ARC® 700 IP Library
ARCompact™

Instruction Set Architecture

Programmer's Reference

5115-029

ARCompact™ Programmer's Reference

ARC® International

European Headquarters North American Headquarters
ARC International, 3590 N. First Street, Suite 200
Verulam Point, San Jose, CA 95134 USA
Station Way, Tel. +1 408.437.3400

St Albans, Herts, AL1 5HE, UK Fax +1 408.437.3401
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

www.arc.com

ARC Publicly Available Information
© 2001-2008 ARC International (Unpublished). Atihits reserved.

Notice
May not be reproduced in any form, including elesic, without specific written permission of ARCiénnational.

The product described in this manual is licensetisold, and may be used only in accordance witétms of a License
Agreement applicable to it. Use without a Licengge®ement, in violation of the License Agreementwithout paying the license
fee is unlawful.

Every effort is made to make this manual as acewsatpossible. However, ARC International shalkhaw liability or
responsibility to any person or entity with respecany liability, loss, or damage caused or alieigebe caused directly or
indirectly by this manual, including but not limitéo any interruption of service, loss of businesanticipated profits, and all
direct, indirect, and consequential damages reguftom the use of this manual. ARC Internationafiire warranty and liability
in respect of use of the product are set forthélticense Agreement.

ARC International reserves the right to changesghexifications and characteristics of the prodestdbed in this manual, from
time to time, without notice to users. For curriefibrmation on changes to the product, users shaad the "readme" and/or
"release notes" that are contained in the disiobunedia. Use of the product is subject to therarety provisions contained in the
License Agreement.

Licensee acknowledges that ARC International isothieer of all Intellectual Property rights in subtcuments and will ensure
that an appropriate notice to that effect appearlicdocuments used by Licensee incorporatingrgtlortions of this
Documentation.

The manual may only be disclosed by Licensee a®ghtbelow.

. Manuals marked "ARC Confidential & Proprietary" mag provided to Licensee's subcontractors under NDDide manual
may not be provided to any other third partiesluding manufacturers. Examples--source code soéwmaogrammer guide,
documentation.

. Manuals marked "ARC Confidential" may be providedgtibcontractors or manufacturers for use in Liedri&roducts.
Examples--product presentations, masks, non-RTioorsource format.

. Manuals marked "Publicly Available" may be incorgid into Licensee's documentation with appropA®R€E permission.
Examples--presentations and documentation thabtlembody confidential or proprietary information.

The ARCompact instruction set architecture proceisscovered by one or more of the following U.8d anternational patents:

U.S. Patent Nos. 6,178,547, 6,560,754, 6,718,58468%8,074; Taiwan Patent Nos. 155749, 1696461@6853; and Chinese
Patent Nos. ZL 00808459.9 and 00808460.2. U.S.jrdachational patents pending.

U.S. Government Restricted Rights Legend

Use, duplication or disclosure by the U.S. Govenminige subject to restrictions as set forth in FAR227.19(c)(2) or subparagraph
(c)(2)(ii) of the Rights in Technical Data and Cartgr Software clause at DFARS 252.227-7013 and/emiilar or successor
clauses in the FAR, or the DOD or NASA FAR Supplatme

CONTRACTOR/MANUFACTURER IS ARC International I. Rnc., 3590 N. First Street, Suite 200, San Jo$e98134.

Trademark Acknowledgments

ARCangel, ARChitect, ARCompact, ARCtangent, HigiC€f, High C++, the MQX Embedded logo, RTCS, and ptes are
trademarks of ARC International. ARC, the ARC logligh C, MetaWare, MQX, MQX Embedded and VTOC agistered
under ARC International. All other trademarks dme property of their respective owners.

5115-029 April-2008

ii ARCompact™ Programmer's Reference

http://www.arc.com/

Contents

Chapter 1 — Introduction

Typographic Conventions
Key Features
ISA Feature Comparison
Programmer’s Model
Core Register Set
Aucxiliary Register Set
32-bit Instructions
16-bit Instructions
Operating Modes
Extensions
Extension Core Registers
Extension Auxiliary Registers
Extension Instructions
Extension Condition Codes
Debugging Features
Power Management

Chapter 2 — Data Organization and Addressing

Address Space
Data Formats
32-bit Data
16-bit Data
8-bit Data
1-bit Data
Extended Arithmetic Data Formats
16-bit Data
Dual 16-bit Data
24-bit Data
Q Arithmetic
Instruction Formats
Packed Middle-Endian Instruction Format
Big-Endian Instruction Format
32-bit Instruction or 32-bit Immediate Data
Two 16-bit Instructions
16-hbit Instruction Followed by 32-bit Instruction
Series of 16-bit and 32-bit Instructions
Addressing Modes
Null Instruction Format
Conditional Execution
Conditional Branch Instruction
Compare and Branch Instruction
Serializing Instructions

Chapter 3 — Register Set Details
Core Register Set

ARCompact™ Programmer's Reference

19

19
20
21
22
22
22
23
23
23
24
24
24
24
25
25
25

27

27
28
28
29
29
30
30
30
30
31
31
32
32
32
32
33
34
34
36
37
37
37
37
38

39
39

Contents

Core Register Mapping Used in 16-bit Instructions 40
Reduced Configuration of Core Registers 41
Pointer Registers, GP, r26, FP, r27, SP, r28 41
Link Registers, ILINK1, r29, ILINK2, r30, BLINK, r31 41
Loop Count Register, LP_COUNT, r60 42
Reserved Register, r61 44
Immediate Data Indicator, limm, r62 44
Program Counter Long-Word, PCL, r63 44
Extension Core Registers 44
Multiply Result Registers, MLO, MMID, MHI 45
Auxiliary Register Set 45
lllegal Auxiliary Register Usage a7
Status Register (Obsolete), STATUS, 0x00 48
Semaphore Register, SEMAPHORE, 0x01 48
Loop Control Registers, LP_START, 0x02, LP_END, 0x03 49
Identity Register, IDENTITY, 0x04 49
Debug Register, DEBUG, 0x05 50
Program Counter, PC, 0x06 51
Status Register 32-bit, STATUS32, 0x0A 51
Branch Target Address, BTA, 0x412 52
Interrupt Status Link Registers, STATUS32 L1, 0x0B, STATUS32 L2, 0x0C 53
Interrupt Branch Target Link Registers, BTA_L1, 0x413, BTA_L2, 0x414 53
Interrupt Vector Base Register, INT_VECTOR_BASE, 0x25 53
Interrupt Level Status Register, AUX_IRQ_LV12, 0x43 54
Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200 54
Software Interrupt Trigger, AUX_IRQ_HINT, 0x201 55
Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSEZ2, 0x40B 55
Interrupt Mask Programming Register, AUX_IENABLE, 0x40C 56
Interrupt Sensitivity Programming Register, AUX_ITRIGGER, 0x40D 56
Interrupt Pulse Cancel Register, AUX _IRQ_ PULSE_CANCEL, 0x415 56
Interrupt Pending Register, AUX_IRQ_PENDING, 0x416 57
Exception Return Address, ERET, 0x400 57
Exception Return Branch Target Address, ERBTA, 0x401 57
Exception Return Status, ERSTATUS, 0x402 57
Exception Cause Register, ECR, 0x403 58
Exception Fault Address, EFA, 0x404 58
User Mode Extension Enable Register, XPU, 0x410 58
Processor Timers Auxiliary Registers 59
Timer 0 Count Register, COUNTO, 0x21 60
Timer 0 Control Register, CONTROLO, 0x22 60
Timer O Limit Register, LIMITO, 0x23 61
Timer 1 Count Register, COUNTZ1, 0x100 61
Timer 1 Control Register, CONTROL1, 0x101 61
Timer 1 Limit Register, LIMIT1, 0x102 61
Extension Auxiliary Registers 62
Optional Extensions Auxiliary Registers 62
Multiply Restore Register, MULHI, 0x12 62
Extended Arithmetic Auxiliary Registers 62
MAC Status and Mode Register, AUX_MACMODE, 0x41 62
Build Configuration Registers 63
Build Configuration Registers Version, BCR_VER, 0x60 64
BTA Configuration Register, BTA_LINK_BUILD, 0x63 64
Extended Arithmetic Configuration Register, EA_BUILD, 0x65 64
Interrupt Vector Base Address Configuration, VECBASE_AC_BUILD, 0x68 65
Core Register Set Configuration Register, RF_BUILD, OX6E 65

iv ARCompact™ Programmer's Reference

Contents

Processor Timers Configuration Register, TIMER_BUILD, 0x75 66
Multiply Configuration Register, MULTIPLY_BUILD, 0x7B 66
Swap Configuration Register, SWAP_BUILD, 0x7C 67
Normalize Configuration Register, NORM_BUILD, 0x7D 67
Min/Max Configuration Register, MINMAX_BUILD, Ox7E 67
Barrel Shifter Configuration Register, BARREL_BUILD, 0x7F 67
Chapter 4 — Interrupts and Exceptions 71
Introduction 71
Privileges and Operating Modes 71
Kernel Mode 71
User Mode 71
Privilege Violations 71
Switching Between Operating Modes 73
Interrupts 73
Interrupt Unit Programming 73
Interrupt Unit Configuration 74
Interrupt Priority 74
ILINK and Status Save Registers 74
Interrupt Vectors 74
Level 1 and Level 2 Interrupt Enables 77
Individual Interrupt Enables 77
Priority Level Programming 77
Interrupt Level Status 78
Interrupt Cause Registers 78
Pending Interrupts 78
Software Triggered Interrupt 78
Returning from Interrupts 78
Interrupt Timing 79
Interrupt Flow 79
Interrupt Vector Base Address Configuration 80
Interrupt Sensitivity Level Configuration 80
Interrupt Sensitivity Level Programming 81
Canceling Pulse Triggered Interrupts 81
Exceptions 81
Exception Precision 81
Exception Vectors and Exception Cause Register 82
Exception Types and Priorities 83
Exception Detection 88
Interrupts and Exceptions 88
Exception Entry 89
Exception Exit 20
Exceptions and Delay Slots 91
Emulation of Extension Instructions 91
Emulation of Extension Registers and Condition Codes 92
Chapter 5 — Instruction Set Summary 93
Arithmetic and Logical Operations 93
Summary of Basecase ALU Instructions 94
Syntax for Arithmetic and Logical Operations 94
Add Instruction 95
Subtract Instruction 96
Reverse Subtract Instruction 97
Test and Compare Instructions 97
Bit Test Instruction 99

ARCompact™ Programmer's Reference v

Contents

Single Bit Instructions 100
Barrel Shift/Rotate 102
Single Operand Instructions 104
Move to Register Instruction 106
Flag Instruction 107
Negate Operation 108
Zero Operand Instructions 108
Breakpoint Instruction 109
Sleep Instruction 109
Software Interrupt Instruction 109
Trap Instruction 109
Return from Interrupt/Exception Instruction 110
Synchronize Instruction 110
Branch Instructions 110
Branch Instructions 110
Branch and Link Instructions 111
Branch On Compare/Bit Test Register-Register 111
Jump Instructions 112
Summary of Jumps and Special Format Instructions 113
Syntax for Jumps and Special Format Instructions 113
Zero Overhead Loop Instruction 113
Auxiliary Register Operations 114
Load from Auxiliary Register 115
Store to Auxiliary Register 115
Load/Store Instructions 115
Load 116
Prefetch 117
Store Register with Offset 117
Stack Pointer Operations 118
Atomic Exchange 118
ARCompact Extension Instructions 118
Syntax for Generic Extension Instructions 119
Syntax for Single Operand Extension Instructions 119
Syntax for Zero Operand Extension Instructions 120
Optional Instructions Library 120
Summary of Optional Instructions Library 120
Multiply 32 X 32, Special Result Registers 121
Multiply 32 X 32, Any Result Register 123
NORM Instruction 125
SWAP Instruction 125
Extended Arithmetic Library 126
Summary of Extended Arithmetic Library Instructions 126
Add with Saturation 127
Subtract with Saturation 128
Negate with Saturation 129
Absolute with Saturation 129
Round 130
Saturate 130
Positive/Negative Barrel Shift with Saturation 130
Division Assist 131
Chapter 6 — 32-bit Instruction Formats Reference 133
Encoding Notation 134
Condition Code Tests 135
Branch Jump Delay Slot Modes 135

Vi ARCompact™ Programmer's Reference

Contents

Load Store Address Write-back Modes 136
Load Store Direct to Memory Bypass Mode 136
Load Store Data Size Mode 136
Load Data Extend Mode 137
Use of Reserved Encodings 137
Use of lllegal Encodings 137
Reserved Ranges of Fields 137
lllegal Combinations of Fields 137
Branch Conditionally, 0x00, [0x0] 138
Branch Unconditional Far, 0x00, [0x1] 138
Branch on Compare Register-Register, 0x01, [0x1, 0x0] 138
Branch on Compare/Bit Test Register-Immediate, 0x01, [Ox1, Ox1] 139
Branch and Link Conditionally, 0x01, [0x0, 0x0] 140
Branch and Link Unconditional Far, 0x01, [0x0, Ox1] 140
Load Register with Offset, 0x02 141
Store Register with Offset, 0x03 141
General Operations, 0x04, [0x00 - Ox3F] 142
Operand Format Indicators 142
General Operations Register-Register 142
General Operations Register with Unsigned 6-bit Immediate 143
General Operations Register with Signed 12-bit Immediate 143
General Operations Conditional Register 143
General Operations Conditional Register with Unsigned 6-bit Immediate 144
Long Immediate with General Operations 144
ALU Operations, 0x04, [0x00-0x1F] 144
Special Format Instructions, 0x04, [0x20 - 0x3F] 145
Move and Compare Instructions, 0x04, [OxOA - 0x0D] and 0x04, [0x11] 146
Jump and Jump-and-Link Conditionally, 0x04, [0x20 - 0x23] 146
Load Register-Register, 0x04, [0x30 - 0x37] 147
Single Operand Instructions, 0x04, [0x2F, 0x00 - 0x3F] 147
Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00 - 0x3F] 148
32-bit Extension Instructions, 0x05 - 0x08 149
Extension ALU Operation, Register-Register 150
Extension ALU Operation, Register with Unsigned 6-bit Immediate 150
Extension ALU Operation, Register with Signed 12-bit Immediate 150
Extension ALU Operation, Conditional Register 150
Extension ALU Operation, Conditional Register with Unsigned 6-bit Immediate 151
Dual Operand Extension Instructions, 0x05, [0x00-0x2E and 0x30-0x3F] 151
Single Operand Extension Instructions, 0x05, [0x2F, 0x00 - 0x3F] 152
Zero Operand Extension Instructions, 0x05, [0x2F, 0x3F, 0x00 - 0x3F] 153
User Extension Instructions 153
Market Specific Extension Instructions, 0x09 - 0x0B 153
Market Specific Extension Instruction, 0x09 154
Market Specific Extension Instruction, OX0A 154
Market Specific Extension Instruction, 0xOB 154
Chapter 7 — 16-bit Instruction Formats Reference 155
Load /Add Register-Register, 0x0C, [0x00 - 0x03] 155
Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03] 156
Mov/Cmp/Add with High Register, OxOE, [0x00 - 0x03] 156
Long Immediate with Mov/Cmp/Add 157
General Register Format Instructions, Ox0F, [0x00 - Ox1F] 157
General Operations, register-register 157
General Operations, Register 158

ARCompact™ Programmer's Reference vii

Contents

General Operations, No Registers 158
General Operations, 0x0F, [0x00 - Ox1F] 158
Single Operand, Jumps and Special Format Instructions, Ox0F, [0x00, 0x00 - 0x07] 159
Zero Operand Instructions, 0x0F, [0x00, 0x07, 0x00 - 0x07] 160
Load/Store with Offset, Ox10 - Ox16 160
Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07] 161
Stack Pointer Based Instructions, 0x18, [0x00 - 0x07] 162
Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07] 163
POP Register from Stack, 0x18, [0x06, 0x00-0x1F] 163
PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F] 163
Load/Add GP-Relative, 0x19, [0x00 - 0x03] 164
Load PCL-Relative, Ox1A 164
Move Immediate, Ox1B 165
ADD/CMP Immediate, 0x1C, [0x00 - 0x01] 165
Branch on Compare Register with Zero, 0x1D, [0x00 - 0x01] 165
Branch Conditionally, Ox1E, [0x00 - 0x03] 166
Branch Conditionally with cc Field, Ox1E, [0x03, 0x00 - 0x07] 166
Branch and Link Unconditionally, Ox1F 167
Chapter 8 — Condition Codes 169
Introduction 169
Flag Setting 169
Status Register 169
Status Flags Notation 169
Condition Code Test 170
Extended Arithmetic Condition Codes 170
Chapter 9 — Instruction Set Details 173
Instruction Set Details 173
List of Instructions 173
Alphabetic Listing 176
ABS 177
ABSS 178
ABSSW 180
ADC 182
ADD 183
ADD1 185
ADD?2 187
ADD3 189
ADDS 191
ADDSDW 193
AND 194
ASL 195
ASL multiple 196
ASLS 198
ASR 200
ASR multiple 201
ASRS 203
BBITO 205
BBIT1 207
Bcc 209
Bcc_S 211
BCLR 213
BIC 214

viii

ARCompact™ Programmer's Reference

Contents

BlLcc 215
BMSK 217
BRcc 219
BRK 222
BSET 225
BTST 226
BXOR 227
CMP 228
DIVAW 229
EX 232
EXTB 234
EXTW 235
FLAG 236
Jcc 238
JLcc 241
LD 243
LPcc 247
LR 259
LSR 260
LSR multiple 262
MAX 264
MIN 266
MOV 268
MPY 269
MPYH 271
MPYHU 272
MPYU 274
MULG64 275
MULU6G4 277
NEG 279
NEGS 280
NEGSW 281
NOP 282
NORM 283
NORMW 285
NOT 287
OR 288
POP_S 289
PREFETCH 290
PUSH_S 292
RCMP 293
RLC 294
RND16 295
ROR 296
ROR multiple 297
RRC 299
RSUB 300
RTIE 302
SAT16 304
SBC 305
SEXB 307
SEXW 308
SLEEP 309
SR 312
ST 313
SUB 315

ARCompact™ Programmer's Reference iX

Contents

SUB1 317
SUB2 319
SUB3 321
SUBS 323
SUBSDW 325
SWAP 326
SWI/TRAPO 327
SYNC 329
TRAP_S 331
TST 333
UNIMP_S 334
XOR 335
Chapter 10 — The Host 337
The Host Interface 337
Halting 338
Starting 338
Pipecleaning 339
Single Instruction Stepping 339
SLEEP Instruction in Single Instruction Step Mode 340
BRK Instruction in Single Instruction Step Mode 340
Software Breakpoints 340
Core Registers 341
Auxiliary Register Set 341
Memory 341

X ARCompact™ Programmer's Reference

List of Figures

Figure 1 Block diagram of the ARCompact based processor 22
Figure 2 Address Space Model 27
Figure 3 Unified Address Space Model 28
Figure 4 Register Containing 32-bit Data 28
Figure 5 32-bit Register Data in Byte-Wide Memory, Little-Endian 28
Figure 6 32-bit Register Data in Byte-Wide Memory, Big-Endian 29
Figure 7 Register containing 16-bit data 29
Figure 8 16-bit Register Data in Byte-Wide Memory, Little-Endian 29
Figure 9 16-bit Register Data in Byte-Wide Memory, Big-Endian 29
Figure 10 Register containing 8-bit data 30
Figure 11 8-bit Register Data in Byte-Wide Memory 30
Figure 12 Register containing 1-bit data 30
Figure 13 16-bit data format, upper end 30
Figure 14 16-bit data format, lower end 30
Figure 15 Dual 16 x 16 data format 30
Figure 16 Single 24 x 24 data format 31
Figure 17 Multiply Accumulate 16-bit Input Data Format 31
Figure 18 Multiply Accumulate 24-bit Input Data Format 31
Figure 19 Multiply Accumulate 16-bit Output Data Format with no Q 31
Figure 20 Multiply Accumulate 24-bit Output Data Format with no Q 31
Figure 21 Multiply Accumulate 16-bit Output Data Format with Q 31
Figure 22 Multiply Accumulate 24-bit Output Data Format with Q 32
Figure 23 32-bit Instruction byte representation 33
Figure 24 32-bit instruction in Byte-Wide memory, Little-Endian 33
Figure 25 32-bit instruction in Byte-Wide memory, Big-Endian 33
Figure 26 16-bit Instruction byte representation 33
Figure 27 Two 16-bit instructions in Byte-Wide memory, Little-Endian 33
Figure 28 Two 16-bit instructions in Byte-Wide memory, Big-Endian 34
Figure 29 16-bit and 32-bit Instruction byte representation 34
Figure 30 16-bit and 32-bit instructions in Byte-Wide Memory, Little-Endian 34

ARCompact™ Programmer's Reference Xi

List of Figures

Figure 31 16-bit and 32-bit instructions in Byte-Wide Memory, Big-Endian
Figure 32 16-bit and 32-bit instruction sequence, byte representation

Figure 33 16-bit and 32-bit instruction sequence, in Byte-Wide memory, Little-Endian
Figure 34 16-bit and 32-bit instruction sequence, in Byte-Wide memory, Big-Endian.

Figure 35 Core Register Map Summary
Figure 36 PCL Register

Figure 37 Auxiliary Register Map
Figure 38 STATUS Register (Obsolete)
Figure 39 Semaphore Register

Figure 40 LP_START Register

Figure 41 LP_END Regjister

Figure 42 Identity Register

Figure 43 Debug Register

Figure 44 PC Register

Figure 45 STATUS32 Register

Figure 46 BTA, Branch Target Address
Figure 47 STATUS32_L1, STATUS32_L2 Registers

Figure 48 BTA L1 and BTA L2, Interrupt Return Branch Target Registers

Figure 49 INT_VECTOR_BASE Register

Figure 50 AUX_IRQ_LV12 Interrupt Level Status Register

Figure 51 AUX_IRQ_LEYV Interrupt Level Programming Register
Figure 52 AUX_IRQ_HINT Software Triggered Interrupt

Figure 53 ICAUSE1 and ICAUSE?2 Interrupt Cause Registers

Figure 54 AUX_IENABLE, Interrupt Mask Programming Register
Figure 55 AUX_ITRIGGER, Interrupt Sensitivity Programming Register
Figure 56 AUX_IRQ_PULSE_CANCEL Interrupt Pulse Cancel Register
Figure 57 AUX_IRQ_PENDING, Interrupt Pending Register

Figure 58 ERET, Exception Return Address

Figure 59 ERBTA, Exception Return Branch Target Address

Figure 60 ERSTATUS, Exception Return Status Register

Figure 61 ECR, Exception Cause Register

Figure 62 EFA, Exception Fault Address

Figure 63 XPU, User Mode Extension Permission Register

Figure 64 Interrupt Generated after Timer Reaches Limit Value

Figure 65 Timer 0 Count Value Register

34
35
35
36
39
44
46
48
48
49
49
49
50
51
51
52
53
53
54
54
54
55
56
56
56
57
57
57
57
57
58
58
59
60
60

Xii ARCompact™ Programmer's Reference

List of Figures

Figure 66 Timer 0 Control Register

Figure 67 Timer O Limit Value Register

Figure 68 Timer 1 Count Value Register

Figure 69 Timer 1 Control Register

Figure 70 Timer 1 Limit Value Register

Figure 71 AUX_MACMODE Register

Figure 72 BCR_VER Register

Figure 73 BTA_LINK_BUILD Configuration Register

Figure 74 EA_BUILD Configuration Register

Figure 75 VECBASE_AC_BUILD Configuration Register

Figure 76 RF_BUILD Configuration Register

Figure 77 TIMER_BUILD Configuration Register

Figure 78 MULTIPLY_BUILD Configuration Register

Figure 79 SWAP_BUILD Configuration Register

Figure 80 NORM_BUILD Configuration Register

Figure 81 MINMAX_BUILD Configuration Register

Figure 82 BARREL_BUILD Configuration Register

Figure 83 Interrupt Execution

Figure 84 Extension ALU Operation, register-register

Figure 85 Extension ALU Operation, register with unsigned 6-bit immediate
Figure 86 Extension ALU Operation, register with signed 12-bit immediate
Figure 87 Extension ALU Operation, conditional register

Figure 88 Extension ALU Operation, cc register with unsigned 6-bit immediate
Figure 89 Market-Specific Extension Instruction 0x09 Encoding
Figure 90 Market-Specific Extension Instruction 0XOA Encoding
Figure 91 Market-Specific Extension Instruction 0xOB Encoding
Figure 92 DIVAW 16-bit input numerator data format

Figure 93 DIVAW 16-bit input denominator data format

Figure 94 DIVAW 16-bit output data format

Figure 95 Loop Detection and Update Mechanism, ARCtangent-A5
Figure 96 Loop Detection and Update Mechanism, ARC 600
Figure 97 Loop Detection and Update Mechanism, ARC 700
Figure 98 Example Host Memory Maps, Contiguous Host Memory

Figure 99 Example Host Memory Maps, Host Memory and Host 10

ARCompact™ Programmer's Reference

60
61
61
61
61
63
64
64
64
65
65
66
66
67
67
67
67
80

150

150

150

150

151

154

154

154

230

230

230

249

252

256

337

337

Xiii

List of Examples

Example 1 Null Instruction Format 37
Example 2 Correct set-up of LP_COUNT via a register 42
Example 3 Reading Loop Counter after Writing 43
Example 4 Invalid Loop Count set up 43
Example 5 Valid Loop Count set up 43
Example 6 Invalid Loop Count set up with branch 43
Example 7 Valid Loop Count set up with branch 43
Example 8 Reading Loop Counter near Loop Mechanism 44
Example 9 Claiming and Releasing Semaphore 48
Example 10 Reading Multiply Result Registers 62
Example 11 Restoring the Multiply Results 62
Example 12 Exception Vector Code 75
Example 13 Enabling Interrupts with the FLAG instruction 77
Example 14 No Interrupt Routine for ivect5 79
Example 15 Exception in a Delay Slot 91
Example 16 ARCtangent-A5 Branch on Compare 221
Example 17 ARC 600 Branch on Compare 221
Example 18 To obtain a semaphore using EX 233
Example 19 To Release Semaphore using ST 233
Example 20 Example Loop Code 249
Example 21 Setting up an ARCtangent-A5 Single Instruction Loop 250
Example 22 Setting up an ARC 600 Single Instruction Loop 253
Example 23 Sleep placement in code 310
Example 24 Sleep placement after Branch 311
Example 25 Sleep placement after Branch with killed delay slot 311
Example 26 Enable Interrupts and Sleep, ARCtangent-A5 and ARC 600 311
Example 27 Enable Interrupts and Sleep, ARC 700 311
Example 28 Using SYNC to clear down an interrupt request 329

Xiv ARCompact™ Programmer's Reference

List of Examples

This page is intentionally left blank.

ARCompact™ Programmer's Reference

XV

List of Tables

Table 1 Processor Supported Features 21
Table 2 Core Register Set 39
Table 3 16-bit instruction register encoding 40
Table 4 Current ABI register usage 41
Table 5 Multiply Result Registers 45
Table 6 Auxiliary Register Set 46
Table 7 Optional Extension Auxiliary Registers 62
Table 8 Extended Arithmetic Auxiliary Registers 62
Table 9 Build Configuration Registers 63
Table 10 BCR_VER field descriptions 64
Table 11 BTA _LINK _BUILD field descriptions 64
Table 12 EA_BUILD field descriptions 65
Table 13 VECBASE_AC_BUILD field descriptions 65
Table 14 RF_BUILD field descriptions 65
Table 15 TIMER_BUILD field descriptions 66
Table 16 MULTIPLY_BUILD field descriptions 66
Table 17 SWAP_BUILD field descriptions 67
Table 18 NORM_BUILD field descriptions 67
Table 19 MINMAX_BUILD field descriptions 67
Table 20 BARREL_BUILD field descriptions 67
Table 21 Overview of ARC 700 Privileges 72
Table 22 ARC 700 Interrupt Vector Summary 75
Table 23 ARCtangent-A5 and ARC 600 Interrupt Vector Summary 76
Table 24 ARCtangent-A5 and ARC 600 Extension Interrupt Vector Summary 77
Table 25 Exception vectors 82
Table 26 Exception Priorities and Vectors 87
Table 27 Exception and Interrupt Exit Modes 90
Table 28 Instruction Syntax Convention 93
Table 29 Basecase ALU Instructions 94
Table 30 Barrel Shift Operations 102
ARCompact™ Programmer's Reference XVi

List of Tables

Table 31 Single operand: moves and extends

Table 32 Single operand: Rotates and Shifts

Table 33 Basecase ZOP instructions

Table 34 Delay Slot Execution Modes

Table 35 Branch on compare/test mnemonics

Table 36 Branch on compare pseudo mnemonics, register-register
Table 37 Branch on compare pseudo mnemonics, register-immediate
Table 38 Delay Slot Execution Modes

Table 39 Basecase Jump Instructions

Table 40 Auxiliary Register Operations

Table 41 Dual Operand Optional Instructions for ARCtangent-A5 and ARC 600
Table 42 Dual Operand Optional Instructions for ARC 700

Table 43 Single Operand Optional Instructions

Table 44 Extended Arithmetic Operation Notation

Table 45 Extended Arithmetic Dual Operand Instructions

Table 46 Extended Arithmetic Single Operand Instructions

Table 47 Major opcode Map, 32-bit and 16-Bit instructions

Table 48 Key for 32-bit Addressing Modes and Encoding Conventions
Table 49 Key for 16-bit Addressing Modes and Encoding Conventions
Table 50 Condition codes

Table 51 Delay Slot Modes

Table 52 Address Write-back Modes

Table 53 Direct to Memory Bypass Mode

Table 54 Load Store Data Size Mode

Table 55 Load Data Extend Mode

Table 56 Branch on compare/bit test register-register

Table 57 Branch Conditionally/bit test on register-immediate

Table 58 Operand Format Indicators

Table 59 ALU Instructions

Table 60 Special Format Instructions

Table 61 Single Operand Instructions

Table 62 Zero Operand Instructions

Table 63 Summary of Extension Instruction Encoding

Table 64 Extension ALU Instructions

Table 65 Extension Single Operand Instructions

ARCompact™ Programmer's Reference

104
105
108
110
111
111
111
112
113
115
120
121
121
126
126
127
133
134
134
135
135
136
136
136
137
139
140
142
144
145
147
148
149
151
152

XVii

List of Tables

Table 66 Extension Zero Operand Instructions

Table 67 Summary of Market-Specific Extension Instruction Encoding

Table 68 16-Bit, LD / ADD Register-Register

Table 69 16-Bit, ADD/SUB Register-immediate
Table 70 16-Bit MOV/CMP/ADD with High Register
Table 71 16-Bit General Operations

Table 72 16-Bit Single Operand Instructions

Table 73 16-Bit Zero Operand Instructions

Table 74 16-Bit Load and Store with Offset

Table 75 16-Bit Shift/SUB/Bit Immediate

Table 76 16-Bit Stack Pointer based Instructions
Table 77 16-Bit Add/Subtract SP relative Instructions
Table 78 16-Bit POP register from stack instructions
Table 79 16-Bit PUSH register to stack instructions
Table 80 16-Bit GP Relative Instructions

Table 81 16-Bit ADD/CMP Immediate

Table 82 16-Bit Branch on Compare

Table 83 16-Bit Branch, Branch Conditionally

Table 84 16-Bit Branch Conditionally

Table 85 Condition codes

Table 86 Extended Arithmetic Condition Codes

Table 87 List of Instructions

Table 88 Loop setup and long immediate data, ARCtangent-A5
Table 89 Branch and Jumps in loops, flow(1), ARCtangent-A5
Table 90 Branch and Jumps in loops, flow(2), ARCtangent-A5
Table 91 Loop setup and long immediate data, ARC 600

Table 92 Branch and Jumps in loops, flow(1), ARC 600

Table 93 Branch and Jumps in loops, flow(2), ARC 600

Table 94 Loop setup and long immediate data, ARC 700

Table 95 Branch and Jumps in loops, flow(1), ARC 700

Table 96 Branch and Jumps in loops, flow(2), ARC 700

Table 97 Host Accesses to the ARCompact based processor

Table 98 Single Step Flags in Debug Register

XViii

153
153
155
156
157
158
159
160
161
161
162
163
163
163
164
165
165
166
166
170
171
173
250
251
251
253
254
254
257
257
258
338
340

ARCompact™ Programmer's Reference

Chapter 1 — Introduction

This document is aimed at programmers of the ARCompact™ ISA for theahBéht™ and ARC®
family of processors.

All aspects of the ARCompact ISA are covered in this document, howetandeatures are only
available in specific processor implementations. Featuresalgéd only to specific processor
versions are highlighted.

This document covers the instruction set architecture for the fogpdMRCompact based processors:
* ARCtangent-A5 processor

* ARC 600 processor

* ARC 700 processor.

The ARCompact ISA is designed to reduce code size and maximize the opcadavgilable to
extension instructions.

In the ARCompact ISA, compact 16-bit encodings of frequently used staticallyriog 32-bit
instructions are defined. These can be freely intermixed with the 8%tiictions.

Typographic Conventions

Normal text is displayed using this font.

Any code segments are displayed in this mono-space font.

TIP Tips point out useful information using this style.

NOTE Notes point out important information.

CAUTION Cautions tell you about commands or procedures that could have unexpected or undesirable
side effects or could be dangerous to your files or your hardware.

I Sections that relate specifically to the ARC 700 processor are dnaittethis convention.

| Sections that relate specifically to the ARC 600 processor are anaittethis convention.

Sections that relate specifically to the ARCtangent-A5 processanarked with this convention.

Sections that relate specifically to both the ARCtangent-A5 and ARC 60@ssmycare marked with
this convention.

ARCompact™ Programmer's Reference 19

Key Features Introduction

Key Features

Instructions

* Freely Intermixed 16/32-Bit Instructions

* User and Kernel Modes

Registers

» General Purpose Core Registers

» Special Purpose Auxiliary Register Set
Load/Store Unit

* Register Scoreboard

» Address Register Write-Back

* Pre and Post Address Register Write-Back
e Stack Pointer Support

e Scaled Data Size Addressing Mode

* PC-relative addressing

Program Flow

» Conditional ALU Instructions

* Single Cycle Immediate Data

* Jumps and Branches with Single Instruction Delay Slot
* Combined compare-and-branch instructions
» Delay Slot Execution Modes

» Zero Overhead Loops

Interrupts and Exceptions

* Levels of Exception

* Non-Maskable Exceptions

» Maskable External Interrupts

» Precise Exceptions

* Memory\Instruction\Privilege Exceptions

» Exception Recovery State

» Exception Vectors

» Exception Return Instruction
Multi-Processor Support

» Synchronization and Atomic-exchange instructions

Debug

20 ARCompact™ Programmer's Reference

Introduction ISA Feature Comparison

» Start, stop and single step the processor via special registers

» Full visibility of the processor state via the processors debugdnterf
» Breakpoint Instruction

Power Management

* Sleep Instruction

Processor Timers

* Two 32-bit programmable timers

ISA Feature Comparison

This document covers the ARCompact ISA definitions for the ARCtamgfenrARC 600 and ARC
700 processor implementations.

All processors are upwardly compatible, however due to micro-actunis differences, the timing
behavior of each CPU implementation will vary.

Code that is written for processor architectures that make ufieled ARCompact features will not
execute correctly on processors that utilize a smaller subdet ARCompact ISA.

The following table summarizes the key features that are supporthd tsgrious processor
architectures.

Table 1 Processor Supported Features

ARCompact ISA Features » ARCtangent-A5 § ARC 600 J ARC 700
Freely Intermixed 16/32-Bit Instructions ° ° °
General Purpose Core Registers °) °
Auxiliary Register Set °) °
User and Kernel Modes °
Memory Management Unit Support °

Extended Arithmetic Instructions Optional Optionale

Register Scoreboard)) °
Address Register Write-Back °) °
Pre and Post Address Register Write-Back) ° °
Stack Pointer Support ° ° °
Scaled Data Size Addressing Mode ° ° °
PC-relative addressing)) °
Conditional ALU Instructions) ° °
Single Cycle Immediate Data ° ° °
Jumps and Branches with Single Instruction Delay Slat ° [
Combined compare-and-branch instructions °) °
Delay Slot Execution Modes °) °
Zero Overhead Loops)) °
Levels of Exception ° ° °

ARCompact™ Programmer's Reference 21

Programmer’s Model Introduction

ARCompact ISA Features = ARCtangent-A5 | ARC 600] ARC 700
Non-Maskable Exceptions ° ° [
Maskable External Interrupts) ° °
Precise Exceptions °
Maskable External Interrupts) ° °
Memory\Instruction\Privilege Exceptions °
Exception Recovery State °
Exception Vectors °
Exception Return Instruction °
Synchronization and Atomic-exchange instructions)
Start, stop and single step the processor via special e) °
registers

Full visibility of the processor state via the processorse) °
debug interface

Breakpoint Instruction)) °

Programmer’s Model

The programmer's model is common to all implementations of the ARCompadtdrasessor and
allows upward compatibility of code.

Logically, the ARCompact based processor is based around a general-pugsisefie allowing
instructions to have two source operands and one destination register. @dtersare contained in
the auxiliary register set and are accessed with the LOAD-REGISIERor STORE-REGISTER
(SR instruction or other special types of instructions.

Processor Core

Instruction Ext. Ext. Ext.
Fetch Regs Regs Inst.

Instruction Core Aux. ALU

Aligner Regs Regs
LD/ST Host
Unit Interface

Figure 1 Block diagram of the ARCompact based proc essor

Core Register Set

The general purpose registers (r0-r28) can be used for any purpose by the ipergi@ome of these
core registers have defined special purposes like stack pointers glistere and loop counters. See
sectionCore Register Sein page39.

Auxiliary Register Set

The auxiliary register set contains special status and contrsteegiAuxiliary registers occupy a
special address space that is accessed using special load eagigtore register instructions, or
other special types of instructions. See sedlioxiliary Register Sebn pageds.

22 ARCompact™ Programmer's Reference

Introduction Programmer’s Model

32-bit Instructions
The ARCompact based instruction set, is defined around a 32-bit encoding scheme.

Short immediate values are implied by the various instruction formatst Bihg immediate data
(limm) is indicated by using r62 as a source register.

Register r63RCL) is a read-only value of the 32-BIC (32-bit aligned) for use as a source operand
in all instructions allowing PC-relative addressing.

16-bit Instructions

There are compact 16-bit encodings of frequent statically occurring 3tstriigtions. Compressed
16-bit instructions typically use:

* Frequently used instructions only
* Register range reduced from full 64 registers to most frequent 8aregigt-r3, r12-r15
e Certain instructions use implied registers IKeNK , SP, GP, FPandPC

» Typically only 1 or 2 operand registers specified (destination and sogiistereare the same)
* Reduced immediate data sizes

* Reduced branch range from maximum offset of £16MB to maximum offset of £512B

* No branch delay slot execution modes

* No conditional execution

* No flag setting option (only a few instructions will set flags BEBST_S CMP_SandTST_9

Operating Modes

Operating modes are supported in the ARC 700 processor in order to pderendievels of
privilege to be assigned to operating system kernels and user prograitity-csntrolling access to
‘privileged’ system-control instructions and special registEnese operating modes and memory
management and protection features combine to ensure that an OS can nanialiofcthe system
at all times, and that both the OS and user tasks can be protected fedfurectioning or malicious
task.

The operating mode is used to determine whether a privileged instruction megdoted. The
operating mode is also used by the memory management system to deterniee avBpécific
location in memory may be accessed.

Two operating modes are provided:
» Kernel mode

[0 Highest level of privilege

O Default mode fronReset

[0 Access to all machine state, including privileged instructions antieged registers
» User mode

[0 Lowest level of privilege

O Limited access to machine state

ARCompact™ Programmer's Reference 23

Extensions Introduction

O Any attempt to access privileged machine state causes an exception

Extensions

The ARCompact based processor is designed to be extendable accordingdaiteenents of the
system in which it is used. These extensions include more core and augijasters, new
instructions, and additional condition code tests. This section is intengédrta the programmer
where processor extensions occur and how they affect the prograwvimers the ARCompact
based processor.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Core Registers

The core register set has a total of 64 different addressablersegi®egisters r32 to r59 are available
for extension purposes. The core register map is shotigume 350n page39.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Auxiliary Registers

The auxiliary registers are accessed with 32-bit addresses and avoloidata size only.
Extensions to the auxiliary register set can be anywhere in thisssdgjvace except those positions
defined as basecase for auxiliary registers. They are referusihg the load from auxiliary register
(LR) and store to auxiliary registe8lR) instructions or special extension instructions. The reserved
auxiliary register addresses are showhigure 370n page46.

The auxiliary register address region 0x60 up to Ox7F and region 0xCO up to OxFF visdrésethe

Build Configuration RegistefBCRs) that can be used by embedded software or host debug software
to detect the configuration of the ARCompact based hardware. The Build @atibg Registers

contain the version of each ARCompact based extension, as well as @iidiginformation that is

build specific.

Some optional components in an ARCompact based based processor system imiayiaidy
version information registers to indicate the presence of a given contp®heseversion registers
are not necessarily part of the Build Configuration Registers sebr@ptiomponent version
registers may be provided as part of the extension auxiliary regggtar a component.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Instructions

Instruction groups are encoded within the instruction word using a 5 bit biektyThe first 8
encodings define 32-bit instruction groups, the remaining 24 encodings definerigrbittion
groups. Two extension instruction groups are reserved in the 32-bit instrutteomdsanother two
instruction groups in the 16-bit instruction set. User extension instrueifergovided by one
extension instruction group in the 32-bit instruction set and two extensiauctitat groups in the
16-bit instruction set. Each extension instruction group can contain duahdpestructionsg «— b
op 0O, single operand instructiong < op b) and zero operand instructiorp(c).

24 ARCompact™ Programmer's Reference

Introduction Debugging Features

Extension instructions are used in the same way as the normal ALU fiastsyexcept an external
ALU is used to obtain the result for write-back to the core register set.

Extension Condition Codes

The condition code test on an instruction is encoded using a 5 bit binaryrfisddjives 32 different
possible conditions that can be tested. The first 16 codes (0x00-0x0F) areaihdisen codes
defined in the basecase version of ARCompact based processor which use orngrial condition
flags from the status register (Z, N, C, V), Sedle 50 Condition codam pagel3s.

The remaining 16 condition codes (10-1F) are available for extension and ate: used
» provide additional tests on the internal condition flags or
» test extension status flags from extension function units or

* test a combination external and internal flags

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Debugging Features

It is possible for the processor to be controlled from a host processgrspsicial debugging
features. The host is able to:

» start and stop the processor via the status and debug register
» single step the processor via the debug register

» check and change the values in the register set and memory
» perform code profiling by reading the status register

* enable software breakpoints by usBigK

With these abilities it is possible for the host to provide so@vaeakpoints, single stepping and
program tracing of the processor.

It is possible for the processor to halt itself with Bh&\G instruction.

