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Specification Agreement

This Specification Agreement (this "Agreement") is a legal agreement between Advanced Micro Devices, Inc. ("AMD") and "You" as the recipient
of the attached AMD Specification (the "Specification"). If you are accessing the Specification as part of your performance of work for another
party, you acknowledge that you have authority to bind such party to the terms and conditions of this Agreement. If you accessed the
Specification by any means or otherwise use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions
set forth in this Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the
Specification; do not use, access or provide Feedback about the Specification. In consideration of Your use or access of the Specification (in
whole or in part), the receipt and sufficiency of which are acknowledged, You agree as follows:

. You may review the Specification only (a) as a reference to assist You in planning and designing Your product, service or technology

("Product") to interface with an AMD product in compliance with the requirements as set forth in the Specification and (b) to provide

Feedback about the information disclosed in the Specification to AMD.

. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This Agreement does not give You

any rights under any AMD patents, copyrights, trademarks or other intellectual property rights. You may not (i) duplicate any part of the
Specification; (ii) remove this Agreement or any notices from the Specification, or (iii) give any part of the Specification, or assign or

otherwise provide Your rights under this Agreement, to anyone else.

. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain necessary information.

Additionally, AMD reserves the right to discontinue or make changes to the Specification and its products at any time without notice. The
Specification is provided entirely "AS IS." AMD MAKES NO WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND
STATUTORY WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF
TRADE. AMD SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR EXEMPLARY
DAMAGES OF ANY KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS
OF GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT
PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical
implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s

product could create a situation where personal injury, death, or severe property or environmental damage may occur.

. You have no obligation to give AMD any suggestions, comments or feedback ("Feedback") relating to the Specification. However, any

Feedback You voluntarily provide may be used by AMD without restriction, fee or obligation of confidentiality. Accordingly, if You do give
AMD Feedback on any version of the Specification, You agree AMD may freely use, reproduce, license, distribute, and otherwise
commercialize Your Feedback in any product, as well as has the right to sublicense third parties to do the same. Further, You will not give
AMD any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual property claim or right
of any third party; or (ii) subject to license terms which seek to require any product or intellectual property incorporating or derived from

Feedback or any Product or other AMD intellectual property to be licensed to or otherwise provided to any third party.

. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S. Export Administration

Regulations ("EAR"), (15 C.F.R. Sections 730 through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to
Section 740.6 of the EAR, You hereby certifies that, except pursuant to a license granted by the United States Department of Commerce
Bureau of Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export Administration
Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in Country Groups D:1, E:1 or E:2 any restricted
technology, software, or source code You receive hereunder, or (2) export to Country Groups D:1, E:1 or E:2 the direct product of such
technology or software, if such foreign produced direct product is subject to national security controls as identified on the Commerce
Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for additional
information about the EAR or Your obligations under those regulations, please refer to the U.S. Bureau of Industry and Security’s website

at http://www.bis.doc.gov/.

. If You are a part of the U.S. Government, then the Specification is provided with "RESTRICTED RIGHTS" as set forth in subparagraphs (c)

(1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-14 or subparagraph (c) (1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.277-7013, as applicable.

. This Agreement is governed by the laws of the State of California without regard to its choice of law principles. Any dispute involving it

must be brought in a court having jurisdiction of such dispute in Santa Clara County, California, and You waive any defenses and rights
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allowing the dispute to be litigated elsewhere. If any part of this agreement is unenforceable, it will be considered modified to the extent
necessary to make it enforceable, and the remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder
or to take action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement of
rights or subsequent actions in the event of future breaches. This Agreement is the entire agreement between You and AMD concerning
the Specification; it may be changed only by a written document signed by both You and an authorized representative of AMD.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. This document may
contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability
or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein.
No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products or technology are as set forth in a signed agreement between the
parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple
Inc. used by permission by Khronos Group, Inc. DirectX is a registered trademark of Microsoft Corporation in the US and other
jurisdictions. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2018-2022 Advanced Micro Devices, Inc. All rights reserved.

AMD 1

Advanced Micro Devices, Inc.
2485 Augustine Drive
Santa Clara, CA, 95054
www.amd.com
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Preface

About This Document

This document describes the current environment, organization and program state of AMD "RDNA3"
Generation devices. It details the instruction set and the microcode formats native to this family of processors
that are accessible to programmers and compilers.

The document specifies the instructions (including the format of each type of instruction) and the relevant
program state (including how the program state interacts with the instructions). Some instruction fields are
mutually dependent; not all possible settings for all fields are legal. This document specifies the valid
combinations.

The main purposes of this document are to:

1. Specify the language constructs and behavior, including the organization of each type of instruction in
both text syntax and binary format

2. Provide a reference of instruction operation that compiler writers can use to maximize performance of the
processor

Audience

This document is intended for programmers writing application and system software, including operating
systems, compilers, loaders, linkers, device drivers, and system utilities. It assumes that programmers are
writing compute-intensive parallel applications (streaming applications) and assumes an understanding of
requisite programming practices.

Organization

This document begins with an overview of the AMD RDNA3 processors' hardware and programming
environment. Subsequent chapters cover:

Organization of RDNA3 programs
Program state that is maintained
Program flow

Scalar ALU operations

Vector ALU operations

Scalar memory operations
Vector memory operations

Flat memory instructions

¥ NNk DD

Data share operations

=
e

Exporting the parameters of pixel color and vertex shaders

=
=

. Detailed specification of each microcode format

-
N>

Instruction details, first by the microcode format to which they belong, then in alphabetic order
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Related Documents

« Intermediate Language (IL) Reference Manual. Published by AMD.

« AMD Accelerated Parallel Processing OpenCL™ Programming Guide. Published by AMD.
AMD LLVM GPU documentation: https://llvm.org/docs/AMDGPUUsage.html

The OpenCL™ Specification: https://www.khronos.org/opencl/

Microsoft DirectX® Reference Website, at https://msdn.microsoft.com/en-us/library/windows/desktop/
ee663274(v=vs.85).aspx

Third party content may be licensed to you directly by the third party that owns the content and is not
licensed to you by AMD. ALL LINKED THIRD PARTY CONTENT IS PROVIDED 'AS IS' WITHOUT A
WARRANTY OF ANY KIND. USE OF SUCH THIRD PARTY CONTENT IS DONE AT YOUR SOLE
DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD
PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBILITY FOR ANY DAMAGES
THAT MAY ARISE FROM YOUR USE OF THIRD PARTY CONTENT.

Additional Information

For more information on AMD GPU architectures please visit https://GPUOpen.com
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Chapter 1. Introduction

This document describes the instruction set and shader program accessible state for RDNA3 devices.

The AMD RDNAS3 processor implements a parallel micro-architecture that provides a platform for computer
graphics applications and also for general-purpose data parallel applications.

1.1. Terminology

The following terminology and conventions are used in this document:

*

<>
(1,2)

[1,2]
{x|y}or{x,y}
0.0

1011b
'b0010
32’b0010

0x1A
'h123
24’h01
7:4
[7:4]

italicized word or phrase

Term
RDNA3 Processor

Kernel
Shader Program

Dispatch
Work-group

Wave
Work-item

Thread
Lane
SA

1.1. Terminology

Table 1. Conventions

Any number of alphanumeric characters in the name of a code format, parameter, or instruction.
Angle brackets denote streams.

A range that includes the left-most value (in this case, 1), but excludes the right-most value (in this
case, 2).

A range that includes both the left-most and right-most values.

One of the multiple options listed. In this case, X or Y.

A floating-point value.

A binary value, in this example a 4-bit value.

A binary value of unspecified size.

A 32-bit binary value. Binary values may include underscores for readability and can be ignored
when parsing the value.

A hexadecimal value.
A hexadecimal value.
A 24-bit hexadecimal value.

A bit range, from bit 7 to bit 4, inclusive. The high-order bit is shown first. May be enclosed in
brackets.

The first use of a term or concept basic to the understanding of stream computing.

Table 2. Basic Terms

Description

The RDNA3 shader processor is a scalar and vector ALU with memory access designed to run
complex programs on behalf of a wave.

A program executed by the shader processor for each work item submitted to it.

Same meaning as "Kernel". The shader types are:
CS (Compute Shader), and for graphics-capable devices, PS (Pixel Shader), GS (Geometry Shader),
and HS (Hull Shader).

A dispatch launches a 1D, 2D, or 3D grid of work to the RDNA3 processor array.

A work-group is a collection of waves that have the ability to synchronize with each other with
barriers; they also can share data through the Local Data Share. Waves in a work-group all run on
the same WGP.

A collection of 32 or 64 work-items that execute in parallel on a single RDNA3 processor.

A single element of work: one element from the dispatch grid, or in graphics a pixel, vertex or
primitive.

A synonym for "work-item".

A synonym for "work-item" typically used only when describing VALU operations.

Shader Array. A collection of compute units.
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Term
SE
SGPR
VGPR
LDS
GDS

VMEM
SIMD32

Literal Constant
Scalar ALU (SALU)
Vector ALU (VALU)

Work-group Processor
(WGP)

Compute Unit (CU)
Microcode format

Instruction

Quad
Texture Sampler (S#)

Texture Resource (T#)

Buffer Resource (V#)
NGG

DPP

LSB

MSB

DWORD

SHORT

BYTE

Format
B32
B64
F16
F32
Fe4
BF16
I8
I16
132
164
Ule
U32

1.1. Terminology

Description

Shader Engine. A collection of shader arrays.

Scalar General Purpose Registers. 32-bit registers that are shared by work-items in each wave.
Vector General Purpose Registers. 32-bit registers that are private to each work-items in a wave.
Local Data Share. A 32-bank scratch memory allocated to waves or work-groups

Global Data Share. A scratch memory shared by all shader engines. Similar to LDS but also
supports append operations.

Vector Memory. Refers to LDS, Texture, Global, Flat and Scratch memory.

Single Instruction Multiple Data. In this document a SIMD refers to the Vector ALU unit that
processes instructions for a single wave.

A 32-bit integer or float constant that is placed in the instruction stream.
The scalar ALU operates on one value per wave and manages all control flow.

The vector ALU maintains Vector GPRs that are unique for each work item and execute arithmetic
operations uniquely on each work-item.

The basic unit of shader computation hardware, including scalar & vector ALU’s and memory, as
well as LDS and scalar caches.

One half of a WGP. Contains 2 SIMD32’s that share one path to memory.

The microcode format describes the bit patterns used to encode instructions. Each instruction is
32-bits or more, in units of 32-bits.

An instruction is the basic unit of the kernel. Instructions include: vector ALU, scalar ALU,
memory transfer, and control flow operations.

A quad is a 2x2 group of screen-aligned pixels. This is relevant for sampling texture maps.

A texture sampler is a 128-bit entity that describes how the vector memory system reads and
samples (filters) a texture map.

A texture resource descriptor describes an image in memory: address, data format, width, height,
depth, etc.

A buffer resource descriptor describes a buffer in memory: address, data format, stride, etc.
Next Generation Graphics pipeline

Data Parallel Primitives: VALU instructions which can pass data between work-items

Least Significant Bit

Most Significant Bit

32-bit data

16-bit data

8-bit data

Table 3. Instruction suffixes have the following definitions:

Meaning

binary (untyped data) 32-bit

binary (untyped data) 64-bit

floating-point 16-bit (sign + exp5 + mant10)

floating-point 32-bit (IEEE 754 single-precision float) (sign + exp8 + mant23)
floating-point 64-bit (IEEE 754 double-precision float) (sign + expll + mant52)
floating-point 16-bit for machine learning ("bfloat16"). (sign + exp8 + mant7)
signed 8-bit integer

signed 16-bit integer

signed 32-bit integer

signed 64-bit integer

unsigned 16-bit integer

unsigned 32-bit integer

4 of 600



"RDNA3" Instruction Set Architecture

Format
U64

D.i

D.u

D.f

S*.i
S*.u

S*.f

Meaning

unsigned 64-bit integer

Destination which is a signed integer

Destination which is an unsigned integer

Destination which is a float

Source which is a signed integer

Source which is an unsigned integer

Source which is a float

AMD¢1

If an instruction has two suffixes (for example, _132_F32), the first suffix indicates the destination type, the
second the source type.

The following abbreviations are used in instruction definitions:

oD:

destination

+ U=unsigned integer

-S:

source

« I=signed integer

oB:

bitfield

SCC = scalar condition code

Note: .u or .i specifies to interpret the argument as an unsigned or signed integer.

1.2. Hardware Overview

The figure below shows a block diagram of the AMD RDNA3 Generation series processors:

Host CPU

Host Application
Compute Driver
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The RDNA3 device includes a data-parallel processor array, a command processor, a memory controller, and
other logic (not shown). The command processor reads commands that the host has written to memory-
mapped registers in the system-memory address space. The command processor sends hardware-generated
interrupts to the host when the command is completed. The memory controller has direct access to all device
memory and the host-specified areas of system memory. To satisfy read and write requests, the memory
controller performs the functions of a direct-memory access (DMA) controller, including computing memory-
address offsets based on the format of the requested data in memory.

In the RDNA3 environment, a complete application includes two parts:

- a program running on the host processor, and
 programs, called shader programs or kernels, running on the RDNA3 processor.

The RDNA3 programs are controlled by a driver running on the host that:

« sets internal base-address and other configuration registers,
« specifies the data domain on which the GPU is to operate,

- invalidates and flushes caches on the GPU, and

« causes the GPU to begin execution of a program.

1.2.1. Work-group Processor (WGP)

The processor array is the heart of the GPU. The array is organized as a set of work-group processor (WGP)
pipelines, each independent from the others, that operate in parallel on streams of floating-point or integer
data. The work-group processor pipelines can process data or, through the memory controller, transfer data to,
or from, memory. Computation in a work-group processor pipeline can be made conditional. Outputs written
to memory can also be made conditional.

When it receives a request, the work-group processor pipeline loads instructions and data from memory,
begins execution, and continues until the end of the kernel. As kernels are running, the GPU hardware
automatically fetches instructions from memory into on-chip caches; software plays no role in this. Kernels
can load data from off-chip memory into on-chip general-purpose registers (GPRs) and caches.

The GPU devices can detect floating point exceptions and can generate interrupts to the host. In particular,
they detect IEEE-754 floating-point exceptions in hardware; these can be recorded for post-execution analysis.

The GPU hides memory latency by keeping track of potentially hundreds of work-items in various stages of
execution, and by overlapping compute operations with memory-access operations.

1.2.2. Data Sharing

The processors may share data between different work-items. Data sharing can boost performance. The figure
below shows the memory hierarchy that is available to each work-item. The actual number of GPRs may differ
from what is shown in the image below.

1.2. Hardware Overview 6 of 600
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1.2.2.1. Local Data Share (LDS)

Each work-group processor (WGP) has a 128kB memory space that enables low-latency communication
between work-items within a work-group, or the work-items within a wave; this is the local data share (LDS).
This memory is configured with 64 banks, each with 512 entries of 4 bytes. The shared memory contains 64
integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache
for predictable re-use of data, a data exchange machine for the work-items of a work-group, or as a cooperative
way to enable efficient access to off-chip memory. A single work-group may allocate up to 64kB of LDS space.

1.2.2.2. Global Data Share (GDS)

The AMD RDNAS3 devices use a 4kB global data share (GDS) memory that can be used by waves of a kernel on
all WGPs. This memory provides 128 bytes per cycle of memory access to all the processing elements. It
provides full access to any location for any processor. The shared memory contains 2 integer atomic units to
enable fast, unordered atomic operations. This memory can be used as a software cache to store important
control data for compute kernels, reduction operations, or a small global shared surface. Data can be
preloaded from memory prior to kernel launch and written to memory after kernel completion. The GDS block
contains support logic for unordered append/consume and domain launch ordered append/consume
operations to buffers in memory. These dedicated circuits enable fast compaction of data or the creation of
complex data structures in memory.

1.2.3. Device Memory

The AMD RDNA3 devices offer several methods for access to off-chip memory from the processing elements

1.2. Hardware Overview
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(PE) within each WGP. On the primary read path, the device consists of multiple channels of L2 cache that
provides data to read-only L1 caches, and finally to LO caches per WGP. Specific cache-less load instructions
can force data to be retrieved from device memory during an execution of a load clause. Load requests that
overlap within the clause are cached with respect to each other. The output cache is formed by two levels of
cache: the first for write-combining cache (collect scatter and store operations and combine them to provide
good access patterns to memory); the second is a read/write cache with atomic units that lets each processing
element complete unordered atomic accesses that return the initial value. Each processing element provides
the destination address on which the atomic operation acts, the data to be used in the atomic operation, and a
return address for the read/write atomic unit to store the pre-op value in memory. Each store or atomic
operation can be set up to return an acknowledgment to the requesting PE upon write confirmation of the
return value (pre-atomic op value at destination) being stored to device memory.

This acknowledgment has two purposes:
« enabling a PE to recover the pre-op value from an atomic operation by performing a cache-less load from
its return address after receipt of the write confirmation acknowledgment, and

« enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel maintains order. The acknowledgment enables
one processing element to implement a fence to maintain serial consistency by ensuring all writes have been

posted to memory prior to completing a subsequent write. In this manner, the system can maintain a relaxed

consistency model between all parallel work-items operating on the system.

1.2. Hardware Overview 8 of 600
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Chapter 2. Shader Concepts

RDNA3 shader programs (kernels) are programs executed by the GPU processor. Conceptually, the shader
program is executed independently on every work-item, but in reality the processor groups up to 32 or 64
work-items into a wave, which executes the shader program on all 32 or 64 work-items in one pass.

The RDNA3 processor consists primarily of:

A scalar ALU, which operates on one value per wave (common to all work-items)

+ Avector ALU, which operates on unique values per work-item

« Local data storage, which allows work-items within a work-group to communicate and share data

+ Scalar memory, which can transfer data between SGPRs and memory through a cache

* Vector memory, which can transfer data between VGPRs and memory, including sampling texture maps
« Exports which transfer data from the shader to dedicated rendering hardware

Program control flow is handled using scalar ALU instructions. This includes if/else, branches and looping.
Scalar ALU (SALU) and memory instructions work on an entire wave and operate on up to two SGPRs, as well
as literal constants.

Vector memory and ALU instructions operate on all work-items in the wave at one time. In order to support
branching and conditional execute, every wave has an EXECute mask that determines which work-items are
active at that moment, and which are dormant. Active work-items execute the vector instruction, and dormant
ones treat the instruction as a NOP. The EXEC mask can be written at any time by Scalar ALU instructions or
VALU comparisons.

Vector ALU instructions can typically take up to three arguments, which can come from VGPRs, SGPRs, or
literal constants that are part of the instruction stream. They operate on all work-items enabled by the EXEC
mask. Vector compare and add-with-carry-out return a bit-per-work-item mask back to the SGPRs to indicate,
per work-item, which had a "true" result from the compare or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item supplies its own
memory address and supplies or receives unique data. These instructions are also subject to the EXEC mask.

2.1. Wave32 and Wave64

The shader supports both waves of 32 work-items ("wave32") and waves of 64 work-items ("wave64").

Both wave sizes are supported for all operations, but shader programs must be compiled for and run as a
particular wave size, regardless of how many work-items are active in any given wave.

Wave32 waves issue each instruction at most once. Wave64 waves typically issue each instruction twice: once
for the low half (work-items 31-0) and then again for the high half (work-items 63-32). This occurs only for
VALU and VMEM (LDS, texture, buffer, flat) instructions; scalar ALU and memory as well as branch and
messages are issued only once regardless of the wave size. Export requests also issue just once regardless of
wave size. It is possible that instructions from other waves may be executed in between the low and high half
of a given wave’s instructions.

Hardware may choose to skip either half if the EXEC mask for that half is all zeros, but does not skip both
halves for VMEM instructions as that would confuse the outstanding-memory-instruction counters, unless

2.1. Wave32 and Wave64 9 of 600
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there are no outstanding VMEM instructions from this wave. It also does not skip either half of a VALU
instruction which writes an SGPR. See Instruction Skipping: EXEC==0 for details on instruction skipping rules.

Hardware operates such that both passes of a wave64 use the state of the wave prior to instruction execution;
the first pass of the wave64 does not affect the input to the second pass.

In addition to the EXEC mask being different between the low and high half, scalar inputs may vary between
the two passes. Both passes use the same constants, but different masks and carry-in/out.

The differences in the second pass are:

+ Input increments: Carry-in, div-fmas and v_cndmask all use the next SGPR (SSRC + 1, or VCC_HI)
+ Output increments: Carry-out, div-scale and v_cmp all write to the next SGPR (SDST + 1, or VCC_HI)
° v_cmpx writes to EXEC_HI instead of EXEC_LO

The upper 32-bits of EXEC and VCC are ignored for wave32 waves. VCCZ and EXECZ reflect the status of the
lowest 32-bits of VCC and EXEC respectively for wave32 waves.

2.2. Shader Types

2.2.1. Compute Shaders

Compute kernels (shaders) are generic programs that can run on the RDNA3 processor, taking data from
memory, processing it, and writing results back to memory. Compute kernels are created by a dispatch, which
causes the RDNA3 processors to run the kernel over all of the work-items in a 1D, 2D, or 3D grid of data. The
RDNA3 processor walks through this grid and generates waves, which then run the compute kernel. Each
work-item is initialized with its unique address (index) within the grid. Based on this index, the work-item
computes the address of the data it is required to work on and what to do with the results.

2.2.2. Graphics Shaders

The shader supports 3 types of graphics waves: PS, GS, and HS.

Rendering modes (launch behavior):
« Normal NGG - Geometry Engine (GE) sends info to wave launch hardware to init VGPRs for each element
(prim) launched; GE fetches index and vertex buffer data and loads to VGPRs

+ Mesh shader - turns GS-launch into a CS-style launch, and wave launch hardware does unrolling into
elements and generates element indices on the fly. The mesh shader program determines how to use this
index value.

2.2. Shader Types 10 of 600
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The amplification shader decides how many mesh shader groups to launch. The mesh shader processes vertices and then
primitives.

2.3. Work-groups

A work-group is a collection of waves which can share data through LDS and can synchronize at a barrier.
Waves in a work-group are all issued to the same WGP but can run on any of the 4 SIMD32’s and can share data
through LDS. The WGP supports up to 32 work-groups with a maximum of 1024 work-items per work-group.

Waves in a work-group may share up to 64kB of LDS space. Work-groups consisting of a single wave do not
count against the limit of 32. They do not allocate a barrier resource, and barrier ops are treated as S_NOP.

Each work-group or wave can operate in one of two modes, selectable per draw/dispatch at wave-create time:

CU mode
In this mode, the LDS is effectively split into a separate upper and lower LDS, each serving two SIMD32’s.
Waves are allocated LDS space within the half of LDS which is associated with the SIMD the wave is running
on. For work-groups, all waves are assigned to the pair of SIMD32’s. This mode may provide faster
operation since both halves run in parallel, but limits data sharing (upper waves cannot read data in the
lower half of LDS and vice versa). When in CU mode, all waves in the work-group are resident within the
same CU.
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WGP mode
In this mode, the LDS is one large contiguous memory that all waves on the WGP can access. In WGP mode,
waves of a work-group may be distributed across both CU’s (all 4 SIMD32’s) in the WGP.
LDS_PARAM_LOAD and LDS_DIRECT_LOAD are not supported in WGP mode.

The WGP (and LDS) can simultaneously have some waves running in WGP mode and other waves in CU mode
running.

A barrier is a synchronization primitive which makes each wave reach a given point in the shader before any
wave proceeds.

2.4. Shader Padding Requirement

Due to aggressive instruction prefetching used in some graphics devices, the user must pad all shaders with 64
extra DWORDs (256 bytes) of data past the end of the shader. It is recommended to use the S_CODE_END
instruction as padding. This ensures that if the instruction prefetch hardware goes beyond the end of the
shader, it may not reach into uninitialized memory (or unmapped memory pages).

The amount of shader padding required is related to how far the shader may prefetch ahead. The shader can be

set to prefetch 1, 2 or 3 cachelines (64 bytes) ahead of the current program counter. This is controlled via a
wave-launch state register, or by the shader program itself with S_SET_INST_PREFETCH_DISTANCE.

2.4. Shader Padding Requirement 12 of 600
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Chapter 3. Wave State

This chapter describes the state variables visible to the shader program. Each wave has a private copy of this
state unless otherwise specified.

3.1. State Overview

AMD¢1

The table below shows the hardware states readable or writable by a shader program. All registers below are
unique to each wave except for TBA and TMA which are shared.

Abbrev.

PC

V0-V255

S0-S105

LDS

EXEC

EXECZ

VCC

VCCZ

SCC
FLAT_SCRATCH

STATUS
MODE
MO

TRAPSTS
TBA

TMA

3.1. State Overview

Table 4. Readable and Writable Hardware States

Name

Program Counter

VGPR
SGPR

Local Data Share

Execute Mask

EXEC is zero

Vector Condition Code

VCC is zero

Scalar Condition Code
Flat scratch address

Status
Mode
Misc Reg

Trap Status
Trap Base Address

Trap Memory Address

Size
(bits)
48

32

32

64kB

64

64

48

32
32
32

32
48

48

Description

Points to the memory address of the next shader instruction
to execute. Read/write only via scalar control flow
instructions and indirectly using branch. The 2 LSB’s are
forced to zero.

Vector general-purpose register. (32 bits per work-item x (32
or 64) work-items per wave).

Scalar general-purpose register. All waves are allocated 106
SGPRs + 16 TTMPs.

Local data share is a scratch RAM with built-in arithmetic
capabilities that allow data to be shared between threads in a
work-group.

A bit mask with one bit per thread, which is applied to vector
instructions and controls which threads execute and which
ignore the instruction.

A single bit flag indicating that the EXEC mask is all zeros.
For wave32 it considers only EXEC[31:0].

A bit mask with one bit per thread; it holds the result of a
vector compare operation or integer carry-out. Physically
VCC is stored in specific SGPRs.

A single-bit flag indicating that the VCC mask is all zeros. For
wave32 it considers only VCC[31:0].

Result from a scalar ALU comparison instruction.

The base address of scratch memory for this wave. Used by
Flat and Scratch instructions. Read-only by user shader.
Read-only shader status bits.

Writable shader mode bits.

A temporary register that has various uses, including GPR
indexing and bounds checking.

Holds information about exceptions and pending traps.
Holds the pointer to the current trap handler program
address. Per-VMID register. Bit [63] indicates if the trap
handler is present (1) or not (0) and is not considered part of
the address (bit[62] is replicated into address bit[63]).
Accessed via S_SENDMSG_RTN

Temporary register for shader operations. For example, can
hold a pointer to memory used by the trap handler.
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Abbrev. Name Size Description
(bits)

TTMPO-TTMP15 Trap Temporary SGPRs 32 16 SGPRs available only to the Trap Handler for temporary
storage.

VMent Vector memory load 6 Counts the number of VMEM load and sample instructions

instruction count issued but not yet completed.

VSent Vector memory store 6 Counts the number of VMEM store instructions issued but

instruction count not yet completed.

EXPcnt Export Count 3 Counts the number of Export and GDS instructions issued
but not yet completed. Also counts parameter loads
outstanding.

LGKMcnt LDS, GDS, Constant and 6 Counts the number of LDS, GDS, constant-fetch (scalar

Message count memory read), and message instructions issued but not yet
completed.

3.2. Control State: PC and EXEC

3.2.1. Program Counter (PC)

The Program Counter is a DWORD-aligned byte address that points to the next instruction to execute. When a
wave is created the PC is initialized to the first instruction in the program.

There are a few instructions to interact directly with the PC: S_GETPC_B64, S_SETPC_B64, S_CALL_B64,
S_RFE_B64 and S_SWAPPC_B64. These transfer the PC to and from an even-aligned SGPR pair (sign-extended).

Branches jump to (PC_of_the_instruction_after_the_branch + offset*4). Branches, GET_PC and SWAP_PC are PC-
relative to the next instruction, not the current one. S_TRAP, on the other hand, saves the PC of the S_TRAP
instruction itself.

During wave debugging, the program counter may be read. The PC points to the next instruction to issue. All
prior instructions have been issued but may or may not have completed execution.

3.2.2. EXECute Mask

The Execute mask (64-bit) controls which threads in the vector are executed. Each bit indicates how one thread
behaves for vector instructions: 1 = execute, 0 = do not execute. EXEC can be read and written via scalar
instructions, and can also be written as a result of a vector-alu compare. EXEC affects: vector-alu, vector-
memory, LDS, GDS and export instructions. It does not affect scalar execution or branches.

Wave64 uses all 64 bits of the exec mask. Wave32 waves use only bits 31:0 and hardware does not act upon the
upper bits.

There is a summary bit (EXECZ) that indicates that the entire execute mask is zero. It can be used as a condition
for branches to skip code when EXEC is zero. For wave32, this reflects the state of EXEC[31:0].

3.2. Control State: PC and EXEC 14 of 600
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3.2.3. Instruction Skipping: EXEC==
The shader hardware may skip vector instructions when EXEC==0. Instructions which may be skipped are:

« VALU - skip if EXEC ==
° Not skipped if the instruction writes SGPRs/VCC
° Does not skip WMMA or SWMMA
° This skipping is opportunistic and may not occur depending on timing after a V_CMPX.
+ These are not skipped regardless of EXEC mask value, and are issued only once in wave64
° V_NOP, V_PIPEFLUSH, V_READLANE, V_READFIRSTLANE, V_WRITELANE
° BUFFER_GL1_INV, BUFFER_GLO_INV
« These are not skipped and are issued twice regardless of EXEC mask value in wave64 mode
° V_CMP which writes SGPR or VCC (not V_CMPX - may skip one pass but not both)
° Any VALU which writes an SGPR
« Export Request - skip unless: Done==1 or if export target is POS0O
° Skipped if the wave was created with SKIP_EXPORT=1
« LDS_param_load / LDS-direct: are skipped when EXEC==0 and EXP_cnt==0
LDS, Memory, GDS - do not skip
° VMEM can be skipped only if: VMcnt/VScnt==0 and EXEC==0
® otherwise for wave64 one pass can be skipped if EXEC==0 for that half, but not both halves.
° LDS can be skipped only if: LGKMcnt==0 and EXEC==0
° Does not skip GDS or GWS

3.3. Storage State: SGPR, VGPR, LDS

3.3.1. SGPRs

3.3.1.1. SGPR Allocation and storage

Every wave is allocated a fixed number of SGPRs:

+ 106 normal SGPRs
« VCC_HI and VCC_LO (stored in SGPRs 106 and 107)
+ 16 Trap-temporary SGPRs, meant for use by the trap handler

3.3.1.2. VCC

The Vector Condition Code (VCC) can be written by V_CMP and integer vector ADD/SUB instructions. VCC is
implicitly read by V_ADD_CI, V_SUB_CI, V_CNDMASK and V_DIV_FMAS. VCC is a named SGPR-pair and is
subject to the same dependency checks as any other SGPR.
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3.3.1.3. SGPR Alignment

There are a few cases where even-aligned SGPRs are required:
1. any time 64-bit data is used
a. this includes moves to/from 64-bit registers, including PC
2. Scalar memory reads when the address-base comes from an SGPR-pair

Quad-alignment of SGPRs is required for operation on more than 64-bits, and for the data GPR when a scalar
memory operation (read, write or atomic) operates on more than 2 DWORDs. Similarly, when a 64-bit SGPR
data value is used as a source to a VALU op, it must be even aligned regardless of size. In contrast, when a 32-
bit SGPR data value is used as a source to a VALU op, it can be arbitrarily aligned regardless of wave size.

When a 64-bit quantity is stored in SGPRs, the LSB’s are in SGPR[n], and the MSB’s are in SGPR[n+1].

It is illegal to use mis-aligned source or destination SGPRs for data larger than 32 bits and results are
unpredictable.

As an example, VALU ops with carry-in or carry-out:

« When used with wave32, these are 32 bit values and may have any arbitrary alignment
« When used with wave64, these are 64 bit values and must be aligned to an even SGPR address

Hardware enforces SGPR alignment by ignoring LSB’s as necessary and treating them as zero. For
*MOVREL*_B64, the LSB of the index is also ignored and treated as zero.

3.3.1.4. SGPR Out of Range Behavior

Scalar sources and dests use a 7-bit encoding:

Scalar 0-105=SGPR; 106,107=VCC, 108-123=TTMP0-15, and 124-127={NULL, M0, EXEC_LO, EXEC_HI}.

It is illegal to use GPR indexing or a multi-DWORD operand to cross SGPR regions. The regions are:
» SGPRs 0 - 107 (includes VCC)
* Trap Temp SGPRs

+ All other SGPR & Scalar-source addresses must not be indexed and no single operand can reference
multiple register ranges.

General Rules:
+ Out of range source SGPRs return zero (using a TTMP when STATUS.PRIV=0, NULL, M0 or EXEC where not
allowed)
+ Writes to an out of range SGPR are ignored

TTMPO-15 can only be written while in the trap handler (STATUS.PRIV=1) and cannot be read by the user’s
shader (returns zero when STATUS.PRIV=0). Writes to TTMPs while outside the trap handler are ignored. SALU
instructions which try but fail to write a TTMP also do not update SCC.

SALU: Above rules apply.

° WREXEC and SAVEEXEC write the EXEC mask even when the SDST is out-of-range
VALU: Above rules apply.
VMEM: S#, T#, V# must be contained within one region.
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° T# (128b), V# or S#: no possible range violation exists (forced alignment puts all in 1 range).
° T# (256b) starting at 104 and extending into TTMPs; or starting at TTMP12 and going past TTMP15is a
violation. If this occurs, force to use SO.
« SMEM return data starting in SGPRs/VCC and extending into TTMPs, or starting in TTMPs and extending
outside TTMPs becomes out of range.

° No data gets written to dest-SGPRs that are out-of-range
° Addr and write-data are aligned and so cannot go out of range, except:
® Referencing M0, NULL, or EXEC* returns zero, and SMEM loads cannot load into these registers.
+ S_ZMOVREL:
° Indexing is allowed only within SGPRs and TTMPs, and must not cross between the two. Indexing must
stay within the "base" range (the operand type where index==0).
The ranges are: [ SGPRs 0-105 and VCC_LO, VCC_HI ], [ Trap Temps 0-15 ], [ all other values ]
° Indexing must not reach M0, exec or inline constants, the rule is:
® Base is SGPR: addr > VCC_HI (or if 64-bit operand, addr > VCC_LO)
® Base is TTMP: addr > TTMP15 (or if B64 if addr > ttmp14)

o If the source is out of range, SO is used.
If the dest is out of range, nothing is written.

3.3.2. VGPRs

3.3.2.1. VGPR Allocation and Alignment

VGPRs are allocated in blocks of 16 for wave32 or 8 for wave64, and a shader may have up to 256 VGPRs. In
other words, VGPRs are allocated in units of (16*32 or 8*64 = 512 DWORDs). A wave may not be created with zero
VGPRs. Devices which have 1536 VGPRs per SIMD allocate in blocks of 24 for wave32 and 12 for wave64.

A wave may voluntarily deallocate all of its VGPRs via S_SENDMSG. Once this is done, the wave may not
reallocate them and the only valid action is to terminate the wave. This can be useful if a wave has issued stores
to memory and is waiting for the write-confirms before terminating. Releasing the VGPRs while waiting may
allow a new wave to allocate them and start earlier.

3.3.2.2. VGPR Out of Range Behavior

Given an instruction operand that uses one or more DWORDs of VGPR data: "V"

Vs = the first VGPR DWORD (start)
Ve = the last VGPR DWORD (end)

For a 32-bit operand, Vs==Ve; for a 64-bit operand Ve=Vs+1, etc.

Operand is out of range if:

- Vs<0|| Vs >= VGPR_SIZE
- Ve <0 || Ve >= VGPR_SIZE

V_MOVREL indexed operand out of range if either:
+ Index > 255
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. (Vs +MO0) >= VGPR_SIZE
« (Ve + M0) >= VGPR_SIZE

Out of range consequences:

- If a dest VGPR is out of range, the instruction is ignored (treat as NOP).
« V_SWAP & V_SWAPREL : since both arguments are destinations, if either is out of range, discard the
instruction.
° VALU instructions with multiple destination (e.g. VGPR and SGPR): nothing is written to any GPR
+ If a source VGPR is out of range in a VMEM or Export instruction: VGPRO is used
° Memory instructions that use a group of consecutive VGPRs that are out of range use VGPRO for the
individual out of range VGPRs.
« If a source VGPR in a VALU instruction is out of range in a VALU instruction: VGPRO
° VOPD has different rules: the source address forced to (VGPRaddr % 4).

Instructions with multiple destinations (e.g. V_ADD_CO): if any destination is out of range, no results are
written.

3.3.3. Memory Alignment and Out-of-Range Behavior

This section defines the behavior when a source or destination GPR or memory address is outside the legal
range for a wave. Except where noted, these rules apply to LDS, GDS, buffer, global, flat and scratch memory
accesses.

Memory, LDS & GDS: Reads and Atomics with return:

« If any source VGPR or SGPR is out-of-range, the data value is undefined.
« If any destination VGPR is out-of-range, the operation is nullified by issuing the instruction as if the EXEC
mask were cleared to 0.
° This out-of-range test checks all VGPRs which could be returned (e.g. VDST to VDST+3 for a
BUFFER_LOAD_B128)
° This check also includes the extra PRT (partially resident texture) VGPR and nullifies the fetch if this
VGPR would be out of range no matter whether the texture system actually returns this value or not.
° Atomic operations with out-of-range destination VGPRs are nullified: issued, but with EXEC mask of
zero.
+ Image loads and stores consider DMASK bits when making an out-of-bounds determination.
* Note: VDST is only checked for lds/gds/mem-atomic that actually return a value.

VMEM (texture) memory alignment rules are defined using the config register:
SH_MEM_CONFIG.alignment_mode. This setting also affects LDS, Flat/Scratch/Global operations.

DWORD Automatic alignment to multiple of the smaller of element size or a DWORD.
UNALIGNED No alignment requirements.

Formatted ops such as BUFFER_LOAD_FORMAT_* must be aligned as follows:

+ 1-byte formats require 1-byte alignment
+ 2-byte formats require 2-byte alignment
« 4-byte and larger formats require 4-byte alignment
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Atomics must be aligned to the data size, or triggers a MEMVIOL.

3.3.4. LDS

Waves may be allocated LDS memory, and waves in a work-group all share the same LDS memory allocation. A
wave may have 0 - 64kbyte of LDS space allocated, and it is allocated in blocks of 1024 bytes. All accesses to LDS
are restricted to the space allocated to that wave/work-group.

Internally LDS is composed of two blocks of memory of 64kB each. Each one of these two blocks is affiliated
with one CU or the other: byte addresses 0-65535 with CUO, 65536-131071 with CU1. Allocations of LDS space to
a wave or work-group do not wrap around: the allocation starting address is less than the ending address.

In CU mode, a wave’s entire LDS allocation resides in the same "side" of LDS as the wave is loaded. No access is
allowed to cross over or wrap around to the other side.

In WGP mode, a wave’s LDS allocation may be entirely in either the CUO or CU1 part of LDS, or it may straddle
the boundary and be partially in each CU. The location of the LDS storage is unrelated to which CU the wave is
on.

Pixel parameters are loaded into the same CU side as the wave resides and do not cross over into the other side
of LDS storage. Pixel shaders are run only in CU mode. Pixel shader may request additional LDS space in addition
to what is required for vertex parameters.

3.3.4.1. LDS/GDS Alignment and Out-of-Range

Any DS_LOAD or DS_STORE of any size can be byte aligned if the alignment mode is set to "unaligned". For all
other alignment modes, LDS forces alignment by zeroing out address least significant bits.

+ 32-bit Atomics must be aligned to a 4-byte address; 64-bit atomics to an 8-byte address.
+ LDS operations report MEMVIOL if the LDS-address is out of range and
LDS_CONFIG.ADDR_OUT_OF_RANGE_REPORTING==1

+ MEMVIOL is reported for misaligned LDS accesses when the alignment mode is set to STRICT or
DWORD_STRICT.

Out Of Range

« If the LDS-ADDRESS is out of range (addr < 0 or >= LDS_size):
° Writes out-of-range are discarded.
° Reads return the value zero. For multi-DWORD reads, if any part of the LDS-address is out of range, the
entire instruction returns zero.
« If any source-VGPR is out of range, the value from VGPRO is used to supply the LDS address or data.
« If the dest-VGPR is out of range, nullify the instruction (issue with EXEC=0)

"Native" Alignment in LDS & GDS is:

B8: byte aligned

B16 or D16: 2 byte aligned
B32: 4 byte aligned

B64: 8 byte aligned

B128 and B96: 16 byte aligned
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If the alignment mode is set to "unaligned", the LDS disables its auto-alignment and doesn’t report error for
misaligned reads & writes.

if (sh_alignment_mode == unaligned)
else if (B32)

else if (B64)

else if (B96 or B128)

LDSaddr = (addr + offset) & align

align = oxffff
align = OxfffC
align = @xfff8
align = exfffe

3.4. Wave State Registers

The following registers are accessed infrequently, and are only readable/writable via S_GETREG and S_SETREG
instructions. Some of these registers are read-only, some are writable and others are writable only when in the
trap handler ("PRIV").

Code Register

0 Reserved

1 MODE read / write

2 STATUS read / write. Only writable when priv=1

3 TRAPSTS read / write

14 FLUSH_IB write-only. Writing this causes all waves to flush their instruction buffers

15 SH_MEM_BASES read-only. Allows a wave to read the value of this register to do aperture checks and
memory space conversions. Bits [15:0] = Private Base; [31:16] = Shared Base.

20 FLAT_SCRATCH_LO read only (writable only while in trap handler)

21 FLAT_SCRATCH_HI read only (writable only while in trap handler)

23 HW_ID1 read only. debug only - not predictable values

24 HW_ID2 read only. debug only - not predictable values

29 SHADER_CYCLES Get the current graphics clock counter value

3.4.1. Status register
Status register fields can be read but not written to by the shader. While in the trap handler, certain STATUS fields
can be written. These bits are initialized at wave-creation time. The table below describes the status register

fields.

Table 5. Status Register Fields

Field Bit Write Description
Pos when
Priv?
SCC 0 Y Scalar condition code. Used as a carry-out bit. For a comparison instruction, this bit
indicates failure or success. For logical operations, this is 1 if the result is non-zero.
SYS_PRIO 21 Y Wave priority set at wave creation time. See S_SETPRIO instruction for details. 0 is
lowest, 3 is highest priority.
USER_PRIO 43 Y Wave’s priority set by shader program itself. See S_SETPRIO instruction for details.
PRIV 5 N Privileged mode. Indicates that the wave is in the trap handler. Gives write access to
TTMP registers.
TRAP_EN 6 N Indicates that a trap handler is present. When set to zero, traps are not taken.
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Field

EXPORT_RDY

EXECZ

VCCZ
IN_WG
IN_BARRIER
HALT

TRAP
VALID
SKIP_EXPORT

PERF_EN
CDBG_USER

CDBG_SYS

FATAL_HALT

NO_VGPRS

LDS_PARAM_RDY

MUST_GS_ALLOC

MUST_EXPORT

IDLE

SCRATCH_EN
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Bit Write Description

Pos when
Priv?
8 Y

10
11
12
13

14
16
18

19
20

21

23

24

25

26

27

28

29

< zZ zZ z 2z

z =z

This status bit indicates if export buffer space has been allocated. The shader stalls
any export instruction until this bit becomes "1". It gets set to 1 when export buffer space
has been allocated.

Shader hardware checks this bit before executing any EXPORT instruction to
Position, Z or MRT targets, and put the wave into a waiting state if the alloc has not
yet been received. The alloc arrives eventually (unless SKIP_EXPORT is set) as a
message and the shader then continues with the export.

Exec Mask is Zero.

Vector Condition Code is Zero.

Wave is a member of a work-group of more than one wave.

Wave is waiting at a barrier.

Wave is halted or scheduled to halt.

HALT can be set by the host via wave-control messages, or by the shader. The HALT
bit is ignored while in the trap handler (PRIV = 1). HALT is also ignored if a host-
initiated trap is received (request to enter the trap handler).

Wave is flagged to enter the trap handler as soon as possible.

Wave is valid (has been created and not yet ended)

For Pixel and Vertex Shaders only.

"1" means this shader is not allocated export buffer space, so export instructions are
ignored (treated as NOPs). For pixel shaders, this is set to 1 when both the
COLO_EXPORT_FORMAT and Z_EXPORT_FORMAT are set to ZERO. If
SKIP_EXPORT==1, Must_export must be zero and vice versa.

Performance counters are enabled for this wave

User-controlled conditional debug. Set at wave-create time by a user register. Can be
used in conditional branches.

System-controlled conditional debug. Set at wave-create time by a system register.
Can be used in conditional branches.

Indicates that the wave has halted due to a fatal error:

illegal instruction . The difference between halt and fatal_halt is that fatal_halt stops
waves even when PRIV=1.

Indicates that this wave has released all of its VGPRs.

PS shaders only: indicates that LDS has been written with vertex attribute data and
the shader may now execute LDS_PARAM_LOAD instructions. If the wave attempts to
issue LDS_PARAM_LOAD before this bit is set, it stalls until the bit is set.

GS shader must issue a GS_ALLOC_REQ message before terminating.
Sending this message clears this bit.

PS: this wave must export color ("export-done") before it terminates.

Set to 1 for PS waves unless "skip_export==1". Cleared when PS exports data with
export’s Done bit set to 1.

GS: this wave must perform a GDS_ordered_count before terminating. Cleared when
a GS shader issues a GDS_ordered_count. GS is initialized to 1 normally, but to zero
for "no export" passes (stream-out only).

Wave is idle (has no outstanding instructions). Used by the host (GRBM) to
determine if a wave is valid, halted and idle - able to read other wave state.

Indicate that the wave has scratch memory allocated. This bit gets set to 1 if the wave
has FLAT_SCRATCH initialized; otherwise is zero.
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3.4.2. Mode register

Mode register fields can be read from, and written to, by the shader through scalar instructions. The table
below describes the mode register fields.

Field

FP_ROUND

FP_DENORM

DX10_CLAMP

IEEE

LOD_CLAMPED
TRAP_AFTER_ INST

EXCP_EN

3.4. Wave State Registers

Bit
Pos
3:0

7:4

10
11

21:12

Table 6. Mode Register Fields

Description

Controls round modes for math operations
[1:0] Single precision round mode
[3:2] Double precision and half precision (FP16) round mode
Round Modes: O=nearest even, 1= +infinity, 2= -infinity, 3= toward zero
Round mode affects float ops in VALU, but not LDS or memory.
Controls whether floating point denormals are flushed or not.
[5:4] Single precision denormal mode
[7:6] Double precision and FP16 denormal mode
Denormal modes: 2 bits = { allow_output_denorms, allow_input_denorms }
0 = flush input and output denorms
1 = allow input denorms, flush output denorms
2 = flush input denorms, allow output denorms
3 =allow input and output denorms
Denorm mode affects float ops in: VALU, LDS, and VMEM atomics.
Texture/Buffer/Flat considers only bits 4 and 6 (allowing mode control over input-denorm
flushing, and not flushing output denorms), while LDS uses all bits for DS ops (but not for
FLAT).

Used by the vector ALU to force DX10 style treatment of NaN’s. When set, clamp NaN to
zero, otherwise pass NaN thru and also suppress all VALU exceptions. The clamping only
occurs when the instruction has the CLAMP bit set to 1, but exceptions are suppressed
when DX10_CLAMP==1.

IEEE==0: IEEE-754-1985/DX10 behavior for Min and Max, pass signaling NaN.

IEEE==1: IEEE-754-2008 behavior for Min and Max, quiet signaling NaN.

When set to 1, floating point opcodes that support exception flag gathering quiet and
propagate signaling NaN inputs per IEEE 754-2008. Min_f32/f64 and Max_{32/f64 become
IEEE 754-2008 compliant due to signaling NaN propagation and quieting. When set to 1,
MAX performs a ">" compare, but when set to zero (directX mode/IEEE 754-1985 mode)
MAX performs a ">=" compare. This only affects results for +/-0 and input denormals
which are flushed to zero.

Sticky status bit - indicates that one or more texture accesses had their LOD clamped.
Forces the wave to jump to the exception handler after each instruction is executed (but
not after ENDPGM). Only works if TRAP_EN =1.

Enable mask for exceptions. Enabled means if the exception occurs and if TRAP_EN==1, a
trap may be taken.

[12] : invalid

[13] : inputDenormal

[14] : float_div0

[15] : overflow

[16] : underflow

[17] : inexact

[18] : int_div0

[19] : addr_watch - take exception when TC sees wave access an "address of interest"
[21] : trap on wave end - h/w clears this upon entering trap handler for end-of-wave
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Field Bit Description
Pos
FP16_OVFL 23 If set, an overflowed FP16 VALU result is clamped to +/- MAX_FP16 regardless of round
mode, while still preserving true INF values. (Inputs which are infinity may result in infinity,
as does divide-by-zero).
DISABLE_PERF 27 1 = disable performance counting for this wave.

3.4.3. MO : Miscellaneous Register
There is one 32-bit MO register per wave and is it used for:

Table 7. MO Register Fields

Operation
LDS_PARAM_LOAD

LDS_DIRECT_LOAD

LDS ADDTID
Global Data Share
GDS Ordered Count

Global Wave Sync
S/V_MOVREL
S_SENDMSG / _RTN
EXPORT

SMEM
Temporary

MO Contents

{1’b0, new_prim_mask[15:1],
parameter_offset[15:0] }
{13’b0, DataType[2:0],
LDS_address[15:0] }
{16’h0, 1ds_offset[15:0] }
{ base[15:0], size[15:0] }
{ base[15:0], 3'h0,
logical_wave_id[12:0] }
various uses

GPR index

varies

Row number for mesh shader POS
& Param exports

address_offset[31:0]
data[31:0]

MO can only be written by the scalar ALU.

3.4.4. NULL

Notes

Offset is in bytes and offset[6:0] must be zero.
Wave32: new_prim_mask is {8'b0, mask([7:1] }

address is in bytes

offset is in bytes, must be 4-byte aligned
base and size are in bytes
used for deferred attribute shading (split-GS)

see instruction definition

See S_ZMOVREL and V_MOVREL instructions
sendmsg data. See [Send_Message_Types]
See Export chapter

see SMEM section

can be used as general temporary data storage

NULL is a scalar source and destination. Reading NULL returns zero, writing to NULL has no effect (write data

is discarded).

NULL may be used anywhere scalar sources can normally be used:

« When NULL is used as the destination of an SALU instruction, the instruction executes: SDST is not written
but SCC is updated (if the instruction normally updates SCC).
« NULL may not be used as an S#, V# or T#.

3.4.5. SCC: Scalar Condition Code

Many scalar ALU instructions set the Scalar Condition Code (SCC) bit, indicating the result of the operation.

Compare operations: 1 =true

3.4. Wave State Registers
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Arithmetic operations: 1 = carry out
Bit/logical operations: 1 = result was not zero
Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the selector for
conditional moves and branches.

3.4.6. Vector Compares: VCC and VCCZ

Vector ALU comparison instructions (V_CMP) compare two values and return a bit-mask of the result, where
each bit represents one lane (work-item) where: 1= pass, 0 = fail. This result mask is the Vector Condition Code
(VCC). VCC is also set for selected integer ALU operations (carry-out).

These instructions write this mask either to VCC, an SGPR or to EXEC, but do not write to both EXEC and
SGPRs. Wave32 writes only the low 32 bits of VCC, EXEC or a single SGPR; Wave64 writes 64-bits of VCC, EXEC
or an aligned pair of SGPRs.

Whenever any instruction writes a value to VCC, the hardware automatically updates a "VCC summary" bit
called VCCZ. This bit indicates whether or not the entire VCC mask is zero for the current wave-size. Wave32
ignores VCC[63:32] and only bits[31:0] contribute to VCCZ. This is useful for early-exit branch tests. VCC is also set
for certain integer ALU operations (carry-out).

The EXEC mask determines which threads execute an instruction. The VCC indicates which executing threads
passed the conditional test, or which threads generated a carry-out from an integer add or subtract.

S_MOV_B64 EXEC, 0x00000001 // set just one thread active; others are inactive
V_CMP_EQ_B32 VCC, Ve, Ve // compare (V@ == V@) and write result to VCC (all bits in VCC are
updated)

VCC physically resides in the SGPR register file in a specific pair of SGPRs, so when an
o instruction sources VCC, that counts against the limit on the total number of SGPRs that can
be sourced for a given instruction.

Wave32 waves may use any SGPR for mask/carry/borrow operations, but may not use VCC_HI or EXEC_HI.

3.4.7. FLAT_SCRATCH

FLAT_SCRATCH is a 64-bit register that holds a pointer to the base of scratch memory for this wave. For waves
that have scratch space allocated, wave-launch hardware initializes the FLAT_SCRATCH register with the
scratch base address unique to this wave. This register is read-only, except while in the trap handler where it is
writable. The value is a byte address and must be 256byte aligned. If the wave has no scratch space allocated,
then reading FLAT_SCRATCH returns zero.

The value for FLAT_SCRATCH is computed in hardware and initialized for any wave that has scratch space
allocated:

scratch_base = scratch_base[63:0] + spi_scratch_offset[31:0]
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FLAT_SCRATCH_LO = scratch_base [31:0]
FLAT_SCRATCH_HI = scratch_base [63:32]

3.4.8. Hardware Internal Registers

These registers are read-only and can be accessed by the S_GETREG instruction. They return information
about hardware allocation and status. HW_ID and the various *_BASE values are not predictable and may
change over the lifetime of a wave if context-switching can occur.

HW_ID1

Field Bits Description

WAVE_ID 4:0 Wave id within the SIMD.

SIMD_ID 9:8 SIMD_ID within the WGP: [0] = row, [1] = column.

WGP_ID 13:10  Physical WGP ID.

SA_ID 16 Shader Array ID

SE_ID 20:18  Shader Engine ID

DP_RATE 31:29  Number of double-precision float units per SIMD. 1+log2(#DP-alu’s). 0=none, 1=1/32rate (1 dp
lane/clk), 2=1/16 rate (2 dp lanes/clk), 3=1/8, 4=1/4, 5=1/2, 6=full rate (32 dp lanes per clock).

HW_ID2

Field Bits Description

QUEUE_ID 3:0 Queue_ID (also encodes shader stage)

PIPE_ID 5:4 Pipeline ID

ME_ID 9:8 MicroEngine ID: 0 = graphics, 1 & 2 = ACE compute

STATE_ID 14:12 State context ID

WG_ID 20:16 Work-group ID (0-31) within the WGP.

VM_ID 27:24 Virtual Memory ID

Other S_GETREG, S_SETREG targets:

Register Bits Description

FLUSH_IB 1 Writing this with bit[0]=1 flushes the instruction fetch buffers for the targeted wave.

SH_MEM_BASES 16, 16 Per-VMID register, readable by the shader, which holds the private and shared
apertures.

PC_LO 32 Program counter low and high halves. GETREG should not be used to read the PC -

PC_HI 32 use S_GETPC instead.

FLAT_SCRATCH_HI 32 Flat scratch base address. Only writable when in trap handler

FLAT_SCRATCH_LO 32

Note: TMA and TBA are read using S_SENDMSG_RTN.

3.4.9. Trap and Exception registers

Each type of exception can be enabled or disabled independently by setting, or clearing, bits in the TRAPSTS
register’s EXCP_EN field. This section describes the registers that control and report shader exceptions.

Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in the trap handler
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(STATUS.PRIV = 1). TTMPs cannot be read by the user shader (returns zero).

When the shader is not privileged (STATUS.PRIV==0), writes to these are ignored. TMA and TBA are read-only;
they can be accessed through S_SENDMSG_RTN.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware generates an
S_TRAP instruction. This loads trap information into a pair of SGPRS:

{TTMP1, TTMPO} = {7'h@, HT[O],trapID[7:0], PC[47:0]}.

HT is set to one for host initiated traps, and zero for user traps (s_trap) or exceptions. TRAP_ID is zero for
exceptions, or the user/host trapID for those traps.

STATUS . TRAP_EN

This bit tells the shader whether or not a trap handler is present. When one is not present, traps are not
taken no matter whether they’re floating point, user or host-initiated traps. When the trap handler is
present, the wave uses an extra 16 SGPRs for trap processing.

Iftrap_en == 0, all traps and exceptions are ignored, and s_trap is converted by hardware to NOP.

MODE . EXCP_EN(8:0]

Exception enable mask. Defines which of the sources of exception cause the shader to jump to the trap
handler when the exception occurs. 1 = enable traps; 0 = disable traps.
MEMVIOL and Illegal-Instruction jump to the trap handler and cannot be masked off.

Bit Exception Cause Result
0 invalid operand is invalid for operation: 0 * inf, 0/0, sqrt(-x), any input QNaN
is SNaN.
1 Input one or more operands was subnormal ordinary result
Denormal
Divide by zero FloatX /0 correct signed infinity
overflow The rounded result would be larger than the largest finite Depends on rounding mode.
number. Signed max# or infinity.
4 underflow The exact or rounded result is less than the smallest normal  subnormal or zero
(non-subnormal) representable number.
5 inexact The rounded result of a valid operation is different from the =~ Operation result
infinitely precise result.
6 integer divide Integer X/O0 undefined
by zero
7 address watch VMEM or SMEM has witnessed a thread access an 'address of
interest’

8 reserved
TRAPSTS Register

TRAPSTS contains information about traps and exceptions, and may be written by user shader or trap handler.
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Field Bit Description
Pos
EXCP 8:0 Status bits of which exceptions have occurred. These bits are sticky and

accumulate results until the shader program clears them. These bits are
accumulated regardless of the setting of EXCP_EN. These can be read or
written without shader privilege.

Bit Exception
invalid

Input Denormal
Divide by zero
overflow
underflow
inexact

integer divide by zero

N o g W N +H O

address watch
8 memory violation
SAVECTX 10 A bit set by the host command via GRBM (or context-save/restore unit)

indicating that this wave must jump to its trap handler and save its context.
This bit should be cleared by the trap handler using S_SETREG.

ILLEGAL_INST 11 An illegal instruction has been detected. If a trap handler is present and the
wave is not in the trap handler: jump to the trap handler; Otherwise, send an
interrupt and halt.

ADDR_WATCH1-3 14:12 Indicates that address watch 1, 2 or 3 have been hit. [12]=addr_watchl.
Addr_watcho is indicated by the existing bit TRAPSTS.EXCP[7].
BUFFER_OOB 15 Buffer Out Of Bounds indicator.

Set when a buffer (MUBUF, MTBUF) instruction requests an address that is
out of bounds. Does not cause a trap. Status bit is sticky.

HOST_TRAP 16 Trap handler has been called to service a host trap. Trap may simultaneously
have been called to handle other traps as well

WAVE_START 17 Trap handler has been called before the first instruction of a new wave.

WAVE_END 18 Trap handler has been called after the last instruction of a wave.

TRAP_AFTER_INST 20 Trap handler has been called due to "trap after instruction" mode

3.4.10. Time

There are two methods for measuring time in the shader:

« "TIME" - measure cycles in graphics core clocks (20 bit counter)

« "REALTIME" - measure time based on a fixed frequency, constantly running clock (typically 100MHz),
providing a 64bit value.

Shader programs have access to a free-running clock counter in order to measure the duration of portions of a
wave’s execution. This counter can be read via: "S_GETREG S0, SHADER_CYCLES" and returns a 20-bit cycle
counter value. This counter is not synchronized across different SIMDs and should only be used to measure
time-delta within one wave. Reading the counter is handled through the SALU which has a typical latency of
around 8 cycles.

For measuring time between different waves or SIMDs, or to reference a clock that does not stop counting
when the chip is idle, use "REALTIME". Real-time is a clock counter that comes from the clock-generator and
runs at a constant speed, regardless of the shader or memory clock speeds. This counter can be read by:
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S_SENDMSG_RTN_B64 S[2:3] REALTIME
S_WAITCNT LGKMcnt ==

3.5. Initial Wave State

Before a wave begins execution, some of the state registers including SGPRs and VGPRs are initialized with
values derived either from state data, dynamic or derived data (e.g. interpolants or unique per-wave data). The
values are derived from register state and dynamic wave-launch state.

Note that some of this state is common across all waves in a draw call, and other state is unique per wave.

This section describes what state is initialized per shader stage. Note that as usual in this spec, the shader
stages refer to hardware shader stages and these often are not identical to software shader stages.

State initialization is controlled by state registers which are defined in other documentation.

3.5.1. EXEC initialization

Normally, EXEC is initialized with the mask of which threads are active in a wave. There are, however, cases
where the EXEC mask is initialized to zero indicating that this wave should do no work and exit immediately.
These are referred to as "Null waves" (EXEC==0) and exit immediately after starting execution.

3.5.2. FLAT_SCRATCH Initialization

Waves that have scratch memory space allocated to them are initialized with their FLAT_SCRATCH register
having a pointer to the address in global memory. Waves without scratch have this initialized to zero.

3.5.3. SGPR Initialization

SGPRs are initialized based on various SPI_PGM_RSRC* or COMPUTE_PGM_* register settings. Note that only
the enabled values are loaded, and they are packed into consecutive SGPRs, skipping over disabled values
regardless of the number of user-constants loaded. No SGPRs are skipped for alignment.

The tables below show how to control which values are initialized prior to shader launch.

3.5.3.1. Pixel Shader (PS)

Table 8. PS SGPR Load

SGPR Order Description Enable

First 0..32 of User data registers SPI_SHADER_PGM_RSRC2_PS.user_sgpr
then {bc_optimize, prim_mask[14:0], lds_offset[15:0]} N/A

then {ps_wave_id[9:0], ps_wave_index[5:0]} SPI_SHADER_PGM_RSRC2_PS.wave_cnt_en
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SGPR Order

then

Description
Provoking Vtx Info:

{prim15[1:0], prim14[1:0], ..., prim0[1:0]}

AMD¢1

Enable
SPI_SHADER_PGM_RSRC1_PS.

LOAD_PROVOKING_VTX

PS_wave_index is (se_id[1:0] * GPU__GC__NUM_PACKER_PER_SE + packer_id).

PS_wave_id is an index value which is incremented for every wave. There is a separate counter per
packer, so the combination of { ps_wave_id, ps_wave_index } forms a unique ID for any wave on the
chip. The wave-id counter wraps at SPI_PS_MAX_WAVE_ID.

3.5.3.2. Geometry Shader (GS)

ES and GS are launched as a combined wave, of type GS. The shader is initialized as a GS wave type, with the PC
pointing to the ES shader and with GS user-SGPRs preloaded, along with a memory pointer to more GS user
SGPRs. The shader executes to the ES program first, then upon completion executes the GS shader. Once the ES
shader completes, it may re-use the SGPRs which contain ES user data and the GS shader address.

The first 8 SGPRs are automatically initialized - no values are skipped (unused ones are written with zero).

State registers:

» SPI_SHADER_PGM_{LO,HI}_ES : address of the GS shader

« SPI_SHADER_PGM_RSRC1: resources of combined ES + GS shader

° GS_VGPR_COMP_CNT = # of GS VGPRs to load (2 bits)

+ SPI_SHADER_PGM_RSRC2: resources of combined ES + GS shader

° VGPR_COMP_CNT = # of VGPRs to load (2 bits)
° OC_LDS_EN
« SPI_SHADER_PGM_RSRC{3,4}: resources of combined ES + GS shader

SGPR #

GS with FAST_LAUNCH !=2
GS Program Address [31:0]
comes from:
SPI_SHADER_PGM_LO_GS
GS Program Address [63:32]
comes from:
SPI_SHADER_PGM_HI_GS
{I’b0, gsAmpPrimPerGrp|[8:0],
1’b0, esAmpVertPerGrp[8:0],
ordered_wave_id[11:0]}

{ TGsize[3:0],
WavelnGroup[3:0], 8'h0,
gsInputPrimCnt[7:0],
esInputVertCnt[7:0] }
Off-chip LDS base [31:0]

{17°'h0, attrSgBase[14:0] }

Table 9. GS SGPR Load

GS with FAST_LAUNCH ==

GS Program Address [31:0]
comes from:
SPI_SHADER_PGM_LO_GS

GS Program Address [63:32]
comes from:
SPI_SHADER_PGM_HI_GS

32’h0

{ TGsize[3:0],
WavelnGroup[3:0], 24’h0 }

{ TGID_Y[15:0],
TGID_X[15:0] }

{ TGID_Z[15:0], 1’bO0,
attrSgBase[14:0] }

SPI is loading flat_scratch[63:0] at this time

3.5. Initial Wave State

Enable
automatically loaded

automatically loaded

Must not be overwritten, in some cases listed

below.

automatically loaded.

SPI_SHADER_PGM_RSRC2_GS.oc_lds_en
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SGPR # GS with FAST_LAUNCH !=2 GS with FAST_LAUNCH == Enable
8-(upto) User data registers of GS User data registers of GS shader SPI_SHADER_PGM_RSRC2_GS.user_sgpr
39 shader

When stream-out is used, SGPR[2] must not be modified or overwritten any time before the final stream out is
issued (GDS ordered count with 'done' = 1). This is because the pipeline reset sequence which hardware
automatically executes reads SGPR to fabricate a GDS-ordered-count instruction and relies on this value.

3.5.3.3. Front End Shader (HS)

LS and HS are launched as a combined wave, of type HS. The shader is initialized as an HS wave type, with the
PC pointing to the LS shader and with HS user-SGPRs preloaded, along with a memory pointer to more HS user
SGPRs. The shader executes to the LS program first, then upon completion executes the HS shader. Once the
LS shader completes, it may re-use the SGPRs which contain LS user data and the HS shader address.

The first 8 SGPRs are automatically initialized - no values are skipped (unused ones are written with zero).

Other registers:

« SPI_SHADER_PGM_{LO,HI}_LS : address of the LS shader
« SPI_SHADER_PGM_RSRC1: resources of combined LS + HS shader
° LS_VGPR_COMP_CNT = # of LS VGPRs to load (2 bits)
« SPI_SHADER_PGM_RSRC{2,3,4}: resources of combined LS + HS shader

Table 10. HS (LS) SGPR Load

SGPR # Description Enable

0 HS Program Address Low ([31:0]) SPI_SHADER_USER_DATA_LO_HS
1 HS Program Address High ([63:32]) SPI_SHADER_USER_DATA_HI_HS
2 Off-chip LDS base [31:0] automatically loaded

3 {first_wave[0], Ishs_TGsize[6:0], automatically loaded

Ishs_PatchCount[7:0], HS_vertCount[7:0],
LS_vertCount[7:0]}

4 TF buffer base [15:0] automatically loaded
5 {270, wave_id_in_group[4:0] } SPI_SHADER_PGM_RSRC2_HS.scratch_en
8- (up to) 39 User data registers of HS shader SPI_SHADER_PGM_RSRC2_HS.user_sgpr

3.5.3.4. Compute Shader (CS)

Table 11. CS SGPR Load

SGPR Order Description Enable

First 0.. 16 of User data registers COMPUTE_PGM_RSRC2.user_sgpr

then work_group_id0[31:0] COMPUTE_PGM_RSRC2.tgid_x_en

then work_group_id1[31:0] COMPUTE_PGM_RSRC2.tgid_y_en

then work_group_id2[31:0] COMPUTE_PGM_RSRC2.tgid_z_en

then {first_wave, 6’h00, wave_id_in_group[4:0], 2’h0, COMPUTE_PGM_RSRC2.tg_size_en

ordered_append_term[11:0], work-
group_size_in_waves[5:0]}
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3.5.4. Which VGPRs Get Initialized

The table shows the VGPRs which may be initialized prior to wave launch. COMPUTE_PGM_RSRC* or
SPI_SHADER_PGM_RSRC* control registers can select a reduced set per shader stage.

Stage VGPR8 VGPR7 VGPR6 VGPR5 VGPR4 VGPR3 VGPR2 VGPR1 VGPRO
LS: HS:

LS: LS: index of current | [7:0] =rel patch ID
HS (+LS) LS: User VGPR | index of vertex vertex within (0..255), [12:8] = HS:
combined Instance ID | (opt) within work-group vertex buffer control point ID Patch ID
GS (+ES) GS: GS:
ESis DS ES: ES: ES: ES: GS: RT Index | Edgeflags | Primitive ID or GS: GS:
combined Patch ID rel patchid | v[fp32] u[fp32] unused | gs instance ID Payload offset of vtx2 offset of vtx1, vtx0
GS (+ES) GS:
ESis DS GS: GS: Edgeflag2, offset2,
combined ES: ES: ES: ES: RT Index | Edgeflags | Primitive ID or edgeflagl, offset1,
Passthrough Patch ID rel patchid | v[fp32] u[fp32] unused | gs instance ID Payload unused edgeflag0, offset0
GS (+ES) GS: GS: GS:
ESis VS ES: ES: ES: ES: offset of RT Index | Edgeflags | Primitive ID or GS: GS:
combined instance ID | user vgpr user vgpr vertex indx | vtx5, vtx4 | gs instance ID Payload offset of vtx3, vtx2 | offset of vtx1, vtxO
GS (+ES) GS:
ESis VS GS: GS: Edgeflag2, offset2,
combined ES: ES: ES: ES: RT Index | Edgeflags | Primitive ID or edgeflagl, offset1,
Passthrough instance ID | user vgpr user vgpr vertex indx | unused | gs instance ID Payload unused edgeflagQ, offset0
GS (+ES) ES: GS:
Fast Launch 1 ES: base vertex base primitive
combined unused unused instance ID | index unused unused 1D unused unused
GS (+ES)
Fast Launch 2
combined unused unused unused unused unused unused unused unused X, Y,

3.5.4.1. Pixel Shader VGPR Input Control

Pixel Shader VGPR input loading is quite a bit more complicated. There is a CAM which maps VS outputs to PS
inputs. Of the PS inputs which need loading, they are loaded in this order:

I persp sample Ilinear sample X float

J persp sample J linear sample Y float

I persp center I linear center Z float

J persp center J linear center W float

I persp centroid I linear centroid Facedness

J persp centroid J linear centroid Ancillary: RTA, ISN, PT,
I/w Line stipple eye-id

JW Sample mask

1/W X/Y fixed

Two registers (SPI_PS_INPUT_ENA and SPI_PS_INPUT_ADDR) control the enabling of IJ calculations and
specifying of VGPR initialization for PS waves. SPI_PS_INPUT_ENA is used to determine what gradients are
enabled for setup, whether per-pixel Z is enabled, what terms are calculated and/or passed through the
barycentric logic, and what is loaded into VGPR for PS. SPI_PS_INPUT_ADDR can be used to manipulate the
VGPR destination of terms that are enabled by INPUT_ENA, typically providing a way to maintain consistent
VGPR addressing when terms are removed from INPUT_ENA. It is valid to set a bit in ADDR when the
corresponding bit in ENA is not set, but if the ENA bit is set then the corresponding bit in ADDR must also be
set.

The two Pixel Staging Register (PSR) control registers contain an identical set of fields and consist of the
following:
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Field Name

PERSP_SAMPLE_ENA

PERSP_CENTER_ENA

PERSP_CENTROID_ENA

PERSP_PULL_MODEL_ENA

LINEAR_SAMPLE_ENA

LINEAR_CENTER_ENA

LINEAR_CENTROID_ENA

LINE_STIPPLE_TEX_ENA
POS_X_FLOAT_ENA
POS_Y_FLOAT_ENA
POS_Z_FLOAT_ENA
POS_W_FLOAT_ENA
FRONT_FACE_ENA
ANCILLARY_ENA

SAMPLE_COVERAGE_ENA
POS_FIXED_PT_ENA

IJ / VGPR Terms

PERSP_SAMPLE 1
PERSP_SAMPLE ]
PERSP_CENTERI
PERSP_CENTER ]
PERSP_CENTROID I
PERSP_CENTROID J
PERSP_PULL_MODEL I/W
PERSP_PULL_MODEL J/W
PERSP_PULL_MODEL 1/W
LINEAR_SAMPLE I
LINEAR_SAMPLE ]
LINEAR_CENTER I
LINEAR_CENTER ]
LINEAR_CENTROID I
LINEAR_CENTROID J
LINE_STIPPLE_TEX
POS_X_FLOAT
POS_Y_FLOAT
POS_Z_FLOAT
POS_W_FLOAT
FRONT_FACE

RTA_Index[28:16],
Sample_Num[11:8],
Eye_id[7],
VRSrateY[5:4],
VRSrateX[3:2],

Prim Typ[1:0]
SAMPLE_COVERAGE
Position {Y[16], X[16]}

BITS

32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
29

16
32

VGPR Dest with Full

Load
VGPRO
VGPR1
VGPR2
VGPR3
VGPR4
VGPRS
VGPR6
VGPR7
VGPR8
VGPR9
VGPR10
VGPR11
VGPR12
VGPR13
VGPR14
VGPR15
VGPR16
VGPR17
VGPR18
VGPR19
VGPR20
VGPR21

VGPR22
VGPR23

AMD¢1

The above table shows VGPR destinations for PS when all possible terms are enabled. If PS_INPUT_ADDR ==
PS_INPUT_ENA, then PS VGPRs pack towards VGPRO as terms are disabled, as shown in the table below:

Field Name
PERSP_SAMPLE_ENA

PERSP_CENTER_ENA

PERSP_CENTROID_ENA

PERSP_PULL_MODEL_ENA

LINEAR_SAMPLE_ENA

LINEAR_CENTER_ENA

3.5. Initial Wave State

1

ENA ADDR IJ/VGPR Terms
1 PERSP_SAMPLE I
PERSP_SAMPLE J
1 PERSP_CENTERI
PERSP_CENTER ]
0 PERSP_CENTROID I

PERSP_CENTROID J

0 PERSP_PULL_MODEL I/W
PERSP_PULL_MODEL J/W
PERSP_PULL_MODEL 1/W

0 LINEAR_SAMPLE I
LINEAR_SAMPLE ]
0 LINEAR_CENTER I

LINEAR_CENTER ]

VGPR Dest
VGPRO
VGPR1
VGPR2
VGPR3

T R R R R R R
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Field Name
LINEAR_CENTROID_ENA

LINE_STIPPLE_TEX_ENA
POS_X_FLOAT_ENA
POS_Y_FLOAT_ENA
POS_Z_FLOAT_ENA
POS_W_FLOAT_ENA
FRONT_FACE_ENA
ANCILLARY_ENA
SAMPLE_COVERAGE_ENA
POS_FIXED_PT_ENA

ENA

o O O O ©O O +H K~ o

ADDR

o O O O © © = +~H o

IJ / VGPR Terms
LINEAR_CENTROID I
LINEAR_CENTROID J
LINE_STIPPLE_TEX
POS_X_FLOAT
POS_Y_FLOAT
POS_Z_FLOAT
POS_W_FLOAT
FRONT_FACE

Ancil Data
SAMPLE_COVERAGE
Position {Y[16], X[16]}

AMD¢1

VGPR Dest
X

X

X

VGPR4
VGPR5

T B R A

However, if PS_LINPUT_ADDR != PS_INPUT_ENA then the VGPR destination of enabled terms can be
manipulated. An example is this is shown in the table below:

Field Name
PERSP_SAMPLE_ENA

PERSP_CENTER_ENA

PERSP_CENTROID_ENA

PERSP_PULL_MODEL_ENA

LINEAR_SAMPLE_ENA

LINEAR_CENTER_ENA

LINEAR_CENTROID_ENA

LINE_STIPPLE_TEX_ENA
POS_X_FLOAT_ENA
POS_Y_FLOAT_ENA
POS_Z_FLOAT_ENA
POS_W_FLOAT_ENA
FRONT_FACE_ENA
ANCILLARY_ENA
SAMPLE_COVERAGE_ENA
POS_FIXED_PT_ENA

ENA
1

o O O O O ©O +H K~ o

3.5.5. LDS Initialization

ADDR
1

SO O O O O O H K =

IJ / VGPR Terms
PERSP_SAMPLEI
PERSP_SAMPLE ]
PERSP_CENTER 1
PERSP_CENTER]
PERSP_CENTROID I
PERSP_CENTROID J
PERSP_PULL_MODEL I/W
PERSP_PULL_MODEL J/W
PERSP_PULL_MODEL 1/W
LINEAR_SAMPLE I
LINEAR_SAMPLE]
LINEAR_CENTER I
LINEAR_CENTER ]
LINEAR_CENTROID I
LINEAR_CENTROID ]
LINE_STIPPLE_TEX
POS_X_FLOAT
POS_Y_FLOAT
POS_Z_FLOAT
POS_W_FLOAT
FRONT_FACE

Ancil Data
SAMPLE_COVERAGE
Position {Y[16], X[16]}

VGPR Dest
VGPRO

VGPR1

VGPR2

VGPR3

VGPR4 skipped
VGPRS5 skipped
VGPR6 skipped
VGPR?7 skipped
VGPRS skipped
X

X

X

X

VGPR9 skipped
VGPR10 skipped
VGPR11 skipped
VGPR12
VGPR13

Lo e Bl R A

Only pixel shader (PS) waves have LDS pre-initialized with data before the wave launches. For PS wave, LDS is
preloaded with vertex parameter data that can be interpolated using barycentrics (I and J) to compute per-pixel

parameters.

3.5. Initial Wave State

33 0f 600



"RDNA3" Instruction Set Architecture AMDAl

Chapter 4. Shader Instruction Set

This chapter describes the shader instruction set. Instructions are divided into the following groups:

+ Program Flow
« Scalar ALU
+ Scalar memory read from constant cache
 Vector ALU & Parameter-Interpolate
« Vector Memory read/write :
° buffers
° Flat, Global and Scratch
° LDS
+ GDS
+ Misc: wait on counter, barrier, send message

Instructions are encoded in various microcode formats. The formats are defined by a set of "encoding" bits (in
red) that define the family of instructions and the meaning of the rest of the bits in the instruction. Not every
instruction uses every field in its encoding. Fields which can specify an SGPR as a source or dest are typically
set to NULL when unused; other fields are typically set to zero.

4.1. Common Instruction Fields

"inline constant" - a constant specified in place of a source argument, # 128-248. E.g 1.0, -0.5, 32 etc.

Float constants work with single, double and 16bit float instructions, and when used in non-float
instructions, the data is not converted (remains a float).

Float constants are encoded according to the size of the source operand. For 16-bit operations (both
packed and non-packed), a float constant is treated as zero-extended 32-bit data, i.e. with the 16-bit
floating point in the low bits and zeros in the high bits.

Integer constants used with 32-bit or smaller operands are treated as 32-bit signed integers. Integer
constants are signed extended for 64-bit sources.

"literal constant" - a 32-bit constant in the instruction stream immediately after a 32- or 64-bit instruction.

When used in a 64-bit signed integer operation, it is sign-extended to 64 bits. For unsigned 64-bit integer

ops (and 64-bit binary ops) it is zero extended. When used in a double-float operation, the 32-bit literal is
the most-significant bits, and the LSBs are zero. Other operations (32 bits or less, or packed math) treat it
as 32-bit data.

4.1. Common Instruction Fields 34 of 600



"RDNA3" Instruction Set Architecture

Code

Vector Scalar Scalar 0-105
Source Source (8 Dest (7 106
(when9 bits) bits) 107
bits)

124

125
126
127
Integer 128

Inline 129192
Constants 193-208

209-232

233
234
235
236
237
238
239

Float 240
Inline 241
Constants 242

243
244
245
246
247
248
249
250
251
252
253
254
255

Vector Src/Dst
(8 bits)

4.1.1. Cache Controls: SL.C, GLC and DLC

108-123

256 - 511

Meaning
SGPRO .. 105
VCC_LO
VCC_HI

ttmpO0 .. ttmplS5
NULL

MO

EXEC_LO
EXEC_HI

0

intl..64
int-1..-16
Reserved

DPP8

DPP8FI
SHARED_BASE
SHARED_LIMIT
PRIVATE_BASE
PRIVATE_LIMIT
Reserved

0.5

-0.5

1.0

-1.0

2.0

-2.0

4.0

-4.0

1.0/ (2 * PI)
Reserved
DPP16
Reserved
Reserved

SCC

Reserved
Literal constant
VGPRO .. 255

AMD¢1

SGPRs. One DWORD each.

VCC[31:0]

VCC[63:32]

Trap handler temporary SGPRs (privileged)

Reads return zero, writes are ignored. When used
as a destination, nullifies the instruction.

Temporary register, use for a variety of functions
EXEC[31:0]

EXEC[63:32]

Inline constant zero

Integer inline constants

Reserved

8-lane DPP (only valid as SRCO0)

8-lane DPP with Fetch-Invalid (only valid as SRCO)
Memory Aperture Definition

Reserved

Inline floating point constants. Can be used in 16,
32 and 64 bit floating point math. They may be
used with non-float instructions but the value
remains a float.

1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118

single: 0x3e22f983

double: 0x3fc45f306dc9c882

Reserved

data parallel primitive

Reserved

Reserved

{31’b0, SCC}

Reserved

32 bit constant from instruction stream
Vector GPRs. One DWORD each.

Scalar and vector memory instructions contain bits that control cache behavior. The SLC, GLC and DLC
instruction bits influence cache behavior for loads, stores, and atomics.

GLC controls the graphics first-level cache

4.1. Common Instruction Fields
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SLC

DLC

controls the graphics L2 cache

AMD¢1

controls the Memory-Attached Last-Level cache (MALL) if it is present (ignored otherwise)

Typically loads use GLC=0 (except for load-acquire). GLC=1 forces a miss in the first level cache and reads data

rom the L2 cache. If there was a line in the GPU L0 that matched, it is invalidated; L2 is reread.

Shader LOAD ops (load, sample, gather, etc...)

SRD ISA
llc_ DLC SLC GLC
noalloc

0 or 1 0 0 0
0 or 1 0 0 1
0 or 1 0 1 0
0 or 1 0 1 1
0 or 1 1 0 0
0 or 1 1 0 1
0 or 1 1 1 0
0 or 1 1 1 1
2 or 3 0 0 0
2 or 3 0 0 1
2 or 3 0 1 0
2 or 3 0 1 1
2 or 3 1 0 0
2 or 3 1 0 1
2 or 3 1 1 2]
2 or 3 1 1 1

« For S_LBUFFER_LOAD instructions, LLC_NOALLOC comes from V#.LLC_noalloc.
For S_LOAD, LLC_NOALLOC is zero.

« SMEM operations have SLC set to zero.

MALL
(NOA)
0

0
0
0

-

Resulting Policy in Cache

GL2

LRU
LRU
STREAM
STREAM
LRU
LRU
STREAM
STREAM
LRU
LRU
STREAM
STREAM
LRU
LRU
STREAM
STREAM

GL1

HIT_LRU
MISS_EVICT
HIT_EVICT
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_EVICT
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_EVICT
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_EVICT
MISS_EVICT

Shader STORE / ATOMIC ops (all are device scope)

SRD ISA Policy in Cache
llc_ DLC SLC MALL GL2
noalloc (NOA)

8 or 2 ] ] 0 LRU

8 or 2 ] 1 9 STREAM
0 or 2 1 ] 1 LRU

0 or 2 1 1 1 STREAM
1 or3 0 0 1 LRU
1or 3 ] 1 1 STREAM
1or 3 1 ] 1 LRU
1or 3 1 1 1 STREAM

+ ISA.GLC = this is a scope bit for load operations (including sample, gather, etc...

MALL

no
no
yes
yes
no
no
no

no

Tex(L0)

HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT
HIT_LRU
MISS_EVICT

no
yes
no
yes
no
yes
no

yes

"Temporal Hint" = expect data to have temporal reuse.

"SRD" = Shader Resource Descriptor

° 0:CU (work-group) scope

° 1:DEVICE scope

4.1. Common Instruction Fields

SCOPE

cu
DEVICE
cu
DEVICE
Ccu
DEVICE
cu
DEVICE
cu
DEVICE
Ccu
DEVICE
cu
DEVICE
Cu
DEVICE

Non-Temporal Hint
GL2

MALL

no
no
no
no
yes
yes
yes
yes
no
no
no
no
yes
yes
yes

yes

no
no
yes
yes
no
no
yes
yes
no
no
yes
yes
no
no
yes

yes

GL1

no

_NA_

yes

_NA_

no

_NA_

yes

_NA_

no

_NA_

yes

_NA_

no

_NA_

yes

_NA_

Non-Temporal Hint
GL2

Tex(L0)

no
_NA_
no
_NA_
no
_NA_
no
_NA_
no
_NA_
no
_NA_
no
_NA_
no

_NA_
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° All stores/atomic ops are device scope (GLC has non-perf related functionality)
+ ISA.SLC = Temporal Hint for graphic client caches

° 0:Regular

° 1:Stream (non-temporal)
+ ISA.DLC = Temporal Hint for Infinity Cache

° 0:Regular

° 1:Non-temporal

GLC is used by atomics to indicate:

« 0: return nothing
+ 1: return pre-operation value from memory to VGPR
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Chapter 5. Program Flow Control

Program flow control is programmed using scalar ALU instructions. This includes loops, branches, subroutine
calls, and traps. The program uses SGPRs to store branch conditions and loop counters. Constants can be
fetched from the scalar constant cache directly into SGPRs.

5.1. Program Control

The instructions in the table below control the priority and termination of a shader program, as well as provide
support for trap handlers.

Table 12. Wave Termination and Traps

Instructions Description
S_ENDPGM Terminates the wave. It can appear anywhere in the shader program and can appear
multiple times.
S_ENDPGM_SAVED Terminates the wave due to context save. Intended for use only within the trap handler.
S_TRAP Jump to the trap handler and pass in 8-bit TRAP id from SIMM[7:0].
It does not affect SCCZ.

<wait for outstanding instructions to finish>
{TTMP1,TTMP8} = {7'he,HT[@], trapID[7:0],PC[47:0]}
PC = TBA (trap base address)

PRIV = 1

"HT" : 1 = this is a host-initiated trap, 0 = user (s_trap). Host traps cause the shader
hardware to generate an S_TRAP instruction. Note: the save-PC points to the S_TRAP
instruction. TRAPID 0 is reserved for hardware use.

S_RFE_B64 Return from exception (trap handler) and continue.
Start executing at PC (trap handler must increment PC past the faulting instruction).
MOVE PC, <src>; STATUS.PRIV =0.
This instruction may only be used within a trap handler.

S_SETKILL Set the KILL bit to 1, causing the shader to s_endpgm immediately. Used primarily for
debugging 'kill' wave-command behavior.
S_SETHALT Set the HALT bit to the value of SIMM16][0].

Setting to 1 halts the shader when PRIV=0 (not in trap handler);
setting to 0 resumes the shader (can only occur in trap handler).
Fatal Halt control: SIMM16[2] 1 : set fatal halt; 0 : clear fatal halt.

Table 13. Dependency, Delay and Scheduling Instructions

Instructions Description
S_NOP NOP. Repeat SIMM16[3:0] times. (1..16)
Like a short version of S_SLEEP
S_SLEEP Cause a wave to sleep for approx. 64*SIMM16[6:0] clocks.
"s_sleep 0" sleeps the wave for O cycles.
S_WAKEUP Causes one wave in a work-group to signal all other waves in the same work-group to wake
up from S_SLEEP early. If waves are not sleeping, they are not affected by this instruction.
S_SETPRIO Set 2-bits of USER_PRIO: user-settable wave priority. 0 = low, 3 = high.

Overall wave priority is: {MIN(3,(SysPrio[1:0] + UserPrio[1:0])), WaveAge[3:0]}
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Instructions
S_CLAUSE

S_BARRIER

Instructions
S_VERSION

S_CODE_END
S_SENDMSG

S_SENDMSG_RTN_B32
S_SENDMSG_RTN_B64

S_SENDMSGHALT
S_ICACHE_INV

AMD¢1

Description

Begin a clause consisting of instructions matching the instruction after the s_clause. The
clause length is: (SIMM16[5:0] + 1), and clauses must be between 2 and 63 instructions.
SIMM16[5:0] must be 1-62, not 0 or 63. The clause breaks after every N instructions, N =
simm[11:8] (0 - 15; 0 = no breaks)

Synchronize waves within a work-group. If not all waves in group have been created yet,
waits for entire group before proceeding. Waves that have ended do not prevent barriers
from being satisfied. Waves not in a work-group (or work-group size = 1 wave), treat this as
S_NOP.

Table 14. Control Instructions

Description

Does nothing (treated as S_NOP), but can be used as a code comment to indicate the
hardware version the shader is compiled for (using the SIMM16 field).

Treated as an illegal instruction. Used to pad past the end of shaders.

Send a message upstream to the Interrupt handler or dedicated hardware. SIMM[9:0] is an
immediate value holding the message type. There is no "s_waitcnt" enforced before this.

Send a message upstream to that requests that some data be returned to an SGPR. Uses
LGKMcnt to track when data is returned. (or an aligned SGPR-pair for "_B64").

SDST = SGPR to return to.

SSRCO = enum, not an SGPR with the code for what data is requested. (see the message table
below).

If this is used to write VCC, then VCCZ is undefined.

S_SENDMSG and then HALT.

Invalidate first-level shader instruction cache for the WGP associated with this wave.

5.2. Instruction Clauses

An instruction clause is a group of instructions of the same type that are to be executed in an uninterrupted
sequence. Normally hardware may interleave instructions from different waves, but a clause can be used to
override that behavior and force the hardware to service only one wave for a given instruction type for the
duration of the clause, even if that leaves the execution hardware idle.

Clauses are defined and started using the S_CLAUSE instruction, and must contain only a single type of
instruction. The clause-type is implicitly defined by the type of instruction immediately following the clause.

Clause Types are:

« Image (no sampler) load

» Image store

+ Image atomic

Image sample

» Flat load
« Flat store
» Flat atomic

Buffer / Global / Scratch load
Buffer / Global / Scratch store
Buffer / Global / Scratch atomic

» LDS load / store / atomic / bvh_stack

+ IMAGE_BVH

5.2. Instruction Clauses
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+ SMEM
+ VALU

May also be in a clause ("clause internal instructions"):

+ S_DELAY_ALU is legal inside a clause (internal) but is pointless.
° S_DELAY_ALU must not occur within a VALU clause.

+ S_NOP and S_SLEEP may be used inside a clause, but the first instruction of the clause must be the clause-
type instruction (ALU, memory).

Cannot be in a clause:

« Instructions of a different type those of the clause type are illegal

+ S_CLAUSE

+ S_LENDPGM

« SALU, Export, branch, message, GDS, lds_param_load, 1ds_direct_load
+ S_WAITCNT, S_ZWAIT_IDLE, S_WAIT_DEPCTR

S_CLAUSE defines both the total length of the clause, and how often it should be broken to allow other waves a
chance to go. For instance, it could say: clause of 16 instructions, but break after every 4" to allow a higher
priority wave to get access to the execution unit. "clause internal instructions" count against this clause size.

If a clause defines regular clause breaks (e.g. a clause of 16 instructions, but break every 4™), the first
instruction of each sub-clause (every 4 instructions) must be of the clause-type, not a "clause internal
instruction". Each group of instructions must have at least two of the clause-type of instructions. E.g. a clause of
12 VALU instructions broken up into 4 groups of 3 instructions - each group of 3 instructions must have at least two
VALU instructions. Clause groups with only 1 VALU instruction per group make no sense - they are no longer a clause.

If the first instruction in a VALU clause has EXEC==0, then the clause is ignored and instructions are issued as
if there were no clause. If the VALU clause starts with EXEC!=0 but EXEC becomes zero in the middle of the
clause, the clause continues until the last instruction of the specified clause.

If an S_DELAY_ALU is needed before starting a clause, the order must be:

S_DELAY_ALU // must not come immediately after S_CLAUSE - that inst declares clause type
S_CLAUSE
<first instruction in clause>

If the first instruction after S_CLAUSE is skipped (e.g. due to EXEC==0, or VMEM-load skipped due to EXEC==
and VMcnt==0) then then a clause is not started. Subsequent instructions within what would have been the
clause that are not skipped and are still executed but individually, not as part of a clause.

5.2.1. Clause Breaks

The following conditions can break a clause:

1. VALU exception (trap) breaks a VALU clause

2. Host commands to wave (halt, resume, single step, etc) breaks all active clauses.
Context-save breaks clauses of affected waves.
This allows the host to read and write SGPRs & VGPRs while debugging. If clauses were not broken by host
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commands, the GPRs could not be read from waves other than the one currently in a clause.
If a wave halts or is kill, its clauses are ended.

3. Any action that cause a wave to jump to its trap handler breaks clause (includes context-save).
A wave entering HALT (including for host-initiated single-step) may break clauses.

5.3. Send Message Types

S_SENDMSG is used to send messages to fixed function hardware, the host, or to request that a value be
returned to the wave. S_SENDMSG encodes the message type in the SIMM16 field and the message payload in
MO0. S_SENDMSG_RTN encodes the message type in the SSRCO field (does not read an SGPR), the payload (if
any) in MO, and the destination SGPR in SDST.

Completion is tracked with LGKMcnt.

The table below lists the messages that can be generated using the S_.SENDMSG command.
S_SENDMSG_RTN_B* instructions return data to the shader: increment LGKMcnt by 2, and then decrement by
1 when the messages goes out, and by another 1 when the data returns. This allows the user to simply use
"s_waitcnt LGKMcnt==0" to wait for the data to be returned.

All message codes not listed are reserved (illegal).

Table 15. S_SENDMSG Messages

Message SIMM16 Payload
[7:0]
Reserved 0x00 Reserved
Interrupt 0x01 Software-generated interrupt. M0[23:0] carries user data. ID’s are also sent (wave_id,
cu_id, etc.)
HS TessFactor 0x02 Indicates HS tessellation factor is all zero or one for all patches in this HS work-group.

Data from MO[0]: 1 = "all are zero or one". This message is optional, but do not send
more than once or from any shader stage other than HS.

Dealloc VGPRs 0x03 Deallocate all VGPRs for this wave, allowing another wave to allocate these VGPRs
before this wave ends. Use only when next instruction is S_LENDPGM. Typically used
when a shader is waiting memory-write-acknowledgments before ending.

GS alloc req 0x09 Request GS space in parameter cache. M0[9:0] = number of vertices, M0[22:12] =
number of primitives. Response: a GS-alloc response to non-zero requests (broadcast to
work-group).

S_SENDMSG_RTN is used to send messages that return a value to the wave. The instruction specifies which
SGPR receives the data in SDST field. The message is encoded in SSRCO (in the instruction field, not in an

SGPR).

Table 16. S_SENDMSG_RTN Messages

Message SSRCO Payload

Get Doorbell ID 0x80 Get the doorbell ID associated with this wave.
(does not exist for MEO. Return 0x0Obad. Also returns 0x0bad for invalid pipeID or
queuelD).

Get Draw ID 0x81 Get the Draw or dispatch ID associated with this wave.

Get TMA 0x82 Get the Trap Memory Address: [31:0] or [63:0] depending on the request size.
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Message SSRCO Payload

Get REALTIME 0x83 Get the value of the constant frequency (REFCLK) time counter: [31:0] or [63:0]
depending on the request size.

Save wave 0x84 Used in context switching in indicate this wave is ready to be context saved.
Only the trap handler can send this message (user shaders have this converted to
MSG_ILLEGAL_RTN).

Get TBA 0x85 Gets the Trap Base Address [31:0] or [63:0] depending on request size
MSG_ILLEGAL _RTN  0xFF Illegal message with data return to wave

5.4. Branching

Branching is done using one of the following scalar ALU instructions. "SIMM16" is a sign-extended 16 bit
integer constant, treated as a DWORD offset for branches.

Table 17. Branch Instructions

Instructions Description
S_BRANCH Unconditional branch. PC = PC + (SIMM16 * 4) + 4
S_CBRANCH_<test> Conditional branch. Branch only if <condition> is true.

if (cond) PC = PC + (SIMM16 *4) +4; else NOP;
If SIMM16=0, the branch goes to the next instruction).
<cond> : SCC1, SCCO, VCCZ, VCCNZ, EXECZ, EXECNZ (SCC==1, SCC==0, VCC==0, VCC!=0,
EXEC==0, EXEC!=0)
S_CBRANCH_CDBGSYS Conditional branch, taken if the COND_DBG_SYS status bit is set.
if (cond) PC = PC + (SIMM16 *4) +4; else NOP;
<cond> = SYS, USER, SYS_AND_USER, SYS_OR_USER.
S_CBRANCH_CDBGUSER Conditional branch, taken if the COND_DBG_USER status bit is set.
S_CBRANCH_CDBGSYS_AND Conditional branch, taken only if both COND_DBG_SYS and COND_DBG_USER are set.
_USER
S_CBRANCH_CDBGSYS_OR_U Conditional branch, taken if either COND_DBG_SYS or COND_DBG_USER is set.
SER

S_SETPC_B64 Directly set the PC from an SGPR pair: PC = SGPR-pair

S_SWAPPC_B64 Swap the current PC with an address in an SGPR pair. SWAP (PC+4, SGPR-pair).
(result is: PC of this instruction + 4, zero extended)

S_GETPC_B64 Retrieve the current PC value (does not cause a branch). (SGPR-pair = PC of this instruction
+ 4, zero extended)

S_CALL_B64 Jump to a subroutine, and save return address. SGPR_pair = PC+4; PC = PC+4+SIMM16*4.

For conditional branches, the branch condition can be determined by either scalar or vector operations. A
scalar compare operation sets the Scalar Condition Code (SCC) which then can be used as a conditional branch
condition. Vector compare operations set the VCC mask, and VCCZ or VCCNZ then can be used to determine
branching.

5.5. Work-groups and Barriers

Work-groups are collections of waves running on the same work-group processor that can synchronize and
share data. Up to 1024 work-items (16 wave64’s or 32 wave32’s) can be combined into a work-group. When
multiple waves are in a work-group, the S_BARRIER instruction can be used to force each wave to wait until all
other waves reach the same instruction; then, all waves continue. Work-groups of a single wave treat all
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barrier instructions as S_NOP.

If a wave executes an S_BARRIER before all of the waves of the work-group have been created, the wave waits
until the work-group is complete.

Any wave may terminate early using S_LENDPGM, and the barrier is considered satisfied when the remaining
live waves reach their barrier instruction.

5.6. Data Dependency Resolution

Shader hardware can resolve most data dependencies, but a few cases must be explicitly handled by the shader
program. In these cases, the program must insert S_ZWAITCNT instructions to ensure that previous operations
have completed before continuing.

The shader has four counters that track the progress of issued instructions. S_ZWAITCNT waits for the values of
these counters to be at, or below, specified values before continuing. These allow the shader writer to schedule
long-latency instructions, execute unrelated work, and specify when results of long-latency operations are
needed.

Inserting S_NOP is not required to achieve correct operation.

Table 18. Data Dependency Instructions

Instructions Description
S_WAITCNT Wait for count of outstanding instruction counters to be less-than or equal-to all of these
values before continuing.
SIMM16 = { VMcnt[5:0], LGKMcnt[5:0], 1’b0, EXPcnt[2:0] }
S_WAITCNT_VSCNT Wait for VSCNT, VMCNT, EXPCNT or LGKMcnt to be less-than or equal-to the count in
S_WAITCNT_LGKMCNT SIMM16 before continuing.
S_WAITCNT_EXPCNT
S_WAITCNT_VMCNT
S_WAIT_EVENT Wait for an event to occur before proceeding
SIMM16][0] : 1=don’t wait, 0= wait for export-ready; other bits are reserved.
Any exception waits for this to complete before being processed, including: KILL, save-
context, host trap, memviol and anything that causes a trap to be taken.

