff) => 0
22 S _FLBIT_I32_B64 Counts how many zeros before the first one starting from the MSB

(most significant bit). Returns -1 if there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... opcode_size_in_bits - 1 do
// Note: search is from the MSB
if S@[opcode_size_in_bits - 1 - i] == 1 then
D.i =1;
break for;
endif;
endfor.

Functional examples:

S_FLBIT_I32_B32(0x00000000) => Oxffffffff

)
S_FLBIT_I32_B32(0x00800cccc) => 16
S_FLBIT_I32_B32(0xffff3333) => 0
S_FLBIT_I32_B32(0x7fffffff) => 1
S_FLBIT_I32_B32(0x80000000) => 0
S_FLBIT_I32_B32(exffffffff) => 0
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Opcode
23

24

25

26

27

Name

S _FLBIT 132

S_FLBIT_I32_l64

S_SEXT_132_18

S_SEXT [32_116

S_BITSETO_B32

12.3. SOP1 Instructions

AMDZ1

Description

Counts how many bits in a row (from MSB to LSB) are the same as

the sign bit. Returns -1 if all bits are the same.

D.i = -1; // Set if all bits are the same
for i in 1 . opcode_size_in_bits - 1 do
// Note: search is from the MSB
if S@[opcode_size_in_bits - 1 - i] !'= S@[opcode_size_in_bits
- 1] then
D.i =1;
break for;
endif;
endfor.

Functional examples:

S_FLBIT_I32(0x00000000 > Oxffffffff

)
S_FLBIT_I32(0@x0000cccc) => 16
S_FLBIT_I32(0xffff3333) => 16
S_FLBIT_I32(Ox7fffffff) => 1
S_FLBIT_I32(0x80000000) => 1

)

S_FLBIT_I32(Oxfffffff) => oxffffffff

Counts how many bits in a row (from MSB to LSB) are the same as

the sign bit. Returns -1 if all bits are the same.

D.i = -1; // Set if all bits are the same
for i in 1 . opcode_size_in_bits - 1 do
// Note: search is from the MSB
if S@[opcode_size_in_bits - 1 - i] !'= S@[opcode_size_in_bits
- 1] then
D.i =1;
break for;
endif;
endfor.

Functional examples:

S_FLBIT_I32(0x00000000) => Oxffffffff

=> BxFFFFFfff

)
S_FLBIT_I32(@x0000cccc) => 16
S_FLBIT_I32(@xffff3333) => 16
S_FLBIT_I32(Ox7fffffff) => 1
S_FLBIT_I32(0x80000000) => 1

)

S_FLBIT_I32(Oxffffffff

Sign extension of a signed byte.

D.i = signext(S@.i[7:0]).

Sign extension of a signed short.

D.i = signext(S@.i[15:0]).

Set a specific bit to zero.

D.u[S@.u[4:0]] = 0.
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Opcode Name

28

29

30

31

32

33

34

36

37

38

12.3.

S_BITSETO_B64

S_BITSET1_B32

S_BITSET1_B64

S_GETPC_B64

S_SETPC_B64

S_SWAPPC_B64

S_RFE_B64

S_AND_SAVEEXEC
B64

S_OR_SAVEEXEC_B
64

S_XOR_SAVEEXEC_
B64

SOP1 Instructions

Description

Set a specific bit to zero.

D.u64[S@.u[5:08]] = @.

Set a specific bit to one.

D.u[S@.u[4:0]] = 1.

Set a specific bit to one.

D.u64[S@.u[5:8]] = 1.

Save current program location. Destination receives the byte
address of the next instruction. Note that this instruction is
always 4 bytes in size.

D.u64 = PC + 4.

Jump to a new location. S0.u64 is a byte address of the
instruction to jump to.

PC = S0.u64.

Save current program location and jump to a new location. S@.u64
is a byte address of the instruction to jump to. Destination
receives the byte address of the instruction immediately following
the SWAPPC instruction. Note that this instruction is always 4
bytes.

D.u64 = PC + 4;
PC = SB.u64.

Return from exception handler and continue. This instruction may
only be used within a trap handler.

PRIV = 0;
PC = S0.ub4.

Bitwise AND with EXEC mask. The original EXEC mask is saved to
the destination SGPRs before the bitwise operation is performed.

D.u64 = EXEC;
EXEC = S0.u64 & EXEC;
SCC = (EXEC != @).

Bitwise OR with EXEC mask. The original EXEC mask is saved to the
destination SGPRs before the bitwise operation is performed.

D.u64 = EXEC;
EXEC = S@.u64 | EXEC;
SCC = (EXEC != 0).

Bitwise XOR with EXEC mask. The original EXEC mask is saved to
the destination SGPRs before the bitwise operation is performed.

D.ub4 = EXEC;
EXEC = S@.u64 * EXEC;
SCC = (EXEC != 9).
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Opcode Name

39 S_ANDN2_SAVEEXE
C_B64

40 S_ORN2_SAVEEXEC
_B64

41 S NAND_SAVEEXEC
_B64

42 S_NOR_SAVEEXEC_
B64

43 S_XNOR_SAVEEXEC
_B64

44 S_QUADMASK_B32

45 S_QUADMASK_B64

12.3. SOP1 Instructions

Description

Bitwise ANDN2 with EXEC mask.

the destination SGPRs before

D.u64 = EXEC;
EXEC = SO.u64 & ~EXEC;
SCC = (EXEC != @).

Bitwise ORN2 with EXEC mask.
the destination SGPRs before

D.u64 = EXEC;
EXEC = S@.u64 | ~EXEC;
SCC = (EXEC !'= 9).

Bitwise NAND with EXEC mask.
the destination SGPRs before

D.u64 = EXEC;
EXEC = ~(S@.u64 & EXEC);
SCC = (EXEC != @).

Bitwise NOR with EXEC mask.
the destination SGPRs before

D.u64 = EXEC;
EXEC = ~(S@.u64 | EXEC);
SCC = (EXEC != @).

Bitwise XNOR with EXEC mask.
the destination SGPRs before

D.u64 = EXEC;
EXEC = ~(S@.u64 A EXEC);
SCC = (EXEC != ).

Reduce a pixel mask to a quad mask.
operation see S_BITREPLICATE_

D = 0;

for i in 0 ..
D[i] = (S@[i * 4 + 3:1i

endfor;

scc = (D !'= 9).

Reduce a pixel mask to a quad mask.
operation see S_BITREPLICATE_

D =9;

for i in 0 ..
D[i] = (S@[i * 4 + 3:i

endfor;

SCC = (D '= 0).

AMDZ1

The original EXEC mask is saved to
the bitwise operation is performed.

The original EXEC mask is saved to
the bitwise operation is performed.

The original EXEC mask is saved to
the bitwise operation is performed.

The original EXEC mask is saved to
the bitwise operation is performed.

The original EXEC mask is saved to
the bitwise operation is performed.

To perform the inverse
B64_B32.

. (opcode_size_in_bits / 4) - 1 do

* 4] 1= 9);

To perform the inverse
B64_B32.

. (opcode_size_in_bits / 4) - 1 do

* 4] 1= 0);
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Opcode

46

a7

48

49

52

55

56

Name

S_MOVRELS_B32

S_MOVRELS_B64

S_MOVRELD_B32

S_MOVRELD_B64

S_ABS_ 32

S_ANDN1_SAVEEXE
C_B64

S_ORN1_SAVEEXEC

_B64

12.3. SOP1 Instructions

AMDZY

Description

Move from a relative source address.
SGPR[D.addr].u32 = SGPR[S@.addr+M8[31:0]].u32

Example: The following instruction sequence will perform a move s5
<== s17:

s_mov_b32 mo, 10

s_movrels_b32 s5, s7

Move from a relative source address. The index in M@.u must be

even for this operation.

SGPR[D.addr].u64 = SGPR[S@.addr+M@[31:0]].u64

Move to a relative destination address.
SGPR[D.addr+M@[31:0]].u32 = SGPR[S@.addr].u32

Example: The following instruction sequence will perform a move
s15 <== §7:

s_mov_b32 mo, 10

s_movreld_b32 s5, s7

Move to a relative destination address. The index in M@.u must be

even for this operation.

SGPR[D.addr+M@[31:0]].u64 = SGPR[S@.addr].u64

Integer absolute value.

D.1i
ScC

(S.i <8 ?-S.i: S.i);
(D.i 1= 9).

Functional examples:

S_ABS_I32(0x00000001
S_ABS_I32(0x7fffffff
S_ABS_I32(0x80000000
S_ABS_I32(0x80000001
S_ABS_I32(0x80000002
S_ABS_I32(oxffffffff

> 0x00000001
> ox7fffffff
> Ox80000000
> OX7FFfffff
> ox7ffffffe
=> 0x00000001

// Note this is negative!

— — — — — —
1}

Bitwise ANDN1 with EXEC mask.
the destination SGPRs before the bitwise operation is performed.

The original EXEC mask is saved to

D.ub4 = EXEC;
EXEC = ~S0.u64 & EXEC;
SCC = (EXEC != 9).

Bitwise ORN1 with EXEC mask. The original EXEC mask is saved to
the destination SGPRs before the bitwise operation is performed.

D.u64 = EXEC;
EXEC = ~S8.u64 | EXEC;
SCC = (EXEC != @).
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Opcode Name Description
57 S_ANDN1_WREXEC_ Bitwise ANDN1 with EXEC mask. Unlike the SAVEEXEC series of
B64 opcodes, the value written to destination SGPRs is the result of

the bitwise-op result. EXEC and the destination SGPRs will have
the same value at the end of this instruction. This instruction
is intended to accelerate waterfalling.

EXEC = ~S@.u64 & EXEC;
D.u64 = EXEC;
SCC = (EXEC != @).

58 S_ANDN2_WREXEC_ Bitwise ANDN2 with EXEC mask. Unlike the SAVEEXEC series of
B64 opcodes, the value written to destination SGPRs is the result of
the bitwise-op result. EXEC and the destination SGPRs will have
the same value at the end of this instruction. This instruction
is intended to accelerate waterfalling.

EXEC = S@.u64 & ~EXEC;
D.u64 = EXEC;
SCC = (EXEC !'= 9).

In particular, the following sequence of waterfall code is
optimized by using a WREXEC instead of two separate scalar ops:

// VO holds the index value per lane

// save exec mask for restore at the end

s_mov_b64 s2, exec

// exec mask of remaining (unprocessed) threads

s_mov_b64 s4, exec

loop:

// get the index value for the first active lane

v_readfirstlane_b32 s0, v@

// find all other lanes with same index value

v_cmpx_eq s@, vO

<0P> // do the operation using the current EXEC mask. SO
holds the index.

// mask out thread we just executed

// s_andn2_b64 s4, s4, exec

// s_mov_b64 exec, s4

s_andn2_wrexec_b64 s4, s4 // replaces above 2 ops

// repeat until EXEC==0

s_cbranch_scc1 1loop

s_mov_b64 exec, s2

12.3. SOP1 Instructions 121 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Opcode Name Description
59 S_BITREPLICATE_B6 Replicate the low 32 bits of S@ by 'doubling' each bit.
4 B32
for i in @ ... 31 do

D.ub4[i * 2 + 98] = SO.u32[1i]
D.ub4[i * 2 + 1] S0.u32[1i]
endfor.

This opcode can be used to convert a quad mask into a pixel mask;
given quad mask in s@, the following sequence will produce a pixel
mask in s2:

s_bitreplicate_b64 s2, s@

s_bitreplicate_b64 s2, s2

To perform the inverse operation see S_QUADMASK_B64.

60 S_AND_SAVEEXEC_ Bitwise AND with EXEC mask. The original EXEC mask is saved to
B32 the destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = S@.u32 & EXEC_LO;
SCC = (EXEC_LO != 0).

61 S _OR_SAVEEXEC_B Bitwise OR with EXEC mask. The original EXEC mask is saved to the
32 destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = S8.u32 | EXEC_LO;
SCC = (EXEC_LO != ).

62 S XOR_SAVEEXEC_ Bitwise XOR with EXEC mask. The original EXEC mask is saved to
B32 the destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = S8.u32 * EXEC_LO;
SCC = (EXEC_LO != @).

63 S_ANDN2_SAVEEXE Bitwise ANDN2 with EXEC mask. The original EXEC mask is saved to
C_B32 the destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = $S8.u32 & ~EXEC_LO;
SCC = (EXEC_LO != ).

64 S_ORNZ2_SAVEEXEC Bitwise ORN2 with EXEC mask. The original EXEC mask is saved to

_B32 the destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = S@.u32 | ~EXEC_LO;

SCC = (EXEC_LO != ).
65 S_NAND_SAVEEXEC Bitwise NAND with EXEC mask. The original EXEC mask is saved to
_B32 the destination SGPRs before the bitwise operation is performed.

D.u32 = EXEC_LO;
EXEC_LO = ~(S0.u32 & EXEC_LO);
SCC = (EXEC_LO != @).
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Opcode Name

66 S_NOR_SAVEEXEC_
B32

67 S_XNOR_SAVEEXEC
_B32

68 S ANDN1_SAVEEXE
C_B32

69 S_ORN1_SAVEEXEC
_B32

70 S_ANDN1_WREXEC _
B32

71 S_ANDN2_WREXEC

B32

12.3. SOP1 Instructions

AMDZ1

Description

Bitwise NOR with EXEC mask.
the destination SGPRs before the bitwise operation is performed.

The original EXEC mask is saved to

D.u32 = EXEC_LO;
EXEC_LO = ~(S0.u32 | EXEC_LO);
SCC = (EXEC_LO != @).

Bitwise XNOR with EXEC mask.
the destination SGPRs before the bitwise operation is performed.

The original EXEC mask is saved to

D.u32 = EXEC_LO;
EXEC_LO = ~(S@.u32 * EXEC_LO);
SCC = (EXEC_LO !'= 9).

Bitwise ANDN1 with EXEC mask.
the destination SGPRs before the bitwise operation is performed.

The original EXEC mask is saved to

D.u32 = EXEC_LO;
EXEC_LO = ~S@.u32 & EXEC_LO;
SCC = (EXEC_LO != 8).

Bitwise ORN1 with EXEC mask.
the destination SGPRs before the bitwise operation is performed.

The original EXEC mask is saved to

D.u32 = EXEC_LO;
EXEC_LO = ~S8.u32 | EXEC_LO;
SCC = (EXEC_LO != @).

Bitwise ANDN1 with EXEC mask. Unlike the SAVEEXEC series of

opcodes, the value written to destination SGPRs is the result of
EXEC and the destination SGPRs will have
the same value at the end of this instruction.

the bitwise-op result.
This instruction
is intended to accelerate waterfalling.

EXEC_LO = ~S@.u32 & EXEC_LO;
D.u32 = EXEC_LO;
SCC = (EXEC_LO !'= 9).

Bitwise ANDN2 with EXEC mask. Unlike the SAVEEXEC series of

opcodes, the value written to destination SGPRs is the result of
EXEC and the destination SGPRs will have
the same value at the end of this instruction.

the bitwise-op result.
This instruction
is intended to accelerate waterfalling. See S_ANDN2_WREXEC_B64

for example code.

EXEC_LO = S8.u32 & ~EXEC_LO;
D.u32 = EXEC_LO;
SCC = (EXEC_LO != 8).
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Opcode Name Description

73 S _MOVRELSD_2 B32 Move from a relative source address to a relative destination
address, with different offsets.

SGPR[D.addr+M@[25:16]].u32 = SGPR[S@.addr+M8[9:0]].u32

Example: The following instruction sequence will perform a move
s25 <== s17:

s_mov_b32 m@, ((20 << 16) | 10)

s_movrelsd_2_b32 s5, s7

12.4. SOPC Instructions

31 0

T I I I T I ‘ I I I | I T I I T I I I I T
sorc |1 0]1' 11" 1"1"170] OP; | SSRC1s \ SSRCO0; |

Instructions in this format may use a 32-bit literal constant which occurs immediately after the
instruction.

Opcode Name Description

0 S _CMP_EQ_132 Compare two integers for equality. Note that S_CMP_EQ_I32 and
S_CMP_EQ_U32 are identical opcodes, but both are provided for
symmetry.

SCC = (S8 == S1).

1 S CMP_LG_I132 Compare two integers for inequality. Note that S_CMP_LG_I32 and
S_CMP_LG_U32 are identical opcodes, but both are provided for
symmetry.

SCC = (S8 != S1).

2 S CMP_GT_I32 SCC = (S@.i > S1.1i).

3 S CMP_GE_I32 SCC = (S@.i >= S1.1).

4 S CMP_LT_132 SCC = (S©.i < S1.1i).

5 S CMP_LE_132 SCC = (SB@.i <= 81.1i).

6 S CMP_EQ_U32 Compare two integers for equality. Note that S_CMP_EQ_I32 and
S_CMP_EQ_U32 are identical opcodes, but both are provided for
symmetry.

SCC = (SO == S1).

7 S CMP_LG_U32 Compare two integers for inequality. Note that S_CMP_LG_I32 and
S_CMP_LG_U32 are identical opcodes, but both are provided for
symmetry.

SCC = (S8 != S1).
8 S_CMP_GT_U32 SCC = (SO.u > S1.u).

9 S_CMP_GE_U32 SCC = (SB.u >= S1.u).
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Opcode Name

10 S _CMP_LT_U32
11 S _CMP_LE_U32
12 S_BITCMPO_B32
13 S_BITCMP1_B32
14 S_BITCMPO_B64
15 S_BITCMP1_B64
18 S _CMP_EQ_U64
19 S_CMP_LG_U64

Description

SCC = (SO.u < S1.u).

SCC = (S@.u <= S1.u).

SCC = (S@.u[S1.u[4:08]] == 0).
SCC = (S@.u[S1.u[4:0]] == 1).
SCC = (S@.u64[S1.u[5:0]] == 0).
SCC = (S@.u64[ST.u[5:0]] == 1).

SCC = (SB.i64 == S1.164).

SCC = (SB.i64 != S1.1i64).

12.5. SOPP Instructions

AMDZ1

T I T I I

I | I I

sopp (1 0]1' 1 1 11" 114] OP, SiMM16 |

Opcode Name

0 S_NOP
1 S_ENDPGM
2 S_BRANCH

12.5. SOPP Instructions

Description

Do nothing. Repeat NOP 1..16 times based on SIMM16[3:0] -- 0x0 =

1 time, Oxf = 16 times.

Examples:
s_nop © // Wait 1 cycle.
s_nop Oxf // Wait 16 cycles.

End of program; terminate wavefront. The hardware implicitly
executes S_WAITCNT @ and S_WAITCNT_VSCNT @ before executing this
instruction. See S_ENDPGM_SAVED for the context-switch version
of this instruction and S_ENDPGM_ORDERED_PS_DONE for the POPS
critical region version of this instruction.

Perform an unconditional short jump. For a long jump,

S_SETPC_B64.

PC = PC + signext(SIMM16 * 4) + 4. //

Examples:
s_branch label // Set SIMM16 = +4 =
s_nop @ // 4 bytes
label:
s_nop @ // 4 bytes
s_branch label // Set SIMM16 = -8 =

short jump.

0x0004

oxfff8

use
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Opcode Name

3 S_WAKEUP
4 S_CBRANCH_SCCO

5 S_CBRANCH_SCC1

6 S_CBRANCH_VCCZ

7 S_CBRANCH_VCCNZ
8 S_CBRANCH_EXECZ
9 S_CBRANCH_EXECNZ
10 S_BARRIER

12.5. SOPP Instructions

AMDZ1

Description

Allow a wave to 'ping' all the other waves in its threadgroup to
force them to wake up immediately from an S_SLEEP instruction.
The ping is ignored if the waves are not sleeping. This allows
for efficient polling on a memory location. The waves which are
polling can sit in a long S_SLEEP between memory reads, but the
wave which writes the value can tell them all to wake up early
now that the data is available. This is useful for fBarrier
implementations (speedup).
because if any wave misses the ping, everything still works fine

(waves which missed it just complete their S_SLEEP).

This method is also safe from races

If the wave executing S_WAKEUP is in a threadgroup (in_tg set),
then it will wake up all waves associated with the same
threadgroup ID. Otherwise, S_WAKEUP is treated as an S_NOP.

Perform a conditional short jump when SCC is zero.
if(SCC == @) then

PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when SCC is one.
if(SCC == 1) then

PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when VCC is zero.

if(vCC == 0) then
PC PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when VCC is nonzero.

if(vCC !'= @) then
PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when EXEC is zero.
if (EXEC == @) then

PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when EXEC is nonzero.
if (EXEC '= @) then

PC = PC + signext(SIMM16 * 4) + 4;
endif.

If not all waves of the
threadgroup have been created yet, waits for entire group before

Synchronize waves within a threadgroup.

proceeding. If some waves in the threadgroup have already
terminated, this waits on only the surviving waves. Barriers
are legal inside trap handlers.
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Opcode Name

11 S_SETKILL

12 S_WAITCNT

13 S_SETHALT

14 S_SLEEP

15 S_SETPRIO

16 S_SENDMSG

17 S_SENDMSGHALT

12.5. SOPP Instructions

Description

Set KILL bit to value of SIMM16[@]. Used primarily for
debugging kill wave host command behavior.

Wait for the counts of outstanding 1lds, vector-memory and
export/vmem-write-data to be at or below the specified levels.

Waits for all of the following conditions to hold before
continuing:

vment <= {SIMM16[15:14], SIMM16[3:0]}
expcnt <= SIMM16[6:4]
lgkment <= SIMM16[13:8]

NOTE: VMCNT only counts vector memory loads, image sample
instructions, and vector memory atomics that return data.
Contrast with the VSCNT counter.

See also S_WAITCNT_VSCNT.

S_SETHALT can set/clear the HALT or FATAL_HALT status bits. The
particular status bit is chosen by halt type control as
indicated in SIMM16[2]; © = HALT bit select; 1 = FATAL_HALT bit
select.

When halt type control is set to @ = HALT bit select: Set HALT
bit to value of SIMM16[@]; 1 = halt, @ = clear HALT bit. The
halt flag is ignored while PRIV == (inside trap handlers) but
the shader will halt immediately after the handler returns if
HALT is still set at that time.

When halt type control is set to 1 = FATAL HALT bit select: Set
FATAL_HALT bit to value of SIMM16[0]; 1 = fatal_halt, O = clear
FATAL_HALT bit. Setting the fatal_halt flag halts the shader in
or outside of the trap handlers.

Cause a wave to sleep for (64*(SIMM16[6:0]-1) .. 64*SIMM16[6:0])
clocks. The exact amount of delay is approximate. Compare with
S_NOP. When SIMM16[6:0] is zero then no sleep occurs.

Examples:
s_sleep © // Wait for © clocks.
s_sleep 1 // Wait for 1-64 clocks.
s_sleep 2 // Wait for 65-128 clocks.

User settable wave priority is set to SIMM16[1:8]. © = lowest, 3
= highest. The overall wave priority is {SPIPrio[1:0] +
UserPrio[1:0], WaveAge[3:0]}.

Send a message upstream to VGT or the interrupt handler.
SIMM16[9:08] contains the message type.

Send a message and then HALT the wavefront; see S_SENDMSG for
details.
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Opcode Name

18

19

20

21

22

23

24

25

26

27

S_TRAP

S_ICACHE_INV

S_INCPERFLEVEL
S_DECPERFLEVEL
S_TTRACEDATA

S_CBRANCH_CDBGSY
S

S_CBRANCH_CDBGUS
ER

S_CBRANCH_CDBGSY
S OR_USER

S_CBRANCH_CDBGSY
S_AND_USER

S_ENDPGM_SAVED

12.5. SOPP Instructions

Description

Enter the trap handler. This instruction may be generated
internally as well in response to a host trap (HT = 1) or an
exception. TrapID 0 is reserved for hardware use and should not
be used in a shader-generated trap.

TrapID = SIMM16[7:0];

Wait for all instructions to complete;

{TTMP1, TTMPO} = {1'h@, PCRewind[5:0], HT[@], TrapID[7:0],
PC[47:0]};

PC = TBA; // trap base address

PRIV = 1.

Invalidate entire LO instruction cache.

The hardware will immediately invalidate the instruction buffer,
so no S_NOP instructions are required after S_ICACHE_INV.

Increment performance counter specified in SIMM16[3:0] by 1.
Decrement performance counter specified in SIMM16[3:0] by 1.
Send M@ as user data to the thread trace stream.

Perform a conditional short jump when the system debug flag is
set.

if(conditional_debug_system != @) then
PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when the user debug flag is

set.
if(conditional_debug_user !'= 8) then
PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when either the system or the
user debug flag are set.

if(conditional_debug_system || conditional_debug_user) then
PC = PC + signext(SIMM16 * 4) + 4;
endif.

Perform a conditional short jump when both the system and the
user debug flag are set.

if(conditional_debug_system && conditional_debug_user) then
PC = PC + signext(SIMM16 * 4) + 4;
endif.

End of program; signal that a wave has been saved by the
context-switch trap handler and terminate wavefront. The
hardware implicitly executes S_WAITCNT © and S_WAITCNT_VSCNT ©
before executing this instruction. See S_ENDPGM for additional
variants.
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Opcode Name

30 S_ENDPGM_ORDERED
_PS_DONE

31 S_CODE_END

32 S_INST_PREFETCH

12.5. SOPP Instructions

Description

End of program; signal that a wave has exited its POPS critical
section and terminate wavefront. The hardware implicitly
executes S_WAITCNT @ and S_WAITCNT_VSCNT @ before executing this
instruction. This instruction is an optimization that combines
S_SENDMSG(MSG_ORDERED_PS_DONE) and S_ENDPGM; there may be cases
where you still need to send the message separately, in which
case the shader must end with a regular S_ENDPGM instruction.
See S_ENDPGM for additional variants.

Generate an illegal instruction interrupt.

This instruction should NEVER appear in typical shader code. It
is used to pad the end of a shader program to make it easier for
analysis programs to locate the end of a shader program buffer.
Use of this opcode in an embedded shader block may cause
analysis tools to fail.

To unambiguously mark the end of a shader buffer, this
instruction must be specified five times in a row (total of 20
bytes) and analysis tools must ensure the opcode occurs at least
five times to be certain they are at the end of the buffer. This
is because the bit pattern generated by this opcode could
incidentally appear in a valid instruction's second dword,
literal constant or as part of a multi-DWORD image instruction.

In short: do not embed this opcode in the middle of a valid
shader program. DO use this opcode 5 times at the end of a
shader program to clearly mark the end of the program.

Example:
s_endpgm // last real instruction in shader buffer
s_code_end /71
s_code_end // 2
s_code_end // 3
s_code_end /4
s_code_end // done!

Note that S_CODE_END did not exist in older ASICs; however the
encoding of S_CODE_END was an illegal encoding in older ASICs
and would have similar effects as other illegal instructions on
those architectures. Therefore we do *not* specify a view.

Change instruction prefetch mode.

SIMM16[1:0] specifies the prefetch mode to switch to. Currently
defined prefetch modes are:

: Reserved

: SQ_PREFETCH_1_LINE -- prefetch 1 line

: SQ_PREFETCH_2_LINES -- prefetch 2 lines
: SQ_PREFETCH_3_LINES -- prefetch 3 lines

w N =

SIMM16[15:2] should be set to zero.
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Opcode Name Description

33 S_CLAUSE Mark the beginning of a clause. The next instruction determines
the clause type, which may be one of the following types.

VMEM (Texture, Buffer, Global, Scratch, Flat)
LDS
SMEM
VALU

Halting and killing a wave will always break the clause.

The clause length is: (SIMM16[5:0] + 1), and clauses must be 2
instructions or longer and no more than 63 instructions.

SIMM16[11:8] determines the number of instructions per clause
break, in the range 0..15. If SIMM16[11:8] == @ then there are
no clause breaks. The following instruction types cannot appear
in a clause:

SALU
Export
Branch
Message
GDS

36 S_ROUND_MODE Set floating point round mode using an immediate constant.
Avoids wait state penalty that would be imposed by S_SETREG.

37 S_DENORM_MODE Set floating point denormal mode using an immediate constant.
Avoids wait state penalty that would be imposed by S_SETREG.

40 S_TTRACEDATA_IMM  Send SIMM16[7:0] as user data to the thread trace stream.

12.5.1. Send Message

The S_SENDMSG instruction encodes the message type in MO, and can also send data from
the SIMM16 field and in some cases from EXEC.

Message SIMM16[3:0] SIMM16[6:4] Payload

none 0 - illegal

GS 2 O=nop, 1=cut, GS output. MO[4:0]=gs-wavelD, SIMM[9:8] = stream-id
2=emit,

GS-done 3 3=emit-cut

Save wave 4 - used in context switching

Stall Wave 5 - stop new wave generation

Gen

Halt Waves 6 - halt all running waves of this vmid

Ordered PS 7 - POPS ordered section done

Done
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Message

SIMM16[3:0]

GS alloc req 9

AMDZ1

SIMM16[6:4] Payload

- Request GS space in parameter cache. M0[9:0] = humber of
vertices, M0[22:12] = number of primitives.

12.6. SMEM Instructions

SMEM

0

T T T 1 \
11 1 1 0 1

‘ T [ I T I T I

1
GLC DLC SDATA; |

I [ I I
SOFFSET, |

I T l I T T
’[ ‘ SB\ASEIG (sg;rr-pair[)

T _T 1 T
OFFSET21(ﬁgnLd)

63

Opcode Name

0

10

11

12

32

36

37

38

39

S_LOAD_DWORD

S_LOAD_DWORDX2

S_LOAD_DWORDX4

S_LOAD_DWORDX8

S_LOAD_DWORDX16

S_BUFFER_LOAD_DWORD

S_BUFFER_LOAD_DWORDX

2

S_BUFFER_LOAD_DWORDX

4

S_BUFFER_LOAD_DWORDX

8

S_BUFFER_LOAD_DWORDX

16
S_DCACHE_INV
S_MEMTIME
S_MEMREALTIME

S_ATC_PROBE

S_ATC_PROBE_BUFFER

12.6. SMEM Instructions

32

Description

Read 1 dword from scalar data cache.

If the offset is specified as an SGPR, the SGPR contains an
UNSIGNED BYTE offset (the 2 LSBs are ignored).

If the offset is specified as an immediate 21-bit constant,
the constant is a SIGNED BYTE offset.

Read 2 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 4 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 8 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 16 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 1 dword from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 2 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 4 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 8 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Read 16 dwords from scalar data cache. See S_LOAD_DWORD for

details on the offset input.

Invalidate the scalar data L@ cache.

Return current 64-bit timestamp.

Return current 64-bit RTC.

Probe or prefetch an address into the SQC data cache.

Probe or prefetch an address into the SQC data cache.
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12.7. VOP2 Instructions

31 0
I I | I I | I T | I I I [ T I | | I I ‘ I I I T I
vorz | o] OPs \ VDST, ' VSRC1, \ SRCO,

Instructions in this format may use a 32-bit literal constant, DPP or SDWA which occurs
immediately after the instruction.

Opcode Name Description

1 V_CNDMASK_B32 Conditional mask on each thread. In VOP3 the VCC source may be a
scalar GPR specified in S2.u.

Floating-point modifiers are valid for this instruction if S@.u
and S1.u are 32-bit floating point values. This instruction is
suitable for negating or taking the absolute value of a floating-
point value.

D.u32 = VCC ? S1.u32 : S@.u32.

3 V_ADD_F32 Add two single-precision values. ©.5ULP precision, denormals are
supported.

D.f32 = S0.f32 + S1.f32.

4 V_SUB_F32 Subtract the second single-precision input from the first input.

D.f32 = S0.f32 - S§1.f32.

5 V_SUBREV_F32 Subtract the first single-precision input from the second input.

D.f32 = S1.f32 - S0.f32.

6 V_MAC_LEGACY_F32 Multiply two single-precision values and accumulate the result
with the destination. Follows DX9 rules where 0.8 times anything
produces 0.0 (this is not IEEE compliant).

D.f32 = S0.f32 * S§1.f32 + S2.f32. // DX9 rules, 0.0 * x = 0.0

7 V_MUL_LEGACY_F32 Multiply two single-precision values. Follows DX9 rules where
0.0 times anything produces 0.0 (this is not IEEE compliant).

D.f32 = S8.f32 * S1.f32. // DX9 rules, 0.0*x = 0.0

8 V_MUL_F32 Multiply two single-precision values. ©.5ULP precision,

denormals are supported.
D.f32 = S0.f32 * S1.f32.

9 V_MUL_I32_124 Multiply two signed 24-bit integers and store the result as a
signed 32-bit integer. This opcode is as efficient as basic
single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_I32_I24.

D.i32 = S@.1i24 % S1.i24.
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Opcode Name

10 V_MUL_HI_I32_I24
11 V_MUL_U32_U24

12 V_MUL_HI_U32_U24
15 V_MIN_F32

12.7. VOP2 Instructions

AMDZ1

Description

Multiply two signed 24-bit integers and store the high 32 bits of
the result as a signed 32-bit integer. See also V_MUL_I32_124.

D.i32 = (S@.i24 * S1.i24)>>32;

Multiply two unsigned 24-bit integers and store the result as an
unsigned 32-bit integer. This opcode is as efficient as basic
single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_U32_U24.

D.u32 = S@.u24 * S1.u24.

Multiply two unsigned 24-bit integers and store the high 32 bits
of the result as an unsigned 32-bit integer. See also
V_MUL_U32_U24.

D.u32 = (S@.u24 * S1.u24)>>32.

Compute the minimum of two single-precision floats.

D.f32 = min(S@.f32,81.f32);

if (IEEE_MODE && S@.f == sNaN)
D.f = Quiet(S0.f);

else if (IEEE_MODE && S1.f == sNaN)
D.f = Quiet(S1.f);

else if (S@.f == NaN)

D.f = S1.f;

else if (S1.f == NaN)
D.f = S0.f;

else if (S0.f == +0.0 && S1.f == -0.0)
D.f = S1.f;

else if (S0.f == -0.0 && S1.f == +0.0)
D.f = S0.f;

else

// Note: there's no IEEE special case here like there is
for V_MAX_F32.
D.f = (S8.f < S1.f ? S8.f : S1.f);
endif.
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Opcode Name

16 V_MAX_F32
17 V_MIN_I32

18 V_MAX_I32

19 V_MIN_U32

20 V_MAX_U32

22 V_LSHRREV_B32
24 V_ASHRREV_|32
26 V_LSHLREV_B32
27 V_AND_B32

28 V_OR_B32

12.7. VOP2 Instructions

AMDZ1

Description

Compute the maximum of two single-precision floats.

D.f32 = max(S0.f32,S1.f32);

if (IEEE_MODE && S@.f == sNaN)
D.f = Quiet(Se.f);

else if (IEEE_MODE && S1.f == sNaN)
D.f = Quiet(S1.f);

else if (S@.f == NaN)

D.f = S1.f;

else if (S1.f == NaN)
D.f = S0.f;

else if (SO.f == +0.0 & S1.f == -0.0)
D.f = S0.f;

else if (SO.f == -0.0 & S1.f == +0.0)
D.f = S1.f;

else if (IEEE_MODE)

D.f = (S8.f >= S1.f ?2 S8.f : S1.f);
else

D.f = (Se.f > S1.f 2 S@.f : S1.f);
endif.

Compute the minimum of two signed integers.

D.i32 = (S@.i32 < S81.i32 ? S@.i32 : S§1.i32).

Compute the maximum of two signed integers.

D.i32 = (S@.i32 >= §1.i32 ? S$@.i32 : §1.i32).

Compute the minimum of two unsigned integers.

D.u32 = (S@.u32 < S1.u32 ? S@.u32 : S1.u32).

Compute the maximum of two unsigned integers.

D.u32 = (S@.u32 >= S1.u32 ? S@.u32 : S1.u32).

Logical shift right with shift count in the first operand.

D.u32 = S1.u32 >> S@[4:0].

Arithmetic shift right (preserve sign bit) with shift count in
the first operand.

D.i32 = S$1.1i32 >> S@[4:0].

Logical shift left with shift count in the first operand.

D.u32 = S1.u32 << S@[4:0].

Bitwise AND. Input and output modifiers not supported.

D.u32 = S0.u32 & S1.u32.

Bitwise OR. Input and output modifiers not supported.

D.u32 = S@.u32 | S1.u32.
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Opcode
29

30

31

32

33

37

38

39

40

41

Name

V_XOR_B32

V_XNOR_B32

V_MAC_F32

V_MADMK_F32

V_MADAK_F32

V_ADD_NC_U32

V_SUB_NC_U32

V_SUBREV_NC_U32

V_ADD_CO_CI_U32

V_SUB_CO_CI_U32

12.7. VOP2 Instructions

Description

Bitwise XOR. Input and output modifiers not supported.

D.u32 = S0.u32 * S1.u32.

Bitwise XNOR. Input and output modifiers not supported.

D.u32 = ~(S8.u32 A S$1.u32).

Multiply two single-precision floats and accumulate with
destination.

D.f32 = S0.f32 % §1.f32 + D.f32.

Multiply a single-precision float with a literal constant and add
a second single-precision float. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.

D.f32 = S0.f32 * K.f32 + S1.f32. // K is a 32-bit literal
constant.

Multiply two single-precision floats and add a literal constant.
This opcode cannot use the VOP3 encoding and cannot use
input/output modifiers.

D.f32 = S0.f32 % §1.f32 + K.f32. // K is a 32-bit literal
constant.

Add two unsigned integers. No carry-in or carry-out.

D.u32 = S@.u32 + S1.u32.

Subtract the second unsigned integer from the first unsigned
integer. No carry-in or carry-out.

D.u32 = S@.u32 - S1.u32.

Subtract the first unsigned integer from the second unsigned
integer. No carry-in or carry-out.

D.u32 = S1.u32 - S@.u32.

Add two unsigned integers and a carry-in from VCC. Store the
result and also save the carry-out to VCC. 1In VOP3 the VCC
destination may be an arbitrary SGPR-pair, and the VCC source
comes from the SGPR-pair at S2.u.

D.u32 = S0.u32 + S1.u32 + VCC;
VCC = SB.u32 + S1.u32 + VCC >= Bx100000000ULL ? 1 : O.

Subtract the second unsigned integer from the first unsigned
integer and then subtract a carry-in from VCC. Store the result
and also save the carry-out to VCC. In VOP3 the VCC destination
may be an arbitrary SGPR-pair, and the VCC source comes from the
SGPR-pair at S2.u.

D.u32 = S@.u32 - S1.u32 - VCC;
VCC = S1.u32 + VCC > SO.u32 ? 1 : @.
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42 V_SUBREV_CO_CI_U3 Subtract the first unsigned integer from the second unsigned
2 integer and then subtract a carry-in from VCC. Store the result

and also save the carry-out to VCC. In VOP3 the VCC destination
may be an arbitrary SGPR-pair, and the VCC source comes from the
SGPR-pair at S2.u.

D.u32 = S1.u32 - SB6.u32 - VCC;
VCC = S1.u32 + VCC > SB.u ? 1 : @.

43 V_FMAC_F32 Fused multiply-add of single-precision floats, accumulate with
destination.

D.f32 = S0.f32 * S1.f32 + D.f32. // Fused operation

44 V_FMAMK_F32 Multiply a single-precision float with a literal constant and add
a second single-precision float using fused multiply-add. This
opcode cannot use the VOP3 encoding and cannot use input/output
modifiers.

D.f32 = S0.f32 % K.f32 + S1.f32. // K is a 32-bit literal
constant.

45 V_FMAAK_F32 Multiply two single-precision floats and add a literal constant
using fused multiply-add. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.

D.f32 = SB.f32 * S1.f32 + K.f32. // K is a 32-bit literal

constant.
47 V_CVT_PKRTZ_F16_F Convert two single-precision floats into a packed FP16 result and
32 always round to zero (ignore the current rounding mode). This

opcode is intended for use with 16-bit compressed exports. See
V_CVT_F16_F32 for a version that respects the current rounding
mode.