Power Management

All ARCompact based processors support power management featur&t. HERinstruction halts
the pipeline and waits until an interrupt or a restart occurs. 8tedp stalls the core pipeline and
disables any on-chip RAM.

ARCompact™ Programmer's Reference 25

Power Management Introduction

This page is intentionally left blank.

26 ARCompact™ Programmer's Reference

Chapter 2 — Data Organization and
Addressing

This chapter describes the data organization and addressing used byCtthra@eRt based processor.

Address Space
Conceptually the ARCompact ISA has three distinct 32-bit address spaces.
* The 32-bit Program Counter supports a 4GB address space for code.

» Data transfer instructions support 32-bit addressing for load/st@@patations, providing a
4GB data space.

* An Auxiliary address space provides an additional 4G long word locations fsteregccesses.
0

Data & IO Auxiliary Data &

10

Code Space

Accessible using
load (LD) and

Accessible via

instruction fetch Accessible using

and PC relative store (ST) load (LR) and
operations operations store (SR)
operations
4GB 4GB 16GB

Figure 2 Address Space Model

All ARCompact based processors have physically independent Instruction anpiye that allow
for von Neumann or Harvard configurations. However, the default memory conifiguiiat the
processor unifies the Data and Instruction memory spaces. A load or stamtoyraddress
locationnnin data memory, will access locationin the instruction memory.

0 0

4GB

Code, Data & 10
Space

Accessible via
instruction fetch,
PC relative, load

(LD) and store
(ST) operations

16GB

Auxiliary Data &
10

Accessible using
load (LR) and
store (SR)
operations

ARCompact™ Programmer's Reference

27

Data Formats Data Organization and Addressing

Figure 3 Unified Address Space Model

Data Formats

All ARCompact based processors by default, support a little-endian atahéte8ome configurations
of the ARCompact based processor may be big-endian.

The ARCtangent-A5 processor does not support big-endian addressing.

The processor can operate on data of various sizes. The memory opeladiband store type
operations) can have data of 32 bit (long word), 16 bit (word) or 8 bit(byte) Bjtie operations use
the low order 8 bits and may extend the sign of the byte across the respobtia®rd depending on
the load/store instruction. The same applies to the word operations witbrith@ccupying the low
order 16 bits. Data memory is accessed using byte addresses, which means lomgwyadd o
accesses can be supplied with non-aligned addresses. The following dateeatigyare supported:

* long words on long word boundaries

* words on word boundaries

* bytes on byte boundaries

A misaligned data access generates an exception in the ARC 700 processor.

For the ARCtangent-A5 and ARC 600 processors, control of misaligned data witdspend on
the configuration of the memory subsystem.

32-bit Data

All load/store, arithmetic and logical operations support 32-bit data. dtaeepresentation in a
general purpose register is showrkrigure 4on page28.

NOTE 32-bit (long word) data should be aligned to 32-bit (long word) boundaries.

Figure 5on page28 shows the little-endian representation in byte-wide memory. If theofyip@ct
based processor supports big-endian addressing then the data would be stored iresehmm in
Figure 6on page?9.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Byte 3 Byte 2 Byte 1 Byte O

Figure 4 Register Containing 32-bit Data

Address 7 6 5 4 3 2 1(
N

Byte O
N+1 Byte 1
N+2 Byte 2
N+3 Byte 3

Figure 5 32-bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1(
N

Byte 3
N+1 Byte 2
N+2 Byte 1
N+3 Byte 0

28 ARCompact™ Programmer's Reference

Data Organization and Addressing Data Formats

Figure 6 32-bit Register Data in Byte-Wide Memory, Big-Endian
The ARCtangent-A5 processor does not support big-endian addressing.

16-bit Data

Load/store and some multiplication instructions support 16-bit data. 16-bitatatze converted to
32-bit data by using unsigned extelikK{T'W) or signhed extendSEXW) instructions. The 16-bit data
representation in a general purpose register is shofigime 7on page?9.

For the programmer's model the data is always contained in the lasvef thie core register and the
data memory is accessed using a byte address. This model is somefigmed to as data
invarianceprinciple.

NOTE The actual memory bus implementation may have its own representation for data and address.
Please see associated documentation.

16-bit (word) data should be aligned to 16-bit (word) boundaries.

Figure 8on page?29 shows the little-endian representation of 16-bit data in byte-wide methtg
ARCompact based processor supports big-endian addressing then the 16-bit dhtzevstarded in
memory as shown iRigure 9on page?9.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Unused Byte 1 Byte 0

Figure 7 Register containing 16-bit data

Address 7 6 5 4 3 2 1 0
N Byte 0
N+1 Byte 1

Figure 8 16-bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0
N Byte 1
N+1 Byte 0

Figure 9 16-bit Register Data in Byte-Wide Memory, Big-Endian
The ARCtangent-A5 processor does not support big-endian addressing.

8-bit Data

Load/store operations support 8-bit data. 8-bit data can be converted to 32-bif daing unsigned
extend EXTB) or signed extendSEXB) instructions. The 8-bit data representation in a general
purpose register is shown figure 10on page30.

For the programmer's model the data is always contained in the Idsgvef thie core register and the
data memory is accessed using a byte address. This model is somefigmmed to as a data
invariance principle.

NOTE The actual memory bus implementation may have its own representation for data and address.
Please see associated documentation.

Figure 11on page30 shows the representation of 8-bit data in byte-wide memory.

Regardless of the endianness of the ARCompact based system, thégbye-adldress, N, of the
byte is explicitly given and the byte will be stored or read from that exptidress.

ARCompact™ Programmer's Reference 29

Extended Arithmetic Data Formats Data Organization and Addressing

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Unused Byte 0
Figure 10 Register containing 8-bit data
Address 7 6 5 4 3 2 1 0
N Byte 0

Figure 11 8-bit Register Data in Byte-Wide Memory

1-bit Data

The ARCompact instruction set architecture supports single bit apreyain data stored in the core
registers. A bit manipulation instruction includes an immediate valwif@pg the bit to operate on.
Bit manipulation instructions can operate on 8, 16 or 32 bit data located withinegisters, as each
bit is individually addressable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
b31b30[b29[b28b27b26 ?‘ih?dlh?’%h?? 21b20b19b18[b17|b16|b15/b14|b14b12|b11b10{b9|b8|b7|b6|b5|b4|b3|b2|bl|b0

Figure 12 Register containing 1-bit data

Extended Arithmetic Data Formats

The ARCtangent-A5 processor supports the extended arithmetic datasavhven the optional
extended arithmetic instruction library is used.

The ARC 600 processor supports the extended arithmetic data formats wbptidhal extended

| arithmetic instruction library is used.

The extended arithmetic instructions are built in to the ARC 700 procasd@rovide additional
data formats.

16-bit Data
16-bit integer or fractional data represented in the high or low datis operand. Certain extended
arithmetic instructions have specific alignment requirements.

31 30 29 28 27 26 25 24 23 22 21 20 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 16-bit data | ignored |

Figure 13 16-bit data format, upper end
or

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| ignored | 16-bit data

Figure 14 16-bit data format, lower end

Dual 16-bit Data

Two 16-bit integer or fractional data packed as 32-bits. This is theesandcdestination operand
format for the dual 16-bit operations. Channel 1 and channel 2 refer to the high gaitoof the
32-bit data respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| channel 1 (high part) | channel 2 (low part) |

Figure 15 Dual 16 x 16 data format

30 ARCompact™ Programmer's Reference

Data Organization and Addressing Extended Arithmetic Data Formats

24-bit Data
24-bit fractional data is represented left justified in 32-bits.

31 30 29 28 27 26 25 24 23 22 21 20 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
24-bit data Ignored

Figure 16 Single 24 x 24 data format

Q Arithmetic
The ‘Q’ mode is used for signed fractional math when using the multiply accenmiigs.

Input Format
The input format issign . fraction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero

Figure 17 Multiply Accumulate 16-bit Input Data For ~ mat

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero

Figure 18 Multiply Accumulate 24-bit Input Data For ~ mat

Examples:

Hexadecimal Decimal
Ox7FFFFFFF 0.9999..
0x40000000 0.5
0x10000000 0.125
0xC0000000 -0.5
0x80000000 -1.0

Output Format with No Q
When two of fractions are multiplied the result will always be etifvaal number less than 1.

However, the sign bit will duplicate givingign sign . fraction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

S|S Fraction zero

Figure 19 Multiply Accumulate 16-bit Output Data Fo rmat with no Q

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S|S Fraction zero

Figure 20 Multiply Accumulate 24-bit Output Data Fo rmat with no Q

Output Format with Q
In ‘Q’ arithmetic mode, the multiplier result is shifted left one bidl @ zero padded to the right.

The 'Q' arithmetic format isign . fraction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero 0

Figure 21 Multiply Accumulate 16-bit Output Data Fo rmat with Q

ARCompact™ Programmer's Reference 31

Instruction Formats Data Organization and Addressing

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

S Fraction zero 0

Figure 22 Multiply Accumulate 24-bit Output Data Fo rmat with Q

Representation of +1

A special case arises when using Q arithmetic and multiplying —1.0 by —1.@esTitteof this
operation is +1.0 which can be represented in a accumulator with guard biezidngbnot in a 32-
bit register.

For a fractional number represented in a register, the maximum positibenisnalways
0.99999...... (OX7FFFFFFF), the most positive number that can be represented.

Instruction Formats

The ARCompact instruction set supports freely intermixed 16-bit and 32-itatisns.
The following instruction information can be contained in the 32-bit memdug va

* 32-bit instruction word

* Two 16-bit instruction words

* One 16-bit instruction word and the first part of a 32-bit instruction word camdgiime major
opcode

» The second part of a 32-bit instruction word and one 16-bit instruction word

* The second part of a 32-bit instruction word and the first part of the followhinit 88struction
word containing the major opcode.

* 32-bit long immediate data in the same position as a 32-bit instruction word

Packed Middle-Endian Instruction Format

The basecase ARCompact based processor is, by default, a little-enditat@ane. However, the
packed instruction format allows the instruction fetch mechanism ¢ondieie the address of the next
PC when a 32-bit memory word contains a 16-bit instruction. Part of this mechaneensure that
any misaligned 32-bit instruction provides the opcode field in the firbits@hat are retrieved from
memory. For the ARCompact based this means that the upper 16-bits of the 32tiuitiamsmust be
provided first, even in a little-endian memory system, hence the tetdiev@ndian. Once an
instruction is unpacked into its full 32-bit instruction word the fieldsmterpreted as documented in
the following chapters.

Big-Endian Instruction Format

If the ARCompact based processor has been configured to be big-endian, then hpapdniis
required since the upper 16-bits of a 32-bit instruction are always provuisked f

The ARCtangent-A5 processor does not support big-endian addressing.

32-bit Instruction or 32-bit Immediate Data

Assuming a little-endian memory representation, a packed 32-bit instruct@@vbitrimmediate data
will be stored in memory as illustratedfigure 24on page33. Assuming a big-endian memory

32 ARCompact™ Programmer's Reference

Data Organization and Addressing Instruction Formats

representation, a 32-bit instruction, or 32-bit immediate data will be storeehitoiry as illustrated in
Figure 250n page33.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Byte 3 Byte 2 Byte 1 Byte O

Figure 23 32-bit Instruction byte representation

Address 7 6 5 4 3 2 1 0

N Byte 2
N+1 Byte 3
N+2 Byte 0
N+3 Byte 1

Figure 24 32-bit instruction in Byte-Wide memory, L ittle-Endian

Address 7 6 5 4 3 2 1 0
N

Byte 3
N+1 Byte 2
N+2 Byte 1
N+3 Byte 0

Figure 25 32-bit instruction in Byte-Wide memory, B ig-Endian
: The ARCtangent-A5 processor does not support big-endian addressing.

Two 16-bit Instructions

Assuming a little-endian memory representation, two packed 16-bit instrsigtigure 26on page
33, will be stored in memory as illustratedhigure 270n page33. For a big-endian system two 16-
bit instructions will be stored in memory as showirigure 28on page34.

Instruction 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 1 Byte 1 Ins1 Byte O

Instruction 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 2 Byte 1 Ins 2 Byte O

Figure 26 16-bit Instruction byte representation

Address 7 6 5 4 3 2 1 0
N Ins 1 Byte 0

N+1 Ins 1 Byte 1

N+2 Ins 2 Byte 0

N+3 Ins 2 Byte 1

Figure 27 Two 16-bit instructions in Byte-Wide memo ry, Little-Endian

Address 7 6 5 4 3 2 1 0
N Ins 1 Byte 1
N+1 Ins 1 Byte 0

ARCompact™ Programmer's Reference 33

Instruction Formats Data Organization and Addressing

Ins 2 Byte 1

Ins 2 Byte O

Figure 28 Two 16-bit instructions in Byte-Wide memo ry, Big-Endian
The ARCtangent-A5 processor does not support big-endian addressing.

16-bit Instruction Followed by 32-bit Instruction

Assuming a little-endian memory representation, a 16-bit instructitowiedl by a 32-bit instruction,
Figure 29on page34, will be stored in memory as illustratedhigure 30on page34. For a big-
endian system the same instruction sequence will be stored in memory asrshmure 31on page
34.

Instruction 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 1 Byte 1 Ins1 Byte O

Instruction 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 2 Byte 3 Ins 2 Byte 2 Ins 2 Byte 1 Ins 2 Byte O

Figure 29 16-bit and 32-bit Instruction byte repres entation

Address 7 6 5 4 3 2 1 0
N Ins 1 Byte 0
N+1 Ins 1 Byte 1
N+2 Ins 2 Byte 2
N+3 Ins 2 Byte 3
N Ins 2 Byte 0
N+5 Ins 2 Byte 1

Figure 30 16-bit and 32-bit instructions in Byte-Wi de Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

Ins 1 Bytel

N+1 Ins 1 Byte 0
N+2 Ins 2 Byte 3
N+3 Ins 2 Byte 2
N Ins 2 Byte 1
N+5 Ins 2 Byte 0

Figure 31 16-bit and 32-bit instructions in Byte-Wi de Memory, Big-Endian
The ARCtangent-A5 processor does not support big-endian addressing.

Series of 16-bit and 32-bit Instructions

Assuming a little-endian memory representation, a 16-bit and 32-bit itfsirgsequencezigure 32
on page35, will be stored in memory as illustratediigure 33on page35. For a big-endian system
the same instruction sequence will be stored in memory as shdwguie 34on page36.

34 ARCompact™ Programmer's Reference

Data Organization and Addressing Instruction Formats

Instruction 1
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 1 Byte 1 Ins1 Byte O

Instruction 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 2 Byte 3 Ins 2 Byte 2 Ins 2 Byte 1 Ins 2 Byte O

Instruction 3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Ins 3 Byte 3 Ins 3 Byte 2 Ins 3 Byte 1 Ins 3 Byte O

Instruction 4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ins 4 Byte 1 Ins 4 Byte O

Figure 32 16-bit and 32-bit instruction sequence, b yte representation

Address 7 6 5 4 3 2 1 0
N Ins 1 Byte 0
N+1 Ins 1 Byte 1
N+2 Ins 2 Byte 2
N+3 Ins 2 Byte 3
N Ins 2 Byte 0
N+5 Ins 2 Byte 1
N+6 Ins 3 Byte 2
N+7 Ins 3 Byte 3
N Ins 3 Byte 0
N+9 Ins 3 Byte 1
N+10 Ins 4 Byte 0
N+11 Ins 4 Byte 1

Figure 33 16-bit and 32-bit instruction sequence, i n Byte-Wide memory, Little-Endian

ARCompact™ Programmer's Reference 35

Addressing Modes Data Organization and Addressing

Address 7 6 5 4 3 2 1 0
N Ins 1 Byte 1
N+1 Ins 1 Byte 0
N+2 Ins 2 Byte 3
N+3 Ins 2 Byte 2
N Ins 2 Byte 1
N+5 Ins 2 Byte 0
N+6 Ins 3 Byte 3
N+7 Ins 3 Byte 2
N Ins 3 Byte 1
N+9 Ins 3 Byte 0
N+10 Ins 4 Byte 1
N+11 Ins 4 Byte 0

Figure 34 16-bit and 32-bit instruction sequence,i n Byte-Wide memory, Big-Endian.
The ARCtangent-A5 processor does not support big-endian addressing.

Addressing Modes

There are six basic addressing modes supported by the architecture:

Register Direct operations are performed on values stored in registers
Register Indirect operations are performed on locations specified by the contents of
registers

Register Indirect with offset operations are performed on locations specified by the contents of a
register plus an offset value (in another register, or as immediafe da

Immediate operations are performed using constant data stored within the opcode

PC relative operations are performed relative to the current value of the Rrogra
Counter (usually branch or PC relative loads)

Absolute operations are performed on data at a location in memory specified by a

constant value in the opcode.

The instruction formats for each addressing mode are specified inltwitigl sections. The
descriptions use a format defined below. An instruction is describd lmperation (op), including
optional flags, then the operand list.

Operation

<.f> writeback to status register flags

<.cc> condition code field (e.g. conditional branch)

<.d> delay slot follows instruction (used for branch & jump)
<.zz> size definition (Byte, Word. Long)

<X> perform sign extension

<.di> data cache bypass (load and store operations)

<.aa> address writeback

36 ARCompact™ Programmer's Reference

Data Organization and Addressing Addressing Modes

Operand

a,pb &c General Purpose registers (note reduced range for 16-bittiosts)
h General Purpose register, full range for 16-bit instructions.

u<x> unsigned immediate values of size <X>-bits

S<X> signed immediate values of size <X> hits

limm long immediate value of size 32-bits (stored as a second opcode)

Null Instruction Format

The ARCompact ISA supports a special type of instruction format, whegkettination of the
operation is defined as null (0). When this instruction format is usadshé of the operation is
discarded, but the condition codes may be set — this allows any instrocéicinin a manner similar
to compare.

Example 1 Null Instruction Format

ADD.F rl1, r2, r3 ;Normal syntax
;the result of r2+r3
;is written to rl and
;the flags are updated

ADD.F 0,r2,r3 ;Null syntax
;the result of r2+r3 is
;used to update the
;flags, but is not saved.

MOV 0,0 ;Null syntax
;recommended NOP equivalent

As all 32-bit instruction formats support this mode, a 32-bit NOP is not ekptieitined. However,
the recommended NOP_L equivalent is MOV 0,0. The 16-bit instruction setl@sav no-operation
instructionNOP_S

Conditional Execution

A number of the 32-bit instructions in the ARCompact ISA support conditional éxecut 5-bit
condition code field allows up to 32 independent conditions to be tested for beéorgion of the
instruction. Sixteen conditions are defined by default, with the remaindéaldedor customer
definition, as required.

Conditional Branch Instruction

Both the 32-bit and 16-bit instructions support conditional braBcbh) operations. The 32-bit
instructions also include conditional jump and jump and lilk&ndJLccrespectively), whereas the
16-bit instruction set provides unconditional jumps only.

Compare and Branch Instruction
The ARCompact ISA includes two forms of instruction, which integrate caetfipar and branch.
The compare and branch conditionaBRcc command is the juxtaposition of compa@MP) and

conditional branchBcc) instructions. These instructions are available in both 32-bit arite dirh6-
bit versions.

The Branch if bit set/cleaBB8ITO, BBIT1) instructions provide the operation of the bit t&I$T)
and branch if equal/not equ&8EQ/BNE) instructions. These instructions are only available as 32-bit
instructions.

ARCompact™ Programmer's Reference 37

Addressing Modes Data Organization and Addressing

To take advantage of the ARC 600 branch prediction unit, it is prefecabse a negative
| displacement with a frequently takBRRcc BBITO or BBIT1 instruction, and a positive displacement
I with one that is rarely taken.

Serializing Instructions

Some instructions in the ARCompact based processor are serializingngigemithey will have full
effect before any other instructions can begin execution. Serializimgatishs will complete and
then flush the pipeline before the next instruction is fetcB&K andSLEEPare serializing
instructions.

I In the ARC 700 processdfLAG, SYNC, andSR are also serializing instructions.

38 ARCompact™ Programmer's Reference

Chapter 3 — Register Set Detalils

Core Register Set

The following figure shows a summary of the core register set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

r0
rl
r24

25

126

Global Pointer (GP)

r27

Frame Pointer (FP)

28

Stack Pointer (SP)

r29

Level 1 interrupt link register (ILINK1)

r30

Level 2 interrupt link register (ILINK2)

r31

Branch link register (BLINK)

132

Extension Core Registers

59

60

LP_COUNT[31:0]

61

Reserved

162

Long immediate data indicator

163

Program Counter [31:2], read-only, 32-bit aligned address. (PCL) 0|0

Figure 35 Core Register Map Summary

The default implementation of the core provides 32 general purpose 32ebregisters, users can
increase the amount of available registers up to 60 if required. When age&2+dit instructions, the
full range of core registers is available. 16-bit instructions haveited access to core registers, as
shown inTable 2on page39.

Table 2 Core Register Set

Register 32-bit Instruction Function 16-hit Instruction Access
and Default Usage to Register

ro General Purpose Default Access

rl General Purpose Default Access

r2 General Purpose Default Access

ARCompact™ Programmer's Reference 39

Core Register Set Register Set Details

Register 32-bit Instruction Function 16-bit Instruction Access
and Default Usage to Register
r3 General Purpose Default Access
r4
- General Purpose MOV_S, CMP_S & ADD_S
ril
riz General Purpose Default Access
ri3 General Purpose Default Access
ri4 General Purpose Default Access
rls General Purpose Default Access
rié
- General Purpose MOV_S, CMP_S & ADD_S
r25
r26 GP Global Pointer LD_S, MOV_S, CMP_S & ADD_S
r27 EP Frame Pointer (default) MOV_S, CMP_S & ADD_S

PUSH_S, POP_S, SUB_S, LD_S, ST_S,

r28 (SP Stack Pointer MOV_S, CMP_S & ADD_S
r29 (LINK1) Level 1 Interrupt Link MOV_S, CMP_S & ADD_S
r30 (LINK2) Level 2 Interrupt Link MOV_S, CMP_S & ADD_S
. : JL_S,BL_S,J_S,PUSH_S, POP_S,
r31 BLINK) Branch Link Register M5V_S, (_:MP:S & ADD:S -
r32
- Extension Core Registers MOV_S, CMP_S & ADD_S
r59
r60 LP_COUNT) Loop Counter MOV_S,CMP_S & ADD_S
R61 Reserved Reserved
R62 Long Immediate MOV_S, CMP_S & ADD_S
R63 PCL) Program Counter MOV_S, CMP_S & ADD_S, LD_S

(32-bit aligned)

Core Register Mapping Used in 16-bit Instructions

The 16-bit instructions use only 3 bits for register encoding. However, thi¢ kdve MOV_S), the
16-bit compareCMP_9g and the 16-bit add\DD_S) instructions are capable of accessing the full
set of core registers, this facilitates copy and manipulation of wa&isn registers not accessible to
other 16-bit instructions.

The most frequently used registers according to the ARCompact applicationibieeface (ABI)

are r0-r3 (ABI call argument registers), r12 (temporary registery&3-r15 (ABI call saved
registers). The special register encoding is showrabie 3on pagel0 and the ABI usage support is
shown inTable 4on pagetl.

Table 3 16-bit instruction register encoding

16-bit instruction register encoding 32-bit instruc tion register
0 ro
1 rl
2 r2

40 ARCompact™ Programmer's Reference

Register Set Details Core Register Set

16-bit instruction register encoding 32-bit instruc tion register

r3

ri2
ri3
ri4
ris

N o ok~ w

Reduced Configuration of Core Registers

+ The ARC 600 processor can support a reduced set of only 16 core registers. In angleortctise
I ARCompact based ABI the set of reduced registers is indicafabie 4on pagetl. The
RE_BUILD register is used to determine the configuration of core registers.

I For the ARC 600 processor writes to non-implemented core registegnared, reads return zero,
| and shortcutting and write-through is disabled. Loady) o non-implemented core registers take
| place, but the results are discarded. However, this load mechanism shautiidael.

The ARC 700 processor supports the full register set r0 to r31. However, angcefera non-
implemented core register will raise lastruction Errorexception.

Table 4 Current ABI register usage

Register Use 16-bit Instruction Reduced Configuration
Access

ro-r3 argument regs ° °

r4-r7 argument regs

r8-r9 temp regs

rio-rii temp regs)

r12-ris temp regs ° °

r16-r25 saved regs

r26 GP (global pointer.))

r27 EP (frame pointer))

r28 SP(stack pointer) °

r29 ILINK1 °

r30 ILINK2 °

r31 BLINK °

Pointer Registers, GP, r26, FP, r27, SP, r28

The ARCompact application binary interface (ABI) defines 3 pointer e¥gisGlobal Pointer (GP),
Frame Pointer (FP) and Stack Pointer (SP) which use registers r26, rZBaadpectively. The
global pointer (GP) is used to point to small sets of shared aatatiout execution of a program.
The stack pointer (SP) register points to the lowest used addrésssthtk. The frame pointer (FP)
register points to a back-trace data structure that can be used todeacttitough function calls. The
ABI usage of core registers is summarizedatle 4on pagetl.

Link Registers, ILINKZ1, r29, ILINK2, r30, BLINK, r3 1

The link registers (ILINKZ1, ILINK2, BLINK) are used to provide links backhe position where an
interrupt or branch occurred. They can also be used as general purpdsesrdmis if interrupts or
branch-and-link or jump-and-link are used, then these are reservedtfourhase.

ARCompact™ Programmer's Reference 41

Core Register Set Register Set Details

For the ARCtangent-A5 and ARC 600 processors ILINK1 or ILINK2 should not be usagets ta
from multi-cycle instructions.

For the ARC 700 processor ILINK1 and ILINK2 registers are not accessibker mode. lllegal
accesses from user mode to ILINK1 or ILINK2 will cauderiilege Violationexception and the
cause will be indicated in the exception cause regiEEeR).

The ILINK1 or ILINK2 registers should not be overwritten by a multi-cyakdnuction that retires
out-of-order. This is consistent with the restriction ARC 700 alreadyegdlan usindg.P_ COUNT
and minimises the impact on interrupt response time. InstructionseaffectudelLD, POP_SEX,
MPY, MPYU, MPYH, MPYHU, and any ARC supplied or user defined extension instructions.

ARC 700 interrupt handling will be delayed until any instruction using ILINKL8YK2 have
completed.

Loop Count Register, LP_COUNT, r60

The loop count register (LP_COUNT) is used for zero delay loops. BecauS¥OILNT is
decremented if the program counter equals the loop end address it isonoheswed that
LP_COUNT be used as a general purpose registet.Fgenstruction details on paggl7 for
further information on the zero delay loop mechanism.

For the ARCtangent-A5 and ARC 600 processor, the LP_COUNT does not have teklypass
like the other core registers.

The LP_COUNT register must not be used as the destination of a mesadrnystruction liké.D or
POP_Sinstead, an intermediary register should be used, as follows:

Example 2 Correct set-up of LP_COUNT via a register

LD rl,[r0] ; register loaded from memory
MOV LP_COUNT, rl ; LP_COUNT loaded from register

An ARC 700LD, POP_Sor EX instruction to the LP_COUNT register will causelastruction
Error exception.

The LP_COUNT register must not be used as the destination of nelitiiogtruction. An
intermediate register must be used — as with memory accesses to LNTC®uhulti-cycle
instruction writing to the LP_COUNT register will causelastruction Errorexception.

The ARC 700 micro architecture ensures that the correct valuedagsateturned when reading the
loop count register. The LP_COUNT register can be written at any point withlodp.

The update to the LP_COUNT register will take effect immediafédy the writing instruction has
finished and after the loop-end mechanism detection has taken placd.Ricthiastruction is in the
last position of a loop, any change of program flow required (i.e. jurbP t8TART) will be
completed before the LP_COUNT register is updated by the instruction.

As a result, writing LP_COUNT from the last instruction in the loop wiletaKect in the next loop
iteration. Writing LP_COUNT from any other position in the loop will takedtffie the current loop
iteration.

In ARCtangent-A5, in order to guarantee the new value is read, there mugtdnst dtinstruction
words fetched between an instruction writing LP_COUNT and one reading LENTOU

I In ARC 600, in order to guarantee the new value is read, there must be atme#siction words
| fetched between an instruction writing LP_COUNT and one reading LP_COUNT.

42 ARCompact™ Programmer's Reference

Register Set Details Core Register Set

Unlike other core registers, the loop count register does not support sting (data forwarding).

Example 3 Reading Loop Counter after Writing

MOV LP_COUNT,r0 ; update loop count register

MOV rl,LP_COUNT ; old value of LP_COUNT

MOV rl,LP_COUNT ; old value of LP_COUNT, ARCtangent-A5
; new value of LP_COUNT, ARC 600

MOV rl,LP_COUNT new value of LP_COUNT

In order for the loop mechanism to work properly, the loop count register must Ipevaét at least
4 instruction words fetched after the writing instruction and beforeriteof the loop. IExample 4
on paget3, the MOV instruction does not comply with the rule — there are only threedtistr
words (LP, OR, AND) fetched before the end of the loop. The MOV instructionbausliowed by
a NOP to ensure predictable behavior.

Example 4 Invalid Loop Count set up
MOV LP_COUNT,r0; do loop r0 times (flags not set)

LP Toop_end ; set up Toop mechanism
loop_in: OR r2l,r22,r23 ; first dinstruction in loop
AND 0,r21,23 ; last instruction in Toop

loop_end:
ADD ri9,r19,r20 ; first instruction after Toop

Example 5 Valid Loop Count set up
MOV LP_COUNT,r0 ; do loop rO times (flags not set)

NOP ; alTow time for loop count set up
LP Toop_end ; set up Toop mechanism

loop_in: OR r2l,r22,r23 ; first instruction in loop
AND 0,r21,23 ; last instruction in Toop

loop_end:
ADD r19,r19,r20 ; first instruction after Toop

Note the emphasis on the number of instructfetchedbetween the LP_COUNT setup and the end
of the loop. Since code flow is not always linear, the programmer musgeehat the rules are
complied with even when a branch forms part of the code sequence betweenethe Wi COUNT
and the end of the loop.

Example 6 Invalid Loop Count set up with branch

MOV LP_COUNT,r0 ; do Toop rO times
BAL loop_Tlast

LP Toop_end ; set up lToop mechanism
loop_in: OR r2l1,r22,r23 ; first instruction in loop
loop_last: AND 0,r21,23 ; last instruction in Tloop

Toop_end:
ADD r19,r19,r20 ; first instruction after Toop

Example 7 Valid Loop Count set up with branch
MOV LP_COUNT,r0 ; do loop r0O times

NOP ;1

NOP ;2

BAL loop_Tlast ; 3 (loop_last 1is 4)

LP Toop_end ; set up Toop mechanism
loop_in: OR r2l,r22,r23 ; first instruction in loop
loop_last: AND 0,r21,23 ; last instruction in Tloop

loop_end:
ADD r19,r19,r20 ; first instruction after Toop

ARCompact™ Programmer's Reference 43

Extension Core Registers Register Set Details

Reading the LP_COUNT register inside a loop is hazardous — muitlpkeare overlaid. A previous
paragraph describes that the value read from the LP_COUNT will be wtpldelifor two
instructions following the write. When reading LP_COUNT inside a loop, an adalittomplication
is that the result will be unpredictable if read from the last instrugvord position in the loop:

Example 8 Reading Loop Counter near Loop Mechanism

MOV rO,LP_COUNT ; Tloop count for this iteration

MOV r0,LP_COUNT ; Toop count for next iteration
Toop_end:

ADD r19,rl19,r20 ; first instruction after Tloop

The example loads a value into an intermediate register before lmntetred to LP_COUNT.

Reserved Register, r61
Register r61 is reserved and cannot be used as a general purpose regist

For the ARC 700 processor any reference to the core register r@aigellarinstruction Error
exception.

Immediate Data Indicator, limm, r62

Register position 62 is reserved for encoding long (32-bit) immediate dagssitdrmodes onto
instruction words. It is reserved for that purpose and is not availaltle fsagrammer as a general
purpose register.

Program Counter Long-Word, PCL, r63

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PC[31:2] 0|0

Figure 36 PCL Register

Register r63 (PCL) is a read-only value of the 32-bit Program CoureBR-bit aligned) for use as
a source operand in all instructions allowing PC-relative addresdiedaditom two bits will always
return O.

For the ARCompact based processor the PCL register returns thetcostruction address, whereas
the PCregister returns the the next instruction in sequence.

For the ARC 700 processor, using PCL as a destination register inractinstwill raise an
Instruction Errorexception.

| For the ARC 600 processor, using PCL as a destination register inraistinstwill have undefined
I behavior. Loads to PCL have unpredictable behavior and should also be avoided.

| For the ARC 600 processor, PCL should not be used as a source operand in a branchren compa
| instruction 8BITO, BBIT1, or BRco).

Extension Core Registers

The register set is extendible in register positions 32-59 (r32-r59)

Results of accessing the extension register region are undefined fadR@tangent-A5 and ARC 600
processors. If a core register is read that is not implemented,rtherkiaown value is returned. No
exception is generated. Writes to non-implemented core registégnared. Loads to non-
implemented core registers should be avoided.

44 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

For the ARC 700 processor any reference to a non-implemented corer igiistése aninstruction
Error exception

lllegal accesses from user mode to implemented core registecausk &rivilege Violation
exception and the cause will be indicated in the exception causerdgcR).

NOTE When an extension is present but disabled using the XPU register, the exception vector used is
Privilege Violation and not lllegal Instruction.

No extension core register can be the target of a load operation (gdliandEX). Thus register
values above 31 (with the exception of r62, the limm encoding used as the NUinatitas) will
cause armnstruction Errorexception when used as the destination of a load.

Multiply Result Registers, MLO, MMID, MHI

Table 5on paged5 shows the defined extension core registers for the optional multiply.

Table 5 Multiply Result Registers

Register Name Use

r57 MLO Multiply low 32 bits, read only
r58 MMID Multiply middle 32 bits, read only
r59 MHI Multiply high 32 bits, read only

Auxiliary Register Set

The following figure shows a summary of the auxiliary register set.

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514131211109 8 7 6 5 4 3 2 1 0

status |Z|N|c|V|E2Er(H|R PC[25:2]
SEM%:EEORE Reserved s3[s2[s1[S0
Lp START LP_START[3L:1] 0
Lp END LP_END[3L:1] 0
DENTITY CHIPID[15:0] ARCNUM[7:0] ARCVER[7:0]
DEXBOSG LD|sH[BH|UB| Resrvd (zz Reserved IS Reserved FH|sS
be PC[3L:1] 0
STATUS2 Reserved L|z|N|c|v|u|R|2 aatlealerlH
STA'I('JSggZ_Ll Reserved L|Z|N|C|V|U E ’éAZAl E2[E1|R
STA'IE)GggZ_LZ Reserved L|Z|N|C|V|U E ’éAZAl E2[E1|R
INT VECTOR BASE INT_VECTOR_BASE[31:10] Reserved
AUX_I\aXlClMODE Reserved S2|Reserved [S1|R (R g R
Aux_?ég'_Lv12 Reserved L2|L1
ooxgop_ Build Configuration Registers
ooXxCFOF_ Build Configuration Registers

ARCompact™ Programmer's Reference 45

Auxiliary Register Set

Register Set Details

3130 29 28 27 26 25 24 23 22 21 20 19 18 1716 1514131211109 8 7 6 5 4 3 2 1 O

0x200
AUX_IRQ_LEV

0x201
AUX_IRQ_HINT

0x400
ERET

0x401
ERBTA

0x402
ERSTATUS

0x403

0x404
EFA

0x40A
ICAUSE1

0x40B
ICAUSE2

0x40C
AUX_IENABLE

0x40D
AUX_ITRIGGER

0x412
BTA

0x413
BTA_L1

ox414
BTA_L2

0x415

AUX_IRQ_PULSE_
CANCFI

IRQ[31:3] Resrvd

Reserved HINT[4:0]
Address[31:1] R
Address[31:1] T

Reserved
ECR Reserved Vector Number Cause Code Parameter
Address[31:0]

Reserved ICAUSE[4:0]

Reserved ICAUSE[4:0]
IRQ[31:3] Resrvd
IRQ[31:3] Resrvd
Address[31:1] T
Address[31:1] T
Address[31:1] T
IRQ[31:3] R[M|R
IRQ[31:3] Resrvd

0x416
AUX_IRQ_PENDING

Figure 37 Auxiliary Register Map

The basecase ARCompact based processor uses a small set of stadugrainegisters and reserves
registers 0x60 to Ox7F, leaving the remainiffgr@gisters for extension purposes.

Table 6 Auxiliary Register Set

Number Auxiliary register name LR//SR Description
r'w
0x0 STATUS r Status register (Original ARCtangent-A4
processor format)
0x1 SEMAPHORE r/w Inter-process/Host semaphore register
0x2 LP_START r/w Loop start address (32-bit)
0x3 LP_END riw Loop end address (32-bit)
0x4 IDENTITY r Processor Identification register
0x5 DEBUG r Debug register
0x6 PC r PC register (32-bit)
OxA STATUS32 r Status register (32-bit)
0xB STATUS32 L1 riw Status register save for level 1 interrupts
0xC STATUS32 L2 riw Status register save for level 2 interrupts
0x21 COUNTO riw Processor Timer 0 Count value
0x22 CONTROLO riw Processor Timer 0 Control value
0x23 LIMITO riw Processor Timer 0 Limit value
0x25 INT_VECTOR_BASE riw Interrupt Vector Base address
0x41 AUX MACMODE riw Extended Arithmetic Status and Mode
46 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

Number Auxiliary register name LR//SR Description

r'w
0x43 AUX_IRQ_LV12 riw Interrupt Level Status
0x60 - RESERVED r Build Configuration Registers
OX7F
0xCO - RESERVED r Build Configuration Registers
OxFF
0x100 COUNT1 riw Processor Timer 1 Count value
0x101 CONTROL1 riw Processor Timer 1 Control value
0x102 LIMIT1 riw Processor Timer 1 Limit value
0x200 AUX IRQ_LEV r/w Interrupt Level Programming
0x201 AUX_IRQ_HINT r/w Software Triggered Interrupt
0x400 ERET r/w Exception Return Address
0x401 ERBTA riw Exception Return Branch Target Address
0x402 ERSTATUS r/w Exception Return Status
0x403 ECR r Exception Cause Register
0x404 EFA riw Exception Fault Address
0x40A ICAUSE1 r Level 1 Interrupt Cause Register
0x40B ICAUSE?2 r Level 2 Interrupt Cause Register
0x40C AUX_ IENABLE riw Interrupt Mask Programming
0x40D AUX_ITRIGGER riw Interrupt Sensitivity Programming
0x410 XPU r/w User Mode Extension Enables
0x412 BTA Branch Target Address
0x413 BTA_L1 riw Level 1 Return Branch Target
0x414 BTA L2 riw Level 2 Return Branch Target
0x415 AUX IRQ_PULSE_CANCELfw Interrupt Pulse Cancel
0x416 AUX_IRQ _PENDING r Interrupt Pending Register

lllegal Auxiliary Register Usage

Accessing the extension auxiliary register region in the basecagmvefrthe ARCtangent-A5
processor will return the ID register. If an auxiliary registee that is defined by an extension but
not implemented, then 0O is returned. No exception is generated. Writes taplemented auxiliary
registers are ignored.

If a non existent extension auxiliary register is read in the ARC 60@g$soc the value returned is
the ID register. If an auxiliary register is read that is defined by ansatebut not implemented,

| then 0 is returned. No exception is generated. Writes to non implementedrauadiaters are

ignored.

For the ARC 700 processor a read or a write of a non existent auxiliatgregisraise an
Instruction Errorexception. Unless otherwise stated in each register descriptiowyite-only
auxiliary register is read, dnstruction Errorexception will be raised. Likewise, if a read-only
auxiliary register is written, amstruction Errorexception will be raised.

Particular rules apply tBuild Configuration Registers

ARCompact™ Programmer's Reference 47

Auxiliary Register Set Register Set Details

Status Register (Obsolete), STATUS, 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Z|IN|C|V[E2E]H|R NEXT_PC[25:2]

Figure 38 STATUS Register (Obsolete)

The status register (STATUS) is used for legacy code that may bepiésbto use the ARCompact
ISA. Full status and program counter information is provided in the PC re@&)eand 32-bit status

register GTATUS3)
"Semaphore Register, SEMAPHORE, 0x01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED S[3:0]

Figure 39 Semaphore Register

The SEMAPHORE registeEigure 39%n paget8, is used to control inter-process or ARCompact
based processor to host communication. The basecase ARCompact basedrgrasegdeast 4
semaphore bits (S[3:0]). The remaining bits of the semaphore regyisteeserved for future versions
of ARCompact based processors.

Each semaphore bit is independent of the others and is claimed ssingral-tesprotocol. The
semaphore register can be read at any time by the host or ARCompact basetiproces which
semaphores it currently owns.

To Claim a Semaphore Bit
Write ‘1’ to the semaphore bit.

Read back the semaphore bit. Then:
» If returned value is ‘1’ then semaphore has been obtained.

« If returned value is ‘0’ then the host has the bit.

To Release a Semaphore Bit.
. Write a ‘0’ to the semaphore bit.

Mutual exclusion is provided between the ARCompact based processor aondtthie bther words,

if the host claims a particular semaphore bit, the ARCompact basedsooeéll not be able to

claim that same semaphore bit until the host has released it. Convéithe\ARCompact based
processor claims a particular semaphore bit, the host will not be aldéndltat same semaphore bit
until the ARCompact based processor has released it.

The semaphore bits are cleared to 0 affeeset which is the state where neither the ARCompact
based processor nor the host have claimed any semaphore bits. When claemaglzose bit (i.e.
setting the semaphore bit to a ‘1"), care should be taken not to cleamtiairey semaphore bits.
Keeping a local copy, or reading the semaphore register, and OR-ing that ihlthewit to be
claimed before writing back to the semaphore register could acconipsish t

Example 9 Claiming and Releasing Semaphore

.equ SEMBITO,1 ; constant to indicate semaphore bit 0
.equ SEMBIT1,2 ; constant to indicate semaphore bit 1
.equ SEMBIT2,4 ; constant to indicate semaphore bit 2
.equ SEMBIT3,8 ; constant to indicate semaphore bit 3

LR r2, [SEMAPHORE] ; r2 <= semaphore pattern already attained
OR r2,r2,SEMBIT1 ; r2 <= semaphore pattern attained and wanted
SR r2, [SEMAPHORE] ; attempt to get the semaphore bit

48 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

LR r2, [SEMAPHORE]
AND.F 0,r2,SEMBITL

read back semaphore register

test for the semaphore bit being set
EQ means semaphore not attained

NE means semaphore attained

NOTE Replacing the statement OR r2,r2,SEMBIT1 with BIC r2,r2, SEMBIT1 will release the semaphore,
leaving any previously attained semaphores in their attained state.