S_DELAY_ALU Insert delay between dependent SALU/VALU instructions.
SIMM16([3:0] = InstIDO
SIMM16[6:4] = InstSkip
SIMM16[10:7] = InstID1
This instruction describes dependencies for two instructions, directing the hardware to insert
delay if the dependent instruction was issued too recently to forward data to the second. For
details, see: S_DELAY_ALU.

S_WAITCNT* waits for outstanding instructions that use the specified counter to complete. Instructions within
a type often return in the order they were issued compared to other instructions of that type, but typically
return out of order with respect to instructions of different types. These counters count instructions, not threads.

These are the memory instruction groups - each returns out of order with respect to the others:

* VMcnt:
° Texture SAMPLE
° Texture/Buffer/Global/Scratch/Flat Loads and atomic-with-return
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» VScnt:
° Texture/Buffer/Global/Scratch/Flat Stores and atomic-without-return
+ LGKMcnt:
> LDS indexed operations
° SMEM: scalar memory loads may return completely out-of-order with respect to other scalar memory
loads
° GDS & GWS
° FLAT instructions (uses both LGKMcnt and either VMcnt or VScnt)
° Messages
+ EXPcnt:
° LDS parameter-load and direct-load
° Exports: stay in order within a type (MRT, Z, position, primitive data) but out of order between types

It is possible for data to be written to VGPRs out-of-order, but the counter-decrement still reflects in-order
completion. Stores from a wave are not kept in order with stores from that same wave when they write to
different addresses.

Simple S_WAITCNT Example

global_load_b32 V@, V[4:5], 0x0 // load memory[ {V5, V4} ] into V@
global_load_b32 V1, V[4:5], ©x8 // load memory[ {V5, V4} +8 ] into V1
s_waitcnt VMcnt <= 1 // wait for first global_load to have completed
v_mov_b32 V9, Vo // move V@ into V9

5.7. ALU Instruction Software Scheduling

The shader program may include instructions to delay ALU instructions from being issued in order to attempt
to avoid pipeline stalls caused by issuing dependent instructions too closely together.

This is accomplished with the: S_LDELAY_ALU instruction: "insert delay with respect to a previous VALU
instruction". The compiler may insert S_DELAY_ALU instructions to indicate data dependencies that might
benefit from having extra idle cycles inserted between them.

This instruction is inserted before the instruction which the user wants to delay, and it specifies which
previous instructions this one is dependent on. The hardware then determines the number of cycles of delay to
add.

This instruction is optional - it is not necessary for correct operation. It should be inserted only when necessary
to avoid dependency stalls. If enough independent instructions are between dependent ones then no delay is
necessary. For wave64, the user may not know the status of the EXEC mask and hence not know if instructions
take 1 or 2 passes to issue.

The S_LDELAY_ALU instruction says: wait for the VALU-Inst N ago to have completed. To reduce instruction
stream overhead, the S_DELAY_ALU instructions packs two delay values into one instruction, with a "skip"

indicator so the two delayed instructions don’t need to be back-to-back.

S_DELAY_ALU may be executed in zero cycles - it may be executed in parallel with the instruction before it.
This avoids extra delay if no delay is needed.
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S_DELAY_ALU InstID1[4], Skip[3], InstID0[4] // packed into SIMM16

Cycle instIDO declares that #E is

A.v_mov_b32v3, v0 #0 v_mov_b32v3, v1 dependent on #A, so add some
B.v_Ishl_b32 v30,v31, #1 #1 v_Ishl_b32 v3Q,v31, #1 delay before issuing #E.
C.v_lshl_b32 v24,v25, #1 #2 v_Ishl_b32 v24,w25, #1

, DEL YinstiD1=1 #3 delay A\ SkipCnt =2 means the next delay is
E.v_add _f32 v0, vl, v« #4 delay ‘ not for the next instruction, but the
F.v_sub_f32 v11,v9,v9 #5 v _add f32 vO,v1,v3 one after that (skip #F)
G.v_mul_f32 v10,v13, vil #6 v_sub_f32 vi1,v9,v9

instID1 declares that #G is

#7 dela

#8 dela: dependent on #F, so add some delay
#9 delay before issuing #G.

#10 delay

#11v mul 32 v10,v13,vl1l

INSTID counts backwards N VALU instructions that were issued. This means it does not count
instructions which were branched over. VALU instructions skipped due to EXEC==0 do count
(scoreboard immediately marked 'ready’).

SKIP counts the number of instructions skipped before the instruction which has the second
dependency. Every instruction is counted for skipping - all types.

If another S_LDELAY_ALU is encountered before the info from the previous one is consumed, the current
S_DELAY_ALU replaces any previous dependency info. This means if an instruction is dependent on two
separate previous instructions, both of those dependencies can be expressed in a single S_LDELAY_ALU op, but
not in two separate S_DELAY_ALU ops.

S_DELAY_ALU is applied to any type of opcode, even non-alu (but serves no purpose).
S_DELAY_ALU should not be used within VALU clauses.

Table 19. S_DELAY_ALU Instruction Codes

DEP  Dep Code Meaning SKIP  SKIP Code Meaning

Code Code

0 no dependency 0 Same op. Both DEP codes apply to the next instruction

1-4 dependent on previous VALU 1 No skip. Dep0 applies to the following instruction, and DEP1 applies to
1-4 back the instruction after that one.

5-7 dependent on previous trans. 2 Skip 1. Dep0 applies to the following instruction. Depl applies to 2
VALU 1-4 back instructions ahead (skip 1 instruction).

8 Reserved 35 Skip 2-4 instructions between Dep0 and Depl.

9-11 Wait 1-3 cycles for previous 6 Reserved
SALU ops

Codes 9-11: SALU ops typically complete in a single cycle, so waiting for 1 cycle is roughly equivalent to waiting
for 1 SALU op to execute before continuing.
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Chapter 6. Scalar ALU Operations

Scalar ALU (SALU) instructions operate on values that are common to all work-items in the wave. These
operations consist of 32-bit integer or float arithmetic, and 32- or 64-bit bit-wise operations. The SALU also can
perform operations directly on the Program Counter, allowing the program to create a call stack in SGPRs.
Many operations also set the Scalar Condition Code bit (SCC) to indicate the result of a comparison, a carry-out,
or whether the instruction result was zero.

6.1. SALU Instruction Formats

SALU instructions are encoded in one of five microcode formats, shown below:

31 0

sopt [4 o]1 1 1 1 1 o0 1] SDST; | opP | SSRCO, |
31 0

sop2 [1_ o] oP L SDST; | SSRC1g | SSRCO, |

sopk  [1 o1 1] op ] SDST; | SIMM16 |
31 0

sorc 1 01 1 1 1 1 1 0] opP | SSRC1s SSRCO |

SoPP |1'o|1'1'1'1'1'1|1| - o T | - T T e T T T T |

Name Size Function

SOP1 32 bit SALU op with 1 input

SOP2 32 bit SALU op with 2 inputs

SOPK 32 bit SALU op with 1 constant signed 16-bit integer input

SOPC 32 bit SALU compare op

SOPP 32 bit SALU program control op

Each of these instruction formats uses some of these fields:

Field Description

oP Opcode: instruction to be executed.

SDST Destination SGPR, M0, NULL or EXEC.
SSRCO First source operand.

SSRC1 Second source operand.

SIMM16 Signed immediate 16-bit integer constant.

The lists of similar instructions sometimes use a condensed form using curly braces { } to express a list of
possible names. For example, S_AND_{B32, B64} defines two legal instructions: S_LAND_B32 and S_AND_B64.

6.2. Scalar ALU Operands

Valid operands of SALU instructions are:
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» SGPRs, including trap temporary SGPRs

« Mode register

« Status register (read-only)

« MO register

« EXEC mask

« VCC mask

+ SCC

+ Inline constants: integers from -16 to 64, and select floating point values
+ Hardware registers (at most 1 of: EXEC, M0, SCC)

+ One 32-bit literal constant

+ If the destination is NULL, the instruction does not execute: nothing is written and SCC is not modified

In the table below, 0-127 can be used as scalar sources or destinations; 128-255 can only be used as sources.

Table 20. Scalar Operands
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Code
Scalar Scalar Dest 0-105
Source (8 (7 bits) 106
bits) 107

108-123

124

125

126

127
Integer 128
Inline 129-192
Constants 193-208

209-232

233

234

235

236

237

238

239

Float 240
Inline 241
Constants 249

243
244
245
246
247
248
249
250
251
252
253
254
255

Meaning
SGPRO .. 105
VCC_LO
VCC_HI

ttmpO0 .. ttmplS
NULL

MO

EXEC_LO
EXEC_HI

0

intl..64
int-1..-16
Reserved

DPP8

DPPS8FI
SHARED_BASE
SHARED_LIMIT
PRIVATE_BASE

PRIVATE_LIMIT

Reserved
0.5

-0.5

1.0

-1.0

2.0

-2.0

4.0

-4.0

1.0/ (2 * PI)
Reserved
DPP16
Reserved
Reserved
SCC
Reserved
Literal constant

SALU destinations are in the range 0-127.

AMD¢1

SGPRs. One DWORD each.

VCC[31:0]

VCC[63:32]

Trap handler temporary SGPRs (privileged)

Reads return zero, writes are ignored. When used as a
destination, nullifies the instruction.

Temporary register, use for a variety of functions
EXEC[31:0]

EXEC[63:32]

Inline constant zero

Integer inline constants

Reserved

8-lane DPP (only valid as SRC0)

8-lane DPP with Fetch-Invalid (only valid as SRCO)
Memory Aperture Definition

Reserved

Inline floating point constants. Can be used in 16, 32 and
64 bit floating point math. They may be used with non-
float instructions but the value remains a float.

1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118

single: 0x3e22f983

double: 0x3fc45f306dc9c882

Reserved

data parallel primitive

Reserved

Reserved

{31’b0, SCC}

Reserved

32 bit constant from instruction stream

SALU instructions can use a 32-bit literal constant. This constant is part of the instruction stream and is
available to all SALU microcode formats except SOPP and SOPK (except literal is allowed in
S_SETREG_IMM32_B32). Literal constants are used by setting the source instruction field to "literal" (255), and
then the following instruction DWORD is used as the source value.

If the destination SGPR is out-of-range, no SGPR is written with the result and SCC is not updated.

If an instruction uses 64-bit data in SGPRs, the SGPR pair must be aligned to an even boundary. For example, it
is legal to use SGPRs 2 and 3 or 8 and 9 (but not 11 and 12) to represent 64-bit data.

6.2. Scalar ALU Operands
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6.3. Scalar Condition Code (SCC)

The scalar condition code (SCC) is written as a result of executing most SALU instructions. For integer
arithmetic it is used as carry/borrow in for extended integer arithmetic.

The SCC is set by many instructions:

« Compare operations: 1 = true.
« Arithmetic operations: 1 = carry out.

° SCC = overflow for signed add and subtract operations. For add ops, overflow = both operands are of
the same sign, and the MSB (sign bit) of the result is different than the sign of the operands. For
subtract (A - B), overflow = A and B have opposite signs and the resulting sign is not the same as the
sign of A.

« Bit/logical operations: 1 = result was not zero.

6.4. Integer Arithmetic Instructions

This section describes the arithmetic operations supplied by the SALU. The table below shows the scalar
integer arithmetic instructions:

Table 21. Integer Arithmetic Instructions

Instruction Encoding Sets SCC? Operation
S_ADD_I32 SOP2 Ovfl D =S0 + S1, SCC = overflow.
S_ADD_U32 SOP2 Cout D =80+ S1, SCC = carry out.
S_ADDC_U32 SOP2 Cout D =S0 + S1 + SCC, SCC = overflow.
S_SUB_I32 SOP2 Ovfl D =S50 - S1, SCC = overflow.
S_SUB_U32 SOP2 Cout D =80 - S1, SCC = carry out.
S_SUBB_U32 SOP2 Cout D =80 - S1-SCC, SCC = carry out.
S_ADD_LSH{1,2,3,4}_U32 SOP2 D!=0 D =50+ (S1 << {1,2,3,4})
S_ABSDIFF_I32 SOP2 D!=0 D = abs (S0 - S1), SCC = result not zero.
S_MIN_I32 SOP2 D!=0 D=(S0<S1)?S0:S1
S_MIN_U32 SCC=(S0<S1)
S_MAX_I32 SOP2 D!=0 D=(S0>S1)?S0:S1
S_MAX_U32 SCC = (S0 > S1)
S_MUL_I32 SOP2 No D = S0 * S1 low 32bits of result
works identically for unsigned data
S_ADDK_I32 SOPK Ovfl D =D +simm16, SCC = overflow. Sign extended version of
simm16.
S_MULK_I32 SOPK No D =D * simm16. Return low 32bits. Sign extended version of
simm16.
S_ABS_I32 SOP1 D!=0 D.i=abs (S0.i). SCC=result not zero.
S_SEXT_I32_1I8 SOP1 No D ={24{S0[7]}, SO[7:0] }.
S_SEXT_I32_I16 SOP1 No D ={ 16{S0[15]}, SO[15:0] }.
S_MUL_HI_I32 SOP2 No D = S0 * S1 high 32bits of result
S_MUL_HI_U32 SOP2 No D = S0 * S1 high 32bits of result
S_PACK_LL_B32_B16 SOP2 No D ={S1[15:0], SO[15:0] }
S_PACK_LH_B32_B16 SOP2 No D ={S1[31:16], S0[15:0] }
S_PACK_HL_B32_B16 SOP2 No D ={S1[15:0], SO[31:16] }
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Instruction Encoding Sets SCC? Operation
S_PACK_HH_B32_B16 SOP2 No D ={S1[31:16], SO[31:16] }

6.5. Conditional Move Instructions

Conditional instructions use the SCC flag to determine whether to perform the operation, or (for CSELECT)
which source operand to use.

Table 22. Conditional Instructions

Instruction Encoding Sets SCC? Operation

S_CSELECT_{B32, B64} SOP2 No D=SCC?S0:S1.
S_CMOVK_I32 SOPK No if (SCC) D = signext(simm16).
S_CMOV_{B32,B64} SOP1 No if (SCC) D = S0, else NOP.

6.6. Comparison Instructions

These instructions compare two values and set the SCC to 1 if the comparison yielded a TRUE result.

Table 23. Conditional Instructions

Instruction Encoding Sets SCC? Operation

S_CMP_EQ_U64, S_.CMP_LG_U64 SOPC Test Compare two 64-bit source values. SCC = SO <cond> S1.
S_CMP_{EQ,LG,GT,GE,LE,LT}_{I32 SOPC Test Compare two source values. SCC = SO <cond> S1.

,U32}

S_BITCMPO0_{B32,B64} SOPC Test Test for "is a bit zero". SCC = !S0[S1].
S_BITCMP1_{B32,B64} SOPC Test Test for "is a bit one". SCC = S0[S1].

6.7. Bit-Wise Instructions

Bit-wise instructions operate on 32- or 64-bit data without interpreting it has having a type. For bit-wise
operations if noted in the table below, SCC is set if the result is nonzero.

Table 24. Bit-Wise Instructions

Instruction Encoding Sets SCC? Operation

S_MOV_{B32,B64} SOP1 No D=S0

S_MOVK_I32 SOPK No D = signext(simm16)
{S_AND,S_OR,S_XOR}_{B32,B64} SOP2 D!=0 D = S0 & S1, S0 OR S1, SO XOR S1
{S_AND_NOT1,S_OR_NOT1}_{B32,B64} SOP2 D!=0 D = S0 & ~S1, SO OR ~S1
{S_NAND,S_NOR,S_XNOR}_{B32,B64} SOP2 D=0 D = ~(S0 & S1), ~(SO OR S1), ~(S0 XOR S1)
S_LSHL_{B32,B64} SOP2 D!=0 D = S0 << S1[4:0], [5:0] for B64.
S_LSHR_{B32,B64} SOP2 D!=0 D = S0 >> S1[4:0], [5:0] for B64.
S_ASHR_{132,164} SOP2 D!=0 D = sext(S0 >> S1[4:0]) ([5:0] for 164).
S_BFM_{B32,B64} SOP2 No Bit field mask

D = ( (1 << S0[4:0]) -1) << S1[4:0]
(uses [5:0] for the B64 version)
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Instruction

S_BFE_U32, S_BFE_U64
S_BFE_I32, S_BFE_I164
(signed/unsigned)

S_NOT_{B32,B64}
S_WQM_{B32,B64}

S_QUADMASK_{B32,B64}

S_BITREPLICATE_B64_B32

S_BREV_{B32,B64}
S_BCNTO0_I32_{B32,B64}
S_BCNT1_132_{B32,B64}
S_CTZ_132_{B32,B64}

S_CLZ_I32_{B32,B64}

S_CLS_I32_{B32,B64}

S_BITSETO0_{B32,B64}
S_BITSET1_{B32,B64}

6.7. Bit-Wise Instructions

AMD¢1

Encoding Sets SCC? Operation

SOP2 D!=0
SOP1 D!=0
SOP1 D!=0
SOP1 D!=0
SOP1 No
SOP1 No
SOP1 D!=0
SOP1 D!=0
SOP1 No
SOP1 No
SOP1 N
SOP1 No
SOP1 No

Bit Field Extract, then sign extend result for 132/64
instructions.

S0 = data, S1[22:16]= width

132/U32: S1[4:0] = offset

164/U64: S1[5:0] = offset

D =~S0.

D = wholeQuadMode(S0)

Per quad (4 bits): set the result to 1111 if any of the 4
bits in the corresponding source mask are set to 1.
D[n*4] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+1] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+2] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
D[n*4+3] = (S[n*4] || S[n*4+1] || S[n*4+2] || S[n*4+3] )
Create a 1-bit per quad mask from a 1 bit per pixel
mask.

Creates an 8-bit mask from 32-bits, or 16 bits from 64.
D[0] = (S0[3:0] !=0),

D[1]=(S0[7:4] !=0), ...

Replicate each bit in 32-bit SO twice:

D ={... S0[1], SO[1], So[0], SO[0] }.

Two of these instructions is the inverse of
S_QUADMASK.

Two of these instructions expands a quad mask into a
thread-mask.

D =S0[0:31] are reverse bits.

D = CountZeroBits(S0).

D = CountOneBits(S0).

Count Trailing zeroes: Find-first One from LSB.

D = Bit position of first one in SO

starting from LSB. -1 if not found

Count Leading zeroes. D = "how many zeros before
the first one starting from the MSB".

Returns -1 if none.

Count Leading Sign-bits: Count how many bits in a
row (from MSB to LSB) are the same as the sign bit.
Return -1 if the input is zero or all 1’s (-1). 32-bit
pseudo-code:

if (S0 == 0 || S8 == -1) D = -1
else
D=28
for (I =31 .. 0)
if (S@[I] == se[31])
D++

else break

D[S0[4:0], [5:0] for B64] =0
D[S0[4:0], [5:0] for B64] =1
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Instruction Encoding Sets SCC? Operation

S_{and, or, xor, and_not0, SOP1 D!=0 Save the EXEC mask, then apply a bit-wise operation
and_notl,or_not0, or_notl, nand, nor, to it.

xnor}_SAVEEXEC_{B32,B64} D = EXEC

EXEC = S0 <op> EXEC

SCC = (EXEC!=0)

("notl" version inverts EXEC)

("not0" version inverts SGPR)
S_{AND_NOT{0,1}_WREXEC_B{32,64} SOP1 D!=0 NOTO: EXEC, D = ~S0 & EXEC

NOT1: EXEC, D =S0 & ~EXEC

Both D and EXEC get the same result. SCC = (result !=

0). D cannot be EXEC.
S_MOVRELS_{B32,B64} SOP1 No Move a value into an SGPR relative to the value in MO.
S_MOVRELD_{B32,B64} MOVRELS: D = SGPR[S0+MO0]

MOVRELD: SGPR[D+M0] = SO

Index must be even for B64. M0 is an unsigned index.

6.8. Access Instructions

These instructions access hardware internal registers.

Table 25. Hardware Internal Registers

Instruction Encoding  Sets Operation
SCC?
S_GETREG_B32 SOPK No Read a hardware register into the LSBs of SDST.
S_SETREG_B32 SOPK No Write the LSBs of SDST into a hardware register. (Note that SDST is
used as a source SGPR).
S_SETREG_IMM32_B32 SOPK No S_SETREG where 32-bit data comes from a literal constant (so this is

a 64-bit instruction format).

GETREG/SETREG : #SIMM16 = { Size[4:0], Offset[4:0], hwRegId[5:0] }
Offset is 0..31. Size is 1..32.

S_ROUND_MODE SOPP No Set the round mode from an immediate: simm16[3:0]
S_DENORM_MODE SOPP No Set the denorm mode from an immediate: simm16[3:0]

For hardware register index values, see Hardware Registers .

6.9. Memory Aperture Query

Shaders can query the memory aperture base and size for shared and private space through scalar operands:

+ PRIVATE_BASE
* PRIVATE_LIMIT
+ SHARED_BASE
+ SHARED_LIMIT

These values originate from the SH_MEM_BASES register ("SMB"), and are used primarily with FLAT memory
instructions. Setting Shared Base or Private Base to zero disables that aperture.

"PTR32" is short for "Address mode is 32bit", and "SMB" is short for "SH_MEM_BASES". These constants can be
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used by SALU and VALU ops, and are 64-bit unsigned integers:
SHARED_BASE = ptr32 ? {32’h0, SMB.shared_base[15:0], 16h0000} : {SMB.shared_base[15:0], 48’h000000000000}
SHARED_LIMIT = ptr32 ? {32’h0, SMB.shared_base[15:0], 16 hFFFF} : {SMB.shared_base[15:0], 48’h0000FFFFFFFF}

PRIVATE_BASE = ptr32 ? {32’h0, SMB.private_base[15:0], 16’h0000} : {SMB.private_base[15:0], 48’h000000000000}
PRIVATE_LIMIT =ptr32 ? {32’h0, SMB.private_base[15:0], 16’hFFFF} : {SMB.private_base[15:0], 48’h0000FFFFFFFF}

"Hole" = (addr[63:47] != all zeros or all ones) and is the illegal address section of memory

6.9. Memory Aperture Query 53 of 600



"RDNA3" Instruction Set Architecture AMDAl

Chapter 7. Vector ALU Operations

Vector ALU instructions (VALU) perform an arithmetic or logical operations on data for each of 32 or 64
threads and write results back to VGPRs, SGPRs or the EXEC mask.

Parameter interpolation is a two step process involving an LDS instruction followed by a VALU instruction and
is described in: Parameter Interpolation

Vector ALU (VALU) instructions control the SIMD32’s math unit and operate on 32 work-items of data at a time.
Each instruction may take input from either VGPRs, SGPRs or constants and typically returns results to VGPRs.
Mask results and carry-out are returned to SGPRs. The ALU provides operations that work on 16, 32 and 64-bit
data of both integer and float types. The ALU also supports "packed" data types that pack 2 16-bit values into
one VGPR, or 4 8-bit values into a VGPR.

7.1. Microcode Encodings

VALU instructions are encoded in one of these ways:

31 0
vorz [ o | oP | VDSTg | VSRCq | SRC, |
vort  [ol1 1 4 1 1 1] | VDSTg | oP | SRCs |

31 0
vore  Jof1 1 14 1 1 o] opP [ VSRCs | SRCq |

1 1 0 1 0 1] ' o lom|  ‘opseL, | ABs, | VDSTs
VOP3 T T T

NEG | owmoD | SRC2g | SRC1g | SRCO,

63 32

31 . . . . § . . . . § § § . . § § i i . . . § § § 0

1 1 0 1 0 1] ' oP [om] SDST, | VDST,

VOP3SD I } }
NEG | owmoD | SRC2g | SRC1g | SRCOq

31 0
vops L1 1 0 0 1 1 I 0o o |_| ____ op . lom |=n| OPSEL | NEG_His | _ VDSTs

NEG | OPSLH | ' sRrcz | ' SRC1g ' SRCOq
Name Size Function Modifiers
VOP1 32 bit VALU op with 1 input -
VOP2 32 bit VALU op with 2 inputs -
VOP3 64 bit VALU op with 3 inputs, or a VOP1,2,C instruction abs, neg, omod, clamp
VOP3SD 64 bit VALU op with 3 inputs and SDST neg, omod, clamp
VOPC 32 bit VALU compare op with 2 inputs, writes to VCC/EXEC -
VOP3P 64 bit VALU op with 3 inputs using packed math neg, clamp
VOPD 64 bit VALU dual opcode : 2 operations in one instruction -

Many VALU instructions are available in two encodings: VOP3 that uses 64-bits of instruction, and one of three
32-bit encodings that offer a restricted set of capabilities but smaller code size. Some instructions are only
available in the VOP3 encoding. When an instruction is available in two microcode formats, it is up to the user
to decide which to use. It is recommended to use the 32-bit encoding whenever possible. VOP2 can also be used
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for "ACCUM" type ops where the third input is implied to be the same as the dest.

Advantages of using VOP3 include:

« More flexibility in source addressing (all source fields are 9 bits)

« NEG, ABS, and OMOD fields (for floating point only)

« CLAMP field for output range limiting

« Ability to select alternate source and destination registers for VCC (carry in and out)

The following VOP1 and VOP2 instructions may not be promoted to VOP3:

« swap and swaprel
+ fmamk, fmaak, pk_fmac

The VOP3 encoding has two variants:

+ VOP3 - used for most instructions including V_CMP*; has OPSEL and ABS fields
+ VOP3SD - has an SDST field instead of OPSEL and ABS. This encoding is used only for:
° V_{ADD,SUB,SUBREV}_CO_CI_U32, V_{ADD,SUB,SUBREV}_CO_U32 (adds with carry-out)
° V_DIV_SCALE_{F32, F64}, V_MAD_U64_U32, V_MAD_I64_132.
° V_DOT2ACC_F32_F16
° VOP3SD is not used for V_CMP*.

Any of the VALU microcode formats may use a 32-bit literal constant, as well VOP3. Note however that VOP3
plus a literal makes a 96-bit instruction and excessive use of this combination may reduce performance.

VOP3P is for instructions that use "packed math": instructions that performs an operation on a pair of input
values that are packed into the high and low 16-bits of each operand; the two 16-bit results are written to a
single VGPR as two packed values.

Field Size Description

OoP varies instruction opcode

SRCO 9 first instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
SRC1 9 second instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
VSRC1 8 second instruction argument. May come from: vgpr only

SRC2 9 third instruction argument. May come from: vgpr, sgpr, VCC, M0, EXEC, SCC, or a constant
VDST 8 VGPR that takes the result.

For V_READLANE and V_CMP, indicates the SGPR that receives the result. This cannot be M0 or EXEC.
SDST 8 SGPR that takes the result of operations that produce a scalar output. Can’t be M0 or EXEC. Supports
NULL to not write any SDST.
Used for: V_{ADD,SUB,SUBREV}_CO_U32, V_{ADD,SUB,SUBREV}_CO_CI_U32, V_DIV_SCALE*; not
used for V_CMP.
OMOD 2 output modifier. for float results only.
0 = no modifier, 1=multiply result by 2, 2=multiply result by 4, 3=divide result by 2
NEG 3 negate the input (invert sign bit). float inputs only.
bit 0 is for src0, bit 1 is for srcl and bit 2 is for src2.

ABS 3 apply absolute value on input. float inputs only. applied before 'neg'.
bit 0 is for src0, bit 1 is for srcl and bit 2 is for src2.
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Field Size
CLMP 1
OPSEL 4

Description

clamp or compare-signal (depends on opcode):

V_CMP: clmp=1 means signaling-compare when gNaN detected; 0 = non-signaling

Float arithmetic: clamp result to [0, 1.0]; -0 is clamped to +0.

Signed integer arithmetic: clamp result to [min_int, +max_int]

Unsigned integer arithmetic: clamp result to [0, +max_uint]

Where "min_int" and "max_int" are the largest negative and positive representable integers for the size
of integer being used (16, 32 or 64 bit). "max_uint" is the largest unsigned int.

Operation select for 16-bit math: 1=select high half, 0=select low half

[0]=src0, [1]=srcl, [2]=src2, [3]=dest

For dest=0, dest_vgpr[31:0] = {prev_dst_vgpr[31:16], result[15:0] }

For dest=1, dest_vgpr[31:0] = {result[15:0], prev_dst_vgpr[15:0] }

OPSEL may only be used for 16-bit operands, and must be zero for any other operands/results.
For V_PERMLANE?*, OPSELJ[0] is "fetch invalid"; OPSEL[1] is "bounds control" (like DPPS8).
DOT2_F16 and_BF16: src0 and srcl must have OPSEL[1:0] =0

7.2. Operands

Most VALU instructions take at least one input operand. The data-size of the operands is explicitly defined in
the name of the instruction. For example, V_FMA_F32 operates on 32-bit floating point data.

VGPR Alignment: there is no alignment restriction for single or double-float operations.

7.2. Operands

Table 26. VALU Instruction Operands
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Code

Vector Scalar Scalar 0-105
Source Source (8 Dest (7 106
(when9 bits) bits) 107
bits)

124

125
126
127
Integer 128

Inline 129192
Constants 193-208

209-232

233
234
235
236
237
238
239

Float 240
Inline 241
Constants 242

243
244
245
246
247
248
249
250
251
252
253
254
255

Vector Src/Dst
(8 bits)

108-123

256 - 511

Meaning
SGPRO .. 105
VCC_LO
VCC_HI

ttmpO0 .. ttmplS5
NULL

MO

EXEC_LO
EXEC_HI

0

intl..64
int-1..-16
Reserved

DPP8

DPP8FI
SHARED_BASE
SHARED_LIMIT
PRIVATE_BASE
PRIVATE_LIMIT
Reserved

0.5

-0.5

1.0

-1.0

2.0

-2.0

4.0

-4.0

1.0/ (2 * PI)
Reserved
DPP16
Reserved
Reserved

SCC

Reserved
Literal constant
VGPRO .. 255

AMD¢1

SGPRs. One DWORD each.

VCC[31:0]

VCC[63:32]

Trap handler temporary SGPRs (privileged)

Reads return zero, writes are ignored. When used
as a destination, nullifies the instruction.

Temporary register, use for a variety of functions
EXEC[31:0]

EXEC[63:32]

Inline constant zero

Integer inline constants

Reserved

8-lane DPP (only valid as SRCO0)

8-lane DPP with Fetch-Invalid (only valid as SRCO)
Memory Aperture Definition

Reserved

Inline floating point constants. Can be used in 16,
32 and 64 bit floating point math. They may be
used with non-float instructions but the value
remains a float.

1/(2*PI) is 0.15915494. The hex values are:
half: 0x3118

single: 0x3e22f983

double: 0x3fc45f306dc9c882

Reserved

data parallel primitive

Reserved

Reserved

{31’b0, SCC}

Reserved

32 bit constant from instruction stream
Vector GPRs. One DWORD each.

7.2.1. Non-Standard Uses of Operand Fields

A few instructions use the operand fields in non-standard ways:

7.2. Operands
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Opcode

V_{ADD,SUB,SUBREV}

_CO_U32,

V_{ADD,SUB,SUBREV}

_CO_CI_U32
V_DIV_SCALE
V_READLANE

V_READFIRSTLANE

V_WRITELANE

V_CMP*

V_CNDMASK

Encoding
VOP2

VOP3SD

VOP3SD
VOP3

VOP1

VOP3

VOPC
VOP3SD
VOP2

VOP3

VDST

add result
(VCC=carry-out)
add result

result

scalar dst (SGPR
only)

scalar dst (SGPR
only)

vgpr dst
"VCC" implied
cmp-result (sgpr)

dest vgpr

dest vgpr

SDST

n/a

carry-out

carry-out
n/a

n/a
n/a
n/a
unused

n/a

unused

VSRCO
in0

in0

in0
vgpr#

vgpr#

sgpr#, const,
MO

in0
in0
in0

in0

VSRC1
inl

inl

inl
lane-sel: sgpr, MO,
inline

n/a (lane-sel = exec)

lane-sel: sgpr, MO,
inline

inl

inl

inl

inl

AMD¢1

VSRC2

unused
(carry-in=VCC)
carry-in

in2

n/a
n/a
n/a

n/a

unused

unused (implied:
VCC)

select sgpr (e.g.
VCC)

The readlane lane-select is limited to the valid range of lanes (0-31 for wave32, 0-63 for wave64) by ignoring
upper bits of the lane number.

Inline constants with DOT2_F16_F16 and DOT2_BF16_BF16

For these 2 instructions, the inline constant for sources 0 and 1 replicate the inline constant value into
bits[31:16]. For source2, the OPSEL bit is used to control replication or not (gets zero if not replicating low

bits).

7.2.2. Inputs Operands

VALU instructions can use any of the following sources for input, subject to restrictions listed below:

- VOP1, VOP2, VOPC:
> SRCO is 9 bits and may be a VGPR, SGPR (including TTMPs and VCC), M0, EXEC, inline or literal

constant.

° SRC1 is 8 bits and may specify only a VGPR
- VOP3: all 3 sources are 9 bits but still have restrictions:
° Not all VOPC/1/2 instructions are available in VOP3 (only those that benefit from VOP3 encoding).
+ See complete operand list: VALU Instruction Operands

7.2.2.1. Input Operand Modifiers

The input modifiers ABS and NEG apply to floating point inputs and are undefined for any other type of input.
In addition, input modifiers are supported for: V_.MOV_B32, V_MOV_B16, V_MOVREL*_B32 and V_CNDMASK.
ABS returns the absolute value, and NEG negates the input.

Input modifiers are not supported for:

- readlane, readfirstlane, writelane

- integer arithmetic or bitwise operations

« permlane

7.2. Operands
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- QSAD

7.2.2.2, Literal Expansion to 64 bits
Literal constants are 32-bits, but they can be used as sources that normally require 64-bit data.

They are expanded to 64 bits following these rules:

* 64 bit float: the lower 32-bit are padded with zero
« 64-bit unsigned integer: zero extended to 64 bits
* 64-bit signed integer: sign extended to 64 bits

7.2.2.3. Source Operand Restrictions

Not every combination of source operands that can be expressed in the microcode format is legal. This section
describes the legal and illegal settings.

Terminology for this section:
"scalar value" = SGPR, EXEC, VCC, MO0, SCC or literal constant; can be 32 or 64 bits.

« Instructions may use at most two Scalar Values: SGPR, VCC, M0, EXEC, SCC, Literal
« All instruction formats including VOP3 and VOP3P may use one literal constant
° Inline constants are free (do not count against 2 scalar value limit).
° Literals may not be used with DPP
° Itis permissible for both scalar values to be SGPRs, although VCC counts as an SGPR.
® VCC when used implicitly counts against this limit: addci, subci, fmas, cndmask
° 64-bit shift instructions can use only one scalar value input, and can’t use the same one twice
(inlines don’t count against this limit)
° Using the same scalar value twice only counts as a single scalar value, however using the same scalar
value twice, but with different sizes has specific rules and limits:
® Using the same literal with different sizes counts as 2 scalar values, not 1.
® S[0] and S[0:1] can be considered as 1 scalar value, but S[1] and S[0:1] count as 2.
In general, these rules apply to any S[2n] and S[2n:2n+1] count as one, but S[2n+1] and S[2n:2n+1] count
as2.
+ SGPR source rules must be met for both passes of a wave64, bearing in mind that sources that read a mask
(bit-per-lane) increment the SGPR address for the second pass, and they may not be shared with other
sources.

7.2.2.4. OPSEL Field Restrictions

The OPSEL field (of VOP3) is usable only for a subset of VOP3 instructions, as well as VOP1/2/C instructions
promoted to VOP3.

Table 27. Opcodes usable with OPSEL

V_MAD_I16 V_MAD_U16 V_FMA_F16
V_ADD_NC_U16 V_ADD_NC_I16 V_CVT_PKNORM_I16_F16
V_SUB_NC_U16 V_SUB_NC_I16 V_CVT_PKNORM_U16_F16
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V_MUL_LO_UT6 V_MAD_U32_U16 V_MAD_I32_116
V_LSHLREV_B16 V_LSHRREV_B16 V_ASHRREV_I16
V_ALIGNBIT_B32 V_ALIGNBYTE_B32 V_DIV_FIXUP_F16
V_MIN3_{F16,116,U16} V_MAX3_{F16,116,U16} V_MED3_{F16,116,U16}
V_MAX_{I16,U16} V_MIN_{I16,U16} V_PACK_B32_F16
V_MAXMIN_F16 V_MINMAX_F16 V_CNDMASK_B16
V_XOR_B16 V_AND_B16 V_OR_B16
V_DOT2_F16_F16 V_DOT2_BF16_BF16

V_INTERP_P10_RTZ_F16_F32 V_INTERP_P2_RTZ_F16_F32 V_INTERP_P2_F16_F32

V_INTERP_P10_F16_F32

7.2.3. Output Operands

VALU instructions typically write their results to VGPRs specified in the VDST field of the microcode word. A
thread only writes a result if the associated bit in the EXEC mask is set to 1.

V_CMPX instructions write the result of their comparison (one bit per thread) to the EXEC mask.

Instructions producing a carry-out (integer add and subtract) write their result to VCC when used in the VOP2
form, and to an arbitrary SGPR-pair when used in the VOP3 form.

When the VOP3 form is used, instructions with a floating-point result may apply an output modifier (OMOD
field) that multiplies the result by: 0.5, 2.0, or 4.0. Optionally, the result can be clamped (CLAMP field) to the
min and max representable range (see next section).

7.2.3.1. Output Operand Modifiers

Output modifiers (OMOD) apply to half, single and double floating point results only and scale the result by :
0.5, 2.0, 4.0 or do not scale. Integer and packed float 16 results ignore the omod setting. Output modifiers are
not compatible with output denormals: if output denormals are enabled, then output modifiers are ignored. If
output denormals are disabled, then the output modifier is applied and denormals are flushed to zero. These
are not IEEE compatible: -0 is flushed to +0. Output modifiers are ignored if the IEEE mode bit is set to 1. A few
opcodes force output denorms to be disabled.

Output Modifiers are not supported for:
« V_PERMLANE

+ DOT2_F16_F16
* DOT2_BF16_BF16

The clamp bit has multiple uses. For V_CMP instructions, setting the clamp bit to 1 indicates that the compare
signals if a floating point exception occurs. For integer operations, it clamps the result to the largest and
smallest representable value. For floating point operations, it clamps the result to the range: [0.0, 1.0].

Output Clamping: The clamp instruction bit applies to the following operations and data types:
« Float clamp to [0.0, 1.0]
« Signed Int [-max_int, +max_int]
« Unsigned int [0, +max_int]
« Bool (V_CMP) enables signaling compare
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The clamp bit is not supported for (ignored):

V_PERMLANE* V_PERM_B32 Float DOT instructions
V_SWAP and V_SWAPREL WMMA ops V_ADD3
V_ADD_LSHL V_ALIGN* Bitwise ops
V_CMP*_CLASS V_CMP on integers

V_READLANE V_READFIRSTLANE V_WRITELANE

7.2.3.2. Wave64 Destination Restrictions

When a VALU instruction is issued from a wave64, it may issue twice as two wave32 instructions. While in most
cases the programmer need not be aware of this, it does impose a prohibition on wave64 VALU instructions
that both write and read the same SGPR value. Doing this may lead to unpredictable results. Specifically, the first
pass of a wave64 VALU instruction may not overwrite a scalar value used by the second half.

7.2.4. Denormalized and Rounding Modes

The shader program has explicit control over the rounding mode applied and the handling of denormalized
inputs and results. The MODE register is set using the S_SETREG instruction; it has separate bits for controlling
the behavior of single and double-precision floating-point numbers.

Round and denormal modes can also be set using S_ROUND_MODE and S_DENORM_MODE which is the
preferred method over using S_SETREG.

16-bit floats support denormals, infinity and NaN.

Table 28. Round and Denormal Modes

Field Bit Position Description
FP_ROUND 3:0 [1:0] Single-precision round mode.
[3:2] Double and Half-precision (FP16) round mode.
Round Modes:
O=nearest even
1= +infinity
2= -infinity
3=toward zero
FP_DENORM 7:4 [5:4] Single-precision denormal mode.
[7:6] Double and Half-precision (FP16) denormal mode.
Denormal modes:
0 = Flush input and output denorms
1 = Allow input denorms, flush output denorms
2 = Flush input denorms, allow output denorms
3 = Allow input and output denorms

These mode bits do not affect rounding and denormal handling of F32 global memory atomics.

DOT2_F16_F16 and DOT2_BF16_BF16 support round-to-nearest-even rounding. DOT2_F16_F16 supports
denorms, and DOT2_BF16_BF16 disables all denorms.
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7.2.5. Instructions using SGPRs as Mask or Carry

Every VALU instruction can use SGPRs as a constant, but the following can read or write SGPRs as masks or
carry:

Read Mask or Carry in Write Carry out Implicitly Reads VCC Implicitly Writes VCC
V_CNDMASK_B32 V_CMP* V_DIV_FMAS_F32 V_DIV_SCALE_F32
V_ADD_CO_CI_U32 V_ADD_CO_CI_U32 V_DIV_FMAS_F64 V_DIV_SCALE_F64
V_SUB_CO_CI_U32 V_SUB_CO_CI_U32 (fmas reads 3 operands + VCC) V_CMP (not V_.CMPX)
V_SUBREV_CO_CI_U32 V_SUBREV_CO_CI_U32 V_CNDMASK in VOP2
V_ADD_CO0_U32 V_{ADD,SUB,SUBREV}_CO_CI_U
321in VOP2

V_SUB_CO_U32
V_SUBREV_CO_U32

V_MAD_U64_U32
V_MAD_I64_132

Write Data out (not carry)
V_READLANE
V_READFIRSTLANE

"VCC" in the above table refers to VCC in a VOP2 or VOPC encoding, or any SGPR specified in the SRC2 or SDST
field for VOP3 encoding, except for DIV_FMAS that implicitly reads VCC (no choice).

V_CMPX is the only VALU instruction that writes EXEC.

7.2.6. Wave64 use of SGPRs

VALU instructions may use SGPRs as a uniform input, shared by all work-items. If the value is used as simple
data value, then the same SGPR is distributed to all 64 work-items. If, on the other hand, the data value
represents a mask (e.g. carry-in, mask for CNDMASK), then each work-item receives a separate value, and two
consecutive SGPRs are read.

7.2.7. Out-of-Range GPRs

When a source VGPR is out-of-range, the instruction uses as input the value from VGPRO.
When the destination GPR is out-of-range, the instruction executes but does not write the results.

See VGPR Out Of Range Behavior for more information.

7.2.8. PERMLANE Specific Rules

V_PERMLANE may not occur immediately after a V_CMPX. To prevent this, any other VALU opcode may be
inserted (e.g. V_NOP).
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7.3. Instructions

The table below lists the complete VALU instruction set by microcode encoding, except for VOP3P instructions

which are listed in a later section.

VOP3
V_ADD3_U32
V_ADD_LSHL_U32
V_ALIGNBIT_B32
V_ALIGNBYTE_B32
V_AND_OR_B32
V_BFE_I32
V_BFE_U32
V_BFI_B32
V_CNDMASK_B16
V_CUBEID_F32
V_CUBEMA_F32
V_CUBESC_F32
V_CUBETC_F32
V_CVT_PK_U8_F32
V_DIV_FIXUP_F16
V_DIV_FIXUP_F32
V_DIV_FIXUP_F64
V_DIV_FMAS_F32
V_DIV_FMAS_F64
V_DIV_SCALE_F32
V_DIV_SCALE_F64
V_DOT2_BF16_BF16
V_DOT2_F16_F16
V_FMA_DX9_ZERO_F32
V_FMA_F16
V_FMA_F32
V_FMA_F64
V_LERP_U8
V_LSHL_ADD_U32
V_LSHL_OR_B32
V_MAD_I16
V_MAD_I32_I16
V_MAD_I32_I24
V_MAD_I64_I32
V_MAD_U16
V_MAD_U32_U16
V_MAD_U32_U24
V_MAD_U64_U32
V_MAX3_F16
V_MAX3_F32
V_MAX3_I16
V_MAX3_I32
V_MAX3_U16
V_MAX3_U32
V_MAXMIN_F16
V_MAXMIN_F32
V_MAXMIN_I32

7.3. Instructions

VOP3 - 2 operands
V_ADD_C0_U32
V_ADD_F64
V_ADD_NC_I16
V_ADD_NC_I32
V_ADD_NC_U16
V_AND_B16
V_ASHRREV_I16
V_ASHRREV_I64
V_BCNT_U32_B32
V_BFM_B32
V_CVT_PK_I16_F32
V_CVT_PK_I16_I32

V_CVT_PK_NORM_I16_F16
V_CVT_PK_NORM_I16_F32
V_CVT_PK_NORM_U16_F16
V_CVT_PK_NORM_U16_F32

V_CVT_PK_U16_F32
V_CVT_PK_U16_U32
V_LDEXP_F32
V_LDEXP_F64
V_LSHLREV_B16
V_LSHLREV_B64
V_LSHRREV_B16
V_LSHRREV_B64
V_MAX_F64
V_MAX_I16
V_MAX_U16
V_MBCNT_HI_U32_B32
V_MBCNT_LO_U32_B32
V_MIN_F64
V_MIN_I16
V_MIN_U16
V_MUL_F64
V_MUL_HI_I32
V_MUL_HI_U32
V_MUL_LO_U16
V_MUL_LO_U32
V_OR_B16
V_PACK_B32_F16
V_READLANE_B32
V_SUBREV_C0_U32
V_SUB_C0_U32
V_SUB_NC_I16
V_SUB_NC_I32
V_SUB_NC_U16
V_TRIG_PREOP_F64
V_WRITELANE_B32

VOP2
V_ADD_CO_CI_U32
V_ADD_F16
V_ADD_F32
V_ADD_NC_U32
V_AND_B32
V_ASHRREV_I32
V_CNDMASK_B32
V_CVT_PK_RTZ_F16_F32
V_DOT2ACC_F32_F16
V_FMAAK_F16
V_FMAAK_F32
V_FMAC_DX9_ZERO_F32
V_FMAC_F16
V_FMAC_F32
V_FMAMK_F16
V_FMAMK_F32
V_LDEXP_F16
V_LSHLREV_B32
V_LSHRREV_B32
V_MAX_F16
V_MAX_F32
V_MAX_I32
V_MAX_U32
V_MIN_F16
V_MIN_F32
V_MIN_I32
V_MIN_U32
V_MUL_DX9_ZERO_F32
V_MUL_F16
V_MUL_F32
V_MUL_HI_I32_I24
V_MUL_HI_U32_U24
V_MUL_I32_I24
V_MUL_U32_U24
V_OR_B32
V_PK_FMAC_F16
V_SUBREV_CO_CI_U32
V_SUBREV_F16
V_SUBREV_F32
V_SUBREV_NC_U32
V_SUB_CO_CI_U32
V_SUB_F16
V_SUB_F32
V_SUB_NC_U32
V_XNOR_B32
V_XOR_B32

VOoPr1
V_BFREV_B32
V_CEIL_F16
V_CEIL_F32
V_CEIL_F64
V_CLS_I32
V_CLZ_I32_U32
V_COS_F16
V_COS_F32
V_CTZ_I32_B32
V_CVT_F16_F32
V_CVT_F16_1I16
V_CVT_F16_U16
V_CVT_F32_F16
V_CVT_F32_F64
V_CVT_F32_132
V_CVT_F32_U32
V_CVT_F32_UBYTE®@
V_CVT_F32_UBYTE1
V_CVT_F32_UBYTE2
V_CVT_F32_UBYTE3
V_CVT_F64_F32
V_CVT_F64_132
V_CVT_F64_U32
V_CVT_FLOOR_I32_F32
V_CVT_I16_F16
V_CVT_I32_F32
V_CVT_I32_F64
V_CVT_I32_I16

V_CVT_NEAREST_I32_F32

V_CVT_NORM_I16_F16
V_CVT_NORM_U16_F16
V_CVT_OFF_F32_I4
V_CVT_U16_F16
V_CVT_U32_F32
V_CVT_U32_F64
V_CVT_U32_U16
V_EXP_F16

V_EXP_F32
V_FLOOR_F16
V_FLOOR_F32
V_FLOOR_F64
V_FRACT_F16
V_FRACT_F32
V_FRACT_F64
V_FREXP_EXP_I16_F16
V_FREXP_EXP_I32_F32
V_FREXP_EXP_I32_F64
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VOP3
V_MAXMIN_U32
V_MED3_F16
V_MED3_F32
V_MED3_I16
V_MED3_I32
V_MED3_U16
V_MED3_U32
V_MIN3_F16
V_MIN3_F32
V_MIN3_I16
V_MIN3_I32
V_MIN3_U16
V_MIN3_U32
V_MINMAX_F16
V_MINMAX_F32
V_MINMAX_I32
V_MINMAX_U32
V_MQSAD_PK_U16_U8
V_MQSAD_U32_U8
V_MSAD_U8
V_MULLIT_F32
V_OR3_B32
V_PERMLANE16_B32
V_PERMLANEX16_B32
V_PERM_B32
V_QSAD_PK_U16_U8
V_SAD_HI_U8
V_SAD_U16
V_SAD_U32
V_SAD_U8
V_XAD_U32
V_XOR3_B32

V_CMP
V_CMPX
V_CMP

V_CMPX

V_CMP_CLASS
V_CMPX_CLASS

7.3. Instructions

VOP3 - 2 operands VOP2

V_XOR_B16

VOPC - Compare Ops
VOPC writes to VCC, VOP3 writes compare result to any SGPR

116, 132, 164, U16, U32, U64 F, LT, EQ, LE, GT, LG, GE, T

F16, F32, F64 F, LT, EQ, LE, GT, LG, GE, T,

0, U, NGE, NLG, NGT, NLE, NEQ, NLT

AMD¢1

VOP1
V_FREXP_MANT_F16
V_FREXP_MANT_F32
V_FREXP_MANT_F64
V_LOG_F16
V_LOG_F32
V_MOVRELD_B32
V_MOVRELSD_2_B32
V_MOVRELSD_B32
V_MOVRELS_B32
V_MOV_B16
V_MOV_B32

V_NOP

V_NOT_B16
V_NOT_B32
V_PERMLANE64_B32
V_PIPEFLUSH
V_RCP_F16
V_RCP_F32
V_RCP_F64
V_RCP_IFLAG_F32
V_READFIRSTLANE_B32
V_RNDNE_F16
V_RNDNE_F32
V_RNDNE_F64
V_RSQ_F16
V_RSQ_F32
V_RSQ_F64
V_SAT_PK_U8_I16
V_SIN_F16
V_SIN_F32
V_SQRT_F16
V_SQRT_F32
V_SQRT_F64
V_SWAPREL_B32
V_SWAP_B16
V_SWAP_B32
V_TRUNC_F16
V_TRUNC_F32
V_TRUNC_F64

write VCC
write exec
write VCC

(T =True, F = False, O = total order, U = unordered, "N" write exec

= Not (inverse) compare)
F16, F32, F64

Test for any combination of: signaling-NaN, quiet-NaN, write VCC

positive or negative: infinity, normal, subnormal, zero. rite exec
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7.4. 16-bit Math and VGPRs

VALU instructions that operate on 16-bit data (non-packed) can separately address the two halves of a 32-bit
VGPR.

16-bit VGPR-pairs are packed into a 32-bit VGPRs: the 32-bit VGPR "V0" contains two 16-bit VGPRs: "V0.L"
representing V0[15:0] and "V0.H" representing VO0[31:16].

How this addressing is encoded in the ISA varies by the instruction encoding: The 16-bit instructions can be
encoded using VOP1/2/C as well as VOP3/VOP3P/VINTERP.

16bit VGPR Naming
The 32-bit VGPR is "V0". The two halves are called "V0.L" and "V0.H".

VOP1, VOP2, VOPC Encoding
16-bit VGPRs are encoded as:
SRC/DST[6:0] = 32-bit VGPR address;
SRC/DST[7] = (1=hi, 0=lo half)
In this encoding, only 256 16-bit VGPRs can be addressed.

VOP3, VOP3P, VINTERP

16-bit VGPRs are encoded as:
SRC/DST[7:0] = 32-bit VGPR address, OPSEL = high/low.
In this encoding, a wave can address 512 16-bit VGPRs.

The packing shown below allows reading or writing in one cycle:
+ 32 lanes of one 32-bit VGPR: V0
+ 64 lanes of one 16-bit VGPR: V0.L
+ 32 lanes of two 16-bit VGPRs (a pair, as used by packed math): V0.L and V0.H

32-bit VGPR “V0” can also be used to

Vo ‘ VO.H | vo.L hold 2 16-bit VGPRs: VO.L and VO.H

31 16 15 0

7.5. Packed Math

Packed math is a form of operation that accelerates arithmetic on two values packed into the same VGPR. It
performs operations on two 16-bit values within a DWORD as if they were separate threads. For example, a
packed add of VO=V1+V2 is really two separate adds: adding the low 16 bits of each DWORD and storing the
result in the low 16 bits of V0, and adding the high halves and storing the result in the high 16 bits of V0.

Packed math uses the instructions below and the microcode format "VOP3P". This format has OPSEL and NEG
fields for both the low and high operands, and does not have ABS and OMOD.

Table 29. Packed Math Opcodes:

Packed Math ops
V_PK_MUL_F16 V_PK_FMA_F16 V_PK_MIN_F16
V_PK_ADD_F16 V_PK_FMAC_F16 V_PK_MAX_F16
V_PK_ADD_I16 V_PK_MAD_I16 V_PK_MIN_I16 V_PK_LSHLREV_B16
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V_PK_ADD_U16

V_PK_SUBL_I16

V_PK_SUB_U16
V_FMA_MIX_F32
V_WMMA_F32_16X16X16_F16
V_WMMA_F32_16X16X16_BF16
V_WMMA_F16_16X16X16_F16
V_WMMA_BF16_16X16X16_BF16
V_WMMA_I32_16X16X16_IU8
V_WMMA_I32_16X16X16_1U4

VOP3P Instruction Fields

VOP3P encoding.

AMD¢1

Packed Math ops

V_PK_MAD_U16
V_PK_MUL_LO_U16

V_FMA_MIXLO_F16

V_PK_MIN_U1l6
V_PK_MAX_I16
V_PK_MAX_U16
V_FMA_MIXHI_F16
V_DOT2_F32_BF16
V_DOT2_F32_F16
V_DOT4_132_1U8
V_DOT4_U32_U8
V_DOT8_132_1U4
V_DOT8_U32_U4

V_PK_LSHRREV_B16
V_PK_ASHRREV_I16

V_FMA_MIX_* and WMMA instructions are not packed math, but perform a single MAD
operation on a mixture of 16- and 32-bit inputs. They are listed here because they use the

31

vop3P 1.1 0 11 | 0 o | | ____ opP . !CM [ore|  OPSEL | NEG Hls ! _VDST,
_NEG | oPSLH | SRC2g SRC1g SRCOy .
Field Size Description
OoP 7 instruction opcode
SRCO 9 first instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant
WMMA: must be a VGPR
SRC1 9 second instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant
WMMA: must be a VGPR
SRC2 third instruction argument. May come from: vgpr, sgpr, VCC, M0, exec or a constant
VDST vgpr that takes the result.
For V_READLANE, indicates the SGPR that receives the result.
NEG 3 negate the input (invert sign bit) for the lower-16bit operand. float inputs only.
bit 0 is for src0, bit 1 is for srcl and bit 2 is for src2.
For V_FMA_MIX_* opcodes, this modifies all inputs.
For DOT...IU... and WMMA...IU... NEG[1:0] = signed(1)/unsigned(0) for src0 and srcl,
and Neg[2] behavior is undefined.
NEG_HI 3 negate the input (invert sign bit) for the higher-16bit operand. float inputs only.
bit 0 is for src0, bit 1 is for srcl and bit 2 is for src2.
For V_FMA_MIX_* opcodes, this acts as an ABS (absolute value) modifier.
For DOT...IU... and WMMA...IU... NEG_HI behavior is undefined.
OPSEL 3 Select the high (1) or low (0) operand as input to the operation that results in the lower-half of the
[13:11] destination. [0] = src0, [1] = srcl, [2] = src2

7.5. Packed Math

If either the source operand or destination operand is 32bits, the corresponding OPSEL bit must set
to zero. This rule does not apply to MIX instructions, which have a unique interpretation of OPSEL. See
notes below. OPSEL works for 16-bit VGPR, SGPR and literal-constant sources; for inline constant
sources OPSEL must be zero (value only exists in lower 16 bits).

OPSEL[0] and [1] are unused for WMMA ops, and OPSEL[2] is used only with WMMA ops with 16-bit
output to control whether the C matrix is read from upper or lower bits in the VGPR, and whether
the D matrix is stored into upper or lower bits.
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Field Size Description
OPSEL_HI 3 Select the high (1) or low (0) operand as input to the operation that results in the upper-half of the
{[60:59],[14]} destination. [0] = src0, [1] = srcl, [2] = src2. Concatenation of ISA fields { OPSLH, OPSLHO }. If either

the source operand or destination operand is 32bits or is a constant, the corresponding OPSEL_HI
bit must set to zero. This rule does not apply to MIX instructions, which have a unique interpretation of
OPSEL. See notes below.

CLMP 1 clamp result.
Float arithmetic: clamp result to [0, 1.0]; -0 is clamped to +0.
Signed integer arithmetic: clamp result to [min_int, +max_int]
Unsigned integer arithmetic: clamp result to [0, +max_uint]
Where "min_int" and "max_int" are the largest negative and positive representable integers for the
size of integer being used (16, 32 or 64 bit). "max_uint" is the largest unsigned int.

OPSEL for MIX instructions

MIX, MIXLO and MIXHI interpret OPSEL and OPSEL_HI as three 2-bit fields, one per source operand:
{ OPSEL_HI[0], OPSEL[0] } controls source0;
{ OPSEL_HI[1], OPSEL[1] } controls sourcel,;
{ OPSEL_HI[2], OPSEL[2] } controls source2.

These 2-bit fields control source-selection for each of the 3 source operands:
2’b00: Src[31:0] as FP32
2’b01: Src[31:0] as FP32
2’b10: Src[15:0] as FP16
2’b11: Src[31:16] as FP16

V_WMMA...IU... and V_DOT4...IU... with NEG::

These instructions use the NEG[1:0] bits to indicate signed (0=unsigned, 1=signed) per input source
instead of meaning "negate". NEG[2] should be set to zero (behavior is undefined). NEG_HI must be zero.

7.5.1. Inline Constants with Packed Math

Inline constants may be used with packed math, but they require the use of OPSEL. Inline constants produce a
value in only the low 16-bits of the 32-bit constant value. Inline constants used with float 16-bit sources produce
an F16 constant value. Without using OPSEL, only the lower half of the source would contain the constant. To
use the inline constant in both halves, use OPSEL to select the lower input for both low and high sources.

BF16 uses 32-bit float constants and then the BF16 operand selects the upper 16 bits of the FP32 constant
(matches the definition of BF16).

For the WMMA_F16_F16_16x16x16 or VOPD DOT2_F32_F16, hardware automatically selects the low 16 bits of
the constant.

Any packed math instructions that use data sizes less than 16 bits do not work with inline constants, other than
the DOT instructions below:

Opcode inline OPSEL

DOT4_132_1U8 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT8_132_1U4 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT4_U32_U8 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
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Opcode inline OPSEL

DOT8_U32_U4 use 32bit inline src0/1 (ignore OPSEL) OPSEL/OPSEL_HI on src0/1
DOT2_F32_F16 use FP32 inline, supports OPSEL OPSEL/OPSEL_HI on src0/1
DOT2_F32_BF16 upperl6(FP32)/same as replicate (src0/1) ignore OPSEL ~ OPSEL/OPSEL_HI on src0/1
DOT2ACC_F32_F16 Duplicate lo to hi, ignore OPSEL none

DOT2ACC_F32_BF16 Duplicate lo to hi, ignore OPSEL none

7.6. Dual Issue VALU

The VOPD instruction encoding allows a single shader instruction to encode two separate VALU operations
that are executed in parallel. The two operations must be independent of each other. This instruction has
certain restrictions that must be met - hardware does not function correctly if they are not. This instruction
format is legal only for wave32. It must not be used by wave64’s. It is skipped for wave64.

The instruction defines 2 operations, named "X" and "Y", each with their own sources and destination VGPRs.
The two instructions packed into this one ISA are referred to as OpcodeX and OpcodeY.

+ OpcodeX sources data from SRCOX (a VGPR, SGPR or constant), and SRC1X (a VGPR);
+ OpcodeY sources data from SRCOY (a VGPR, SGPR or constant), and SRC1Y (a VGPR).

The two instructions in the VOPD are executed at the same time, so there are no races between them if one
reads a VGPR and the other writes the same VGPR. The 'read' gets the old value.

Restrictions:

« Each of the two instructions may use up to 2 VGPRs
+ Each instruction in the pair may use at most 1 SGPR or they may share a single literal
° Legal combinations for the dual-op: at most 2 SGPRs, or 1 SGPR + 1 literal, or share a literal.
SRCO can be either a VGPR or SGPR (or constant)
VSRCI1 can only be a VGPR
« Instructions must not exceed the VGPR source-cache port limits
° There are 4 VGPR banks (indexed by SRC[1:0]), and each bank has a cache
° Each cache has 3 read ports: one dedicated to SRCO, one dedicated to SRC1 and one for SRC2
® A cache can read all 3 of them at once, but it can’t read two SRCO0’s at once (or SRC1/2).
° SRCXO0 and SRCY0 must use different VGPR banks;
° VSRCX1 and VSRCY1 must use different banks.
® FMAMK is an exception : V=S80 + K * S1 ("S1" uses the SRC2 read port)
° If both operations use the SRC2 input, then one SRC2 input must be even and the other SRC2 input
must be odd. The following operations use SRC2: FMAMK_F32 (second input operand);
DOT2ACC_F32_F16, DOT2ACC_F32_BF16, FMAC_F32 (destination operand).

> These are hard rules - the instruction does not function if these rules are broken

« The pair of instructions combined have the following restrictions:
° At most one literal constant, or they may share the same literal
° Dest VGPRs: one must be even and the other odd
° The instructions must be independent of each other

* Must not use DPP

* Must be wave32.
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VOPD Instruction Fields
u 0
vorD 1.1 0 0o 1 o] opx | opy ' VsRox1 ' SRCX0
_ VDSTX | VDSTY ' VSRCY1 ' SRCY0 .
Field Size Description
opX 4 instruction opcode for the X operation
opY 5 instruction opcode for the Y operation
src0X 9 Source 0 for X operation. May be a VGPR, SGPR, exec, inline or literal constant
src0Y 9 Source 0 for Y operation. May be a VGPR, SGPR, exec, inline or literal constant
vsrclX 8 Source 1 for X operation. Must be a VGPR. Ignored for V_MOV_B32
vsrclY 8 Source 1 for Y operation. Must be a VGPR. Ignored for V_MOV_B32
vdstX 8 Destination VGPR for X operation.
vdstY 7 Destination VGPR for Y operation. vdstY specifies bits [7:1]. The LSB of the destination address is:

lvdstX[0]. vdstX and vdstY: one must be even and the other is an odd VGPR.
See VOPD for a list of opcodes usable in the X and Y opcode fields.
V_CNDMASK_B32 is the "VOP2" form that uses VCC as the select. VCC counts as one SGPR read.

VOPD instruction pairs generate only a single exception if either or both raise an exception.

7.7. Data Parallel Processing (DPP)

Data Parallel Processing (DPP) operations allow VALU instruction to select operands from different lanes
(threads) rather than just using a thread’s own data. DPP operations are indicated by the use of the inline
constant: DPP8 or DPP16 in the SRCO operand. Note that since SRCO is set to the DPP value, the actual VGPR
address for SRCO comes from the DPP DWORD.

One example of using DPP is for scan operations. A scan operation is one that computes a value per thread that
is based on the values of the previous threads and possibly itself. E.g. a running sum is the sum of the values
from previous threads in the vector. A reduction operation is essentially a scan that returns a single value from
the highest numbered active thread. A scan operation requires that the EXEC mask to be set to all 1’s for proper
operation. Unused threads (lanes) should be set to a value that does not change the result prior to the scan.

There are two forms of the DPP instruction word:
DPP8 allows arbitrary swizzling between groups of 8 lanes
DPP16 allows a set of predefined swizzles between groups of 16 lanes

DPP may be used only with: VOP1, VOP2, VOPC, VOP3 and VOP3P (but not "packed math" ops).
DPP instructions incur an extra cycle of delay to execute.

Table 30. Which instructions support DPP
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Encoding Opcodes * Rule*
VOP1 All 64-bit opcodes NO DPP
READFIRSTLANE_B32 NO DPP
SWAP_B32 NO DPP
PIPEFLUSH NO DPP
WRITELANE_REGWR_B32 NO DPP
PERMUTE64 NO DPP
All Others Allow DPP
VOP2 ALL 64bit opcodes NO DPP
FMAMK/AD_F32/16 NO DPP
All Others Allow DPP
VOP3P V_DOT4_132_1U8 NO DPP
V_DOT4_U32_U8
V_DOT8_132_IU4
V_DOT8_U32_U4
V_PK_*
WMMA
ALL Others: Allow DPP
V_FMA_MIX_*
V_DOT2_F32_{BF16, F16}
VINTERP ALL NO DPP
VOPD ALL NO DPP

Encoding
VOP3

VOPC

Opcodes

All 64bit opcodes
MUL_LO_U32
MUL_HI_U32
MUL_HI_I32
QSAD_PK_U16_U8
MQSAD_PK_U16_U8
MQSAD_U32_U8
READLANE_REGRD_B32
READLANE_B32
WRITELANE_B32
PERMLANE16_B32

PERMLANEX16_B32

The others
All 64bit opcodes
The others

AMD¢1

Rule

NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP
NO DPP

NO DPP

Allow DPP
NO DPP
Allow DPP

V_CMP and V_CMPX write the full mask, not a partial mask. When using DPP with V_CMP or V_CMPX and
setting bound_ctrl=0, lanes that have their EXEC mask bit set to zero instead of not writing the bit, a zero bit is
written. "FI" (Fetch Inactive) with DPP16 causes a lane to act as if it is active when supplying data, but the
compare result for that lane is still zero for V_CMPX (V_CMPX with FI=1 does not turn on a lane that was off).

7.7.1. DPP16

DPP16 allows selection of data within groups of 16 lanes with a fixed set of possible swizzle patterns.

Both VOP3/VOP3P and DPP16 have ABS and NEG fields:

« VOP3’s ABS & NEG fields are used, and DPP16’s are ignored
« VOP3P’s NEG/NEG_HI fields are used and DPP16’s ABS & NEG are ignored.

DPP16 Instruction Fields

Field BITS
row_mask 31:28

Description

Applies to the VGPR destination write only, does not impact the thread mask when fetching
source VGPR data. For VOPC, the SGPR/VCC bit associated with the disabled lane receives

Zero.

31==0: lanes[63:48] are disabled (wave 64 only)
30==0: lanes[47:32] are disabled (wave 64 only)
29==0: lanes[31:16] are disabled

28==0: lanes[15:0] are disabled

7.7. Data Parallel Processing (DPP)
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Field

bank_mask

srcl_imod
srcO_imod

BC

FI

rsvd
dpp_ctrl

Src0

BITS
27:24

23:22

21:20

19

18

17
16:8

7:0

BC FI

= o = O
= = O O

Description

Applies to the VGPR destination write only, does not impact the thread mask when fetching
source VGPR data. For VOPC, the SGPR/VCC bit associated with the disabled lane receives
zZero.

In wave32 mode:

27==0: lanes[12:15, 28:31] are disabled

26==0: lanes[8:11, 24:27 are disabled

25==0: lanes[4:7, 20:23] are disabled

24==0: lanes[0:3, 16:19] are disabled

In wave64 mode:

27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled

26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled

25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled

24==0: lanes[0:3, 16:19, 32:35, 48:51] are disabled

Notice: the term "bank" here is not the same as was used for the VGPR bank.

23: Apply Absolute value to SRC1

22: Apply Negate to SRC1 (done after absolute value)

21: Apply Absolute value to SRCO

20: Apply Negate to SRCO (done after absolute value)

Bound_ctrl is used to determine what a thread should do if its source operand is from a
disabled thread or invalid input: use the value zero, or disable the write. For example, a right
shift into lane 0 is an invalid input, so the VALU uses Bound_ctrl to decide if lane 0’s srcO should
be 0 or if it’s VGPR write enable should be disabled.

19==0: Do not write when source is invalid or out-of-range (DPP_BOUND_OFF)

19==1: User zero as input if source is invalid or out-of-range. (DPP_BOUND_ZERO)

Fetch inactive lane behavior:

18 == 0: If source lane is invalid (disabled thread or out-of-range), use "bound_ctrl" to
determine the source value.

18 == 1: If the source lane is disabled, fetch the source value anyway (ignoring the
bound_ctrl bit). If the source lane is out-of-range, behavior is decided by the bound_ctrl bit.
Reserved

Data Share control word.

DPP_QUAD_PERM{00:FF} 000-0FF
DPP_UNUSED 100
DPP_ROW_SL{1:15} 101-10F
DPP_ROW_SR{1:15} 111-11F
DPP_ROW_RR{1:15} 121-12F
DPP_ROW_MIRROR 140
DPP_ROW_HALF_MIRROR 141
DPP_ROW_SHARE{0:15} 150 - 15F
DPP_ROW_XMASK{0:15} 160 - 16F

VGPR address of srcA operand

Table 31. BC and FI Behavior

Source lane out-of- Source lane in-range  Source lane in-range
range but disabled and active

Disable write Disable write Normal

Src0=0 Src0=0 Normal

Src0=0 Normal Normal

Normal Normal Normal
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Where "out of range" means the lane offset goes outside a group of 16 lanes (e.g. 0..15, or 16..31).

7.7.2. DPPS8

DPP8 allows arbitrary cross-lane swizzling within groups of 8 lanes. There are two forms of DPP8: normal,
which reads zero from lanes whose EXEC mask bit is zero, and DPP8FI, which fetches data from inactive lanes
instead of using the value zero.

DPPS8 follows DPP16’s "BC = 1" behavior and assumes all source lanes are in-range.

DPPS Instruction Fields

Field Size Description

SRC 8 Source 0 (VGPR). Since the VOP1/VOP2 source0 slot was filled with the constant "DPP" or
"DPPFI", this field provides the actual source-0 vgpr.

SELO 3 Selects which lane to pull data from, within a group of 8 lanes.

SEL1 SELO selects which lane to read from to supply data into lane 0.

SEL2 SEL1 selects which lane to read from to supply data into lane 1.

SEL3 etc.

SEL4 0 =read from lane 0, 1 = read from lane 1, ... 7=read from lane 7.

SEL5 Lanes 0-7 can pull from any of lanes 0-7; lanes 8-15 can pull from lanes 8-15, etc.

SEL6

SEL7

7.8. VGPR Indexing

The VALU provides a set of instructions that move or swap VGPRs where the source, dest or both are indexed
by a value in the MO register. Indices are unsigned.

Table 32. VGPR Indexing Instructions

Instruction Index Function
V_MOVRELD_B32 MO[31:0] Move with relative destination:

VGPR[dst + M0[31:0]] = VGPR[src]
V_MOVRELS_B32 Move with relative source:

VGPR[dst] = VGPR[src + M0[31:0]]
V_MOVRELSD_B32 Move with relative source and destination:

VGPR[dst + M0[31:0]] = VGPR[src + M0[31:0]]
V_MOVRELSD_2_B32 Src: M0[9:0] Move with relative source and destination, each different:

Dst: M0[25:16] VGPR[dst + M0[25:16]] = VGPR[src + M0[9:0]]

V_SWAPREL_B32 Swap two VGPRs, each relative to a separate index:

tmp = VGPR[src + M0[9:0]]
VGPR[src + M0[9:0]] = VGPR[dst + M0[25:16]]
VGPR[dst + M0[25:16]] = tmp

7.9. Wave Matrix Multiply Accumulate (WMMA)

Wave Matrix Multiply-Accumulate (WMMA) instructions provide acceleration for common matrix arithmetic
operations. The instructions are encoded using the VOP3P encoding.
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These perform: A * B+ C = D, where A, B, C and D are matrices.

Additional information can be found on the GPUOpen blog: https://gpuopen.com/learn/
wmma_on_rdna3/

The AMD Matrix Instruction Calculator (https://github.com/RadeonOpenCompute/
amd_matrix_instruction_calculator) contains a helper tool that allows developers to view detailed
information about the WMMA instructions in the RDNA architecture. It allows users to query instruction-
level information such as computational throughput and register usage. It also allows users to generate
mappings between matrix element and hardware registers for each matrix instruction and their
modifiers.

WMMA does not generate any ALU exceptions.

These are all encoded using VOP3P. The NEG[1:0] field is repurposed for the "TU" integer types to indicate
whether the inputs are signed or not (O=unsigned, 1=signed). For WMMA_*UI8/UI4, NEG/[1:0] indicates whether
SRCO and 1 are signed or unsigned, and NEG[2] and NEG_HI[2:0] must be zero. For WMMA*_F16/BF16, NEG[1:0] is
applied on SRC1 and SRCO0’s low 16bit. NEG_HI[1:0] is applied on SRC1 and SRCO0’s high 16bit. {NEG_HI[2],
NEG[2]} is applied on SRC2, act as {ABS, NEG}. The destination is signed for the integer types. Neg[0] applies to
the A-matrix, and Neg[1] to the B-matrix. Neg[2] must be set to zero.

Table 33. WMMA Instructions

Instruction Matrix A Matrix B Matrix C Result Matrix
V_WMMA_F32_16X16X16_F16 16x16 F16 16x16 F16 16x16 F32 16x16 F32
V_WMMA_F32_16X16X16_BF16 16x16 BF16 16x16 BF16 16x16 F32 16x16 F32
V_WMMA_F16_16X16X16_F16 16x16 F16 16x16 F16 16x16 F16 16x16 F16
V_WMMA_BF16_16X16X16_BF16 16x16 BF16 16x16 BF16 16x16 BF16 16x16 BF16
V_WMMA_I32_16X16X16_IU8 16x16 1U8 16x16 IU8 16x16 132 16x16 132
V_WMMA_I132_16X16X16_1U4 16x16 1U4 16x16 IU4  16x16 132 16x16 132

"TU4" and "IU8" mean that the operand is either signed or unsigned (4 or 8 bits) as indicate by the NEG bits.

These instructions work over multiple cycles to compute the result matrix and internally use the DOT
instructions. In order to achieve this performance, the user must arrange the data such that:

+ A and B matrices: lanes 0-15 data are replicated into lanes 16-31 (for wave64: also into lanes 32-47 and 48-
63).

WMMA supports only round-to-nearest-even rounding for float types.

Inline constants: can only be used for C-matrix. For F16 and BF16, the inline value is replicated into both low
and high halves of the DWORD.

Back-to-back dependent WMMA instructions require one V_NOP (or independent VALU op) between them if
the first instruction’s matrix D is the same or overlaps with the second instruction’s matrices A or B. Matrix A/B

can overlap C as long as C is distinct from D. The typical case is that C and D are the same.

Simplified example of matrix multiplication on 4x4 matrices:

7.9. Wave Matrix Multiply Accumulate (WMMA) 73 of 600


https://gpuopen.com/learn/wmma_on_rdna3/
https://gpuopen.com/learn/wmma_on_rdna3/
https://gpuopen.com/learn/wmma_on_rdna3/
https://gpuopen.com/learn/wmma_on_rdna3/
https://gpuopen.com/learn/wmma_on_rdna3/
https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator
https://github.com/RadeonOpenCompute/amd_matrix_instruction_calculator

"RDNA3" Instruction Set Architecture AMD

<7N4|)
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«—Nn—>

This diagram below shows the A, B, C and D matrices in the traditional point of view: one row is a horizontal
strip of entries, and columns are a vertical strip. This is the linear algebra view, regardless of layout in memory
or in VGPRs. The matrix operation is defined as: D = A * B + C. Each entry in D is the result of multiplication of
a row from A with a column from B, added to the C value for that entry.

A Matrix: Matrix View

!
LAN g

A0_0|A0_1|A0_2[A0_3[A0_4|A0_5]A0_6[A0_7|A0_8|A0_9[A0_10]A0_11]A0_12]A0_13[A0_14]A0_15
A1_0[A1_1[A1_2[A1_3]A1_4a[A1_5[A1_6[A1_7[A1_8]A1_0|A1 10[A1 _121{A1 _12[A1 13[A1_14]A1 15
A2_0|A2_1|A2_2]A2_3|A2_a|A2_5|A2_6|A2_7|A2_8|A2_9[A2_10[A2_11|A2_12[A2_13[A2_14]A2_15

A

<

Al4 O|A14_1|A14 2|A14_3|Al14 4|A14 5|A14 6|A14_7|A14_8|A14_9|A14_10(A14_11]|A14_12|A14_13|A14_14|A14_15

Al15 0|A15 1|A15 2|A15_3|Al15_4|A15_5|A15_6|A15_7|A15_8|A15_9|A15_10(A15_11|A15_12|A15_13|A15_14 |A15_15

B Matrix: Matrix View

N
BO_0|BO_1|B0_2|B0_3|B0_4|B0_5|B0_6|B0_7|B0_8|B0O_9 [BO_10|BO_11|B0_12|BO0_13|BO0_14|B0_15
B1_0|B1 1|B1 2|B1_3|B1_4|B1 5|B1 6|B1_7|B1_8|B1_9(B1 10|B1 11|B1 12|B1 13|B1 14|B1 15
B2_0|B2_1|B2_2|B2_3|B2_4|B2_5|B2_6|B2_7|B2_8|B2_9 (B2 10|B2 11|B2 12|B2 13|B2 14|B2 15

A
A\

=~

B14 0[B14_1|B14_2|B14_3|B14_4|B14_5|B14_6|B14_7|B14_8|B14_0|B14 10|B14_11|B14_12(B14_13|B14_14|B14_15
B15_0[B15_1|B15_2|B15_3|B15_4|B15_5|B15_6|B15_7|B15_8|B15_9|B15_10|B15_11|B15_12|B15_13|B15_14|B15_15

C & D Matrix: Matrix View

N
N

A
\4

co_0|co1|co2|co3|co_a|cos|co6|co 7|co_8|co 9|co 10]co 11|co 12]co 13]co_14]co_15
cio|cia|ci2|cia|cialcis|cie|ci7|ci8|ciofcitofci1afcr 12]c1 13]ca 14]c1 15
c20|c21lc22|ca3|czalcas|cae|c27|ca8|c29]ca10]ca_11]ca 12]c2_13[ca_14]c2 15

<

C14_0|C14_1|C14 2|C14_3|C14_4|C14_5|C14_6|C14_7|C14_8|C14_9|cCl4_10|C14_11|C14_12|C14_13|C14_14|C14_15
€15 0{c15_1|c15 2|C15_3|C15_4|C15_5(C15_6|C15_7|C15_8|C15_9|c15_10|c1s_11|c15_12|c15_13|c15_14c15_15

Matrix entry naming: “A2_4" = A-Matrix, Row 2, Column 4

This diagram below shows how the matrices are laid out in VGPRs when M = N = K = 16. Note that the A matrix
is column-major while the others are in row-major order.
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A Matrix: VGPR View for Wave32 — Column Major

lane0 1 2 3 4 s 6 7 8 9 10 1 12 13 14 15
vo[15:0] [A0_0[A1_0[A2_0[A3_0[A4_o]As_o|A6_0[A7_0]As_0[A9_0[a10 0[a11 0[a12_0[A13 0[A14 0A15 0
VO[31:16] |AO_1|AL 1|A2 1|A3_1|A4_1|A5 1|A6_1|A7_1|A8_1|A9_1|AL0 1|ALL 1|A12 1|AI3 1|AL4 1|AL5 1
vifs:o] [A0_2[A1_2[A2_2[A3_2|n4_2][As_2|A6_2|A7_2]As_2|A9_2[a10 2[A11 2|12 2[A13_2[A14 2[A15 2
V1[31:16] Lanes 16-31 replicate lanes 0-15 K
Waveb4: lanes 32-63 replicate lanes 0-31
(A matrix is transposed from normal view)
V711501 [a0_14[A1 14]A2_14]A3_14[As_14]As_14]m6_14[A7_14]A8_14]A9_14[a10_14]n11_1]A12_14[a13_14]m1a_14]n15 14
V7[31:16] |A0_15 |A1_15 | A2_15 ‘ A3_15 | A4_15 |A5_15 ‘AG_lS | A7_15 |A8_15 ‘A9_15 |A10,15 |A11,15 ‘A12415|A13415 ‘Alus ‘Alsgs
< N »
= A »
B Matrix: VGPR View for Wave32 — Row Major
lane0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
vo[1s:0] [BO_0|B0_1|B0_2|B0_3|B0_4|B0_5|B0_6|B0_7]B0_8|B0_9[B0 10[BO0 11|80 12|80 _13[BO_14]BO0 15
Vo[31:16] |B1 0|B1_1|B1 2|B1 3|Bl 4|B15|B16|B1l 7|B1 8| Bl 9|B1 10|81 11|81 12|B1_13|B1 14|B1 15
V1[15:0] |B2_0|B2_1|B2 2|B2.3|B2_4|B2.5|B2_6|B2_7|B2_8|B2_9|B2 10|82 11|82 12|82 13|82 14|82 15
V1[31:16 A
t ! Lanes 16-31 replicate lanes 0-15 K
Wave64: lanes 32-63 replicate lanes 0-31
v7115:0] [814_0[B14_1[814_2[B14_3[B14_4[B14_5[B14_6[B14_7[B14_8[B14_0[814_10[814_11[814_12[614_13[614_14[B14 15
V7[31:16] |B15 0 | B15 1 I 31572‘ B15 3 | B15 4 [ B15 5 ‘ B15 6 | B15 7 [ B15 8 ‘ B15 9 | 315710[315711‘ a1s,1z| 315713[315714] B15_15
< N »
< N >
C & D Matrix: VGPR View for Wave32 — Row Major
lane0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 30 31
vo [co0|co_1|co 2|co3|co 4|co5|co_6|co_7|co_8|co_9|co 10|co 11]co 12]|co 13|co 14]co 15| c1 0|11 c1_14]c1 15
vi [c2.0[c2_1[c2 2][c23|c2 a[c2 5]c2.6|c2_7]c2_8[c2_9(c2 10|c2 11]c2 12[c2 13|c2 14]c2 15[ c3 031 c3_14[c3_15
v2 [c40lca_r|ca2|cas|caalcas|cae|car|cas|cao|ca 10|ca11]ca 12|ca 13|ca 14]ca 15[ cs0(cs51 c5_14[c5_15
Wave64: Uses 4 VGPRs M*
VO holds rows 0-3; V1 holds rows 4-7
V2 holds rows 8-11; V3 holds rows 12-15
ve |c12 0[c12_1[c12 2[c12 3]c12_a[c12 5[c12_6]c12_7[c12 8[c12_9]cr2t0[crz uicrz r2]cra s3]z wefcaz s aso[asa | [asadasas
v7 [c140|c1a_1[c1a 2[c14 3|14 4 |c14 5| c1a_6[c14 7|14 8| c14_9[c14 10[c14_11|c14_12|c1a_13[c1a 1a[c1a 15| cas 0 [c15 1| [eas 1afcis s
NI >
< N >
“Row Major Order” = one matrix row is stored in one VGPR (or one half of one VGPR for 16-bit values). * one VGPR holds
2 rows (2*M)

“Column Major Order” = one matrix column is stored in one VGPR (or one half of one VGPR for 16-bit values).

7.9. Wave Matrix Multiply Accumulate (WMMA)
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Chapter 8. Scalar Memory Operations

Scalar Memory Loads (SMEM) instructions allow a shader program to load data from memory into SGPRs
through the Constant Cache ("Kcache"). Instructions can load from 1 to 16 DWORDs. Data is loaded directly
into SGPRs without any format conversion.

The scalar unit loads consecutive DWORDs from memory to the SGPRs. This is intended primarily for loading
ALU constants and for indirect T#/S# lookup. No data formatting is supported, nor is byte or short data.

Loads come in two forms: one that simply takes a base-address pointer, and the other that uses a vertex-buffer
constant to provide: base, size and stride.

8.1. Microcode Encoding

Scalar memory load instructions are encoded using the SMEM microcode format.

31 0
1.1 1 1 0 1] ' oP | " Jorclpid] SDATA | | SBASE
T

T T
SOFFSET; | | OFFSET24

63 32

SMEM

The fields are described in the table below:

Table 34. SMEM Encoding Field Descriptions

Field Size Description
op 8
SDATA 7

Opcode. See the next table.
SGPRs to return Load data to.

+ Loads of 2 DWORDs must have an even SDST-sgpr.

+ Loads of 4 or more DWORDs must have their DST-gpr aligned to a multiple of 4.

+ SDATA must be: SGPR or VCC. Not: EXEC, M0 or NULL except for instructions that return nothing: these

may use NULL
SGPR-pair (SBASE has an implied LSB of zero) that provides a base address, or for BUFFER instructions, a
set of 4 SGPRs (4-sgpr aligned) that hold the resource constant.
For BUFFER instructions, the only resource fields used are: base, stride, num_records.
OFFSET 21 Instruction Address Offset : An immediate signed byte offset.
Negative offsets only work with S_LOAD; a negative offset applied to S_LBUFFER results in a MEMVIOL.

SBASE 6

SOFFSET 7  SGPR that has the 32-bit unsigned byte offset. May only specify an SGPR, MO or set to "NULL" to not use
(offset=0).
GLC 1  Globally Coherent.

DLC

1 Device Coherent.

Table 35. SMEM Instructions

Opcode # Name

Opcode # Name

0 S_LOAD_B32 9 S_BUFFER_LOAD_B64
1 S_LOAD_B64 10 S_BUFFER_LOAD_B128
2 S_LOAD_B128 11 S_BUFFER_LOAD_B256
3 S_LOAD_B256 12 S_BUFFER_LOAD_B512
4 S_LOAD_B512 32 S_GL1_INV

8 S_BUFFER_LOAD_B32 33 S_DCACHE_INV

8.1. Microcode Encoding
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These instructions load 1-16 DWORDs from memory. The data in SGPRs is specified in SDATA, and the address
is composed of the SBASE, OFFSET, and SOFFSET fields.

8.1.1. Scalar Memory Addressing

Non-buffer S_LOAD instructions use the following formula to calculate the memory address:
ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero }
All components of the address (base, offset, inst_offset, M0) are in bytes, but the two LSBs are ignored and

treated as if they were zero.

It is illegal and undefined for the inst_offset to be negative if the resulting
(inst_offset + (MO or SGPR[offset])) is negative.

8.1.2. Loads using Buffer Constant

S_BUFFER_LOAD instructions use a similar formula, but the base address comes from the buffer constant’s
base_address field.

Buffer constant fields used: base_address, stride, num_records. Other fields are ignored.

Scalar memory load does not support "swizzled" buffers. Stride is used only for memory address bounds
checking, not for computing the address to access.

The SMEM supplies only a SBASE address (byte) and an offset (byte or DWORD). Any "index * stride" must be
calculated manually in shader code and added to the offset prior to the SMEM. Inst_offset must be non-
negative - a negative value of inst_offset results in a MEMVIOL.

The two LSBs of V#.base and of the final address are ignored to force DWORD alignment.

"m_%" components come from the buffer constant (V#):
offset = OFFSET + SOFFSET (M@, SGPR or zero)

m_base = { SGPR[SBASE * 2 +1][15:0], SGPR[SBASE*2] }
m_stride = SGPR[SBASE * 2 +1][31:16]

m_num_records = SGPR[SBASE * 2 + 2]

m_size = (m_stride == @ ? 1 : m_stride) * m_num_records
addr = (m_base & ~3) + (offset & ~Bx3)

SGPR[SDST] = load_dword_from_dcache(addr, m_size)

If more than 1 DWORD is being loaded, it is returned to SDST+1, SDST+2, etc,
and the offset is incremented by 4 bytes per DWORD.

8.1.3. S_DCACHE_INV and S_GL1_INV

This instruction invalidates the entire scalar cache or L1 cache. It does not return anything to SDST.
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S_GL1_INV and S_DCACHE_INV do not have any address or data arguments.

8.2. Dependency Checking

Scalar memory loads can return data out-of-order from how they were issued; they can return partial results at
different times when the load crosses two cache lines. The shader program uses the LGKMcnt counter to
determine when the data has been returned to the SDST SGPRs. This is done as follows.

« LGKMcnt is incremented by 1 for every fetch of a single DWORD, or cache invalidates.
« LGKMcnt is incremented by 2 for every fetch of two or more DWORDs.
« LGKMcnt is decremented by an equal amount when each instruction completes.

Because the instructions can return out-of-order, the only sensible way to use this counter is to implement
"S_WAITCNT LGKMcnt 0"; this imposes a wait for all data to return from previous SMEMs before continuing.

Cache invalidate instructions are not known to have completed until the shader waits for LGKMcnt==0.

8.3. Scalar Memory Clauses and Groups

A clause is a sequence of instructions starting with S_CLAUSE and continuing for 2-63 instructions. Clauses
lock the instruction arbiter onto this wave until the clause completes.

A group is a set of the same type of instruction that happen to occur in the code but are not necessarily
executed as a clause. A group ends when a non-SMEM instruction is encountered. Scalar memory instructions
are issued in groups. The hardware does not enforce that a single wave executes an entire group before issuing
instructions from another wave.

Group restrictions:

« INV must be in a group by itself and may not be in a clause

8.4. Alignment and Bounds Checking

SDST
The value of SDST must be even for fetches of two DWORDs, or a multiple of four for larger fetches. If this
rule is not followed, invalid data can result.

SBASE
The value of SBASE must be even for S_.BUFFER_LOAD (specifying the address of an SGPR which is a
multiple of four). If SBASE is out-of-range, the value from SGPRO is used.

OFFSET
The value of OFFSET has no alignment restrictions.
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8.4.1. Address and GPR Range Checking

The hardware checks for both the address being out of range (BUFFER instructions only), and for the source or
destination SGPRs being out of range.

Address Out-of-Range if offset >= ( (stride==0 ? 1 : stride) * num_records).
where "offset" is: inst_offset + {MO0 or sgpr-offset}
Any DWORDs that are out of range in memory from a buffer_load
return zero. If a multi-DWORD request (e.g. S_.BUFFER_LOAD_B256) is
partially out of range, the DWORDs that are in range return data as
normal, and the out-of-range DWORDs return zero.

Source SGPR out of range If any source data is out of the range of SGPRs (either partially or
completely), the value 'zero' is used instead.

Destination SGPR out of range If the destination SGPR is partially or fully out of range, no data is
written back to SGPRs for this instruction.
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Chapter 9. Vector Memory Buffer Instructions

Vector-memory (VM) buffer operations transfer data between the VGPRs and buffer objects in memory
through the texture cache (TC). Vector means that one or more piece of data is transferred uniquely for every
thread in the wave, in contrast to scalar memory loads that transfer only one value that is shared by all threads
in the wave.

The instruction defines which VGPR(s) supply the addresses for the operation, which VGPRs supply or receive
data from the operation, and a series of SGPRs that contain the memory buffer descriptor (V#). Buffer atomics
have the option of returning the pre-op memory value to VGPRs.

Examples of buffer objects are vertex buffers, raw buffers, stream-out buffers, and structured buffers.

Buffer objects support both homogeneous and heterogeneous data, but no filtering of load-data (no samplers).
Buffer instructions are divided into two groups:

MUBUF: Untyped buffer objects

+ Data format is specified in the resource constant.

+ Load, store, atomic operations, with or without data format conversion.
MTBUF: Typed buffer objects

« Data format is specified in the instruction.

+ The only operations are Load and Store, both with data format conversion.

All buffer operations use a buffer resource constant (V#) that is a 128-bit value in SGPRs. This constant is sent
to the texture cache when the instruction is executed. This constant defines the address and characteristics of
the buffer in memory. Typically, these constants are fetched from memory using scalar memory loads prior to
executing VM instructions, but these constants also can be generated within the shader.

Memory operations of different types (loads, stores) can complete out of order with respect to each other.
Simplified view of buffer addressing

The equation below shows how the memory address is calculated for a buffer access:

ADDR= Base + baseOffset + Inst_offset + Voffset + Stride * (Vindex + TID)
Vi SGPR Instr VGPR Vi VGPR 0..63

Voffset is ignored when instruction bit “OFFEN” == 0
Vindex is ignored when instructino bit “IDXEN” == 0
TID is a constant value (0..63) unique to each thread in the wave. It is ignored when resource bit ADD_TID_ENABLE ==

Memory instructions return MEMVIOL for any misaligned access when the alignment mode does not allow it.

9.1. Buffer Instructions

Buffer instructions (MTBUF and MUBUF) allow the shader program to load from, and store to, linear buffers in
memory. These operations can operate on data as small as one byte, and up to four DWORDs per work-item.
Atomic operations take data from VGPRs and combine them arithmetically with data already in memory.
Optionally, the value that was in memory before the operation took place can be returned to the shader.
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The D16 instruction variants of buffer ops convert the results to and from packed 16-bit values. For example,
BUFFER_LOAD_D16_FORMAT_XYZW stores two VGPRs with 4 16-bit values.

Table 36. Buffer Instructions

MTBUF Instructions

TBUFFER_LOAD_FORMAT_{x,Xy,Xyz,Xyzw} Load from or store to a Typed buffer object.
TBUFFER_STORE_FORMAT_{x,Xy,xyz,Xyzw}

TBUFFER_LOAD_D16_FORMAT_{x,xy,xyz,xyzw} Convert data to 16-bits before loading into VGPRs.

TBUFFER_STORE_D16_FORMAT_{x,xy,xyz,XyzZw} Convert data from 16-bits to tex-format before storing to memory

MUBUF Instructions
BUFFER_LOAD_FORMAT_{x,Xy,Xyz,XyzZw} Load from or store to an Untyped Buffer object
BUFFER_STORE_FORMAT_{X,Xy,XyZ,XyZW} <size> =18, U8, 116, Ul6, B32, B64, B96, B128

BUFFER_LOAD_D16_FORMAT_{x,Xy,XyZ,XyZw}
BUFFER_STORE_D16_FORMAT_{x,xy,xyz,Xyzw}
BUFFER_LOAD_<size> BUFFER_STORE_<size>
BUFFER_{LOAD,STORE}_D16_FORMAT_X
BUFFER_{LOAD,STORE}_D16_HI_FORMAT_X

BUFFER_ATOMIC_<op> Buffer object atomic operation. Automatically globally coherent.
Operates on 32bit or 64bit values.
BUFFER_GL{0,1}_INV Cache invalidate: either L0 or L1 cache for the CU (L0) and Shader

Array (L1) associated with this wave.

31 0

1.1 1 0 1 0] ' FORMAT [ op ' loiclpicfsid] OFFSET

Heer - SOFFSET |ix orF]ree] SRSRC | VDATA VADDR i,
UBUE 311'1'1'0'0'0{ - " loiclpiclsid] " oFFseT ~
_ SOFFSET |ipx |oFr]ree] SRSRC VDATA VADDR i,
Table 37. Microcode Formats
Field Bit Size Description
oP 4 MTBUF: Opcode for Typed buffer instructions.
8 MUBUF: Opcode for Untyped buffer instructions.
VADDR 8 Address of VGPR to supply first component of address (offset or index). When both index and offset are
used, index is in the first VGPR, offset in the second.
VDATA 8 Address of VGPR to supply first component of store data or receive first component of load-data.
SOFFSET 8 SGPR to supply unsigned byte offset. SGPR, M0, NULL, or inline constant.
SRSRC 5 Specifies which SGPR supplies V# (resource constant) in four consecutive SGPRs. This field is missing
the two LSBs of the SGPR address, since this address is be aligned to a multiple of four SGPRs.
FORMA 7 Data Format of data in memory buffer. See: Buffer Image Format Table
T
OFFSET 12 Unsigned byte offset.
OFFEN 1 1 =Supply an offset from VGPR (VADDR). 0 = Do not (offset = 0).
IDXEN 1 1= Supply an index from VGPR (VADDR). 0 = Do not (index = 0).
GLC 1 Globally Coherent. Controls how loads and stores are handled by the L0 texture cache.
ATOMIC
GLC = 0 Previous data value is not returned.
GLC =1 Previous data value is returned.
DLC 1 Device Level Coherent.
SLC 1 System Level Coherent.
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Texel Fault Enable for PRT (partially resident textures). When set to 1 and fetch returns a NACK, status

is written to the VGPR after the last fetch-dest VGPR.

Field Bit Size Description
TFE 1
Opcode

TBUFFER_LOAD_FORMAT_X
TBUFFER_LOAD_FORMAT_XY
TBUFFER_LOAD_FORMAT_XYZ
TBUFFER_LOAD_FORMAT_XYZW
TBUFFER_STORE_FORMAT_X
TBUFFER_STORE_FORMAT_XY
TBUFFER_STORE_FORMAT_XYZ
TBUFFER_STORE_FORMAT_XYZW
TBUFFER_LOAD_D16_FORMAT_X
TBUFFER_LOAD_D16_FORMAT_XY
TBUFFER_LOAD_D16_FORMAT_XYZ

TBUFFER_LOAD_D16_FORMAT_XYZW

TBUFFER_STORE_D16_FORMAT_X
TBUFFER_STORE_D16_FORMAT_XY
TBUFFER_STORE_D16_FORMAT_XYZ

TBUFFER_STORE_D16_FORMAT_XYZW

Table 38. MTBUF Instructions

Description - all address components for buffer ops are uint
load X component w/ format convert

load XY components w/ format convert

load XYZ components w/ format convert

load XYZW components w/ format convert

store X component w/ format convert

store XY components w/ format convert

store XYZ components w/ format convert

store XYZW components w/ format convert

load X component w/ format convert, 16bit

load XY components w/ format convert, 16bit
load XYZ components w/ format convert, 16bit
load XYZW components w/ format convert, 16bit
store X component w/ format convert, 16bit

store XY components w/ format convert, 16bit
store XYZ components w/ format convert, 16bit
store XYZW components w/ format convert, 16bit

« TBUFFER*_FORMAT instructions include a data-format conversion specified in the instruction.