D.f16_1o = f32_to_f16(S0.f32);

D.f16_hi = f32_to_f16(S1.f32).

// Round-toward-zero regardless of current round mode setting
in hardware.

50 V_ADD F16 Add two FP16 values. ©0.5ULP precision. Supports denormals,
round mode, exception flags and saturation.

D.f16_lo = S@.f16_lo + S1.f16_lo.

51 V_SUB_F16 Subtract the second FP16 value from the first. ©.5ULP precision,
Supports denormals, round mode, exception flags and saturation.

D.f16_lo = S@.f16_lo - S1.f16_lo.

52 V_SUBREV_F16 Subtract the first FP16 value from the second. ©0.5ULP precision.
Supports denormals, round mode, exception flags and saturation.

D.f16_lo = S1.f16_lo - S@.f16_lo.
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Opcode Name

53 V_MUL_F16
54 V_FMAC_F16
55 V_FMAMK_F16
56 V_FMAAK_F16
57 V_MAX_F16

12.7. VOP2 Instructions

Description

Multiply two FP16 values. ©0.5ULP precision. Supports denormals,
round mode, exception flags and saturation.

D.f16_lo = S@.f16_lo * S1.f16_lo.

Fused multiply-add of FP16 values, accumulate with destination.
0.5ULP precision. Supports denormals, round mode, exception
flags and saturation.

D.f16_1o = S@.f16_lo * S1.f16_1lo + D.f16_lo.

Multiply a FP16 value with a literal constant and add a second
FP16 value using fused multiply-add. This opcode cannot use the
VOP3 encoding and cannot use input/output modifiers. Supports
round mode, exception flags, saturation.

D.f16_1lo = S@.f16_lo * K.f16_lo + S1.f16_1lo.
// K is a 32-bit literal constant stored in the following
literal DWORD.

Multiply two FP16 values and add a literal constant using fused
multiply-add. This opcode cannot use the VOP3 encoding and
cannot use input/output modifiers. Supports round mode,
exception flags, saturation.

D.f16_1lo = S@.f16_lo * S1.f16_lo + K.f16_lo.
// K is a 32-bit literal constant stored in the following
literal DWORD.

Maximum of two FP16 values. IEEE compliant. Supports denormals,
round mode, exception flags, saturation.

D.f16 = max(S0.f16,S1.f16);

if (IEEE_MODE && S@.f16 == sNaN)
D.f16 = Quiet(S0.f16);

else if (IEEE_MODE && S1.f16 == sNaN)
D.f16 = Quiet(S1.f16);

else if (S@.f16 == NaN)
D.f16 = S1.f16;

else if (S1.f16 == NaN)
D.f16 = S0.f16;

else if (S0.f16 == +0.0 && S1.f16 == -0.0)
D.f16 = S0.f16;
else if (S0.f16 == -0.0 && S1.f16 == +0.0)

D.f16 = S1.f16;
else if (IEEE_MODE)

D.f16 = (S@.f16 >= S1.f16 ? S0.f16 : S1.f16);
else

D.f16 = (S@.f16 > S1.f16 ? S@.f16 : S1.f16);
endif.
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58 V_MIN_F16 Minimum of two FP16 values. IEEE compliant. Supports denormals,
round mode, exception flags, saturation.

D.f16 = min(S0.f16,S1.f16);

if (IEEE_MODE && S@.f16 == sNaN)
D.f16 = Quiet(S0.f16);

else if (IEEE_MODE && S1.f16 == sNaN)
D.f16 = Quiet(S1.f16);

else if (S0.f16 == NaN)
D.f16 = S1.f16;

else if (S1.f16 == NaN)
D.f16 = S0.f16;

else if (S0.f16 == +0.0 && S1.f16 == -0.0)
D.f16 = S1.f16;

else if (S0.f16 == -0.0 && S1.f16 == +0.0)
D.f16 = S0.f16;

else

// Note: there's no IEEE special case here like there is
for V_MAX_F16.
D.f16 = (S0.f16 < S1.f16 ? S@.f16 : S1.f16);
endif.

59 V_LDEXP_F16 Multiply an FP16 value by an integral power of 2, compare with
the ldexp() function in C. Note that the S1 has a format of f16
since floating point literal constants are interpreted as 16 bit
value for this opcode.

D.f16 = SO.f16 * (2 ** S1.116).

60 V_PK_FMAC_F16 Multiply packed FP16 values and accumulate with destination.
VOP2 version of V_PK_FMA_F16 with third source VGPR address is
the destination. D.f16_1lo = S@8.f16_1o * S1.f16_1lo + D.f16_10;

D.f16_hi = S@.f16_hi * S1.f16_hi + D.f16_hi.

12.7.1. VOP2 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra
control bits (e.g. ABS, OMOD) at the expense of a larger instruction word. The VOP3 opcode is:
VOP2 opcode + 0x100.

31 0
T T T 1 T T__ T T T T 1T T 1 1 N
11 0 1 0 1‘ OPyg de OP_SEL, ‘ ABS VDSTg
VOP3A [ T T T JTagmqg! T T T T T T T T T T T T__ T T T 1T
NEG ‘OMOD‘ SRC2q ‘ SRC1, ‘ SRCO0g
63 32
31 0
T T T T 1 Y I B B B T 1__1 T T T 1 T T 1
110 1 0 1’ OP4g de SDST, VDSTg
VOP3B ] T T T JTagan! | T T I 1 T T T 1 T T__ T _ T T 1T
NEG | OMOD| SRC2 SRCs SRCOs
3

6.
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12.8. VOP1 Instructions

31

vort  [0]1 11 114 4] |

I I I [ I I I I I | I
VDSTs || OP; || SRCO0s

Instructions in this format may use a 32-bit literal constant, DPP or SDWA which occurs
immediately after the instruction.

Opcode Name

0 V_NOP

1 V_MOV_B32

2 V_READFIRSTLANE_B
32

3 V_CVT_I32_F64

4 V_CVT_F64 132

5 V_CVT_F32_132

6 V_CVT_F32_U32

12.8. VOP1 Instructions

Description
Do nothing, with style!

Move data to a VGPR. Floating-point modifiers are valid for this
instruction if S@.u is a 32-bit floating point value. This
instruction is suitable for negating or taking the absolute value
of a floating-point value.

D.u = S@.u.

Examples:
v_mov_b32 vO, vi // Move v1 to v@
v_mov_b32 vO, -vi // Set v1 to the negation of v@
v_mov_b32 v@, abs(v1) // Set v1 to the absolute value of v@

Copy one VGPR value to one SGPR. D = SGPR destination, S@ =
source data (VGPR# or M@ for lds direct access), Lane# =
FindFirst1fromLSB(exec) (Lane# = @ if exec is zero). Ignores
exec mask for the access. Input and output modifiers not
supported; this is an untyped operation.

Convert from a double-precision float to a signed integer. ©.5ULP
accuracy, out-of-range floating point values (including infinity)
saturate. NaN is converted to 0. Generation of the INEXACT
exception is controlled by the CLAMP bit. INEXACT exceptions are
enabled for this conversion iff CLAMP ==

D.i = (int)Se.d.

Convert from a signed integer to a double-precision float, OULP
accuracy.

D.d = (double)So.i.

Convert from a signed integer to a single-precision float, ©.5ULP
accuracy.

D.f = (float)Se.1i.

Convert from an unsigned integer to a single-precision float,
0.5ULP accuracy.

D.f = (float)S0.u.
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Opcode

7

10

11

12

13

Name

V_CVT U32_F32

V_CVT _I32_F32

V_CVT_F16_F32

V_CVT F32_F16

V_CVT_RPI_I32_F32

V_CVT_FLR_132_F32

12.8. VOP1 Instructions

Description

Convert from a single-precision float to an unsigned integer.
TULP accuracy, out-of-range floating point values (including
infinity) saturate. NaN is converted to ©. Generation of the
INEXACT exception is controlled by the CLAMP bit. INEXACT
exceptions are enabled for this conversion iff CLAMP ==

D.u = (unsigned)So.f.

Convert from a single-precision float to a signed integer. 1ULP
accuracy, out-of-range floating point values (including infinity)
saturate. NaN is converted to 0. Generation of the INEXACT
exception is controlled by the CLAMP bit. INEXACT exceptions are
enabled for this conversion iff CLAMP == 1.

D.i = (int)Se.f.

Convert from a single-precision float to an FP16 float. ©.5ULP
accuracy, supports input modifiers and creates FP16 denormals
when appropriate.

D.f16 = flt32_to_flt16(S0.f).

Convert from an FP16 float to a single-precision float. OULP
accuracy, FP16 denormal inputs are accepted.

D.f = flt16_to_f1lt32(S0.f16).

Convert from a single-precision float to a signed integer, round
to nearest integer.0.5ULP accuracy, denormals are supported.

D.i = (int)floor(Se.f + 0.5).

Convert from a single-precision float to a signed integer, round
down. 1ULP accuracy, denormals are supported.

D.i = (int)floor(Se.f).
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Opcode
14

15

16

17

18

19

20

21

Name

V_CVT_OFF_F32_14

V_CVT_F32_F64

V_CVT_F64 F32

V_CVT_F32_UBYTEO

V_CVT_F32_UBYTE1

V_CVT_F32_UBYTE2

V_CVT_F32_UBYTE3

V_CVT_U32_F64

12.8. VOP1 Instructions

Description

4-bit signed int to 32-bit float. Used for interpolation in
shader.

SO___Result__
1000 -0.5000f
1001 -0.4375f
1010 -0.3750f
1011 -0.3125f
1100 -0.2500f
1101 -0.1875f
1110 -0.1250f
1111 -0.0625f
0000 +0.0000f
0001 +0.0625f
0010 +0.1250f
0011 +0.1875f
0100 +0.2500f
0101 +0.3125f
0110 +0.3750f
0111 +0.4375f

Convert from a double-precision float to a single-precision
float. ©.5ULP accuracy, denormals are supported.

D.f = (float)Se.d.

Convert from a single-precision float to a double-precision
float. OQULP accuracy, denormals are supported.

D.d = (double)Se.f.

Convert an unsigned byte (byte @) to a single-precision float.

D.f = (float)(S@.u[7:0]).
Convert an unsigned byte (byte 1) to a single-precision float.

D.f = (float)(S@.u[15:8]).

Convert an unsigned byte (byte 2) to a single-precision float.

D.f = (float)(S@.u[23:16]).

Convert an unsigned byte (byte 3) to a single-precision float.

D.f = (float)(S@.u[31:24]).

Convert from a double-precision float to an unsigned integer.
0.5ULP accuracy, out-of-range floating point values (including
infinity) saturate. NaN is converted to ©. Generation of the
INEXACT exception is controlled by the CLAMP bit. INEXACT
exceptions are enabled for this conversion iff CLAMP == 1.

D.u = (unsigned)S0.d.
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Opcode
22

23

24

25

26

27

32

33

34

35

Name

V_CVT _F64_U32

V_TRUNC_F64

V_CEIL_F64

V_RNDNE_F64

V_FLOOR_F64

V_PIPEFLUSH

V_FRACT_F32

V_TRUNC_F32

V_CEIL_F32

V_RNDNE_F32

12.8. VOP1 Instructions

Description

Convert from an unsigned integer to a double-precision float.
QULP accuracy.
D.d = (double)S@.u.

Return integer part of S@.d, round-to-zero semantics.

D.d = trunc(Se.d).
Round up to next whole integer.
D.d = trunc(Se.d);
if(Se.d > 8.8 & S8.d !'= D.d) then

D.d += 1.9;
endif.

Round-to-nearest-even semantics.
D.d = floor(Se.d + 0.5);
if(floor(Se.d) is even && fract(S@.d) == 0.5) then

D.d -=1.90;
endif.

Round down to previous whole integer.

D.d = trunc(Se.d);

if(S0.d < 0.0 && S0.d !'= D.d) then
D.d += -1.0;

endif.

Flush the VALU destination cache.

Return fractional portion of a number. ©.5ULP accuracy,
denormals are accepted.

D.f = S0.f + -floor(Se.f).

Return integer part of SO.f, round-to-zero semantics.

D.f

trunc(Se.f).

Round up to next whole integer.

D.f = trunc(Se.f);

if(Se.f > 0.0 && SO.f !'= D.f) then
D.f += 1.0;

endif.

Round-to-nearest-even semantics.
D.f = floor(Se.f + 0.5);
if(floor(Se.f) is even && fract(Se.f) == 0.5) then

D.f -=1.0;
endif.
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Opcode Name

36 V_FLOOR_F32
37 V_EXP_F32
39 V_LOG_F32
42 V_RCP_F32

12.8. VOP1 Instructions

AMDZ1

Description

Round down to previous whole integer.

D.f = trunc(Se.f);

if(S0.f < 9.0 && SO.f != D.f) then
D.f += -1.0;

endif.

Base 2 exponentiation. 1ULP accuracy, denormals are flushed.
D.f = pow(2.0, S@.f).
Functional examples:

V_EXP_F32(0xff800000) => 0x00000000
V_EXP_F32(0x80000000) => 0x3f3800000
V_EXP_F32(0x7f800000) => 0x7f800000

// exp(-INF) 0
// exp(-0.0) 1
// exp(+INF) = +INF

Base 2 logarithm. 1ULP accuracy, denormals are flushed.
D.f = 1og2(Se.f).

Functional examples:

V_LOG_F32(0xff800000) => 0xffc0e080  // log(-INF) = NAN
V_LOG_F32(0xbf800000) => Oxffceeeee  // log(-1.8) = NAN
V_LOG_F32(0x80000000) => 0xff800000  // log(-0.0) = -INF
V_LOG_F32(0x00000000) => 0xff800000  // log(+0.0) = -INF
V_LOG_F32(0x3f800000) => 0x00000000  // log(+1.0) = O

( (

V_LOG_F32(0x7f800000) => 0x7f800000 // log(+INF) = +INF

Compute reciprocal with IEEE rules. 1ULP accuracy. Accuracy
converges to < 0.5ULP when using the Newton-Raphson method and 2
FMA operations. Denormals are flushed.

D.f =1.0 / Se.f.
Functional examples:

V_RCP_F32(0xff800000) => 0x80000000  // rcp(-INF) = -0
V_RCP_F32(0xc0000000) => 0xbf@ee068  // rcp(-2.8) = -08.5
V_RCP_F32(0x80000000) => 0xff860000  // rcp(-0.0) = -INF
V_RCP_F32(0x00000000) => 0x7f800000  // rcp(+8.8) = +INF
V_RCP_F32(0x7f800000) => 0x00000000  // rcp(+INF) = +0
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Opcode Name

43 V_RCP_IFLAG_F32
46 V_RSQ _F32

47 V_RCP_F64

49 V_RSQ_F64

51 V_SQRT_F32

12.8. VOP1 Instructions

Description

Compute reciprocal as part of integer divide.

AMDZ1

Can raise integer

DIV_BY_ZERO exception but cannot raise floating-point exceptions.

To be used in an integer reciprocal macro by the compiler with

one of the following sequences:
D.f =1.0 / S@.f.

Unsigned usage:
CVT_F32_U32
RCP_IFLAG_F32
MUL_F32 (2*%*32 - 1)
CVT_U32_F32

Signed usage:
CVT_F32_I32
RCP_IFLAG_F32
MUL_F32 (2**31 - 1)
CVT_I32_F32

Reciprocal square root with IEEE rules.

are flushed.
D.f = 1.8 / sqrt(Se.f).
Functional examples:

V_RSQ_F32(0xff800000) => Bxffc0o00e
V_RSQ_F32(0x80000000) => 0xff800000
V_RSQ_F32(0x00000000) => 0x7f800000
V_RSQ_F32(0x40800000) => 0x3f000000
V_RSQ_F32(0x7f800000) => 0x00000000

Reciprocal with IEEE rules. Precision
supports denormals.

D.d = 1.0 / Se.d.

Reciprocal square root with IEEE rules.

ULP, and supports denormals.

D.f16 = 1.0 / sqrt(se8.f16).

TULP accuracy, denormals

/1
/1
/1
/1
/1

is

P

Square root. 1ULP accuracy, denormals are

D.f = sqrt(Se.f).
Functional examples:

V_SQRT_F32(0xff800000) => 0xffco00000
V_SQRT_F32(0x80000000) => 0x80000000
V_SQRT_F32(0x00000000) => 0x00000000
V_SQRT_F32(0x40800000) => 0x40000000
V_SQRT_F32(0x7f800000) => 0x7f800000

/1
/1
/1
/1
/1

rsq(-INF) =
rsq(-0.0) =
rsq(+0.0) =
rsq(+4.0) =
rsq(+INF) =

(2%%29) ULP,
recision is

flushed.

sqrt(-INF)
sqrt(-90.0)
sqrt(+0.0)
sqrt(+4.0)
sqrt(+INF)

NAN
-INF
+INF
+0.5
+0

and

(2*%%29)

= NAN
= +0

= +2.0
= +INF
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52 V_SOQRT_F64
53 V_SIN_F32

54 V_COS_F32
55 V_NOT B32
56 V_BFREV_B32
57 V_FFBH_U32

12.8. VOP1 Instructions

Description

Square root.

D.d = sqrt(Se.d).

Trigonometric sine. Denormals are supported.

D.f = sin(S@.f * 2 * PI).
Functional examples:

V_SIN_F32(oxff800000) => 0xffco0000 // sin(-INF)
V_SIN_F32(exff7fffff) => 0x00000000 // -MaxFloat,
V_SIN_F32(0x80000000) => 0x80000000 // sin(-0.0)
V_SIN_F32(0x3e800000) => 0x3f800000 // sin(@.25)
V_SIN_F32(0x7f800000) => 0xffc00000 // sin(+INF)

Trigonometric cosine. Denormals are supported.

D.f = cos(S@.f * 2 x PI).
Functional examples:

V_COS_F32(0xff800000) => 0xffceeeed  // cos(-INF)
V_COS_F32(exff7fffff) => 0x3f800000  // -MaxFloat,
V_COS_F32(0x80000000) => 0x3f800000  // cos(-0.0)
V_COS_F32(0x3e800000) => 0x00000000  // cos(8.25)
(

V_COS_F32(0x7f800000) => Oxffc0oo0o // cos(+INF)

Bitwise negation.

D.u = ~S0.u.

Bitfield reverse.

D.u[31:0] = S@.u[0:31].

Counts how many zeros before the first one starting
Returns -1 if there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... 31 do

// Note: search is from the MSB

if S@.u[31 - i] == 1 then

D.i = 1i;
break for;
endif;
endfor.

Functional examples:

V_FFBH_U32(0x00000000) => oxffffffff
V_FFBH_U32(0x800000ff) => 0
V_FFBH_U32(06x100000ff) => 3
V_FFBH_U32(@x0000ffff) => 16
V_FFBH_U32(0x00000001) => 31

AMDZ1

Precision is (2**29) ULP, and supports denormals.

NAN
finite

-0

1

NAN

NAN
finite

1

0

NAN

Input and output modifiers not supported.

Input and output modifiers not supported.

from the MSB.
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58 V_FFBL_B32 Returns the bit position of the first one from the LSB, or -1 if
there are no ones.

D.i = -1; // Set if no ones are found
for i in @ ... 31 do // Search from LSB
if SO.u[i] == 1 then
D.i =1;
break for;
endif;
endfor.

Functional examples:

V_FFBL_B32(0x00000000) => Oxffffffff
V_FFBL_B32(0xff000001) => 0
V_FFBL_B32(0xff600008) => 3
V_FFBL_B32(0xffffeees) => 16
V_FFBL_B32(0x80000000) => 31

59 V_FFBH_I32 Counts how many bits in a row (from MSB to LSB) are the same as
the sign bit. Returns -1 if all bits are the same.

D.i = -1; // Set if all bits are the same
for i in 1 ... 31 do

// Note: search is from the MSB

if S0.i[31 - i] !'= S0.i[31] then

D.i = 1;
break for;
endif;
endfor.

Functional examples:

V_FFBH_I32(0x00000000) => Oxffffffff
V_FFBH_I32(0x40000000) => 1
V_FFBH_I32(0x80000000) => 1
V_FFBH_I32(OxOf ffffff) => 4
V_FFBH_I32(0xffffeeee) => 16
V_FFBH_I32 (Oxfffffffe) => 31
V_FFBH_I32 (Oxffffffff) => Oxffffffff

60 V_FREXP_EXP_I32_F6 Returns exponent of single precision float input, such that S0.d
4 = significand * (2 ** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library function
frexp() for more information.

if(S0.f64 == +-INF || SO.f64 == NAN)

D.i32 = 0;
else

D.i32 = SO.f64.exp - 1023 + 1;
endif.
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61 V_FREXP_MANT_F64 Returns binary significand of double precision float input, such
that S@.d = significand * (2 ** exponent). Result range is in (-
1.0,-0.5][0.5,1.0) in normal cases. See also
V_FREXP_EXP_I32_F64, which returns integer exponent. See the C
library function frexp() for more information.

if(S0.d == +-INF || S@.d == NAN) then

D.d = S@.d;
else
D.d = Mantissa(Se.d);
endif.
62 V_FRACT_F64 Return fractional portion of a number. ©.5ULP accuracy,

denormals are accepted.

D.d = S0.d + -floor(Se.d).

63 V_FREXP_EXP_I32_F3 Returns exponent of single precision float input, such that S0.f
2 = significand * (2 ** exponent). See also V_FREXP_MANT_F32, which
returns the significand. See the C library function frexp() for

more information.

if(Se.f == +-INF || S@.f == NAN) then

D.i = @;
else
D.i = TwosComplement(Exponent(S0.f) - 127 + 1);
endif.
64 V_FREXP_MANT_F32 Returns binary significand of single precision float input, such

that SO@.f = significand * (2 ** exponent). Result range is in (-
1.0,-0.5][0.5,1.0) in normal cases. See also
V_FREXP_EXP_I32_F32, which returns integer exponent. See the C
library function frexp() for more information.

if(S@.f == +-INF || SO.f == NAN) then

D.f = S0.f;
else
D.f = Mantissa(Se.f);
endif.
65 V_CLREXCP Clear this wave's exception state in the SIMD (SP).
66 V_MOVRELD_B32 Move to a relative destination address.

addr = VGPR address appearing in instruction DST field;
addr += M@.u[31:0];
VGPR[addr].u = S@.u.

Example: The following instruction sequence will perform a move
v15 <== Vv7:

s_mov_b32 mo, 10

v_movreld_b32 v5, v7
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67 V_MOVRELS_B32 Move from a relative source address.

addr = VGPR address appearing in instruction SRCO field;
addr += MO.u[31:0];
D.u = VGPR[addr].u.

Example: The following instruction sequence will perform a move
vh <== v17:

s_mov_b32 mo, 10

v_movrels_b32 v5, v7

68 V_MOVRELSD_B32 Move from a relative source address to a relative destination
address.

addr_src = VGPR address appearing in instruction SRC@ field;
addr_src += M0.u[31:0];

addr_dst = VGPR address appearing in instruction DST field;
addr_dst += MO.u[31:0];

VGPR[addr_dst].u = VGPR[addr_src].u.

Example: The following instruction sequence will perform a move
v15 <== v17:

s_mov_b32 mo, 10

v_movrelsd_b32 v5, v7

72 V_MOVRELSD_2 B32 Move from a relative source address to a relative destination
address, with different relative offsets.

addr_src = VGPR address appearing in instruction SRCO field;
addr_src += MO.u[9:0];

addr_dst = VGPR address appearing in instruction DST field;
addr_dst += M@.u[25:16];

VGPR[addr_dst].u = VGPR[addr_src].u.

Example: The following instruction sequence will perform a move
v25 <== v17:

s_mov_b32 m@, ((20 << 16) | 10)

v_movrelsd_2_b32 v5, v7

80 V_CVT_F16_U16 Convert from an unsigned short to an FP16 float. ©.5ULP
accuracy, supports denormals, rounding, exception flags and
saturation.

D.f16 = uint16_to_flt16(S.u16).

81 V_CVT_F16_l16 Convert from a signed short to an FP16 float. ©.5ULP accuracy,
supports denormals, rounding, exception flags and saturation.

D.f16 = int16_to_flt16(S.i16).
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82 V_CVT_U16_F16
83 V_CVT_I16_F16
84 V_RCP_F16

85 V_SQRT_F16
86 V_RSQ F16

12.8. VOP1 Instructions

Description

Convert from an FP16 float to an unsigned short. 1ULP accuracy,
supports rounding, exception flags and saturation. FP16
denormals are accepted. Conversion is done with truncation.
Generation of the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this conversion iff
CLAMP ==

D.u16 = flt16_to_uint16(S.f16).

Convert from an FP16 float to a signed short. 1ULP accuracy,
supports rounding, exception flags and saturation. FP16
denormals are accepted. Conversion is done with truncation.
Generation of the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this conversion iff
CLAMP ==

D.i16 = flt16_to_int16(S.f16).

Reciprocal with IEEE rules. ©.51ULP accuracy.
D.f16 = 1.0 / S0.f16.
Functional examples:

V_RCP_F16(0xfc00) => 0x8000 // rcp(-INF) = -0
V_RCP_F16(0xc000) => 0xb860  // rcp(-2.8) = -0.5
V_RCP_F16(0x8000) => @xfceé®  // rcp(-0.0) = -INF
V_RCP_F16(0x0000) => 8x7c00  // rcp(+0.0) = +INF
V_RCP_F16(0x7c00) => 0x0000  // rcp(+INF) = +0

Square root. @.5TULP accuracy, denormals are supported.
D.f16 = sqrt(S0.f16).
Functional examples:

V_SQRT_F16(0xfce@) => 0xfe@d  // sqrt(-INF) = NAN
V_SQRT_F16(0x8000) => 0x80600  // sqrt(-6.0) = -8
V_SQRT_F16(0x0000) => 0x0000  // sqrt(+6.0) = +8
V_SQRT_F16(0x4400) => 0x4600  // sqrt(+4.8) = +2.8
V_SQRT_F16(0x7c@0) => 0x7c00  // sqrt(+INF) = +INF

Reciprocal square root with IEEE rules. ©.51ULP accuracy,
denormals are supported.
D.f16 = 1.8 / sqrt(Se.f16).

Functional examples:

V_RSQ_F16(0xfce8) => @xfe8d  // rsq(-INF) = NAN
V_RSQ_F16(0x8008) => Oxfce®  // rsq(-0.8) = -INF
V_RSQ_F16(0x0008) => 8x7c0@  // rsq(+8.8) = +INF
V_RSQ_F16(0x4408) => 0x3800  // rsq(+4.8) = +08.5
V_RSQ_F16(0x7c08) => 0x0000  // rsq(+INF) = +0
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87 V_LOG_F16 Base 2 logarithm. ©.51ULP accuracy, denormals are supported.
D.f16 = 1og2(S8.f).

Functional examples:

V_LOG_F16(0xfco0) => 0xfe00 // log(-INF) = NAN
V_LOG_F16(8xbce@) => 0xfe@d  // log(-1.8) = NAN
V_LOG_F16(0x8000) => 0xfcoo // log(-0.08) = -INF
V_LOG_F16(0x0000) => 0xfcoo // log(+0.08) = -INF
V_LOG_F16(8x3c00) => 8x0000 // log(+1.0) = ©
V_LOG_F16(0x7c08) => 0x7c@8  // log(+INF) = +INF
88 V_EXP_F16 Base 2 exponentiation. ©.51TULP accuracy, denormals are

supported.

D.f16 = pow(2.0, S0.f16).
Functional examples:

V_EXP_F16(0xfce8) => 0x0000  // exp(-INF) = @
V_EXP_F16(0x8008) => 0x3c0@  // exp(-0.8) = 1
V_EXP_F16(0x7c08) => 8x7c0@  // exp(+INF) = +INF

89 V_FREXP_MANT_F16 Returns binary significand of half precision float input, such
that S0.f16 = significand * (2 ** exponent). Result range is in
(-1.0,-0.5][0.5,1.0) in normal cases. See also
V_FREXP_EXP_I16_F16, which returns integer exponent. See the C
library function frexp() for more information.

if(Se.f16 == +-INF || S@.f16 == NAN) then
D.f16 = S8.f16;

else
D.f16 = Mantissa(S@0.f16);
endif.
90 V_FREXP_EXP_I16_F1 Returns exponent of half precision float input, such that S0.f16
6 = significand * (2 ** exponent). See also V_FREXP_MANT_F16, which

returns the significand. See the C library function frexp() for
more information.

if(S0.f16 == +-INF || SO.f16 == NAN) then

D.i = 0;
else
D.i = TwosComplement(Exponent(S0.f16) - 15 + 1);
endif.
91 V_FLOOR_F16 Round down to previous whole integer.

D.f16 = trunc(S0.f16);

if(Se.f16 < 0.0f && S0.f16 != D.f16) then
D.f16 -= 1.0;

endif.
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92 V_CEIL_F16
93 V_TRUNC_F16

94 V_RNDNE_F16

95 V_FRACT_F16

9 V_SIN_F16

97 V_COS_F16

98 V_SAT_PK_US8_ 116

12.8. VOP1 Instructions

AMDZ1

Description
Round up to next whole integer.
D.f16 = trunc(Se.f16);
if(se.f16 > 0.0f && S0.f16 != D.f16) then

D.f16 += 1.0;
endif.

Return integer part of S@.f16, round-to-zero semantics.

D.f16 = trunc(Se.f16).

Round-to-nearest-even semantics.

D.f16 = floor(Se.f16 + 0.5);

if(floor(S0.f16) is even && fract(S@.f16) == 0.5) then
D.f16 -= 1.0;

endif.

Return fractional portion of a number. ©.5ULP accuracy,
denormals are accepted.

D.f16 = S8.f16 + -floor(S0.f16).

Trigonometric sine. Denormals are supported.
D.f16 = sin(S@.f16 * 2 * PI).
Functional examples:

V_SIN_F16
V_SIN_F16
V_SIN_F16
V_SIN_F16
V_SIN_F16
V_SIN_F16

0xfcoe) => oxfedod // sin(-INF) = NAN

oxfbff) => 0x0000 // Most negative finite FP16
0x8000) => 0x8000 // sin(-0.0) = -0

0x3400) => 0x3c00 // sin(@.25) =1

0x7bff) => 0x0000 // Most positive finite FP16
0x7c00) => 0xfed0d // sin(+INF) = NAN

~ o~ o~ o~ o~ o~

Trigonometric cosine. Denormals are supported.
D.f16 = cos(S@.f16 * 2 * PI).

Functional examples:

V_COS_F16(0xfco0) => 0xfe00 // cos(-INF) = NAN
V_COS_F16(0xfbff) => 0x3c00 // Most negative finite FP16
V_COS_F16(0x8000) => 0x3c00 // cos(-0.0) =1
V_COS_F16(0x3460) => 0x0000  // cos(8.25) = @
V_COS_F16(0x7bff) => 0x3c00 // Most positive finite FP16
V_COS_F16(0x7c00) => 0xfe0dd // cos(+INF) = NAN

Packed 8-bit saturating add.

D.u32 = {16'b0, sat8(S.u[31:16]), sat8(S.u[15:0])}.
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99 V_CVT_NORM_I16_F1
6

100 V_CVT_NORM_U16_F
16

101 V_SWAP_B32

104 V_SWAPREL_B32

Convert from an FP16 float to a signed normalized short.
accuracy,

Swap operands.
an untyped operation.

AMDZ1

Description

0.5ULP
supports rounding, exception flags and saturation,

denormals are supported.

D.i16 = flt16_to_snorm16(S.f16).

Convert from an FP16 float to an unsigned normalized short.
0.5ULP accuracy, supports rounding, exception flags and
saturation, denormals are supported.

D.u16 = flt16_to_unorm16(S.f16).

Input and output modifiers not supported; this is

tmp = D.u;
D.u = SO.u;
S@.u = tmp.

Swap operands. Input and output modifiers not supported; this is

an untyped operation. The two addresses are relatively indexed

using MO.

addr_src = VGPR address appearing in instruction SRCO field;
addr_src += M@.u[9:0];

addr_dst = VGPR address appearing in instruction DST field;
addr_dst += M@.u[25:16];

tmp = VGPR[addr_dst];

VGPR[addr_dst] = VGPR[addr_src];

VGPR[addr_src] = tmp.

Example: The following instruction sequence will swap v25 and
v17:
s_mov_b32 me,

((26 << 16) | 10)

v_swaprel_b32 v5, v7

12.8.1. VOP1 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra
control bits (e.g. ABS, OMOD) at the expense of a larger instruction word. The VOP3 opcode is:
VOP2 opcode + 0x180.

31

1 T T T__ T T T T 1T T 1 1 T T T T T T 1T
11 0 1 0 1‘ OPyg de OP_SEL, ‘ ABS VDSTsg
VOP3A T 1 1 lagmn! T T 1 I 1 T T T 1 T T1__ T _ T T 1T
NEG ‘OMOD‘ SRC2, ‘ SRC1, ‘ SRCO0g
63 32
31 0
T T T T 1 T T__T T T T 1 T J1__ T T 1 I T 1
110 1 0 1‘ OP4o de SDST, VDSTg
VOP3B ] T I lagmn ! | T T I 1 T T T 1 T T__ T _ T T 1
NEG ’OMOD‘ SRC24 SRC1g SRCO0g
63 32
12.8. VOP1 Instructions 152 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

12.9. VOPC Instructions

The bitfield map for VOPC is:

31 0
T T T ] T T T T T \
VOPC \ 0 \ 111110 | | OPs | | VSRC1s ‘ | SRCOs
where:
SRCO = First operand for instruction.
VSRC1 = Second operand for instruction.
oP = Instruction Opcode.

All VOPC instructions can alternatively be encoded in the VOP3A format.

Compare instructions perform the same compare operation on each lane (workltem or thread)
using that lane’s private data, and producing a 1 bit result per lane into VCC or EXEC.

Instructions in this format may use a 32-bit literal constant or SDWA which occurs immediately
after the instruction.

Most compare instructions fall into one of two categories:

» Those which can use one of 16 compare operations (floating point types). "{COMPF}"
» Those which can use one of 8 compare operations (integer types). "{COMPI}"

The opcode number is such that for these the opcode number can be calculated from a base
opcode number for the data type, plus an offset for the specific compare operation.

Table 54. Instructions with Sixteen Compare Operations

Compare Operation Opcode Offset  Description

F 0 Du=0

LT 1 D.u = (SO < S1)

EQ 2 D.u=(S0==S1)

LE 3 D.u = (SO <= S1)

GT 4 D.u = (SO > S1)

LG 5 D.u = (S0 <> S1)

GE 6 D.u = (SO >= S1)

(0] 7 D.u = (lisNaN(S0) && lisNaN(S1))
U 8 D.u = (lisNaN(SO0) || lisNaN(S1))
NGE 9 D.u = /(SO >= S1)

NLG 10 D.u=1(S0 <> S1)

NGT 1 D.u = (S0 > S1)
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Compare Operation Opcode Offset  Description

NLE 12 D.u = (S0 <= S1)
NEQ 13 D.u = (S0 == S1)
NLT 14 D.u = (SO < S1)
TRU 15 Du=1

Table 55. Instructions with Sixteen Compare Operations

Instruction Description Hex Range

V_CMP_{COMPF}_F16 16-bit float compare. 0x20 to Ox2F
V_CMPX_{COMPF}_F16 16-bit float compare. Also writes EXEC. 0x30 to Ox3F
V_CMP_{COMPF}_F32 32-bit float compare. 0x40 to Ox4F
V_CMPX_{COMPF}_F32 32-bit float compare. Also writes EXEC. 0x50 to Ox5F
V_CMPS_{COMPF}_F64 64-bit float compare. 0x60 to Ox6F
V_CMPSX_{COMPF}_F64 64-bit float compare. Also writes EXEC. 0x70 to Ox7F

Table 56. Instructions with Sixteen Compare Operations

Compare Operation Opcode Offset  Description

F 0 Du=0

LT 1 D.u = (SO < S1)
EQ 2 D.u = (SO == S1)
LE 3 D.u = (S0 <=S1)
GT 4 D.u = (S0 > S1)
LG 5 D.u = (SO <> S1)
GE 6 D.u = (S0 >=S1)
TRU 7 Du=1

Table 57. Instructions with Eight Compare Operations

Instruction Description Hex Range

V_CMP_{COMPI}_I16 16-bit signed integer compare. OxAO0 - OxA7
V_CMP_{COMPI}_U16 16-bit signed integer compare. Also writes EXEC. OxA8 - OXAF
V_CMPX_{COMPI}_I16 16-bit unsigned integer compare. 0xBO0 - 0xB7
V_CMPX_{COMPI}_U16 16-bit unsigned integer compare. Also writes EXEC. 0xB8 - OxBF
V_CMP_{COMPI}_I32 32-bit signed integer compare. 0xCO - OxC7
V_CMP_{COMPI}_U32 32-bit signed integer compare. Also writes EXEC. 0xC8 - OxCF
V_CMPX_{COMPI}_I32 32-bit unsigned integer compare. 0xDO - 0xD7
V_CMPX_{COMPI}_U32 32-bit unsigned integer compare. Also writes EXEC. 0xD8 - OxDF
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Instruction Description Hex Range
V_CMP_{COMPI}_l64 64-bit signed integer compare. OxEO - OXE7
V_CMP_{COMPI}_U64 64-bit signed integer compare. Also writes EXEC. OxE8 - OXEF
V_CMPX_{COMPI}_l64 64-bit unsigned integer compare. OxFO - OxF7
V_CMPX_{COMPI}_U64 64-bit unsigned integer compare. Also writes EXEC. OxF8 - OxFF

Table 58. VOPC Compare Opcodes

Opcode Name Description
0 V_CMP_F_F32 D[threadId] = ©.
// D = VCC in VOPC encoding.
1 V_CMP_LT_F32 D[threadId] = (S@ < S1).
// D = VCC in VOPC encoding.
2 V_CMP_EQ_F32 D[threadId] = (S@ == S1).
// D = VCC in VOPC encoding.
3 V_CMP_LE_F32 D[threadId] = (S@ <= S1).
// D = VCC in VOPC encoding.
4 V_CMP_GT_F32 D[threadId] = (S@ > S1).
// D = VCC in VOPC encoding.
5 V_CMP_LG_F32 D[threadId] = (S@ <> S1).
// D = VCC in VOPC encoding.
6 V_CMP_GE_F32 D[threadId] = (S@ >= S1).
// D = VCC in VOPC encoding.
7 V_CMP_O_F32 D[threadId] = ('isNan(S@) && !isNan(S1)).
// D = VCC in VOPC encoding.
8 V_CMP_U_F32 D[threadId] = (isNan(S@) || disNan(S1)).
// D = VCC in VOPC encoding.
9 V_CMP_NGE_F32 D[threadId] = !(S@ >= S1)
// With NAN inputs this is not the same operation as <.
// D = VCC in VOPC encoding.
10 V_CMP_NLG_F32 D[threadId] = !(S@ <> S1)
// With NAN inputs this is not the same operation as ==.
// D = VCC in VOPC encoding.
11 V_CMP_NGT_F32 D[threadId] = !(S@ > S1)
// With NAN inputs this is not the same operation as <=.
// D = VCC in VOPC encoding.
12 V_CMP_NLE_F32 D[threadId] = !(S@ <= S1)
// With NAN inputs this is not the same operation as >.
// D = VCC in VOPC encoding.
13 V_CMP_NEQ_F32 D[threadId] = !(S@ == S1)
// With NAN inputs this is not the same operation as !=.