Loop Control Registers, LP_START, 0x02, LP_END, Ox0 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LP_START[31:1] R

Figure 40 LP_START Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
LP_END[31:1] R

Figure 41 LP_END Register

The loop start (LP_START) and loop end (LP_END) registers contain thesaddr®r the zero

delay loop mechanisniigure 40on paget9 andFigure 41on paged9 show the format of these

registers. The loop start and loop end registers can be set up with tla Ispgdinstructionl(Pcc)
or can be manipulated with the auxiliary register access instructiBrandSR).

LP_START and LP_END registers follow the auxiliary PC regid®€) format.

In the ARCompact based processor bit O is reserved and should alwaysokeeset When reading,
bit O returns zero. Programming cautions exist when using the loop conistérggSeéPcc
instruction details on padg&t7 andLoop Count Registedetails on pagé?2 for further information.

Identity Register, IDENTITY, 0x04

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
CHIPID[15:0] ARCNUM[7:0] ARCVER[7:0]

Figure 42 Identity Register

Figure 420n paget9 shows the identity register (IDENTITY). It contains the unique chip ifilent
assigned by ARC International (CHIPID[15:0]), the additional idgmiimber (ARCNUM][7:0]) and
the ARCompact based basecase version number (ARCVER[7:0]).

The format for ARCVER][7:0] is
* 0x00 to OxOF = ARCtangent-A4 processor family (Original 32-Bit only processes)cor

0x10 to Ox1F = Reserved for ARCtangent-A5 processor family

0x20 = Reserved for ARC 600 processor family

0x21 = ARC 600 processor family, basecase version 1

0x22 = ARC 600 processor family, basecase version 2, supports additional B@Rameg)i
accesses to non-existent BCRs will return O.

0x23 to Ox2F = Reserved for ARC 600 processor family

0x30 = Reserved for ARC 700 processor family

0x31 = ARC 700 processor family, basecase version 1

ARCompact™ Programmer's Reference 49

Auxiliary Register Set Register Set Details

e 0x32 = ARC 700 processor family, basecase version 2, supports additional B@Ramed)i
accesses to BCR region have updated exception model.

* 0x33 to Ox3F = Reserved for ARC 700 processor family
* 0x40 to OXFF = Reserved

Debug Register, DEBUG, 0x05

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LDISHBH|UB| Reserved |ZZ[RA| Reserved IS Reserved FHISS]

Figure 43 Debug Register
The debug register (DEBUG) contains the following bits:

 load pending bit (LD);

« self halt (SH);

« breakpoint halt (BH);

* sleep mode (Z2):

« reset applied (RA);

» single instruction step (IS);
« single step (SS);and

» force halt (FH).

LD can be read at any time by either the host {$eeHoston page837) or the ARCompact based
processor and indicates that there is a delayed load waiting to coripleteost should wait for this
bit to clear before changing the state of the ARCompact based processor.

SH indicates that the ARCompact based processor has halted itlsaélienvFLAG instruction, this bit
is cleared whenever the H bit in the STATUS register is cleared fieeARCompact based
processor is running or a single step has been executed).

Breakpoint Instruction Halt (BH) bit is set when a breakpoint instndias been detected in the
instruction stream at stage one of the pipeline. A breakpoint halt i©1eatBH is ‘1. This bit is
cleared when the H bit in the status register is cleared, e.ge steglping or restarting the
ARCompact based processor.

The UB bit indicates that BRK is enabled in user mode. This bit is providedwoaatl external
debugger to debug user-mode tasks. Under all other circumstances, tlilisheitset to 0 to ensure
that a user-mode task cannot stop the processor by executing a BRK instruction

ZZ bit indicates that the ARCompact based processor is in "sleep" maddRCompact based
processor enters sleep mode following a SLEEP instruction. ZZ iedledrenever the ARCompact
based processor "wakes" from sleep mode.

I For the ARC 600 processor, the RA bit is set when a reset has ocdinisedit can be read at any
time by either the host (s@ée Hoston page837) or the ARCompact based processor. The host
| reads this bit to determine if the system has reset. The bit cabeonleared by the host by writing to

| the DEBUG register.

I For the ARC 600 core, single instruction stepping is provided through the usd$faheé SS bits.
Single instruction step (IS) is used in combination with SS. When IS and S&lasebby the host
| the ARC 600 core will execute one full instruction.

50 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

For the ARC 700 core single instruction stepping is provided through the ineel8fhit, the SS bit
is ignored. When the IS bit is set by the host the ARC 700 core will executellanstfuction.

The force halt bit (FH) is the correct method of stopping the ARCanlygaed processor externally
by the host. The host setting this bit does not have any side effects wiAddGbepact based
processor is halted already. FH is not a mirror of the STATUS regidér- clearing FH willnot
start the processor. FH always returns 0 when it is read.

Program Counter, PC, 0x06

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NEXT_PC[31:1] R

Figure 44 PC Register

The PC register contains the next instruction address based on thepB@gBam counter. In the
ARCompact based processor bit 0 is ignored and should always be set tolremae¥ding, bit 0
returns zero.

For the ARCompact based processor the PC register returns the trextiosin sequence, or the
target address if theR instruction is in the delay slot of a branch instruction.

If an LR instruction is in the last instruction position of a zero-overhead loopathe read from the
PC register is undefined.

Status Register 32-bit, STATUS32, 0x0A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED L|Z[N|C|V|U DEAEA2ALE2ELH

Figure 45 STATUS32 Register

The status register contains the status flags. The statusré§isATUS32), shown ifigure 450n
page51, contains the following status flags: zero (Z), negative (N), ¢&)wand overflow (V); the
interrupt mask bits (E[2:1]); and the halt bit (H).

The status register is updated by the processor during program floMLARinstruction can be
used to set some of the bits in the status register directly, for exangagethd.evel 1 and Level 2
Interrupt Enables

The status register can only be read by the processor. However, theegjisties can be read and
written by thehost

When the ARC 700 processor reads the status register in user mode, only the @hdNY®dits are
valid. In kernel mode all bits of the register are valid when readingahessegister.

The Al and A2 fields indicate that an interrupt service routinetigea@d1 is set on entry to a level 1
interrupt, A2 is set on entry to a level 2 interrupt. Only one bit, A1 or A2 eiss®t at any one time
in STATUS32. For example, when a level 2 interrupt interrupts a levelitseoutine, A2 is set and
Al is cleared in STATUS32, and the level 2 interrupt status linkter@TATUS32_L2will have
therefore have A2 cleared and Al set. When the return from interrupt tistriRTIE, is executed,
Al and A2 are loaded with values from the selected interrupt statusdiskereSTATUS32 L 1for

a level 1 interrupt o8TATUS32 | 2for a level 2 interrupt).

The AE bit is set on entry to an exception, and indicates that an excepdictive and that the
Exception Return Address regist&RET) is valid. When the return from interrupt/exception
instruction,RTIE, is executed AE is loaded with the value in BHRSTATUSregister.

ARCompact™ Programmer's Reference 51

Auxiliary Register Set Register Set Details

The DE bit is set in order to indicate that the instruction pointed to B2 i¥he delay slot

instruction of a branch. When an instruction completes and this bit is seisttiuetion is the delay

slot instruction of a branch, irrespective of whether branch or jutajgeés. As a result the next
instruction required is from the target of the branch. Hence the next €isdbaded from the

Branch Target Address regist&TA). On an exception or interrupt return, the STATUS32 register is
reloaded by th&TIE instruction. If the STATUS32[DE] bit is set true as a result of thEERT
operation, the Branch Target Address regiddiX) is simultaneously restored from the Exception
Branch Target Address regist&fRBTA). The DE bit is only readable by an external debugger or
from kernel mode. Using the LR instruction in user mode will return 0 in this bi

U indicates User mode. User mode restricts access to machine statd.rif@de, when U is O,
allows an operating system full access. Kernel mode is enteRdsainterrupt or exception. U is
reset to its previous value on interrupt or exception exit when statssaflageloaded from link
register.

L indicates whether the zero-overhead loop mechanism is disablecdetltasls indicating loop is
disabled on an interrupt or exception. L is reset to its previous véilee status flags are reloaded
from the link register. L is also cleared when a loop instructi®tg) is executed.

The ARCtangent-A5 and ARC 600 processors do not use the Al, A2, AE, DE, U or L fielsls. The
fields will return O when read with the LR instruction.

All fields, except the H bit, are set to 0 when the proces$®eset The H bit is set dependent on the
configuration of the processor run stateRaset

CAUTION There must be at least one instruction between a FLAG instruction and a "J.F<.D> [ILINK1]" or
"J.F<.D> [ILINK2]" instruction.

FLAG 0x100
NOP
J.F [i1ink1]

Branch Target Address, BTA, 0x412

The BTA register contains the target address of any branch or jumpalliegiivthe BTA register is
dependent on whether the branch or jump is taken. The BTA register holds #saddre used
after the delay slot has committed in all circumstances.

If the branch or jump is taken the BTA register will contain the taaddress of the branch or jump.
If the branch or jump is not taken the BTA register will contain the addfeéks instruction that is
due to execute immediately after the instruction in the delay slot.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Address[31:1] T

Figure 46 BTA, Branch Target Address

In the ARCompact based processor, the T field (bit 0) when set iraligh&ther the address field
contains the target oftakenbranch or jump. When the T field is clear, the address field contains
address of the next instruction due to execute if the branch/jump is notezkecut

Since interrupts are permitted between a branch/jump and an execuseslatdlastruction (an
exception can also occur on the delay slot instruction), special branehaddyess registers are used
for interrupt and exception handler returns.

When returning from exceptions or interrupts, if BIBATUS3ZDE] bit will be set true as a result of
the RTIE operation, the value in the BTA register will have been restiana the appropriate
Interrupt or Exception Return BTA regist&RBTA, BTA_L1 or BTA L2), allowing the program to
resume execution at the correct point.

52 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

When returning from an interrupt, the Branch Target Address redsst#) (s loaded from the
appropriate high- or low-level Interrupt Return Branch Target Addresstee@TA L1 or
BTA L2).

When returning from an exception, the Branch Target Address registaj (8loaded from the
Exception Return Branch Target AddreERBTA) register.

NOTE Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Interrupt Status Link Registers, STATUS32 L1, 0x0B,
STATUS32_L2, 0x0C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED L|Z[N|C|V|U|DEAEA2IALEZ[ELR

Figure 47 STATUS32_L1, STATUS32_L2 Registers

A level 1 or level 2 interrupt will save the current status reg&t&TUS32in auxiliary register
STATUS32_L1 or STATUS32_L2.

If J.F<.D> [ILINK1] or J.F<.D> [ILINK2] instructions are executed touet from level 1 or level 2
interrupts then the current status register STATUS32 will be restanadsiuxiliary register
STATUS32_L1 or STATUS32_L2 accordingly.

In the ARCompact based processor bit O is ignored and should always be set tcheeroeauding,
bit O returns zero.

CAUTION For the ARCtangent-A5 and ARC 600 processor there must be at least one instruction between
writing to STATUS32_L1 or STATUS32_L2 using an SR instruction and a "J.F<.D> [ILINK1]" or
"J.F<.D> [ILINK2]" instruction.

SR ro, [STATUS32_L1]
NOP
J.F [iTink1]

Interrupt Branch Target Link Registers, BTA L1, 0x4 13, BTA L2,
0x414

When returning from an interrupt, the Branch Target Address reddstéy)(is loaded from the

appropriate high- or low-level Interrupt Return Branch Target Addresstee¢BTA L1 or

BTA_L2).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Address[31:1] T

Figure 48 BTA_L1 and BTA_L2, Interrupt Return Branc h Target Registers

NOTE Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L?2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Interrupt Vector Base Register, INT_VECTOR_BASE, Ox 25

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
INT_VECTOR_BASE[31:10] olo|ofo|o|o|o|ofo]o

ARCompact™ Programmer's Reference 53

Auxiliary Register Set Register Set Details

Figure 49 INT_VECTOR_BASE Register

The Interrupt Vector Base register (INT_VECTOR_BASE) containb#éise address of the interrupt
vectors. OrResetthe interrupt vector base address is loaded with a value from thetgystem,
seelnterrupt Vector Base Address Configuration, VECBASE _AC_BUtirbpage30. This value

can be read from INT_VECTOR_BASE at any time. During program executionténeupt vector
base can be changed by writing to INT_VECTOR_BASE. The interrupt ve&eradaress can be
set to any 1Kbyte-aligned address. The bottom 10 bits are ignored foramdtesdll return O on
reads.

Interrupt Level Status Register, AUX_IRQ_LV12, 0x43

After an interrupt has occurred, the level of an interrupt is inetichy the interrupt level status
register (AUX_IRQ_LV12) auxiliary register. Two sticky bits are pded to indicate when a level 1
or level 2 interrupt has been taken.

I The interrupt level status register is complementary to the Al araité\of theSTATUS32register.

The sticky bits will stay set until reset by software. Writingdthie bit position resets the bits in the
interrupt status register, writing a '0' has no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved L2|L1

Figure 50 AUX_IRQ_LV12 Interrupt Level Status Regis ter

The level 1 interrupt status bit (L1) is set in hardware if a l&veterrupt is taken. The L1 bit is
cleared in software by writing a '1'to L1. The level 2 interrupt statu®bs set in hardware if a
level 2 interrupt or exception is taken. The L2 bit is cleared in softiwaveriting a '1' to L2.

Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200
The priority level programming register (AUX_IRQ_LEV) contains theds interrupts and their
priority set. Each interrupt has a corresponding bit position.

A value of '0" in the interrupts bit position represents that the intdsalipngs to priority level 1 set
of interrupts and a value of '1' means that the interrupt belongs tibypeoel 2 set of interrupts.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt priority level for IRQ [31:16] Interrupt priority level for IRQ [15:3] [Reservd

Figure 51 AUX_IRQ_LEV Interrupt Level Programming R egister
Bits 0 to 2 are reserved and should be written as 0. Reading from these hitsGetur

Bits 16 to 31 are only used when the extension interrupts IRQ16-IRQ31 arecknfthie extension
interrupts are not enabled then writing to bits 16 to 31 has no effect and re&uling @e

After Resethe ARCtangent-A5 processor and ARC 600 processor set all interrupes tbeflault
priority state as shown in the interrupt vector tabledle 23andTable 24

After Resetthe ARC 700 processor sets all interrupts to their default pristéate as shown in the
interrupt vector tablelable 22

In order to update interrupt priority levels, it is recommended that the ARIX_ILEV register is first
read, appropriate bits are updated, and then finally re-written by the ABcobased code or by the
host (sed he Hoston page337).

54 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

Software Interrupt Trigger, AUX_IRQ_HINT, 0x201

In addition to theSWI/TRAPOinstruction, the interrupt system allows software to generatec#ispe
interrupt by writing to the software interrupt trigger register (AURQ_HINT). Level 1 and level 2
interrupts (IRQ3 to IRQ31) can be generated through the AUX_IRQ_HINT redikter.
AUX_IRQ_HINT register can be written through ARCompact based code ortfr@imost (se€he
Hoston page337).

The software triggered interrupt mechanism can be used even if there associated interrupts
connected to the ARCompact based processor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Interrupt no.

Figure 52 AUX_IRQ_HINT Software Triggered Interrupt

Writing the chosen interrupt value to the AUX_IRQ_HINT register geesra software triggered
interrupt. For example a value of 0x09 will trigger an IRQ9 interrupt.

Writing 0x00 to the AUX_IRQ_HINT register clears a software trigganterrupt.

Writing a value greater than Ox1F will clear any software trighyarerrupt. Writing values 0x0 to
0x2 have no effect

A read from the AUX_IRQ_HINT register will return the value of therent software triggered
interrupt.

A new interrupt should not be generated using the software triggeradiptgystem until any
outstanding interrupts have been serviced. The AUX_IRQ_HINT regfstetdsbe read and checked
as 0x0 before a new value is written.

If the extension interrupts are not enabled then values outside the range 3ltel#amihe
AUX_IRQ_HINT register. If extension interrupts are enabled then the rarige of values is
extended from 3 to 31.

Since both the host and the ARCompact based code can use the AUX_IRQ_HH&r rag
semaphore system needs to be used to control ownership.

The SEMAPHORETregister which is available in the ARCtangent-A5 and ARC 600 processbeca
used for this purpose.

In the case of pulse sensitive interrupts, no state is kept to indicateyenerated the interrupt. It is
best practice not to have multiple interrupt sources for pulsdisensterrupts. For example if an
interrupt was generated from both a pulse sensitive interrupt and a sdfiggeeed interrupt, then
the interrupt service routine would not be able to determine that the pulde/esengrrupt had also
occurred.

It is recommended that the associated interrupt priority leveasked before generating a pulse
sensitive interrupts using the AUX_IRQ_HINT register.

For the ARC 700 processor, tA&JX_IENABLE register can also be used to mask interrupts
generated with AUX_IRQ_HINT.

Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSE2, 0x40B

When the Al or A2 bit in thETATUS3?register is true, the associated interrupt cause register
(ICAUSEL1 or ICAUSE2) will contain the number of the interrupt being handletk that dMemory
Errorinterrupt will cause ICAUSE2 to be set to Ox1.

ARCompact™ Programmer's Reference 55

Auxiliary Register Set Register Set Details

Writing to the Interrupt Cause registers will overwrite any valuehha been set by the interrupt
system.

The interrupt cause registers, ICAUSE1 and ICAUSEZ2, are not affetten returning from an
interrupt, and when read will return the value of the last interruphtake

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Reserved ICAUSE[4:0]

Figure 53 ICAUSE1 and ICAUSE2 Interrupt Cause Regis ters

Interrupt Mask Programming Register, AUX_IENABLE, 0 x40C

The ARC 700 processor uses the AUX_IENABLE register to enable indivicagking of each
incoming interrupt. Writing a value of '1' in the interrupts bit positiorblsathat particular interrupt.
To disable all interrupts, by turning off the interrupt unit, usé=Ib&G instruction to reset thieevel

1 and Level 2 Interrupt Enables

The AUX_IENABLE register can also be used to mask interrupts gedendih the
AUX_IRQ_HINT register.

Bits O to 2 are reserved and should be written as Ob111. Reading from thesarii$sOtet11.
Enable bits for non-present interrupts will return 0, and writes to thiesseibibe ignored.

If the full set of interrupts are available the AUX_IENABLE regiss set to OxFFFFFFFF when the
processor iRReset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Enables for IRQ [31:16] Enables for IRQ [15:3] Reservd

Figure 54 AUX_IENABLE, Interrupt Mask Programming R egister

Interrupt Sensitivity Programming Register, AUX_ITR IGGER, 0x40D

The ARC 700 processor uses the AUX_ITRIGGER register to allow an opesgsitegn to select
whether each interrupt will be level or pulse sensitive.

Bits 0 to 2 are reserved and should be written as 0. Reading from these hitsGetur

A value of '0" in the interrupts bit position represents that the intaglgvel sensitive and a value of
'"1' means that the interrupt is pulse sensitive.
This register is set to 0x0 when the processBeisetwhich sets all interrupts to be level sensitive.

31 30 29 28 27 26 25 24 23 22 21 20 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Trigger Type for IRQ [31:16] Trigger Type for IRQ [15:3] Reservd

Figure 55 AUX_ITRIGGER, Interrupt Sensitivity Progr amming Register

Interrupt Pulse Cancel Register, AUX_IRQ_PULSE_CANC EL, 0x415

A write-only 32-bit register, AUX_IRQ_PULSE_CANCEL, is provided to allihne operating
system to clear a pulse-triggered interrupt after it has beeived¢ and before it is serviced. Writing
'1' to the relevant bit will clear the interrupt if it is set to pidsasitivity. If the interrupt is of type
level sensitivity, then writing to its relevant bit position will have nedtf

Bits 0 and 2 are reserved and should be written as 0.

Bit 1 is set when &emory Errorinterrupt occurs, it is cleared by writing to it.

56 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Pulse Cancel for IRQ [31:16] Pulse Cancel for IRQ [15:3] RIM[R

Figure 56 AUX_IRQ_PULSE_CANCEL Interrupt Pulse Canc el Register

Interrupt Pending Register, AUX_IRQ_PENDING, 0x416

The read-only Interrupt Pending register, AUX_IRQ_PENDING, is provideddw #he operating
system to determine which interrupts are currently asserted andchgvgaitvice.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Interrupt Pending IRQ [31:16] Interrupt Pending IRQ [15:3] Reservd

Figure 57 AUX_IRQ_PENDING, Interrupt Pending Regist er
Reading from bits 0 to 2 bits returns O.

Exception Return Address, ERET, 0x400

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Address[31:1] R

Figure 58 ERET, Exception Return Address

When returning from an exception the program cou€) (s loaded from the Exception Return
Address (ERET) register.

When a fault is detected on an instruction, the exception return addristsr ld€RET) is loaded with
the PC value used to fetch the faulting instruction.

If the exception is coerced usingRAP_Sor TRAPQinstruction, the exception return register
(ERET) is loaded with the address of the next instruction to be fetchethaffERAP instruction.
This value is the architectural PC expected after the TRAP etespt hence pending branches and
loops are taken into account.

In the ARCompact based processor bit O is ignored and should always be set tchegroe&ding,
bit O returns zero.

Exception Return Branch Target Address, ERBTA, 0x40 1

When returning from an exception, the Branch Target Address redd3ta) (s loaded from the

Exception Return Branch Target Address (ERBTA) register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Address[31:1] T

Figure 59 ERBTA, Exception Return Branch Target Add ress

NOTE Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L?2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Exception Return Status, ERSTATUS, 0x402

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED L|Z[N|C|V|U|DEAEA2IALEZ[ELR

Figure 60 ERSTATUS, Exception Return Status Registe r
An exception will save the current status regiStEEATUS32in auxiliary register ERSTATUS.

ARCompact™ Programmer's Reference 57

Auxiliary Register Set Register Set Details

When theRTIE instruction is executed to return from the exception handler then tlencsratus
register STATUS32 will be restored from auxiliary register ERSTATUS

In the ARCompact based processor bit O is ignored and should always be set tchegroe&ding,
bit O returns zero.

Exception Cause Register, ECR, 0x403

The Exception Cause register (ECR) is provided to allow an exception haockss to information
about the source of the exception condition. The value in the Exception Casser isghade up as
shown inFigure 61on pageb8.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Vector Number Cause Code Parameter

Figure 61 ECR, Exception Cause Register

The Vector Number is an eight-bit number, directly corresponding to the veatbenand vector
name being used. S&able 250n page32 for a list of vector numbers.

Since multiple exceptions share each vector, the eight bit CausesQauialito identify the exact
cause of an exception. Séable 26on page87 for a full list of exception cause codes.

The eight bit Parameter is used to pass additional information aboutegtierd¢hat cannot be
contained in the previous fields. SEable 26on page87 for a full list of exception parameters.

Writing to the Exception Cause register will overwrite any value thebban set by the exception
system.

Interrupts do not set the exception cause register. Receipt of intexetgthe appropriate ICAUSE
register to the number of the last taken interrupt.

Exception Fault Address, EFA, 0x404

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Address[31:0]

Figure 62 EFA, Exception Fault Address

When an exception occurs, the exception fault address register iEBAjled with the address
associated with the fault. For memory data operations, this is thea&tbetoperation. For other
faults, the EFA register will be loaded with the PC value used to tie¢ctaulting instruction.

User Mode Extension Enable Register, XPU, 0x410

The 32-bit register, XPU, is provided to control access to extensiondtisirs and state. The enable
bits of the register is used to control groups of extension functions rastmeindividual instructions
or registers. The register allows:

» Disabling of extension functions - for example to permit software eronlafiextensions to be
tested

» Operating systems to grant user-mode access to extension functiotest@nd s
* Intelligent context switching of extension state (lazy context &yvitc

» Context switching of extension hardware in system containing reconfiguogjic
» Extension enables could be used as part of a power reduction scheme

A group of extensions would be a related set of instructions and registezample

58 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

» DSP extensions group

» Cryptography extensions group

¢ etc

All extension functions are assigned to an extensions group.

When an attempt is made to access an extension function (whether instonciate), the
permission bit for the extension group is checked. If the permission ikedntid® access is
successful. If the permission is disabled, the CPU will genetativitege Violation

The exception cause regist&dR) is loaded with an appropriate code in order that an OS can:
» Distinguish between an access to a disabled extension and a nontexitgesion.
* For a disabled-extension, determine which extension group was accessed

With this functionality, various scenarios are possible for OS cooftttensions.

User Mode Extension Enable Register
OnReset the user mode extensions permission register is set to 0x00000000 in ordable ali
extension functions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

u31|u30ju29(u28ju27iu26lu25lu24ju23ju22u21ju20julul8ul7julbulsSuldiuldul2ulljulofu9|u8|u7 |u6|us|ud|u3|u2|ul|u0

Figure 63 XPU, User Mode Extension Permission Regis ter

Groups u0 to ul5 are reserved for extensions provided by ARC Internationghs@ib to u3l are
available for customer use.

Processor Timers Auxiliary Registers

The processor timers are two independent 32-bit timers. Timer 0 andlLtemelidentical in
operation, their only difference being that they are connected to differemtipite

The processor timers are connected to a system clock signepénates even when the ARCompact
based processor is in sleep mode. The timers can be used to generafs Bitgrals that will wake
the processor from sleep mode.

During ARC 700 debug access, for example when the debug system is readiagyawegisters or
memory, the processor timers are paused so that debug operations areided iimcthe cycle count.

The processor timers automatically reset and restart theatageafter reaching the limit value. The
processor timers can be programmed to count only the clock cycles wheadbgspr is not halted.
The processor timers can also be programmed to generate an intetougeerate a systeReset
upon reaching the limit value.

Programming
In order to program a timex; the following sequence should be used:

* Write O to the CONTROAR register to disable interrupts
* Write the limit value to the timer LIMIifi register

» Set up the control flags according to the desired mode of operation by updatingethe
CONTROLn register

» Write the count value to the timer COUNTegister.

ARCompact™ Programmer's Reference 59

Auxiliary Register Set Register Set Details

Timer n starts counting from the COUMNalue upwards until it reaches the LIMiValue after
which a level type interrupt, if enabled, is generated. Tmiaen automatically restarts to count
from O upward until it reaches the limit value again.

Limit value OxFF OxFF OxFF
Count value .. OxFE OxFF 0x00
Interrupt

Figure 64 Interrupt Generated after Timer Reaches L imit Value

It is up to the software to clear the timer interrupts. Once an intésrgpnerated, writing to
CONTROLn register clears it. This should be performed during the interruptsenditine.

In Watchdog mode, see The reset signal is activated two cyclethaftenit condition has been
reached.

Timer O Count Register, COUNTO, 0x21

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Count Value

Figure 65 Timer O Count Value Register

The timer count value, COUNTO, is a read/write register. Writing sorgister sets the initial count
value for the timer, and restarts the timer. Subsequently, the reggistbe read to reflect the timer O
count progress.

The COUNTO register can be updated when the timer is running in whicthedséernal count
register is updated with the new count value and the timer startsrapuptfrom the updated value.

Timer O Control Register, CONTROLO, 0x22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Reserved IP|WINH[IE

Figure 66 Timer O Control Register
The timer control register (CONTROLDO) is used to update the contdésof the timer.

Writing to CONTROLO will de-assert the timer interrupt, but does gt #te timer from counting.
The timer continues counting and will independently start the next @ermaticounting, setting
COUNTO to 0, when LIMITO equals COUNTO.

The Interrupt Enable flag (IE) enables the generation of an interrupthadtémer has reached its
limit condition. If this bit is not set then no interrupt will be generatée. [E flag is set to O when
the processor iReset

The Not Halted mode flag (NH) causes cycles to be counted only when thesprasesnning (not
halted). When set to 0 the timer will count every clock cycle. Wheto dethe timer will only count
when the processor is running. The NH flag is set to 0 when the proceRsset

60 ARCompact™ Programmer's Reference

Register Set Details Aucxiliary Register Set

The Watchdog mode flag (W) enables the generation of a system watchetagjgeeal after the timer
has reached its limit condition. If this bit is not set then no watchdeg segnal will be generated.
The watchdog reset signal is activated two cycles after thiecamdition has been reached. The
watchdog reset signal can be used to cause a system or préteEsstaith appropriate custom logic.

If both the IE and W bits are set then only the watchdog reset is adigiaice the ARCompact
based processor will be reset and the interrupt will be lost.

If both the IE and W bits are clear then the timer will automaticallyt eegkrestart its operation after
reaching the limit value.

For the ARC 600 processor, the Interrupt Pending flag (IP) is a read onthdlagflects the value
of the timer interrupt line. A 0 indicates the value of the intedingtis low, a 1 indicates the value of
the interrupt line is high.

All of the control flags should be programmed in one write access to tNE@ROLO register.

Timer O Limit Register, LIMITO, 0x23

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Timer Limit Value

Figure 67 Timer O Limit Value Register

The timer limit value, LIMITO, is a read/write register. The pesgmer should write the limit value
into this register. The limit value is the value after which agrigpt or reset is to be generated. The
timer limit register is set to OXOOFFFFFF when the process®esstfor backward compatibility to
previous processor variants.

Timer 1 Count Register, COUNT1, 0x100

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Count Value

Figure 68 Timer 1 Count Value Register
SeeCOUNTOregister on pagéo0 for field information.

Timer 1 Control Register, CONTROL1, 0x101

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Reserved IP|WINH[IE

Figure 69 Timer 1 Control Register
SeeCONTROLOregister on pago for field information.

Timer 1 Limit Register, LIMIT1, 0x102

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Timer Limit Value

Figure 70 Timer 1 Limit Value Register
SeeLIMITO register on pagél for field information.

ARCompact™ Programmer's Reference 61

Extension Auxiliary Registers Register Set Details

Extension Auxiliary Registers

The auxiliary register set is extendible up to the fiiir@gister space. If an extension auxiliary
register is accessed that is not implemented then certain ocosdapply. Selegal Auxiliary

Register Usagen pagel?.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Optional Extensions Auxiliary Registers

The following table summarizes the auxiliary registers that akluséhe optional extensions.

Table 7 Optional Extension Auxiliary Registers

Number Name riw Description

0x12 MULHI w High part of multiply to restore multiply state

Multiply Restore Register, MULHI, 0x12

The extension auxiliary register MULHI is used to restore the multgdylt register if the multiply
has been used, for example, by an interrupt service routine.

NOTE No interlock is provided to stall writes when a multiply is taking place. For this reason, the user must
ensure that the multiply has completed before writing the MULHI register. Reading one of the
scoreboarded multiplier result registers can easily do this.

The lower part of the multiply result register can be restored by iyirigpthe desired value by 1.

Example 10 Reading Multiply Result Registers

MOV rl,mlo ;put Tower result in rl
MOV r2,mhi ;put upper result in r2

Example 11 Restoring the Multiply Results
MULUG4 rl,1 ;restore lower result

MoV O,mlo j;wait until multiply complete. N.B causes
;processor to stall until multiplication is
;finished

SR r2,[mulhi] ;restore upper result

Extended Arithmetic Auxiliary Registers

The following table summarizes the auxiliary registers that aséhe extended arithmetic
library.

Table 8 Extended Arithmetic Auxiliary Registers

Number Name riw Description

0x41 AUX_MACMODE riw Extended Arithmetic status and mode register

MAC Status and Mode Register, AUX_MACMODE, 0x41

To support the extended arithmetic library, the AUX_MACMODE registerovided. There are two
channels in the AUX_MACMODE registers which correspond to channel 1hdgkal(6-bit) and
channel 2 data (low 16-bit) respectively in the packed 16-bit data foreealSDual 16-bit Data

on page30. Both channel 1 and channel 2 flags will be updated when any dual word instruction

62 ARCompact™ Programmer's Reference

Register Set Details Build Configuration Registers

completes. When a non dual word extended arithmetic instruction saturateathaation flags S1
and S2 will be set.

The saturation flags, S1 and S2 are sticky and both are cleared by wrihiegdX_MACMODE
register and setting the CS bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Reserved Reserved |S1| Reserved [S2|R|R|CS|R

Figure 71 AUX_MACMODE Register

Refer to sectioftxtended Arithmetic Condition Codes pagel70for discussion of the condition
code tests.

Build Configuration Registers

A reserved set of auxiliary registers, called Build Configuratioridierg (BCRs), can be used by
embedded software or host debug software to detect the configuration of tihenpRe based
system. the build configuration registers contain the version of eachierteaswell as specific
configuration information.

Some optional components in an ARCompact based based processor system imiayiaidly
version information registers to indicate the presence of a given contp®heseversion registers
are not necessarily part of the Build Configuration Registers sebr@ptomponent version
registers may be provided as part of the extension auxiliary regggtar a component.

Generally each register has two fields, the least significaris 8dmtain the version number of the
module, the remaining bits contain configuration information. Any bits witlerreégister that are not
required will return zero. The version number field will be set to zere ifrthdule is not
implemented in the design, and can therefore be used to detect the preseao@wiponent within
the ARCompact based system.

If a non existent extension build configuration register is read in the &R@rocessor, the value
returned is 0. No exception is generated. Writes to build configuratiomersgige ignored.

For the ARC 700 processor a read of a non existent build configuration registenél mode will
return 0. No exception is generated. In user mode reads from build configuratitersegik raise a
Privilege Violationexception. In kernel or user mode writes to build configuration regjiati# raise
anlnstruction Errorexception.

The following table summarizes the build configuration registersdorponents that are described in
this manual.

Table 9 Build Configuration Registers

Number Name riw Description
0x60 BCR_VER Build Configuration Registers Version

| 0x63 | BTA_LINK_BUILD | r | Build configuration for: BTA Registers
0x65 EA BUILD r Build configuration for: Extended Arithmetic
0x68 VECBASE_AC BUILD r Build configuration for: Interrupts
Ox6E RF_BUILD r Build configuration for: Core Registers
0x75 TIMER_BUILD r Build configuration for: Processor Timers
0x7B MULTIPLY BUILD r Build configuration for: Multiply

ARCompact™ Programmer's Reference 63

Build Configuration Registers Register Set Details

Number Name riw Description

0x7C SWAP_BUILD r Build configuration for: Swap
0x7D NORM_BUILD r Build configuration for: Normalize
Ox7E MINMAX_BUILD r Build configuration for: Min/Max
Ox7F BARREL BUILD r Build configuration for: barrel shift

Build Configuration Registers Version, BCR_VER, 0x6 0

The BCR version register, BCR_VER, specifies which build configuratgistex implementation is
present.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved Version
Figure 72 BCR_VER Register
Table 10 BCR_VER field descriptions
Field Description
Version Version of Build Configuration Registers

0x00 = Reserved
0x01 = BCR Region at 0x60-0x7F only
0x02 = BCR Region at 0x60-0x7F and 0xCO-0xFF

BTA Configuration Register, BTA LINK _BUILD, 0x63
The BTA configuration register, BTA_LINK_BUILD, specifies whetliee BTA registers are
present.

Certain configurations may not support the BTA, ERBTA, BTA L1 and BTA_L2 egistVhen
these registers are not supported, interrupts and exceptions are heitil dife instruction in the
delay slot commits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved P

Figure 73 BTA_LINK_BUILD Configuration Register
The field descriptions are shown in the following table.

Table 11 BTA_LINK_BUILD field descriptions

Field Description

P Presence of BTA Registers
0x0 = BTA registers are absent
0x1 = BTA registers are present

Extended Arithmetic Configuration Register, EA_ BUIL D, 0x65

The extended arithmetic configuration register, EA_BUILD, contaiesé¢sion of the extended
arithmetic instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 74 EA_BUILD Configuration Register

64 ARCompact™ Programmer's Reference

Register Set Details Build Configuration Registers

Table 12 EA_BUILD field descriptions

Field Description
Version Version of Extended Arithmetic

0x00 = Reserved
0x01 = Reserved
0x02 = Current Version

Interrupt Vector Base Address Configuration,

VECBASE_AC_BUILD, 0x68

The default base address of the interrupt vector table is fixed wheticalpa ARCompact based
system is created. QResetthe programmable vector base regidtél, VECTOR_ BASEis set from
the constant value in VECBASE_AC_BUILD .

VECBASE_AC_BUILD is a read only register. Bits 1 to 0 indicate the numbieterfupts provided
with the interrupt unit.

Bits 10 to 31 show the interrupt vector base address based on the configurdi@®mtgrrupt

system.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
ADDR[31:10] Version ELEQ

Figure 75 VECBASE_AC_BUILD Configuration Register

Table 13 VECBASE_AC_BUILD field descriptions

Field Description
Version Version of Interrupt Unit
0x00 = ARCtangent-A5, ARC 600 Interrupt Unit
0x01 = ARC 700 Interrupt Unit
E[1:0] Number of interrupts in system
0x0 = 16 interrupts
0x1 = 32 interrupts
0x2 = 8 interrupts (only available in Version 0x01 Interrupt Unit).
0x3 = Reserved
ADDRJ[31:10] Interrupt Vector Base Address

: Core Register Set Configuration Register, RF_BUILD, Ox6E

I The RF_BUILD register is provided to determine whether the base gpstereset is configured as a
I 16 or 31 entry set, and whether the register set is cleared on ResBI-TBUILD register also
I indicates whether the register set is made up from a 3 or 4 porerdigst

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved R|E|P Version

1
I Figure 76 RF_BUILD Configuration Register
| The field descriptions are shown in the following table.

I Table 14 RF_BUILD field descriptions

g Field 3 Description

i Version i Version of Core Register Set
I

- 0x01 = Current Version

ARCompact™ Programmer's Reference 65

Build Configuration Registers Register Set Details

o
a

] Description

1 Number of Ports
0x0 = 3 port register file
0x1 = 4 port register file
Number of Entries
I 0x0 = 32 entry register file
| Ox1 = 16 entry register file
| Reset State
] 0x0 = Not cleared on reset
| Ox1 = Cleared on reset

m ol

Py

Processor Timers Configuration Register, TIMER_BUIL D, 0x75

The TIMER_BUILD configuration register indicates the presencheaiPtocessor Timers Auxiliary
Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved T1(TO Version

Figure 77 TIMER_BUILD Configuration Register

Table 15 TIMER_BUILD field descriptions

Field Description

Version Current version —

0x01 = Version 1
0x02 = ARCtangent-A5 and ARC 700 Processor Timers
0x03 = ARC 600 R3 Processor Timers, with interrupt pending bits

TO Timer O Present

0x0 = no timer O
0x1 = timer O present

T1 Timer 1 Present

0x0 = no timer 1
O0x1 = timer 1 present

Multiply Configuration Register, MULTIPLY_BUILD, Ox 7B

The multiply configuration register, MULTIPLY_BUILD, contains the sien of the multiply
instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Reserved Version

Figure 78 MULTIPLY_BUILD Configuration Register

Table 16 MULTIPLY_BUILD field descriptions

Field Description

Version Version of Multiply
0x01 = Multiply 32x32 with special result registers
0x02 = Multiply 32x32 with any result register

66 ARCompact™ Programmer's Reference

Register Set Details Build Configuration Registers

Swap Configuration Register, SWAP_BUILD, 0x7C
The multiply configuration register, SWAP_BUILD, contains the versiah@SWAP instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 79 SWAP_BUILD Configuration Register

Table 17 SWAP_BUILD field descriptions

Field Description

Version Version of Swap
0x01 = Current Version

Normalize Configuration Register, NORM_BUILD, 0x7D

The multiply configuration register, NORM_BUILD, contains the versiothefnormalize
instructionsNORM andNORMW.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 80 NORM_BUILD Configuration Register

Table 18 NORM_BUILD field descriptions

Field Description

Version Version of Swap
0x01 = Reserved
0x02 = Current Version

Min/Max Configuration Register, MINMAX_ BUILD, Ox7E

The MIN/MAX configuration register, MINMAX_BUILD, contains the versiohtbe MIN and
MAX instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 81 MINMAX_BUILD Configuration Register

Table 19 MINMAX_BUILD field descriptions

Field Description

Version Version of Min/Max
0x01 = Reserved
0x02 = Current Version

Barrel Shifter Configuration Register, BARREL _BUILD , Ox7F

The multiply configuration register, BARREL_BUILD, contains the \anf theBarrel
Shift/Rotateinstructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 82 BARREL_BUILD Configuration Register

Table 20 BARREL_BUILD field descriptions

ARCompact™ Programmer's Reference 67

Build Configuration Registers

Register Set Details

Field Description

Version Version of Barrel Shifter
0x01 = Reserved
0x02 = Current Version

68

ARCompact™ Programmer's Reference

Register Set Details Build Configuration Registers

This page is intentionally left blank.

ARCompact™ Programmer's Reference 69

Chapter 4 — Interrupts and Exceptions

Introduction

The ARCompact based processor has interrupts and exceptions. Exceptionstaomeysdo an
instruction. Most exceptions can occur at the same place each time api®grecuted (apart from
aMemory Errorexception that can occur asynchronously), whereas interrupts are typically
asynchronous. There are additionally two sets of maskable intedaygis2 (mid priority) and level
1 (low priority). The exception set always has the highest priority oeantérrupts.

In the ARC 700 processor,. interrupts and exceptions cause the processoritacetiterKernel
operating mode. Depending upon the processor operating mode when an exception ortakesupt
place, the processor can either enter Kernel or User mode upon returning fraerraipt or an
exception.

Privileges and Operating Modes

The operating mode, on the ARC 700 processor, is used to determine whether a tasiouaya
privileged instruction. The operating mode is also used by the memory mamaggstem to
determine whether a specific location in memory may be accessed.

Two operating modes are provided:
» Kernel mode
» User mode

Various bits in th&&TATUS32register are provided in order that kernel mode tasks can determine in
which mode they are running, to enable the processor to correctly reanvalfiegitimate
interrupt/exception situations, and to enable the complete procesedodia saved and restored.

Kernel Mode

The ARC 700 kernel mode is the highest level of privilege and is the defadé fromReset
Access to all machine state, including privileged instructions andegid registers, is provided in
Kernel mode.

User Mode

The ARC 700 user mode is the lowest level of privilege and provides lintitedsato machine state.
Any attempt to access privileged machine state, for example pedili@structions or privileged
registers, causes an exception.

Privilege Violations

The section describes the privileges available to ARC 700 tasks rinniegr mode and kernel
mode. The following table gives an overview of the differences in egeibetween the two modes.

ARCompact™ Programmer's Reference 71

Introduction

Interrupts and Exceptions

Table 21 Overview of ARC 700 Privileges

Function

User

Kernel

Access to General Purpose Registers

Memory management / TLB controls
Cache management
Access to memory with ASID = User PID

All except ILINK1/2 — no
access from user mode

By flag bits in Page
Descriptor (PD)
If global bit set

[]

[]

By flag bits in Page
Descriptor (PD)

If global bit set

Access to memory with ASIB User PID
Unprivileged instructions ° °
Privileged instructions °

Access to Basecase Auxiliary Registers Only LP_START, °
LP_END, PC32 and
STATUS32[ZNCV]

Build Configuration Registers
Timer access

TRAP_S n, TRAPO °
Interrupt Enable, level selection
Extension instructions and state

permissions in XPU

Privileged Instructions
All ARC 700 instructions are unprivileged unless specifically definediadeged. Privileged
instructions are:

* SLEEP

 RITIE

 J.F[ILINKN]

These instructions are privileged when STATUS32[UB]=0:
* BRK

* BRK_S

Privileged Registers

Access to the majority of general-purpose registers is not affectids B\RC 700 operating mode.
Switching between user and kernel modes does not effect the contenteral-gpeirpose registers.
No accesses are permitted to Bh&NK1 or ILINK2 registers from user mode. lllegal accesses from
user mode tdLINK1 or ILINK2 will cause dnstruction Errorexception and the cause will be
indicated in the exception cause regisECR).