Opcode

BUFFER_LOAD_US8
BUFFER_LOAD_D16_U8
BUFFER_LOAD_D16_HI_U8
BUFFER_LOAD_I8
BUFFER_LOAD_D16_18
BUFFER_LOAD_D16_HI_I8
BUFFER_LOAD_U16
BUFFER_LOAD_I16
BUFFER_LOAD_D16_B16
BUFFER_LOAD_D16_HI_B16
BUFFER_LOAD_B32
BUFFER_LOAD_B64
BUFFER_LOAD_B96
BUFFER_LOAD_B128
BUFFER_LOAD_FORMAT_X
BUFFER_LOAD_FORMAT_XY
BUFFER_LOAD_FORMAT_XYZ
BUFFER_LOAD_FORMAT_XYZW
BUFFER_LOAD_D16_FORMAT_X
BUFFER_LOAD_D16_HI_FORMAT_X
BUFFER_LOAD_D16_FORMAT_XY

9.1. Buffer Instructions

Table 39. MUBUF Instructions

Description - all address components for buffer ops are uint
load unsigned byte (extend 0’s to MSB’s of DWORD VGPR)
load unsigned byte into VGPR[15:0]

load unsigned byte into VGPR[31:16]

load signed byte (sign extend to MSB’s of DWORD VGPR)
load signed byte into VGPR[15:0]

load signed byte into VGPR[31:16]

load unsigned short (extend 0’s to MSB’s of DWORD VGPR)
load signed short (sign extend to MSB’s of DWORD VGPR)
load short into VGPR[15:0]

load short into VGPR[31:16]

load DWORD

load 2 DWORD per element

load 3 DWORD per element

load 4 DWORD per element

load X component w/ format convert

load XY components w/ format convert

load XYZ components w/ format convert

load XYZW components w/ format convert

load X component w/ format convert, 16b

load X component w/ format convert, 16b

load XY components w/ format convert, 16b
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Opcode
BUFFER_LOAD_D16_FORMAT_XYZ
BUFFER_LOAD_D16_FORMAT_XYZW
BUFFER_STORE_BS8
BUFFER_STORE_D16_HI_B8
BUFFER_STORE_B16
BUFFER_STORE_D16_HI_B16
BUFFER_STORE_B32
BUFFER_STORE_B64
BUFFER_STORE_B96
BUFFER_STORE_B128
BUFFER_STORE_FORMAT_X
BUFFER_STORE_FORMAT_XY
BUFFER_STORE_FORMAT_XYZ
BUFFER_STORE_FORMAT_XYZW
BUFFER_STORE_D16_FORMAT_X
BUFFER_STORE_D16_HI_FORMAT_X
BUFFER_STORE_D16_FORMAT_XY
BUFFER_STORE_D16_FORMAT_XYZ
BUFFER_STORE_D16_FORMAT_XYZW
BUFFER_ATOMIC_ADD_U32
BUFFER_ATOMIC_ADD_F32
BUFFER_ATOMIC_ADD_U64
BUFFER_ATOMIC_AND_B32
BUFFER_ATOMIC_AND_B64
BUFFER_ATOMIC_CMPSWAP_B32

BUFFER_ATOMIC_CMPSWAP_B64
BUFFER_ATOMIC_CSUB_U32
BUFFER_ATOMIC_DEC_U32
BUFFER_ATOMIC_DEC_U64
BUFFER_ATOMIC_CMPSWAP_F32

BUFFER_ATOMIC_MAX_F32
BUFFER_ATOMIC_MIN_F32
BUFFER_ATOMIC_INC_U32
BUFFER_ATOMIC_INC_U64
BUFFER_ATOMIC_OR_B32
BUFFER_ATOMIC_OR_B64
BUFFER_ATOMIC_MAX_I32
BUFFER_ATOMIC_MAX_I64
BUFFER_ATOMIC_MIN_I32
BUFFER_ATOMIC_MIN_I64
BUFFER_ATOMIC_SUB_U32
BUFFER_ATOMIC_SUB_U64
BUFFER_ATOMIC_SWAP_B32
BUFFER_ATOMIC_SWAP_B64
BUFFER_ATOMIC_MAX_U32
BUFFER_ATOMIC_MAX_U64

9.1. Buffer Instructions

AMD¢1

Description - all address components for buffer ops are uint
load XYZ components w/ format convert, 16b
load XYZW components w/ format convert, 16b
store byte (ignore MSB’s of DWORD VGPR)
store byte from VGPR bits [23:16]

store short (ignore MSB’s of DWORD VGPR)
store short from VGPR bits [32:16]

store DWORD

store 2 DWORD per element

store 3 DWORD per element

store 4 DWORD per element

store X component w/ format convert

store XY components w/ format convert

store XYZ components w/ format convert

store XYZW components w/ format convert
store X component w/ format convert, 16b
store X component w/ format convert, 16b
store XY components w/ format convert, 16b
store XYZ components w/ format convert, 16b
store XYZW components w/ format convert, 16b
32b, dst += src, returns previous value if glc==1
32b, dst += src, returns previous value if glc==1
64b , dst += src, returns previous value if glc==
32b, dst &= src, returns previous value if gle==
64b , dst &= src, returns previous value if glc==

32b, dst = (dst == cmp) ? src : dst, returns previous value if glc==1. Src is from
vdata, cmp from vdata+1

64b , dst = (dst == cmp) ? src : dst, returns previous value if gle==

32b, dst=1if (src > dst) ? 0 : dst - src, returns previous . GLC must be set to 1.
32b, dst=dst==0) | (dst > src ? src : dst-1, returns previous value if glc==1
64b , dst=dst==0) | (dst > src ? src : dst-1, returns previous value if glc==1
32b, dst = (dst == cmp) ? src : dst, returns previous value if glc==1. Src is from
vdata, cmp from vdata+1

32b, dst = (src > dst) ? src : dst, (float) returns previous value if glc==

32b, dst = (src < dst) ? src : dst, (float) returns previous value if glc==

32b, dst = (dst >=src) ? 0 : dst+1, returns previous value if gle==1

64b , dst = (dst >=src) ? 0 : dst+1, returns previous value if glc==1

32b, dst |= src, returns previous value if gle==1

64b , dst |= src, returns previous value if gle==1

32b, dst = (src > dst) ? src : dst, (signed) returns previous value if gle==1
64b , dst = (src > dst) ? src : dst, (signed) returns previous value if glc==1
32b, dst = (src < dst) ? src : dst, (signed) returns previous value if glc==1
64b , dst = (src < dst) ? src : dst, (signed) returns previous value if glc==1
32b, dst -= src, returns previous value if gle==1

64b , dst -= src, returns previous value if gle==1

32b, dst = src, returns previous value of dst if gle==

64b , dst = src, returns previous value of dst if gle==

32b, dst = (src > dst) ? src : dst, (unsigned) returns previous value if glc==1
64b , dst = (src > dst) ? src : dst, (unsigned) returns previous value if glc==1

83 of 600



"RDNA3" Instruction Set Architecture AMDAl

Opcode Description - all address components for buffer ops are uint
BUFFER_ATOMIC_MIN_U32 32b, dst = (src < dst) ? src : dst, (unsigned) returns previous value if glc==1
BUFFER_ATOMIC_MIN_U64 64b , dst = (src < dst) ? src : dst, (unsigned) returns previous value if glc==1
BUFFER_ATOMIC_XOR_B32 32b, dst ~=src, returns previous value if gle==1

BUFFER_ATOMIC_XOR_B64 64b , dst ~= src, returns previous value if glc==1

BUFFER_GLO_INV invalidate the shader L0 cache (texture cache) associated with this wave.
BUFFER_GL1_INV invalidate the GL1 (L1) cache associated with this wave, for this wave’s VMID

« BUFFER*_FORMAT instructions include a data-format conversion specified in the resource constant (V#).

« In the table above, "D16" means the data in the VGPR is 16-bits, not the usual 32 bits.
"D16_HI" means that the upper 16-bits of the VGPR is used instead of "D16" that uses the lower 16 bits.

9.2. VGPR Usage

VGPRs supply address and store-data, and they can be the destination for return data.

Address

Zero, one or two VGPRs are used, depending on the index-enable (IDXEN) and offset-enable (OFFEN) in the
instruction word. These are unsigned ints.
For 64-bit addresses the LSBs are in VGPRn and the MSBs are in VGPRn+1.

Table 40. Address VGPRs
IDXEN OFFEN VGPRn VGPRn+1

0 0 nothing

0 1 uint offset

1 0 uint index

1 1 uint index uint offset

Store Data : N consecutive VGPRs, starting at VDATA. The data format specified in the instruction word’s
opcode and D16 setting determines how many DWORDs the shader provides to store.

Load Data : Same as stores. Data is returned to consecutive VGPRs.

Load Data Format : Load data is 32 or 16 bits, based on the data format in the instruction or resource and D16.
Float or normalized data is returned as floats; integer formats are returned as integers (signed or unsigned,
same type as the memory storage format). Memory loads of data in memory that is 32 or 64 bits do not undergo
any format conversion unless they return as 16-bit due to D16 being set to 1.

Atomics with Return : Data is read out of the VGPR(s) starting at VDATA to supply to the atomic operation. If
the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at VDATA.

Table 41. Data format in VGPRs and Memory

Instruction Memory Format VGPR Format Notes
BUFFER_LOAD_U8 ubyte V0[31:0] = {24’b0, byte}

BUFFER_LOAD_D16_U8 ubyte VO0[15:0] = {8'b0, byte} writes only 16 bits
BUFFER_LOAD_D16_HI_US ubyte VO0[31:16] = {8'h0, byte} writes only 16 bits
BUFFER_LOAD_SS8 sbyte VO[31:0] = { 24{sign}, byte}

BUFFER_LOAD_D16_S8 sbyte VO[15:0] {8{sign}, byte} writes only 16 bits
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Instruction Memory Format
BUFFER_LOAD_D16_HI_S8 sbyte
BUFFER_LOAD_U16 ushort
BUFFER_LOAD_S16 sshort
BUFFER_LOAD_D16_B16 short
BUFFER_LOAD_D16_HI_B16 short
BUFFER_LOAD_B32 DWORD
BUFFER_LOAD_FORMAT_X FORMAT field
BUFFER_LOAD_FORMAT_XY FORMAT field
BUFFER_LOAD_FORMAT_XYZ FORMAT field
BUFFER_LOAD_FORMAT_XYZW FORMAT field
BUFFER_LOAD_D16_FORMAT_X FORMAT field
BUFFER_LOAD_D16_HI_FORMAT_X FORMAT field
BUFFER_LOAD_D16_FORMAT_XY FORMAT field
BUFFER_LOAD_D16_FORMAT_XYZ FORMAT field

BUFFER_LOAD_D16_FORMAT_XYZW FORMAT field

AMD¢1

VGPR Format Notes
VO0[31:16] = {8{sign}, byte}
VO0[31:0] ={ 16’b0, short}
VO0[31:0] = { 16{sign}, short}
V0[15:0] = short

V0[31:16] = short

DWORD

float, uint or sint data type in VGPR is
Load X into V0[31:0] based on FORMAT
float, uint or sint field.

Load X,Y into V0[31:0], V1[31:0] (D16_Xand D16_HI_X
write only 16 bits)

writes only 16 bits

writes only 16 bits
writes only 16 bits

float, uint or sint

Load X,Y,Z into V0[31:0],
V1[31:0], V2[31:0]

float, uint or sint

Load X,Y,Z,W into V0[31:0],
V1[31:0], V2[31:0], v3[31:0]
float, uint or sint

Load X into in V0[15:0]

float, ushort or sshort

Load X into in V0[31:16]
float, ushort or sshort

Load X,Y into in VO0[15:0],
V0[31:16]

float, ushort or sshort

Load X,Y,Z into in VO0[15:0],
VO0[31:16], V1[15:0]

float, ushort or sshort

Load X,Y,Z,W into in V0[15:0],
V0[31:16], V1[15:0], V1[31:16]

Where "V0" is the VDATA VGPR; V1 is the VDATA+1 VGPR, etc.

Instruction

BUFFER_STORE_B8
BUFFER_STORE_D16_HI_B8
BUFFER_STORE_B16
BUFFER_STORE_D16_HI_B16
BUFFER_STORE_B32

byte in [7:0]
byte in [23:16]
short in [15:0]

data in [31:0]

9.2. VGPR Usage

VGPR Format

short in [31:16]

Memory Notes
Format

byte
byte
short
short
DWORD
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Instruction VGPR Format Memory Notes
Format

BUFFER_STORE_FORMAT_X float, uint or sint FORMAT field data type in VGPR is

data in V0[31:0] based on FORMAT
BUFFER_STORE_D16_FORMAT_X float, ushort or sshort field.

data in V0[15:0]
BUFFER_STORE_D16_FORMAT_XY float, ushort or sshort

data in V0[15:0], V0[31:16]
BUFFER_STORE_D16_FORMAT_XYZ float, ushort or sshort

data in V0[15:0], VO[31:16], V1[15:0]
BUFFER_STORE_D16_FORMAT_XYZW float, ushort or sshort

data in VO0[15:0], VO[31:16], V1[15:0],

V1[31:16]
BUFFER_STORE_D16_HI_FORMAT_X float, ushort or sshort

data in V0[31:16]

9.3. Buffer Data

The amount and type of data that is loaded or stored is controlled by the following: the resource format field,
destination-component-selects (dst_sel), and the opcode.

Data-format can come from the resource, instruction fields, or the opcode itself. MTBUF derives data-format
from the instruction, MUBUF-"format" instructions use format from the resource, and other MUBUF opcode
derive data-format from the instruction itself.

DST_SEL comes from the resource, but is ignored for many operations.

Table 42. Buffer Instructions

Instruction Data Format DST SEL
TBUFFER_LOAD_FORMAT_* instruction identity
TBUFFER_STORE_FORMAT_* instruction  identity

BUFFER_LOAD_<type> derived identity
BUFFER_STORE_<type> derived identity
BUFFER_LOAD_FORMAT_* resource resource
BUFFER_STORE_FORMAT_* resource resource
BUFFER_ATOMIC_* derived identity

Instruction : The instruction’s format field is used instead of the resource’s fields.

Data format derived : The data format is derived from the opcode and ignores the resource definition. For
example, BUFFER_LOAD_US sets the data-format to uint-8.

The resource’s data format must not be INVALID; that format has specific meaning
o (unbound resource), and for that case the data format is not replaced by the instruction’s
implied data format.

DST_SEL identity : Depending on the number of components in the data-format, this is: X000, XY00, XYZ0, or
XYZW.
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9.3.1. D16 Instructions

Load-format and store-format instructions also come in a "D16" variant. The D16 buffer instructions allow a
shader program to load or store just 16 bits per work-item between VGPRs and memory. For stores, each 32bit
VGPR holds two 16bit data elements that are passed to the texture unit which in turn, converts to the texture
format before writing to memory. For loads, data returned from the texture unit is converted to 16 bits and a
pair of data are stored in each 32bit VGPR (LSBs first, then MSBs). Control over int vs. float is controlled by
FORMAT. Conversion of float32 to float16 uses truncation; conversion of other input data formats uses round-
to-nearest-even.

There are two variants of these instructions:

- D16 loads data into or stores data from the lower 16 bits of a VGPR.
- D16_HI loads data into or stores data from the upper 16 bits of a VGPR.

For example, BUFFER_LOAD_D16_U8 loads a byte per work-item from memory, converts it to a 16-bit integer,
then loads it into the lower 16 bits of the data VGPR.

9.3.2. LOAD/STORE_FORMAT and DATA-FORMAT mismatches

The "format" instructions specify a number of elements (x, xy, Xyz or xyzw) and this could mismatch with the
number of elements in the data format specified in the instruction’s or resource’s data-format field. When that
happens.

+ buffer_load_format_x and dfmt is "32_32_32_32": load 4 DWORDs from memory, but only load first into
the shader

« buffer_store_format_x and dfmt is "32_32_32_32" : stores 4 DWORDs to memory based on dst_sel

« buffer_load_format_xyzw and dfmt is "32" : load 1 DWORD from memory, return 4 to shader (dst_sel)

« buffer_store_format_xyzw and dfmt is "32" : store 1 DWORD (X) to memory, ignore YZW.

9.4. Buffer Addressing

A buffer is a data structure in memory that is addressed with an index and an offset. The index points to a
particular record of size stride bytes, and the offset is the byte-offset within the record. The stride comes from
the resource, the index from a VGPR (or zero), and the offset from an SGPR or VGPR and also from the
instruction itself.

Table 43. BUFFER Instruction Fields for Addressing

Field Size Description
inst_offset 12  Literal byte offset from the instruction.
inst_idxen 1  Boolean: get per-lane index from VGPR when true, or no index when false.

inst_offen 1  Boolean: get per-lane offset from VGPR when true, or no offset when false. Note that inst_offset is present
regardless of this bit.

The "element size" for a buffer instruction is the amount of data the instruction transfers in bytes. It is

determined by the FORMAT field for MTBUF instructions, or from the opcode for MUBUF instructions, and is:
1,2, 4, 8,12 or 16 bytes. For example, format "16_16" has an element size of 4-bytes.
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Table 44. Buffer Resource Constant Fields for Addressing

Field Size Description

const_base 48 Base address of the buffer resource, in bytes.
const_stride 14 Stride of the record in bytes (0 to 16,383 bytes).
const_num_records 32 Number of records in the buffer. In units of:

Bytes if: const_stride == 0 || const_swizzle_enable == false
Otherwise, in units of "stride".

const_add_tid_enable 1 Boolean. Add thread_ID within the wave to the index when true.
const_swizzle_enable 2 Swizzle AOS according to stride, index_stride and element_size:
0: disabled
1: enabled with element_size = 4-byte
2: Reserved

3: enabled with element_size = 16-byte

const_index_stride 2 Used only when const_swizzle_en = true. Number of contiguous indices for a single
element (of const_element_size=4 or 16 bytes) before switching to the next element.
8, 16, 32 or 64 indices.

Table 45. Address Components from GPRs
Field Size Description
SGPR_offset 32  An unsigned byte-offset to the address. Comes from an SGPR or MO.
VGPR_offset 32  An optional unsigned byte-offset. It is per-thread, and comes from a VGPR.
VGPR_index 32 An optional index value. It is per-thread and comes from a VGPR.

The final buffer memory address is composed of three parts:
+ the base address from the buffer resource (V#),
« the offset from the SGPR, and

« a buffer-offset that is calculated differently, depending on whether the buffer is linearly addressed (a
simple Array-of-Structures calculation) or is swizzled.

Address Calculation for a Linear Buffer

Address Calculation for a Linear Buffer

ADDRESS = const_base + sgpr_offset + buffer_offset

Vit SGPR
(soffset)

“Offset” “Index”
r

Buffer_Offset = Enst_offset + vgpr_offsetj + const_stride * [(vgpr_index + WorkitemlD)j

Instr. VGPR v# VGPR 0..63

Full equations:
Index = (inst 1dxen ? vgpr index : 0) + (const add tid enable ? workitem 1d[5:0] : 0)

Offset = (inst offen ? vgpr offset: 0) + inst_offset

9.4.1. Range Checking

Buffer addresses are checked against the size of the memory buffer. Loads that are out of range return zero,
and stores and atomics are dropped. Range checking is per-component for non-formatted loads and stores that
are larger than one DWORD. Note that load/store_B64, B96 and B128 are considered "2-DWORD/3-DWORD/4-
DWORD load/store", and each DWORD is bounds checked separately. The method of clamping is controlled by
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a 2-bit field in the buffer resource: OOB_SELECT (Out of Bounds select).

Table 46. Buffer Out Of Bounds Selection

00B Out of Bounds Check Description or use

SELECT

0 (index >= NumRecords) || (offset+payload > stride) structured buffers

1 (index >= NumRecords) Raw buffers

2 (NumRecords == 0) do not check bounds (except
empty buffer)

3 Bounds check: Raw

In this mode, "num_records" is
reduced by "sgpr_offset"

if (swizzle_en && const_stride != 0x0)
00B = (index >= NumRecords || (offset+payload > stride))
else

00B = (offset+payload > NumRecords)

Where "payload" is the number of bytes the instruction transfers.

Notes:

1. Loads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1 that return 1).

.

Stores that are out-of-range do not store anything.

w

Load/store-format-* instruction and atomics are range-checked "all or nothing" - either entirely in or out.

b

Load/store-B{64,96,128} and range-check per component.
For MTBUF, if any component of the thread is out of bounds, the whole thread is considered out of bounds
and returns zero. For MUBUF, only the components that are out of bounds return zero.

9.4.1.1. Structured Buffer

The address calculation for swizzle_en==0 is: (unswizzled structured buffer)

ADDR = Base + baseOff + Ioff + Stride * Vidx + (OffEn ? Voff : @)
V# SGPR INST V# VGPR INST VGPR

NumRecords for structured buffer is in units of stride.

9.4.1.2. Raw Buffer

ADDR = Base + baseOff + Ioff + (OffEn ? Voff : 0)
V# SGPR INST INST VGPR

NumRecords for raw buffer is in units of bytes. This is an exact range check, meaning it includes the payload
and handles multi-DWORD and unaligned correctly. The stride field is ignored.
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9.4.1.3. Scratch Buffer

The address calculation for swizzle_en = 0 is...(unswizzled scratch buffer)

ADDR = Base + baseOffset + Ioff + Stride * TID + (OffEn ? Voff : @)
V# SGPR INST V# 0..63 INST VGPR

Swizzle of scratch buffer is also supported (and is typical). The MSBs of the TID (TID / 64) is folded into
baseOffset. No range checking (using OOB mode 2).

9.4.1.4. Scalar Memory

Scalar memory does the following, that works with RAW buffers and unswizzled structured buffers:

Addr = Base + offset
V# SGPR or Inst

Address Out-of-Range if: offset >= ( (stride==0? 1 : stride) * num_records).

Notes

1. Loads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1 that return 1).
Stores that are out of range do not write anything.

2. Load/store-format-* instruction and atomics are range-checked "all or nothing" - either entirely in or out.

3. Load/store-DWORD-x{2,3,4} perform range-check per component.

9.4.2. Swizzled Buffer Addressing

Swizzled addressing rearranges the data in the buffer that may improve cache locality for arrays of structures.
Swizzled addressing also requires DWORD-aligned accesses. A single fetch instruction must not fetch a unit
larger than const_element_size. The buffer’s STRIDE must be a multiple of const_element_size.

const_element_size is either 4 or 16 bytes, depending on the setting of V#.swizzle_enable

Index = (inst_idxen ? vgpr_index : @) + (const_add_tid_enable ? thread_id[5:0] : @)

Offset = (inst_offen ? vgpr_offset : @) + inst_offset

index_msb = index / const_index_stride

index_1sb = index % const_index_stride

offset_msb = offset / const_element_size

offset_1sb = offset % const_element_size

buffer_offset = (index_msb * const_stride + offset_msb * const_element_size) * const_index_stride +

index_lsb * const_element_size + offset_lsb

Final Address = const_base + sgpr_offset + buffer_offset
The "sgpr_offset"” is not a part of the "offset" term in the above equations - it's in the "base".
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Example of Buffer Swizzling

Example of Buffer Swizzling
Original Buffer
[xo]vo]zowo]uo]vo[x1]v1[z1[wilui]vi|xa[v2|z2[w2]u2]v2| @ @ @}31y31lz31jwaru3tl31]

T P et o
Stride = 24 bytes Element Size
=4 bytes

Swizzled Buffer

const_index stride=8 // how many consecutive indices to group together
const element size =4 bytes  // the size of a single element, in bytes

index_msb =index/ const_index stride
index_Isb =index % const index_stride
offset_msb = offset/ const_element_size
offset Isb = offset % const element size

Buffer_offset = (index_msb * const_stride + offset_msb * const_element_size) * const_index_stride +
index_Ish * const element size + offset Isb

which simplifies to...

Buffer_offset = (index/8 * const_stride + (offset/4)*4) * 8 + index%8 * 4 + offset%4
Note that because we are dealing with dwords, offset%4 is always == 0.

S— N N

_/
Index_stride span #0 Index_stride span #1 Index_str?a:e_ span #2
An alternate way to visualize Swizzled Buffers
. Swizzled Buffer
oyte sddress: . 7C)rlglnal Buffer o clem size=4) 31
X0|vo | zo wofuo|vo|x1|v1 X0|X1[X2|x3 X7
32|z1|wifu1|vi|x2|v2|z2 (w2 2|vo|v1|v2|¥3 Y7
64 |U2|v2[x3|Y¥3|Z3 |w3|U3|v3 64)z0(z1|22|23 77
%6 |xa|v4 | za|wa|ua|va [REINE] o [wolwilwzlws| eee |w7
128 eoe 128|uo|u1(u2|u3 u7
160 160(vo|Vv1|v2|v3 v7
192 [x8 192 xg
224 224 | yg
78

9.5. Alignment

Formatted ops such as BUFFER_LOAD_FORMAT_* must be aligned as follows:

« 1-byte formats require 1-byte alignment
+ 2-byte formats require 2-byte alignment
* 4-byte and larger formats require 4-byte alignment

Atomics must be aligned to the data size, or triggers a MEMVIOL.

Memory alignment enforcement for non-formatted ops is controlled by a configuration register:
SH_MEM_CONFIG.alignment_mode.

Options are:

9.5. Alignment 91 of 600



"RDNA3" Instruction Set Architecture

AMD¢1

0. : DWORD - hardware automatically aligns request to the smaller of: element-size or DWORD.
For DWORD or larger loads or stores of non-formatted ops (such as BUFFER_LOAD_DWORD), the two
LSBs of the byte-address are ignored, thus forcing DWORD alignment.

1. : DWORD_STRICT - must be aligned to the smaller of: element-size or DWORD.

2. : STRICT - access must be aligned to data size

3. : UNALIGNED - any alignment is allowed

Options 1 and 2 report MEMVIOL if a request is made with incorrect address alignment. In options 1 and 2,
loads that are misaligned return zero, and stores that are misaligned are discarded. Note that in this context
"element-size" refers to the size of the data transfer indicated by the instruction, not const_element_size.

9.6. Buffer Resource

The buffer resource (V#) describes the location of a buffer in memory and the format of the data in the buffer.
It is specified in four consecutive SGPRs (4-SGPR aligned) and sent to the texture cache with each buffer

instruction.

The table below details the fields that make up the buffer resource descriptor.

Bits Size
47:0 48
61:48 14
63:62 2
95:64 32
98:96 3
101:99 3
104:102 3
107:105 3
113:108 6
118:117 2
119 1
123:122 2
125:124 2
127:126 2
Unbound Resources

Name
Base address
Stride

swizzle Enable

Num_records
Dst_sel_x
Dst_sel_y
Dst_sel_z
Dst_sel_w
Format

Index stride
Add tid enable
Reserved
OOB_SELECT

Type

Table 47. Buffer Resource Descriptor

Description
Byte address.
Bytes 0 to 16383

Swizzle AOS according to stride, index_stride and element_size;
otherwise linear.

0: disabled

1: enabled with element_size = 4byte

2: Reserved

3: enabled with element_size = 16byte

In units of stride if (stride >=1), else in bytes.

Destination channel select:
0=0, 1=1, 4=R, 5=G, 6=B, 7=A

Memory data type.

0:8, 1:16, 2:32, or 3:64. Used for swizzled buffer addressing.
Add thread ID to the index for to calculate the address.

Set to zero.

Out of bounds select.

Value == 0 for buffer. Overlaps upper two bits of four-bit TYPE field in
128-bit V# resource.

Setting the resource constant to all zeros has the effect of forcing any loads to return zero, and stores to be
ignored. This is keyed off the "data-format" being set to zero (INVALID), and for MUBUF the "add_tid_en =

false".

Resource - Instruction mismatch

9.6. Buffer Resource
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If the resource type and instruction mismatch (e.g. a buffer constant with an image instruction, or an image
resource with a buffer instruction), the instruction is ignored (loads return nothing and stores do not alter

memory).
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Chapter 10. Vector Memory Image Instructions

Vector Memory (VMEM) Image operations transfer data between the VGPRs and memory through the texture
cache. Image operations support access to image objects such as texture maps and typed surfaces. Sample
operations read multiple elements from a surface and combine them to produce a single result per lane.

Image objects are accessed using from one to four dimensional addresses; they are composed of homogeneous
samples, each sample containing one to four elements. These image objects are read from, or written to, using
IMAGE_* or SAMPLE_* instructions, all of which use the MIMG instruction format. IMAGE_LOAD instructions
load an element from the image buffer directly into VGPRS, and SAMPLE instructions use sampler constants
(S#) and apply filtering to the data after it is read. IMAGE_ATOMIC instructions combine data from VGPRs with
data already in memory, and optionally return the value that was in memory before the operation.

VMEM image operations use an image resource constant (T#) that is a 128-bit or 256-bit value in SGPRs. This
constant is sent to the texture cache when the instruction is executed. This constant defines the address, data
format, and characteristics of the surface in memory. Some image instructions also use a sampler constant that
is a 128-bit constant in SGPRs. Typically, these constants are fetched from memory using scalar memory loads
prior to executing VM instructions, but these constants can also be generated within the shader.

Texture fetch instructions have a data mask (DMASK) field. DMASK specifies how many data components it
receives. If DMASK is less than the number of components in the texture, the texture unit only sends DMASK
components, starting with R, then G, B, and A. if DMASK specifies more than the texture format specifies, the
shader receives data based on T#.DST_SEL for the missing components. Image ops do not generate MemViol -
instead they apply clamp modes if the address goes out of range.

Memory operations of different types (e.g. loads, stores and samples) can complete out of order with respect to
each other.

10.1. Image Instructions

This section describes the image instruction set, and the microcode fields available to those instructions.

MIMG Instructions

IMAGE_SAMPLE Load and filter data from a image object

IMAGE_SAMPLE_G16 Sample with 16-bit gradients

IMAGE_GATHER4 Load and return samples from 4 texels for software filtering. Returns a single
component, starting with the lower-left texel and in counter-clockwise order.

IMAGE_GATHER4H 4H: fetch 1 component per texel from 4x1 texels
"DMASK" selects which component to load (R,G,B,A) and must have only one bit
setto 1.

IMAGE_LOAD_{-, PCK, PCK_SGN} Load data from an image object

IMAGE_LOAD_MIP_{-, PCK, PCK_SGN } Load data from an image object from a specified mip level.

IMAGE_MSAA_LOAD Load up to 4 samples of 1 component from an MSAA resource with a user-
specified fragment ID.

Uses DMASK as component select - it behaves like gather4 ops and returns 4
VGPR (2 if D16=1).

IMAGE_STORE_{-, PCK } Store data to an image object to a specific mipmap level
IMAGE_STORE_MIP_{-, PCK }
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MIMG Instructions

IMAGE_ATOMIC_{SWAP, CMPSWAP, Image atomic operations
ADD, SUB, SMIN, UMIN, SMAX, UMAX,
AND, OR, XOR, INC, DEC }

IMAGE_GET_RESINFO

IMAGE_GET_LOD

Return resource info into 4 VGPRs for the MIP level specified. These are 32bit
integer values:

VDATAS3-0 = { #mipLevels, depth, height, width }

For cubemaps, depth = 6 * Number_of_array_faces.

(DX expects the # of cubes, but gets # of faces instead)

Return the calculated LOD. Treated as a Sample instruction.

Returns the "raw" LOD and the "clamped" LOD into VDATA as two 32 bit floats:
First VGPR = clampLOD

Second VGPR = rawLOD

1 1 0 ' oP [p16]ats]rrzeforclpiclsic]  omask [unw] | om | nsa
MIMG SSAVP ~ |welre]  smsre ___wvoAatA ___ _VADDR_
_ ADDR4 ADDR3 ADDR2 ADDR1 ,
Table 48. Instruction Fields
Instruction Fields
Field Size Description
OoP 8 Opcode
VADDR 8 Address of VGPR to supply first component of address.
VDATA 8 Address of VGPR to supply first component of store-data or receive first component of load-data.
SSAMP 5 SGPR to supply S# (sampler constant) in 4 consecutive SGPRs.
missing 2 LSB’s of SGPR-address since must be aligned to 4.
SRSRC 5 SGPR to supply T# (resource constant) in 8 consecutive SGPRs.
missing 2 LSB’s of SGPR-address since must be aligned to 4.
UNRM 1 Force address to be un-normalized. Must be set to 1 for Image stores & atomics.
0: for image ops with samplers, S,T,R from [0.0, 1.0] span the entire texture map;
1: for image ops with samplers, S,T,R from [0.0 to N] span the texture map, where N is width,
height or depth. Array/cube slice, lod, bias etc. are not affected. Image ops without sampler are
not affected. UINT inputs are "unnormalized".
This bit is logically OR’d with the S#.force_unnormalized bit.
R128 1 Texture Resource Size: 1 = 128bits, 0 = 256bits
Alé6 1 Address components are 16-bits (instead of the usual 32 bits).
When set, all address components are 16 bits (packed into 2 per DWORD), except:
Texel offsets (3 6bit UINT packed into 1 DWORD)
PCF reference (for "_C" instructions)
Address components are 16b uint for image ops without sampler; 16b float with sampler.
DIM 3 Surface Dimension:

10.1. Image Instructions

0:1D 4: 1d array
1: 2D 5:2d array
2:3D 6: 2d msaa
3: cube 7: 2d msaa array
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Instruction Fields
DMASK 4 Data VGPR enable mask: 1 .. 4 consecutive VGPRs
Loads: defines which components are returned: 0=red,1=green,2=blue,3=alpha
Stores: defines which components are written with data from VGPRs (missing components get 0).
Enabled components come from consecutive VGPRs.
E.G. DMASK=1001 : Red is in VGPRn and alpha in VGPRn+1.

For D16 loads, DMASK indicates which components to return;
For D16 stores, the DMASK the mask indicates which components to store but has restrictions:
Data is read out of consecutive VGPRs: LSB’s of VDATA, then MSB’s of VDATA then LSB’s
of VDATA+1 and last if needed MSB’s of VDATA+1. This is regardless of which DMASK bits
are set, only how many bits are set. The position of the DMASK bits controls which components
are written in memory.
If DMASK==0, the TA overrides DMASK=1 and puts zeros in VGPR followed by LWE status if exists. TFE
status is not generated since the fetch is dropped.
For IMAGE_GATHER4* instructions, DMASK indicates which component (RGBA), and the
number of VGPRs to use is determined automatically by hardware (4 VGPRs when D16=0, and 2
VGPRs when D16=1).

GLC 1 Group Level Coherent.
Atomics:
1 = return the memory value before the atomic operation is performed.
0 = do not return anything.

DLC 1 Device Level Coherent. Controls behavior of L1 cache (GL1).

SLC 1 System Level Coherent.

TFE 1 Texel Fault Enable for PRT (Partially Resident Textures). When set, fetch may return a NACK that
causes a VGPR write into DST+1 (first GPR after all fetch-dest gprs).

LWE 1 LOD Warning Enable. When set to 1, a texture fetch may return "LOD_CLAMPED = 1", and causes
a VGPR write into DST+1 (first GPR after all fetch-dest gprs). LWE only works for sampler ops;
LWE is ignored for non-sampler ops.

D16 1 VGPR-Data-16bit. On loads, convert data in memory to 16-bit format before storing it in VGPRs.
For stores, convert 16-bit data in VGPRs to the memory format before going to memory. Whether
the data is treated as float or int is decided by NFMT. Allowed only with these opcodes:

- IMAGE_SAMPLE*

+ IMAGE_GATHER4

+ IMAGE_LOAD

+ IMAGE_LOAD_MIP

+ IMAGE_STORE

+ IMAGE_STORE_MIP

NSA 1 Non-Sequential Address

When NSA=0, the image addresses must be in sequential VGPRs starting at 'VADDR'.
When NSA=1, the instruction encoding allows up to 5 address components to be specified
separately by using an additional instruction DWORD.

ADDRI1-4 4x8 Four 8-bit VGPR address fields, used by NSA. The "VADDR" field provides ADDRO.

10.1.1. Texture Fault Enable (TFE) and LOD Warning Enable (LWE)

This is related to "Partially Resident Textures".

When either of these bits are set in the instruction, any texture fetch may return one extra VGPR after all of the
data-return VGPRs. This data is returned uniquely to each thread and indicates the error / warning status of
that thread.
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The data returned is: TEXEL_FAIL | (LOD_WARNING << 1) | (LOD << 16)
« TEXEL_FAIL : 1 bit indicating that 1 or more texels for this pixel produced a NACK.
"failure" means accessing an unmapped page.
° TFE==
= TD writes the data for threads that didn't NACK to VGPR DST
® TD writes zeros or the result of blend using zeros for samples that NACKed to VGPR DST
° TFE==
® VGPR DST is written similar to above
® TD writes to VGPR DST+1 with a status where the bits corresponding to threads that NACKed are
setto 1
« LOD_WARNING : 1 bit indicating a that a pixel attempted to access a texel at too small a LOD:
warn = (LOD < T#.min_lod_warning)
+ LOD : indicates which LOD was attempted to be accessed that caused the NACK. Returns the floor of the
requested LOD.

A pixel cannot receive both TEXEL_FAIL and LOD_WARNING: TEXEL_FAIL takes precedence.

10.1.2. D16 Instructions

Load-format and store-format instructions also come in a "d16" variant. For stores, each 32-bit VGPR holds two
16-bit data elements that are passed to the texture unit. The texture unit converts them to the texture format
before writing to memory. For loads, data returned from the texture unit is converted to 16 bits, and a pair of
data are stored in each 32- bit VGPR (LSBs first, then MSBs). The DMASK bit represents individual 16- bit
elements; so, when DMASK=0011 for an image-load, two 16-bit components are loaded into a single 32-bit
VGPR.

10.1.3. A16 Instructions

The A16 instruction bit indicates that the address components are 16 bits instead of the usual 32 bits.
Components are packed such that the first address component goes into the low 16 bits ([15:0]), and the next
into the high 16 bits ([31:16]).

10.1.4. G16 Instructions

The instructions with "G16" in the name mean the user provided derivatives are 16 bits instead of the usual 32
bits. Derivatives are packed such that the first derivative goes into the low 16 bits ([15:0]), and the next into the
high 16 bits ([31:16]).

10.1.5. Image Non-Sequential Address (NSA)

To avoid having many V_MOYV instructions to pack image address VGPRs together, MIMG supports a "Non
Sequential Address" version of the instruction where the VGPR of every address component is uniquely
defined. Data components are still packed. This format creates a larger instruction word, which can be up to 3
DWORDs long. The first address goes in the VADDR field, and subsequent addresses go into ADDR1-4. This 3
DWORD form of the instruction can supply up to 5 addresses.
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NSA allows an image instruction to specify up to 5 unique address VGPRs. These are the rules for how
instructions requiring more than 5 addresses are handled with NSA. It is permissible to use non-NSA mode
where all addresses are in sequential VGPRs.

» VADDR provides the first address component

« ADDRI provides the second address component

« ADDR2 provides the third address component

« ADDR3 provides the fourth address component

« ADDRA4 provides all additional components in sequential VGPRs: VADDR4, VADDR4+1, etc.

When using 16-bit addresses, each VGPR holds a pair of addresses and these cannot be located in different
VGPRs. The lower numbered 16-bit value is in the LSBs of the VGPR.

For Ray Tracing, the VGPRs are divided up into 5 groups of VGPRs. The VGPRs within each group must be
contiguous, but the groups can be scattered. The packing is different when A16=1 because RayDir.Z and

RayInvDir.x are in the same DWORD. In A16 mode, the RayDir and RayInvDir are merged into 3 VGPRs butin a
different order: RayDir and RayInvDir per component share a VGPR.

10.2. Image Opcodes with No Sampler

For image opcodes with no sampler, all VGPR address values are taken as uint.
For cubemaps, face_id = slice * 6 + face.

MSAA surfaces support only load, store and atomics; not load-mip or store-mip.

The table below shows the contents of address VGPRs for the various image opcodes.

Opcode al6[0] type acnt VGPR,[31:0] VGPR,,[31:0] VGPR,,,[31:0] VGPR,,,[31:0]
GET_RESINFO X Any 0 mipid
MSAA_LOAD 0 2D MSAA 2 S t fragid
2D Array MSAA 3 s t slice fragid
1 2D MSAA 2 t,s -, fragid
2D Array MSAA 3 t,s fragid, slice

10.2. Image Opcodes with No Sampler 98 of 600



"RDNA3" Instruction Set Architecture

Opcode
LOAD 0
LOAD_PCK
LOAD_PCK_SGN

STORE

STORE_PCK

ATOMIC 0

LOAD_MIP 0
LOAD_MIP_PCK
LOAD_MIP_PCK_SGN
STORE_MIP
STORE_MIP_PCK

al6[0] type

1D

2D

3D

Cube/Cube Array
1D Array

2D Array

2D MSAA

2D Array MSAA
1D

2D

3D

Cube/Cube Array
1D Array

2D Array

2D MSAA

2D Array MSAA
1D

2D

3D

1D Array

2D Array

2D MSAA

2D Array MSAA
1D

2D

3D

1D Array

2D Array

2D MSAA

2D Array MSAA
1D

2D

3D

Cube/Cube Array
1D Array

2D Array

1D

2D

3D

Cube/Cube Array
1D Array

2D Array

acnt VGPR,[31:0]

W N W W N KFHF WDN W WDNRFEF WNDNRFEFNRFEFOWNDNDRFEFNDNDRFOWNNDNDRERFDNDNRFEOWDNNDNDHFENDNDNDNDRFE O

S
S
S

s
S

-s

t,s

t,s

t,s
slice, s
t,s

t, s

t, s

S

s

S

S

s
s

-8

t, s

t,s
slice, s
t,s

t, s

t, s

s

s

mipid, s
t,s

t,s

t,s
slice, s

t,s

VGPR,,,[31:0]

_,r

-, face

-, slice
-, fragid
fragid, slice

_,r

-, slice

-, fragid
fragid, slice
mipid

-, mipid
mipid, r
mipid, face
-, mipid

mipid, slice

AMD¢1

VGPR,,,[31:0] VGPR,,,[31:0]
r

face

slice

fragid

slice fragid
r

slice

fragid

slice fragid
mipid

r mipid
face mipid
mipid

slice mipid

« Image_Load : image_load, image_load_mip, image_load_{pck, pck_sgn, mip_pck, mip_pck_sgn}

+ Image_Store: image_store, image_store_mip

+ Image_Atomic_*: swap, cmpswap, add, sub, {u,s}{{min,max}, and, or, xor, inc, dec.

"ACNT" is the Address Count: the number of VGPRs that supply the "body" of the address, derived from the

10.2. Image Opcodes with No Sampler
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instruction’s DIM field and the opcode.

10.3. Image Opcodes with a Sampler

AMD¢1

Opcodes with a sampler: all VGPR address values are taken as FLOAT except for Texel-offset which are UINT.
For cubemaps, face_id = slice * 8 + face.
(Note that the "*8" differs from the non-sampler case which is "*6").
Certain sample and gather opcodes require additional values from VGPRs beyond what is shown in the table
below. These values are: offset, bias, z-compare and gradients. Please see the next section for details. MSAA
surfaces do not support sample or gather4 operations.

Opcode
Sample
GetLod
Sample "_L":
Sample "_CL":

10.3. Image Opcodes with a Sampler

al6[0] acnt type

0

0

W N W W N FHF WDN W WDNKFEF WN WWNKFEF WNWWDNKFEDNDRFEDNDNREODNDREDNDDNDR-

1D

2D

3D
Cube(Array)
1D Array

2D Array

1D

2D

3D
Cube(Array)
1D Array

2D Array

1D

2D

3D
Cube(Array)
1D Array

2D Array

1D

2D

3D
Cube(Array)
1D Array

2D Array

1D

2D

3D
Cube(Array)
1D Array

2D Array

1D

2D

3D
Cube(Array)
1D Array

2D Array

VGPR,[31:0]
s

s

s

s

s

s

5S

t,s

t,s

t,s
slice, s
t, s

s

s

lod, s
t,s

t,s

t,s
slice, s
t,s

s

S

clamp, s
t,s

t,s

t,s
slice, s
t,s

VGPR,,,[31:0]

_’r

-, face

-, slice

lod

slice

-, lod
lod, r
lod, face
-, lod
lod, slice
clamp

t

t

t

slice

-, clamp
clamp, r
clamp, face
-, clamp
clamp, slice

VGPR,,,[31:0]

face

slice

lod

face
lod
slice

clamp

face
clamp
slice

VGPR,,,,[31:0]

lod
lod

lod

clamp
clamp

clamp
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Opcode
Gather

Gather "_L"

Gather "_CL"

al6[0] acnt type

0

1

W W N W W N W W N W W NDNDdDDNDRFENDDN

2D
Cube(Array)
2D Array

2D
Cube(Array)
2D Array

2D
Cube(Array)
2D Array

2D
Cube(Array)
2D Array

2D
Cube(Array)
2D Array

2D
Cube(Array)
2D Array

VGPR,[31:0]
S
S

»w »n ottt »
2] 2]

w»

o+ o+ o+
Ny
w»

t,s
t,s
t,s

VGPR,,,[31:0]
t
t
t

-, face

-, slice

t

t

t

-, lod

lod, face
lod, slice

t

t

t

-, clamp
clamp, face
clamp, slice

VGPR,,[31:0]

face
slice

lod
face
slice

clamp
face
slice

The table below lists and briefly describes the legal suffixes for image instructions:

Suffix

_L LOD

_B LOD BIAS

_CL LOD CLAMP
D Derivative

_LZ Level 0

C PCF

(0] Offset
_Gl6 Gradient 16b

10.4. VGPR Usage

Meaning

Extra Addresses

1: lod bias

2,4 or 6: slopes

1: z-comp
1: offsets

Description

Table 49. Sample Instruction Suffix Key

LOD is used instead of computed LOD.
Add this BIAS to the computed LOD.

Clamp the computed LOD to be no larger than this value.

AMD¢1

VGPR,,[31:0]

lod
lod

clamp
clamp

Send dx/dv, dx/dy, etc. slopes to be used in LOD computation.

Force use of MIP level 0.

Percentage closer filtering.
Send X, Y, Z integer offsets (packed into 1 DWORD) to offset XYZ address.

Gradients are 16-bits instead of 32-bits, packed 2 gradients per VGPR (dX in
low 16bits, dY in high 16bits).

Address: The address consists of up to 5 parts: { offset } { bias } { z-compare } { derivative } { body }

These are all packed into consecutive VGPRs, (may be non-consecutive if "NSA" is used), and can consist of up to

12 values.

- Offset: SAMPLE*O*, GATHER*O*
1 DWORD of 'offset_xyz' . The offsets are 6-bit signed integers: X=[5:0], Y=[13:8], Z=[21:16]

- Bias: SAMPLE*B*, GATHER*B*. 1 DWORD float.
¢+ Z-compare: SAMPLE*C*, GATHER*C*. 1 DWORD.
» Derivatives (SAMPLE_D): 2,4 or 6 DWORDS - these packed 1 DWORD per derivative as shown below (F32).

+ Body: One to four DWORDs, as defined by the table: Image Opcodes with a Sampler
Address components are X,Y,Z,W with X in VGPR[M], Y in VGPR[M]+1, etc.

10.4. VGPR Usage
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The number of components in "body" is the value of the ACNT field in the table, plus one.
Address components are X,Y,Z,W with X in VGPR[M], Y in VGPR[M]+1, etc.
Note: Bias and Derivatives are mutually exclusive - the shader can use one or the other, but not both.

32-bit derivatives:

Image Dim VGPR N N+1 N+2 N+3 N+4 N+5
1D dx/dh dx/dv - - - -
2D/cube dx/dh dy/dh dx/dv dy/dv - —

3D dx/dh dy/dh dz/dh dx/dv dy/dv dz/dv

16-bit derivatives:

Image Type VGPR_D VGPR_D+1 VGPR_D+2 VGPR_D+3
1 (1D, 1D Array) 16'hx, dx/dh 16’hx dx/dv - -
2 (2D, 2D Array, Cubemap) dy/dh, dx/dh dy/dv, dx/dv - -
3(3D) dy/dh, dx/dh 16’hx, dz/dh dy/dv, dx/dv 16’hx, dz/dv

The "A16" instruction bit specifies that address components are 16 bits instead of the usual 32 bits.

Data:

data is stored from or returned to 1-4 consecutive VGPRs. The amount of data loaded or stored is completely
determined by the DMASK field of the instruction.

Loads

DMASK specifies which elements of the resource are returned to consecutive VGPRs. The texture system
loads data from memory and based on the data format expands it to a canonical RGBA form, filling in
values for missing components based on T#.dst_sel. Then DMASK is applied and only those components
selected are returned to the shader.

Stores

When writing an image object, it is only possible to write an entire element (all components) - not only
individual components. The components come from consecutive VGPRs and the texture system fill in the
value zero for any missing components of the image’s data format, and ignore any values that are not part
of the stored data format. For example if the DMASK=1001, the shader sends Red from VGPR_N and Alpha from
VGPR_N+1 to the texture unit. If the image object is RGB, the texel is overwritten with Red from the VGPR_N,
Green and Blue set to zero, and Alpha from the shader ignored. For D16=1, the DMASK has 1 bit set per 16-bits of
data to be written from VGPRs to memory. The position of the bits in DMASK is irrelevant, only the number
of bits set to 1.

"D16" instructions
Load and store instructions also come in a "d16" variant. For stores, each 32bit VGPR holds two 16bit data
elements that are passed to the texture unit which in turn, converts to the texture format before writing to
memory. For loads, data returned from the texture unit is converted to 16 bits and a pair of data are stored
in each 32bit VGPR (LSBs first, then MSBs). If there is only one component, the data goes into the lower half
of the VGPR unless the "HI" instruction variant is used in which case the high-half of the VGPR is loaded
with data.
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Atomics

Image atomic operations are supported only on 32- and 64-bit-per-pixel surfaces. The surface data format is
specified in the resource constant. Atomic operations treat the element as a single component of 32- or 64-
bits. For atomic operations, DMASK is set to the number of VGPRs (DWORDs) to send to the texture unit.
DMASK legal values for atomic image operations: All other values of DMASK are illegal.

+ 0x1 = 32bit atomics except cmpswap

+ 0x3 = 32bit atomic cmpswap

+ 0x3 = 64bit atomics except cmpswap

« 0xf = 64bit atomic cmpswap

+ Atomics with Return: Data is read out of the VGPR(s), starting at VDATA, to supply to the atomic

operation. If the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at
VDATA.

The DMASK must be compatible with the resource’s data format.

Denormals in Floats
Sample ops flush denormals, and loads do not modify denormals.

10.4.1. Data format in VGPRs

Data in VGPRs sent to texture (stores) or returned from texture (loads) is in one of a few standard formats, and
the texture unit converts to/from the memory format.

FORMAT VGPR data format If D16==1

SINT signed 32-bit integer 16 bit signed int
UINT unsigned 32-bit integer 16 bit unsigned int
others 32-bit float 16 bit float
Atomics depends on opcode: uint or float -

ASTC data formats 32-bit float -

10.5. Image Resource

The image resource (also referred to as T#) defines the location of the image buffer in memory, its dimensions,
tiling, and data format. These resources are stored in four or eight consecutive SGPRs and are read by MIMG
instructions. All undefined or reserved bit must be set to zero unless otherwise specified.

Table 50. Image Resource Definition

Bits Size Name Comments
128-bit Resource: 1D-tex, 2d-tex, 2d-msaa (multi-sample anti-aliasing)

39:0 40 base address 256-byte aligned (represents bits 47:8).

47 1 Big Page 0 = No page size override, 1 = coalesce page translation requests to 64kB
granularity. Use only when entire resource uses pages 64kB or greater.

51:48 4 max mip MSAA resources: holds Log2(number of samples); others holds:
MipLevels-1. This describes the resource, not the resource view.

59:52 8 format Memory Data format

75:62 14 width width-1 of mip 0 in texels
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Bits Size Name Comments

91:78 14 height height-1 of mip 0 in texels

98:96 3 dst_sel_x 0=0,1=1,4=R,5=G,6=B,7=A.

101:99 3 dst_sel_y

104:102 3 dst_sel_z

107:105 3 dst_sel_w

111:108 4 base level largest mip level in the resource view. For MSAA, this should be set to 0

115:112 4 last level smallest mip level in resource view. For MSAA, holds log2(number of
samples).

123:121 3 BC Swizzle Specifies channel ordering for border color data independent of the T#

dst_sel_*s. Internal xyzw channels get the following border color
channels as stored in memory. 0=xyzw, 1=xwyz, 2=WzyX, 3=WXyz, 4=ZyXW,
5=yXwWz

127:124 4 type 0=buf, 8=1d,9=2d, 10=3d, 11 = cube, 12 = 1d-array, 13 = 2d-array, 14 =
2d-msaa, 15 = 2d-msaa-array. 1-7 are reserved.

256-bit Resource: 1d-array, 2d-array, 3d, cubemap, MSAA

140:128 13 depth Depth-1 of Mip0 for a 3D map; last array slice for a 2D-array or 1D-array
or cube-map; (pitch-1)[12:0] of mip0 for 1D, 2D, 2D-MSAA resources if
pitch > width.

141 1 Pitch[13] (pitch-1)[13] of mip0 for 1D, 2D and 2D-MSAA.

156:144 13 base array First slice in array of the resource view.

163:160 4 array pitch For 3D, bit 0 indicates SRV or UAV:

0: SRV (base_array ignored, depth w.r.t. base map)
1: UAV (base_array and depth are first and last layer in view, and w.r.t.
mip level specified)

179:168 12 min lod warn feedback trigger for LOD, u4.8 format

183 1 corner samples mod Describes how texels were generated in the resource. 0=center sampled,
1 =corner sampled.

198:187 12 min_lod smallest LOD allowed for PRTs, U4.8 format

198:187 12 min LOD smallest LOD allowed for PRTs, u4.8 format.

202 1 Iterate 256 Indicates that compressed tiles in this surface have been flushed out to

every 256B of the tile. Applies only to MSAA depth surfaces.

211 1 Meta Pipe Aligned  Maintains pipe alignment in metadata addressing (DCC and tiling)
213 1 Compression Enable enable delta color compression (DCC)

214 1 Alpha is on MSB Set to 1 if the surface’s component swap is not reversed (DCC)

215 1 Color Transform Auto=0, none=1 (DCC)

255:216 40 Meta Data Address  Upper bits of meta-data address (DCC) [47:8]

A resource that is all zeros is treated as 'unbound": it returns all zeros and not generate a memory transaction.
The "resource-level" field is ignored when checking for "all zeros".

10.6. Image Sampler

The sampler resource (also referred to as S#) defines what operations to perform on texture map data loaded
by sample instructions. These are primarily address clamping and filter options. Sampler resources are
defined in four consecutive SGPRs and are supplied to the texture cache with every sample instruction.

Table 51. Image Sampler Definition
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Bits
2:0

5:3

8:6

11:9

14:12

15

18:16

19

20
26:21
27
28

30:29
31

43:32
55:44
77:64
83:78
85:84
87:86
89:88
91:90

94
107:96

10.6. Image Sampler

Size

-

N

Name

clamp x

clampy

clamp z

max aniso ratio

depth compare func

force unnormalized

aniso threshold
mc coord trunc

force degamma
aniso bias
trunc coord

disable cube wrap

filter_mode
skip degamma
min lod

max lod

lod bias

lod bias sec

xy mag filter
xy min filter

z filter

mip filter

Blend PRT

border color ptr

AMD¢1

Description

Clamp/wrap mode:

0: Wrap

: Mirror

: ClampLastTexel

: MirrorOnceLastTexel
: ClampHalfBorder

: MirrorOnceHalfBorder
: ClampBorder

: MirrorOnceBorder
0=1:1

1=2:1

2=4:1

3=28:1

4=16:1

: Never

: Less

: Equal

: Less than or equal

: Greater

: Not equal

: Greater than or equal
: Always

N AW N

NN AW N O

Force address cords to be unorm: 0 = address coordinates are
normalized, in [0,1); 1 = address coordinates are unnormalized in the
range [0,dim).

threshold under which floor(aniso ratio) determines number of samples
and step size

enables bilinear blend fraction truncation to 1 bit for motion
compensation

force format to srgb if data_format allows
6 bits, in ul.5 format.
selects texel coordinate rounding or truncation.

disables seamless DX10 cubemaps, allows cubemaps to clamp according
to clamp_x and clamp_y fields

0 = Blend (lerp); 1 = min, 2 = max.

disabled degamma (sRGB->Linear) conversion.

minimum LOD ins resource view space (0.0 = T#.base_level) u4.8.
maximum LOD ins resource view space

LOD bias s6.8.

bias (s2.4) added to computed LOD

Magnification filter: 0=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
Minification filter: 0=point, 1=bilinear, 2=aniso-point, 3=aniso-linear
Volume Filter: 0=none (use XY min/mag filter), 1=point, 2=linear

Mip level filter: 0=none (disable mipmapping,use base-leve), 1=point,
2=linear

For PRT fetches, bled the PRT_default valu for non-resident levels
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Bits Size Name Description

127:126 2 border color type Opaque-black, transparent-black, white, use border color ptr.
0: Transparent Black
1: Opaque Black
2: Opaque White
3: Register (User border color, pointed to by border_color_ptr)"

10.7. Data Formats

The table below details all the data formats that can be used by image and buffer resources.

Table 52. Buffer and Image Data Formats

# Format # Format # Format
0 INVALID 31 11_11_10_FLOAT 64 8_SRGB
1 8_UNORM 32 10_10_10_2_UNORM 65 8_8_SRGB
2 8_SNORM 33 10_10_10_2_SNORM 66 8_8_8_8_SRGB
3 8_USCALED 34 10_10_10_2_UINT 67 5_9_9_9_FLOAT
4 8_SSCALED 35 10_10_10_2_SINT 68 5_6_5_UNORM
5 8_UINT 36 2_10_10_10_UNORM 69 1_5_5_5_UNORM
6 8_SINT 37 2_10_10_10_SNORM 70 5_5_5_1_UNORM
7 16_UNORM 38 2_10_10_10_USCALED 71 4_4_4_4_UNORM
8 16_SNORM 39 2_10_10_10_SSCALED 72 4_4_UNORM
9 16_USCALED 40 2_10_10_10_UINT 73 1_UNORM
10 16_SSCALED 41 2_10_10_10_SINT 74 1_REVERSED_UNORM
11 16_UINT 42 8_8_8_8_UNORM 75 32_FLOAT_CLAMP
12 16_SINT 43 8_8_8_8_SNORM 76 8_24_UNORM
13 16_FLOAT 44 8_8_8_8_USCALED 77 8_24_UINT
14 8_8_UNORM 45 8_8_8_8_SSCALED 78 24_8_UNORM
15 8_8_SNORM 46 8_8_8_8_UINT 79 24_8_UINT
16 8_8_USCALED 47 8_8_8_8_SINT 80 X24_8_32_UINT
17 8_8_SSCALED 48 32_32_UINT 81 X24_8_32_FLOAT
18 8_8_UINT 49 32_32_SINT 82 GB_GR_UNORM
19 8_8_SINT 50 32_32_FLOAT 83 GB_GR_SNORM
20 32_UINT 51 16_16_16_16_UNORM 84 GB_GR_UINT
21 32_SINT 52 16_16_16_16_SNORM 85 GB_GR_SRGB
22 32_FLOAT 53 16_16_16_16_USCALED 86 BG_RG_UNORM
23 16_16_UNORM 54 16_16_16_16_SSCALED 87 BG_RG_SNORM
24 16_16_SNORM 55 16_16_16_16_UINT 88 BG_RG_UINT
25 16_16_USCALED 56 16_16_16_16_SINT 89 BG_RG_SRGB
26 16_16_SSCALED 57 16_16_16_16_FLOAT
27 16_16_UINT 58 32_32_32_UINT Compressed Formats
28 16_16_SINT 59 32_32_32_SINT 109 BC1_UNORM
29 16_16_FLOAT 60 32_32_32_FLOAT 110 BC1_SRGB
30 10_11_11_FLOAT 61 32_32_32_32_UINT 111 BC2_UNORM

62 32_32_32_32_SINT 112 BC2_SRGB

63 32_32_32_32_FLOAT 113 BC3_UNORM

114 BC3_SRGB
115 BC4_UNORM
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# Format # Format #
116
117
118
119
120
121
122
205
206

AMD¢1

Format
BC4_SNORM
BC5_UNORM
BC5_SNORM
BC6_UFLOAT
BC6_SFLOAT
BC7_UNORM
BC7_SRGB
YCBCR_UNORM
YCBCR_SRGB

10.8. Vector Memory Instruction Data Dependencies

When a VM instruction is issued, it schedules the reads of address and store-data from VGPRs to be sent to the
texture unit. Any ALU instruction that attempts to write this data before it has been sent to the texture unit is

stalled.

The shader developer’s responsibility to avoid data hazards associated with VMEM instructions include waiting
for VMEM load instruction completion before reading data fetched from the cache (VMCNT and VSCNT).

This is explained in the section: Data Dependency Resolution

10.9. Ray Tracing

Ray Tracing support includes the following instructions:

+« IMAGE_BVH_INTERSECT_RAY
+ IMAGE_BVH64_INTERSECT_RAY

These instructions receive ray data from the VGPRs and fetch BVH (Bounding Volume Hierarchy) from

memory.

+ Box BVH nodes perform 4x Ray/Box intersection, sorts the 4 children based on intersection distance and

returns the child pointers and hit status.

+ Triangle nodes perform 1 Ray/Triangle intersection test and returns the intersection point and triangle ID.

The two instructions are identical, except that the "64" version supports a 64-bit address while the normal
version supports only a 32bit address. Both instructions can use the "A16" instruction field to reduce some (but
not all) of the address components to 16 bits (from 32). These addresses are: ray_dir and ray_inv_dir.

10.9.1. Instruction definition and fields

image_bvh_intersect_ray vgpr_d[4], vgpr_a[11], sgpr_r[4]
image_bvh_intersect_ray vgpr_d[4], vgpr_a[8], sgpr_r[4] A16=1
image_bvh64_intersect_ray vgpr_d[4], vgpr_a[12], sgpr_r[4]
image_bvh64_intersect_ray vgpr_d[4], vgpr_a[9], sgpr_r[4] A16=1

10.8. Vector Memory Instruction Data Dependencies
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VGPR_ BVH A16=0

A

0 node_pointer (u32)
1 ray_extent (f32)

2 ray_origin.x (f32)
3 ray_origin.y (£32)
4 ray_origin.z (f32)
5 ray_dir.x (f32)

6 ray_dir.y (f32)

7 ray_dir.z (f32)

8 ray_inv_dir.x (f32)
9 ray_inv_dir.y (f32)
10 ray_inv_dir.z (f32)
11 unused

Table 53. Ray Tracing VGPR Contents

BVH Al16=1

node_pointer (u32)
ray_extent (f32)
ray_origin.x (f32)
ray_origin.y (f32)
ray_origin.z (f32)

15:0] = ray_dir.x (f16)
31:16] = ray_inv_dir.x (f16)
15:0] = ray_dir.y (f16)
31:16] = ray_inv_dir.y(f16)
15:0] = ray_dir.z (f16)
31:16] = ray_inv_dir.z (f16)

unused

——, o —,

unused
unused

unused

BVH64 A16=0

node_pointer [31:0] (u32)
node_pointer [63:32] (u32)
ray_extent (f32)
ray_origin.x (f32)
ray_origin.y (£32)
ray_origin.z (f32)

ray_dir.x (f32)
ray_dir.y (f32)
ray_dir.z (£32)

ray_inv_dir.x (f32)
ray_inv_dir.y (f32)
ray_inv_dir.z (£32)

AMD¢1

BVH64 A16=1

node_pointer [31:0] (u32)
node_pointer [63:32] (u32)
ray_extent (£32)
ray_origin.x (f32)
ray_origin.y (£32)
ray_origin.z (f32)

[15:0] = ray_dir.x (f16)
[31:16] = ray_inv_dir.x (f16)
[15:0] = ray_dir.y (f16)
[31:16] = ray_inv_dir.y(f16)
[15:0] = ray_dir.z (f16)
[31:16] = ray_inv_dir.z (f16)
unused

unused

unused

Vgpr_d[4] are the destination VGPRs of the results of intersection testing. The values returned here are
different depending on the type of BVH node that was fetched. For box nodes the results contain the 4 pointers
of the children boxes in intersection time sorted order. For triangle BVH nodes the results contain the
intersection time and triangle ID of the triangle tested.

Sgpr_r[4] is the texture descriptor for the operation. The instruction is encoded with use_128bit_resource=1.

Restrictions on image_bvh instructions

+ DMASK must be set to 0xf (instruction returns all four DWORDs)
« D16 must be set to 0 (16 bit return data is not supported)

« R128 must be set to 1 (256 bit T#s are not supported)

« UNRM must be set to 1 (only unnormalized coordinates are supported)

DIM must be set to 0 (BVH textures are 1D)

« LWE must be set to 0 (LOD warn is not supported)
+ TFE must be set to 0 (no support for writing out the extra DWORD for the PRT hit status)

SSAMP must be set to 0 (just a placeholder, since samplers are not used by the instruction)

The return order settings of the BVH ops are ignored instead they use the in-order load return queue.

10.9.2. Using BVH with NSA

When using the BVH instruction with Non-Sequential Address, the BVH components fall into 5 groups each of
which is specified by a NSA address VGPR.

« node pointer : 1 vgpr
 ray extent : 1 vgpr

+ ray origin : 3 consecutive vgprs

« ray dir : 3 consecutive vgprs

« ray inv dir : 3 consecutive vgprs (paired with ray-dir for 16-bit addresses)

10.9. Ray Tracing
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NSA and Al6:

+ A16=0, MIMG-NSA specifies 5 groups of consecutive VGPRs: node_pointer, ray_extent, ray_origin, ray_dir
and ray_inv_dir.

« A16=1, MIMG-NSA specifies 4 groups. In the above set, ray_dir and ray_inv_dir are packed into 3 VGPRs.

When using A16=1 mode, ray-dir and ray-inv-dir share the same vgprs and ADDR4 is unused.

10.9.3. Texture Resource Definition
The T# used with these instructions is different from other image instructions.

Table 54. BVH Resource Definition

Field Bits Size  Data

Base Address  39:0 40 Base address of the BVH texture 256 byte aligned

Reserved 54:40 15 Set to zero

Box growing 62:55 8 Number of ULPs to be added during ray-box test, encoded as unsigned integer
amount

Box sorting 63 1 Whether the ray-box test result need to be sorted

enable

Size 105:64 42 Number of nodes minus 1 in the BVH texture used to enforce bounds checking
Reserved 118:106 13 Set to zero

Pointer Flags 119 1 0: Do not use pointer flags or features supported by point flags

1: Utilize pointer flags to enable HW winding, backface cull, opaque/non-opaque
culling and primitive type-based culling.
triangle_return 120 1 0: Return data for triangle tests are
_mode {0: t_num, 1: t_denom, 2: triangle_id, 3: hit_status}
1: Return data for triangle tests are
{0: t_num, 1: t_denom, 2: I_num, 3: J_num}

llc_streamor  122:121 2 0: use the LLC for load/store if enabled in Mtype

unused 1: use the LLC for load, bypass for store/atomics (store/atomics probe-invalidate)
2: Reserved
3: bypass the LLC for all ops

big_page 123 1 Describes resource page usage

0 : No page size override.
1: Indicates when a whole resource is only using pages that are >= 64kB in size.

Type 127:124 4 Set to 0x8

Barycentrics
The ray-tracing hardware is designed to support computation of barycentric coordinates directly in hardware.
This uses the "triangle_return_mode" in the table in the previous section (T# descriptor).

Table 55. Ray Tracing Return Mode

DWORD Return Mode =0 Return Mode =1

Field Name Type Field Name Type
0 t_num float32 t_num float32
1 t_denom float32 t_denom float32
2 triangle_id uint32 I_num float32
3 hit_status uint32 (boolean value) J_num float32
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10.10. Partially Resident Textures

"Partially Resident Textures" provides support for texture maps in which not all levels of detail are resident in
memory. The shader compiler declares the texture map as being P.R.T. in the resource, but the shader
program must also be aware of this because if a texture fetch accesses a MIP level that is not present, the
texture unit returns an extra DWORD of status into VGPRs indicating the fetch failure. If any of the texels are
not present in memory, the texture cache returns NACK that causes a non-zero value to be written into
DST_VGPR+1 for each failing thread. The value may represent the LOD requested. The shader program must
allocate this extra VGPR for all PRT texture fetches and check that it is zero after the fetch. This PRT VGPR
must have previously been initialized to zero by the shader.

PRT is enabled when the texture resource MIN_LOD_WARN value is non-zero. Normal textures cannot NACK,
so only PRT’s can get a NACK, and a NACK causes a write to DST_VGPR+Num_VGPRS. E.g. if a SAMPLE loads 4
values into 4 VGPRs: 4,5,6,7 then PRT may return NACK status into VGPR_S.
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Chapter 11. Global, Scratch and Flat Address
Space

Flat, Global and Scratch are a collection of VMEM instructions that allow per-thread access to global memory,
shared memory and private memory. Unlike buffer and image instructions, these do not use an SRD (resource
constant).

Flat is the most generic of the 3 types where per-thread the address may map to global, private or shared
memory. Memory is addressed as a single flat address space, where certain memory address apertures map
these regions. The determination of the memory space to which an address maps is controlled by a set of
"memory aperture" base and size registers. Flat load/store/atomic instructions are effectively a simultaneous
issue of an LDS and GLOBAL instruction at the same time with the same address. The address per-thread is
read from the ADDR VGPR and then tested to see in which address space the data exists.

Flat Address Space ("flat") instructions allow load/store/atomic access to a generic memory address pointer that
can resolve to any of the following physical memories:

+ Global memory

« Scratch ("private")

« LDS ("shared")

« Invalid

* But not to: GPRs, GDS or LDS-parameters.

GLOBAL is used when all of the address fall into global memory, not LDS or Scratch. This should be used when
possible (instead of "Flat") as Global does not tie up LDS resources. SCRATCH is similar, but is used to access
scratch (private) memory space.

Scratch (thread-private memory) is an area of memory defined by the aperture registers. When an address
falls in scratch space, additional address computation is automatically performed by the hardware. For waves
that are allocated scratch memory space, the 64-bit FLAT_SCRATCH register is initialized with the a pointer to
that wave’s private scratch memory. Waves that have no scratch memory have FLAT_SCRATCH initialized to
zero. FLAT_SCRATCH is a 64-bit byte address that is implicitly used by Flat and Scratch memory instructions,
and can be manually read via S_GETREG.

The instruction specifies which VGPR supplies the address (per work-item), and that address for each work-
item may be in any one of those address spaces.

Instruction Fields

31 0
CLaT 1.1 0 1 1 1 | | op | sEc SLCIGLCIDLCI o OFFSET

VDST [svel SADDR DATA ADDR

63 32
Field Size Description
OoP 8 Opcode: see next table
ADDR 8 VGPR that holds address or offset. For 64-bit addresses, ADDR has the LSB’s and ADDR+1 has the MSBs.

For offset a single VGPR has a 32 bit unsigned offset.

For FLAT_*: specifies an address.

For GLOBAL_* when SADDR is NULL: specifies an address.
For GLOBAL_* when SADDR is not NULL: specifies an offset.
For SCRATCH, specifies an offset if SVE=1

111 of 600



"RDNA3" Instruction Set Architecture

Memory Segment: 0=Flat, 1=Scratch, 2=GLOBAL, 3=Reserved

(Must be positive for Flat; MSB is ignored and forced to zero)

meaning of this field is different for Scratch and Global.

AMD¢1

VGPR that holds the first DWORD of store-data. Instructions can use 0-4 DWORDs.
VGPR destination for data returned to the shader, either from LOADs or Atomics with GLC=1 (return

System Level Coherent. Used in conjunction with GLC to determine cache policies.
Device Level Coherent. Controls behavior of L1 cache (GL1).

Group Level Coherent - controls behavior of L0 cache. Atomics: 1 = return the memory value before the

Scalar SGPR that provides an address of offset (unsigned). To disable use, set this field to NULL. The

Global: use the SGPR to provide a base address and the VGPR provides a 32-bit byte offset.

When set to 1, scratch instructions include a 32-bit offset from a VGPR;
when set to 0, scratch instructions do not use a VGPR for addressing.

Table 56. Instructions

Field Size Description
DATA 8
VDST 8
pre-op value).
SLC 1
DLC 1
GLC 1
atomic operation is performed.
0 = do not return anything.
SEG 2
OFFSET 13  Address offset: 13-bit signed byte offset
SADDR 7
Flat: Unused
Scratch: use an SGPR as part of the address
SVE 1 Scratch VGPR Enable
Flat

FLAT_LOAD_US
FLAT_LOAD_D16_U8
FLAT_LOAD_D16_HI_U8
FLAT_LOAD_I8
FLAT_LOAD_D16_1I8
FLAT_LOAD_D16_HI_I8
FLAT_LOAD_U16
FLAT_LOAD_I16
FLAT_LOAD_D16_B16
FLAT_LOAD_D16_HI_B16
FLAT_LOAD_B32
FLAT_LOAD_B64
FLAT_LOAD_B96
FLAT_LOAD_B128

FLAT_STORE_BS
FLAT_STORE_D16_HI_BS8
FLAT_STORE_B16
FLAT_STORE_D16_HI_B16

FLAT_STORE_B32
FLAT_STORE_B64
FLAT_STORE_BY96
FLAT_STORE_B128
none

none

FLAT_ATOMIC_SWAP_B32
FLAT_ATOMIC_CMPSWAP_B32

GLOBAL
GLOBAL_LOAD_US8
GLOBAL_LOAD_D16_U8
GLOBAL_LOAD_D16_HI_U8
GLOBAL_LOAD_I8
GLOBAL_LOAD_D16_I8
GLOBAL_LOAD_D16_HI_I8
GLOBAL_LOAD_U16
GLOBAL_LOAD_I16
GLOBAL_LOAD_D16_B16
GLOBAL_LOAD_D16_HI_B16
GLOBAL_LOAD_B32
GLOBAL_LOAD_B64
GLOBAL_LOAD_B96
GLOBAL_LOAD_B128

GLOBAL_STORE_BS
GLOBAL_STORE_D16_HI_B8
GLOBAL_STORE_B16
GLOBAL_STORE_D16_HI_B16

GLOBAL_STORE_B32
GLOBAL_STORE_B64
GLOBAL_STORE_B96
GLOBAL_STORE_B128
GLOBAL_LOAD_ADDTID_B32
GLOBAL_STORE_ADDTID_B32

GLOBAL_ATOMIC_SWAP_B32
GLOBAL_ATOMIC_CMPSWAP_B32

Scratch

SCRATCH_LOAD_U8
SCRATCH_LOAD_D16_U8
SCRATCH_LOAD_D16_HI_U8
SCRATCH_LOAD_I8
SCRATCH_LOAD_D16_I8
SCRATCH_LOAD_D16_HI_I8
SCRATCH_LOAD_U16
SCRATCH_LOAD_I16
SCRATCH_LOAD_D16_B16
SCRATCH_LOAD_D16_HI_B16
SCRATCH_LOAD_B32
SCRATCH_LOAD_B64
SCRATCH_LOAD_B9%6
SCRATCH_LOAD_B128

SCRATCH_STORE_B8
SCRATCH_STORE_D16_HI_BS8
SCRATCH_STORE_B16
SCRATCH_STORE_D16_HI_B16

SCRATCH_STORE_B32
SCRATCH_STORE_B64
SCRATCH_STORE_B96
SCRATCH_STORE_B128
none

none

none
none
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Flat
FLAT_ATOMIC_ADD_U32
FLAT_ATOMIC_ADD_F32
FLAT_ATOMIC_SUB_U32
FLAT_ATOMIC_MIN_I32
FLAT_ATOMIC_MIN_U32
FLAT_ATOMIC_MAX_132
FLAT_ATOMIC_MAX_U32
FLAT_ATOMIC_AND_B32
FLAT_ATOMIC_OR_B32
FLAT_ATOMIC_XOR_B32
FLAT_ATOMIC_INC_U32
FLAT_ATOMIC_DEC_U32
FLAT_ATOMIC_CMPSWAP_F32
FLAT_ATOMIC_MIN_F32
FLAT_ATOMIC_MAX_F32
FLAT_ATOMIC_SWAP_B64
FLAT_ATOMIC_CMPSWAP_B64
FLAT_ATOMIC_ADD_U64
FLAT_ATOMIC_SUB_U64
FLAT_ATOMIC_MIN_I64
FLAT_ATOMIC_MIN_U64
FLAT_ATOMIC_MAX_I64
FLAT_ATOMIC_MAX_U64
FLAT_ATOMIC_AND_B64
FLAT_ATOMIC_OR_B64
FLAT_ATOMIC_XOR_B64
FLAT_ATOMIC_INC_U64
FLAT_ATOMIC_DEC_U64
none

11.1. Instructions

11.1.1. FLAT

GLOBAL
GLOBAL_ATOMIC_ADD_U32
GLOBAL_ATOMIC_ADD_F32
GLOBAL_ATOMIC_SUB_U32
GLOBAL_ATOMIC_MIN_I32
GLOBAL_ATOMIC_MIN_U32
GLOBAL_ATOMIC_MAX_I32
GLOBAL_ATOMIC_MAX_U32
GLOBAL_ATOMIC_AND_B32
GLOBAL_ATOMIC_OR_B32
GLOBAL_ATOMIC_XOR_B32
GLOBAL_ATOMIC_INC_U32
GLOBAL_ATOMIC_DEC_U32

GLOBAL_ATOMIC_CMPSWAP_F32

GLOBAL_ATOMIC_MIN_F32
GLOBAL_ATOMIC_MAX_F32
GLOBAL_ATOMIC_SWAP_B64

GLOBAL_ATOMIC_CMPSWAP_B64

GLOBAL_ATOMIC_ADD_U64
GLOBAL_ATOMIC_SUB_U64
GLOBAL_ATOMIC_MIN_I64
GLOBAL_ATOMIC_MIN_U64
GLOBAL_ATOMIC_MAX_I64
GLOBAL_ATOMIC_MAX_U64
GLOBAL_ATOMIC_AND_B64
GLOBAL_ATOMIC_OR_B64
GLOBAL_ATOMIC_XOR_B64
GLOBAL_ATOMIC_INC_U64
GLOBAL_ATOMIC_DEC_U64

GLOBAL_ATOMIC_CSUB_U32
(GLC must be set to 1)

Scratch
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

AMD¢1

The Flat instruction set is nearly identical to the BUFFER instruction set, minus the FORMAT loads & stores.

Flat instructions do not use a resource constant (V#) or sampler (S#), but they do use a specific SGPR-pair
(FLAT_SCRATCH) to hold scratch-space information in case any threads' address resolves to scratch space. See

"Scratch" section below.

Since Flat instruction are executed as both an LDS and a Global instruction, Flat instructions increment both
VMcnt (or VScnt) and LGKMcnt and are not considered done until both have been decremented. There is no

way a priori to determine whether a Flat instruction uses only LDS or Global memory space.

When the address from a Flat instruction falls into scratch (private) space, a different addressing mechanism is
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used. The address from the VGPR points to the memory space for a specific DWORD of scratch data owned by
this thread. The hardware maps this address to the actual memory address that holds data for all of the threads
in the wave. Flat atomics which map into scratch: 4-byte atomics are supported, and 8-byte atomics return
MEMVIOL.

The wave supplies the offset (for space allocated to this wave) with every Flat request. This is stored in a
dedicated per-wave register: FLAT_SCRATCH, that holds a 64-bit byte address.

The aperture check occurs when VGPRs are read, with invalid addresses being routed to the texture unit. The
"aperture check" is performed before "inst_offset" is added into the address, so it is undefined what occurs if
the addition of inst_offset pushes the address into a different memory aperture.

(Hole) Addr[48] Addr[47] Addr[46] Aperture

0 X X Normal (global memory)
1 0 0 Potential Private (scratch)
1 0 1 Potential Shared (LDS)

1 1 b:e Invalid

Ordering
Flat instructions may complete out of order with each other. If one Flat instruction finds all of its data in
Texture cache, and the next finds all of its data in LDS, the second instruction might complete first. If the
two fetches return data to the same VGPR, the result is unknown (order is not deterministic). Flat
instructions decrement VMcnt in order for the threads that went to global memory and those are in order
with other scratch, global, texture and buffer instructions. Separately each Flat instruction increments and
decrements LGKMecnt. This is out-of-order with the VMcnt path but is in-order with other DS (LDS)
instructions. Since the data for a Flat load can come from either LDS or the texture cache, and because
these units have different latencies, there is a potential race condition with respect to the VMcnt/VScnt and
LGKMcnt counters. Because of this, the only sensible S_WAITCNT value to use after Flat instructions is
zZero.

11.1.2. Global

Global operations transfer data between VGPR and global memory. Global instructions are similar to Flat, but
the programmer is responsible to make sure that no threads access LDS or private space. Because of this, no
LDS bandwidth is used by global instructions.

Since these instructions do not access LDS, only VMcnt (or VScnt) is used, not LGKMcnt. If a global instruction
does attempt to access LDS, the instruction returns MEMVIOL.

Global includes two instructions which do not use any VGPRs for addressing, just SGPRs and INST_OFFSET:

*+ GLOBAL_LOAD_ADDTID_B32
*+ GLOBAL_STORE_ADDTID_B32

11.1.3. Scratch

Scratch instructions are similar to global but they access a private (per-thread) memory space that is swizzled.
Because of this, no LDS bandwidth is used by scratch instructions. Scratch instructions also support multi-
DWORD access and mis-aligned access (although mis-aligned is slower).
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Since these instructions do not access LDS, only VMcnt (or VScnt) is used, not LGKMecnt. It is not possible for a
scratch instruction to access LDS, and so no error checking is done (and no aperture check is performed).

11.2. Addressing

Global, Flat and Scratch each have their own addressing modes. Flat addressing is a subset of the global and
scratch modes. 64-bit addresses are stored with the LSB’s in the VGPR at ADDR, and the MSBs in the VGPR at
ADDR+1.

There are 4 distinct shader instructions:

* GLOBAL

+ SCRATCH

« LDS

« FLAT - based on per-thread address (VGPR), can load/store: global memory, LDS or scratch memory.

Global Addressing

GV mem_addr = VGPRy,, + INST_OFFSET,,,

GVS mem_addr = SGPRy, + VGPRy,, + INST_OFFSET,,,

GT mem_addr = SGPRy, + INST_OFFSET,,; + ThreadID*4
LDS Addressing (DS ops)

LDS LDS_ADDR = VGPR_addrys, + INST_OFFSET,,,

LDS address is relative to the LDS space allocated to this wave.

Scratch Addressing

SV mem_addr = SCRATCH_BASE,,, + SWIZZLE(VGPR_offsety,, + INST_OFFSET,,,, ThreadID)

SS mem_addr = SCRATCH_BASE, + SWIZZLE(SGPR _offsety,, + INST_OFFSET;,,, ThreadID)

SVS mem_addr = SCRATCH_BASE, + SWIZZLE(SGPR_offsety,, + VGPR_offsety,, + INST_OFFSET),,, ThreadID)
ST mem_addr = SCRATCH_BASEy,, + SWIZZLE(INST_OFFSET,,,, ThreadID)

SGPR_offset and VGPR_offset are 32 bits unsigned byte offsets.

The combined offsets inside SWIZZLE() must result in a non-negative number.
The value from an SGPR and VGPR are unsigned 32-bit byte offsets.

Flat Addressing

Aperture test on the address-VGPR value determines: Global/LDS/Scratch per thread (ignores
INST_OFFSET).
Use one of the 3 address equations per lane depending on which memory it maps to:

GLOBAL (GV)  mem_addr = VGPRy,, + INST_OFFSET,,,
SCRATCH (SV)  mem_addr = SCRATCH_BASE,.,,.vs + SWIZZLE(VGPR_offset + INST_OFFSET,,;, ThreadID)

LDS LDS_ADDR = VGPR 44, + INST_OFFSET - sharedApertureBase
If the address falls into LDS space, it is checked against the range: [0, LDS_allocated_size-1 ]

There is no range checking on this address.

Scratch Addressing Equation

"SWIZZLE (offset,TID)" is hard coded based on wave size (32 or 64)
Swizzle for Scratch is hard-coded to: elem_size=4bytes, const_index_stride=32 (wave32) or 64
(wave64).
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Addr = SCRATCH_BASE + (offset / 4) * 4 * const_index_stride + (offset % 4) + TID*4

where "offset" = either "INST_OFFSET + SGPR_offset" or "INST_OFFSET + VGPR_offset".

Restrictions:

« Inst_offset :

° Flat and Scratch-ST mode: must not be negative

° Global and Scratch-SS and -SV modes: can be negative
° In Scratch SS mode, the inst_offset must be aligned to the payload size: 4 byte aligned for 1-DWORD,

16-byte aligned for 4-DWORD.

® Also (SADDR + INST_OFFSET) must be at least DWORD-aligned

SADDR
==NULL
I=NULL
==NULL
I=NULL

Scratch Instruction Modes

SV Addr= FLAT_SCRATCH

SS Addr= FLAT_SCRATCH

ST Addr= FLAT_SCRATCH

SVS Addr= FLAT_SCRATCH
BUFFER_ Addr= T#.base + Soff
+LOAD

Global Instruction Modes

GV Addr= Vaddr,

GVS Addr= Saddr,, + Voff,,
GT Addr= Saddr,,

LDS Instruction Modes

LDS Addr= Vaddr

Flat Instruction Modes

Scratch Addr= FLAT_SCRATCH

LDS Addr= Vaddr

Global Addr= Vaddr

SVE MODE
0 ST

0 SS

1 SV

1 SVS

+ swizzle(Voff + Ioff, TID)

+ swizzle(Soff + Ioff, TID)

+ swizzle(0 + Ioff, TID)

+ swizzle(Soff + Voff + Ioff, TID)

+ swizzle( (Vidx + TID) * stride + Ioff + Voff)

+ Toff
+ Toff
+ Ioff + TID*4

+ Ioff
swizzle (Voff + loff -privApertureBase, TID) // "SV"

+ Ioff - sharedApertureBase // "LDS"
+ Ioff // "GV"

« Scratch: Voff and Soff are 32 bits, unsigned bytes.
« Global: Addresses are 64 bits, offset is 32bits.

« FLAT_SCRATCH is an SGPR-pair 64-bit address.

« "Toff" is the offset from the instruction field.

+ "x"=don’t care (either value works)

11.3. Memory Error Checking

AMD¢1

Indicated by SVE
/ SADDR

1/NULL
0/!NULL
0/NULL
1/INULL

x / NULL
x /1=NULL

X/x instruction
X/x instruction
x / NULL

x /NULL
x /NULL

Both Texture and LDS can report that an error occurred due to a bad address. This can occur due to:

« Invalid address (outside any aperture)

+ Write to read-only global memory address

11.3. Memory Error Checking
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+ Misaligned data (scratch accesses may be misaligned)
 Out-of-range address:
° LDS access with an address outside the range: [ 0, LDS_SIZE-1 ]

The policy for threads with bad addresses is: stores outside this range do not write a value, and reads return
zero. The aperture check for invalid address occurs before adding any address offsets - it is based only on the
base address; the other checks are performed after adding the offsets.

Addressing errors from either LDS or TA are returned on their respective "instruction done" busses as
MEMVIOL. This sets the wave’s MEMVIOL TrapStatus bit, and also causes an exception (trap).

11.4. Data

FLAT instructions can use from zero to four consecutive DWORDs of data in VGPRs and/or memory. The DATA
field determines which VGPR(s) supply source data (if any) and the VDST VGPRs hold return data (if any).
There is no data-format conversion performed.

"D16" instructions use only 16-bit of the VGPR instead of the full 32bits. "D16_HI" instructions read or write
only the high 16-bits, while "D16" use the low 16-bits.
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Chapter 12. Data Share Operations

Local data share (LDS) is a low-latency, RAM scratchpad for temporary data storage and for sharing data
between threads within a work-group. Accessing data through LDS may be significantly lower latency and
higher bandwidth than going through memory.

For compute workloads, it allows a simple method to pass data between threads in different waves within the
same work-group. For graphics, it is also used to hold vertex parameters for pixel shaders.

LDS space is allocated per work-group or wave (when work-groups not used) and recorded in dedicated LDS-

base/size (allocation) registers that are not writable by the shader. These restrict all LDS accesses to the space
owned by the work-group or wave.

12.1. Overview

The figure below shows how the LDS fits into the memory hierarchy of the GPU.

(WorkGroup rWorkGroup

Private Private Private Private
Memory Memory Memory Memory

Work- Work- Work- Work-
Iltem Iltem ltem ltem
J

Y A y y

A A

Global/Constant Memory

Frame Buffer

Host Memory

Figure 3. High-Level Memory Configuration

There are 128kB of memory per work-group processor split up into 64 banks of DWORD-wide RAMs. These 64
banks are further sub-divided into two sets of 32-banks each where 32 of the banks are affiliated with a pair of
SIMD32’s, and the other 32 banks are affiliated with the other pair of SIMD32’s within the WGP. Each bank is a
512x32 two-port RAM (1R/1W per clock cycle). DWORDs are placed in the banks serially, but all banks can
execute a store or load simultaneously. One work-group can request up to 64kB memory.

The high bandwidth of the LDS memory is achieved not only through its proximity to the ALUs, but also
through simultaneous access to its memory banks. Thus, it is possible to concurrently execute 32 store or load
instructions, each nominally 32-bits; extended instructions, load_2addr/store_2addr, can be 64-bits each. If,
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however, more than one access attempt is made to the same bank at the same time, a bank conflict occurs. In
this case, for indexed and atomic operations, the hardware is designed to prevent the attempted concurrent
accesses to the same bank by turning them into serial accesses. This can decrease the effective bandwidth of
the LDS. For increased throughput (optimal efficiency), therefore, it is important to avoid bank conflicts. A
knowledge of request scheduling and address mapping can be key to help achieving this.

12.1.1. Dataflow in Memory Hierarchy

The figure below is a conceptual diagram of the dataflow within the memory structure.

Workgroup Processor
Private Private
Memo Memo
2 J Buffers and
Work- Work- » Images
ltem ltem [
Y ' (Per Texture
Compute- L1
LDS Unit) ;
Y
Color Buffer/Depth Buffer Texture
Write-Only Coherence Cache (Global) L2
Global Memory VRAM

Data can be loaded into LDS either by transferring it from VGPRs to LDS using "DS" instructions, or by loading
in from memory. When loading from memory, the data may be loaded into VGPRs first or for some types of
loads it may be loaded directly into LDS from memory. To store data from LDS to global memory, data is read
from LDS and placed into the work-item’s VGPRs, then written out to global memory. To help make effective
use of the LDS, a shader program must perform many operations on what is transferred between global
memory and LDS.

LDS atomics are performed in the LDS hardware. Although ALUs are not directly used for these operations,
latency is incurred by the LDS executing this function.

12.1.2. LDS Modes and Allocation: CU vs. WGP Mode

Work-groups of waves are dispatched in one of two modes: CU or WGP.

See this section for details: WGP and CU Mode

12.1.3. LDS Access Methods

There are 3 forms of Local Data Share access:
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Direct Load
Loads a single DWORD from LDS and broadcasts the data to a VGPR across all lanes.

Indexed load/store and Atomic ops

Load/store address comes from a VGPR and data to/from VGPR.
LDS-ops require up to 3 inputs: 2datatladdr and immediate return VGPR.

Parameter Interpolation Load
Reads pixel parameters from LDS per quad and loads them into one VGPR.
Reads all 3 parameters per quad (P1, P1-P0 and P2-P0) and loads them into 3 lanes within the quad (the 4th
lane receives zero).

The following sections describe these methods.

12.2. Pixel Parameter Interpolation

For pixel waves, vertex attribute data is preloaded into LDS and barycentrics (I, J) are preloaded into VGPRs
before the wave starts. Parameter interpolation can be performed by loading attribute data from LDS into
VGPRs using LDS_PARAM_LOAD and then using V_INTERP instructions to interpolate the value per pixel.

LDS-Parameter loads are used to read vertex parameter data and store them in VGPRs to be used for parameter
interpolation. These instructions operate like memory instructions except they use EXPcnt to track outstanding
reads and decrement EXPCnt when they arrive in VGPRs.

Pixel shaders can be launched before their parameter data has been written into LDS. Once the data is
available in LDS, the wave’s STATUS register "LDS_READY" bit is set to 1. Pixel shader waves stall if an
LDS_DIRECT_LOAD or LDS_PARAM_LOAD is to be issued before LDS_READY is set.

The most common form of interpolation involves weighting vertex parameters by the barycentric coordinates

"I"and "J". A common calculation is:

Result = PO + I * P10 + J * P20
where "P10" is (P1 - P@), and "P20" is (P2 - P9)

Parameter interpolation involves two types of instructions:

+ LDS_PARAM_LOAD : to read packed parameter data from LDS into a VGPR (data packed per quad)
« V_INTERP_* : VALU FMA instructions that unpack parameter data across lanes in a quad.

12.2.1. LDS Parameter Loads

Parameter Loads are only available in LDS, not in GDS, and only in CU mode (not WGP mode).

LDS_PARAM_LOAD reads three parameters (P0, P10, P20) of one 32-bit attribute or of two 16-bit attributes
from LDS into VGPRs. The are 3 parameters (P0, P10 and P20) are the same for the 4 pixels within a quad.
These values are spread out across VGPR lanes 0, 1 and 2 of each quad. Interpolation is then performed using
FMA with DPP so each lane uses its I or J value with the quad’s shared PO, P10 and P20 values.
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LDSDIR 1 1

o] | op | warrvpst | ATTR [aTrRCHN] VDST

Field
OP

WAITVDST

VDST
ATTR_CHAN
ATTR
(MO)

Table 57. LDSDIR Instruction Fields

Description
Opcode:

0: LDS_DIRECT_LOAD

1: LDS_PARAM_LOAD

2,3: Reserved
Wait for the number of previously issued still outstanding VALU instructions to be less than
or equal to this number. Used to avoid Write-After-Read hazards on VGPRs.
Destination VGPR
Attribute channel: 0=X, 1=Y, 2=Z, 3=W. Unused for LDS_DIRECT_LOAD.
Attribute number: 0 - 32. Unused for LDS_DIRECT_LOAD.
LDS_DIRECT_LOAD:

{13’b0, DataType[2:0], LDS_address[15:0] } //addr in bytes
LDS_PARAM_LOAD:
{1’b0, new_prim_mask[15:1], 1ds_param_offset[15:0] }

MO is implicitly read for this instruction and must be initialized before these instructions.

new_prim_mask
a mask that has a bit per quad indicating that this quad begins a new primitive; zero indicates same
primitive as previous quad. There is an implied "one" for the first quad in the wave (every wave begins a
new primitive) and so bit[0] is omitted.

lds_param_offset
The parameter offset indicates the starting address of the parameters in LDS. Space before that can be used
as temporary wave storage space. Lds_param_offset bits [6:0] must be set to zero.

Example LDS_PARAM_LOAD (new_prim_mask[3:0] = 0110)

Parameter Data in LDS

AttrO — Prim2 AttrO — Prim3 AttrO — Prim4 AttrO — Prim5
P20 | PO |P10(P20| PO |P10|P20| PO |P10|P20| PO |P10|P20| PO (P10|P20| PO |P10|P20| PO |P10|P20| PO (P10|P20| PO |P10|P20| PO |P10|P20| PO
Z{W|IWIW|[X | X | X|Y|Y|Y|Z|zZz|Z|WIW W| X | X|X|Y|Y|Y|Z|Z|Z|[W|IWIW|X|X|X]|Y

Attr0 — Prim0 Attr0 — Prim1 Attr0 — Prim2
PO |P10|P20| PO |P10|P20| PO (P10|P20| PO | P10|P20 PO [P10|P20| PO |P10(P20| PO (P10|P20| PO |P10|P20| PO |P10|P20| PO (P10
X X | X Y Y Y z z Z | W | W|W Y Y Y z z Z | W|W|W|X|X X|Y Y|Y z z
Lane: 4 8 12 31
) -
PO [P10| P20 PO | P10| P20 PO [P10| P20
— A

Quad 0 Quad 1 Quad 2 Quad 3

LDS_ADDR =1ds_base + param_offset + attr#*numPrimsInVector*12DWORDs + prim#*12 + attr_offset

(attr_offset =0..11: 0=P0.x, 1 =P0.Y, ... 11 =P2.W)
From NewPrimMask h/w derives NumPrimInVec and Prim# (0..15)

If the dest-VGPR is out of range, the load is still performed but EXEC is forced to zero.

LDS_PARAM_LOAD and LDS_DIRECT_LOAD use EXEC per quad (if any pixel is enabled in the quad, data is
written to all 4 pixels/threads in the quad).
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12.2.1.1. 16-bit Parameter Data

16-bit parameters are packed in LDS as pairs of attributes in DWORDs: ATTR0.X and ATTR1.X share a DWORD.
There is an alternate packing mode where the parameters are not packed (one 16-bit param in low half of
DWORD). These attributes can be read with the same LDS_PARAM_LOAD instruction, and returns the packed
DWORD with 2 attributes (when they are packed). Interpolation can then be done using specific mixed-
precision FMA opcodes, along with DPP (to select PO, P10 or P20) and OPSEL (to select upper or lower 16-bits).

Barycentrics are 32-bits, not 16 bit.

12.2.1.2. Parameter Load Data Hazard Avoidance
These data dependency rules apply to both parameter and direct loads.

LDS_DIRECT_LOAD and LDS_PARAM_LOAD read data from LDS and write it into VGPRs, and they use EXPcnt
to track when the instruction has completed and written the VGPRs.

It is up to the shader program to ensure that data hazards are avoided. These instructions are issued along a
different path from VALU instructions so it is possible that previous VALU instructions may still be reading
from the VGPR that these LDS instructions are going to write and this could lead to a hazard.

EXPcnt is used to track read-after-write hazards where LDS_PARAM_LOAD writes a value to a VGPR and
another instruction reads it. The shader program uses "s_waitcnt EXPcnt" to wait for results from a
LDS_DIRECT_LOAD or LDS_PARAM_LOAD to be available in VGPRs before consuming it in a subsequent
instruction. The VINTERP instructions have a "wait_EXPcnt" field to assist in avoid this hazard.

These are skipped when EXEC==0 and EXPCnt==0 (like memory ops).

Mixed exports & LDS-direct/param instructions from the same wave might not complete in order (both use
EXPcnt), requiring "s_waitcnt 0" if they are overlapped.

LDS_PARAM_LOAD V2
S_WAITCNT EXPcnt ©

A potential Write-After-Read hazard exists if a VALU instruction reads a VGPR and then LDS_PARAM_LOAD
writes that VGPR: It is possible the LDS_PARAM_LOAD overwrites the VALU’s source VGPR before it was read.
The user must prevent this by using the "wait_Vdst" field of the LDS_PARAM_LOAD instruction. This field
indicates the maximum number of uncompleted VALU instructions that may be outstanding when this
LDS_PARAM_LOAD is issued. Use this to ensure any dependent VALU instructions have completed.

Another potential data hazard involves LDS_PARAM_LOAD overwriting a VGPR that has not yet been read as a
source by a previous VMEM (LDS, Texture, Buffer, Flat) instruction. To avoid this hazard, the user must ensure
that the VMEM instruction has read its source VGPRs. This can be achieved by issuing any VALU or export
instruction before the LDS_PARAM_LOAD.
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12.3. VALU Parameter Interpolation

Parameter interpolation is performed using an FMA operation that includes a built-in DPP operation to unpack
the per-quad P0/P10/P20 values into per-lane values. Because this instruction reads data from neighboring
lanes, the implicit DPP acts as if "fetch invalid = 1", so that the instruction can read data from neighboring lanes
that have EXEC==0, rather than getting the value 0 from those. Standard interpolation is calculating:

Per-Pixel-Parameter = PO + I x P10 + J * P20 // I, J are per-pixel; P@/P10/P20 are per-primitive
This parameter interpolation is realized using a pair of instructions:

// V1 =TI, V2 = J, V3 = result of LDS_PARAM_LOAD
V_INTERP_P10_F32 V4, V3[1], V1, V3[@] // tmp = PO + I%P10

// uses DPP8=1,1,1,1,5,5,5,5; Src2(P@) uses DPP8=0,0,0,0,4,4,4,4
V_INTERP_P20_F32 V5, V3[2], V2, V4 // dst = JxP20 + tmp uses DPP8=2,2,2,2,6,6,6,6

vnTERP |11 0 0 1 110 1 [ oP [cm]  opsELs, | wAITEXP | VDSTg
| | T T

SRC2g SRC1g SRCO0q
&3 32

Table 58. Parameter Interpolation Instruction Fields

Field Size Description

OoP 7  Instruction Opcode:
V_INTERP_P10_F32 // tmp = PO + I*P10. hardcoded DPP8 on 2 sources
V_INTERP_P2_F32 // D =tmp + J*P20. hardcoded DPP8 on 1 source
V_INTERP_P10_F16_F32 // tmp = PO + I*P10. hardcoded DPP8 on 2 sources
V_INTERP_P2_F16_F32 // D =tmp + J*P20. hardcoded DPP8 on 1 source

V_INTERP_RTZ_P10_F16_F32 //same as above, but round-toward-zero
V_INTERP_RTZ_P2_F16_F32 // same as above, but round-toward-zero

SRCO 9 First argument VGPR: Parameter data (PO or P20) from LDS stored in a VGPR.