12.9. VOPC Instructions

// D = VCC in VOPC

encoding.
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14 V_CMP_NLT_F32 D[threadId] = !(S@ < S1)
// With NAN inputs this is not the same operation as >=.
// D = VCC in VOPC encoding.
15 V_CMP_TRU_F32 D[threadId] = 1.
// D = VCC in VOPC encoding.
16 V_CMPX_F_F32 EXEC[threadId] = @.
17 V_CMPX_LT_F32 EXEC[threadId] = (S@ < S1).
18 V_CMPX_EQ_F32 EXEC[threadId] = (S@ == S1).
19 V_CMPX_LE F32 EXEC[threadId] = (S@ <= S1).
20 V_CMPX_GT_F32 EXEC[threadId] = (S@ > S1).
21 V_CMPX_LG_F32 EXEC[threadId] = (S@ <> S1).
22 V_CMPX_GE_F32 EXEC[threadId] = (Se >= S1).
23 V_CMPX_O_F32 EXEC[threadId] = (!isNan(S@) && 'isNan(S1)).
24 V_CMPX_U_F32 EXEC[threadId] = (isNan(S@) || isNan(S1)).
25 V_CMPX_NGE_F32 EXEC[threadId] = !(S@ >= S1)
// With NAN inputs this is not the same operation as <.
26 V_CMPX_NLG_F32 EXEC[threadId] = !'(S@ <> S1)
// With NAN inputs this is not the same operation as ==.
27 V_CMPX_NGT_F32 EXEC[threadId] = !'(S@ > S1)
// With NAN inputs this is not the same operation as <=.
28 V_CMPX_NLE_F32 EXEC[threadId] = !'(S@ <= S1)
// With NAN inputs this is not the same operation as >.
29 V_CMPX_NEQ_F32 EXEC[threadId] = !'(S@ == S1)
// With NAN inputs this is not the same operation as !=.
30 V_CMPX_NLT_F32 EXEC[threadId] = !'(S@ < S1)
// With NAN inputs this is not the same operation as >=.
31 V_CMPX_TRU_F32 EXEC[threadId] = 1.
32 V_CMP_F_F64 D[threadId] = ©.
// D = VCC in VOPC encoding.
33 V_CMP_LT_F64 D[threadId] = (S0 < S1).
// D = VCC in VOPC encoding.
34 V_CMP_EQ_F64 D[threadId] = (SO == S1).
// D = VCC in VOPC encoding.
35 V_CMP_LE_F64 D[threadId] = (S@ <= S1).
// D = VCC in VOPC encoding.
36 V_CMP_GT_F64 D[threadId] = (S@ > S1).
// D = VCC in VOPC encoding.
37 V_CMP_LG_F64 D[threadId] = (S@ <> S1).

12.9. VOPC Instructions

// D = VCC in

VOPC encoding.
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38 V_CMP_GE_F64 D[threadId] = (S@ >= S1).
// D = VCC in VOPC encoding.
39 V_CMP_O_F64 D[threadId] = (!'isNan(S@) && !isNan(S1)).
// D = VCC in VOPC encoding.
40 V_CMP_U_F64 D[threadId] = (isNan(S@) || disNan(S1)).
// D = VCC in VOPC encoding.
41 V_CMP_NGE_F64 D[threadId] = !(S@ >= S1)
// With NAN inputs this is not the same operation as <.
// D = VCC in VOPC encoding.
42 V_CMP_NLG_F64 D[threadId] = !(S@ <> S1)
// With NAN inputs this is not the same operation as ==
// D = VCC in VOPC encoding.
43 V_CMP_NGT_F64 D[threadId] = !(S@ > S1)
// With NAN inputs this is not the same operation as <=
// D = VCC in VOPC encoding.
44 V_CMP_NLE_F64 D[threadId] = !(S@ <= S1)
// With NAN inputs this is not the same operation as >.
// D = VCC in VOPC encoding.
45 V_CMP_NEQ_F64 D[threadId] = !(S@ == S1)
// With NAN inputs this is not the same operation as !=
// D = VCC in VOPC encoding.
46 V_CMP_NLT_F64 D[threadId] = !(S@ < S1)
// With NAN inputs this is not the same operation as >=
// D = VCC in VOPC encoding.
47 V_CMP_TRU_F64 D[threadId] = 1.
// D = VCC in VOPC encoding.
48 V_CMPX_F_F64 EXEC[threadId] = @.
49 V_CMPX_LT_F64 EXEC[threadId] = (S@ < S1).
50 V_CMPX_EQ_F64 EXEC[threadId] = (S@ == S1).
51 V_CMPX_LE_F64 EXEC[threadId] = (S@ <= S1).
52 V_CMPX_GT_F64 EXEC[threadId] = (S@ > S1).
53 V_CMPX_LG_F64 EXEC[threadId] = (S@ <> S1).
54 V_CMPX_GE_F64 EXEC[threadId] = (S@ >= S1).
55 V_CMPX_O_F64 EXEC[threadId] = (!isNan(S@) && !isNan(S1)).
56 V_CMPX_U_F64 EXEC[threadId] = (isNan(S®@) || disNan(S1))
57 V_CMPX_NGE_F64 EXEC[threadId] = !(S@ >= S1)
// With NAN inputs this is not the same operation as <.
58 V_CMPX_NLG_F64 EXEC[threadId] = !(S@ <> S1)
// With NAN inputs this is not the same operation as ==.
59 V_CMPX_NGT_F64 EXEC[threadId] = !(S@ > S1)

// With NAN inputs this is not the same operation as <=.
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Opcode
60

61

62

63

128

129

130

131

132

133

134

135

136

137

138

Name

V_CMPX_NLE_F64

V_CMPX_NEQ_F64

V_CMPX_NLT_F64

V_CMPX_TRU_F64

V_CMP_F 32

V_CMP_LT 32

V_CMP_EQ 132

V_CMP_LE_I32

V_CMP_GT_I32

V_CMP_NE_I32

V_CMP_GE_I32

V_CMP_T_I32

V_CMP_CLASS_F32

V_CMP_LT 16

V_CMP_EQ 116

12.9. VOPC Instructions

AMDZ1

Description

VCC

EXEC[threadId] = !(S@ <= S1)
// With NAN inputs this is not the same operation as >.

EXEC[threadId] = !(S@ == S1)
// With NAN inputs this is not the same operation as !=.

EXEC[threadId] = !(S@ < S1)
// With NAN inputs this is not the same operation as >=.

EXEC[threadId] = 1.

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

0.
VOPC encoding.

(S0 < Ss1).
VOPC encoding.

(S0 == S1).
VOPC encoding.

(S0 <= S1).
VOPC encoding.

(se > s1).
VOPC encoding.

(S8 <> S1).
VOPC encoding.

(S0 >= S1).
VOPC encoding.

1.
VOPC encoding.

= IEEE numeric class function specified in S1.u, performed on

Se.f.

The function reports true if the floating point value is #*any* of

the numeric types selected in S1.u according to the following

list:

S1.u[@] -- value is a signaling NaN.

S1.u[1] -- value is a quiet NaN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

D[threadId] = (S@ < S1).
// D = VCC in VOPC encoding.

D[threadId] = (S@ == S1).
// D = VCC in VOPC encoding.

158 of 289



"RDNA 1.0" Instruction Set Architecture

AMDZ1

(S6 <= S1).
VOPC encoding.

(Se > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.

VCC = IEEE numeric class function specified in S1.u, performed on

Note that the S1 has a format of f16 since floating point literal

constants are interpreted as 16 bit value for this opcode.

The function reports true if the floating point value is #*any* of

the numeric types selected in S1.u according to the following

Opcode Name Description
139 V_CMP_LE_I16 D[threadId] =
// D = VCC in
140 V_CMP_GT_I16 D[threadId] =
// D = VCC in
141 V_CMP_NE_I16 D[threadId] =
// D = VCC in
142 V_CMP_GE_lI16 D[threadId] =
// D = VCC in
143 V_CMP_CLASS F16
Se.f16.
list:
S1.u[@] -- value
S1.u[1] -- value
S1.u[2] -- value
S1.u[3] -- value
S1.u[4] -- value
S1.u[5] -- value
S1.u[6] -- value
S1.u[7] -- value
S1.u[8] -- value
S1.u[9] -- value
144 V_CMPX_F_132 EXEC[threadId]
145 V_CMPX_LT_132 EXEC[threadId]
146 V_CMPX_EQ_I32 EXEC[threadId]
147 V_CMPX_LE 132 EXEC[threadId]
148 V_CMPX_GT_I32 EXEC[threadId]
149 V_CMPX_NE_132 EXEC[threadId]
150 V_CMPX_GE_I32 EXEC[threadId]
151 V_CMPX_T_132 EXEC[threadId]

12.9. VOPC Instructions

is a signaling NaN.

is a quiet NaN.
is negative infinity.
is a negative normal value.
is a negative denormal value.
is negative zero.
is positive zero.
is a positive denormal value.
is a positive normal value.
is positive infinity.
0.

(S8 < s1).

(S8 == s1).

(S8 <= s1).
(S8 > S1).
(S8 <> s1).
(se >= s1).

1.
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Opcode
152

153
154
155
156
157
158

159

160

161

Name

V_CMPX_CLASS_F32

V_CMPX_LT 116
V_CMPX_EQ_I16
V_CMPX_LE_I16
V_CMPX_GT 116
V_CMPX_NE_I16
V_CMPX_GE_I16

V_CMPX_CLASS_F16

V_CMP_F _l64

V_CMP_LT 64

12.9. VOPC Instructions

Description

EXEC = IEEE numeric class function specified in S1.u, performed on
Se.f.

The function reports true if the floating point value is *any* of
the numeric types selected in S1.u according to the following
list:

S1.u[@] -- value is a signaling NaN.

S1.u[1] -- value is a quiet NaN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

EXEC[threadId] = (S@ < S1).
EXEC[threadId] = (S8 == S1).
EXEC[threadId] = (S@ <= S1).
EXEC[threadId] = (S > S1).
EXEC[threadId] = (S@ <> S1).
EXEC[threadId] = (S@ >= S1).

EXEC = IEEE numeric class function specified in S1.u, performed on
S0.f16.

Note that the S1 has a format of f16 since floating point literal
constants are interpreted as 16 bit value for this opcode.

The function reports true if the floating point value is #*any* of
the numeric types selected in S1.u according to the following
list:

S1.u[@] -- value is a signaling NaN.

S1.u[1] -- value is a quiet NaN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

D[threadId] = ©.
// D = VCC in VOPC encoding.

D[threadId] = (Se < S1).
// D = VCC in VOPC encoding.
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Opcode
162

163

164

165

166

167

168

169

170

171

172

173

174

176
177

178

Name

V_CMP_EQ_l64

V_CMP_LE_l64

V_CMP_GT_I64

V_CMP_NE_I64

V_CMP_GE_l64

V_CMP_T 64

V_CMP_CLASS_F64

V_CMP_LT U16

V_CMP_EQ_U16

V_CMP_LE_U16

V_CMP_GT_U16

V_CMP_NE_U16

V_CMP_GE_U16

V_CMPX_F_l64
V_CMPX_LT_I64

V_CMPX_EQ_I64

12.9. VOPC Instructions

Description

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

(S6 == S1).
VOPC encoding.

(S6 <= S1).
VOPC encoding.

(Se > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.

1.
VOPC encoding.

AMDZ1

VCC = IEEE numeric class function specified in S1.u, performed on
S0.d.

The function reports true if the floating point value is #*any* of

the numeric types selected in S1.u according to the following

list:
S1.u[@] -- value
S1.u[1] -- value
S1.u[2] -- value
S1.u[3] -- value
S1.u[4] -- value
S1.u[5] -- value
S1.u[6] -- value
S1.u[7] -- value
S1.u[8] -- value
S1.u[9] -- value
D[threadId] =
// D = VCC in
D[threadId] =
// D = VCC in
D[threadId] =
// D = VCC in
D[threadId] =
// D = VCC in
D[threadId] =
// D = VCC in
D[threadId] =
// D = VCC in
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]

is a signaling NaN.

is a quiet NaN.

is negative infinity.

is a negative normal value.
is a negative denormal value.
is negative zero.

is positive zero.

is a positive denormal value.
is a positive normal value.
is positive infinity.

(s@ < s1).
VOPC encoding.

(S6 == S1).
VOPC encoding.

(S <= S1).
VOPC encoding.

(se > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.

0.

(S8 < S1).

(S8 == S1).
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Opcode
179
180
181
182
183

184

185
186
187
188
189
190

192

193

194

195

196

197

198

Name

V_CMPX_LE_l64
V_CMPX_GT _l64
V_CMPX_NE_l64
V_CMPX_GE_I64

V_CMPX_T_I64

Description

EXEC[threadId]

EXEC[threadId]

EXEC[threadId]

EXEC[threadId]

EXEC[threadId]

V_CMPX_CLASS_F64 EXEC = IEEE numeric
Se.d.

V_CMPX_LT_U16

V_CMPX_EQ_U16
V_CMPX_LE_U16
V_CMPX_GT_U16
V_CMPX_NE_U16
V_CMPX_GE_U16

V_CMP_F U32

V_CMP_LT U32

V_CMP_EQ U32

V_CMP_LE_U32

V_CMP_GT_U32

V_CMP_NE_U32

V_CMP_GE_U32

12.9. VOPC Instructions

(se
(se
(se
(se

1.

AMDZ1

<= S1).
> S1).
<> S1).

>= S1).

class function specified in S1.u, performed on

The function reports true if the floating point value is #*any* of

the numeric types selected in S1.u according to the following

list:
S1.u[@] -- value is a signaling NaN.
S1.u[1] -- value is a quiet NaN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.
EXEC[threadId] = (S@ < S1).
EXEC[threadId] = (S8 == S1).
EXEC[threadId] = (S@ <= S1).
EXEC[threadId] = (S > S1).
EXEC[threadId] = (S@ <> S1).
EXEC[threadId] = (S@ >= S1).
D[threadId] = ©.

// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

VOPC encoding.

(S8 < S1).
VOPC encoding.

(S0 == S1).
VOPC encoding.

(Se <= S1).
VOPC encoding.

(Sse > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.
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Opcode
199

200

201

202

203

204

205

206

207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224

225

Name

V_CMP_T _U32

V_CMP_F _F16

V_CMP_LT F16

V_CMP_EQ F16

V_CMP_LE_F16

V_CMP_GT _F16

V_CMP_LG_F16

V_CMP_GE_F16

V_CMP_O_F16

V_CMPX_F_U32
V_CMPX_LT_U32
V_CMPX_EQ U32
V_CMPX_LE_U32
V_CMPX_GT_U32
V_CMPX_NE_U32
V_CMPX_GE_U32
V_CMPX_T_U32
V_CMPX_F_F16
V_CMPX_LT_F16
V_CMPX_EQ _F16
V_CMPX_LE_F16
V_CMPX_GT F16
V_CMPX_LG_F16
V_CMPX_GE_F16
V_CMPX_O_F16

V_CMP_F_U64

V_CMP_LT_U64

12.9. VOPC Instructions

Description

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]
EXEC[threadId]

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

1.
VOPC encoding.

0.
VOPC encoding.

(S < s1).
VOPC encoding.

(S6 == S1).
VOPC encoding.

(S6 <= S1).
VOPC encoding.

(Se > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.

('isNan(S@) && !isNan(S1)).

VOPC encoding.

8.

= (S@ < S1).
= (S8 == S1).
= (S8 <= S1).
= (S8 > S1).
= (S8 <> S1).
= (S8 >= S1).
= 1.

= 0.

= (S8 < S1).
= (S8 == S1).
= (S8 <= S1).
= (S8 > S1).
= (S8 <> S1).

= (S8 >= S1).

= (!isNan(S@) && !'isNan(S1)).

0.
VOPC encoding.

(S0 < S1).
VOPC encoding.
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Opcode

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

Name

V_CMP_EQ _U64

V_CMP_LE_U64

V_CMP_GT_U64

V_CMP_NE_U64

V_CMP_GE_U64

V_CMP_T U64

V_CMP_U_F16

V_CMP_NGE_F16

V_CMP_NLG_F16

V_CMP_NGT_F16

V_CMP_NLE_F16

V_CMP_NEQ F16

V_CMP_NLT_F16

V_CMP_TRU_F16

V_CMPX_F_U64
V_CMPX_LT_U64
V_CMPX_EQ_U64
V_CMPX_LE_U64
V_CMPX_GT_U64
V_CMPX_NE_U64

V_CMPX_GE_U64

12.9. VOPC Instructions

Description

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

D[threadId] =
// D = VCC in

(S6 == S1).
VOPC encoding.

(S6 <= S1).
VOPC encoding.

(Se > s1).
VOPC encoding.

(S6 <> S1).
VOPC encoding.

(S6 >= S1).
VOPC encoding.

1.
VOPC encoding.

D[threadId] = (isNan(Se) ||
// D = VCC in VOPC encoding.
D[threadId] = !(S@ >= S1)

// With NAN inputs
// D = VCC in VOPC

D[threadId] = !(S@
// With NAN inputs
// D = VCC in VOPC

D[threadId] = !(S@
// With NAN inputs
// D = VCC in VOPC

D[threadId] = !(S@
// With NAN inputs
// D = VCC in VOPC

D[threadId] = !(S@
// With NAN inputs
// D = VCC in VOPC

D[threadId] = !(S@
// With NAN inputs
// D = VCC in VOPC

D[threadId] = 1.
// D = VCC in VOPC

EXEC[threadId] = @.

this is not
encoding.

<> S1)
this is not
encoding.

> 81)
this is not
encoding.

<= S1)
this is not
encoding.

== S1)
this is not
encoding.

< S1)
this is not
encoding.

encoding.

EXEC[threadId] = (Se < S1).
EXEC[threadId] = (S@ == S1).
EXEC[threadId] = (S@ <= S1).
EXEC[threadId] = (S@ > S1).
EXEC[threadId] = (S@ <> S1).
EXEC[threadId] = (S@ >= S1).

the

the

the

the

the

the

same

same

same

same

same

same

isNan(S1)).

operation

operation

operation

operation

operation

operation

as

as

as

as

as

as

AMDZ1
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Opcode Name Description

247 V_CMPX_T_U64 EXEC[threadId] = 1.

248 V_CMPX_U_F16 EXEC[threadId] = (isNan(S@) || isNan(S1)).
249 V_CMPX_NGE_F16 EXEC[threadId] = !(S@ >= S1)

// With NAN inputs this is not the same operation as <.

250 V_CMPX_NLG_F16 EXEC[threadId] = !'(S@ <> S1)
// With NAN inputs this is not the same operation as ==.

251 V_CMPX_NGT_F16 EXEC[threadId] = !'(S@ > S1)
// With NAN inputs this is not the same operation as <=.

252 V_CMPX_NLE_F16 EXEC[threadId] = !'(S@ <= S1)
// With NAN inputs this is not the same operation as >.

253 V_CMPX_NEQ_F16 EXEC[threadId] = !(S@ == S1)
// With NAN inputs this is not the same operation as !=.

254 V_CMPX_NLT_F16 EXEC[threadId] = !'(S@ < S1)
// With NAN inputs this is not the same operation as >=.

255 V_CMPX_TRU_F16 EXEC[threadId] = 1.

12.9.1. VOPC using VOP3A encoding

Instructions in this format may also be encoded as VOP3A. VOP3A allows access to the extra
control bits (e.g. ABS, OMOD) at the expense of a larger instruction word. The VOP3A opcode
is: VOP2 opcode + 0x000.

When the CLAMP microcode bit is set to 1, these compare instructions signal an exception
when either of the inputs is NaN. When CLAMP is set to zero, NaN does not signal an
exception. The second eight VOPC instructions have {OP8} embedded in them. This refers to
each of the compare operations listed below.

31 0

I I I I T T [ I | I [ I
110 1 0" 1] | OP1 omp OP_SEL, | ABS VDSTs

| I [ [ I I I I I [ [ I I | I [ [ I
NEG | OMOD) | src2, SRC1, |
3

VOP3A

6 32

where:

VDST = Destination for instruction in the VGPR.

ABS = Floating-point absolute value.

CLMP = Clamp output.

oP = Instruction Opcode.

SRCO® = First operand for instruction.

SRC1 = Second operand for instruction.

SRC2 = Third operand for instruction. Unused in VOPC instructions.
OMOD = Output modifier for instruction. Unused in VOPC instructions.
NEG = Floating-point negation.
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12.10. VOP3P Instructions
4 [ I I [ I [ I [ [ I \o
I I | [ I I I I I |
Vop3p 1100 1 1 L _ OP, clm;ﬁiﬁfr‘OP_SELz;o‘ NEG_HI VDST,
[ I [ I [ I I [ I [ I [ I
3 NeG | lsrc2, ' | | ] SRC1, \ SRCO,
63 32
Opcode Name Description
0 V_PK_MAD_l16 Packed multiply-add on signed shorts.
D.i[31:16] = S0.i[31:16] * S1.i[31:16] + S2.i[31:16];
D.i[15:0] = S@.i[15:0] =* S1.i[15:8] + S2.i[15:0@].
1 V_PK_MUL_LO_U16 Packed multiply on unsigned shorts.
D.u[31:16] = SO.u[31:16] * S1.u[31:16];
D.u[15:0] = S@.u[15:0] * S1.u[15:0].
2 V_PK_ADD_l116 Packed addition on signed shorts.
D.i[31:16] = S0.i[31:16] + S1.i[31:16];
D.i[15:0] = S@.i[15:0] + S1.i[15:0].
3 V_PK_SUB_I116 Packed subtraction on signed shorts. The second operand is
subtracted from the first.
D.i[31:16] = S0.i[31:16] - S1.i[31:16];
D.i[15:0] = S@.i[15:0] - S1.i[15:0].
4 V_PK_LSHLREV_B16 Packed logical shift left. The shift count is in the first
operand.
D.u[31:16] = S1.u[31:16] << S@.u[19:16];
D.u[15:0] = S1.u[15:0] << S@.u[3:0].
5 V_PK_LSHRREV_B16 Packed logical shift right. The shift count is in the first
operand.
D.u[31:16] = S1.u[31:16] >> SO.u[19:16];
D.u[15:0] = S1.u[15:8] >> S@.u[3:0].
6 V_PK_ASHRREV_I16 Packed arithmetic shift right (preserve sign bit). The shift
count is in the first operand.
D.i[31:16] = S1.i[31:16] >> S0.i[19:16];
D.i[15:0] = S1.i[15:0] >> S@.i[3:0].
7 V_PK_MAX_I16 Packed maximum of signed shorts.

12.10. VOP3P Instructions

D.i[31:16]
S1.i[31:16];

D.i[15:0]
S1.i[15:0].

(S0.i[31:16] >= S1.i[31:16]) ? S0.1[31:16]

(S0.1i[15:8] >= S1.i[1

5:0]) ? S0.i[15:0]
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Opcode Name

8 V_PK_MIN_I16
9 V_PK_MAD_U16
10 V_PK_ADD_U16
11 V_PK_SUB_U16
12 V_PK_MAX_U16
13 V_PK_MIN_U16
14 V_PK_FMA_F16
15 V_PK_ADD F16
16 V_PK_MUL_F16
17 V_PK_MIN_F16

12.10. VOP3P Instructions

Description

Packed minimum of signed shorts.

D.i[31:16]
S$1.i[31:16];

D.i[15:0]
S1.i[15:0].

(S0.i[31:16] < S1.1[31

(S0.1[15:0]

< S$1.i[15:0])

AMDZ1

:16]) ? S0.1i[31:16]

? S0.i[15:0]

Packed multiply-add on unsigned shorts.

D.u[31:16]
D.u[15:0]

Packed addition

D.u[31:16]
D.u[15:0]

S0.u[31:16] * S1.u[31:
S@.u[15:8] =* S1.u[15:

on unsigned shorts.

S0.u[31:16] + S1.u[31:
S0.u[15:0] + S1.u[15:

Packed subtraction on unsigned shorts.

subtracted from

D.u[31:16]
D.u[15:0]

the first.
S0.u[31:16] - S1.u[31:
S0.u[15:0] - S1.u[15:

Packed maximum of unsigned shorts.

D.u[31:16]
S1.u[31:16];

D.u[15:0]
S1.u[15:0].

16] + S2.u[31:16];
0] + S2.u[15:0].

16];
0].

The second operand is

16];
0].

(S0.u[31:16] >= S1.u[31:16]) ? SB.u[31:16]

(S0.uf[15:0] >= S1.u[1

Packed minimum of unsigned shorts.

D.u[31:16]
S1.u[31:16];

D.u[15:0]
S1.u[15:0].

(S@.u[31:16] < S1.u[31

(s8.u[15:0]

< S1.u[15:0])

5:0]) ? Se.u[15:0]

:16]) ? S0.u[31:16]

? S0.u[15:0]

Packed fused-multiply-add of FP16 values.

D.f[31:16] =
D.f[15:0]

Packed addition

D.f[31:16]
D.f[15:0] =

Packed multiply

D.f[31:16]
D.f[15:0]

S0.f[31:16] * S1.f[31:
S0.f[15:0] * S1.f[15:

of FP16 values.

S0.f[31:16] + S1
S0.f[15:0] + S1

f[31:
.f[15:

of FP16 values.

Se.f[31:16] * S1
Se.f[15:8] =* S1

f[31:
f[15:

Packed minimum of FP16 values.

D.f[31:16]
D.f[15:0]

min(S0.f[31:16], S1.f][
min(S0.f[15:0], S1.ul1

16] + S2.f[31:16];
0] + S2.f[15:0].

16];
0].

16];
0].

31:16]);
5:0]).
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Opcode Name Description
18 V_PK_MAX_F16 Packed maximum of FP16 values.
D.f[31:16] = max(S0.f[31:16], S1.f[31:16]);
D.f[15:0] = max(S@.f[15:0], S1.f[15:0]).
32 V_FMA_MIX_F32 Fused-multiply-add of single-precision values with MIX encoding.

Size and location of SO, S1 and S2 controlled by OPSEL:
O=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also, for
MAD_MIX, the NEG_HI field acts instead as an absolute-value
modifier.

D.f[31:0] = S0.f » S1.f + S2.f.

33 V_FMA_MIXLO_F16 Fused-multiply-add of FP16 values with MIX encoding, result
stored in low 16 bits of destination. Size and location of SO,
S1 and S2 controlled by OPSEL: @=src[31:0], 1=src[31:0],
2=src[15:0], 3=src[31:16]. Also, for MAD_MIX, the NEG_HI field
acts instead as an absolute-value modifier.

D.f[15:0] = S@.f » S1.f + S2.f.

34 V_FMA_MIXHI_F16 Fused-multiply-add of FP16 values with MIX encoding, result
stored in HIGH 16 bits of destination. Size and location of SO,
S1 and S2 controlled by OPSEL: ©=src[31:0], 1=src[31:0],
2=src[15:0], 3=src[31:16]. Also, for MAD_MIX, the NEG_HI field
acts instead as an absolute-value modifier.

D.f[31:16] = S@.f * S1.f + S2.f.

12.11. VINTERP Instructions

T I T

31
I I T I I T I I I I I I I I T I
viNTRP [ 110 01 0] | VDST, (accum) | op, | ATTRs CHAN VSRCs (1,J)

Opcode Name Description

0 V_INTERP_P1_F32 Parameter interpolation, first pass.
D.f32 = P10[S1.u32].f32 * S0.f32 + PB[S1.u3].f32.

CAUTION: when in HALF_LDS mode, D must not be the same GPR as S;
if D == S then data corruption will occur.

NOTE: In textual representations the I/J VGPR is the first source
and the attribute is the second source; however in the VOP3
encoding the attribute is stored in the src@ field and the VGPR is
stored in the src1 field.
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Opcode Name Description

1 V_INTERP_P2_F32 Parameter interpolation, second pass.
D.f = P20[S1.u] = S@.f + D.f.

NOTE: In textual representations the I/J VGPR is the first source
and the attribute is the second source; however in the VOP3
encoding the attribute is stored in the src@ field and the VGPR is
stored in the src1 field.

2 V_INTERP_MOV_F32 Parameter load. Used for custom interpolation in the shader.

D.f = {P10,P20,PO}[S1.u].

12.11.1. VINTERP using VOP3 encoding

Instructions in this format may also be encoded as VOP3A. VOP3A allows access to the extra
control bits (e.g. ABS, OMOD) at the expense of a larger instruction word. The VOP3A opcode
is: VOP2 opcode + 0x270.

31 0
T T T T 1 T T T__T T T T 1T T 1 1 T T T T 1T
11 0 1 0 1‘ ‘ OPyg de OP_SEL, ‘ ABS VDSTg
VOP3A L. T I ) S ) B T T T T T 1 T T__ 1T _ T 1
NEG ‘OMOD‘ SRC2q SRC1g ‘ SRCOqy
63 32
VOP3 instructions use one of two encodings:
31 0
T T T T 1 A N I B B T _ 1 1 T T T T T T T
11 0 1 0 1 ‘ OPyg cmp| OP_SEL,4 ‘ ABS VDSTg
VOP3A T 1 1 I [agmn! T T 1 I — 1 T T T 1T T T1__ T _ T T 1T
NEG ‘ OMOD‘ SRC2q SRC1, SRCO0g
63 32
31 0
T T T T 1 I N R B B T 1__ T T 1 I T 1
110 1 0 1‘ OP4g de SDST, VDSTg
VOP3B ] T T T Tagan! T T I 1 T T T 1 T T__ T _ T T 1
NEG ’OMOD‘ SRC24 SRC1g SRCO0g
63 32
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VOP3B this encoding allows specifying a unique scalar destination, and is used only for:
V_ADD_CO_U32
V_SUB_CO_U32
V_SUBREV_CO_U32
V_ADDC_CO_U32
V_SUBB_CO_U32
V_SUBBREV_CO_U32
V_DIV_SCALE_F32
V_DIV_SCALE_F64
V_MAD_U64_U32
V_MAD 164 132

VOP3A all other VALU instructions use this encoding

Opcode Name Description
320 V_MAD_LEGACY_F3 Multiply and add single-precision values. Follows DX9 rules where
2 0.0 times anything produces 0.0 (this is not IEEE compliant).

D.f = S8.f *» S1.f + S2.f. // DX9 rules, 0.0 * x = 0.0
321 V_MAD_F32 Multiply and add single-precision values. 1ULP accuracy, IEEE
compliant, denormals are flushed.
D.f =S0.f » S1.f + S2.f.

322 V_MAD_I32_124 Multiply two signed 24-bit integers, add a signed 32-bit integer
and store the result as a signed 32-bit integer. This opcode is as
efficient as basic single-precision opcodes since it utilizes the
single-precision floating point multiplier.

D.i = S@.i[23:0] * S1.i[23:0] + S2.i.

323 V_MAD_U32_U24 Multiply two unsigned 24-bit integers, add an unsigned 32-bit
integer and store the result as an unsigned 32-bit integer. This
opcode is as efficient as basic single-precision opcodes since it
utilizes the single-precision floating point multiplier.

D.u = S@.u[23:0] * S1.u[23:8] + S2.u.
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Opcode Name Description
324 V_CUBEID_F32 Cubemap Face ID determination. Result is a floating point face
ID.
// Set D.f = cubemap face ID ({0.0, 1.0, ..., 5.8}).
// XYZ coordinate is given in (Se.f, S1.f, S2.f).
// S0.f = x
/1 S1.f =y
// S2.f =z

if (abs(S2.f) >= abs(S@.f) && abs(S2.f) >= abs(S1.f))
if (S2.f < 9)

D.f = 5.0;
else

D.f = 4.0;
endif;

else if (abs(S1.f) >= abs(Se.f))
if (S1.f < 9)

D.f = 3.0;
else
D.f = 2.0;
endif;
else
if (Se.f < 0)
D.f =1.90;
else
D.f = 0.0;
endif;
endif.
325 V_CUBESC_F32 Cubemap S coordinate.

// D.f = cubemap S coordinate.
// XYZ coordinate is given in (S@.f, S1.f, S2.f).

// Se.f = x
/1 S1.f =y
// S2.f =z

if (abs(S2.f) >= abs(S@.f) && abs(S2.f) >= abs(S1.f))
if (S2.f < 0)

D.f = -S0.f;
else
D.f = S0.f;
endif;
else if (abs(S1.f) >= abs(S6.f))
D.f = S0.f;
else
if (Se.f < 0)
D.f = S2.f;
else
D.f = -S2.F;
endif;
endif.
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Opcode

326

327

328

329

330

331

Name

V_CUBETC_F32

V_CUBEMA_F32

V_BFE_U32

V_BFE_I32

V_BFI_B32

V_FMA_F32

Description

Cubemap T coordinate.

// D.f = cubemap T coordinate.
// XYZ coordinate is given in (Se.f, S1.f, S2.f).

// S@.f = x

/1 S1.f =y

// S2.f =z

if (abs(S2.f) >= abs(S@.f) && abs(S2.f) >= bs(S1.f))
D.f = -S1.f;

else if (abs(S1.f) >= abs(Se.f))
if (S1.f < 9)

D.f = -S2.F;
else
D.f = S2.F;
endif;
else
D.f = -S1.F;
endif.

Determine cubemap major axis.

// D.f = 2.8 * cubemap major axis.
// XYZ coordinate is given in (S@.f, S1.f, S2.f).

// S8.f = x
/1 S1.f =y
// S2.f =z

if (abs(S2.f) >= abs(S@.f) && abs(S2.f) >= abs(S1.f))
D.f = 2.0 x S2.f;

else if (abs(S1.f) >= abs(S6.f))
D.f = 2.0 x S1.f;

else
D.f = 2.0 x S0.f;

endif.

Bitfield extract with SO = data, S1 = field_offset, S2
field_width.

D.u = (S@.u >> S1.uf[4:8]) & ((1 << S2.u[4:0]) - 1).

Bitfield extract with SO = data, S1 = field_offset, S2
field_width.

D.i = (S0.i >> S1.u[4:8]) & ((1 << S2.u[4:0]) - 1).

Bitfield insert.

D.u = (SB.u & S1.u) | (~S@.u & S2.u).

Fused single precision multiply add. ©.5ULP accuracy, denormals
are supported.

D.f = S0.f » S1.f + S2.f.

12.12. VOP3A & VOP3B Instructions 172 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Opcode Name

332 V_FMA F64

333 V_LERP_US

334 V_ALIGNBIT_B32
335 V_ALIGNBYTE_B32
336 V_MULLIT_F32
337 V_MIN3_F32

338 V_MIN3_I32

339 V_MIN3_U32
340 V_MAX3_F32
341 V_MAX3_132

342 V_MAX3_U32

Description

Fused double precision multiply add. ©.5ULP precision, denormals
are supported.

D.d = S8.d * S1.d + S2.d.

Unsigned 8-bit pixel average on packed unsigned bytes (linear
interpolation). S2 acts as a round mode; if set, 0.5 rounds up,
otherwise 0.5 truncates.

.u = ((S0.u[31:24] + S1.ul[31:24] + S2.u[24]) >> 1) << 24
.u += ((S@.u[23:16] + S1.u[23:16] + S2.u[16]) >> 1) << 16;
.u += ((S@.u[15:8] + S1.u[15:8] + S2.u[8]) >> 1) << 8;

.u 4= ((S@.u[7:0] + S1.u[7:0] + S2.u[@]) >> 1).

O O T ©O

Align a value to the specified bit position.

D.u = ({S0,S1} >> S2.u[4:0]) & oxffffffff.

Align a value to the specified byte position.

D.u = ({S0,S1} >> (8%S2.u[4:8])) & BXFFFFFfff.

Multiply for lighting. Specific rules apply: 8.9 * x = 0.0;
Specific INF, NaN, overflow rules.

D.f = S0.f  S1.f

Return minimum single-precision value of three inputs.

D.f = V_MIN_F32(V_MIN_F32(Se.f, S1.f), S2.f).

Return minimum signed integer value of three inputs.

D.i = V_MIN_I32(V_MIN_I32(S@.i, S1.i), S2.i).

Return minimum unsigned integer value of three inputs.

D.u = V_MIN_U32(V_MIN_U32(S@.u, S1.u), S2.u).

Return maximum single precision value of three inputs.

D.f = V_MAX_F32(V_MAX_F32(Se.f, S1.f), S2.f).

Return maximum signed integer value of three inputs.

D.i = V_MAX_I32(V_MAX_I32(S6.i, S1.i), S2.i).

Return maximum unsigned integer value of three inputs.

D.u = V_MAX_U32(V_MAX_U32(S@.u, S1.u), S2.u).
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343 V_MED3_F32 Return median single precision value of three inputs.

if (isNan(Se.f) || isNan(S1.f) || isNan(S2.f))
D.f = V_MIN3_F32(Se.f, S1.f, S2.f);

else if (V_MAX3_F32(S0.f, S1.f, S2.f) == S0.f)
D.f = V_MAX_F32(S1.f, S2.f);

else if (V_MAX3_F32(S0.f, S1.f, S2.f) == S1.f)
D.f = V_MAX_F32(S0.f, S2.f);

else
D.f = V_MAX_F32(S8.f, S1.f);
endif.
344 V_MED3 132 Return median signed integer value of three inputs.

if (V_MAX3_I32(S@.i, S1.i, S2.i) == S@.i)
D.i = V_MAX_I32(S1.i, S2.i);

else if (V_MAX3_I32(S@.i, S1.i, S$2.i) == S1.i)
D.i = V_MAX_I32(S0.i, S2.i);

else
D.i = V_MAX_I32(S@.i, S1.i);
endif.
345 V_MED3_U32 Return median unsigned integer value of three inputs.

if (V_MAX3_U32(S@.u, S1.u, S2.u) == S@.u)
D.u = V_MAX_U32(S1.u, S2.u);

else if (V_MAX3_U32(S@.u, S1.u, S2.u) == S1.u)
D.u = V_MAX_U32(S0.u, S2.u);

else
D.u = V_MAX_U32(S8.u, S1.u);
endif.
346 V_SAD_US8 Sum of absolute differences with accumulation, overflow into upper

bits is allowed.

ABSDIFF(x, y) = (x >y ? x -y :y - x) // UNSIGNED comparison
D.u = S2.u;

D.u += ABSDIFF(S@.u[31:24], S1.u[31:24]);
D.u += ABSDIFF(S@.u[23:16], S1.u[23:16]);
D.u += ABSDIFF(S@.u[15:8], S1.u[15:8]);
D.u += ABSDIFF(S@.u[7:0], S1.ul[7:0]).
347 V_SAD_HI_U8 Sum of absolute differences with accumulation, accumulate into the

higher-order bits of S2.

D.u = (V_SAD_U8(S@, S1, @) << 16) + S2.u.

348 V_SAD_U16 Short SAD with accumulation.
ABSDIFF(x, y) = (x >y ? x -y :y - x) // UNSIGNED comparison
D.u = S2.u;

D.u += ABSDIFF(S@.u[31:16], S1.u[31:16]);
D.u += ABSDIFF(S@.u[15:0], S1.u[15:0]).
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349 V_SAD_U32
350 V_CVT_PK_U8_F32
351 V_DIV_FIXUP_F32

12.12. VOP3A & VOP3B Instructions

AMDZ1

Description

Dword SAD with accumulation.

ABSDIFF(x, y) = (x >y ? x -y :y - x) // UNSIGNED comparison
D.u = ABSDIFF(S@.u, S1.u) + S2.u.

Convert floating point value SO to 8-bit unsigned integer and pack
the result into byte S1 of dword S2.

c
n

(S2.u & ~(Bxff << (8 * S1.u[1:0])));
D.u | ((flt32_to_uint8(S0.f) & Oxff) << (8 % S1.u[1:0])).