Moves to and from auxiliary registers are permitted in both user and keodel on the ARC 700
processor. However, in user mode, only a limited set of auxiliary registgrbe accessed without
causing a protection-violation exception.

Auxiliary registers accessible in user mode include:
- PC
« STATUS32- ZNCV flags

72 ARCompact™ Programmer's Reference

Interrupts and Exceptions Interrupts

* LP_START
 LP_END

» Extension Auxiliary Registerswhere permitted by extension enables

The remaining auxiliary registers are only accessible in kernel mode.

Switching Between Operating Modes
The ARC 700 processor is set into kernel mode during these transitions:

» TRAP_STRAPO

* Interrupt

» Exception

» Resetor Machine check exception

* Write to STATUS32from debug port when machine is halted

Switching from kernel mode to user mode takes place under the followingionadit

» Return from exceptionwhen machine status register indicates that the last exceptidakgas
from user mode

* Return from interrupt when machine status register indicates that the highest peotite
interrupt was taken from user mode

ARC 700 exception and interrupt handlers may choose to adjust the valuestiettimeiaddress
(ERET, ILINK1, ILINK2) and status link registerERSTATUS STATUS32 L1, STATUS32_ LY
in order to simultaneously jump to a kernel-mode or user-mode task whilshgleee relevant
interrupt-active or exception-active bits in the status ragiste

The FLAG instruction cannot be used to change the user or kernel mode stat&Bfx 700
processor.

Interrupts

The ARCompact based processor features two level of interrupt:
* level 2 (mid priority) interrupts which are maskable.
* level 1 (low priority) interrupts which are maskable

For the ARC 700 processor, interrupts can be serviced whilst the progesgecluting in user mode
or kernel mode, and a high-level interrupt can be serviced whilst a lowxiéeeLipt handler is being
executed. Although exceptions can be taken in interrupt service routiees)ptd are disabled on
entry to exception handling routines.

The interrupt unit is provided with a specific configuration and is prograble.

Interrupt Unit Programming
The interrupt unit allows programming of certain parameters.

Before programming the interrupt unit, miterrupts should be disablesd then all pending
interrupts should be dealt with.

ARCompact™ Programmer's Reference 73

Interrupts Interrupts and Exceptions

For the ARC 700 processor, tA&JX_IRQ_PENDINGregister can be used to ensure that there are
no further pending interrupts.

Once the interrupt unit has been programmed accordingly the desgedpis can be enabled.

Interrupt Unit Configuration

The specific configuration of the interrupt unit can be determined bingetee interrupt vector base
configuration registeVECBASE_AC_BUILD.

The sensitivity level of each interrupt is dependent on the specifigyooation.

I The ARC 70QAUX_ITRIGGER register allows the level or pulse sensitivity to be programmed.

Interrupt Priority

Exceptions, likeResetandInstruction Erroy have a higher priority than interrupts, the level 2
interrupt set has middle priority and level 1 the lowest priority.

In addition there is a relative priority in the set of interrupts@asa with each level. The interrupt
vector table indicates a higher priority with a lower "relapvierity” value. For example, a relative
priority of M1 has the highest priority within the (mid) priority &2 set.

For the ARCtangent-A5 processor, for example IRQ7 has the highest pnidhtylevel 2 set and
IRQ6 has the lowest priority in the level 2 set.

In general with the ARCtangent-A5 and ARC 600 processors, the highatahrept number (IRQn)
the higher the priority within the interrupt level set. Note, howeabet, IRQ7 always has the highest
relative priority within its level set in order to ensure backixampatibility to previous ARC
processors.

For the ARC 700 processor, the higher the interrupt number the lower tlity prior

Programming thAUX_IRQ_LEV auxiliary register can change the level priority of each maskable
interrupt.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

ILINK and Status Save Registers

When an interrupt occurs, the appropriate link registéNK1 orILINK2) is loaded with the value

of next PC, the associated status save regBTekTUS32 Llor STATUS32 L3 is also updated

with the status registeBTATUS32; the PC is then loaded with the relevant address for servicing the
interrupt.

Link registerlLINK2 and status save regist8fATUS32 L 2are associated with the level 2 set of
interrupts and the two exceptioMdemory Errorandinstruction ErrorILINK1 and status save
registerSTATUS32 Llare associated with the level 1 set of interrupts.

Interrupt Vectors

The ARCompact based processor does not implement interrupt vectochalsig rather a table of
jumps. When an interrupt occurs the ARCompact based processor jumps talfixessas in
memory, which contain a jump instruction to the interrupt handling code. Trhefdtiaese interrupt
vectors is dependent on the particular ARCompact based system ated ia 8ét of contiguous jump
vectors.

74 ARCompact™ Programmer's Reference

Interrupts and Exceptions Interrupts

TheIlNT_VECTOR_BASEregister can be read at any time to determine the start of theiptterr
vectors, and can be used to change the base of the interrupt vectors during pregreion, see
sectioninterrupt Vector Base Registen pages3.

It is possible to execute the code for servicing the last interruipg imterrupt vector table without
using the jump mechanism. An example set of vectors showing the lasiphterctor is shown in
the following code.

Example 12 Exception Vector Code

;Start of exception vectors

reset: JAL res_service ;vector 0
mem_ex: JAL mem_service ;vector 1
ins_err: JAL instr_service ;vector 2
ivect3: JAL iservice3 ;vector 3, ilinkl
jvects: JAL iservice4 ;vector 4, ilinkl
ivect5: JAL iservice5 ;vector 5, ilinkl
jvect6: JAL iservice6 ;vector 6, ilink2
ivect7: JAL iservice? ;vector 7, ilink2
;start of interrupt service code for
;ivect?

In the ARC 700 interrupt system, there are thirty-two default interrapt&/ptions associated with
vectors 0 to 31, and each has its own vector position.

In the ARCtangent-A5 and ARC 600 configurable interrupt system, therexagersdefault
interrupts/ exceptions associated with vectors 0 to 15, each having its cenpasition. A further
16 extension interrupts may also be provided.

The vector offsets are shown in the following table. Two long-words agevessfor each interrupt
line to allow room for a jump instruction with a long immediate address.

Table 22 ARC 700 Interrupt Vector Summary

Vector Name Link register Priority (Default) Relative Priority Byte Offset
0 Reset - - - 0x00
1 Memory Error ILINK2 level 2 : mid M1 0x08
2 Instruction Error - - - 0x10
3 IRQ3 (Timer 0) ILINK1 level 1 : low L1 0x18
4 IRQ4 (Timer 1) ILINK1 level 1 : low L2 0x20
5 IRQ5 (UART) ILINK1 level 1 : low L3 0x28
6 IRQ6 (EMAC) ILINK1 level 1 : low L4 0x30
7 IRQ7 (XY Memory) [ILINK1 level 1 : low L5 0x38
8 IRQ8 ILINK1 level 1 : low L6 0x40
9 IRQ9 ILINK1 level 1 : low L7 0x48
10 IRQ10 ILINK1 level 1: low L8 0x50
11 IRQ11 ILINK1 level 1: low L9 0x58
12 IRQ12 ILINK1 level 1 : low L10 0x60
13 IRQ13 ILINK1 level 1 : low L11 0x68
14 IRQ14 ILINK1 level 1 : low L12 0x70
15 IRQ15 ILINK1 level 1: low L13 0x78
16 IRQ16 ILINK1 level 1: low L14 0x80
17 IRQ17 ILINK1 level 1 : low L15 0x88

ARCompact™ Programmer's Reference 75

Interrupts Interrupts and Exceptions

Vector Name Link register Priority (Default) Relative Priority Byte Offset
18 IRQ18 ILINK1 level 1 : low L16 0x90
19 IRQ19 ILINK1 level 1 : low L17 0x98
20 IRQ20 ILINK1 level 1 : low L18 0xAO0
21 IRQ21 ILINK1 level 1: low L19 O0xA8
22 IRQ22 ILINK1 level 1: low L20 0xBO
23 IRQ23 ILINK1 level 1 : low L21 0xB8
24 IRQ24 ILINK1 level 1 : low L22 0xCO
25 IRQ25 ILINK1 level 1 : low L23 0xC8
26 IRQ26 ILINK1 level 1 : low L24 0xDO
27 IRQ27 ILINK1 level 1: low L25 0xD8
28 IRQ28 ILINK1 level 1 : low L26 OxEO
29 IRQ29 ILINK1 level 1 : low L27 OxES8
30 IRQ30 ILINK1 level 1 : low L28 0xFO
31 IRQ31 ILINK1 level 1: low L29 OxF8

Table 23 ARCtangent-A5 and ARC 600 Interrupt Vector ~ Summary

Vector Name Link Priority Relative Priority Byte
register (Default) Offset
0 Reset - high H1 0x00
1 Memory Error ILINK2 high H2 0x08
2 Instruction Error ILINK2 high H3 0x10
3 IRQ3 (Timer 0) ILINK1 level 1 : low L27 0x18
4 IRQ4 (XY Memory) JJILINK1 level 1 : low L26 0x20
5 IRQ5 (UART) ILINK1 level 1 : low L25 0x28
6 IRQ6 (EMAC) ILINK2 level 2 : mid M2 0x30
7 IRQ7 (Timer 1) ILINK2 level 2 : mid M1 0x38
8 IRQ8 ILINK1 level 1: low L24 0x40
9 IRQ9 ILINK1 level 1 : low L23 0x48
10 IRQ10 ILINK1 level 1 : low L22 0x50
11 IRQ11 ILINK1 level 1 : low L21 0x58
12 IRQ12 ILINK1 level 1: low L20 0x60
13 IRQ13 ILINK1 level 1: low L19 0x68
14 IRQ14 ILINK1 level 1 : low L18 0x70
15 IRQ15 ILINK1 level 1 : low L17 0x78

When the extension interrupts are enabled, a further 16 interrupatmesovided along with their
associated vector addresses. By default all extension interrupts belbedevel 1 interrupt set, and
IRQ31 has the highest priority within the level 1 interrupt set. Noteeherythat IRQ7 always has
the highest relative priority within its level set.

The interrupt vector addresses are added contiguously to the defanilirgerrupt vectors provided
by the configurable interrupt system.

The extension interrupts and their vectors are shown in the following table

76 ARCompact™ Programmer's Reference

Interrupts and Exceptions Interrupts

Table 24 ARCtangent-A5 and ARC 600 Extension Interr upt Vector Summary

Vector Name Link register Priority (Default) Relative Priority Byte Offset
16 IRQ16 ILINK1 level 1 : low L16 0x80
17 IRQ17 ILINK1 level 1 : low L15 0x88
18 IRQ18 ILINK1 level 1 : low L14 0x90
19 IRQ19 ILINK1 level 1: low L13 0x98
20 IRQ20 ILINK1 level 1: low L12 OxAO0
21 IRQ21 ILINK1 level 1 : low L11 OxA8
22 IRQ22 ILINK1 level 1 : low L10 0xBO
23 IRQ23 ILINK1 level 1: low L9 0xB8
24 IRQ24 ILINK1 level 1: low L8 0xCO
25 IRQ25 ILINK1 level 1 : low L7 0xC8
26 IRQ26 ILINK1 level 1 : low L6 0xDO
27 IRQ27 ILINK1 level 1 : low L5 0xD8
28 IRQ28 ILINK1 level 1: low L4 OxEO
29 IRQ29 ILINK1 level 1: low L3 OxE8
30 IRQ30 ILINK1 level 1 : low L2 OxFO
31 IRQ31 ILINK1 level 1 : low L1 OxF8

Level 1 and Level 2 Interrupt Enables

The level 1 set and level 2 set of interrupts are maskable. Theipttenmable bits E2 and E1 in the
status register (sdégure 450n pagebl) are used to enable level 2 set and level 1 set of interrupts
respectively. Interrupts are enabled or disabled witlirtl#eG instruction.

Example 13 Enabling Interrupts with the FLAG instru ction

.equ EI,6 ; constant to enable both interrupts

.equ EIl,2 ; constant to enable level 1 interrupt only
.equ EI2,4 ; constant to enable level 2 interrupt only
.equ DI,O0 ; constant to disable both interrupts

FLAG EI ; enable interrupts and clear other flags
FLAG DI ; disable interrupts and clear other flags

Individual Interrupt Enables

The ARC 700 processor uses thgX IENABLE register to enable individual masking of each
incoming interrupt. Writing a value of 1 in the interrupts bit position esahbkt particular interrupt.
To disable all interrupts, by turning off the interrupt unit, uséelb&G instruction to reset thisevel
1 and Level 2 Interrupt Enables

Priority Level Programming

The configurable interrupt system provides the ability to chamgeriority set to which an interrupt
belongs. The priority level programming regist&@X IRQ_LEV) contains the set of interrupts and
their priority set. Each interrupt has a corresponding bit position.

After Resethe ARCtangent-A5 processor and ARC 600 processor set all interrupes tbeflault
priority state as shown in the interrupt vector tabledle 23andTable 24

ARCompact™ Programmer's Reference 77

Interrupts Interrupts and Exceptions

After Resetthe ARC 700 processor sets all interrupts to their default pristate as shown in the
interrupt vector tablelable 22

Interrupt Level Status

After an interrupt has occurred, the level of an interrupt is inglichy the interrupt level status
register(AUX_IRQ_LV12) auxiliary register. Two sticky bits are provided to indicate ifvalld or
level 2 interrupt has been taken. The interrupt level status reggstdoe used to indicate nested
interrupts, i.e. a mid priority level 2 interrupt has interrupted a lowiprilavel 1 interrupt. The
sticky bits will stay set until reset by software.

The interrupt level status register is complementary to the Al araité\of theSTATUS32register

Interrupt Cause Registers

Two bits (A1 and A2) are provided in tBF ATUS32register to indicate which interrupt levels are
currently being serviced. These are set on entry to the interrupt amndrittea by the values copied
from STATUS32 Llor STATUS32_L20n exit.

When one of these bits in tBFATUS32register is true, the associated interrupt cause register
(ICAUSE1 or ICAUSE2) will contain the number of the interrupt being handled. Note thémory
Errorinterrupt will causeCAUSEZ2to be set to 0x1.

The interrupt cause registetAUSE1 andICAUSE?, are not affected when returning from an
interrupt.

Pending Interrupts

The read-only Interrupt Pending registdtJX IRQ_PENDING is provided to allow the operating
system to determine which interrupts are currently asserted andchgveaitvice.

Software Triggered Interrupt

In addition to theSWI/TRAPOQinstruction, the interrupt system allows software to generateciispe
interrupt by writing to the software interrupt trigger registadX_IRQ HINT). Level 1 and level 2
interrupts (IRQ3 to IRQ31) can be generated througA\the IRQ HINT register. The
AUX_IRQ_HINT register can be written through ARCompact based code or from the host.

The software triggered interrupt mechanism can be used even if there associated interrupts
connected to the ARCompact based processor.

Returning from Interrupts

When the interrupt routine is entered, the interrupt enable flagsearedlifor the current level and
any lower priority level interrupts. Hence, when a level 2 interrupiirsg both the interrupt enable
bits in the status register are cleared at the same time as théoB@ed with the address of the
appropriate interrupt routine.

Returning from an interrupt is accomplished by jumping to the contents of the aajaréipk

register, using th@AL.F [ILINKn] instruction. With the flag bit enabled on the jump instruction, the
status register is also loaded from the asso&arUS32_Lnregister, thus returning the flags to
their state at point of interrupt, including of course the interrupt eratsl E1 and E2, one or both of
which will have been cleared on entry to the interrupt routine.

TheRTIE instruction can also be used to return from an interRIPIE allows an interrupt handler to
use a single instruction for interrupt exit, without needing to know whichrumtelevel caused entry

78 ARCompact™ Programmer's Reference

Interrupts and Exceptions Interrupts

to the routine. The values contained in BIRATUS32A1/A2] flags are used to determine which link
register pair to use for exit.

There are 2 link registefBINK1 (r29) andLINK2 (r30) for use with the maskable interrupts,
memory exception anidstruction Error These link registers correspond to levels 1 and 2 and the
interrupt enable bits E1 and E2 for the maskable interrupts.

If the branch target regist8TA, is available, it will be returned to the value stored inrBhé& L1
or BTA_L2 registers.

The interrupt cause registetAUSE1 andICAUSE?, are not affected when returning from an
interrupt.

For example, if there was no interrupt service routine for interrupt nubnilee arrangement of the
vector table would be as shown below.

Example 14 No Interrupt Routine for ivect5

jvect4: JAL iservice4 ;vector 4

ivect5: JAL.F [ILINK1] ;vector 5 (jump to ilinkl)
NOP ;instruction padding

ivect6: JAL iserviceb ;vector 6

Interrupt Timing

Interrupts are held off when a compound instruction has a dependency on the foitsivingtion or
is waiting for immediate data from memory. This occurs during a braumcip, pr simply when an
instruction uses long immediate data. The time taken to service anpnisrbasically a jump to the
appropriate vector and then a jump to the routine pointed to by that vectoimirigs tof interrupts
according to the type of instruction in the pipeline is given later irddgesmentation.

I Interrupts are also held off when a predicted branch is in the pipelinégoravlag instruction is
| being processed.
1

The time it takes to service an interrupt will also depend on thenfiold):

» Whether a jump instruction is contained in the interrupt vector table

» Allowing stage 1 to stage 2 dependencies to complete

* Returning loads using write-back stage

* An I- Cache miss causing the I-Cache to reload in order to servicedheijmt

* The number of register push items onto a software stack at the startrtéthgpt service
routine

* Whether an interrupt of the same or higher level is already beingeervi
* An interruption by higher level interrupt

* Whether a predicted branch is being processed (ARC 600)

Interrupt Flow

The following diagram illustrates the process involved when and intergxception occurs during
program execution. The priority for each level of interrupt is shown, bubtdeupt priority within
each level set is system dependent.

ARCompact™ Programmer's Reference 79

Interrupts Interrupts and Exceptions

I

Execute next instruction

offset=0x08

offset=0x10

Flush pipeline

E2 €0

El1<0

ZNCV Flags < 0

SEMAPHORE < 0

DEBUG < 0

LP_COUNT, LP_START, LP_END < 0
INT_VEC_BASE < Configured Vector Base
PC < INT VEC BASE

>

offset=0x08*n

ILINK2 € NEXT_PC
STATUS32_L2 ¢ STATUS32
E2¢0
E1<¢0
PC < INT_VEC_BASE + offset

offset=0x08*n

ILINK1 € NEXT_PC
STATUS32_L1 ¢ STATUS32
E1<0

PC €« INT_VEC_BASE + offset

Figure 83 Interrupt Execution

Interrupt Vector Base Address Configuration

The start of the interrupt vectors is dependent on the particular ARCbbgsed system. GReset
the start of the interrupt vectors is set by the interrupt vector bafiguration register,
VECBASE_AC_BUILD. This value is also loaded into the interrupt vector base addregenmegis
INT_VECTOR_BASEonReset

During program execution the start of interrupt vectors can be deteramaemodified through the
interrupt vector base address register, INT_VECTOR_BASH:igeee 49n page4.

Interrupt Sensitivity Level Configuration
The configurable interrupt system can be either pulse sensitigeead sensitive.
An interrupting device that is set to pulse sensitive interrupt, oslychassert the interrupt line once

and then de-assert the interrupt line. The fact that a pulse semg#ivapt has occurred is held until
the associated interrupt vector is called. No action is required bgfhwlclear the interrupt.

An interrupting device that is set to level sensitive interrupt mgstriaand hold the interrupt line
until instructed to de-assert the interrupt line by the appropriatelupteservice routine.

The interrupts (IRQ3 to IRQ31) are level sensitive by default, but candmged to pulse sensitivity
depending on the configuration of the interrupt system and configuration ARtBempact based
system.

80 ARCompact™ Programmer's Reference

Interrupts and Exceptions Exceptions

Interrupt Sensitivity Level Programming

The ARC 700 processor uses thigX ITRIGGER register to allow an operating system to select
whether each interrupt will be level or pulse sensitive.

Canceling Pulse Triggered Interrupts

A write-only 32-bit register AUX_IRQ_PULSE_CANCEL. is provided to allow the operating
system to clear a pulse-triggered interrupt after it has beeivedc and before it is serviced. Writing
'1' to the relevant bit will clear the interrupt if it is set to ptdeasitivity. If the interrupt is of type
level sensitivity, then writing to its relevant bit position will have nedtf

Exceptions

The processor is designed to allow exceptions to be taken and handled fromdeser kernel
mode and from interrupt service routines. An exception taken in an exceptionrhsuadleuble fault
condition — and causes a fatal Machine Check exception.

All interrupts and exceptions cause an immediate switch into kernel mod#erhery Management
Unit (if present) is not disabled on entry to an interrupt or exceptiotidra and the process-ID
(ASID) regqister is not altered. Both levels of interrupt are diggshbn entry to an exception handler.

Exception Precision

In the ARCompact based processor precise exceptions are said to be syndhterropss
associated with specific instructions. Imprecise exceptions anelasyious events that may or may
not be associated with a specific instruction.

In the ARCtangent-A5 and ARC 600 processor the exception scheme is imprecisestiTiogion
ErrorandMemory Errorexceptions are non recoverable, in that the instruction that causedthe err
cannot be returned to.

The ARC 700 processor uses a precise exception scheme. Instructionsagabtesthey can be
abandoned before completion and restarted later. On receipt of an exceptienadinggystem can
therefore choose to either:

* Kill the process
» Send a signal to the process

* Intervene to remove the cause of the exception, and restart operation wittrilngtion that
caused the exception

A memory error exception may not be recoverable depending on the mactarbattaaused the
memory error. For example:

* An instruction cache load that causes a bus error, and héfmehine Check, Instruction Fetch
Memory Error is said to be precise since the address of the instruction is knovertiatelof the
memory error.

» A data cache load that causes a bus error, and héwhemary Error is said to be imprecise,
since the instruction is not known at the time ofNMemory Error

ARCompact™ Programmer's Reference 81

Exceptions Interrupts and Exceptions

Exception Vectors and Exception Cause Register
Any exception that occurs has the following associated information

* Vector Name
* Vector Number
» Vector Offset
» Cause Code

e Parameter

Vector Name
The vector name directly corresponds to the vector number.

Vector Numbers
An eight-bit number, directly corresponding to the vector number and vector name lgging us

Vector Offset

The Vector Offset is used to determine the position of the approprieteupitor exception service
routine for a given interrupt or exception. The vector offset is lzkaias 8 times the vector number,
and is offset from interrupt/exception vector base address.

The vector offsets are summarized in the following table.

Table 25 Exception vectors

Name Vector offset Vector Number Exception Types
Reset 0x000 0x00 Exception
Memory Error 0x008 0x01 Interrupt
Instruction Error 0x010 0x02 Exception
Interrupts 0x018 - 0x078 - Interrupt
Interrupts 0x080 - 0xOF8 - Interrupt
EV_MachineCheck 0x100 0x20 Exception
EV_TLBMissl 0x108 0x21 Exception
EV_TLBMissD 0x110 0x22 Exception
EV_TLBProtv 0x118 0x23 Exception
EV_PrivilegeV 0x120 0x24 Exception
EV_Trap 0x128 0x25 Exception
EV_Extension 0x130 0x26 Exception
Reserved 0x138 - 0x1F8 0x27 - OxFF Exception

Table 26on page37 shows further details of the exception priorities and exception causeqgiars.

Cause Codes
Since multiple exceptions share each vector, this eight bit numbeed to identify the exact cause
of an exception.

Parameters
This eight bit number is used to pass additional information about an exdipti@annot be
contained in the previous fields

82 ARCompact™ Programmer's Reference

Interrupts and Exceptions Exceptions

For the TRAP exception, this field contains the zero-extended six-bitdrateevalue from the
TRAP instruction.

For thePrivilege Violation, Disabled Extensi@xception, this field contains the zero-extended five-
bit number of the disabled extension group that was accessed.

When an actionpoint is hit, the parameter contains the number of the aictiaghpbtriggered the
exception.

The parameter can also be used for extension instruction purposes.

Exception Cause Register

The Exception Cause regist&f@R) is provided to allow an exception handler access to information
about the source of the exception condition. The value in the Exception Casser isghade up

from the Vector Number, Cause Code and Parameter, as shévguia 61on pages8.

For example, the TRAP exception has the following values:
Vector Name: EV_Trap

Vector Number: 0x25

Vector Offset: 0x128

Cause Code: 0x00

Parametemn

This would mean that the cause code register value for TRAP is 0x002500

Exception Types and Priorities

Multiple exceptions can be associated with a single instruction. In the7@R@rocessor, only one
exception can be handled at a time. Remaining exceptions will present thesngleén the
instruction is restarted after the first exception handler has compléiis process will continue until
no further exceptions remain.

Interrupts and exceptions will be evaluated with the following priority:

Reset

Machine Check, Fatal Cache / TLB error

Machine Check, Memory Error — Memory error on D$ flush or Kernel da&sacc
Privilege Violation, Instruction fetch Actionpoint hit

Machine Check, Double Fault — exception detected when STATUS32[AE]=1
Machine Check, Instruction Fetch Memory Error

Instruction Fetch TLB miss

Instruction Fetch TLB Protection violation

© ©® N o g s~ w D

Instruction Error - lllegal instruction exception

=
o

. Privilege Violation, Instruction or Register access

=
[N

. Privilege Violation, Disabled Extension Group

AN
N

. Extension Instruction Exception - requested by extension instruction

[N
w

. Protection Violation, LD/ST misalignment

ARCompact™ Programmer's Reference 83

Exceptions Interrupts and Exceptions

14. Data access TLB miss

15. Data access TLB Protection violation

16. TRAP_S or TRAPO instructions

17. Memory Error - external bus error

18. Level 2 Interrupt

19. Level 1 Interrupt

20. Core register, Aux register or Memory-access Actionpoint hit

Table 26on page87 shows further details of the exception priorities and exception causeqgiars.

Reset

A Reset is an external reset signal that causes the ARCompatipbasessor to performreard

Reset. Upon Reset, various internal states of the ARCompact based@racespre-set to their

initial values: the pipeline is flushed; interrupts are disabletysstagister flags are cleared; the
semaphore register is cleared; loop count, loop start and loop end segisteteared; the scoreboard
unit is cleared; pending load flag is cleared; and program execution eatithe interrupt vector
base address (offset 0x00) which is the basecase ARCompact basetBesgiosition. The core
registers are not initialized except loop count (which is clearefldnf to the Reset vector saft
Reset, willnot pre-set any of the internal states of the ARCompact based processor.

The Reset value of vector base register determines Reset vetregsad

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Machine Check, Overlapping TLB Entries
Multiple matches for an address lookup in the TLB.

Machine Check, Fatal TLB Error
Any fatal error in the TLB or its memories (such as a parity or ECQr).

Machine Check, Fatal Cache Error
Any fatal error in the cache controllers or their memories (suctpasts or ECC error).

Machine Check, Kernel Data Memory Error
A memory error was received as a result of a kernel-mode data tranggD /ST /PUSH_S
/POP_YSEX)

Machine Check, Data Cache Flush Memory Error
A memory error was received as a result of a data cache flush.

Privilege Violation, Actionpoint Hit Instruction Fe tch
Actionpoint hit, triggered by instruction fetch. The parameter fiefg gives the number of the
actionpoint that triggered the exception.

Machine Check, Double Fault
Exception detected with exception handler outstanding, as indica&dAMIS3JAE] bit set.

Machine Check, Instruction Fetch Memory Error
A memory error was triggered by an instruction fetch. (memory errggeted by incorrectly
speculated accesses are ignored).

84 ARCompact™ Programmer's Reference

Interrupts and Exceptions Exceptions

Instruction Fetch TLB Miss
An instruction fetch caused a TLB miss.

Instruction Fetch Protection Violation
An instruction fetch was fetched without the execute permission set.

Instruction Error
If an invalid instruction is fetched that the ARCompact based processnot execute, then an
Instruction Error is caused.

In the ARCtangent-A5 and ARC 600 processor, this exception is non-recoverabletlie tha
instruction that caused the error cannot be returned to. The mechanissahawjor opcodes and
sub-opcodes to determine whether the instruction is valid. This exceptioheisegt 2 interrupt
mechanism and the return information is contained inLiiNK2 andSTATUS32_ L2registers.

The software interrupt instructio®\VI) will also generate an instruction error exception when
executed.

Full decodes of all instructions are performed in the ARC 700 processor. Uisienplemented
instructions, condition codes, core registers, auxiliary registersodimgs will trigger the
Instruction Error exception.

In the ARC 700 processor this exception uses the exception mechanism and thefoetnatiam is
contained in th&RET, ERSTATUSandERBTA registers.

lllegal Instruction Sequence
Triggered when an instruction sequence has been attempted that is ndaegdermit

The lllegal Instruction Sequence type will occur when any jump or branchatistr straddles the
loop end position such that:

» the jump or branch instruction is in the last instruction position of thedndp
» the excuted delay slot is outside the the loop

The lllegal Instruction Sequence type also occurs when any of the followingciimsts are
attempted in an executed delay slot of a jump or branch:

* Another jump or branch instructioB¢c, BLcc, Jcc, JLdc

» Conditional loop instructionLfPcg
* Return from interruptRTIE)

* Any instruction with long-immediate data as a source operand

Privilege Violation, Kernel Only Access
Kernel-only instruction, core register or auxiliary register has bemsaed from user mode.

Privilege Violation, Disabled Extension
Disabled instruction or register has been accessed. The paragidténri) gives the group number
(0-31) of the disabled extension.

Extension Instruction Exception

Triggered by an extension instruction if it requires that an exception ée talg. floating point
extensions would need to generate many different types of exception). Bingrfglare supplied by
the extension instruction:

ARCompact™ Programmer's Reference 85

Exceptions Interrupts and Exceptions

mm = subcode
nn = parameter

Protection Violation, Misaligned Data Access
A misaligned data access causes a TLB protection violation.

Data TLB Miss
Data TLB miss caused h\D, ST, PUSH SPOP_Sor EX instruction.

Data TLB Protection Violation
Data TLB protection violation caused bip, ST, PUSH_SPOP_Sor EX instruction. Caused when
the attempted access does not match the permission bits for the page.

Trap
nn = parameter supplied BRAP_Sinstruction. TRAPO supplies nn=00

Note that the instruction always commits, and the return addressnisxhimstruction after the
TRAP. This is unlike all other exceptions where the faulting instmues aborted, and the return
address is that of the faulting instruction.

Memory Error

A Memory Error exception is a condition that is detected externalhet€PU. Generally the
memory subsystem would detect and raise an error. The types of memayhauically range from
non-existent memory regions to parity/EEC errors.

A memory error condition that is flagged by the external memory sysasrdifferent effects
depending on the context.

A level 2 interrupt is generated if a User mode process triggers aié&iror condition on the
processor bus. This memory error condition is maskable through use of the STABEZ] flag.

An exception is generated if either an instruction fetch access nelkaode data access triggers a
Memory Error condition on the processor bus.

As precise exception handling is not supported, Memory Errors are handledraasi@ble
interrupts. The return address stored for a memory error is not gudremtethe address of the
faulting instruction. It is the address of the next instruction to be execupedgram sequence at the
point when the memory error, non-maskable interrupt was received.

Successful recovery from a memory error is not always possible. Theagkable interrupts use the
same interrupt return registers as the highest level of mashédreipts (Level 2). This means a
memory error could be detected whilst the machine is handling a Levetr2jptén this
circumstance, the return address information for the interrupt hamdigd be overwritten by data
from the non-maskable interrupt.

NOTE The memory error interrupt is not precise, so an error could be triggered by an instruction outside of a
Level 2 Interrupt Service Routine (ISR), but be detected after such an ISR was underway

Systems using Level 2 interrupts cannot guarantee recovery from arynemor non-maskable
interrupt.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Level 2 Interrupt
Only whenSTATUS32E2]=1.

86 ARCompact™ Programmer's Reference

Interrupts and Exceptions

Exceptions

Note that Interrupts do not set the exception cause register. Receigtinfdrrupt sets thiCAUSE?2

register to the number of the last taken interrupt..

Level 1 Interrupt

Only whenSTATUS37E1]=1.
Note that Interrupts do not set the exception cause register. Receaigtintarrupt sets thiCAUSE1

register to the number of the last taken interrupt..

Privilege Violation, Actionpoint Hit Memory or Regi

ster

Triggered by Memory access, Core or Auxiliary register access. Tamgier field (nn) gives the
number of the actionpoint that triggered the exception.

Table 26 Exception Priorities and Vectors

Exception [Vector Name I Vector I Vector I Cause I Exception
offset Number Code Cause Register

Reset Reset | oxooo | oxo0 | oxo0 | 0x000000

Overlapping EV_MachineCheck I 0x100 I 0x20 I 0x01 I 0x200100

TLB Entries

Fatal TLB Error | EV_MachineCheck [0x100 | 0x20 | oxo2 | 0x200200

Fatal Cache EV_MachineCheck 0x100 0x20 0x03 0x200300

Error

Kernel Data EV_MachineCheck 0x100 0x20 0x04 0x200400

Memory Error

D$ Flush EV_MachineCheck 0x100 0x20 0x05 0x200500

Memory Error

Actionpoint Hit,
Instruction Fetch

Double Fault

Instruction Fetch
Memory Error

Instruction Fetch
TLB Miss

Instruction Fetch
Protection
Violation

lllegal
Instruction

lllegal
Instruction
Sequence
Privilege
Violation

Disabled
Extension

Extension
Instruction
Exception

EV_PrivilegeV

EV_MachineCheck
EV_MachineCheck

EV_ITLBMiss

EV_TLBProtv

Instruction Error

Instruction Error

EV_PrivilegeV
EV_PrivilegeV

EV_Extension

ARCompact™ Programmer's Reference

I B B B B B B N B B B N B
o
X
[
=
(o]

0x2402nn

0x200000
0x200600

0x210000

0x020000

0x020000

0x240000
0x2401nn

0x26mmnn

i
‘ 0x230000
|

87

Exceptions Interrupts and Exceptions

Exception [Vector Name I Vector I Vector I Cause I Exception
offset Number Code Cause Register
Misaligned data | EV_ProtV 0x118 0x23 0x04 0x230400
access I I I I
Data TLB Miss, | EV_DTLBMiss 0x110 0x22 0x01 0x220100
& N N
Data TLB miss, | EV_DTLBMiss 0x110 0x22 0x02 0x220200
S N N
Data TLB miss, | EV_DTLBMiss 0x110 0x22 0x03 0x220300
e N N
Data TLB EV_ProtV 0x118 0x23 0x01 0x230100
protection
violation, LD ‘ ‘ ‘ ‘
Data TLB EV_ProtV 0x118 0x23 0x02 0x230200
protection
violation, ST ‘ ‘ ‘ ‘
Data TLB EV_ProtVv 0x118 0x23 0x03 0x230300
protection ‘ ‘ ‘ ‘
violation, EX
Trap EV_Trap | ox12s | oxas | ox00] 0x2500nn
External Memory Error 0x008 - - -
Memory Bus ‘ ‘ ‘ ‘
Error
Level 2 Interrupt | Interrupts I 0x018 to I - I - I -
OxOF8
Level 1 Interrupt | Interrupts I 0x018 to I - I - I -
OxOF8
Actionpoint Hit, | EV_PrivilegeV 0x120 0x24 0x02 0x2402nn
Memory or
Register ‘ ‘ ‘ ‘

Exception Detection

Exceptions are taken in strict program order. If more than one exception cémbogeatto an
instruction, the highest priority exception will be taken and all ofigexsgred. Any remaining
exception conditions will be handled when the faulting instruction iseetged.

Interrupts and Exceptions

The processor is designed to allow exceptions to be taken and handled fromdeser kernel
mode and from interrupt service routines. An exception taken in an exceptionrhsuadleuble fault
condition — and causes a fataachine checkxception.

All interrupts and exceptions cause an immediate switch into kernel mod#erhery Management
Unit is not disabled on entry to an interrupt or exception handler, andatesprID (ASID) register
is not altered. Both levels of interrupt are disabled on entry to an excégindler.

88 ARCompact™ Programmer's Reference

Interrupts and Exceptions Exceptions

Exception Entry
Note that all addresses described below are the logical addresses usegdrogtam itself.

When an exception is detected the following steps are taken:

The faulting instruction is cancelled

O No state changes caused by this instruction can be committed

O All subsequent instructions that have been fetched into the pipediradsarcancelled.
0 Cache behavior is not explicitly defined by the ISA, and is implementatiomdepe
g

All state changes associated with extension core registers or ooratities must also be
prevented if an instruction is cancelled, in order that the instructiotidaaaorrectly when
it is re-fetched.

When a fault is detected on an instruction, the exception return addriessr&rRET) is loaded
with the PC value used to fetch the faulting instruction.

O If the exception is coerced usindRAP_Sor TRAPOinstruction, the exception return
register ERET) is loaded with the address of the next instruction to be fetchedtadter
TRAP instruction. This value is the architectural PC expectedth#eFRAP completes —
hence pending branches and loops are taken into account.

The exception return status registeRSTATUS is loaded with the contents 8TATUS32used
for execution of the faulting instruction.

0 Since there is a single exception detection point immediately béfemmit point, then
the value used to lod8RSTATUSwWiIll be the last value committed 8TATUS32

[0 If a delayed program-counter update is pending — due to the faulting instrugtignrbthe
delay slot of a taken branch/jump, then the delay-slot bit will be FTATUS3ZDE] = 1

If a delayed program-counter update is pending — indicated ISTAE US32DE] bit being true,
the exception return branch target address regBRBTA) is loaded with the pending target PC
value. This mechanism is not affected by zero-overhead loops.

The exception cause regist&dR) is loaded with a code to indicate the cause of the exception —
seeTable 26on paged7.

The exception fault address register (EFA) is loaded with the sgldssociated with the fault.
For LD/ST operations, this is the target of the operation. For alf tathis, the EFA register will
be loaded with the address of the faulting instruction.

The CPU is switched into kernel mo8&@ ATUS33U] =0
Interrupts are disable8TATUS32E1,E2] =0
The exception handler underway flag is SSIATUS3JAE] =1

The Program Counter will be loaded with the address of the appropwagetien vector. This is
determined by the type of exception detected and the value in the interrypitexeector table
base register.

The DE bit in the status register is cleat@8ATUS3ZDE] =0

No other state is altered —the stack pointer and all other registexin nemchanged.

ARCompact™ Programmer's Reference 89

Exceptions Interrupts and Exceptions

The exception handlers must be able to save and restore all processhasthty alter during
exception handling.

The MMU provides a 32-bit register SCRATCH_DATAO that can be used by an (Dgebgstem to
store data.

Saving of the stack pointer means having a fixed location in the unmappedaktjieraddress
space that is used to swap the user mode stack pointer with the exdekqromter. The use of
separate exception/interrupt stacks is a feature of many opesgsimgns. It may also be actually
necessary if the memory locations used for the user mode stack faunltheyfarocess do not have
read/write privileges enabled for kernel mode.

Exception Exit

Once the exception handler has completed its operations, it must thetoogrect context for the
task that is to continue execution. TREIE instruction is used to return from exceptions. JA&.F
[ILINKnN] instruction cannot be used.

TheRTIE instruction determines which operating mode and interrupt state to return tackinghe
the A2, Al and AE bits of STATUS32 in order to establish which copy of the seafisser
(ERSTATUS, STATUS32_L1 or STATUS32_L2) should be used to determine the excegitirn
mode. The U bit of the corresponding link register is used for this purpose.

Table 27 Exception and Interrupt Exit Modes

U AE j A2] Al J Current Mode RTIE Response Link Registers Used

0]o0 0 fo Kernel Exception Exit ERET ERSTATUS ERBTA

0 jJo0 0 1 ISR Level 1 Interrupt Level 1 Exit J ILINK1 STATUS32 L1
ERBTA_L1

0 jo0 1 |0 ISR Level 2 Interrupt Level 2 Exit J ILINK2 STATUS32_ L2
ERBTA_L2

0 jo0 1 1 ISR Level 2 Interrupt Level 2 Exit J ILINK2 STATUS32 L2
ERBTA_L2

011 0 fo Exception Exception Exit ERET ERSTATUS ERBTA

01]1 0 1 Exception Exception Exit ERET ERSTATUS ERBTA

01]1 1 0 Exception Exception Exit ERET ERSTATUS ERBTA

011 1 1 Exception Exception Exit ERET ERSTATUS ERBTA

11]- - - User Privilege Violation Kernel

The case when U, AE, A2, and A1l are all set to O is used for state changes frdmkemdor
example when scheduling a user mode task.

If the AE bit is set, or AE, Al and A2 are all zero, the exception-exit sequgifalowed. If AE is
zero and either Al or A2 are set true, the interrupt-exit sequeramisdd. See description of the
RTIE instruction for further details.

The program counter is loaded with the exception return address fr&gREeregister, the contents
of ERSTATUSare copied int&TATUS32nd the contents &RBTA are copied int@TA.

If the delay-slot biSTATUS3ZDE] is set as a result, an unconditional delayed branch is set up to the
address contained in the branch target address register BTA.

90 ARCompact™ Programmer's Reference

Interrupts and Exceptions Exceptions

Exceptions and Delay Slots

For the ARCompact based processor exceptions are supported forimssructhe delay slots of
branches.

Example 15 Exception in a Delay Slot

J.D [b1ink]

Branch/Jump Instruction
LD fp,[sp,24]

MoV ro,0 Target of the branch/jump

The ARC 700 processor has features specifically for recovery from extepaused by instructions
found in branch/jump delay slots.

When an exception is detected on a delay slot instruction, the returssadtineed on exception entry
will be the address of the instruction in the delay slot, which alloweaxception handler to return to

the delay slot instruction of a taken branch, and for subsequent irstauidibe executed starting at

the branch target address.

This functionality allows branch instructions that can change procstsderto also have delay slots,
for exampleBRcc/BBITn /Jccusing auto-update extension core registers, or simplglitbe
instruction.

Many possible hazards are removed in this scheme which would otherwise oceurat/heturning
to a faulting instruction that was previously cancelled, for exampleassbility of TLB
thrash/deadlock with a fully-associative scheme

Emulation of Extension Instructions

An illegal exception instruction handler whose intent is to emulate thédoraf an extension
instruction must be able to:

* Get the address of the faulting instruction fromBERET register
» Disassemble the instruction sufficiently to determine whethéoitld be emulated

» Perform the emulation function, and make whatever changes to processresticor emulated)
that are required

[0 Note that any required changes to ZNCV flags would have to be madeER8ATUS
register to be restored on exception return

* Return to the next instructiafter the emulated instruction. The return address could be one of
the following (in order of priority):

0 ERBTA — exception branch target address if the faulting instruction whs itefay slot of a
taken branch

O LP_STARTIf the faulting instruction was the last instruction in a zero-overhegg and
it's not the last loop iteratiorERET+emulated_instruction_size = LP_END, and
LP_COUNT>1).