SRC1 9  Second argument VGPR: I or J barycentric

SRC2 9  Third argument VGPR: "P10" ops holds P10 data; "P2" ops holds partial result from "P10" op.
VDST 8 Destination VGPR

NEG 3 Negate the input (invert sign bit).

bit 0 is for src0, bit 1 is for srcl and bit 2 is for src2.

For 16-bit interpolation this applies to both low and high halves.
WaitEXP 3~ Wait for EXPcnt to be less than or equal to this value before issuing this instruction.

Used to wait for a specific previous LDS_PARAM_LOAD to have completed.
OPSEL 4  Operation select for 16-bit math: 1=select high half, 0=select low half

[0]=src0, [1]=srcl, [2]=src2, [3]=dest

For dest=0, dest_vgpr[31:0] = {prev_dst_vgpr[31:16], result[15:0] }

For dest=1, dest_vgpr[31:0] = {result[15:0], prev_dst_vgpr[15:0] }

OPSEL may only be used for 16-bit operands, and must be zero for any other operands/results.
CLMP 1 Clamp result to [0, 1.0]

The VINTERP instructions include a builtin "s_waitcnt EXPcnt" to easily allow data hazard resolution for data
produced by LDS_PARAM_LOAD.
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Instructions Restrictions and Limitations:

« V_INTERP instructions do not detect or report exceptions

« V_INTERP instructions do not support data forwarding into inputs that would normally come from LDS
data (sources A and C for V_INTERP_P10_* and source A for V_INTERP_P2_%*).

VGPRs are preloaded with some or all of:
« I_persp_sample, J_persp_sample, I_persp_center, J_persp_center,
 I_persp_centroid, J_persp_centroid,
- I/W, J/W, 1.0/W,
« I_linear_sample, J_linear_sample,
 I_linear_center, J_linear_center,
« I_linear_centroid, J_linear_centroid

These instructions consume data that was supplied by LDS_PARAM_LOAD. These instructions contain a built-
in "s_waitcnt EXPcnt <= N" capability to allow for efficient software pipelining.

lds_param_load V@, attro

lds_param_load V1@, attri

lds_param_load V20, attr2

lds_param_load V30, attr3

v_interp_p9© V1, Vve[1], Vi, veo[o9] s_waitcnt EXPcnt<=3 //Wait V@
v_interp_p9o V11, V10[1], Vvi, V19[09] s_waitcnt EXPcnt<=2
v_interp_p9 V21, V20[1], Vi, Vv20[09] s_waitcnt EXPcnt<=1
v_interp_p@ V31, Vv30[1], Vvi, Vv30[0] s_waitcnt EXPcnt<=0 //Wait V30
v_interp_p2 V2, ve[2], Vj, Vi

v_interp_p2 V12, vie[2], Vj, V11

v_interp_p2 V22, Vv20[2], Vj, V21

v_interp_p2 V32, Vv3e[2], Vj, V31

12.3.1. 16-bit Parameter Interpolation

16-bit interpolation operates on pairs of attribute values packed into a 16-bit VGPR. These use the same I and J
values during interpolation. OPSEL is used to select the upper or lower portion of the data.

There are variants of the 16-bit interpolation instructions that override the round mode to "round toward zero".

V_INTERP_P10_F16_F32 dst.f32 = vgpr_hi/lo.f16 * vgpr.f32 + vgpr_hi/lo.f16 // tmp = P10 * I + PO
+ allows OPSEL; Src0 uses DPP8=1,1,1,1,5,5,5,5; Src2 uses DPP8=0,0,0,0,4,4,4,4

V_INTERP_P2_F16_F32 dst.f16 = vgpr_hi/lo.f16 * vgpr.f32 + vgpr.f32 // dst =P2 * J + tmp
- allows OPSEL; Src0 uses DPP8=2,2,2,2.6,6,6,6

12.4. LDS Direct Load

Direct loads are only available in LDS, not in GDS. Direct access is allowed only in CU mode, not WGP mode.

The LDS_DIRECT_LOAD instruction reads a single DWORD from LDS and returns it to a VGPR, broadcasting it
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to all active lanes in the wave. M0 provides the address and data type. LDS_DIRECT_LOAD uses EXEC per
quad, not per pixel: if any pixel in a quad is enabled then the data is written to all 4 pixels in the quad.
LDS_DIRECT_LOAD uses EXPcnt to track completion.

LDS_DIRECT_LOAD uses the same instruction format and fields as LDS_PARAM_LOAD. See Pixel Parameter
Interpolation.

LDS_addr = M@[15:08] (byte address and must be DWORD aligned)
DataType = MB[18:16]

0 unsigned byte

1 unsigned short

2 DWORD

3 unused
4 signed byte
5 signed short
6,7 Reserved

Example: LDS_DIRECT_LOAD V4 // load the value from LDS-address in M8[15:8] to V4

Signed byte and short data is sign-extend to 32 bits before writing the result to a VGPR; unsigned byte and short
data is zero-extended to 32 bits before writing to a VGPR.

12.5. Data Share Indexed and Atomic Access

Both LDS and GDS can perform indexed and atomic data share operations. For brevity, "LDS" is used in the text
below and, except where noted, also applies to GDS.

Indexed and atomic operations supply a unique address per work-item from the VGPRs to the LDS, and supply
or return unique data per work-item back to VGPRs. Due to the internal banked structure of LDS, operations
can complete in as little as one cycle (for wave32, or 2 cycles for wave64), or take as many 64 cycles, depending
upon the number of bank conflicts (addresses that map to the same memory bank).

Indexed operations are simple LDS load and store operations that read data from, and return data to, VGPRs.

Atomic operations are arithmetic operations that combine data from VGPRs and data in LDS, and write the
result back to LDS. Atomic operations have the option of returning the LDS "pre-op" value to VGPRs.

LDS Indexed and atomic instructions use LGKMcnt to track when they have completed. LGKMcnt is
incremented as each instruction is issued, and decremented when they have completed execution. LDS
instructions stay in-order with other LDS instructions from the same wave.

The table below lists and briefly describes the LDS instruction fields.

31 0

1 1 0 1 1 0 I OP IGDS OFFSET1 OFFSETO

LDS GDS T T T
VDST I DATA1 DATAQ ADDR

63 32

Table 59. LDS Instruction Fields
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Field Size Description
OP 8  LDSopcode.
GDS 1 0=LDS, 1=GDS.

OFFSET0 8  Immediate address offset. Interpretation varies with opcode:
Instructions with one address:: combine the offset fields into a 16-bit unsigned byte offset: {offset1,

offset0}.
OFFSET1 8
Instructions that have 2 addresses (e.g. {LOAD, STORE, XCHG}_2ADDR):: use the offsets separately as 2 8-
bit unsigned offsets. Each offset is multiplied by 4 for 8, 16 and 32-bit data; multiplied by 8 for 64-bit data.
VDST 8 VGPR to which result is written: either from LDS-load or atomic return value.
ADDR 8  VGPR that supplies the byte address offset.
DATAO0 8  VGPR that supplies first data source.
DATA1 8  VGPR that supplies second data source.
MO 16  Unsigned byte Offset[15:0] used for: ds_load_addtid_b32, ds_write_addtid_b32 and for GDS-base/size

The MO register is not used for most LDS-indexed operations: only the "ADDTID" instructions read M0 and for
these it represents a byte address.

Table 60. LDS Indexed Load/Store

Load / Store Description

DS_LOAD_{B32,B64,B96,B128,U8,18,U16,116} Load one value per thread into VGPRs; if signed, sign extend to
DWORD; zero e xtend if unsigned.

DS_LOAD_2ADDR_{B32,B64} Load two values at unique addresses.

DS_LOAD_2ADDR_STRIDE64_{B32,B64} Load 2 values at unique addresses; offset *= 64.

DS_STORE_{B32,B64,B96,B128,B8,B16} Store one value from VGPR to LDS.

DS_STORE_2ADDR_{B32,B64} Store two values.

DS_STORE_2ADDR_STRIDE64_{B32,B64} Store two values, offset *= 64.

DS_STOREXCHG_RTN_{B32,B64} Exchange GPR with LDS-memory.

DS_STOREXCHG_2ADDR_RTN_{B32,B64} Exchange two separate GPRs with LDS-memory.

DS_STOREXCHG_2ADDR_STRIDE64_RTN_{B32,B64} Exchange GPR with LDS-memory; offset *= 64.
"D16 ops" - Load ops write only 16bits of VGPR, low or high; Store ops use 16bits of VGPR:

DS_STORE_{B8, B16}_D16_HI Store 8 or 16 bits using high 16 bits of VGPR.

DS_LOAD_{U8, I8, U1l6}_D16 Load unsigned or signed 8 or 16 bits into low-half of VGPR

DS_LOAD_{U8, 18, Ul6}_D16_HI Load unsigned or signed 8 or 16 bits into high-half of VGPR

DS_PERMUTE_B32 Forward permute. Does not write any LDS memory. See LDS Lane-
permute Ops for details.

DS_BPERMUTE_B32 Backward permute. Does not write any LDS memory. See LDS Lane-

permute Ops for details.
Single Address Instructions

LDS_Addr = LDS_BASE + VGPR[ADDR] + {InstOffset1,InstOffset0}

Double Address Instructions

LDS_Addr@ = LDS_BASE + VGPR[ADDR] + InstOffset@*ADJ +
LDS_Addr1 = LDS_BASE + VGPR[ADDR] + InstOffset1*ADJ +
Where ADJ = 4 for 8, 16 and 32-bit data types; and ADJ = 8 for 64-bit.
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The double address instructions are: LOAD_2ADDR*, STORE_2ADDR*, and STOREXCHG_2ADDR_*. The
address comes from VGPR, and both VGPR[ADDR] and InstOffset are byte addresses. At the time of wave
creation, LDS_BASE is assigned to the physical LDS region owned by this wave or work-group.

DS_{LOAD,STORE}_ADDTID Addressing

LDS_Addr = LDS_BASE + {InstOffset1, InstOffset@} + TID(O..63)*4 + M@
Note: no part of the address comes from a VGPR. M@ must be DWORD-aligned.

The "ADDTID" (add thread-id) is a separate form where the base address for the instruction is common to all
threads, but then each thread has a fixed offset added in based on its thread-ID within the wave. This can allow
a convenient way to quickly transfer data between VGPRs and LDS without having to use a VGPR to supply an
address.

LDS & GDS Opcodes
Instruction Fields: op, gds, offset0, offsetl, vdst, addr, data0, datal
32-bit no return 32-bit with return 64-bit no return 64-bit with return
ds_load_b{64,96,128} ds_store_b{64,96,128}
ds_store_{b32,b16,b8} ds_store_b64
ds_load_addtid_b32 (LDS ds_permute_b32 (LDS only)
only)
ds_store_addtid_b32 (LDS  ds_bpermute_b32 (LDS only)
only)
ds_store_2addr_b32 ds_store_2addr_bé64
ds_store_2addr_stride64_b3 ds_store_2addr_stride64_
2 be4
ds_load_{b32, u8,i8,ul6,il6} ds_load_b64
ds_store_b8_d16_hi ds_load_2addr_b32 ds_load_2addr_bé64
ds_store_b16_d16_hi ds_load_2addr_stride64_b32 ds_load_2addr_stride64_b64
ds_load_u8_d16 ds_consume
ds_load_u8_d16_hi ds_append ds_condxchg32_rtn_b64
ds_load_i8_d16
ds_load_i8_d16_hi ds_swizzle_b32 (LDS only)

ds_load_ul6_d16
ds_load_ul6_d16_hi
GDS-only Opcodes

ds_ordered_count
gws_init
gws_sema_v
gws_sema_bf
gws_sema_p
gws_barrier
gws_sema_release_all
ds_add_gs_reg_rtn

ds_sub_gs_reg_rtn
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12.5.1. LDS Atomic Ops

Atomic ops combine data from a VGPR with data in LDS, write the result back to LDS memory and optionally
return the "pre-op" value from LDS memory back to a VGPR. When multiple lanes in a wave access the same
LDS location there it is not specified in which order the lanes perform their operations, only that each lane
performs the complete read-modify-write operation before another lane operates on the data.

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + {InstOffset1,InstOffset0}

VGPR[ADDR] is a byte address. VGPRs 0,1 and dst are double-GPRs for doubles data. VGPR data sources can
only be VGPRs or constant values, not SGPRs. Floating point atomic ops use the MODE register to control
denormal flushing behavior.

LDS & GDS Atomic Opcodes

Instruction Fields: op, gds, offset0, offsetl, vdst, addr, data0, datal

32-bit no return
ds_add_u32
ds_sub_u32
ds_rsub_u32
ds_inc_u32
ds_dec_u32
ds_min_{u32,i32,32}
ds_max_{u32,i32,32}
ds_and_b32
ds_or_b32
ds_xor_b32
ds_mskor_b32
ds_cmpstore_b32
ds_cmpstore_f32
ds_add_f32

32-bit with return
ds_add_rtn_u32
ds_sub_rtn_u32
ds_rsub_rtn_u32
ds_inc_rtn_u32
ds_dec_rtn_u32
ds_min_rtn_{u32,i32,f32}
ds_max_rtn_{u32,i32,f32}
ds_and_rtn_b32
ds_or_rtn_b32
ds_xor_rtn_b32
ds_mskor_rtn_b32
ds_cmpstore_rtn_b32
ds_cmpstore_rtn_f32
ds_add_rtn_f32
ds_storexchg_rtn_b32
ds_storexchg_2addr_rtn_b32

ds_storexchg_2addr_stride64_rt
n_b32

12.5.2. LDS Lane-permute Ops

64-bit no return
ds_add_u64
ds_sub_u64
ds_rsub_u64
ds_inc_u64
ds_dec_u64
ds_min_{u64,i64,f64}
ds_max_{u64,i64,f64}
ds_and_b64
ds_or_b64
ds_xor_b64
ds_mskor_b64
ds_cmpstore_b64
ds_cmpstore_f64

64-bit with return
ds_add_rtn_u64
ds_rsub_rtn_u64
ds_rsub_rtn_u64
ds_inc_rtn_u64
ds_dec_rtn_u64
ds_min_rtn_{u64,i64,f64}
ds_max_rtn_{u64,i64,f64}
ds_and_rtn_bé64
ds_or_rtn_b64
ds_xor_rtn_bé64
ds_mskor_rtn_bé64
ds_cmpstore_rtn_b64
ds_cmpstore_rtn_f64

ds_storexchg_rtn_b64
ds_storexchg_2addr_rtn_b64

ds_storexchg_2addr_stride64_rt
n_b64

DS_PERMUTE instructions allow data to be swizzled arbitrarily across 32 lanes. Two versions of the instruction
are provided: forward (scatter) and backward (gather). These exist in LDS only, not GDS.

Note that in wave64 mode the permute operates only across 32 lanes at a time on each half of a wave64. In
other words, it executes as if were two independent wave32’s. Each half-wave can use indices in the range 0-31
to reference lanes in that same half-wave.

These instructions use the LDS hardware but do not use any memory storage, and may be used by waves that
have not allocated any LDS space. The instructions supply a data value from VGPRs and an index value per

lane.
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+ ds_permute_b32 : Dst[index[0..31]] = src[0..31] = Where [0..31] is the lane number
 ds_bpermute_b32 : Dst[0..31] = src[index[0..31]]

The EXEC mask is honored for both reading the source and writing the destination. Index values out of range
wrap around (only index bits [6:2] are used, the other bits of the index are ignored). Reading from disabled
lanes returns zero.

In the instruction word: VDST is the dest VGPR, ADDR is the index VGPR, and DATAO is the source data VGPR.
Note that index values are in bytes (so multiply by 4), and have the 'offset0' field added to them before use.

PERMUTE: BPERMUTE:
(Scatter) (Gather)
For each source lane, get its index which says Index values For each dest lane, get its index which says
which dest lane to send data to. are in bytes but must be which source lane read data from.
(Multiple writes to the same dest get the value dword aligned, Some sources may be unused.
from the highest numbered source lane). hence the multiply by 4.
Some dests may be unused and return 0. (Index/4 is shown in
) DST  EXEC IDX EXEC  SRC parenthesis) ) DST  EXEC IDX SRC EXEC
ane ane
o[ B |e | 4 (1) le—— A o[ B ] 4 (1) A [ ]
1 b |l 0 (0) |« B 1A e + 0 (0) B
2 0 |« § 12 (3) [« C 2 D [ 12 (3) ? C
3 C |« 4 (1) |« - D 3 B |« 3 4 (1) D
4 Z e 4 1124 (31) ¢ 4 E 4 Z 4 4124 (31) 4 E
30 Y |« 120 (30) |« = Y 30 Y 51120 (30) Y
31 E & | 31116 (4) < 3% z 31 E L 3% 16 (4) 31 Z L

12.5.3. DS Stack Operations for Ray Tracing

DS_BVH_STACK_RTN_B32 is an LDS instruction to manage a per-thread shallow stack in LDS used in ray
tracing BVH traversal. BVH structures consist of box nodes and triangle nodes. A box node has up to four child
node pointers that may all be returned to the shader (to VGPRs) for a given ray (thread). A traversal shader
follows one pointer per ray per iteration, and extra pointers can be pushed to a per-thread stack in LDS. Note:
the returned pointers are sorted.

This "short stack" has a limited size beyond that the stack wraps around and overwrites older items. When the
stack is exhausted, the shader should switch to a stackless mode where it looks up the parent of the current
node from a table in memory. The shader program tracks the last visited address to avoid re-traversing
subtrees.

DS_BVH_STACK_RTN_B32 vgpr(dst), vgpr(stack_addr), vgpr(lvaddr), vgpr[4](data)

Field Size Description

oP 8 Instruction == DS_STORE_STACK (LDS only)

GDS 1 1=GDS, 0 = LDS (must be: 0 = LDS)

OFFSETO0 8 unused

OFFSET1 8 bits[5:4] carry StackSize (8, 16, 32, 64)

VDST 8 Destination VGPR for resulting address (e.g. X or top of stack)

Returns the next "LV addr"
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Field Size Description

ADDR 8 STACK_VGPR: Both a source and destination VGPR:
supplies the LDS stack address and is written back with updated address.
stack_addr[31:18] = stack_base[15:2] : stack base address (relative to allocated LDS space).
stack_addr[17:16] = stack_size[1:0] : 0=8DWORDs, 1=16, 2=32, 3=64 DWORDs per thread
stack_addr[15:0] = stack_index[15:0]. (bits [1:0] must be zero).

DATAO 8 LVADDR: Last Visited Address. Is compared with data values (next field) to determine the next
node to visit.

DATA1 8 4 VGPRs (X,Y,Z,W).

MO 16 Unused.

12.6. Global Data Share

Global data Share is similar to LDS, but is a single memory accessible by all waves on the GPU. Global Data
Share uses the same instruction format as local data share (indexed operations only - no interpolation or direct
loads). Instructions increment the LGKMcnt for all loads, stores and atomics, and decrement LGKMcnt when
the instruction completes. GDS instructions support only one active lane per instruction. The first active lane
(based on EXEC) is used and others are ignored.

MO is used for:

+ [15:0] holds SIZE, in bytes
« [31:16] holds BASE address in bytes

12.6.1. GS NGG Streamout Instructions

The DS_ADD_GS_REG_RTN and DS_SUB_GS_REG_RTN instructions are used only by the GS stage, and are
used for streamout. These instructions perform atomic add or sub operations to data in dedicated registers, not
in GDS memory, and return the pre-op value. The source register is 32 bits and is an unsigned int. These 2
instructions increment the wave’s LGKMcnt, and decrement LGKMcnt when the instruction completes.

Table 61. GDS Streamout Register Targets

offset[5:2] Register offset[5:2] Register
32-bit source, 32-bit dest & return value 32-bit source, 64-bit dest & return value

0 GDS_STRMOUT_DWORDS_WRITTEN_0 8 GDS_STRMOUT_PRIMS_NEEDED_0

1 GDS_STRMOUT_DWORDS_WRITTEN_1 9 GDS_STRMOUT_PRIMS_WRITTEN_0

2 GDS_STRMOUT_DWORDS_WRITTEN_2 10 GDS_STRMOUT_PRIMS_NEEDED_1

3 GDS_STRMOUT_DWORDS_WRITTEN_3 11 GDS_STRMOUT_PRIMS_WRITTEN_1

4 GDS_GS_0 12 GDS_STRMOUT_PRIMS_NEEDED_2

5 GDS_GS_1 13 GDS_STRMOUT_PRIMS_WRITTEN_2

6 GDS_GS_2 14 GDS_STRMOUT_PRIMS_NEEDED_3

7 GDS_GS_3 15 GDS_STRMOUT_PRIMS_WRITTEN_3

Table 62. DS_ADD_GS_REG_RTN* and DS_SUB_GS_REG_RTN:

Field Size Description

OP 8 ds_add_gs_reg_rtn, ds_sub_gs_reg_rtn

OFFSET0 8 gs_reg_index[3:0]=offset0[5:2] indexes the GS register array
VDST 8 VGPR to write pre-op value to
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Field Size Description
DATAO 8 operand, from the first valid data; if no valid data (i.e., EXEC==0), the operand
is 0.

« The input comes from the first valid data of DATAO.

If offset[5:2] is 8-15: The operation is mapped to 64b operation to take 2 dst registers as a combined one.
The source data is still 32b. The post-op result is 64b and store back to the 2 dst registers. The return value
takes 2 VGPRs.

- If offset[5:2] is 0-7: The operation is mapped to normal 32b operation.

« For ds_add_gs_reg_rtn, the atomic add operation is
> VDST[0] = GS_REG][offset0[5:2]][31:0]
° If (offset0[5:2] >= 8) VDST[1] = GS_REGJoffset0[5:2]][63:32]
° GS_REGJoffset0[4:2]] += DATAO

« For ds_sub_gs_reg, the atomic sub operation is
> VDST[0] = GS_REG[offset0[5:2]][31:0]
° If (offset0[5:2] >= 8) VDST[1] = GS_REGJoffset0[5:2]][63:32]
> GS_REG]offset0[4:2]] = DATAO

12.7. Alignment and Errors

GDS and LDS operations (both direct & indexed) report Memory Violation (memviol) for misaligned atomics.
LDS handles misaligned indexed reads & writes, but only when SH_MEM_CONFIG. alignment_mode ==
UNALIGNED. Atomics must be aligned.

LDS Alignment modes (config-reg controlled, in SH_MEM_CONFIG):

+ ALIGNMENT_MODE_DWORD: Automatic alignment to multiple of element size
« ALIGNMENT_MODE_UNALIGNED: No alignment requirements.

# LDS Access  Source Inst Controls Behavior
Type Types

1 Direct (Read ALU ops LDS_CONFIG.ADDR_OUT_ Out of range direct operations report memviol if
Broadcast) OF_RANGE_REPORTING = ADDR_OUT_OF_RANGE_REPORTING is true.

2 Indexed DS ops LDS_CONFIG.ADDR_OUT_ Out of range atomic operations report memviol if
Atomic FLAT ops OF_RANGE_REPORTING  ADDR_OUT_OF_RANGE_REPORTING is true.

3 Indexed Non- DS ops LDS_CONFIG.ADDR_OUT_ the LSBs are ignored to force alignment. No memviol
Atomic FLAT ops OF_RANGE_REPORTING s generated.

Out of range indexed operations report memviol if
ADDR_OUT_OF_RANGE_REPORTING is true.
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Chapter 13. Float Memory Atomics

Floating point atomics can be issued as LDS, Buffer, and Flat/Global/Scratch instructions.

13.1. Rounding

LDS and Memory atomics have the rounding mode for float-atomic-add fixed at "round to nearest even". The
MODE.round bits are ignored.

13.2. Denormals

When these operate on floating point data, there is the possibility of the data containing denormal numbers, or
the operation producing a denormal. The floating point atomic instructions have the option of passing
denormal values through, or flushing them to zero.

LDS instructions allow denormals to be passed through or flushed to zero based on the MODE.denormal wave-
state register. As with VALU ops, "denorm_single" affects F32 ops and "denorm_double" affects F64. LDS
instructions use both FP_DENORM bits (allow_input_denormal, allow_output_denormal) to control flushing of
inputs and outputs separately.

+ Float 32 bit adder uses both input and output denorm flush controls from MODE
+ Float CMP, MIN and MAX use only the "input denormal" flushing control
° Each input to the comparisons flushes the mantissa of both operands to zero before the compare if the
exponent is zero and the flush denorm control is active. For Min and Max the actual result returned is
the selected non-flushed input.
° CompareStore ("compare swap") flushes the result when input denormal flushing occurs.

Cache Atomic Float Denormal
(Buffer, Flat, Global, Scratch)

Min/Max_F32 Mode
CmpStore_F32, _F64 Mode
Add_F32 Flush
LDS Float Atomics
Min/Max_F32 Mode
CmpStore_F32, _F64 Mode
Add_F32 Mode
Min/Max_F64 Mode

+ "Flush" = flush all input denorm
+ "No Flush" = don’t flush input denorm
+ "Mode" = denormal flush controlled by bit from shader’s "MODE . fp_denorm" register

Note that MIN and MAX when flushing denormals only do it for the comparison, but the result is an
unmodified copy of one of the sources. CompareStore ("compare swap") flushes the result when input
denormal flushing occurs.

Memory Atomics:
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The floating point atomic instructions (ds_{min,max,cmpst}_f32) have the option of passing denormal values
through, or flushing them to zero. This is controlled with the MODE.fp_denorm bits that also control VALU
denormal behavior. There is no separate input and output denormal control: only bit 0 of sp_denorm or bit 0 of
dp_denorm is considered. The rest of the denormal rules are identical to LDS.

Float atomic add is hardwired to flush input denormals - it does not use the MODE.fp_denorm bits.

13.3. NaN Handling

Not A Number ("NaN") is a IEEE-754 value representing a result that cannot be computed.

There two types of NaN: quiet and signaling

¢ Quiet NaN Exponent=0xFF, Mantissa MSB=1
« Signaling NaN Exponent=0xFF, Mantissa MSB=0 and at least one other mantissa bit ==

The LDS does not produce any exception or "signal" due to a signaling NaN.

DS_ADD_F32 can create a quiet NaN, or propagate NaN from its inputs: if either input is a NaN, the output is
that same NaN, and if both inputs are NaN, the NaN from the first input is selected as the output. Signaling NaN
is converted to Quiet NaN.

Floating point atomics (CMPSWAP, MIN, MAX) flush input denormals only when
MODE (allow_input_denorm)=0, otherwise values are passed through without modification. When flushing,
denorms are flushed before the operation (i.e. before the comparison).

FP Max Selection Rules:
if (src@ == SNaN) result = QNaN (src®) // bits of SRCO are preserved but is a QNaN
else if (src1l == SNaN) result = QNaN (src1)
else result = larger of (src@, srcl)

"Larger" order from smallest to largest: QNaN, -inf, -float, -denorm, -0, +0, +denorm, +float, +inf

FP Min Selection Rules:

if (src@ == SNaN) result = QNaN (src@)
else if (src1 == SNaN) result = QNaN (src1)
else result = smaller of (src@, srcil)

"Smaller" order from smallest to largest: -inf, -float, -denorm, -0, +0, +denorm, +float, +inf, QNaN

FP Compare Swap: only swap if the compare condition (==) is true, treating +0 and -0 as equal

doSwap = (src@ != NaN) && (src1l != NaN) && (src@ == src1) // allow +0 == -0

Float Add rules:
1. -INF + INF = QNAN (mantissa is all zeros except MSB)

2. +/-INF + NAN = QNAN (NAN input is copied to output but made quiet NAN)
3. -INF + INF, or INF - INF = -QNAN
4. -0+0=+0
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5. INF + (float, +0, -0) = INF, with infinity sign preserved
6. NaN + NaN = SRC0’s NaN, converted to QNaN

13.4. Global Wave Sync & Atomic Ordered Count

Global Wave Sync (GWS) provides a capability to synchronize between different waves across the entire GPU.
GWS instructions use LGKMcnt to determine when the operation has completed.

13.4.1. GWS and Ordered Count Programming Rule

"GWS" instructions (ordered count and GWS*) must be issued as a single instruction clause of the form:

S_WAITCNT LGKMcnt==0 // this is only necessary if there might be any outstanding GDS instructions
GWS_instruction

S_WAITCNT LGKMcnt==0

<any instruction except: S_ENDPGM (pad with NOP if the next instruction is s_endpgm)

Before issuing a GWS or Ordered Count instruction, the user must make sure that there are no outstanding GDS
instructions. Failure to do this may cause a "NACK" to arrive out of order.

Programming Rule: the source and destination VGPRs in a GWS or ordered count instruction must not
be the same. When an ordered count operation is NACK’d, the destination VGPR
may be written with data. If this VGPR is the same as the source VGPR, that
prevents the instruction from being replayed later if it was interrupted due to a
context switch.

13.4.2. EXEC Handling

GDS / GWS is now only a single lane wide. If the EXEC mask has more than one bit set to 1, hardware behaves
as if only EXEC had only one "1" in it: the least significant one. GDS / GWS opcodes are not skipped when
EXEC==0.

For these opcodes, if EXEC==0, the hardware acts as if EXEC==0...001 for the instruction:
ORDERED_COUNT / GWS_INIT / SEMA_BR/GWS_BARRIER

For other GDS / GWS opcodes, the instruction is sent with EXE==0, nothing is sent to or returned from
GDS/GWS. In hardware, data is sent but it is ignored and data is returned and ignored in order to keep LGKMcnt
working.

13.4.3. Ordered Count

Ordered count generates a pointer in wave-creation order to an append buffer of unlimited size.

Ordered Alloc generates a pointer to a ring buffer of finite size which is returned to the wave in "VDST". The
ordered alloc counter can be issued up to 4 times from a shader. Ordered count and alloc use the same
instruction - the difference is in how the GDS counters are initialized with their config registers.
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The GDS unit supports an instruction that operates on dedicated append/consume counters:

« DS_ORDERED_COUNT Takes one value from the first valid lane and sends to GDS.

For shaders that use this function, this instruction must be issued once and only once per wave. The GDS
receives these in arbitrary order from different waves across the chip, but processes them in the order the
waves were created. The GDS contains a large fifo to hold these pending requests.

Instruction Fields

Field Normal GDS

op any GDS op

GDS 1

VDST VGPR to write result

to

ADDR VGPR which supplies
byte address offset
DATAO VGPR which supplies
first data source
DATA1 VGPR which supplies
second data source
Offset0[7:0] Same usage as LDS
Offset1[0] Same usage as LDS
Offset1[1] Same usage as LDS
Offset1[3:2] Same usage as LDS
Offset1[5:4] Same usage as LDS
Offset1[7:6] Same usage as LDS
MO[15:0] gds_size[15:0] in bytes
MO[31:16] gds_base[15:0] in
bytes
ORDERED COUNT Targets

GDS Ordered Count
DS_ORDERED_COUNT*

1
VGPR to write result to

Increment, from the first valid data.
If no valid data, increment=0.

unused
unused

Ordered Count Index.

Must be multiple of 4 (2 LSB’s must be zero)
wave_release

wave_done

unused

ordered-index-opcode :

0=Add (ds_add_rtn_b32)

1 =Exchange (ds_wrxchg_rtn_b32)

2 =Reserved

3=Wrap (ds_wrap_rtn_b32)

unused

{ waveCrawlerInc[2:0], logicalWaveID[12:0] }
In graphics pipe, logicalWavelID[2:0] is really
packerID

orderedCntBase[15:0]

Ordered count base is in DWORDs.

(2 LSB’s are ignored, forced to zero - DWORD
aligned)

Global Wave Sync (GWS)

GWS_INIT, GWS_SEMA_YV,
GWS_SEMA_BR, GWS_SEMA_P
GWS_SEMA_RELEASE_ALL,
GWS_BARRIER

1

unused

Used for: barrier, init and
sema_br;
unused for others.

unused

unused

{0,0,resource_index[5:0] }

unused
unused
unused

unused

unused

unused

{10'0, gds_base[5:0] }
gdsBase = resourceBase

The OFFSETO[5:2] field of ordered-count instructions reference one of 16 registers in GDS. These are listed
in the GDS section: GS NGG Streamout Instructions. See: GS NGG Streamout Instructions Only the ADD
instruction may be used on targets that are 64 bits (offset[5:2] = 8 - 15).
Exchange can only be used with offset[5:2] =4 - 7.

APPEND and CONSUME
Append and Consume count bits in EXEC and add or subtract the count from the GDS stored value. GDS
now only operates on a single lane, but for Append & Consume the full EXEC mask is still considered.
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13.4.4. Global Wave Sync

"Global Wave Sync" allows the waves running in different thread-groups, including across different CU’s and
SE’s to synchronize through barriers and semaphores.

The Global Wave Sync (GWS) unit contains 64 sync resources that are allocated by the Command Processor to
applications (VM_ID’s). These sync resources can be configured to act as counting semaphores or barriers.

+ GWS registers must be configured before use via GRBM reg writes: gds_gws_resource_cntl,
gds_gws_resource

« GDS_GWS_RESOURCE: Flag, Counter (number of waves at resource), type, head_{queue, valid, flag}

« GDS_GWS_VMID: Per-VMID register identifying the range of GWS resources owned by each VMID (base &
size)

The GWS contains 64 sync resources, each of which contains the following state:

+ 1-bit state flag: 0 or 1 - used to separate even & odd passes, distinguish entering waves from leaving.
+ a 12-bit counter - unsigned int

« 1 byte Type: Semaphore or Barrier

» Head-of-queue + valid + flag (13 bits)

« Tail of Queue + flag (12 bits)

+ FIFO - holds full wave-id and a 1-bit flag

When used by the shader, M0 supplies the "resource_base[5:0]" which is used to virtualize the resources.

The resource offset comes from the GDS/GWS instruction’s "offset0[5:0]" field and is added to M0 and also to a
base-address per VMID to get the final resource ID. Resource ID’s are clamped to the range owned by this
VMID. If clamping occurs, the GWS returns a NACK which causes the wave to rewind the PC and halt.

« GWS_resource_id = (GDS_GWS_VMID.BASE(vmid) + M0[21:16] + offset0[5:0]) % 64

Table 63. GWS Instructions

Opcode Description

GWS_INIT Initialize GWS resource

(uint vsrc0, u8 offset0

) Initialize the global wave sync resource specified by the virtualized resource id OFFSET0[5:0] with a

total wave count. This is most often intended to initialize a barrier resource for use by a later
ds_gws_barrier to synchronize all waves associated with this resource, but is not type specific and
can also be used to initialize a semaphore with an initial wave release count. The total wave count
is provided by the lane of vsrc associated with the first active thread based on the current EXEC
thread mask, interpreted as a 32-bit integer value.

The resource id is also offset by the value of M0[21:16], allowing virtualization of global wave sync
resource ids between draw contexts or based on other shader initialization state.

This is primarily to be used via the GRBM.

Operation:

//Initialize GWS_RESOURCE for later gws commands:

rid = (M0[21:16] + OFFSETO[5:0]) % 64

GWS_RESOURCE[rid].counter = vsrc.lane[find_first(EXEC)].u

GWS_RESOURCE]rid].flag =0

return //release calling wave immediately
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Opcode

GWS_SEMA_V
(u8 offset0)

GWS_SEMA_BR
(uint vsrc0, u8 offset0

)

GWS_SEMA_P
(u8 offset0 )

GWS_SEMA_
RELEASE_ALL
(u8 offset0)

Description
Semaphore: Increment resource counter

For the global wave sync resource specified by the virtualized resource id OFFSET0[5:0], releases
one wave, immediately if already queued at this semaphore or once one arrives. Sets the resource
to semaphore type.

Operation:

//Release waves queued by ds_gws_sema_p instructions:

rid = (MO[21:16] + OFFSETO[5:0]) % 64

GWS_RESOURCE[rid].counter++

GWS_RESOURCE]rid].type = SEMAPHORE

return //release calling wave immediately

Semaphore Bulk Release

For the global wave sync resource specified by the virtualized resource id OFFSET0[5:0], releases
the number of waves specified as a 32-bit integer in the first active lane of vsrc, immediately if
already queued at this semaphore or as they arrive. Sets the resource to semaphore type.
Operation: //Release waves queued by ds_gws_sema_p instructions:

rid = (M0[21:16] + OFFSETO[5:0]) % 64

release_count = vsrc.lane[find_first(EXEC)].u

GWS_RESOURCE[rid].counter += release_count

GWS_RESOURCE]rid].type = SEMAPHORE

return //release calling wave immediately

Semaphore acquire (wait)

Queues this wave until the global wave sync resource specified by the virtualized resource id
OFFSETO0[5:0] indicates that it should be released, which may be immediately if another wave has
already issued a ds_gws_sema_v or ds_gws_sema_br instruction to the resource. Sets the resource
to semaphore type.

Operation:

//Queue this wave until released:

rid = (M0[21:16] + OFFSET0[5:0]) % 64

GWS_RESOURCE[rid].type = SEMAPHORE

while (GWS_RESOURCE[rid].counter <= 0)

WAIT_IN_QUEUE

GWS_RESOURCE[rid].counter--

return //release calling wave

Semaphore release all waves waiting at a semaphore

Operation:

//Release waves queued by ds_gws_sema_p instructions:

rid = (MO[21:16] + OFFSETO[5:0]) % 64

release_count = the number of waves currently enqueued at the semaphore
GWS_RESOURCE[rid].counter += release_count
GWS_RESOURCE[rid].type = SEMAPHORE

return //release calling wave immediately

This is typically used via the GRBM.
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Opcode Description

GWS_BARRIER Barrier wait

(uint vsrc0, u8 offset0

) Creates a global barrier for all waves associated with the global wave sync resource specified by a

virtualized resource id OFFSETO0[5:0], which causes all waves issuing a ds_gws_barrier on the same
resource id to wait until a previously specified count of waves have also issued. Sets the resource to
barrier type. This provides functionality similar to an s_barrier instruction for local waves, but
allows synchronization of waves running on different compute units.

The wave count for completion of the barrier is initially provided by a ds_gws_init instruction.
Each subsequent ds_gws_barrier instruction may then provide the total wave count value for a
following ds_gws_barrier instruction. The total wave count minus one is provided by the lane of
vsrc associated with the first active thread based on the current EXEC thread mask, interpreted as a
32-bit integer value.

Operation:

//On entry: GWS_RESOURCE[rid].counter previously initialized

rid = (M0[21:16] + OFFSET0[5:0]) % 64

count_next = vsrc.lane[find_first(EXEC)].u

GWS_RESOURCE]rid].type = BARRIER

GWS_RESOURCE[rid].counter--

flag = GWS_RESOURCE]rid].flag

if (GWS_RESOURCE][rid].counter <= 0) //last wave in group
GWS_RESOURCE][rid].flag ~=1 //release enqueued waves
GWS_RESOURCE|[rid].counter = count_next //init for next barrier

return //release calling wave

// Enqueue waves which enter until the last enters and releases them
while (1)

if (GWS_RESOURCE]rid].type == BARRIER && GWS_RESOURCE][rid].flag != flag)
return //release calling wave
The description of "flag" above is a bit simplistic. Basically, every wave which enters is tagged with the
current GWS_RESOURCE.flag value. When the barrier condition is met, all waves with that flag value are
released, and GWS_RESOURCE.flag is inverted so any incoming waves are tagged with the opposite value

of flag.
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Chapter 14. Export: Position, Color/MRT

"Export" is the act of copying data from a VGPR to the one of the export buffers (position, color or Z). Exports
use the EXEC mask and only output the enabled pixels or vertices. A shader may export to each target only
once. The last export from a pixel shader, or the last position export of a vertex shader must indicate "done" -
there are no more pixel shader exports or vertex position exports. This allows the values to be consumed by the
Render back-end and Primitive Assembler respectively.

Exports can transfer 32-bit or 16-bit data per element. 16-bit exports occurs in pairs: 32-bits transferred from
one VGPR that holds two 16-bit values. The export instruction does not know or care about the difference
between the two - it just moves 32-bits of data per lane. 16-bit exports are a contract between the shader
program that is responsible for converting and packing 16-bit data, and the receiving hardware in
configuration registers that declare the exported data type. 16-bit data is packed into a VGPR, with the first
component in the lower 16 bits.

Instruction Fields
51 0
e 11 1 1 1 0] ' ' Jrow] Toone] ] TARGET " EN
_ VSRC3 | VSRC2 | VSRC1 VSRCO .
Field Size Description
Done 1 Indicates this is the last export from the shader.Used only for Pixel, Position and Primitive
data. Must be set for primitive export.
Target 6 Export Target:
0-7 MRT 0-7
8 Z
12-16 Position 0-4 (Pos4 is for stereo rendering)
20 NGG Primitive data (connectivity data)
21 Dual source blend Left
22 Dual source blend Right
EN 4 16-bit components: export half-DWORD enable. Valid values are: 0x0,1,3
[0] enables VSRCO : R,G from one VGPR (R in low bits, G high)
[1] enables VSRC1 : B,A from one VGPR (B in low bits, A high)
32-bit components: [0-3] = enables for VSRCO-3.
VSRCO 8 VGPR to read data from.
VSRC1 8 Pos: vsrc0=X, 1=Y, 2=7, 3=W
VSRC2 8 MRT: vsrc0=R, 1=G, 2=B, 3=A
VSRC3 8
ROW_EN 1 0 = normal mode; 1 = use MO to provide the row number for mesh shader’s POS and PRIM
exports.
(M0) 8 Row number for mesh shader POS and PRIM exports
32-bit components ENJ[0] VSRCO Red/X/ ...
EN[1] VSRC1 Green/Y/...
EN[2] VSRC2 Blue/Z/...
ENI[3] VSRC3 Alpha/W/...
16-bit components ENJO0] VSRCO {green, red}/{y, x}
EN[1] VSRC1 {alpha, blue} / {w,z}
EN[2], EN[3] ignored unused
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14.1. Pixel Shader Exports

Pixel Exports
Export instructions copy color data to the MRTs. Data has up to four components (R, G, B, A).
Optionally, export instructions also output depth (Z) data.
Every pixel shader must have at least one export instruction.
The last export instruction executed must have the DONE bit set to one.
The EXEC mask is applied to all exports. Only pixels with the corresponding EXEC bit set to 1 export data to
the output buffer.
Each export target must be exported to only once.

The shader program is responsible for conversion of data from 32b to 16b for 16-bit exports.
The shader program is responsible for alpha-test.

All data that can affect the sample mask must be sent on the first export from the shader. This means if depth
is being exported, it must be exported first. If alpha to mask is enabled, MRTO must be exported first, unless
depth is also enabled, in which case, MRTO0’s alpha value must be written to the depth export’s alpha value. If
alpha to mask and coverage to mask are both enabled, then the depth export’s alpha value is set to the
minimum of the alpha to mask value (alpha of MRTO) and the coverage to mask value (alpha of what would
have been in the depth export). If the shader can kill a pixel, it must be determined before the first export.

Pixel Shader Dual-Source Blend
In this mode, alternating lanes (threads) hold MRT0 and MRT1, not all threads going to one MRT. There are
two instructions to complete a dual-source blend export. It is required that exports to 21 and 22 be back-to-
back, with no other export types in between them.

Export target EXEC mask MRT Lane0 Lanel Lane 2
Exported
21 exec_mask = 0 Pix0, Pix0 Pix2 MRTO
(exec_mask & 0x5555_5555) | MRTO MRT1
((exec_mask <<1) & OXAAAA_AAAA)
22 exec_mask = 1 Pix1, Pix1, Pix3 MRTO
(exec_mask & 0XAAAA_AAAA) | MRT0O  MRT1

((exec_mask >>1) & 0x5555_5555)

14.2. Primitive Shader Exports (From GS shader stage)

The GS shader uses export instructions to output vertex position data, and memory stores for vertex parameter
data. This data is passed on to subsequent pixel shaders.

Every vertex shader must output at least one position vector (x, y, z; w is optional) to the POSO0 target. The last

position export must have the DONE bit set to 1. For optimized performance, it is recommended to output all
position data as early as possible in the vertex shader.

14.3. Dependency Checking

Export instructions are executed by the hardware in two phases. First, the instruction is selected to be
executed, and EXPCNT is incremented by 1. At this time, the wave has made a request to export data, but the
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data has not been exported yet. Later, when the export actually occurs the EXEC mask and VGPR data is read
and the data is exported, and finally EXPcnt is decremented.

Use S_ZWAITCNT on EXPcnt to prevent the shader program from overwriting EXEC or the VGPRs holding the
data to be exported before the export operation has completed.

Multiple export instructions can be outstanding at one time. Exports of the same type (for example: position)
are completed in order, but exports of different types can be completed out of order. If the STATUS register’s
SKIP_EXPORT bit is set to one, the hardware treats all EXPORT instructions as if they were NOPs.
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Chapter 15. Microcode Formats

AMD¢1

This section specifies the microcode formats. The definitions can be used to simplify compilation by providing
standard templates and enumeration names for the various instruction formats.

Endian Order - The RDNA3 architecture addresses memory and registers using little-endian byte-ordering and
bit-ordering. Multi-byte values are stored with their least-significant (low-order) byte at the lowest byte
address, and they are illustrated with their least-significant byte at the right side. Byte values are stored with
their least-significant (low-order) bit (LSB) at the lowest bit address, and they are illustrated with their LSB at

the right side.

SALU and VALU instructions may optionally include a 32-bit literal constant, and some VALU instructions may
include a 32-bit DPP control DWORD at the end of the instructions. No instruction may use both DPP and a

literal constant.

The table below summarizes the microcode formats and their widths, not including extra literal or DPP
instruction words. The sections that follow provide details.

Table 64. Summary of Microcode Formats

Microcode Formats

Scalar ALU and Control Formats
SOP2

SOP1

SOPK

SOPP

SOPC

Scalar Memory Format

SMEM

Vector ALU Format

VOP1

VOP2

VOPC

VOP3

VOP3SD

VOP3P

VOPD

DPP16

DPP8

Vector Parameter Interpolation Format
VINTERP

LDS Parameter Load and Direct Load
LDSDIR

LDS/GDS Format

DS

Vector Memory Buffer Formats
MTBUF

MUBUF

Vector Memory Image Format

Reference

SOP2
SOP1
SOPK
SOPP
SOPC

SMEM

VOP1
VOP2
VOPC
VOP3
VOP3SD
VOP3P
VOPD
DPP16
DPP8

VINTERP

LDSDIR

DS

MTBUF
MUBUF

Width (bits)

32

64

32
32
32
64
64
64
64
32
32

64

32

64

64
64

142 of 600



"RDNA3" Instruction Set Architecture

AMD¢1

Microcode Formats Reference Width (bits)
MIMG MIMG 64 or 96
Export Format
EXP EXP 64
Flat Formats
FLAT FLAT 64
GLOBAL GLOBAL 64
SCRATCH SCRATCH 64

o any instruction field marked as "Reserved" must be set to zero.

Instruction Suffixes

Most instructions include a suffix that indicates the data type the instruction handles. This suffix may also

include a number that indicates the size of the data.

For example: "F32" indicates "32-bit floating point data", or "B16" is "16-bit binary data".

« B=binary

+ F =floating point

 BF ="brain-float" floating point
+ U =unsigned integer

+ S=signed integer

When more than one data-type specifier occurs in an instruction, the first one is the result type and size, and

the later one(s) is/are input data type and size.
E.g. V_CVT_F32_1I32 reads an integer and writes a float.
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15.1. Scalar ALU and Control Formats

15.1.1. SOP2

31 0

SOP2 | 1 I 0 I OP | I I SIDSTI7 I I | I ‘ 'SSRIC13I I I | I I ISSRIC%‘

Description This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit
literal constant.

Table 65. SOP2 Fields

Field Name Bits Format or Description
SSRCO [7:0] Source 0. First operand for the instruction.
0-105 SGPRO - SGPR105: Scalar general-purpose registers.
106 VCC_LO: VCCJ[31:0].
107 VCC_HI: VCC[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 NULL
125 MO. Misc register 0.
126 EXEC_LO: EXEC[31:0].
127 EXEC_HI: EXEC[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-234 Reserved.

235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 Reserved.
240 0.5.
241 -0.5.
242 1.0.
243 -1.0.
244 2.0.
245 -2.0.
246 4.0.
247 -4.0.
248 1/(2*PI).
249 - 252 Reserved.
253 SCC.
254 Reserved.
255 Literal constant.
SSRC1 [15:8] Second scalar source operand.
Same codes as SSRCO, above.
SDST [22:16] Scalar destination.
Same codes as SSRCO, above except only codes 0-127 are valid.
oP [29:23] See Opcode table below.
ENCODING [31:30] 'b10

Table 66. SOP2 Opcodes
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Opcode # Name

Opcode # Name

AMD¢1

0 S_ADD_U32 27 S_XOR_B64

1 S_SUB_U32 28 S_NAND_B32

2 S_ADD_I32 29 S_NAND_B64

3 S_SUB_I32 30 S_NOR_B32

4 S_ADDC_U32 31 S_NOR_B64

5 S_SUBB_U32 32 S_XNOR_B32

6 S_ABSDIFF_I32 33 S_XNOR_B64

8 S_LSHL_B32 34 S_AND_NOT1_B32

9 S_LSHL_B64 35 S_AND_NOT1_B64
10 S_LSHR_B32 36 S_OR_NOT1_B32

11 S_LSHR_B64 37 S_OR_NOT1_B64

12 S_ASHR_I32 38 S_BFE_U32

13 S_ASHR_I64 39 S_BFE_I32

14 S_LSHL1_ADD_U32 40 S_BFE_U64

15 S_LSHL2_ADD_U32 41 S_BFE_I64

16 S_LSHL3_ADD_U32 42 S_BFM_B32

17 S_LSHL4_ADD_U32 43 S_BFM_B64

18 S_MIN_I32 44 S_MUL_I32

19 S_MIN_U32 45 S_MUL_HI_U32

20 S_MAX_132 46 S_MUL_HI_I32

21 S_MAX_U32 48 S_CSELECT_B32

22 S_AND_B32 49 S_CSELECT_B64

23 S_AND_Bé64 50 S_PACK_LL_B32_B16
24 S_OR_B32 51 S_PACK_LH_B32_B16
25 S_OR_B64 52 S_PACK_HH_B32_B16
26 S_XOR_B32 53 S_PACK_HL_B32_B16
15.1.2. SOPK

sork |4 o1 1] = op spsT, | sIMM16

Description This is a scalar instruction with one 16-bit signed immediate (SIMM16) input and a single
destination. Instructions that take 2 inputs use the destination as the first input and the
SIMM16 as the second input.

E.g."S_CMPK_GT_I32 S0, 1" means "SCC = (s0 > 1)"

Field Name Bits
SIMM16 [15:0]

15.1. Scalar ALU and Control Formats

Table 67. SOPK Fields

Format or Description

Signed immediate 16-bit value.
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Field Name Bits

SDST [22:16]

0-105
106
107

108-123

124
125
126
127

oP [27:23]
ENCODING [31:28]

Format or Description

Scalar destination, and can provide second source operand.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.

MO. Memory register 0.

NULL

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

See Opcode table below.
'b1011

Table 68. SOPK Opcodes

Opcode # Name
S_MOVK_I32
S_VERSION
S_CMOVK_I32
S_CMPK_EQ_I32
S_CMPK_LG_I32
S_CMPK_GT_I32
S_CMPK_GE_I32
S_CMPK_LT_I32
S_CMPK_LE_I32
S_CMPK_EQ_U32
S_CMPK_LG_U32
S_CMPK_GT_U32
S_CMPK_GE_U32

O 00 N N U1 A W N+ O

=
N = O

15.1.3. SOP1

31

Opcode # Name

13
14
15
16
17
18
19
20
24
25
26
27

S_CMPK_LT_U32
S_CMPK_LE_U32
S_ADDK_I32
S_MULK_I32
S_GETREG_B32
S_SETREG_B32
S_SETREG_IMM32_B32
S_CALL_B64
S_WAITCNT_VSCNT
S_WAITCNT_VMCNT
S_WAITCNT_EXPCNT
S_WAITCNT_LGKMCNT

AMD¢1

sopt [1 o1 1 1 1 1

0

1]~ spst, [ 7 7 o 7]

SSRCOg

Description This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit

literal constant.

15.1. Scalar ALU and Control Formats

Table 69. SOP1 Fields

146 of 600



"RDNA3" Instruction Set Architecture

Field Name
SSRCO

Bits
[7:0]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-234
235

236

237

238

239

240

241

242

243

244

245

246

247

248

249 - 252
253

254

255

[15:8]
[22:16]

OP
SDST

ENCODING [31:23]

AMD¢1

Format or Description

Source 0. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

SCC.

Reserved.

Literal constant.

See Opcode table below.

Scalar destination.
Same codes as SSRCO, above except only codes 0-127 are valid.

'b10_1111101

Table 70. SOP1 Opcodes

Opcode # Name
S_MOV_B32
S_MOV_B64
S_CMOV_B32
S_CMOV_B64
S_BREV_B32
S_BREV_B64
S_CTZ_132_B32
S_CTZ_132_B64
S_CLZ_132_U32
S_CLZ_I132_U64
S_CLS_I32
S_CLS_I32_I64
S_SEXT_I32_I8
S_SEXT_I32_I16

O 0 U1 A~ W N+ O

= e = e
a A W N = o

15.1. Scalar ALU and Control Formats

Opcode # Name

35 S_OR_SAVEEXEC_B64

36 S_XOR_SAVEEXEC_B32

37 S_XOR_SAVEEXEC_B64

38 S_NAND_SAVEEXEC_B32

39 S_NAND_SAVEEXEC_B64

40 S_NOR_SAVEEXEC_B32

41 S_NOR_SAVEEXEC_B64

42 S_XNOR_SAVEEXEC_B32

43 S_XNOR_SAVEEXEC_B64

44 S_AND_NOTO0_SAVEEXEC_B32
45 S_AND_NOTO0_SAVEEXEC_B64
46 S_OR_NOTO0_SAVEEXEC_B32
47 S_OR_NOTO0_SAVEEXEC_B64
48 S_AND_NOT1_SAVEEXEC_B32
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Opcode # Name
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Opcode # Name

16 S_BITSET0_B32 49 S_AND_NOT1_SAVEEXEC_B64
17 S_BITSET0_B64 50 S_OR_NOT1_SAVEEXEC_B32
18 S_BITSET1_B32 51 S_OR_NOT1_SAVEEXEC_B64
19 S_BITSET1_B64 52 S_AND_NOTO0_WREXEC_B32
20 S_BITREPLICATE_B64_B32 53 S_AND_NOTO0_WREXEC_B64
21 S_ABS_I32 54 S_AND_NOT1_WREXEC_B32
22 S_BCNTO0_I32_B32 55 S_AND_NOT1_WREXEC_B64
23 S_BCNTO0_I32_B64 64 S_MOVRELS_B32
24 S_BCNT1_132_B32 65 S_MOVRELS_B64
25 S_BCNT1_132_B64 66 S_MOVRELD_B32
26 S_QUADMASK_B32 67 S_MOVRELD_B64
27 S_QUADMASK_B64 68 S_MOVRELSD_2_B32
28 S_WQM_B32 71 S_GETPC_B64
29 S_WQM_B64 72 S_SETPC_B64
30 S_NOT_B32 73 S_SWAPPC_B64
31 S_NOT_B64 74 S_RFE_B64
32 S_AND_SAVEEXEC_B32 76 S_SENDMSG_RTN_B32
33 S_AND_SAVEEXEC_B64 77 S_SENDMSG_RTN_B64
34 S_OR_SAVEEXEC_B32
15.1.4. SOPC
s o
soc [1 01 1 1 1 1 1 o] op | 'SSRCTs ] SSRCO5_
Description This is a scalar instruction with two inputs that are compared and produces SCC as a

15.1. Scalar ALU and Control Formats

result. Can be followed by a 32-bit literal constant.

Table 71. SOPC Fields
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Field Name Bits Format or Description
SSRCO [7:0] Source 0. First operand for the instruction.
0-105 SGPRO - SGPR105: Scalar general-purpose registers.
106 VCC_LO: VCCJ[31:0].
107 VCC_HI: VCC[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 NULL
125 MO. Misc register 0.
126 EXEC_LO: EXEC[31:0].
127 EXEC_HI: EXEC[63:32].
128 0.
129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-234 Reserved.
235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 Reserved.
240 0.5.
241 -0.5.
242 1.0.
243 -1.0.
244 2.0.
245 -2.0.
246 4.0.
247 -4.0.
248 1/(2*PI).
249 - 252 Reserved.
253 SCC.
254 Reserved.
255 Literal constant.
SSRC1 [15:8] Second scalar source operand.
Same codes as SSRCO, above.
oP [22:16] See Opcode table below.
ENCODING [31:23] 'b10_1111110
Table 72. SOPC Opcodes
Opcode # Name Opcode # Name
0 S_CMP_EQ_I32 9 S_CMP_GE_U32
1 S_CMP_LG_I32 10 S_CMP_LT_U32
2 S_CMP_GT_I32 11 S_CMP_LE_U32
3 S_CMP_GE_I32 12 S_BITCMP0_B32
4 S_.CMP_LT_I32 13 S_BITCMP1_B32
5 S_CMP_LE_I32 14 S_BITCMPO0_B64
6 S_CMP_EQ_U32 15 S_BITCMP1_B64
7 S_CMP_LG_U32 16 S_CMP_EQ_U64
8 S_CMP_GT_U32 17 S_CMP_LG_U64

15.1. Scalar ALU and Control Formats
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15.1.5. SOPP
s[4 o1 1 1 1 1 1 1] SIMM16
Description This is a scalar instruction with one 16-bit signed immediate (SIMM16) input.

Field Name Bits

SIMM16
OoP
ENCODING

Opcode #

O 00 N U A W N+ O

w w w W w R =B =
gaua A W N H 0N O+ O

Table 73. SOPP Fields

Format or Description
[15:0]
[22:16] See Opcode table below.
[31:23] 'b10_1111111

Table 74. SOPP Opcodes

Name

S_NOP

S_SETKILL
S_SETHALT
S_SLEEP
S_SET_INST_PREFETCH_DISTANCE
S_CLAUSE
S_DELAY_ALU
Reserved
S_WAITCNT
S_WAIT_IDLE
S_WAIT_EVENT
S_TRAP
S_ROUND_MODE
S_DENORM_MODE
S_CODE_END
S_BRANCH
S_CBRANCH_SCCO
S_CBRANCH_SCC1
S_CBRANCH_VCCZ

15.1. Scalar ALU and Control Formats

Signed immediate 16-bit value.

Opcode # Name

36
37
38
39
40
41
42
48
49
50
52
53
54
55
56
57
60
61

S_CBRANCH_VCCNZ
S_CBRANCH_EXECZ
S_CBRANCH_EXECNZ
S_CBRANCH_CDBGSYS
S_CBRANCH_CDBGUSER
S_CBRANCH_CDBGSYS_OR_USER
S_CBRANCH_CDBGSYS_AND_USER
S_ENDPGM

S_ENDPGM_SAVED
S_ENDPGM_ORDERED_PS_DONE
S_WAKEUP

S_SETPRIO

S_SENDMSG

S_SENDMSGHALT
S_INCPERFLEVEL
S_DECPERFLEVEL
S_ICACHE_INV

S_BARRIER
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15.2.1. SMEM

w . - - 0
SvEn 11 1 1 0 1] : opP : |orcloic] SDATA _ SBASE

_ SOFFSET; | OFFSET .

Description Scalar Memory data load
Table 75. SMEM Fields
Field Name Bits Format or Description
SBASE [5:0] SGPR-pair that provides base address or SGPR-quad that provides V#. (LSB of SGPR
address is omitted).
SDATA [12:6] SGPR that provides write data or accepts return data.
DLC [14] Device level coherent.
GLC [16] Globally memory Coherent. Force bypass of L1 cache, or for atomics, cause pre-op
value to be returned.
OP [25:18] See Opcode table below.
ENCODING [31:26] 'b111101
OFFSET [52:32] An immediate signed byte offset. Ignored for cache invalidations.
SOFFSET [63:57] SGPR that supplies an unsigned byte offset. Disabled if set to NULL.
Table 76. SMEM Opcodes

Opcode # Name Opcode # Name
0 S_LOAD_B32 9 S_BUFFER_LOAD_B64
1 S_LOAD_B64 10 S_BUFFER_LOAD_B128
2 S_LOAD_B128 11 S_BUFFER_LOAD_B256
3 S_LOAD_B256 12 S_BUFFER_LOAD_B512
4 S_LOAD_B512 32 S_GL1_INV
8 S_BUFFER_LOAD_B32 33 S_DCACHE_INV

15.2. Scalar Memory Format
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15.3. Vector ALU Formats

15.3.1. VOP2

31
vore  [of = " op = ] wosT, | '~ wsRey | SRCs

Description Vector ALU format with two input operands. Can be followed by a 32-bit literal constant
or DPP instruction DWORD when the instruction allows it.

Table 77. VOP2 Fields

Field Name Bits Format or Description
SRCO [8:0] Source 0. First operand for the instruction.
0-105 SGPRO - SGPR105: Scalar general-purpose registers.
106 VCC_LO: VCCJ[31:0].
107 VCC_HI: VCC[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 NULL
125 MO. Misc register 0.
126 EXEC_LO: EXEC[31:0].
127 EXEC_HI: EXEC[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-232 Reserved.

233 DPP8
234 DPP8FI
235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 Reserved.
240 0.5.
241 -0.5.
242 1.0.
243 -1.0.
244 2.0.
245 -2.0.
246 4.0.
247 -4.0.
248 1/(2*PI).
250 DPP16
253 SCC.
254 Reserved.
255 Literal constant.
256 - 511 VGPR 0 - 255
VSRC1 [16:9] VGPR that provides the second operand.
VDST [24:17] Destination VGPR.
OP [30:25] See Opcode table below.
ENCODING [31] 'b0

Table 78. VOP2 Opcodes
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Opcode # Name Opcode # Name

1 V_CNDMASK_B32 29 V_XOR_B32

2 V_DOT2ACC_F32_F16 30 V_XNOR_B32

3 V_ADD_F32 32 V_ADD_CO_CI_U32

4 V_SUB_F32 33 V_SUB_CO_CI_U32

5 V_SUBREV_F32 34 V_SUBREV_CO_CI_U32

6 V_FMAC_DX9_ZERO_F32 37 V_ADD_NC_U32

7 V_MUL_DX9_ZERO_F32 38 V_SUB_NC_U32

8 V_MUL_F32 39 V_SUBREV_NC_U32

9 V_MUL_I32_124 43 V_FMAC_F32

10 V_MUL_HI_I32_124 44 V_FMAMK_F32

11 V_MUL_U32_U24 45 V_FMAAK_F32

12 V_MUL_HI_U32_U24 47 V_CVT_PK_RTZ_F16_F32

15 V_MIN_F32 50 V_ADD_F16

16 V_MAX_F32 51 V_SUB_F16

17 V_MIN_I32 52 V_SUBREV_F16

18 V_MAX_I32 53 V_MUL_F16

19 V_MIN_U32 54 V_FMAC_F16

20 V_MAX_U32 55 V_FMAMK_F16

24 V_LSHLREV_B32 56 V_FMAAK_F16

25 V_LSHRREV_B32 57 V_MAX_F16

26 V_ASHRREV_I32 58 V_MIN_F16

27 V_AND_B32 59 V_LDEXP_F16

28 V_OR_B32 60 V_PK_FMAC_F16

15.3.2. VOP1

VOP1 |o|1'1'1'1'1'1| VDST, | ' op SRCs
Description Vector ALU format with one input operand. Can be followed by a 32-bit literal constant or

DPP instruction DWORD when the instruction allows it.

15.3. Vector ALU Formats

Table 79. VOPI Fields
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Field Name
SRCO

Bits
[8:0]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

250

253

254

255

256 - 511

[16:9]
[24:17]
[31:25]

OP
VDST
ENCODING

AMD¢1

Format or Description

Source 0. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPSFI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

DPP16

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

See Opcode table below.
Destination VGPR.
'b0_111111

Table 80. VOPI Opcodes

Opcode # Name

V_NOP

V_MOV_B32
V_READFIRSTLANE_B32
V_CVT_I32_Fe64
V_CVT_F64_132
V_CVT_F32_132
V_CVT_F32_U32
V_CVT_U32_F32
V_CVT_I32_F32
V_CVT_F16_F32
V_CVT_F32_F16
V_CVT_NEAREST_I32_F32

o N &N U1 A W N O

=
N = O

15.3. Vector ALU Formats

Opcode # Name

54 V_COS_F32

55 V_NOT_B32

56 V_BFREV_B32

57 V_CLZ_I32_U32

58 V_CTZ_132_B32

59 V_CLS_I32

60 V_FREXP_EXP_I32_F64
61 V_FREXP_MANT_F64
62 V_FRACT_F64

63 V_FREXP_EXP_I32_F32
64 V_FREXP_MANT_F32
66 V_MOVRELD_B32
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Opcode # Name Opcode # Name
13 V_CVT_FLOOR_I32_F32 67 V_MOVRELS_B32
14 V_CVT_OFF_F32_14 68 V_MOVRELSD_B32
15 V_CVT_F32_F64 72 V_MOVRELSD_2_B32
16 V_CVT_F64_F32 80 V_CVT_F16_Ul6
17 V_CVT_F32_UBYTEO 81 V_CVT_F1l6_I16
18 V_CVT_F32_UBYTE1l 82 V_CVT_U1l6_F16
19 V_CVT_F32_UBYTE2 83 V_CVT_I16_F16
20 V_CVT_F32_UBYTE3 84 V_RCP_F16
21 V_CVT_U32_F64 85 V_SQRT_F16
22 V_CVT_F64_U32 86 V_RSQ_F16
23 V_TRUNC_F64 87 V_LOG_F16
24 V_CEIL_Fé64 88 V_EXP_F16
25 V_RNDNE_F64 89 V_FREXP_MANT_F16
26 V_FLOOR_F64 90 V_FREXP_EXP_I16_F16
27 V_PIPEFLUSH 91 V_FLOOR_F16
28 V_MOV_B16 92 V_CEIL_F16
32 V_FRACT_F32 93 V_TRUNC_F16
33 V_TRUNC_F32 94 V_RNDNE_F16
34 V_CEIL_F32 95 V_FRACT_F16
35 V_RNDNE_F32 96 V_SIN_F16
36 V_FLOOR_F32 97 V_COS_F16
37 V_EXP_F32 98 V_SAT_PK_U8_I16
39 V_LOG_F32 99 V_CVT_NORM_I16_F16
42 V_RCP_F32 100 V_CVT_NORM_U16_F16
43 V_RCP_IFLAG_F32 101 V_SWAP_B32
46 V_RSQ_F32 102 V_SWAP_B16
47 V_RCP_F64 103 V_PERMLANEG64_B32
49 V_RSQ_F64 104 V_SWAPREL_B32
51 V_SQRT_F32 105 V_NOT_B16
52 V_SQRT_F64 106 V_CVT_I32_I16
53 V_SIN_F32 107 V_CVT_U32_Ul6
15.3.3. VOPC
s o
vore |01 1 1 1 1 o oP | VSRCs SRC,
Description Vector instruction taking two inputs and producing a comparison result. Can be followed

by a 32-bit literal constant or DPP control DWORD. Vector Comparison operations are

divided into three groups:

« those that can use any one of 16 comparison operations,

« those that can use any one of 8, and

« those that have a single comparison operation.

The final opcode number is determined by adding the base for the opcode family plus the offset from the
compare op. Compare instructions write a result to VCC (for VOPC) or an SGPR (for VOP3). Additionally,

15.3. Vector ALU Formats
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compare instructions have variants that writes to the EXEC mask instead of VCC or SGPR. The destination of
the compare result is VCC or EXEC when encoded using the VOPC format, and can be an arbitrary SGPR

(indicated in the VDST field) when only encoded in the VOP3 format.

Comparison Operations

Compare Operation

F
LT
EQ
LE
GT
LG
GE
0

U
NGE
NLG
NGT
NLE
NEQ
NLT
TRU

Eight Compare Operations (COMPI)

F
LT
EQ
LE
GT
LG
GE
TRU

15.3. Vector ALU Formats

Opcode
Offset

Sixteen Compare Operations (COMPF)

0

O 00 NN U A~ W N

= = e
A W N R O

15

N o g A N +H O

Table 81. Comparison Operations

Description

D.u=0
D.u=(S0<S1)
D.u=(S0==S1)
D.u=(S0<=S1)
D.u= (S0 > S1)
D.u=(S0<>S1)
D.u=(S0>=S1)

D.u = (!isNaN(S0) && !isNaN(S1))
D.u = (!isNaN(S0) || lisNaN(S1))

D.u=1!(S0>=S1)
D.u=1!(S0 <> S1)
D.u=1!(S0>S1)
D.u=!(S0 <=S1)
D.u=!(S0==S1)
D.u=1!(S0 < S1)
Du=1

D.u=0
D.u=(S0< S1)
D.u=(S0==S1)
D.u=(S0<=S1)
D.u=(S0>S1)
D.u= (S0 <> S1)
D.u=(S0>=81)
Du=1

Table 82. VOPC Fields
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Field Name Bits
SRCO [8:0]
0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

VSRC1 [16:9]
OP [24:17]
ENCODING [31:25]

AMD¢1

Format or Description

Source 0. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPSFI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

DPP16

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

VGPR that provides the second operand.
See Opcode table below.
'b0_111110

Table 83. VOPC Opcodes

Opcode # Name
V_CMP_F_F16
V_CMP_LT_F16
V_CMP_EQ_F16
V_CMP_LE_F16
V_CMP_GT_F16
V_CMP_LG_F16
V_CMP_GE_F16
V_CMP_O_F16
V_CMP_U_F16
V_CMP_NGE_F16
V_CMP_NLG_F16
V_CMP_NGT_F16

O 00 NN N U B~ W NN = O

T
(=)

15.3. Vector ALU Formats

Opcode # Name

128
129
130
131
132
133
134
135
136
137
138
139

V_CMPX_F_F16
V_CMPX_LT_F16
V_CMPX_EQ_F16
V_CMPX_LE_F16
V_CMPX_GT_F16
V_CMPX_LG_F16
V_CMPX_GE_F16
V_CMPX_O_F16
V_CMPX_U_F16
V_CMPX_NGE_F16
V_CMPX_NLG_F16
V_CMPX_NGT_F16
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Opcode # Name

Opcode # Name

AMD¢1

12 V_CMP_NLE_F16
13 V_CMP_NEQ_F16
14 V_CMP_NLT_F16
15 V_CMP_T_F16

16 V_CMP_F_F32

17 V_CMP_LT_F32
18 V_CMP_EQ_F32
19 V_CMP_LE_F32
20 V_CMP_GT_F32
21 V_CMP_LG_F32
22 V_CMP_GE_F32
23 V_CMP_O_F32

24 V_CMP_U_F32

25 V_CMP_NGE_F32
26 V_CMP_NLG_F32
27 V_CMP_NGT_F32
28 V_CMP_NLE_F32
29 V_CMP_NEQ_F32
30 V_CMP_NLT_F32
31 V_CMP_T_F32

32 V_CMP_F_Fe64

33 V_CMP_LT_F64
34 V_CMP_EQ_F64
35 V_CMP_LE_F64
36 V_CMP_GT_F64
37 V_CMP_LG_F64
38 V_CMP_GE_F64
39 V_CMP_O_F64

40 V_CMP_U_F64

41 V_CMP_NGE_F64
42 V_CMP_NLG_F64
43 V_CMP_NGT_F64
44 V_CMP_NLE_F64
45 V_CMP_NEQ_F64
46 V_CMP_NLT_F64
47 V_CMP_T_F64

49 V_CMP_LT_I16
50 V_CMP_EQ_I16
51 V_CMP_LE_I16
52 V_CMP_GT_I16
53 V_CMP_NE_I16
54 V_CMP_GE_I16
57 V_CMP_LT_U16
58 V_CMP_EQ_U16
59 V_CMP_LE_U16
60 V_CMP_GT_U16
61 V_CMP_NE_U16

15.3. Vector ALU Formats

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
177
178
179
180
181
182
185
186
187
188
189

V_CMPX_NLE_F16
V_CMPX_NEQ_F16
V_CMPX_NLT_F16
V_CMPX_T_F16
V_CMPX_F_F32
V_CMPX_LT_F32
V_CMPX_EQ_F32
V_CMPX_LE_F32
V_CMPX_GT_F32
V_CMPX_LG_F32
V_CMPX_GE_F32
V_CMPX_O_F32
V_CMPX_U_F32
V_CMPX_NGE_F32
V_CMPX_NLG_F32
V_CMPX_NGT_F32
V_CMPX_NLE_F32
V_CMPX_NEQ_F32
V_CMPX_NLT_F32
V_CMPX_T_F32
V_CMPX_F_F64
V_CMPX_LT_F64
V_CMPX_EQ_F64
V_CMPX_LE_F64
V_CMPX_GT_F64
V_CMPX_LG_F64
V_CMPX_GE_F64
V_CMPX_O_F64
V_CMPX_U_F64
V_CMPX_NGE_F64
V_CMPX_NLG_F64
V_CMPX_NGT_F64
V_CMPX_NLE_F64
V_CMPX_NEQ_F64
V_CMPX_NLT_F64
V_CMPX_T_F64
V_CMPX_LT_I16
V_CMPX_EQ_I16
V_CMPX_LE_I16
V_CMPX_GT_I16
V_CMPX_NE_I16
V_CMPX_GE_I16
V_CMPX_LT_U16
V_CMPX_EQ_U16
V_CMPX_LE_U16
V_CMPX_GT_U16
V_CMPX_NE_U16
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Opcode # Name Opcode # Name
62 V_CMP_GE_U16 190 V_CMPX_GE_Ul6
64 V_CMP_F_I32 192 V_CMPX_F_I32
65 V_CMP_LT_I32 193 V_CMPX_LT_I32
66 V_CMP_EQ_I32 194 V_CMPX_EQ_I32
67 V_CMP_LE_I32 195 V_CMPX_LE_I32
68 V_CMP_GT_I32 196 V_CMPX_GT_I32
69 V_CMP_NE_I32 197 V_CMPX_NE_I32
70 V_CMP_GE_I32 198 V_CMPX_GE_I32
71 V_CMP_T_I32 199 V_CMPX_T_I32
72 V_CMP_F_U32 200 V_CMPX_F_U32
73 V_CMP_LT_U32 201 V_CMPX_LT_U32
74 V_CMP_EQ_U32 202 V_CMPX_EQ_U32
75 V_CMP_LE_U32 203 V_CMPX_LE_U32
76 V_CMP_GT_U32 204 V_CMPX_GT_U32
77 V_CMP_NE_U32 205 V_CMPX_NE_U32
78 V_CMP_GE_U32 206 V_CMPX_GE_U32
79 V_CMP_T_U32 207 V_CMPX_T_U32
80 V_CMP_F_I64 208 V_CMPX_F_I64
81 V_CMP_LT_I64 209 V_CMPX_LT_I64
82 V_CMP_EQ_I64 210 V_CMPX_EQ_I64
83 V_CMP_LE_I64 211 V_CMPX_LE_I64
84 V_CMP_GT_I64 212 V_CMPX_GT_I64
85 V_CMP_NE_I64 213 V_CMPX_NE_I64
86 V_CMP_GE_I64 214 V_CMPX_GE_I64
87 V_CMP_T_I64 215 V_CMPX_T_I64
88 V_CMP_F_U64 216 V_CMPX_F_U64
89 V_CMP_LT_U64 217 V_CMPX_LT_U64
90 V_CMP_EQ_U64 218 V_CMPX_EQ_U64
91 V_CMP_LE_U64 219 V_CMPX_LE_U64
92 V_CMP_GT_U64 220 V_CMPX_GT_U64
93 V_CMP_NE_U64 221 V_CMPX_NE_U64
94 V_CMP_GE_U64 222 V_CMPX_GE_U64
95 V_CMP_T_U64 223 V_CMPX_T_U64
125 V_CMP_CLASS_F16 253 V_CMPX_CLASS_F16
126 V_CMP_CLASS_F32 254 V_CMPX_CLASS_F32
127 V_CMP_CLASS_F64 255 V_CMPX_CLASS_F64
15.3.4. VOP3
ops |t 0t o | o fow| opse. | mes, | wost
NEG | omoD | SRC2g | SRC1g | SRCOg

63 32

Description Vector ALU format with three input operands. Can be followed by a 32-bit literal constant
or DPP instruction DWORD when the instruction allows it.

Table 84. VOP3 Fields
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Field Name
VDST

ABS

OPSEL

CLMP

OP
ENCODING
SRCO

SRC1
SRC2
OMOD
NEG

Opcode # Name

384 V_NOP

385 V_MOV_B32

386 V_READFIRSTLANE_B32
387 V_CVT_I32_F64

15.3. Vector ALU Formats

Bits
[7:0]
[10:8]
[14:11]

[15]
[25:16]
[31:26]
[40:32]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

250

253

254

255

256 - 511

[49:41]
[58:50]
[60:59]
[63:61]

AMD¢1

Format or Description

Destination VGPR

Absolute value of input. [8] = src0, [9] = srcl, [10] = src2

Operand select for 16-bit data. 0 = select low half, 1 = select high half. [11] = src0,
[12] = srcl, [13] = src2, [14] = dest.

Clamp output

Opcode. See next table.

'b110101

Source 0. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPSFI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

DPP16

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

Second input operand. Same options as SRCO.
Third input operand. Same options as SRCO.
Output Modifier: 0=none, 1=*2, 2=*4  3=*0.5
Negate input. [61] = src0, [62] = srcl, [63] = src2

Table 85. VOP3 Opcodes

Opcode # Name

803 V_CVT_PK_U1l6_U32
804 V_CVT_PK_I16_I32
805 V_SUB_NC_I32

806 V_ADD_NC_I32
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Opcode # Name Opcode # Name

388 V_CVT_F64_132 807 V_ADD_F64

389 V_CVT_F32_132 808 V_MUL_Fe64

390 V_CVT_F32_U32 809 V_MIN_F64

391 V_CVT_U32_F32 810 V_MAX_F64

392 V_CVT_I32_F32 811 V_LDEXP_F64
394 V_CVT_F16_F32 812 V_MUL_LO_U32
395 V_CVT_F32_F16 813 V_MUL_HI_U32
396 V_CVT_NEAREST_I32_F32 814 V_MUL_HI_I32
397 V_CVT_FLOOR_I32_F32 815 V_TRIG_PREOP_F64
398 V_CVT_OFF_F32_14 824 V_LSHLREV_B16
399 V_CVT_F32_F64 825 V_LSHRREV_B16
400 V_CVT_F64_F32 826 V_ASHRREV_I16
401 V_CVT_F32_UBYTEO 828 V_LSHLREV_B64
402 V_CVT_F32_UBYTE1 829 V_LSHRREV_B64
403 V_CVT_F32_UBYTE2 830 V_ASHRREV_I64
404 V_CVT_F32_UBYTE3 864 V_READLANE_B32
405 V_CVT_U32_F64 865 V_WRITELANE_B32
406 V_CVT_F64_U32 866 V_AND_B16

407 V_TRUNC_F64 867 V_OR_B16

408 V_CEIL_F64 868 V_XOR_B16

409 V_RNDNE_F64 0 V_CMP_F_F16
410 V_FLOOR_F64 1 V_CMP_LT_F16
411 V_PIPEFLUSH 2 V_CMP_EQ_F16
412 V_MOV_B16 3 V_CMP_LE_F16
416 V_FRACT_F32 4 V_CMP_GT_F16
417 V_TRUNC_F32 5 V_CMP_LG_F16
418 V_CEIL_F32 6 V_CMP_GE_F16
419 V_RNDNE_F32 7 V_CMP_O_F16
420 V_FLOOR_F32 8 V_CMP_U_F16
421 V_EXP_F32 9 V_CMP_NGE_F16
423 V_LOG_F32 10 V_CMP_NLG_F16
426 V_RCP_F32 11 V_CMP_NGT_F16
427 V_RCP_IFLAG_F32 12 V_CMP_NLE_F16
430 V_RSQ_F32 13 V_CMP_NEQ_F16
431 V_RCP_F64 14 V_CMP_NLT_F16
433 V_RSQ_F64 15 V_CMP_T_F16
435 V_SQRT_F32 16 V_CMP_F_F32
436 V_SQRT_Fe64 17 V_CMP_LT_F32
437 V_SIN_F32 18 V_CMP_EQ_F32
438 V_COS_F32 19 V_CMP_LE_F32
439 V_NOT_B32 20 V_CMP_GT_F32
440 V_BFREV_B32 21 V_CMP_LG_F32
441 V_CLZ_132_U32 22 V_CMP_GE_F32
442 V_CTZ_132_B32 23 V_CMP_O_F32
443 V_CLS_I32 24 V_CMP_U_F32
444 V_FREXP_EXP_I32_F64 25 V_CMP_NGE_F32
445 V_FREXP_MANT_F64 26 V_CMP_NLG_F32
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Opcode # Name

446
447
448
450
451
452
456
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
489
490
491
257
259
260
261
262
263
264
265
266
267
268
271
272
273
274
275

V_FRACT_F64
V_FREXP_EXP_I32_F32
V_FREXP_MANT_F32
V_MOVRELD_B32
V_MOVRELS_B32
V_MOVRELSD_B32
V_MOVRELSD_2_B32
V_CVT_F16_U16
V_CVT_F16_116
V_CVT_U16_F16
V_CVT_I16_F16
V_RCP_F16
V_SQRT_F16
V_RSQ_F16
V_LOG_F16
V_EXP_F16
V_FREXP_MANT_F16
V_FREXP_EXP_I16_F16
V_FLOOR_F16
V_CEIL_F16
V_TRUNC_F16
V_RNDNE_F16
V_FRACT_F16
V_SIN_F16

V_COS_F16
V_SAT_PK_US_I16
V_CVT_NORM_I16_F16
V_CVT_NORM_U16_F16
V_NOT_B16
V_CVT_I32_I16
V_CVT_U32_U16
V_CNDMASK_B32
V_ADD_F32
V_SUB_F32
V_SUBREV_F32
V_FMAC_DX9_ZERO_F32
V_MUL_DX9_ZERO_F32
V_MUL_F32
V_MUL_I32_124
V_MUL_HI_I32_I24
V_MUL_U32_U24
V_MUL_HI_U32_U24
V_MIN_F32
V_MAX_F32
V_MIN_I32
V_MAX_I32
V_MIN_U32

15.3. Vector ALU Formats

Opcode # Name

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
49
50
51
52
53
54
57
58
59
60
61
62
64
65
66
67
68
69
70
71
72
73
74
75
76
77

V_CMP_NGT_F32
V_CMP_NLE_F32
V_CMP_NEQ_F32
V_CMP_NLT_F32
V_CMP_T_F32
V_CMP_F_Fo64
V_CMP_LT_F64
V_CMP_EQ_F64
V_CMP_LE_F64
V_CMP_GT_F64
V_CMP_LG_F64
V_CMP_GE_F64
V_CMP_O_F64
V_CMP_U_F64
V_CMP_NGE_F64
V_CMP_NLG_F64
V_CMP_NGT_F64
V_CMP_NLE_F64
V_CMP_NEQ_F64
V_CMP_NLT_F64
V_CMP_T_F64
V_CMP_LT_I16
V_CMP_EQ_I16
V_CMP_LE_I16
V_CMP_GT_I16
V_CMP_NE_I16
V_CMP_GE_I16
V_CMP_LT_U16
V_CMP_EQ_U16
V_CMP_LE_U16
V_CMP_GT_U16
V_CMP_NE_U16
V_CMP_GE_U16
V_CMP_F_I32
V_CMP_LT_I32
V_CMP_EQ_I32
V_CMP_LE_I32
V_CMP_GT_I32
V_CMP_NE_I32
V_CMP_GE_I32
V_CMP_T_I32
V_CMP_F_U32
V_CMP_LT_U32
V_CMP_EQ_U32
V_CMP_LE_U32
V_CMP_GT_U32
V_CMP_NE_U32

AMD¢1
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Opcode # Name Opcode # Name

276 V_MAX_U32 78 V_CMP_GE_U32
280 V_LSHLREV_B32 79 V_CMP_T_U32

281 V_LSHRREV_B32 80 V_CMP_F_I64

282 V_ASHRREV_I32 81 V_CMP_LT_I64
283 V_AND_B32 82 V_CMP_EQ_I64
284 V_OR_B32 83 V_CMP_LE_I64
285 V_XOR_B32 84 V_CMP_GT_I64
286 V_XNOR_B32 85 V_CMP_NE_I64
293 V_ADD_NC_U32 86 V_CMP_GE_I64
294 V_SUB_NC_U32 87 V_CMP_T_I64

295 V_SUBREV_NC_U32 88 V_CMP_F_U64

299 V_FMAC_F32 89 V_CMP_LT_U64
303 V_CVT_PK_RTZ_F16_F32 90 V_CMP_EQ_U64
306 V_ADD_F16 91 V_CMP_LE_U64
307 V_SUB_F16 92 V_CMP_GT_U64
308 V_SUBREV_F16 93 V_CMP_NE_U64
309 V_MUL_F16 94 V_CMP_GE_U64
310 V_FMAC_F16 95 V_CMP_T_U64

313 V_MAX_F16 125 V_CMP_CLASS_F16
314 V_MIN_F16 126 V_CMP_CLASS_F32
315 V_LDEXP_F16 127 V_CMP_CLASS_F64
521 V_FMA_DX9_ZERO_F32 128 V_CMPX_F_F16
522 V_MAD_I32_124 129 V_CMPX_LT_F16
523 V_MAD_U32_U24 130 V_CMPX_EQ_F16
524 V_CUBEID_F32 131 V_CMPX_LE_F16
525 V_CUBESC_F32 132 V_CMPX_GT_F16
526 V_CUBETC_F32 133 V_CMPX_LG_F16
527 V_CUBEMA_F32 134 V_CMPX_GE_F16
528 V_BFE_U32 135 V_CMPX_O_F16
529 V_BFE_I32 136 V_CMPX_U_F16
530 V_BFI_B32 137 V_CMPX_NGE_F16
531 V_FMA_F32 138 V_CMPX_NLG_F16
532 V_FMA_F64 139 V_CMPX_NGT_F16
533 V_LERP_US 140 V_CMPX_NLE_F16
534 V_ALIGNBIT_B32 141 V_CMPX_NEQ_F16
535 V_ALIGNBYTE_B32 142 V_CMPX_NLT_F16
536 V_MULLIT_F32 143 V_CMPX_T_F16
537 V_MIN3_F32 144 V_CMPX_F_F32
538 V_MIN3_I32 145 V_CMPX_LT_F32
539 V_MIN3_U32 146 V_CMPX_EQ_F32
540 V_MAX3_F32 147 V_CMPX_LE_F32
541 V_MAX3_I32 148 V_CMPX_GT_F32
542 V_MAX3_U32 149 V_CMPX_LG_F32
543 V_MED3_F32 150 V_CMPX_GE_F32
544 V_MED3_I32 151 V_CMPX_O_F32
545 V_MED3_U32 152 V_CMPX_U_F32
546 V_SAD_U8 153 V_CMPX_NGE_F32
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547 V_SAD_HI_US8

548 V_SAD_U16

549 V_SAD_U32

550 V_CVT_PK_US8_F32
551 V_DIV_FIXUP_F32
552 V_DIV_FIXUP_F64
567 V_DIV_FMAS_F32
568 V_DIV_FMAS_F64
569 V_MSAD_U8

570 V_QSAD_PK_U16_U8
571 V_MQSAD_PK_U16_U8
573 V_MQSAD_U32_U8
576 V_XOR3_B32

577 V_MAD_U16

580 V_PERM_B32

581 V_XAD_U32

582 V_LSHL_ADD_U32
583 V_ADD_LSHL_U32
584 V_FMA_F16

585 V_MIN3_F16

586 V_MIN3_I16

587 V_MIN3_Ul6

588 V_MAX3_F16

589 V_MAX3_I16

590 V_MAX3_Ul6

591 V_MED3_F16

592 V_MED3_I16

593 V_MED3_Ul6

595 V_MAD_I16

596 V_DIV_FIXUP_F16
597 V_ADD3_U32

598 V_LSHL_OR_B32
599 V_AND_OR_B32
600 V_OR3_B32

601 V_MAD_U32_U16
602 V_MAD_I32_I16
603 V_PERMLANE16_B32
604 V_PERMLANEX16_B32
605 V_CNDMASK_B16
606 V_MAXMIN_F32
607 V_MINMAX_F32
608 V_MAXMIN_F16
609 V_MINMAX_F16
610 V_MAXMIN_U32
611 V_MINMAX_U32
612 V_MAXMIN_I32
613 V_MINMAX_I32
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Opcode # Name

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
177
178
179
180
181
182
185
186
187
188
189
190
192
193
194
195
196
197
198
199
200
201
202
203
204

V_CMPX_NLG_F32
V_CMPX_NGT_F32
V_CMPX_NLE_F32
V_CMPX_NEQ_F32
V_CMPX_NLT_F32
V_CMPX_T_F32
V_CMPX_F_F64
V_CMPX_LT_F64
V_CMPX_EQ_F64
V_CMPX_LE_F64
V_CMPX_GT_F64
V_CMPX_LG_F64
V_CMPX_GE_F64
V_CMPX_O_F64
V_CMPX_U_F64
V_CMPX_NGE_F64
V_CMPX_NLG_F64
V_CMPX_NGT_F64
V_CMPX_NLE_F64
V_CMPX_NEQ_F64
V_CMPX_NLT_F64
V_CMPX_T_F64
V_CMPX_LT_I16
V_CMPX_EQ_I16
V_CMPX_LE_I16
V_CMPX_GT_I16
V_CMPX_NE_I16
V_CMPX_GE_I16
V_CMPX_LT_U16
V_CMPX_EQ_U16
V_CMPX_LE_U16
V_CMPX_GT_U16
V_CMPX_NE_U16
V_CMPX_GE_U16
V_CMPX_F_I32
V_CMPX_LT_I32
V_CMPX_EQ_I32
V_CMPX_LE_I32
V_CMPX_GT_I32
V_CMPX_NE_I32
V_CMPX_GE_I32
V_CMPX_T_I32
V_CMPX_F_U32
V_CMPX_LT_U32
V_CMPX_EQ_U32
V_CMPX_LE_U32
V_CMPX_GT_U32
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Opcode # Name

AMD¢1

614 V_DOT2_F16_F16 205 V_CMPX_NE_U32
615 V_DOT2_BF16_BF16 206 V_CMPX_GE_U32
771 V_ADD_NC_U16 207 V_CMPX_T_U32
772 V_SUB_NC_U16 208 V_CMPX_F_I64
773 V_MUL_LO_U16 209 V_CMPX_LT_I64
774 V_CVT_PK_I16_F32 210 V_CMPX_EQ_I64
775 V_CVT_PK_U16_F32 211 V_CMPX_LE_I64
777 V_MAX_Ul6 212 V_CMPX_GT_I64
778 V_MAX_I16 213 V_CMPX_NE_I64
779 V_MIN_U16 214 V_CMPX_GE_I64
780 V_MIN_I16 215 V_CMPX_T_I64
781 V_ADD_NC_I16 216 V_CMPX_F_U64
782 V_SUB_NC_I16 217 V_CMPX_LT_U64
785 V_PACK_B32_F16 218 V_CMPX_EQ_U64
786 V_CVT_PK_NORM_I16_F16 219 V_CMPX_LE_U64
787 V_CVT_PK_NORM_U16_F16 220 V_CMPX_GT_U64
796 V_LDEXP_F32 221 V_CMPX_NE_U64
797 V_BFM_B32 222 V_CMPX_GE_U64
798 V_BCNT_U32_B32 223 V_CMPX_T_U64
799 V_MBCNT_LO_U32_B32 253 V_CMPX_CLASS_F16
800 V_MBCNT_HI_U32_B32 254 V_CMPX_CLASS_F32
801 V_CVT_PK_NORM_I16_F32 255 V_CMPX_CLASS_F64
802 V_CVT_PK_NORM_U16_F32
15.3.5. VOP3SD

311'1'0'1'0'1| ' op oM spsT, | VDSTs 0
vorse NEG  Jomob| | sre2e ' sRefy — " srco B

63

32

Description Vector ALU format with three operands and a scalar result. This encoding is used only for
a few opcodes. Can be followed by a 32-bit literal constant or DPP instruction DWORD
when the instruction allows it.

This encoding allows specifying a unique scalar destination, and is used only for the opcodes listed below. All

other opcodes use VOP3.
Table 86. VOP3SD Fields
Field Name Bits Format or Description
VDST [7:0] Destination VGPR
SDST [14:8] Scalar destination
CLMP [15] Clamp result
oP [25:16] Opcode. see next table.
ENCODING [31:26] 'b110101
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Field Name Bits

SRCO [40:32]
0-105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
250
253
254
255
256 - 511

SRC1 [49:41]
SRC2 [58:50]
OMOD [60:59]
NEG [63:61]

AMD¢1

Format or Description

Source 0. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPSFI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

DPP16

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

Second input operand. Same options as SRCO.
Third input operand. Same options as SRCO.
Output Modifier: 0=none, 1=*2, 2=*4, 3=*0.5
Negate input. [61] = src0, [62] = srcl, [63] = src2

Table 87. VOP3SD Opcodes

Opcode # Name

288 V_ADD_CO_CI_U32
289 V_SUB_CO_CI_U32

290 V_SUBREV_CO_CI_U32
764 V_DIV_SCALE_F32

765 V_DIV_SCALE_F64
15.3.6. VOP3P

15.3. Vector ALU Formats

Opcode # Name

766 V_MAD_U64_U32
767 V_MAD_I64_132

768 V_ADD_CO_U32

769 V_SUB_CO_U32

770 V_SUBREV_CO_U32
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31

worp |1t 00 1 1o ol op  Jomp| opseL |weems [ wosts
__NEG | opsLH] SRC2g SRC1g SRCOg ~
Description Vector ALU format taking one, two or three pairs of 16 bit inputs and producing two 16-bit
outputs (packed into 1 DWORD). WMMA instructions have larger input and output VGPR
sets. Can be followed by a 32-bit literal constant or DPP instruction DWORD when the
instruction allows it.
Table 88. VOP3P Fields
Field Name Bits Format or Description
VDST [7:0] Destination VGPR
NEG_HI [10:8] Negate sources 0,1,2 of the high 16-bits.
OPSEL [13:11] Select low or high for low sources 0=[11], 1=[12], 2=[13].
OPSEL_HI2 [14] Select low or high for high sources 0=[14], 1=[60], 2=[59].
CLMP [15] 1 = clamp result.
oP [22:16] Opcode. see next table.
ENCODING [31:26] 'b11001100
SRCO [40:32] Source 0. First operand for the instruction.
0-105 SGPRO - SGPR105: Scalar general-purpose registers.
106 VCC_LO: VCC[31:0].
107 VCC_HI: VCC[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 NULL
125 MO. Misc register 0.
126 EXEC_LO: EXECJ[31:0].
127 EXEC_HI: EXEC[63:32].
128 0.
129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-232 Reserved.
233 DPP8
234 DPP8FI
235 SHARED_BASE (Memory Aperture definition).
236 SHARED_LIMIT (Memory Aperture definition).
237 PRIVATE_BASE (Memory Aperture definition).
238 PRIVATE_LIMIT (Memory Aperture definition).
239 Reserved.
240 0.5.
241 -0.5.
242 1.0.
243 -1.0.
244 2.0.
245 -2.0.
246 4.0.
247 -4.0.
248 1/(2*PI).
250 DPP16
253 SCC.
254 Reserved.
255 Literal constant.
256 - 511 VGPR 0 - 255
SRC1 [49:41] Second input operand. Same options as SRCO.
SRC2 [58:50] Third input operand. Same options as SRCO.
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Field Name Bits Format or Description
OPSEL_HI [60:59] See OPSEL_HIZ2.
NEG [63:61] Negate input for low 16-bits of sources. [61] = src0, [62] = srcl, [63] = src2

Table 89. VOP3P Opcodes

Opcode # Name Opcode # Name
0 V_PK_MAD_I16 17 V_PK_MIN_F16
1 V_PK_MUL_LO_U16 18 V_PK_MAX_F16
2 V_PK_ADD_I16 19 V_DOT2_F32_F16
3 V_PK_SUB_I16 22 V_DOT4_132_1U8
4 V_PK_LSHLREV_B16 23 V_DOT4_U32_U8
5 V_PK_LSHRREV_B16 24 V_DOT8_I132_1U4
6 V_PK_ASHRREV_I16 25 V_DOT8_U32_U4
7 V_PK_MAX_I16 26 V_DOT2_F32_BF16
8 V_PK_MIN_I16 32 V_FMA_MIX_F32
9 V_PK_MAD_U16 33 V_FMA_MIXLO_F16
10 V_PK_ADD_U16 34 V_FMA_MIXHI_F16
11 V_PK_SUB_U16 64 V_WMMA_F32_16X16X16_F16
12 V_PK_MAX_U1l6 65 V_WMMA_F32_16X16X16_BF16
13 V_PK_MIN_U1l6 66 V_WMMA_F16_16X16X16_F16
14 V_PK_FMA_F16 67 V_WMMA_BF16_16X16X16_BF16
15 V_PK_ADD_F16 68 V_WMMA_I32_16X16X16_IU8
16 V_PK_MUL_F16 69 V_WMMA_I32_16X16X16_IU4
15.3.7. VOPD
2 0
vorD 1.1,°.°.1.°I .O'IDX. | __oPY ' __ VSRCX1 ' ____ SRCXo
VDSTX | VDSTY ' VSRCY1 ' SRCY0

63 32

Description Vector ALU format describing two instructions to be executed in parallel. Can be followed
by a 32-bit literal constant, but not a DPP control DWORD.

This instruction format describe two opcodes: X and Y.

Table 90. VOPD Fields
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Field Name
SRCXO0

VSRCX1
OPY

OPX
ENCODING
SRCYO0
VSRCY1
VDSTY
VDSTX

Bits
[8:0]
0-105
106

107
108-123
124

125

126

127

128
129-192
193-208
209-232
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

250

253

254

255

256 - 511

[16:9]
[21:17
[25:22
[31:26
[40:32
[48:41
[55:49
[63:56]

]
]
]
]
]
]

AMD¢1

Format or Description

Source 0 for opcode X. First operand for the instruction.
SGPRO - SGPR105: Scalar general-purpose registers.
VCC_LO: VCCJ[31:0].

VCC_HI: VCC[63:32].

TTMPO - TTMP15: Trap handler temporary register.
NULL

MO. Misc register 0.

EXEC_LO: EXEC[31:0].

EXEC_HI: EXEC[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

DPP8

DPPS8FI

SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
Reserved.

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

DPP16

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

Source VGPR 1 for opcode X.

Opcode Y. see next table.

Opcode X. see next table.

'b110010

Source 0 for opcode Y. See SRCXO for enumerations

Source VGPR 1 for opcode Y.