Single precision division fixup. S@ = Quotient, S1 = Denominator,
S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this
opcode will detect and apply specific case numerics, touching up
the quotient if necessary. This opcode also generates invalid,
denorm and divide by zero exceptions caused by the division.

sign_out = sign(S1.f)*sign(S2.f);
if (S2.f == NAN)
D.f = Quiet(S2.f);
else if (S1.f == NAN)
D.f = Quiet(S1.f);
else if (S1.f == S2.f
// 0/0
D.f = 0xffc0_0000;
else if (abs(S1.f) == abs(S2.f) == +-INF)
// inf/inf
D.f = 0xffc0_0000;
else if (S1.f == 0 || abs(S2.f) == +-INF)
// x/0, or inf/y
D.f = sign_out ? -INF : +INF;
else if (abs(S1.f) == +-INF || S2.f == 0)
// x/inf, @/y
D.f = sign_out ? -8 : ©;
else if ((exponent(S2.f) - exponent(S1.f)) < -150)
D.f = sign_out ? -underflow : underflow;
else if (exponent(S1.f) == 255)
D.f = sign_out ? -overflow : overflow;

I

n
o)
~

else
D.f = sign_out ? -abs(S@.f) : abs(S0.f);
endif.
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352 V_DIV_FIXUP_F64 Double precision division fixup. S@ = Quotient, S1 = Denominator,
S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this
opcode will detect and apply specific case numerics, touching up
the quotient if necessary. This opcode also generates invalid,
denorm and divide by zero exceptions caused by the division.

sign_out = sign(S1.d)*sign(S2.d);
if (S2.d == NAN)
D.d = Quiet(S2.d);
else if (S1.d == NAN)
D.d = Quiet(S1.d);
else if (S1.d == S2.d == 0)
// /0
D.d = oxfff8_0000_0000_0000;
else if (abs(S1.d) == abs(S2.d) == +-INF)
// inf/inf
D.d = oxfff8_0000_0000_0000;
else if (S1.d == 0 || abs(S2.d) == +-INF)
// x/0, or inf/y
D.d = sign_out ? -INF : +INF;
else if (abs(S1.d) == +-INF || S2.d == 0)
// x/inf, @/y
D.d = sign_out ? -0 : 9;
else if ((exponent(S2.d) - exponent(S1.d)) < -1075)
D.d = sign_out ? -underflow : underflow;
else if (exponent(S1.d) == 2047)
D.d = sign_out ? -overflow : overflow;

else
D.d = sign_out ? -abs(S@.d) : abs(S0.d);
endif.
356 V_ADD_F64 Add two double-precision values. ©.5ULP precision, denormals are
supported.

D.d = S8.d + S1.d.

357 V_MUL_F64 Multiply two double-precision values. ©.5ULP precision, denormals
are supported.

D.d = S0.d * S1.d.
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358 V_MIN_F64 Compute the minimum of two double-precision floats.

if (IEEE_MODE && S@.d =
D.d = Quiet(S0.d);

sNaN)

else if (IEEE_MODE && S1.d == sNaN)
D.d = Quiet(S1.d);

else if (S@.d == NaN)
D.d = S1.d;

else if (S1.d == NaN)
D.d = S0.d;

else if (S0.d == +0.0 & S1.d == -0.0)
D.d = S1.d;

else if (S0.d == -0.0 & S1.d == +0.0)
D.d = S0.d;

else

// Note: there's no IEEE special case here like there is for

V_MAX_F64.

D.d = (S8.d < S1.d ? Se.d : S1.d);

endif.

359 V_MAX_F64 Compute the maximum of two double-precision floats.

if (IEEE_MODE && S@.d == sNaN)
D.d = Quiet(S0.d);

else if (IEEE_MODE && S1.d == sNaN)
D.d = Quiet(S1.d);

else if (S@.d == NaN)
D.d = S1.d;

else if (S1.d == NaN)
D.d = S0.d;

else if (S@.d == +0.0 && S1.d == -0.0)
D.d = S0.d;

else if (S@.d == -0.0 && S1.d == +0.0)
D.d = S1.d;

else if (IEEE_MODE)
D.d = (S6.d >= S1.d ? S@.d : S1.d);

else
D.d = (S8.d > S1.d ? S8.d : S1.d);
endif.
360 V_LDEXP_F64 Multiply a double-precision float by an integral power of 2,

compare with the ldexp() function in C.

D.d = S8.d * (2 ** S1.1i).

361 V_MUL_LO_U32 Multiply two unsigned integers. If you only need to multiply
integers with small magnitudes consider V_MUL_U32_U24, which is a
faster implementation.

D.u = S@.u * S1.u.
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362 V_MUL_HI_U32 Multiply two unsigned integers and store the high 32 bits of the
result. If you only need to multiply integers with small
magnitudes consider V_MUL_HI_U32_U24, which is a faster
implementation.

D.u = (S@.u * S1.u) >> 32.

364 V_MUL_HI_I32 Multiply two signed integers and store the high 32 bits of the
result. If you only need to multiply integers with small
magnitudes consider V_MUL_HI_I32_I24, which is a faster
implementation.

D.i = (S@.i * S1.1i) >> 32.
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12.12. VOP3A & VOP3B Instructions

AMDZ1

Description

Single precision division pre-scale. SO = Input to scale (either
denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode will appropriately

scale inputs for division to avoid subnormal terms during Newton-

Raphson correction algorithm. SO must be the same value as either
S1 or S2.

This opcode producses a VCC flag for post-scaling of the quotient
(using V_DIV_FMAS_F32).

VCC = 0;
if (S2.f == @ || S1.f == @)
D.f = NAN
else if (exponent(S2.f) - exponent(S1.f) >= 96)
// N/D near MAX_FLOAT
VCC = 1;
if (Se.f == S1.f)
// Only scale the denominator
D.f = ldexp(S0.f, 64);
end if
else if (S1.f == DENORM)
D.f = ldexp(S0.f, 64);
else if (1 / S1.f == DENORM && S2.f / S1.f == DENORM)
VCC = 1;
if (Se.f == S1.f)
// Only scale the denominator
D.f = ldexp(S0.f, 64);
end if
else if (1 / S1.f == DENORM)
D.f = 1ldexp(S0.f, -64);
else if (S2.f / S1.f==DENORM)
VCC = 1;
if (Se.f == S2.f)
// Only scale the numerator
D.f = 1ldexp(S0.f, 64);
end if
else if (exponent(S2.f) <= 23)
// Numerator is tiny
D.f = 1ldexp(S0.f, 64);
end if.
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366 V_DIV_SCALE_F64 Double precision division pre-scale. $S@ = Input to scale (either
denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode will appropriately

scale inputs for division to avoid subnormal terms during Newton-

Raphson correction algorithm. SO must be the same value as either
S1 or S2.

This opcode producses a VCC flag for post-scaling of the quotient
(using V_DIV_FMAS_F64).

VCC = 0;
if (S2.d == @ || S1.d == @)
D.d = NAN
else if (exponent(S2.d) - exponent(S1.d) >= 768)
// N/D near MAX_FLOAT
VCC = 1;
if (Se.d == S1.d)
// Only scale the denominator
D.d = ldexp(S@.d, 128);
end if
else if (S1.d == DENORM)
D.d = ldexp(S@.d, 128);
else if (1 / S1.d == DENORM && S2.d / S1.d == DENORM)
VCC = 1;
if (Se.d == S1.d)
// Only scale the denominator
D.d = ldexp(S@.d, 128);
end if
else if (1 / S1.d == DENORM)
D.d = ldexp(S@.d, -128);
else if (S2.d / S1.d==DENORM)
VCC = 1;
if (S@.d == S2.d)
// Only scale the numerator
D.d = ldexp(S@.d, 128);
end if
else if (exponent(S2.d) <= 53)
// Numerator is tiny
D.d = ldexp(S@.d, 128);
end if.
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367

368

369

370

371

Name

V_DIV_FMAS_F32

V_DIV_FMAS_F64

V_MSAD_US8

V_QSAD_PK_U16_US8

V_MQSAD_PK_U16_
us

Description

Single precision FMA with fused scale.

This opcode performs a standard Fused Multiply-Add operation and
will conditionally scale the resulting exponent if VCC is set.

Input denormals are not flushed, but output flushing is allowed.

if (VCC[threadId])

D.f = 2%%x32 * (S@.f * S1.f + S2.f);
else

D.f =S0.f » S1.f + S2.f;
end if.

Double precision FMA with fused scale.

This opcode performs a standard Fused Multiply-Add operation and
will conditionally scale the resulting exponent if VCC is set.

Input denormals are not flushed, but output flushing is allowed.

if (VCC[threadId])

D.d = 2#%64 * (S8.d * S1.d + S2.d);
else

D.d = S6.d * S1.d + S2.d;
end if.

Masked sum of absolute differences with accumulation, overflow
into upper bits is allowed. Components where the reference value
in S1 is zero are not included in the sum.

D.u = abs(S1.i[31:24] == 08 ? @ : SB.i[31:24] - S1.i[31:24]);

D.u += abs(S1.1[23:16] == 08 ? @ : SB.i[23:16] - S1.i[23:16]);

D.u += abs(S1.1[15:8] ==©8 ? @ : S8.i[15:8] - S1.i[15:8]);

D.u += abs(S1.i[7:8] == ? @ : Se@.i[7:8] - S1.i[7:0]) +
S2.u.

Quad-byte SAD with 16-bit packed accumulation.

D[63:48] = SAD_U8(S@[55:24], S1[31:08], S2[63:48]);
D[47:32] = SAD_U8(S@[47:16], S1[31:8], S2[47:32]);
D[31:16] = SAD_U8(S@[39:8], S1[31:8], S2[31:16]);
D[15:0] = SAD_U8(Se@[31:8], S1[31:0], S2[15:0]).

Quad-byte masked SAD with 16-bit packed accumulation.

D[63:48] = MSAD_U8(S@[55:24], S1[31:0], S2[63:48]);
D[47:32] = MSAD_U8(S@[47:16], S1[31:0], S2[47:32]);
D[31:16] = MSAD_U8(S@[39:8], S1[31:0], S2[31:16]);
D[15:0] = MSAD_U8(S@[31:0], S1[31:0], S2[15:0]).
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372

373

374

375

376

767

768

769

Name

V_TRIG_PREOP_F64

V_MQSAD_U32_U8

V_MAD_U64_U32

V_MAD_164_132

V_XOR3_B32

V_LSHLREV_B64

V_LSHRREV_B64

V_ASHRREV_164

Description

Look Up 2/PI (S@.d) with segment select S1.u[4:0]. This operation
returns an aligned, double precision segment of 2/PI needed to do
range reduction on S@.d (double-precision value). Multiple
segments can be specified through S1.u[4:0]. Rounding is round-
to-zero. Large inputs (exp > 1968) are scaled to avoid loss of
precision through denormalization.

shift = S1.u * 53;

if exponent(S©.d) > 1077 then
shift += exponent(Se.d) - 1077;

endif

result = (double) ((2/PI[1200:08] << shift) &

Ox1fffff_ffffffff);

scale = (-53 - shift);

if exponent(S@.d) >= 1968 then
scale += 128;

endif

D.d = ldexp(result, scale).

Quad-byte masked SAD with 32-bit packed accumulation.

D[127:96] MSAD_U8(S@[55:24], S1[31:0], S2[127:96]);
D[95:64] = MSAD_U8(Se[47:16], S1[31:0], S2[95:64]);
D[63:32] MSAD_U8(Se[39:8], S1[31:0], S2[63:32]);
D[31:0] MSAD_u8(Se[31:0], S1[31:0], S2[31:0]).

Multiply and add unsigned integers and produce a 64-bit result.

{vcc_out,D.u64} = S0.u32 * S1.u32 + S2.ub4.

Multiply and add signed integers and produce a 64-bit result.

{vecc_out,D.i64} = S0.i32 * S1.i32 + S2.i64.

Bitwise XOR of three inputs. Input and output modifiers not
supported.

D.u32 = S@.u32 * S1.u32 " S2.u32.

Logical shift left, count is in the first operand. Only one
scalar broadcast constant is allowed.

D.u64 = S1.u64 << SO.u[5:0].

Logical shift right, count is in the first operand. Only one
scalar broadcast constant is allowed.

D.u64 = S1.u64 >> S@.u[5:0].

Arithmetic shift right (preserve sign bit), count is in the first
operand. Only one scalar broadcast constant is allowed.

D.u64 = signext(S1.u64) >> S@.u[5:0].
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771

772

773

775

776

77

778

779

780

781

782

783
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Name

V_ADD_NC_U16

V_SUB_NC_U16

V_MUL_LO_U16

V_LSHRREV_B16

V_ASHRREV_|16

V_MAX_U16

V_MAX_116

V_MIN_U16

V_MIN_I16

V_ADD_NC_I16

V_SUB_NC_I16

V_ADD_CO_U32

AMDZ1

Description

Add two unsigned shorts. Supports saturation (unsigned 16-bit

integer domain). No carry-in or carry-out.

D.u16 = S@.u16 + S1.ul16.

Subtract the second unsigned short from the first. Supports

saturation (unsigned 16-bit integer domain). No carry-in or

carry-out.

D.u16 = S@.u16 - S1.ul16.

Multiply two unsigned shorts. Supports saturation (unsigned 16-

bit integer domain).

D.u16 = S@.u16 * S1.ul16.

Logical shift right, count is in the first operand.

D.u[15:0] = S1.u[15:0] >> SO.u[3:9].

Arithmetic shift right (preserve sign bit), count is in the first
operand.

D.i[15:0] = signext(S1.i[15:0]) >> S@.i[3:0].

Maximum of two unsigned shorts.

D.u16 = (S@.u16 >= S1.u16 ? S@.u16 : S1.ul6).
Maximum of two signed shorts.

D.i16 = (S@.i16 >= S1.i16 ? SB.i16 : S1.i16).
Minimum of two unsigned shorts.

D.u16 = (SB.u16 < S1.u16 ? S@.u16 : S1.ul16).
Minimum of two signed shorts.

D.i16 = (S@.i16 < S1.i16 ? S@.i16 : S1.i16).

Add two signed shorts. Supports saturation (signed 16-bit integer

domain). No carry-in or carry-out.

D.i16 = S0.1i16 + S1.116.

Subtract the second signed short from the first. Supports

saturation (unsigned 16-bit integer domain). No carry-in or

carry-out.

D.i16 = S@.i16 - S1.1i16.

Add two unsigned integers with carry-out. In VOP3 the VCC

destination may be an arbitrary SGPR-pair.

D.u32 = S@.u32 + S1.u32;
VCC = S@.u + S1.u >= 0x100000000ULL ? 1 : 0.
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784

785

786

787

788

793

832

834

Name

V_SUB_CO_U32

V_PACK_B32_F16

V_CVT_PKNORM_I16
_F16

V_CVT_PKNORM_U1
6_F16

V_LSHLREV_B16

V_SUBREV_CO_U32

V_MAD_U16

V_INTERP_PILL_F16

Description

Subtract the second unsigned integer from the first with carry-
out. In VOP3 the VCC destination may be an arbitrary SGPR-pair.

D.u = S0.u - S1.u;
VCC[threadId] = (S1.u > S@.u ? 1 : 0).
// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.

Pack two FP16 values together.
D[31:16].f16 = S1.f16;
D[15:0].f16 = SB.f16.

Convert two FP16 values into packed signed normalized shorts.

D = {(snorm)S1.f16, (snorm)Se@.f16}.

Convert two FP16 values into packed unsigned normalized shorts.

D = {(unorm)S1.f16, (unorm)Se@.f16}.

Logical shift left, count is in the first operand.

D.u[15:0] = S1.u[15:0] << S@.u[3:0].

Subtract the first unsigned integer from the second with carry-
out. In VOP3 the VCC destination may be an arbitrary SGPR-pair.

D.u = ST.u - S@.u;
VCC[threadId] = (S@.u > S1.u ? 1 : 0).
// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.

Multiply and add unsigned shorts. Supports saturation (unsigned
16-bit integer domain).

If op_sel[3] is 0: Result is written to 16 LSBs of destination
VGPR and hi 16 bits are preserved.

If op_sel[3] is 1: Result is written to 16 MSBs of destination
VGPR and lo 16 bits are preserved.

D.u16 = S@.u16 * S1.u16 + S2.ul6.

FP16 parameter interpolation. °LL' stands for “two LDS
arguments'. attr_word selects the high or low half 16 bits of
each LDS dword accessed. This opcode is available for 32-bank LDS
only.

NOTE: In textual representations the I/J VGPR is the first source
and the attribute is the second source; however in the VOP3
encoding the attribute is stored in the src@ field and the VGPR is
stored in the src1 field.

D.f32 = P16.f16 * S0.f32 + PO.f16.
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Opcode
835

836

837

838

839

843

849

Name

V_INTERP_P1LV F16

V_PERM_B32

V_XAD_U32

V_LSHL_ADD_U32

V_ADD_LSHL_U32

V_FMA_F16

V_MIN3_F16

Description
FP16 parameter interpolation. °“LV' stands for "One LDS and one
VGPR argument'. S2 holds two parameters, attr_word selects the

high or low word of the VGPR for this calculation, as well as the
high or low half of the LDS data. Meant for use with 16-bank LDS.

NOTE: In textual representations the I/J VGPR is the first source
and the attribute is the second source; however in the VOP3
encoding the attribute is stored in the src@ field and the VGPR is
stored in the src1 field.

D.f32 = P190.f16 * SB.f32 + (S2.u32 >> (attr_word * 16)).f16.

Byte permute.

.u[31:24] = byte_permute({S0.u, S1.u}, S2.u[31:24]);
.u[23:16] = byte_permute({S0.u, S1.u}, S2.u[23:16]);
.u[15:8] = byte_permute({S@.u, S1.u}, S2.u[15:8]);
.u[7:0] = byte_permute({S@.u, S1.u}, S2.u[7:0]);

O T U O

byte permute(byte in[8], byte sel) {
if(sel>=13) then return oxff;
elsif(sel==12) then return 0x00;
elsif(sel==11) then return in[7][7] * Oxff;
elsif(sel==10) then return in[5][7] * Oxff;
elsif(sel==9) then return in[3][7] * oxff;
elsif(sel==8) then return in[1][7] * oxff;
else return in[sel];

}

Bitwise XOR and then add. No carryin/carryout and no saturation.
This opcode exists to accelerate the SHA256 hash algorithm.

D.u32 = (S@.u32 * S1.u32) + S2.u32.

Logical shift left and then add.

D.u = (S@.u << S1.u[4:0]) + S2.u.

Add and then logical shift left the result.

D.u = (SB.u + S1.u) << S2.u[4:0].

Fused half precision multiply add of FP16 values. ©0.5ULP
accuracy, denormals are supported.

If op_sel[3] is @ Result is written to 16 LSBs of destination VGPR
and hi 16 bits are preserved.

If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR
and lo 16 bits are preserved.

D.f16 = S0.f16 * S1.f16 + S2.f16.

Return minimum FP16 value of three inputs.

D.f16 = V_MIN_F16(V_MIN_F16(S@.f16, S1.f16), S2.f16).
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Opcode Name Description

850 V_MIN3_I16 Return minimum signed short value of three inputs.

D.i16 = V_MIN_I16(V_MIN_I16(S@.i16, S1.i16), S2.i16).

851 V_MIN3_U16 Return minimum unsigned short value of three inputs.

D.u16 = V_MIN_U16(V_MIN_U16(S@.u16, S1.u16), S2.u16).

852 V_MAX3 _F16 Return maximum FP16 value of three inputs.

D.f16 = V_MAX_F16(V_MAX_F16(S@.f16, S1.f16), S2.f16).

853 V_MAX3_I116 Return maximum signed short value of three inputs.

D.i16 = V_MAX_I16(V_MAX_I16(S0.i16, S1.i16), S2.i16).

854 V_MAX3_U16 Return maximum unsigned short value of three inputs.

D.u16 = V_MAX_U16(V_MAX_U16(S@.u16, S1.u16), S2.ul16).

855 V_MED3_F16 Return median FP16 value of three inputs.

if (isNan(S@.f16) || isNan(S1.f16) || isNan(S2.f16))
D.f16 = V_MIN3_F16(S@.f16, S1.f16, S2.f16);

else if (V_MAX3_F16(S0.f16, S1.f16, S2.f16) == S0.f16)
D.f16 = V_MAX_F16(S1.f16, S2.f16);

else if (V_MAX3_F16(S0.f16, S1.f16, S2.f16) == S1.f16)
D.f16 = V_MAX_F16(S6.f16, S2.f16);

else
D.f16 = V_MAX_F16(Se.f16, S1.f16);
endif.
856 V_MED3_116 Return median signed short value of three inputs.

if (V_MAX3_I16(S@.i16, S1.i16, S2.i16) == $0.i16)
D.i16 = V_MAX_I16(S1.1i16, S2.116);
else if (V_MAX3_I16(S0.i16, S1.i16, S2.i16) == S1.i16)

D.i16 = V_MAX_I16(S0.i16, $2.i16);
else
D.i16 = V_MAX_I16(S@.i16, S1.i16);
endif.
857 V_MED3_U16 Return median unsigned short value of three inputs.

if (V_MAX3_U16(S@.u16, S1.u16, S2.ul16) == S0.u16)
D.u16 = V_MAX_U16(S1.u16, S2.ul16);
else if (V_MAX3_U16(S@.u16, S1.u16, S2.u16) == S1.u16)

D.u16 = V_MAX_U16(S@.u16, S2.ul16);
else

D.u16 = V_MAX_U16(S@.u16, S1.ul16);
endif.
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858 V_INTERP_P2_F16 FP16 parameter interpolation. Final computation. attr_word
selects LDS high or low 16bits. Used for both 16- and 32-bank
LDS.

NOTE: In textual representations the I/J VGPR is the first source
and the attribute is the second source; however in the VOP3
encoding the attribute is stored in the src@ field and the VGPR is
stored in the src1 field.

If op_sel[3] is @ Result is written to 16 LSBs of destination VGPR
and hi 16 bits are preserved.

If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR
and lo 16 bits are preserved.

D.f16 = P20.f16 * S0.f32 + S2.f32.

862 V_MAD_I16 Multiply and add signed short values. Supports saturation (signed
16-bit integer domain).

If op_sel[3] is @ Result is written to 16 LSBs of destination VGPR
and hi 16 bits are preserved.

If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR
and lo 16 bits are preserved.

D.i16 = S0.i16 * S1.i16 + S2.1i16.
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863 V_DIV_FIXUP_F16 Half precision division fixup. S@ = Quotient, S1 = Denominator, S2
= Numerator.

Given a numerator, denominator, and quotient from a divide, this
opcode will detect and apply specific case numerics, touching up
the quotient if necessary. This opcode also generates invalid,
denorm and divide by zero exceptions caused by the division.

If op_sel[3] is @ Result is written to 16 LSBs of destination VGPR
and hi 16 bits are preserved.

If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR
and lo 16 bits are preserved.

sign_out = sign(S1.f16)*sign(S2.f16);
if (S2.f16 == NAN)
D.f16 = Quiet(S2.f16);
else if (S1.f16 == NAN)
D.f16 = Quiet(S1.f16);
else if (S1.f16 == S2.f16 == 0)
// 0/0
D.f16 = 0xfe00;
else if (abs(S1.f16) == abs(S2.f16) == +-INF)
// inf/inf
D.f16 = 0xfe00;
else if (S1.f16 ==0 || abs(S2.f16) == +-INF)
// x/0, or inf/y
D.f16 = sign_out ? -INF : +INF;
else if (abs(S1.f16) == +-INF || S2.f16 == 8)
// x/inf, @/y
D.f16 = sign_out ? -0 : ©;

else
D.f16 = sign_out ? -abs(S0.f16) : abs(S0.f16);
end if.
864 V_READLANE_B32 Copy one VGPR value to one SGPR. D = SGPR-dest, SO = Source Data

(VGPR# or MO(lds-direct)), S1 = Lane Select (SGPR or M@). Lane is
S1 % (32 if wave32, 64 if wave64). Ignores exec mask.

Input and output modifiers not supported; this is an untyped
operation.

if(wave32)
SMEM[D_ADDR]
else
SMEM[D_ADDR]
endif.

VMEM[S@_ADDR][S1[4:0]]; // For wave32

VMEM[S@_ADDR][S1[5:0]]; // For wave64
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865 V_WRITELANE_B32 Write value into one VGPR in one lane. D = VGPR-dest, S@ = Source
Data (sgpr, m@, exec or constants), S1 = Lane Select (SGPR or M@).
Lane is S1 % (32 if wave32, 64 if wave64). Ignores exec mask.

Input and output modifiers not supported; this is an untyped
operation.

if(wave32)
VMEM[D_ADDR][S1[4:0]]
else
VMEM[D_ADDR][S1[5:0]]
endif.

SMEM[S@_ADDR]; // For wave32

SMEM[S@_ADDR]; // For wave64

866 V_LDEXP_F32 Multiply a single-precision float by an integral power of 2,
compare with the ldexp() function in C.
D.f = SB.f * (2 ** S1.1i).
867 V_BFM_B32 Bitfield modify. SO is the bitfield width and S1 is the bitfield
offset.
D.u32 = ((1<<S0@[4:0])-1) << S1[4:0].
868 V_BCNT_U32_B32 Bit count.
D.u = S1.u;

for i in @ .. 31 do
D.u += S@.u[i]; // count i'th bit

endfor.
869 V_MBCNT_LO _U32_B Masked bit count, ThreadPosition is the position of this thread in
32 the wavefront (in @..63). See also V_MBCNT_HI_U32_B32.

ThreadMask = (1LL << ThreadPosition) - 1;
MaskedValue = (S@.u & ThreadMask[31:0]);

D.u = S1.u;
for i in @ ... 31 do
D.u += (MaskedValue[i] ==1 ? 1 : 9);
endfor.
870 V_MBCNT_HI_U32_B Masked bit count, ThreadPosition is the position of this thread in
32 the wavefront (in 0..63). See also V_MBCNT_LO_U32_B32. Note that
in Wave32 mode ThreadMask[63:32] == 0 and this instruction simply

performs a move from S1 to D.

ThreadMask = (1LL << ThreadPosition) - 1;
MaskedValue = (S@.u & ThreadMask[63:32]);

D.u = S1.u;
for i in @ ... 31 do

D.u += (MaskedValue[i] ==1 ? 1 : 0);
endfor.

Example to compute each thread's position in ©..63:
v_mbcnt_lo_u32_b32 ve, -1, ©
v_mbcnt_hi_u32_b32 v@, -1, ve@
// v@ now contains ThreadPosition

12.12. VOP3A & VOP3B Instructions 189 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Opcode Name Description
872 V_CVT_PKNORM_I16 Convert two single-precision floats into a packed signed
_F32 normalized value.

D.i16_1o = (snorm)Se.f32;
D.i16_hi = (snorm)S1.f32.

873 V_CVT_PKNORM_U1 Convert two single-precision floats into a packed unsigned
6_F32 normalized value.

D.u16_1o = (unorm)Se.f32;
D.u16_hi = (unorm)S1.f32.

874 V_CVT_PK_U16_U32 Convert two unsigned integers into a packed unsigned short.

D.u16_1lo = u32_to_u16(S0.u32);
D.u16_hi = u32_to_u16(S1.u32).

875 V_CVT_PK_116_132 Convert two signed integers into a packed signed short.

D.i16_1lo = i32_to0_i16(S0.i32);
D.i16_hi = i32_to_i16(S1.1i32).

877 V_ADD3_U32 Add three unsigned integers.

D.u =8S0.u + S1.u + S2.u.

879 V_LSHL_OR_B32 Logical shift left and then bitwise OR.

D.u = (S@.u << S1.u[4:0]) | S2.u.

881 V_AND_OR_B32 Bitwise AND and then bitwise OR.

D.u = (S8.u & S1.u) | S2.u.

882 V_OR3_B32 Bitwise OR of three inputs.

D.u=S80.u | ST.u | S2.u.

883 V_MAD_U32_U16 Multiply and add unsigned values.

D.u32 = S@.u16 * S1.u16 + S2.u32.

885 V_MAD_I32_116 Multiply and add signed values.

D.i32 = S0.i16 * S1.i16 + S2.i32.

886 V_SUB_NC _132 Subtract the second signed integer from the first. No carry-in or
carry-out. Supports saturation (signed 32-bit integer domain).

D.i = S0.i - S1.1i.
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Opcode
887

Name

V_PERMLANE16_B32

Description

Perform arbitrary gather-style operation within a row (16
contiguous lanes).

The first source must be a VGPR and the second and third sources
must be scalar values; the second and third source are combined
into a single 64-bit value representing lane selects used to
swizzle within each row.

OP_SEL is not used in its typical manner for this instruction. For
this instruction OP_SEL[@] is overloaded to represent the DPP 'FI'
(Fetch Inactive) bit and OP_SEL[1] is overloaded to represent the
DPP 'BOUND_CTRL' bit. The remainin OP_SEL bits are reserved for
this instruction.

ABS, NEG and OMOD modifiers should all be zeroed for this
instruction.

Compare with V_PERMLANEX16_B32.

lanesel = { S2.u, S1.u }; // Concatenate lane select bits
for row in @ ... 3 do // interval is @ ... 1 for wave32 mode
// Implement arbitrary swizzle within each row

for i in @ ... 15 do
D.lane[row * 16 + i] = S@.lane[row * 16 + lanesel[i * 4 +
3:1 % 4]];
endfor;
endfor.

Example implementing a rotation within each row:

v_mov_b32 s@, 0x87654321;
v_mov_b32 s1, 0x0fedcba9;
v_permlanel16_b32 v1, v@, s@, s1;
// ROW @:

// v1.lane[B] <-- v@.lane[1]

// v1.lane[1] <-- vO@.lane[2]

/] ...

// v1.lane[14]

<-- v@.lane[15]
// v1.lane[15] <-- v@.lane[0]
//
// ROW 1:

// v1.lane[16] <-- vB.lane[17]
// v1.lane[17] <-- v@.lane[18]
/...

// v1.lane[30] <-- vB.lane[31]
// v1.lane[31] <-- v@.lane[16]
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Opcode
888

Name

V_PERMLANEX16_B3
2

Description

Perform arbitrary gather-style operation across two rows (each row
is 16 contiguous lanes).

The first source must be a VGPR and the second and third sources
must be scalar values; the second and third source are combined
into a single 64-bit value representing lane selects used to
swizzle within each row.

OP_SEL is not used in its typical manner for this instruction. For
this instruction OP_SEL[@] is overloaded to represent the DPP 'FI'
(Fetch Inactive) bit and OP_SEL[1] is overloaded to represent the
DPP 'BOUND_CTRL' bit. The remainin OP_SEL bits are reserved for
this instruction.

ABS, NEG and OMOD modifiers should all be zeroed for this
instruction.

Compare with V_PERMLANE16_B32.

lanesel = { S2.u, S1.u }; // Concatenate lane select bits
for row in @ ... 3 do // interval is 8 ... 1 for wave32 mode
// Implement arbitrary swizzle across two rows
altrow = {row[1], ~row[@]}; // 1<->0, 3<->2

for i in @ ... 15 do
D.lane[row * 16 + i] = S@.lane[altrow * 16 + lanesel[i *
4 + 3:i % 4]];
endfor;
endfor.

Example implementing a rotation across an entire wave32 wavefront:

// Note for this to work, source and destination VGPRs must be
different.

// For this rotation, lane 15 gets data from lane 16, lane 31
gets data from lane 9.

// These are the only two lanes that need to use
v_permlanex16_b32.

v_mov_b32 exec_lo, Bx7fff7fff; // Lanes getting data from their
own row

v_mov_b32 s0@, 0x87654321;

v_mov_b32 s1, 0x0fedcba9;

v_permlane16_b32 v1, v@, s@, s1 fi; // FI bit needed for lanes 14
and 30

v_mov_b32 exec_lo, ©x80008000; // Lanes getting data from the
other row

v_permlanex16_b32 v1, v@, s@, s1 fi; // FI bit needed for lanes 15
and 31
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Opcode
895

Name Description

V_ADD_NC_132 Add two signed integers. No carry-in or carry-out.

saturation (signed 32-bit integer domain).
out.

D.i = S0.1i + S1.1.

12.13. LDS & GDS Instructions

This suite of instructions operates on data stored within the data share memory. The instructions
transfer data between VGPRs and data share memory.
The bitfield map for the LDS/GDS is:

AMDZ1

Supports

No carry-in or carry-

I I I I [ I [
OPs loos| OFFSET1,

LI
OFFSETO0g

LDS, GDS

T T

1 LI
DATAOg

T 1 1
ADDRg

T

where:
OFFSET@
OFFSET1
GDS

oP

ADDR
DATA®
DATA1
VDST

Opcode
0

63

= Unsigned byte offset added to the address from the ADDR VGPR.
= Unsigned byte offset added to the address from the ADDR VGPR.

= Set if GDS, cleared if LDS.

= DS Instruction Opcode.

= Source LDS address VGPR @ - 255.
= Source data® VGPR @ - 255.

= Source datal VGPR @ - 255.

= Destination VGPR ©- 255.

All instructions with RTN in the name return the value that was in memory

before the operation was performed.

Name Description

DS _ADD_U32 // 32bit
tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

DS _SUB_U32 // 32bit
tmp = MEM[ADDR];
MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

DS _RSUB_U32 Subtraction with reversed operands.
// 32bit

addr = VGPR[ADDR]+{INST1,INSTO};
tmp = DS[addr].u32;

DS[addr].u32 = VGPR[DATA®].u32-DS[addr].u32;

VGPR[VDST].u32 = tmp.

12.13. LDS & GDS Instructions
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Opcode Name

3

10

11

12

DS_INC_U32

DS_DEC_U32

DS_MIN_I32

DS_MAX_I32

DS_MIN_U32

DS_MAX_U32

DS_AND_B32

DS_OR_B32

DS_XOR_B32

DS_MSKOR_B32

12.13. LDS & GDS Instructions

AMDZ1

Description

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA) ? @ : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

/] 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp == @ || tmp > DATA) ? DATA : tmp - 1; //

unsigned compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] A= DATA;
RETURN_DATA = tmp.

Masked dword OR, DO contains the mask and D1 contains the new
value.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2;
RETURN_DATA = tmp.
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13 DS_WRITE_B32

AMDZ1

Description

Write dword.

// 32bit

MEM[ADDR] =

14 DS_WRITE2_B32

DATA.

Write 2 dwords.

// 32bit

MEM[ADDR + OFFSET@ * 4] =
MEM[ADDR + OFFSET1 * 4]

15 DS_WRITE2ST64_B32

Write 2 dwords with larger

DATA;
DATA2.

stride.

// 32bit

MEM[ADDR + OFFSETO * 4 * 64]
MEM[ADDR + OFFSET1 * 4 * 64]

16 DS_CMPST_B32

Compare and store.

DATA;
DATA2.

Caution, the order of src and cmp are the

*oppositex of the BUFFER_ATOMIC_CMPSWAP opcode.

// 32bit

tmp
src =
cmp =

MEM[ADDR] = (tmp == cmp) ? src

MEM[ADDR] ;

DATA2;

DATA;

:otmp;

RETURN_DATA[@] = tmp.

17 DS_CMPST_F32 Floating

values.

point compare and store that handles NaN/INF/denormal
Caution, the order of src and cmp are the *oppositex

of the BUFFER_ATOMIC_FCMPSWAP opcode.

// 32bit

tmp =
src =
cmp =

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] =

18 DS_MIN_F32 Floating

MEM[ADDR] ;

DATAZ;

DATA;

:otmp;
tmp.

point minimum that handles NaN/INF/denormal values.

Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMIN.

// 32bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (cmp < tmp) ? src

12.13. LDS & GDS Instructions

T tmp.
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19 DS_MAX_F32 Floating point maximum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMAX.

// 32bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (tmp > cmp) ? src : tmp.
20 DS_NOP Do nothing.

21 DS_ADD_F32 Floating point add that handles NaN/INF/denormal values.

float tmp = MEM[ADDR].f32;
MEM[ADDR].f32 += DATAO.f32;
VDST.f32 = tmp;

24 DS_GWS_SEMA_RELEA GDS Only: The GWS resource (rid) indicated will process this
SE_ALL opcode by updating the counter and labeling the specified
resource as a semaphore.

// Determine the GWS resource to work on
rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];

// Incr the state counter of the resource
state.counter[rid] = state.wave_in_queue;
state.type = SEMAPHORE;

return rd_done; //release calling wave

This action will release ALL queued waves; it Will have no
effect if no waves are present.

25 DS_GWS_INIT GDS Only: Initialize a barrier or semaphore resource.

// Determine the GWS resource to work on
rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];

// Get the value to use in init
index = find_first_valid(vector mask)
value = DATA[thread: index]

// Set the state of the resource
state.counter[rid] = 1lsb(value); //limit #waves
state.flag[rid] = ©;

return rd_done; //release calling wave
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26 DS_GWS_SEMA_V GDS Only: The GWS resource indicated will process this opcode
by updating the counter and labeling the resource as a
semaphore.

//Determine the GWS resource to work on
rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];

//Incr the state counter of the resource
state.counter[rid] += 1;

state.type = SEMAPHORE;

return rd_done; //release calling wave

This action will release one waved if any are queued in this

resource.

27 DS_GWS_SEMA_BR GDS Only: The GWS resource indicated will process this opcode
by updating the counter by the bulk release delivered count and
labeling the resource as a semaphore.

//Determine the GWS resource to work on

rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];
index = find first valid (vector mask)

count = DATA[thread: index];

//Add count to the resource state counter
state.counter[rid] += count;

state.type = SEMAPHORE;

return rd_done; //release calling wave

This action will release count number of waves, immediately if
queued, or as they arrive from the noted resource.

28 DS_GWS_SEMA P GDS Only: The GWS resource indicated will process this opcode
by queueing it until counter enables a release and then
decrementing the counter of the resource as a semaphore.

//Determine the GWS resource to work on

rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];
state.type = SEMAPHORE;

ENQUEUE until(state[rid].counter > 0)
state[rid].counter -= 1;

return rd_done;
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29 DS_GWS_BARRIER GDS Only: The GWS resource indicated will process this opcode
by queueing it until barrier is satisfied. The number of waves
needed is passed in as DATA of first valid thread.

//Determine the GWS resource to work on

rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + OFFSETO[5:0];
index = find first valid (vector mask);

value = DATA[thread: index];

// Input Decision Machine
state.type[rid] = BARRIER;
if(state[rid].counter <= 8) then
thread[rid].flag = state[rid].flag;
ENQUEUE ;
state[rid].flag = !state.flag;
state[rid].counter = value;
return rd_done;

else
state[rid].counter -= 1;
thread.flag = state[rid].flag;
ENQUEUE ;

endif.

Since the waves deliver the count for the next barrier, this
function can have a different size barrier for each occurrence.

// Release Machine
if(state.type == BARRIER) then
if(state.flag != thread.flag) then
return rd_done;
endif;
endif.

30 DS_WRITE_BS8 Byte write.

MEM[ADDR] = DATA[7:0].

31 DS_WRITE_B16 Short write.
MEM[ADDR] = DATA[15:0].
32 DS_ADD_RTN_U32 // 32bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

33 DS_SUB_RTN_U32 // 32bit
tmp = MEM[ADDR];
MEM[ADDR] -= DATA;
RETURN_DATA = tmp.
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34 DS_RSUB_RTN_U32 Subtraction with reversed operands.

35

36

37

38

39

40

41

42

43

DS_INC_RTN_U32

DS_DEC_RTN_U32

DS_MIN_RTN_I32

DS_MAX_RTN_[32

DS_MIN_RTN_U32

DS_MAX_RTN_U32

DS_AND_RTN_B32

DS_OR_RTN_B32

DS_XOR_RTN_B32

12.13. LDS & GDS Instructions

// 32bit
addr = VGPR[ADDR]+{INST1,INSTO};

tmp = DS[addr].u32;

DS[addr].u32 = VGPR[DATA®].u32-DS[addr].u32;
VGPR[VDST] .u32

tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA) ? © : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp == @ || tmp > DATA) ? DATA : tmp - 1; //

unsigned compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] *= DATA;
RETURN_DATA = tmp.
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44 DS_MSKOR_RTN_B32 Masked dword OR, D@ contains the mask and D1 contains the new
value.
// 32bit

tmp = MEM[ADDR];
MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2;
RETURN_DATA = tmp.