0 ERET+ emulated_instruction_size foorml linear code execution

NOTE When an extension is present but disabled using the XPU register, the exception vector used is
Privilege Violation and not lllegal Instruction.

ARCompact™ Programmer's Reference 91

Exceptions Interrupts and Exceptions

Emulation of Extension Registers and Condition Code S

A similar scheme, as defined for emulation of extension instructiongecased to emulate
extension registers and condition codes, again using the illegal tistregception, which is
triggered if an instruction references an unmapped extension operand.

92 ARCompact™ Programmer's Reference

Chapter 5 — Instruction Set Summary

This chapter contains an overview of the types of instructions iAR@mpact ISA.

Both 32-bit and 16-bit instructions are available in the ARCompact ISA anddicated using
particular suffixes on the instruction as illustrated by thewalhg syntax:

oP implies 32-bit instruction
OP_L indicates 32-bit instruction.
OP_S indicates 16-bit instruction

If no suffix is used on the instruction then the implied instruction is 32-bit fodféalit instructions
have a reduced range of source and target core registers unleatethdiherwise. S@able 87on
pagel73for an alphabetic list of instructions. The following notation iglufse the syntax of
operations.

Table 28 Instruction Syntax Convention

a destination register (reduced range for 16-isirirction.)
b source operand 1 (reduced range for 16-bit iostnol.)
c source operand 2 (reduced range for 16-bit iostnol.)
h full register range for 16-bit instructions

cc condition code

<.cc> optional condition code

4 Zero flag

N Negative flag

C Carry flag

\% Overflow flag

<f> optional set flags

<.aa> optional address writeback

<.d> optional delay slot mode

<.di> optional direct data cache bypass

<> optional sign extend

<zz> optional data size

u unsigned immediate, number indicates field size

S signed immediate, number indicates field size
limm long immediate

Arithmetic and Logical Operations

These operations are of the foran— b op cwhere the destination (a) is replaced by the result of the

operation (op) on the operand sources (b and c). The ordering of the operands@hirfgposome
non-commutative operations (for example: SUB, SBC, BIC, ADD1/2/3, SUB1/2/ayifkimetic
and logical instructions can be conditional or set the flags, or both.

If the destination register is set to an absolute value of "0" thendhi¢ isediscarded and the
operation acts like a NOP instruction. A long immediate (limm) value casdskfor either source
operand 1 or source operand 2.

ARCompact™ Programmer's Reference 93

Arithmetic and Logical Operations Instruction Set Summary

Summary of Basecase ALU Instructions
The basecase ALU instructions are summarized in the following table:

Table 29 Basecase ALU Instructions

Instruction Operation Description

ADD a—b+c add

ADC a—b+c+C add with carry

SUB a—b-c subtract

SBC a—(b-c)-C subtract with carry

AND a<—bandc logical bitwise AND

OR a—borc logical bitwise OR

BIC a<— bandnotc logical bitwise AND with invert
XOR a< b exclusive-or ¢ logical bitwise exclusive-OR
MAX a«<—bmaxc larger of 2 signed integers
MIN a—bminc smaller of 2 signed integers
MOV b—c move

TST bandc test

CMP b-c compare

RCMP c-b reverse compare

RSUB a— c-b reverse subtract

BSET a— b or (1<<c) bit set

BCLR a< b and not (1<<c) bit clear

BTST b and (1<<c) bit test

BXOR a< b xor (1<<c) bit xor

BMSK a< b and ((1<<(c+1))-1) bit mask

ADD1 a—b+(c<<l) add with left shift by 1
ADD2 a—b+(c<<?2) add with left shift by 2
ADD3 a—b+(c<<3) add with left shift by 3
SUB1 a—b-(c<<1l) subtract with left shift by 1
SUB2 a—b-(c<<?2) subtract with left shift by 2
SUB3 a—b-(c<<3) subtract with left shift by 3
ASL a<—baslc arithmetic shift left

ASR a—basrc arithmetic shift right

LSR a—Dblsrc logical shift right

ROR a—brorc rotate right

Syntax for Arithmetic and Logical Operations

Including "0" as destination value and a limm as either source operand 1 @ cperand 2 expands
the generic syntax for standard arithmetic and logical instrucfidr@sgeneric instruction syntax is
used for the following arithmetic and logic operations:

SUB; AND; OR; BIC; XOR; ADD1; ADD2; ADD3; ASL; ASR and LSL

94 ARCompact™ Programmer's Reference

Instruction Set Summary Arithmetic and Logical Operations

The following instructions have the same generic instruction format, but davei 16 bit
instruction (op_S b,b,c) equivalent.

ADC; SBC; RSUB; SUB1,; SUB2; SUB3; ROR; MIN and MAX.

The full generic instruction syntax is:

op<.f> a,b,c

op<.f> a,b,u6

op<.f> b,b,s12

op<.cc><.f> b,b,c

op<.cc><.f> b,b,u6

op<.f> a,limm,c (if b=limm)
op<.f> a,b,limm (if c=limm)
op<.cc><.f> b,b,limm

op<.f> 0,b,c :;if a=0

op<.f> 0,b,u6

op<.f> 0,b,limm (if a=0, c=limm)
op<.cc><.f> 0,limm,c (if a=0, b=limm)
op_S b,b,c (reduced register range)

For example, the syntax for AND is:

AND<.f> a,b,c (a=bandc)
AND<.f> a,b,u6 (a=Dband u6)
AND<.f> b,b,s12 (b =band s12)
AND<.cc><.f> b,b,c (b=bandc)
AND<.cc><.f> b,b,u6 (b = b and u6)
AND<.f> a,limm,c (a=limm and c)
AND<.f> a,b,limm (a=band limm)
AND<.cc><.f> b,b,limm (b =b and limm)
AND<.f> 0,b,c (b and c)
AND<.f> 0,b,u6 (b and u6)
AND<.cc><.f> 0,b,limm (b and limm)
AND<.cc><.f> 0,limm,c (limm and c)
AND_S b,b,c (b=bandc)

Add Instruction

The ADD instruction extends the generic instruction syntax for 16-bructgin formats to allow
access to stack pointer (SP) and global pointer (GP), along with fumimexdiate modes. The syntax
for ADD is:

ARCompact™ Programmer's Reference 95

Arithmetic and Logical Operations

Instruction Set Summary

ADD<.f> a,b,c
ADD<.f> a,b,ué
ADD<.f> b,b,s12
ADD<.cc><.f> b,b,c
ADD<.cc><.f> b,b,u6
ADD<.f> a,limm,c
ADD<.f> a,b,limm
ADD<.cc><.f> b,b,limm
ADD<.f> 0,b,c
ADD<.f> 0,b,u6
ADD<.cc><.f> 0,b,limm
ADD<.cc><.f> 0,limm,c
ADD_S a, b, c
ADD_S ¢, b, u3
ADD_S b, b, u7
ADD_S b, b, h
ADD_S b, b, imm
ADD_S ro, GP, s11
ADD_S b, SP, u7
ADD_S SP, SP, u7

Subtract Instruction

(a = b+c)

(a =b+ub)

(b =b+s12)

(b = b+c)

(b = b+u6)

(a = limm+c)

(a = b+limm)

(b = b+limm)

(b+c)

(b+u6)

(b+limm)

(limm+c)

(a =b + c, reduced set of regs)
(c = b + u3, reduced set of regs)
(b = b + u7, reduced set of regs)
(b =b + h, full set of regs for h)
(b =b + limm)

(32-bit aligned offset)

(u7 offset is 32-bit aligned)

(u7 offset is 32-bit aligned)

The subtract instruction extends the generic instruction syntax for riétoiiction formats to allow
access to stack pointer (SP) and further immediate modes. The symaksviar SUB are:

SUB<.f> a,b,c
SUB<.f> a,b,u6
SUB<.f> b,b,s12
SUB<.cc><.f> b,b,c
SUB<.cc><.f> b,b,u6
SUB<.f> a,limm,c
SUB<.f> a,b,limm
SUB<.cc><.f> b,b,limm
SUB<.f> 0,b,c
SUB<.f> 0,b,u6
SUB<.cc><.f> 0,b,limm

96

(a=b-c)

(a = b-u6)
(b = b-s12)
(b = b-c)

(b = b-u6)
(a = limm-c)
(a = b-limm)
(b = b-limm)
(b-c)

(b-ub)
(b-limm)

ARCompact™ Programmer's Reference

Instruction Set Summary Arithmetic and Logical Operations

SUB<.cc><.f> 0,limm,c (limm-c)

SUB_S b,b,c (b = b-c, reduced set of regs)
SUB_S.NE b,b,b (If Z=0 Clear b, reduced set of regs)
SUB_S b, b, us (b = b-ub5, reduced set of regs)
SUB_S c, b, u3 (c = b-u3, reduced set of regs)
SUB_S SP, SP, u7 (u7 offset is 32-bit aligned)

Reverse Subtract Instruction

The Reverse Subtract instruction (RSUB) is special in that the sourdesbarce2 operands are
swapped over by the ARCompact based processor ALU before the subtract operation.

The syntax of RSUB, however, stays the same as that for the generic ALUaoperat

RSUB<.f> a,b,c (a=c-b)
RSUB<.f> a,b,u6 (a = u6-b)
RSUB<.f> b,b,s12 (b =s12-b)
RSUB<.cc><.f> b,b,c (b =c-b)
RSUB<.cc><.f> b,b,ué (b = u6-b)
RSUB<.f> a,limm,c (a = c-limm)
RSUB<.f> a,b,limm (a = limm-b)
RSUB<.cc><.f> b,b,limm (b = limm-b)
RSUB<.f> 0,b,c (c-b)
RSUB<.f> 0,b,u6 (u6-b)
RSUB<.cc><.f> 0,b,limm (limm-b)
RSUB<.cc><.f> 0,limm,c (c-limm)

Test and Compare Instructions

TST, CMP and RCMP have special instruction encoding in that the destinalamays ignored and
the instruction result is always discarded. The flags are alsgtyaccording to the instruction result
(implicit ".f*, and encoded with F=1). RCMP is special in that the sduaoel source2 operands are
swapped over by the ARCompact based processor ALU before the subtract operation.

Register-Register (TST, CMP & RCMP)
TheGeneral Operations Register-Regigtgmaton pagel42is implementedwhere the destination
field A is ignored, and provides the following redundant forf@t3 ST, CMP and RCMP:

op b,c (b=source 1, c=source 2.Redundant format €eaditional Register
format on pag®8)

op b,limm (b=source 1, c=limm=source 2. Redundant format Seaditional
Registerformat on pag®8)

op limm,c (limm=source 1, c=source 2. Redundant format@eaditional Register

ARCompact™ Programmer's Reference 97

Arithmetic and Logical Operations Instruction Set Summary

format on pag®8)

op limm,limm (limm=source 1, limm=source 2.. Redundant formatGeeditional
Registerformat on pag®9)

Register with Unsigned 6-bit Inmediate (TST, CMP & RCMP)

TheGeneral Operations Register with Unsigned 6-bit Immediateaton pagel43is implemented,
where the destination field A is ignored, and provides the following redtfatamatsfor TST, CMP
and RCMP:

op b,u6 (b=source 1, ué=source 2. Redundant format, Seaditional Register
with Unsigned 6-bit Immediatt®rmat on pagé®8.)

op limm,u6 (limm=source 1, u6=source 2. Redundant format,@erditional Register
with Unsigned 6-bit Immediat®rmat on pagé®8.)

Register with Signed 12-bit Immediate (TST, CMP & R CMP)
TheGeneral Operations Register with Signed 12-bit Inmed@xtaat on pagé43 provides the
following syntax for TST, CMP and RCMP:

op b,s12 (b=source 1, s12=source 2)

op limm,s12 (limm=source 1, s12=source 2. Not useful format)

Conditional Register (TST, CMP & RCMP)
The General Operations Conditional Regidtenmat on pagé43 provides the following syntax for
TST, CMP and RCMP:

op<.cc> b,c (b=source 1, c=source 2)

op<.cc> b,limm (b=source 1, c=limm=source 2)

op<.cc> limm,c (limm=source 1, c=source 2)

op<.cc> limm,limm (limm=source 1, limm=source 2. Not useful format)

Conditional Register with Unsigned 6-bit Immediate (TST, CMP & RCMP)
TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé43
provides the following syntax for TST, CMP and RCMP:

op<.cc> b,u6 (b=source 1, u6=source 2)

op<.cc> limm,u6 (limm=source 1, ué=source 2. Not useful format)
The syntax for test and compare instructions is therefore:

TST b,s12 (b &s12)

TST<.cc> b,c (b &c)

TST<.cc> b,u6 (b & ub)

TST<.cc> b,imm (b & limm)

TST<.cc> limm,c (limm &c)

TST_S b,c (b&c, reduced set of regs)
CMP b,s12 (b-s12)

CMP<.cc> b,c (b-c)

98 ARCompact™ Programmer's Reference

Instruction Set Summary Arithmetic and Logical Operations

CMP<.cc> b,u6 (b-ub)

CMP<.cc> b,imm (b-limm)

CMP<.cc> limm,c (limm-c)

CMP_S b, h (b-h, full set of regs for h)
CMP_S b, limm (b-limm, full set of regs for h)
CMP_S b, u7 (b-u7, reduced set of regs)
RCMP b,s12 (s12-b)

RCMP<.cc> Db,c (c-b)

RCMP<.cc> b,u6 (u6-b)
RCMP<.cc> blimm (limm-b)
RCMP<.cc> limm,c (c-limm)

Bit Test Instruction

The BTST instruction only requires two source operands. BTST hasial $psttuction encoding in
that the destination is always ignored and the instruction resutaysbiscarded. The second
source operand selects the bit position to test (0 to 31), which can be covengslibyngediate
number. The status flags are always set according to the instructidr(ireplitit ".f*, and encoded
with F=1).

Register-Register (BTST)
TheGeneral Operations Register-Regigtgmaton pagel42is implementedwhere the destination
field A is ignored, and provides the following redundant forfat8TST:

BTST b,c (b=source 1, c=source 2.Redundant format Seaditional Registeformat
on pagel00
BTST b,limm (b=source 1, c=limm=source 2. Redundant format Seaditional Register

with Unsigned 6-bit Immediat®rmat on pagd.00)

BTST limm,c (limm=source 1, c=source 2. Redundant format Seaditional Register
format on pagd.00

BTST limm,limm (limm=source 1, imm=source 2. Redundant formatGegeditional
Register with Unsigned 6-bit Immedidtrmat on pagd.00)

Register with Unsigned 6-bit Immediate (BTST)
TheGeneral Operations Register with Unsigned 6-bit Immediigiteat on pagel43is implemented,
where the destination field A is ignored, and provides the following redufatamatsfor BTST:

BTST b,u6 (b=source 1, ué=source 2. Redundant format, Seaditional Reqister
with Unsigned 6-bit Immediat®rmat on pagd.00)

BTST limm,u6 (limm=source 1, ué=source 2. Redundant format,Geeditional Register
with Unsigned 6-bit Immediat®rmat on pagd.00)

Register with Signed 12-bit Immediate (BTST)
TheGeneral Operations Register with Signed 12-bit Imnmedaateat on pagé43 provides the
following redundant syntax for BTST:

ARCompact™ Programmer's Reference 99

Arithmetic and Logical Operations Instruction Set Summary

BTST b,s12 (b=source 1, s12=source 2. Redundant format,Geeditional
Register with Unsigned 6-bit Immedidtrmat on pagd.00)

BTST limm,s12 (limm=source 1, s12=source 2. Redundant format Gaeditional
Register with Unsigned 6-bit Immedidtrmat on page.00)

Conditional Register (BTST)
TheGeneral Operations Conditional Regidtmmat on pagé43 provides the following syntax for
BTST:

BTST<.cc> b,c (b=source 1, c=source 2)

BTST<.cc> b,limm (b=source 1, c=limm=source 2. Redundant format, Geaditional
Register with Unsigned 6-bit Immedidtamat on pagd.00)

BTST<.cc> limm,c (limm=source 1, c=source 2)

BTST<.cc> limm,limm (limm=source 1, limm=source 2. Redundant format,Gesrditional

Register with Unsigned 6-bit Immedidtamat on pagd.00)

Conditional Register with Unsigned 6-bit Immediate (BTST)
TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44
provides the following syntax for BTST:

BTST<.cc> b,u6 (b=source 1, ué=source 2)

BTST<.cc> limm,u6 (limm=source 1, u6=source 2. Not useful format)

Single Bit Instructions

The single bit instructions (BSET, BCLR, BXOR and BMSK) instructionsirequwo source
operands and one destination operand. The second source operand selects therbtbgesit (0 to
31) which can be covered by a ué immediate number.

BSET, BCLR, BXOR and BMASK are bit-set, bit-clear, bit-xor and bitkriastructions,
respectively.

Register-Register (BSET, BCLR, BXOR & BMSK)
TheGeneral Operations Register-Regigtgmaton pagel42is implemented and provides the
following formatsfor BSET, BCLR, BXOR and BMSK:

op<.f> a,b,c

op<.f> a,limm,c (if b=limm)

op<.f> a,b,limm (if c=limm. Redundant format s&gegister with Unsigned 6-bit
Immediateformat on pagd.01)

op<.f> a,limm,limm (if b=c=limm. Redundant format sé&egister with Unsigned 6-bit
Immediateformat on pagéd.01)

op<.f> 0,b,c (if a=0)

op<.f> 0,limm,c (Redundant format, s€eonditional Registeformat on pagéd.01)

op<.f> 0,b,limm (if a=0, c=limm. Redundant format s&egister with Unsigned 6-bit
Immediateformat on pagd.01)

op<.f> O,limm,limm (if a=0, b=c=limm. Redundant format s&»nditional Reqister with

Unsigned 6-bit Immediattrmat on pagéd.01)

100 ARCompact™ Programmer's Reference

Instruction Set Summary Arithmetic and Logical Operations

Register with Unsigned 6-bit Immediate (BSET, BCLR, BXOR & BMSK)
TheGeneral Operations Register with Unsigned 6-bit Immedioateat on pagd43is implemented
and provides the following formatsr BSET, BCLR, BXOR and BMSK:

op<.f> a,b,u6

op<.f> alimm,ué (Not useful format)

op<.f> 0,b,u6

op<.f> 0,limm,u6 (Redundant format sgeonditional Register with Unsigned 6-bit

Immediateformat on pagé.01)

Register with Signed 12-bit Immediate (BSET, BCLR, BXOR & BMSK)
TheGeneral Operations Register with Signed 12-bit Immediaxteat on pagd43provides the
following redundant syntax for BSET, BCLR, BXOR and BMSK:

op<.f> b,b,s12 (Redundant format sgeonditional Register with Unsigned 6-bit
Immediateformat on pagé.01)

op<.f> 0,imm,s12 (Redundant format sé&@onditional Register with Unsigned 6-bit
Immediateformat on pagd01l)

Conditional Register (BSET, BCLR, BXOR & BMSK)
The General Operations Conditional Regidtanmat on pagé43provides the following syntax for
BSET, BCLR, BXOR and BMSK:

op<.cc><.f> Db,b,c

op<.cc><.f> 0,limm,c

op<.cc><.f> Db,b,limm (Redundant format sgeonditional Register with Unsigned 6-bit
Immediateformat on pagé.01)

op<.cc><.f> O,limm,limm (Redundant format s&eonditional Register with Unsigned 6-bit
Immediateformat on pagé.01)

Conditional Register with Unsigned 6-bit Immediate (BSET, BCLR, BXOR & BMSK)
TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44
provides the following syntax for BSET, BCLR, BXOR and BMSK:

op<.cc><.f> Db,b,u6

op<.cc><.f> 0,limm,u6 (Not useful format)

The syntax for the single bit operations is therefore:

BSET<.f> a,b,c (a=Db|(1<<c))
BSET<.cc><.f> b,b,c (b=Db| (1<<c))

BSET<.f> a,b,u6 (a=Db| (1<<ub))
BSET<.cc><.f> b,b,u6 (b =b | (1<<ub))

BSET_S b, b, uS (uses reduced set of regs)
BCLR<.f> a,b,c (a=b & ~(1<<c))
BCLR<.cc><.f> b,b,c (b =b & ~(1<<c))

ARCompact™ Programmer's Reference 101

Arithmetic and Logical Operations

Instruction Set Summary

BCLR<.f>
BCLR<.cc><.f>
BCLR_S

BTST<.cc>
BTST<.cc>
BTST_S

BXOR<.f>
BXOR<.cc><.f>
BXOR<.f>
BXOR<.cc><.f>

BMSK<.f>
BMSK<.cc><.f>
BMSK<.f>
BMSK<.cc><.f>
BMSK_S

a,b,u6
b,b,u6
b, b, ub

b,c
b,u6
b, ub

a,b,c
b,b,c
a,b,u6
b,b,u6

a,b,c
b,b,c
a,b,u6
b,b,u6
b, b, us

Barrel Shift/Rotate

The barrel shifter provides a number of instructions that will allowogreyand to be shifted left or
right by up to 32 positions in one cycle, the result being available fa-baitk to any core register.
Single bit shift instructions are also provided as single operand instrsies shown ifiable 32on

(a=Db & ~(1<<ub))
(b =b & ~(1<<ub))

(uses reduced set of regs)

(b & (1<<c))
(b & (1<<u6))

(uses reduced set of regs)

(a = b xor (1<<c))
(b = b xor (1<<c))
(a = b xor (1<<u6))
(b = b xor (1<<u6))

(a=b & ((1<<(c+1))-1))
(b =b & ((1<<(c+1))-1))
(a=b & ((1<<(u6+1))-1))
(b=b & ((1<<(u6+1))-1))

(uses reduced set of regs)

pagelO0s

Table 30 Barrel Shift Operations

Instruction Operation Description

ASR L multiple arithmetic shift right, sign filled
| dest

LSR | \I multiple logical shift right, zero filled

— i

ROR LL — multiple rotate right
A
| dest

ASL multiple arithmetic shift left, zero filled

[l dest Jo] +o

MSB

The ROR instruction does not have any 16 bit instruction (egh,§ equivalent. The ASR, LSR and
ASL instructions extend the generic instruction syntax to include:

op_S
op_S

102

b,b,u5
b,b,c

ARCompact™ Programmer's Reference

Instruction Set Summary

Arithmetic and Logical Operations

ASR and LSR additionally provide the following syntax

op_S c,b,u3
The syntax for the barrel shifter is:
ASL<.f> a,b,c
ASL<.f> a,b,u6
ASL<.f> b,b,s12
ASL<.cc><.f> b,b,c
ASL<.cc><.f> b,b,u6
ASL<.f> a,limm,c
ASL<.f> a,b,limm
ASL<.cc><.f> b,b,limm
ASL<.f> 0,b,c
ASL<.f> 0,b,u6
ASL<.cc><.f> 0,limm,c
ASL_S c,b,u3
ASL_S b,b,c
ASL_S b,b,us
ASR<.f> a,b,c
ASR<.f> a,b,ué
ASR<.f> b,b,s12
ASR<.cc><.f> b,b,c
ASR<.cc><.f> b,b,u6
ASR<.f> a,limm,c
ASR<.f> a,b,limm
ASR<.cc><.f> b,b,limm
ASR<.f> 0,b,c
ASR<.f> 0,b,u6
ASR<.cc><.f> 0,limm,c
ASR_S c,b,u3
ASR_S b,b,c
ASR_S b,b,u5
LSR<.f> a,b,c

ARCompact™ Programmer's Reference

(a=b<<c)

(a = b<<ub)
(b = b<<s12)
(b = b<<c)

(b = b<<ub)
(a = limm<<c)
(a = b<<limm)
(b = b<<limm)
(b<<c)
(b<<ub)
(limm<<c)

(c = b<<u3l)
(b =b<<c)
(b=b<<ub)

(a = b>>c)

(a = b>>ub)
(b = b>>s12)
(b =b>>c)

(b = b>>u6)
(a = limm>>c)
(a = b>>limm)
(b = b>>limm)
(b>>c)
(b>>ub)
(limm>>c)

(c = b>>u3)
(b = b>>c)
(b=b>>ub)

(a=b>>c)

103

Single Operand Instructions

Instruction Set Summary

LSR<.f> a,b,u6
LSR<.f> b,b,s12
LSR<.cc><.f> b,b,c
LSR<.cc><.f> b,b,u6
LSR<.f> a,limm,c
LSR<.f> a,b,limm
LSR<.cc><.f> b,b,limm
LSR<.f> 0,b,c
LSR<.f> 0,b,u6
LSR<.cc><.f> 0,limm,c
LSR_S b,b,c
LSR_S b,b,u5
ROR<.f> a,b,c
ROR<.f> a,b,u6
ROR<.f> b,b,s12
ROR<.cc><.f> b,b,c
ROR<.cc><.f> b,b,u6
ROR<.f> a,limm,c
ROR<.f> a,b,limm
ROR<.cc><.f> b,b,limm
ROR<.f> 0,b,c
ROR<.f> 0,b,u6
ROR<.cc><.f> 0,limm,c

(a = b>>ub)
(b = b>>s12)
(b = b>>c)
(b = b>>ub)

(a = limm>>c)
(a = b>>limm)
(b = b>>limm)
(b>>c)
(b>>ub)
(limm>>c)

(b = b>>c)

(b = b>>u6)

(a = (b<<(31-c)):(b>>c))

(a = (b<<(31-u6)):(b>>ub))

(b = (b<<(31-512)):(b>>s12))
(b = (b<<(31-¢)):(b>>c))

(b = (b<<(31-u6)):(b>>ub))

(@ = (limm<<(31-c)):(limm>>c))
(@ = (b<<(31-limm)):(b>>limm))
(b = (b<<(31-limm)):(b>>limm)
((b<<(31-c)):(b>>c))
((b<<(31-u6)):(b>>ub))
((b<<(31-limm)):(limm>>c))

Single Operand Instructions

Some instructions require just a single source operand. These ingoaxt@nd and rotate
instructions. These instructions are of the fawrrw- op cwhere the destination (b) is replaced by the
operation (op) on the operand source (c). Single operand instructions can Isgsthe f

The following tables shows the move, extend, negate, rotate and shift aperati

Table 31 Single operand: moves and extends

Instruction Operation Description
MOV Move
S
[Gt]
MSB LSB
104 ARCompact™ Programmer's Reference

Instruction Set Summary

Single Operand Instructions

Instruction Operation Description
SEX o Sign extend byte or word
I S
EXT o Zero extend byte or word
I S——
NOT Logical NOT
NEG Negate
y 3
ABS E' Absolute
.
e
=S
FLAG = Set flags
Table 32 Single operand: Rotates and Shifts
Instruction Operation Description
ASL = Arithmetic shift left by one
I — L R
RLC Rotate left through carry
7
ASR - | Arithmetic shift right by one
7‘ dest \TE
MSB LSB
[sc] i i i
LSR < \‘\t Logical shift right by one
o —»[o] dest I[c
ROR : 5 Rotate right
N
b dest][c
RRC : - Rotate right through carry
AW AW
] dest <]
MSB LSB

The following instructions do not have a 16 bit instruction (op_S b,c) equivalent.

ROR, RRC and RLC;
Single operand instruction syntax is:
op<.f> b,c
op<.f> b,u6
op<.f> b,limm
op<.f> 0,c
op<.f> 0,u6

ARCompact™ Programmer's Reference

105

Single Operand Instructions Instruction Set Summary

op<.f> 0,limm
op_S b,c

Move to Register Instruction

The move instruction, MOV, has a wider syntax than other single operand instsuayi being
encoded as a general ALU instruction. The first operand is only useddesth®tion register; the
final operand is used as the source operand. Using the limm encoding in the fastidjzdd is
ignored in just the same way as it is if used in the destination of agtargtions, causing the MOV
instruction result to be discarded.

Register-Register (MOV)

TheGeneral Operations Register-Regigtemat on pagé42is implemented, where the destination
field A is ignored and the B field is used instead as the destinatiataredine MOV instruction
provides the following redundant formats:

MOV<.f> b,c (b=destination, c=source. Redundant format, €emditional Register
format on page.06)

MOV<.f> b,limm (b=destination, c=limm=source. Redundant format, €eaditional
Registerformat on pagd.06)

MOV<.f> 0,c (b=limm, c=source. Redundant format, geenditional Registeformat on
pagel106)

MOV<.f> 0,limm (if b=limm, b= c=limm=source. Redundant format, eenditional Register
format on page.06)

Register with Unsigned 6-bit Imnmediate (MOV)

TheGeneral Operations Register with Unsigned 6-bit Immedaxteat on pagé43is implemented,
where the destination field A is ignored and the B field is used inatetde destination register. The
MOV instruction provides the following redundant formats:

MOV<.f> b,ué (b=destination, u6=source. Redundant format, €eaditional Register with
Unsigned 6-bit Immediatlormat on pagd.07.)

MOV<.f> 0,u6 (b=limm, u6=source. Redundant format, $genditional Register with
Unsigned 6-bit Immediattormat on pagd.07.)

Register with Signed 12-bit Immediate (MOV)
TheGeneral Operations Register with Signed 12-bit Immediateat on pagé43 provides the
following syntax for the MOV instruction:

MOV<.f> b,s12 (b=destination, s12=source)
MOV<.f> 0,512 (b=limm, s12=source)

Conditional Register (MOV)
TheGeneral Operations Conditional Regidtmmat on pagé43 provides the following syntax for
the MOV instruction:

MOV<.cc><.f> b,c (b=destination, c=source)
MOV<.cc><.f> b,limm (b=destination, c=limm=source)
MOV<.cc><.f> 0,c (b=limm, c=source)
MOV<.cc><.f> 0,limm (if b=limm, b= c=limm=source)

106 ARCompact™ Programmer's Reference

Instruction Set Summary Single Operand Instructions

Conditional Register with Unsigned 6-bit Immediate (MOV)
TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44
provides the following syntax for the MOV instruction:

MOV<.cc><.f> b,u6 (b=destination, u6=source)
MOV<.cc><.f> 0,u6 (b=limm, ué=source)
16-bit Instruction, Move with High Register (MOV)

The Mov/Cmp/Add with High Register, 0xOE, [0x00 - Ox(8fmat on pagé&56 provides the
following syntax for the MOV instruction:

MOV_S b, h (b = destination, h=source. Full range of regs for h)
MOV_S b, limm (b = destination, limm=source)
MOV_S h, b (h = destination, b = source. Full range of regs for h)

16-bit Instruction, Move Immediate (MOV)
TheMove Immediate, Ox1Bormat on pagé65 provides the following syntax for the MOV
instruction

MOV_S b, u8 (b = destination, u8 = source. Reduced set of regs for b)

Flag Instruction

The FLAG instruction has a special syntax that ignores the destinafidnThe FLAG instruction
always updates the status flags.

Register-Register (FLAG)

TheGeneral Operations Register-Regigtemat on pagé42is implemented, where the destination
field A is ignored, the B field is ignored and the C field is used as the sagister. The FLAG
instruction provides the following redundant formats:

FLAG c (a = ignored, b= ignored, c=source. Redundant format, see
Conditional Registeformat on pagd.07.)

FLAG b,limm (a = ignored, b= ignored, c=limm=source. Redundant format, see
Conditional Registeformat on pagd.07.)

Register with Unsigned 6-bit Immediate (FLAG)

TheGeneral Operations Register with Unsigned 6-bit Immeditataat on page 143 is implemented,
where the destination field A is ignored, the B field is ignored and the uédate field is used as
the source value. The FLAG instruction provides the following redundantt&rma

FLAG ué (a = ignored, b= ignored, u6=source. Redundant format, see
Conditional Register with Unsigned 6-bit Immedi&diamat on
pagel08)

Register with Signed 12-bit Immediate (FLAG)
TheGeneral Operations Register with Signed 12-bit Imnmedaateat on pagd43 provides the
following syntax for the FLAG instruction:

FLAG s12 (b = ignored, s12=source)

Conditional Register (FLAG)
TheGeneral Operations Conditional Regidtmmat on pagé43 provides the following syntax for
the FLAG instruction:

ARCompact™ Programmer's Reference 107

Zero Operand Instructions Instruction Set Summary

FLAG<.cc> c (b=ignored, c=source)
FLAG<.cc> limm (b=ignored, c=limm=source)
Conditional Register with Unsigned 6-bit Immediate (FLAG)

TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44
provides the following syntax for the FLAG instruction:

FLAG<.cc> ué (b=ignored, u6=source)

Negate Operation

Negate is a separate instruction in 16-bit instruction format and iglptbin 32-bit instruction
format as an encoding of the reverse subtract instruction using an wuh8ipitémmediate value set
to 0.

The syntax for negate operations is:

NEG_S b,c (b =0-c, reduced set of regs)

NEG<.f> a,b (encoded as RSUB<.f> a,b,0, where 0 is u6)
NEG<.cc><.f> b,b (encoded as RSUB<.cc><.f> b,b,0, where 0 is u6)

Zero Operand Instructions

Some instructions require no source operands or destinations. The ARCtSdpagpports these
instructions using the forimp cwhere the operand source ¢ supplies information for the instruction.
Zero operand instructions can set the flags.

Table 33 Basecase ZOP instructions

Instruction Operation Description

NOP No operation Null Instruction

SLEEP Sleep until interrupt or restart Sleep

SWi Raisdnstruction Errorexception Software interrupt

BRK Stop and flush processor pipeline Breakpoint Instruction

TRAPO raise an exception of value O Software Breakpoint Exception

TRAP_S raise an exception of value n User Exception

UNIMP_S Unimplemented Instruction Raiselnstruction ErrorfException

RTIE Return from interrupt/exception Return from interrupt/exception

SYNC Synchronize with memory Wait for all data-based memory
transactions to complete

Zero operand instruction syntax is:

NOP (encoded as MOV 0,0)

NOP_S (16-bit instruction form)

SLEEP ué

SWi (encoded as SWI 0, i.e. "swi" with u6=0)

108 ARCompact™ Programmer's Reference

Instruction Set Summary Zero Operand Instructions

BRK_S (Breakpoint instruction, 16-bit format)
BRK (Breakpoint instruction, 32-bit format)
TRAPO (encoded as SWI 0, i.e. "swi" with u6=0)
TRAP_S ué

UNIMP_S

RTIE

SYNC

op<.f> c

op<.f> ué

op<.f> limm

Breakpoint Instruction

The breakpoint instruction is a single operand basecase instructionlthghé@rogram code when
it is decoded at stage one of the pipeline. This is a very basic delbnugtingt which stops the
ARCompact based processor from performing any instructions beyond the bn¢aRjmie the
breakpoint is a serializing instruction, the pipeline is also édskpon decode of this instruction.

Sleep Instruction

The sleep mode is entered when the ARCompact based processor encountdtg Ehan&ruction.

It stays in sleep mode until an interrupt or restart occurs. Power consanspteduced during sleep
modesincethe pipeline ceases to change state, and the RAMs are disabled. Meragubwetion is
achieved when clock gating option is used, whereby all non-essential closkgtaheed off. The
SLEEP instruction is serializing which means the SLEEP instructidraviiplete and then flush the
pipeline.

Software Interrupt Instruction

The execution of an undefined extension instruction in ARCompact based precasss an
Instruction Errorexception. A new basecase instruction is introduced that also rassexdéption.
Once executed, the control flow is transferred from the user progrdmm systeninstruction Error
exception handler.

The SWI instruction is a single operand instruction in the same cléss 88EEP and BRK
instructions and takes no operands or flags. The SWI instruction cannediatety follow a BRcc
or BBITn instruction.

While the mnemonic SWI is available, its use is not recommended in the ARCot@8sr, TRAPO
should be used instead which raises a trap exception.

Trap Instruction

The instructions, TRAP_S and TRAPO, raise an exception and call any ogesasiem in kernel
mode. Traps can be raised from user or kernel modes.

ARCompact™ Programmer's Reference 109

Branch Instructions Instruction Set Summary

Return from Interrupt/Exception Instruction

The return from interrupt/exception instruction, RTIE, allows exit fronriapt and exception
handlers, and to allow the processor to switch from kernel mode to user mode.

Synchronize Instruction

The synchronize instruction, SYNC, waits until all data-based memorgtapes (LD, ST, EX,
cache fills) have completed.

Branch Instructions

Due to the pipeline in the ARCompact based processor, the branch instructionteds effect
immediately, but after a one cycle delay. The execution of the imrabdialowing instruction after
the branch can be controlled. The following instruction is said to be ttethg slot The modes for
specifying the execution of the delay slot instruction are indicatelebgptional .d field according to
the following table.

Table 34 Delay Slot Execution Modes

Mode Operation
ND Only execute the next instruction when not jumping (default)
D Always execute the next instruction

Since the execution of the instruction that is in the delay slot isodledtby the delay slot mode, it
should never be the target of any branch or jump instruction.

The condition codes that are available for conditional branch instnacti@ shown iffable 50on
pagel3s

Branch Instructions

Conditional Branch (Bcc) has a branch range of +1MB, whereas unconditioneh §&) has larger
range of +16MB. The branch target address is 16-bit aligned.

The syntax of the branch instruction is shown below.

Bce<.d> s21 (branch if condition is true)
B<.d> s25 (unconditional branch far)
B S s10 (unconditional branch)
BEQ_S s10

BNE_S s10

BGT_S s7

BGE_S s7

BLT_S s7

BLE_S s7

BHI_S s7

BHS_S s7

BLO S s7

BLS S s7

110 ARCompact™ Programmer's Reference

Instruction Set Summary Branch Instructions

Branch and Link Instructions

Conditional Branch and Link (BLcc) has a branch range of +1MB, whereas uncpadi&ranch and
Link (BL) has larger range of +16MB. The target address must be 32¢gnied!

The syntax of the branch and link instruction is shown below.

BLcc<.d> s21 (branch if condition is true)
BL<.d> s25 (unconditional branch far)
BL_S s13 (unconditional branch)

Branch On Compare/Bit Test Register-Register

Branch on Compare (BRcc) and Branch on Bit Test (BBITO, BBIT1) have a branehabti256B.
The branch target address is 16-bit aligned.

The BRcc instruction is similar in execution to a normal compare instry&idi®) with the addition
that a branch occurs if the condition is met. No flags are updated and no AliUsresiiten back to
the register file. A limited set of condition code tests arel@ai for the BRcc instruction as shown
in the following table. Note that additional condition code tests arealaihrough the effect of
reversing the operands, as shown at the end of the table.

Table 35 Branch on compare/test mnemonics

Mnemonic Condition

BREQ Branch if b-c is equal

BRNE Branch if b-c is not equal

BRLT Branch if b-c is less than

BRGE Branch if b-c is greater than or equal

BRLO Branch if b-c is lower than

BRHS Branch if b-c is higher than or same

BBITO Branch if bit ¢ in register b is clear

BBIT1 Branch if bit ¢ in register b is set

Table 36 Branch on compare pseudo mnemonics, regist er-register

Mnemonic Condition

BRGT b,u6,s9 Branch if b-c is greater than (encode as BRLT c,b,s9)
BRLE b,u6,s9 Branch if b-c is less than or equal (encode as BRGE c,b,s9)
BRHI b,u6,s9 Branch if b-c is higher than (encode as BRLO c,b,s9)

BRLS b,u6,s9 Branch if b-c is lower than or same (encode as BRHS c,b,s9)

Assembler pseudo-instructions for missing conditions using immediate dashoavn below. Note
that these versions have a reduced immediate range of O to 62 instead of O to 63.

Table 37 Branch on compare pseudo mnemonics, regist er-immediate

Mnemonic Condition

BRGT b,u6,s9 Branch if b-u6 is greater than (encode as BRGE b,u6+1,s9)

BRLE b,u6,s9 Branch if b-u6 is less than or equal (encode as BRLT b,u6+1,s9)
BRHI b,u6,s9 Branch if b-u6 is higher than (encode as BRHS b,u6+1,s9)

BRLS b,u6,s9 Branch if b-u6 is lower than or same (encode as BRLO b,u6+1,s9)

ARCompact™ Programmer's Reference 111

Jump Instructions Instruction Set Summary

E In the ARCtangent-A5 processor there are two delay slots due to the brangingax cycle later
= than other branches. Only one delay slot can be optionally executed by using thédy3late
= mode. The second delay slot is always nullified if the branch is taken.

I Due to the ARC 600 processor pipeline there are 3 delay slots due to the bramihgaccycle
I later than other branches. The first delay slot position can be optioredlyted using the ".D" delay
slot mode. The second and third delay slots are always nullified if thehbisataken.

|
The syntax of the branch on compare and branch on bit test instructions are stoown bel
BRcc<.d> b,c,s9 (branch if reg-reg compare is true, swap regs if inverse condition
required)

BRcc<.d> b,u6,s9 (branch if reg-immediate compare is true, use "immediate+1" if a
missing condition is required)

BRcc b,limm,s9 (branch if reg-limm compare is true)
BRcc limm,c,s9 (branch if limm-reg compare is true)
BREQ_S b,0,s8 (branch if register is 0)

BRNE_S b,0,s8 (branch if register is non-zero)
BBITO<.d> b,u6,s9 (branch if bit u6 in reg b is clear)
BBIT1l<.d> b,u6,s9 (branch if bit u6 in reg b is set)
BBITO<.d> b,c,s9 (branch if bit c in reg b is clear)
BBIT1<.d> b,c,s9 (branch if bit c in reg b is set)

Jump Instructions

Due to the pipeline in the ARCompact based processor, the jump instruction dtzée reffect
immediately, but after a one-cycle delay. The execution of the immigdiaitewing instruction after
the jump can be controlled. The following instruction is said to be iddlay slot The modes for
specifying the execution of the delay slot instruction are indicatéldebgptional .d field according to
the following table.

Table 38 Delay Slot Execution Modes

Mode Operation
ND Only execute the next instruction whesot jumping (default)
D Always execute the next instruction

Since the execution of the instruction that is in the delay slot is dewltimf the delay slot mode, it
should never be the target of any branch or jump instruction.

NOTE If the jump instruction is used with long immediate data then the delay slot execution mechanism
does not apply.

When source registers ILINK1 and ILINK2 are used with the Jump instructigratbdreated in a
special way to allow flag restoring when returning from interrupt hagdbutines or exceptions
handling routines.

112 ARCompact™ Programmer's Reference

Instruction Set Summary Jump Instructions

Summary of Jumps and Special Format Instructions

Table 39 Basecase Jump Instructions

Instruction Operation Description

Jcc pc— c jump

Jce.D pc— C jump with delay slot

JLcc blink<— next_pc; pe— ¢ jump and link

JLcc.D blink— next_pc; pc— ¢ jump and link with delay slot

Syntax for Jumps and Special Format Instructions

Jump instructions can target any address within the full memory addapsé¥ut the target address is
16-bit aligned.

The syntax for the jump and special format instructions is similfietbasecase ALU operation
syntax, but only source operand 2 is used.