Instruction Y destination VGPR, excluding LSB. LSB is the opposite of VDSTX[0].
Instruction X destination VGPR

Table 91. VOPD X-Opcodes

0 V_DUAL_FMAC_F32

1 V_DUAL_FMAAK_F32
2 V_DUAL_FMAMK_F32
3 V_DUAL_MUL_F32

4 V_DUAL_ADD_F32

5 V_DUAL_SUB_F32

6 V_DUAL_SUBREV_F32

15.3. Vector ALU Formats

7 V_DUAL_MUL_DX9_ZERO_F32
8 V_DUAL_MOV_B32

9 V_DUAL_CNDMASK_B32

10 V_DUAL_MAX_F32

11 V_DUAL_MIN_F32

12 V_DUAL_DOT2ACC_F32_F16
13 V_DUAL_DOT2ACC_F32_BF16
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Table 92. VOPD Y-Opcodes

V_DUAL_FMAC_F32
V_DUAL_FMAAK_F32
V_DUAL_FMAMK_F32
V_DUAL_MUL_F32
V_DUAL_ADD_F32
V_DUAL_SUB_F32
V_DUAL_SUBREV_F32

o N N U1 AW N O

V_DUAL_MOV_B32

V_DUAL_MUL_DX9_ZERO_F32

9 V_DUAL_CNDMASK_B32

10 V_DUAL_MAX_F32

11 V_DUAL_MIN_F32

12 V_DUAL_DOT2ACC_F32_F16
13 V_DUAL_DOT2ACC_F32_BF16
16 V_DUAL_ADD_NC_U32

17 V_DUAL_LSHLREV_B32

18 V_DUAL_AND_B32

15.3.8. DPP16
orpte | Rowmask | Bankwmask |At1|n1]ao|nolec] R ] " = "oerctrL | VSRCO |
Description Data Parallel Primitives over 16 lanes. This is an additional DWORD that can follow VOP1,

VOP2, VOPC, VOP3 or VOP3P instructions (in place of a literal constant) to control
selection of data from other lanes.

Field Name Bits
SRCO [39:32]
DPP_CTRL [48:40]
FI [50]
BC [51]
SRCO_NEG [52]
SRCO_ABS [53]
SRC1_NEG [54]
SRC1_ABS [55]
BANK_MASK [59:56]
ROW_MASK [63:60]

15.3. Vector ALU Formats

Table 93. DPP16 Fields

Format or Description

Real SRCO operand (VGPR).

See next table: "DPP_CTRL Enumeration"

Fetch invalid data: 0 = read zero for any inactive lanes; 1 = read VGPRs even for
invalid lanes.

Bounds Control: 0 = do not write when source is out of range, 1 = write.

1 =negate source 0.

1 = Absolute value of source 0.

1 =negate source 1.

1 = Absolute value of source 1.

Bank Mask Applies to the VGPR destination write only, does not impact the thread
mask when fetching source VGPR data.

27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled

26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled

25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled

24==0: lanes[0:3, 16:19, 32:35, 48:51] are disabled

Notice: the term "bank" here is not the same as was used for the VGPR bank.
Row Mask Applies to the VGPR destination write only, does not impact the thread
mask when fetching source VGPR data.

31==0: lanes[63:48] are disabled (wave 64 only)

30==0: lanes[47:32] are disabled (wave 64 only)

29==0: lanes[31:16] are disabled

28==0: lanes[15:0] are disabled

Table 94. DPP_CTRL Enumeration
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DPP_Cntl Hex
Enumeration Value
DPP_QUAD_PE 000-
RM* OFF

DPP_UNUSED 100

DPP_ROW_SL* 101-
10F

DPP_ROW_SR* 111-
11F

DPP_ROW_RR* 121-
12F

DPP_ROW_MIR 140
ROR*

DPP_ROW_HA 141

Function

pix[n].srca = pix[(n&0x3c)+ dpp_cntl[n%4*2+1 :

n%4*2]].srca

Undefined

if (n&0xf) < (16-cntl[3:0])) pix[n].srca = pix[n+
cntl[3:0]].srca else use bound_cntl

if (n&0xf) >= cntl[3:0]) pix[n].srca = pix[n -
cntl[3:0]].srca else use bound_cntl

if (n&0xf) >= cnt[3:0]) pix[n].srca = pix[n -
cntl[3:0]].srca else pix[n].srca = pix[n + 16 -
cntl[3:0]].srca

pix[n].srca = pix[15-(n&f)].srca

pix[n].srca = pix[7-(n&7)].srca

AMD¢1

Description
Permute of four threads.

Reserved.
Row shift left by 1-15 threads.

Row shift right by 1-15 threads.

Row rotate right by 1-15 threads.

Mirror threads within row.

Mirror threads within row (8 threads).

LF_MIRROR*
DPP_ROW_SHA 150- lanesel = DPP_CTRL & 0xf; Select one lane within each row and share
RE* 15F lane[n].src0 = lane[(n & 0x30) + lanesel].src0. the result with all lanes in the row.
DPP_ROW_XM 160- lane[n].srcO=lane[(n & 0x30) + ((n & 0xf) » Fetch lane ID is the current lane ID XOR’d
ASK* 16F mask)].srcO0. with a mask specified by DPP_CTRLI3:0].
15.3.9. DPPS8
3 0
opPe | sEL7 | sEl6 | SELs | SEL4 | SEL3 | SEL SELl | sEl0 | 'VSRCO
Description Data Parallel Primitives over 8 lanes. This is a second DWORD that can follow VOP1,
VOP2, VOPC, VOP3 or VOP3P instructions (in place of a literal constant) to control
selection of data from other lanes.
Table 95. DPP8 Fields
Field Name Bits Format or Description
SRCO [39:32] Real SRCO operand (VGPR).
LANE_SELO [42:40] Which lane to read for 1st output lane per 8-lane group
LANE_SEL1 [45:43] Which lane to read for 2nd output lane per 8-lane group
LANE_SEL2 [48:46] Which lane to read for 3rd output lane per 8-lane group
LANE_SEL3 [51:49] Which lane to read for 4th output lane per 8-lane group
LANE_SEL4 [54:52] Which lane to read for 5th output lane per 8-lane group
LANE_SELS [57:55] Which lane to read for 6th output lane per 8-lane group
LANE_SEL6 [60:58] Which lane to read for 7th output lane per 8-lane group
LANE_SEL7 [63:61] Which lane to read for 8th output lane per 8-lane group
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15.4. Vector Parameter Interpolation Format

15.4.1. VINTERP
31 . . . . . . . . . . . . . . . . . . . . . 0
R 01 1 I !7| oP !CM| OPSELs, | WAITEXP ! VDST,
NEG SRC2, SRC1g | SRCOg
Description Vector Parameter Interpolation.
These opcodes perform parameter interpolation using vertex data in pixel shaders.
Table 96. VINTERP Fields
Field Name Bits Format or Description
VDST [7:0] Destination VGPR
WAITEXP [10:8] Wait for EXPcnt to be less-than or equal-to this value before issuing instruction.
OPSEL [14:11] Select low or high for low sources 0=[11], 1=[12], 2=[13], dst=[14].
CLMP [15] 1 =clamp result.
OP [22:16] Opcode. see next table.
ENCODING [31:26] 'b11001101
SRCO [40:32] Source 0. First operand for the instruction: VGPR 0-255.
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Field Name Bits Format or Description
SRCO [40:32] Source 0. First operand for the instruction.
0-105 SGPRO - SGPR105: Scalar general-purpose registers.
106 VCC_LO: VCCJ[31:0].
107 VCC_HI: VCC[63:32].
108-123 TTMPO - TTMP15: Trap handler temporary register.
124 NULL
125 MO. Misc register 0.
126 EXEC_LO: EXEC[31:0].
127 EXEC_HI: EXEC[63:32].
128 0.

129-192 Signed integer 1 to 64.
193-208 Signed integer -1 to -16.
209-232 Reserved.

233 DPP8

234 DPPSFI

235 SHARED_BASE (Memory Aperture definition).

236 SHARED_LIMIT (Memory Aperture definition).

237 PRIVATE_BASE (Memory Aperture definition).

238 PRIVATE_LIMIT (Memory Aperture definition).

239 Reserved.

240 0.5.

241 -0.5.

242 1.0.

243 -1.0.

244 2.0.

245 -2.0.

246 4.0.

247 -4.0.

248 1/(2*PI).

250 DPP16

253 SCC.

254 Reserved.

255 Literal constant.

256 - 511 VGPR 0 - 255
SRC1 [49:41] Second input operand. Same options as SRCO.
SRC2 [58:50] Third input operand. Same options as SRCO.
NEG [63:61] Negate input for low 16-bits of sources. [61] = src0, [62] = srcl, [63] = src2

Table 97. VINTERP Opcodes

Opcode # Name Opcode # Name

0 V_INTERP_P10_F32 3 V_INTERP_P2_F16_F32

1 V_INTERP_P2_F32 4 V_INTERP_P10_RTZ_F16_F32
2 V_INTERP_P10_F16_F32 5 V_INTERP_P2_RTZ_F16_F32

15.5. Parameter and Direct Load from LDS

15.5.1. LDSDIR

31

AMD¢1

wsoR |1 1 o0 o 1 1]1 o] | op | warrvpsT ~ attrR |aTrom]

VDST
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Description LDS Direct and Parameter Load.
These opcodes read either pixel parameter data or individual DWORDs from LDS into

VGPRs.
Table 98. LDSDIR Fields

Field Name Bits Format or Description
VDST [7:0] Destination VGPR
ATTR_CHAN [9:8] Attribute channel: 0=X, 1=Y, 2=7, 3=W
ATTR [15:10] Attribute number: 0 - 32.
WAIT_VA [19:16] Wait for previous VALU instructions to complete to resolve data dependency. Value

is the max number of VALU ops still outstanding when issuing this instruction.
oP [21:20] Opcode:

0: LDS_DIRECT_LOAD

1: LDS_PARAM_LOAD

2, 3: Reserved.
ENCODING [31:24] 'b11001110
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15.6. LDS and GDS Format
15.6.1. DS
ocops L1 1 0 1 1 o] " op e OFFSET1 OFFSETO
VDST | DATA1 DATAO ADDR
Description Local and Global Data Sharing instructions

Table 99. DS Fields

Field Name Bits Format or Description

OFFSETO0 [7:0] First address offset

OFFSET1 [15:8] Second address offset. For some opcodes this is concatenated with OFFSETO.

GDS [17] 1=GDS, 0=LDS operation.

oP [25:18] See Opcode table below.

ENCODING [31:26] 'b110110

ADDR [39:32] VGPR that supplies the address.

DATAO [47:40] First data VGPR.

DATA1 [55:48] Second data VGPR.

VDST [63:56] Destination VGPR when results returned to VGPRs.
Table 100. DS Opcodes

Opcode # Name Opcode # Name

0 DS_ADD_U32 65 DS_SUB_U64

1 DS_SUB_U32 66 DS_RSUB_U64

2 DS_RSUB_U32 67 DS_INC_U64

3 DS_INC_U32 68 DS_DEC_U64

4 DS_DEC_U32 69 DS_MIN_I64

5 DS_MIN_I32 70 DS_MAX_I64

6 DS_MAX_132 71 DS_MIN_U64

7 DS_MIN_U32 72 DS_MAX_U64

8 DS_MAX_U32 73 DS_AND_B64

9 DS_AND_B32 74 DS_OR_B64

10 DS_OR_B32 75 DS_XOR_B64

11 DS_XOR_B32 76 DS_MSKOR_B64

12 DS_MSKOR_B32 77 DS_STORE_B64

13 DS_STORE_B32 78 DS_STORE_2ADDR_B64

14 DS_STORE_2ADDR_B32 79 DS_STORE_2ADDR_STRIDE64_B64

15 DS_STORE_2ADDR_STRIDE64_B32 80 DS_CMPSTORE_B64

16 DS_CMPSTORE_B32 81 DS_CMPSTORE_F64

17 DS_CMPSTORE_F32 82 DS_MIN_F64

18 DS_MIN_F32 83 DS_MAX_F64

19 DS_MAX_F32 96 DS_ADD_RTN_U64

20 DS_NOP 97 DS_SUB_RTN_U64

21 DS_ADD_F32 98 DS_RSUB_RTN_U64

24 Reserved 99 DS_INC_RTN_U64

15.6. LDS and GDS Format
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Opcode # Name

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Reserved

Reserved

Reserved

Reserved

Reserved

DS_STORE_B8
DS_STORE_B16
DS_ADD_RTN_U32
DS_SUB_RTN_U32
DS_RSUB_RTN_U32
DS_INC_RTN_U32
DS_DEC_RTN_U32
DS_MIN_RTN_I32
DS_MAX_RTN_I32
DS_MIN_RTN_U32
DS_MAX_RTN_U32
DS_AND_RTN_B32
DS_OR_RTN_B32
DS_XOR_RTN_B32
DS_MSKOR_RTN_B32
DS_STOREXCHG_RTN_B32
DS_STOREXCHG_2ADDR_RTN_B32
DS_STOREXCHG_2ADDR_STRIDE64_RTN_B32
DS_CMPSTORE_RTN_B32
DS_CMPSTORE_RTN_F32
DS_MIN_RTN_F32
DS_MAX_RTN_F32
DS_WRAP_RTN_B32
DS_SWIZZLE_B32
DS_LOAD_B32
DS_LOAD_2ADDR_B32
DS_LOAD_2ADDR_STRIDE64_B32
DS_LOAD_I8

DS_LOAD_US
DS_LOAD_I16
DS_LOAD_U16
DS_CONSUME
DS_APPEND
DS_ORDERED_COUNT
DS_ADD_U64

15.6. LDS and GDS Format

AMD¢1

Opcode # Name

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
118
119
120
121
122
123
126
160
161
162
163
164
165
166
167
173
176
177
178
179
222
223
254
255

DS_DEC_RTN_U64
DS_MIN_RTN_I64
DS_MAX_RTN_I64
DS_MIN_RTN_U64
DS_MAX_RTN_U64
DS_AND_RTN_B64
DS_OR_RTN_B64
DS_XOR_RTN_B64
DS_MSKOR_RTN_B64
DS_STOREXCHG_RTN_B64
DS_STOREXCHG_2ADDR_RTN_B64
DS_STOREXCHG_2ADDR_STRIDE64_RTN_B64
DS_CMPSTORE_RTN_B64
DS_CMPSTORE_RTN_F64
DS_MIN_RTN_F64
DS_MAX_RTN_F64
DS_LOAD_B64
DS_LOAD_2ADDR_B64
DS_LOAD_2ADDR_STRIDE64_B64
DS_ADD_RTN_F32
DS_ADD_GS_REG_RTN
DS_SUB_GS_REG_RTN
DS_CONDXCHG32_RTN_B64
DS_STORE_B8_D16_HI
DS_STORE_B16_D16_HI
DS_LOAD_US8_D16
DS_LOAD_U8_D16_HI
DS_LOAD_I8_D16
DS_LOAD_I8_D16_HI
DS_LOAD_U16_D16
DS_LOAD_U16_D16_HI
DS_BVH_STACK_RTN_B32
DS_STORE_ADDTID_B32
DS_LOAD_ADDTID_B32
DS_PERMUTE_B32
DS_BPERMUTE_B32
DS_STORE_B96
DS_STORE_B128
DS_LOAD_BY%6
DS_LOAD_B128
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15.7. Vector Memory Buffer Formats
There are two memory buffer instruction formats:

MTBUF
typed buffer access (data type is defined by the instruction)

MUBUF
untyped buffer access (data type is defined by the buffer / resource-constant)

15.7.1. MTBUF
31 0
wreor |11 1 0 1 0 | ' ' FORMAT . | _op ' IGLCIDLCISLCI o ' OFFSET
SOFFSET |iox|orr|Tre] SRSRC | VDATA | VADDR

63 32

Description Memory Typed-Buffer Instructions

Table 101. MTBUF Fields

Field Name Bits Format or Description

OFFSET [11:0] Address offset, unsigned byte.

SLC [12] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

DLC [13] 0 =normal, 1 = Device Coherent

GLC [14] 0 =normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-op
value to VGPR.

oP [18:15] Opcode. See table below.

FORMAT [25:19] Data Format of data in memory buffer. See Buffer Image format Table

ENCODING [31:26] 'b111010

VADDR [39:32] Address of VGPR to supply first component of address (offset or index). When both
index and offset are used, index is in the first VGPR and offset in the second.

VDATA [47:40] Address of VGPR to supply first component of write data or receive first component
of read-data.

SRSRC [52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2
LSB’s of SGPR-address since it is aligned to 4 SGPRs.

TFE [53] Partially resident texture, texture fault enable.

OFFEN [54] 1 =enable offset VGPR, 0 = use zero for address offset

IDXEN [55] 1= enable index VGPR, 0 = use zero for address index

SOFFSET [63:56] Address offset, unsigned byte.

Table 102. MTBUF Opcodes

Opcode # Name Opcode # Name

0 TBUFFER_LOAD_FORMAT_X 8 TBUFFER_LOAD_D16_FORMAT_X

1 TBUFFER_LOAD_FORMAT_XY 9 TBUFFER_LOAD_D16_FORMAT_XY

2 TBUFFER_LOAD_FORMAT_XYZ 10 TBUFFER_LOAD_D16_FORMAT_XYZ

3 TBUFFER_LOAD_FORMAT_XYZW 11 TBUFFER_LOAD_D16_FORMAT_XYZW

4 TBUFFER_STORE_FORMAT_X 12 TBUFFER_STORE_D16_FORMAT_X

5 TBUFFER_STORE_FORMAT_XY 13 TBUFFER_STORE_D16_FORMAT_XY
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Opcode # Name Opcode # Name

6 TBUFFER_STORE_FORMAT_XYZ 14 TBUFFER_STORE_D16_FORMAT_XYZ

7 TBUFFER_STORE_FORMAT_XYZW 15 TBUFFER_STORE_D16_FORMAT_XYZW

15.7.2. MUBUF

31 . . . ; . . . . . . . 0

wosue L1110 0 o | oP ' | : ' IGLCIDLC!SLCI OFFSET

SOFFSET |ioxJorF|Tre] SRSRC | VDATA VADDR
Description Memory Untyped-Buffer Instructions

Table 103. MUBUF Fields

Field Name Bits Format or Description

OFFSET [11:0] Address offset, unsigned byte.

SLC [12] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

DLC [13] 0 =normal, 1 =Device Coherent

GLC [14] 0 =normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-op
value to VGPR.

oP [25:18] Opcode. See table below.

ENCODING [31:26] 'b111000

VADDR [39:32] Address of VGPR to supply first component of address (offset or index). When both
index and offset are used, index is in the first VGPR and offset in the second.

VDATA [47:40] Address of VGPR to supply first component of write data or receive first component
of read-data.

SRSRC [52:48] SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2
LSB’s of SGPR-address since it is aligned to 4 SGPRs.

TFE [53] Partially resident texture, texture fault enable.

OFFEN [54] 1 = enable offset VGPR, 0 = use zero for address offset

IDXEN [55] 1 = enable index VGPR, 0 = use zero for address index

SOFFSET [63:56] Address offset, unsigned byte.

Table 104. MUBUF Opcodes

Opcode # Name Opcode # Name

0 BUFFER_LOAD_FORMAT_X 37 BUFFER_STORE_D16_HI_B16

1 BUFFER_LOAD_FORMAT_XY 38 BUFFER_LOAD_D16_HI_FORMAT_X

2 BUFFER_LOAD_FORMAT_XYZ 39 BUFFER_STORE_D16_HI_FORMAT_X

3 BUFFER_LOAD_FORMAT_XYZW 43 BUFFER_GLO_INV

4 BUFFER_STORE_FORMAT_X 44 BUFFER_GL1_INV

5 BUFFER_STORE_FORMAT_XY 51 BUFFER_ATOMIC_SWAP_B32

6 BUFFER_STORE_FORMAT_XYZ 52 BUFFER_ATOMIC_CMPSWAP_B32

7 BUFFER_STORE_FORMAT_XYZW 53 BUFFER_ATOMIC_ADD_U32

8 BUFFER_LOAD_D16_FORMAT_X 54 BUFFER_ATOMIC_SUB_U32

9 BUFFER_LOAD_D16_FORMAT_XY 55 BUFFER_ATOMIC_CSUB_U32

10 BUFFER_LOAD_D16_FORMAT_XYZ 56 BUFFER_ATOMIC_MIN_I32

11 BUFFER_LOAD_D16_FORMAT_XYZW 57 BUFFER_ATOMIC_MIN_U32

12 BUFFER_STORE_D16_FORMAT_X 58 BUFFER_ATOMIC_MAX_132
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Opcode # Name

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

BUFFER_STORE_D16_FORMAT_XY
BUFFER_STORE_D16_FORMAT_XYZ
BUFFER_STORE_D16_FORMAT_XYZW

BUFFER_LOAD_US8
BUFFER_LOAD_I8
BUFFER_LOAD_U16
BUFFER_LOAD_I16
BUFFER_LOAD_B32
BUFFER_LOAD_B64
BUFFER_LOAD_B96
BUFFER_LOAD_B128
BUFFER_STORE_BS8
BUFFER_STORE_B16
BUFFER_STORE_B32
BUFFER_STORE_B64
BUFFER_STORE_B96
BUFFER_STORE_B128
BUFFER_LOAD_D16_U8
BUFFER_LOAD_D16_I8
BUFFER_LOAD_D16_B16
BUFFER_LOAD_D16_HI_U8
BUFFER_LOAD_D16_HI_I8
BUFFER_LOAD_D16_HI_B16
BUFFER_STORE_D16_HI_B8

15.7. Vector Memory Buffer Formats

Opcode # Name

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
80
81
82
86

BUFFER_ATOMIC_MAX_U32
BUFFER_ATOMIC_AND_B32
BUFFER_ATOMIC_OR_B32
BUFFER_ATOMIC_XOR_B32
BUFFER_ATOMIC_INC_U32
BUFFER_ATOMIC_DEC_U32

BUFFER_ATOMIC_SWAP_B64
BUFFER_ATOMIC_CMPSWAP_B64

BUFFER_ATOMIC_ADD_U64
BUFFER_ATOMIC_SUB_U64
BUFFER_ATOMIC_MIN_I64
BUFFER_ATOMIC_MIN_U64
BUFFER_ATOMIC_MAX_I64
BUFFER_ATOMIC_MAX_U64
BUFFER_ATOMIC_AND_B64
BUFFER_ATOMIC_OR_B64
BUFFER_ATOMIC_XOR_B64
BUFFER_ATOMIC_INC_U64
BUFFER_ATOMIC_DEC_U64

BUFFER_ATOMIC_CMPSWAP_F32

BUFFER_ATOMIC_MIN_F32
BUFFER_ATOMIC_MAX_F32
BUFFER_ATOMIC_ADD_F32

AMD¢1
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15.8. Vector Memory Image Format

15.8.1. MIMG
31 . . . . . . . . . . . 0
1 1.0 o opP __ |ptelatelrislorclicfsic]  omask  Juw] ] om [ nsa
MIMG SSAMP ILWE[TFE] __SRSRC _VDATA _VADDR
ADDR4 ADDR3 ADDR2 ADDRY
95 64
Description Memory Image Instructions

Memory Image instructions (MIMG format) can be between 2 and 3 DWORDs. There are two variations of the

instruction:

+ Normal, where the address VGPRs are specified in the "ADDR" field, and are a contiguous set of VGPRs.

This is a 2-DWORD instruction.

+ Non-Sequential-Address (NSA), where each address VGPR is specified individually and the address VGPRs
can be scattered. This version uses 1 extra DWORD to specify the individual address VGPRs.

Field Name
NSA

DIM
UNRM
DMASK

SLC

DLC
GLC

R128
Ale

D16
OP
ENCODING

Bits
[0]

[4:2]
(7]
[11:8]

(12]

(13]
(14]

(15]
(16]

[17]
[25:18]
[31:26]

15.8. Vector Memory Image Format

Table 105. MIMG Fields

Format or Description

Non-sequential address. Specifies that an additional instruction DWORD exists
holding up to 4 unique VGPR addresses.

Dimensionality of the resource constant. Set to bits [3:1] of the resource type field.
Force address to be un-normalized. User must set to 1 for Image stores & atomics.
Data VGPR enable mask: 1 .. 4 consecutive VGPRs

Reads: defines which components are returned:

0O=red,1=green,2=blue,3=alpha

Writes: defines which components are written with data from VGPRs (missing
components get 0).

Enabled components come from consecutive VGPRs.

E.G. dmask=1001 : Red is in VGPRn and alpha in VGPRn+1.

For D16 writes, DMASK is only used as a word count: each bit represents 16 bits of
data to be written starting at the LSB’s of VDATA, then MSBs, then VDATA+1 etc. Bit
position is ignored.

System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

0 =normal, 1 = Device Coherent

0 =normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-op
value to VGPR.

Resource constant size: 1 = 128bit, 0 = 256bit

Address components are 16-bits (instead of the usual 32 bits).

When set, all address components are 16 bits (packed into 2 per DWORD), except:
Texel offsets (3 6bit UINT packed into 1 DWORD)

PCF reference (for "_C" instructions)

Address components are 16b uint for image ops without sampler; 16b float with
sampler.

Data components are 16-bits (instead of the usual 32 bits).

Opcode. See table below.

'b111100
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Field Name Bits Format or Description

VADDR [39:32] Address of VGPR to supply first component of address.

VDATA [47:40] Address of VGPR to supply first component of write data or receive first component
of read-data.

SRSRC [52:48] SGPR to supply T# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2
LSB’s of SGPR-address since it is aligned to 4 SGPRs.

TFE [53] Partially resident texture, texture fault enable.

LWE [54] LOD Warning Enable. When set to 1, a texture fetch may return "LOD_CLAMPED =
1"

SSAMP [62:58] SGPR to supply S# (sampler constant) in 4 or 8 consecutive SGPRs. It is missing 2
LSB’s of SGPR-address since it is aligned to 4 SGPRs.

ADDR1 [71:64] Second Address register or group. Present only when NSA=1.

ADDR2 [79:72] Third Address register or group. Present only when NSA=1.

Table 106. MIMG Opcodes

Opcode # Name Opcode # Name

0 IMAGE_LOAD 42 IMAGE_SAMPLE_C_O

1 IMAGE_LOAD_MIP 43 IMAGE_SAMPLE_C_D_O

2 IMAGE_LOAD_PCK 44 IMAGE_SAMPLE_C_L_O

3 IMAGE_LOAD_PCK_SGN 45 IMAGE_SAMPLE_C_B_O

4 IMAGE_LOAD_MIP_PCK 46 IMAGE_SAMPLE_C_LZ_O

5 IMAGE_LOAD_MIP_PCK_SGN 47 IMAGE_GATHER4

6 IMAGE_STORE 48 IMAGE_GATHER4_L

7 IMAGE_STORE_MIP 49 IMAGE_GATHER4_B

8 IMAGE_STORE_PCK 50 IMAGE_GATHER4_LZ

9 IMAGE_STORE_MIP_PCK 51 IMAGE_GATHER4_C

10 IMAGE_ATOMIC_SWAP 52 IMAGE_GATHER4_C_LZ

11 IMAGE_ATOMIC_CMPSWAP 53 IMAGE_GATHER4_O

12 IMAGE_ATOMIC_ADD 54 IMAGE_GATHER4_LZ_O

13 IMAGE_ATOMIC_SUB 55 IMAGE_GATHER4_C_LZ_O
14 IMAGE_ATOMIC_SMIN 56 IMAGE_GET_LOD

15 IMAGE_ATOMIC_UMIN 57 IMAGE_SAMPLE_D_G16

16 IMAGE_ATOMIC_SMAX 58 IMAGE_SAMPLE_C_D_G16
17 IMAGE_ATOMIC_UMAX 59 IMAGE_SAMPLE_D_0O_G16
18 IMAGE_ATOMIC_AND 60 IMAGE_SAMPLE_C_D_0O_G16
19 IMAGE_ATOMIC_OR 64 IMAGE_SAMPLE_CL

20 IMAGE_ATOMIC_XOR 65 IMAGE_SAMPLE_D_CL

21 IMAGE_ATOMIC_INC 66 IMAGE_SAMPLE_B_CL

22 IMAGE_ATOMIC_DEC 67 IMAGE_SAMPLE_C_CL

23 IMAGE_GET_RESINFO 68 IMAGE_SAMPLE_C_D_CL

24 IMAGE_MSAA_LOAD 69 IMAGE_SAMPLE_C_B_CL

25 IMAGE_BVH_INTERSECT_RAY 70 IMAGE_SAMPLE_CL_O

26 IMAGE_BVH64_INTERSECT_RAY 71 IMAGE_SAMPLE_D_CL_O
27 IMAGE_SAMPLE 72 IMAGE_SAMPLE_B_CL_O

28 IMAGE_SAMPLE_D 73 IMAGE_SAMPLE_C_CL_O

29 IMAGE_SAMPLE_L 74 IMAGE_SAMPLE_C_D_CL_O
30 IMAGE_SAMPLE_B 75 IMAGE_SAMPLE_C_B_CL_O
31 IMAGE_SAMPLE_LZ 84 IMAGE_SAMPLE_C_D_CL_G16
32 IMAGE_SAMPLE_C 85 IMAGE_SAMPLE_D_CL_0O_G16
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Opcode # Name

33
34
35
36
37
38
39
40
41

15.8. Vector Memory Image Format

IMAGE_SAMPLE_C_D
IMAGE_SAMPLE_C_L
IMAGE_SAMPLE_C_B
IMAGE_SAMPLE_C_LZ
IMAGE_SAMPLE_O
IMAGE_SAMPLE_D_O
IMAGE_SAMPLE_L_O
IMAGE_SAMPLE_B_O
IMAGE_SAMPLE_LZ_O

AMD¢1

Opcode # Name

86
95
96
97
98
99
100
101
144

IMAGE_SAMPLE_C_D_CL_0O_G16
IMAGE_SAMPLE_D_CL_G16
IMAGE_GATHER4_CL
IMAGE_GATHER4_B_CL
IMAGE_GATHER4_C_CL
IMAGE_GATHER4_C_L
IMAGE_GATHER4_C_B
IMAGE_GATHER4_C_B_CL
IMAGE_GATHER4H
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15.9. Flat Formats

Flat memory instructions come in three versions:

FLAT

memory address (per work-item) may be in global memory, scratch (private) memory or shared memory
(LDS)

GLOBAL
same as FLAT, but assumes all memory addresses are global memory.

SCRATCH
same as FLAT, but assumes all memory addresses are scratch (private) memory.

The microcode format is identical for each, and only the value of the SEG (segment) field differs.

15.9.1. FLAT
31 ; . . ; ; . . ; . . ; . ; ; . . ; ; . . . ; 0
FLAT 1.1 0 1 1 1 | | l .OP. . i | SI?G SLCIGLCIDLCI . . . . I OFFSET . . .
VDST ISVE| SADDR DATA | ADDR

63 32

Description FLAT Memory Access

Table 107. FLAT Fields

Field Name Bits Format or Description

OFFSET [12:0] Address offset
Scratch, Global: 13-bit signed byte offset
FLAT: 12-bit unsigned offset (MSB is ignored)

DLC [13] 0 =normal, 1 = Device Coherent

GLC [14] 0 =normal, 1 = globally coherent (bypass LO cache) or for atomics, return pre-op
value to VGPR.

SLC [15] System Level Coherent. Used in conjunction with DLC to determine L2 cache
policies.

SEG [17:16] Memory Segment (instruction type): 0 = flat, 1 = scratch, 2 = global.

OoP [24:18] Opcode. See tables below for FLAT, SCRATCH and GLOBAL opcodes.

ENCODING [31:26] 'b110111

ADDR [39:32] VGPR that holds address or offset. For 64-bit addresses, ADDR has the LSBs and
ADDR+1 has the MSBs. For offset a single VGPR has a 32 bit unsigned offset.
For FLAT_*: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is NULL or 0x7f: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is not NULL or 0x7{: specifies an
offset.

DATA [47:40] VGPR that supplies data.

SADDR [54:48] Scalar SGPR that provides an address of offset (unsigned). Set this field to NULL or

0x7f to disable use.

Meaning of this field is different for Scratch and Global:

FLAT: Unused

Scratch: use an SGPR for the address instead of a VGPR

Global: use the SGPR to provide a base address and the VGPR provides a 32-bit byte
offset.
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no VGPR used.

Field Name Bits
SVE [55]
VDST [63:56]

AMD¢1

Format or Description
Scratch VGPR Enable. 1 = scratch address includes a VGPR to provide an offset; 0 =

Destination VGPR for data returned from memory to VGPRs.

Table 108. FLAT Opcodes

Opcode # Name

16 FLAT_LOAD_US8

17 FLAT_LOAD_I8

18 FLAT_LOAD_U16

19 FLAT_LOAD_I16

20 FLAT_LOAD_B32

21 FLAT_LOAD_B64

22 FLAT_LOAD_BY%6

23 FLAT_LOAD_B128

24 FLAT_STORE_BS8

25 FLAT_STORE_B16

26 FLAT_STORE_B32

27 FLAT_STORE_B64

28 FLAT_STORE_B96

29 FLAT_STORE_B128

30 FLAT_LOAD_D16_U8

31 FLAT_LOAD_D16_I8

32 FLAT_LOAD_D16_B16

33 FLAT_LOAD_D16_HI_U8
34 FLAT_LOAD_D16_HI_I8
35 FLAT_LOAD_D16_HI_B16
36 FLAT_STORE_D16_HI_BS8
37 FLAT_STORE_D16_HI_B16
51 FLAT_ATOMIC_SWAP_B32
52 FLAT_ATOMIC_CMPSWAP_B32
53 FLAT_ATOMIC_ADD_U32
54 FLAT_ATOMIC_SUB_U32
15.9.2. GLOBAL

Opcode # Name

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
80
81
82
86

FLAT_ATOMIC_MIN_I32
FLAT_ATOMIC_MIN_U32
FLAT_ATOMIC_MAX_I32
FLAT_ATOMIC_MAX_U32
FLAT_ATOMIC_AND_B32
FLAT_ATOMIC_OR_B32
FLAT_ATOMIC_XOR_B32
FLAT_ATOMIC_INC_U32
FLAT_ATOMIC_DEC_U32
FLAT_ATOMIC_SWAP_B64
FLAT_ATOMIC_CMPSWAP_B64
FLAT_ATOMIC_ADD_U64
FLAT_ATOMIC_SUB_U64
FLAT_ATOMIC_MIN_I64
FLAT_ATOMIC_MIN_U64
FLAT_ATOMIC_MAX_I64
FLAT_ATOMIC_MAX_U64
FLAT_ATOMIC_AND_B64
FLAT_ATOMIC_OR_B64
FLAT_ATOMIC_XOR_B64
FLAT_ATOMIC_INC_U64
FLAT_ATOMIC_DEC_U64
FLAT_ATOMIC_CMPSWAP_F32
FLAT_ATOMIC_MIN_F32
FLAT_ATOMIC_MAX_F32
FLAT_ATOMIC_ADD_F32

Table 109. GLOBAL Opcodes

Opcode # Name

16 GLOBAL_LOAD_US8
17 GLOBAL_LOAD_I8

18 GLOBAL_LOAD_U16
19 GLOBAL_LOAD_I16
20 GLOBAL_LOAD_B32
21 GLOBAL_LOAD_B64
22 GLOBAL_LOAD_B96
23 GLOBAL_LOAD_B128
24 GLOBAL_STORE_BS8

15.9. Flat Formats

Opcode # Name

55
56
57
58
59
60
61
62
63

GLOBAL_ATOMIC_CSUB_U32
GLOBAL_ATOMIC_MIN_I32
GLOBAL_ATOMIC_MIN_U32
GLOBAL_ATOMIC_MAX_I32
GLOBAL_ATOMIC_MAX_U32
GLOBAL_ATOMIC_AND_B32
GLOBAL_ATOMIC_OR_B32
GLOBAL_ATOMIC_XOR_B32
GLOBAL_ATOMIC_INC_U32
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Opcode # Name

Opcode # Name

25 GLOBAL_STORE_B16

26 GLOBAL_STORE_B32

27 GLOBAL_STORE_B64

28 GLOBAL_STORE_B96

29 GLOBAL_STORE_B128

30 GLOBAL_LOAD_D16_U8

31 GLOBAL_LOAD_D16_1I8

32 GLOBAL_LOAD_D16_B16

33 GLOBAL_LOAD_D16_HI_U8
34 GLOBAL_LOAD_D16_HI_I8

35 GLOBAL_LOAD_D16_HI_B16
36 GLOBAL_STORE_D16_HI_B8
37 GLOBAL_STORE_D16_HI_B16
40 GLOBAL_LOAD_ADDTID_B32
41 GLOBAL_STORE_ADDTID_B32
51 GLOBAL_ATOMIC_SWAP_B32
52 GLOBAL_ATOMIC_CMPSWAP_B32
53 GLOBAL_ATOMIC_ADD_U32
54 GLOBAL_ATOMIC_SUB_U32
15.9.3. SCRATCH

64 GLOBAL_ATOMIC_DEC_U32

65 GLOBAL_ATOMIC_SWAP_B64

66 GLOBAL_ATOMIC_CMPSWAP_B64
67 GLOBAL_ATOMIC_ADD_U64

68 GLOBAL_ATOMIC_SUB_U64

69 GLOBAL_ATOMIC_MIN_I64

70 GLOBAL_ATOMIC_MIN_U64

71 GLOBAL_ATOMIC_MAX_I64

72 GLOBAL_ATOMIC_MAX_U64

73 GLOBAL_ATOMIC_AND_B64

74 GLOBAL_ATOMIC_OR_B64

75 GLOBAL_ATOMIC_XOR_B64

76 GLOBAL_ATOMIC_INC_U64

77 GLOBAL_ATOMIC_DEC_U64

80 GLOBAL_ATOMIC_CMPSWAP_F32
81 GLOBAL_ATOMIC_MIN_F32

82 GLOBAL_ATOMIC_MAX_F32

86 GLOBAL_ATOMIC_ADD_F32

Table 110. SCRATCH Opcodes

Opcode # Name

Opcode # Name

16 SCRATCH_LOAD_US 27
17 SCRATCH_LOAD_I8 28
18 SCRATCH_LOAD_U16 29
19 SCRATCH_LOAD_I16 30
20 SCRATCH_LOAD_B32 31
21 SCRATCH_LOAD_B64 32
22 SCRATCH_LOAD_BY%6 33
23 SCRATCH_LOAD_B128 34
24 SCRATCH_STORE_B8 35
25 SCRATCH_STORE_B16 36
26 SCRATCH_STORE_B32 37

15.9. Flat Formats

SCRATCH_STORE_B64
SCRATCH_STORE_B96
SCRATCH_STORE_B128
SCRATCH_LOAD_D16_U8
SCRATCH_LOAD_D16_I8
SCRATCH_LOAD_D16_B16
SCRATCH_LOAD_D16_HI_US8
SCRATCH_LOAD_D16_HI_I8
SCRATCH_LOAD_D16_HI_B16
SCRATCH_STORE_D16_HI_BS8
SCRATCH_STORE_D16_HI_B16
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15.10. Export Format

15.10.1. EXP

EXP

kow] loovel |  tArRGET _EN

VSRC2 | VSRC1 VSRCO

63

32

Description EXPORT instructions

The export format has only a single opcode, "EXPORT".

Field Name
EN
TARGET

DONE

ROW
ENCODING
VSRCO
VSRC1
VSRC2
VSRC3

15.10. Export Format

Bits
[3:0]
[9:4]

(11]

[13]

[31:26]
[39:32]
[47:40]
[55:48]
[63:56]

Table 111. EXP Fields

Format or Description
VGPR Enables: [0] enables VSRCO, ... [3] enables VSRC3.

Export destination:
0..7 MRT 0..7

8 VA

12-16 Position 0-4

20 Primitive data

21 Dual Source Blend Left
22 Dual Source Blend Right

Indicates that this is the last export from the shader. Used only for Position and
Pixel/color data.

Row to export
'b111110

VGPR for source 0.
VGPR for source 1.
VGPR for source 2.
VGPR for source 3.
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Chapter 16. Instructions

This chapter lists, and provides descriptions for, all instructions in the RDNA3 Generation environment.
Instructions are grouped according to their format.

Note: Rounding and Denormal modes apply to all floating-point operations unless otherwise specified in the
instruction description.
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16.1. SOP2 Instructions

31 0

SOP2 | 1 I 0 | I I IOPI I | I I SIDST'7 I I | I I ISSR’IC13I I I | I I ISSRICOg'

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_ADD_U32 0

Add two unsigned inputs, store the result into a scalar register and store the carry-out bit into SCC.

tmp = 64'U(SB.u) + 64'U(S1.u);

SCC = tmp >= 0x100000000ULL ? 1'1U : 1'6@U;

// unsigned overflow or carry-out for S_ADDC_U32.
DO.u = tmp.u

S_SUB_U32 1

Subtract the second unsigned input from the first input, store the result into a scalar register and store the
carry-out bit into SCC.

tmp = S@.u - S1.u;

SCC = S1.u > SB.u ? 1'1U : 1'0U;

// unsigned overflow or carry-out for S_SUBB_U32.
DO.u = tmp.u

S_ADD_I32 2

Add two signed inputs, store the result into a scalar register and store the carry-out bit into SCC.

tmp = S0.1 + S1.1;

SCC = ((S@.u[31] == S1.u[31]) && (S8.u[31] '= tmp.u[31]));
// signed overflow.

DO.1i = tmp.1i

Notes

This opcode is not suitable for use with S_ADDC_U32 for implementing 64-bit operations.

S_SUB_I32 3
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Subtract the second signed input from the first input, store the result into a scalar register and store the carry-
out bit into SCC.

tmp = S0.1 - S1.1;

SCC = ((S@.u[31] !'= S1.u[31]) && (SO@.u[31] != tmp.u[31]));
// signed overflow.

DO.i = tmp.i

Notes

This opcode is not suitable for use with S_SUBB_U32 for implementing 64-bit operations.

S_ADDC_U32 4

Add two unsigned inputs and a carry-in bit, store the result into a scalar register and store the carry-out bit into
SCC.

tmp = 64'U(S@.u) + 64'U(S1.u) + SCC.u6b4;
SCC = tmp >= Ox100000006ULL ? 1'1U : 1'0U;
// unsigned overflow.

DO.u = tmp.u

S_SUBB_U32 5

Subtract the second unsigned input from the first input, subtract the carry-in bit, store the result into a scalar
register and store the carry-out bit into SCC.

tmp = S@.u - S1.u - SCC.u;

SCC = 64'U(ST.u) + SCC.u64 > 64'U(S6.u) ? 1'1U : 1'6U;
// unsigned overflow.

DO.u = tmp.u

S_ABSDIFF_I32 6

Calculate the absolute value of difference between two scalar inputs, store the result into a scalar register and
set SCC iff the result is nonzero.

DB.i = S@.i - S1.1i;

if DO.i < @ then
DB.i = -DB.1

endif;

SCC = DB.1i != 0
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Notes

Functional examples:

S_ABSDIFF_I32(0x00000002, 0x00000005) => 0x00000003
S_ABSDIFF_I32(exffffffff, 0x00000000) => 0x00000001
S_ABSDIFF_I32(0x80000000, 0x00000000) => 0x80000000 // Note: result is negative!
S_ABSDIFF_I32(0x80000000, 0x00000001) => ox7fffffff
S_ABSDIFF_I32(0x80000000, Oxffffffff) => ex7fffffff
S_ABSDIFF_I32(0x80000000, oxfffffffe) => ox7ffffffe

S_LSHL_B32 8

Given a shift count in the second scalar input, calculate the logical shift left of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

DO.u = (SB@.u << S1.u[4 : 0].u);
SCC = DO.u !'= ou

S_LSHL_B64 9

Given a shift count in the second scalar input, calculate the logical shift left of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

DB.u64 = (SO.u64 << S1.u[5 : 0].u);
SCC = DO.u64 '= QULL

S_LSHR_B32 10

Given a shift count in the second scalar input, calculate the logical shift right of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.

DB.u = (SB.u >> S1.u[4 : B8].u);
SCC = DO.u != ou

S_LSHR_Bé64 11

Given a shift count in the second scalar input, calculate the logical shift right of the first scalar input, store the
result into a scalar register and set SCC iff the result is nonzero.
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DB.u64 = (S@.u64 >> S1.u[5 : 0].u);
SCC = DO.u64 '= OULL

S_ASHR_I32 12

Given a shift count in the second scalar input, calculate the arithmetic shift right (preserving sign bit) of the
first scalar input, store the result into a scalar register and set SCC iff the result is nonzero.

DB.i = 32'I(signext(S@.i) >> S1.u[4 : 0].u);
SCC = DO.1i '= 0

S_ASHR_I64 13

Given a shift count in the second scalar input, calculate the arithmetic shift right (preserving sign bit) of the
first scalar input, store the result into a scalar register and set SCC iff the result is nonzero.

DB.i64 = (signext(S0.i64) >> S1.u[5 : @].u);
SCC = DO.i64 != OLL

S_LSHL1_ADD_U32 14

Calculate the logical shift left of the first input by 1, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S@.u) << 1U) + 64'U(S1.u);

SCC = tmp >= 0x100000000ULL ? 1'1U : 1'6U;
// unsigned overflow.

DO.u = tmp.u

S_LSHL2_ADD_U32 15

Calculate the logical shift left of the first input by 2, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S@.u) << 2U) + 64'U(S1.u);

SCC = tmp >= 0x100000000ULL ? 1'1U : 1'6U;
// unsigned overflow.

DB.u = tmp.u
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S_LSHL3_ADD_U32 16

Calculate the logical shift left of the first input by 3, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp (64'U(SB.u) << 3U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'6U;
// unsigned overflow.

DO.u = tmp.u

S_LSHL4_ADD_U32 17

Calculate the logical shift left of the first input by 4, then add the second input, store the result into a scalar
register and set SCC iff the summation results in an unsigned overflow.

tmp = (64'U(S@.u) << 4U) + 64'U(S1.u);
SCC = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
// unsigned overflow.

DO.u = tmp.u

S_MIN_I32 18

Select the minimum of two signed integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = S@.1 < S1.1;
DB.i = SCC ? SB.i : S1.1

S_MIN_U32 19

Select the minimum of two unsigned integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = SO.u < S1.u;
DO.u = SCC ? SO.u : S1.u

S_MAX_I32 20
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Select the maximum of two signed integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = SB@.1i > S1.1;
Do.i = SCC ? S@.1i : S1.1i

S_MAX_U32 21

Select the maximum of two unsigned integers, store the selected value into a scalar register and set SCC iff the
first value is selected.

SCC = SO@.u > S1.u;
DO.u = SCC ? SO.u : S1.u

S_AND_B32 22

Calculate bitwise AND on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

DO.u = (S@.u & S1.u);
SCC = DO.u !'= @U

S_AND_Bé64 23

Calculate bitwise AND on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

DO.u64 = (SO@.u64 & S1.u64);
SCC = DO.u64 !'= OULL

S_OR_B32 24

Calculate bitwise OR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.

DB.u = (S@.u | S1.u);
SCC = DO.u != @U
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S_OR_Bé64 25
Calculate bitwise OR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.
DO.u64 = (SO.u64 | S1.u64);
SCC = DB.u64 != BULL
26

S_XOR_B32
Calculate bitwise XOR on two scalar inputs, store the result into a scalar register and set SCC iff the result is

nomnzero.

DB.u = (S@.u * S1.u);
SCC = DO.u !'= @u

S_XOR_B64 27
Calculate bitwise XOR on two scalar inputs, store the result into a scalar register and set SCC iff the result is
nonzero.
DO.u64 = (S8.u64 A S1.u64);
SCC = D@.u64 != QULL
28

S_NAND_B32
Calculate bitwise NAND on two scalar inputs, store the result into a scalar register and set SCC if the result is

nonzero.

DO.u = ~(S@.u & S1.u);
SCC = DO.u !'= @U

S_NAND_B64 29
Calculate bitwise NAND on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.
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DO.u64 = ~(S0.u64 & S1.ub4);
SCC = DB.u64 != @QULL

S_NOR_B32 30

Calculate bitwise NOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

DB.u = ~(S@.u | S1.u);
SCC = DO.u != @U

S_NOR_B64 31

Calculate bitwise NOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

DB.u64 = ~(S0.u64 | S1.u64);
SCC = DB.u64 != QULL

S_XNOR_B32 32

Calculate bitwise XNOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

DO.u = ~(S@.u A S1.u);
SCC = DO.u !'= @U

S_XNOR_B64 33

Calculate bitwise XNOR on two scalar inputs, store the result into a scalar register and set SCC if the result is
nonzero.

DB.u64 = ~(S@.u64 * S1.u6b4);
SCC = DO.u64 != OULL

S_AND_NOT1_B32 34
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Calculate bitwise AND with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

DB.u = (SB.u & ~S1.u);
SCC = DO.u !'= @u

S_AND_NOT1_B64 35

Calculate bitwise AND with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

DO.u64 = (S6.u64 & ~S1.ub4);
SCC = DB.u64 != BULL

S_OR_NOT1_B32 36

Calculate bitwise OR with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

DO.u = (SO.u | ~S1.u);
SCC = DO.u !'= @U

S_OR_NOT1_Bé64 37

Calculate bitwise OR with the first input and the negation of the second input, store the result into a scalar
register and set SCC if the result is nonzero.

DO.u64 = (S@.u64 | ~S1.ub4);
SCC = DO.u64 !'= OULL

S_BFE_U32 38

Extract an unsigned bitfield from the first input using field offset and size encoded in the second input, store
the result into a scalar register and set SCC iff the result is nonzero.

DB.u = ((S@.u >> S1.u[4 : 8].u) & ((1U << S1.u[22 : 16].u) - 1U));
SCC = DO.u != @U
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S_BFE_I32 39

Extract a signed bitfield from the first input using field offset and size encoded in the second input, store the
result into a scalar register and set SCC iff the result is nonzero.

tmp = ((S@.1 >> S1.u[4 : B].u) & ((1 << S1.u[22 : 16].u) - 1));
DB.i = 32'I(signextFromBit(tmp, S1.i[22 : 16].1i));
SCC = DO.1i !'= 0

S_BFE_U64 40

Extract an unsigned bitfield from the first input using field offset and size encoded in the second input, store
the result into a scalar register and set SCC iff the result is nonzero.

DO.u64 = ((S@.u64 >> ST.u[5 : B].u) & ((TULL << S1.u[22 : 16].u) - 1ULL));
SCC = DB.u64 != BULL

S_BFE_I64 41

Extract a signed bitfield from the first input using field offset and size encoded in the second input, store the
result into a scalar register and set SCC iff the result is nonzero.

tmp = ((S@.i64 >> S1.u[5 : 0].u) & ((1LL << S1.u[22 : 16].u) - 1LL));
DO.i64 = signextFromBit(tmp, S1.i[22 : 16].i64);
SCC = DO.i64 != @LL

S_BFM_B32 42

Calculate a bitfield mask given a field offset and size and store the result in a scalar register.

DB.u = (((1U << SB@.u[4 : B].u) - 1U) << S1.u[4 : @8].u)

S_BFM_Bé64 43

Calculate a bitfield mask given a field offset and size and store the result in a scalar register.

DB.u64 = (((TULL << S@.u[5 : @].u) - 1ULL) << S1.u[5 : @].u)
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S_MUL_I32 44

Multiply two signed integers and store the result into a scalar register.

DO.i = S@.1i * S1.1

S_MUL_HI_U32 45

Multiply two unsigned integers and store the high 32 bits of the result into a scalar register.

DB.u = 32'U((64'U(SB.u) * 64'U(S1.u)) >> 32U)

S_MUL_HI_I32 46

Multiply two signed integers and store the high 32 bits of the result into a scalar register.

DO.i = 32'I((64'I(S0.1) * 64'I(S1.i)) >> 32U)

S_CSELECT_B32 48

Select the first input if SCC is true otherwise select the second input, then store the selected input into a scalar
register.

DB.u = SCC ? SO.u : S1.u

S_CSELECT_B64 49

Select the first input if SCC is true otherwise select the second input, then store the selected input into a scalar
register.

DO.u64 = SCC ? SO.u64 : S1.u64

S_PACK_LL_B32_B16 S50
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Pack two 16-bit scalar values into a scalar register.

DO = { S1[15 : @].u16, S@[15 : ©].u16 }

AMDZ1

S_PACK_LH_B32_B16 51
Pack two 16-bit scalar values into a scalar register.

D8 = { S1[31 : 16].u16, SB[15 : B].u16 }
S_PACK_HH_B32_B16 52
Pack two 16-bit scalar values into a scalar register.

D8 = { S1[31 : 16].u16, SB[31 : 16].u16 }
S_PACK_HL_B32_B16 53
Pack two 16-bit scalar values into a scalar register.

D8 = { S1[15 : 8].u16, SB[31 : 16].u16 }
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16.2. SOPK Instructions

31 0
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Instructions in this format may not use a 32-bit literal constant that occurs immediately after the instruction.

S_MOVK_I32 0

Sign extend a literal 16-bit constant and store the result into a scalar register.

DO.i = 32'I(signext(SIMM16.i16))

S_VERSION 1
Do nothing. This opcode is used to specify the microcode version for tools that interpret shader microcode.

Argument is ignored by hardware. This opcode is not designed for inserting wait states as the next instruction
may issue in the same cycle. Do not use this opcode to resolve wait state hazards, use S_ZNOP instead.

This opcode may also be used to validate microcode is running with the correct compatibility settings in
drivers and functional models that support multiple generations. We strongly encourage this opcode be
included at the top of every shader block to simplify debug and catch configuration errors.

This opcode must appear in the first 16 bytes of a block of shader code in order to be recognized by external
tools and functional models. Avoid placing opcodes > 32 bits or encodings that are not available in all versions
of the microcode before the S_ZVERSION opcode. If this opcode is absent then tools are allowed to make an
educated guess of the microcode version using cues from the environment; the guess may be incorrect and
lead to an invalid decode. It is highly recommended that this be the first opcode of a shader block except for
trap handlers, where it should be the second opcode (allowing the first opcode to be a 32-bit branch to
accommodate context switch).

SIMM16([7:0] specifies the microcode version.

SIMM16[15:8] must be set to zero.

nop();
// Do nothing - for use by tools only

S_CMOVK_I32 2

Move the sign extension of a literal 16-bit constant into a scalar register iff SCC is nonzero.

if SCC then
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DO.i = 32'I(signext(SIMM16.i16))
endif

S_CMPK_EQ_I32 3

Set SCC to 1 iff scalar input is equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(SB.1) == signext(SIMM16.116)

S_CMPK_LG_I32 4

Set SCC to 1 iff scalar input is less than or greater than the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.1) != signext(SIMM16.i16)

S_CMPK_GT_I32 5

Set SCC to 1 iff scalar input is greater than the sign extension of a literal 16-bit constant.

SCC = 64'I(S0.i) > signext(SIMM16.i16)

S_CMPK_GE_I32 6

Set SCC to 1 iff scalar input is greater than or equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(SB.1) >= signext(SIMM16.116)

S_CMPK_LT_I32 7

Set SCC to 1 iff scalar input is less than the sign extension of a literal 16-bit constant.

SCC = 64'I(S@.i) < signext(SIMM16.i16)
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S_CMPK_LE_I32

Set SCC to 1 iff scalar input is less than or equal to the sign extension of a literal 16-bit constant.

SCC = 64'I(SM.i) <= signext(SIMM16.116)

S_CMPK_EQ_U32

Set SCC to 1 iff scalar input is equal to the zero extension of a literal 16-bit constant.

SCC = S@.u == 32'U(SIMM16.ul16)

S_CMPK_LG_U32

Set SCC to 1 iff scalar input is less than or greater than the zero extension of a literal 16-bit constant.

SCC = S@.u != 32'U(SIMM16.ul16)

10

S_CMPK_GT_U32

Set SCC to 1 iff scalar input is greater than the zero extension of a literal 16-bit constant.

SCC = SB.u > 32'U(SIMM16.u16)

11

S_CMPK_GE_U32

Set SCC to 1 iff scalar input is greater than or equal to the zero extension of a literal 16-bit constant.

SCC = S@.u >= 32'U(SIMM16.u16)

12

S_CMPK_LT_U32

Set SCC to 1 iff scalar input is less than the zero extension of a literal 16-bit constant.
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SCC = S@.u < 32'U(SIMM16.u16)

S_CMPK_LE_U32 14
Set SCC to 1 iff scalar input is less than or equal to the zero extension of a literal 16-bit constant.
SCC = S@.u <= 32'U(SIMM16.u16)
15

S_ADDK_I32

Add a scalar input and the sign extension of a literal 16-bit constant, store the result into a scalar register and

store the carry-out bit into SCC.

tmp = DO.1;

// save value so we can check sign bits for overflow later.
DO.i = 32'I(64'I(DO.1i) + signext(SIMM16.116));

SCC = ((tmp[31] == SIMM16.i16[15]) && (tmp[31] != DO.i[31]));
// signed overflow.

S_MULK_I32 16

Multiply a scalar input with the sign extension of a literal 16-bit constant and store the result into a scalar

register.

DO.i = 32'I(64'I(D0.i) * signext(SIMM16.116))

S_GETREG_B32 17

Read some or all of a hardware register into the LSBs of destination.
The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.

OFFSET = SIMM16[10:6]
LSB offset of register bits to access.
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SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : 0];

offset = SIMM16.u16[10 : 6];

size = SIMM16.u16[15 : 11].u + 1U;

// logical size is in range 1:32

value = HW_REGISTERS[hwRegId];

DB.u = 32'U(32'I(value >> offset.u) & ((1 << size) - 1))

S_SETREG_B32 18
Write some or all of the LSBs of source argument into a hardware register.
The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.

OFFSET = SIMM16[10:6]
LSB offset of register bits to access.

SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : 0];

offset = SIMM16.u16[10 : 6];

size = SIMM16.u16[15 : 11].u + 1U;

// logical size is in range 1:32

mask = (1 << size) - 1;

mask = (mask & 32'I(writeableBitMask(hwRegId.u, WAVE_STATUS.PRIV)));
// Mask of bits we are allowed to modify

value = ((S@.u << offset.u) & mask.u);

value = (value | 32'U(HW_REGISTERS[hwRegId].i & ~mask));
HW_REGISTERS[hwRegId] = value.b;

// Side-effects may trigger here if certain bits are modified

S_SETREG_IMM32_B32 19

Write some or all of the LSBs of a 32-bit literal constant into a hardware register; this instruction requires a 32-
bit literal constant.

The SIMM16 argument is encoded as follows:

ID = SIMM16[5:0]
ID of hardware register to access.
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OFFSET = SIMM16[10:6]
LSB offset of register bits to access.

SIZE = SIMM16[15:11]
Size of register bits to access, minus 1. Set this field to 31 to read/write all bits of the hardware register.

hwRegId = SIMM16.u16[5 : @];

offset = SIMM16.u16[10 : 6];

size = SIMM16.u16[15 : 11].u + 1U;

// logical size is in range 1:32

mask = (1 << size) - 1;

mask = (mask & 32'I(writeableBitMask(hwRegId.u, WAVE_STATUS.PRIV)));
// Mask of bits we are allowed to modify

value = ((SIMM32.u << offset.u) & mask.u);

value = (value | 32'U(HW_REGISTERS[hwRegId].i & ~mask));
HW_REGISTERS[hwRegId] = value.b;

// Side-effects may trigger here if certain bits are modified

S_CALL_Bé64 20

Store the address of the next instruction to a scalar register and then jump to a constant offset relative to the
current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction. The byte address of
the instruction immediately following this instruction is saved to the destination.

D0.i64 = PC + 4LL;
PC = PC + signext(SIMM16.1i16 * 16'4) + 4LL

Notes

This implements a short subroutine call where the return address (the next instruction after the S_CALL_B64)
is saved to D. Long calls should consider S_SWAPPC_B64 instead.

This instruction must be 4 bytes.

S_WAITCNT_VSCNT 24

Wait for the counts of outstanding vector store events -- vector memory stores and atomics that DO NOT return
data -- to be at or below the specified level. This counter is not used in 'all-in-order' mode.

Waits for the following condition to hold before continuing:

vscnt <= SO@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add overflow
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To wait on a literal constant only, write 'null' for the GPR argument.
This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_VMCNT 25

Wait for the counts of outstanding vector memory events -- everything except for memory stores and atomics-
without-return -- to be at or below the specified level. When in 'all-in-order' mode, wait for all vector memory
events.

Waits for the following condition to hold before continuing:

vment <= SO@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_ZWAITCNT.
This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_EXPCNT 26
Wait for the counts of outstanding export events to be at or below the specified level.

Waits for the following condition to hold before continuing:

expcnt <= S@.u[2:8] + S1.u[2:0].
// Comparison is 3 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_ZWAITCNT.
This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.

S_WAITCNT_LGKMCNT 27

Wait for the counts of outstanding DS (LG), scalar memory (K) and message (M) events to be at or below the
specified level.

Waits for the following condition to hold before continuing:
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lgkment <= S@.u[5:0] + S1.u[5:0].
// Comparison is 6 bits, no clamping is applied for add overflow

To wait on a literal constant only, write 'null' for the GPR argument or use S_ZWAITCNT.
This opcode may only appear inside a clause if the SGPR operand is set to NULL.

See also S_WAITCNT.
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sort |14 o]1 1 1 1 1 o' 1] = spsTy

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_MOV_B32 0
Move scalar input into a scalar register.
DO.b = S0.b
S_MOV_B64 1
Move scalar input into a scalar register.
DO.b64 = S0.b64
S_CMOV_B32 2
Move scalar input into a scalar register iff SCC is nonzero.
if SCC then
D8.b = S0.b
endif
S_CMOV_B64 3
Move scalar input into a scalar register iff SCC is nonzero.
if SCC then
DO.b64 = S0.b64
endif
S_BREV_B32 4
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Reverse the order of bits in a scalar input and store the result into a scalar register.

DO.u[31 : @] = S@.u[0 : 31]

S_BREV_B64 S

Reverse the order of bits in a scalar input and store the result into a scalar register.

DO.u64[63 : 0] = SB.u64[0 : 63]

S_CTZ_132_B32 8

Count the number of trailing "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits in the input.

tmp = -1;
// Set if no ones are found
for i in @ : 31 do
// Search from LSB
if S@.u[i] == 1'1U then
tmp = 1i;
break
endif
endfor;
DO.1i = tmp

Notes

Functional examples:

S_CTZ_I32_B32(0xaaaaaaaa) => 1
S_CTZ_I32_B32(0x55555555) => 0
S_CTZ_I32_B32(0x00000000) => Oxffffffff
S_CTZ_I32_B32(oxffffffff) => 0
S_CTZ_I32_B32(0x00010000) => 16

Compare with V_CTZ_I32_B32, which performs the equivalent operation in the vector ALU.

S_CTZ_132_B64 9

Count the number of trailing "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits in the input.
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tmp = -1;
// Set if no ones are found
for i in @ : 63 do
// Search from LSB
if S@.u64[i] == 1'1U then
tmp = 1i;
break
endif
endfor;
DO.1i = tmp

S_CLZ_132_U32 10

Count the number of leading "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits.

tmp = -1;
// Set if no ones are found
for i in @ : 31 do
// Search from MSB
if S@.u[31 - i] == 1'1U then
tmp = 1i;
break
endif
endfor;
DO.1i = tmp

Notes

Functional examples:

S_CLZ_I32_U32(0x00000000) => Oxffffffff
S_CLZ_I32_U32(8x8088cccc) => 16
S_CLZ_I32_U32(exffff3333) => 0
S_CLZ_I32_U32(Bx7fffffff) => 1
S_CLZ_I32_U32(0x80000000) => 0
S_CLZ_I32_U32(exffffffff) => 0

Compare with V_CLZ_I32_U32, which performs the equivalent operation in the vector ALU.

S_CLZ_132_U64 11

Count the number of leading "0" bits before the first "1" in a scalar input and store the result into a scalar
register. Store -1 if there are no "1" bits.

tmp = -1;
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// Set if no ones are found
for i in 8 : 63 do
// Search from MSB
if S@.u64[63 - i] == 1'1U then
tmp = 1i;
break
endif
endfor;
DO.1i = tmp

S_CLS_I132 12

Count the number of leading bits that are the same as the sign bit of a scalar input and store the result into a
scalar register. Store -1 if all input bits are the same.

tmp = -1;
// Set if all bits are the same
for i in 1 : 31 do
// Search from MSB
if S@.u[31 - i] != S@.u[31] then
tmp = 1i;
break
endif
endfor;
DB.i = tmp

Notes

Functional examples:

S_CLS_I32(0x00000000) => Oxffffffff
S_CLS_I32(@x0800ccce) => 16
S_CLS_I32(xffff3333) => 16
S_CLS_I32(Ox7fffffff) => 1
S_CLS_I32(0x80000000) => 1
S_CLS_I32(OxFfffffff) => Oxffffffff

Compare with V_CLS_I32, which performs the equivalent operation in the vector ALU.

S_CLS_132_164 13

Count the number of leading bits that are the same as the sign bit of a scalar input and store the result into a
scalar register. Store -1 if all input bits are the same.

tmp = -1;
// Set if all bits are the same
for i in 1 : 63 do
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// Search from MSB
if S@.u64[63 - i] != S@.u64[63] then
tmp = 1i;
break
endif
endfor;
DO.1i = tmp

AMD¢1

S_SEXT_I32_1I8

Sign extend a signed 8 bit scalar input to 32 bits and store the result into a scalar register.

DB.i = 32'I(signext(S0.1i8))

14

S_SEXT_I32_I16

Sign extend a signed 16 bit scalar input to 32 bits and store the result into a scalar register.

DB.i = 32'I(signext(S0.1i16))

15

S_BITSET0_B32

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 0.

DO.u[Se.u[4 : @]] = 1'6U

16

S_BITSETO0_B64

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 0.

DO.u64[S8.u[5 : 8]] = 1'0U

17

S_BITSET1_B32

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 1.
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DO.u[Se.u[4 : 0]] = 1"1U

S_BITSET1_B64 19

Given a bit offset in a scalar input, set the indicated bit in the destination scalar register to 1.

DO.u64[S6.u[5 : B]] = 1'1U

S_BITREPLICATE_B64_B32 20

Substitute each bit of a 32 bit scalar input with two instances of itself and store the result into a 64 bit scalar
register.

tmp = SO.u;
for i in @ : 31 do

DO.u64[i * 2 + 0] = tmp[il];
DB.u64[i * 2 + 1] = tmp[i]
endfor
Notes

This opcode can be used to convert a quad mask into a pixel mask; given quad mask in s0, the following
sequence produces a pixel mask in s2:

s_bitreplicate_b64 s2, s©
s_bitreplicate_b64 s2, s2

To perform the inverse operation see S_QUADMASK_B64.

S_ABS_I32 21

Compute the absolute value of a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

DO.1i = S6.1i <@ ? -SB.1 : SO.1i;
SCC = Do.1i '= 0

Notes

Functional examples:
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S_ABS_I32(0x00000001) => 0x00000001
S_ABS_I32(0x7fffffff) => ox7fffffff
S_ABS_I32(0x80000000) => 0x80000000 // Note this is negative!
S_ABS_I32(0x80000001) => Ox7fffffff
S_ABS_I32(0x80000002) => Bx7ffffffe
S_ABS_I32(exffffffff) => 0x00000001

S_BCNTO0_I32_B32 22

Count the number of "0" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in @ : 31 do
tmp += SQ.u[i]l.u==08U 21 : @
endfor;
DO.i = tmp;
SCC = DB.u !'= ou

Notes

Functional examples:

S_BCNTO_I32_B32(0x00000000) => 32
S_BCNTO_I32_B32(@xccccececee) => 16
S_BCNTO_I32_B32(oxffffffff) => 0

S_BCNTO0_I32_B64 23

Count the number of "0" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in @ : 63 do
tmp += S@.u64[i].u == 08U ? 1 : ©
endfor;
DO.i = tmp;
SCC = DB.u64 != BULL

S_BCNT1_132_B32 24

Count the number of "1" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
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nonzero.

tmp = 0;
for i in @ : 31 do
tmp += SQ.u[i]l.u==1021 : 0
endfor;
DO.1i = tmp;
SCC = DB.u != 68U

Notes

Functional examples:

S_BCNT1_I32_B32(0x00000000) => ©
S_BCNT1_I32_B32(0@xccccceeec) => 16
S_BCNT1_I32_B32(oxffffffff) => 32

S_BCNT1_132_B64 25

Count the number of "1" bits in a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

tmp = 0;
for i in @ : 63 do
tmp += SO.u64[i].u == 1U ? 1 : @
endfor;
DO.1i = tmp;
SCC = DO.u64 !'= OULL

S_QUADMASK_B32 26

Reduce a pixel mask from the scalar input into a quad mask, store the result in a scalar register and set SCC iff
the result is nonzero.

tmp = 0OU;
for i1 in @ : 7 do
tmp[i] = SO.u[i * 4 + 3 : i *x 4] '= @U
endfor;
DO.u = tmp;

SCC = DB.u !'= ou

Notes

To perform the inverse operation see S_BITREPLICATE_B64_B32.
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S_QUADMASK_B64 27

Reduce a pixel mask from the scalar input into a quad mask, store the result in a scalar register and set SCC iff
the result is nonzero.

tmp = OULL;
for i in @8 : 15 do
tmp[i] = S@.u64[i * 4 + 3 : i x 4] != @ULL
endfor;
DO.u64 = tmp;

SCC = DB.u64 !'= BULL

Notes

To perform the inverse operation see S_LBITREPLICATE_B64_B32.

S_WQM_B32 28

Given an active pixel mask in a scalar input, calculate whole quad mode mask for that input, store the result
into a scalar register and set SCC iff the result is nonzero.

In whole quad mode, if any pixel in a quad is active then all pixels of the quad are marked active.

tmp = 0U;
declare i : 6'U;
for i in 6'6U : 6'31U do
tmp[i] = S@.u[i | 6'3U : i & 6'60U] !'= 6OU
endfor;
DOB.u = tmp;
SCC = DB.u !'= ou

S_WQM_B64 29

Given an active pixel mask in a scalar input, calculate whole quad mode mask for that input, store the result
into a scalar register and set SCC iff the result is nonzero.

In whole quad mode, if any pixel in a quad is active then all pixels of the quad are marked active.

tmp = OULL;
declare i : 6'U;
for i in 6'6U : 6'63U do
tmp[i] = S@.u64[i | 6'3U : i & 6'68U] != BULL
endfor;
DO.u64 = tmp;
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SCC = DB.u64 !'= QULL

S_NOT_B32 30

Calculate bitwise negation on a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

DO.u = ~S@.u;
SCC = DO.u !'= @U

S_NOT_B64 31

Calculate bitwise negation on a scalar input, store the result into a scalar register and set SCC iff the result is
nonzero.

DO.u64 = ~S0.ub64;
SCC = DO.u64 != OULL

S_AND_SAVEEXEC_B32 32

Calculate bitwise AND on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S@.u & EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != oU

S_AND_SAVEEXEC_B64 33

Calculate bitwise AND on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.
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saveexec = EXEC.u64;

EXEC.u64 (S0.u64 & EXEC.u64);
DO.u64 = saveexec.ub4;

SCC = EXEC.u64 !'= OULL

AMD¢1

S_OR_SAVEEXEC_B32

34

Calculate bitwise OR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask, set
SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar destination

register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S@.u | EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != @U

S_OR_SAVEEXEC_B64

35

Calculate bitwise OR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask, set
SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar destination

register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 = (S@.u64 | EXEC.u64);
DO.u64 = saveexec.ub4;

SCC = EXEC.u64 !'= @ULL

S_XOR_SAVEEXEC_B32

Calculate bitwise XOR on the scalar input and the EXEC mask, store the calculated result into the EXEC
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar

destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S@.u * EXEC.u);
DO.u = saveexec.u;
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SCC = EXEC.u != @U

S_XOR_SAVEEXEC_B64 37

Calculate bitwise XOR on the scalar input and the EXEC mask, store the calculated result into the EXEC mask,
set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the scalar
destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 (S@.u64 » EXEC.u64);
DO.u64 = saveexec.u64;

SCC = EXEC.u64 !'= @ULL

S_NAND_SAVEEXEC_B32 38

Bitwise NAND with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S@.u & EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != @U

S_NAND_SAVEEXEC_B64 39
Bitwise NAND with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 = ~(S@.u64 & EXEC.u64);
DO.u64 = saveexec.u64;

SCC = EXEC.u64 != OULL

S_NOR_SAVEEXEC_B32 40

Bitwise NOR with EXEC mask.
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The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S@.u | EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != @U

S_NOR_SAVEEXEC_B64 41

Bitwise NOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 = ~(S@.u64 | EXEC.u64);
DO.u64 = saveexec.ub4;

SCC = EXEC.u64 !'= OULL

S_XNOR_SAVEEXEC_B32 42
Bitwise XNOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = ~(S@.u * EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != @U

S_XNOR_SAVEEXEC_B64 43
Bitwise XNOR with EXEC mask.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 = ~(S@.u64 » EXEC.u64);
DO.u64 = saveexec.u64;

SCC = EXEC.u64 !'= OULL
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S_AND_NOTO_SAVEEXEC_B32 44

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into

the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (~S@.u & EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u !'= @U

S_AND_NOTO_SAVEEXEC_B64 45

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into

the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 (~S0.u64 & EXEC.u64);
DO.u64 = saveexec.u64;

SCC = EXEC.u64 !'= OULL

S_OR_NOTO_SAVEEXEC_B32 46

Calculate bitwise OR on the EXEC mask and the negation of the scalar input, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the

scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (~S@.u | EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != @U

S_OR_NOTO_SAVEEXEC_B64 47

Calculate bitwise OR on the EXEC mask and the negation of the scalar input, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the
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scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 = (~S0.u64 | EXEC.u64);
DO.u64 = saveexec.ub4;
SCC = EXEC.u64 != OULL

S_AND_NOT1_SAVEEXEC_B32 48

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into

the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u;
EXEC.u = (S@.u & ~EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != 06U

S_AND_NOT1_SAVEEXEC_B64 49

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into

the scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;

EXEC.u64 = (S@.u64 & ~EXEC.u64);
DO.u64 = saveexec.u64;

SCC = EXEC.u64 !'= OULL

S_OR_NOT1_SAVEEXEC_B32 50

Calculate bitwise OR on the scalar input and the negation of the EXEC mask, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the

scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.
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saveexec = EXEC.u;
EXEC.u = (S@.u | ~EXEC.u);
DO.u = saveexec.u;
SCC = EXEC.u != 06U

S_OR_NOT1_SAVEEXEC_B64 51

Calculate bitwise OR on the scalar input and the negation of the EXEC mask, store the calculated result into the
EXEC mask, set SCC iff the calculated result is nonzero and store the original value of the EXEC mask into the

scalar destination register.

The original EXEC mask is saved to the destination SGPRs before the bitwise operation is performed.

saveexec = EXEC.u64;
EXEC.u64 (S@.u64 | ~EXEC.u64);
DO.u64 = saveexec.u64;
SCC = EXEC.u64 !'= OULL

S_AND_NOTO_WREXEC_B32 52

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is

intended to help accelerate waterfalling.

EXEC.u = (~S8.u & EXEC.u);
DB.u = EXEC.u;
SCC = EXEC.u != @U

S_AND_NOTO_WREXEC_Bé64 53

Calculate bitwise AND on the EXEC mask and the negation of the scalar input, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is

intended to help accelerate waterfalling.

EXEC.u64 = (~S@.u64 & EXEC.u64);
DO.u64 = EXEC.ub64;
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SCC = EXEC.u64 !'= OULL

S_AND_NOT1_WREXEC_B32 54

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u = (S@.u & ~EXEC.u);
DB.u = EXEC.u;
SCC = EXEC.u != @U

Notes

See S_LAND_NOT1_WREXEC_B64 for example code.

S_AND_NOT1_WREXEC_B64 )

Calculate bitwise AND on the scalar input and the negation of the EXEC mask, store the calculated result into
the EXEC mask and also into the scalar destination register, and set SCC iff the calculated result is nonzero.

Unlike the SAVEEXEC series of opcodes, the value written to destination SGPRs is the result of the bitwise-op
result. EXEC and the destination SGPRs have the same value at the end of this instruction. This instruction is
intended to help accelerate waterfalling.

EXEC.u64 = (S@.u64 & ~EXEC.u64);
DO.u64 = EXEC.u64;
SCC = EXEC.u64 != QULL

Notes

In particular, the following sequence of waterfall code is optimized by using a WREXEC instead of two separate
scalar ops:

// V@ holds the index value per lane

// save exec mask for restore at the end
s_mov_b64 s2, exec

// exec mask of remaining (unprocessed) threads
s_mov_b64 s4, exec

loop:

// get the index value for the first active lane
v_readfirstlane_b32 s@, vO

// find all other lanes with same index value
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v_cmpx_eq s@, v@

<0P> // do the operation using the current EXEC mask. SO holds the index.
// mask out thread that was just executed

// s_andn2_b64 s4, s4, exec

// s_mov_b64 exec, s4

s_andn2_wrexec_b64 s4, s4 // replaces above 2 ops

// repeat until EXEC==0

s_cbranch_scc1 loop

s_mov_b64 exec, s2

S_MOVRELS_B32 64

Move data from a relatively-indexed scalar register into another scalar register.

addr = SRCO.u;

// Raw value from instruction
addr += MO.u[31 : 0];

DB.b = SGPR[addr].b

Notes

Example: The following instruction sequence performs the move s5 <=s17:

s_mov_b32 mo, 10
s_movrels_b32 s5, s7

S_MOVRELS_B64 65

Move data from a relatively-indexed scalar register into another scalar register.

The index in M0.u and the operand address in SRC0.u must be even for this operation.

addr = SRCO.u;

// Raw value from instruction
addr += M@.u[31 : 0];

DB8.b64 = SGPR[addr].b64

S_MOVRELD_B32 66

Move data from a scalar input into a relatively-indexed scalar register.

addr = DST.u;
// Raw value from instruction
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addr += MO.u[31 : 0];
SGPR[addr].b = S@.b

Notes

Example: The following instruction sequence performs the move s15 <=s7:

s_mov_b32 mo, 10
s_movreld_b32 s5, s7

S_MOVRELD_B64 67
Move data from a scalar input into a relatively-indexed scalar register.

The index in M0.u and the operand address in DST.u must be even for this operation.

addr = DST.u;

// Raw value from instruction
addr += M@.u[31 : @];
SGPR[addr].b64 = S0.b64

S_MOVRELSD_2_B32 68

Move data from a relatively-indexed scalar register into another relatively-indexed scalar register, using
different offsets for each index.

addrs = SRCO.u;

// Raw value from instruction
addrd = DST.u;

// Raw value from instruction
addrs += MO.u[9 : 0].u;

addrd += MO.u[25 : 16].u;
SGPR[addrd].b = SGPR[addrs].b

Notes

Example: The following instruction sequence performs the move s25 <=s17:

s_mov_b32 mB, ((206 << 16) | 10)
s_movrelsd_2_b32 s5, s7
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S_GETPC_B64 71

Store the address of the next instruction to a scalar register.

The byte address of the instruction immediately following this instruction is saved to the destination.
DB.i64 = PC + 4LL

Notes

This instruction must be 4 bytes.

S_SETPC_B64 72

Jump to an address specified in a scalar register.

The argument is a byte address of the instruction to jump to.

PC = S@.1i64

S_SWAPPC_Bé64 73

Store the address of the next instruction to a scalar register and then jump to an address specified in the scalar

input.

The argument is a byte address of the instruction to jump to. The byte address of the instruction immediately
following this instruction is saved to the destination.

jump_addr = S0.i64;
D0.i64 = PC + 4LL;
PC = jump_addr.i64

Notes

This instruction must be 4 bytes.

S_RFE_B64 74

Return from the exception handler. Clear the wave's PRIV bit and then jump to an address specified by the

scalar input.

The argument is a byte address of the instruction to jump to; this address is likely derived from the state passed
into the trap handler.
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This instruction may only be used within a trap handler.

WAVE_STATUS.PRIV = 1'6U;
PC = S@.i64

S_SENDMSG_RTN_B32 76
Send a message to upstream control hardware.

SSRC[7:0] contains the message type encoded in the instruction directly (this instruction does not read an
SGPR). The message is expected to return a response from the upstream control hardware and the result is
written to SDST. Use s_waitcnt lgkment(...) to wait for the response on the dependent instruction.

S_SENDMSG_RTN* instructions return data in-order among themselves but out-of-order with other
instructions that manipulate lgkment (including S_SENDMSG and S_SENDMSGHALT).

If the message returns a 64 bit value then only the lower 32 bits are written to SDST.

If SDST is VCC then VCCZ is undefined.

S_SENDMSG_RTN_B64 77
Send a message to upstream control hardware.

SSRC[7:0] contains the message type encoded in the instruction directly (this instruction does not read an
SGPR). The message is expected to return a response from the upstream control hardware and the result is
written to SDST. Use s_waitcnt lgkment(...) to wait for the response on the dependent instruction.

S_SENDMSG_RTN* instructions return data in-order among themselves but out-of-order with other
instructions that manipulate Igkment (including S_.SENDMSG and S_SENDMSGHALT).

If the message returns a 32 bit value then this instruction fills the upper bits of SDST with zero.

If SDST is VCC then VCCZ is undefined.
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16.4. SOPC Instructions

31 0

sorc [1 o1 1 1 1 1 1 o] oP | © " ssrets | 'ssrcos

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

S_CMP_EQ_I32 0

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = S@.1 == S1.1

Notes

Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_LG_I32 1

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = SB@.1 <> S1.1

Notes

Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_GT_I32 2

Set SCC to 1 iff the first scalar input is greater than the second scalar input.

SCC = S@.1 > S1.1

S_CMP_GE_I32 3

Set SCC to 1 iff the first scalar input is greater than or equal to the second scalar input.

SCC = S@.1i >= S1.1
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S_CMP_LT_I32 4

Set SCC to 1 iff the first scalar input is less than the second scalar input.

SCC = S@.1i < S1.1

S_CMP_LE_I32 5

Set SCC to 1 iff the first scalar input is less than or equal to the second scalar input.

SCC = SB@.1i <= S1.1

S_CMP_EQ_U32 6

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = SB.u == S1.u

Notes

Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_LG_U32 7

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = SO.u <> S1.u

Notes

Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

S_CMP_GT_U32 8

Set SCC to 1 iff the first scalar input is greater than the second scalar input.

SCC = SO.u > S1.u
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S_CMP_GE_U32 9

Set SCC to 1 iff the first scalar input is greater than or equal to the second scalar input.

SCC = SO@.u >= S1.u

S_CMP_LT_U32 10

Set SCC to 1 iff the first scalar input is less than the second scalar input.

SCC = SO.u < S1.u

S_CMP_LE_U32 11

Set SCC to 1 iff the first scalar input is less than or equal to the second scalar input.

SCC = SO.u <= S1.u

S_BITCMPO0_B32 12

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 0.

SCC = S@.u[S1.u[4 : 8]] == 1'0U

S_BITCMP1_B32 13

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 1.

SCC = $B.u[S1.u[4 : B]] == 1'1U

S_BITCMPO_B64 14
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Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 0.

SCC = SB.u64[S1.u[5 : B]] == 1'6U

S_BITCMP1_B64 15

Extract a bit from the first scalar input based on an index in the second scalar input, and set SCC to 1 iff the
extracted bit is equal to 1.

SCC = S8.u64[S1.u[5 : 8]] == 1'1U

S_CMP_EQ_U64 16

Set SCC to 1 iff the first scalar input is equal to the second scalar input.

SCC = SB@.u64 == S1.u6b4

S_CMP_LG_U64 17

Set SCC to 1 iff the first scalar input is less than or greater than the second scalar input.

SCC = SB@.u64 <> S1.ub4
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16.5. SOPP Instructions

31

sop [14 o1 1 1 1 1 1a] " o T smwe

S_NOP 0
Do nothing. Delay issue of next instruction by a small, fixed amount.
Insert 0..15 wait states based on SIMM16[3:0]. 0x0 means the next instruction can issue on the next clock, 0xf

means the next instruction can issue 16 clocks later.

for i in BU : SIMM16.u16[3 : ©].u do

nop ()
endfor

Notes

Examples:

s_nop @ // Wait 1 cycle.
s_nop Oxf // Wait 16 cycles.

S_SETKILL 1
Kill this wave if the least significant bit of the immediate constant is 1.

Used primarily for debugging kill wave host command behavior.

S_SETHALT 2
Set or clear the HALT or FATAL_HALT status bits.

The particular status bit is chosen by halt type control as indicated in SIMM16[2]; 0 = HALT bit select; 1 =
FATAL_HALT bit select.

When halt type control is set to 0 (HALT bit select): Set HALT bit to value of SIMM16[0]; 1 = halt, 0 = clear HALT
bit. The halt flag is ignored while PRIV == 1 (inside trap handlers) but the shader halts after the handler returns
if HALT is still set at that time.

When halt type control is set to 1 (FATAL HALT bit select): Set FATAL_HALT bit to value of SIMM16[0]; 1 =
fatal_halt, 0 = clear FATAL_HALT bit. Setting the fatal_halt flag halts the shader in or outside of the trap
handlers.
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S_SLEEP 3
Cause a wave to sleep for up to ~8000 clocks.
The wave sleeps for (64*(SIMM16[6:0]-1) .. 64*SIMM16[6:0]) clocks. The exact amount of delay is approximate.
Compare with S_NOP. When SIMM16[6:0] is zero then no sleep occurs.
Notes
Examples:
s_sleep © // Wait for @ clocks.
s_sleep 1 // Wait for 1-64 clocks.
s_sleep 2 // Wait for 65-128 clocks.
S_SET_INST_PREFETCH_DISTANCE 4

Change instruction prefetch mode. This controls how many cachelines ahead of the current PC the shader will

try to prefetch.

SIMM16[1:0] specifies the prefetch mode to switch to. Prefetch modes are:

PREFETCH_SAFE (0x0)
Reserved, do not use.

PREFETCH_1_LINE (0x1)
Prefetch 1 cache line ahead of PC; keep 2 lines behind PC.

PREFETCH_2_LINES (0x2)
Prefetch 2 cache lines ahead of PC; keep 1 line behind PC.

PREFETCH_3_LINES (0x3)

Prefetch 3 cache lines ahead of PC; keep 0 lines behind PC.

SIMM16[15:2] must be set to zero.

S_CLAUSE

Mark the beginning of a clause.

The next instruction determines the clause type, which may be one of the following types.

+ Image Load (non-sample instructions )
« Image Sample

» Image Store

« Image Atomic
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 Buffer/Global/Scratch Load

- Buffer/Global/Scratch Store

+ Buffer/Global/Scratch Atomic

- Flat Load

- Flat Store

« Flat Atomic

+ LDS (loads, stores, atomics may be in same clause)
« Scalar Memory

* Vector ALU

Once the clause type is determined, any instruction encountered within the clause that is not of the same type
(and not an internal instruction described below) is illegal and may lead to undefined behaviour. Attempting to
issue S_CLAUSE while inside a clause is also illegal.

Instructions that are processed internally do not interrupt the clause. The following instructions are internal:

« S_NOP,

« S_ZWAITCNT and its variants, unless they read an SGPR,
S_SLEEP,

« S_DELAY_ALU.

Halting or killing a wave breaks the clause. VALU exceptions and other traps that cause the shader to enter its
trap handler breaks the clause. The single-step debug mode breaks the clause.

The clause length must be between 2 and 63 instructions, inclusive. Clause breaks may be from 1 to 15, or may
be disabled entirely. Clause length and breaks are encoded in the SIMM16 argument as follows:

LENGTH = SIMM16[5:0]
This field is set to the logical number of instructions in the clause, minus 1 (e.g. if a clause has 4
instructions, program this field to 3). The minimum number of instructions required for a clause is 2 and
the maximum number of instructions is 63, therefore this field must be programmed in the range [1, 62]
inclusive.

BREAK_SPAN =SIMM16[11:8]
This field is set to the number of instructions to issue before each clause break. If set to zero then there are

no clause breaks. If set to nonzero value then the maximum number of instructions between clause breaks
is 15.

The following instruction types cannot appear in a clause:

« SALU

» Export

« Branch

» Message
+ LDSDIR
« VINTERP
» GDS

To schedule an S_ZWAITCNT or S_DELAY_ALU instruction for the first instruction in the clause, the
waitcnt/delay instruction must appear before the S_CLAUSE instruction so that S_CLAUSE can accurately
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determine the clause type.

S_DELAY_ALU must not appear inside a clause. The features are orthogonal; ALU clauses should be structured
to avoid any stalling.

S_DELAY_ALU 7
Insert delay between dependent SALU/VALU instructions.
The SIMM16 argument is encoded as:

INSTIDO = SIMM16[3:0]
Hazard to delay for with the next VALU instruction.

INSTSKIP = SIMM16[6:4]
Identify the VALU instruction that the second delay condition applies to.

INSTID1 = SIMM16[10:7]
Hazard to delay for with the VALU instruction identified by INSTSKIP.

Legal values for the InstIDO0 and InstID1 fields are:

INSTID_NO_DEP (0x0)
No dependency on any prior instruction.

INSTID_VALU_DEP_1 (0x1)
Dependent on previous VALU instruction, 1 instruction back.

INSTID_VALU_DEP_2 (0x2)
Dependent on previous VALU instruction, 2 instructions back.

INSTID_VALU_DEP_3 (0x3)
Dependent on previous VALU instruction, 3 instructions back.

INSTID_VALU_DEP_4 (0x4)
Dependent on previous VALU instruction, 4 instructions back.

INSTID_TRANS32_DEP_1 (0x5)
Dependent on previous TRANS32 instruction, 1 instruction back.

INSTID_TRANS32_DEP_2 (0x6)
Dependent on previous TRANS32 instruction, 2 instructions back.

INSTID_TRANS32_DEP_3 (0x7)
Dependent on previous TRANS32 instruction, 3 instructions back.

INSTID_FMA_ACCUM_CYCLE_1 (0x8)
Single cycle penalty for FMA accumulation (reserved).
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INSTID_SALU_CYCLE_1 (0x9)
1 cycle penalty for a prior SALU instruction.

INSTID_SALU_CYCLE_2 (0xa)
2 cycle penalty for a prior SALU instruction (reserved).

INSTID_SALU_CYCLE_3 (0xb)
3 cycle penalty for a prior SALU instruction (reserved).

Legal values for the InstSkip field are:

INSTSKIP_SAME (0x0)
Apply second dependency to same instruction (2 dependencies on one instruction).

INSTSKIP_NEXT (0x1)
Apply second dependency to next instruction (no skip).

INSTSKIP_SKIP_1 (0x2)
Skip 1 instruction then apply dependency.

INSTSKIP_SKIP_2 (0x3)
Skip 2 instructions then apply dependency.

INSTSKIP_SKIP_3 (0x4)
Skip 3 instructions then apply dependency.

INSTSKIP_SKIP_4 (0x5)
Skip 4 instructions then apply dependency.

This instruction describes dependencies for two instructions, directing the hardware to insert delay if the
dependent instruction was issued too recently to forward data to the second.

S_DELAY_ALU instructions record the required delay with respect to a previous VALU instruction and indicate
data dependencies that benefit from having extra idle cycles inserted between them. These instructions are
optional: without them the program still functions correctly but performance may suffer when multiple waves
are in flight; IB may issue dependent instructions that stall in the ALU, preventing those cycles from being
utilized by other wavefronts.

If enough independent instructions are between dependent ones then no delay is necessary and this
instruction may be omitted. For wave64 the compiler may not know the status of the EXEC mask and hence
does not know if instructions require 1 or 2 passes to issue. S_DELAY_ALU encodes the type of dependency so
that hardware may apply the correct delay depending on the number of active passes.

S_DELAY_ALU may execute in zero cycles.

To reduce instruction stream overhead the S_DELAY_ALU instructions packs two delay values into one
instruction, with a "skip" indicator so the two delayed instructions don't need to be back-to-back.

S_DELAY_ALU is illegal inside of a clause created by S_CLAUSE.

Example:
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v_mov_b32 v3, vo

v_1lshlrev_b32 v30, 1, v31

v_1lshlrev_b32 v24, 1, v25

s_delay_alu instid®(INSTID_VALU_DEP_3) | instskip(INSTSKIP_SKIP_1) | instid1(INSTID_VALU_DEP_1)
// 1 cycle delay here

v_add_f32 v@, vi1, v3

v_sub_f32 v11, v9, v9
// 2 cycles delay here

v_mul_f32 wv1@, v13, vi1

S_WAITCNT 9

Wait for the counts of outstanding 1ds, vector-memory and export/vmem-write-data to be at or below the
specified levels.

The SIMM16 argument is encoded as:

EXP = SIMM16([2:0]
Export wait count. 0x7 means do not wait on EXPCNT.

LGKM = SIMM16[9:4]
LGKM wait count. 0x3f means do not wait on LGKMCNT.

VM = SIMM16[15:10]
VM wait count. 0x3f means do not wait on VMCNT.

Waits for all of the following conditions to hold before continuing:

expcnt <= WaitEXPCNT
1gkmcnt <= WaitLGKMCNT
vment <= WaitVMCNT

VMCNT only counts vector memory loads, image sample instructions, and vector memory atomics that return
data. Contrast with the VSCNT counter.

See also S_WAITCNT_VSCNT.

S_WAIT_IDLE 10

Wait for all activity in the wave to be complete (all dependency and memory counters at zero).

S_WAIT_EVENT 11

Wait for an event to occur or a condition to be satisfied before continuing. The SIMM16 argument specifies
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which event(s) to wait on.

DONT_WAIT_EXPORT_READY = SIMM16]0]
If this value is ZERO then sleep until the export_ready bit is 1. If the export_ready bit is already 1, no sleep
occurs. Effect is the same as the export_ready check performed before issuing an export instruction.

No wait occurs if this value is ONE.

This wait can be broken or preempted by KILL, context-save, host trap, single-step or trap after instruction
events. IB waits for the event to occur before processing internal exceptions which can delay entry to the trap
handler for a significant amount of time.

S_TRAP 16
Enter the trap handler.

This instruction may be generated internally as well in response to a host trap (HT = 1) or an exception. TrapID
0 is reserved for hardware use and should not be used in a shader-generated trap.

TrapID = SIMM16.ul16[7 : 0];

"Wait for all instructions to complete";

// PC passed into trap handler points to S_TRAP itself,

// *not* to the next instruction.

{ TTMP[1], TTMP[@] } = { 7'0, HT[@], TrapID[7 : @], PC[47 : @] };
PC = TBA.i64;

// trap base address

WAVE_STATUS.PRIV = 1'1U

S_ROUND_MODE 17
Set floating point round mode using an immediate constant.

Avoids wait state penalty that would be imposed by S_SETREG.

S_DENORM_MODE 18
Set floating point denormal mode using an immediate constant.

Avoids wait state penalty that would be imposed by S_SETREG.

S_CODE_END 31

Generate an illegal instruction interrupt. This instruction is used to mark the end of a shader buffer for debug
tools.
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This instruction should not appear in typical shader code. It is used to pad the end of a shader program to make
it easier for analysis programs to locate the end of a shader program buffer. Use of this opcode in an embedded
shader block may cause analysis tools to fail.

To unambiguously mark the end of a shader buffer, this instruction must be specified five times in a row (total
of 20 bytes) and analysis tools must ensure the opcode occurs at least five times to be certain they are at the end
of the buffer. This is because the bit pattern generated by this opcode could incidentally appear in a valid
instruction's second dword, literal constant or as part of a multi-DWORD image instruction.

In short: do not embed this opcode in the middle of a valid shader program. DO use this opcode 5 times at the
end of a shader program to clearly mark the end of the program.

Example:
s_endpgm // last real instruction in shader buffer
s_code_end /11
s_code_end /1 2
s_code_end // 3
s_code_end /] 4
s_code_end // done!
S_BRANCH 32

Jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL;
// short jump.

Notes
For along jump or an indirect jump use S_SETPC_B64.

Examples:

s_branch label // Set SIMM16 = +4 = 0x0004
s_nop @ // 4 bytes
label:
s_nop @ // 4 bytes
s_branch label // Set SIMM16 = -8 = Oxfff8
S_CBRANCH_SCCO 33
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If SCC is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if SCC == 1'0U then

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

AMD¢1

S_CBRANCH_SCC1

If SCCis 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if SCC == 1'1U then

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

34

S_CBRANCH_VCCZ

If VCCZ is 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if VCCZ.u1 == 1'1U then

PC = PC + signext(SIMM16.1i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

35

S_CBRANCH_VCCNZ

If VCCZ is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if VCCZ.u1 == 1'6BU then
PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
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PC = PC + 4LL
endif

AMD¢1

S_CBRANCH_EXECZ

If EXECZ is 1 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if EXECZ.u1l == 1'1U then

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

37

S_CBRANCH_EXECNZ

If EXECZ is 0 then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if EXECZ.u1l == 1'6U then

PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

38

S_CBRANCH_CDBGSYS

If the system debug flag is set then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if WAVE_STATUS.COND_DBG_SYS.u != @U then

PC = PC + signext(SIMM16.1i16 * 16'4) + 4LL
else

PC = PC + 4LL
endif

39

S_CBRANCH_CDBGUSER
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If the user debug flag is set then jump to a constant offset relative to the current PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if WAVE_STATUS.COND_DBG_USER.u != @U then
PC = PC + signext(SIMM16.1i16 * 16'4) + 4LL

else
PC = PC + 4LL

endif

S_CBRANCH_CDBGSYS_OR_USER 41

If either the system debug flag or the user debug flag is set then jump to a constant offset relative to the current

PC.

The literal argument is a signed DWORD offset relative to the PC of the next instruction.

if (WAVE_STATUS.COND_DBG_SYS || WAVE_STATUS.COND_DBG_USER) then
PC = PC + signext(SIMM16.116 * 16'4) + 4LL

else
PC = PC + 4LL
endif

S_CBRANCH_CDBGSYS_AND_USER 42
If both the system debug flag and the user debug flag are set then jump to a constant offset relative to the
current PC.
The literal argument is a signed DWORD offset relative to the PC of the next instruction.
if (WAVE_STATUS.COND_DBG_SYS &% WAVE_STATUS.COND_DBG_USER) then
PC = PC + signext(SIMM16.i16 * 16'4) + 4LL
else
PC = PC + 4LL
endif
S_ENDPGM 48

End of program; terminate wavefront.

The hardware implicitly executes S_ZWAITCNT 0 and S_WAITCNT_VSCNT 0 before executing this instruction.

See S_LENDPGM_SAVED for the context-switch version of this instruction and
S_ENDPGM_ORDERED_PS_DONE for the POPS critical region version of this instruction.
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S_ENDPGM_SAVED 49

End of program; signal that a wave has been saved by the context-switch trap handler and terminate
wavefront.

The hardware implicitly executes S_ZWAITCNT 0 and S_WAITCNT_VSCNT 0 before executing this instruction.
See S_ENDPGM for additional variants.

S_ENDPGM_ORDERED_PS_DONE 50
End of program; signal that a wave has exited its POPS critical section and terminate wavefront.

The hardware implicitly executes S_ZWAITCNT 0 and S_ZWAITCNT_VSCNT 0 before executing this instruction.
This instruction is an optimization that combines S_SENDMSG(MSG_ORDERED_PS_DONE) and S_ENDPGM;
there may be cases where the message needs to be sent separately, in which case the shader can be terminated
with a normal S_ENDPGM instruction.

See S_ENDPGM for additional variants.

S_WAKEUP 52

Allow a wave to 'ping' all the other waves in its threadgroup to force them to wake up early from an S_SLEEP
instruction.

The ping is ignored if the waves are not sleeping. This allows for efficient polling on a memory location. The
waves which are polling can sit in a long S_SLEEP between memory reads, but the wave which writes the value
can tell them all to wake up early now that the data is available. This method is also safe from races because if
any wave misses the ping, everything is expected to work fine (waves which missed it just complete their
S_SLEEP).