45 DS_WRXCHG_RTN_B32 Write-exchange operation.
tmp = MEM[ADDR];

MEM[ADDR] = DATA;
RETURN_DATA = tmp.

46 DS_WRXCHG2_RTN_B3 Write-exchange 2 separate dwords.
2

47 DS_WRXCHG2ST64_RT Write-exchange 2 separate dwords with a stride of 64 dwords.
N_B32

48 DS_CMPST_RTN_B32 Compare and store. Caution, the order of src and cmp are the

*opposite* of the BUFFER_ATOMIC_CMPSWAP opcode.

// 32bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

49 DS_CMPST_RTN_F32 Floating point compare and store that handles NaN/INF/denormal
values. Caution, the order of src and cmp are the *oppositex
of the BUFFER_ATOMIC_FCMPSWAP opcode.

// 32bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

50 DS_MIN_RTN_F32 Floating point minimum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMIN.

// 32bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (cmp < tmp) ? src : tmp.
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51

52

53

54

55

56

57

58

59

60

DS_MAX_RTN_F32

DS_WRAP_RTN_B32

DS_SWIZZLE_B32

DS_READ_B32

DS_READ2_B32

DS_READ2ST64_B32

DS_READ_[8

DS_READ_U8

DS_READ_I16

DS_READ_U16

12.13. LDS & GDS Instructions

AMDZ1

Description

Floating point maximum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMAX.

// 32bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (tmp > cmp) ? src : tmp.

tmp = MEM[ADDR];
MEM[ADDR] = (tmp >= DATA) ? tmp - DATA : tmp + DATA2;
RETURN_DATA = tmp.

Dword swizzle, no data is written to LDS memory. See next
section for details.

Dword read.

RETURN_DATA = MEM[ADDR].

Read 2 dwords.

RETURN_DATA[O]
RETURN_DATA[1]

*

MEM[ADDR + OFFSET®
MEM[ADDR + OFFSET1

4]1;
4].

*

Read 2 dwords with a larger stride.

RETURN_DATA[O] MEM[ADDR + OFFSET® * 4 * 64];
RETURN_DATA[1] = MEM[ADDR + OFFSET1 * 4 * 64].

Signed byte read.

RETURN_DATA = signext(MEM[ADDR][7:0]).

Unsigned byte read.

RETURN_DATA = {24'ho,MEM[ADDR][7:0]}.

Signed short read.

RETURN_DATA = signext(MEM[ADDR][15:0]).

Unsigned short read.

RETURN_DATA = {16'h@,MEM[ADDR][15:0]}.
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61 DS_CONSUME LDS & GDS. Subtract (count_bits(exec_mask)) from the value
stored in DS memory at (M@.base + instr_offset). Return the
pre-operation value to VGPRs.

The DS will subtract count_bits(vector valid mask) from the
value stored at address M@.base + instruction based offset and
return the pre-op value to all valid lanes. This op can be
used in both the LDS and GDS. 1In the LDS this address will be
an offset to HWBASE and clamped by M@.size, but in the GDS the
M@.base constant will have the physical GDS address and the
compiler will always force offset to zero. In GDS it is for
the traditional append buffer operations. In LDS it is for
local thread group appends and can be used to regroup divergent
threads. The use of the M@ register enables the compiler to do
indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler will always use a
zero for {offsetl,offset®}, for LDS the compiler will use
{offset1,o0ffset®} to provide the relative address to the append
counter in the LDS for runtime index offset or index.

Inside DS --- Do one atomic add for first valid lane and
broadcast result to all valid lanes. Offset = O@ffsetl1:o0ffset@;
Interpreted as byte offset --- For 18xx LDS designs only
aligned atomics will be supported, so 2 1lsbs offset will always
need to be zero.

addr = M@.base + offset; // offset by LDS HWBASE, limit to

M.size
rtnval = LDS(addr);
LDS(addr) = LDS(addr) - countbits(valid mask);

GPR[VDST] = rtnval; // return to all valid threads
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62 DS_APPEND LDS & GDS. Add (count_bits(exec_mask)) to the value stored in
DS memory at (MO@.base + instr_offset). Return the pre-operation
value to VGPRs.

The DS will add count_bits(vector valid mask) from the value
stored at address M@.base + instruction based offset and return
the pre-op value to all valid lanes. This op can be used in
both the LDS and GDS. In the LDS this address will be an
offset to HWBASE and clamped by M@.size, but in the GDS the
M@.base constant will have the physical GDS address and the
compiler will always force offset to zero. In GDS it is for
the traditional append buffer operations. In LDS it is for
local thread group appends and can be used to regroup divergent
threads. The use of the M@ register enables the compiler to do
indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler will always use a
zero for {offsetl,offset®}, for LDS the compiler will use
{offset1,o0ffset®} to provide the relative address to the append
counter in the LDS for runtime index offset or index.

Inside DS --- Do one atomic add for first valid lane and
broadcast result to all valid lanes. Offset = O@ffsetl1:o0ffset@;
Interpreted as byte offset --- For 18xx LDS designs only
aligned atomics will be supported, so 2 1lsbs offset will always
need to be zero.

addr = M@.base + offset; // offset by LDS HWBASE, limit to

M.size
rtnval = LDS(addr);
LDS(addr) = LDS(addr) + countbits(valid mask);

GPR[VDST] = rtnval; // return to all valid threads
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63 DS_ORDERED_COUNT  GDS-only. Add (count_bits(exec_mask)) to one of 4 dedicated
ordered-count counters (aka 'packers'). Additional bits of
instr.offset field are overloaded to hold packer-id, 'last'.

GDS Only: Intercepted by GDS and processed by ordered append
module. The ordered append module will queue request until
this request wave is the oldest in the queue at which time the
oldest wave request will be dispatched to the DS with an atomic
add for execution and broadcast back to ALL lanes of a wave.
This is a ordered count operation and can only be called once
per issue with the release flag set. If the release flag is
not sent, the wave will have full control over the order count
module until it sends a request with the release flag.

Unlike append/consume this op needs to be sent even if there
are no valid lanes when it is issued. The GDS will add zero
and advance the tracking walker that needs to match up with the
dispatch counter.

The sequencer will send the following data to identify which
wave to return the result to:

SQ will prepare a SH_SX_EXPCMD.gds_data.pipeline_id for the
ordered count to use to select the correct pipeline's tracking
data. Additionally pixel waves will use 4 counters depending
on the packer sourcing the pixel waves and generating the
launch order.

Pipeline_id = ring_id + !pixel wave type;
0 = ring@ pixel wave

1 = ring® CS
2 = ring1 CS
3 = ring2 CS

Physical_wave_id = {SH_SX_EXPCMD.se_id, SH_SX_EXPCMD.sh_id,
SH_SX_EXPCMD.wave_buf_id}

SH_SX_EXPCMD.gds_size from the M@.size register will contain
the SPI inserted pkr_id and logical_wave_id for pixel waves and
launch order logical wave_id for compute shaders.

The pixel shader will be using four counters for each instance,
so the pkr_id will need to be added to the gds_base to act on
the correct counter.

index = find first valid (vector mask)

count = src@[index][31:0];

Pkr_id = SH_SX_EXPCMD.gds_size[1:0];

gds_atomic_address[15:2] = SH_SX_EXPCMD.gds_base[15:2] will
contain the dword address in the ds for the count accumulation

counter.
ds_address[15:2] = SH_SX_EXPCMD.gds_base[15:2] +
offset8[7:2] + (pipeline_id == B)?Pkr_id:®@

//2 new control signals
Wave_release = Offset1[0];
Wave_done = offset1[1];
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64

65

66

67

68

69

70

71

72

73

DS_ADD_U64

DS_SUB_U64

DS_RSUB_U64

DS_INC_U64

DS_DEC_U64

DS_MIN_164

DS_MAX_164

DS_MIN_U64

DS_MAX_U64

DS_AND_B64

12.13. LDS & GDS Instructions

Description

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA[B:1];
RETURN_DATA[B:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA[@:1];
RETURN_DATA[B:1] = tmp.

Subtraction with reversed operands.

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] = DATA - MEM[ADDR];

RETURN_DATA = tmp.

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA[8:1]) ? @

compare
RETURN_DATA[O:1] = tmp.

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp == 0 || tmp >

- 1; // unsigned compare
RETURN_DATA[©:1] = tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[B:1]
compare

RETURN_DATA[@:1] = tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[B:1]
compare

RETURN_DATA[@:1] = tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[©:1]
unsigned compare

RETURN_DATA[@:1] = tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[©:1]
unsigned compare

RETURN_DATA[@:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA[B:1];
RETURN_DATA[B:1] = tmp.

tmp)

tmp)

tmp)

tmp)

AMDZ1

:tmp + 1; // unsigned

DATA[0:1]) ? DATA[@:1] : tmp

? DATA[B:1]

? DATA[B:1]

? DATA[B:1]

? DATA[B:1]

: tmp; // signed

: tmp; // signed

:otmp; //

:otmp; //
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74

75

76

7

78

79

80

81

DS_OR_B64

DS_XOR_B64

DS_MSKOR_B64

DS_WRITE_B64

DS_WRITE2_B64

DS_WRITE2ST64_B64

DS_CMPST_B64

DS_CMPST_F64

12.13. LDS & GDS Instructions

Description

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA[@:1];
RETURN_DATA[B:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] *= DATA[@:1];
RETURN_DATA[B:1] = tmp.

AMDZ1

Masked dword OR, DO contains the mask and D1 contains the new

value.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2;
RETURN_DATA = tmp.

Write qword.

// 64bit
MEM[ADDR] = DATA.

Write 2 qwords.
// 64bit

MEM[ADDR + OFFSET@® * 8] = DATA;
MEM[ADDR + OFFSET1 * 8] DATA2.

Write 2 qwords with a larger stride.

// 64bit
MEM[ADDR + OFFSET@® * 8 * 64] = DATA;
MEM[ADDR + OFFSET1 * 8 * 64] = DATA2.

Compare and store. Caution, the order of src and cmp are the

*oppositex of the BUFFER_ATOMIC_CMPSWAP_X2 opcode.

// 64bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating point compare and store that handles NaN/INF/denormal
values. Caution, the order of src and cmp are the *oppositex

of the BUFFER_ATOMIC_FCMPSWAP_X2 opcode.

// 64bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.
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82

83

85

96

97

98

99

100

DS_MIN_F64

DS_MAX_F64

DS_ADD_RTN_F32

DS_ADD_RTN_U64

DS_SUB_RTN_U64

DS_RSUB_RTN_U64

DS_INC_RTN_U64

DS_DEC_RTN_U64

12.13. LDS & GDS Instructions

AMDZ1

Description

Floating point minimum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMIN_X2.

// 64bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (cmp < tmp) ? src : tmp.

Floating point maximum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMAX_X2.

// 64bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (tmp > cmp) ? src : tmp.

Floating point add that handles NaN/INF/denormal values.

float tmp = MEM[ADDR].f32;
MEM[ADDR].f32 += DATA®.f32;
VDST.f32 = tmp;

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA[@:1];
RETURN_DATA[B:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA[@:1];
RETURN_DATA[B:1] = tmp.

Subtraction with reversed operands.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = DATA - MEM[ADDR];
RETURN_DATA = tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA[©:1]) ? @ : tmp + 1; // unsigned
compare

RETURN_DATA[B:1]

tmp.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp == @ || tmp > DATA[@:1]) ? DATA[@:1] : tmp
- 1; // unsigned compare

RETURN_DATA[©:1] = tmp.
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101 DS_MIN_RTN_164 /] 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[8:1] < tmp) ? DATA[@:1] : tmp; // signed
compare
RETURN_DATA[08:1] = tmp.

102 DS_MAX_RTN_l64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[©@:1] > tmp) ? DATA[@:1] : tmp; // signed
compare
RETURN_DATA[@:1] = tmp.

103 DS_MIN_RTN_U64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[@:1] < tmp) ? DATA[@:1] : tmp; //
unsigned compare
RETURN_DATA[@:1] = tmp.

104 DS _MAX_RTN_U64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[@:1] > tmp) ? DATA[@:1] : tmp; //
unsigned compare
RETURN_DATA[B:1] = tmp.

105 DS AND_RTN_B64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] &= DATA[@:1];
RETURN_DATA[B:1] = tmp.

106 DS OR_RTN_B64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] |= DATA[B:1];
RETURN_DATA[B:1] = tmp.

107 DS XOR_RTN_B64 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] A= DATA[@:1];
RETURN_DATA[B:1] = tmp.

108 DS_MSKOR_RTN_B64 Masked dword OR, D@ contains the mask and D1 contains the new
value.

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2;
RETURN_DATA = tmp.

109 DS_WRXCHG_RTN_B64 Write-exchange operation.
tmp = MEM[ADDR];

MEM[ADDR] = DATA;
RETURN_DATA = tmp.

110 DS_WRXCHG2_RTN_B6 Write-exchange 2 separate qwords.
4
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111 DS_WRXCHG2ST64_RT Write-exchange 2 gwords with a stride of 64 qwords.
N_B64
112 DS_CMPST_RTN_B64 Compare and store. Caution, the order of src and cmp are the

*oppositex of the BUFFER_ATOMIC_CMPSWAP_X2 opcode.

// 64bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

113 DS_CMPST_RTN_F64 Floating point compare and store that handles NaN/INF/denormal
values. Caution, the order of src and cmp are the *oppositex
of the BUFFER_ATOMIC_FCMPSWAP_X2 opcode.

// 64bit

tmp = MEM[ADDR];
src = DATA2;

cmp = DATA;

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

114 DS_MIN_RTN_F64 Floating point minimum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMIN_X2.

// 64bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (cmp < tmp) ? src : tmp.

115 DS_MAX_RTN_F64 Floating point maximum that handles NaN/INF/denormal values.
Note that this opcode is slightly more general-purpose than
BUFFER_ATOMIC_FMAX_X2.

// 64bit

tmp = MEM[ADDR];
src = DATA;

cmp = DATA2;

MEM[ADDR] = (tmp > cmp) ? src : tmp.

118 DS_READ_B64 Read 1 qword.

RETURN_DATA = MEM[ADDR].

119 DS_READ2_B64 Read 2 qwords.

RETURN_DATA[O]
RETURN_DATA[1] = MEM[ADDR + OFFSET1

MEM[ADDR + OFFSET@ * 8];
8].

*

120 DS_READ2ST64 _B64 Read 2 gwords with a larger stride.

RETURN_DATA[O]
RETURN_DATA[1]

MEM[ADDR + OFFSETO * 8 * 64];
MEM[ADDR + OFFSET1 % 8 * 64].
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126 DS_CONDXCHG32_RTN
_B64

160 DS_WRITE_B8_D16_HI

161 DS_WRITE_B16_D16_HI

162 DS_READ_U8 D16

163 DS_READ_U8 D16_HI

164 DS_READ_I8_D16

165 DS_READ_I8_D16_HI

166 DS_READ_U16_D16

167 DS_READ_U16_D16_HI

176 DS_WRITE_ADDTID_B32

177 DS_READ_ADDTID_B32

12.13. LDS & GDS Instructions

AMDZ1

Description

Conditional write exchange.

Byte write in to high word.
MEM[ADDR] = DATA[23:16].
Short write in to high word.
MEM[ADDR] = DATA[31:16].

Unsigned byte read with masked return to lower word.

RETURN_DATA[15:8] = {8'h®,MEM[ADDR][7:0]}.

Unsigned byte read with masked return to upper word.

RETURN_DATA[31:16] = {8'ho,MEM[ADDR][7:0]}.

Signed byte read with masked return to lower word.

RETURN_DATA[15:8] = signext(MEM[ADDR][7:0]).

Signed byte read with masked return to upper word.

RETURN_DATA[31:16] = signext(MEM[ADDR][7:0]).

Unsigned short read with masked return to lower word.

RETURN_DATA[15:8] = MEM[ADDR][15:8].

Unsigned short read with masked return to upper word.

RETURN_DATA[31:8] = MEM[ADDR][15:8].

Write dword with thread ID offset.

LDS_GS[LDS_BASE + {OFFSET1,0FFSET@} + MO[15:0] + TID*4].u32
= VGPR[DATA®] .u32

Dword read with thread ID offset.

VGPR[VDST].u32 = LDS_GS[LDS_BASE + {OFFSET1,0FFSETO} +
MB[15:8] + TID*4].u32
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178 DS_PERMUTE_B32
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Description

// VGPR[index][thread_id] is the VGPR RAM
// VDST, ADDR and DATA® are from the microcode DS encoding
tmp[0..63] = 0@
for i in 0..63 do
// If a source thread is disabled, it will not propagate
data.
next if 'EXEC[1i]
// ADDR needs to be divided by 4.
// High-order bits are ignored.
dst_lane = floor((VGPR[ADDR][i] + OFFSET) / 4) mod 64
tmp[dst_lane] = VGPR[DATA@][i]
endfor
// Copy data into destination VGPRs. If multiple sources
// select the same destination thread, the highest-numbered
// source thread wins.
for i in 0..63 do
next if 'EXEC[i]
VGPR[VDST][i] = tmp[il
endfor

Forward permute. This does not access LDS memory and may be
called even if no LDS memory is allocated to the wave. It uses
LDS hardware to implement an arbitrary swizzle across threads
in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

If multiple sources map to the same destination lane, the final
value is not predictable but will be the value from one of the
writers.

See also DS_BPERMUTE_B32.

Examples (simplified 4-thread wavefronts):

VGPR[SRCO] {A B, C, D}
VGPR[ADDR] {0,090 12, 4}
EXEC = OxF, OFFSET = ©

VGPR[VDST] := { B, D, @, C }

VGPR[SRCB] = { A, B, C, D}
VGPR[ADDR] = { @, @, 12, 4 }
EXEC = OxA, OFFSET = @

VGPR[VDST] := { -, D, -, @ }
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Opcode Name Description

179 DS _BPERMUTE_B32 // VGPR[index][thread_id] is the VGPR RAM
// VDST, ADDR and DATA® are from the microcode DS encoding
tmp[0..63] = 0@
for i in 0..63 do
// ADDR needs to be divided by 4.
// High-order bits are ignored.
src_lane = floor((VGPR[ADDR][i] + OFFSET) / 4) mod 64
// EXEC is applied to the source VGPR reads.
next if 'EXEC[src_lane]
tmp[i] = VGPR[DATA@][src_lane]
endfor
// Copy data into destination VGPRs. Some source
// data may be broadcast to multiple lanes.
for i in 0..63 do
next if 'EXEC[i]
VGPR[VDST][i] = tmp[i]
endfor

Backward permute. This does not access LDS memory and may be
called even if no LDS memory is allocated to the wave. It uses
LDS hardware to implement an arbitrary swizzle across threads
in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

Note that EXEC mask is applied to both VGPR read and write. If
src_lane selects a disabled thread, zero will be returned.

See also DS_PERMUTE_B32.

Examples (simplified 4-thread wavefronts):

VGPR[SRCO] {A B, C, D}
VGPR[ADDR] {0,090, 12, 4}
EXEC = OxF, OFFSET = ©

VGPR[VDST] := { A, A, D, B}

VGPR[SRCB] = { A, B, C, D }

VGPR[ADDR] = { @, @, 12, 4}

EXEC = OxA, OFFSET = ©

VGPR[VDST] := { -, @, -, B}
222 DS_WRITE_B96 Tri-dword write.

{MEM[ADDR + 8], MEM[ADDR + 4], MEM[ADDR]} = DATA[95:0].

223 DS_WRITE_B128 Quad-dword write.

{MEM[ADDR + 12], MEM[ADDR + 8], MEM[ADDR + 4], MEM[ADDR]} =
DATA[127:0].

254 DS_READ_B96 Tri-dword read.

255 DS_READ_B128 Quad-dword read.
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12.13.1. DS_SWIZZLE_B32 Details

Dword swizzle, no data is written to LDS memory.

Swizzles input thread data based on offset mask and returns; note does not read or write the DS
memory banks.

Note that reading from an invalid thread results in 0x0.

This opcode supports two specific modes, FFT and rotate, plus two basic modes which swizzle
in groups of 4 or 32 consecutive threads.

The FFT mode (offset >= 0xe000) swizzles the input based on offset[4:0] to support FFT
calculation. Example swizzles using input {1, 2, ... 20} are:

Offset[4:0]: Swizzle 0x00:
{1,11,9,19,5,15,d,1d,3,13,b,1b,7,17,f,1f,2,12,a,1a,6,16,e,1e,4,14,c,1c,8,18,10,20} 0x10:
{1,9,5d,3,b,7,f2,a,6,e,4,¢c,8,10,11,19,15,1d,13,1b,17,1f,12,1a,16,1e,14,1¢,18,20} Ox1f: No
swizzle

The rotate mode (offset >= 0xc000 and offset < 0xe000) rotates the input either left (offset[10]
== 0) or right (offset[10] == 1) a humber of threads equal to offset[9:5]. The rotate mode also
uses a mask value which can alter the rotate result. For example, mask == 1 will swap the odd
threads across every other even thread (rotate left), or even threads across every other odd
thread (rotate right).

Offset[9:5]: Swizzle 0x01, mask=0, rotate left:
{2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f,20,1} 0x01,
mask=0, rotate right:
{20,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f} 0x01,
mask=1, rotate left:
{2,1,4,7,6,5,8,b,a,9,c,f,e,d,10,13,12,11,14,17,16,15,18,1b,1a,19,1c,1f,1e,1d,20,3} 0x01,
mask=1, rotate right:
{1e,1,4,3,2,5,8,7,6,9,¢c,b,a,d,10,f,e,11,14,13,12,15,18,17,16,19,1c,1b,1a,1d,20,1f}

If offset < 0xc000, one of the basic swizzle modes is used based on offset[15]. If offset[15] == 1,
groups of 4 consecutive threads are swizzled together. If offset[15] == 0, all 32 threads are
swizzled together. The first basic swizzle mode (when offset[15] == 1) allows full data sharing
between a group of 4 consecutive threads. Any thread within the group of 4 can get data from
any other thread within the group of 4, specified by the corresponding offset bits --- [1:0] for the
first thread, [3:2] for the second thread, [5:4] for the third thread, [7:6] for the fourth thread. Note
that the offset bits apply to all groups of 4 within a wavefront; thus if offset[1:0] == 1, then
threadO will grab threadl, thread4 will grab thread5, etc.

The second basic swizzle mode (when offset[15] == 0) allows limited data sharing between 32

consecutive threads. In this case, the offset is used to specify a 5-bit xor-mask, 5-bit or-mask,
and 5-bit and-mask used to generate a thread mapping. Note that the offset bits apply to each
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group of 32 within a wavefront. The details of the thread mapping are listed below. Some
example usages:

SWAPX16 : xor_mask = 0x10, or_mask = 0x00, and_mask = Ox1f
SWAPXS : xor_mask = 0x08, or_mask = 0x00, and_mask = 0x1f
SWAPX4 : xor_mask = 0x04, or_mask = 0x00, and_mask = 0x1f
SWAPX2 : xor_mask = 0x02, or_mask = 0x00, and_mask = 0x1f
SWAPX1 : xor_mask = 0x01, or_mask = 0x00, and_mask = Ox1f
REVERSEX32 : xor_mask = 0x1f, or_mask = 0x00, and_mask = Ox1f
REVERSEX16 : xor_mask = 0x0f, or_mask = 0x00, and_mask = Ox1f
REVERSEXS : xor_mask = 0x07, or_mask = 0x00, and_mask = Ox1f
REVERSEX4 : xor_mask = 0x03, or_mask = 0x00, and_mask = Ox1f
REVERSEX2 : xor_mask = 0x01 or_mask = 0x00, and_mask = Ox1f
BCASTX32: xor_mask = 0x00, or_mask = thread, and_mask = 0x00
BCASTX16: xor_mask = 0x00, or_mask = thread, and_mask = 0x10
BCASTXS8: xor_mask = 0x00, or_mask = thread, and_mask = 0x18
BCASTX4: xor_mask = 0x00, or_mask = thread, and_mask = 0x1c
BCASTX2: xor_mask = 0x00, or_mask = thread, and_mask = Ox1le

Pseudocode follows:

offset = offsetl1:offsetO;

if (offset >= Bxe008) {

// FFT decomposition

mask = offset[4:0];

for (i = 0; i < 64; i++) {
j = reverse_bits(i & ox1f);
j = (j >> count_ones(mask));
j \|= (i & mask);
j \|= 1 & 06x20;
thread_out[i] = thread_valid[j] ? thread_in[j] : @;
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} else if (offset >= 0xc000) {

// rotate

rotate = offset[9:5];

mask = offset[4:0];

if (offset[10]) {
rotate = -rotate;

}

for (i = 0; i < 64; i++) {
j = (i & mask) \| ((i + rotate) & ~mask);
j \|= 1 & 0x20;
thread_out[i] = thread_valid[j] ? thread_in[j] : ©;

} else if (offset[15]) {
// full data sharing within 4 consecutive threads
for (i1 = 0; i < 64; i+=4) {
thread_out[i+0] = thread_valid[i+offset[1:0]]?thread_in[i+offset[1:0]]:0;
thread_out[i+1] = thread_valid[i+offset[3:2]]?thread_in[i+offset[3:2]]:0;
thread_out[i+2] = thread_valid[i+offset[5:4]]?thread_in[i+offset[5:4]]:0;
thread_out[i+3] = thread_valid[i+offset[7:6]]?thread_in[i+offset[7:6]]:0;

} else { // offset[15] ==

// limited data sharing within 32 consecutive threads

xor_mask = offset[14:10];

or_mask = offset[9:5];

and_mask = offset[4:0];

for (i = 0; i < 64; i++) {
j = (((i & 8x1f) & and_mask) \| or_mask) " xor_mask;
j \|= (i & 0x20); // which group of 32
thread_out[i] = thread_valid[j] ? thread_in[j] : ©;

12.13.2. LDS Instruction Limitations

Some of the DS instructions are available only to GDS, not LDS. These are:

- DS_GWS_SEMA_RELEASE_ALL
« DS_GWS_INIT

- DS_GWS_SEMA_V

- DS_GWS_SEMA BR

« DS_GWS_SEMA_P

- DS_GWS_BARRIER

« DS_ORDERED_COUNT
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12.14. MUBUF Instructions

The bitfield map of the MUBUF format is:

31

0

1 ‘ 1 ‘ 1 I 0 ‘ 0 ‘ 0 |OPM‘ - é)P7‘ - E%%%LDS
: b

[ I I [ I [ [ T T
DLC ’GLC idxe%offen| ‘ OFFSET+,

MUBUF

T _ 1 T
SOFFSET; (sgpr)

I I T T

[ | | T | I I T
SRSRCs (V# sgpr VADDRs (vgpr)

7 T T T T 1
‘TFE’SLC _ VDATAg (vgpr: src or dst) ‘

63

where:

OFFSET =
OFFEN =
IDXEN =
GLC =
LDS =
oP =
VADDR =
VDATA =
SRSRC =
SLC =
TFE =
SOFFSET =

Opcode Name

32

Unsigned immediate byte offset.

Send offset either as VADDR or as zero..
Send index either as VADDR or as zero.
Global coherency.

Data read from/written to LDS or VGPR.
Instruction Opcode.

VGPR address source.

Destination vector GPR.

Scalar GPR that specifies resource constant.
System level coherent.

Texture fail enable.

Byte offset added to the memory address of an SGPR.

Description

0 BUFFER_LOAD_FORMAT_X Untyped buffer load 1 dword with format conversion.

1 BUFFER_LOAD_FORMAT_XY Untyped buffer load 2 dwords with format conversion.

2 BUFFER_LOAD_FORMAT_XYZ Untyped buffer load 3 dwords with format conversion.

3 BUFFER_LOAD_FORMAT_XYZW  Untyped buffer load 4 dwords with format conversion.

4 BUFFER_STORE_FORMAT_X Untyped buffer store 1 dword with format conversion.

5 BUFFER_STORE_FORMAT_XY Untyped buffer store 2 dwords with format conversion.

6 BUFFER_STORE_FORMAT_XYZ Untyped buffer store 3 dwords with format conversion.

7 BUFFER_STORE_FORMAT_XYZW Untyped buffer store 4 dwords with format conversion.

8 BUFFER_LOAD_UBYTE Untyped buffer load unsigned byte (zero extend to VGPR
destination).

9 BUFFER_LOAD_SBYTE Untyped buffer load signed byte (sign extend to VGPR
destination).

10 BUFFER_LOAD_USHORT Untyped buffer load unsigned short (zero extend to VGPR
destination).

11 BUFFER_LOAD_SSHORT Untyped buffer load signed short (sign extend to VGPR
destination).

12 BUFFER_LOAD_DWORD Untyped buffer load dword.

13 BUFFER_LOAD_DWORDX2 Untyped buffer load 2 dwords.

14 BUFFER_LOAD_DWORDX4 Untyped buffer load 4 dwords.

12.14. MUBUF Instructions
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15 BUFFER_LOAD_DWORDX3

24 BUFFER_STORE_BYTE

25 BUFFER_STORE_BYTE_D16_HI

26 BUFFER_STORE_SHORT

27 BUFFER_STORE_SHORT_D16_HI

28 BUFFER_STORE_DWORD

29 BUFFER_STORE_DWORDX2

30 BUFFER_STORE_DWORDX4

31 BUFFER_STORE_DWORDX3

32 BUFFER_LOAD_UBYTE_D16

33 BUFFER_LOAD_UBYTE_D16_HI

34 BUFFER_LOAD_SBYTE_D16

35 BUFFER_LOAD_SBYTE_D16_HI

36 BUFFER_LOAD_SHORT D16

37 BUFFER_LOAD_SHORT_D16_HlI

38 BUFFER_LOAD_FORMAT_D16_HI
X

39 BUFFER_STORE_FORMAT D16_
HI_X

48 BUFFER_ATOMIC_SWAP

49 BUFFER_ATOMIC_CMPSWAP

12.14. MUBUF Instructions

AMDZ1

Description

Untyped buffer load 3 dwords.

Untyped buffer store byte. Stores S0[7:0].

Untyped buffer store byte. Stores S0[23:16].

Untyped buffer store short. Stores S8[15:0].

Untyped buffer store short. Stores S0[31:16].

Untyped buffer store dword.

Untyped buffer store 2 dwords.

Untyped buffer store 4 dwords.

Untyped buffer store 3 dwords.

DO[15:8] = {8'h@, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[31:16] = {8'ho, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[15:8] = {8'h@, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[31:16] = {8'ho, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[15:8] = MEM[ADDR].

Untyped buffer load short.

DO[31:16] = MEM[ADDR].

Untyped buffer load short.

DO[31:16] = MEM[ADDR].

Untyped buffer load 1 dword with format conversion.

Untyped buffer store 1 dword with format conversion.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = DATA;

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
src = DATA[O];
cmp = DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] =

T tmp;
tmp.
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50

51

53

54

55

56

57

58

59

60

BUFFER_ATOMIC_ADD

BUFFER_ATOMIC_SUB

BUFFER_ATOMIC_SMIN

BUFFER_ATOMIC_UMIN

BUFFER_ATOMIC_SMAX

BUFFER_ATOMIC_UMAX

BUFFER_ATOMIC_AND

BUFFER_ATOMIC_OR

BUFFER_ATOMIC_XOR

BUFFER_ATOMIC_INC

12.14. MUBUF Instructions

Description

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA
compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA
compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA
compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA
compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] *= DATA;
RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];

tmp)

tmp)

tmp)

tmp)

?

?

DATA

DATA

DATA

DATA

MEM[ADDR] = (tmp >= DATA) ? 0 :

compare
RETURN_DATA = tmp.

:otmp;

tmp;

:otmp;

:otmp;

/1

/7

1/

/17

AMDZ1

signed

unsigned

signed

unsigned

tmp + 1; // unsigned
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61 BUFFER_ATOMIC_DEC
62 BUFFER_ATOMIC_FCMPSWAP
63 BUFFER_ATOMIC_FMIN

64 BUFFER_ATOMIC_FMAX

80 BUFFER_ATOMIC_SWAP_X2

81 BUFFER_ATOMIC_CMPSWAP_X2
82 BUFFER_ATOMIC_ADD_X2

83 BUFFER_ATOMIC_SUB_X2

12.14. MUBUF Instructions

AMDZ1

Description

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp ==

0 || tmp > DATA) ? DATA : tmp -

; // unsigned compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
DATA[®@];
cmp = DATA[1];
MEM[ADDR] = (tmp ==
RETURN_DATA[B] =

Src =

cmp) ? src
tmp.

: tmp;

Floating-point compare swap (handles NaN/INF/denorm).

// 32bit
tmp = MEM[ADDR];
src = DATA[O];

MEM[ADDR] = (src < tmp) ? src
RETURN_DATA[®@] =

: tmp;
tmp.

Floating-point compare (handles NaN/INF/denorm).

// 32bit
tmp = MEM[ADDR];
src = DATA[O];

MEM[ADDR] = (src > tmp) ? src
RETURN_DATA[@] = tmp.

: tmp;

Floating-point compare (handles NaN/INF/denorm).

// 64bit
tmp = MEM[ADDR];
MEM[ADDR] = DATA[@:1];

RETURN_DATA[@:1] = tmp.

// 64bit

MEM[ADDR] ;
DATA[@:1];
cmp = DATA[2:3];
MEM[ADDR] = (tmp ==
RETURN_DATA[O@:1] =

tmp =

sSrc

cmp) ? src : tmp;

tmp.

// 64bit
tmp = MEM[ADDR];
MEM[ADDR] += DATA[0:1];

RETURN_DATA[@:1] = tmp.
// 64bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA[@:1];
RETURN_DATA[@:1] = tmp.
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85

86

87

88

89

90

91

92

93

BUFFER_ATOMIC_SMIN_X2

BUFFER_ATOMIC_UMIN_X2

BUFFER_ATOMIC_SMAX_X2

BUFFER_ATOMIC_UMAX_X2

BUFFER_ATOMIC_AND_X2

BUFFER_ATOMIC_OR_X2

BUFFER_ATOMIC_XOR_X2

BUFFER_ATOMIC_INC_X2

BUFFER_ATOMIC_DEC_X2

12.14. MUBUF Instructions

Description

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[O@:1]

signed compare
RETURN_DATA[®@:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] -= (DATA[©@:1]

unsigned compare
RETURN_DATA[®@:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] -= (DATA[@:1]

signed compare
RETURN_DATA[O:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] -= (DATA[@:1]

unsigned compare
RETURN_DATA[O:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] &= DATA[O@:1];

RETURN_DATA[0:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] |= DATA[@:1];

RETURN_DATA[0:1]

// 64bit
tmp = MEM[ADDR];

tmp.

MEM[ADDR] *= DATA[O@:1];

RETURN_DATA[0:1]

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp
unsigned compare

RETURN_DATA[®@:1]

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp == @ || tmp > DATA[@:1]) ?

>= DATA[8:1]) ? @ :

tmp.

tmp.

tmp)

tmp)

tmp)

tmp)

?

?

?

?

AMDA
DATA[@:1] : tmp; //
DATA[@:1] : tmp; //
DATA[@:1] : tmp; //
DATA[@:1] : tmp; //

tmp + 1; //

DATA[@:1] : tmp - 1; // unsigned compare

RETURN_DATA[0:1]

tmp.
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94 BUFFER_ATOMIC_FCMPSWAP_X
2

95 BUFFER_ATOMIC_FMIN_X2

96 BUFFER_ATOMIC_FMAX_X2

113 BUFFER_GLO_INV

114 BUFFER_GL1_INV

128 BUFFER_LOAD_FORMAT D16_X

129 BUFFER_LOAD_FORMAT D16_XY

130 BUFFER_LOAD_FORMAT_D16_XY
z

131 BUFFER_LOAD_FORMAT D16_XY
ZW

132 BUFFER_STORE_FORMAT_D16_X

133 BUFFER_STORE_FORMAT _D16_
XY

134 BUFFER_STORE_FORMAT_D16_
XYZ

135 BUFFER_STORE_FORMAT D16_

XYZW

AMDZ1

Description

// 64bit
MEM[ADDR] ;

DATA[®@];

cmp = DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[ O]

tmp

src
: tmp;

tmp.

Floating-point compare swap (handles NaN/INF/denorm).

// 64bit
tmp = MEM[ADDR];
src = DATA[O];

MEM[ADDR] = (src < tmp) ? src
RETURN_DATA[ @]

D otmp;

tmp.

Floating-point compare (handles NaN/INF/denorm).

// 64bit
tmp = MEM[ADDR];
src = DATA[O];

MEM[ADDR] = (src > tmp) ? src
RETURN_DATA[OQ] tmp.

:otmp;

Floating-point compare (handles NaN/INF/denorm).

Write back and invalidate the shader LO.
returns ACK to shader.

Always

Invalidate the GL1 cache only. Always returns ACK to
shader.

Untyped buffer load 1 dword with format conversion.
De[15:0] MEM[ADDR] .

Untyped buffer load 1 dword with format conversion.

Untyped buffer load 2 dwords with format conversion.

Untyped buffer load 2 dwords with format conversion.

Untyped buffer store 1 dword with format conversion.

Untyped buffer store 1 dword with format conversion.

Untyped buffer store 2 dwords with format conversion.

Untyped buffer store 2 dwords with format conversion.

12.15. MTBUF Instructions

The bitfield map of the MTBUF format is:

12.15. MTBUF Instructions
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0

1

10

11

12

13

14

AMDA1
L e e e e B B T
171701 0] T TrdruaT, S —— | OFFsET,
1 T T T T 1 ISRG. (V# 90011 VoA A vare de ot aeh | T T vADDR. teaah |
SOFFSETs; (sgpr) |TFE‘SLC‘OPM| SRSRCs (V#5sgpr) VDATAg (vgpr: src or dst) ‘ VADDR; (vgpr)
63 32
where:
OFFSET = Unsigned immediate byte offset.
OFFEN = Send offset either as VADDR or as zero.
IDXEN = Send index either as VADDR or as zero.
GLC = Global coherency.
OoP = Instruction Opcode.
FORMAT = Data format for typed buffer.
VADDR = VGPR address source.
VDATA = Vector GPR for read/write result.
SRSRC = Scalar GPR that specifies resource constant.
SOFFSET = Unsigned byte offset from an SGPR.
Opcode Name Description
TBUFFER_LOAD_FORMAT_X Typed buffer load 1 dword with format conversion.
TBUFFER_LOAD_FORMAT_XY Typed buffer load 2 dwords with format conversion.
TBUFFER_LOAD_FORMAT_XYZ Typed buffer load 3 dwords with format conversion.
TBUFFER_LOAD_FORMAT_XYZW  Typed buffer load 4 dwords with format conversion.
TBUFFER_STORE_FORMAT_X Typed buffer store 1 dword with format conversion.
TBUFFER_STORE_FORMAT_XY Typed buffer store 2 dwords with format conversion.
TBUFFER_STORE_FORMAT_XYZ Typed buffer store 3 dwords with format conversion.
TBUFFER_STORE_FORMAT_XYZW Typed buffer store 4 dwords with format conversion.
TBUFFER_LOAD_FORMAT_D16_X  Typed buffer load 1 dword with format conversion.
TBUFFER_LOAD_FORMAT_D16_XY Typed buffer load 1 dword with format conversion.
TBUFFER_LOAD_FORMAT_D16_XY Typed buffer load 2 dwords with format conversion.
4
TBUFFER_LOAD_FORMAT_D16_XY Typed buffer load 2 dwords with format conversion.
ZW
TBUFFER_STORE_FORMAT_D16_X Typed buffer store 1 dword with format conversion.
TBUFFER_STORE_FORMAT_D16_X Typed buffer store 1 dword with format conversion.
Y
TBUFFER_STORE_FORMAT_D16_X Typed buffer store 2 dwords with format conversion.
YZ
TBUFFER_STORE_FORMAT_D16_X Typed buffer store 2 dwords with format conversion.