The Jump instruction syntax is:

Jce<.d> [c] (PC=¢)

Jcc limm (PC = limm)

Jece<.d> ué (PC = u6)

J<.d> sl2 (PC =5s12)

Jcc.F [ILINK1] (PC = ILINK1: STATUS32 = STATUS32_L1)
Jcc.F [ILINK2] (PC = ILINK2: STATUS32 = STATUS32_L2)
J S<.d> [b] (reduced set of registers)

J S<.d> [blink] (PC = BLINK)

JEQ_S [blink] (PC = BLINK)

JNE_S [blink] (PC = BLINK)

Jump and Link instruction syntax is:

JLcec<.d> [c] (PC = c: BLINK = next_pc)

JLcc limm (PC = limm: BLINK = next_pc)

JLcc<.d> ué (PC = u6: BLINK = next_pc)

JL<.d> sl2 (PC =s12: BLINK = next_pc)

JL_S<.d> [b] (reduced set of registers)

Zero Overhead Loop Instruction

The ARCompact based processor has the ability to perform loops without arg lokslay incurred
by the count decrement or the end address comparison. Zero delay loops ardtbethepregisters
LP_START, LP_END and LP_COUNT. LP_START and LP_END can be directly matgguhgth
the LR and SR instructions and LP_COUNT can be manipulated in the sanas vemgjsters in the
core register set.

The special instruction LP is used to set up the LP_START and LP_ENDrnigle isistruction. The
LP instruction is similar to the branch instruction. Loops can be condity entered. If the condition

ARCompact™ Programmer's Reference 113

Aucxiliary Register Operations Instruction Set Summary

code test for the LP instruction retufatse,then a branch occurs to the address specified in the LP
instruction. The branch target address is 16-bit aligned. If the conditioniesidstrue, then the
address of the next instruction is loaded into LP_START register andPtieND register is loaded
by the address defined in the LP instruction.

The loop instruction, LP, has a special syntax that ignores the destifiakil, and only requires one
source operand. The source operand is a 16-bit aligned target address value.

Register-Register (LP)
TheGeneral Operations Register-Regigtgmat on pagé42is not implemented for the LP
instruction. Using this format will raise émstruction Errorexception.

Register with Unsigned 6-bit Immediate (LP)

TheGeneral Operations Register with Unsigned 6-bit Immeditateat on pagé43is implemented,
where the destination field A is ignored, the B field is ignored and thediate field is used as the
source value. The source value is a 16-bit aligned address, which provitidmtriag redundant
syntax for the LP instruction:

LP u7 (a = ignored, b= ignored, u7=source. Redundant format, see
Conditional Register with Unsigned 6-bit Immedi&diamat on
pagell4)

Register with Signed 12-bit Immediate (LP)

TheGeneral Operations Register with Signed 12-bit Immedigataat on pagd43is implemented,
where the B field is ignored and the immediate field is used astineesvalue. The source value is a
16-bit aligned address, which provides the following syntax for the LP instnucti

LP s13 (b = ignored, s13=source. aux_reg[LP_END] = pc + s13 and
aux_reg[LP_START] = next_pc)

Conditional Register (LP)
TheGeneral Operations Conditional Regidtmmat on pagé43is not implemented for the LP
instruction. Using this format will raise émstruction Errorexception.

Conditional Register with Unsigned 6-bit Immediate (LP)

TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44is
implemented. where the B field is ignored and the immediate field isagsye source value. The
source value is a 16-bit aligned address, which provides the following sgntiéve fLP instruction:

LP<.cc> uv (b=ignored, u7=source.
if cc false pc = pc + u7;
if cc true aux_reg[LP_END] = pc + u7 and aux_reg[LP_START] =
next_pc)

Auxiliary Register Operations

The access to the auxiliary register set is accomplishedhetspecial load register and store register
instructions (LR and SR). They work in a similar way to the normal load araistbructions except
that the access is accomplished in a single cycle due to the faatithess computation is not carried
out and the scoreboard unit is not used. The LR and SR instruction do not casifikesthlk normal
load and store instructions but in the same cases that arithmetic anddtrictions would cause a
stall.

114 ARCompact™ Programmer's Reference

Instruction Set Summary Load/Store Instructions

Access to the auxiliary registers are limited to 32 bit (long word) amdl the instructions aret
conditional.

Table 40 Auxiliary Register Operations

Instruction Operation Description
LR b — aux.reg[c] load from auxiliary register
SR aux.reg[c} b store to auxiliary register

Load from Auxiliary Register

The load from auxiliary register instruction, LR, has one source and diveaties register. The LR
instruction is not a conditional instruction and usesGhaeral Operations Register-Regigtemat
on pagel42,the General Operations Register with Unsigned 6-bit Inmedaxteat on pagé43
and theGeneral Operations Register with Signed 12-bit Immeddateat on pagd43to provide the
following syntax:

LR b,[c]

LR b,[limm]
LR b,[u6]
LR b,[s12]

Store to Auxiliary Register

The store to auxiliary register instruction, SR, has two source regisiigrsThe SR instruction is not
a conditional instruction and uses theneral Operations Reqgister-Regigtgmat on pagd42,the
General Operations Register with Unsigned 6-bit Immediamteat on pagé43 and theGeneral
Operations Register with Signed 12-bit Immedfatenat on pagd43to provide the following

syntax:

SR b,[c]

SR b,[limm] (c=limm)
SR b,[u6]

SR b,[s12]

SR limm,[c] (b=limm)
SR limm,[s12] (b=limm)

Load/Store Instructions

The transfer of data to and from memory is accomplished with the loadoa@desmmands (LD,
ST). It is possible for these instructions to write the result ofddeesas computation back to the
address source register, pre or post calculation. This is accomplighedenoptional address write-
back suffices: .A or .AW (register updated pre memory transaction), andegiBtér updated post
memory transaction). Addresses are interpreted as byte addressetherseated address mode is
used, as indicated by the address suffix .AS. The scaled address mode doee hatlthe result
of the address calculation to the address source register.

ARCompact™ Programmer's Reference 115

Load/Store Instructions Instruction Set Summary

NOTE Using the scaled address mode with 8-bit data size (LDB.AS or STB.AS) has undefined behavior and
should not be used.

If the offset is not required during a load or store, the value encoded will be set to 0.

The size of the data for a Load or Store is indicated by Load-Byte instrc®B), Load-Word
instruction (LDW), Store-Byte instruction (STB) and Store-Word ircsiton (STW). LD or ST with
no size suffix indicates 32-bit data. Byte and word loads are zero or signiedtto 32-bits by using
the sign extend suffix: .X. Note that using the sign extend suffix on the LDahetrwith a 32-bit
data size is undefined and should not be used.

Loads are passed to the memory controller with the appropriate addickse aegister that is the
destination of the load is tagged to indicate that it is waiting forut ras loads take a minimum of
one cycle to complete. If an instruction references the taggederdggsore the load has completed,
the pipeline will stall until the register has been loaded with the apptepalue. For this reason it is
not recommended that loads be immediately followed by instructions tbedmeé the register being
loaded. Delayed loads from memory will take a variable amount of time diegarpon the presence
of cache and the type of memory that is available to the memory cont@ilesequently, the
number of instructions to be executed in between the load and the instruatgthesiegister will

be application specific.

Stores are passed to the memory controller, which will store théodai@mory when it is possible to
do so. The pipeline may be stalled if the memory controller cannot accept anbpuffered store
requests.

If a data-cache is available in the memory controller, the load andrsétwections can bypass the
use of that cache. When the suffix .Dl is used the cache is bypassed and thdodaked directly
from or stored directly to the memory. This is particularly usefultiaresd data structures in main
memory, for the use of memory-mapped I/O registers, or for bypassing tiestoastop the cache
being updated and overwriting valuable data that has already been loadedathieat

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Load

Unlike basecase ALU operations, the load instruction cannot target arloregliate value as the
target register. Two syntaxes are available depending on how the dddassilated: register-
register and register-offset. The syntax for the load instruction is:

LD<zz><.x><.aa><.di> a,[b] (uses Id a,[b,0])

LD<zz><.x><.aa><.di> a,[b,s9]

LD<zz><.x><.di> a,[limm,s9] (Redundant format, use Id
a,[limm])
LD<zz><.x><.di> a,[limm] (= Id a,[limm,0])

LD<zz><.x><.aa><.di> a,[b,c]

LD<zz><.x><.aa><.di> a,[b,limm]

LD<zz><.x><.di> a,[limm,c]
LD<zz><.x><.aa><.di> 0,[b,s9] (Prefetch)
LD<zz><.x><.di> 0,[limm, s9] (Redundant format)

116 ARCompact™ Programmer's Reference

Instruction Set Summary Load/Store Instructions

LD<zz><.x><.di> 0,[limm] (Prefetch)
LD<zz><.x><.aa><.di> 0,[b,C] (Prefetch)
LD<zz><.x><.aa><.di> 0,[b,limm] (Prefetch)
LD<zz><.x><.di> 0,[limm,c] (Prefetch)

LD_S a, [b, c]

LDB_S a, [b, c]

LDW_S a, [b,]

LD_S c, [b, u7] (u7 offset is 32-bit aligned)
LDB_S c, [b, ug]

LDW_S<.x> c, [b, u6] (u6 offset is 16-bit aligned)
LD_S b, [SP, u7] (u7 offset is 32-bit aligned)
LDB_S b, [SP, u7] (u7 offset is 32-bit aligned)
LD_S ro, [GP, s11] (sl1 offset is 32-bit aligned)
LDB_S ro, [GP, s9]

LDW_S ro, [GP, s10] (s10 offset is 16-bit aligned)
LD_S b, [PCL, ul0] (ul0 offset is 32-bit aligned)
Prefetch

The PREFETCH instruction is provided as a synonym for a particuladiegcof the LD instruction.
The PREFETCH instruction is used to initiate a data cache loaduwititing to any core register.

The syntax for the PREFETCH instruction is:

PREFETCH<.aa> [b,s9] (= ld<.aa> 0,[b,s9])

PREFETCH [limm,s9] (Redundant format, use PREFETCH [limm])
PREFETCH [limm] (= 1d 0,[limm])

PREFETCH<.aa> [b,c] (=ld<.aa>0,[b,c])

PREFETCH<.aa> [b,limm] (= ld<.aa> 0,[b,limm])

PREFETCH [limm,c] (= ld<.aa> 0,[limm,c])

Store Register with Offset
Store register+offset instruction syntax:

ST<zz><.aa><.di> c,[b] (use st ¢,[b,0])
ST<zz><.aa><.di> c,[b,s9]

ST<zz><.di> c,[limm] (= st c,[limm,Q])
ST<zz><.aa><.di> limm,[b,s9]

ST_S b, [SP, u7] (u7 offset is 32-bit aligned)
STB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ARCompact™ Programmer's Reference 117

ARCompact Extension Instructions Instruction Set Summary

ST S c, [b, u7] (u7 offset is 32-bit aligned)
STB_S c, [b, ub]
STW_S c, [b, u6] (u6 offset is 16-bit aligned)

Stack Pointer Operations

The ARCompact based processor provides stack pointer functionatiigththe use of the stack
pointer core register (SP). Push and pop operations are provided through nomirahd &Gtore
operations in the 32-bit instruction set, and specific instructions in thé k&truction set. The
instructions syntax for push operations on the stack is:

ST.AW C,[SP,-4] (Push c onto the stack)
PUSH_S b (Push b onto the stack)
PUSH_S BLINK (Push BLINK onto the stack)
The instructions syntax for pop operations on the stack is:

LD.AB a,[SP,+4] (Pop top item of stack to a)
POP_S b (Pop top item of stack to b)
POP_S BLINK (Pop top item of stack to BLINK)

The following instructions are also available in 16-bit instruction farfoatworking with the stack:
LD_S,LDB_S, ST_S, STB_S, ADD_S, SUB_S, MOV_S, and CMP_S.

Atomic Exchange

An atomic exchange operation, EX, is provided as a primitive for multipracggschronization
allowing the creation of semaphores in shared memory.

Two forms are provided: an uncached form (using the .DI directive) fohsymization between
multiple processors, and a cached form for synchronization between psogesssingle-processor
system.

The EX instruction exchanges the contents of the specified memorloeath the contents of the
specified register. This operation is atomic in that the memory systsures that the memory read
and memory write cannot be separated by interrupts or by memory actessanother processor.

The instruction syntax for the atomic exchange instruction is:

EX<.di> b,[c]
EX<.di> b,[limm]
EX<.di> b,[u6]

ARCompact Extension Instructions

These operations are generally of the faam- b op cwhere the destination (a) is replaced by the
result of the operation (op) on the operand sources (b and c). All extensioctioss can be
conditional or set the flags or both.

118 ARCompact™ Programmer's Reference

Instruction Set Summary ARCompact Extension Instructions

Syntax for Generic Extension Instructions

If the destination register is set to an absolute value of "0" theedsb# is discarded and the
operation acts like a NOP instruction. A long immediate (limm) value casdxefor either source
operand 1 or source operand 2. The generic extension instruction format is:

op<.f> a,b,c

op<.f> a,b,u6

op<.f> b,b,s12

op<.cc><.f> b,b,c

op<.cc><.f> b,b,u6

op<.f> a,limm,c (if b=limm)
op<.f> a,limm,u6

op<.f> 0,limm,s12

op<.cc><.f> 0,limm,c

op<.cc><.f> 0,limm,u6

op<.f> a,b,limm (if c=limm)
op<.cc><.f> b,b,limm

op<.f> a,limm,limm (if b=c=limm)
op<.cc><.f> Q,limm,limm

op<.f> 0,b,c (if a=0)

op<.f> 0,b,u6

op<.f> 0,limm,c (if a=0, b=limm)
op<.f> 0,limm,u6

op<.f> 0,b,limm (if a=0, c=limm)
op<.f> 0,limm,limm (if a=0, b=c=limm)
op_S b,b,c

Syntax for Single Operand Extension Instructions

Single source operand instructions are supported for extension instructgd@sperand instruction
syntax is:

op<.f> b,c
op<.f> b,u6
op<.f> b,limm
op<.f> 0,c
op<.f> 0,u6
op<.f> 0,limm
op_S b,c

ARCompact™ Programmer's Reference 119

Optional Instructions Library Instruction Set Summary

Syntax for Zero Operand Extension Instructions
Zero operand instruction syntax is:

op<.f> c
op<.f> ué
op<.f> limm
op_S

Optional Instructions Library

» The optional instructions library consists of a number of components thatassed to add
= functionality to the ARCtangent-A5 processor. These components are funct®nadmch are
= interfaced to the ARCtangent-A5 processor through the use of extensiootinss or registers.

I The optional instructions library consists of a number of components thheassed to add
| functionality to the ARC 600 processor. These components are function undb,asbiinterfaced to
| the ARC 600 processor through the use of extension instructions or registers.

The Normalze and Swap instructions are built in to the ARC 700 processanultiply instruction,
however, is optional.

Summary of Optional Instructions Library
The library currently consists of the following components:

e 32 bit Multiplier
* Normalize (find-first-bit) instruction
e Swap instruction

Table 41 Dual Operand Optional Instructions for ARC tangent-A5 and ARC 600
Instruction Operation Description
MUL64 T | BT Signed 32x32 Multiply
\ Il \
MMID
MULU64 > J] Unsigned 32x32 Multiply
\ Il \
MMID

120 ARCompact™ Programmer's Reference

Instruction Set Summary Optional Instructions Library

Table 42 Dual Operand Optional Instructions for ARC 700

Instruction Operation Description

o

MPY \ | 32 X 32 signed multiply

i

z

|

MPYH - 1 .«] 32 X 32 signed multiply
[J[w]

MPYHU L » I . 1] 32 X 32 unsigned multiply
\ Hi || o |

MPYU L » I . 1] 32 X 32 unsigned multiply

=
~
o

}

Table 43 Single Operand Optional Instructions

Instruction Operation Description
NORM I Normalize (find-first-bit)
SWAP Exchange upper and lower 16 bits
3
I ——

Multiply 32 X 32, Special Result Registers

The scoreboarded 32x32 multiplier performs signed or unsigned multiply. The-hill @&ult is
available to be read from special result registers in theregigter set. The middle 32 bits of the 64-
bit result are also available. The multiply is scoreboarded in suely ghat if a multiply is being
carried out, and if one of the result registers is required by anoR@orpact based instruction, the
processor will stall until the multiply has finished. The destinati@visys ignored for the multiply
instruction and thus the syntax for the multiply instructions can optiongliglyg a "0" as the
destination register. Two instructions are provided to performretB&@x32 signed multiply
(MUL64) or a 32x32 unsigned multiply (MULUG64).

Register-Register (MUL64 & MULU64)

TheGeneral Operations Register-Regigtgmat on pagd42is implemented for the multiply
instructions. The destination register is always encoded as an inengpiégiand. The following
redundant syntax formats are provided for the multiply instructions:

MUL64 <0,>b,c (a = limm, b = source 1, ¢ = source 2. Redundant format see
Conditional Registeformat on pagd.22)

ARCompact™ Programmer's Reference 121

Optional Instructions Library Instruction Set Summary

MULG4 <0,>b,limm (a = limm, b limm, ¢ = source 2. Redundant formatGeaditional
Registerformat on pagd 22

MUL64 <0,>limm,c (a =limm, b = source 1, ¢ = limm. Redundant format see
Conditional Registeformat on pagd.22)

MULG4 <0,>limm,limm (a=limm, b =limm, ¢ = limm. Redundant format $&enditional
Registerformat on pagd 22

MULU64 <0,>b,c (a =limm, b = source 1, ¢ = source 2. Redundant format see
Conditional Registeformat on pagd.22)

MULU64 <0,>b,limm (a =limm, b = limm, c = source 2. Redundant format see
Conditional Registeformat on pagd.22)

MULU64 <0,>limm,c (a = limm, b = source 1, ¢ = limm. Redundant format see
Conditional Registeformat on pagd 22

MULUG4 <O,>limm,limm (a =Ilimm, b =Ilimm, ¢ = limm. Redundant format $&enditional
Registerformat on pagd 22

Register with Unsigned 6-bit Inmediate (MUL64 & MUL U64)

TheGeneral Operations Register with Unsigned 6-bit Immedidaiaat on pagéd43is implemented
for the multiply instructions. The destination register is alwage@ed as an immediate operand.
The following redundant syntax formats are provided for the multiplyucisons:

MUL64 <0,>b,u6 (a =limm, b = source 1, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immedi&iemat on page
123

MUL64 <0,>limm,u6é (a=Ilimm, b =limm, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immedi&iemat on page
123

MULU64 <0,>b,u6 (a =limm, b = source 1, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immedi&iemat on page
123

MUL64 <0,>limm,u6 (a =Ilimm, b =limm, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immedi&iemat on page
123

Register with Signed 12-bit Immediate (MUL64 & MULU 64)
TheGeneral Operations Register with Signed 12-bit Immediataat on pagé43 provides the
following syntax for the multiply instructions:

MUL64 <0,>b,s12 (b = source 1, s12 = source 2)
MUL64 <0,>limm,s12 (b = limm, s12 = source 2)
MULUG64 <0,>b,s12 (b = source 1, s12 = source 2)
MULUG64 <0,>limm,s12 (b = limm, s12 = source 2)

Conditional Register (MUL64 & MULUG64)
TheGeneral Operations Conditional Regidtmmat on pagé43 provides the following syntax for
the multiply instructions:

MUL64<.cc> <0,>b,c (b = source 1, ¢ = source 2)

122 ARCompact™ Programmer's Reference

Instruction Set Summary Optional Instructions Library

MUL64<.cc> <0,>b,limm (b = source 1, ¢ = limm)
MUL64<.cc> <0,>limm,c (b = limm, ¢ = source 2)

MUL64<.cc> <0,>limm,limm (b = limm, ¢ = limm)

MULUG4<.cc> <0,>b,c (b = source 1, ¢ = source 2)
MULUG4<.cc> <0,>b,limm (b = source 1, ¢ = limm)
MULUG4<.cc> <0,>limm,c (b = limm, ¢ = source 2)

MULUG4<.cc> <0,>limm,limm (b =limm, ¢ = limm. Not useful format)

Conditional Register with Unsigned 6-bit Immediate (MUL64 & MULUG4)
TheGeneral Operations Conditional Register with Unsigned 6-bit Immeidiatet on pagé44
provides the following syntax for the multiply instructions:

MUL64<.cc> <0,>b,u6 (b = source 1, u6 = source 2)

MUL64<.cc> <0,>limm,u6 (b = limm, u6 = source 2. Not useful format)

16-bit Instruction, Multiply (MUL64 & MULUG4)

The unsigned multiply operation does not have a 16-bit instruction equivaleréehleeal Reqgister

Format Instructions, 0xOF, [0x00 - Ox1fefmat on pagé57 provides the following syntax for the
signed multiply

MUL64_S <0,>b,c

Multiply 32 X 32, Any Result Register

The scoreboarded 32x32 multiplier performs signed or unsigned multiply. The bigbeser 32-bit
portion of the full 64-bit result can be written to any core register niigply is scoreboarded in
such a way that if a multiply is being carried out, and if the resufttegg is required by another
ARCompact based instruction, the processor will stall until the muhigéyfinished. Four
instructions are provided to perform the 32x32 multiply and write either thedsigw (MPY),
signed high (MPYH), unsigned low (MPYU) or unsigned high (MPYHU) restdtanspecified core
register.

The syntax for the multiply instruction is:

MPYH<.f> a,b,c
MPYH<.f> a,b,ué
MPYH<.f> b,b,s12
MPYH<.cc><.f> b,b,c
MPYH<.cc><.f> b,b,u6
MPYH<.f> a,limm,c
MPYH<.f> a,b,limm
MPYH<.cc><.f> b,b,limm
MPYH<.f> 0,b,c
MPYH<.f> 0,b,u6
MPYH<.cc><.f> 0,limm,c

ARCompact™ Programmer's Reference 123

Optional Instructions Library

Instruction Set Summary

MPYH<.f>
MPYH<.f>
MPYH<.f>
MPYH<.cc><.f>
MPYH<.cc><.f>
MPYH<.f>
MPYH<.f>
MPYH<.cc><.f>
MPYH<.f>
MPYH<.f>
MPYH<.cc><.f>

MPYU<.f>
MPYU<.f>
MPYU<.f>
MPYU<.cc><.f>
MPYU<.cc><.f>
MPYU<.f>
MPYU<.f>
MPYU<.cc><.f>
MPYU<.f>
MPYU<.f>
MPYU<.cc><.f>

MPYHU<.f>
MPYHU<.f>
MPYHU<.f>
MPYHU<.cc><.f>
MPYHU<.cc><.f>
MPYHU<.f>
MPYHU<.f>
MPYHU<.cc><.f>
MPYHU<.f>

124

a,b,c
a,b,u6
b,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c
0,b,u6
0,limm,c

a,b,c
a,b,u6
b,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c
0,b,u6

0,limm,c

a,b,c
a,b,u6
b,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c

ARCompact™ Programmer's Reference

Instruction Set Summary Optional Instructions Library

MPYHU<.f> 0,b,u6
MPYHU<.cc><.f> 0,limm,c

NORM Instruction

The NORM instruction gives the normalization integer for the signket va the operand. The
normalization integer is the amount by which the operand should be shiftedneftrtalize it as a
32-bit signed integer. To find the normalization integer of a 32-bit redigtasing software without
a NORM instruction, requires many ARCompact based instruction cycles.

Uses for the NORM instruction include:

» Acceleration of single bit shift division code, by providing a fast 'early outropt
* Reciprocal and multiplication instead of division

» Reciprocal square root and multiplication instead of square root

The syntax for the normalize instruction is:

NORM<.f> b,c
NORM<.f> b,u6
NORM<.f> b,limm
NORM<.f> 0,c
NORM<.f> 0,u6
NORM<.f> 0,limm

NORMWK<.f> b,c
NORMWK<.f> b,u6
NORMWSX<.f> b,limm
NORMWK<.f> 0,c
NORMWK<.f> 0,u6
NORMWK<.f> 0,limm

SWAP Instruction

The swap instruction is a very simple extension that can be used with tigyradtumulate block.

It exchanges the upper and lower 16-bit of the source value, and staresuthen a register. This is
useful to prepare values for multiplication, since the multiply-accumblack takes its 16-bit source
values from the upper 16 bits of the 32-bit values presented.

The syntax for the swap instruction is:

SWAP<.f> b,c
SWAP<.f> b,u6
SWAP<.f> b,limm
SWAP<.f> 0,c

ARCompact™ Programmer's Reference 125

Extended Arithmetic Library Instruction Set Summary

SWAP<.f> 0,u6
SWAP<.f> 0,limm

Extended Arithmetic Library

= The extended arithmetic instruction library consists of a number of compahantan be used to
add functionality to the ARCtangent-A5 processor. These components arerfumits, which are
interfaced to the ARCtangent-A5 processor through the use of extengratings or registers.

I The extended arithmetic instruction library consists of a number of comgdhahtan be used to
| add functionality to the ARC 600 processor. These components are function urdtsavehi
| interfaced to the ARC 600 processor through the use of extension instructiegstars.

I The extensions library is built in to the ARC 700 processor

The extended arithmetic instructions are targeted at telephonyajaplcrequiring bit-accuracy for
speech coders and audio applications requiring extended precision.

Summary of Extended Arithmetic Library Instructions
The following notation is used for the operation of the extended arithmstiadtions.

Table 44 Extended Arithmetic Operation Notation

operandhigh The top 16-bits of the operand.
operandlow The bottom 16-bits of the operand.
functionperand.high The high part of the result of the function.
accumulator.high The high part of the accumulator.

rndys (operand = round operand to 16-bits

satg(operand = saturate operand to 16-bits

sat, (operand = saturate operand to 32-bits

An Internal accumulatam

Table 45 Extended Arithmetic Dual Operand Instructi ons

Instruction Operation Description

ADDS a« sagy(b+c) Add and saturate.
SUBS a— sat, (b-c) Subtract and saturate.
DIVAW b_temp— b<<1 Division assist.

if (b_temp>=c)
a<— ((b_temp-c)+1)

else
a—b
ASLS a« sab, (b<<c) Arithmetic shift left and saturate. Supports
negative shift values for right shift.
ASRS a— sat, (b>>c) Arithmetic shift right and saturate. Supports -ve

shift values for left shift.

126 ARCompact™ Programmer's Reference

Instruction Set Summary Extended Arithmetic Library

Instruction Operation Description

ADDSDW a«< saig(b.high+c.high): Dual 16-bit add and saturate.
satg(b.low+c.low)

SUBSDW a— safg(b.high-c.high): Dual16-bit subtract and saturate.

satg(b.low-c.low)

Table 46 Extended Arithmetic Single Operand Instruc tions

Instruction Operation Description

SAT16 b safg(c) Saturate 32-bit input to 16-bits
RND16 b sag,(c+0x00008000)&0xffff0000 Round 32-bit input to 16-bits
ABSSW b« sat¢(abs(c.low)) Absolute value of 16-bit input
ABSS b« sagy(abs(c)) Absolute value of 32-bit input
NEGSW b« satg(neg(c.low)) Negate and saturate 16-bit input
NEGS b— sag,(neg(c)) Negate and saturate 32-bit input

Add with Saturation

The ADD instruction is extended to provide saturation logic. A dual-word f®atso provided. The
syntax for ADDS is:

ADDS<.f> a,b,c
ADDS<.f> b,b,u6
ADDS<.f> c,b,s12
ADDS<.cc><.f> b,b,c
ADDS<.cc><.f> b,b,u6
ADDS<.f> a,limm,c
ADDS<.f> a,b,limm
ADDS<.cc><.f> b,b,limm
ADDS<.f> 0,b,c
ADDS<.f> 0,b,u6
ADDS<.f> 0,b,limm
ADDS<.cc><.f> 0,limm,c
ADDSDW<.f> a,b,c
ADDSDW<.f> b,b,u6
ADDSDW<.f> c,b,s12
ADDSDW<.cc><.f> b,b,c
ADDSDW<.cc><.f> b,b,u6
ADDSDWX<.f> a,limm,c
ADDSDW<.f> a,b,limm

ARCompact™ Programmer's Reference 127

Extended Arithmetic Library Instruction Set Summary

ADDSDW<.cc><.f> b,b,limm
ADDSDW<.f> 0,b,c
ADDSDW<.f> 0,b,u6
ADDSDW<.f> 0,b,limm
ADDSDW<.cc><.f> 0,limm,c

Subtract with Saturation

The SUB instruction is extended to provide saturation logic. A dual-word foatsd provided. The
syntax for SUBS is:

SUBS<.f> a,b,c
SUBS<.f> b,b,u6
SUBS<.f> c,b,s12
SUBS<.cc><.f> b,b,c
SUBS<.cc><.f> b,b,u6
SUBS<.f> a,limm,c
SUBS<.f> a,b,limm
SUBS<.cc><.f> b,b,limm
SUBS<.f> 0,b,c
SUBS<.f> 0,b,u6
SUBS<.f> 0,b,limm
SUBS<.cc><.f> 0,limm,c
SUBSDW<.f> a,b,c
SUBSDWK<.f> b,b,u6
SUBSDW<.f> c,b,s12
SUBSDW-<.cc><.f> b,b,c
SUBSDW<.cc><.f> b,b,u6
SUBSDW<.f> a,limm,c
SUBSDW<.f> a,b,limm
SUBSDW<.cc><.f> b,b,limm
SUBSDW<.f> 0,b,c
SUBSDW<.f> 0,b,u6
SUBSDW<.f> 0,b,limm
SUBSDW<.cc><.f> 0,limm,c

128 ARCompact™ Programmer's Reference

Instruction Set Summary

Extended Arithmetic Library

Negate with Saturation

The negate instruction is extended to provide saturation logic. A singtefaron is also provided.

The syntax for NEGS is:

NEGSW<.f> b,c
NEGSW<.f> b,ué
NEGSW<.f> b,limm
NEGSW<.f> 0,c
NEGSW<.f> 0,u6
NEGSW<.f> 0,limm
NEGS<.f> b,c
NEGS<.f> b,ué
NEGS<.f> b,limm
NEGS<.f> 0,c
NEGS<.f> 0,u6
NEGS<.f> 0,limm

Absolute with Saturation

The absolute instruction returns the absolute value of a number andesatérsingle-word form is

also provided. The syntax for ABSS is:

ABSSW<.f> b,c
ABSSW<.f> b,u6
ABSSW«<.f> b,limm
ABSSW<.f> 0,c
ABSSW<.f> 0,u6
ABSSW<.f> 0,limm
ABSS<.f> b,c
ABSS<.f> b,u6
ABSS<.f> b,limm
ABSS<.f> 0,c
ABSS<.f> 0,u6
ABSS<.f> 0,limm

ARCompact™ Programmer's Reference

129

Extended Arithmetic Library

Instruction Set Summary

Round

The round instruction, RND16, rounds to a 16-bit number. The syntax for RND16 is:

RND16<.f>
RND16<.f>
RND16<.f>
RND16<.f>
RND16<.f>
RND16<.f>

Saturate

b,c
b,u6
b,limm
0,c
0,u6

0,limm

The saturate instruction, SAT16, provides the saturated value of a 16-bit nlimbsyntax for

SAT16 is:

SAT16<.f>
SAT16<.f>
SAT16<.f>
SAT16<.f>
SAT16<.f>
SAT16<.f>

b,c
b,u6
b,limm
0,c
0,u6

0,limm

Positive/Negative Barrel Shift with Saturation

Shift instructions operate with both positive and negative shifts (eegérff) and provide saturation
according to ETSI/ITU-T definitions. The syntax for the positive ancinegyshifts is:

ASLS<.f>
ASLS<.f>
ASLS<.f>
ASLS<.cc><.f>
ASLS<.cc><.f>
ASLS<.f>
ASLS<.f>
ASLS<.cc><.f>
ASLS<.f>
ASLS<.f>
ASLS<.f>
ASLS<.cc><.f>

ASRS<.f>

130

a,b,c
b,b,u6
c,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c
0,b,u6
0,b,limm

0,limm,c

a,b,c

ARCompact™ Programmer's Reference

Instruction Set Summary

Extended Arithmetic Library

ASRS<.f>
ASRS<.f>
ASRS<.cc><.f>
ASRS<.cc><.f>
ASRS<.f>
ASRS<.f>
ASRS<.cc><.f>
ASRS<.f>
ASRS<.f>
ASRS<.f>
ASRS<.cc><.f>

Division Assist

b,b,u6
c,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c
0,b,u6
0,b,limm

0,limm,c

DIVAW is a division accelerator used in the division algorithm asridest by the ITU and ETSI.
Repeated execution of DIVAW fifteen times implements a 16-bit conditamthsubtract division

algorithm. The syntax for the DIVAW instruction is:

DIVAWL.f>
DIVAW<.f>
DIVAW<.f>
DIVAW<.cc><.f>
DIVAW<.cc><.f>
DIVAW<.f>
DIVAWL.f>
DIVAW<.cc><.f>
DIVAW<.f>
DIVAW<.f>
DIVAWL.f>
DIVAW<.cc><.f>

a,b,c
b,b,u6
c,b,s12
b,b,c
b,b,u6
a,limm,c
a,b,limm
b,b,limm
0,b,c
0,b,u6
0,b,limm

0,limm,c

ARCompact™ Programmer's Reference

131

Extended Arithmetic Library Instruction Set Summary

This page is intentionally left blank.

132 ARCompact™ Programmer's Reference

Chapter 6 — 32-bit Instruction Formats
Reference

This chapter shows the available encoding formats for the 32-tritgtiens. Some encodings define
instructions that are also defined in other encoding forrregsuction Set Summamgn paged3 lists
and notes the redundant formats. The processor implements all redundantgefaratits. A listing
of syntax and encoding that excludes the redundant formats is containstuntion Set Detailen

pagel73

A complete list of the major opcodes is showit @ble 470n pagel33

Table 47 Major opcode Map, 32-bit and 16-Bit instru ctions

Major Instruction and/or type Notes Type
Opcode
0x00 Bcc Branch 32-bit
0x01 BLcc, BRcc Branch and link conditional 32-bit
Compare-branch conditional
0x02 LDregister + offset Delayed load 32-bit
0x03 STregister + offset Buffered store 32-bit
0x04 op ab,c ARC 32-bit basecase instructions biB2-
0x05 op ab,c ARC 32-bit extension instructions -b&2
0x06 op ab,c ARC 32-bit extension instructions -b&2
0x07 op ab,c User 32-bit extension instructions 2-b
0x08 op ab,c User 32-bit extension instructions 32-bit
0x09 op <market specific> ARC market-specific extension instructions 32-bit
O0x0A op <market specific> ARC market-specific extension instructions 32-bit
0x0B op <market specific> ARC market-specific extension instructions 32-bit
0x0C LD _S/LDB_S/LDW_S/ADD_S a,b,c Load/adgdister-register 16-bit
0x0D ADD _S/SUB_S/ASL S/ Add/sub/shift immediate 16-bit
LSR_S c,b,u3
Ox0E MOV_S/CMP_S/ADD_S b,h/b,bh One destise can be any of r0-r63 16-hit
OxOF op_Sb,b,c General ops/ single ops 16-hbit
0x10 LD_S c,[b,u7] Delayed load (32-bit alignedset 16-bit
0x11 LDB_S c,[b,u5] Delayed load (8-bit alignditset) 16-hit
0x12 LDW_S c,[b,u6] Delayed load (16-bit alignedset) 16-bit
0x13 LDW_S.X c,[b,u6] Delayed load (16-bit alignefiset) 16-bit
0x14 ST_S c¢,[b,u7] Buffered store (32-bit aligndfset) 16-bit
0x15 STB_S c,[b,u5] Buffered store (8-bit aligraftset) 16-bit
0x16 STW_S c,[b,u6] Buffered store (16-bit aligraftset) 16-bit
0x17 OP_S b,b,u5 Shift/subtract/bit ops 16-bit
0x18 LD S/LDB_S/ST_S/STB_S/ADD_S Sp-based instructions 16-bit
/PUSH_S/POP_S
0x19 LD S/LDW_S/LDB_S/ADD_S Gp-based |d/dddta aligned offset) 16-hit
Ox1A LD S b,[PCL,ul0] Pcl-based Id (32-bit aligneftset) 16-bit
0x1B MOV_S b,u8 Move immediate 16-bit
0x1C ADD_S/CMP_Sb,u7 Add/compare immediate 16-bi
0x1D BRcc_S b,0,s8 Branch conditionally on reg z/nz 16-bit
Ox1E Bcc_S s10/s7 Branch conditionally 16-bit
Ox1F BL_Ss13 Branch and link unconditionally 16-bi
ARCompact™ Programmer's Reference 133

Encoding Notation 32-bit Instruction Formats Reference

Encoding Notation

This chapter shows the full encoding details along with the shortemadrEpresented by a set of
characters, used Instruction Set Detailen pagel73The list of syntax conventions is shown in
Table 28on paged3.

All fields that correspond to an instruction word for a particular foamatshown. Fields that have
pre-defined values assigned to them are illustrated, and fields tleatcad@ed by the assembler are
represented as letters.

The notation used for the encoding is showhable 48on pagel34andTable 49on pagel34

Table 48 Key for 32-bit Addressing Modes and Encodi ng Conventions

Encoding Encoding Syntax

Character Field

I I[4:0] instruction major opcode

[i[n:0] instruction sub opcode

A A[5:0] destination register

b B[2:0] lower bits source/destination register

B B[5:3] upper bits source/destination register

C C[5:0] source/destination register

Q Q[4:0] condition code

u U[n:0] unsigned immediate (number is bit field size)

S Sh:0] lower bits signed immediate (number is bit field size)
S Shin+1] upper bits signed immediate (number is bit field size)
T S[24:21] upper bits signed immediate (branch unconditionally far)
P P[1:0] operand format

M M conditional instruction operand mode

N N <.d> delay slot mode

F F Flag Setting

R R Reserved

D Di <.di> direct data cache bypass

A A <.aa> address writeback mode

z 4 <.zz> data size

X X <.x> sign extend

Table 49 Key for 16-bit Addressing Modes and Encodi ng Conventions

Encoding Encoding Syntax

Character Field

I I[4:0] instruction major opcode

[i[n:0] instruction sub-opcode

a a[2:0] source/destination register (r0-3,r12-15)
b b[2:0] source/destination register (r0-3,r12-15)
c c[2:0] source/destination register (r0-3,r12-15)
h h[2:0] source/destination register high (r0-r63)

134 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference Condition Code Tests

Encoding Encoding Syntax

Character Field

H h[5:3] source/destination register high (r0-r63)

u u[n:0] unsigned immediate (number is bit field size)
S sh:0] signed immediate (number is bit field size)

Condition Code Tests

The following table shows the codes used for condition code tests.

Table 50 Condition codes

Code Mnemonic Condition Test
Q field
0x00 AL, RA Always 1
0x01 EQ.,Z Zero V4
0x02 NE , NZ Non-Zero 1z
0x03 PL,P Positive /N
0x04 MI, N Negative N
0x05 Cs,C,LO Carry set, lower than (unsigned) C
0x06 CC,NC,HS Carry clear, higher or same /IC
(unsigned)
0x07 VS,V Over-flow set V
0x08 VC, NV Over-flow clear Y]
0x09 GT Greater than (signed) (N and V and /Z) or (/N and /V
and /Z)
Ox0A GE Greater than or equal to (signed) (N and V) or (/N and /V)
0x0B LT Less than (signed) (N and /V) or (/N and V)
0x0C LE Less than or equal to (signed) Z or (N and /V) or (/N and V)
0x0D HI Higher than (unsigned) /Cand/Z
OxOE LS Lower than or same (unsigned) Corz
OxOF PNz Positive non-zero /N and /Z

Branch Jump Delay Slot Modes

The following table shows the codes used for delay slot modes on Branch and lumpans.

Table 51 Delay Slot Modes

N Bit Mode Operation
0 ND Only execute the next instruction when not jumping (default)
1 D Always execute the next instruction

ARCompact™ Programmer's Reference 135

Load Store Address Write-back Modes 32-bit Instruction Formats Reference

Load Store Address Write-back Modes

The following table shows the codes used for address write-back mddsesd and Store
instructions.

Table 52 Address Write-back Modes

AA bits Address mode Memory address used Register V. alue write-back
00 No write-back Reg + offset no write-back
01 Aor AW Reg + offset Reg + offset

Register updated pre
memory transaction.

10 AB Reg Reg + offset

Register updated post
memory transaction.

11 AS Reg + (offset << data_size) no write-back
Scaled , no write- Note that using the scaled address
back .AS mode with 8-bit data size (LDB.AS

or STB.AS) has undefined behavior
and should not be used.

Load Store Direct to Memory Bypass Mode

The following table shows the codes used for direct to memory bypass mdaesliand Store
instructions.

Table 53 Direct to Memory Bypass Mode

Di bit Di Suffix Access mode
0 Default access to memory
1 DI Direct to memory, bypassing data-cache (if available)

Load Store Data Size Mode

The following table shows the codes used for data size modes in Load and $tocgons.

Table 54 Load Store Data Size Mode

ZZ Code ZZ Suffix Access mode

00 Default, Long word
01 B Byte

10 W Word

11 Reserved

Will raise aninstruction Errorexception for the ARC 700 processor.
Undefined behavior for the ARCtangent-A5 and ARC 600 processor.

136 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference Load Data Extend Mode

Load Data Extend Mode

The following table shows the codes used data extend modes in Load iossructi

Table 55 Load Data Extend Mode

X bit X Suffix Access mode
0 If size is not long word then data is zero extended
1 X If size is not long word then data is sign extended

Use of Reserved Encodings

In a given format, one or more bits of an encoding can be markeesasvedin some formats, an
entire field may be reserved, such as when a register field is piesegiven format but is not used
in the particular opcode (such as a MOV in format 0x04, which does not use purce

The presence of reserved bits has the following effect:

» The processor will ignore reserved bits. It will not generate an egoegi an instruction based
on the value assigned to reserved bits, the functionality of the instructloroiile affected by
them.

* The reserved bits should be set to 0 when encoding instructions. This getunégevisions of
the architecture to assign new functionality to encodings that setubiénty reserved.

Use of lllegal Encodings

There are two major categories of illegal encodings:
* Reserved ranges of fields

* lllegal combinations of fields

Reserved Ranges of Fields

A given field can support a range of values, not all of which are usedgported functions. For
example, within most major formats there are opcodes that are ekfarfeture expansion. These
are now to be re-defined Hegal.

If such an field is used, dnstruction Errorexception will result.

lllegal Combinations of Fields

Fields are normally orthogonal, but certain combinations or values betweendeeofields create an
instruction whose behavior is either nonsense or cannot be realized.

For example, the EX instruction, in format 0x04, exchanges one source (a memaoy)ocith
another (a register). However, format 0x04 has sub-format that allcsotinee register to be a
constant. For the EX instruction sub-formats such as these do not make sense.

In such cases, honsense combinations will raigasdruction Errorexception.