If the wave executing S_ZWAKEUP is in a threadgroup (in_wg set), then it wakes up all waves associated with the
same threadgroup ID. Otherwise, S_ZWAKEUP is treated as an S_NOP.

S_SETPRIO 53
Change wave user priority.

User settable wave priority is set to SIMM16[1:0]. 0 is the lowest priority and 3 is the highest. The overall wave
priority is:

Priority = {SysUserPrio[1:0], WaveAge[3:0]}
SysUserPrio = MIN(3, SysPrio[1:0] + UserPrio[1:0]).

The system priority cannot be modified from within the wave.
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S_SENDMSG 54
Send a message to upstream control hardware.
SIMM16[7:0] contains the message type.

Notes

S_SENDMSGHALT 55

Send a message to upstream control hardware and then HALT the wavefront; see S_SENDMSG for details.

S_INCPERFLEVEL 56

Increment performance counter specified in SIMM16[3:0] by 1.

S_DECPERFLEVEL 57

Decrement performance counter specified in SIMM16[3:0] by 1.

S_ICACHE_INV 60

Invalidate entire first level instruction cache.

S_BARRIER 61
Synchronize waves within a threadgroup.

If not all waves of the threadgroup have been created yet, waits for entire group before proceeding. If some
waves in the threadgroup have already terminated, this waits on only the surviving waves. Barriers are legal
inside trap handlers.

Barrier instructions do not wait for any counters to go to zero before issuing. If the barrier is being used to
protect an outstanding memory operation use the appropriate S_ZWAITCNT instruction before the barrier.
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16.6. SMEM Instructions

31

AMD¢1

SMEM
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SDATA
OFFSET2

SBASE

63

32

S_LOAD_B32

Load 32 bits of data from the scalar data cache into a scalar register.

SDATA[31 : @] = MEM[ADDR + @U].b

Notes

If the offset is specified as an SGPR, the SGPR contains an UNSIGNED BYTE offset (the 2 LSBs are ignored).

If the offset is specified as an immediate 21-bit constant, the constant is a SIGNED BYTE offset.

S_LOAD_Bé64

Load 64 bits of data from the scalar data cache into a scalar register.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_LOAD_B128

Load 128 bits of data from the scalar data cache into a scalar register.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b

Notes

See S_LOAD_B32 for details on the offset input.
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S_LOAD_B256 3

Load 256 bits of data from the scalar data cache into a scalar register.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;
SDATA[159 : 128] MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] MEM[ADDR + 24U].b;
SDATA[255 : 224] MEM[ADDR + 28U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_LOAD_B512 4

Load 512 bits of data from the scalar data cache into a scalar register.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;

SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b;
SDATA[287 : 256] = MEM[ADDR + 32U].b;
SDATA[319 : 288] = MEM[ADDR + 36U].b;
SDATA[351 : 320] = MEM[ADDR + 40U].b;
SDATA[383 : 352] = MEM[ADDR + 44U].b;
SDATA[415 : 384] = MEM[ADDR + 48U].b;
SDATA[447 : 416] = MEM[ADDR + 52U].b;
SDATA[479 : 448] = MEM[ADDR + 56U].b;
SDATA[511 : 480] = MEM[ADDR + 60U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B32 8

Load 32 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.
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SDATA[31 : @] = MEM[ADDR + @U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B64 9

Load 64 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B128 10

Load 128 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : @] = MEM[ADDR + @U].b;

SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B256 11

Load 256 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] MEM[ADDR + 4U].b;
SDATA[95 : 64] = MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;

SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b
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Notes

See S_LOAD_B32 for details on the offset input.

S_BUFFER_LOAD_B512 12

Load 512 bits of data from the scalar data cache into a scalar register using a buffer resource descriptor.

SDATA[31 : @] = MEM[ADDR + @U].b;
SDATA[63 : 32] = MEM[ADDR + 4U].b;
SDATA[95 : 64] MEM[ADDR + 8U].b;
SDATA[127 : 96] = MEM[ADDR + 12U].b;

SDATA[159 : 128] = MEM[ADDR + 16U].b;
SDATA[191 : 160] = MEM[ADDR + 20U].b;
SDATA[223 : 192] = MEM[ADDR + 24U].b;
SDATA[255 : 224] = MEM[ADDR + 28U].b;
SDATA[287 : 256] = MEM[ADDR + 32U].b;
SDATA[319 : 288] = MEM[ADDR + 36U].b;
SDATA[351 : 320] = MEM[ADDR + 40U].b;
SDATA[383 : 352] = MEM[ADDR + 44U].b;
SDATA[415 : 384] = MEM[ADDR + 48U].b;
SDATA[447 : 416] = MEM[ADDR + 52U].b;
SDATA[479 : 448] = MEM[ADDR + 56U].b;
SDATA[511 : 480] = MEM[ADDR + 606U].b

Notes

See S_LOAD_B32 for details on the offset input.

S_GL1_INV 32

Invalidate the GL1 cache only.

S_DCACHE_INV 33

Invalidate the scalar data LO cache.
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16.7. VOP2 Instructions

31 0

vz [o] o " [ " " “vosm | VSR, [ " sRe

Instructions in this format may use a 32-bit literal constant or DPP that occurs immediately after the
instruction.

V_CNDMASK_B32 1

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

DB.u = VCC.u64[laneId] ? S1.u : S@.u

Notes
In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if SO and S1 are 32-bit floating point values. This
instruction is suitable for negating or taking the absolute value of a floating-point value.

V_DOT2ACC_F32_F16 2

Dot product of packed FP16 values, accumulate with destination.

// Accumulate with destination
DB.f += 32'F(S6[15 : 0].f16) * 32'F(S1[15 : 8].f16);
DB.f += 32'F(SO[31 : 16].f16) * 32'F(S1[31 : 16].f16)

V_ADD_F32 3

Add two floating point inputs and store the result into a vector register.

De.f = S0.f + S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUB_F32 4
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Subtract the second floating point input from the first input and store the result into a vector register.

De.f = so.f - S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUBREV_F32 S

Subtract the first floating point input from the second input and store the result into a vector register.

De.f = S1.f - Se.f

Notes

0.5ULP precision, denormals are supported.

V_FMAC_DX9_ZERO_F32 6

Multiply two single-precision values and accumulate the result with the destination. Follows DX9 rules where
0.0 times anything produces 0.0 (this is not IEEE compliant).

if ((64'F(S@.f) == 0.0) || (64'F(S1.f) == 0.0)) then
// DX9 rules, 6.0 * x = 0.0

pDo.f = S2.f
else
De.f = fma(Se.f, S1.f, DO.f)
endif
V_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

if ((64'F(S6.f) == 0.0) || (64'F(S1.f) == 0.0)) then
// DX9 rules, 0.0 * x = 0.0

De.f = 0.6F
else

De.f = S8.f x S1.f
endif
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V_MUL_F32 8

Multiply two floating point inputs and store the result into a vector register.

De.f = S0.f » S1.f

Notes

0.5ULP precision, denormals are supported.

V_MUL_I32_124 9

Multiply two signed 24 bit integer inputs and store the result as a signed 32 bit integer into a vector register.

DO.i = 32'I(S0.i24) * 32'I(S1.i24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_I32_124,

V_MUL_HI_I32_124 10

Multiply two signed 24 bit integer inputs and store the high 32 bits of the result as a signed 32 bit integer into a
vector register.

DO.i = 32'I((64'I(SB.i24) * 64'I(S1.i24)) >> 32U)

Notes

See also V_MUL_I32_124.

V_MUL_U32_U24 11

Multiply two unsigned 24 bit integer inputs and store the result as a unsigned 32 bit integer into a vector
register.

DB.u = 32'U(S@.u24) * 32'U(S1.u24)

Notes
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This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_U32_U24.

V_MUL_HI_U32_U24 12

Multiply two unsigned 24 bit integer inputs and store the high 32 bits of the result as a unsigned 32 bit integer
into a vector register.

DB.u = 32'U((64'U(S8.u24) * 64'U(S1.u24)) >> 32U)

Notes

See also V_MUL_U32_U24.

V_MIN_F32 15

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.8) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
elsif isSignalNAN(64'F(S1.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
elsif isQuietNAN(64'F(S1.f)) then

Do.f = Se.f
elsif isQuietNAN(64'F(S@.f)) then
Do.f = S1.f

elsif LT_NEG_ZERO(S@.f, S1.f) then
// NOTE: -0<+@ is TRUE in this comparison

De.f = S0.f

else
De.f = S1.f

endif

else

if isNAN(64'F(S1.f)) then
De.f = S0.f

elsif isNAN(64'F(S@.f)) then
De.f = S1.f

elsif LT_NEG_ZERO(S@.f, S1.f) then
// NOTE: -0<+@ is TRUE in this comparison

De.f = S0.f
else

De.f = S1.f
endif

endif;
// Inequalities in the above pseudocode behave differently from IEEE
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// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

AMD¢1

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can

be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F32

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
((a>b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.8) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
elsif isSignalNAN(64'F(S1.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
elsif isQuietNAN(64'F(S1.f)) then

Do.f = Se.f
elsif isQuietNAN(64'F(S@.f)) then
Do.f = S1.f

elsif GT_NEG_ZERO(S@.f, S1.f) then
// NOTE: +0>-8 is TRUE in this comparison

De.f = S0.f

else
De.f = S1.f

endif

else

if isNAN(64'F(S1.f)) then
De.f = S0.f

elsif isNAN(64'F(S0.f)) then
De.f = S1.f

elsif GT_NEG_ZERO(S@.f, S1.f) then
// NOTE: +0>-8 is TRUE in this comparison

De.f = S0.f
else

Do.f = S1.f
endif

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.
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Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_I32 17

Select the minimum of two signed integers and store the selected value into a vector register.

DB.i = 80.1i < S1.1 ? S@.1i : S1.1

V_MAX_I32 18

Select the maximum of two signed integers and store the selected value into a vector register.

DB.i = S0.1i >= §1.1 ? S@.1i : S1.1

V_MIN_U32 19

Select the minimum of two unsigned integers and store the selected value into a vector register.

DO.u = SO.u < ST.u ? S@.u : Sl.u

V_MAX_U32 20

Select the maximum of two unsigned integers and store the selected value into a vector register.

DO.u = SO.u >= ST.u ? S@.u : Sl.u

V_LSHLREV_B32 24

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

DB.u = (S1.u << S@[4 : @].u)
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V_LSHRREV_B32 25

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

DB.u = (S1.u >> S@[4 : @].u)

V_ASHRREV_I32 26

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

DO.i = (S1.1 >> SB[4 : 0].u)

V_AND_B32 27

Calculate bitwise AND on two vector inputs and store the result into a vector register.

DO.u = (S@.u & S1.u)

Notes

Input and output modifiers not supported.

V_OR_B32 28

Calculate bitwise OR on two vector inputs and store the result into a vector register.

DO.u = (S@.u | S1.u)

Notes

Input and output modifiers not supported.

V_XOR_B32 29

Calculate bitwise XOR on two vector inputs and store the result into a vector register.
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DO.u = (S@.u *» S1.u)

Notes

Input and output modifiers not supported.

V_XNOR_B32 30

Calculate bitwise XNOR on two vector inputs and store the result into a vector register.

DO.u = ~(S@.u A S1.u)

Notes

Input and output modifiers not supported.

V_ADD_CO_CI_U32 32

Add two unsigned inputs and a bit from a carry-in mask, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = 64'U(SO.u) + 64'U(ST.u) + VCC.u64[laneId].u64;
VCC.u64[laneId] = tmp >= 0x100000000ULL ? 1'1U : 1'0U;
DO.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUB_CO_CI_U32 33

Subtract the second unsigned input from the first input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = SB.u - S1.u - VCC.u64[laneId].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneld].u64 > 64'U(S@.u) ? 1'1U : 1'6U;
DO.u = tmp.u
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Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_CI_U32 34

Subtract the first unsigned input from the second input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S1.u - SO.u - VCC.u64[laneld].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S@.u) ? 1'1U : 1'6U;
DO.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_U32 37

Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

DO.u = SO.u + S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUB_NC_U32 38

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

DO.u = SB.u - S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).
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V_SUBREV_NC_U32 39

Subtract the first unsigned input from the second input and store the result into a vector register. No carry-in or
carry-out support.

DO.u = S1.u - S@.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_FMAC_F32 43

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

De.f = fma(Se.f, S1.f, DO.f)

V_FMAMK_F32 44

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

Do.f = fma(S@.f, SIMM32.f, S1.f)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.

V_FMAAK_F32 45

Multiply two single-precision floats and add a literal constant using fused multiply-add.

DO.f = fma(S0.f, S1.f, SIMM32.f)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.
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V_CVT_PK_RTZ_F16_F32 47

Convert two single-precision float inputs into a packed FP16 result with round toward zero semantics (ignore
the current rounding mode), and store the result into a vector register.

DB[15 : 8].f16 = f32_to_f16(S0.f);
DB[31 : 16].f16 = f32_to_f16(S1.f);
// Round-toward-zero regardless of current round mode setting in hardware.

Notes

This opcode is intended for use with 16-bit compressed exports. See V_CVT_F16_F32 for a version that respects
the current rounding mode.

V_ADD_F16 50

Add two floating point inputs and store the result into a vector register.

De.f16 = S@.f16 + S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUB_F16 51

Subtract the second floating point input from the first input and store the result into a vector register.

De.f16 = S@.f16 - S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUBREV_F16 52

Subtract the first floating point input from the second input and store the result into a vector register.

DB.f16 = S1.f16 - S0.f16
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Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_MUL_F16 53

Multiply two floating point inputs and store the result into a vector register.

De.f16 = S@.f16 * S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAC_F16 54

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

Do.f16 = fma(S@.f16, S1.f16, DB.f16)

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAMK_F16 )

Multiply a FP16 value with a literal constant and add a second FP16 value using fused multiply-add.

Do.f16 = fma(S@.f16, SIMM32.f16, S1.f16)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode,
exception flags, saturation.

V_FMAAK_F16 56

Multiply two FP16 values and add a literal constant using fused multiply-add.
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Do.f16 = fma(S@.f16, S1.f16, SIMM32.f16)

Notes

This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode,
exception flags, saturation.

V_MAX_F16 57

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
((a > b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.08) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S8.f16)))
elsif isSignalNAN(64'F(S1.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif isQuietNAN(64'F(S1.f16)) then
DB.f16 = SB.f16
elsif isQuietNAN(64'F(S0.f16)) then
DB.f16 = S1.f16
elsif GT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: +0>-8 is TRUE in this comparison

DB.f16 = SB.f16
else

Do.f16 = S1.f16
endif

else

if isNAN(64'F(S1.f16)) then
DB.f16 = SB.f16

elsif isNAN(64'F(S@.f16)) then
DB.f16 = S1.f16

elsif GT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: +0>-08 is TRUE in this comparison
DB.f16 = SO.f16

else
DB.f16

endif

S1.f16

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.
Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input

denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
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be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_F16 58

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
((a <b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S0.f16)) then
DB.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
elsif isSignalNAN(64'F(S1.f16)) then
DB.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif isQuietNAN(64'F(S1.f16)) then
DB.f16 = SB.f16
elsif isQuietNAN(64'F(S0.f16)) then
Do.f16 = S1.f16
elsif LT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: -0<+@ is TRUE in this comparison
Do.f16 = SB6.f16
else
DO.f16
endif

S1.f16

else
if isNAN(64'F(S1.f16)) then
Do.f16 = S@6.f16
elsif isNAN(64'F(S@.f16)) then
Do.f16 = S1.f16
elsif LT_NEG_ZERO(S®.f16, S1.f16) then
// NOTE: -0<+@ is TRUE in this comparison

DB.f16 = SB.f16
else

DB.f16 = S1.f16
endif

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F16 59
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Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the 1dexp() function in C.

DO.f16 = SO.F16 * 16'F(2.0F ** 32'I(S1.i16))

V_PK_FMAC_F16 60

Multiply packed FP16 values and accumulate with destination.

DO[31 : 16].f16 = fma(S@[31 : 16].f16, S1[31 : 16].f16, DO[31 : 16].f16);
Do[15 : 8].f16 = fma(S@[15 : @].f16, S1[15 : @].f16, DO[15 : B8].f16)

Notes

VOP2 version of V_PK_FMA_F16 with third source VGPR address is the destination.

16.7.1. VOP2 using VOP3 or VOP3SD encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x100.

31 0

vops 1.1 0 1 0 1] op " lom| ‘opseL, | mBs, | VDST,
T T T " T T T T T T I ' T T T T T T T
NEG | omoD | SRC2, | SRC1, | SRCO,
63 32
31 . . . . ; . . ; ; . . . . . . . . ; . . ; ; . . . . 0
vopasp 110 1 0 1 | ' oP lem] SDST; | VDSTg
T T T ' T T T T T T T T 1 ' T T T T T T T T T T T
NEG | omoD | SRC2, | SRC1, | SRCO,
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16.8. VOP1 Instructions

31 0

vorr  [o]1 1 1 1 1 1] " “vosTy | oP | SRCo

Instructions in this format may use a 32-bit literal constant or DPP that occurs immediately after the
instruction.

V_NOP 0
Do nothing.
V_MOV_B32 1

Move data from a vector input into a vector register.

DB.b = S0.b

Notes

Floating-point modifiers are valid for this instruction if S0.u is a 32-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

Functional examples:

v_mov_b32 vO, vi // Move v1 to v@
v_mov_b32 vO, -vi // Set v1 to the negation of v@
v_mov_b32 v@, abs(v1) // Set v1 to the absolute value of v@

V_READFIRSTLANE_B32 2

Read the scalar value in the lowest active lane of the input vector register and store it into a scalar register.

declare lane : 32'U;
if WAVE64 then
// 64 lanes
if EXEC == @x0OLL then
lane = 0U;
// Force lane @ if all lanes are disabled
else
lane = 32'U(s_ff1_132_b64(EXEC));
// Lowest active lane
endif
else
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// 32 lanes
if EXEC_LO.i == @ then

lane = 0U;

// Force lane @ if all lanes are disabled
else

lane = 32'U(s_ff1_132_b32(EXEC_LO));
// Lowest active lane
endif
endif;
DB.b = VGPR[lane][SRCO.u]

Notes

Overrides EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped
operation.

V_CVT_I32_F64 3

Convert from a double-precision float input to a signed 32-bit integer and store the result into a vector register.

DO.i = f64_to_132(S0.f64)

Notes
0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1,

V_CVT_F64_132 4

Convert from a signed 32-bit integer input to a double-precision float and store the result into a vector register.

Do.f64 = i32_to_f64(S0.1)

Notes

OULP accuracy.

V_CVT_F32_132 5

Convert from a signed 32-bit integer input to a single-precision float and store the result into a vector register.
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DB.f = i32_to_f32(S0.1)

Notes

0.5ULP accuracy.

V_CVT_F32_U32 6

Convert from an unsigned 32-bit integer input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S0.u)

Notes

0.5SULP accuracy.

V_CVT_U32_F32 7

Convert from a single-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

DB.u = f32_to_u32(Se.f)

Notes
1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_I32_F32 8

Convert from a single-precision float input to a signed 32-bit integer and store the result into a vector register.

DO.i = f32_to_i32(S@.f)

Notes

1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.
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Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F16_F32 10

Convert from a single-precision float input to an FP16 float and store the result into a vector register.

DO.f16 = f32_to_f16(S6.f)

Notes

0.5ULP accuracy, supports input modifiers and creates FP16 denormals when appropriate. Flush denorms on
output if specified based on DP denorm mode. Output rounding based on DP rounding mode.

V_CVT_F32_F16 11

Convert from an FP16 float input to a single-precision float and store the result into a vector register.

DB.f = f16_to_f32(S6.f16)

Notes

OULP accuracy, FP16 denormal inputs are accepted. Flush denorms on input if specified based on DP denorm
mode.

V_CVT_NEAREST_I32_F32 12

Convert from a single-precision float input to a signed 32-bit integer using round-to-nearest-integer semantics
(ignore the default rounding mode) and store the result into a vector register.

DO.i = f32_to_i32(floor(S0.f + 8.5F))

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_FLOOR_I32_F32 13

Convert from a single-precision float input to a signed 32-bit integer using round-down semantics (ignore the
default rounding mode) and store the result into a vector register.
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DO.i = f32_to_i32(floor(S6.f))

Notes

1ULP accuracy, denormals are supported.

V_CVT_OFF_F32_14 14

Convert from a signed 4-bit integer to a single-precision float using an offset table and store the result into a
vector register.

Used for interpolation in shader. Lookup table on S0[3:0]:

S0 binary Result
1000 -0.5000f
1001 -0.4375f
1010 -0.3750f
1011 -0.3125f
1100 -0.2500f
1101 -0.1875f
1110 -0.1250f
1111 -0.0625f
0000 +0.0000f
0001 +0.0625f
0010 +0.1250f
0011 +0.1875f
0100 +0.2500f
0101 +0.3125f
0110 +0.3750f
0111 +0.4375f

declare CVT_OFF_TABLE : 32'F[16];
DO.f = CVT_OFF_TABLE[S®.u[3 : @]]

V_CVT_F32_F64 15

Convert from a double-precision float input to a single-precision float and store the result into a vector register.

DO.f = f64_to_f32(S0.f64)

Notes

0.5ULP accuracy, denormals are supported.
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V_CVT_F64_F32 16

Convert from a single-precision float input to a double-precision float and store the result into a vector register.

DO.f64 = f32_to_f64(S6.T)

Notes

OULP accuracy, denormals are supported.

V_CVT_F32_UBYTEO 17

Convert an unsigned byte in byte 0 of the input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S0.u[7 : 0].u)

V_CVT_F32_UBYTE1l 18

Convert an unsigned byte in byte 1 of the input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S6.u[15 : 8].u)

V_CVT_F32_UBYTE2 19

Convert an unsigned byte in byte 2 of the input to a single-precision float and store the result into a vector
register.

DO.f = u32_to_f32(S0.u[23 : 16].u)

V_CVT_F32_UBYTE3 20

Convert an unsigned byte in byte 3 of the input to a single-precision float and store the result into a vector
register.
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DB.f = u32_to_f32(S0.u[31 : 24].u)

V_CVT_U32_F64 21

Convert from a double-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

DO.u = f64_to_u32(S6.f64)

Notes
0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_F64_U32 22

Convert from an unsigned 32-bit integer input to a double-precision float and store the result into a vector
register.

DB.f64 = u32_to_f64(S6.u)

Notes

OULP accuracy.

V_TRUNC_F64 23

Compute the integer part of a double-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

DB.f64 = trunc(S0.f64)

V_CEIL_F64 24

Round the double-precision float input up to next integer and store the result in floating point format into a
vector register.
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DO.f64 = trunc(Se.f64);

if ((S0.f64 > 0.0) && (SO.f64 != DB.f64)) then
DO.f64 += 1.0

endif

V_RNDNE_Fé64 25
Round the double-precision float input to the nearest even integer and store the result in floating point format

into a vector register.

DB.f64 = floor(S0.f64 + 0.5);

if (isEven(floor(Se.f64)) && (fract(Se.f64) == 0.5)) then
Do.f64 -= 1.0

endif

V_FLOOR_Fé64 26
Round the double-precision float input down to previous integer and store the result in floating point format

into a vector register.

DB.f64 = trunc(S0.f64);
if ((S0.f64 < 0.0) && (SO.f64 != DO.f64)) then

DO.f64 += -1.0
endif

V_PIPEFLUSH 27

Flush the VALU destination cache.

V_MOV_B16 28

Move data to a VGPR.
DO.b16 = SO.b16

Notes

Floating-point modifiers are valid for this instruction if S0.ul6 is a 16-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.
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V_FRACT_F32 32

Compute the fractional portion of a single-precision float input and store the result in floating point format into
a vector register.

Do.f = SB.f + -floor(Se.f)

Notes
0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3f7ffftf.

V_TRUNC_F32 33

Compute the integer part of a single-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

DO.f = trunc(Se.f)

V_CEIL_F32 34

Round the single-precision float input up to next integer and store the result in floating point format into a
vector register.

DB.f = trunc(Se.f);

if ((Se.f > 8.9F) && (S@.f != D8.f)) then
Do.f += 1.0F

endif

V_RNDNE_F32 35

Round the single-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

Do.f = floor(S@.f + 0.5F);
if (isEven(64'F(floor(S0.f))) && (fract(Se.f) == @.5F)) then
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Do.f -= 1.0F
endif
V_FLOOR_F32 36

Round the single-precision float input down to previous integer and store the result in floating point format
into a vector register.

D8.f = trunc(Se.f);

if ((Se.f < 8.9F) && (S@.f != D8.f)) then
Do.f += -1.0F

endif

V_EXP_F32 37

Calculate 2 raised to the power of the single-precision float input and store the result into a vector register.
Do.f = pow(2.0F, S0.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_EXP_F32(0xff800000) => 0x00000000 /1 exp(-INF) = @
V_EXP_F32(0x80000000) => 0x3f800000 /] exp(-08.8) = 1
V_EXP_F32(0x7f800000) => 0x7f800000 // exp(+INF) = +INF

V_LOG_F32 39

Calculate the base 2 logarithm of the single-precision float input and store the result into a vector register.
DO.f = 1og2(Se.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:
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V_LOG_F32(0xff800000) => 0xffco00eo // log(-INF) = NAN
V_LOG_F32(0xbf800000) => 0xffco0eee // log(-1.8) = NAN
V_LOG_F32(0x80000000) => 0xff300000 // log(-8.8) = -INF
V_LOG_F32(0x00000000) => 0xff300000 // log(+8.8) = -INF
V_LOG_F32(0x3f800000) => 0x00000000 // log(+1.8) = @
V_LOG_F32(0x7f800000) => 0x7f300000 // log(+INF) = +INF
V_RCP_F32 42

Calculate the reciprocal of the single-precision float input using IEEE rules and store the result into a vector
register.

De.f = 1.6F / Se.f

Notes

1ULP accuracy. Accuracy converges to < 0.5ULP when using the Newton-Raphson method and 2 FMA
operations. Denormals are flushed.

Functional examples:

V_RCP_F32(0xff800000) => 0x80000000 // rep(-INF) = -0
V_RCP_F32(8xc0000000) => 0xbf000000 // rcp(-2.8) = -8.5
V_RCP_F32(0x80000000) => 0xff800000 // rcp(-8.8) = -INF
V_RCP_F32(0x00000000) => 0x7f800000 /] rep(+0.8) = +INF
V_RCP_F32(0x7f800000) => 0x00000000 /] rep(+INF) = +0
V_RCP_IFLAG_F32 43

Calculate the reciprocal of the vector float input in a manner suitable for integer division and store the result
into a vector register. This opcode is intended for use as part of an integer division macro.

Do.f = 1.0F / SO.f;
// Can only raise integer DIV_BY_ZERO exception

Notes

Can raise integer DIV_BY_ZERO exception but cannot raise floating-point exceptions. To be used in an integer
reciprocal macro by the compiler with one of the sequences listed below (depending on signed or unsigned
operation).

Unsigned usage:

CVT_F32_U32
RCP_IFLAG_F32
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MUL_F32 (2**32 - 1)
CVT_U32_F32

Signed usage:
CVT_F32_132
RCP_IFLAG_F32
MUL_F32 (2**31 - 1)
CVT_I32_F32

V_RSQ_F32 46

Calculate the reciprocal of the square root of the single-precision float input using IEEE rules and store the
result into a vector register.

DB.f = 1.8F / sqrt(Se.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_RSQ_F32(0xff800000) => 0xffco00eo // rsq(-INF) = NAN
V_RSQ_F32(0x80000000) => 0xff300000 // rsq(-8.8) = -INF
V_RSQ_F32(0x00000000) => 0x7f800000 // rsq(+8.8) = +INF
V_RSQ_F32(0x40800000) => 0x3f000000 // rsq(+4.8) = +8.5
V_RSQ_F32(0x7f800000) => 0x00000000 // rsq(+INF) = +0
V_RCP_F64 47

Calculate the reciprocal of the double-precision float input using IEEE rules and store the result into a vector
register.

Do.f64 = 1.0 / S0.f64

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_RSQ_F64 49

Calculate the reciprocal of the square root of the double-precision float input using IEEE rules and store the
result into a vector register.
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DB.f64 = 1.0 / sqrt(Se.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SQRT_F32 51

Calculate the square root of the single-precision float input using IEEE rules and store the result into a vector
register.

DB.f = sqrt(Se.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_SQRT_F32(0xff800000) => Oxffceooee // sqrt(-INF) = NAN
V_SQRT_F32(0x80000000) => 0x80000000 // sqrt(-0.9) = -0
V_SQRT_F32(0x00000000) => 9x00000000 /] sqrt(+0.9) = +0
V_SQRT_F32(0x40800000) => 0x40000000 /] sqrt(+4.9) = +2.0
V_SQRT_F32(0x7f800000) => 0x7f800000 // sqrt(+INF) = +INF
V_SQRT_F64 52

Calculate the square root of the double-precision float input using IEEE rules and store the result into a vector
register.

DB.f64 = sqrt(Se.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SIN_F32 53

Calculate the trigonometric sine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.
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Do.f = 32'F(sin(64'F(S6.f) * 2.8 * PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F32(0xff800000) => 0xffc00eeo // sin(-INF) = NAN
V_SIN_F32(oxff7fffff) => 0x00000000 // -MaxFloat, finite
V_SIN_F32(0x80000000) => 0x80000000 // sin(-0.8) = -0
V_SIN_F32(0x3e800000) => 0x3f800000 // sin(0.25) = 1
V_SIN_F32(0x7f800000) => 0xffc00000 // sin(+INF) = NAN
V_COS_F32 54

Calculate the trigonometric cosine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.

DO.f = 32'F(cos(64'F(S.f) * 2.8 % PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F32(0xff800000) => 0xffco00eo // cos(-INF) = NAN
V_COS_F32(0xff7fffff) => 0x3f800000 // -MaxFloat, finite
V_COS_F32(0x80000000) => 0x3f800000 // cos(-8.8) =1
V_COS_F32(0x3e800000) => 0x00000000 // cos(0.25) = 0
V_COS_F32(0x7f800000) => 0xffco0000 // cos(+INF) = NAN
V_NOT_B32 55

Calculate bitwise negation on a vector input and store the result into a vector register.

DO.u = ~S0.u

Notes

Input and output modifiers not supported.
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V_BFREV_B32 56

Reverse the order of bits in a vector input and store the result into a vector register.

DO.u[31 : @] = SB.u[@B : 31]

Notes

Input and output modifiers not supported.

V_CLZ_132_U32 57

Count the number of leading "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits.

DB.i = -1;
// Set if no ones are found
for i in @8 : 31 do
// Search from MSB
if S@.u[31 - i] == 1'1U then
Do.i = 1i;
break
endif
endfor

Notes
Compare with S_CLZ_I32_U32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLZ_I32_U32(0x00000000) => Oxffffffff
V_CLZ_I32_U32(0x800000ff) => 0
V_CLZ_I32_U32(0x100000ff) => 3
V_CLZ_I32_U32(0x0000ffff) => 16
V_CLZ_I32_U32(0x00000001) => 31

V_CTZ_132_B32 58

Count the number of trailing "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits in the input.

Do.i = -1;

16.8. VOPI1 Instructions 279 of 600



"RDNA3" Instruction Set Architecture

// Set if no ones are found
for i in @ : 31 do
// Search from LSB
if S@.u[i] == 1'1U then
DO.i = i;
break
endif
endfor

Notes

Compare with S_CTZ_I32_B32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CTZ_I32_B32(0x00000000) => Oxffffffff

V_CTZ_I32_B32(0xff000001) => 0
V_CTZ_I32_B32(0xffoe0008) => 3
V_CTZ_I32_B32(oxffffeeee) => 16
V_CTZ_I32_B32(0x80000000) => 31

AMD¢1

V_CLS_I32

59

Count the number of leading bits that are the same as the sign bit of a vector input and store the result into a

vector register. Store -1 if all input bits are the same.

DB.i = -1;
// Set if all bits are the same
for i in 1 : 31 do

// Search from MSB

if $0.i[31 - i] != $8.i[31] then

DO.i = i;
break
endif
endfor

Notes

Compare with S_CLS_I32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLS_I32(0x00000000) => oxffffffff

V_CLS_I32(08x40000000) => 1
V_CLS_I32(0x80000000) => 1
V_CLS_I32(Bx@fffffff) => 4
V_CLS_I32(exffffeees) => 16
V_CLS_I32(@xfffffffe) => 31

16.8. VOPI1 Instructions

280 of 600



"RDNA3" Instruction Set Architecture AMDAl

V_CLS_I32(oxffffffff) => oxffffffff

V_FREXP_EXP_I32_F64 60

Extract the exponent of a double-precision float input and store the result as a signed 32-bit integer into a
vector register.

if ((S@.f64 == +INF) || (SO.f64 == -INF) || isNAN(SO.f64)) then
DB.i = 0
else
DB.i = exponent(S8.f64) - 1023 + 1
endif
Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_Fo64 61

Extract the binary significand, or mantissa, of a double-precision float input and store the result as a double-
precision float into a vector register.

if ((S@.f64 == +INF) || (S@.f64 == -INF) || isNAN(S@.f64)) then
Do.f64 = S@.f64
else
DB.f64 = mantissa(S0.f64)
endif
Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F64, which returns integer exponent. See the C library function
frexp() for more information.

V_FRACT_Fo64 62

Compute the fractional portion of a double-precision float input and store the result in floating point format
into a vector register.

DB.f64 = SO.f64 + -floor(S0.f64)
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Notes
0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3fefffffffffffft.

V_FREXP_EXP_I32_F32 63

Extract the exponent of a single-precision float input and store the result as a signed 32-bit integer into a vector
register.

if ((64'F(S@.f) == +INF) || (64'F(S0.f) == -INF) || isNAN(64'F(S0.f))) then
DO.1 =0
else
DB.i = exponent(S6.f) - 127 + 1
endif
Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). See also V_FREXP_MANT_F32,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F32 64

Extract the binary significand, or mantissa, of a single-precision float input and store the result as a single-
precision float into a vector register.

if ((64'F(SO.f) == +INF) || (64'F(S@.f) == -INF) || isNAN(64'F(S0.f))) then
Do.f = S@.f
else
D8.f = mantissa(Se.f)
endif
Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F32, which returns integer exponent. See the C library function
frexp() for more information.

V_MOVRELD_B32 66
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Move to a relative destination address.

addr = DST.u;

// Raw value from instruction
addr += MO.u[31 : 0];
VGPR[1laneId][addr].b = SO.b

Notes

Example: The following instruction sequence performs the move v15 <= v7:

s_mov_b32 mo, 10
v_movreld_b32 v5, v7

V_MOVRELS_B32 67

Move from a relative source address.

addr = SRCO.u;

// Raw value from instruction
addr += M@.u[31 : @];

DB.b = VGPR[laneId][addr].b

Notes

Example: The following instruction sequence performs the move v5 <=v17:

s_mov_b32 mo, 10
v_movrels_b32 v5, v7

V_MOVRELSD_B32 68

Move from a relative source address to a relative destination address.

addrs = SRCO.u;

// Raw value from instruction

addrd = DST.u;

// Raw value from instruction

addrs += M@.u[31 : 0];

addrd += M@.u[31 : 0];

VGPR[laneId][addrd].b = VGPR[laneId][addrs].b

Notes
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Example: The following instruction sequence performs the move v15 <=v17:

s_mov_b32 mo, 10
v_movrelsd_b32 v5, v7

V_MOVRELSD_2_B32 72

Move from a relative source address to a relative destination address, with different relative offsets.

addrs = SRCO.u;

// Raw value from instruction

addrd = DST.u;

// Raw value from instruction

addrs += MO.u[9 : 0].u;

addrd += M@.u[25 : 16].u;
VGPR[1laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v25 <=v17:

s_mov_b32 m@, ((206 << 16) | 10)
v_movrelsd_2_b32 v5, v7

V_CVT_F16_Ul6 80

Convert from an unsigned 16-bit integer input to an FP16 float and store the result into a vector register.

DB.f16 = ul6_to_f16(S6.u16)

Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_Fl16_I16 81

Convert from a signed 16-bit integer input to an FP16 float and store the result into a vector register.

Do.f16 = i16_to_f16(S0.116)
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Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_U16_F16 82

Convert from an FP16 float input to an unsigned 16-bit integer and store the result into a vector register.

DO.u16 = f16_to_u16(S6.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_I16_F16 83

Convert from an FP16 float input to a signed 16-bit integer and store the result into a vector register.

DB.i16 = f16_to_1i16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_RCP_F16 84

Calculate the reciprocal of the half-precision float input using IEEE rules and store the result into a vector
register.

Do.f16 = 16'1.0 / S0.f16

Notes

0.51ULP accuracy.
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Functional examples:

AMD¢1

V_RCP_F16(08xfco0) => 0x8000 // rcp(-INF) = -0
V_RCP_F16(0xc000) => 0xb8ee // rcp(-2.8) = -8.5
V_RCP_F16(0x8000) => 0xfcee // rcp(-8.8) = -INF
V_RCP_F16(0x0000) => 8x7c080 // rcp(+8.8) = +INF
V_RCP_F16(8x7c@@) => 0x0000 // rcp(+INF) = +0
V_SQRT_F16 85
Calculate the square root of the half-precision float input using IEEE rules and store the result into a vector
register.
DB.f16 = sqrt(S8.f16)
Notes
0.51ULP accuracy, denormals are supported.
Functional examples:
V_SQRT_F16(0xfcee) => 0xfeoo // sqrt(-INF) = NAN
V_SQRT_F16(0x8000) => 0x8000 // sqrt(-0.8) = -0
V_SQRT_F16(0x0000) => 0x0000 /] sqrt(+0.8) = +0
V_SQRT_F16(0x4400) => 0x4000 // sqrt(+4.0) = +2.0
V_SQRT_F16(0x7c00) => 0x7c00 // sqrt(+INF) = +INF
V_RSQ_F16 86

Calculate the reciprocal of the square root of the half-precision float input using IEEE rules and store the result

into a vector register.

DB.f16 = 16'1.0 / sqrt(S0.f16)

Notes
0.51ULP accuracy, denormals are supported.

Functional examples:

V_RSQ_F16(08xfco0) => 0Bxfe0dd // rsq(-INF) = NAN
V_RSQ_F16(0x8000) => 0xfcoe // rsq(-0.0) = -INF
V_RSQ_F16(0x0000) => 0x7c00 // rsq(+0.0) = +INF
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V_RSQ_F16(0x4400) =>
V_RSQ_F16(0x7c00) =>

0x3800
0x0000

// rsq(+4.0)
// rsq(+INF)

+0.5
+0

AMD¢1

V_LOG_F16 87
Calculate the base 2 logarithm of the half-precision float input and store the result into a vector register.

DB.f16 = log2(S@.f16)
Notes
0.51ULP accuracy, denormals are supported.
Functional examples:

V_LOG_F16(0xfc@0) => oxfe0d /1 log(-INF) = NAN

V_LOG_F16(@xbc@@) => 0xfe0d /1 log(-1.8) = NAN

V_LOG_F16(0x8000) => 0xfcee // log(-08.8) = -INF

V_LOG_F16(0x0000) => 0xfcee /1 log(+0.8) = -INF

V_LOG_F16(8x3c@0) => 0x0000 /1 log(+1.8) = @

V_LOG_F16(8x7c@80) => 0x7c00 // log(+INF) = +INF
V_EXP_F16 88
Calculate 2 raised to the power of the half-precision float input and store the result into a vector register.

DB.f16 = pow(16'2.0, S0.f16)
Notes
0.51ULP accuracy, denormals are supported.
Functional examples:

V_EXP_F16(0xfc@0) => 0x0000 /1 exp(-INF) = @

V_EXP_F16(0x8000) => 0x3c080 /] exp(-08.8) = 1

V_EXP_F16(8x7c@0) => 0x7c00 // exp(+INF) = +INF
V_FREXP_MANT_F16 89
Extract the binary significand, or mantissa, of an FP16 float input and store the result as an FP16 float into a
16.8. VOP1 Instructions 287 of 600



"RDNA3" Instruction Set Architecture AMDAl

vector register.

if ((64'F(S6.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S8.f16))) then
D6.f16 = S0.f16
else
DB.f16 = mantissa(S0.f16)
endif
Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F16, which returns integer exponent. See the C library function
frexp() for more information.

V_FREXP_EXP_I16_F16 90

Extract the exponent of an FP16 float input and store the result as a signed 16-bit integer into a vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S8.f16))) then
DO.i16 = 16'0@
else
DB.i16 = 16'I(exponent(SB.f16) - 15 + 1)
endif
Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). See also V_FREXP_MANT_F16,
which returns the significand. See the C library function frexp() for more information.

V_FLOOR_F16 91

Round the half-precision float input down to previous integer and store the result in floating point format into
a vector register.

DB.f16 = trunc(S0.f16);

if ((S0.f16 < 16'0.0) && (S0.f16 != DO.f16)) then
DO.f16 += -16'1.0

endif

V_CEIL_F16 92

Round the half-precision float input up to next integer and store the result in floating point format into a vector

register.
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DO.f16 = trunc(Se.f16);

if ((S0.f16 > 16'0.0) && (S0.f16 != DB.f16)) then
DO.f16 += 16'1.0

endif

V_TRUNC_F16 93

Compute the integer part of an FP16 float input with round-toward-zero semantics and store the result in
floating point format into a vector register.

DB.f16 = trunc(S0.f16)

V_RNDNE_F16 94

Round the half-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

DO.f16 = floor(S@.f16 + 16'0.5);

if (isEven(64'F(floor(S0.f16))) && (fract(Se.f16) == 16'0.5)) then
DO.f16 -= 16'1.8

endif

V_FRACT_F16 95

Compute the fractional portion of an FP16 float input and store the result in floating point format into a vector
register.

DB.f16 = S0.f16 + -floor(S0.f16)

Notes
0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) =0.8 in DX.

V_SIN_F16 96
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Calculate the trigonometric sine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

DO.f16 = 16'F(sin(64'F(S0.f16) * 2.8 * PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F16(0xfco0) => 0xfe0dd // sin(-INF) = NAN
V_SIN_F16(@xfbff) => 0x0000 // Most negative finite FP16
V_SIN_F16(0x8000) => 0x8000 // sin(-0.8) = -0
V_SIN_F16(0x34600) => 8x3c00 // sin(0.25) = 1
V_SIN_F16(8x7bff) => 0x0000 // Most positive finite FP16
V_SIN_F16(0x7c00) => 0Oxfe0dd // sin(+INF) = NAN
V_COS_F16 97

Calculate the trigonometric cosine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

DB.f16 = 16'F(cos(64'F(S0.f16) % 2.8 % PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F16(0xfc80) => 0xfedo // cos(-INF) = NAN
V_COS_F16(8xfbff) => 0x3c00 // Most negative finite FP16
V_COS_F16(0x8000) => 0x3c00 // cos(-08.8) = 1
V_COS_F16(0x3460) => 0x0000 // cos(@.25) = @
V_COS_F16(8x7bff) => 0x3c00 // Most positive finite FP16
V_COS_F16(8x7c00) => Bxfe00 // cos(+INF) = NAN
V_SAT_PK_US8_I16 98

Given two 16-bit unsigned integer inputs, saturate each input over an 8-bit unsigned range, pack the resulting
values into a 16-bit word and store the result into a vector register.
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SAT8 = lambda(n) (
if n.i <= @ then
return 8'0U
elsif n >= 16'I(0xff) then
return 8'255U
else
return n[7 : @8].u8
endif);
DB.b16 = { SAT8(SB[31 : 16].i16), SAT8(S@[15 : @©].i16) }

Notes

Used for 4x16bit data packed as 4x8bit data.

V_CVT_NORM_I16_F16 929

Convert from an FP16 float input to a signed normalized short and store the result into a vector register.

DB.i16 = f16_to_snorm(S6.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_CVT_NORM_U16_F16 100

Convert from an FP16 float input to an unsigned normalized short and store the result into a vector register.

DB.u16 = f16_to_unorm(S6.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_SWAP_B32 101

Swap the values in two vector registers.

tmp = DO.b;
Do.b = S0.b;
S0.b = tmp
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Notes

Input and output modifiers not supported; this is an untyped operation.

V_SWAP_B16 102

Swap the values in two vector registers.

tmp = DO.b16;

DO.b16 = SO.b16;

S0.b16 = tmp
Notes

Input and output modifiers not supported; this is an untyped operation.

V_PERMLANEG64_B32 103

Perform a specific permutation across lanes where the high half and low half of a wave64 are swapped.
Performs no operation in wave32 mode.

declare tmp : 32'B[64];
declare lane : 32'U;
if WAVE32 then
// Supported in wave64 ONLY
v_nop()
else
for lane in BU : 63U do
// Copy original S@ in case D==S0
tmp[lane] = VGPR[lane][SRCO.u]
endfor;
for lane in BU : 63U do
altlane = { ~lane[5], lane[4 : 0] };
// 8<->32, ..., 31<->63
if EXEC[lane].ul then
VGPR[1lane][VDST.u] = tmp[altlane]
endif
endfor
endif

Notes
In wave32 mode this opcode is translated to V_NOP and performs no writes.

In wave64 the EXEC mask of the destination lane is used as the read mask for the alternate lane; as a result this
opcode may read values from disabled lanes.

The source must be a VGPR and SVGPRs are not allowed for this opcode.
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ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

V_SWAPREL_B32 104

Swap values of two operands. The two addresses are relatively indexed using MO.

addrs = SRCO.u;

// Raw value from instruction

addrd = DST.u;

// Raw value from instruction

addrs += M@.u[9 : @].u;

addrd += M@.u[25 : 16].u;

tmp = VGPR[laneId][addrd].b;
VGPR[laneId][addrd].b = VGPR[laneId][addrs].b;
VGPR[1laneId][addrs].b = tmp

Notes
Input and output modifiers not supported; this is an untyped operation.

Example: The following instruction sequence swaps v25 and v17:

s_mov_b32 m@, ((20 << 16) | 180)
v_swaprel_b32 v5, v7

V_NOT_B16 105

Calculate bitwise negation on a vector input and store the result into a vector register.

DO.u16 = ~S@.ul16

Notes

Input and output modifiers not supported.

V_CVT_I32_I16 106

Convert from an 16-bit signed integer to a 32-bit signed integer, sign extending as needed.

DO.i = 32'I(signext(S0.116))

Notes
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To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

AMD¢1

V_CVT_U32_U16

Convert from an 16-bit unsigned integer to a 32-bit unsigned integer, zero extending as needed.

Do = { 16'0, SO.u16 }

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

107

16.8.1. VOP1 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x180.

31

VOP3

VOP3SD

1 1 0 1 o0 1 | op |CM| "OPSEL, | ABS, "VDST,

NEG  |omoD | SRC2y ' srcte ] SRCO;
63 32
31 0
1.1 0 1 0 1] op = SDST, VDST,

NEG | omoD | SRC2, " srcty SRCO,

63

16.8. VOPI1 Instructions
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16.9. VOPC Instructions

The bitfield map for VOPC is:

31

AMD¢1

voPc |o|1'1'1'

1 o] ~op

VSRCg

SRCq

SRC@

First operand for instruction.

VSRC1 = Second operand for instruction.
oP = Instruction opcode.

All VOPC instructions can alternatively be encoded in the VOP3 format.

Compare instructions perform the same compare operation on each lane (work-Item or thread) using that
lane’s private data, and producing a 1 bit result per lane into VCC or EXEC.

Instructions in this format may use a 32-bit literal constant that occurs immediately after the instruction.

Most compare instructions fall into one of two categories:

« Those which can use one of 16 compare operations (floating point types). "{COMPF}"
+ Those which can use one of 8 compare operations (integer types). "{COMPI}"

The opcode number is such that for these the opcode number can be calculated from a base opcode number
for the data type, plus an offset for the specific compare operation.

Table 112. Float Compare Operations

Compare Operation
F

LT
EQ
LE
GT
LG
GE
O

U
NGE
NLG
NGT
NLE
NEQ
NLT
TRU

Opcode Offset Description

O 00 N N U1 A W N+ O

= = e e
g A W N = O

Dau=0
=(S0 < S1)
==S1)
S0 <=S1)
S0 > S1)

0 >=S1)

1isNaN(S0) && !isNaN(S1))

= (S0
=(
=(
=(S0<>81)
=(s
=(
=(

1isNaN(S0) || lisNaN(S1))

=1(S0 >=S1)
Du—'(SO<>Sl)

=1(S0 > S1)
Du—'(SO< S1)
D.u=(S0==S51)
D.u=1!(S0 < S1)
Du=1

Table 113. Instructions with Sixteen Compare Operations

Instruction
V_CMP_{COMPF}_F16
V_CMPX_{COMPF}_F16
V_CMP_{COMPF}_F32

16.9. VOPC Instructions

Description

16-bit float compare. Writes VCC/SGPR.

16-bit float compare. Writes EXEC.

32-bit float compare. Writes VCC/SGPR.

Hex Range

0x20 to 0x2F
0x30 to 0x3F
0x40 to 0x4F
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Instruction Description
V_CMPX_{COMPF}_F32  32-bit float compare. Writes EXEC.
V_CMP_{COMPF}_F64

V_CMPX_{COMPF}_F64  64-bit float compare. Writes EXEC.

Table 114. Integer Compare Operations

Compare Operation Opcode Offset Description

64-bit float compare. Writes VCC/SGPR.

Hex Range

0x50 to 0x5F
0x60 to 0x6F
0x70 to 0x7F

F 0 D.u=0
LT 1 D.u=(S0<S1)
EQ 2 D.u= (S0 ==S1)
LE 3 D.u = (S0 <= S1)
GT 4 D.u= (S0 >S1)
LG 5 D.u=(S0<>S1)
GE 6 D.u= (S0 >=S1)
TRU 7 Du=1

Table 115. Instructions with Eight Compare Operations
Instruction Description Hex Range
V_CMP_{COMPI}_I16 16-bit signed integer compare. Writes VCC/SGPR. 0xAO0 - 0xA7
V_CMP_{COMPI}_U16 16-bit signed integer compare. Writes VCC/SGPR. 0xAS8 - 0OXAF
V_CMPX_{COMPI}_I16 16-bit unsigned integer compare. Writes EXEC. 0xBO - 0xB7
V_CMPX_{COMPI}_U16  16-bit unsigned integer compare. Writes EXEC. 0xB8 - 0xBF
V_CMP_{COMPI}_I32 32-bit signed integer compare. Writes VCC/SGPR. 0xCO - 0xC7
V_CMP_{COMPI}_U32 32-bit signed integer compare. Writes VCC/SGPR. 0xC8 - 0xCF
V_CMPX_{COMPI}_I32 32-bit unsigned integer compare. Writes EXEC. 0xDO - 0xD7
V_CMPX_{COMPI}_U32  32-bit unsigned integer compare. Writes EXEC. 0xD8 - 0xDF
V_CMP_{COMPI}_I64 64-bit signed integer compare. Writes VCC/SGPR. 0xEO - 0xE7
V_CMP_{COMPI}_U64 64-bit signed integer compare. Writes VCC/SGPR. 0xES8 - 0xEF
V_CMPX_{COMPI}_I64 64-bit unsigned integer compare. Writes EXEC. 0xFO0 - 0xF7
V_CMPX_{COMPI}_U64  64-bit unsigned integer compare. Writes EXEC. 0xF8 - 0xFF

AMD¢1

V_CMP_F_F16 0
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_F16 1
Return 1 iff A less than B.
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DO.u64[laneId] = S0.f16 < S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_EQ_F16

Return 1 iff A equal to B.

DO.u64[laneId] = S6.f16 == S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_LE_F16

Return 1 iff A less than or equal to B.

DO.u64[laneId] = S6.f16 <= S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_GT_F16

Return 1 iff A greater than B.

DO.u64[laneId] = S0.f16 > S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

16.9. VOPC Instructions
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V_CMP_LG_F16

Return 1 iff A less than or greater than B.

DB.u64[laneld] = SO.f16 <> S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GE_F16

Return 1 iff A greater than or equal to B.

DB8.u64[laneld] = S0.f16 >= S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_O_F16

Return 1 iff A orderable with B.

DO.u64[laneId] = (!isNAN(64'F(S@.f16)) && !isNAN(64'F(S1.16)));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_U_F16

Return 1 iff A not orderable with B.

DO.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)));

// DB = VCC in VOPC encoding.

Notes

16.9. VOPC Instructions
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NGE_F16 9
Return 1 iff A not greater than or equal to B.
DO.u64[laneId] = !(S0.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NLG_F16 10
Return 1iff A not less than or greater than B.
DB.u64[laneId] = !(S8.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NGT_F16 11
Return 1 iff A not greater than B.
DO.u64[laneId] = !(S0.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NLE_F16 12

Return 1 iff A not less than or equal to B.

16.9. VOPC Instructions
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DO.u64[laneld] = !(S0.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NEQ_F16

Return 1 iff A not equal to B.

DO.u64[laneld] = !(S0.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

13

V_CMP_NLT_F16

Return 1 iff A not less than B.

DO.u64[laneId] = !(S6.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

14

V_CMP_T_F16

Return 1.

DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
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AMD¢1

V_CMP_F_F32 16
Return 0.
DO.u64[laneld] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_F32 17
Return 1 iff A less than B.
DO.u64[laneId] = SO.f < S1.f;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_F32 18
Return 1 iff A equal to B.
DO.u64[laneId] = SO.f == S1.f;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LE_F32 19
Return 1 iff A less than or equal to B.
DB.u64[laneld] = SB.f <= S1.f;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GT_F32

Return 1 iff A greater than B.

DO.u64[laneId] = SO.f > S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

20

V_CMP_LG_F32

Return 1 iff A less than or greater than B.

DO.u64[laneId] = SO.f <> S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

21

V_CMP_GE_F32

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.f >= S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

22

V_CMP_O_F32

Return 1 iff A orderable with B.

16.9. VOPC Instructions
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DO.u64[laneId] = (!isNAN(64'F(S0.f)) && !isNAN(64'F(S1.f)));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_U_F32

Return 1 iff A not orderable with B.

DO.u64[laneId] = (isNAN(64'F(S@.f)) || isNAN(64'F(S1.f)));
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

24

V_CMP_NGE_F32

Return 1 iff A not greater than or equal to B.

DB.u64[laneld] = !(S6.f >= S1.f);
// With NAN inputs this is not the same operation as <
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

25

V_CMP_NLG_F32

Return 1 iff A not less than or greater than B.

DB8.u64[laneld] = !(S@.f <> S1.f);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

26
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V_CMP_NGT_F32

Return 1 iff A not greater than B.

DB.u64[laneld] = !(S6.f > S1.f);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

27

V_CMP_NLE_F32

Return 1 iff A not less than or equal to B.

DB.u64[laneld] = !(S6.f <= S1.f);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

28

V_CMP_NEQ_F32

Return 1 iff A not equal to B.

DB.u64[laneld] = !(SB.f == S1.f);
// With NAN inputs this is not the same operation as !=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

29

V_CMP_NLT_F32

Return 1 iff A not less than B.

DB.u64[laneld] = !(S6.f < S1.f);
// With NAN inputs this is not the same operation as >=

16.9. VOPC Instructions

30

304 of 600



"RDNA3" Instruction Set Architecture

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_T_F32 31
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_F_Fo64 32
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_Fe64 33
Return 1 iff A less than B.
DO.u64[laneId] = SO.f64 < S1.f64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_F64 34
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Return 1 iff A equal to B.

DO.u64[laneId] = SO.f64 == S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LE_F64

Return 1 iff A less than or equal to B.

DO.u64[laneId] = SO.f64 <= S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

35

V_CMP_GT_Fé64

Return 1 iff A greater than B.

DO.u64[laneId] = SO.f64 > S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

36

V_CMP_LG_F64

Return 1 iff A less than or greater than B.

DO.u64[laneId] = SO.f64 <> S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

37
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V_CMP_GE_F64

Return 1 iff A greater than or equal to B.

DB.u64[laneld] = SO.f64 >= S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

38

V_CMP_O_F64

Return 1 iff A orderable with B.

DO.u64[laneId] = (!isNAN(S@.f64) && !isNAN(S1.f64));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

39

V_CMP_U_Feé4

Return 1 iff A not orderable with B.

DO.u64[laneId] = (isNAN(S@.f64) || isNAN(S1.f64));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

40

V_CMP_NGE_F64

Return 1 iff A not greater than or equal to B.

DO.u64[laneld] = !(S0.f64 >= S1.f64);

// With NAN inputs this is not the same operation as <

// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NLG_F64 42
Return 1 iff A not less than or greater than B.
DO.u64[laneId] = !(S8.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NGT_Fé4 43
Return 1 iff A not greater than B.
DO.u64[laneId] = !(S6.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NLE_F64 44
Return 1 iff A not less than or equal to B.
DO.u64[laneId] = !(S@.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NEQ_F64 45
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Return 1 iff A not equal to B.

DO.u64[laneId] = !(S@.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NLT_Fé4

Return 1 iff A not less than B.

DO.u64[laneId] = !(S6.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

46

V_CMP_T_Fé64

Return 1.

DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

47

V_CMP_LT_I16

Return 1 iff A less than B.

DO.u64[laneId] = S0.i16 < S1.i16;
// DB = VCC in VOPC encoding.

Notes

16.9. VOPC Instructions
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_EQ_I16

Return 1 iff A equal to B.

DO.u64[laneId] = S8.i16 == S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

50

V_CMP_LE_I16

Return 1 iff A less than or equal to B.

DO.u64[laneId] = S8.i16 <= S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

51

V_CMP_GT_I16

Return 1 iff A greater than B.

DO.u64[laneId] = S0.i16 > S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

52

V_CMP_NE_I16

Return 1 iff A not equal to B.

DO.u64[laneId] = S0.i16 <> S1.i16;

16.9. VOPC Instructions

53

310 of 600



"RDNA3" Instruction Set Architecture

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GE_I16

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = S0.i16 >= S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

54

V_CMP_LT_Ule6

Return 1 iff A less than B.

DO.u64[laneId] = SO.u16 < S1.ul6;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

57

V_CMP_EQ_U16

Return 1 iff A equal to B.

DO.u64[laneId] = SO.u16 == S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

58

V_CMP_LE_Ul6
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Return 1 iff A less than or equal to B.

DO.u64[laneId] = SO.u16 <= S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GT_U16

Return 1 iff A greater than B.

DO.u64[laneId] = SO.u16 > S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

60

V_CMP_NE_U16

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.u16 <> S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

61

V_CMP_GE_U16

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.u16 >= S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

62
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AMD¢1

V_CMP_F_I32 64
Return 0.
DO.u64[laneld] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_I32 65
Return 1 iff A less than B.
D8.u64[laneId] = $0.i < S1.i;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_I32 66
Return 1 iff A equal to B.
D8.u64[laneld] = $@.i == S1.i;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LE_I32 67
Return 1 iff A less than or equal to B.
D8.u64[laneld] = S@.i <= S1.i;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GT_I32

Return 1 iff A greater than B.

DO.u64[laneId] = SO.i > S1.i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

68

V_CMP_NE_I32

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.i <> S1.i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

69

V_CMP_GE_I32

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.i >= S1.i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

70

V_CMP_T_I32

Return 1.
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DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_F_U32 72
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_U32 73
Return 1 iff A less than B.
DO.u64[laneId] = SO.u < S1.u;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_U32 74

Return 1 iff A equal to B.

DO.u64[laneId] = SO.u == S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMP_LE_U32

Return 1 iff A less than or equal to B.

DO.u64[laneld] = SO.u <= S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

75

V_CMP_GT_U32

Return 1 iff A greater than B.

DO.u64[laneId] = SO.u > S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

76

V_CMP_NE_U32

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.u <> S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

77

V_CMP_GE_U32

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SB.u >= S1.u;
// DB = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_T_U32 79
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_F_I64 80
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_I64 81
Return 1 iff A less than B.
DB.u64[laneld] = SB.i64 < S1.i64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_I64 82
Return 1 iff A equal to B.
D8.u64[laneld] = SB.i64 == S1.164;
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// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LE_I64

Return 1 iff A less than or equal to B.

DB.u64[laneld] = S0.i64 <= S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

83

V_CMP_GT_I64

Return 1 iff A greater than B.

DB.u64[laneld] = S0.i64 > S1.1i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

84

V_CMP_NE_I64

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.i64 <> S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

85

V_CMP_GE_I64
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Return 1 iff A greater than or equal to B.

DO.u64[laneId] = S0.i64 >= S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_T_I64 87
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_F_Ué64 88
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_U64 89
Return 1 iff A less than B.
DO.u64[laneId] = SO.u64 < S1.u64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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AMD¢1

V_CMP_EQ_U64 90
Return 1 iff A equal to B.
D8.u64[laneId] = SO.u64 == S1.u64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LE_U64 91
Return 1 iff A less than or equal to B.
D8.u64[laneId] = SO.u64 <= S1.u64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_GT_U64 92
Return 1 iff A greater than B.
DO.u64[laneId] = SO.u64 > S1.ub4;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NE_U64 923
Return 1 iff A not equal to B.
D8.u64[laneld] = SO.u64 <> S1.u64;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GE_U64

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.u64 >= S1.u64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

94

V_CMP_T_U64

Return 1.

DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

95

V_CMP_CLASS_F16

IEEE numeric class function specified in S1.u, performed on S0.f16.

125

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.
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declare result : 1'U;

if isSignalNAN(64'F(S8.f16)) then
result = S1.u[0]

elsif isQuietNAN(64'F(S0.f16)) then
result = S1.u[1]

elsif exponent(S0.f16) == 31 then
// +-INF

result = S1.u[sign(S6.f16) ? 2 :

elsif exponent(S0.f16) > @ then
// +-normal value

result = S1.u[sign(S6.f16) ? 3 :

elsif 64'F(abs(S0.f16)) > 0.8 then
// +-denormal value
result = S1.u[sign(Se6.f16) ? 4
else
// +-0.90

result = S1.u[sign(S6.f16) ? 5 :

9]

8]

: 71

6]

endif;
DO.u64[laneld] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_CLASS_F32

IEEE numeric class function specified in S1.u, performed on S0.f.

126

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S@.f)) then

result = S1.u[9]

elsif isQuietNAN(64'F(S@.f)) then

result = S1.u[1]

elsif exponent(S0.f) == 255 then

// +-INF
result = S1.u[sign(S@.f) ?2 2 : 9]
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elsif exponent(S@.f) > @ then

// +-normal value

result = S1.u[sign(Se6.f) ? 3 : 8]
elsif 64'F(abs(S@8.f)) > 0.0 then

// +-denormal value

result = S1.u[sign(Se.f) ? 4 : 7]
else

// +-0.0

result = S1.u[sign(S6.f) ? 5 : 6]
endif;
DO.u64[laneId] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_CLASS_Fé64

IEEE numeric class function specified in S1.u, performed on S0.f64.

127

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[l] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.

S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.

S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

]-
]-
]-
]-
S1.u[4] -- value is a negative denormal value.
]-
]-
1-
]-
1-

declare result : 1'U;
if isSignalNAN(S@.f64) then

result = S1.u[0]
elsif isQuietNAN(S@.f64) then

result = S1.u[1]
elsif exponent(S@.f64) == 1023 then

// +-INF

result = S1.u[sign(Se8.f64) ? 2 : 9]
elsif exponent(S@.f64) > 0 then

// +-normal value

result = S1.u[sign(Se8.f64) ? 3 : 8]
elsif abs(S0.f64) > 0.0 then

// +-denormal value

result = S1.u[sign(S68.f64) ? 4 : 7]
else

// +-0.90

result = S1.u[sign(S@.f64) ? 5 : 6]
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endif;
DO.u64[laneId] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_F16 128

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_F16 129

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f16 < S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_F16 130

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.f16 == S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_F16 131
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Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f16 <= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_F16 132

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f16 > S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F16 133

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f16 <> S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_F16 134

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f16 >= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_O_F16 135
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Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S8.f16)) && !isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_U_F16 136

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F16 137

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S@.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F16 138

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S@.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMPX_NGT_F16 139

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S@.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLE_F16 140

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S@.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_F16 141

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S@.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLT_F16 142

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S@.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F16 143

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F32 144

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_F32 145

Return 1 iff A less than B.

EXEC.u64[laneId] = SO0.f < S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_F32 146

Return 1 iff A equal to B.

EXEC.u64[laneId] = SO.f == S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F32 147

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = SO.f <= S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F32 148

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.f > S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LG_F32 149

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = SO.f <> S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_F32 150

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = SO.f >= S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F32 151

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(SO.f)) && !isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F32 152

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NGE_F32 153

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(SB.f >= S1.f);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLG_F32 154

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(SB.f <> S1.f);
// With NAN inputs this is not the same operation as ==
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NGT_F32 155

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(Se.f > S1.f);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLE_F32 156

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S@.f <= S1.f);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_F32 157

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(Se.f == S1.f);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLT_F32 158

Return 1 iff A not less than B.
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EXEC.u64[laneId] = !(S@.f < S1.f);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_F32 159

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F64 160

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_Fe64 161

Return 1 iff A less than B.

EXEC.u64[laneId] = S8.f64 < S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_Fé4 162
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Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.f64 == S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_Fé64 163

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.f64 <= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F64 164

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f64 > S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LG_Fo64 165

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f64 <> S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_F64 166
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Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f64 >= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_O_F64 167

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(S@.f64) && !isNAN(ST.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_Feé4 168

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(SO.f64) || isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_Fé64 169

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S@.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMPX_NLG_F64 170

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S@.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NGT_Fé4 171

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S@.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLE_F64 172

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S@.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_Feé4 173

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S0.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLT_Fé4 174

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S@.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_Fé4 175

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I16 177

Return 1 iff A less than B.

EXEC.u64[laneId] = S8.i16 < S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I16 178

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.i16 == S1.i16
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_I16 179

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i16 <= S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I16 180

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.i16 > S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_I16 181

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i16 <> S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I16 182

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.i16 >= S1.i16
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_U16 185

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.ul16 < S1.ul6

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U16 186

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.u16 == S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_Ul6 187

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.u16 <= S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_U16 188

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.u16 > S1.ul16
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_U16 189

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S@.u16 <> S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_U1l6 190

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.u16 >= S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_I32 192

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_I32 193

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.i < S1.i
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I32 194

Return 1 iff A equal to B.

EXEC.u64[laneId] = S0.i == S1.1i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I32 195

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.i <= S1.1i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_I32 196

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i > S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_I32 197

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i <> S1.i
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I32 198

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i >= S1.1i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I32 199

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_U32 200

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_U32 201

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.u < S1.u
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_U32 202

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.u == S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U32 203

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.u <= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_U32 204

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.u > S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_U32 205

Return 1 iff A not equal to B.

EXEC.u64[laneId] = SO@.u <> S1.u
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_U32 206

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.u >= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U32 207

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_I64 208

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_I64 209

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.i64 < S1.i64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I64 210

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.i64 == S1.1i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I64 211

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S0.i64 <= S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_I64 212

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.i64 > S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_I64 213

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i64 <> S1.i64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I64 214

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i64 >= S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I64 215

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_Ué64 216

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_U64 217

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.u64 < S1.u64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_Ué64 218

Return 1 iff A equal to B.

EXEC.u64[laneId] = SO.u64 == S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U64 219

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = SO.u64 <= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_Ué64 220

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.u64 > S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_Ué64 221

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.u64 <> S1.u64
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Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_U64 222

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = SO.u64 >= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U64 223

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F16 253
IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
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if isSignalNAN(64'F(S@.f16)) then
result = S1.u[9]

elsif isQuietNAN(64'F(S@.f16)) then
result = S1.u[1]

elsif exponent(S@.f16) == 31 then
// +-INF

result = S1.u[sign(S6.f16) ? 2 :

elsif exponent(S@.f16) > @ then
// +-normal value

result = S1.u[sign(S6.f16) ? 3 :

elsif 64'F(abs(S0.f16)) > 0.8 then
// +-denormal value
result = S1.u[sign(Se.f16) ? 4
else
// +-0.0

9]

8]

: 7]

result = S1.u[sign(S6.f16) ? 5 :

endif;
EXEC.u64[laneId] = result

Notes

6]

AMD¢1

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_CLASS_F32

IEEE numeric class function specified in S1.u, performed on S0.f.

254

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.
S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.

S1.u[6] -- value is positive zero.
S1.u[7]
S1.u[8]

]

S1.u[5] -- value is negative zero.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S@8.f)) then
result = S1.u[0]
elsif isQuietNAN(64'F(S@.f)) then
result = S1.u[1]
elsif exponent(S0.f) == 255 then
// +-INF
result = S1.u[sign(S6.f) ? 2
elsif exponent(S@.f) > @ then
// +-normal value
result = S1.u[sign(Se@.f) ? 3 :

16.9. VOPC Instructions
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- value is a positive denormal value.
- value is a positive normal value.
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elsif 64'F(abs(S0.f)) > 0.0 then

// +-denormal value

result = S1.u[sign(Se.f) ? 4 : 7]
else

// +-0.0

result = S1.u[sign(S8.f) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F64 255
IEEE numeric class function specified in S1.u, performed on S0.f64.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(S@.f64) then

result = S1.u[9]
elsif isQuietNAN(SO.f64) then

result = S1.u[1]
elsif exponent(S0.f64) == 1023 then

// +-INF

result = S1.u[sign(S68.f64) ? 2 : 9]
elsif exponent(S0.f64) > @ then

// +-normal value

result = S1.u[sign(Se8.f64) ? 3 : 8]
elsif abs(S@.f64) > 0.0 then

// +-denormal value

result = S1.u[sign(Se8.f64) ? 4 : 7]
else

// +-0.90

result = S1.u[sign(S68.f64) ? 5 : 6]
endif;
EXEC.u64[laneId] = result
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Notes

AMD¢1

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

16.9.1. VOPC using VOP3 encoding

Instructions in this format may also be encoded as VOP3. VOP3 allows access to the extra control bits (e.g. ABS,
OMOD) at the expense of a larger instruction word. The VOP3 opcode is: VOP2 opcode + 0x000.

When the CLAMP microcode bit is set to 1, these compare instructions signal an exception when either of the
inputs is NaN. When CLAMP is set to zero, NaN does not signal an exception. The second eight VOPC
instructions have {OP8} embedded in them. This refers to each of the compare operations listed below.

31

1

I1'0I1I0I1| I I OP

fou[ opser, [ fes, |

VDSTg

VOP3

Nee  |omob| ' srez -1 SRC1g

SRCOg

VDST
ABS
CLMP
oP
SRC@
SRC1
SRC2
OMOD
NEG

63

= Destination for instruction in the VGPR.

= Floating-point absolute value.

= Clamp output.

= Instruction opcode.

= First operand for instruction.

= Second operand for instruction.

= Third operand for instruction. Unused in VOPC instructions.

= Qutput modifier for instruction. Unused in VOPC instructions.
= Floating-point negation.
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16.10. VOP3P Instructions

31

AMDZ1

VOR3P 1 1'0I0I1I1I0:0| | I :OP: I !CM

OPSLHD

| O:PSE:L | NI:EG_I-III3 !

VDSTg

INEGI | OPISLH

SRC1g

SRCOg

63

32

V_PK_MAD_I16 0
Packed multiply-add on signed shorts.

DO[31 : 16].116 = SB[31 : 16].i16 * S1[31 : 16].116 + S2[31 : 16].i16;

DO[15 : 8].i16 = SB[15 : 8].i16 * S1[15 : 8].i16 + S2[15 : 0].i16
V_PK_MUL_LO_U16 1
Packed multiply on unsigned shorts.

DO[31 : 16].u16 = SB[31 : 16].u16 * S1[31 : 16].u16;

DO[15 : 8].u16 = S8[15 : 8].u16 * S1[15 : 0].u16
V_PK_ADD_I16 2
Packed addition on signed shorts.

DO[31 : 16].i16 = SB[31 : 16].i16 + S1[31 : 16].i16;

De[15 : 8].i16 = SB[15 : @].i16 + S1[15 : 0].i16
V_PK_SUB_I16 3
Packed subtraction on signed shorts. The second operand is subtracted from the first.

De[31 : 16].i16 = S@[31 : 16].i16 - S1[31 : 16].i16;

De[15 : 8].i16 = SB[15 : 8].i16 - S1[15 : 0].i16
V_PK_LSHLREV_B16 4

Packed logical shift left. The shift count is in the first operand.
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DO[31 : 16].u16 = (S1[31 : 16].u16 << S@.u[19 : 16].u);
DO[15 : 8].u16 = (S1[15 : @].u16 << S@.u[3 : B8].u)

V_PK_LSHRREV_B16 S

Packed logical shift right. The shift count is in the first operand.

DO[31 : 16].u16 = (S1[31 : 16].u16 >> S@.u[19 : 16].u);
DB[15 : @].u16 = (S1[15 : @].u16 >> SO.u[3 : 0].u)

V_PK_ASHRREV_I16 6

Packed arithmetic shift right (preserve sign bit). The shift count is in the first operand.

DB[31 : 16].i16 = (S1[31 : 16].i16 >> SB.u[19 : 16].u);
DB[15 : 0].i16 = (S1[15 : @].1i16 >> S@.u[3 : 0].u)

V_PK_MAX_I16 7

Packed maximum of signed shorts.

DO[31 : 16].116 = SB[31 : 16].i16 >= S1[31 : 16].i16 ? SO[31 : 16].i16 : S1[31 : 16].i16;
DO[15 : 8].i16 = S@[15 : @].i16 >= S1[15 : @].i16 ? SB[15 : @].i16 : S1[15 : @].i16

V_PK_MIN_I16 8

Packed minimum of signed shorts.

DO[31 : 16].116 = SB[31 : 16].1i16 < S1[31 : 16].1i16 ? SO[31 : 16].i16 : S1[31 : 16].1i16;
DO[15 : 8].i16 = S@[15 : ©].1i16 < S1[15 : @].i16 ? SB[15 : ©].1i16 : S1[15 : @].116

V_PK_MAD_U16 9

Packed multiply-add on unsigned shorts.
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DO[31 : 16].u16 = SB[31 : 16].u16 * S1[31 : 16].u16 + S2[31 : 16].ul16;
DO[15 : 8].u16 = SB[15 : B].u16 * S1[15 : B].u16 + S2[15 : @].u16

AMDZ1

V_PK_ADD_U16 10
Packed addition on unsigned shorts.

DB[31 : 16].u16 = SB[31 : 16].u16 + ST[31 : 16].u16;

DB[15 : @].u16 = SO[15 : 8].u16 + S1[15 : @].u16
V_PK_SUB_U16 11
Packed subtraction on unsigned shorts. The second operand is subtracted from the first.

DO[31 : 16].u16 = SO[31 : 16].u16 - S1[31 : 16].u16;

DO[15 : @].u16 = S@[15 : @].u16 - S1[15 : @].ul16
V_PK_MAX_U16 12
Packed maximum of unsigned shorts.

DB[31 : 16].u16 = SB[31 : 16].u16 >= S1[31 : 16].u16 ? SO[31 : 16].u16 : S1[31 : 16].u16;

DB[15 : @].u16 = SB[15 : 8].u16 >= S1[15 : ©].u16 ? SB[15 : 8].u16 : S1[15 : 8].u16
V_PK_MIN_U1lé6 13
Packed minimum of unsigned shorts.

DO[31 : 16].u16 = SB[31 : 16].u16 < S1[31 : 16].u16 ? SB[31 : 16].u16 : S1[31 : 16].ul6;

DO[15 : 8].u16 = SB[15 : 8].u16 < ST[15 : 8].u16 ? SB[15 : @].u16 : ST[15 : @].ul6
V_PK_FMA_F16 14

Packed fused-multiply-add of FP16 values.
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DO[31 : 16].f16 = fma(S@[31 : 16].f16, S1[31 : 16].f16, S2[31 : 16].f16);

Do[15 : @].f16 = fma(S@[15 : @].f16, S1[15 : @].f16, S2[15 : B8].f16)

AMDZ1

V_PK_ADD_F16

Packed addition of FP16 values.

DO[31 : 16].f16 = SB[31 : 16].f16 + S1[31 : 16].f16;
DO[15 : 8].f16 = SB[15 : B].f16 + S1[15 : 0].f16

15

V_PK_MUL_F16

Packed multiply of FP16 values.

De[31 : 16].f16 = SO[31 : 16].f16 * S1[31 : 16].f16;
De[15 : @].f16 = S@[15 : 0].f16 * S1[15 : @].f16

16

V_PK_MIN_F16

Packed minimum of FP16 values.

DO[31 : 16].f16 = v_min_f16(S0[31 : 16].f16, S1[31 : 16].f16);
Do[15 : 8].f16 = v_min_f16(S@[15 : @].f16, S1[15 : @].f16)

17

V_PK_MAX_F16

Packed maximum of FP16 values.

DO[31 : 16].f16 = v_max_f16(S0[31 : 16].f16, S1[31 : 16].f16);
DO[15 : 8].f16 = v_max_f16(S@[15 : @].f16, S1[15 : 0].f16)

18

V_DOT2_F32_F16

Dot product of packed FP16 values.
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tmp = 32'F(S6[15 : @0].f16) * 32'F(S1[15 : @8].f16);
tmp += 32'F(SO[31 : 16].f16) * 32'F(S1[31 : 16].f16);
tmp += S2.f;

Do.f = tmp

V_DOT4_132_IUS8 22

Dot product of signed or unsigned bytes.

declare A : 32'I[4];

declare B : 32'I[4];

// Figure out whether inputs are signed/unsigned.
for i in @ : 3 do

A8 = SO[1i * 8 +7 : i % 8];
B8 = S1[i * 8 +7 : i % 8];
A[i] = NEG[@].u1 ? 32'I(signext(A8.i8)) : 32'I(32'U(A8.u8));
B[i] = NEG[1].u1 ? 32'I(signext(B8.i8)) : 32'I(32'U(B8.u8))
endfor;
C = S82.i;

// Signed multiplier/adder. Extend unsigned inputs with leading ©.
De.i = A[@] * B[O];

DO.i += A[1] * B[1];

DO.i += A[2] * B[2];

i += A[3] * B[3];

1

DO.1
DB.i += C

Notes

This opcode does not depend on the inference or deep learning features being enabled.

V_DOT4_U32_U8 23

Dot product of unsigned bytes.

tmp = 32'U(S@[7 : ©].u8) % 32'U(S1[7 : ©].u8);

tmp += 32'U(SB[15 : 8].u8) % 32'U(S1[15 : 8].u8);
tmp += 32'U(S6[23 : 16].u8) * 32'U(S1[23 : 16].u8);
tmp += 32'U(S@[31 : 24].u8) * 32'U(S1[31 : 24].u8);

tmp += S2.u;
DO.u = tmp
Notes

This opcode does not depend on the inference or deep learning features being enabled.

16.10. VOP3P Instructions 355 of 600



"RDNA3" Instruction Set Architecture

AMD¢1

V_DOTS8_132_IU4 24
Dot product of signed or unsigned nibbles.
declare A : 32'I[8];
declare B : 32'I[8];
// Figure out whether inputs are signed/unsigned.
for 1 in @ : 7 do
Ad = SO[i x4 +3 : 1 % 4];
B4 = S1[i * 4 +3 : i * 4];
A[i] = NEG[@].u1 ? 32'I(signext(A4.i4)) : 32'I(32'U(A4.ud));
B[i] = NEG[1].u1l ? 32'I(signext(B4.i4)) : 32'I(32'U(B4.u4))
endfor;
C=S82.1i;
// Signed multiplier/adder. Extend unsigned inputs with leading ©.
DO.i = A[@] * B[@];
DO.i += A[1] * B[1];
DO.i += A[2] * B[2];
DB.i += A[3] * B[3];
DB.i += A[4] * B[4];
DB.i += A[5] * B[5];
DB.i += A[6] * B[6];
DB.i += A[7] * B[7];
DB.i += C
V_DOT8_U32_U4 25
Dot product of unsigned nibbles.
tmp = 32'U(S@[3 : 8].u4) * 32'U(S1[3 : 0].ud);
tmp += 32'U(SB[7 : 4].u4) * 32'U(S1[7 : 4].ud);
tmp += 32'U(SO[11 : 8].ud) * 32'U(S1[11 : 8].u4);
tmp += 32'U(SO[15 : 12].ud4) * 32'U(S1[15 : 12].ud);
tmp += 32'U(SO[19 : 16].ud) * 32'U(S1[19 : 16].ud);
tmp += 32'U(S@[23 : 20].u4) * 32'U(S1[23 : 20].u4);
tmp += 32'U(SO[27 : 24].u4) * 32'U(S1[27 : 24].u4);
tmp += 32'U(SO[31 : 28].ud4) * 32'U(S1[31 : 28].ud);
tmp += S2.u;
DO.u = tmp
V_DOT2_F32_BF16 26
Dot product of packed brain-float values.
tmp = 32'F(S6[15 : 8].bf16) * 32'F(S1[15 : B8].bf16);
tmp += 32'F(S6[31 : 16].bf16) * 32'F(S1[31 : 16].bf16);
tmp += S2.°f;
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DO.f = tmp

AMD¢1

V_FMA_MIX_F32

Fused-multiply-add of single-precision values with MIX encoding.

32

Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,

for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for i in @ : 2 do
if 'OPSEL_HI.u3[i] then
in[i] = S[i].f
elsif OPSEL.u3[i] then

in[i] = f16_to_f32(S[1i][31 : 16].f16)

else

in[i] = f16_to_f32(S[1i][15 : @].f16)

endif
endfor;
DB[31 : 0].f = fma(in[@], in[1], in[2])

V_FMA_MIXLO_F16

Fused-multiply-add of FP16 values with MIX encoding, result stored in low 16 bits of destination.

33

Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,

for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for i in @ : 2 do
if 'OPSEL_HI.u3[i] then
in[i] = S[i].f
elsif OPSEL.u3[i] then

in[i] = f16_to_f32(S[1i][31 : 16].f16)

else

in[i] = f16_to_f32(S[i][15 : @].f16)

endif
endfor;

DB[15 : 0].f16 = f32_to_f16(fma(in[0], in[1], in[2]))

V_FMA_MIXHI_F16

34

Fused-multiply-add of FP16 values with MIX encoding, result stored in HIGH 16 bits of destination.
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AMD¢1

Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also,

for FMA_MIX, the NEG_HI field acts instead as an absolute-value modifier.

declare in : 32'F[3];
declare S : 32'B[3];
for 1 in @ : 2 do
if !OPSEL_HI.u3[i] then
in[i] = S[i].f
elsif OPSEL.u3[i] then
in[i] = f16_to_f32(S[1][31 : 16].f16)
else
in[i] = f16_to_f32(S[i][15 : 0].f16)
endif
endfor;
DB[31 : 16].f16 = f32_to_f16(fma(in[@], in[1], in[2]))

V_WMMA_F32_16X16X16_F16 64
WMMA matrix multiplication with F16 multiplicands and single precision result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "DO.f32(16x16) = S8.f16(16x16) * S1.f16(16x16) + S2.f32(16x16)";

EXEC = saved_exec
V_WMMA_F32_16X16X16_BF16 65
WMMA matrix multiplication with brain float multiplicands and single precision result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "D@.f32(16x16) = SB.bf16(16x16) * S1.bf16(16x16) + S2.f32(16x16)";

EXEC = saved_exec
V_WMMA_F16_16X16X16_F16 66
WMMA matrix multiplication with F16 multiplicands and F16 result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "DB.f16(16x16) = SB.f16(16x16) * S1.f16(16x16) + S2.f16(16x16)";

EXEC = saved_exec
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V_WMMA_BF16_16X16X16_BF16 67

WMMA matrix multiplication with brain float multiplicands and brain float result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "DO.bf16(16x16) = SO.bf16(16x16) * S1.bf16(16x16) + S2.bf16(16x16)";
EXEC = saved_exec

V_WMMA_I32_16X16X16_IUS8 68

WMMA matrix multiplication with 8-bit integer multiplicands and signed 32-bit integer result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "D@.i32(16x16) = SO.1u8(16x16) * S1.iu8(16x16) + S2.i32(16x16)";
EXEC = saved_exec

V_WMMA_I32_16X16X16_IU4 69

WMMA matrix multiplication with 4-bit integer multiplicands and signed 32-bit integer result.

saved_exec = EXEC;

EXEC = 64'B(-1);

eval "D@.i32(16x16) = S@.iu4(16x16) * S1.iu4(16x16) + S2.i32(16x16)";
EXEC = saved_exec
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16.11. VOPD Instructions

oo |11 0 0 1 of “opx | ~ opr ' wsmox1___ . sRoxo
_ VDSTX | VDSTY ' VSRCY1 ' SRCY0 _
The VOPD encoded describes two VALU opcodes that are executed in parallel.
For instruction definitions, refer to the VOP1, VOP2 and VOP3 sections.
16.11.1. VOPD X-Instructions
V_DUAL_FMAC_F32 0

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

V_DUAL_FMAAK_F32 1

Multiply two single-precision floats and add a literal constant using fused multiply-add.

V_DUAL_FMAMK_F32 2

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

V_DUAL_MUL_F32 3

Multiply two floating point inputs and store the result into a vector register.

V_DUAL_ADD_F32 4

Add two floating point inputs and store the result into a vector register.

V_DUAL_SUB_F32 S

Subtract the second floating point input from the first input and store the result into a vector register.
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V_DUAL_SUBREV_F32 6

Subtract the first floating point input from the second input and store the result into a vector register.

V_DUAL_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

V_DUAL_MOV_B32 8

Move data from a vector input into a vector register.

V_DUAL_CNDMASK_B32 9

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

V_DUAL_MAX_F32 10

Select the maximum of two floating point inputs and store the result into a vector register.

V_DUAL_MIN_F32 11

Select the minimum of two floating point inputs and store the result into a vector register.

V_DUAL_DOT2ACC_F32_F16 12

Dot product of packed FP16 values, accumulate with destination. The initial value in D is used as S2.

V_DUAL_DOT2ACC_F32_BF16 13

Dot product of packed brain-float values, accumulate with destination. The initial value in D is used as S2.
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16.11.2. VOPD Y-Instructions
V_DUAL_FMAC_F32 0

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

V_DUAL_FMAAK_F32 1

Multiply two single-precision floats and add a literal constant using fused multiply-add.

V_DUAL_FMAMK_F32 2

Multiply a single-precision float with a literal constant and add a second single-precision float using fused
multiply-add.

V_DUAL_MUL_F32 3

Multiply two floating point inputs and store the result into a vector register.

V_DUAL_ADD_F32 4

Add two floating point inputs and store the result into a vector register.

V_DUAL_SUB_F32 5

Subtract the second floating point input from the first input and store the result into a vector register.

V_DUAL_SUBREV_F32 6

Subtract the first floating point input from the second input and store the result into a vector register.

V_DUAL_MUL_DX9_ZERO_F32 7

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).
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V_DUAL_MOV_B32 8
Move data from a vector input into a vector register.
V_DUAL_CNDMASK_B32 9

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

V_DUAL_MAX_F32 10
Select the maximum of two floating point inputs and store the result into a vector register.

V_DUAL_MIN_F32 11
Select the minimum of two floating point inputs and store the result into a vector register.
V_DUAL_DOT2ACC_F32_F16 12
Dot product of packed FP16 values, accumulate with destination. The initial value in D is used as S2.
V_DUAL_DOT2ACC_F32_BF16 13
Dot product of packed brain-float values, accumulate with destination. The initial value in D is used as S2.
V_DUAL_ADD_NC_U32 16
Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.
V_DUAL_LSHLREV_B32 17

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the

result into a vector register.

V_DUAL_AND_B32

Calculate bitwise AND on two vector inputs and store the result into a vector register.

18
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16.12. VOP3 & VOP3SD Instructions

VOP3 instructions use one of two encodings:

31 0

vors 1. 1 0 1 0 1] op " lom| ‘opseL, | mBs, | VDST,
T I T
NEG | omoD | SRC2, | SRC1, | SRCO,
63 32
31 . . . . . . . . ; . . . . . . . . . . . . . . . . . 0
vopasp 1.1 0 1 0 1 | ' oP = SDST; | VDST,
T T T H T T T T T T T T 1 H T T T T T T T T T T T
NEG | omoD | SRC2e | SRC1g | SRCO0,

63 32

VOP3SD this encoding allows specifying a unique scalar destination, and is used only for:
V_ADD_CO_U32
V_SUB_CO_U32
V_SUBREV_CO_U32
V_ADDC_CO_U32
V_SUBB_CO_U32
V_SUBBREV_CO_U32
V_DIV_SCALE_F32
V_DIV_SCALE_F64
V_MAD_U64_U32
V_MAD_I64_132

VOP3 all other VALU instructions use this encoding
V_NOP 384
Do nothing.
V_MOV_B32 385

Move data from a vector input into a vector register.

DB.b = S0.b

Notes

Floating-point modifiers are valid for this instruction if S0.u is a 32-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

Functional examples:

v_mov_b32 vO, vi // Move v1 to v@
v_mov_b32 vO, -vi // Set v1 to the negation of v@
v_mov_b32 v@, abs(v1) // Set v1 to the absolute value of v@
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V_READFIRSTLANE_B32 386

Read the scalar value in the lowest active lane of the input vector register and store it into a scalar register.

declare lane : 32'U;
if WAVE64 then
// 64 lanes
if EXEC == @x0OLL then
lane = 0U;
// Force lane @ if all lanes are disabled
else
lane = 32'U(s_ff1_132_b64(EXEC));
// Lowest active lane

endif
else
// 32 lanes
if EXEC_LO.i == @ then
lane = 0U;
// Force lane @ if all lanes are disabled
else

lane = 32'U(s_ff1_132_b32(EXEC_LO));
// Lowest active lane
endif
endif;
DO.b = VGPR[1lane][SRCO.u]

Notes

Overrides EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped
operation.

V_CVT_I32_F64 387

Convert from a double-precision float input to a signed 32-bit integer and store the result into a vector register.

DO.i = f64_to_132(S0.f64)

Notes
0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

V_CVT_F64_132 388
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Convert from a signed 32-bit integer input to a double-precision float and store the result into a vector register.

DO.f64 = 132_to_f64(S6.1)

Notes

OULP accuracy.

V_CVT_F32_132 389

Convert from a signed 32-bit integer input to a single-precision float and store the result into a vector register.

DO.f = i32_to_f32(S0.1)

Notes

0.5SULP accuracy.

V_CVT_F32_U32 390

Convert from an unsigned 32-bit integer input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S0.u)

Notes

0.5ULP accuracy.

V_CVT_U32_F32 391

Convert from a single-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

DO.u = 32_to_u32(Se.f)

Notes
1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
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conversion iff CLAMP == 1.

V_CVT_I32_F32 392

Convert from a single-precision float input to a signed 32-bit integer and store the result into a vector register.

DB.i = f32_to_i32(S0.f)

Notes
1ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_F16_F32 394

Convert from a single-precision float input to an FP16 float and store the result into a vector register.

DB.f16 = f32_to_f16(S6.f)

Notes

0.5ULP accuracy, supports input modifiers and creates FP16 denormals when appropriate. Flush denorms on
output if specified based on DP denorm mode. Output rounding based on DP rounding mode.

V_CVT_F32_F16 395

Convert from an FP16 float input to a single-precision float and store the result into a vector register.

DO.f = f16_to_f32(S0.f16)

Notes

OULP accuracy, FP16 denormal inputs are accepted. Flush denorms on input if specified based on DP denorm
mode.

V_CVT_NEAREST_I32_F32 396

Convert from a single-precision float input to a signed 32-bit integer using round-to-nearest-integer semantics
(ignore the default rounding mode) and store the result into a vector register.
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DO.i = f32_to_i32(floor(Se.f + 0.5F))

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_FLOOR_I32_F32 397

Convert from a single-precision float input to a signed 32-bit integer using round-down semantics (ignore the
default rounding mode) and store the result into a vector register.

DB.i = f32_to_i32(floor(Se.f))

Notes

1ULP accuracy, denormals are supported.

V_CVT_OFF_F32_I4 398

Convert from a signed 4-bit integer to a single-precision float using an offset table and store the result into a
vector register.

Used for interpolation in shader. Lookup table on S0[3:0]:

S0 binary Result
1000 -0.5000f
1001 -0.4375f
1010 -0.3750f
1011 -0.3125f
1100 -0.2500f
1101 -0.1875f
1110 -0.1250f
1111 -0.0625f
0000 +0.0000f
0001 +0.0625f
0010 +0.1250f
0011 +0.1875f
0100 +0.2500f
0101 +0.3125f
0110 +0.3750f
0111 +0.4375f

declare CVT_OFF_TABLE : 32'F[16];
DO.f = CVT_OFF_TABLE[S@.u[3 : 0]]
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V_CVT_F32_F64 399

Convert from a double-precision float input to a single-precision float and store the result into a vector register.

DO.f = f64_to_f32(S08.f64)

Notes

0.5ULP accuracy, denormals are supported.

V_CVT_F64_F32 400

Convert from a single-precision float input to a double-precision float and store the result into a vector register.

DB.f64 = f32_to_f64(S6.f)

Notes

OULP accuracy, denormals are supported.

V_CVT_F32_UBYTEO 401

Convert an unsigned byte in byte 0 of the input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S0.u[7 : 0].u)

V_CVT_F32_UBYTE1l 402

Convert an unsigned byte in byte 1 of the input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S6.u[15 : 8].u)

V_CVT_F32_UBYTE2 403

Convert an unsigned byte in byte 2 of the input to a single-precision float and store the result into a vector
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register.

DO.f = u32_to_f32(S0.u[23 : 16].u)

V_CVT_F32_UBYTE3 404

Convert an unsigned byte in byte 3 of the input to a single-precision float and store the result into a vector
register.

DB.f = u32_to_f32(S0.u[31 : 24].u)

V_CVT_U32_F64 405

Convert from a double-precision float input to an unsigned 32-bit integer and store the result into a vector
register.

DB.u = f64_to_u32(S6.f64)

Notes
0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NAN is converted to 0.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_F64_U32 406

Convert from an unsigned 32-bit integer input to a double-precision float and store the result into a vector
register.

DB.f64 = u32_to_f64(S6.u)

Notes

OULP accuracy.

V_TRUNC_Fe64 407

Compute the integer part of a double-precision float input with round-toward-zero semantics and store the
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result in floating point format into a vector register.

DB.f64 = trunc(S0.f64)

V_CEIL_F64 408

Round the double-precision float input up to next integer and store the result in floating point format into a

vector register.

DO.f64 = trunc(Se.f64);

if ((Se.f64 > 0.8) && (SO.f64 != DB.f64)) then
DO.f64 += 1.0

endif

V_RNDNE_Fo64 409

Round the double-precision float input to the nearest even integer and store the result in floating point format

into a vector register.

DB.f64 = floor(S0.f64 + 0.5);

if (isEven(floor(Se.f64)) && (fract(Se.f64) == 0.5)) then
Do.f64 -= 1.0

endif

V_FLOOR_Fé64 410

Round the double-precision float input down to previous integer and store the result in floating point format

into a vector register.

DB.f64 = trunc(S0.f64);

if ((S0.f64 < 0.0) && (SO.f64 != DO.f64)) then
DO.f64 += -1.0

endif

V_PIPEFLUSH 411

Flush the VALU destination cache.
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V_MOV_B16 412

Move data to a VGPR.
DO.b16 = SB.b16

Notes

Floating-point modifiers are valid for this instruction if S0.ul6 is a 16-bit floating point value. This instruction is
suitable for negating or taking the absolute value of a floating-point value.

V_FRACT_F32 416

Compute the fractional portion of a single-precision float input and store the result in floating point format into
a vector register.

pDe.f = S@.f + -floor(Se.f)

Notes
0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) =0.8 in DX.

Obey round mode, result clamped to 0x3f7ffftf.

V_TRUNC_F32 417

Compute the integer part of a single-precision float input with round-toward-zero semantics and store the
result in floating point format into a vector register.

DB.f = trunc(Se.f)

V_CEIL_F32 418

Round the single-precision float input up to next integer and store the result in floating point format into a
vector register.

DO.f = trunc(Se.f);
if ((SO.f > 0.0F) && (S6.f != DO.f)) then
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DO.f += 1.0F
endif

V_RNDNE_F32 419

Round the single-precision float input to the nearest even integer and store the result in floating point format
into a vector register.

De.f = floor(Se.f + 0.5F);
if (isEven(64'F(floor(S0.f))) && (fract(Se.f) == 08.5F)) then

DO.f -= 1.0F
endif
V_FLOOR_F32 420

Round the single-precision float input down to previous integer and store the result in floating point format
into a vector register.

DB.f = trunc(Se.f);

if ((SO.f < 0.0F) && (SO.f != DO.f)) then
Do.f += -1.0F

endif

V_EXP_F32 421

Calculate 2 raised to the power of the single-precision float input and store the result into a vector register.

De.f = pow(2.0F, S@.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_EXP_F32(0xff800000) => 0x00000000 // exp(-INF) = 8
V_EXP_F32(0x80000000) => 0x3800000 /] exp(-8.8) = 1
V_EXP_F32(0x7f800000) => 0x7f800000 /] exp(+INF) = +INF
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V_LOG_F32 423

Calculate the base 2 logarithm of the single-precision float input and store the result into a vector register.

DB.f = 1log2(Se.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_LOG_F32(06xff800000) => 0xffco0000 // log(-INF) = NAN
V_LOG_F32(06xbf800000) => 0xffco000e // log(-1.8) = NAN
V_LOG_F32(06x80000000) => 0xff800000 // log(-0.8) = -INF
V_LOG_F32(06x00000000) => 0xffB800000 // log(+0.8) = -INF
V_LOG_F32(06x3f800000) => 0x00000000 // log(+1.0) = 0
V_LOG_F32(06x7f800000) => 0x7f800000 // log(+INF) = +INF
V_RCP_F32 426

Calculate the reciprocal of the single-precision float input using IEEE rules and store the result into a vector
register.

Do.f = 1.0F / S@.f

Notes

1ULP accuracy. Accuracy converges to < 0.5ULP when using the Newton-Raphson method and 2 FMA
operations. Denormals are flushed.

Functional examples:

V_RCP_F32(0xff800000) => 0x80000000 // rcp(-INF) = -0
V_RCP_F32(0xc0000000) => Bxbfe00000 // rcp(-2.8) = -8.5
V_RCP_F32(0x80000000) => 0xff800000 // rcp(-8.8) = -INF
V_RCP_F32(0x00000000) => 0x7f800000 // rcp(+8.8) = +INF
V_RCP_F32(0x7f800000) => 0x00000000 // rcp(+INF) = +0
V_RCP_IFLAG_F32 427

Calculate the reciprocal of the vector float input in a manner suitable for integer division and store the result
into a vector register. This opcode is intended for use as part of an integer division macro.
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De.f = 1.8F / SO.f;
// Can only raise integer DIV_BY_ZERO exception

Notes

Can raise integer DIV_BY_ZERO exception but cannot raise floating-point exceptions. To be used in an integer
reciprocal macro by the compiler with one of the sequences listed below (depending on signed or unsigned
operation).

Unsigned usage:
CVT_F32_U32
RCP_IFLAG_F32
MUL_F32 (2**32 - 1)
CVT_U32_F32

Signed usage:
CVT_F32_132
RCP_IFLAG_F32
MUL_F32 (2**31 - 1)
CVT_I32_F32

V_RSQ_F32 430

Calculate the reciprocal of the square root of the single-precision float input using IEEE rules and store the
result into a vector register.

Do.f = 1.0F / sqrt(Se.f)

Notes
1ULP accuracy, denormals are flushed.