15

YZW

12.15. MTBUF Instructions
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12.16. MIMG Instructions

The bitfield map of the MIMG format is:

31

AMDZ1

0

—
0 |sLc

(

‘LWE‘ TFE

| NSA %PM

I 0 R128 GLCunrm DMASK DLC ‘DIM
MIMG D16i SSAMFES (é# sgpr)‘ SRSRCs (T# sgpr) VDATAB (\}gpr src or dst) V‘ADE)R& (vgpr)
32
95 64
T T T T T T T 1 I | — \ I S B
Addr4 Addr3 Addr2 Addr1
| Adldl’8 o C Ad|dr7 L ‘ ‘ Adldr6 l ‘ ‘ ‘Add‘r5 o
| | Ad|dr12‘ - - Adldr'l 1I | ‘ ‘ Adldl"loI - ‘ ‘Add‘r9 S

159

where:

DMASK

Enable mask for image read/write data components.

UNRM Force address to be unnormalized.

GLC Global coherency.

DA Declare an array.

A16 Texture address component size.

TFE Texture fail enable.

LWE LOD warning enable.

oP Instruction Opcode.

SLC System level coherent.

VADDR = VGPR address source.

VDATA = Vector GPR for read/write result.

SRSRC = Scalar GPR that specifies resource constant.

SSAMP = Scalar GPR that specifies sampler constant.

D16 Data in VGPRs is 16 bits, not 32 bits.
Opcode Name Description

0 IMAGE_LOAD
1 IMAGE_LOAD_MIP

2 IMAGE_LOAD_PCK

3 IMAGE_LOAD_PCK_SGN

4 IMAGE_LOAD_MIP_PCK

5 IMAGE_LOAD_MIP_PCK_SGN

12.16. MIMG Instructions

128

Load element from largest miplevel in resource view, with

format conversion specified in the resource constant. No

sampler.

Load element from user-specified miplevel in resource

view, with format conversion specified in the resource

constant. No sampler.

Load element from largest
without format conversion.

sign-extended. No sampler.

Load element from largest
without format conversion.

sign-extended. No sampler.

Load element from user-supplied miplevel

without format conversion. 8- and 16-bit

sign-extended. No sampler.

Load element from user-supplied miplevel

without format conversion. 8- and 16-bit

sign-extended. No sampler.

miplevel in resource view,
8- and 16-bit elements are not

miplevel in resource view,
8- and 16-bit elements are

in resource view,
elements are not

in resource view,
elements are
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Opcode Name

8 IMAGE_STORE
9 IMAGE_STORE_MIP

10 IMAGE_STORE_PCK

11 IMAGE_STORE_MIP_PCK
14 IMAGE_GET_RESINFO

15 IMAGE_ATOMIC_SWAP

16 IMAGE_ATOMIC_CMPSWAP
17 IMAGE_ATOMIC_ADD

18 IMAGE_ATOMIC_SUB

20 IMAGE_ATOMIC_SMIN

21 IMAGE_ATOMIC_UMIN

22 IMAGE_ATOMIC_SMAX

12.16. MIMG Instructions

AMDZ1

Description

Store element to largest miplevel in resource view, with
format conversion specified in resource constant. No
sampler.

Store element to user-specified miplevel in resource view,
with format conversion specified in resource constant. No
sampler.

Store element to largest miplevel in resource view,

without format conversion. No sampler.

Store element to user-specified miplevel in resource view,
without format conversion. No sampler.

Return resource info for a given mip level specified in
the address vgpr. No sampler. Returns 4 integer values
into VGPRs 3-0: {num_mip_levels, depth, height, width}.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] = DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

src = DATA[@];

cmp DATA[1];

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA :
compare

RETURN_DATA = tmp.

tmp; // signed

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA :
compare

RETURN_DATA = tmp.

tmp; // unsigned

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA :
compare

RETURN_DATA = tmp.

tmp; // signed
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Opcode Name

23 IMAGE_ATOMIC_UMAX

AMDZ1

Description

// 32bit
tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned

compare

24 IMAGE_ATOMIC_AND

25

IMAGE_ATOMIC_OR

26

IMAGE_ATOMIC_XOR

27 IMAGE_ATOMIC_INC

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] 7= DATA;
RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA) ? @ : tmp + 1; // unsigned

compare

28 IMAGE_ATOMIC_DEC

/1

29 IMAGE_ATOMIC_FCMPSWAP

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp == 8 || tmp > DATA) ? DATA :
unsigned compare

RETURN_DATA = tmp.

tmp - 1;

// 32bit

tmp MEM[ADDR] ;

src = DATA[®O];

cmp DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] = tmp.

: otmp;

Floating-point compare swap (handles NaN/INF/denorm).

30 IMAGE_ATOMIC_FMIN

// 32bit
MEM[ADDR] ;
DATA[®@];
MEM[ADDR] = (src < tmp) ? src
RETURN_DATA[®B] =

tmp
src =
: tmp;
tmp.

Floating-point compare (handles NaN/INF/denorm).

12.16. MIMG Instructions
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Opcode Name

31

32

33

34

35

36
37

38

39
40
41
42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

IMAGE_ATOMIC_FMAX

IMAGE_SAMPLE
IMAGE_SAMPLE_CL
IMAGE_SAMPLE_D

IMAGE_SAMPLE_D_CL

IMAGE_SAMPLE_L
IMAGE_SAMPLE_B

IMAGE_SAMPLE_B_CL

IMAGE_SAMPLE_LZ
IMAGE_SAMPLE_C
IMAGE_SAMPLE_C_CL
IMAGE_SAMPLE_C_D

IMAGE_SAMPLE_C_D_CL

IMAGE_SAMPLE_C_L
IMAGE_SAMPLE_C_B

IMAGE_SAMPLE_C_B_CL

IMAGE_SAMPLE_C_LZ
IMAGE_SAMPLE_O
IMAGE_SAMPLE_CL O
IMAGE_SAMPLE_D_O

IMAGE_SAMPLE_D CL_O

IMAGE_SAMPLE_L_O
IMAGE_SAMPLE_B_O

IMAGE_SAMPLE_B_CL_O

IMAGE_SAMPLE_LZ_O

IMAGE_SAMPLE_C_O

12.16. MIMG Instructions

AMDZ1

Description

// 32bit

tmp = MEM[ADDR];

src = DATA[@];

MEM[ADDR] = (src > tmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare (handles NaN/INF/denorm).

sample texture map.

sample texture map, with LOD clamp specified in shader.
sample texture map, with user derivatives

sample texture map, with LOD clamp specified in shader,
with user derivatives.

sample texture map, with user LOD.
sample texture map, with lod bias.

sample texture map, with LOD clamp specified in shader,
with lod bias.

sample texture map, from level ©.

sample texture map, with PCF.

SAMPLE_C, with LOD clamp specified in shader.
SAMPLE_C, with user derivatives.

SAMPLE_C, with LOD clamp specified in shader, with user
derivatives.

SAMPLE_C, with user LOD.
SAMPLE_C, with lod bias.

SAMPLE_C, with LOD clamp specified in shader, with lod
bias.

SAMPLE_C, from level 0.

sample texture map, with user offsets.
SAMPLE_O with LOD clamp specified in shader.
SAMPLE_O, with user derivatives.

SAMPLE_O, with LOD clamp specified in shader, with user
derivatives.

SAMPLE_O, with user LOD.
SAMPLE_O, with lod bias.

SAMPLE_O, with LOD clamp specified in shader, with lod
bias.

SAMPLE_O, from level 0.

SAMPLE_C with user specified offsets.

226 of 289



"RDNA 1.0" Instruction Set Architecture

Opcode Name

57 IMAGE_SAMPLE_C_CL_O
58 IMAGE_SAMPLE_C D _O

59 IMAGE_SAMPLE_C_D_CL_O
60 IMAGE_SAMPLE_C_L_O

61 IMAGE_SAMPLE_C_B_O

62 IMAGE_SAMPLE_C_B_CL_O
63 IMAGE_SAMPLE_C_LZ_O
64 IMAGE_GATHER4

65 IMAGE_GATHER4_CL

68 IMAGE_GATHER4_L

69 IMAGE_GATHER4_B

70 IMAGE_GATHER4_B_CL

71 IMAGE_GATHER4_LZ

72 IMAGE_GATHER4_C

73 IMAGE_GATHER4_C_CL

76 IMAGE_GATHER4_C_L

77 IMAGE_GATHER4_C_B

78 IMAGE_GATHER4_C_B_CL
79 IMAGE_GATHER4_C_LZ

80 IMAGE_GATHER4_O

81 IMAGE_GATHER4_CL_O

84 IMAGE_GATHER4_L_O

85 IMAGE_GATHER4_B_O

86 IMAGE_GATHER4_B_CL_O
87 IMAGE_GATHER4_LZ_O

88 IMAGE_GATHER4_C_O

89 IMAGE_GATHER4_C_CL_O
92 IMAGE_GATHER4 C_L_O

12.16. MIMG Instructions

AMDZ1

Description
SAMPLE_C_0, with LOD clamp specified in shader.
SAMPLE_C_O, with user derivatives.

SAMPLE_C_0, with LOD clamp specified in shader, with user
derivatives.

SAMPLE_C_O, with user LOD.
SAMPLE_C_0O, with lod bias.

SAMPLE_C_0, with LOD clamp specified in shader, with lod
bias.

SAMPLE_C_0O, from level 0O.
gather 4 single component elements (2x2).

gather 4 single component elements (2x2) with user LOD
clamp.

gather 4 single component elements (2x2) with user LOD.
gather 4 single component elements (2x2) with user bias.

gather 4 single component elements (2x2) with user bias
and clamp.

gather 4 single component elements (2x2) at level ©.
gather 4 single component elements (2x2) with PCF.

gather 4 single component elements (2x2) with user LOD
clamp and PCF.

gather 4 single component elements (2x2) with user LOD and
PCF.

gather 4 single component elements (2x2) with user bias
and PCF.

gather 4 single component elements (2x2) with user bias,
clamp and PCF.

gather 4 single component elements (2x2) at level 0, with
PCF.

GATHER4, with user offsets.
GATHER4_CL, with user offsets.
GATHER4_L, with user offsets.
GATHER4_B, with user offsets.
GATHER4_B_CL, with user offsets.
GATHER4_LZ, with user offsets.
GATHER4_C, with user offsets.
GATHER4_C_CL, with user offsets.

GATHER4_C_L, with user offsets.
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Opcode Name Description

93 IMAGE_GATHER4_C B O GATHER4_B, with user offsets.
94 IMAGE_GATHER4_C B _CL_O GATHER4_B_CL, with user offsets.
95 IMAGE_GATHER4_C_LZ O GATHER4_C_LZ, with user offsets.
96 IMAGE_GET_LOD VDATA[®] = clampedLOD;

VDATA[1] = rawLOD.

Return calculated LOD as two 32-bit floating point values.

97 IMAGE_GATHER4H Same as Gather4, but fetches one component per texel, from
a 4x1 group of texels.

162 IMAGE_SAMPLE_D_G16 SAMPLE_D with 16-bit floating point derivatives
(gradients)

163 IMAGE_SAMPLE_D_CL_G16 SAMPLE_D_CL with 16-bit floating point derivatives
(gradients)

170 IMAGE_SAMPLE_C_D_G16 SAMPLE_C_D with 16-bit floating point derivatives
(gradients)

171 IMAGE_SAMPLE_C_D_CL_G16 SAMPLE_C_D_CL with 16-bit floating point derivatives
(gradients)

178 IMAGE_SAMPLE_D_O_G16 SAMPLE_D_O with 16-bit floating point derivatives
(gradients)

179 IMAGE_SAMPLE_D_CL_O_G16 SAMPLE_D_CL_O with 16-bit floating point derivatives
(gradients)

186 IMAGE_SAMPLE_C_D_O_G16  SAMPLE_C_D_O with 16-bit floating point derivatives
(gradients)

187 IMAGE_SAMPLE_C_D_CL_O_G SAMPLE_C_D_CL_O with 16-bit floating point derivatives

16 (gradients)

12.17. EXPORT Instructions

Transfer vertex position, vertex parameter, pixel color, or pixel depth information to the output
buffer. Every pixel shader must do at least one export to a color, depth or NULL target with the
VM bit set to 1. This communicates the pixel-valid mask to the color and depth buffers. Every
pixel does only one of the above export types with the DONE bit set to 1. Vertex shaders must
do one or more position exports, and at least one parameter export. The final position export
must have the DONE bit set to 1.

0
S 7 I I S |
11 1 done| & Targets ENg4
EXP T g T L T 1
VSRC1s | VSRCOg
63 32
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12.18. FLAT, Scratch and Global Instructions

The bitfield map of the FLAT format is:

31 0
1|1‘0‘1‘1‘1 1T ‘OPI7 - ‘SLC‘GLC SE‘EG ‘LDS‘DLC‘ tr T [OFFs‘ETQ‘ S
FLAT I . Y %%%i%%% I B R B T 1 _ T T T 1 T T 1 T T 1
VDSTg SADDR; DATAg ‘ ADDRg
63 32
where:
GLC = Global coherency.
SLC = System level coherency.
oP = Instruction Opcode.
ADDR = Source of flat address VGPR.
DATA = Source data.
VDST = Destination VGPR.
SADDR = SGPR holding address or offset
SEG = Instruction type: Flat, Scratch, or Global
LDS = Data is transferred between LDS and Memory, not VGPRs.

OFFSET = Immediate address byte-offset.

12.18.1. Flat Instructions

Flat instructions look at the per-workitem address and determine for each work item if the target
memory address is in global, private or scratch memory.

Opcode Name Description

8 FLAT_LOAD_UBYTE Untyped buffer load unsigned byte (zero extend to VGPR
destination).

9 FLAT_LOAD_SBYTE Untyped buffer load signed byte (sign extend to VGPR
destination).

10 FLAT_LOAD_USHORT Untyped buffer load unsigned short (zero extend to VGPR
destination).

11 FLAT_LOAD_SSHORT Untyped buffer load signed short (sign extend to VGPR
destination).

12 FLAT_LOAD_DWORD Untyped buffer load dword.

13 FLAT_LOAD_DWORDX2 Untyped buffer load 2 dwords.

14 FLAT_LOAD_DWORDX4 Untyped buffer load 4 dwords.

15 FLAT_LOAD_DWORDX3 Untyped buffer load 3 dwords.

24 FLAT_STORE_BYTE Untyped buffer store byte. Stores S@[7:8].

25 FLAT_STORE_BYTE_D16_HI Untyped buffer store byte. Stores S0[23:16].

26 FLAT_STORE_SHORT Untyped buffer store short. Stores S0[15:0].

27 FLAT_STORE_SHORT_D16_HI Untyped buffer store short. Stores S0[31:16].
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Opcode Name

28 FLAT_STORE_DWORD
29 FLAT_STORE_DWORDX2

30 FLAT_STORE_DWORDX4

31 FLAT_STORE_DWORDX3

32 FLAT_LOAD_UBYTE_D16

33 FLAT_LOAD_UBYTE_D16_HI
34 FLAT _LOAD_SBYTE_D16

35 FLAT_LOAD_SBYTE_D16_HI
36 FLAT_LOAD_SHORT D16

37 FLAT_LOAD_SHORT_D16_HlI
48 FLAT_ATOMIC_SWAP

49 FLAT_ATOMIC_CMPSWAP
50 FLAT_ATOMIC_ADD

51 FLAT_ATOMIC_SUB

53 FLAT_ATOMIC_SMIN

12.18. FLAT, Scratch and Global Instructions

AMDZ1

Description

Untyped buffer store dword.
Untyped buffer store 2 dwords.
Untyped buffer store 4 dwords.
Untyped buffer store 3 dwords.

De[15:8] = {8'h8, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[31:16] = {8'h@, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[15:8] = {8'h8, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[31:16] = {8'h@, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[15:8] = MEM[ADDR].

Untyped buffer load short.

DO[31:16] = MEM[ADDR].

Untyped buffer load short.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = DATA;

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
src = DATA[O];
cmp = DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] = tmp.

¢ otmp;

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] -= DATA;

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA :
compare

RETURN_DATA = tmp.

tmp; // signed
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Opcode Name

54 FLAT_ATOMIC_UMIN

55 FLAT_ATOMIC_SMAX

56 FLAT_ATOMIC_UMAX

57 FLAT_ATOMIC_AND

58 FLAT_ATOMIC_OR

59 FLAT_ATOMIC_XOR

60 FLAT_ATOMIC_INC

61 FLAT_ATOMIC_DEC

62 FLAT_ATOMIC_FCMPSWAP

12.18. FLAT, Scratch and Global Instructions

AMDZ
Description
// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned
compare

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA :
compare

RETURN_DATA = tmp.

tmp; // signed

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA > tmp) ? DATA :
compare

RETURN_DATA =

tmp; // unsigned

tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] = DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA) ? @
compare

RETURN_DATA = tmp.

:tmp + 1; // unsigned

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp == @ || tmp > DATA) ? DATA :
unsigned compare

RETURN_DATA = tmp.

tmp - 1;
//

// 32bit

tmp = MEM[ADDR];

src = DATA[@];

cmp DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] = tmp.

T otmp;

Floating-point compare swap (handles NaN/INF/denorm).
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Opcode Name Description

63 FLAT_ATOMIC_FMIN // 32bit
tmp = MEM[ADDR];
src = DATA[@];
MEM[ADDR] = (src < tmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare (handles NaN/INF/denorm).

64 FLAT_ATOMIC_FMAX // 32bit
tmp = MEM[ADDR];
src = DATA[O];
MEM[ADDR] = (src > tmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare (handles NaN/INF/denorm).

80 FLAT_ATOMIC_SWAP_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] = DATA[@:1];
RETURN_DATA[@:1] tmp.

81 FLAT_ATOMIC_CMPSWAP_X2 // 64bit
tmp MEM[ADDR] ;
src = DATA[B:1];
cmp = DATA[2:3];
MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@:1] tmp.

82 FLAT_ATOMIC_ADD_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] += DATA[B:1];
RETURN_DATA[B:1] = tmp.

83 FLAT_ATOMIC_SUB_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= DATA[0:1];
RETURN_DATA[@:1] = tmp.

85 FLAT_ATOMIC_SMIN_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[©@:1] < tmp) ? DATA[@:1] : tmp; //
signed compare
RETURN_DATA[@:1] = tmp.

86 FLAT_ATOMIC_UMIN_X2 /] 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[8:1] < tmp) ? DATA[@:1] : tmp; //
unsigned compare
RETURN_DATA[@8:1] = tmp.

87 FLAT_ATOMIC_SMAX_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[©@:1] > tmp) ? DATA[@:1] : tmp; //
signed compare
RETURN_DATA[O:1] = tmp.
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Opcode Name

88 FLAT_ATOMIC_UMAX_X2
89 FLAT _ATOMIC_AND_X2

90 FLAT _ATOMIC_OR_X2

91 FLAT _ATOMIC_XOR_X2

92 FLAT _ATOMIC_INC_X2

93 FLAT _ATOMIC_DEC_ X2

94 FLAT_ATOMIC_FCMPSWAP_X2
95 FLAT_ATOMIC_FMIN_X2

12.18. FLAT, Scratch and Global Instructions

Description

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] -= (DATA[@:1] > tmp) ? DATA[@:1]

unsigned compare
RETURN_DATA[@:1]

// 64bit
tmp = MEM[ADDR];

AMDZ1

:otmp; //

= tmp.

MEM[ADDR] &= DATA[B:1];

RETURN_DATA[B:1]

// 64bit

tmp = MEM[ADDR];
MEM[ADDR]
RETURN_DATA[©:1]

// 64bit
tmp = MEM[ADDR];

= tmp.

|= DATA[O:1];

= tmp.

MEM[ADDR] *= DATA[0:1];

RETURN_DATA[0:1]

// 64bit

tmp = MEM[ADDR];

MEM[ADDR] = (tmp
unsigned compare

RETURN_DATA[0:1]

// 64bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp

= tmp.

>= DATA[B:1]) ?2 @ : tmp + 1; //

tmp.

== 0 || tmp > DATA[©:1]) ? DATA[@:1]

tmp - 1; // unsigned compare

RETURN_DATA[@:1]

// 64bit

tmp = MEM[ADDR];
src = DATA[O];
cmp = DATA[1];

MEM[ADDR] = (tmp
RETURN_DATA[@] =

= tmp.

== cmp) ? src
tmp.

: otmp;

Floating-point compare swap (handles NaN/INF/denorm).

// 64bit
tmp = MEM[ADDR];
src = DATA[@];

MEM[ADDR] = (src
RETURN_DATA[@] =

< tmp) ? src : tmp;

tmp.

Floating-point compare (handles NaN/INF/denorm).
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Opcode Name

96 FLAT _ATOMIC_FMAX_X2

Description

// 64bit
tmp =
src =

MEM[ADDR] ;
DATA[O];
MEM[ADDR] = (src > tmp) ? src

RETURN_DATA[B] =

AMDZ1

T otmp;
tmp.

Floating-point compare (handles NaN/INF/denorm).

12.18.2. Scratch Instructions

Scratch instructions are like Flat, but assume all workitem addresses fall in scratch (private)

space.

Opcode Name

8 SCRATCH_LOAD_UBYTE

9 SCRATCH_LOAD_SBYTE

10 SCRATCH_LOAD_USHORT

11 SCRATCH_LOAD_SSHORT

12 SCRATCH_LOAD_DWORD

13 SCRATCH_LOAD_DWORDX2

14 SCRATCH_LOAD_DWORDX4

15 SCRATCH_LOAD_DWORDX3

24 SCRATCH_STORE_BYTE

25 SCRATCH_STORE_BYTE_D16_
HI

26 SCRATCH_STORE_SHORT

27 SCRATCH_STORE_SHORT_D16
_HI

28 SCRATCH_STORE_DWORD

29 SCRATCH_STORE_DWORDX2

30 SCRATCH_STORE_DWORDX4

31 SCRATCH_STORE_DWORDX3

32 SCRATCH_LOAD_UBYTE_D16

12.18. FLAT, Scratch and Global Instructions

Description

Untyped buffer
destination).

Untyped buffer
destination).

Untyped buffer
destination).

Untyped buffer
destination).

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer

Untyped buffer
Untyped buffer

Untyped buffer

load

load

load

load

load

load

load

load

store

store

store

store

store

store

store

store

unsigned byte (zero extend to VGPR

signed byte (sign extend to VGPR

unsigned short (zero extend to VGPR

signed short (sign extend to VGPR

dword.
2 dwords.
4 dwords.
3 dwords.
byte. Stores S0[7:0].

byte. Stores S@[23:16].

short. Stores S0[15:0].

short. Stores S0[31:16].

dword.
2 dwords.
4 dwords.

3 dwords.

De[15:8] = {8'h8, MEM[ADDR]}.

Untyped buffer load unsigned byte.
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Opcode Name Description
33 SCRATCH_LOAD_UBYTE_D16_ DO[31:16] = {8'h@, MEM[ADDR]}.
HI

Untyped buffer load unsigned byte.
34 SCRATCH_LOAD_SBYTE_D16 De[15:8] = {8'h8, MEM[ADDR]}.

Untyped buffer load signed byte.

35 SCRATCH_LOAD_SBYTE_D16_ DO[31:16] = {8'hO, MEM[ADDR]}.
HI
Untyped buffer load signed byte.

36 SCRATCH_LOAD_SHORT_D16 DO[15:0] = MEM[ADDR].

Untyped buffer load short.

37 SCRATCH_LOAD_SHORT_D16_ DO[31:16] = MEM[ADDR].
HI
Untyped buffer load short.

12.18.3. Global Instructions

Global instructions are like Flat, but assume all workitem addresses fall in global memory space.

Opcode Name Description

8 GLOBAL_LOAD_UBYTE Untyped buffer load unsigned byte (zero extend to VGPR
destination).

9 GLOBAL_LOAD SBYTE Untyped buffer load signed byte (sign extend to VGPR
destination).

10 GLOBAL_LOAD_USHORT Untyped buffer load unsigned short (zero extend to VGPR
destination).

11 GLOBAL_LOAD_SSHORT Untyped buffer load signed short (sign extend to VGPR
destination).

12 GLOBAL_LOAD_DWORD Untyped buffer load dword.

13 GLOBAL_LOAD_DWORDX2 Untyped buffer load 2 dwords.

14 GLOBAL_LOAD_DWORDX4 Untyped buffer load 4 dwords.

15 GLOBAL_LOAD_DWORDX3 Untyped buffer load 3 dwords.

24 GLOBAL_STORE_BYTE Untyped buffer store byte. Stores S@[7:8].

25 GLOBAL_STORE_BYTE_D16_HI Untyped buffer store byte. Stores S@[23:16].

26 GLOBAL_STORE_SHORT Untyped buffer store short. Stores S@[15:0].

27 GLOBAL_STORE_SHORT_D16_ Untyped buffer store short. Stores S8[31:16].

HI

28 GLOBAL_STORE_DWORD Untyped buffer store dword.

29 GLOBAL_STORE_DWORDX2 Untyped buffer store 2 dwords.

30 GLOBAL_STORE_DWORDX4 Untyped buffer store 4 dwords.
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Opcode Name

31 GLOBAL_STORE_DWORDX3
32 GLOBAL_LOAD_UBYTE_D16

33 GLOBAL_LOAD_UBYTE_D16_HI
34 GLOBAL_LOAD_SBYTE_D16

35 GLOBAL_LOAD_SBYTE_D16_HI
36 GLOBAL_LOAD_SHORT_D16

37 GLOBAL_LOAD_SHORT_D16_HI
48 GLOBAL_ATOMIC_SWAP

49 GLOBAL_ATOMIC_CMPSWAP
50 GLOBAL_ATOMIC_ADD

51 GLOBAL_ATOMIC_SUB

53 GLOBAL_ATOMIC_SMIN

54 GLOBAL_ATOMIC_UMIN

12.18. FLAT, Scratch and Global Instructions

AMDZ1

Description
Untyped buffer store 3 dwords.

DO[15:8] = {8'he, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[31:16] = {8'ho, MEM[ADDR]}.

Untyped buffer load unsigned byte.

DO[15:8] = {8'h8, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[31:16] = {8'h@, MEM[ADDR]}.

Untyped buffer load signed byte.

DO[15:0] = MEM[ADDR].

Untyped buffer load short.

DO[31:16] = MEM[ADDR].

Untyped buffer load short.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] = DATA;
RETURN_DATA = tmp.

// 32bit

MEM[ADDR] ;

DATA[@];

cmp = DATA[1];

MEM[ADDR] = (tmp == cmp) ? src
RETURN_DATA[@] = tmp.

tmp

src

© tmp;

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] += DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA :
compare

RETURN_DATA =

tmp; // signed

tmp.

// 32bit

tmp = MEM[ADDR];

MEM[ADDR] = (DATA < tmp) ? DATA :
compare

RETURN_DATA =

tmp; // unsigned

tmp.
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Opcode Name

55

56

57

58

59

60

61

62

63

GLOBAL_ATOMIC_SMAX

Description

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (DATA > tmp) ? DATA :

compare

GLOBAL_ATOMIC_UMAX

RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (DATA > tmp) ? DATA :

compare

GLOBAL_ATOMIC_AND

GLOBAL_ATOMIC_OR

GLOBAL_ATOMIC_XOR

GLOBAL_ATOMIC_INC

RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];
MEM[ADDR] “= DATA;
RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp >= DATA) ? @

compare

GLOBAL_ATOMIC_DEC

/1

GLOBAL_ATOMIC_FCMPSWAP

RETURN_DATA = tmp.

// 32bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp == © || tmp > DATA) ? DATA :

unsigned compare
RETURN_DATA = tmp.

// 32bit

tmp = MEM[ADDR];

src = DATA[®O];

cmp DATA[1];

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

AMDZ1

tmp; // signed

tmp; // unsigned

:tmp + 1; // unsigned

tmp - 1;

Floating-point compare swap (handles NaN/INF/denorm).

GLOBAL_ATOMIC_FMIN

Floating-point compare (handles NaN/INF/denorm).

12.18. FLAT, Scratch and Global Instructions

// 32bit

tmp MEM[ADDR] ;

src = DATA[@];

MEM[ADDR] = (src < tmp) ? src : tmp;
RETURN_DATA[@] = tmp.
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Opcode Name Description

64

80

81

82

83

85

86

87

88

GLOBAL_ATOMIC_FMAX // 32bit
tmp = MEM[ADDR];
src = DATA[@];
MEM[ADDR] = (src > tmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare (handles NaN/INF/denorm).

GLOBAL_ATOMIC_SWAP_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] = DATA[@:1];
RETURN_DATA[@:1] = tmp.

GLOBAL_ATOMIC_CMPSWAP_ // 64bit

X2 tmp = MEM[ADDR];
src = DATA[@:1];
cmp = DATA[2:3];

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@:1]

tmp.

GLOBAL_ATOMIC_ADD_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] += DATA[@:1];
RETURN_DATA[@:1] = tmp.

GLOBAL_ATOMIC_SUB_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= DATA[0:1];
RETURN_DATA[@:1] = tmp.

GLOBAL_ATOMIC_SMIN_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[©:1]
signed compare
RETURN_DATA[@:1] = tmp.

A

tmp) ? DATA[@:1] : tmp; //

GLOBAL_ATOMIC_UMIN_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[@:1]
unsigned compare
RETURN_DATA[@:1] = tmp.

A

tmp) ? DATA[@:1] : tmp; //

GLOBAL_ATOMIC_SMAX_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[@:1]
signed compare
RETURN_DATA[@:1] = tmp.

\

tmp) ? DATA[@:1] : tmp; //

GLOBAL_ATOMIC_UMAX_X2 // 64bit
tmp = MEM[ADDR];
MEM[ADDR] -= (DATA[©:1]
unsigned compare
RETURN_DATA[@:1] = tmp.

\

tmp) ? DATA[@:1] : tmp; //
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Opcode Name

89 GLOBAL_ATOMIC_AND_X2

90 GLOBAL_ATOMIC_OR_X2

91 GLOBAL_ATOMIC_XOR_X2

92 GLOBAL_ATOMIC_INC_X2

93 GLOBAL_ATOMIC_DEC_ X2

94 GLOBAL_ATOMIC_FCMPSWAP
X2

95 GLOBAL_ATOMIC_FMIN_X2

96 GLOBAL_ATOMIC_FMAX_X2

12.18. FLAT, Scratch and Global Instructions

AMDZ1

Description

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] &= DATA[B:1];
RETURN_DATA[B:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] |= DATA[@:1];
RETURN_DATA[B:1] = tmp.

// 64bit

tmp = MEM[ADDR];
MEM[ADDR] = DATA[@:1];
RETURN_DATA[®:1] = tmp.

// 64bit
tmp = MEM[ADDR];

MEM[ADDR] = (tmp >= DATA[@:1]) ? @ : tmp + 1; //

unsigned compare

RETURN_DATA[0:1]

tmp.

// 64bit
tmp = MEM[ADDR];
MEM[ADDR] = (tmp == © || tmp > DATA[0:1]) ? DATA[®:1]

tmp - 1; // unsigned compare

RETURN_DATA[@:1] = tmp.

// 64bit

tmp = MEM[ADDR];
src = DATA[@];
cmp = DATA[1];

MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare swap (handles NaN/INF/denorm).

// 64bit

tmp = MEM[ADDR];

src = DATA[O];

MEM[ADDR] = (src < tmp) ? src : tmp;
RETURN_DATA[B] = tmp.

Floating-point compare (handles NaN/INF/denorm).

// 64bit

tmp MEM[ADDR] ;

src = DATA[O];

MEM[ADDR] = (src > tmp) ? src : tmp;
RETURN_DATA[@] = tmp.

Floating-point compare (handles NaN/INF/denorm).
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12.19. Instruction Limitations

12.19.1. DPP

The following instructions cannot use DPP:

« V_MADMK_F32
« V_MADAK_F32

« V_MADMK_F16

« V_MADAK_F16

« V_READFIRSTLANE_B32
« V_CVT_I32_F64

« V_CVT_F64 132

« V_CVT_F32_F64

« V_CVT_F64_F32

« V_CVT_U32 F64

« V_CVT_F64_U32

« V_TRUNC_F64

« V_CEIL_F64
 V_RNDNE_F64

« V_FLOOR_F64

« V_RCP_F64

« V_RSQ _F64

« V_SQRT_F64
 V_FREXP_EXP_I32_F64
 V_FREXP_MANT_F64
« V_FRACT_F64

« V_CLREXCP

« V_SWAP B32

« V_CMP_CLASS_F64
+ V_CMPX_CLASS_F64
« V_CMP_* F64

« V_CMPX_* F64

« V_CMP_* |64

« V_CMP_* U64

« V_CMPX_* 164

« V_CMPX_* U64
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12.19.2. SDWA

The following instructions cannot use SDWA.:

« V_MAC_F32
« V_MADMK_F32

« V_MADAK_F32

« V_MAC_F16

« V_MADMK_F16

« V_MADAK_F16

« V_FMAC_F32

« V_READFIRSTLANE_B32
« V_CLREXCP

« V_SWAP_B32
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Chapter 13. Microcode Formats

This section specifies the microcode formats. The definitions can be used to simplify compilation
by providing standard templates and enumeration names for the various instruction formats.

Endian Order - The RDNA architecture addresses memory and registers using littleendian byte-
ordering and bit-ordering. Multi-byte values are stored with their least-significant (low-order) byte
(LSB) at the lowest byte address, and they are illustrated with their LSB at the right side. Byte
values are stored with their least-significant (low-order) bit (Isb) at the lowest bit address, and
they are illustrated with their Isb at the right side.

The table below summarizes the microcode formats and their widths. The sections that follow
provide details

Table 59. Summary of Microcode Formats
Microcode Formats Reference Width (bits)

Scalar ALU and Control Formats

SOP2 SOP2 32
SOP1 SOP1
SOPK SOPK
SOPP SOPP
SOPC SOPC

Scalar Memory Format
SMEM SMEM 64

Vector ALU Format

VOP1 VOP1 32
VOP2 VOP2 32
VOPC VOPC 32
VOP3A VOP3A 64
VOP3B VOP3B 64
VOP3P VOP3P 64
DPP DPP 32
SDWA VOP2 32

Vector Parameter Interpolation Format

VINTRP VINTRP 32
LDSI/GDS Format

DS DS 64

Vector Memory Buffer Formats
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Microcode Formats Reference Width (bits)
MTBUF MTBUF 64
MUBUF MUBUF 64

Vector Memory Image Format

MIMG MIMG 64
Export Format

EXP EXP 64

Flat Formats

FLAT FLAT 64
GLOBAL GLOBAL 64
SCRATCH SCRATCH 64

The field-definition tables that accompany the descriptions in the sections below use the
following notation.

* int(2) - A two-bit field that specifies an unsigned integer value.
» enum(7) - A seven-bit field that specifies an enumerated set of values (in this case, a set of
up to 27 values). The number of valid values can be less than the maximum.

The default value of all fields is zero. Any bitfield not identified is assumed to be reserved.
Instruction Suffixes

Most instructions include a suffix which indicates the data type the instruction handles. This
suffix may also include a number which indicate the size of the data.

For example: "F32" indicates "32-bit floating point data”, or "B16" is "16-bit binary data".

e B = binary

* F = floating point

« U = unsigned integer
e S =signed integer

When more than one data-type specifier occurs in an instruction, the last one is the result type
and size, and the earlier one(s) is/are input data type and size.

13.1. Scalar ALU and Control Formats
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13.1.1. SOP2
Scalar format with Two inputs, one output
31 0
sop2 |1 0| oP, ] 'spsT, " 'ssrcts | SSRCOs
Format SOP2

Description This is a scalar instruction with two inputs and one output. Can be followed
by a 32-bit literal constant.

Field Name Bits

SSRCO [7:0]
0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 250
251
252
253
254
255

SSRC1 [15:8]

Table 60. SOP2 Fields
Format or Description

Source 0. First operand for the instruction.
SGPRO to SGPR105: Scalar general-purpose registers.
VCC_LO: vec[31:0].

VCC_HI: vcc[63:32].

TTMPO - TTMP15: Trap handler temporary register.
MO. Memory register 0.

NULL

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

Second scalar source operand.
Same codes as SSRCO, above.

13.1. Scalar ALU and Control Formats
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Field Name Bits Format or Description

SDST [22:16] Scalar destination.
Same codes as SSRCO, above except only codes 0-127 are valid.

OoP [29:23] See Opcode table below.

ENCODING [31:30] Must be: 10

Table 61. SOP2 Opcodes

Opcode # Name Opcode # Name

0 S_ADD_U32 28 S_XNOR_B32

1 S_SUB_U32 29 S_XNOR_B64

2 S_ADD |32 30 S_LSHL_B32

3 S_SUB_I32 31 S_LSHL_B64

4 S_ADDC_U32 32 S_LSHR_B32

5 S_SUBB_U32 33 S_LSHR_B64

6 S_MIN_I32 34 S_ASHR_I32

7 S_MIN_U32 35 S_ASHR_164

8 S_MAX_I32 36 S_BFM_B32

9 S_MAX_U32 37 S_BFM_B64

10 S_CSELECT_B32 38 S_MUL_I32

11 S_CSELECT_B64 39 S_BFE_U32

14 S_AND_B32 40 S_BFE_I32

15 S_AND_B64 41 S_BFE_U64

16 S_OR_B32 42 S_BFE_l64

17 S_OR_B64 44 S_ABSDIFF_[32

18 S_XOR_B32 46 S_LSHL1_ADD_U32
19 S_XOR_B64 47 S_LSHL2_ADD_U32
20 S_ANDN2_B32 48 S_LSHL3_ADD_U32
21 S_ANDN2_B64 49 S_LSHL4_ADD_U32
22 S_ORN2_B32 50 S_PACK_LL_B32 B16
23 S_ORN2_B64 51 S_PACK_LH_B32_B16
24 S_NAND_B32 52 S_PACK_HH_B32 B16
25 S_NAND_B64 53 S_MUL_HI_U32

26 S_NOR_B32 54 S_MUL_HI_I32

27 S_NOR_B64
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13.1.2. SOPK

31 0
I T T I I I I T ] T
soPKk |1 0]1 1] op, | | SDST, SIMM16

Format SOPK

Description This is a scalar instruction with one 16-bit signed immediate (SIMM16)
input and a single destination. Instructions which take 2 inputs use the
destination as the second input.

Table 62. SOPK Fields

Field Name Bits Format or Description

SIMM16 [15:0] Signed immediate 16-bit value.

SDST [22:16] Scalar destination, and can provide second source operand.
0-105 SGPRO to SGPR105: Scalar general-purpose registers.
106 VCC_LO: vece[31:0].
107 VCC_HI: vcce[63:32].
108-123  TTMPO - TTMP15: Trap handler temporary register.
124 MO. Memory register 0.
125 NULL
126 EXEC_LO: exec[31:0].
127 EXEC_HI: exec[63:32].

OoP [27:23] See Opcode table below.