ARCompact™ Programmer's Reference 137

Branch Conditionally, 0x00, [0x0] 32-bit Instruction Formats Reference

Branch Conditionally, 0x00, [0x0]

The target address is 16-bit aligned to target 16-bit aligned instracEed able 500n pagel35for
information on condition code test encoding, dattle 51on pagel35for delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1[4:0] S[10:1] 0 S[20:11] N| Q[4:0]

0|0{0|0|0O|s|s|s|s|s|s|s|s|s|s|O0|S[S|S|S|S|S[S|S|S|S|N[Q|Q|Q|Q|Q

Values 0x12 to Ox1F in the condition code field, Q, will raisénatruction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtusdiseflag.

Syntax:

Bce<.d> s21 (branch if condition is true)

Branch Unconditional Far, 0x00, [Ox1]

The target address is 16-bit aligned to target 16-bit aligned instracEed able 51on pagel35for
information on delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] S[10:1] 1 S[20:11] N[R| S[24:21]

0|0[{0|0|0O|s|s|s|s|s|s|s|s|s|s|1|S|[S|S|S|S|S|[S|S|S|S|N|O|T|T|T|T

I A value of 1 in the reserved field, R, will raiselastruction Errorexception.

Syntax:

B<.d> s25 (unconditional branch far)

Branch on Compare Register-Register, 0x01,
[0x1, OxO]

The target address is 16-bit aligned to target 16-bit aligned instracEed able 51on pagel35for
information on delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] S[7:1] 1/s8 B[5:3] C[5:0] N[o| i[3:0]

0|0[{0|0|1|b|b|b|slss|s|s|s|s|s|1|S|B|B|[B|C|C[C|C|C|C|N|O]|ililil]i
I Values 0x6 to OxD in the sub-opcode field, i, will raisdrairuction Errorexception.

Syntax:

BRcc<.d> b,c,s9 (branch if reg-reg compare is true, swap regs if inverse
condition required)

BRcc b,limm,s9 (branch if reg-limm compare is true)

BRcc limm,c,s9 (branch if imm-reg compare is true)

BBITO<.d> b,c,s9 (branch if bit c in reg b is clear)

BBIT1<.d> b,c,s9 (branch if bit ¢ in reg b is set)

138 ARCompact™ Programmer's Reference

32-bit Instruction Formats ReferenceBranch on Compare/Bit Test Register-Immediate, 0x01, [0x1, Ox1]

Table 56 Branch on compare/bit test register-regis ter

_SL_Jb-opcode Instruction Operation Description

ot

0x00 BREQ b-c Branch if reg-reg is equal

0x01 BRNE b-c Branch if reg-reg is not equal

0x02 BRLT b-c Branch if reg-reg is less than

0x03 BRGE b-c Branch if reg-reg is greater than or equal
0x04 BRLO b-c Branch if reg-reg is lower than

0x05 BRHS b-c Branch if reg-reg is higher than or same
0x06 Reserved

0x07 Reserved

0x08 Reserved

0x09 Reserved

Ox0A Reserved

0x0B Reserved

0x0C Reserved

0x0D Reserved

OxOE BBITO (b and 1<<c) == 0 Branch if bit c in register b is clear
OxOF BBIT1 (b and 1<<c) =0 Branch if bit c in register b is set

Branch on Compare/Bit Test Register-
Immediate, 0x01, [Ox1, Ox1]

The target address is 16-bit aligned to target 16-bit aligned inetrscSed able 51on pagel35for
information on delay slot mode encoding.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1[4:0] B[2:0] S[7:1] 1/s8 B[5:3] U[5:0] N(1| i[3:0]

olo|o|o|1|b|b|b|s|s|s|s|s|s|s|1|s|B|B|B|U[U|U|U|U|UN|L|i]|ilili
I Values 0x6 to 0xD in the sub-opcode field, i, will raisdrairuction Errorexception.

Syntax:

BRcc<.d> b,u6,s9 (branch if reg-immediate compare is true, use "immediate+1" if a
missing condition is required)

BBITO<.d> b,u6,s9 (branch if bit u6 in reg b is clear)

BBIT1<.d> b,u6,s9 (branch if bit u6 in reg b is set)

ARCompact™ Programmer's Reference 139

Branch and Link Conditionally, 0x01, [0x0, 0Ox0] 32-bit Instruction Formats Reference

Table 57 Branch Conditionally/bit test on register- immediate

Sub- Instruction Operation Description

opcode

i field

(4 bits)

0x00 BREQ b-u6 Branch if reg-imm is equal

0x01 BRNE b-u6 Branch if reg-imm is not equal

0x02 BRLT b-u6 Branch if reg-imm is less than

0x03 BRGE b-u6 Branch if reg-imm is greater than or equal
0x04 BRLO b-u6 Branch if reg-imm is lower than

0x05 BRHS b-u6 Branch if reg-imm is higher than or same
0x06 Reserved

Reserved

0x0D Reserved

OxOE BBITO (b and 1<<u6) == Branch if bit u6 in register b is clear
OxOF BBIT1 (b and 1<<u6) =0 Branch if bit u6 in register b is set

Branch and Link Conditionally, 0x01, [0x0, 0xO]

The target address must be 32-bit aligned.Tade 500n pagel35for information on condition
code test encoding, afd@ble 51on pagel35for delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] S[10:2] olo S[20:11] N| Q[4:0]

olojo|o|1|s|s|s|s|s|s|s|s|s|o|o|s|s|s|s|s|s|s|s|s|s|N|Q|Q|Q|Q|Q

Values 0x12 to Ox1F in the condition code field, Q, will raisénairuction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtusdiseflag.

Syntax:
BLcc<.d> s21 (branch if condition is true)

Branch and Link Unconditional Far, 0x01, [0xO,
Ox1]

The target address must be 32-bit aligned.Tadbe 51on pagel35for information on delay slot
mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
S[10:2] 1|0 S[20:11] N[R| S[24:21]

0({0|0|0|1|s|s|s|s|s|s|s|s|s|1|0|S|S|S|[S|[S|S|S|S|S|S|N(O|T|T|T|T

I The reserved field, R, is ignored by the processor.
Syntax:
BL<.d> s25 (unconditional branch far)

140 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference Load Register with Offset, 0x02

Load Register with Offset, 0x02

SeeTable 52on pagel36 Table 53on pagel36 Table 54on pagel36andTable 550n pagel37 for
information on encoding the Load instruction.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1[4:0] B[2:0] S[7:0] s8| B[5:3] |Di|a|a|z|z|X A[5:0]

0(0|0|1|0O[(b|b|b|s|s|s|s|s|s|s|s|S|B B B|D|a|a|Z|Z|X|A|A[A[A|A|A

Extension core registers and the program counter (PCL) are not pénimikte the destination of a
load instruction. Values 0x20 to 0x3B, 0x3D and Ox3F in the destination register field| rsisdl
anlnstruction Errorexception.

The loop counter register (LP_COUNT) is not permitted to be the destiraita load instruction,
A=0x3C, and will raise &rivilege Violationexception.

A value of 0x3 in the data size mode field, ZZ, will raisdratruction Errorexception.

The sign extension field, X, should not be set when the load is of longword d&da(ZZhis
combination will raise aimstruction Errorexception.

Using incrementing addressing modes in combination with a long immediats s the base
register is illegal. Values 0x1 and 0x2 in the addressing mode fieldd @, ealue of Ox3E in the base
register field, B, will raise amstruction Errorexception.

Syntax:

LD<zz><.x><.aa><.di> a,[b,s9]

LD<zz><.x><.di> a,[limm,s9] (use Id a,[limm])
LD<zz><.x><.di> a,[limm] (= Id a,[limm,0])
LD<zz><.x><.aa><.di> 0,[b,s9] (Prefetch, a=limm)
LD<zz><.x><.di> 0,[limm] (Prefetch, b=limm, a=limm, s9=0)

Store Register with Offset, 0x03

SeeTable 52on pagel36 Table 53on pagel36andTable 54on pagel36 for information on

encoding the Store instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] S[7:0] S8l B[5:3] C[5:0] Di|A|A|Z|Z|R

0({0|0|2|2|b|bfb|s|s|s|s|s|s|s|s|S|B B B|C|C|C|C|C|C|D|a|a|Z|Z|0

A value of 0x3 in the data size mode field, ZZ, will raisdretruction Errorexception.

Using incrementing addressing modes in combination with a long immediaés e ithe base
register is illegal. Values 0x1 and 0x2 in the addressing mode fieldd @, ealue of Ox3E in the base
register field, B, will raise amstruction Errorexception.

The reserved field, R, is ignored by the processor.

Syntax:

ST<zz><.aa><.di> c,[b,s9]

ST<zz><.di> c,[limm] (= st ¢,[limm,Q])
ST<zz><.aa><.di> limm,[b,s9]

ARCompact™ Programmer's Reference 141

General Operations, 0x04, [0x00 - 0x3F]

32-bit Instruction Formats Reference

General Operations, 0x04, [0x00 - Ox3F]

Operand Format Indicators

There are four operand formats (P[1:0]) in major opcode 0x04 which aréousekify the format of
operands that are used by the instructions. The conditional format has a surtal dpenat indicator
M. The operand format indicators are summarizetainle 58on pagel42

Table 58 Operand Format Indicators

Operand format Name Operand Sub Comment
Format Operand
P[1:0] Format M
REG_REG 00 N/A Destination and both sources are
registers
REG_U6IMM 01 N/A Source 2 is a 6-bit unsigned immediate
REG_S12IMM 10 N/A Source 2 is a 12-bit signed immediate
COND_REG 11 0 Conditional instruction. Destination (if
any) is source 1. Source 2 is a register
COND_REG_U6IMM 11 1 Conditional instruction. Destination (if

any) is source 1. Source 2 is a 6-bit
unsigned immediate

General Operations Register-Register

Syntax:

op<.f>
op<.f>
op<.f>
op<.f>
op<.f>

op<.f>

op<.f>
op<.f>
op<.f>
op<.f>
op<.f>
op<.f>

op<.f>

142

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B[2:0] |P[1:0] i[5:0] F| B[5:3] C[5:0] A[5:0]

0|0|b|b|b|O

i|i|i|i|F|B|BIB|C|C|C|C|C|C|A|A|A|A|AIA

a,b,c
a,limm,c
a,b,limm
a,limm,limm
0,b,c

0,limm,c

0,b,limm
O,limm,limm
b,c

b,limm

0,c

0,limm

c

(if b=limm)

(if c=limm)

(if b=c=limm. Not useful format)
(if a=0)

(Redundant format, s€eeneral
Operations Conditional Register
format on pagd 43

(if a=0, c=limm)

(if a=0, b=c=limm. Not useful format)
(SOP instruction)

(SOP instruction)

(SOP instruction)

(SOP instruction)

(ZOP instruction)

ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference General Operations, 0x04, [0x00 - 0x3F]

op<.f> limm (ZOP instruction)

General Operations Register with Unsigned 6-bit Imm ediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] [P[1:0] i[5:0] F| B[5:3] U[5:0] A[5:0]
olo|1|ofofb|b|bl|of1|ililililili|F|B|B|BlUjU|U|U|UlU|A|A|A|AlA[A

Syntax:

op<.f> a,b,u6

op<.f> a,limm,u6 (Not useful format)

op<.f> 0,b,u6

op<.f> 0,limm,u6 (Not useful format)

op<.f> b,u6 (SOP instruction)

op<.f> 0,u6 (SOP instruction)

op<.f> ué (ZOP instruction)

General Operations Register with Signed 12-bit Imme diate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] B[2:0] |P[L:0] i[5:0] F| B[5:3] S[5:0] S[11:6]

0|0[1|0|O|b|b|bj1l|O|i|i|i|i|i|i|F|B B B|s|s|s|s|s|s|[S|S|[S|S|S|S

A value of Ox2F in the sub-opcode field, i, indicates a single operand imstrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Syntax:
op<.f> b,b,s12
op<.f> 0,limm,s12 (Not useful format)

General Operations Conditional Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] |P[1:0] i[5:0] F| B[5:3] C[5:0] M| Q[4:0]

olol1|olo|b|blb|2|2l|ililil|ili|i|F|B|B|B|C|C|Cc|c|c|c|o|Q|Q|Q|Q|Q

A value of Ox2F in the sub-opcode field, i, indicates a single operand instrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Values 0x12 to Ox1F in the condition code field, Q, will raisénatruction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtustimsaflag.

Syntax:

op<.cc><.f> b,b,c

op<.cc><.f> 0,limm,c

op<.cc><.f> b,b,limm

op<.cc><.f> 0,limm,limm (Not useful format)

ARCompact™ Programmer's Reference 143

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

General Operations Conditional Register with Unsign ed 6-bit

Immediate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I[4:0] B[2:0] [P[1:0] i[5:0] F| B[5:3] U[5:0] M Q[4:0]
ojlo|1|o|o|b|b|b|a|a|i|i|i|il|i|i|F|B|B|B|U|U|U|U|U|U|1|Q|Q|Q|Q|Q

A value of Ox2F in the sub-opcode field, i, indicates a single operand imstrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Values 0x12 to Ox1F in the condition code field, Q, will raisénatruction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtusdiseflag.

Syntax:
op<.cc><.f> b,b,u6
op<.cc><.f> 0,limm,u6 (Not useful format)

Long Immediate with General Operations

Any 6-bit register field in an instruction can indicate that long édiate data is used. The long
immediate indicator (r62) can be used multiple times in an instructiom \&hkeurce register is set
to r62, an explicit long immediate value will follow the instruction word.

When a destination register is set to r62 there is no destination festiieaf the instruction so the
result is discarded. Any flag updates will still occur according togh#lagys directive (.F or implicit
in the instruction).

If the long immediate indicator is used in both a source and destination offedaliowing long
immediate value will be used as the source operand and the result diithaded as expected.

When an instruction uses long immediate, the first long-word instrustithe iinstruction that

contains the long immediate data indicator (register r62). Tlmmdéang-word instruction is the

long immediate (limm) data itself.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Limm[31:0]

Syntax:

limm

ALU Operations, 0x04, [0x00-0x1F]

Table 59 ALU Instructions

_SL_Jb-opcode Instruction Operation Description

(bit)

0x00 ADD a—b+c add

0x01 ADC a—b+c+C add with carry

0x02 SUB a—b-c subtract

0x03 SBC a—(b-c)-C subtract with carry

0x04 AND a—bandc logical bitwise AND

0x05 OR a—borc logical bitwise OR

0x06 BIC a— b and not c logical bitwise AND with invert

144 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference

General Operations, 0x04, [0x00 - 0x3F]

_SL_Jb-opcode Instruction Operation Description
(bit)
0x07 XOR a— b exclusive-or c logical bitwise exclusive-OR
0x08 MAX a— bmaxc larger of 2 signed integers
0x09 MIN a—bminc smaller of 2 signed integers
Ox0A MOV b—c move. See sectidviove to

Register Instructioon page

106
0x0B TST bandc test
0x0C CMP b-c compare
0x0D RCMP c-b reverse compare
Ox0E RSUB a—cCc-b reverse subtract
OxOF BSET a— b or 1<<c bit set
0x10 BCLR a— b and not 1<<c bit clear
Ox11 BTST b and 1<<c bit test
0x12 BXOR a— b xor 1<<c bit xor
0x13 BMSK a— b and ((1<<(c+1))-1) bit mask
0x14 ADD1 a— b+ (c<<1l) add with left shift by 1
0x15 ADD2 a— b+ (c<<2) add with left shift by 2
0x16 ADD3 a— b+ (c<<3) add with left shift by 3
0x17 SUB1 a—Db-(c<<1) subtract with left shift by 1
0x18 SUB2 a—b-(c<<?2) subtract with left shift by 2
0x19 SUB3 a—b-(c<<3) subtract with left shift by 3
Ox1A MPY a<— (a Xc).low 32 X 32 signed multiply
0x1B MPYH a«< (a X c).high 32 X 32 signed multiply
0x1C MPYHU a«< (a X c).high 32 X 32 unsigned multiply
0x1D MPYU a<— (a Xc)low 32 X 32 unsigned multiply
Ox1E Instruction Error Reserved
Ox1F Instruction Error Reserved
Special Format Instructions, 0x04, [0x20 - 0x3F]
Table 60 Special Format Instructions
Sgb-opcode Instruction Operation Description
(bis)
0x20 Jcc pe— c jump
0x21 Jce.D pe—c jump with delay slot
0x22 JlLcc blink— next_pc; jump and link

pc«—cC
0x23 JLcc.D blink— next_pc; jump and link with delay slot
pc«—cC

0x24 Instruction Error Reserved

ARCompact™ Programmer's Reference 145

General Operations, 0x04, [0x00 - 0x3F]

32-bit Instruction Formats Reference

Sub-opcode Instruction Operation Description

| field

(6 bits)

0x25 Instruction Error Reserved

0x26 Instruction Error Reserved

0x27 Instruction Error Reserved

0x28 LPcc aux.reg[LP_END} pc + ¢ loop (16-bit aligned target

aux.reg[LP_START}— address)
next_pc

0x29 FLAG aux.reg[STATUS32}- ¢ set status flags

Ox2A LR b aux.reg[c] load from auxiliary register.
See sectiohoad from
Auxiliary Registeron page
115

0x2B SR aux.reg[ct- b store to auxiliary register. See
sectionStore to Auxiliary
Registeron pagel15

0x2C Instruction Error Reserved

0x2D Instruction Error Reserved

Ox2E Instruction Error Reserved

Ox2F SOPs A field is sub-opcode2 See section:

0x30...0x37 LD Load register-register See sedtioad Register-
Register, 0x04, [0x30 - 0x37]
on pageld?

0x38 Instruction Error Reserved

Instruction Error Reserved

Ox3F Instruction Error Reserved

Move and Compare Instructions, 0x04, [OX0A - 0x0D]

[Ox11]
The move and compare instructions (MOV, TST, CMP, RCMP and BTST) use two opéitzands.

and 0x04,

destination field A is ignored for these instructions and instead the B held<are used

accordingly.

Jump and Jump-and-Link Conditionally, 0x04, [0x20 -

0x23]

The jump (Jcc) and jump-and link (JLcc) instructions are specially enaodegior opcode 0x04 in
that the B field is reserved and should be set to 0x0. Any value in the B fielbigddoy the
processor. The destination register, A field, should also be set to 0x0 wlogethed mode, P, is
0x0 or 0x1. In the case where P is 0x0 or 0x1, any value in the A field is ignored.

When using ILINK1 or ILINK2 the flag setting field, F, is always encoded as thése instructions.

If the ILINK1 or ILINK2 registers are used without the flag settirgdibeing set amstruction Error
exception will be raised. If the flag setting field, F, is set without uiadLINK1 or ILINK2
register, annstruction Errorexception will be raised.

146

ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference General Operations, 0x04, [0x00 - 0x3F]

Load Register-Register, 0x04, [0x30 - 0x37]

Load register+register instruction, LD, is specially encoded in majdgp0x04 in that the normal
"F and two mode bits" are replaced by the "D and two A bits" in the instruction wr§] lsind
bits[23:22]. The normal "conditional/immediate" mode bits are replaceditsessing mode bits.

Using an immediate value in the destination register field is rawed for the ARCtangent-A5 or
ARC 600 processor.

Using an immediate value in the destination register field causesetch with the ARC 700
processor.

SeeTable 52on pagel36 Table 53on pagel36andTable 54on pagel36 for information on
encoding the Load instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1[4:0] B[2:0] |A[A|1|1]0]|Z|z]|X|Di| B[5:3] C[5:0] A[5:0]

0/0{1(0|0|b|b|bjaja|1|1|0|Z|Z|X|D|B|B|B|C|C|C|C|C|C|A|A|A[A[A|A

Extension core registers and the program counter (PCL) are not pénmikte the destination of a
load instruction. Values 0x20 to 0x3B, 0x3D and Ox3F in the destination register field| rsisdl
anlnstruction Errorexception.

The loop counter register (LP_COUNT) is not permitted to be the destiraita load instruction,
A=0x3C, and will raise &rivilege Violationexception.

A value of 0x3 in the data size mode field, ZZ, will raisdratruction Errorexception.

The sign extension field, X, should not be set when the load is of longword d&@aQZZ=his
combination will raise ainstruction Errorexception.

Using incrementing addressing modes in combination with a long immediaés e ithe base
register is illegal. Values 0x1 and 0x2 in the addressing mode fieldd @, @alue of Ox3E in the base
register field, B, will raise amstruction Errorexception.

Syntax:
LD<zz><.x><.aa><.di> a,[b,c]

LD<zz><.x><.aa><.di> a,[b,limm]

LD<zz><.x><.di> a,[limm,c]

LD<zz><.x><.aa><.di> 0,[b,c] (Prefetch, a=limm)
LD<zz><.x><.aa><.di> 0,[b,limm] (Prefetch, a=limm, c=limm)
LD<zz><.x><.di> 0,[limm,c] (Prefetch, a=limm, b=Ilimm)

Single Operand Instructions, 0x04, [Ox2F, 0x00 - Ox 3F]

The sub-opcode 2 (destination 'a’ field) is reserved for defining singleesopecand instructions
when sub-opcode 1 of Ox2F is used.

Table 61 Single Operand Instructions

Sub-opcode2 Instruction Operation Description

A field

(6 bits)

0x00 ASL b— c+c Arithmetic shift left by one
0x01 ASR b— asr(c) Arithmetic shift right by one

ARCompact™ Programmer's Reference 147

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

Sub-opcode2 Instruction Operation Description

A field

(6 bits)

0x02 LSR b— Isr(c) Logical shift right by one

0x03 ROR b— ror(c) Rotate right

0x04 RRC b— rrc(c) Rotate right through carry

0x05 SEXB b— sexb(c) Sign extend byte

0x06 SEXW b— sexw(c) Sign extend word

0x07 EXTB b— extb(c) Zero extend byte

0x08 EXTW b— extw(c) Zero extend word

0x09 ABS b— abs(c) Absolute

0x0A NOT b« not(c) Logical NOT

0x0B RLC b~ rlc(c) Rotate left through carry

0x0C EX b— mem|c]; Atomic Exchange
mem[c]< b

0x0D Instruction Error Reserved

Instruction Error Reserved

Ox3E Instruction Error Reserved

Ox3F ZOPs B field is See Zero operand (ZOP) table

sub-opcode3

Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00

- Ox3F]

The sub-opcode 3 (source operand b field) is reserved for defining zero opstaurations when
sub-opcode 2 of 0x3F is used.

Table 62 Zero Operand Instructions

Sub-opcode3 Instruction Operation Description

B field

(6 bits)

0x00 Instruction Error Reserved

0x01 SLEEP Sleep Sleep

0x02 SWI/TRAPO Swi Software interrupt

0x03 SYNC Synchronize Wait for all data-based memory
transactions to complete

0x04 RTIE Return Return from interrupt/exception

0x05 BRK Breakpoint Breakpoint instruction

0x06 Instruction Error Reserved

Instruction Error Reserved

Ox3F Instruction Error Reserved

Syntax:

SLEEP

SLEEP u6

SLEEP ¢

148 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference

32-bit Extension Instructions, 0x05 - 0x08

SWI

TRAPO

SYNC
RTIE
BRK

(Encoded as REG_U6IMM, but the redundant REG_REG format is also valiialdee
58 on pagel4?)

32-bit Extension Instructions, 0x05 - 0x08

Any instruction opcodes that are not implemented will rais@stnuction Errorexception.

Three sets of extension instructions are available as shown inilthweirfig table.

Table 63 Summary of Extension Instruction Encoding

Major Sub Sub Sub Instruction Usage
Opcode Opcodel Opcode2 Opcode3
[31:27] [21:16] [5:0] [14:12]:
i-field a-field [26:24]
b-field
0x05 0x00-0x2E ARC Cores extension instructions
" 0x30- ARC Cores extension instructions
Ox3F
" Ox2F 0x00-0x3E ARC Cores single operand extension
instructions
" " Ox3F 0x00-0x3F ARC Cores zero operand extension
instructions
0x06 0x00-0x2E ARC Cores extension instructions
" 0x30- ARC Cores extension instructions
Ox3F
" Ox2F 0x00-0x3E ARC Cores single operand extension
instructions
" " Ox3F 0x00-Ox3F ARC Cores zero operand extension
instructions
0x07 0x00-0x2E User extension instructions
" 0x30- User extension instructions
O0x3F
" O0x2F 0x00-0x3E User single operand extension instructions
" " Ox3F 0x00-Ox3F User zero operand extension instructions
0x08 0x00-0x2E User extension instructions
" 0x30- User extension instructions
Ox3F
" O0x2F 0x00-0x3E User single operand extension instructions
" " Ox3F 0x00-Ox3F User zero operand extension instructions

ARCompact™ Programmer's Reference

149

32-bit Extension Instructions, 0x05 - 0x08 32-bit Instruction Formats Reference

Extension ALU Operation, Register-Register
Using major opcode 0x05 as an example, the syntax op<.f> a,b,c is encoded as &hewn be

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] |P[L:0] i[5:0] F| B[5:3] C[5:0] A[5:0]

0|0[1|0|1|b|b|bjO|O|i|i|i|ili|l|[F|B|B|B|C|C|C|C|C|C|A|A[A|AIA|A

Figure 84 Extension ALU Operation, register-registe r

Extension ALU Operation, Register with Unsigned 6-b it Immediate
Using major opcode 0x05 as an example, the syntax of op<.f> a,b,u6 is encoded as shown below

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] |P[1:0] i[5:0] F| B[5:3] U[5:0] A[5:0]

ojof1(o|1|b|b|bjOf2f|i|i|i|i|l|i|[FIB|IB|B|UJUJUJUJUJUJA|A[AIA[AA

Figure 85 Extension ALU Operation, register with un signed 6-bit immediate

Extension ALU Operation, Register with Signed 12-bi t Immediate
Using major opcode 0x05 as an example, the syntax of op<.f> b,b,s12 is encoded as shown in the
following diagram.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] [P[1:0] i[5:0] F| B[5:3] S[5:0] S[11:6]

O|0(1(0|1|b|b|bf2fOfi|i|i|i|i[l|F|B|B|B|s|s|s|s|s|s|S|S|S|S|S|S

Figure 86 Extension ALU Operation, register with si gned 12-bit immediate

A value of Ox2F in the sub-opcode field, i, indicates a single operand iistrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Extension ALU Operation, Conditional Register
The syntax of op<.cc><.f> b,b,c is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1[4:0] B[2:0] |P[1:0] i[5:0] F| B[5:3] C[5:0] M| Q[4:0]

olol1|o|2|b|blb|2|alililil|ili|I|F|B|B|B|C|C|Cc|c|c|c|o|Q|Q|Q|Q|Q

Figure 87 Extension ALU Operation, conditional regi ster

A value of Ox2F in the sub-opcode field, i, indicates a single operand imstrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Values 0x12 to Ox1F in the condition code field, Q, will raisénatruction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtusdiseflag.

150 ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference 32-bit Extension Instructions, 0x05 - 0x08

Extension ALU Operation, Conditional Register with Unsigned 6-bit
Immediate

Using major opcode 0x05 as an example, the syntax of op<.cc><.f> b,b,u6 is encodechas show
below.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1[4:0] B[2:0] |P[L:0] I[5:0] F| B[5:3] U[5:0] M| Q[4:0]

olo|1|o|1|b|b|b|2falil|ilililili|F|B|B|B|lU|lU|U|UlUlU|1L|Q|Q|Q|Q|Q

Figure 88 Extension ALU Operation, cc register with unsigned 6-bit immediate

A value of Ox2F in the sub-opcode field, i, indicates a single operand iistrudtich is invalid for
this operand mode and will raise lastruction Errorexception.

Values 0x12 to Ox1F in the condition code field, Q, will raisénairuction Errorexception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithtustimsaflag.

Dual Operand Extension Instructions, 0x05, [0x00-Ox 2E and 0x30-
Ox3F]

The syntax follows the same structure as the arithmetic and logicatiopsr

Table 64 Extension ALU Instructions

Sgb-opcode Instruction Operation Description
(ois)
0x00 ASL a— baslc Multiple arithmetic shift left
0x01 LSR a—Dblsrc Multiple logical shift right
0x02 ASR a—basrc Multiple arithmetic shift right
0x03 ROR a—Dbrorc Multiple rotate right
0x04 MUL64 mulres<— b * ¢ 32 X 32 signed multiply
“OXOS “MULU64 “mulres<— b*c "32 X 32 unsigned multiply
0x06 ADDS a— sat32(b+c) Add and saturate.
0x07 SUBS a— sat32 (b-c) Subtract and saturate.
0x08 DIVAW b_temp— b<<1 Division assist.
if (b_temp>=c)
a<— ((b_temp-c)+1)
else
a—b
O0x0A ASLS a— sat32 (b<<c) Arithmetic shift left and saturate.
Supports negative shift values for
right shift.
0x0B ASRS a— sat32 (b>>c) Arithmetic shift right and saturate.
Supports -ve shift values for left
shift.

ARCompact™ Programmer's Reference 151

32-bit Extension Instructions, 0x05 - 0x08

32-bit Instruction Formats Reference

Sub-opcode Instruction Operation Description

i field

(6 bits)

0x28 ADDSDW a— Dual 16-bit add and saturate.

sat16(b.high+c.high):
sat1l6(b.low+c.low)

0x29 SUBSDW a— satl16(b.high-
c.high): sat16(b.low-
c.low)

Ox2A Instruction Error

Instruction Error

Ox2E Instruction Error

Ox2F SOPs A field is sub-opcode2

0x30 Instruction Error

Instruction Error

Ox3F Instruction Error

Duall16-bit subtract and saturate.

Reserved
Reserved
Reserved
See Single operand SOP table
Reserved
Reserved
Reserved

Single Operand Extension Instructions, 0x05, [Ox2F, 0x00 - Ox3F]

The sub-opcode 2 (destination 'a’ field) is reserved for defining singleesopecand instructions

when sub-opcode 1 of Ox2F is used.

Table 65 Extension Single Operand Instructions

Sub-opcode2 Instruction Operation Description

A field

(6 bits)

0x00 SWAP b— swap(c) Swap words

0x01 NORM b— norm(c) Normalize

0x02 SAT16 b— sat16(c) Saturate 32-bit input to 16-bits

0x03 RND16 b— Round 32-bit input to 16-bits
sat32(c+0x00008000)&0xffff0000

0x04 ABSSW b— sat16(abs(c.low)) Absolute value of 16-bit input

0x05 ABSS b— sat32(abs(c)) Absolute value of 32-bit input

0x06 NEGSW b— sat16(neg(c.low)) Negate and saturate 16-bit input

0x07 NEGS b— sat32(neg(c)) Negate and saturate 32-bit input

0x08 NORMW b« norm(c) Normalize word

0x09 Reserved

Reserved

Ox3F ZOPs B field is See Zero operand (ZOP) table

sub-opcode3

Single operand instruction syntax is:
op<.f> b,c
op<.f> b,u6

op<.f> b,limm

152

ARCompact™ Programmer's Reference

32-bit Instruction Formats Reference Market Specific Extension Instructions, 0x09 - 0x0B

op<.f> 0,c
op<.f> 0,u6

op<.f> 0,limm

Zero Operand Extension Instructions, 0x05, [Ox2F, 0 x3F, 0x00 -
Ox3F]

The sub-opcode 3 (source operand b field) is reserved for defining zero opsteuadions when
sub-opcode 2 of Ox3F is used.

Table 66 Extension Zero Operand Instructions

Sub-opcode3 Instruction Operation Description

B field

(6 bits)

0x00 Instruction Error Reserved
0Ox01 Instruction Error Reserved
0x02 Instruction Error Reserved
Instruction Error Reserved
Ox3F Instruction Error Reserved

Zero operand instruction syntax is:

op<.f> c
op<.f> u6
op<.f> limm

User Extension Instructions

64 user extension slots are availablepna,b,cformat, when using major opcode 0x07. $able 63
on pagel49

Market Specific Extension Instructions, 0x09 -
Ox0B

The market-specific extension instructions are igpétstructions that use the major opcodes 0x0@xfB.
The remaining encoding fields of each of theseag$ions are not detailed here and are to be iregzg by the
market-specific extension instructions themselves.

Any instruction opcodes that are not implementéseraninstruction Errorexception.

Three sets of extension instructions are availablshown in the following table.

Table 67 Summary of Market-Specific Extension Instruction En coding

Major Opcode Instruction Usage

0x09 ARC market-specific extension instructions
Ox0A ARC market-specific extension instructions
0x0B ARC market-specific extension instructions

ARCompact™ Programmer's Reference 153

Market Specific Extension Instructions, 0x09 - 0x0B 32-bit Instruction Formats Reference

Market Specific Extension Instruction, 0x09
At major opcode 0x09, the market-specific instruetis encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] Market specific

O[1({0[0|2|?2|2]|?2]|?2|?2|?2|?2[?2[?2]?2|?2|?2|?2|?2|?2|?2(?]|?|?2[|?2|?|?2]|?2|?|?|?]|?

Figure 89 Market-Specific Extension Instruction 0x0 9 Encoding

Market Specific Extension Instruction, OX0A
At major opcode 0x0A, the market-specific instrantis encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1[4:0] Market specific

O|1(0|1|0(?2|?2|?2(?2|?2[?2]|?2[?2|?|?2|?|?2[?2|?|?2|?|?2]?|?2(?|?|?|?|?]|?|?|?

Figure 90 Market-Specific Extension Instruction 0x0 A Encoding

Market Specific Extension Instruction, 0x0B
At major opcode 0x0B, the market-specific instrotis encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1[4:0] Market specific

O|21(0|1|2({?2|?2|?2|?2|?2[?2]|?2(?2|?|?2|?|?2[?2|?|?2|?|?2|?2|?2(?|?|?|?|?]|?|?|?

Figure 91 Market-Specific Extension Instruction 0x0 B Encoding

154 ARCompact™ Programmer's Reference

Chapter 7 — 16-bit Instruction Formats
Reference

This chapter shows the available encoding formats for the 16-bitgtiens. Some encodings define
instructions that are also defined in other encoding forrresuction Set Summaign paged3 lists
and notes the redundant formats. The processor implements all redundantgefaratits. A listing
of syntax and encoding that excludes the redundant formats is containstuntion Set Detailen
pagel73

A complete list of the major opcodes is showit@ble 470n pagel33. The list of syntax
conventions is shown ihable 28on paged3.The encoding notation shownTiable 48on pagel34
andTable 49on pagel34

Load /Add Register-Register, 0x0C, [0x00 -
0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] b[2:0] c[2:0] i[1:0] af2:0]
0|{12|2|0({0|b|b|b|cf|c|c|i|i|lala]la
Syntax:
LD S a, [b, c]
LDB_S a, [b, c]
LDW_S a, [b, c]
ADD_S a, b,c
Table 68 16-Bit, LD / ADD Register-Register
Sub- Instruction Operation Description
opcode
i field
(2 bits)
0x00 LD_S a— mem[b + c].| Load long word (reg.+reg.)
0x01 LDB_S a— meml[b + c].b Load unsigned byte (reg.+reg.)
0x02 LDW_S a— mem[b + c].w Load unsigned word (reg.+reg.)
0x03 ADD_S a—b+c Add

ARCompact™ Programmer's Reference 155

Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03] 16-bit Instruction Formats Reference

Add/Sub/Shift Register-Immediate, 0x0D, [0x00
- 0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] b[2:0] c[2:0] | i[2:0] | wu[2:0]
oO(1{1|0|2|b|b|bfc|c|c|i|i|ulufu

Syntax:

ADD_S c, b, u3

SUB_S c, b, u3

ASL_S ¢, b, u3

ASR_S c, b, u3

Table 69 16-Bit, ADD/SUB Register-lmmediate

Sgb-opcode Instruction Operation Description

(2 bis)

0x00 ADD_S c—b+u3 Add

0x01 SUB_S G—b+u3 Subtract

0x02 ASL_S G— b asl u3 Multiple arithmetic shift left
0x03 ASR_S 6— b asru3 Multiple arithmetic shift right

Mov/Cmp/Add with High Register, OxOE, [0x00 -
0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1[4:0] b[2:0] h[2:0] | i[2:0] | h[5:3]

oj1(1|12|O0f(b|b|b|h|{h|{h]i|i|H|H|H

For the ARC 700 processor the program counter (PCL) is not permitted to lestinatibn of an
instruction. A value of in 0x03 in the sub opcode field, i, and a value of Ox3F in destiregister
field, H, will raise arinstruction Errorexception.

Syntax:

ADD_S b, b, h

ADD_S b, b, limm (h=limm)
MOV_S b, h

MOV_S b, limm (h=limm)
CMP_S b, h

CMP_S b, limm (h=limm)

156 ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference General Register Format Instructions, OxOF, [0x00 - Ox1F]

MOV_S h, b

MOV_S 0,b (h=limm)

Table 70 16-Bit MOV/CMP/ADD with High Register

Sub- Instruction Operation Description
opcode

i field

(2 bits)

0x00 ADD_S b—b +h Add
0x01 MOV_S b— h Move
0x02 CMP_S b-h Compare
0x03 MOV_S h— b Move

Long Immediate with Mov/Cmp/Add
The 6-bit register field in the instruction can indicate that long idiate data is used.

When a source register is set to r62, an explicit long immediate véldelliv the instruction word.

When a destination register is set to r62 there is no destination festiieaf the instruction so the
result is discarded.

If the long immediate indicator is used in both a source and destination offedaliowing long
immediate value will be used as the source operand and the result diitheded as expected.

When an instruction uses long immediate, the first instruction word iagtredtion that contains the
long immediate data indicator (register r62). The second long-wordgtish is the long immediate
(limm) data itself.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Limm[31:0]

Syntax:
limm

General Register Format Instructions, OxOF,
[0X00 - Ox1F]

General Operations, register-register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] c[2:0] i[4:0]

O|1|1|1|2|b|b|bfc|c|c|i|il|il|il]i

Syntax:
op_S b,b,c
op_S b,c

ARCompact™ Programmer's Reference 157

General Register Format Instructions, OxOF, [0x00 - Ox1F]

16-bit Instruction Formats Reference

General Operations, Register

Syntax:
op_S
op_S

15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 0

1[4:0] b[2:0] i[2:0] 0x00
oO|12|12|12(1|b|{b|b|i|i|i|]O]JO|OfOfO
b
b,b
General Operations, No Registers
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I[4:0] i[2:0] 0x07 0x00
of1(1|2|1fi|ijifj1f1(12|j0|0f0O]|JO]O

Syntax:
op_S

General Operations, OxOF, [0x00 - Ox1F]

Table 71 16-Bit General Operations

Sub- Instruction Operation Description
opcode
i field
(5 bits)
0x00 SOPs c field is sub-opcode2 3éeBit Single Operand Instructions
table on pagé59
0x01 Instruction Error Reserved
0x02 SUB_S B—b-c Subtract
0x03 Instruction Error Reserved
0x04 AND_S b— b andc Logical bitwise AND
0x05 OR_S B—borc Logical bitwise OR
0x06 BIC_S b— b and not c Logical bitwise AND with invert
0x07 XOR_S b— b exclusive-or c Logical bitwise exclusive-OR
0x08 Instruction Error Reserved
0x09 Instruction Error Reserved
O0x0A Instruction Error Reserved
0x0B TST_S bandc Test
"OxOC "MUL64_S "mulres<— b*c ||32 X 32 Multiply
0x0D SEXB_S b— sexb(c) Sign extend byte
Ox0E SEXW_S B— sexw(c) Sign extend word
OxOF EXTB_S b— extb(c) Zero extend byte
0x10 EXTW_S b— extw(c) Zero extend word
0x11 ABS_S b— abs(c) Absolute
158 ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference General Register Format Instructions, OxOF, [0x00 - Ox1F]

Sub- Instruction Operation Description
opcode
i field
(5 bits)
0x12 NOT_S b— not(c) Logical NOT
0x13 NEG_S B— neg(c) Negate
0x14 ADD1_ S b— b+ (c<<1) Add with left shift by 1
0x15 ADD2_S b— b+ (c<<2) Add with left shift by 2
0x16 ADD3_S b— b + (c << 3) Add with left shift by 3
0x17 Instruction Error Reserved
0x18 ASL_S b— b aslc Multiple arithmetic shift left
0x19 LSR_S B—blsrc Multiple logical shift right
Ox1A ASR_S b— b asrc Multiple arithmetic shift right
0x1B ASL_S b—c+c Arithmetic shift left by one
0x1C ASR_S B—casrl Arithmetic shift right by one
0x1D LSR_S b—clsrl Logical shift right by one
| Ox1E | TRAP_S | Trap | Raise Exception
Ox1F BRK_S Break Break (Encoding is Ox7FFF)

Single Operand, Jumps and Special Format Instructio ns, OxOF,
[0x00, 0x00 - 0x07]

Syntax:

J S<.d> [b]
JL_S<.d> [b]
SUB_S.ne b,b,b

Table 72 16-Bit Single Operand Instructions

Sub- Instruction Operation Description

opcode2

c field

(3 bits)

0x00 J S pe— b Jump

0x01 J S.D pe—b Jump delayed

0x02 JL S blink— pc; pc— b Jump and link

0x03 JL_S.D blink— pc; pc— Db Jump and link delayed

0x04 Instruction Error Reserved

0x05 Instruction Error Reserved

0x06 SUB_S.NE if (flags.Z==0) If Z flag is O, clear register
thenb—b-b

0x07 ZOP s b field is Seel6-Bit Zero Operand
sub-opcode3 Instructionstable on pagé60

ARCompact™ Programmer's Reference 159

Load/Store with Offset, 0x10 - 0x16

16-bit Instruction Formats Reference

Zero Operand Instructions, Ox0F, [0x00, 0x07, 0x00 - 0x07]

Syntax:
NOP_S
| UNIMP_S
J_S<.d> [blink]
JEQ_S [blink]
JNE_S [blink]
Table 73 16-Bit Zero Operand Instructions
Sub- Instruction Operation Description
opcode3
b field
(3 bits)
0x00 NOP_S nop No operation
| 0x01 | UNIMP_S | Instruction Error | Unimplemented Instruction
0x02 Instruction Error Reserved
0x03 Instruction Error Reserved
0x04 JEQ_S [blink] pe— blink Jump using blink register if equal
0x05 JNE_S [blink] pe— blink Jump using blink register if not equal
0x06 J_S [blink] pe— blink Jump using blink register
0x07 J_S.D [blink] pe— blink Jump using blink register delayed

Load/Store with Offset, 0x10 - 0x16

The offset u[4:0] is data size aligned. Syntactically u7 should be multipfesand u6 should be
multiples of 2.