Functional examples:

V_RSQ_F32(0xff800000) => 0xffco00eo // rsq(-INF) = NAN
V_RSQ_F32(0x80000000) => Bxff800000 // rsq(-8.8) = -INF
V_RSQ_F32(0x00000000) => Bx7f800000 // rsq(+8.8) = +INF
V_RSQ_F32(0x40800000) => 0x3f000000 // rsq(+4.8) = +8.5
V_RSQ_F32(0x7f800000) => 0x00000000 // rsq(+INF) = +0
V_RCP_F64 431

Calculate the reciprocal of the double-precision float input using IEEE rules and store the result into a vector
register.
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Do.f64 = 1.0 / S0.f64

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_RSQ_F64

Calculate the reciprocal of the square root of the double-precision float input using IEEE rules and store the

result into a vector register.

DO.f64 = 1.8 / sqrt(Se.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

V_SQRT_F32

Calculate the square root of the single-precision float input using IEEE rules and store the result into a vector

register.

DB.f = sqrt(Se.f)

Notes

1ULP accuracy, denormals are flushed.

Functional examples:

V_SQRT_F32(6xff800000) => 0xffco0000
V_SQRT_F32(0x80000000) => 0x80000000
V_SQRT_F32(0x00000000) => 0x00000000
V_SQRT_F32(0x40800000) => 0x40000000
V_SQRT_F32(0x7f800000) => 0x7f800000

/!
/!
/!
/!
/!

sqrt(-INF)
sqrt(-0.0)
sqrt(+0.0)
sqrt(+4.0)
sqrt (+INF)

NAN

+0
+2.0
+INF

V_SQRT_F64

Calculate the square root of the double-precision float input using IEEE rules and store the result into a vector

register.

16.12. VOP3 & VOP3SD Instructions

AMD¢1



"RDNA3" Instruction Set Architecture

DB.f64 = sqrt(Se.f64)

Notes

This opcode has (2**29)ULP accuracy and supports denormals.

AMD¢1

V_SIN_F32 437
Calculate the trigonometric sine of a single-precision float value using IEEE rules and store the result into a
vector register. The operand is calculated by scaling the vector input by 2 PI.
DO.f = 32'F(sin(64'F(S0.f) * 2.0 * PI))
Notes
Denormals are supported. Full range input is supported.
Functional examples:
V_SIN_F32(0xff800000) => 0xffce0eoe // sin(-INF) = NAN
V_SIN_F32(exff7fffff) => 0x00000000 // -MaxFloat, finite
V_SIN_F32(0x80000000) => 0x80000000 // sin(-0.8) = -0
V_SIN_F32(0x3e800000) => 0x3800000 // sin(0.25) = 1
V_SIN_F32(0x7f800000) => 0xffceoeoe // sin(+INF) = NAN
V_COS_F32 438

Calculate the trigonometric cosine of a single-precision float value using IEEE rules and store the result into a

vector register. The operand is calculated by scaling the vector input by 2 PI.

DO.f = 32'F(cos(64'F(S0.f) % 2.0 % PI))

Notes

Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F32(0xff800000) => 0xffco0e0e
V_COS_F32(exff7fffff) => 0x3f800000
V_COS_F32(0x80000000) => 0x3f800000
V_COS_F32(0x3e800000) => 0x00000000
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cos(-INF) = NAN
-MaxFloat, finite
cos(-0.08) =1
cos(0.25) = 0
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V_COS_F32(0x7f800000) => 0xffc00000 // cos(+INF) = NAN

V_NOT_B32 439

Calculate bitwise negation on a vector input and store the result into a vector register.

DB.u = ~S0.u

Notes

Input and output modifiers not supported.

V_BFREV_B32 440

Reverse the order of bits in a vector input and store the result into a vector register.

DO.u[31 : @] = SO.u[B : 31]

Notes

Input and output modifiers not supported.

V_CLZ_132_U32 441

Count the number of leading "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits.

De.i = -1;
// Set if no ones are found
for i in @ : 31 do
// Search from MSB
if S@.u[31 - i] == 1'1U then
Do.i = 1i;
break
endif
endfor

Notes
Compare with S_CLZ_I32_U32, which performs the equivalent operation in the scalar ALU.

Functional examples:
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V_CLZ_I32_U32(0x00000000) => Bxffffffff
V_CLZ_I32_U32(0x800000f) => @
V_CLZ_I32_U32(0x100000ff) => 3
V_CLZ_I32_U32(0x0000ffff) => 16
V_CLZ_I32_U32(0x00000001) => 31

V_CTZ_132_B32 442

Count the number of trailing "0" bits before the first "1" in a vector input and store the result into a vector
register. Store -1 if there are no "1" bits in the input.

DB.i = -1;
// Set if no ones are found
for i in @ : 31 do
// Search from LSB
if S@.u[i] == 1'1U then
DB.i = i;
break
endif
endfor

Notes
Compare with S_CTZ_I32_B32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CTZ_I32_B32(0x00000008) => Oxffffffff
V_CTZ_I32_B32(0xff000001) => 0
V_CTZ_I32_B32(0xff0ee0es8) => 3
V_CTZ_I32_B32(0xffffeeee) => 16
V_CTZ_I32_B32(0x80000000) => 31

V_CLS_I32 443

Count the number of leading bits that are the same as the sign bit of a vector input and store the result into a
vector register. Store -1 if all input bits are the same.

De.i = -1;
// Set if all bits are the same
for i in 1 : 31 do
// Search from MSB
if S8.i[31 - i] '= S@.i[31] then
DB.i = i;
break
endif
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endfor

Notes
Compare with S_CLS_I32, which performs the equivalent operation in the scalar ALU.

Functional examples:

V_CLS_I32(0x00000000) => Oxffffffff
V_CLS_I32(0x40000000) => 1
V_CLS_I32(0x80000000) => 1
V_CLS_I32(@xefffffff) => 4
V_CLS_I32(@xffffoees) => 16
V_CLS_I32(Oxfffffffe) => 31
V_CLS_I32(OxfFffffff) => OxFfffffff

V_FREXP_EXP_I32_Fé64 444

Extract the exponent of a double-precision float input and store the result as a signed 32-bit integer into a
vector register.

if ((S0.f64 == +INF) || (S@.f64 == -INF) || isNAN(S@.f64)) then
DO.1 =0
else
DB.i = exponent(S6.f64) - 1023 + 1
endif
Notes

This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F64 445

Extract the binary significand, or mantissa, of a double-precision float input and store the result as a double-
precision float into a vector register.

if ((Se.f64 == +INF) || (S@.f64 == -INF) || isNAN(S@.f64)) then
DB.f64 = S0.f64
else
DO.f64 = mantissa(S0.f64)
endif
Notes
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This operation satisfies the invariant S0.f64 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F64, which returns integer exponent. See the C library function
frexp() for more information.

V_FRACT_Fe64 446

Compute the fractional portion of a double-precision float input and store the result in floating point format
into a vector register.

DO.f64 = S0.f64 + -floor(Se.f64)

Notes

0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-

1.2) = 0.8 in DX.

Obey round mode, result clamped to 0x3fefffffffffffft.

V_FREXP_EXP_I32_F32 447

Extract the exponent of a single-precision float input and store the result as a signed 32-bit integer into a vector
register.

if ((64'F(S@.f) == +INF) || (64'F(S@.f) == -INF) || isNAN(64'F(S@.f))) then
DB.i =0
else
DO.i = exponent(S0.f) - 127 + 1
endif
Notes

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). See also V_FREXP_MANT_F32,
which returns the significand. See the C library function frexp() for more information.

V_FREXP_MANT_F32 448

Extract the binary significand, or mantissa, of a single-precision float input and store the result as a single-
precision float into a vector register.

if ((64'F(S@.f) == +INF) || (64'F(S@.f) == -INF) || isNAN(64'F(S8.f))) then
De.f = so.f
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else
DB.f = mantissa(S@.f)
endif

Notes

AMD¢1

This operation satisfies the invariant S0.f32 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F32, which returns integer exponent. See the C library function

frexp() for more information.

V_MOVRELD_B32 450
Move to a relative destination address.
addr = DST.u;
// Raw value from instruction
addr += MO.u[31 : 0];
VGPR[laneId][addr].b = SO.b
Notes
Example: The following instruction sequence performs the move v15 <=v7:
s_mov_b32 mo, 10
v_movreld_b32 v5, v7
V_MOVRELS_B32 451

Move from a relative source address.

addr = SRCO.u;

// Raw value from instruction
addr += MO.u[31 : 0];

DO.b = VGPR[laneId][addr].b

Notes

Example: The following instruction sequence performs the move v5 <=v17:

s_mov_b32 m@, 10
v_movrels_b32 v5, v7
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V_MOVRELSD_B32 452

Move from a relative source address to a relative destination address.

addrs = SRCO.u;

// Raw value from instruction

addrd = DST.u;

// Raw value from instruction

addrs += MO.u[31 : @];

addrd += MO.u[31 : @];

VGPR[1laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v15 <=v17:

s_mov_b32 m@, 10
v_movrelsd_b32 v5, v7

V_MOVRELSD_2_B32 456

Move from a relative source address to a relative destination address, with different relative offsets.

addrs = SRCO.u;

// Raw value from instruction

addrd = DST.u;

// Raw value from instruction

addrs += M@.u[9 : @].u;

addrd += M@.u[25 : 16].u;
VGPR[1laneId][addrd].b = VGPR[laneId][addrs].b

Notes

Example: The following instruction sequence performs the move v25 <=v17:

s_mov_b32 m@, ((206 << 16) | 10)
v_movrelsd_2_b32 v5, v7

V_CVT_F16_U1l6 464

Convert from an unsigned 16-bit integer input to an FP16 float and store the result into a vector register.

DO.f16 = ul6_to_f16(S6.ul16)
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Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_F16_I16 465

Convert from a signed 16-bit integer input to an FP16 float and store the result into a vector register.

DO.f16 = i16_to_f16(S6.116)

Notes

0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

V_CVT_U16_F16 466

Convert from an FP16 float input to an unsigned 16-bit integer and store the result into a vector register.

DO.u16 = f16_to_u16(S6.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.

V_CVT_I16_F16 467

Convert from an FP16 float input to a signed 16-bit integer and store the result into a vector register.

DB.i16 = f16_to_1i16(S0.f16)

Notes

1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion
is done with truncation.

Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this
conversion iff CLAMP ==1.
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V_RCP_F16 468

Calculate the reciprocal of the half-precision float input using IEEE rules and store the result into a vector
register.

Do.f16 = 16'1.0 / S0.f16

Notes
0.51ULP accuracy.

Functional examples:

V_RCP_F16(0xfco0) => 0x8000 // rcp(-INF) = -0
V_RCP_F16(0xc008) => 0xb80o // rcp(-2.8) = -0.5
V_RCP_F16(0x8000) => 0xfceo // rcp(-0.8) = -INF
V_RCP_F16(0x0000) => 0x7c00 // rcp(+0.8) = +INF
V_RCP_F16(08x7c08) => 0x0000 // rcp(+INF) = +8
V_SQRT_F16 469

Calculate the square root of the half-precision float input using IEEE rules and store the result into a vector
register.

DB.f16 = sqrt(Se.f16)

Notes
0.51ULP accuracy, denormals are supported.

Functional examples:

V_SQRT_F16(0xfce8) => Oxfedo // sqrt(-INF) = NAN
V_SQRT_F16(0x8000) => 9x8000 // sqrt(-0.9) = -0
V_SQRT_F16(0x00008) => 9x0000 /] sqrt(+0.9) = +0
V_SQRT_F16(0x4400) => 9x4000 /] sqrt(+4.9) = +2.0
V_SQRT_F16(0x7c08) => 8x7c00 /] sqrt(+INF) = +INF
V_RSQ_F16 470

Calculate the reciprocal of the square root of the half-precision float input using IEEE rules and store the result
into a vector register.
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DB.f16 = 16'1.0 / sqrt(S0.f16)

Notes
0.51ULP accuracy, denormals are supported.

Functional examples:

V_RSQ_F16(08xfce0) => Bxfedd /7 rsq(-INF) = NAN
V_RSQ_F16(08x8080) => 0xfcee /] rsq(-8.8) = -INF
V_RSQ_F16(0x0000) => 0x7c00 /] rsq(+8.8) = +INF
V_RSQ_F16(0x4460) => 0x3800 // rsq(+4.8) = +8.5
V_RSQ_F16(0x7c60) => 0x0000 // rsq(+INF) = +0
V_LOG_F16 471

Calculate the base 2 logarithm of the half-precision float input and store the result into a vector register.

DO.f16 = 1log2(S6.f16)

Notes
0.51ULP accuracy, denormals are supported.

Functional examples:

V_LOG_F16(0xfc80) => 0xfedo // 1log(-INF) = NAN
V_LOG_F16(08xbc@B) => 0xfedo // 1log(-1.8) = NAN
V_LOG_F16(0x8000) => 0xfcoe // log(-8.8) = -INF
V_LOG_F16(0x0000) => 0xfcoe // log(+0.8) = -INF
V_LOG_F16(0x3c00) => 0x0000 // log(+1.0) = 0
V_LOG_F16(08x7c00) => 0Bx7c00 // log(+INF) = +INF
V_EXP_F16 472

Calculate 2 raised to the power of the half-precision float input and store the result into a vector register.

DB.f16 = pow(16'2.0, S0.f16)

Notes

0.51ULP accuracy, denormals are supported.
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Functional examples:

V_EXP_F16(06xfco0) => 0x0000 // exp(-INF) = @
V_EXP_F16(0x8000) => 0x3c00 // exp(-0.0) =1
V_EXP_F16(0x7c00) => 8x7c08 /] exp(+INF) = +INF
V_FREXP_MANT_F16 473

Extract the binary significand, or mantissa, of an FP16 float input and store the result as an FP16 float into a
vector register.

if ((64'F(S0.f16) == +INF) || (64'F(S0.f16) == -INF) || isNAN(64'F(S8.f16))) then
DO.f16 = S0.f16
else
DO.f16 = mantissa(S0.f16)
endif
Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). Result range is in (-1.0,-0.5][0.5,1.0)
in normal cases. See also V_FREXP_EXP_I_F16, which returns integer exponent. See the C library function
frexp() for more information.

V_FREXP_EXP_I16_F16 474

Extract the exponent of an FP16 float input and store the result as a signed 16-bit integer into a vector register.

if ((64'F(S6.f16) == +INF) || (64'F(S®.f16) == -INF) || isNAN(64'F(S8.f16))) then
DO.1i16 = 16'0@
else
DB.i16 = 16'I(exponent(S0.f16) - 15 + 1)
endif
Notes

This operation satisfies the invariant S0.f16 = significand * (2 ** exponent). See also V_FREXP_MANT_F16,
which returns the significand. See the C library function frexp() for more information.

V_FLOOR_F16 475

Round the half-precision float input down to previous integer and store the result in floating point format into
a vector register.
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DO.f16 = trunc(Se.f16);

if ((S0.f16 < 16'0.0) && (SO.f16 != DB.f16)) then
DO.f16 += -16'1.0

endif

V_CEIL_F16 476
Round the half-precision float input up to next integer and store the result in floating point format into a vector

register.

DB.f16 = trunc(S0.f16);

if ((S0.f16 > 16'0.0) & (S0.f16 !'= DB.f16)) then
DB.f16 += 16'1.8

endif

V_TRUNC_F16 477
Compute the integer part of an FP16 float input with round-toward-zero semantics and store the result in
floating point format into a vector register.
DB.f16 = trunc(S0.f16)
478

V_RNDNE_F16

Round the half-precision float input to the nearest even integer and store the result in floating point format

into a vector register.

DO.f16 = floor(Se.f16 + 16'0.5);

if (isEven(64'F(floor(S0.f16))) && (fract(Se.f16) == 16'0.5)) then
DO.f16 -= 16'1.0

endif

V_FRACT_F16 479

Compute the fractional portion of an FP16 float input and store the result in floating point format into a vector

register.

DB.f16 = SB.f16 + -floor(S@.f16)
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Notes
0.5ULP accuracy, denormals are accepted.

This is intended to comply with the DX specification of fract where the function behaves like an extension of
integer modulus; be aware this may differ from how fract() is defined in other domains. For example: fract(-
1.2) = 0.8 in DX.

V_SIN_F16 480

Calculate the trigonometric sine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

DO.f16 = 16'F(sin(64'F(S0.f16) * 2.8 * PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_SIN_F16(0xfc@8) => 0xfedo // sin(-INF) = NAN
V_SIN_F16(0xfbff) => 0x0000 // Most negative finite FP16
V_SIN_F16(0x8000) => 0x8000 // sin(-0.8) = -8
V_SIN_F16(0x34600) => 8x3c08 // sin(8.25) = 1
V_SIN_F16(0x7bff) => 0x0000 // Most positive finite FP16
V_SIN_F16(0x7c00) => 0xfe0dd // sin(+INF) = NAN
V_COS_F16 481

Calculate the trigonometric cosine of an FP16 float value using IEEE rules and store the result into a vector
register. The operand is calculated by scaling the vector input by 2 PI.

DB.f16 = 16'F(cos(64'F(S0.f16) % 2.8 % PI))

Notes
Denormals are supported. Full range input is supported.

Functional examples:

V_COS_F16(0xfco0) => 0xfeb0 // cos(-INF) = NAN
V_COS_F16(0xfbff) => 0x3c00 // Most negative finite FP16
V_COS_F16(0x8000) => 0x3c00 // cos(-0.8) =1
V_COS_F16(0x3400) => 0x0000 // cos(0.25) = @
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V_COS_F16(8x7bff) => 0x3c00 // Most positive finite FP16
V_COS_F16(08x7c00) => 0Oxfebd // cos(+INF) = NAN
V_SAT_PK_US8_I16 482

Given two 16-bit unsigned integer inputs, saturate each input over an 8-bit unsigned range, pack the resulting
values into a 16-bit word and store the result into a vector register.

SAT8 = lambda(n) (
if n.i <= 0 then
return 8'oU
elsif n >= 16'I(8xff) then
return 8'255U
else
return n[7 : 0].u8
endif);
DB.b16 = { SAT8(SB[31 : 16].i16), SAT8(SO[15 : ©].1i16) }

Notes

Used for 4x16bit data packed as 4x8bit data.

V_CVT_NORM_I16_F16 483

Convert from an FP16 float input to a signed normalized short and store the result into a vector register.

DB.i16 = f16_to_snorm(S6.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

V_CVIT_NORM_U16_F16 484

Convert from an FP16 float input to an unsigned normalized short and store the result into a vector register.

DB.u16 = f16_to_unorm(S6.f16)

Notes

0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.
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V_NOT_B16 489

Calculate bitwise negation on a vector input and store the result into a vector register.

DO.u16 = ~SO.u16

Notes

Input and output modifiers not supported.

V_CVT_I32_I16 490

Convert from an 16-bit signed integer to a 32-bit signed integer, sign extending as needed.

DO.i = 32'I(signext(S6.116))

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

V_CVT_U32_U16 491

Convert from an 16-bit unsigned integer to a 32-bit unsigned integer, zero extending as needed.

Do = { 16'0, SO.u16 }

Notes

To convert in the other direction (from 32-bit to 16-bit integer) use V_MOV_B16.

V_CNDMASK_B32 257

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

DO.u = VCC.u64[laneId] ? S1.u : S@.u

Notes
In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if SO and S1 are 32-bit floating point values. This
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instruction is suitable for negating or taking the absolute value of a floating-point value.

V_ADD_F32 259

Add two floating point inputs and store the result into a vector register.

Do.f = S8.f + S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUB_F32 260

Subtract the second floating point input from the first input and store the result into a vector register.

De.f = Se.f - S1.f

Notes

0.5ULP precision, denormals are supported.

V_SUBREV_F32 261

Subtract the first floating point input from the second input and store the result into a vector register.

Do.f = S1.f - S@.f

Notes

0.5ULP precision, denormals are supported.

V_FMAC_DX9_ZERO_F32 262

Multiply two single-precision values and accumulate the result with the destination. Follows DX9 rules where
0.0 times anything produces 0.0 (this is not IEEE compliant).

if ((64'F(S@.f) == 0.0) || (64'F(S1.f) == 0.0)) then
// DX9 rules, 0.0 * x = 0.0
Do.f = S2.f
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else
Do.f = fma(Se.f, S1.f, DO.f)
endif
V_MUL_DX9_ZERO_F32 263

Multiply two floating point inputs and store the result in a vector register. Follows DX9 rules where 0.0 times
anything produces 0.0 (this differs from other APIs when the other input is infinity or NaN).

if ((64'F(S@.f) == 0.0) || (64'F(S1.f) == 0.0)) then
// DX9 rules, 6.0 * x = 0.0

Do.f = 0.06F
else
Do.f = SB.f * S1.f
endif
V_MUL_F32 264

Multiply two floating point inputs and store the result into a vector register.

Do.f = S@.f *x S1.f

Notes

0.5ULP precision, denormals are supported.

V_MUL_I32_I24 265

Multiply two signed 24 bit integer inputs and store the result as a signed 32 bit integer into a vector register.
DO.i = 32'I(S@.i24) * 32'I(S1.i24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_I32_124.

V_MUL_HI_I32_124 266

Multiply two signed 24 bit integer inputs and store the high 32 bits of the result as a signed 32 bit integer into a
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vector register.

DO.i = 32'I((64'I(S8.i24) * 64'I(S1.i24)) >> 32U)

Notes

See also V_MUL_I32_124.

V_MUL_U32_U24 267

Multiply two unsigned 24 bit integer inputs and store the result as a unsigned 32 bit integer into a vector
register.

DB.u = 32'U(S@.u24) * 32'U(S1.u24)

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier. See also V_MUL_HI_U32_U24.

V_MUL_HI_U32_U24 268

Multiply two unsigned 24 bit integer inputs and store the high 32 bits of the result as a unsigned 32 bit integer
into a vector register.

DO.u = 32'U((64'U(SB.u24) * 64'U(ST1.u24)) >> 32U)

Notes

See also V_MUL_U32_U24.

V_MIN_F32 271

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.8) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
elsif isSignalNAN(64'F(S1.f)) then
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DO.f = 32'F(cvtToQuietNAN(64'F(S1.)))
elsif isQuietNAN(64'F(S1.f)) then

Do.f = S@.f
elsif isQuietNAN(64'F(S@.f)) then
Do.f = S1.f

elsif LT_NEG_ZERO(S®.f, S1.f) then
// NOTE: -0<+@ is TRUE in this comparison

De.f = S0.f

else
Do.f = S1.f

endif

else

if isNAN(64'F(S1.f)) then
De.f = S0.f

elsif isNAN(64'F(S@8.f)) then
po.f = S1.f

elsif LT_NEG_ZERO(S@.f, S1.f) then
// NOTE: -0<+@ is TRUE in this comparison

Do.f = S@.f
else

Do.f = S1.f
endif

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F32 272

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
((a>b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S0.f)))
elsif isSignalNAN(64'F(S1.f)) then
DB.f = 32'F(cvtToQuietNAN(64'F(S1.f)))
elsif isQuietNAN(64'F(S1.f)) then

Do.f = Se.f
elsif isQuietNAN(64'F(S@.f)) then
Do.f = S1.f

elsif GT_NEG_ZERO(Se.f, S1.f) then
// NOTE: +0>-0 is TRUE in this comparison
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De.f = S0.f

else
De.f = S1.f

endif

else

if isNAN(64'F(S1.f)) then
De.f = S0.f

elsif isNAN(64'F(S@.f)) then
Do.f = S1.f

elsif GT_NEG_ZERO(S®.f, S1.f) then
// NOTE: +0>-08 is TRUE in this comparison

De.f = S0.f
else

Do.f = S1.f
endif

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_I32 273

Select the minimum of two signed integers and store the selected value into a vector register.

DB.i = 80.1i < S1.1 ? S@.1i : S1.1

V_MAX_I32 274

Select the maximum of two signed integers and store the selected value into a vector register.

DB.i = S@.1i >= §1.1 ? S@.1i : S1.1

V_MIN_U32 275

Select the minimum of two unsigned integers and store the selected value into a vector register.
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DO.u = SO.u < ST.u ? S@.u : ST.u

V_MAX_U32 276

Select the maximum of two unsigned integers and store the selected value into a vector register.

DO.u = S@.u >= ST.u ? S@.u : Sl.u

V_LSHLREV_B32 280

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

DB.u = (S1.u << S@[4 : @].u)

V_LSHRREV_B32 281

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

DB.u = (S1.u >> S@[4 : @].u)

V_ASHRREV_I32 282

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

DB.i = (S1.i >> S@[4 : 0].u)

V_AND_B32 283

Calculate bitwise AND on two vector inputs and store the result into a vector register.

DB.u = (S@.u & S1.u)
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Notes

Input and output modifiers not supported.

V_OR_B32 284

Calculate bitwise OR on two vector inputs and store the result into a vector register.

DB.u = (S@.u | S1.u)

Notes

Input and output modifiers not supported.

V_XOR_B32 285

Calculate bitwise XOR on two vector inputs and store the result into a vector register.

DB.u = (S@.u * S1.u)

Notes

Input and output modifiers not supported.

V_XNOR_B32 286

Calculate bitwise XNOR on two vector inputs and store the result into a vector register.

DB.u = ~(S@.u A S1.u)

Notes

Input and output modifiers not supported.

V_ADD_CO_CI_U32 288

Add two unsigned inputs and a bit from a carry-in mask, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = 64'U(SB.u) + 64'U(S1.u) + VCC.u64[laneId].u64;
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VCC.u64[laneId] = tmp >= ©x100000000ULL ? 1'1U : 1'0U;
DO.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUB_CO_CI_U32 289

Subtract the second unsigned input from the first input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S@.u - S1.u - VCC.u64[laneld].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S@.u) ? 1'1U : 1'0U;
DO.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_CI_U32 290

Subtract the first unsigned input from the second input, subtract a bit from the carry-in mask, store the result
into a vector register and store the carry-out mask to a scalar register.

tmp = S1.u - S@.u - VCC.u64[laneld].u;
VCC.u64[laneId] = 64'U(S1.u) + VCC.u64[laneId].u64 > 64'U(S@.u) ? 1'1U : 1'0U;
DO.u = tmp.u

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at
S2.u.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_U32 293
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Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

DO.u = S@.u + S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUB_NC_U32 294

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

DO.u = S@.u - S1.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_NC_U32 295

Subtract the first unsigned input from the second input and store the result into a vector register. No carry-in or
carry-out support.

DO.u = S1.u - S@.u

Notes

Supports saturation (unsigned 32-bit integer domain).

V_FMAC_F32 299

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

Do.f = fma(S@.f, S1.f, DA.f)

V_CVT_PK_RTZ_F16_F32 303
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Convert two single-precision float inputs into a packed FP16 result with round toward zero semantics (ignore
the current rounding mode), and store the result into a vector register.

Do[15 : 8].f16 = f32_to_f16(S0.f);
DB[31 : 16].f16 = f32_to_f16(S1.f);
// Round-toward-zero regardless of current round mode setting in hardware.

Notes

This opcode is intended for use with 16-bit compressed exports. See V_CVT_F16_F32 for a version that respects
the current rounding mode.

V_ADD_F16 306

Add two floating point inputs and store the result into a vector register.

Do.f16 = S0.f16 + S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUB_F16 307

Subtract the second floating point input from the first input and store the result into a vector register.

Do.f16 = S@.f16 - S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_SUBREV_F16 308

Subtract the first floating point input from the second input and store the result into a vector register.

De.f16 = S1.f16 - S0.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.
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V_MUL_F16 309

Multiply two floating point inputs and store the result into a vector register.

DB.f16 = S@.f16 * S1.f16

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_FMAC_F16 310

Multiply two floating point inputs and accumulate the result into the destination register using fused multiply-
add.

Do.f16 = fma(S@.f16, S1.f16, DB.f16)

Notes

0.5ULP precision. Supports denormals, round mode, exception flags and saturation.

V_MAX_F16 313

Select the maximum of two floating point inputs and store the result into a vector register.

GT_NEG_ZERO = lambda(a, b) (
((a>b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S0.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S8.f16)))
elsif isSignalNAN(64'F(S1.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif isQuietNAN(64'F(S1.f16)) then
DO.f16 = S0.f16
elsif isQuietNAN(64'F(S8.f16)) then
DO.f16 = S1.f16
elsif GT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: +0>-08 is TRUE in this comparison
Do.f16 = SB.f16
else
DO.f16
endif

S1.f16

else
if isNAN(64'F(S1.f16)) then
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DB.f16 = SB.f16
elsif isNAN(64'F(S@.f16)) then
DB.f16 = S1.f16
elsif GT_NEG_ZERO(S®.f16, S1.f16) then
// NOTE: +0>-8 is TRUE in this comparison
DB.f16 = SB.f16
else
DB.f16 = S1.f16
endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MIN_F16 314

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
((a < b) || ((64'F(abs(a)) == 0.0) && (64'F(abs(b)) == 0.08) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(64'F(S@.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S0.f16)))
elsif isSignalNAN(64'F(S1.f16)) then
DO.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif isQuietNAN(64'F(S1.f16)) then
DB.f16 = SB.f16
elsif isQuietNAN(64'F(S@.f16)) then
DB.f16 = S1.f16
elsif LT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: -0<+@ is TRUE in this comparison
DB.f16 = SB.f16
else
DB.f16
endif
else
if isNAN(64'F(S1.f16)) then
DB.f16 = SB.f16
elsif isNAN(64'F(S0.f16)) then
Do.f16 = S1.f16
elsif LT_NEG_ZERO(S@.f16, S1.f16) then
// NOTE: -0<+@ is TRUE in this comparison
Do.f16 = S@6.f16
else

S1.f16
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DB.f16 = S1.f16
endif
endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F16 315

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the 1dexp() function in C.

DO.f16 = SO.F16 * 16'F(2.0F *% 32'I(S1.i16))

V_FMA_DX9_ZERO_F32 521

Multiply and add single-precision values. Follows DX9 rules where 0.0 times anything produces 0.0 (this is not
IEEE compliant).

if ((64'F(S@.f) == 0.8) || (64'F(S1.f) == 0.0)) then
// DX9 rules, 0.0 * x = 0.0

pDo.f = S2.f
else
De.f = fma(Se.f, S1.f, S2.f)
endif
V_MAD_I132_124 522

Multiply two signed 24-bit integers, add a signed 32-bit integer and store the result as a signed 32-bit integer.

DO.i = 32'I(S0.i24) * 32'I(S1.i24) + S2.i

Notes
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This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier.

V_MAD_U32_U24 523

Multiply two unsigned 24-bit integers, add an unsigned 32-bit integer and store the result as an unsigned 32-bit
integer.

DO.u = 32'U(S8.u24) * 32'U(S1.u24) + S2.u

Notes

This opcode is expected to be as efficient as basic single-precision opcodes since it utilizes the single-precision
floating point multiplier.

V_CUBEID_F32 524

Cubemap Face ID determination. Result is a floating point face ID.

// Set D8.f = cubemap face ID ({0.0, 1.0, ..., 5.0}).
// XYZ coordinate is given in (S@.f, S1.f, S2.f).

// S8.f = x

// S1.f =y

// S2.f =z

if ((abs(S2.f) >= abs(S@.f)) && (abs(S2.f) >= abs(S1.f))) then
if S2.f < 0.0F then

De.f = 5.0F
else

Do.f = 4.0F
endif

elsif abs(S1.f) >= abs(S@.f) then
if S1.f < 0.0F then

De.f = 3.6F
else
Do.f = 2.0F
endif
else
if S8.f < 0.0F then
Do.f = 1.06F
else
Do.f = 0.0F
endif
endif
V_CUBESC_F32 525
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Cubemap S coordinate.

// DB.f = cubemap S coordinate.

// XYZ coordinate is given in (S@.f, S1.f, S2.f).

// S8.f = x
// S1.f =y
/] S82.f =z

if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then

if S2.f < 0.0F then

De.f = -Se.f
else

De.f = S0.f
endif

elsif abs(S1.f) >= abs(S@.f) then

De.f = S0.f
else
if S@.f < @8.6F then
Do.f = S2.f
else
Do.f = -S2.f
endif
endif

AMD¢1

V_CUBETC_F32

Cubemap T coordinate.

// DB.f = cubemap T coordinate.

// XYZ coordinate is given in (Se.f, S1.f, S2.f).

// S8.f = x
// S1.f =y
// S2.f =z

if ((abs(S2.f) >= abs(S@.f)) && (abs(S2.f) >= abs(S1.f))) then

De.f = -S1.f

elsif abs(S1.f) >= abs(S@.f) then

if S1.f < 0.06F then
Do.f = -S2.f
else
Do.f = S2.f
endif
else
pDo.f = -S1.f
endif

526

V_CUBEMA_F32

Determine cubemap major axis.
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// DB.f = 2.0 * cubemap major axis.
// XYZ coordinate is given in (S@.f, S1.f, S2.f).

// SB.f = x
// S1.f =y
// S2.f =z

if ((abs(S2.f) >= abs(S0.f)) && (abs(S2.f) >= abs(S1.f))) then
Do.f = S2.f * 2.0F

elsif abs(S1.f) >= abs(S0.f) then
Do.f = S1.f * 2.0F

else
Do.f = SB.f * 2.0F

endif

V_BFE_U32 528

Bitfield extract. Extract unsigned bitfield from first operand using field offset in second operand and field size
in third operand.

DO.u = ((S@.u >> S1.u[4 : 8].u) & 32'U((1 << S2.u[4 : @].u) - 1))

V_BFE_I32 529

Bitfield extract. Extract signed bitfield from first operand using field offset in second operand and field size in
third operand.

tmp = ((S@.1i >> S1.u[4 : 0].u) & ((1 << S2.u[4 : 0@].u) - 1));
DB.i = 32'I(signextFromBit(tmp.i, S2.i[4 : ©0].i))

V_BFI_B32 530

Bitfield insert. Using a bitmask from the first operand, merge bitfield in second operand with packed value in
third operand.

DO.u = ((SO.u & ST.u) | (~SO.u & S2.u))

V_FMA_F32 531

Fused single precision multiply add.
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DO.f = fma(S0.f, S1.f, S2.f)

Notes

0.5ULP accuracy, denormals are supported.

V_FMA_F64 532

Fused double precision multiply add.

Do.f64 = fma(S0.f64, S1.f64, S2.f64)

Notes

0.5ULP precision, denormals are supported.

V_LERP_US 533
Unsigned 8-bit pixel average on packed unsigned bytes (linear interpolation).

Each byte in S2 acts as a round mode; if the LSB is set then 0.5 rounds up, otherwise 0.5 truncates.

DO.u = 32'U((S@.u[31 : 24] + S1.u[31 : 24] + S2.u[24].u8) >> 1U << 24U);
DO.u += 32'U((S@.u[23 : 16] + S1.u[23 : 16] + S2.u[16].u8) >> 1U << 16U);
DO.u += 32'U((S@.u[15 : 8] + S1.u[15 : 8] + S2.u[8].u8) >> 1U << 8U);
DO.u += 32'U((S@.u[7 : @] + S1.u[7 : @] + S2.u[0].u8) >> 1U)

V_ALIGNBIT_B32 534

Align a value to the specified bit position.

DB.u = 32'U(({ S@.u, ST.u } >> S2.u[4 : 0].u) & OxffffffffLL)

Notes

SO carries the MSBs and S1 carries the LSBs of the value being aligned.

V_ALIGNBYTE_B32 535
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Align a value to the specified byte position.

DO.u = 32'U(({ S@.u, ST.u } >> (S2.u[1 : @].u * 8U)) & OxffffffffLL)

Notes

S0 carries the MSBs and S1 carries the LSBs of the value being aligned.

V_MULLIT_F32 536

Multiply for lighting. Specific rules apply: 0.0 * x = 0.0; specific INF, NAN, overflow rules.

if ((S1.f == -MAX_FLOAT_F32) || (64'F(S1.f) == -INF) || isNAN(64'F(S1.f)) || (S2.f <= 0.0F) ||
isNAN(64'F(S2.f))) then

DO.f = -MAX_FLOAT_F32
else
pDe.f = SB.f » S1.f
endif
Notes
V_MIN3_F32 537

Return minimum single-precision value of three inputs.

DB.f = v_min_f32(v_min_f32(Se.f, S1.f), S2.f)

V_MIN3_I32 538

Return minimum signed integer value of three inputs.

DB.i = v_min_i32(v_min_i32(S@.1i, S1.i), S2.1i)

V_MIN3_U32 539

Return minimum unsigned integer value of three inputs.
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DO.u = v_min_u32(v_min_u32(S6.u, S1.u), S2.u)

AMDZ1

V_MAX3_F32 540
Return maximum single precision value of three inputs.
DB.f = v_max_f32(v_max_f32(Se.f, S1.f), S2.f)
V_MAX3_132 541
Return maximum signed integer value of three inputs.
DB.i = v_max_i32(v_max_i32(S@.i, S1.i), S2.1i)
V_MAX3_U32 542
Return maximum unsigned integer value of three inputs.
DB.u = v_max_u32(v_max_u32(S@.u, S1.u), S2.u)
V_MED3_F32 543
Return median single precision value of three inputs.
if (isNAN(64'F(S@.f)) || isNAN(64'F(S1.f)) || isNAN(64'F(S2.f))) then
De.f = v_min3_f32(se.f, S1.f, S2.f)
elsif v_max3_f32(Se.f, S1.f, S2.f) == SB.f then
De.f = v_max_f32(S1.f, S2.f)
elsif v_max3_f32(Se.f, S1.f, S2.f) == S1.f then
Do.f = v_max_f32(S0.f, S2.f)
else
Do.f = v_max_f32(S0.f, S1.f)
endif
V_MED3_I32 544
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Return median signed integer value of three inputs.

if v_max3_i32(S0.i, S1.i, S2.i) == S@.i then
DB.i = v_max_i32(S1.i, S2.1i)

elsif v_max3_i32(S@.i, S1.i, S2.i) == S1.i then
DO.i = v_max_132(S@.i, S2.i)

else
DB.1i = v_max_i32(S@.i, S1.1i)
endif
V_MED3_U32 545

Return median unsigned integer value of three inputs.

if v_max3_u32(S0.u, S1.u, S2.u) == S@.u then
DB.u = v_max_u32(S1.u, S2.u)

elsif v_max3_u32(S@.u, S1.u, S2.u) == S1.u then
DB.u = v_max_u32(S@.u, S2.u)

else
DB.u = v_max_u32(S@.u, S1.u)

endif

V_SAD_US8 546

Sum of absolute differences with accumulation, overflow into upper bits is allowed.

ABSDIFF = lambda(x, y) (

X>y?X-y:iy-Xx);
// UNSIGNED comparison
DO.u = S2.u;
DO.u += 32'U(ABSDIFF(S@.u[31 : 24], S1.u[31 : 24]));
DB.u += 32'U(ABSDIFF(S0.u[23 : 16], S1.u[23 : 16]));
DB.u += 32'U(ABSDIFF(S@.u[15 : 8], S1.u[15 : 8]));
DB.u += 32'U(ABSDIFF(S@.u[7 : 0], S1.u[7 : @]))

V_SAD_HI_US 547

Sum of absolute differences with accumulation, accumulate from the higher-order bits of the third source
operand.

DO.u = (32'U(v_sad_u8(S@, S1, @U)) << 16U) + S2.u
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V_SAD_U1l6 548

Short SAD with accumulation.

ABSDIFF = lambda(x, y) (
X>y?X-y:iy-Xx);
// UNSIGNED comparison
DO.u = S2.u;
DB.u += ABSDIFF(S@[31 : 16].u16, S1[31 : 16].ul16);
DB.u += ABSDIFF(S@[15 : @].u16, S1[15 : 0].u16)

V_SAD_U32 549

Dword SAD with accumulation.

ABSDIFF = lambda(x, y) (
X>y?x-y:1y-Xx);

// UNSIGNED comparison

DO.u = ABSDIFF(S@.u, S1.u) + S2.u

V_CVT_PK_US8_F32 550

Packed float to byte conversion.

Convert floating point value SO0 to 8-bit unsigned integer and pack the result into byte S1 of dword S2.

DO.u = (S2.u & 32'U(~(Bxff << (S1.u[1 : @].u * 8U))));
DO.u = (DO.u | ((32'U(f32_to_u8(SB.f)) & 255U) << (S1.u[1 : @].u * 8U)))
V_DIV_FIXUP_F32 551

Single precision division fixup.
S0 = Quotient, S1 = Denominator, S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by
zero exceptions caused by the division.

sign_out = (sign(S1.f) * sign(S2.f));
if isNAN(64'F(S2.f)) then

DO.f = 32'F(cvtToQuietNAN(64'F(S2.)))
elsif isNAN(64'F(S1.f)) then
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DO.f = 32'F(cvtToQuietNAN(64'F(S1.)))
elsif ((64'F(S1.f) == 8.8) && (64'F(S2.f) == 0.8)) then
// 0/0
DO.f = 32'F(6xffceeoes)
elsif ((64'F(abs(S1.f)) == +INF) && (64'F(abs(S2.f)) == +INF)) then
// inf/inf
DO.f = 32'F(6xffceeoen)
elsif ((64'F(S1.f) == 0.08) || (64'F(abs(S2.f)) == +INF)) then
// x/8, or inf/y
DO.f = sign_out ? -INF.f : +INF.f
elsif ((64'F(abs(S1.f)) == +INF) || (64'F(S2.f) == 0.8)) then
// x/inf, @/y
DO.f = sign_out ? -0.0F : 0.0F
elsif exponent(S2.f) - exponent(S1.f) < -150 then
DO.f = sign_out ? -UNDERFLOW_F32 : UNDERFLOW_F32
elsif exponent(S1.f) == 255 then
DO.f = sign_out ? -OVERFLOW_F32 : OVERFLOW_F32

else
DB.f = sign_out ? -abs(S@.f) : abs(Se.f)
endif
V_DIV_FIXUP_Fe64 552

Double precision division fixup.
S0 = Quotient, S1 = Denominator, S2 = Numerator.

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by
zero exceptions caused by the division.

sign_out = (sign(S1.f64) * sign(S2.f64));
if isNAN(S2.f64) then
DB.f64 = cvtToQuietNAN(S2.f64)
elsif isNAN(S1.f64) then
DO.f64 = cvtToQuietNAN(S1.f64)
elsif ((S1.f64 == 6.0) && (S2.f64 == 0.0)) then
// 0/0
DB.f64 = 64'F(0xfff8000000000000LL)
elsif ((abs(S1.f64) == +INF) && (abs(S2.f64) == +INF)) then
// inf/inf
DB.f64 = 64'F(0xfff8000000000000LL)
elsif ((S1.f64 == 0.0) || (abs(S2.f64) == +INF)) then
// x/8, or inf/y
DO.f64 = sign_out ? -INF : +INF
elsif ((abs(S1.f64) == +INF) || (S2.f64 == 0.0)) then
// x/inf, @/y
DO.f64 = sign_out ? -0.0 : 0.0
elsif exponent(S2.f64) - exponent(S1.f64) < -1075 then
DO.f64 = sign_out ? -UNDERFLOW_F64 : UNDERFLOW_F64
elsif exponent(S1.f64) == 2047 then
DO.f64 = sign_out ? -OVERFLOW_F64 : OVERFLOW_F64
else
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DB.f64 = sign_out ? -abs(S@.f64) : abs(S0.f64)
endif

V_DIV_FMAS_F32 567
Single precision FMA with fused scale.
This opcode performs a standard Fused Multiply-Add operation and conditionally scales the resulting exponent

if VCC is set.

if VCC.u64[laneId] then

DB.f = 2.8F ** 32 * fma(Se.f, S1.f, S2.f)
else

DO.f = fma(S0.f, S1.f, S2.f)
endif

Notes

Input denormals are not flushed, but output flushing is allowed.

V_DIV_FMAS_Fé64 568
Double precision FMA with fused scale.
This opcode performs a standard Fused Multiply-Add operation and conditionally scales the resulting exponent

if VCC is set.

if VCC.u64[laneId] then

DB.f64 = 2.0 **x 64 * fma(S6.f64, S1.f64, S2.f64)
else

Do.f64 = fma(S0.f64, S1.f64, S2.f64)
endif

Notes

Input denormals are not flushed, but output flushing is allowed.

V_MSAD_US 569
Masked sum of absolute differences with accumulation, overflow into upper bits is allowed.

Components where the reference value in S1 is zero are not included in the sum.

ABSDIFF = lambda(x, y) (
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X>y?2x-y:y-Xx);
// UNSIGNED comparison
DO.u = S2.u;

DO.u += S1.u[31 : 24] == 8'0U ? OU : 32'U(ABSDIFF(S@.u[31 : 24], S1.u[31 : 24]));
DO.u += S1.u[23 : 16] == 8'6U ? OU : 32'U(ABSDIFF(S@.u[23 : 16], S1.u[23 : 16]));
DO.u += S1.u[15 : 8] == 8'0U ? @U : 32'U(ABSDIFF(S@.u[15 : 8], S1.u[15 : 8]));
DO.u += S1.u[7 : @] == 8'6U ? BU : 32'U(ABSDIFF(S@.u[7 : @], S1.u[7 : @]))

AMD¢1

V_QSAD_PK_U16_U8 570
Quad-byte SAD with 16-bit packed accumulation.

DB[63 : 48] = 16'B(v_sad_u8(S8[55 : 24], S1[31 : 8], S2[63 : 48].u));

DB[47 : 32] = 16'B(v_sad_u8(Se[47 : 16], S1[31 : 8], S2[47 : 32].u));

DB[31 : 16] = 16'B(v_sad_u8(S6[39 : 8], S1[31 : @], S2[31 : 16].u));

DB[15 : @] = 16'B(v_sad_u8(S@[31 : @], S1[31 : @], S2[15 : 8].u))
V_MQSAD_PK_U16_U8 571
Quad-byte masked SAD with 16-bit packed accumulation.

DO[63 : 48] = 16'B(v_msad_u8(S@[55 : 24], S1[31 : @], S2[63 : 48].u));

DO[47 : 32] = 16'B(v_msad_u8(Se[47 : 16], S1[31 : @], S2[47 : 32].u));

DB[31 : 16] = 16'B(v_msad_u8(S6[39 : 8], S1[31 : @], S2[31 : 16].u));

DB[15 : @] = 16'B(v_msad_u8(S0[31 : @], S1[31 : @], S2[15 : 0].u))
V_MQSAD_U32_U8 573
Quad-byte masked SAD with 32-bit packed accumulation.

DB[127 : 96] = 32'B(v_msad_u8(S@[55 : 24], S1[31 : @], S2[127 : 96].u));

DB[95 : 64] = 32'B(v_msad_u8(S0[47 : 16], S1[31 : 0], S2[95 : 64].u));

DB[63 : 32] = 32'B(v_msad_u8(S@[39 : 8], S1[31 : 8], S2[63 : 32].u));

DB[31 : @] = 32'B(v_msad_u8(S0[31 : @], S1[31 : @], S2[31 : @].u))
V_XOR3_B32 576

Calculate the bitwise XOR of three vector inputs and store the result into a vector register.

DO.u = (S@.u *» S1.u * S2.u)
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Notes

Input and output modifiers not supported.

V_MAD_U16 577

Multiply and add three unsigned short values.

DO.u16 = SO@.u16 * S1.u16 + S2.ul16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_PERM_B32 580

Permute a 64-bit value constructed from two vector inputs using a per-lane selector and store the result into a
vector register.

BYTE_PERMUTE = lambda(data, sel) (
declare in : 8'B[8];
for i in @ : 7 do
in[i] = data[i * 8 + 7 : i * 8].b8
endfor;
if sel.u >= 13U then
return 8'oxff
elsif sel.u == 12U then
return 8'0x0
elsif sel.u == 11U then
return in[7][7].b8 * 8'@xff
elsif sel.u == 108U then
return in[5][7].b8 * 8'Oxff
elsif sel.u == 9U then
return in[3][7].b8 * 8'Oxff
elsif sel.u == 8U then
return in[1][7].b8 * 8'Oxff
else
return in[sell
endif);
DO[31 : 24] = BYTE_PERMUTE({ S@.u, S1.u }, S2.u[31 : 24]);
DB[23 : 16] = BYTE_PERMUTE({ S@.u, S1.u }, S2.u[23 : 16]);
DB[15 : 8] = BYTE_PERMUTE({ S@.u, S1.u }, S2.u[15 : 8]);
DO[7 : @] = BYTE_PERMUTE({ S@.u, S1.u }, S2.u[7 : @])

Notes

Selects 8 through 11 are useful in modeling sign extension of a smaller-precision signed integer to a larger-
precision result.
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Note the MSBs of the 64-bit value being selected are stored in SO. This is counterintuitive for a little-endian

architecture.

V_XAD_U32 581

Calculate bitwise XOR of the first two vector inputs, then add the third vector input to the intermediate result,
then store the result into a vector register.

DB.u = (SB.u *» S1.u) + S2.u

Notes

No carryin/carryout and no saturation. This opcode is designed to help accelerate the SHA256 hash algorithm.

V_LSHL_ADD_U32 582

Given a shift count in the second input, calculate the logical shift left of the first input, then add the third input
to the intermediate result, then store the final result into a vector register.

DB.u = (SB@.u << S1.u[4 : @].u) + S2.u

V_ADD_LSHL_U32 583

Add the first two integer inputs, then given a shift count in the third input, calculate the logical shift left of the
intermediate result, then store the final result into a vector register.

DB.u = ((S@.u + S1.u) << S2.u[4 : @].u)

V_FMA_F16 584

Fused half precision multiply add.

Do.f16 = fma(S@.f16, S1.f16, S2.f16)

Notes

0.5ULP accuracy, denormals are supported.
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V_MIN3_F16

Return minimum FP16 value of three inputs.

DO.f16 = v_min_f16(v_min_f16(S0.f16, S1.f16), S2.f16)

AMDZ1

585

V_MIN3_I16

Return minimum signed short value of three inputs.

DO.i16 = v_min_i16(v_min_i16(S0.i16, S1.1i16), S2.i16)

586

V_MIN3_Ul6

Return minimum unsigned short value of three inputs.

DB.u16 = v_min_u16(v_min_u16(S@.u16, S1.ul16), S2.u16)

587

V_MAX3_F16

Return maximum FP16 value of three inputs.

DB.f16 = v_max_f16(v_max_f16(S@.f16, S1.f16), S2.f16)

588

V_MAX3_I16

Return maximum signed short value of three inputs.

DO.i16 = v_max_i16(v_max_i16(S0.i16, S1.i16), S2.i16)

589

V_MAX3_Ul6

Return maximum unsigned short value of three inputs.
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DO.u16 = v_max_ul6(v_max_ul6(S@.ul16, S1.ul6), S2.ul16)

V_MED3_F16 591

Return median FP16 value of three inputs.

if (isNAN(64'F(S@.f16)) || isNAN(64'F(S1.f16)) || isNAN(64'F(S2.f16))) then
DB.f16 = v_min3_f16(S0.f16, S1.f16, S2.f16)
elsif v_max3_f16(S0.f16, S1.f16, S2.f16) == SOB.f16 then
DB.f16 = v_max_f16(S1.f16, S2.f16)
elsif v_max3_f16(S0.f16, S1.f16, S2.f16) == S1.f16 then
DB.f16 = v_max_f16(S6.f16, S2.f16)
else
DO.f16 = v_max_f16(S0.f16, S1.f16)
endif

V_MED3_I16 592

Return median signed short value of three inputs.

if v_max3_116(S0.i16, S1.i16, S2.i16) == S@.i16 then
DB.1i16 = v_max_i16(S1.1i16, S2.i16)

elsif v_max3_1i16(S@.1i16, S1.i16, S2.i16) == S1.i16 then
DB.116 = v_max_i16(S@.1i16, S2.1i16)

else
DB.1i16 = v_max_i16(S@.1i16, S1.1i16)

endif

V_MED3_U16 593

Return median unsigned short value of three inputs.

if v_max3_u16(S0.u16, S1.u16, S2.u16) == S@.ul16 then
DB.u16 = v_max_u16(S1.u16, S2.u16)

elsif v_max3_u16(S@.u16, S1.u16, S2.u16) == S1.u16 then
DB.u16 = v_max_u16(S@.u16, S2.u16)

else
DB.u16 = v_max_u16(S@.u16, S1.u16)

endif

V_MAD_I16 595
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Multiply and add three signed short values.

DB.i16 = S@.i16 * S1.i16 + S2.1i16

Notes

Supports saturation (signed 16-bit integer domain).

AMD¢1

V_DIV_FIXUP_F16
Half precision division fixup.

S0 = Quotient, S1 = Denominator, S2 = Numerator.

596

Given a numerator, denominator, and quotient from a divide, this opcode detects and applies specific case
numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by

zero exceptions caused by the division.

sign_out = (sign(S1.f16) * sign(S2.f16));
if isNAN(64'F(S2.f16)) then
DB.f16 = 16'F(cvtToQuietNAN(64'F(S2.f16)))
elsif isNAN(64'F(S1.f16)) then
DB.f16 = 16'F(cvtToQuietNAN(64'F(S1.f16)))
elsif ((64'F(S1.f16) == 0.0) && (64'F(S2.f16) == 0.8)) then
// @/0
DB.f16 = 16'F(0xfe00)

elsif ((64'F(abs(S1.f16)) == +INF) && (64'F(abs(S2.f16)) == +INF)) then

// inf/inf
DB.f16 = 16'F(0xfe00)
elsif ((64'F(S1.f16) == 0.8) || (64'F(abs(S2.f16)) == +INF)) then
// x/8, or inf/y
DO.f16 = sign_out ? -INF.f16 : +INF.f16
elsif ((64'F(abs(S1.f16)) == +INF) || (64'F(S2.f16) == 08.0)) then
// x/inf, @/y
DO.f16 = sign_out ? -16'0.0 : 16'0.0
else
DB.f16 = sign_out ? -abs(S@.f16) : abs(S0.f16)
endif

V_ADD3_U32

Add three unsigned integers.

DO.u = SB.u + S1.u + S2.u

597
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V_LSHL_OR_B32 598

Given a shift count in the second input, calculate the logical shift left of the first input, then calculate the
bitwise OR of the intermediate result and the third input, then store the final result into a vector register.

DB.u = ((S@.u << S1.u[4 : @].u) | S2.u)

V_AND_OR_B32 599

Calculate bitwise AND on the first two vector inputs, then compute the bitwise OR of the intermediate result
and the third vector input, then store the result into a vector register.

DB.u = ((S@.u & S1.u) | S2.u)

Notes

Input and output modifiers not supported.

V_OR3_B32 600

Calculate the bitwise OR of three vector inputs and store the result into a vector register.

DB.u = (SB.u | S1.u | S2.u)

Notes

Input and output modifiers not supported.

V_MAD_U32_U16 601

Multiply and add unsigned values.

DB.u = 32'U(SB.u16) * 32'U(S1.u16) + S2.u

V_MAD_I32_I16 602

Multiply and add signed values.
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DB.i = 32'I(SB.i16) * 32'I(S1.i16) + S2.i

V_PERMLANE16_B32 603
Perform arbitrary gather-style operation within a row (16 contiguous lanes).

The first source must be a VGPR and the second and third sources must be scalar values; the second and third
source are combined into a single 64-bit value representing lane selects used to swizzle within each row.

OPSEL is not used in its typical manner for this instruction. For this instruction OPSEL[0] is overloaded to
represent the DPP 'FI' (Fetch Inactive) bit and OPSEL[1] is overloaded to represent the DPP 'BOUND_CTRL' bit.
The remaining OPSEL bits are reserved for this instruction.

Compare with V_PERMLANEX16_B32.

declare tmp : 32'B[64];
lanesel = { S2.u, S1.u };
// Concatenate lane select bits
for i in @ : WAVE32 ? 31 : 63 do
// Copy original S@ in case D==S0
tmp[i] = VGPR[i][SRC®@.u]
endfor;
for row in @ : WAVE32 ? 1 : 3 do
// Implement arbitrary swizzle within each row
for i in @ : 15 do
if EXEC[row * 16 + i].ul then
VGPR[row * 16 + i][VDST.u] = tmp[64'B(row * 16) + lanesel[i * 4 + 3 : i * 4]]
endif
endfor
endfor

Notes
ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

Example implementing a rotation within each row:

v_mov_b32 s@, 0x87654321;
v_mov_b32 s1, 0x08fedcba9;
v_permlane16_b32 v1, v@, s, s1;
// ROW O:

// v1.lane[@] <- v@.lane[1]
// v1.lane[1] <- v@.lane[2]
/] ...

// v1.lane[14] <- v@.lane[15]
// v1.lane[15] <- v@.lane[0]
//

// ROW 1:

// v1.lane[16] <- v@.lane[17]
// v1.lane[17] <- v@.lane[18]

16.12. VOP3 & VOP3SD Instructions 423 of 600



"RDNA3" Instruction Set Architecture

/] ...
// v1.lane[30] <- v@.lane
// v1.lane[31] <- v@.lane

[31]
[16]

AMD¢1

V_PERMLANEX16_B32

Perform arbitrary gather-style operation across two rows (each row is 16 contiguous lanes).

604

The first source must be a VGPR and the second and third sources must be scalar values; the second and third
source are combined into a single 64-bit value representing lane selects used to swizzle within each row.

OPSEL is not used in its typical manner for this instruction. For this instruction OPSEL[0] is overloaded to
represent the DPP 'FI' (Fetch Inactive) bit and OPSEL[1] is overloaded to represent the DPP 'BOUND_CTRL' bit.
The remaining OPSEL bits are reserved for this instruction.

Compare with V_PERMLANE16_B32.

declare tmp : 32'B[64];
lanesel = { S2.u, S1.u };

// Concatenate lane select bits

for i in @ : WAVE32 ? 31

. 63 do

// Copy original S@ in case D==S0
tmp[i] = VGPR[i][SRCO@.u]

endfor;
for row in @ : WAVE32 ? 1

: 3 do

// Implement arbitrary swizzle across two rows

altrow = { row[1], ~row[@] };

// 1<->0, 3<->2
for i in @ : 15 do

if EXEC[row * 16 + i].ul then

VGPR[row * 16 + i][VDST.u] = tmp[64'B(altrow.i * 16) + lanesel[i * 4 + 3 :

endif
endfor
endfor

Notes

ABS, NEG and OMOD modifiers should all be zeroed for this instruction.

Example implementing a rotation across an entire wave32 wavefront:

// Note for this to work,

// For this rotation, lane 15 gets data from lane 16, lane 31 gets data from lane ©.

source and destination VGPRs must be different.

// These are the only two lanes that need to use v_permlanex16_b32.

// Enable only the threads that get data from their own row.
v_mov_b32 exec_lo, Ox7fff7fff; // Lanes getting data from their own row

v_mov_b32 s0@, 0x87654321;
v_mov_b32 s1, @xBfedcba9;
v_permlane16_b32 v1, veO,
// ROW ©:

s@, s1 fi; // FI bit needed for lanes 14 and 30
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// v1.lane[@] <- v@.lane[1]

// v1.lane[1] <- v@.lane[2]

/...

// v1.lane[14] <- v@.lane[15] (needs FI to read)
// v1.lane[15] unset

//

// ROW 1:

// v1.lane[16] <- vO@.lane[17]

// v1.lane[17] <- vO@.lane[18]

/] ...

// v1.lane[30] <- v@.lane[31] (needs FI to read)
// v1.lane[31] unset

// Enable only the threads that get data from the other row.

v_mov_b32 exec_lo, 0x80008000; // Lanes getting data from the other row
v_permlanex16_b32 v1, v@, s0, s1 fi; // FI bit needed for lanes 15 and 31
// v1.lane[15] <- v@.lane[16]

// v1.lane[31] <- vO@.lane[0]

V_CNDMASK_B16 605

Copy data from one of two inputs based on the vector condition code and store the result into a vector register.

DO.u16 = VCC.u64[laneId] ? S1.u16 : S@.u16

Notes
In VOP3 the VCC source may be a scalar GPR specified in S2.

Floating-point modifiers are valid for this instruction if SO and S1 are 16-bit floating point values. This
instruction is suitable for negating or taking the absolute value of a floating-point value.

V_MAXMIN_F32 606

Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

DB.f = v_min_f32(v_max_f32(Se.f, S1.f), S2.f)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.
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V_MINMAX_F32 607
Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's minBound > maxBound.

DB.f = v_max_f32(v_min_f32(Se.f, S1.f), S2.f)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MAXMIN_F16 608
Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

DB.f16 = v_min_f16(v_max_f16(S@.f16, S1.f16), S2.f16)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MINMAX_F16 609
Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.

DB.f16 = v_max_f16(v_min_f16(S0.f16, S1.f16), S2.f16)

Notes

Support input denorm control, allow output denorm value. Exceptions are supported. Note: +0.0 > -0.0 is true.

V_MAXMIN_U32 610

Compute maximum of first two operands, followed by minimum of that result and the third operand.
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This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the

clamp's maxBound < minBound.

DB.i = 32'I(v_min_u32(v_max_u32(S8.u, S1.u), S2.u))

V_MINMAX_U32 611
Compute minimum of first two operands, followed by maximum of that result and the third operand.
This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the
clamp's maxBound < minBound.
DB.i = 32'I(v_max_u32(v_min_u32(SB.u, S1.u), S2.u))

V_MAXMIN_I32 612

Compute maximum of first two operands, followed by minimum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the

clamp's maxBound < minBound.

DO.i = v_min_i32(v_max_i32(S8.i, S1.i), $2.i)
613

V_MINMAX_I32

Compute minimum of first two operands, followed by maximum of that result and the third operand.

This instruction can emulate an API-level "clamp"; unlike MED3 this correctly handles the case where the

clamp's maxBound < minBound.

DB.i = v_max_i32(v_min_i32(S@.1i, S1.i), S2.1i)

V_DOT2_F16_F16 614
Dot product of packed FP16 values.
tmp = S@[15 : ©].f16 * S1[15 : @].f16;
tmp += SB[31 : 16].f16 * S1[31 : 16].f16;
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tmp += S2.f16;
DO.f16 = tmp

Notes

OPSELI2] controls which half of S2 is read and OPSEL[3] controls which half of D is written; OPSEL[1:0] are
ignored.

V_DOT2_BF16_BF16 615

Dot product of packed brain-float values.

tmp = SB[15 : 0].bf16 * S1[15 : @].bf16;
tmp += SO[31 : 16].bf16 * S1[31 : 16].bf16;
tmp += S2.bf16;

DO.bf16 = tmp

Notes

OPSEL[2] controls which half of S2 is read and OPSEL[3] controls which half of D is written; OPSEL[1:0] are
ignored.

V_DIV_SCALE_F32 764
Single precision division pre-scale.
S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode appropriately scales inputs for division to avoid subnormal
terms during Newton-Raphson correction method. SO must be the same value as either S1 or S2.

This opcode produces a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_F32).

VCC = OxOLL;
if ((64'F(S2.f) == 0.0) || (64'F(S1.f) == 0.0)) then
DO.f = NAN.f
elsif exponent(S2.f) - exponent(S1.f) >= 96 then
// N/D near MAX_FLOAT_F32
VCC = Ox1LL;
if S@.f == S1.f then
// Only scale the denominator
DB.f = ldexp(Se.f, 64)
endif
elsif S1.f == DENORM.f then
Do.f = ldexp(Se.f, 64)
elsif ((1.0 / 64'F(S1.f) == DENORM.f64) && (S2.f / S1.f == DENORM.f)) then
VCC = OxILL;
if S0.f == S1.f then
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// Only scale the denominator
DB.f = ldexp(Se.f, 64)
endif
elsif 1.0 / 64'F(S1.f) == DENORM.f64 then
DO.f = ldexp(S6.f, -64)
elsif S2.f / S1.f == DENORM.f then
VCC = Ox1LL;
if S@.f == S2.f then
// Only scale the numerator
DB.f = 1ldexp(Se.f, 64)
endif
elsif exponent(S2.f) <= 23 then
// Numerator is tiny
Do.f = ldexp(Se.f, 64)
endif

V_DIV_SCALE_F64 765

Double precision division pre-scale.
S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator.

Given a numerator and denominator, this opcode appropriately scales inputs for division to avoid subnormal
terms during Newton-Raphson correction method. SO must be the same value as either S1 or S2.

This opcode produces a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_Fé64).

VCC = ox0LL;
if ((S2.f64 == 0.0) || (S1.f64 == 0.0)) then
DO.f64 = NAN.f64
elsif exponent(S2.f64) - exponent(S1.f64) >= 768 then
// N/D near MAX_FLOAT_F64
VCC = Ox1LL;
if S0.f64 == S1.f64 then
// Only scale the denominator
DB.f64 = ldexp(SO.f64, 128)
endif
elsif S1.f64 == DENORM.f64 then
DB.f64 = ldexp(S0.f64, 128)
elsif ((1.0 / S1.f64 == DENORM.f64) && (S2.f64 / S1.f64 == DENORM.f64)) then
VCC = Ox1LL;
if S0.f64 == S1.f64 then
// Only scale the denominator
DB.f64 = ldexp(S@.f64, 128)
endif
elsif 1.0 / S1.f64 == DENORM.f64 then
D8.f64 = ldexp(S0.f64, -128)
elsif S2.f64 / S1.f64 == DENORM.f64 then
VCC = Ox1LL;
if S0.f64 == S2.f64 then
// Only scale the numerator
DB.f64 = ldexp(SO.f64, 128)
endif
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elsif exponent(S2.f64) <= 53 then
// Numerator is tiny
DO.f64 = ldexp(SO.f64, 128)
endif

V_MAD_U64_U32 766

Multiply two unsigned integer inputs, add a third unsigned integer input, store the result into a 64-bit vector
register and store the overflow/carryout into a scalar mask register.

{ D1.ul, DB.u64 } = 65'B(65'U(SB.u) * 65'U(ST.u) + 65'U(S2.u64))

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

V_MAD_I64_132 767

Multiply two signed integer inputs, add a third signed integer input, store the result into a 64-bit vector register
and store the overflow/carryout into a scalar mask register.

{ D1.1i1, DO.i64 } = 65'B(65'I(S0.1) * 65'I(S1.i) + 65'I(S2.164))

Notes

In VOP3 the VCC destination may be an arbitrary SGPR-pair.

V_ADD_CO_U32 768

Add two unsigned inputs, store the result into a vector register and store the carry-out mask into a scalar
register.

tmp = 64'U(S@.u) + 64'U(S1.u);

VCC.u64[laneId] = tmp >= ©x100000000ULL ? 1'1U : 1'0U;

// VCC is an UNSIGNED overflow/carry-out for V_ADD_CO_CI_U32.
DO.u = tmp.u

Notes
In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).
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V_SUB_CO_U32 769

Subtract the second unsigned input from the first input, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = SO@.u - S1.u;

VCC.u64[laneId] = S1.u > SB.u ? 1'1U : 1'0U;

// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.
DO.u = tmp.u

Notes
In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).

V_SUBREV_CO_U32 770

Subtract the first unsigned input from the second input, store the result into a vector register and store the
carry-out mask into a scalar register.

tmp = S1.u - S@.u;

VCC.u64[laneId] = SO.u > ST.u ? 1'1U : 1'0U;

// VCC is an UNSIGNED overflow/carry-out for V_SUB_CO_CI_U32.
DO.u = tmp.u

Notes
In VOP3 the VCC destination may be an arbitrary SGPR-pair.

Supports saturation (unsigned 32-bit integer domain).

V_ADD_NC_Ule6 771

Add two unsigned inputs and store the result into a vector register. No carry-in or carry-out support.

DO.u16 = S@.u16 + S1.ul16

Notes

Supports saturation (unsigned 16-bit integer domain).
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V_SUB_NC_U16 772

Subtract the second unsigned input from the first input and store the result into a vector register. No carry-in
or carry-out support.

DO.u16 = S@.u16 - S1.ul16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_MUL_LO_U16 773

Multiply two unsigned inputs and store the low bits of the result into a vector register.

DO.u16 = S@.u16 * S1.ul16

Notes

Supports saturation (unsigned 16-bit integer domain).

V_CVT_PK_I16_F32 774

Convert two single-precision floats into a packed value of signed words.

DO[31 : 16] = 16'B(v_cvt_i16_f32(S1.f));
DO[15 : 8] = 16'B(v_cvt_i16_f32(S6.f))

V_CVT_PK_U16_F32 775

Convert two single-precision floats into a packed value of unsigned words.

DB[31 : 16] = 16'B(v_cvt_u16_f32(S1.f));
DB[15 : @] = 16'B(v_cvt_u16_f32(S0.f))

V_MAX_Ulé 777

Select the maximum of two unsigned integers and store the selected value into a vector register.
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DO.u16 = S@.u16 >= S1.u16 ? S@.u16 : S1.ul6

V_MAX_I16 778

Select the maximum of two signed integers and store the selected value into a vector register.

DB.i16 = S@.i16 >= S1.1i16 ? S@.1i16 : S1.i16

V_MIN_U16 779

Select the minimum of two unsigned integers and store the selected value into a vector register.

DO.u16 = S@.u16 < S1.u16 ? SB.u16 : S1.ul6

V_MIN_I16 780

Select the minimum of two signed integers and store the selected value into a vector register.

DO.i16 = S@.i16 < S1.i16 ? S@.i16 : S1.i16

V_ADD_NC_I16 781

Add two signed inputs and store the result into a vector register. No carry-in or carry-out support.

DB.i16 = S@.i16 + S1.i16

Notes

Supports saturation (signed 16-bit integer domain).

V_SUB_NC_I16 782

Subtract the second signed input from the first input and store the result into a vector register. No carry-in or
carry-out support.
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DB.i16 = S@.i16 - S1.1i16

Notes

Supports saturation (signed 16-bit integer domain).

AMD¢1

V_PACK_B32_F16 785
Pack two FP16 values together.

DB[31 : 16].f16 = S1.f16;

De[15 : 8].f16 = S0.f16
V_CVT_PK_NORM_I16_F16 786
Convert two FP16 values into packed signed normalized shorts.

DB[15 : ©].i16 = f16_to_snorm(SO[15 : @8].f16);

DB[31 : 16].i16 = f16_to_snorm(S1[15 : 0].f16)
V_CVT_PK_NORM_U16_F16 787
Convert two FP16 values into packed unsigned normalized shorts.

DB[15 : 0].u16 = f16_to_unorm(SB[15 : 0].f16);

DB[31 : 16].u16 = f16_to_unorm(S1[15 : @8].f16)
V_LDEXP_F32 796

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the 1dexp() function in C.

Do.f = SO.f * 2.0F *x S1.1

V_BFM_B32
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Bitfield modify.

S0 is the bitfield width and S1 is the bitfield offset.

DB.u = 32'U(((1 << SB[4 : B].u) - 1) << S1[4 : @].u)

AMD¢1

V_BCNT_U32_B32

Count the number of "1" bits in the vector input and store the result into a vector register.

DO.u = S1.u;

for i in @ : 31 do
DO.u += S@[i].u;
// count i'th bit

endfor

798

V_MBCNT_LO_U32_B32
Masked bit count.

laneld is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_HI_U32_B32.

ThreadMask = (1LL << laneId.u) - 1LL;
MaskedValue = (S@.u & ThreadMask[31 : ©0].u);
DO.u = S1.u;
for i in @ : 31 do

DO.u += MaskedValue[i] == 1'1U ? 1U : @U
endfor

799

V_MBCNT_HI_U32_B32

Masked bit count, high pass.

laneld is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_LO_U32_B32.

ThreadMask = (1LL << laneId.u) - 1LL;
MaskedValue = (SO.u & ThreadMask[63 : 32].u);

DO.u = S1.u;
for i in @8 : 31 do

DO.u += MaskedValue[i] == 1'1U ? 1U : @U
endfor
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Notes

AMD¢1

Note that in Wave32 mode ThreadMask[63:32] == 0 and this instruction simply performs a move from S1 to D.

Example to compute each thread's position in 0..63:

v_mbcnt_lo_u32_b32 vB, -1, 0
v_mbcnt_hi_u32_b32 v@, -1, v@
// v@ now contains laneId

V_CVT_PK_NORM_I16_F32

Convert two single-precision floats into a packed signed normalized value.

DB[15 : @].i16 = f32_to_snorm(S6.f);
DO[31 : 16].i16 = f32_to_snorm(S1.f)

801

V_CVT_PK_NORM_U16_F32

Convert two single-precision floats into a packed unsigned normalized value.

DB[15 : 0].u16 = f32_to_unorm(S6.f);
DB[31 : 16].u16 = f32_to_unorm(S1.f)

802

V_CVT_PK_U16_U32

Convert two unsigned integers into a packed unsigned short.

DO[15 : 8].u16 = u32_to_u16(S0.u);
DO[31 : 16].u16 = u32_to_u16(S1.u)

803

V_CVT_PK_I16_132

Convert two signed integers into a packed signed short.

DO[15 : 8].i16 = i32_to_i16(S0.1);
DO[31 : 16].116 = i32_to_i16(S1.1)

804
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V_SUB_NC_I32 805

Subtract the second signed input from the first input and store the result into a vector register. No carry-in or
carry-out support.

DB.i = S@.1i - S1.1i

Notes

Supports saturation (signed 32-bit integer domain).

V_ADD_NC_I32 806

Add two signed inputs and store the result into a vector register. No carry-in or carry-out support.

DB.i = S@.1i + S1.1i

Notes

Supports saturation (signed 32-bit integer domain).

V_ADD_Fe64 807

Add two floating point inputs and store the result into a vector register.

Do.f64 = S0.f64 + S1.f64

Notes

0.5ULP precision, denormals are supported.

V_MUL_Fé64 808

Multiply two floating point inputs and store the result into a vector register.

Do.f64 = SO.f64 * S1.f64

Notes

0.5ULP precision, denormals are supported.
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AMD¢1

V_MIN_Fé64

Select the minimum of two floating point inputs and store the result into a vector register.

LT_NEG_ZERO = lambda(a, b) (
((a < b) || ((abs(a) == 0.0) && (abs(b) == 0.0) && sign(a) && !sign(b))));
// Version of comparison where -0.0 < +0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(S@.f64) then
DO.f64 = cvtToQuietNAN(SO.f64)
elsif isSignalNAN(S1.f64) then
DO.f64 = cvtToQuietNAN(S1.f64)
elsif isQuietNAN(S1.f64) then
DO.f64 = SO.f64
elsif isQuietNAN(S@.f64) then
D0.f64 = S1.f64
elsif LT_NEG_ZERO(S@.f64, S1.f64) then
// NOTE: -0<+@ is TRUE in this comparison
D6.f64 = SO.f64
else
De.f64 = S1.f64
endif
else
if isNAN(S1.f64) then
D8.f64 = S0.f64
elsif isNAN(S@.f64) then
Do.f64 = S1.f64
elsif LT_NEG_ZERO(S@.f64, S1.f64) then
// NOTE: -0<+@ is TRUE in this comparison
Do.f64 = S0.f64
else
Do.f64
endif
endif;

S1.f64

// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes

IEEE compliant. Supports denormals, round mode, exception flags, saturation.

809

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can

be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_MAX_F64

Select the maximum of two floating point inputs and store the result into a vector register.
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GT_NEG_ZERO = lambda(a, b) (
((a >b) || ((abs(a) == 0.0) && (abs(b) == 0.0) && !sign(a) && sign(b))));
// Version of comparison where +0.0 > -0.0, differs from IEEE
if WAVE_MODE.IEEE then
if isSignalNAN(S@.f64) then
DB.f64 = cvtToQuietNAN(SO.f64)
elsif isSignalNAN(S1.f64) then
DB.f64 = cvtToQuietNAN(S1.f64)
elsif isQuietNAN(S1.f64) then
Do.f64 = S0.f64
elsif isQuietNAN(S@.f64) then
Do.f64 = S1.f64
elsif GT_NEG_ZERO(S@.f64, S1.f64) then
// NOTE: +0>-8 is TRUE in this comparison
Do.f64 = S@.f64
else
Do.f64 = S1.f64
endif
else
if isNAN(S1.f64) then
Do.f64 = SO.f64
elsif isNAN(S@.f64) then
Do.f64 = S1.f64
elsif GT_NEG_ZERO(S@.f64, S1.f64) then
// NOTE: +0>-08 is TRUE in this comparison
DO.f64 = SO.f64
else
Do.f64
endif

S1.f64

endif;
// Inequalities in the above pseudocode behave differently from IEEE
// when both inputs are +-0.

Notes
IEEE compliant. Supports denormals, round mode, exception flags, saturation.

Denorm flushing for this operation is effectively controlled by the input denorm mode control: If input
denorm mode is disabling denorm, the internal result of a min/max operation cannot be a denorm value, so
output denorm mode is irrelevant. If input denorm mode is enabling denorm, the internal min/max result can
be a denorm and this operation outputs as a denorm regardless of output denorm mode.

V_LDEXP_F64 811

Multiply the first input, a floating point value, by an integral power of 2 specified in the second input, a signed
integer value, and store the floating point result into a vector register. Compare with the 1dexp() function in C.

DO.f64 = SO.f64 * 2.0 ** S1.i
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V_MUL_LO_U32 812

Multiply two unsigned integers.

DO.u = S@.u * S1.u

Notes

To multiply integers with small magnitudes consider V_MUL_U32_U24, which is intended to be a more
efficient implementation.

V_MUL_HI_U32 813

Multiply two unsigned integers and store the high 32 bits of the result.

DB.u = 32'U((64'U(SB.u) * 64'U(S1.u)) >> 32U)

Notes

To multiply integers with small magnitudes consider V_MUL_HI_U32_U24, which is intended to be a more
efficient implementation.

V_MUL_HI_I32 814

Multiply two signed integers and store the high 32 bits of the result.

DO.i = 32'I((64'I(SB.i) * 64'I(S1.i)) >> 32U)

Notes

To multiply integers with small magnitudes consider V_MUL_HI_I32_I24, which is intended to be a more
efficient implementation.

V_TRIG_PREOP_F64 815
Look Up 2/PI (S0.f64) with segment select S1.u[4:0].

This operation returns an aligned, double precision segment of 2/PI needed to do range reduction on S0.f64
(double-precision value). Multiple segments can be specified through S1.u[4:0]. Rounding is round-to-zero.
Large inputs (exp > 1968) are scaled to avoid loss of precision through denormalization.

shift = 32'I(S1[4 : @].u) * 53;
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if exponent(S0.f64) > 1077 then
shift += exponent(S0.f64) - 1077
endif;
// (2.0/PI) == 0.{b_1200, b_1199, b_1198, ..., b_1, b_0}
// b_1200 is the MSB of the fractional part of 2.0/PI
// Left shift operation indicates which bits are brought
// into the whole part of the number.
// Only whole part of result is kept.
result = 64'F((1201'B(2.0 / PI)[1200 : @] << shift.u) & 1201 'Ox1fffffffffffff);
scale = -53 - shift;
if exponent(S0.f64) >= 1968 then
scale += 128
endif;
DB.f64 = ldexp(result, scale)

V_LSHLREV_B16 824

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.

DO.u[15 : @] = (S1.u[15 : @] << S@[3 : @].u)

V_LSHRREV_B16 825

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

DB.u[15 : @] = (S1.u[15 : @] >> S@[3 : B].u)

V_ASHRREV_I16 826

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

DO.i[15 : @] = (S1.i[15 : @] >> SB[3 : B].u)

V_LSHLREV_B64 828

Given a shift count in the first vector input, calculate the logical shift left of the second vector input and store the
result into a vector register.
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DB.u64 = (S1.u64 << SO[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_LSHRREV_B64 829

Given a shift count in the first vector input, calculate the logical shift right of the second vector input and store
the result into a vector register.

DO.u64 = (S1.u64 >> SO[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_ASHRREV_I64 830

Given a shift count in the first vector input, calculate the arithmetic shift right (preserving sign bit) of the second
vector input and store the result into a vector register.

DO.i64 = (S1.i64 >> S@[5 : 0].u)

Notes

Only one scalar broadcast constant is allowed.

V_READLANE_B32 864

Copy one VGPR value from a single lane to one SGPR.

declare lane : 32'U;
if WAVE32 then

lane = S1.u[4 : @].u;

// Lane select for wave32
else

lane = S1.u[5 : @].u;

// Lane select for wave64
endif;
DO.b = VGPR[lane][SRCO.u]
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Notes

Ignores EXEC mask for the VGPR read. Input and output modifiers not supported; this is an untyped operation.

V_WRITELANE_B32 865

Write scalar value into one VGPR in one lane.

declare lane : 32'U;
if WAVE32 then

lane = S1.u[4 : 0].u;

// Lane select for wave32
else

lane = S1.u[5 : 0].u;

// Lane select for wave64
endif;
VGPR[1lane][VDST.u] = S@.b

Notes

Ignores EXEC mask for the VGPR write. Input and output modifiers not supported; this is an untyped
operation.

V_AND_BI16 866

Calculate bitwise AND on two vector inputs and store the result into a vector register.

DO.u16 = (SB.uT6 & S1.u16)

Notes

Input and output modifiers not supported.

V_OR_B16 867

Calculate bitwise OR on two vector inputs and store the result into a vector register.

DB.u16 = (S@.u16 | S1.ul16)

Notes

Input and output modifiers not supported.
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V_XOR_B16

Calculate bitwise XOR on two vector inputs and store the result into a vector register.

DB.u16 = (S@.u16 * S1.ul16)

Notes

Input and output modifiers not supported.

AMD¢1

868

V_CMP_F_F16

Return 0.

DO.u64[laneId] = 1'60U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_LT_F16

Return 1 iff A less than B.

DO.u64[laneId] = S0.f16 < S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMP_EQ_F16

Return 1 iff A equal to B.

DO.u64[laneId] = S8.f16 == S1.f16;
// D@ = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LE_F16

Return 1 iff A less than or equal to B.

DO.u64[laneId] = S8.f16 <= S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_GT_F16

Return 1 iff A greater than B.

DO.u64[laneId] = S0.f16 > S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_LG_F16

Return 1 iff A less than or greater than B.

DO.u64[laneId] = SO.f16 <> S1.f16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_GE_F16

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.f16 >= S1.f16;
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// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_O_F16

Return 1 iff A orderable with B.

DO.u64[laneId] = (!isNAN(64'F(S0.f16)) && !isNAN(64'F(S1.f16)));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMP_U_F16

Return 1 iff A not orderable with B.

DO.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)));
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMP_NGE_F16

Return 1 iff A not greater than or equal to B.

DO.u64[laneId] = !(S6.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

16.12. VOP3 & VOP3SD Instructions

446 of 600



"RDNA3" Instruction Set Architecture

AMD¢1

V_CMP_NLG_F16 10
Return 1 iff A not less than or greater than B.
DB.u64[laneld] = !(S6.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NGT_F16 11
Return 1 iff A not greater than B.
DB8.u64[laneId] = !(S6.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NLE_F16 12
Return 1 iff A not less than or equal to B.
DB.u64[laneld] = !(S8.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_NEQ_F16 13
Return 1 iff A not equal to B.
DB.u64[laneld] = !(S6.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=
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// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NLT_F16 14
Return 1 iff A not less than B.
DB.u64[laneld] = !(S@.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_T_F16 15
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_F_F32 16
Return 0.

DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMP_LT_F32

Return 1 iff A less than B.

DO.u64[laneld] = SO.f < S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

17

V_CMP_EQ_F32

Return 1 iff A equal to B.

DO.u64[laneld] = S0.f == S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

18

V_CMP_LE_F32

Return 1 iff A less than or equal to B.

DO.u64[laneld] = SO.f <= S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

19

V_CMP_GT_F32

Return 1 iff A greater than B.

DO.u64[laneld] = So.f > S1.f;
// DB = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LG_F32

Return 1iff A less than or greater than B.

DO.u64[laneId] = SO.f <> S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

21

V_CMP_GE_F32

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.f >= S1.f;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

22

V_CMP_O_F32

Return 1 iff A orderable with B.

DB.u64[laneld] = (!isNAN(64'F(S@.f)) && !isNAN(64'F(S1.f)));

// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

23

V_CMP_U_F32

Return 1 iff A not orderable with B.

DB.u64[laneld] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)));
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// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NGE_F32 25
Return 1 iff A not greater than or equal to B.
DO.u64[laneId] = !(S6.f >= S1.f);
// With NAN inputs this is not the same operation as <
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NLG_F32 26
Return 1 iff A not less than or greater than B.
DB.u64[laneld] = !(S@.f <> S1.f);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NGT_F32 27

Return 1 iff A not greater than B.

DB.u64[laneld] = !(S@.f > S1.f);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
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V_CMP_NLE_F32

Return 1 iff A not less than or equal to B.

DB.u64[laneld] = !(S@.f <= S1.f);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

28

V_CMP_NEQ_F32

Return 1 iff A not equal to B.

DB.u64[laneld] = !(SB.f == S1.f);
// With NAN inputs this is not the same operation as !=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

29

V_CMP_NLT_F32

Return 1 iff A not less than B.

DB.u64[laneld] = !(S8.f < S1.f);
// With NAN inputs this is not the same operation as >=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

30

V_CMP_T_F32

Return 1.

DO.u64[laneld] = 1'1U;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_F_Fo64 32
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_Fe64 33
Return 1 iff A less than B.
DO.u64[laneId] = SO.f64 < S1.f64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_F64 34
Return 1 iff A equal to B.
DO.u64[laneId] = SO.f64 == S1.f64;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LE_Feé64 35
Return 1 iff A less than or equal to B.
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DO.u64[laneId] = SB.f64 <= S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GT_Fé64

Return 1 iff A greater than B.

DO.u64[laneId] = S0.f64 > S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

36

V_CMP_LG_F64

Return 1 iff A less than or greater than B.

DO.u64[laneId] = SO.f64 <> S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

37

V_CMP_GE_F64

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.f64 >= S1.f64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

38

16.12. VOP3 & VOP3SD Instructions

454 of 600



"RDNA3" Instruction Set Architecture AMDAl

V_CMP_O_F64 39

Return 1 iff A orderable with B.

DB.u64[laneId] = (!isNAN(S@.f64) && !isNAN(S1.f64));
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_U_Feé4 40

Return 1 iff A not orderable with B.

DB.u64[laneId] = (isNAN(S@.f64) || isNAN(S1.f64));
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_NGE_F64 41

Return 1 iff A not greater than or equal to B.

DO.u64[laneld] = !(S8.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_NLG_F64 42

Return 1 iff A not less than or greater than B.

DO.u64[laneId] = !(S8.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NGT_Fé4 43
Return 1 iff A not greater than B.
DO.u64[laneId] = !(S6.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NLE_Fe64 44
Return 1 iff A not less than or equal to B.
DO.u64[laneId] = !(S8.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NEQ_F64 45
Return 1 iff A not equal to B.
DO.u64[laneld] = !(S@.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_NLT_F64 46
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Return 1 iff A not less than B.

DO.u64[laneId] = !(S6.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_T_Fe64 47
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_I16 49
Return 1 iff A less than B.
DO.u64[laneId] = S0.i16 < S1.i16;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_I16 50
Return 1 iff A equal to B.
DO.u64[laneId] = S0.i16 == S1.i16;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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AMD¢1

V_CMP_LE_I16

Return 1 iff A less than or equal to B.

DB.u64[laneld] = S0.i16 <= S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

51

V_CMP_GT_I16

Return 1 iff A greater than B.

DB.u64[laneld] = S0.i16 > S1.1i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

52

V_CMP_NE_I16

Return 1 iff A not equal to B.

DO.u64[laneld] = S0.i16 <> S1.i16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

53

V_CMP_GE_I16

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = S0.i16 >= S1.i16;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LT_U1e6

Return 1 iff A less than B.

DO.u64[laneId] = SO.u16 < S1.ul6;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

57

V_CMP_EQ_U16

Return 1 iff A equal to B.

DO.u64[laneId] = SO.u16 == S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

58

V_CMP_LE_U1l6

Return 1 iff A less than or equal to B.

DO.u64[laneId] = SO.u16 <= S1.ul16;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

59

V_CMP_GT_U16

Return 1 iff A greater than B.
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DO.u64[laneId] = SO.u16 > S1.ul6;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NE_Ule6 61
Return 1 iff A not equal to B.
DO.u64[laneId] = SO.u16 <> S1.ul6;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_GE_U16 62
Return 1 iff A greater than or equal to B.
DO.u64[laneId] = SO.u16 >= S1.ul16;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_F_I32 64
Return 0.

DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMP_LT_I32

Return 1 iff A less than B.

DB.u64[laneld] = S@.i < S1.1i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

65

V_CMP_EQ_I32

Return 1 iff A equal to B.

DB.u64[laneld] = S@.i == S1.1i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

66

V_CMP_LE_I32

Return 1 iff A less than or equal to B.

DB.u64[laneld] = S@.i <= S1.1i;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

67

V_CMP_GT_I32

Return 1 iff A greater than B.

DO.u64[laneId] = S@0.i > S1.i;
// DB = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
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V_CMP_NE_I32 69
Return 1 iff A not equal to B.
DO.u64[laneId] = SO.i <> S1.i;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_GE_I32 70
Return 1 iff A greater than or equal to B.
DO.u64[laneId] = SO.i >= S1.i;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_T_I32 71
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_F_U32 72
Return 0.
DO.u64[laneId] = 1'0U;
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// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_LT_U32 73
Return 1 iff A less than B.
DO.u64[laneId] = SO.u < S1.u;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_U32 74
Return 1 iff A equal to B.
DO.u64[laneId] = SO.u == S1.u;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_LE_U32 75
Return 1 iff A less than or equal to B.
DO.u64[laneId] = SO.u <= S1.u;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
V_CMP_GT_U32 76
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Return 1 iff A greater than B.

DO.u64[laneId] = SO.u > S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_NE_U32

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.u <> S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

77

V_CMP_GE_U32

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = SO.u >= S1.u;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

78

V_CMP_T_U32

Return 1.

DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

79
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V_CMP_F_I64 80

Return 0.

DO.u64[laneld] = 1'0U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_LT_I64 81

Return 1 iff A less than B.

DB.u64[laneld] = SO.i64 < S1.164;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_EQ_I64 82

Return 1 iff A equal to B.

DO.u64[laneld] = S@.i64 == S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

V_CMP_LE_I64 83

Return 1 iff A less than or equal to B.

DO.u64[laneld] = S0.i64 <= S1.i64;
// DB = VCC in VOPC encoding.
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Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_GT_I64

Return 1 iff A greater than B.

DO.u64[laneId] = S0.i64 > S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

84

V_CMP_NE_I64

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.i64 <> S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

85

V_CMP_GE_I64

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = S0.i64 >= S1.i64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

86

V_CMP_T_I64

Return 1.
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DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_F_U64 88
Return 0.
DO.u64[laneId] = 1'0U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_LT_Ue64 89
Return 1 iff A less than B.
DO.u64[laneId] = SO.u64 < S1.ub4;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_EQ_Ué64 920

Return 1 iff A equal to B.

DO.u64[laneId] = SO.u64 == S1.u64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMP_LE_U64

Return 1 iff A less than or equal to B.

DB.u64[laneld] = SO.u64 <= S1.u6b4;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

91

V_CMP_GT_U64

Return 1 iff A greater than B.

DB.u64[laneld] = SO.u64 > S1.ub4;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

92

V_CMP_NE_Ué64

Return 1 iff A not equal to B.

DO.u64[laneId] = SO.u64 <> S1.u64;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

93

V_CMP_GE_U64

Return 1 iff A greater than or equal to B.

DO.u64[laneId] = S@.u64 >= S1.u64;
// DB = VCC in VOPC encoding.

Notes
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Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
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V_CMP_T_Ué4 95
Return 1.
DO.u64[laneId] = 1'1U;
// DB = VCC in VOPC encoding.
Notes
Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
V_CMP_CLASS_F16 125

IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S0.f16)) then
result = S1.u[9]
elsif isQuietNAN(64'F(S@.f16)) then
result = S1.u[1]
elsif exponent(S@.f16) == 31 then
// +-INF
result = S1.u[sign(Se8.f16) ? 2 : 9]
elsif exponent(S@.f16) > @ then
// +-normal value
result = S1.u[sign(Se8.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.8 then
// +-denormal value
result = S1.u[sign(Se8.f16) ? 4 : 7]
else
// +-0.0
result = S1.u[sign(S8.f16) ? 5 : 6]
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endif;
DO.u64[laneld] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.

AMD¢1

V_CMP_CLASS_F32

IEEE numeric class function specified in S1.u, performed on S0.f.

126

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S@.f)) then
result = S1.u[9]
elsif isQuietNAN(64'F(S@.f)) then
result = S1.u[1]
elsif exponent(S@.f) == 255 then
// +-INF
result = S1.u[sign(Se8.f) ? 2 : 9]
elsif exponent(S@.f) > @ then
// +-normal value
result = S1.u[sign(Se8.f) ? 3 : 8]
elsif 64'F(abs(S@8.f)) > 0.0 then
// +-denormal value
result = S1.u[sign(S6.f) ? 4 : 7]
else
// +-0.0
result = S1.u[sign(S8.f) ? 5 : 6]
endif;
DO.u64[laneld] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sSNAN's, and also on gNAN's if clamp is set.
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AMD¢1

V_CMP_CLASS_Fé64

IEEE numeric class function specified in S1.u, performed on S0.f64.

127

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.
S1.u[2] -- value is negative infinity.
S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.
S1.u[6] -- value is positive zero.
S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(SO.f64) then

result = S1.u[9]
elsif isQuietNAN(S@.f64) then

result = S1.u[1]
elsif exponent(S0.f64) == 1023 then

// +-INF

result = S1.u[sign(Se8.f64) ? 2 : 9]
elsif exponent(S0.f64) > @ then

// +-normal value

result = S1.u[sign(Se.f64) ? 3 : 8]
elsif abs(S@.f64) > 0.0 then

// +-denormal value

result = S1.u[sign(Se.f64) ? 4 : 7]
else

// +-8.0

result = S1.u[sign(S@.f64) ? 5 : 6]
endif;
DO.u64[laneld] = result;
// DB = VCC in VOPC encoding.

Notes

Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_F16

Return 0.
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EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F16 129

Return 1 iff A less than B.

EXEC.u64[laneId] = S8.f16 < S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_F16 130

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.f16 == S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_F16 131

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S8.f16 <= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_F16 132

Return 1 iff A greater than B.
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EXEC.u64[laneId] = S8.f16 > S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F16 133

Return 1iff A less than or greater than B.

EXEC.u64[laneId] = S0.f16 <> S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_F16 134

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S8.f16 >= S1.f16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_O_F16 135

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S8.f16)) && !isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_U_F16 136

Return 1 iff A not orderable with B.
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EXEC.u64[laneId] = (isNAN(64'F(S0.f16)) || isNAN(64'F(S1.f16)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F16 137

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S@.f16 >= S1.f16);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F16 138

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S@.f16 <> S1.f16);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGT_F16 139

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S@.f16 > S1.f16);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMPX_NLE_F16 140

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S@.f16 <= S1.f16);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_F16 141

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S@.f16 == S1.f16);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLT_F16 142

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S0.f16 < S1.f16);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_T_F16 143

Return 1.

EXEC.u64[laneId] = 1'1U

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_F32 144

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F32 145

Return 1 iff A less than B.

EXEC.u64[laneId] = SO.f < S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_F32 146

Return 1 iff A equal to B.

EXEC.u64[laneId] = SO.f == S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_F32 147

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = SO.f <= S1.f

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_F32 148

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.f > S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_F32 149

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = SO.f <> S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_F32 150

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = SO.f >= S1.f

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_O_F32 151

Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(64'F(S@.f)) & !isNAN(64'F(S1.f)))

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_U_F32 152

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(64'F(S0.f)) || isNAN(64'F(S1.f)))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_F32 153

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S@.f >= S1.f);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F32 154

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(SB.f <> S1.f);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NGT_F32 155

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S@.f > S1.f);

16.12. VOP3 & VOP3SD Instructions 478 of 600



"RDNA3" Instruction Set Architecture AMDAl

// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLE_F32 156

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(SB.f <= S1.f);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_F32 157

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(SB.f == S1.f);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLT_F32 158

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S@.f < S1.f);
// With NAN inputs this is not the same operation as >=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_T_F32 159
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Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_F_F64 160

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_F64 161

Return 1 iff A less than B.

EXEC.u64[laneId] = S0.f64 < S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_Fé4 162

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.f64 == S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_F64 163
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Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = SO.f64 <= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_F64 164

Return 1 iff A greater than B.

EXEC.u64[laneId] = S0.f64 > S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LG_Fo64 165

Return 1 iff A less than or greater than B.

EXEC.u64[laneId] = S0.f64 <> S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_F64 166

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.f64 >= S1.f64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_O_Fe64 167
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Return 1 iff A orderable with B.

EXEC.u64[laneId] = (!isNAN(S@.f64) && !isNAN(ST.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_U_Fé4 168

Return 1 iff A not orderable with B.

EXEC.u64[laneId] = (isNAN(SO.f64) || isNAN(S1.f64))

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NGE_Fé64 169

Return 1 iff A not greater than or equal to B.

EXEC.u64[laneId] = !(S@.f64 >= S1.f64);
// With NAN inputs this is not the same operation as <

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NLG_F64 170

Return 1 iff A not less than or greater than B.

EXEC.u64[laneId] = !(S@.f64 <> S1.f64);
// With NAN inputs this is not the same operation as ==

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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V_CMPX_NGT_Fé4 171

Return 1 iff A not greater than B.

EXEC.u64[laneId] = !(S@.f64 > S1.f64);
// With NAN inputs this is not the same operation as <=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLE_F64 172

Return 1 iff A not less than or equal to B.

EXEC.u64[laneId] = !(S@.f64 <= S1.f64);
// With NAN inputs this is not the same operation as >

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NEQ_Feé4 173

Return 1 iff A not equal to B.

EXEC.u64[laneId] = !(S@.f64 == S1.f64);
// With NAN inputs this is not the same operation as !=

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NLT_Feé4 174

Return 1 iff A not less than B.

EXEC.u64[laneId] = !(S@.f64 < S1.f64);
// With NAN inputs this is not the same operation as >=

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_Fé4 175

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LT_I16 177

Return 1 iff A less than B.

EXEC.u64[laneId] = S8.i16 < S1.1i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I16 178

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.i16 == S1.1i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LE_I16 179

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S8.1i16 <= S1.1i16

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I16 180

Return 1 iff A greater than B.

EXEC.u64[laneId] = S8.i16 > S1.1i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_NE_I16 181

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S8.1i16 <> S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I16 182

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S8.i16 >= S1.i16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_U16 185

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.u16 < S1.ul6

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_EQ_U16 186

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.u16 == S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_Ule6 187

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.u16 <= S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GT_U16 188

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.u16 > S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_U1l6 189

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S@.u16 <> S1.ul16

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GE_Ul6 190

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.u16 >= S1.ul16

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I32 192

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_I32 193

Return 1 iff A less than B.

EXEC.u64[laneld] = S8.i < S1.1

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I32 194

Return 1 iff A equal to B.

EXEC.u64[laneld] = S8.i == S1.1i

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I32 195

Return 1 iff A less than or equal to B.

EXEC.u64[laneld] = S@.i <= S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I32 196

Return 1 iff A greater than B.

EXEC.u64[laneld] = S8.i > S1.1

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_I32 197

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S0.i <> S1.i

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I32 198

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S0.i >= S1.i

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I32 199

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_U32 200

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_U32 201

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.u < S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_U32 202

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.u == S1.u

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U32 203

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.u <= S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_U32 204

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.u > S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_U32 205

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S@.u <> S1.u

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_U32 206

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.u >= S1.u

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U32 207

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_I64 208

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_I64 209

Return 1 iff A less than B.

EXEC.u64[laneld] = S@.i64 < S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_I64 210

Return 1 iff A equal to B.

EXEC.u64[laneId] = S8.i64 == S1.1i64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_I64 211

Return 1 iff A less than or equal to B.