ENCODING [31:28] Must be: 1011

Table 63. SOPK Opcodes

Opcode # Name Opcode # Name

0 S_MOVK_I32 14 S CMPK_LE _U32

1 S_VERSION 15 S _ADDK 132

2 S_CMOVK_I32 16 S_MULK_132

3 S_CMPK_EQ 32 18 S_GETREG_B32

4 S_CMPK_LG_I32 19 S_SETREG_B32

5 S_CMPK_GT_I32 21 S_SETREG_IMM32_B32
6 S_CMPK_GE_I32 22 S_CALL_B64

7 S_CMPK_LT_I32 23 S_WAITCNT_VSCNT

8 S_CMPK_LE_I32 24 S_WAITCNT_VMCNT

9 S_CMPK_EQ _U32 25 S_WAITCNT_EXPCNT
10 S_CMPK_LG_U32 26 S_WAITCNT_LGKMCNT
11 S_CMPK_GT_U32 27 S_SUBVECTOR_LOOP_BEGIN
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Opcode # Name
S_SUBVECTOR_LOOP_END

Opcode # Name
12 S_CMPK_GE_U32 28

13 S_CMPK_LT_U32

13.1.3. SOP1

31
I I I I I I I I I [ I I [ I
sopt |1 0]1 11" 1 1" 0l4] SDST, OPs SSRCO0s

Format SOP1

This is a scalar instruction with two inputs and one output. Can be followed
by a 32-bit literal constant.

Description

Table 64. SOP1 Fields
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Field Name

SSRCO

OoP

SDST

ENCODING

Opcode # Name

Bits

[7:0]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-234
235

236

237

238

239

240

241

242

243
244
245

246

247

248

249 - 250
251

252

253
254
255

[15:8]

[22:16]

[31:23]

Format or Description

Source 0. First operand for the instruction.
SGPRO to SGPR105: Scalar general-purpose registers.
VCC_LO: vece[31:0].

VCC_HI: vce[63:32].

TTMPO - TTMP15: Trap handler temporary register.
MO. Memory register 0.

NULL

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

See Opcode table below.

Scalar destination.
Same codes as SSRCO, above except only codes 0-127 are valid.

Must be: 10 1111101

Table 65. SOP1 Opcodes

3 S_MOV_B32

4 S_MOV_B64

5 S _CMOV_B32

6 S_CMOV_B64

7 S_NOT_B32

8 S_NOT_B64

Opcode # Name

37 S_OR_SAVEEXEC B64
38 S_XOR_SAVEEXEC_B64
39 S_ANDN2_SAVEEXEC_B64
40 S_ORN2_SAVEEXEC_B64
41 S_NAND_SAVEEXEC_B64
42 S_NOR_SAVEEXEC_B64
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Opcode # Name Opcode # Name
9 S_WQM_B32 43 S_XNOR_SAVEEXEC_B64
10 S_WQM_B64 44 S_QUADMASK_B32
11 S BREV_B32 45 S _QUADMASK_B64
12 S_BREV_B64 46 S_MOVRELS B32
13 S_BCNTO_I32_B32 47 S_MOVRELS_B64
14 S_BCNTO [32_B64 48 S_MOVRELD_B32
15 S_BCNT1_I32_B32 49 S_MOVRELD_B64
16 S_BCNT1_I32_B64 52 S_ABS_[32
17 S_FFO_132_B32 55 S_ANDN1_SAVEEXEC_ B64
18 S _FFO0_132_B64 56 S _ORN1_SAVEEXEC_B64
19 S_FF1_132_B32 57 S_ANDN1_WREXEC B64
20 S_FF1_132_B64 58 S_ANDN2_WREXEC_B64
21 S_FLBIT_I32_B32 59 S_BITREPLICATE_B64_B32
22 S_FLBIT_I32_B64 60 S_AND_SAVEEXEC_B32
23 S_FLBIT_I32 61 S_OR_SAVEEXEC_B32
24 S_FLBIT_[32_164 62 S_XOR_SAVEEXEC_B32
25 S _SEXT_132_18 63 S_ANDN2_SAVEEXEC_B32
26 S_SEXT 132 116 64 S_ORN2_SAVEEXEC B32
27 S_BITSETO_B32 65 S_NAND_SAVEEXEC_B32
28 S_BITSETO_B64 66 S_NOR_SAVEEXEC_B32
29 S_BITSET1_B32 67 S_XNOR_SAVEEXEC B32
30 S BITSET1_B64 68 S _ANDN1_SAVEEXEC_B32
31 S_GETPC_B64 69 S_ORN1_SAVEEXEC B32
32 S_SETPC_B64 70 S _ANDN1_WREXEC_B32
33 S_SWAPPC_B64 71 S_ANDN2_WREXEC_B32
34 S_RFE_B64 73 S_MOVRELSD_2 B32
36 S_AND_SAVEEXEC_B64
13.1.4. SOPC
31 0
sorc |1 0/1 1 1"1 1" 170] ‘op, | 'SSRC1s 'SSRCOs
Format SOPC
13.1. Scalar ALU and Control Formats 249 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Description This is a scalar instruction with two inputs which are compared and
produce SCC as a result. Can be followed by a 32-bit literal constant.

Table 66. SOPC Fields

Field Name Bits Format or Description
SSRCO [7:0] Source 0. First operand for the instruction.
0-105 SGPRO to SGPR105: Scalar general-purpose registers.
106 VCC_LO: vec[31:0].
107 VCC_HI: vce[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 MO. Memory register 0.
125 NULL
126 EXEC_LO: exec[31:0].
127 EXEC_HI: exec[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-234 Reserved.

235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 POPS_EXITING_WAVE_ID .
240 0.5.
241 -0.5.
242 1.0.
243 -1.0.
244 2.0.
245 -2.0.
246 4.0.
247 -4.0.
248 1/(2*PI).
249 - 250 Reserved.
251 VCCZ.
252 EXECZ.
253 SCC.
254 Reserved.
255 Literal constant.
SSRC1 [15:8] Second scalar source operand.

Same codes as SSRCO, above.
oP [22:16] See Opcode table below.

ENCODING [31:23] Must be: 10_1111110

Table 67. SOPC Opcodes

Opcode # Name Opcode # Name
0 S_CMP_EQ_132 9 S_CMP_GE_U32
1 S_CMP_LG_I32 10 S_CMP_LT_U32
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Opcode # Name Opcode # Name
2 S_CMP_GT_I32 1 S_CMP_LE_U32
3 S_CMP_GE_I32 12 S_BITCMPO_B32
4 S CMP_LT_132 13 S_BITCMP1_B32
5 S_CMP_LE_I32 14 S_BITCMPO_B64
6 S _CMP_EQ U32 15 S_BITCMP1_B64
7 S CMP_LG U32 18 S_CMP_EQ U64
8 S_CMP_GT_U32 19 S_CMP_LG_U64
13.1.5. SOPP
31 0

SOPP \10\1‘1‘1‘1‘1‘1‘1’ op, " SIMM16 | |

Format SOPP

Description This is a scalar instruction with one 16-bit signed immediate (SIMM16)

input.
Table 68. SOPP Fields
Field Name Bits Format or Description
SIMM16 [15:0] Signed immediate 16-bit value.
OoP [22:16] See Opcode table below.
ENCODING [31:23] Must be: 10_1111111
Table 69. SOPP Opcodes

Opcode # Name Opcode # Name
0 S_NOP 18 S_TRAP
1 S_ENDPGM 19 S_ICACHE_INV
2 S_BRANCH 20 S_INCPERFLEVEL
3 S _WAKEUP 21 S DECPERFLEVEL
4 S_CBRANCH_SCCO 22 S _TTRACEDATA
5 S _CBRANCH_SCC1 23 S _CBRANCH_CDBGSYS
6 S_CBRANCH_VCCZ 24 S_CBRANCH_CDBGUSER
7 S _CBRANCH_VCCNz 25 S_CBRANCH_CDBGSYS_OR_USER
8 S_CBRANCH_EXECZ 26 S_CBRANCH_CDBGSYS_AND_USER
9 S_CBRANCH_EXECNZ 27 S_ENDPGM_SAVED
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Opcode # Name Opcode # Name
10 S _BARRIER 30 S ENDPGM_ORDERED_PS_DONE
1 S_SETKILL 31 S_CODE_END
12 S_WAITCNT 32 S_INST_PREFETCH
13 S _SETHALT 33 S CLAUSE
14 S SLEEP 36 S_ROUND_MODE
15 S _SETPRIO 37 S DENORM_MODE
16 S_SENDMSG 40 S_TTRACEDATA_IMM
17 S_SENDMSGHALT
13.2. Scalar Memory Format
13.2.1. SMEM

31 0

I I | T I I T [ | I I . I I [ T T I T l I T I
11711701 - op, | o] Joud] | SDATA, | | SBASEs sgprpan
| I T T T T

SMEM " Tsofrskr,’ | I T T | OFFSET, (signed)

32

Format SMEM

Description Scalar Memory data load/store

Table 70. SMEM Fields

Field Name Bits Format or Description

SBASE [5:0] SGPR-pair which provides base address or SGPR-quad which provides V#.
(LSB of SGPR address is omitted).

SDATA [12:6] SGPR which provides write data or accepts return data.

DLC [14] Device level coherent.

GLC [16] Globally memory Coherent. Force bypass of L1 cache, or for atomics, cause

pre-op value to be returned.

OoP [25:18] See Opcode table below.
ENCODING [31:26] Must be: 111101
OFFSET [52:32] An immediate signed byte offset. Signed offsets only work with

S_LOAD/STORE.

SOFFSET [63:57] SGPR which supplies an unsigned byte offset. Disabled if set to NULL.

Table 71. SMEM Opcodes
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Opcode # Name Opcode #
0 S _LOAD_DWORD 11

1 S_LOAD_DWORDX2 12

2 S _LOAD_DWORDX4 32

3 S LOAD_DWORDXS8 36

4 S_LOAD_DWORDX16 37

8 S BUFFER_LOAD_DWORD 38

9 S_BUFFER_LOAD_DWORDX2 39

10 S_BUFFER_LOAD_DWORDX4

13.3. Vector ALU Formats

AMDZ1

Name
S_BUFFER_LOAD_DWORDX8
S_BUFFER_LOAD_DWORDX16
S_DCACHE_INV

S_MEMTIME
S_MEMREALTIME
S_ATC_PROBE

S_ATC_PROBE_BUFFER

13.3.1. VOP2
31 0
VOP2 \o\ OPs \ "' VpsT, } ‘ ' VSRC1s 'SRCO, |
Format VOP2

Description Vector ALU format with two operands

Table 72. VOP2 Fields

13.3. Vector ALU Formats
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Field Name Bits Format or Description
SRCO [8:0] Source 0. First operand for the instruction.
0-105 SGPRO to SGPR105: Scalar general-purpose registers.
106 VCC_LO: vcc[31:0].
107 VCC_HI: vce[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 MO. Memory register 0.
125 NULL
126 EXEC_LO: exec[31:0].
127 EXEC_HI: exec[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208  Signed integer -1 to -16.
209-232  Reserved.

233 DPP8

234 DPP8FI

235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 POPS_EXITING_WAVE_ID .

240 0.5.

241 -0.5.

242 1.0.

243 -1.0.

244 2.0.

245 -2.0.

246 4.0.

247 -4.0.

248 1/(2*PI).

249 SDWA

250 DPP16

251 VCCZ.

252 EXECZ.

253 SCC.

254 Reserved.

255 Literal constant.

256 -511 VGPRO - 255

VSRC1 [16:9] VGPR which provides the second operand.
VDST [24:17] Destination VGPR.

OoP [30:25] See Opcode table below.

ENCODING [31] Must be: 0

Table 73. VOP2 Opcodes

Opcode # Name Opcode # Name

1 V_CNDMASK_B32 31 V_MAC_F32

3 V_ADD_F32 32 V_MADMK_F32
4 V_SUB_F32 33 V_MADAK_F32
5 V_SUBREV_F32 37 V_ADD_NC_U32
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Opcode # Name Opcode # Name
6 V_MAC_LEGACY_F32 38 V_SUB_NC_U32
7 V_MUL_LEGACY_F32 39 V_SUBREV_NC_U32
8 V_MUL_F32 40 V_ADD_CO_CI_U32
9 V_MUL_I32_I24 41 V_SUB_CO_CI_U32
10 V_MUL_HI_I32_I24 42 V_SUBREV_CO_Cl_U32
1 V_MUL_U32_U24 43 V_FMAC_F32
12 V_MUL_HI_U32_U24 44 V_FMAMK_F32
15 V_MIN_F32 45 V_FMAAK_F32
16 V_MAX_F32 47 V_CVT_PKRTZ_F16_F32
17 V_MIN_I32 50 V_ADD_F16
18 V_MAX_I32 51 V_SUB_F16
19 V_MIN_U32 52 V_SUBREV_F16
20 V_MAX_U32 53 V_MUL_F16
22 V_LSHRREV_B32 54 V_FMAC_F16
24 V_ASHRREV_I32 55 V_FMAMK_F16
26 V_LSHLREV_B32 56 V_FMAAK_F16
27 V_AND_B32 57 V_MAX_F16
28 V_OR_B32 58 V_MIN_F16
29 V_XOR_B32 59 V_LDEXP_F16
30 V_XNOR_B32 60 V_PK_FMAC_F16
13.3.2. VOP1
31 0
VOP1 \0\1‘1‘1‘1'1‘1] ' vosT, | \ | | oPs \ | SRCOs | |
Format VOP1
Description Vector ALU format with one operand

Table 74. VOP1 Fields
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Field Name

SRCO

OoP
VDST

ENCODING

Opcode #
0

1

Bits Format or Description

[8:0] Source 0. First operand for the instruction.

0-105 SGPRO to SGPR105: Scalar general-purpose registers.

106 VCC_LO: vece[31:0].

107 VCC_HI: vce[63:32].

108-123 TTMPO - TTMP15: Trap handler temporary register.

124 MO. Memory register 0.

125 NULL

126 EXEC_LO: exec[31:0].

127 EXEC_HI: exec[63:32].

128 0.

129-192 Signed integer 1 to 64.

193-208  Signed integer -1 to -16.

209-232  Reserved.

233 DPP8

234 DPPS8FI

235 SHARED_BASE (Memory Aperture definition).

236 SHARED_LIMIT (Memory Aperture definition).

237 PRIVATE_BASE (Memory Aperture definition).

238 PRIVATE_LIMIT (Memory Aperture definition).

239 POPS_EXITING_WAVE_ID .

240 0.5.

241 -0.5.

242 1.0.

243 -1.0.

244 2.0.

245 -2.0.

246 4.0.

247 -4.0.

248 1/(2*PI).

249 SDWA

250 DPP16

251 VCCZ.

252 EXECZ.

253 SCC.

254 Reserved.

255 Literal constant.

256 -511 VGPRO- 255

[16:9] See Opcode table below.

[24:17] Destination VGPR.

[31:25] Must be: 0_111111

Table 75. VOP1 Opcodes

Name Opcode # Name
V_NOP 53 V_SIN_F32
V_MOV_B32 54 V_COS_F32
V_READFIRSTLANE_B32 55 V_NOT_B32
V_CVT_I32_F64 56 V_BFREV_B32
V_CVT_F64_132 57 V_FFBH_U32
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Opcode # Name

5 V_CVT F32_132
6 V_CVT_F32_U32

7 V_CVT _U32_F32

8 V_CVT I32_F32

10 V_CVT_F16_F32

11 V_CVT F32 F16

12 V_CVT_RPI_I32_F32
13 V_CVT_FLR_132_F32
14 V_CVT_OFF_F32_14
15 V_CVT _F32_F64

16 V_CVT_F64_F32

17 V_CVT_F32_UBYTEO
18 V_CVT _F32_UBYTEL
19 V_CVT_F32_UBYTE2
20 V_CVT _F32_UBYTE3
21 V_CVT U32_F64

22 V_CVT_F64_U32

23 V_TRUNC_F64

24 V_CEIL_F64

25 V_RNDNE_F64

26 V_FLOOR_F64

27 V_PIPEFLUSH

32 V_FRACT F32

33 V_TRUNC_F32

34 V_CEIL_F32

35 V_RNDNE_F32

36 V_FLOOR_F32

37 V_EXP_F32

39 V_LOG_F32

42 V_RCP_F32

43 V_RCP_IFLAG_F32
46 V_RSQ F32

a7 V_RCP_F64

49 V_RSQ _F64

13.3. Vector ALU Formats

Opcode #
58
59
60
61
62
63
64
65
66
67
68
72
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101

AMDZ1

Name

V_FFBL_B32
V_FFBH_I32
V_FREXP_EXP_I32_F64
V_FREXP_MANT F64
V_FRACT_F64
V_FREXP_EXP_[32_F32
V_FREXP_MANT_F32
V_CLREXCP
V_MOVRELD_B32
V_MOVRELS_B32
V_MOVRELSD_B32
V_MOVRELSD_2_B32
V_CVT _F16_U16
V_CVT_F16_116
V_CVT_U16_F16
V_CVT_I16_F16
V_RCP_F16

V_SQRT F16
V_RSQ_F16
V_LOG_F16
V_EXP_F16
V_FREXP_MANT _F16
V_FREXP_EXP_I16_F16
V_FLOOR_F16
V_CEIL_F16
V_TRUNC_F16
V_RNDNE_F16
V_FRACT_F16
V_SIN_F16

V_COS_F16

V_SAT _PK_US8_116
V_CVT_NORM_I16_F16
V_CVT_NORM_U16_F16

V_SWAP_B32
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Opcode # Name Opcode # Name
51 V_SQRT_F32 104 V_SWAPREL_B32
52 V_SOQRT_F64
13.3.3. VOPC
31 0
I | T I I ‘ T I I I ‘ I [ | I | | I I I [ T T
VOPC ‘ 0 ‘ 111 1 10 ’ OP; ’ VSRC1s ‘ SRCO,
Format VOPC

Description  Vector instruction taking two inputs and producing a comparison result. Can
be followed by a 32- bit literal constant. Vector Comparison operations are
divided into three groups:

 those which can use any one of 16 comparison operations,
* those which can use any one of 8, and
« those which have only a single comparison operation.

The final opcode number is determined by adding the base for the opcode family plus the offset
from the compare op. Compare instructions write a result to VCC (for VOPC) or an SGPR (for
VOP3). Additionally, every compare instruction has a variant that writes to the EXEC mask
instead of VCC or SGPR. The destination of the compare result is VCC or EXEC when encoded
using the VOPC format, and can be an arbitrary SGPR when only encoded in the VOP3 format.

Comparison Operations

Table 76. Comparison Operations

Compare Operation Opcode  Description
Offset

Sixteen Compare Operations (OP16)

F 0 Du=0

LT 1 D.u = (SO < S1)

EQ 2 D.u= (S0 ==S1)

LE 3 D.u = (SO <= S1)

GT 4 D.u = (SO > S1)

LG 5 D.u=(S0<>S1)

GE 6 D.u = (SO >= S1)

o) 7 D.u = (lisNaN(S0) && lisNaN(S1))
8 D.u = (lisNaN(SO0) || lisNaN(S1))
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Compare Operation

NGE
NLG
NGT
NLE
NEQ
NLT

TRU

Opcode Description

Offset

9 D.u=1(S0 >=S1)
10 D.u=1(S0 <> S1)
1 D.u = (S0 > S1)
12 D.u =1(S0 <= S1)
13 D.u = (S0 == S1)
14 D.u=1(S0 < S1)
15 Du=1

Eight Compare Operations (OP8)

F
LT

EQ
LE

GT
LG
GE

TRU

0 Du=0

1 D.u = (S0 < S1)
2 D.u = (SO == S1)
3 D.u=(S0<=S1)
4 D.u = (S0 > S1)
5 D.u=(S0 <> S1)
6 D.u = (S0 >=S1)
7 Du=1

Table 77. VOPC Fields

13.3. Vector ALU Formats
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Field Name

SRCO

VSRC1
OoP

ENCODING

Opcode #
0

1

Bits

[8:0]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 - 511

[16:9]
[24:17]

[31:25]

Format or Description

Source 0. First operand for the instruction.
SGPRO to SGPR105: Scalar general-purpose registers.
VCC_LO: vece[31:0].

VCC_HI: vce[63:32].

TTMPO - TTMP15: Trap handler temporary register.
MO. Memory register 0.

NULL

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPS8FI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP16

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

VGPR which provides the second operand.
See Opcode table below.

Must be: 0_111110

Table 78. VOPC Opcodes

Name
V_CMP_F_F32
V_CMP_LT F32
V_CMP_EQ F32
V_CMP_LE_F32

V_CMP_GT_F32

13.3. Vector ALU Formats

Opcode # Name

159 V_CMPX_CLASS_F16
160 V_CMP_F 64

161 V_CMP_LT_l64

162 V_CMP_EQ |64

163 V_CMP_LE_l64

260 of 289



"RDNA 1.0" Instruction Set Architecture
AMDZ

Opcode # Name Opcode # Name

5 V_CMP_LG_F32 164 V_CMP_GT_I64

6 V_CMP_GE_F32 165 V_CMP_NE_I64

7 V_CMP_O_F32 166 V_CMP_GE_l64

8 V_CMP_U F32 167 V_CMP_T 164

9 V_CMP_NGE_F32 168 V_CMP_CLASS_F64
10 V_CMP_NLG_F32 169 V_CMP_LT U16
11 V_CMP_NGT_F32 170 V_CMP_EQ U16
12 V_CMP_NLE_F32 171 V_CMP_LE_U16
13 V_CMP_NEQ _F32 172 V_CMP_GT _U16
14 V_CMP_NLT_F32 173 V_CMP_NE_U16
15 V_CMP_TRU_F32 174 V_CMP_GE_U16
16 V_CMPX_F_F32 176 V_CMPX_F_I64
17 V_CMPX_LT_F32 177 V_CMPX_LT 164
18 V_CMPX_EQ _F32 178 V_CMPX_EQ 164
19 V_CMPX_LE_F32 179 V_CMPX_LE_l64
20 V_CMPX_GT_F32 180 V_CMPX_GT_I64
21 V_CMPX_LG_F32 181 V_CMPX_NE_l64
22 V_CMPX_GE_F32 182 V_CMPX_GE_l64
23 V_CMPX_O_F32 183 V_CMPX_T_164
24 V_CMPX_U_F32 184 V_CMPX_CLASS_F64
25 V_CMPX_NGE_F32 185 V_CMPX_LT _U16
26 V_CMPX_NLG_F32 186 V_CMPX_EQ _U16
27 V_CMPX_NGT_F32 187 V_CMPX_LE_U16
28 V_CMPX_NLE_F32 188 V_CMPX_GT_U16
29 V_CMPX_NEQ_F32 189 V_CMPX_NE_U16
30 V_CMPX_NLT_F32 190 V_CMPX_GE_U16
31 V_CMPX_TRU_F32 192 V_CMP_F_U32

32 V_CMP_F_F64 193 V_CMP_LT U32
33 V_CMP_LT F64 194 V_CMP_EQ U32
34 V_CMP_EQ F64 195 V_CMP_LE_U32
35 V_CMP_LE_F64 196 V_CMP_GT_U32
36 V_CMP_GT F64 197 V_CMP_NE_U32
37 V_CMP_LG_F64 198 V_CMP_GE_U32
38 V_CMP_GE_F64 199 V_CMP_T_U32
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Opcode # Name Opcode # Name

39 V_CMP_O_F64 200 V_CMP_F_F16

40 V_CMP_U_F64 201 V_CMP_LT F16
41 V_CMP_NGE_F64 202 V_CMP_EQ F16
42 V_CMP_NLG_F64 203 V_CMP_LE_F16
43 V_CMP_NGT_F64 204 V_CMP_GT_F16
44 V_CMP_NLE_F64 205 V_CMP_LG F16
45 V_CMP_NEQ_F64 206 V_CMP_GE_F16
46 V_CMP_NLT_F64 207 V_CMP_O_F16
47 V_CMP_TRU_F64 208 V_CMPX_F_U32
48 V_CMPX_F_F64 209 V_CMPX_LT_U32
49 V_CMPX_LT F64 210 V_CMPX_EQ U32
50 V_CMPX_EQ_F64 211 V_CMPX_LE_U32
51 V_CMPX_LE_F64 212 V_CMPX_GT_U32
52 V_CMPX_GT_F64 213 V_CMPX_NE_U32
53 V_CMPX_LG_F64 214 V_CMPX_GE_U32
54 V_CMPX_GE_F64 215 V_CMPX_T_U32
55 V_CMPX_O_F64 216 V_CMPX_F_F16
56 V_CMPX_U_F64 217 V_CMPX_LT F16
57 V_CMPX_NGE_F64 218 V_CMPX_EQ _F16
58 V_CMPX_NLG_F64 219 V_CMPX_LE_F16
59 V_CMPX_NGT_F64 220 V_CMPX_GT_F16
60 V_CMPX_NLE_F64 221 V_CMPX_LG_F16
61 V_CMPX_NEQ _F64 222 V_CMPX_GE_F16
62 V_CMPX_NLT_F64 223 V_CMPX_O_F16
63 V_CMPX_TRU_F64 224 V_CMP_F U64
128 V_CMP_F_I32 225 V_CMP_LT_U64
129 V_CMP_LT_I32 226 V_CMP_EQ_U64
130 V_CMP_EQ 132 227 V_CMP_LE_U64
131 V_CMP_LE_ 132 228 V_CMP_GT_U64
132 V_CMP_GT I32 229 V_CMP_NE_U64
133 V_CMP_NE_I32 230 V_CMP_GE_U64
134 V_CMP_GE_I32 231 V_CMP_T_U64
135 V_CMP_T_I32 232 V_CMP_U_F16
136 V_CMP_CLASS_F32 233 V_CMP_NGE_F16
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137 V_CMP_LT_I16 234 V_CMP_NLG_F16
138 V_CMP_EQ 116 235 V_CMP_NGT_F16
139 V_CMP_LE_I16 236 V_CMP_NLE_F16
140 V_CMP_GT |16 237 V_CMP_NEQ F16
141 V_CMP_NE_I16 238 V_CMP_NLT_F16
142 V_CMP_GE_I16 239 V_CMP_TRU_F16
143 V_CMP_CLASS_F16 240 V_CMPX_F_U64
144 V_CMPX_F_I32 241 V_CMPX_LT_U64
145 V_CMPX_LT 132 242 V_CMPX_EQ U64
146 V_CMPX_EQ_132 243 V_CMPX_LE_uUe64
147 V_CMPX_LE_I32 244 V_CMPX_GT_U64
148 V_CMPX_GT_I32 245 V_CMPX_NE_U64
149 V_CMPX_NE_I32 246 V_CMPX_GE_U64
150 V_CMPX_GE_I32 247 V_CMPX_T_U64
151 V_CMPX_T_132 248 V_CMPX_U_F16
152 V_CMPX_CLASS_F32 249 V_CMPX_NGE_F16
153 V_CMPX_LT_116 250 V_CMPX_NLG_F16
154 V_CMPX_EQ 116 251 V_CMPX_NGT _F16
155 V_CMPX_LE_I16 252 V_CMPX_NLE_F16
156 V_CMPX_GT_I16 253 V_CMPX_NEQ_F16
157 V_CMPX_NE_I16 254 V_CMPX_NLT_F16
158 V_CMPX_GE_l16 255 V_CMPX_TRU_F16
13.3.4. VOP3A
= T T | T T I T T | I T T I I T I I T I I I I I g
VOP3A ! T ! T S I 01 1 \ | T |OP?0 T \ dmp{ ?P_|SEL14 \‘ \ABS I — VlDSTB T
NEG ‘OMOD‘ [SRczg SRC1, ‘ SRCO,
63 32
Format VOP3A

Description  Vector ALU format with three operands

Table 79. VOP3A Fields
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Field Name
VDST
ABS

OPSEL

CLMP
OP
ENCODING

SRCO

SRC1
SRC2
OMOD

NEG

Bits
[7:0]
[10:8]

[14:11]

[15]
[25:16]
[31:26]

[40:32]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 - 511

[49:41]
[58:50]
[60:59]

[63:61]

13.3. Vector ALU Formats

Format or Description
Destination VGPR
Absolute value of input. [8] = src0, [9] = srcl, [10] = src2

Operand select for 16-bit data. 0 = select low half, 1 = select high half. [11] =
src0, [12] = srcl, [13] = src2, [14] = dest.

Clamp output
Opcode. See next table.

Must be: 110101

Source 0. First operand for the instruction.
SGPRO to SGPR105: Scalar general-purpose registers.
VCC_LO: vece[31:0].

VCC_HI: vcce[63:32].

TTMPO - TTMP15: Trap handler temporary register.
MO. Memory register 0.

NULL

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPS8FI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP16

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

Second input operand. Same options as SRCO.
Third input operand. Same options as SRCO.
Output Modifier: O=none, 1=*2, 2=*4, 3=div-2

Negate input. [61] = srcO0, [62] = src1, [63] = src2
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Table 80. VOP3A Opcodes

Opcode # Name

320 V_MAD_LEGACY_F32
321 V_MAD_F32

322 V_MAD _[32_124
323 V_MAD_U32_U24
324 V_CUBEID_F32
325 V_CUBESC_F32
326 V_CUBETC_F32
327 V_CUBEMA_F32
328 V_BFE_U32

329 V_BFE_I32

330 V_BFI_B32

331 V_FMA F32

332 V_FMA_F64

333 V_LERP_US

334 V_ALIGNBIT_B32
335 V_ALIGNBYTE_B32
336 V_MULLIT_F32
337 V_MIN3_F32

338 V_MIN3_[32

339 V_MIN3_U32

340 V_MAX3_F32

341 V_MAX3_132

342 V_MAX3_U32

343 V_MED3_F32

344 V_MED3_I32

345 V_MED3_U32

346 V_SAD_US8

347 V_SAD_HI_US

348 V_SAD_U16

349 V_SAD_U32

350 V_CVT PK_U8 F32
351 V_DIV_FIXUP_F32
352 V_DIV_FIXUP_F64

13.3. Vector ALU Formats

Opcode #

773

775

776

777

778

779

780

781

782

785

786

787

788

832

834

835

836

837

838

839

843

849

850

851

852

853

854

855

856

857

858

862

863

Name
V_MUL_LO_U16
V_LSHRREV_B16
V_ASHRREV |16
V_MAX_U16
V_MAX_116
V_MIN_U16
V_MIN_I16
V_ADD_NC_I16
V_SUB_NC_I16
V_PACK_B32_F16
V_CVT_PKNORM_I16_F16
V_CVT_PKNORM_U16_F16
V_LSHLREV_B16
V_MAD_U16
V_INTERP_PI1LL_F16
V_INTERP_P1LV_F16
V_PERM_B32
V_XAD_U32
V_LSHL_ADD_U32
V_ADD_LSHL_U32
V_FMA_F16
V_MIN3_F16
V_MIN3_116
V_MIN3_U16
V_MAX3 _F16
V_MAX3_116
V_MAX3_U16
V_MED3_F16
V_MED3_I16
V_MED3_U16
V_INTERP_P2 F16
V_MAD_I16

V_DIV_FIXUP_F16
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Opcode # Name Opcode # Name
356 V_ADD_F64 864 V_READLANE_B32
357 V_MUL_F64 865 V_WRITELANE_B32
358 V_MIN_F64 866 V_LDEXP_F32
359 V_MAX_F64 867 V_BFM_B32
360 V_LDEXP_F64 868 V_BCNT_U32_B32
361 V_MUL_LO_U32 869 V_MBCNT_LO_U32_B32
362 V_MUL_HI_U32 870 V_MBCNT_HI_U32_B32
364 V_MUL_HI_I32 872 V_CVT_PKNORM_I16_F32
367 V_DIV_FMAS_F32 873 V_CVT_PKNORM_U16_F32
368 V_DIV_FMAS_F64 874 V_CVT_PK_U16_U32
369 V_MSAD_U8 875 V_CVT_PK_I16_132
370 V_QSAD_PK_U16_U8 877 V_ADD3_U32
371 V_MQSAD_PK_U16_US8 879 V_LSHL_OR_B32
372 V_TRIG_PREOP_F64 881 V_AND_OR_B32
373 V_MQSAD_U32_U8 882 V_OR3_B32
376 V_XOR3_B32 883 V_MAD_U32_U16
767 V_LSHLREV_B64 885 V_MAD_I32_116
768 V_LSHRREV_B64 886 V_SUB_NC_I32
769 V_ASHRREV_I64 887 V_PERMLANE16_B32
771 V_ADD_NC_U16 888 V_PERMLANEX16_B32
772 V_SUB_NC_U16 895 V_ADD_NC_I32
13.3.5. VOP3B
31\{{|\{[\www{\ T T T T T T T T
VOP3B 1\1\0 1|0 11 [og \OP?O I Clmpl [N S\DST\? \ [ — VlDS-I\-s I
3NEG  omoD| SRC2, SRC1, SRCOy

6.

Format VOP3B

Description

Vector ALU format with three operands and a scalar result. This encoding
is used only for a few opcodes.

This encoding allows specifying a unique scalar destination, and is used only for the opcodes
listed below. All other opcodes use VOP3A.

13.3. Vector ALU Formats

266 of 289



"RDNA 1.0" Instruction Set Architecture

* V_ADD_CO_U32

* V_SUB_CO_U32

* V_SUBREV_CO_U32
* V_ADDC_CO_U32

* V_SUBB_CO_U32

* V_SUBBREV_CO_U32

* V_DIV_SCALE_F32
* V_DIV_SCALE_F64
* V_MAD_U64_U32

« V_MAD_ 64 132

Field Name Bits
VDST [7:0]
SDST [14:8]
CLMP [15]
OoP [25:16]
ENCODING [31:26]

13.3. Vector ALU Formats

Table 81. VOP3B Fields
Format or Description
Destination VGPR
Scalar destination
Clamp result
Opcode. see next table.

Must be: 110101

AMDZ1
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Field Name

SRCO

SRC1
SRC2
OMOD

NEG

Opcode # Name

Bits

[40:32]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 - 511

[49:41]
[58:50]
[60:59]

[63:61]

Format or Description

Source 0. First operand for the instruction.
SGPRO to SGPR105: Scalar general-purpose registers.
VCC_LO: vece[31:0].

VCC_HI: vce[63:32].

TTMPO - TTMP15: Trap handler temporary register.
MO. Memory register 0.

NULL

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPS8FI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP16

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

Second input operand. Same options as SRCO.
Third input operand. Same options as SRCO.
Output Modifier: O=none, 1=*2, 2=*4, 3=div-2

Negate input. [61] = srcO0, [62] = src1, [63] = src2

Table 82. VOP3B Opcodes

365 V_DIV_SCALE_F32
366 V_DIV_SCALE_F64
374 V_MAD_U64 U32
375 V_MAD_164_132

13.3. Vector ALU Formats

Opcode # Name

783 V_ADD_CO_U32
784 V_SUB_CO_U32
793 V_SUBREV_CO_U32
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13.3.6. VOP3P

I I [ I
clmﬁﬁpﬁf}op_sam\ NEG_HI
I I | I I
SRC1,

VOP3P

32

Format VOP3P

Description  Vector ALU format taking one, two or three pairs of 16 bit inputs and
producing two 16-bit outputs (packed into 1 dword).

Table 83. VOP3P Fields

Field Name Bits Format or Description

VDST [7:0] Destination VGPR

NEG_HI [10:8] Negate sources 0,1,2 of the high 16-bits.

OPSEL [13:11] Select low or high for low sources 0=[11], 1=[12], 2=[13].
OPSEL_HI2 [14] Select low or high for high sources 0=[14], 1=[60], 2=[59].
CLMP [15] 1 = clamp result.

OoP [22:16] Opcode. see next table.

ENCODING [31:26] Must be: 110011
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Field Name Bits Format or Description
SRCO [40:32] Source 0. First operand for the instruction.
0-105 SGPRO to SGPR105: Scalar general-purpose registers.
106 VCC_LO: vcc[31:0].
107 VCC_HI: vce[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 MO. Memory register 0.
125 NULL
126 EXEC_LO: exec[31:0].
127 EXEC_HI: exec[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208  Signed integer -1 to -16.
209-232  Reserved.

233 DPP8

234 DPP8FI

235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 POPS_EXITING_WAVE_ID .

240 0.5.

241 -0.5.

242 1.0.

243 -1.0.

244 2.0.

245 -2.0.

246 4.0.

247 -4.0.

248 1/(2*PI).

249 SDWA

250 DPP16

251 VCCZ.

252 EXECZ.

253 SCC.

254 Reserved.

255 Literal constant.

256 -511 VGPRO - 255

SRC1 [49:41] Second input operand. Same options as SRCO.

SRC2 [58:50] Third input operand. Same options as SRCO.

OPSEL_HI [60:59] See OP_SEL_HI2.

NEG [63:61] Negate input for low 16-bits of sources. [61] = srcO0, [62] = src1, [63] = src2

Table 84. VOP3P Opcodes

Opcode # Name Opcode # Name

0 V_PK_MAD 116 11 V_PK_SUB_U16
1 V_PK_MUL_LO U16 12 V_PK_MAX_U16
2 V_PK_ADD_116 13 V_PK_MIN_U16
3 V_PK_SUB_I16 14 V_PK_FMA_F16
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Opcode # Name

4 V_PK_LSHLREV_B16
5 V_PK_LSHRREV_B16
6 V_PK_ASHRREV_|16
7 V_PK_MAX_116

8 V_PK_MIN_I16

9 V_PK_MAD_U16

10 V_PK_ADD_U16

13.3.7. SDWA

63
SDWA  |S1] |asshackexiSRC1_SEL|S0|  lass heekext SRCO_SEL| OMOD

Opcode # Name

15 V_PK_ADD_F16
16 V_PK_MUL_F16

17 V_PK_MIN_F16

18 V_PK_MAX_F16

32 V_FMA_MIX_F32
33 V_FMA_MIXLO_F16
34 V_FMA_MIXHI_F16

32

I 1 T T T 1
clmp‘ DST_U’ DST_SEL SRCO0g

Format SDWA

Description Sub-Dword Addressing. This is a second dword which can follow VOP1 or
VOP2 instructions (in place of a literal constant) to control selection of sub-
dword (8-bit and 16-bit) operands. Use of SDWA is indicated by assigning
the SRCO field to SDWA, and then the actual VGPR used as source-zero is
determined in SDWA instruction word.

Field Name Bits
SRCO [39:32]
DST_SEL [42:40]
DST_U [44:43]
CLMP [45]
OMOD [47:46]

13.3. Vector ALU Formats

Table 85. SDWA Fields
Format or Description
Real SRCO operand (VGPR).

Select the data destination:
0 = data[7:0]

1 = data[15:8]

2 = data[23:16]

3 = data[31:24]

4 = data[15:0]

5 = data[31:16]

6 = data[31:0]

7 =reserved

Destination format: what do with the bits in the VGPR that are not selected by
DST_SEL:

0 = pad with zeros + 1 = sign extend upper / zero lower

2 = preserve (don’t modify)

3 =reserved

1 = clamp result

Output modifiers (see VOP3). [46] = low half, [47] = high half
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Field Name Bits Format or Description
SRCO_SEL [50:48] Source 0 select. Same options as DST_SEL.
SRCO_SEXT [51] Sign extend modifier for source O.
SRCO_NEG [52] 1 = negate source 0.
SRCO_ABS [53] 1 = Absolute value of source O.
SO [55] 0 =source 0is VGPR, 1 =is SGPR.
SRC1_SEL [58:56] Same options as SRCO_SEL.
SRC1_SEXT [59] Sign extend modifier for source 1.
SRC1_NEG [60] 1 = negate source 1.
SRC1_ABS [61] 1 = Absolute value of source 1.
S1 [63] 0 =source 1is VGPR, 1 =is SGPR.
13.3.8. SDWAB
63 32
sowaB |51 |aashedoexiSRC1_SELS0|  hashacpexiSRCO_SELsp| | | spstT, | | | SRCO, |
Format SDWAB
Description Sub-Dword Addressing. This is a second dword which can follow VOPC
instructions (in place of a literal constant) to control selection of sub-dword
(8-bit and 16-bit) operands. Use of SDWA is indicated by assigning the
SRCO field to SDWA, and then the actual VGPR used as source-zero is
determined in SDWA instruction word. This version has a scalar
destination.
Table 86. SDWAB Fields
Field Name Bits Format or Description
SRCO [39:32] Real SRCO operand (VGPR).
SDST [46:40] Scalar GPR destination.
SD [47] Scalar destination type: 0 = VCC, 1 = normal SGPR.
SRCO_SEL [50:48] Source 0 select. Same options as DST_SEL.
SRCO_SEXT [51] Sign extend modifier for source 0.
SRCO_NEG [52] 1 = negate source 0.
SRCO_ABS [53] 1 = Absolute value of source O.
S0 [55] 0 =source 0is VGPR, 1 =is SGPR.
SRC1_SEL [58:56] Same options as SRCO_SEL.
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Field Name Bits Format or Description
SRC1_SEXT [59] Sign extend modifier for source 1.
SRC1_NEG [60] 1 = negate source 1.
SRC1_ABS [61] 1 = Absolute value of source 1.
S1 [63] 0 =source 1is VGPR, 1 =is SGPR.
13.3.9. DPP16
= I I [ I I I I I I | I I I I | I I =
DPP16 | ROW_MASK | BANK MASK Jass Nechselvea BC FI | | | DPP_CTRL, SRCO;
Format DPP16

Description

Field Name
SRCO
DPP_CTRL

Fl

BC
SRCO_NEG
SRCO_ABS
SRC1_NEG
SRC1_ABS

BANK_MASK

ROW_MASK

Data Parallel Primitives over 16 lanes. This is a second dword which can
follow VOP1, VOP2 or VOPC instructions (in place of a literal constant) to
control selection of data from other lanes.

Bits
[39:32]
[48:40]

[50]

[51]
[52]
[53]
[54]
[55]

[59:56]

[63:60]

13.3. Vector ALU Formats

Table 87. DPP16 Fields
Format or Description
Real SRCO operand (VGPR).
See next table: "DPP_CTRL Enumeration”

Fetch invalid data: O = read zero for any inactive lanes; 1 = read VGPRs even
for invalid lanes.

Bounds Control: 0 = do not write when source is out of range, 1 = write.
1 = negate source 0.

1 = Absolute value of source O.

1 = negate source 1.

1 = Absolute value of source 1.

Bank Mask Applies to the VGPR destination write only, does not impact the
thread mask when fetching source VGPR data.

27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled

26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled

25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled

24==0: lanes|0:3, 16:19, 32:35, 48:51] are disabled

Notice: the term "bank" here is not the same as we used for the VGPR bank.

Row Mask Applies to the VGPR destination write only, does not impact the
thread mask when fetching source VGPR data.

31==0: lanes[63:48] are disabled (wave 64 only)

30==0: lanes[47:32] are disabled (wave 64 only)

29==0: lanes[31:16] are disabled

28==0: lanes[15:0] are disabled
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Table 88. DPP_CTRL Enumeration

DPP_Cntl Hex Function Description
Enumeration Value

DPP_QUAD_PER 000- pix[n].srca = pix[(n&0x3c)+ dpp_cntl[n%4*2+1 : n%4*2]].srca Permute of four
M* OFF threads.

DPP_UNUSED 100 Undefined Reserved.

DPP_ROW_SL* 101- if (n&0xf) < (16-cntl[3:0])) pix[n].srca = pix[n+ cntl[3:0]].srca  Row shift left by 1-15
10F else use bound_cntl threads.

DPP_ROW_SR* 111- if \((n&0xf) >= cntl[3:0]) pix[n].srca = pix[n - cntl[3:0]].srca Row shift right by 1-15
11F else use bound_cntl threads.

DPP_ROW_RR* 121- if \((n&O0xf) >= cnt[3:0]) pix[n].srca = pix[n - cntl[3:0]].srca Row rotate right by 1-15

12F else pix[n].srca = pix[n + 16 - cntl[3:0]].srca threads.
DPP_ROW_MIRR 140 pix[n].srca = pix[15-(n&f)].srca Mirror threads within
OR* row.
DPP_ROW_HALF_ 141 pix[n].srca = pix[7-(n&7)].srca Mirror threads within
MIRROR* row (8 threads).

13.3.10. DPP8

63 ‘ | 32

DPPs | SEL7 | SEL6 | SEL5 | SEL4 SEL3 | SEL2 | sEL1 SELO " srcos

Format DPP8

Description Data Parallel Primitives over 8 lanes. This is a second dword which can
follow VOP1, VOP2 or VOPC instructions (in place of a literal constant) to
control selection of data from other lanes.

Table 89. DPPS8 Fields

Field Name Bits Format or Description

SRCO [39:32] Real SRCO operand (VGPR).

LANE_SELO 42:40 Which lane to read for 1st output lane per 8-lane group
LANE_SEL1 45:43 Which lane to read for 2nd output lane per 8-lane group
LANE_SEL2 48:46 Which lane to read for 3rd output lane per 8-lane group
LANE_SEL3 51:49 Which lane to read for 4th output lane per 8-lane group
LANE_SEL4 54:52 Which lane to read for 5th output lane per 8-lane group
LANE_SEL5 57:55 Which lane to read for 6th output lane per 8-lane group
LANE_SEL6 60:58 Which lane to read for 7th output lane per 8-lane group
LANE_SEL7 63:61 Which lane to read for 8th output lane per 8-lane group
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13.4. Vector Parameter Interpolation Format

13.4.1. VINTRP

31

I [ [ I I ‘ [ I [ [ I [ I I I [ ATTR I I [ [
VINTRP \ 110 0 10 \ VDST; (accum) ‘ OP, \ ATTRs | CHAN \ VSRC; (1,J)
Format VINTRP
Description  Vector Parameter Interpolation.
These opcodes perform parameter interpolation using vertex data in pixel
shaders.
Table 90. VINTRP Fields
Field Name Bits Format or Description
VSRC [7:0] SRCO operand (VGPR).
ATTR_CHAN [9:8] Attribute channel: 0=X, 1=Y, 2=Z, 3=W
ATTR [15:10] Attribute number: O - 32.
opP [17:16] Opcode:
0: v_interp_pl _f32: VDST = P10 * VSRC + PO
1: v_interp_p2_f32: VDST = P20 * VSRC + VDST
2:v_interp_mov_f32: VDST = (PO, P10 or P20 selected by VSRC[1:0])
VDST [25:18] Destination VGPR
ENCODING [31:26] Must be: 110010

VSRC must be different from VDST.

13.5. LDS and GDS format

13.5.1. DS
o I I I I I I I I I I [ I I I I T | I I [ e
110 1 1 0 ‘ ‘ OFFSET1s OFFSETO0g
LDS, GDS N S S R B 1 1 T T T 1 T T T T T 1
VDSTg ‘ DATAOg ADDRg
63 32
Format LDS and GDS
Description Local and Global Data Sharing instructions
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Field Name Bits
OFFSETO [7:0]
OFFSET1 [15:8]
GDS [16]
oP [24:17]
ENCODING [31:26]
ADDR [39:32]
DATAO [47:40]
DATA1 [55:48]
VDST [63:56]
Opcode # Name

0 DS_ADD_U32

1 DS _SUB U32

2 DS_RSUB_U32

3 DS_INC_U32

4 DS_DEC_U32

5 DS_MIN_I32

6 DS_MAX_I32

7 DS_MIN_U32

8 DS_MAX_U32

9 DS_AND_B32

10 DS_OR_B32

11 DS_XOR_B32

12 DS_MSKOR_B32
13 DS_WRITE_B32
14 DS_WRITE2_B32
15 DS_WRITE2ST64_B32
16 DS_CMPST_B32
17 DS_CMPST_F32
18 DS_MIN_F32

19 DS_MAX_F32

20 DS_NOP

13.5. LDS and GDS format

Table 91. DS Fields

Format or Description

First address offset

AMDZ1

Second address offset. For some opcodes this is concatenated with OFFSETO.

1=GDS, 0=LDS operation.
See Opcode table below.

Must be: 110110

VGPR which supplies the address.

First data VGPR.

Second data VGPR.

Destination VGPR when results returned to VGPRs.

Table 92. DS Opcodes

Opcode #
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

85

Name
DS_ADD_U64
DS_SUB_U64
DS_RSUB_U64
DS_INC_U64
DS_DEC_U64
DS_MIN_I64
DS_MAX_l64
DS_MIN_U64
DS_MAX_U64
DS_AND_B64
DS_OR_B64
DS_XOR_B64
DS_MSKOR_B64
DS_WRITE_B64
DS_WRITE2_B64
DS_WRITE2ST64 B64
DS_CMPST_B64
DS_CMPST_F64
DS_MIN_F64
DS_MAX_F64

DS_ADD_RTN_F32
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Opcode #
21
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

Name

DS_ADD_F32
DS_GWS_SEMA_RELEASE_ALL
DS_GWS_INIT
DS_GWS_SEMA_V
DS_GWS_SEMA_BR
DS_GWS_SEMA_P
DS_GWS_BARRIER
DS_WRITE_B8
DS_WRITE_B16
DS_ADD_RTN_U32
DS_SUB_RTN_U32
DS_RSUB_RTN_U32
DS_INC_RTN_U32
DS_DEC_RTN_U32
DS_MIN_RTN_I32
DS_MAX_RTN_I32
DS_MIN_RTN_U32
DS_MAX_RTN_U32
DS_AND_RTN_B32
DS_OR_RTN_B32
DS_XOR_RTN_B32
DS_MSKOR_RTN_B32
DS_WRXCHG_RTN_B32
DS_WRXCHG2_RTN_B32
DS_WRXCHG2ST64_RTN_B32
DS_CMPST_RTN_B32
DS_CMPST_RTN_F32
DS_MIN_RTN_F32
DS_MAX_RTN_F32
DS_WRAP_RTN_B32
DS_SWIZZLE_B32
DS_READ_B32
DS_READ2_B32

DS_READ2ST64_B32

13.5. LDS and GDS format

Opcode #
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
118
119
120
126
160
161
162
163
164
165
166
167
176

177

AMDZ1

Name
DS_ADD_RTN_U64
DS_SUB_RTN_U64
DS_RSUB_RTN_U64
DS_INC_RTN_U64
DS_DEC_RTN_U64
DS_MIN_RTN_I64
DS_MAX_RTN_I64
DS_MIN_RTN_U64
DS_MAX_RTN_U64
DS_AND_RTN_B64
DS_OR_RTN_B64
DS_XOR_RTN_B64
DS_MSKOR_RTN_B64
DS_WRXCHG_RTN_B64
DS_WRXCHG2_RTN_B64
DS_WRXCHG2ST64_RTN_B64
DS_CMPST_RTN_B64
DS_CMPST_RTN_F64
DS_MIN_RTN_F64
DS_MAX_RTN_F64
DS_READ_B64
DS_READ2_B64
DS_READ2ST64_B64
DS_CONDXCHG32_RTN_B64
DS_WRITE_B8_D16_HI
DS_WRITE_B16_D16_HI
DS_READ_U8 D16
DS_READ_U8 D16_HI
DS_READ_I8_D16
DS_READ_I8_D16_HI
DS_READ_U16_D16
DS_READ_U16_D16_HI
DS_WRITE_ADDTID_B32

DS_READ_ADDTID_B32
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Opcode # Name Opcode # Name

57 DS_READ_I8 178 DS_PERMUTE_B32
58 DS _READ_US8 179 DS_BPERMUTE_B32
59 DS_READ_l16 222 DS_WRITE_B96

60 DS _READ_U16 223 DS_WRITE_B128

61 DS_CONSUME 254 DS_READ_B96

62 DS_APPEND 255 DS_READ_B128

63 DS_ORDERED_COUNT

13.6. Vector Memory Buffer Formats

There are two memory buffer instruction formats:

MTBUF
typed buffer access (data type is defined by the instruction)

MUBUF
untyped buffer access (data type is defined by the buffer / resource-constant)

13.6.1. MTBUF

31 0
1 l 1 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ T FO‘RM‘AT7I ‘ ‘OP3‘ DLC‘GLC idxenoffen‘ R O‘FFS‘ET1‘2 -
MTBUF [ 1 I [ [ I | L1 I [ | [ [ T T I | T [ I I I T
SOFFSETs (sgpr) |TFE‘SLC‘OPM| SRSRCs (V#sgpr) VDATAg (vgpr: src or dst) ‘ VADDRg (vgpr)
63 32
Format MTBUF
Description Memory Typed-Buffer Instructions
Table 93. MTBUF Fields
Field Name Bits Format or Description
OFFSET [11:0] Address offset, unsigned byte.
OFFEN [12] 1 = enable offset VGPR, 0 = use zero for address offset
IDXEN [13] 1 = enable index VGPR, 0 = use zero for address index
GLC [14] 0 = normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-

op value to VGPR.

DLC [15] 0 = normal, 1 = Device Coherent
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Field Name Bits
OoP [53],[18:16
]
DFMT 25:19
ENCODING [31:26]
VADDR [39:32]
VDATA [47:40]
SRSRC [52:48]
SLC [54]
TFE [55]
SOFFSET [63:56]

Opcode # Name

0

1

Format or Description

Opcode. See table below. (combined bits 53 with 18-16 to form opcode)

Data Format of data in memory buffer. See chapter 8 for encoding. Buffer
Image format Table

Must be: 111010

Address of VGPR to supply first component of address (offset or index). When
both index and offset are used, index is in the first VGPR and offset in the
second.

Address of VGPR to supply first component of write data or receive first
component of read-data.

SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is
missing 2 LSB’s of SGPR-address since must be aligned to 4.

System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

Partially resident texture, texture fail enable.

Address offset, unsigned byte.

Table 94. MTBUF Opcodes

Opcode # Name

TBUFFER_LOAD_FORMAT X 8 TBUFFER_LOAD_FORMAT D16 _X
TBUFFER_LOAD_FORMAT XY 9 TBUFFER_LOAD_FORMAT D16_XY
TBUFFER_LOAD_FORMAT XYZ 10 TBUFFER_LOAD_FORMAT D16 _XYZ
TBUFFER_LOAD_FORMAT_XYZW 11 TBUFFER_LOAD_FORMAT _D16_XYZW
TBUFFER_STORE_FORMAT X 12 TBUFFER_STORE_FORMAT D16_X
TBUFFER_STORE_FORMAT_XY 13 TBUFFER_STORE_FORMAT_D16_XY
TBUFFER_STORE_FORMAT_XYZ 14 TBUFFER_STORE_FORMAT D16_XYZ
TBUFFER_STORE_FORMAT_XYZW 15 TBUFFER_STORE_FORMAT D16_XYZW

13.6.2. MUBUF

31

0

I I I I I I T I ‘ T I I

T 1
OFFSET1;,

T 1
1711 0 0 0 |OPM‘ ‘ OP; ‘ ‘LDS DLC’GLC idxerJoffen|
MUBUF T __ T_ T T 1 | é P I 1 T T 1 T T _T_ T T 1
SOFFSETs (sgpr) ‘TFE’SLC‘ ‘SRSR s (V#sgpr) VDATAg (vgpr: src or dst) ‘ VADDRs (vgpr)
63 32
Format MUBUF

13.6. Vector Memory Buffer Formats

Description Memory Untyped-Buffer Instructions
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Field Name
OFFSET
OFFEN
IDXEN

GLC

DLC

LDS

OP

ENCODING

VADDR

VDATA

SRSRC

SLC

TFE

SOFFSET

Opcode #
0

1

10

11

13.6. Vector

AMDZ1

Table 95. MUBUF Fields

Bits Format or Description
[11:0] Address offset, unsigned byte.
[12] 1 = enable offset VGPR, 0 = use zero for address offset
[13] 1 = enable index VGPR, 0 = use zero for address index
[14] 0 = normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-
op value to VGPR.
[15] 0 = normal, 1 = Device Coherent
[16] 0 = normal, 1 = transfer data between LDS and memory instead of VGPRs and
memory.
[25:18] Opcode. See table below.
[31:26] Must be: 111000
[39:32] Address of VGPR to supply first component of address (offset or index). When
both index and offset are used, index is in the first VGPR and offset in the
second.
[47:40] Address of VGPR to supply first component of write data or receive first
component of read-data.
[52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is
missing 2 LSB’s of SGPR-address since must be aligned to 4.
[54] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.
[55] Partially resident texture, texture fail enable.
[63:56] Address offset, unsigned byte.
Table 96. MUBUF Opcodes
Name Opcode # Name
BUFFER_LOAD_FORMAT X 54 BUFFER_ATOMIC_UMIN
BUFFER_LOAD_FORMAT_XY 55 BUFFER_ATOMIC_SMAX
BUFFER_LOAD_FORMAT_XYZ 56 BUFFER_ATOMIC_UMAX
BUFFER_LOAD_FORMAT_XYZW 57 BUFFER_ATOMIC_AND
BUFFER_STORE_FORMAT_X 58 BUFFER_ATOMIC_OR
BUFFER_STORE_FORMAT_XY 59 BUFFER_ATOMIC_XOR
BUFFER_STORE_FORMAT_XYZ 60 BUFFER_ATOMIC_INC
BUFFER_STORE_FORMAT_XYZW 61 BUFFER_ATOMIC_DEC
BUFFER_LOAD_UBYTE 62 BUFFER_ATOMIC_FCMPSWAP
BUFFER_LOAD_SBYTE 63 BUFFER_ATOMIC_FMIN
BUFFER_LOAD_USHORT 64 BUFFER_ATOMIC_FMAX
BUFFER_LOAD_SSHORT 80 BUFFER_ATOMIC_SWAP_X2

Memory Buffer Formats
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Opcode # Name

12

13

14

15

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

48

49

50

51

53

BUFFER_LOAD_DWORD
BUFFER_LOAD_DWORDX2
BUFFER_LOAD_DWORDX4
BUFFER_LOAD_DWORDX3
BUFFER_STORE_BYTE
BUFFER_STORE_BYTE_D16_HI
BUFFER_STORE_SHORT
BUFFER_STORE_SHORT D16_HI
BUFFER_STORE_DWORD
BUFFER_STORE_DWORDX2
BUFFER_STORE_DWORDX4
BUFFER_STORE_DWORDX3
BUFFER_LOAD_UBYTE_D16
BUFFER_LOAD_UBYTE_D16_HI
BUFFER_LOAD_SBYTE_D16
BUFFER_LOAD_SBYTE_D16_HI
BUFFER_LOAD_SHORT_D16
BUFFER_LOAD_SHORT D16 _HI
BUFFER_LOAD_FORMAT_D16_HI_X
BUFFER_STORE_FORMAT D16_HI_X
BUFFER_ATOMIC_SWAP
BUFFER_ATOMIC_CMPSWAP
BUFFER_ATOMIC_ADD
BUFFER_ATOMIC_SUB

BUFFER_ATOMIC_SMIN

AMDZ1

Opcode # Name

81

82

83

85

86

87

88

89

90

91

92

93

94

95

96

113

114

128

129

130

131

132

133

134

135

BUFFER_ATOMIC_CMPSWAP_X2
BUFFER_ATOMIC_ADD_X2
BUFFER_ATOMIC_SUB_X2
BUFFER_ATOMIC_SMIN_X2
BUFFER_ATOMIC_UMIN_X2
BUFFER_ATOMIC_SMAX_X2
BUFFER_ATOMIC_UMAX_X2
BUFFER_ATOMIC_AND_X2
BUFFER_ATOMIC_OR_X2
BUFFER_ATOMIC_XOR_X2
BUFFER_ATOMIC_INC_X2
BUFFER_ATOMIC_DEC_X2
BUFFER_ATOMIC_FCMPSWAP_X2
BUFFER_ATOMIC_FMIN_X2
BUFFER_ATOMIC_FMAX_X2
BUFFER_GLO_INV
BUFFER_GL1_INV
BUFFER_LOAD_FORMAT D16 _X
BUFFER_LOAD_FORMAT_D16_XY
BUFFER_LOAD_FORMAT D16 _XYZ
BUFFER_LOAD_FORMAT D16_XYZW
BUFFER_STORE_FORMAT _D16_X
BUFFER_STORE_FORMAT D16_XY
BUFFER_STORE_FORMAT _D16_XYZ

BUFFER_STORE_FORMAT_D16_XYZW

13.7. Vector Memory Image Format

13.7.1. MIMG

13.7. Vector Memory Image Format
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31 0
I I e N S A — T 1 '
11 1 1 0 0|SC | OP; LWE|TFE R128% GLClunrm DMASK DLC| DIM | NSA oPm
T I 1 I — L L
MiMg  D16A16] / SSAN"Es (é# sgpr)‘ SRSRCs (T# sgpr) VDATAg (vgpr: src or dst) VADDRs (vgpr)
63 32
95 64
{ T T T T T T 1 I I | — ] I I
Addr4 Addr3 Addr2 Addr1
T T T T T 1 T T T T T 1 T I — T —— —
Addr8 Addr7 Addré Addr5
T T T T 1 T T T T T 1 I I \ —— —
Addr12 Addr11 Addr10 Addr9
159 128
Format MIMG

Description Memory Image Instructions

Memory Image instructions (MIMG format) can be betwen 2 and 5 dwords. There are two
variations of the instruction:

* Normal, where the address VGPRs are specified in the "ADDR" field, and are a contiguous
set of VGPRs. This is a 2-dword instruction.

* Non-Sequential-Address (NSA), where each address VGPR is specified individually and the
address VGPRs can be scattered. This version uses 1-3 extra dwords to specify the
individual address VGPRs.

Table 97. MIMG Fields

Field Name Bits Format or Description

NSA [2:1] Non-sequential address. Specifies how many additional instruction dwords
exist (0-3).

DIM [5:3] Dimensionality of the resource constant. Set to bits [3:1] of the resource type
field.

DLC [7] 0 = normal, 1 = Device Coherent

DMASK [11:8] Data VGPR enable mask: 1 .. 4 consecutive VGPRs

Reads: defines which components are returned:
O=red,1=green,2=blue,3=alpha

Writes: defines which components are written with data from VGPRs (missing
components get 0).

Enabled components come from consecutive VGPRs.

E.G. dmask=1001 : Red is in VGPRn and alpha in VGPRn+1.

For D16 writes, DMASK is only used as a word count: each bit represents 16
bits of data to be written starting at the LSB’s of VDATA, then MSBs, then
VDATA+1 etc. Bit position is ignored.

UNRM [12] Force address to be un-normalized. Must be set to 1 for Image stores &
atomics.
GLC [13] 0 = normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-

op value to VGPR.
R128 [15] Resource constant size: 1 = 128bit, 0 = 256bit

TFE [16] Partially resident texture, texture fail enable.
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Field Name

LWE

OP

SLC

ENCODING

VADDR

VDATA

SRSRC

SSAMP

Al16

D16

Opcode #

10
11
14
15

16

13.7. Vector Memory Image Format

Bits Format or Description
[17] LOD Warning Enable. When set to 1, a texture fetch may return
"LOD_CLAMPED =1".
[0],]24:18] Opcode. See table below. (combine bits zero and 18-24 to form opcode).
[25] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.
[31:26] Must be: 111100
[39:32] Address of VGPR to supply first component of address (offset or index). When
both index and offset are used, index is in the first VGPR and offset in the
second.
[47:40] Address of VGPR to supply first component of write data or receive first
component of read-data.
[52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is
missing 2 LSB’s of SGPR-address since must be aligned to 4.
[57:53] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is
missing 2 LSB’s of SGPR-address since must be aligned to 4.
[62] Address components are 16-bits (instead of the usual 32 bits).
When set, all address components are 16 bits (packed into 2 per dword),
except:
Texel offsets (3 6bit UINT packed into 1 dword)
PCF reference (for "_C" instructions)
Address components are 16b uint for image ops without sampler; 16b float with
sampler.
[63] Address offset, unsigned byte.
Table 98. MIMG Opcodes
Name Opcode # Name
IMAGE_LOAD 52 IMAGE_SAMPLE_L_O
IMAGE_LOAD_MIP 53 IMAGE_SAMPLE_B_O
IMAGE_LOAD_PCK 54 IMAGE_SAMPLE_B_CL_O
IMAGE_LOAD_PCK_SGN 55 IMAGE_SAMPLE_LZ O
IMAGE_LOAD_MIP_PCK 56 IMAGE_SAMPLE_C_O
IMAGE_LOAD_MIP_PCK_SGN 57 IMAGE_SAMPLE_C_CL_O
IMAGE_STORE 58 IMAGE_SAMPLE_C_D_O
IMAGE_STORE_MIP 59 IMAGE_SAMPLE_C_D_CL_O
IMAGE_STORE_PCK 60 IMAGE_SAMPLE_C_L_O
IMAGE_STORE_MIP_PCK 61 IMAGE_SAMPLE_C_B_O
IMAGE_GET_RESINFO 62 IMAGE_SAMPLE_C_B_CL_O
IMAGE_ATOMIC_SWAP 63 IMAGE_SAMPLE_C_LZ_O
IMAGE_ATOMIC_CMPSWAP 64 IMAGE_GATHER4
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Opcode # Name

17 IMAGE_ATOMIC_ADD
18 IMAGE_ATOMIC_SUB

20 IMAGE_ATOMIC_SMIN

21 IMAGE_ATOMIC_UMIN

22 IMAGE_ATOMIC_SMAX
23 IMAGE_ATOMIC_UMAX
24 IMAGE_ATOMIC_AND

25 IMAGE_ATOMIC_OR

26 IMAGE_ATOMIC_XOR

27 IMAGE_ATOMIC_INC

28 IMAGE_ATOMIC_DEC

29 IMAGE_ATOMIC_FCMPSWAP
30 IMAGE_ATOMIC_FMIN

31 IMAGE_ATOMIC_FMAX
32 IMAGE_SAMPLE

33 IMAGE_SAMPLE_CL

34 IMAGE_SAMPLE_D

35 IMAGE_SAMPLE_D CL
36 IMAGE_SAMPLE_L

37 IMAGE_SAMPLE_B

38 IMAGE_SAMPLE_B_CL
39 IMAGE_SAMPLE_LZ

40 IMAGE_SAMPLE_C

41 IMAGE_SAMPLE_C_CL
42 IMAGE_SAMPLE_C_D

43 IMAGE_SAMPLE_C_D CL
a4 IMAGE_SAMPLE_C_L

45 IMAGE_SAMPLE_C_B

46 IMAGE_SAMPLE_C_B_CL
a7 IMAGE_SAMPLE_C_LZ
48 IMAGE_SAMPLE_O

49 IMAGE_SAMPLE_CL_O
50 IMAGE_SAMPLE_D_O

51 IMAGE_SAMPLE_D CL_O

13.7. Vector Memory Image Format

Opcode #
65
68
69
70
71
72
73
76
77
78
79
80
81
84
85
86
87
88
89
92
93
94
95
96
97
162
163
170
171
178
179
186

187

Name
IMAGE_GATHER4_CL
IMAGE_GATHER4 L
IMAGE_GATHER4 B
IMAGE_GATHER4 B _CL
IMAGE_GATHER4_LZ
IMAGE_GATHER4 C
IMAGE_GATHER4_C_CL
IMAGE_GATHER4 _C_L
IMAGE_GATHER4 C_B
IMAGE_GATHER4 C_B_CL
IMAGE_GATHER4 C_LZ
IMAGE_GATHER4_O
IMAGE_GATHER4 _CL_O
IMAGE_GATHER4_L_O
IMAGE_GATHER4 B_O
IMAGE_GATHER4 B CL_O
IMAGE_GATHER4 _LZ_O
IMAGE_GATHER4 C_O
IMAGE_GATHER4_C_CL_O
IMAGE_GATHER4 C_L_O
IMAGE_GATHER4 C_B O
IMAGE_GATHER4 C_B CL O
IMAGE_GATHER4 C_LZ O
IMAGE_GET_LOD
IMAGE_GATHER4H
IMAGE_SAMPLE_D_G16
IMAGE_SAMPLE_D CL_G16

IMAGE_SAMPLE_C_D_G16

IMAGE_SAMPLE_C_D_CL_G16

IMAGE_SAMPLE_D_O_G16

IMAGE_SAMPLE_D _CL_O_G16

IMAGE_SAMPLE_C_D_O_G16

AMDZ1

IMAGE_SAMPLE_C_D_CL_O_G16
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13.8. Flat Formats

Flat memory instruction come in three versions: FLAT:: memory address (per work-item) may be
in global memory, scratch (private) memory or shared memory (LDS) GLOBAL:: same as FLAT,
but assumes all memory addresses are global memory. SCRATCH:: same as FLAT, but
assumes all memory addresses are scratch (private) memory.

The microcode format is identical for each, and only the value of the SEG (segment) field differs.

13.8.1. FLAT

31

I I [ [ I ‘ I I I I I [ I I I ‘ I [ I I I ]
11 0 1 1 1 % OP; ‘SLC‘GLC SEG ‘LDS‘DLC OFFSET+,
FLAT — 71 717 11T T T I 7 T T T T T T [ T T 1T_ T T T T [ T T T T __T T 1
VDST, SADDR, DATAg ‘ ADDRs
63 32
Format FLAT
Description FLAT Memory Access
Table 99. FLAT Fields

Field Name Bits Format or Description

OFFSET [11:0] Address offset
Scratch, Global: 12-bit signed byte offset
FLAT: 11-bit unsigned offset (MSB is ignored)

DLC [12] 0 = normal, 1 = Device Coherent

LDS [13] 0 = normal, 1 = transfer data between LDS and memory instead of VGPRs and
memory.

SEG [15:14] Memory Segment (instruction type): O = flat, 1 = scratch, 2 = global.

GLC [16] 0 = normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-
op value to VGPR.

SLC [17] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

oP [24:18] Opcode. See tables below for FLAT, SCRATCH and GLOBAL opcodes.

ENCODING [31:26] Must be: 110111

ADDR [39:32] VGPR which holds address or offset. For 64-bit addresses, ADDR has the

13.8. Flat Formats

LSB’s and ADDR+1 has the MSBs. For offset a single VGPR has a 32 bit
unsigned offset.

For FLAT_*: specifies an address.

For GLOBAL_* and SCRATCH_* when SADDR is NULL or Ox7f: specifies an
address.

For GLOBAL_* and SCRATCH_* when SADDR is not NULL orOx7f: specifies
an offset.
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Field Name
DATA

SADDR

VDST

Opcode #
8
9
10
11
12
13
14
15
24
25
26
27
28
29
30
31
32
33
34
35
36
37
48

49

Meaning of this field is different for Scratch and Global:

Scratch: use an SGPR for the address instead of a VGPR
Global: use the SGPR to provide a base address and the VGPR provides a 32-

Bits Format or Description
[47:40] VGPR which supplies data.
[54:48]
NULL or Ox7f to disable use.
FLAT: Unused
bit byte offset.
[63:56]

Destination VGPR for data returned from memory to VGPRs.

Table 100. FLAT Opcodes

Name

FLAT LOAD_UBYTE
FLAT_LOAD_SBYTE
FLAT_LOAD_USHORT
FLAT_LOAD_SSHORT
FLAT_LOAD_DWORD

FLAT _LOAD_DWORDX2
FLAT_LOAD_DWORDX4
FLAT LOAD_DWORDX3
FLAT_STORE_BYTE

FLAT STORE_BYTE_D16 HlI
FLAT_STORE_SHORT

FLAT STORE_SHORT D16 HI
FLAT _STORE_DWORD
FLAT_STORE_DWORDX2
FLAT_STORE_DWORDX4
FLAT_STORE_DWORDX3
FLAT LOAD_UBYTE_D16
FLAT_LOAD_UBYTE_D16 HI
FLAT_LOAD_SBYTE_D16
FLAT _LOAD_SBYTE_D16_HI
FLAT_LOAD_SHORT_D16
FLAT LOAD_SHORT D16 HI
FLAT_ATOMIC_SWAP

FLAT_ATOMIC_CMPSWAP

13.8. Flat Formats

Opcode #
54
55
56
57
58
59
60
61
62
63
64
80
81
82
83
85
86
87
88
89
90
91
92

93

Name

FLAT _ATOMIC_UMIN
FLAT_ATOMIC_SMAX
FLAT_ATOMIC_UMAX
FLAT_ATOMIC_AND

FLAT ATOMIC_OR
FLAT_ATOMIC_XOR
FLAT_ATOMIC_INC

FLAT ATOMIC_DEC
FLAT_ATOMIC_FCMPSWAP
FLAT_ATOMIC_FMIN
FLAT_ATOMIC_FMAX
FLAT ATOMIC_SWAP_X2
FLAT_ATOMIC_CMPSWAP_X2
FLAT_ATOMIC_ADD_X2
FLAT ATOMIC_SUB_X2
FLAT_ATOMIC_SMIN_X2
FLAT ATOMIC_UMIN_X2
FLAT_ATOMIC_SMAX_X2
FLAT_ATOMIC_UMAX_X2
FLAT_ATOMIC_AND_X2
FLAT_ATOMIC_OR_X2
FLAT ATOMIC_XOR_X2
FLAT_ATOMIC_INC_X2

FLAT_ATOMIC_DEC_X2

AMDZ1

Scalar SGPR which provides an address of offset (unsigned). Set this field to
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Opcode # Name

50 FLAT_ATOMIC_ADD
51 FLAT_ATOMIC_SUB
53 FLAT_ATOMIC_SMIN

13.8.2. GLOBAL

Opcode #

AMDZ1

Name
FLAT_ATOMIC_FCMPSWAP_X2
FLAT_ATOMIC_FMIN_X2

FLAT_ATOMIC_FMAX_X2

Table 101. GLOBAL Opcodes

Opcode # Name

8 GLOBAL_LOAD_UBYTE

9 GLOBAL_LOAD_SBYTE

10 GLOBAL_LOAD_USHORT

11 GLOBAL_LOAD_SSHORT

12 GLOBAL_LOAD_DWORD

13 GLOBAL_LOAD_DWORDX2

14 GLOBAL_LOAD_DWORDX4

15 GLOBAL_LOAD_DWORDX3

24 GLOBAL_STORE_BYTE

25 GLOBAL_STORE_BYTE_D16_HI
26 GLOBAL_STORE_SHORT

27 GLOBAL_STORE_SHORT D16_HI
28 GLOBAL_STORE_DWORD

29 GLOBAL_STORE_DWORDX2

30 GLOBAL_STORE_DWORDX4

31 GLOBAL_STORE_DWORDX3

32 GLOBAL_LOAD_UBYTE_D16

33 GLOBAL_LOAD_UBYTE_D16_HI
34 GLOBAL_LOAD_SBYTE_D16

35 GLOBAL_LOAD_SBYTE_D16_HI
36 GLOBAL_LOAD_SHORT D16
37 GLOBAL_LOAD_SHORT_D16_HI
48 GLOBAL_ATOMIC_SWAP

49 GLOBAL_ATOMIC_CMPSWAP
50 GLOBAL_ATOMIC_ADD

51 GLOBAL_ATOMIC_SUB

13.8. Flat Formats

Opcode # Name

54

55

56

57

58

59

60

61

62

63

64

80

81

82

83

85

86

87

88

89

90

91

92

93

94

95

GLOBAL_ATOMIC_UMIN
GLOBAL_ATOMIC_SMAX
GLOBAL_ATOMIC_UMAX
GLOBAL_ATOMIC_AND
GLOBAL_ATOMIC_OR
GLOBAL_ATOMIC_XOR
GLOBAL_ATOMIC_INC
GLOBAL_ATOMIC_DEC
GLOBAL_ATOMIC_FCMPSWAP
GLOBAL_ATOMIC_FMIN
GLOBAL_ATOMIC_FMAX
GLOBAL_ATOMIC_SWAP_X2
GLOBAL_ATOMIC_CMPSWAP_X2
GLOBAL_ATOMIC_ADD_X2
GLOBAL_ATOMIC_SUB_X2
GLOBAL_ATOMIC_SMIN_X2
GLOBAL_ATOMIC_UMIN_X2
GLOBAL_ATOMIC_SMAX_X2
GLOBAL_ATOMIC_UMAX_X2
GLOBAL_ATOMIC_AND_X2
GLOBAL_ATOMIC_OR_X2
GLOBAL_ATOMIC_XOR_X2
GLOBAL_ATOMIC_INC_X2
GLOBAL_ATOMIC_DEC_X2
GLOBAL_ATOMIC_FCMPSWAP_X2

GLOBAL_ATOMIC_FMIN_X2
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Opcode #
53

Name

GLOBAL_ATOMIC_SMIN

13.8.3. SCRATCH

Opcode #
8
9
10
11
12
13
14
15
24
25

26

AMDZ1

Opcode # Name

96

GLOBAL_ATOMIC_FMAX_X2

Table 102. SCRATCH Opcodes

Name
SCRATCH_LOAD_UBYTE
SCRATCH_LOAD_SBYTE
SCRATCH_LOAD_USHORT
SCRATCH_LOAD_SSHORT
SCRATCH_LOAD_DWORD
SCRATCH_LOAD_DWORDX2
SCRATCH_LOAD_DWORDX4
SCRATCH_LOAD_DWORDX3
SCRATCH_STORE_BYTE
SCRATCH_STORE_BYTE_D16_HI

SCRATCH_STORE_SHORT

13.9. Export Format

Opcode # Name

27

28

29

30

31

32

33

34

35

36

37

SCRATCH_STORE_SHORT_D16_HI
SCRATCH_STORE_DWORD
SCRATCH_STORE_DWORDX2
SCRATCH_STORE_DWORDX4
SCRATCH_STORE_DWORDX3
SCRATCH_LOAD_UBYTE_D16
SCRATCH_LOAD_UBYTE_D16_HI
SCRATCH_LOAD_SBYTE_D16
SCRATCH_LOAD_SBYTE_D16_HI
SCRATCH_LOAD_SHORT D16

SCRATCH_LOAD_SHORT_D16_HI

13.9.1. EXP
2 I I I I I 7 I I I I I I I 0
1 111 0 done| & | Targets EN,
EXP T 11 U g T T T T 1
VSRC3s \ VSRC2, VSRC1s | VSRCOg
63 32
Format EXP
Description EXPORT instructions
The export format has only a single opcode, "EXPORT".
Table 103. EXP Fields
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Field Name

EN

TARGET

COMPR

DONE

VM

ENCODING

VSRCO

VSRC1

VSRC2

VSRC3

13.9. Export Format

Bits

[3:0]

[9:4]

[10]

[11]

[12]

[31:26]
[39:32]
[47:40]
[55:48]

[63:56]

Format or Description

COMPR==1: export half-dword enable. Valid values are: 0x0,3,c,f

[0] enables VSRCO : R,G from one VGPR (R in low bits, G high)

[2] enables VSRCL1 : B,A from one VGPR (B in low bits, A high)
COMPR==0: [0-3] = enables for VSRCO..3.

EN may be zero only for "NULL Pixel Shader" exports (used when exporting
only valid mask to NULL target).

Export destination:

0-7: MRT 0..7

8.7

9: Null pixel shader export (no data)
12-15: Position 0..3

20: Primitive data

32-63: Parameter 0..31

Indicates that data is float-16/short/byte (compressed). Data is written to
consecutive components (rgba or xyzw).

Indicates that this is the last export from the shader. Used only for Position and
Pixel/color data.

1 = the exec mask IS the valid mask for this export. Can be sent multiple times,
must be sent at least once per pixel shader. This bit is only used for Pixel
Shaders.

Must be: 111110

VGPR for source 0.
VGPR for source 1.
VGPR for source 2.

VGPR for source 3.
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