EXEC.u64[laneld] = S8.i64 <= S1.1i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_I64 212

Return 1 iff A greater than B.

EXEC.u64[laneld] = S@.i64 > S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_I64 213

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S8.i64 <> S1.i64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_I64 214

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S8.i64 >= S1.1i64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_I64 215

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_F_Ué64 216

Return 0.

EXEC.u64[laneId] = 1'0U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_LT_Ue64 217

Return 1 iff A less than B.

EXEC.u64[laneId] = S@.u64 < S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_EQ_Ué64 218

Return 1 iff A equal to B.

EXEC.u64[laneId] = S@.u64 == S1.u64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_LE_U64 219

Return 1 iff A less than or equal to B.

EXEC.u64[laneId] = S@.u64 <= S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_GT_Ué64 220

Return 1 iff A greater than B.

EXEC.u64[laneId] = S@.u64 > S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_NE_Ué64 221

Return 1 iff A not equal to B.

EXEC.u64[laneId] = S@.u64 <> S1.u64

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_GE_U64 222

Return 1 iff A greater than or equal to B.

EXEC.u64[laneId] = S@.u64 >= S1.u64

Notes
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Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_T_U64 223

Return 1.

EXEC.u64[laneId] = 1'1U

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

V_CMPX_CLASS_F16 253
IEEE numeric class function specified in S1.u, performed on S0.f16.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S@.f16)) then
result = S1.u[9]
elsif isQuietNAN(64'F(S@.f16)) then
result = S1.u[1]
elsif exponent(S@.f16) == 31 then
// +-INF
result = S1.u[sign(Se8.f16) ? 2 : 9]
elsif exponent(S@.f16) > @ then
// +-normal value
result = S1.u[sign(Se8.f16) ? 3 : 8]
elsif 64'F(abs(S0.f16)) > 0.8 then
// +-denormal value
result = S1.u[sign(Se8.f16) ? 4 : 7]
else
// +-0.0
result = S1.u[sign(S8.f16) ? 5 : 6]
endif;
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EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.

V_CMPX_CLASS_F32 254
IEEE numeric class function specified in S1.u, performed on S0.f.

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the
following list:

S1.u[0] -- value is a signaling NAN.

S1.u[l] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.
S1.u[4] -- value is a negative denormal value.
S1.u[5] -- value is negative zero.

S1.u[6] -- value is positive zero.

S1.u[7] -- value is a positive denormal value.
S1.u[8] -- value is a positive normal value.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(64'F(S@.f)) then
result = S1.u[9]
elsif isQuietNAN(64'F(S0.f)) then
result = S1.u[1]
elsif exponent(S@.f) == 255 then
// +-INF
result = S1.u[sign(Se8.f) ? 2 : 9]
elsif exponent(S@.f) > @ then
// +-normal value
result = S1.u[sign(S6.f) ? 3 : 8]
elsif 64'F(abs(S@8.f)) > 0.0 then
// +-denormal value
result = S1.u[sign(S6.f) ? 4 : 7]
else
// +-0.0
result = S1.u[sign(S6.f) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on qNAN's if clamp is set.

16.12. VOP3 & VOP3SD Instructions 496 of 600



"RDNA3" Instruction Set Architecture

V_CMPX_CLASS_F64

IEEE numeric class function specified in S1.u, performed on S0.f64.

AMD¢1

255

The function reports true if the floating point value is any of the numeric types selected in S1.u according to the

following list:

S1.u[0] -- value is a signaling NAN.

S1.u[1] -- value is a quiet NAN.

S1.u[2] -- value is negative infinity.

S1.u[3] -- value is a negative normal value.

S1.u[4] -- value is a negative denormal value.

S1.u[6] -- value is positive zero.

S1.u[7]

S1.u[8] -- value is a positive normal value.
]

S1.u[5] -- value is negative zero.
S1.u[9] -- value is positive infinity.

declare result : 1'U;
if isSignalNAN(SO.f64) then

result = S1.u[9]
elsif isQuietNAN(S@.f64) then

result = S1.u[1]
elsif exponent(S0.f64) == 1023 then

// +-INF

result = S1.u[sign(Se8.f64) ? 2 : 9]
elsif exponent(S0.f64) > @ then

// +-normal value

result = S1.u[sign(Se.f64) ? 3 : 8]
elsif abs(S@.f64) > 0.0 then

// +-denormal value

result = S1.u[sign(Se.f64) ? 4 : 7]
else

// +-8.0

result = S1.u[sign(S@.f64) ? 5 : 6]
endif;
EXEC.u64[laneId] = result

Notes

- value is a positive denormal value.

Write only EXEC. SDST must be set to EXEC_LO. Signal 'invalid' on sNAN's, and also on gNAN's if clamp is set.
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16.13. VINTERP Instructions

Parameter interpolation VALU instructions.

unrere L1 1 0 o 1 1]o 1] 7 o Jom| opsEL,, | wamExe |  wbsT,
| | ' SRC2 | ' SRC1g | SRCOg

32

V_INTERP_P10_F32 0

Parameter interpolation, first pass.
DO.f = SB[lane.i % 4 + 1].f * S1.f + S2[lane.i % 4].f

Notes

Performs a V_FMA_F32 operation using fixed DPP8 settings. SO and S2 refer to a VGPR previously loaded with
LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate.

S0 uses a fixed DPPS lane select of {1,1,1,1,5,5,5,5}.
S2 uses a fixed DPP8 lane select of {0,0,0,0,4,4,4,4}.

Example usage:

s_mov_b32 mo@, sO // assume s@ contains newprim mask
lds_param_load v@, attr@ // v@ is a temporary register
v_interp_p10_f32 v3, v@, v1, v@ // v1 contains i coordinate
v_interp_p2_f32 v3, v@, v2, v3 // v2 contains j coordinate

V_INTERP_P2_F32 1

Parameter interpolation, second pass.
De.f = fma(S@[lane.i % 4 + 2].f, S1.f, S2.f)

Notes

Performs a V_FMA_F32 operation using fixed DPP8 settings. SO refers to a VGPR previously loaded with
LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate. S2 is the result of a
previous V_INTERP_P10_F32 instruction.

S0 uses a fixed DPP8 lane select of {2,2,2,2,6,6,6,6}.
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V_INTERP_P10_F16_F32 2

Parameter interpolation, first pass.

DO.f = 32'F(S@[lane.i % 4 + 1].f16) * S1.f + 32'F(S2[lane.i % 4].f16)

Notes

Performs a hybrid 16/32-bit multiply-add operation using fixed DPP8 settings. SO and S2 refer to a VGPR
previously loaded with LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/] coordinate.

S0 uses a fixed DPP8 lane select of {1,1,1,1,5,5,5,5}.
S2 uses a fixed DPPS lane select of {0,0,0,0,4,4,4,4}.
OPSEL is allowed for SO and S2 to specify which half of the register to read from.

Note that the I/] coordinate is 32-bit and the destination is also 32-bit.

V_INTERP_P2_F16_F32 3

Parameter interpolation, second pass.

DB.f16 = 16'F(32'F(S@[lane.i % 4 + 2].f16) * S1.f + S2.f)

Notes

Performs a hybrid 16/32-bit multiply-add operation using fixed DPP8 settings. SO refers to a VGPR previously
loaded with LDS_PARAM_LOAD that contains packed interpolation data. S1 is the I/J coordinate. S2 is the
result of a previous V_INTERP_P10_F16_F32 instruction.

S0 uses a fixed DPP8 lane select of {2,2,2,2,6,6,6,6}.

OPSEL is allowed for D and S0 to specify which half of the register to write to/read from.

Note that the I/J coordinate is 32-bit and the accumulator input is also 32-bit.

V_INTERP_P10_RTZ_F16_F32 4

Same as V_INTERP_P10_F16_F32 except rounding mode is overridden to round toward zero.

V_INTERP_P2_RTZ_F16_F32 5

Same as V_INTERP_P2_F16_F32 except rounding mode is overridden to round toward zero.
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16.14. Parameter and Direct Load from LDS Instructions

These instructions load data from LDS into a VGPR where the LDS address is derived from wave state and the
MO register.

31
LDSDIR | 1 ' 1 ' 0 I 0 I 1 1 | 1 ' 0 | ' | dP | \I'VAITIVDS:I' ' ' ATlTR I |ATRbHN| I I VD'ST '

LDS_PARAM_LOAD 0

Transfer parameter data from LDS to VGPRs and expand data in LDS using the NewPrimMask (provided in MO0)
to place per-quad data into lanes 0-3 of each quad as follows:

{P0, P10, P20, 0.0}

This data may be extracted using DPP8 for interpolation operations. The V_INTERP_* instructions unpack data
automatically.

When loading FP16 parameters, two attributes are loaded into a single VGPR: Attribute 2*ATTR is loaded into
the low 16 bits and attribute 2*ATTR+1 is loaded into the high 16 bits.

This instruction runs in whole quad mode: if any pixel of a quad is active then all 4 pixels of that quad are
written. This is required for interpolation instructions to have all the parameter information available for the

quad.

LDS_DIRECT_LOAD 1

Read a single 32-bit value from LDS to all lanes. A single DWORD is read from LDS memory at ADDR[MO[15:0]],
where MO0[15:0] is a byte address and is dword-aligned. M0[18:16] specify the data type for the read and may be
0=UBYTE, 1=USHORT, 2=DWORD, 4=SBYTE, 5=SSHORT.

This instruction runs in whole quad mode: if any pixel of a quad is active then all 4 pixels of
that quad are written.
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16.15. LDS & GDS Instructions

AMD¢1

This suite of instructions operates on data stored within the data share memory. The instructions transfer data

between VGPRs and data share memory.
The bitfield map for the LDS/GDS is:

31

OFFSET1

OFFSETO

LDS GDS

DATAO

ADDR

63

OFFSETO® = Unsigned byte offset added to the address from the ADDR VGPR.
OFFSET1 = Unsigned byte offset added to the address from the ADDR VGPR.

GDS = Set if GDS, cleared if LDS.
OoP = DS instruction opcode

ADDR = Source LDS address VGPR @ - 255.

DATAO = Source data® VGPR @ - 255.
DATA1 = Source datal VGPR @ - 255.
VDST = Destination VGPR ©- 255.

32

o All instructions with RTN in the name return the value that was in memory before the

operation was performed.

DS_ADD_U32

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

DS_SUB_U32

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

DS_RSUB_U32

Subtraction with reversed operands.
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tmp = MEM[ADDR].b;

MEM[ADDR] = DATA.b - MEM[ADDR].b;

RETURN_DATA = tmp

AMD¢1

DS_INC_U32 3
Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = tmp >= src ? QU : tmp + 1U;

RETURN_DATA.u = tmp
DS_DEC_U32 4
Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src :

RETURN_DATA.u = tmp
DS_MIN_I32 S
Minimum of two signed integer values.

tmp = MEM[ADDR].i;

src = DATA.i;

MEM[ADDR].i = src < tmp ? src : tmp;

RETURN_DATA.i = tmp
DS_MAX_I32 6

Maximum of two signed integer values.

tmp = MEM[ADDR].1i;

src = DATA.i;

MEM[ADDR].i = src > tmp ? src
RETURN_DATA.1i = tmp

16.15. LDS & GDS Instructions
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AMD¢1

DS_MIN_U32

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_MAX_U32

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

DS_AND_B32

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

DS_OR_B32

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

10

DS_XOR_B32

Bitwise XOR of register value and memory value.

16.15. LDS & GDS Instructions
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tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

DS_MSKOR_B32 12
Masked dword OR, DO contains the mask and D1 contains the new value.
tmp = MEM[ADDR].b;

MEM[ADDR].b = ((tmp & ~DATA.b) | DATA2.b);
RETURN_DATA.b = tmp

DS_STORE_B32 13

Store 32-bit data from a vector register into a given memory location.

MEM[ADDR] = DATA.b

DS_STORE_2ADDR_B32 14

Write 2 dwords.

MEM[ADDR_BASE.u + OFFSETO.u * 4U] = DATA.b;
MEM[ADDR_BASE.u + OFFSET1.u * 4U] = DATA2.b
DS_STORE_2ADDR_STRIDE64_B32 15

Write 2 dwords with larger stride.

MEM[ADDR_BASE.u + OFFSET@.u * 4U * 64U] = DATA.b;
MEM[ADDR_BASE.u + OFFSET1.u * 4U * 64U] = DATA2.b
DS_CMPSTORE_B32 16

Compare and store.
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tmp = MEM[ADDR].b;

src = DATA.b;

cmp = DATA2.b;

MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_F32 17

Floating point compare and store that handles NAN/INF/denormal values.

tmp MEM[ADDR].f;

src = DATA.f;

cmp = DATA2.f;

MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_F32 18

Minimum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_F32 19

Maximum of two floating-point values.

tmp MEM[ADDR] .f;
src = DATA.f;
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MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_NOP 20
Do nothing.
DS_ADD_F32 21

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;

src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

DS_STORE_BS 30

Byte write.

MEM[ADDR].b8 = DATA[7 : 0].b8

DS_STORE_B16 31

Short write.

MEM[ADDR].b16 = DATA[15 : 0].b16

DS_ADD_RTN_U32 32
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

AMD¢1

DS_SUB_RTN_U32

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

33

DS_RSUB_RTN_U32

Subtraction with reversed operands.

tmp = MEM[ADDR].b;
MEM[ADDR] = DATA.b - MEM[ADDR].b;
RETURN_DATA = tmp

34

DS_INC_RTN_U32

Increment memory value with wraparound to zero when incremented to register value.

tmp MEM[ADDR] .u;
src = DATA.u;

MEM[ADDR].u = tmp >= src ? U : tmp + 1U;

RETURN_DATA.u = tmp

35

DS_DEC_RTN_U32

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src :

RETURN_DATA.u = tmp

16.15. LDS & GDS Instructions
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AMDZ1

DS_MIN_RTN_I32

Minimum of two signed integer values.

tmp = MEM[ADDR].1i;

src = DATA.i;

MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.1 = tmp

37

DS_MAX_RTN_I32

Maximum of two signed integer values.

tmp = MEM[ADDR].1i;

src = DATA.i;

MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.1i = tmp

38

DS_MIN_RTN_U32

Minimum of two unsigned integer values.

tmp MEM[ADDR] .u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

39

DS_MAX_RTN_U32

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

40

DS_AND_RTN_B32
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Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

AMDZ1

DS_OR_RTN_B32

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

42

DS_XOR_RTN_B32

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

43

DS_MSKOR_RTN_B32

Masked dword OR, DO contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = ((tmp & ~DATA.b) | DATA2.b);
RETURN_DATA.b = tmp

44

DS_STOREXCHG_RTN_B32

Write-exchange operation.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

45
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DS_STOREXCHG_2ADDR_RTN_B32 46

Write-exchange 2 separate dwords.

addr1 = ADDR_BASE.u + OFFSET@.u * 4U;
addr2 = ADDR_BASE.u + OFFSET1.u * 4U;
tmp1 = MEM[addr1].b;

tmp2 = MEM[addr2].b;

MEM[addr1].b = DATA.b;

MEM[addr2].b = DATA2.b;

// Note DATA2 can be any other register
RETURN_DATA[31 : @] = tmp1;
RETURN_DATA[63 : 32] = tmp2

DS_STOREXCHG_2ADDR_STRIDE64_RTN_B32 47

Write-exchange 2 separate dwords with a stride of 64 dwords.

addr1 = ADDR_BASE.u + OFFSETO.u * 4U * 64U;
addr2 ADDR_BASE.u + OFFSET1.u * 4U * 64U;
tmp1 = MEM[addr1].b;

tmp2 = MEM[addr2].b;

MEM[addr1].b = DATA.b;

MEM[addr2].b = DATA2.b;

// Note DATA2 can be any other register
RETURN_DATA[31 : @] = tmp1;

RETURN_DATA[63 : 32] = tmp2

DS_CMPSTORE_RTN_B32 48

Compare and store.

tmp = MEM[ADDR].b;

src = DATA.b;

cmp = DATA2.b;

MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_RTN_F32 49
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Floating point compare and store that handles NAN/INF/denormal values.

tmp MEM[ADDR].f;

src = DATA.f;

cmp = DATA2.f;

MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

AMD¢1

DS_MIN_RTN_F32

Minimum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

50

DS_MAX_RTN_F32

Maximum of two floating-point values.

tmp MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA

tmp

Notes

Floating-point compare handles NAN/INF/denorm.

51

DS_WRAP_RTN_B32

Wrap calculation. Intended for use in ring buffer management.

tmp = MEM[ADDR].u;

16.15. LDS & GDS Instructions
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MEM[ADDR].u = tmp >= DATA.u ? tmp - DATA.u : tmp + DATA2.u;
RETURN_DATA = tmp

DS_SWIZZLE_B32 53
Dword swizzle, no data is written to LDS memory.

Swizzles input thread data based on offset mask and returns; note does not read or write the DS memory banks.
Note that reading from an invalid thread results in 0x0.

This opcode supports two specific modes, FFT and rotate, plus two basic modes which swizzle in groups of 4 or
32 consecutive threads.

The FFT mode (offset >= 0xe000) swizzles the input based on offset[4:0] to support FFT calculation. Example
swizzles using input {1, 2, ... 20} are:

Offset[4:0]: Swizzle

0x00: {1,11,9,19,5,15,d,1d,3,13,b,1b,7,17,f,1f,2,12,a,1a,6,16,,1e,4,14,c,1c,8,18,10,20}
0x10: {1,9,5,d,3,b,7,f,2,a,6,e,4,c,8,10,11,19,15,1d,13,1b,17,1f,12,1a,16,1e,14,1c,18,20}
0x1f: No swizzle

The rotate mode (offset >= 0xc000 and offset < 0xe000) rotates the input either left (offset[10] == 0) or right
(offset[10] == 1) a number of threads equal to offset[9:5]. The rotate mode also uses a mask value which can
alter the rotate result. For example, mask == 1 swaps the odd threads across every other even thread (rotate
left), or even threads across every other odd thread (rotate right).

Offset[9:5]: Swizzle

0x01, mask=0, rotate left: {2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f,20,1}
0x01, mask=0, rotate right: {20,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,14,15,16,17,18,19,1a,1b,1c,1d,1e,1f}
0x01, mask=1, rotate left: {2,1,4,7,6,5,8,b,a,9,c,f,e,d,10,13,12,11,14,17,16,15,18,1b,1a,19,1c,1f,1e,1d,20,3}
0x01, mask=1, rotate right: {1e,1,4,3,2,5,8,7,6,9,¢c,b,a,d,10,f,e,11,14,13,12,15,18,17,16,19,1c,1b,1a,1d,20,1f}

If offset < 0xc000, one of the basic swizzle modes is used based on offset[15]. If offset[15] == 1, groups of 4
consecutive threads are swizzled together. If offset[15] == 0, all 32 threads are swizzled together.

The first basic swizzle mode (when offset[15] == 1) allows full data sharing between a group of 4 consecutive
threads. Any thread within the group of 4 can get data from any other thread within the group of 4, specified by
the corresponding offset bits --- [1:0] for the first thread, [3:2] for the second thread, [5:4] for the third thread,
[7:6] for the fourth thread. Note that the offset bits apply to all groups of 4 within a wavefront; thus if offset[1:0]
==1, then thread0 grabs threadl, thread4 grabs thread5, etc.

The second basic swizzle mode (when offset[15] == 0) allows limited data sharing between 32 consecutive
threads. In this case, the offset is used to specify a 5-bit xor-mask, 5-bit or-mask, and 5-bit and-mask used to
generate a thread mapping. Note that the offset bits apply to each group of 32 within a wavefront. The details of
the thread mapping are listed below. Some example usages:

SWAPX16 : xor_mask = 0x10, or_mask = 0x00, and_mask = 0x1f

SWAPXS : xor_mask = 0x08, or_mask = 0x00, and_mask = 0x1f
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SWAPX4 : xor_mask = 0x04, or_mask = 0x00, and_mask = 0x1f
SWAPX2 : xor_mask = 0x02, or_mask = 0x00, and_mask = 0x1f
SWAPX1 : xor_mask = 0x01, or_mask = 0x00, and_mask = 0x1f
REVERSEX32 : xor_mask = 0x1f, or_mask = 0x00, and_mask = 0x1f
REVERSEX16 : xor_mask = 0x0f, or_mask = 0x00, and_mask = 0x1f
REVERSEXS : xor_mask = 0x07, or_mask = 0x00, and_mask = 0x1f
REVERSEX4 : xor_mask = 0x03, or_mask = 0x00, and_mask = 0x1f
REVERSEX2 : xor_mask = 0x01 or_mask = 0x00, and_mask = 0x1f
BCASTX32: xor_mask = 0x00, or_mask = thread, and_mask = 0x00
BCASTX16: xor_mask = 0x00, or_mask = thread, and_mask = 0x10
BCASTXS: xor_mask = 0x00, or_mask = thread, and_mask = 0x18
BCASTX4: xor_mask = 0x00, or_mask = thread, and_mask = 0x1c
BCASTX2: xor_mask = 0x00, or_mask = thread, and_mask = 0x1le

Pseudocode follows:

offset = offsetl:offsetd;

if (offset >= 0xe000) {
// FFT decomposition
mask = offset[4:0];
for (i = @; 1 < 64; i++) {
j = reverse_bits(i & 0x1f);
j = (j >> count_ones(mask));
j |= (4 & mask);
j |=1i & 6x20;
thread_out[i] = thread_valid[j] ? thread_in[j] : 8;

} elsif (offset >= 0xc000) {

// rotate

rotate = offset[9:5];

mask = offset[4:0];

if (offset[10]) {
rotate = -rotate;

}

for (1 = 08; i < 64; i++) {
j = (1 & mask) | ((i + rotate) & ~mask);
i |= i & 0x20;
thread_out[i] = thread_valid[j] ? thread_in[j] : @;

16.15. LDS & GDS Instructions

AMD¢1

514 of 600



"RDNA3" Instruction Set Architecture AMDAl

} elsif (offset[15]) {
// full data sharing within 4 consecutive threads
for (i = 0; 1 < 64; i+=4) {

thread_out[i+@] = thread_valid[i+offset[1:0]]?thread_in[i+offset[1:0]]:0;
thread_out[i+1] = thread_valid[i+offset[3:2]]?thread_in[i+offset[3:2]]:0;
thread_out[i+2] = thread_valid[i+offset[5:4]]?thread_in[i+offset[5:4]]:0;
thread_out[i+3] = thread_valid[i+offset[7:6]]?thread_in[i+offset[7:6]]:0;
}
} else { // offset[15] == @

// limited data sharing within 32 consecutive threads
xor_mask = offset[14:10];
or_mask = offset[9:5];
and_mask = offset[4:0];
for (1 = 0; i < 64; i++) {
j = (((1i & Ox1f) & and_mask) | or_mask) * xor_mask;
j |= (i & ©6x20); // which group of 32
thread_out[i] = thread_valid[j] ? thread_in[j] : @;

DS_LOAD_B32 54

Load 32-bit data from a given memory location into a vector register.

RETURN_DATA = MEM[ADDR].b

DS_LOAD_2ADDR_B32 )

Read 2 dwords.

RETURN_DATA[31 : @] = MEM[ADDR_BASE.u + OFFSET@.u * 4U].b;
RETURN_DATA[63 : 32] = MEM[ADDR_BASE.u + OFFSET1.u * 4U].b

DS_LOAD_2ADDR_STRIDE64_B32 56

Read 2 dwords with a larger stride.

RETURN_DATA[31 : @] = MEM[ADDR_BASE.u + OFFSETO.u * 4U * 64U].b;
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RETURN_DATA[63 : 32] = MEM[ADDR_BASE.u + OFFSET1.u * 4U * 64U].b

DS_LOAD_I8 57

Signed byte read.

RETURN_DATA.i = 32'I(signext(MEM[ADDR][7 : 0].i8))

DS_LOAD_US8 58

Unsigned byte read.

RETURN_DATA.u = 32'U({ 24'@, MEM[ADDR][7 : ©].u8 })

DS_LOAD_I16 59

Signed short read.

RETURN_DATA.i = 32'I(signext(MEM[ADDR][15 : 8].i16))

DS_LOAD_U16 60

Unsigned short read.

RETURN_DATA.u = 32'U({ 16'0, MEM[ADDR][15 : ©].u16 })

DS_CONSUME 61

LDS & GDS. Subtract (count_bits(exec_mask)) from the value stored in DS memory at (M0.base + instr_offset).
Return the pre-operation value to VGPRs.

The DS subtracts count_bits(vector valid mask) from the value stored at address M0.base + instruction based
offset and returns the pre-op value to all valid lanes. This op can be used in both the LDS and GDS. In the LDS
this address is an offset to HWBASE and clamped by M0.size, but in the GDS the M0.base constant has the
physical GDS address and the compiler must force offset to zero. In GDS it is for the traditional append buffer
operations. In LDS it is for local thread group appends and can be used to regroup divergent threads. The use
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of the MO register enables the compiler to do indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler must use a zero for {offset1,offset0}, for LDS the compiler uses
{offsetl,offset0} to provide the relative address to the append counter in the LDS for runtime index offset or
index.

Inside DS, do one atomic add for first valid lane and broadcast result to all valid lanes. Offset = Offset1:offset0;
Interpreted as byte offset. Only aligned atomics are supported, so 2 Isbs of offset must be set to zero.

addr = M@.base + offset; // offset by LDS HWBASE, limit to M.size
rtnval = LDS(addr);

LDS(addr) = LDS(addr) - countbits(valid mask);

GPR[VDST] rtnval; // return to all valid threads

DS_APPEND 62

LDS & GDS. Add (count_bits(exec_mask)) to the value stored in DS memory at (M0.base + instr_offset). Return
the pre-operation value to VGPRs.

The DS adds count_bits(vector valid mask) from the value stored at address M0.base + instruction based offset
and return the pre-op value to all valid lanes. This op can be used in both the LDS and GDS. In the LDS this
address is an offset to HWBASE and clamped by MO0.size, but in the GDS the M0.base constant has the physical
GDS address and the compiler must set offset to zero. In GDS it is for the traditional append buffer operations.
In LDS it is for local thread group appends and can be used to regroup divergent threads. The use of the M0
register enables the compiler to do indexing of UAV append/consume counters.

For GDS (system wide) consume, the compiler must use a zero for {offset1,offset0}, for LDS the compiler uses
{offsetl,offset0} to provide the relative address to the append counter in the LDS for runtime index offset or
index.

Inside DS, do one atomic add for first valid lane and broadcast result to all valid lanes. Offset = Offset1:offset0;
Interpreted as byte offset. Only aligned atomics are supported, so 2 1sbs of offset must be set to zero.

addr = M@.base + offset; // offset by LDS HWBASE, limit to M.size
rtnval = LDS(addr);

LDS(addr) = LDS(addr) + countbits(valid mask);

GPR[VDST] = rtnval; // return to all valid threads

DS_ORDERED_COUNT 63

GDS-only: Intercepted by GDS and processed by ordered append module. The ordered append module queues
request until this request wave is the oldest in the queue at which time the oldest wave request is dispatched to
the DS with an atomic opcode indicated by OFFSET1[5:4].

Unlike append/consume this operation is sent even if there are no valid lanes when it is issued. The GDS adds
zero and advances the tracking walker that needs to match up with the dispatch counter.
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The following attributes are encoded in the instruction:

* OFFSETO0[7:2] contains the ordered_count_index (in dwords).
« OFFSET1[0] contains the wave_release flag.
« OFFSET1[1] contains the wave_done flag.

« OFFSET1[5:4] contains the ord_idx_opcode: 2'b00 = DS_ADD_RTN_U32, 2'b01 = DS_STOREXCHG_RTN_B32,
2'b11 = DS_WRAP_RTN_B32.

« VGPR_DST is the VGPR the result is written to.

» VGPR_ADDR specifies the increment in the first valid lane. If no lanes are valid (EXEC = 0) then the
increment is zero.

« MO normally carries {16'gds_base, 16'gds_size} for GDS usage. gds_base[15:2] is ordered_count_base[13:0]
(in dwords) and gds_size is used to hold the logical_wave_id, the width is based on total number of waves
in the chip.

The wave type is determined automatically based on the ME_ID and QUEUE_ID of the wavefront.

DS_ADD_U64 64

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

DS_SUB_U64 65

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

DS_RSUB_U64 66

Subtraction with reversed operands.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64 - tmp;
RETURN_DATA.b64 = tmp
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DS_INC_U64 67

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR] .u64 = tmp >= src ? OULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

DS_DEC_U64 68

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR] .u64 = ((tmp == @ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp

DS_MIN_I64 69

Minimum of two signed 64-bit integer values.

tmp MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.164 = tmp

DS_MAX_I64 70

Maximum of two signed 64-bit integer values.

tmp MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MIN_U64 71

Minimum of two unsigned 64-bit integer values.
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tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp
DS_MAX_Ue64 72
Maximum of two unsigned 64-bit integer values.
tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp
DS_AND_B64 73
Bitwise AND of register value and 64-bit memory value.
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp
DS_OR_B64 74
Bitwise OR of register value and 64-bit memory value.
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp
DS_XOR_B64 75

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp * DATA.b64);
RETURN_DATA.b64 = tmp
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DS_MSKOR_B64

Masked dword OR, DO contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = ((tmp & ~DATA.b64) | DATA2.b64);
RETURN_DATA.b64 = tmp

AMDZ1

76

DS_STORE_B64

Write qword.

MEM[ADDR].b64 = DATA.b64

77

DS_STORE_2ADDR_Bé64

Write 2 gwords.

MEM[ADDR_BASE.u + OFFSET@.u * 8U].b64 = DATA.b64;
MEM[ADDR_BASE.u + OFFSET1.u * 8U].b64 = DATA2.b64

78

DS_STORE_2ADDR_STRIDE64_B64

Write 2 qwords with a larger stride.

MEM[ADDR_BASE.u + OFFSET@.u * 8U * 64U].b64 = DATA.b64;
MEM[ADDR_BASE.u + OFFSET1.u * 8U * 64U].b64 = DATA2.b64

79

DS_CMPSTORE_B64

Compare and store.

tmp MEM[ADDR] .b64;

src = DATA.b64;

cmp = DATA2.b64;

MEM[ADDR] .b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp
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Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_CMPSTORE_F64 81

Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f64;

src = DATA.f64;

cmp = DATA2.f64;

MEM[ADDR].f64 = tmp == cmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_Fé64 82

Minimum of two floating-point values.

tmp MEM[ADDR].f64;

src = DATA.f64;

MEM[ADDR].f64 = src < tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_F64 83

Maximum of two floating-point values.

tmp MEM[ADDR].f64;

src = DATA.f64;

MEM[ADDR].f64 = src > tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.
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DS_ADD_RTN_U64

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR] .u64 += DATA.u64;
RETURN_DATA.u64 = tmp

AMD¢1

96

DS_SUB_RTN_Ué64

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

97

DS_RSUB_RTN_Ué64

Subtraction with reversed operands.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = DATA.b64 - tmp;
RETURN_DATA.b64 = tmp

98

DS_INC_RTN_U64

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp MEM[ADDR] .u64;
src = DATA.u64;

MEM[ADDR] .u64 = tmp >= src ? OULL :

RETURN_DATA.u64 = tmp

929

DS_DEC_RTN_U64

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;
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src = DATA.u64;

MEM[ADDR].u64 = ((tmp == QULL) || (tmp > src)) ? src : tmp - TULL;
RETURN_DATA.u64 = tmp

DS_MIN_RTN_I64 101

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MAX_RTN_I64 102

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR] .i64 = src > tmp ? src : tmp;
RETURN_DATA.i64 = tmp

DS_MIN_RTN_U64 103

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR].u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

DS_MAX_RTN_Ué64 104

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp
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DS_AND_RTN_B64

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;

MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

AMDZ1

105

DS_OR_RTN_Bé64

Bitwise OR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;

MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

106

DS_XOR_RTN_Bé64

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;

MEM[ADDR].b64 = (tmp * DATA.b64);
RETURN_DATA.b64 = tmp

107

DS_MSKOR_RTN_Bé64

Masked dword OR, DO contains the mask and D1 contains the new value.

tmp = MEM[ADDR].b64;

MEM[ADDR].b64 = ((tmp & ~DATA.b64) | DATA2.b64);
RETURN_DATA.b64 = tmp

108

DS_STOREXCHG_RTN_B64

Write-exchange operation.

tmp = MEM[ADDR].b64;
MEM[ADDR] .b64 = DATA.b64;
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RETURN_DATA.b64 = tmp

DS_STOREXCHG_2ADDR_RTN_B64 110

Write-exchange 2 separate qwords.

addr1 = ADDR_BASE.u + OFFSETO.u * 8U;
addr2 ADDR_BASE.u + OFFSET1.u * 8U;
tmp1 = MEM[addr1].b64;

tmp2 = MEM[addr2].b64;

MEM[addr1].b64 = DATA.b64;
MEM[addr2].b64 = DATA2.b64;

// Note DATA2 can be any other register
RETURN_DATA[63 : @] = tmp1;
RETURN_DATA[127 : 64] = tmp2

DS_STOREXCHG_2ADDR_STRIDE64_RTN_B64 111

Write-exchange 2 qwords with a stride of 64 qwords.

addr1 = ADDR_BASE.u + OFFSETO.u * 8U * 64U;
addr2 ADDR_BASE.u + OFFSET1.u * 8U * 64U;
tmp1 = MEM[addr1].b64;

tmp2 = MEM[addr2].b64;

MEM[addr1].b64 DATA.b64;

MEM[addr2].b64 DATA2 .b64;

// Note DATA2 can be any other register
RETURN_DATA[63 : @8] = tmp1;

RETURN_DATA[127 : 64] = tmp2

DS_CMPSTORE_RTN_B64 112

Compare and store.

tmp = MEM[ADDR].b64;

src = DATA.b64;

cmp = DATA2.b64;

MEM[ADDR] .b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.
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DS_CMPSTORE_RTN_F64 113

Floating point compare and store that handles NAN/INF/denormal values.

tmp = MEM[ADDR].f64;

src = DATA.f64;

cmp = DATA2.f64;

MEM[ADDR] .f64 = tmp == cmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

In this architecture the order of src and cmp agree with the BUFFER_ATOMIC_CMPSWAP opcode.

DS_MIN_RTN_Fé64 114

Minimum of two floating-point values.

tmp = MEM[ADDR].f64;

src = DATA.f64;

MEM[ADDR] .f64 = src < tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_MAX_RTN_F64 115

Maximum of two floating-point values.

tmp = MEM[ADDR].f64;

src = DATA.f64;

MEM[ADDR].f64 = src > tmp ? src : tmp;
RETURN_DATA.f64 = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

DS_LOAD_B64 118

16.15. LDS & GDS Instructions 527 of 600



"RDNA3" Instruction Set Architecture

Read 1 qword.

RETURN_DATA = MEM[ADDR] .b64

AMD¢1

DS_LOAD_2ADDR_B64 119
Read 2 qwords.
RETURN_DATA[63 : @] = MEM[ADDR_BASE.u + OFFSET@.u * 8U].b64;
RETURN_DATA[127 : 64] = MEM[ADDR_BASE.u + OFFSET1.u % 8U].b64
DS_LOAD_2ADDR_STRIDE64_B64 120
Read 2 qwords with a larger stride.
RETURN_DATA[63 : 8] = MEM[ADDR_BASE.u + OFFSET8.u * 8U * 64U].b64;
RETURN_DATA[127 : 64] = MEM[ADDR_BASE.u + OFFSET1.u * 8U * 64U].b64
DS_ADD_RTN_F32 121
Add data register to floating-point memory value.
tmp = MEM[ADDR].f;
src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp
Notes
Floating-point addition handles NAN/INF/denorm.
122

DS_ADD_GS_REG_RTN

Perform an atomic add to data in specific registers embedded in GDS rather than operating on GDS memory
directly. This instruction returns the pre-op value. This instruction is only used by the GS stage and is used to

facilitate streamout.

The return value may be 32 bits or 64 bits depending on the GS register accessed. The data value is 32 bits.
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if OFFSET@[5:2] > 7
// 64-bit GS register access
addr = (OFFSET@[5:2] - 8) % 2 + 8;
VDST[8] = GS_REGS(addr + 0):
VDST[1] = GS_REGS(addr + 1);
{GS_REGS(addr + 1), GS_REGS(addr)} += DATA@[@]; // source is 32 bit
else
addr = OFFSET@[5:2];
VDST[@®] = GS_REGS(addr);
GS_REGS(addr) += DATA®[O];
endif.

32-bit GS registers:

offset[5:2] Register

0 GDS_STRMOUT_BUFFER_FILLED_SIZE_O
1 GDS_STRMOUT_BUFFER_FILLED_SIZE_1
2 GDS_STRMOUT_BUFFER_FILLED_SIZE_2
3 GDS_STRMOUT_BUFFER_FILLED_SIZE_3
4 GDS_GS_0

5GDS_GS_1

6 GDS_GS_2

7 GDS_GS_3

64-bit GS registers:

offset[5:2] Register

8 GDS_STRMOUT_PRIMS_NEEDED_0

9 GDS_STRMOUT_PRIMS_WRITTEN_0
10 GDS_STRMOUT_PRIMS_NEEDED_1
11 GDS_STRMOUT_PRIMS_WRITTEN_1
12 GDS_STRMOUT_PRIMS_NEEDED_2
13 GDS_STRMOUT_PRIMS_WRITTEN_2
14 GDS_STRMOUT_PRIMS_NEEDED_3
15 GDS_STRMOUT_PRIMS_WRITTEN_3

DS_SUB_GS_REG_RTN 123

Perform an atomic subtraction from data in specific registers embedded in GDS rather than operating on GDS
memory directly. This instruction returns the pre-op value. This instruction is only used by the GS stage and is
used to facilitate streamout.

The return value may be 32 bits or 64 bits depending on the GS register accessed. The data value is 32 bits.

if OFFSET@[5:2] > 7
// 64-bit GS register access
addr = (OFFSET@[5:2] - 8) * 2 + 8;
VDST[@] = GS_REGS(addr + 0);
VDST[1] = GS_REGS(addr + 1);
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{GS_REGS(addr + 1), GS_REGS(addr)} -= DATA@[@]; // source is 32 bit
else

addr = OFFSET@[5:2];

VDST[B] = GS_REGS(addr);

GS_REGS(addr) -= DATAB[B]:
endif.

32-bit GS registers:

offset[5:2] Register

0 GDS_STRMOUT_BUFFER_FILLED_SIZE_0
1 GDS_STRMOUT_BUFFER_FILLED_SIZE_1
2 GDS_STRMOUT_BUFFER_FILLED_SIZE_2
3 GDS_STRMOUT_BUFFER_FILLED_SIZE_3
4 GDS_GS_0

5GDS_GS_1

6 GDS_GS_2

7 GDS_GS_3

64-bit GS registers:

offset[5:2] Register

8 GDS_STRMOUT_PRIMS_NEEDED_0

9 GDS_STRMOUT_PRIMS_WRITTEN_0
10 GDS_STRMOUT_PRIMS_NEEDED_1
11 GDS_STRMOUT_PRIMS_WRITTEN_1
12 GDS_STRMOUT_PRIMS_NEEDED_2
13 GDS_STRMOUT_PRIMS_WRITTEN_2
14 GDS_STRMOUT_PRIMS_NEEDED_3
15 GDS_STRMOUT_PRIMS_WRITTEN_3

AMD¢1

DS_CONDXCHG32_RTN_B64

Conditional write exchange.

declare OFFSETO : 8'U;
declare OFFSET1 : 8'U;
declare RETURN_DATA : 32'U[2];
ADDR = S@.u;
DATA = S1.u64;
offset = { OFFSET1, OFFSETO };
ADDRO = ((ADDR + offset.u) & @Oxfff8U);
ADDR1 = ADDRO + 4U;
RETURN_DATA[O] = LDS[ADDRO].u;
if DATA[31] then
LDS[ADDRO]
endif;
RETURN_DATA[1] = LDS[ADDR1].u;
if DATA[63] then
LDS[ADDR1] = { 1'@, DATA[62 : 32] }

{ 1'@, DATA[30 : @] }
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endif
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DS_STORE_B8_D16_HI 160
Byte write in to high word.

MEM[ADDR] .b8 = DATA[23 : 16].b8
DS_STORE_B16_D16_HI 161
Short write in to high word.

MEM[ADDR].b16 = DATA[31 : 16].b16
DS_LOAD_US8_D16 162
Unsigned byte read with masked return to lower word.

RETURN_DATA[15 : 8].u16 = 16'U({ 8'@U, MEM[ADDR][7 : @].u8 })
DS_LOAD_US8_D16_HI 163
Unsigned byte read with masked return to upper word.

RETURN_DATA[31 : 16].u16 = 16'U({ 8'@U, MEM[ADDR][7 : @].u8 })
DS_LOAD_I8_D16 164
Signed byte read with masked return to lower word.

RETURN_DATA[15 : 8].i16 = 16'I(signext(MEM[ADDR][7 : 0].i8))
DS_LOAD_I8_D16_HI 165
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Signed byte read with masked return to upper word.

RETURN_DATA[31 : 16].116 = 16'I(signext(MEM[ADDR][7 : ©0].i8))

DS_LOAD_U16_D16 166

Unsigned short read with masked return to lower word.

RETURN_DATA[15 : @].u16 = MEM[ADDR][15 : @8].u16

DS_LOAD_U1l6_D16_HI 167

Unsigned short read with masked return to upper word.

RETURN_DATA[31 : 16].u16 = MEM[ADDR][15 : 0].u16

DS_BVH_STACK_RTN_B32 173

Ray tracing involves traversing a BVH which is a kind of tree where nodes have up to 4 children. Each shader
thread processes one child at a time, and overflow nodes are stored temporarily in LDS using a stack. This
instruction supports pushing/popping the stack to reduce the number of VALU instructions required per
traversal and reduce VMEM bandwidth requirements.

The LDS stack address is computed using values packed into ADDR and part of OFFSET1. ADDR carries the
stack address for the lane. OFFSET1[5:4] contains stack_size[1:0] -- this value is constant for all lanes and is
patched into the shader by software. Valid stack sizes are {8, 16, 32, 64}.

A new stack address is returned to ADDR --- note that this VGPR is an in-out operand.
DATAO contains the last node pointer for BVH.

DATALI contains up to 4 valid data DWORDs for each thread. At a high level the first 3 DWORDs (DATA1[0:2]) is
pushed to the stack if they are valid, and the last DWORD (DATA1[3]) is returned. If the last DWORD is invalid
then pop the stack and return the value from memory.

In general this instruction performs the following :

(stack_base, stack_index) = DECODE_ADDR(ADDR, OFFSET1);
last_node_ptr = DATAQ;
// First 3 passes: push data onto stack
for i = 0..2 do
if DATA_VALID(DATA1[i])
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MEM[stack_base + stack_index] = DATA1[il];
Increment stack_index

elsif DATA1[i] == last_node_ptr
// Treat all further data as invalid as well.
break

endif

endfor

// Fourth pass: return data or pop

if DATA_VALID(DATA1[3])
VGPR_RTN = DATA1[3]

else
VGPR_RTN = MEM[stack_base + stack_index];
MEM[stack_base + stack_index] = INVALID_NODE;
Decrement stack_index

endif

ADDR = ENCODE_ADDR(stack_base, stack_index).

function DATA_VALID(data):
if data == INVALID_NODE
return false

elsif last_node_ptr != INVALID_NODE && data == last_node_ptr

// Match last_node_ptr
return false
else
return true
endif
endfunction.

AMD¢1

DS_STORE_ADDTID_B32

Write dword with thread ID offset.

declare OFFSETO : 8'U;
declare OFFSET1 : 8'U;

MEM[32'I({ OFFSET1, OFFSET® } + M@[15 : @]) + laneID.i * 4].u = DATA®@.u

176

DS_LOAD_ADDTID_B32

Read dword with thread ID offset.

declare OFFSETO : 8'U;
declare OFFSET1 : 8'U;
RETURN_DATA.u = MEM[32'I({ OFFSET1, OFFSET@ } + M@[15

: 0]) + laneID.i * 4].u

177

DS_PERMUTE_B32
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Forward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to
the wave. It uses LDS to implement an arbitrary swizzle across threads in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

If multiple sources map to the same destination lane, it is not deterministic which source lane writes to the
destination lane.

See also DS_BPERMUTE_B32.

// VGPR[laneId][index] is the VGPR RAM
// VDST, ADDR and DATA@ are from the microcode DS encoding
declare tmp : 32'B[64];
declare OFFSET : 16'U;
declare DATA® : 32'U;
declare VDST : 32'U;
for i in @ : WAVE64 ? 63 : 31 do
tmp[i] = ©Bx0
endfor;
for i in @ : WAVE64 ? 63 : 31 do
// If a source thread is disabled, it does not propagate data.
if EXEC[i].u1 then
// ADDR needs to be divided by 4.
// High-order bits are ignored.
// NOTE: destination lane is MOD 32 regardless of wave size.
dst_lane = 32'I(VGPR[i][ADDR] + OFFSET.b) / 4 % 32;
tmp[dst_lane] = VGPR[i][DATA®]
endif
endfor;
// Copy data into destination VGPRs. If multiple sources
// select the same destination thread, the highest-numbered
// source thread wins.
for i in @ : WAVE64 ? 63 : 31 do
if EXEC[i].u1 then
VGPR[1i][VDST] = tmp[i]
endif
endfor

Notes

Examples (simplified 4-thread wavefronts):

VGPR[SRC@®] = { A, B, C, D }
VGPR[ADDR] = { @, @, 12, 4 }
EXEC = OxF, OFFSET = @
VGPR[VDST] = { B, D, @, C }

VGPR[SRCO] {A B, C, D}
VGPR[ADDR] = { @, @, 12, 4 }
EXEC = OxA, OFFSET = ©

VGPR[VDST] = { -, D, -, @ }
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DS_BPERMUTE_B32 179

Backward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to
the wave. It uses LDS hardware to implement an arbitrary swizzle across threads in a wavefront.

Note the address passed in is the thread ID multiplied by 4.

Note that EXEC mask is applied to both VGPR read and write. If src_lane selects a disabled thread then zero is
returned.

See also DS_PERMUTE_B32.

// VGPR[laneId][index] is the VGPR RAM
// VDST, ADDR and DATA® are from the microcode DS encoding
declare tmp : 32'B[64];
declare OFFSET : 16'U;
declare DATA® : 32'U;
declare VDST : 32'U;
for i in @ : WAVE64 ? 63 : 31 do
tmp[i] = @x0
endfor;
for i in @ : WAVE64 ? 63 : 31 do
// ADDR needs to be divided by 4.
// High-order bits are ignored.
// NOTE: destination lane is MOD 32 regardless of wave size.
src_lane = 32'I(VGPR[i][ADDR] + OFFSET.b) / 4 % 32;
// EXEC is applied to the source VGPR reads.
if EXEC[src_lane].ul then
tmp[i] = VGPR[src_lane][DATA®]
endif
endfor;
// Copy data into destination VGPRs. Some source
// data may be broadcast to multiple lanes.
for i in @ : WAVE64 ? 63 : 31 do
if EXEC[i].u1 then
VGPR[1i][VDST] = tmp[i]
endif
endfor

Notes

Examples (simplified 4-thread wavefronts):

VGPR[SRCO] {A B, C, D}
VGPR[ADDR] {0, 0, 12, 4}
EXEC = OxF, OFFSET = ©
VGPR[VDST] = { A, A, D, B }

VGPR[SRCO] =
VGPR[ADDR] =

, C, D}
12, 4}

A~
o >
o W
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EXEC = OxA, OFFSET = ©
VGPR[VDST] = { -, @, -, B }

AMDZ1

DS_STORE_B9%6 222
Tri-dword write.

MEM[ADDR + OU].b = DATA[31 : @];

MEM[ADDR + 4U].b = DATA[63 : 32];

MEM[ADDR + 8U].b = DATA[95 : 64]
DS_STORE_B128 223
Quad-dword write.

MEM[ADDR + @U].b = DATA[31 : @];

MEM[ADDR + 4U].b = DATA[63 : 32];:

MEM[ADDR + 8U].b = DATA[95 : 64];

MEM[ADDR + 12U].b = DATA[127 : 96]
DS_LOAD_B96 254
Tri-dword read.

RETURN_DATA[31 : @] = MEM[ADDR + @U].b;

RETURN_DATA[63 : 32] = MEM[ADDR + 4U].b;

RETURN_DATA[95 : 64] = MEM[ADDR + 8U].b
DS_LOAD_B128 255

Quad-dword read.

RETURN_DATA[31
RETURN_DATA[63 :
RETURN_DATA[95
RETURN_DATA[ 1

. 0]

32
: 64
27 : 9

= MEM[ADDR + @U].b;
] = MEM[ADDR + 4U].b;
] = MEM[ADDR + 8U].b;
6] = MEM[ADDR + 12U].b

16.15. LDS & GDS Instructions

536 of 600



"RDNA3" Instruction Set Architecture AMDAl

16.15.1. LDS Instruction Limitations

Some of the DS instructions are available only to GDS, not LDS. These are:

*+ DS_GWS_SEMA_RELEASE_ALL
DS_GWS_INIT

* DS_GWS_SEMA_V

+ DS_GWS_SEMA_BR

* DS_GWS_SEMA_P

* DS_GWS_BARRIER

+ DS_ORDERED_COUNT
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16.16. MUBUF Instructions

The bitfield map of the MUBUF format is:

AMDZ1

1.1 1 0 0 o “op ] " loiclpiclsid]

MUBUF

OFFSET

SOFFSET |iox Jore|Tre] SRSRC | VDATA

VADDR

32

BUFFER_LOAD_FORMAT_X

Untyped buffer load 1 component with format conversion.

VDATA[31 : @].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

BUFFER_LOAD_FORMAT_XY

Untyped buffer load 2 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y])

BUFFER_LOAD_FORMAT_XYZ

Untyped buffer load 3 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z])

BUFFER_LOAD_FORMAT_XYZW

Untyped buffer load 4 components with format conversion.

VDATA[31 : @].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z]);
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VDATA[127 : 96].b = ConvertFromFormat(MEM[TADDR.W])

AMDZ1

BUFFER_STORE_FORMAT_X 4
Untyped buffer store 1 component with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : @].b);

// Mem access size depends on format
BUFFER_STORE_FORMAT_XY 5
Untyped buffer store 2 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 6].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b)
BUFFER_STORE_FORMAT_XYZ 6
Untyped buffer store 3 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 8].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);

MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b)
BUFFER_STORE_FORMAT_XYZW 7
Untyped buffer store 4 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : @].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);

MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b);

MEM[TADDR.W] = ConvertToFormat(VDATA[127 : 96].b)
BUFFER_LOAD_D16_FORMAT_X 8
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Untyped buffer load 1 component with format conversion, packed 16-bit components in data register.

VDATA[15 : @8].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[31:16].b16 is preserved.

BUFFER_LOAD_D16_FORMAT_XY 9

Untyped buffer load 2 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]))

BUFFER_LOAD_D16_FORMAT_XYZ 10

Untyped buffer load 3 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
// VDATA[63:48].b16 is preserved.

BUFFER_LOAD_D16_FORMAT_XYZW 11

Untyped buffer load 4 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 16 'B(ConvertFromFormat(MEM[TADDR.Z]));
VDATA[63 : 48].b16 = 16'B(ConvertFromFormat(MEM[TADDR.W]))

BUFFER_STORE_D16_FORMAT_X 12

Untyped buffer store 1 component with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : ©].b16));
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// Mem access size depends on format

BUFFER_STORE_D16_FORMAT_XY 13

Untyped buffer store 2 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : @].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16))

BUFFER_STORE_D16_FORMAT_XYZ 14

Untyped buffer store 3 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : ©8].b16));
// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16))

BUFFER_STORE_D16_FORMAT_XYZW 15

Untyped buffer store 4 components with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : @8].b16));
// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16));
MEM[TADDR.W] = ConvertToFormat(32'B(VDATA[63 : 48].b16))

BUFFER_LOAD_US8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

BUFFER_LOAD_I8 17
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Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

AMDZ1

BUFFER_LOAD_U16

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].ul16 })

18

BUFFER_LOAD_I16

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))

19

BUFFER_LOAD_B32

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

20

BUFFER_LOAD_B64

Untyped buffer load 2 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

21

BUFFER_LOAD_B9%6

Untyped buffer load 3 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
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VDATA[95 : 64] = MEM[ADDR + 8U].b

AMDZ1

BUFFER_LOAD_B128

Untyped buffer load 4 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;

VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

23

BUFFER_STORE_BS

Untyped buffer store byte.

MEM[ADDR].b8 = VDATA[7 : 0]

24

BUFFER_STORE_B16

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

25

BUFFER_STORE_B32

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

26

BUFFER_STORE_Bé64

Untyped buffer store 2 dwords.

MEM[ADDR + OU].b = VDATA[31
MEM[ADDR + 4U].b = VDATA[63
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AMDZ1

BUFFER_STORE_B96 28
Untyped buffer store 3 dwords.

MEM[ADDR + @U].b = VDATA[31 : 0];

MEM[ADDR + 4U].b = VDATA[63 : 32];

MEM[ADDR + 8U].b = VDATA[95 : 64]
BUFFER_STORE_B128 29
Untyped buffer store 4 dwords.

MEM[ADDR + @U].b = VDATA[31 : @];

MEM[ADDR + 4U].b = VDATA[63 : 32];

MEM[ADDR + 8U].b = VDATA[95 : 64];

MEM[ADDR + 12U].b = VDATA[127 : 96]
BUFFER_LOAD_D16_US8 30
Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : ©].u16 = 16'U({ 8'®, MEM[ADDR].u8 });

// VDATA[31:16] is preserved.
BUFFER_LOAD_D16_1I8 31
Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : ©].1i16 = 16'I(signext(MEM[ADDR].i8));

// VDATA[31:16] is preserved.
BUFFER_LOAD_D16_B16 32

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : ©].b16 = MEM[ADDR].b16;
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// VDATA[31:16] is preserved.

BUFFER_LOAD_D16_HI_US8 33
Untyped buffer load unsigned byte, use high 16 bits of data register.
VDATA[31 : 16].u16 = 16'U({ 8'@, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.
BUFFER_LOAD_D16_HI_I8 34
Untyped buffer load signed byte, use high 16 bits of data register.
VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.
BUFFER_LOAD_D16_HI_B16 35
Untyped buffer load short, use high 16 bits of data register.
VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.
BUFFER_STORE_D16_HI_BS8 36
Untyped buffer store byte, use high 16 bits of data register.
MEM[ADDR].b8 = VDATA[23 : 16].b8
BUFFER_STORE_D16_HI_B16 37
Untyped buffer store short, use high 16 bits of data register.
MEM[ADDR].b16 = VDATA[31 : 16].b16
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BUFFER_LOAD_D16_HI_FORMAT_X

Untyped buffer load 1 dword with format conversion, use high 16 bits of data register.

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[15:0].b16 is preserved.

AMDZ1

38

BUFFER_STORE_D16_HI_FORMAT_X

Untyped buffer store 1 dword with format conversion, use high 16 bits of data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
// Mem access size depends on format

39

BUFFER_GLO_INV

Write back and invalidate the shader LO. Returns ACK to shader.

43

BUFFER_GL1_INV

Invalidate the GL1 cache only. Returns ACK to shader.

44

BUFFER_ATOMIC_SWAP_B32

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

51

BUFFER_ATOMIC_CMPSWAP_B32

Compare and swap with memory value.

tmp MEM[ADDR] .b;
src = DATA[31 : @].b;
cmp DATA[63 : 32].b;
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MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

AMDZ1

BUFFER_ATOMIC_ADD_U32

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

53

BUFFER_ATOMIC_SUB_U32

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

54

BUFFER_ATOMIC_CSUB_U32

Subtract data register from memory value, clamp to zero.

declare new_value : 32'U;
old_value = MEM[ADDR].u;
if old_value < DATA.u then
new_value = 60U
else
new_value = old_value - DATA.u
endif;
MEM[ADDR] .u = new_value;
RETURN_DATA.u = old_value

55

BUFFER_ATOMIC_MIN_I32

Minimum of two signed integer values.

tmp MEM[ADDR] .i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
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RETURN_DATA.i = tmp

AMDZ1

BUFFER_ATOMIC_MIN_U32 57
Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;

RETURN_DATA.u = tmp
BUFFER_ATOMIC_MAX_I32 58
Maximum of two signed integer values.

tmp = MEM[ADDR].1i;

src = DATA.i;

MEM[ADDR].i = src > tmp ? src : tmp;

RETURN_DATA.1 = tmp
BUFFER_ATOMIC_MAX_U32 59
Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;

RETURN_DATA.u = tmp
BUFFER_ATOMIC_AND_B32 60

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp
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BUFFER_ATOMIC_OR_B32

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

AMDZ1

61

BUFFER_ATOMIC_XOR_B32

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

62

BUFFER_ATOMIC_INC_U32

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = tmp >= src ? 8U : tmp + 1U;
RETURN_DATA.u = tmp

63

BUFFER_ATOMIC_DEC_U32

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src :

RETURN_DATA.u = tmp

64

BUFFER_ATOMIC_SWAP_B64

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
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MEM[ADDR].b64 = DATA.b64;
RETURN_DATA.b64 = tmp

AMDZ1

BUFFER_ATOMIC_CMPSWAP_B64

Compare and swap with 64-bit memory value.

tmp MEM[ADDR] .b64;

src = DATA[63 : 0].b64;

cmp = DATA[127 : 64].b64;

MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

66

BUFFER_ATOMIC_ADD_U64

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR] .u64 += DATA.u64;
RETURN_DATA.u64 = tmp

67

BUFFER_ATOMIC_SUB_U64

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

68

BUFFER_ATOMIC_MIN_I64

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.164 = tmp

69
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BUFFER_ATOMIC_MIN_Ué64

Minimum of two unsigned 64-bit integer values.

tmp MEM[ADDR] .u64;

src = DATA.u64;

MEM[ADDR] .u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

AMDZ1

70

BUFFER_ATOMIC_MAX_I64

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.164 = tmp

71

BUFFER_ATOMIC_MAX_U64

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

72

BUFFER_ATOMIC_AND_Bé64

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

73

BUFFER_ATOMIC_OR_B64

Bitwise OR of register value and 64-bit memory value.
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AMDA
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp
BUFFER_ATOMIC_XOR_B64 75
Bitwise XOR of register value and 64-bit memory value.
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp * DATA.b64);
RETURN_DATA.b64 = tmp
BUFFER_ATOMIC_INC_U64 76
Increment 64-bit memory value with wraparound to zero when incremented to register value.
tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR] .u64 = tmp >= src ? QULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp
BUFFER_ATOMIC_DEC_U64 77
Decrement 64-bit memory value with wraparound to register value when decremented below zero.
tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR] .u64 = ((tmp == @ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp
BUFFER_ATOMIC_CMPSWAP_F32 80

Compare and swap with floating-point memory value.

tmp = MEM[ADDR].f;

src = DATA[31 : @].f;

cmp = DATA[63 : 32].f;

MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp
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Notes

Floating-point compare handles NAN/INF/denorm.

AMD¢1

BUFFER_ATOMIC_MIN_F32

Minimum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

81

BUFFER_ATOMIC_MAX_F32

Maximum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

82

BUFFER_ATOMIC_ADD_F32

Add data register to floating-point memory value.

tmp MEM[ADDR].f;

src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

86
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16.17. MTBUF Instructions

The bitfield map of the MTBUF format is:

AMDZ1

1. 1 1 0 1 o]  "rFormar | op ' leclpiclsic]

OFFSET

MTBUF

SOFFSET |iox Jore|Tre] SRSRC | VDATA

VADDR

32

TBUFFER_LOAD_FORMAT_X

Typed buffer load 1 component with format conversion.

VDATA[31 : @].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

TBUFFER_LOAD_FORMAT_XY

Typed buffer load 2 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format
VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y])

TBUFFER_LOAD_FORMAT_XYZ

Typed buffer load 3 components with format conversion.

VDATA[31 : 0].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z])

TBUFFER_LOAD_FORMAT_XYZW

Typed buffer load 4 components with format conversion.

VDATA[31 : @].b = ConvertFromFormat(MEM[TADDR.X]);
// Mem access size depends on format

VDATA[63 : 32].b = ConvertFromFormat(MEM[TADDR.Y]);
VDATA[95 : 64].b = ConvertFromFormat(MEM[TADDR.Z]);
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VDATA[127 : 96].b = ConvertFromFormat(MEM[TADDR.W])

AMDZ1

TBUFFER_STORE_FORMAT_X 4
Typed buffer store 1 component with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : @].b);

// Mem access size depends on format
TBUFFER_STORE_FORMAT_XY 5
Typed buffer store 2 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 6].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b)
TBUFFER_STORE_FORMAT_XYZ 6
Typed buffer store 3 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : 8].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);

MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b)
TBUFFER_STORE_FORMAT_XYZW 7
Typed buffer store 4 components with format conversion.

MEM[TADDR.X] = ConvertToFormat(VDATA[31 : @].b);

// Mem access size depends on format

MEM[TADDR.Y] = ConvertToFormat(VDATA[63 : 32].b);

MEM[TADDR.Z] = ConvertToFormat(VDATA[95 : 64].b);

MEM[TADDR.W] = ConvertToFormat(VDATA[127 : 96].b)
TBUFFER_LOAD_D16_FORMAT_X 8
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Typed buffer load 1 component with format conversion, packed 16-bit components in data register.

VDATA[15 : @8].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
// VDATA[31:16].b16 is preserved.

TBUFFER_LOAD_D16_FORMAT_XY 9

Typed buffer load 2 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format
VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]))

TBUFFER_LOAD_D16_FORMAT_XYZ 10

Typed buffer load 3 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Z]));
// VDATA[63:48].b16 is preserved.

TBUFFER_LOAD_D16_FORMAT_XYZW 11

Typed buffer load 4 components with format conversion, packed 16-bit components in data register.

VDATA[15 : 0].b16 = 16'B(ConvertFromFormat(MEM[TADDR.X]));
// Mem access size depends on format

VDATA[31 : 16].b16 = 16'B(ConvertFromFormat(MEM[TADDR.Y]));
VDATA[47 : 32].b16 16 'B(ConvertFromFormat(MEM[TADDR.Z]));
VDATA[63 : 48].b16 = 16'B(ConvertFromFormat(MEM[TADDR.W]))

TBUFFER_STORE_D16_FORMAT_X 12

Typed buffer store 1 component with format conversion, packed 16-bit components in data register.

MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : ©].b16));
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// Mem access size depends on format

AMD¢1

TBUFFER_STORE_D16_FORMAT_XY 13
Typed buffer store 2 components with format conversion, packed 16-bit components in data register.
MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : @].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16))
TBUFFER_STORE_D16_FORMAT_XYZ 14
Typed buffer store 3 components with format conversion, packed 16-bit components in data register.
MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : ©8].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16))
TBUFFER_STORE_D16_FORMAT_XYZW 15
Typed buffer store 4 components with format conversion, packed 16-bit components in data register.
MEM[TADDR.X] = ConvertToFormat(32'B(VDATA[15 : @8].b16));
// Mem access size depends on format
MEM[TADDR.Y] = ConvertToFormat(32'B(VDATA[31 : 16].b16));
MEM[TADDR.Z] = ConvertToFormat(32'B(VDATA[47 : 32].b16));
MEM[TADDR.W] = ConvertToFormat(32'B(VDATA[63 : 48].b16))
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16.18. MIMG Instructions

The bitfield map of the MIMG format is:

31 0
1 1 1 1 0 o]l ' op " |pwe|ae[resforclpiclsic] omask Juw] | om | nea
MING | ssawp ~ lwefre[  srsrc _ woatA _____vADDR.
ADDR4 | ADDR3 ADDR2 ADDR1
95 64
IMAGE_LOAD 0

Load element from largest miplevel in resource view, with format conversion specified in the resource
constant. No sampler.

IMAGE_LOAD_MIP 1

Load element from user-specified miplevel in resource view, with format conversion specified in the resource
constant. No sampler.

IMAGE_LOAD_PCK 2

Load element from largest miplevel in resource view, without format conversion. 8- and 16-bit elements are
not sign-extended. No sampler.

IMAGE_LOAD_PCK_SGN 3

Load element from largest miplevel in resource view, without format conversion. 8- and 16-bit elements are
sign-extended. No sampler.

IMAGE_LOAD_MIP_PCK 4

Load element from user-supplied miplevel in resource view, without format conversion. 8- and 16-bit elements
are not sign-extended. No sampler.

IMAGE_LOAD_MIP_PCK_SGN 5

Load element from user-supplied miplevel in resource view, without format conversion. 8- and 16-bit elements
are sign-extended. No sampler.
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IMAGE_STORE 6

Store element to largest miplevel in resource view, with format conversion specified in resource constant. No
sampler.

IMAGE_STORE_MIP 7

Store element to user-specified miplevel in resource view, with format conversion specified in resource
constant. No sampler.

IMAGE_STORE_PCK 8

Store element to largest miplevel in resource view, without format conversion. No sampler.

IMAGE_STORE_MIP_PCK 9

Store element to user-specified miplevel in resource view, without format conversion. No sampler.

IMAGE_ATOMIC_SWAP 10

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

IMAGE_ATOMIC_CMPSWAP 11

Compare and swap with memory value.

tmp = MEM[ADDR].b;

src = DATA[31 : 0].b;

cmp = DATA[63 : 32].b;

MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

IMAGE_ATOMIC_ADD 12
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

AMDZ1

IMAGE_ATOMIC_SUB

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

13

IMAGE_ATOMIC_SMIN

Minimum of two signed integer values.

tmp MEM[ADDR] .1i;

src = DATA.i;

MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.1i = tmp

14

IMAGE_ATOMIC_UMIN

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

15

IMAGE_ATOMIC_SMAX

Maximum of two signed integer values.

tmp MEM[ADDR] .i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
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RETURN_DATA.i = tmp

AMDZ1

IMAGE_ATOMIC_UMAX

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

17

IMAGE_ATOMIC_AND

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

18

IMAGE_ATOMIC_OR

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

19

IMAGE_ATOMIC_XOR

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

20

IMAGE_ATOMIC_INC
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Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = tmp >= src ? QU : tmp + 1U;
RETURN_DATA.u = tmp

IMAGE_ATOMIC_DEC 22

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src : tmp - 1U;
RETURN_DATA.u = tmp

IMAGE_GET_RESINFO 23

Return resource info for a given mip level specified in the address vgpr. No sampler. Returns 4 integer values
into VGPRs 3-0: {num_mip_levels, depth, height, width}.

IMAGE_MSAA_LOAD 24

Load up to 4 samples of 1 component from an MSAA resource with a user-specified fragment ID. No sampler.

IMAGE_BVH_INTERSECT_RAY 25

Intersection test on bound volume hierarchy nodes for ray tracing acceleration. 32-bit node pointer. No
sampler.

DATA:

The destination VGPRs contain the results of intersection testing. The values returned here are different
depending on the type of BVH node that was fetched.

For box nodes the results contain the 4 pointers of the children boxes in intersection time sorted order.
For triangle BVH nodes the results contain the intersection time and triangle ID of the triangle tested.
The address GPR packing varies based on addressing mode (A16) and NSA mode.

ADDR (A16 =0):
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11 address VGPRs contain the ray data and BVH node pointer for the intersection test. The data is laid out as
follows (dependent on NSA mode):

* NSA=0 NSA=1 Value
VADDRJ[0] VADDRI0] = node_pointer (uint32)
VADDR[1] VADDRA[0] = ray_extent (float32)
VADDR[2] VADDRB[0] = ray_origin.x (float32)
VADDR[3] VADDRB[1] = ray_origin.y (float32)
VADDR[4] VADDRB|2] = ray_origin.z (float32)
VADDR[5] VADDRC[0] = ray_dir.x (float32)
VADDR[6] VADDRC[1] = ray_dir.y (float32)
VADDR[7] VADDRC[2] = ray_dir.z (float32)
VADDR[8] VADDRDI[0] = ray_inv_dir.x (float32)
VADDR[9] VADDRD[1] = ray_inv_dir.y (float32)
VADDR[10] VADDRD|2] = ray_inv_dir.z (float32)

ADDR (A16=1):

For performance and power optimization, the instruction can be encoded to use 16 bit floats for ray_dir and
ray_inv_dir by setting A16 to 1. When the instruction is encoded with 16 bit addresses only 8 address VGPRs are
used as follows (dependent on NSA mode):

* NSA=0 NSA=1 Value

VADDRJ[0] VADDRI0] = node_pointer (uint32)

VADDR[1] VADDRA[0] = ray_extent (float32)

VADDR[2] VADDRB[0] = ray_origin.x (float32)

VADDR[3] VADDRB[1] = ray_origin.y (float32)

VADDR[4] VADDRB|2] = ray_origin.z (float32)

VADDR[5] VADDRC[0] = {ray_inv_dir.x, ray_dir.x} (2x float16)
VADDR[6] VADDRC[1] = {ray_inv_dir.y, ray_dir.y} (2x float16)
VADDR[7] VADDRC[2] = {ray_inv_dir.z, ray_dir.z} (2x float16)

RSRC:
The resource is the texture descriptor for the operation. The instruction must be encoded with r128=1.
RESTRICTIONS:

The image_bvh_intersect_ray and image_bvh64_intersect_ray opcode do not support all of the features of a
standard MIMG instruction. This puts some restrictions on how the instruction is encoded:

- DMASK must be set to 0xf (instruction returns all four DWORDs)

« D16 must be set to 0 (16 bit return data is not supported)

« R128 must be set to 1 (256 bit T#s are not supported)

« UNRM must be set to 1 (only unnormalized coordinates are supported)

« DIM must be set to 0 (BVH textures are 1D)

« LWE must be set to 0 (LOD warn is not supported)

« TFE must be set to 0 (no support for writing out the extra DWORD for the PRT hit status)

These restrictions must be respected by the SW/compiler, and are not enforced by HW. HW is allowed to
assume that these values are encoded according to the above restrictions, and ignore improper values, or do
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any other undefined behavior, if the above fields do not match their specified values for these instructions.
The HW also has some additional restrictions on the BVH instructions when they are issued:

« The HW ignores the return order settings of the BVH ops and schedules them in the in order read return
queue when fetching data from the texture pipe.

IMAGE_BVH64_INTERSECT_RAY 26

Intersection test on bound volume hierarchy nodes for ray tracing acceleration. 64-bit node pointer. No
sampler.

This instruction allows support for very large BVHs (larger than 32 GBs) that may occur in workstation
workloads. See IMAGE_BVH_INTERSECT_RAY for basic information including restrictions. Only differences
are described here.

ADDR (A16 =0):

12 address VGPRs contain the ray data and BVH node pointer for the intersection test. The data is laid out as
follows (dependent on NSA mode):

* NSA=0 NSA=1 Value
VADDR[0] VADDRI[0] = node_pointer[31:0] (uint32)
VADDR[1] VADDRJ[1] = node_pointer[63:32] (uint32)
VADDR[2] VADDRAJ0] = ray_extent (float32)
VADDR|[3] VADDRB[0] = ray_origin.x (float32)
VADDR[4] VADDRB([1] = ray_origin.y (float32)
VADDR[5] VADDRB[2] = ray_origin.z (float32)
VADDR[6] VADDRC[0] = ray_dir.x (float32)
VADDR([7] VADDRC[1] = ray_dir.y (float32)
VADDR([8] VADDRC|2] = ray_dir.z (float32)
VADDR[9] VADDRDI0] = ray_inv_dir.x (float32)
VADDR([10] VADDRD(1] = ray_inv_dir.y (float32)
VADDR[11] VADDRD|2] = ray_inv_dir.z (float32)

ADDR (A16=1):

When the instruction is encoded with 16 bit addresses only 9 address VGPRs are used as follows (dependent on
NSA mode):

* NSA=0 NSA=1 Value
VADDR[0] VADDRI[0] = node_pointer[31:0] (uint32)
VADDR[1] VADDRJ[1] = node_pointer[63:32] (uint32)
VADDR[2] VADDRAJ0] = ray_extent (float32)
VADDR|[3] VADDRB[0] = ray_origin.x (float32)
VADDR[4] VADDRB([1] = ray_origin.y (float32)
VADDR[5] VADDRB[2] = ray_origin.z (float32)
VADDR[6] VADDRC[0] = {ray_inv_dir.x, ray_dir.x} (2x float16)
VADDR[7] VADDRC[1] = {ray_inv_dir.y, ray_dir.y} (2x float16)
VADDR[8] VADDRC|2] = {ray_inv_dir.z, ray_dir.z} (2x float16)
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IMAGE_SAMPLE 27
Sample texture map.

IMAGE_SAMPLE_D 28
Sample texture map, with user derivatives.

IMAGE_SAMPLE_L 29
Sample texture map, with user LOD.

IMAGE_SAMPLE_B 30
Sample texture map, with lod bias.

IMAGE_SAMPLE_LZ 31
Sample texture map, from level 0.

IMAGE_SAMPLE_C 32
Sample texture map, with PCF.

IMAGE_SAMPLE_C_D 33
SAMPLE_C, with user derivatives.

IMAGE_SAMPLE_C_L 34
SAMPLE_C, with user LOD.

IMAGE_SAMPLE_C_B 35
SAMPLE_C, with lod bias.
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AMDZ1

IMAGE_SAMPLE_C_LZ 36
SAMPLE_C, from level 0.

IMAGE_SAMPLE_O 37
Sample texture map, with user offsets.

IMAGE_SAMPLE_D_O 38
SAMPLE_O, with user derivatives.

IMAGE_SAMPLE_L_O 39
SAMPLE_O, with user LOD.

IMAGE_SAMPLE_B_O 40
SAMPLE_O, with lod bias.

IMAGE_SAMPLE_LZ_O 41
SAMPLE_O, from level 0.

IMAGE_SAMPLE_C_O 42
SAMPLE_C with user specified offsets.

IMAGE_SAMPLE_C_D_O 43
SAMPLE_C_O, with user derivatives.

IMAGE_SAMPLE_C_L_O 44
SAMPLE_C_O, with user LOD.
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IMAGE_SAMPLE_C_B_O 45

SAMPLE_C_O, with lod bias.

IMAGE_SAMPLE_C_1LZ_O 46

SAMPLE_C_O, from level 0.

IMAGE_GATHER4 47

Gather 4 single component elements (2x2).

IMAGE_GATHER4_L 48

Gather 4 single component elements (2x2) with user LOD.

IMAGE_GATHER4_B 49

Gather 4 single component elements (2x2) with user bias.

IMAGE_GATHER4_LZ 50

Gather 4 single component elements (2x2) at level 0.

IMAGE_GATHER4_C 51

Gather 4 single component elements (2x2) with PCF.

IMAGE_GATHER4_C_LZ 52

Gather 4 single component elements (2x2) at level 0, with PCF.

IMAGE_GATHER4_O 53

GATHER4, with user offsets.
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IMAGE_GATHER4_LZ_O 54

GATHER4_LZ, with user offsets.

IMAGE_GATHER4_C_LZ_O 55

GATHER4_C_LZ, with user offsets.

IMAGE_GET_LOD 56

Return calculated LOD as two 32-bit floating point values.

VDATA[O] = clampedLOD;
VDATA[1] = rawLOD.
IMAGE_SAMPLE_D_G16 57

SAMPLE_D with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_G16 58

SAMPLE_C_D with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_0O_G16 59

SAMPLE_D_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_O_G16 60

SAMPLE_C_D_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_CL 64

Sample texture map, with LOD clamp specified in shader.
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IMAGE_SAMPLE_D_CL 65

Sample texture map, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_B_CL 66

Sample texture map, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_CL 67

SAMPLE_C, with LOD clamp specified in shader.

IMAGE_SAMPLE_C_D_CL 68

SAMPLE_C, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_C_B_CL 69

SAMPLE_C, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_CL_O 70

SAMPLE_O with LOD clamp specified in shader.

IMAGE_SAMPLE_D_CL_O 71

SAMPLE_O, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_B_CL_O 72

SAMPLE_O, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_CL_O 73

SAMPLE_C_O, with LOD clamp specified in shader.
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IMAGE_SAMPLE_C_D_CL_O 74
SAMPLE_C_O, with LOD clamp specified in shader, with user derivatives.

IMAGE_SAMPLE_C_B_CL_O 75
SAMPLE_C_O, with LOD clamp specified in shader, with lod bias.

IMAGE_SAMPLE_C_D_CL_G16 84
SAMPLE_C_D_CL with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_CL_O_G16 85
SAMPLE_D_CL_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_C_D_CL_O_Gl16 86
SAMPLE_C_D_CL_O with 16-bit floating point derivatives (gradients).

IMAGE_SAMPLE_D_CL_G16 95
SAMPLE_D_CL with 16-bit floating point derivatives (gradients).

IMAGE_GATHER4_CL 96
Gather 4 single component elements (2x2) with user LOD clamp.

IMAGE_GATHER4_B_CL 97
Gather 4 single component elements (2x2) with user bias and clamp.

IMAGE_GATHER4_C_CL 98
Gather 4 single component elements (2x2) with user LOD clamp and PCF.
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IMAGE_GATHER4_C_L 929

Gather 4 single component elements (2x2) with user LOD and PCF.

IMAGE_GATHER4_C_B 100

Gather 4 single component elements (2x2) with user bias and PCF.

IMAGE_GATHER4_C_B_CL 101

Gather 4 single component elements (2x2) with user bias, clamp and PCF.

IMAGE_GATHER4H 144

Fetch 1 component per texel from 4x1 texels. DMASK selects which component to read (R,G,B,A) and must
have only one bit set to 1.
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16.19. EXPORT Instructions

AMD¢1

Transfer vertex position, vertex parameter, pixel color, or pixel depth information to the output buffer. Every

pixel shader must do at least one export to a color, depth or NULL target with the VM bit set to 1. This

communicates the pixel-valid mask to the color and depth buffers. Every pixel does only one of the above
export types with the DONE bit set to 1. Vertex shaders must do one or more position exports, and at least one

parameter export. The final position export must have the DONE bit set to 1.

EN

EXP

16.19. EXPORT Instructions

32

572 of 600



"RDNA3" Instruction Set Architecture AMD

16.20. FLAT, Scratch and Global Instructions

The bitfield map of the FLAT format is:

31
1 1 0 1 14 a0 "7 Top st |stcleiclpie] T 7 7 oFFser
VDST |sve] SADDR DATA ADDR

FLAT

63 32

16.20.1. Flat Instructions

Flat instructions look at the per work-item address and determine for each work-item if the target memory
address is in global, private or scratch memory.

FLAT_LOAD_US 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

FLAT_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

FLAT_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

FLAT_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))
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FLAT_LOAD_B32

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

AMDZ1

20

FLAT_LOAD_Bé64

Untyped buffer load 2 dwords.

VDATA[31 : @] = MEM[ADDR + 0U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

21

FLAT_LOAD_B96

Untyped buffer load 3 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b

22

FLAT_LOAD_B128

Untyped buffer load 4 dwords.

VDATA[31 : 0] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

23

FLAT_STORE_BS8

Untyped buffer store byte.

MEM[ADDR] .b8 = VDATA[7 : 0]

24
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FLAT_STORE_B16

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

AMDZ1

25

FLAT_STORE_B32

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

26

FLAT_STORE_B64

Untyped buffer store 2 dwords.

MEM[ADDR + @U].b
MEM[ADDR + 4U].b

VDATA[31 : 0];
VDATA[63 : 32]

27

FLAT_STORE_B96

Untyped buffer store 3 dwords.

MEM[ADDR + @U].b = VDATA[31 : @];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

28

FLAT_STORE_B128

Untyped buffer store 4 dwords.

MEM
MEM
MEM
MEM

ADDR
ADDR
ADDR
ADDR

OU].b = VDATA[31 : @];

4U].b = VDATA[63 : 32];
8U].b = VDATA[95 : 64];
12U].b = VDATA[127 : 96]

+ 4+ o+ o+

29
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FLAT_LOAD_D16_U8 30
Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : ©].u16 = 16'U({ 8'®, MEM[ADDR].u8 });

// VDATA[31:16] is preserved.
FLAT_LOAD_D16_1I8 31
Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : 8].i16 = 16'I(signext(MEM[ADDR].i8));

// VDATA[31:16] is preserved.
FLAT_LOAD_D16_B16 32
Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : 8].b16 = MEM[ADDR].b16;

// VDATA[31:16] is preserved.
FLAT_LOAD_D16_HI_US8 33
Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'@, MEM[ADDR].u8 });

// VDATA[15:0] is preserved.
FLAT_LOAD_D16_HI_I8 34
Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));

// VDATA[15:0] is preserved.
FLAT_LOAD_D16_HI_B16 35
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Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

AMDZ1

FLAT_STORE_D16_HI_BS8

Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR] .b8 = VDATA[23 : 16].b8

36

FLAT_STORE_D16_HI_B16

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16

37

FLAT_ATOMIC_SWAP_B32

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR].b = DATA.b;
RETURN_DATA.b = tmp

51

FLAT_ATOMIC_CMPSWAP_B32

Compare and swap with memory value.

tmp = MEM[ADDR].b;

src = DATA[31 : 0].b;

cmp = DATA[63 : 32].b;

MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

52

FLAT_ATOMIC_ADD_U32
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Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

AMDZ1

FLAT_ATOMIC_SUB_U32

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

54

FLAT_ATOMIC_MIN_I32

Minimum of two signed integer values.

tmp = MEM[ADDR].i;

src = DATA.i;

MEM[ADDR].i = src < tmp ? src : tmp;
RETURN_DATA.1i = tmp

56

FLAT_ATOMIC_MIN_U32

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

57

FLAT_ATOMIC_MAX_I32

Maximum of two signed integer values.

tmp = MEM[ADDR].1i;
src = DATA.i;
MEM[ADDR].i = src > tmp ? src : tmp;
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RETURN_DATA.i = tmp

AMDZ1

FLAT_ATOMIC_MAX_U32

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

59

FLAT_ATOMIC_AND_B32

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

60

FLAT_ATOMIC_OR_B32

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

61

FLAT_ATOMIC_XOR_B32

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

62

FLAT_ATOMIC_INC_U32
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Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = tmp >= src ? QU : tmp + 1U;
RETURN_DATA.u = tmp

AMD¢1

FLAT_ATOMIC_DEC_U32

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src :

RETURN_DATA.u = tmp

64

FLAT_ATOMIC_SWAP_B64

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
MEM[ADDR] .b64 = DATA.b64;
RETURN_DATA.b64 = tmp

65

FLAT_ATOMIC_CMPSWAP_B64

Compare and swap with 64-bit memory value.

NOTE: RETURN_DATA[2:3] is not modified.

tmp = MEM[ADDR].b64;

src = DATA[63 : 0].b64;

cmp = DATA[127 : 64].b64;

MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

66

FLAT_ATOMIC_ADD_Ué64

Add data register to 64-bit memory value.
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tmp = MEM[ADDR].u64;
MEM[ADDR].u64 += DATA.u64;
RETURN_DATA.u64 = tmp

AMDZ1

FLAT_ATOMIC_SUB_U64

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

68

FLAT_ATOMIC_MIN_I64

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.i64 = tmp

69

FLAT_ATOMIC_MIN_U64

Minimum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR] .u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

70

FLAT_ATOMIC_MAX_I64

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.164 = tmp

71
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FLAT_ATOMIC_MAX_U64

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR] .u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

AMDZ1

72

FLAT_ATOMIC_AND_B64

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR] .b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

73

FLAT_ATOMIC_OR_B64

Bitwise OR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp

74

FLAT_ATOMIC_XOR_B64

Bitwise XOR of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp * DATA.b64);
RETURN_DATA.b64 = tmp

75

FLAT_ATOMIC_INC_Ué64

Increment 64-bit memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u64;
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src = DATA.u64;
MEM[ADDR] .u64 = tmp >= src ? OULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp

FLAT_ATOMIC_DEC_U64 77

Decrement 64-bit memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR].u64 = ((tmp == @ULL) || (tmp > src)) ? src
RETURN_DATA.u64 = tmp

: tmp - 1TULL;

FLAT_ATOMIC_CMPSWAP_F32

Compare and swap with floating-point memory value.

tmp MEM[ADDR] .f;

src DATA[31 : 0].f;

cmp = DATA[63 : 32].f;

MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

80

FLAT_ATOMIC_MIN_F32

Minimum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

81

FLAT_ATOMIC_MAX_F32
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Maximum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA tmp

Notes

Floating-point compare handles NAN/INF/denorm.

FLAT_ATOMIC_ADD_F32 86

Add data register to floating-point memory value.

tmp = MEM[ADDR].f;

src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

16.20.2. Scratch Instructions

Scratch instructions are like Flat, but assume all work-item addresses fall in scratch (private) space.

SCRATCH_LOAD_US8 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

SCRATCH_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.

16.20. FLAT, Scratch and Global Instructions 584 of 600



"RDNA3" Instruction Set Architecture

VDATA.i = 32'I(signext(MEM[ADDR].i8))

AMDZ1

SCRATCH_LOAD_U16

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

18

SCRATCH_LOAD_I16

Untyped buffer load signed short, sign extend in data register.

VDATA.1 =

32'I(signext(MEM[ADDR].i16))

19

SCRATCH_LOAD_B32

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b

20

SCRATCH_LOAD_B64

Untyped buffer load 2 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b

21

SCRATCH_LOAD_B96

Untyped buffer load 3 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] = MEM[ADDR + 8U].b
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AMDZ1

SCRATCH_LOAD_B128

Untyped buffer load 4 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;
VDATA[63 : 32] = MEM[ADDR + 4U].b;
VDATA[95 : 64] MEM[ADDR + 8U].b;
VDATA[127 : 96] = MEM[ADDR + 12U].b

23

SCRATCH_STORE_BS

Untyped buffer store byte.

MEM[ADDR] .b8 = VDATA[7 : 0]

24

SCRATCH_STORE_B16

Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]

25

SCRATCH_STORE_B32

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

26

SCRATCH_STORE_B64

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b
MEM[ADDR + 4U].b

VDATA[31 : 0];
VDATA[63 : 32]

27

16.20. FLAT, Scratch and Global Instructions

586 of 600



"RDNA3" Instruction Set Architecture

SCRATCH_STORE_B96

Untyped buffer store 3 dwords.

MEM[ADDR + @U].b = VDATA[31 : @];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

AMDZ1

28

SCRATCH_STORE_B128

Untyped buffer store 4 dwords.

MEM
MEM
MEM
MEM

ADDR
ADDR
ADDR
ADDR

OU].b = VDATA[31 : @];

4U].b = VDATA[63 : 32];
8U].b = VDATA[95 : 64];
12U].b = VDATA[127 : 96]

+ o+ o+ o+

29

SCRATCH_LOAD_D16_U8

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : @].u16 = 16'U({ 8'@, MEM[ADDR].u8 });
// VDATA[31:16] is preserved.

30

SCRATCH_LOAD_D16_1I8

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : ©].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

31

SCRATCH_LOAD_D16_B16

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : ©].b16 = MEM[ADDR].b16;
// VDATA[31:16] is preserved.

32
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SCRATCH_LOAD_D16_HI_US8

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

AMDZ1

33

SCRATCH_LOAD_D16_HI_I8

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

34

SCRATCH_LOAD_D16_HI_B16

Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

35

SCRATCH_STORE_D16_HI_BS8

Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

36

SCRATCH_STORE_D16_HI_B16

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16

37
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16.20.3. Global Instructions

Global instructions are like Flat, but assume all work-item addresses fall in global memory space.

GLOBAL_LOAD_US 16

Untyped buffer load unsigned byte, zero extend in data register.

VDATA.u = 32'U({ 24'0, MEM[ADDR].u8 })

GLOBAL_LOAD_I8 17

Untyped buffer load signed byte, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i8))

GLOBAL_LOAD_U16 18

Untyped buffer load unsigned short, zero extend in data register.

VDATA.u = 32'U({ 16'0, MEM[ADDR].u16 })

GLOBAL_LOAD_I16 19

Untyped buffer load signed short, sign extend in data register.

VDATA.i = 32'I(signext(MEM[ADDR].i16))

GLOBAL_LOAD_B32 20

Untyped buffer load dword.

VDATA.b = MEM[ADDR].b
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AMDZ1

GLOBAL_LOAD_Bé64 21
Untyped buffer load 2 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;

VDATA[63 : 32] = MEM[ADDR + 4U].b
GLOBAL_LOAD_B96 22
Untyped buffer load 3 dwords.

VDATA[31 : @] = MEM[ADDR + @U].b;

VDATA[63 : 32] = MEM[ADDR + 4U].b;

VDATA[95 : 64] = MEM[ADDR + 8U].b
GLOBAL_LOAD_B128 23
Untyped buffer load 4 dwords.

VDATA[31 : @] = MEM[ADDR + 0U].b;

VDATA[63 : 32] = MEM[ADDR + 4U].b;

VDATA[95 : 64] = MEM[ADDR + 8U].b;

VDATA[127 : 96] = MEM[ADDR + 12U].b
GLOBAL_STORE_BS 24
Untyped buffer store byte.

MEM[ADDR] .b8 = VDATA[7 : @]
GLOBAL_STORE_B16 25
Untyped buffer store short.

MEM[ADDR].b16 = VDATA[15 : 0]
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GLOBAL_STORE_B32

Untyped buffer store dword.

MEM[ADDR].b = VDATA[31 : 0]

AMDZ1

26

GLOBAL_STORE_B64

Untyped buffer store 2 dwords.

MEM[ADDR + 0U].b
MEM[ADDR + 4U].b

VDATA[31 : 0];
VDATA[63 : 32]

27

GLOBAL_STORE_B96

Untyped buffer store 3 dwords.

MEM[ADDR + @U].b = VDATA[31 : @];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64]

28

GLOBAL_STORE_B128

Untyped buffer store 4 dwords.

MEM[ADDR + @U].b = VDATA[31 : @];
MEM[ADDR + 4U].b = VDATA[63 : 32];
MEM[ADDR + 8U].b = VDATA[95 : 64];

MEM[ADDR + 12U].b = VDATA[127 : 96]

29

GLOBAL_LOAD_D16_U8

Untyped buffer load unsigned byte, use low 16 bits of data register.

VDATA[15 : @].u16 = 16'U({ 8'@, MEM[ADDR].u8 });

// VDATA[31:16] is preserved.

30
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GLOBAL_LOAD_D16_I8

Untyped buffer load signed byte, use low 16 bits of data register.

VDATA[15 : ©].i16 = 16'I(signext(MEM[ADDR].i8));
// VDATA[31:16] is preserved.

AMDZ1

31

GLOBAL_LOAD_D16_B16

Untyped buffer load short, use low 16 bits of data register.

VDATA[15 : ©].b16 = MEM[ADDR].b16;
// VDATA[31:16] is preserved.

32

GLOBAL_LOAD_D16_HI_US8

Untyped buffer load unsigned byte, use high 16 bits of data register.

VDATA[31 : 16].u16 = 16'U({ 8'0, MEM[ADDR].u8 });
// VDATA[15:0] is preserved.

33

GLOBAL_LOAD_D16_HI_I8

Untyped buffer load signed byte, use high 16 bits of data register.

VDATA[31 : 16].116 = 16'I(signext(MEM[ADDR].i8));
// VDATA[15:0] is preserved.

34

GLOBAL_LOAD_D16_HI_B16

Untyped buffer load short, use high 16 bits of data register.

VDATA[31 : 16].b16 = MEM[ADDR].b16;
// VDATA[15:0] is preserved.

35

GLOBAL_STORE_D16_HI_BS8
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Untyped buffer store byte, use high 16 bits of data register.

MEM[ADDR].b8 = VDATA[23 : 16].b8

GLOBAL_STORE_D16_HI_B16 37

Untyped buffer store short, use high 16 bits of data register.

MEM[ADDR].b16 = VDATA[31 : 16].b16

GLOBAL_LOAD_ADDTID_B32 40

Untyped buffer load dword. No VGPR address is supplied in this instruction. TID is added to the address as
shown below:

memory_Addr = sgpr_addr(64) + inst_offset(12) + tid*4

GLOBAL_STORE_ADDTID_B32 41

Untyped buffer store dword. No VGPR address is supplied in this instruction. TID is added to the address as
shown below:

memory_Addr = sgpr_addr(64) + inst_offset(12) + tid*4

GLOBAL_ATOMIC_SWAP_B32 51

Swap values in data register and memory.

tmp = MEM[ADDR].b;
MEM[ADDR] .b = DATA.b;
RETURN_DATA.b = tmp

GLOBAL_ATOMIC_CMPSWAP_B32 52

Compare and swap with memory value.

tmp MEM[ADDR] .b;
src = DATA[31 : @].b;
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cmp = DATA[63 : 32].b;
MEM[ADDR].b = tmp == cmp ? src : tmp;
RETURN_DATA.b = tmp

AMDZ1

GLOBAL_ATOMIC_ADD_U32

Add data register to memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u += DATA.u;
RETURN_DATA.u = tmp

53

GLOBAL_ATOMIC_SUB_U32

Subtract data register from memory value.

tmp = MEM[ADDR].u;
MEM[ADDR] .u -= DATA.u;
RETURN_DATA.u = tmp

54

GLOBAL_ATOMIC_CSUB_U32

Subtract data register from memory value, clamp to zero.

declare new_value : 32'U;
old_value = MEM[ADDR].u;
if old_value < DATA.u then
new_value = 06U
else
new_value = old_value - DATA.u
endif;
MEM[ADDR] .u = new_value;
RETURN_DATA.u = old_value

55

GLOBAL_ATOMIC_MIN_I32

Minimum of two signed integer values.

tmp = MEM[ADDR].1i;
src = DATA.i;
MEM[ADDR].i = src < tmp ? src : tmp;
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RETURN_DATA.i = tmp

AMDZ1

GLOBAL_ATOMIC_MIN_U32

Minimum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src < tmp ? src : tmp;
RETURN_DATA.u = tmp

57

GLOBAL_ATOMIC_MAX_I32

Maximum of two signed integer values.

tmp = MEM[ADDR].1i;

src = DATA.i;

MEM[ADDR].i = src > tmp ? src : tmp;
RETURN_DATA.1 = tmp

58

GLOBAL_ATOMIC_MAX_U32

Maximum of two unsigned integer values.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = src > tmp ? src : tmp;
RETURN_DATA.u = tmp

59

GLOBAL_ATOMIC_AND_B32

Bitwise AND of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp & DATA.b);
RETURN_DATA.b = tmp

60
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GLOBAL_ATOMIC_OR_B32

Bitwise OR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp | DATA.b);
RETURN_DATA.b = tmp

AMDZ1

61

GLOBAL_ATOMIC_XOR_B32

Bitwise XOR of register value and memory value.

tmp = MEM[ADDR].b;
MEM[ADDR].b = (tmp * DATA.b);
RETURN_DATA.b = tmp

62

GLOBAL_ATOMIC_INC_U32

Increment memory value with wraparound to zero when incremented to register value.

tmp = MEM[ADDR].u;

src = DATA.u;

MEM[ADDR].u = tmp >= src ? 8U : tmp + 1U;
RETURN_DATA.u = tmp

63

GLOBAL_ATOMIC_DEC_U32

Decrement memory value with wraparound to register value when decremented below zero.

tmp = MEM[ADDR].u;
src = DATA.u;

MEM[ADDR].u = ((tmp == @U) || (tmp > src)) ? src :

RETURN_DATA.u = tmp

64

GLOBAL_ATOMIC_SWAP_B64

Swap 64-bit values in data register and memory.

tmp = MEM[ADDR].b64;
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MEM[ADDR].b64 = DATA.b64;
RETURN_DATA.b64 = tmp

AMDZ1

GLOBAL_ATOMIC_CMPSWAP_B64

Compare and swap with 64-bit memory value.

tmp MEM[ADDR] .b64;

src = DATA[63 : 0].b64;

cmp = DATA[127 : 64].b64;

MEM[ADDR].b64 = tmp == cmp ? src : tmp;
RETURN_DATA.b64 = tmp

66

GLOBAL_ATOMIC_ADD_Ué64

Add data register to 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR] .u64 += DATA.u64;
RETURN_DATA.u64 = tmp

67

GLOBAL_ATOMIC_SUB_U64

Subtract data register from 64-bit memory value.

tmp = MEM[ADDR].u64;
MEM[ADDR].u64 -= DATA.u64;
RETURN_DATA.u64 = tmp

68

GLOBAL_ATOMIC_MIN_I64

Minimum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src < tmp ? src : tmp;
RETURN_DATA.164 = tmp

69
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GLOBAL_ATOMIC_MIN_U64

Minimum of two unsigned 64-bit integer values.

tmp MEM[ADDR] .u64;

src = DATA.u64;

MEM[ADDR] .u64 = src < tmp ? src : tmp;
RETURN_DATA.u64 = tmp

AMDZ1

70

GLOBAL_ATOMIC_MAX_I64

Maximum of two signed 64-bit integer values.

tmp = MEM[ADDR].i64;

src = DATA.i64;

MEM[ADDR].i64 = src > tmp ? src : tmp;
RETURN_DATA.164 = tmp

71

GLOBAL_ATOMIC_MAX_U64

Maximum of two unsigned 64-bit integer values.

tmp = MEM[ADDR].u64;

src = DATA.u64;

MEM[ADDR].u64 = src > tmp ? src : tmp;
RETURN_DATA.u64 = tmp

72

GLOBAL_ATOMIC_AND_B64

Bitwise AND of register value and 64-bit memory value.

tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp & DATA.b64);
RETURN_DATA.b64 = tmp

73

GLOBAL_ATOMIC_OR_B64

Bitwise OR of register value and 64-bit memory value.

16.20. FLAT, Scratch and Global Instructions

74

598 of 600



"RDNA3" Instruction Set Architecture

AMDA
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp | DATA.b64);
RETURN_DATA.b64 = tmp
GLOBAL_ATOMIC_XOR_B64 75
Bitwise XOR of register value and 64-bit memory value.
tmp = MEM[ADDR].b64;
MEM[ADDR].b64 = (tmp * DATA.b64);
RETURN_DATA.b64 = tmp
GLOBAL_ATOMIC_INC_U64 76
Increment 64-bit memory value with wraparound to zero when incremented to register value.
tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR] .u64 = tmp >= src ? QULL : tmp + 1ULL;
RETURN_DATA.u64 = tmp
GLOBAL_ATOMIC_DEC_U64 77
Decrement 64-bit memory value with wraparound to register value when decremented below zero.
tmp = MEM[ADDR].u64;
src = DATA.u64;
MEM[ADDR] .u64 = ((tmp == @ULL) || (tmp > src)) ? src : tmp - 1ULL;
RETURN_DATA.u64 = tmp
GLOBAL_ATOMIC_CMPSWAP_F32 80

Compare and swap with floating-point memory value.

tmp = MEM[ADDR].f;

src = DATA[31 : @].f;

cmp = DATA[63 : 32].f;

MEM[ADDR].f = tmp == cmp ? src : tmp;
RETURN_DATA.f = tmp
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Notes

Floating-point compare handles NAN/INF/denorm.

AMD¢1

GLOBAL_ATOMIC_MIN_F32

Minimum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src < tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

81

GLOBAL_ATOMIC_MAX_F32

Maximum of two floating-point values.

tmp = MEM[ADDR].f;

src = DATA.f;

MEM[ADDR].f = src > tmp ? src : tmp;
RETURN_DATA = tmp

Notes

Floating-point compare handles NAN/INF/denorm.

82

GLOBAL_ATOMIC_ADD_F32

Add data register to floating-point memory value.

tmp MEM[ADDR].f;

src = DATA.f;
MEM[ADDR].f = src + tmp;
RETURN_DATA.f = tmp

Notes

Floating-point addition handles NAN/INF/denorm.

86
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