Syntax:
LD_S
LDB_S
LDW_S
LDW_S.X
ST_S
STB_S
STW_S

160

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] b[2:0] c[2:0] u[4:0]
{1 {1|{1]I|{bjb|bfc|c|c|lufju|ufulu

c, [b, u7] (u7 must be 32-bit aligned)

c, [b, u5]

c, [b, u6] (u6 must be 16-bit aligned)

c, [b, u6] (u6 must be 16-bit aligned)

c, [b, u7] (u7 must be32-bit aligned)

c, [b, u5]

c, [b, u6] (u6 must be 16-bit aligned)

ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07]

Table 74 16-Bit Load and Store with Offset

Major Instruction Operation Description

opcode

| field

(5 bits)

0x10 LD_S c— mem[b + u7].l Load long word
0x11 LDB_S c— mem[b + u5].b Load unsigned byte
0x12 LDW_S c— mem[b + u6l.w Load unsigned word
0x13 LDW_S.X c— mem[b + u6].wx Load signed word
0x14 ST_S mem[b + u7}d-c Store long word
0x15 STB_S mem[b + u5]b- ¢ Store unsigned byte
0x16 STW_S mem[b + u6].w- c Store unsigned word

Shift/Subtract/Bit Immediate, 0x17, [0x00 -
0x07]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14:0] b[2:0] i2:0] u[4:0]
tlofr|{2|2|b|bfb|i|ililuflulu|ulu

Syntax:

SUB_S b, b, us

BSET_S b, b, us

BCLR_S b, b, us

BMSK_S b, b, us

BTST_S b, us

ASL_S b, b, us

LSR_S b, b, u5

ASR_S b, b, us

Table 75 16-Bit Shift/SUB/Bit Immediate

Sub- Instruction Operation Description

opcode2

i field

(3 bits)

0x00 ASL_S b— b asl ub Multiple arithmetic shift left
0x01 LSR_S b— b Isr u5 Multiple logical shift left
0x02 ASR_S Bb— b asr uS Multiple arithmetic shift right
0x03 SUB_S B—b-u5 Subtract

0x04 BSET_S B— b or 1<<u5 Bit set

0x05 BCLR_S b— b and not 1<<u5 Bit clear

0x06 BMSK_S b— b and ((1<<(u5+1))-1) Bit mask

0x07 BTST_S b and 1<<u5 Bit test

ARCompact™ Programmer's Reference

161

Stack Pointer Based Instructions, 0x18, [0x00 - 0x07] 16-bit Instruction Formats Reference

Stack Pointer Based Instructions, 0x18, [0x00 -
0x07]

1514131211109 8 7 6 5 4 3 2 1 0

1[4:0] b[2:0] i[2:0] u[4:0]
1{1|0|0|O0O|b|bf{b|ifi|ifujufjulufu

Syntax:

LD_S b, [SP, u7] (u7 offset is 32-bit aligned)

LDB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ST S b, [SP, u7] (u7 offset is 32-bit aligned)

STB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ADD_S b, SP,u7 (u7 offset is 32-bit aligned)
ADD_S SP, SP, u7 (u7 offset is 32-bit aligned)

SUB_S SP, SP, u7 (u7 offset is 32-bit aligned)
POP_S b

POP_S BLINK

PUSH_S b

PUSH_S BLINK

Table 76 16-Bit Stack Pointer based Instructions

Sub- Instruction Operation Description

opcode

i field

(3 bits)

0x00 LD_S b— mem[SP + u7].l Load long word sp-rel.

0x01 LDB_S b— mem[SP + u7].b Load unsigned byte sp-rel.

0x02 ST_S mem[SP + u7k- b Store long word sp-rel.

0x03 STB_S mem[SP + u7]4 b Store unsigned byte sp-rel.

0x04 ADD_S b— SP + u7 Add

0x05 ADD_S Sp«— sp +- u7 Se&able 770n pagel63
/ISUB_S

0x06 POP_S Pop register from stack Table 78on pagel63

0x07 PUSH_S Push register to stack PBakle 79%n pagel63

162 ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference Stack Pointer Based Instructions, 0x18, [0x00 - 0x07]

Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07]

Table 77 16-Bit Add/Subtract SP relative Instructio ns

Sub- Instruction Operation Description

opcode

b field

(3 bits)

0x00 ADD_S Sp— sp +- u7 Add immediate to SP

0x01 SUB_S SR— Sp - u7 Subtract immediate from SP
0x02 Instruction Error Reserved

Instruction Error Reserved

0x07 Instruction Error Reserved

POP Register from Stack, 0x18, [0x06, 0x00-0x1F]

Table 78 16-Bit POP register from stack instruction s

Sub- Instruction Operation Description

opcode

u field

(5 bits)

0x00 Instruction Error Reserved

0x01 POP_Sb b- mem([SP].| Pop register from stack
SP«—SP+4

0x02 Instruction Error Reserved

Instruction Error Reserved

0x10 Instruction Error Reserved

0x11 POP_S blink blink— mem[SP].| Pop blink from stack
SP—SP+4 (b=reserved)

0x12 Instruction Error Reserved

Instruction Error Reserved

Ox1F Instruction Error Reserved

PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F]

Table 79 16-Bit PUSH register to stack instructions

Sub- Instruction Operation Description

opcode

u field

(5 bits)

0x00 Instruction Error Reserved

0x01 PUSH_Sb SP-SP -4 Push register to stack
mem[SP].l— b

0x02 Instruction Error Reserved

Instruction Error Reserved

0x10 Instruction Error Reserved

Ox11 PUSH_S blink Sk-SP -4 Push blink to stack
mem[SP].l— blink (b=reserved)

ARCompact™ Programmer's Reference

163

Load/Add GP-Relative, 0x19, [0x00 - 0x03] 16-bit Instruction Formats Reference

Sub- Instruction Operation Description
opcode

u field

(5 bits)

0x12 Instruction Error Reserved
Instruction Error Reserved
Ox1F Instruction Error Reserved

Load/Add GP-Relative, 0x19, [0x00 - 0x03]

15 14 13 12 11 10 9 8 7 6

1[4:0] i[1:0] s[8:0]

1({12|/0|0f2|i|]i|s|s|s|s|s|s|s]|s]|s

The offset (s[8:0]) is shifted accordingly to provide the appropdata size alignment.

Syntax:

LD_S ro, [GP, s11] (32-bit aligned offset)

LDB_S ro, [GP, s9] (8-bit aligned offset)

LDW_S ro, [GP, s10] (16-bit aligned offset)

ADD_S ro, GP, sl11 (32-bit aligned offset)

Table 80 16-Bit GP Relative Instructions

Sub- Instruction Operation Description

opcode

i field

(2 bits)

0x00 LD_S ro— mem[GP + s11].| Load gp-relative (32-bit aligned)
to r0

0x01 LDB_S ro— mem[GP + s9].b Load unsigned byte gp-relative
(8-bit aligned) to r0

0x02 LDW_S ro— mem[GP +s10].w Load unsigned word gp-relative
(16-bit aligned) to r0

0x03 ADD_S ro— GP +sl11 Add gp-relative (32-bit aligned)
tor0

Load PCL-Relative, Ox1A

The offset (u[7:0]) is shifted accordingly to provide the appropriate 32akdét size alignment.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1[4:0] b[2:0] u[7:0]

1{12|0|12({O0O|b|{b|bfjujujufu|ufjufulu

Syntax:
LD_S b, [PCL, ul0] (32-bit aligned offset)

164 ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference Move Immediate, 0x1B

Move Immediate, Ox1B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I[4:0] b[2:0] u[7:0]

1(1(0f(1|2|b|bf{blujujujufufulul|u

Syntax:
MOV_S b, ug

ADD/CMP Immediate, 0x1C, [0x00 - 0x01]

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

1[4:0] b[2:0] i u[6:0]
1|1|1|0(O0O(b|b|b|iflufufujujul|lul|u
Syntax:
ADD_S b, b, u7
CMP_S b, u7
Table 81 16-Bit ADD/CMP Immediate
Sub- Instruction Operation Description
opcode
i field
(1 bit)
0x00 ADD_S b— b + u7 Add
0x01 CMP_S b-u7 Compare

Branch on Compare Register with Zero, 0x1D,
[0x00 - 0x01]

The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] b[2:0] | i s[7:1]
111(1|0|1|b|b|b|i|s|s|s|s|s|s]|s
Syntax:
BREQ_S b, 0, s8
BRNE_S b, O, s8

Table 82 16-Bit Branch on Compare

Sub- Instruction Operation Description

opcode

i field

(1 bit)

0x00 BREQ_S Branch if register is zero
0x01 BRNE_S Branch if register is non-zero

ARCompact™ Programmer's Reference

165

Branch Conditionally, Ox1E, [0x00 - 0x03] 16-bit Instruction Formats Reference

Branch Conditionally, Ox1E, [0x00 - 0x03]

The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] i[1:0] s[9:1]
1|11(1|1|0|i|i|s|s|s|s|s|s|s|s]|s
Syntax:
B_S s10
BEQ S s10
BNE_S s10

Table 83 16-Bit Branch, Branch Conditionally

Sub- Instruction Operation Description

opcode

i field

(2 bits)

0x00 B S Branch always
0x01 BEQ_S Branch if equal
0x02 BNE_S Branch if not equal
0x03 Bcc_S See Bcc table

Branch Conditionally with cc Field, OxX1E, [0x03, Ox 00 - 0x07]
The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] 0x03 | i[2:0] s[6:1]
11|22 fofr|a|il|il|ils|s|s]|s]|s]s

Syntax:

BGT_S s7

BGE_S s7

BLT_S s7

BLE_S s7

BHI_S s7

BHS_S s7

BLO_S s7

BLS_S s7

Table 84 16-Bit Branch Conditionally

Sub- Instruction Operation Description

opcode

i field

(3 bits)

0x00 BGT_S Branch if greater than

0x01 BGE_S Branch if greater than or equal

166 ARCompact™ Programmer's Reference

16-bit Instruction Formats Reference Branch and Link Unconditionally, Ox1F

0x02 BLT_S Branch if less than

0x03 BLE_S Branch if less than or equal
0x04 BHI_S Branch if higher than

0x05 BHS_S Branch if higher or the same
0x06 BLO_ S Branch if lower than

0x07 BLS S Branch if lower or the same

Branch and Link Unconditionally, Ox1F

The target address can only target 32-bit aligned instructions.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1[4:0] s[12:2]

1{12|1|12|{1|s|s|[s|s|s|s|Ss|s|s]|s]|s

Syntax:
BL_S s13

ARCompact™ Programmer's Reference 167

Branch and Link Unconditionally, Ox1F 16-bit Instruction Formats Reference

This page is intentionally left blank.

168 ARCompact™ Programmer's Reference

Chapter 8 — Condition Codes

Introduction

The ARCompact based processor has an extensive instruction set most afamhbehcarried out
conditionally or set the flags or both. Those instructions using short im@ei@ia can not have a
condition code test.

Branch, loop and jump instructions use the same condition codes as instristioaser, the
condition code test for these jumps is carried out one stage eathierpipeline than other
instructions. Therefore, a single cycle stall will occur if a jummimediately preceded by an
instruction that sets the flags.

Flag Setting

For those 32-bit instructions that are able to set the flags, updateslwitioonr if the set flags
directive (.F) is used. For some instructions the only effect is tbesdéiags and not update any
general purpose register. Such instructions include CMP, RCMP and TST.

For 16-bit instructions no flag setting will occur, except for a few instnstwhere flag setting is
implicit e.g. BTST_S, CMP_S and TST_S.

Status Register

The status register contains the status flags. The statuerégicATUS32, shown inFigure 450n
page51, contains the following status flags for the condition codes: zero (ZtimegN), carry (C)
and overflow (V).

Status Flags Notation

In the instruction set details in the following chapters the following notatiosed for status flags:

Z | =Setifresultis zero
N | = Set if most significant bit of result is set
C | = Setif carry is generated
V | = Set if overflow is generated
The convention used for the effect of an operation on the status flags is:
. = Set according to the result of the operation
= Not affected by the operation
0 | = Bit cleared after the operation
1 | = Bit set after the operation

ARCompact™ Programmer's Reference 169

Condition Code Test

Condition Codes

Condition Code Test

Table 850n pagel70shows condition names and the conditions they test.

Table 85 Condition codes

Mnemonic Condition Test Code
AL, RA Always 1 0x00
EQ, Z Zero Z 0x01
NE, NZ Non-Zero 1Z 0x02
PL, P Positive /N 0x03
MI, N Negative N 0x04
Cs,C, Lo Carry set, lower than (unsigned) C 0x05
CC, NC, HS Carry clear, higher or same (unsigned) /IC 0x06
VS,V Over-flow set V 0x07
VC, NV Over-flow clear v 0x08
GT Greater than (signed) (N and V and /Z) or (/N andx09

IV and /Z)
GE Greater than or equal to (signed) (N and V) or (/N and /V) Ox0A
LT Less than (signed) (N and /V) or (/N and V) 0x0B
LE Less than or equal to (signed) Zor(Nand/V)or (/NandV) 0x0C
HI Higher than (unsigned) /IC and /Z 0x0D
LS Lower than or same (unsigned) Corz OxOE
PNz Positive non-zero /N and /Z OxOF

NOTE PNZ does not have an inverse condition.

The remaining 16 condition codes (10-1F) are available for extension anddite:use

» provide additional tests on the internal condition flags or

» test extension status flags from external sources or

» test a combination external and internal flags

For the ARCtangent-A5 and ARC 600 processors, if an extension condition code is tiseddha
implemented, then the condition code test will always return fals¢h@ epposite of AL - always).

For the ARC 700 processor, if an extension condition code is used thatrgpfehented then an

Instruction Errorexception will be raised.

NOTE The implemented system may have extensions or customizations in this area, please see associated

documentation.

Extended Arithmetic Condition Codes

The extended arithmetic library provides additional status flatie AUX_MACMODE register
which are set by thExtended Arithmetic Librarynstructions on pagé26. SeeExtended Arithmetic

Auxiliary Reqisterson pages2 for further details of the AUX_MACMODE register.

170

ARCompact™ Programmer's Reference

Condition Codes Extended Arithmetic Condition Codes

The following extension condition codes are available with the extendbrohatit library and may
be used on any conditionally executable instruction to test the satusate bi

Table 86 Extended Arithmetic Condition Codes

Mnemonic Condition Test Code
SS Saturate Set 1 Br S, 0x10
SC Saturate Clear 48nd /S, Ox11

ARCompact™ Programmer's Reference 171

Extended Arithmetic Condition Codes Condition Codes

This page is intentionally left blank.

172 ARCompact™ Programmer's Reference

Chapter 9 — Instruction Set Details

Instruction Set Details

This chapter lists the available instruction set in alphabedierofhe syntax and encoding examples
list full syntax for each instruction, but excludes the redundant encoding $orintatl list of
encoding formats can be foundlitstruction Set Summaign paged3.

Both 32-bit and 16-bit instructions are available in the ARCompact ISA aniddicated using
particular suffixes on the instruction as illustrated by thewalhg syntax:

OP implies 32-bit instruction
OP_L indicates of 32-bit instruction.
OP_S indicates 16-bit instruction

If no suffix is used on the instruction then the implied instruction is 32-bit format

The list of syntax conventions is showrliable 28on page€d3.The encoding notation shown in
Table 48on pagel34 andTable 49on pagel34

List of Instructions

The ARCompact ISA has 32 base instruction opcodes with additional variaticluslifg NOP) that
provide a set of 86 arithmetic and logical instructions, load/store, and juamglinstructions. 51
instructions are 32-bit and the remaining 35 instructions are 16-bit. The ektmittienetic library
contains 13 instructions. The extension options provide an additional 4 instrwt@hbit formats
and 1 instruction in 16-bit format, giving a total of 104 instructions.

The ARC 700 processor additionally supports, 4 multiply instructions (as options) areé 7 m
basecase instructions. The 2 ARCtangent-A5 and ARC 600 multiply instruat®netasupported,
giving a total of 113 instructions.

The following table summarizes the 32-bit alongside the 16-bit instrectigmported by the
ARCompact ISA.

Table 87 List of Instructions

32-Bit Instructions 16-Bit Instructions

Instruction Operation Instruction Operation

ABS Absolute value ABS S Absolute value

ABSS Absolute and saturate

ABSSW Absolute and saturate of word

ADC Add with carry

ADD Add ADD_S Add

ADD1 Add with left shift by 1 bit ADD1 S Add with left shift by 1 bits

ARCompact™ Programmer's Reference 173

List of Instructions

Instruction Set Details

32-Bit Instructions
Instruction

Operation

16-Bit Instructions

Instruction

Operation

ADD2
ADD3
ADDS
ADDSDW
AND
ASL
ASLS
ASR
ASRS
BBITO
BBIT1
Bcc
BCLR

DIVAW

EXT
FLAG
Jce
JLcc
LD
LPcc
LR
LSR
MAX
MIN
MoV
MULG64
MULUG4
MPY
MPYH

MPYHU

174

Add with left shift by 2 bits
Add with left shift by 3 bits
Add and saturate

Add and saturate dual word
Logical AND

Arithmetic Shift Left

Arithmetic shift left and saturate

Arithmetic Shift Right

Arithmetic shift right and saturate

Branch if bit cleared to O
Branch if bit setto 1
Branch if condition true
Clear specified bit (to 0)
Bit-wise inverted AND
Branch and Link

Bit Mask

Branch on compare

| Break (halt) processor

Set specified bit (to 1)
Test value of specified bit
Bit XOR

Compare

Division assist

| Atomic Exchange

Unsigned extend

Write to Status Register
Jump

Jump and Link

Load from memory

Loop (zero-overhead loops)
Load from Auxiliary memory
Logical Shift Left

Return Maximum

Return Minimum

Move (copy) to register

32 x 32 Signed Multiply

32 x 32 Unsigned Multiply

32 x 32 Signed Multiply (low)
32 x 32 Signed Multiply (high)
32 x 32 Unsigned Multiply (high)

ADD2_S
ADD3 S

Add with left shift by 2 bits
Add with left shift by 3 bits

Logical AND
Arithmetic Shift Left

Arithmetic Shift Right

Branch if condition true
Clear specified bit (to 0)
Bit-wise inverted AND
Branch and Link

Bit Mask

Branch on compare
Break (halt) processor
Set specified bit (to 1)
Test value of specified bit

Compare

Unsigned extend
Jump

Jump and Link
Load from memory

Logical Shift Right

Move (copy) to register
32 x 32 Multiply

ARCompact™ Programmer's Reference

Instruction Set Details

List of Instructions

32-Bit Instructions

16-Bit Instructions

Instruction Operation Instruction Operation
| MPYU | 32 x 32 Unsigned Multiply (low)
NEG Negate NEG S Negate
NEGSW Negate and saturate of word
NEGS Negate and saturate
NORM Normalize to 32 bits
NORMW Normalize to 16 bits
NOT Logical bit inversion NOT_ S Logical bit inversion
OR Logical OR OR_S Logical OR
| PREFETCH | Prefetch from memory
RCMP Reverse Compare
RLC Rotate Left through Carry
RND16 Round to word
ROR Rotate Right
RRC Rotate Right through Carry
RSUB Reverse Subtraction
| RTIE | Return from Interrupt/Exception
SAT16 Saturate to word
SBC Subtract with carry
SEX Signed extend SEX_S Signed extend
SLEEP Put processor in sleep mode
SR Store to Auxiliary memory
ST Store to memory ST S Store to memory
SUB Subtract SUB S Subtract
SUB1 Subtract with left shift by 1 bit
SuB2 Subtract with left shift by 2 bits
SUB3 Subtract with left shift by 3 bits
SUBS Subtract and saturate
SUBSDW Subtract and saturate dual word
SWAP Swap 16 x 16
SWiI Software Interrupt
SYNC Synchronize
TRAPO Raise exception with param. 0 | TRAP_S | Raise exception
TST Test TST S Test
XOR Logical Exclusive-OR XOR_S Logical Exclusive-OR
NOP_S No Operation
POP_S Restore register value from
stack
PUSH_S Store register value on stack

| UNIMP_S | Unimplemented Instruction

ARCompact™ Programmer's Reference

175

Alphabetic Listing

Instruction Set Details

Alphabetic Listing

The instructions are arranged in alphabetical order. The instructianieajiven at the top left and
top right of the page, along with a brief instruction description, and instnugpe.

The following terms are used in the description of each instruction.

Operation

Format

Format Key

Syntax

Instruction Code

Flag Affected

Related Instructions
Description

Pseudo Code Example

Assembly Code Example

176

Operation of the instruction

Instruction format

Key for instruction operation

The syntax of the instruction and supported constructs
Layout of the field of the instruction

List of status flags that are affected

Instructions that are related

Full description of the instruction

Operation of the instruction described in pseudo code
A simple coding example

ARCompact™ Programmer's Reference

Instruction Set Details ABS

ABS

Absolute

Arithmetic Operation

Operation:
dest— ABS(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
ABS = Take Absolute Value of Source
Syntax:
With Result Instruction Code
ABS<.f> b,c 00100bbb00101111FBBBCCCCCC001001
ABS<.f> b,u6 00100bbb01101111FBBBuuuuuu001001
ABS<.f> b,limm 00100bbb00101111FBBB111110001001
ABS_S b,c 01111bbbccc10001
Without Result
ABS<.f> 0,c 0010011000101111F111CCCCCC001001
ABS<.f> 0,u6 0010011001101111F112uuuuuu001001
ABS<.f> 0,limm 0010011000101111F111111110001001
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if src = 0x8000 0000

= MSB of src

V | « | = Setif src = 0x8000 0000
Related Instructions:

SEXB EXTB
SEXW EXTW
NEG

Description:

Take the absolute value that is found in the source operand (src) anthplessult into the
destination register (dest). The carry flag reflects the stateeohost significant bit found in the
source register. Any flag updates will only occur if the set flagsxsuF) is used.

Pseudo Code Example:

alu =0 - src /* ABS */
if src[31]==1 then

dest = alu

else

dest = src

if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = if src==0x8000_0000 then 1 else O
Cc_flag = src[31]

v_flag = if src==0x8000_0000 then 1 else 0

Assembly Code Example:
ABS rl,r2 ; Take the absolute value of
; r2 and write result into rl

ARCompact™ Programmer's Reference 177

ABSS Instruction Set Details

ABSS

Absolute with Saturation
Extended Arithmetic Operation

Operation:
dest«— sat, (abs(src))

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1
Syntax:
With Result Instruction Code
ABSS<.f> b,c 00101bbb00101111FBBBCCCCCC000101
ABSS<.f> b,ué 00101bbb01101111FBBBuUuuuuu000101
ABSS<.f> b,limm 00101bbb00101111FBBB111110000101
Without Result
ABSS<.f> 0,c 0010111000101111F111CCCCCC000101
ABSS<.f> 0,u6 0010111001101111F111uuuuuu000101
ABSS<.f> 0,limm 0010111000101111F111121110000101
Flag Affected (32-Bit): Key:

= Set if input is zero = Limm Data

= Set if most significant bit of input is set

= Unchanged

= Set if input is 0x8000_0000 otherwise cleared
= Set if input is 0x8000_000 (‘sticky’ saturation)

NOTE In contrast with other instructions, the value of the input operand is used to set the flags.

Related Instructions:

SAT16 ABSSW
RND16 NEGSW
Description:

Obtain the absolute value of long word operand and place the result irstinatiien register. Note
that, the absolute value of 0x8000_0000 yields Ox7FFF_FFFF. Both saturation flags S il
be set if the result of the instruction saturates. Any flag updates wilboolr if the set flags suffix
(.F) is used.

Pseudo Code Example:

if src <= OX7FFF_FFFF /* ABSS */
sat = 0 // Using

dest = src // unsigned
else // pseudo
sat = 0 // arithmetic

dest = 0 - src

if src==0x8000_0000
sat = 1

dest = OX7FFF_FFFF
if F==1 then

z_flag = if src==0 then 1 else 0
N_flag = src[31]
v_flag = sat

s_flag s_flag || sat

178 ARCompact™ Programmer's Reference

Instruction Set Details ABSS

Assembly Code Example:
ABSS rl,r2 ; Take the absolute saturated value of
; r2 and write result into rl

ARCompact™ Programmer's Reference 179

ABSSW

Instruction Set Details

ABSSW

Operation:

dest« sats (abs(src.low))

Format:

inst dest, src

Absolute Word with Saturation
Extended Arithmetic Operation

Format Key:

dest = Destination Register

src = Source Operand 1

Syntax:

With Result Instruction Code

ABSSW<.f> b,c 00101bbb00101111FBBBCCCCCC000100
ABSSW<.f> b,u6 00101bbb01101111FBBBuUuuuuuu000100
ABSSW<.f> b,limm 00101bbb00101111FBBB111110000100
Without Result

ABSSW<.f> 0,c 0010111000101111F111CCCCCC000100
ABSSW<.f> O,u6 0010111001101111F111uuuuuu000100
ABSSW<.f> 0,limm 0010111000101111F111111110000100

Flag Affected (32-Bit):

= Set if input is zero

Key:

= Limm Data

= Set if most significant bit of input is set
= Unchanged

= Set if input is 0x8000 otherwise cleared
= Set if input is 0x8000 (‘sticky’ saturation)

NOTE In contrast with other instructions, the value of the input operand is used to set the flags.

Related Instructions:

SAT16 ABSS
RND16 NEGSW
Description:

Obtain the result is the absolute value of least significant word/jLd® the source operand. Note
that the absolute value of OxFFFF_8000 yields 0x0000_7FFF. Both saturation flags 2iaihdes
set if the result of the instruction saturates. Any flag updatesmifl occur if the set flags suffix (.F)
is used.

Pseudo Code Example:

srcle = src & Ox0000_FFFF /* ABSSW */
if srcl6é <= Ox7FFF // Using

sat = 0 // unsigned
dest = srcl6 // pseudo
else // arithmetic
sat = 0

dest = 0x0000_0000 - srclé6
if srcl6==0x8000

sat = 1

dest = 0x0000_7FFF

if F==1 then

z_flag = if src==0 then 1 else 0
N_flag = src[31]

v_flag = sat

s_flag = s_flag || sat

180 ARCompact™ Programmer's Reference

Instruction Set Details ABSSW

Assembly Code Example:
ABSSW rl,r2 ; Take the LSw absolute saturated value of
; r2 and write result into rl

ARCompact™ Programmer's Reference 181

ADC Instruction Set Details

ADC

Addition with Carry
Arithmetic Operation

Operation:
if (cc=true) then dest- srcl + src2 + carry

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

ADC<.f> a,b,c 00100bbb00000001FBBBCCCCCCAAAAAA
ADC<.f> a,b,u6 00100bbb01000001FBBBuuuuuuAAAAAA
ADC<.f> b,b,s12 00100bbb10000001FBBBsSsssssSSSSSS
ADC<.cc><.f> b,b,c 00100bbb11000001FBBBCCCCCC0QQQQQ
ADC<.cc><.f> b,b,ué 00100bbb11000001FBBBuUuuuuu1QQQQQ
ADC<.f> a,limm,c 0010011000000001F111CCCCCCAAAAAA
ADC<.f> a,b,limm 00100bbb00000001FBBB111110AAAAAA
ADC<.cc><.f> b,b,limm 00100bbb11000001FBBB1111100QQQQQ
Without Result

ADC<.f> 0,b,c 00100bbb00000001FBBBCCCCCC111110
ADC<.f> 0,b,u6 00100bbb01000001FBBBuuuuuu111110
ADC<.f> 0,b,limm 00100bbb00000001FBBB111110111110
ADC<.cc><.f> 0,limm,c 0010011011000001F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

V | « | = Set if overflow is generated

Related Instructions:

ADD ADD2
ADD1 ADD3
Description:

Add source operand 1 (srcl) and source operand 2 (src2) and carry, and plaadttimethe
destination register. Any flag updates will only occur if the set flaffixg.F) is used.

Pseudo Code Example:

if cc==true then /* ADC */
dest = srcl + src2 + C_flag

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
c_flag = carry(Q
v_flag = overflow()
Assembly Code Example:
ADC rl,r2,r3 ; Add r2 to r3 with carry and

; write result into rl

182 ARCompact™ Programmer's Reference

Instruction Set Details ADD

ADD

Addition

Arithmetic Operation

Operation:
if (cc=true) then dest srcl + src2

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

ADD<.f> a,b,c 00100bbb00000000FBBBCCCCCCAAAAAA
ADD<.f> a,b,u6 00100bbb01000000FBBBuUuuuuuAAAAAA
ADD<.f> b,b,s12 00100bbb10000000FBBBsSsssssSSSSSS
ADD<.cc><.f> b,b,c 00100bbb11000000FBBBCCCCCC0QQQQQ
ADD<.cc><.f> b,b,ué 00100bbb11000000FBBBuUuuuuu1QQQQQ
ADD<.f> a,limm,c 0010011000000000F111CCCCCCAAAAAA
ADD<.f> a,b,limm 00100bbb00000000FBBB111110AAAAAA
ADD<.cc><.f> b,b,limm 00100bbb11000000FBBB1111100QQQQQ
ADD_S a,b,c 01100bbbcccllaaa

ADD_S c,b,u3 01101bbbcccO0uuu

ADD_S b,b,h 01110bbbhhhOOHHH

ADD_S b,b,limm 01110bbb11000111
ADD_S b,sp,u7 11000bbb100uuuuu

ADD_S sp,sp,u7 11000000101uuuuu

ADD_S ro,gp,sil 1100111sssssssss

ADD_S b,b,u7 11100bbbOuuuuuuu

Without Result

ADD<.f> 0,b,c 00100bbb00000000FBBBCCCCCC111110
ADD<.f> 0,b,u6 00100bbb01000000FBBBuUuUUUU111110
ADD<.f> 0,b,limm 00100bbb00000000FBBB111110111110
ADD<.cc><.f> 0,limm,c 0010011011000000F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

V | « | = Setif overflow is generated

Related Instructions:

ADC ADD2
ADD1 ADD3
Description:

Add source operand 1 (srcl) to source operand 2 (src2) and place the resulestitiagion register.
Any flag updates will only occur if the set flags suffix (.F) is used.

ARCompact™ Programmer's Reference 183

ADD Instruction Set Details

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) or global pointer (GP) the
offset is aligned to 32-bit. For example ADD_S sp, sp. u7 only needs to encode the top 5 bits since
the bottom 2 bits of u7 are always zero because of the 32-hit data alignment.

Pseudo Code Example:

if cc==true then /* ADD */
dest = srcl + src2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
c_flag = carry(Q
v_flag = overflow()
Assembly Code Example:
ADD rl,r2,r3 ; Add contents of r2 with r3

; and write result into rl

184 ARCompact™ Programmer's Reference

Instruction Set Details ADD1

ADD1

Addition with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest- srcl + (src2 << 1)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

ADD1<.f> a,b,c 00100bbb00010100FBBBCCCCCCAAAAAA
ADD1<.f> a,b,u6 00100bbb01010100FBBBuuuuuuAAAAAA
ADD1<.f> b,b,s12 00100bbb10010100FBBBsSsssssSSSSSS
ADDl1<.cc><.f> b,b,c 00100bbb11010100FBBBCCCCCC0QQQQQ
ADD1<.cc><.f> b,b,u6 00100bbb11010100FBBBuUuuuuu1QQQQQ
ADD1<.f> a,limm,c 0010011000010100F111CCCCCCAAAAAA
ADD1<.f> a,b,limm 00100bbb00010100FBBB111110AAAAAA
ADDI1<.cc><.f> b,b,limm 00100bbb11010100FBBB1111100QQQQQ
ADD1 S b,b,c 01111bbbccc10100

Without Result

ADD1<.f> 0,b,c 00100bbb00010100FBBBCCCCCC111110
ADD1<.f> 0,b,u6 00100bbb01010100FBBBuuuuuul111110
ADD1<.f> 0,b,limm 00100bbb00010100FBBB111110111110
ADDl1<.cc><.f> 0,limm,c 0010011011010100F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated

V | « | = Set if overflow is generated from the ADD partioé instruction
Related Instructions:

ADD ADD2
ADC ADD3
Description:

Add source operand 1 (srcl) to a scaled version of source operand 2 (src2ft(stazdd by 1).
Place the result in the destination register. Any flag updates will only dabe set flags suffix (.F)
is used.

Pseudo Code Example:

if cc==true then /* ADD1 */
shiftedsrc2 = src2 << 1

dest = srcl + shiftedsrc2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

c_flag carry(Q)

= y
_ = (srcl[31] AND shiftedsrc2[31] and NOT dest[31]
) OR (NOT srcl[31] AND NOT shiftedsrc2[31] and dest[31])

ARCompact™ Programmer's Reference 185

ADD1 Instruction Set Details

Assembly Code Example:

ADD1 rl,r2,r3 ; Add contents of r3 shifted
; left one bit to r2
; and write result into rl

186 ARCompact™ Programmer's Reference

Instruction Set Details ADD?2

ADD?2

Addition with Scaled Source
Arithmetic Operation

Operation:
if (cc=true) then dest- srcl + (src2 << 2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

ADD2<.f> a,b,c 00100bbb00010101FBBBCCCCCCAAAAAA
ADD2<.f> a,b,u6 00100bbb01010101FBBBuuuuuuAAAAAA
ADD2<.f> b,b,s12 00100bbb10010101FBBBsSsssssSSSSSS
ADD2<.cc><.f> b,b,c 00100bbb11010101FBBBCCCCCC0QQQQQ
ADD2<.cc><.f> b,b,u6 00100bbb11010101FBBBuuuuuulQQQQQ
ADD2<.f> a,limm,c 0010011000010101F111CCCCCCAAAAAA
ADD2<.f> a,b,limm 00100bbb00010101FBBB111110AAAAAA
ADD2<.cc><.f> b,b,limm 00100bbb11010101FBBB1111100QQQQQ
ADD2_S b,b,c 01111bbbccc10101

Without Result

ADD2<.f> 0,b,c 00100bbb00010101FBBBCCCCCC111110
ADD2<.f> 0,b,u6 00100bbb01010101FBBBuuuuuul111110
ADD2<.f> 0,b,limm 00100bbb00010101FBBB111110111110
ADD2<.cc><.f> 0,limm,c 0010011011010101F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated

V | « | = Set if overflow is generated from the ADD partioé instruction
Related Instructions:

ADD ADD1
ADC ADD3
Description:

Add source operand 1 (srcl) to a scaled version of source operand 2 (src2ft(stazdd by 2).
Place the result in the destination register. Any flag updates will only dabe set flags suffix (.F)
is used.

Pseudo Code Example:

if cc==true then /* ADD2 */
shiftedsrc2 = (src2 << 2)

dest = srcl + shiftedsrc2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
c_flag = carry(Q

V_flag = (srcl[31] AND shiftedsrc2[31] and NOT dest[31]) OR
(NOT srcl[31] AND NOT shiftedsrc2[31] and dest[31])

ARCompact™ Programmer's Reference 187

ADD2 Instruction Set Details

Assembly Code Example:

ADD2 rl,r2,r3 ; Add contents of r3 shifted
; left two bits to r2
; and write result into rl

188 ARCompact™ Programmer's Reference

Instruction Set Details ADD3

ADD3

Addition with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest- srcl + (src2 << 3)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

ADD3<.f> a,b,c 00100bbb00010110FBBBCCCCCCAAAAAA
ADD3<.f> a,b,u6 00100bbb01010110FBBBuuuuuuAAAAAA
ADD3<.f> b,b,s12 00100bbb10010110FBBBssssssSSSSSSS
ADD3<.cc><.f> b,b,c 00100bbb11010110FBBBCCCCCC0QQQQQ
ADD3<.cc><.f> b,b,u6 00100bbb11010110FBBBuUuuuuu1QQQQQ
ADD3<.f> a,limm,c 0010011000010110F111CCCCCCAAAAAA
ADD3<.f> a,b,limm 00100bbb00010110FBBB111110AAAAAA
ADD3<.cc><.f> b,b,limm 00100bbb11010110FBBB1111100QQQQQ
ADD3_S b,b,c 01111bbbccc10110

Without Result

ADD3<.f> 0,b,c 00100bbb00010110FBBBCCCCCC111110
ADD3<.f> 0,b,u6 00100bbb01010110FBBBuuuuuul111110
ADD3<.f> 0,b,limm 00100bbb00010110FBBB111110111110
ADD3<.cc><.f> 0,limm,c 0010011011010110F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated

V | « | = Set if overflow is generated from the ADD partioé instruction
Related Instructions:

ADD ADD1
ADC ADD2
Description:

Add source operand 1 (srcl) to a scaled version of source operand 2 (src2ft(stazdd by 3).
Place the result in the destination register. Any flag updates will only dabe set flags suffix (.F)
is used.

Pseudo Code Example:

if cc==true then /* ADD3 */
shiftedsrc2 = src2 << 3

dest = srcl + shiftedsrc2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
c_flag = carry(Q

V_flag = (srcl[31] AND shiftedsrc2[31] and NOT dest[31]) OR
(NOT srcl[31] AND NOT shiftedsrc2[31] and dest[31])

ARCompact™ Programmer's Reference 189

ADD3 Instruction Set Details

Assembly Code Example:

ADD3 rl,r2,r3 ; Add contents of r3 shifted
; left three bits to r2
; and write result into rl

190 ARCompact™ Programmer's Reference

Instruction Set Details ADDS

ADDS

Signed Add with Saturation
Extended Arithmetic

Operation:
dest« sat, (srcl + src2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

With Result Instruction Code

ADDS<.f> a,b,c 00101bbb00000110FBBBCCCCCCAAAAAA
ADDS<.f> a,b,u6 00101bbb01000110FBBBUuuuuuuAAAAAA
ADDS<.f> b,b,s12 00101bbb10000110FBBBSsssssSSSSSS
ADDS<.cc><.f> b,b,c 00101bbb11000110FBBBCCCCCC0QQQQQ
ADDS<.cc><.f> b,b,u6 00101bbb11000110FBBBuUuuuuu1QQQQQ
ADDS<.f> a,limm,c 0010111000000110F111CCCCCCAAAAAA| L
ADDS<.f> a,b,limm 00101bbb00000110FBBB111110AAAAAA | L

ADDS<.cc><.f> b,b,limm 00101bbb11000110FBBB111110QQQQQQ | L
Without Result

ADDS<.f> 0,b,c 00101bbb00000110FBBBCCCCCC111110
ADDS<.f> 0,b,u6 00101bbb01000110FBBBuuuuuu111110
ADDS<.f> 0,b,limm 00101bbb00000110FBBB111110111110 L
ADDS<.cc><.f> 0,limm,c 0010111011000110F111CCCCCC0QQQQQ L
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated from the add

= Set if result saturated, otherwise cleared
S | . | = Setif result saturated (‘sticky’ saturation)

Related Instructions:
SUBS ADDSDW

Description:

Perform a signed addition of the two source operands. If the result owgrfilowt it to the maximum
signed value. Both saturation flags S1 and S2 will be set if the reshiét mfstruction saturates. Any
flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* ADDS */
dest = srcl + src2

sat = sat32(dest)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

c_flag = 0

v_flag = sat

s_flag s_flag || sat

ARCompact™ Programmer's Reference 191

ADDS Instruction Set Details

Assembly Code Example:
ADDS rl,r2,r3 ; Add contents of r2 with r3
; and write result into rl

192 ARCompact™ Programmer's Reference

Instruction Set Details ADDSDW

ADDSDW

Signed Add with Saturation Dual Word
Extended Arithmetic Operation

Operation:
Dest« satg(srcl.high+src2.high): sgfsrcl.low+src2.low)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

With Result Instruction Code

ADDSDW<.f> a,b,c 00101bbb00101000FBBBCCCCCCAAAAAA
ADDSDW<.f> a,b,ué 00101bbb01101000FBBBuuuuuuAAAAAA
ADDSDW<.f> b,b,s12 00101bbb10101000FBBBssssssSSSSSS

ADDSDW<.cc><.f> b,b,c 00101bbb11101000FBBBCCCCCCOQQQQQ
ADDSDW<.cc><.f> b,b,u6 00101bbb11101000FBBBuLULLU1QQQQQ

ADDSDW<.f> a,limm,c 0010111000101000F111CCCCCCAAAAAA| L
ADDSDW<.f> a,b,limm 00101bbb00101000FBBB111110AAAAAA | L
ADDSDW<.cc><.f> Db,b,limm 00101bbb11101000FBBB111110QQQQQQ| L
Without Result - only flags will be set
ADDSDW<.f> 0,b,c 00101bbb00101000FBBBCCCCCC111110
ADDSDW<.f> 0,b,u6 00101bbb01101000FBBBuUuuuuul111110
ADDSDW<.cc><.f> 0,limm,c 0010111011101000F111CCCCCCOQQQQ
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data

N | « | = Setif most significant bit of result is set

C = Unchanged

\Y « | = Set if result saturated, otherwise cleared
S | « | = Setif result saturated (‘sticky’ saturation)

Related Instructions:
SUBSDW SUBS
ADDS

Description:

Perform a signed dual-word addition of the two source operands. If the resulhwsegliimit it to the
maximum signed value. The saturation flags S1 and S2 will be set accardlegresult of the
channel 1 (high 16-bit) and channel 2 (low 16-bit) calculations respectivelyflanypdates will
only occur if the set flags suffix (.F) is used.

Assembly Code Example:
ADDSDW rl,r2,r3 ;

ARCompact™ Programmer's Reference 193

AND Instruction Set Details

AND

Bitwise AND Operation
Logical Operation

Operation:
if (cc=true) then dest- srcl AND src2

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

AND<.f> a,b,c 00100bbb00000100FBBBCCCCCCAAAAAA
AND<.f> a,b,u6 00100bbb01000100FBBBuuuuuuAAAAAA
AND<.f> b,b,s12 00100bbb10000100FBBBssssssSSSSSS
AND<.cc><.f> b,b,c 00100bbb11000100FBBBCCCCCC0QQQQQ
AND<.cc><.f> b,b,u6 00100bbb11000100FBBBuUuuuuu1QQQQQ
AND<.f> a,limm,c 0010011000000100F111CCCCCCAAAAAA
AND<.f> a,b,limm 00100bbb00000100FBBB111110AAAAAA
AND<.cc><.f> b,b,limm 00100bbb11000100FBBB1111100QQQQQ
AND_S b,b,c 01111bbbccc00100

Without Result

AND<.f> 0,b,c 00100bbb00000100FBBBCCCCCC111110
AND<.f> 0,b,u6 00100bbb01000100FBBBuuuuuul111110
AND<.f> 0,b,limm 00100bbb00000100FBBB111110111110
AND<.cc><.f> 0,limm,c 0010011011000100F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

OR XOR

BIC

Description:

Logical bitwise AND of source operand 1 (srcl) with source operand 2 (gitt2he result written
to the destination register. Any flag updates will only occur if the ags$ #uffix (.F) is used.

Pseudo Code Example:
if cc==true then /* AND */
dest = srcl AND src2
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag dest[31]

Assembly Code Example:
AND rl,r2,r3 ; AND contents of r2 with r3
; and write result into rl

194 ARCompact™ Programmer's Reference

Instruction Set Details ASL

ASL

Arithmetic Shift Left

Logical Operation

Operation:
dest— src + src

[src |

P
E dest [0] «— ¢
MSB LSB

Format:
inst dest, src
Format Key:
dest = Destination Register
src = Source Operand
Syntax:
With Result Instruction Code
ASL<.f> b,c 00100bbb00101111FBBBCCCCCC000000
ASL<.f> b,u6 00100bbb01101111FBBBuUuuuuu000000
ASL<.f> b,limm 00100bbb00101111FBBB111110000000
ASL_S b,c 01111bbbccc11011
Without Result
ASL<.f> 0,c 0010011000101111F111CCCCCC000000
ASL<.f> 0o,u6 0010011001101111F111uuuuuu000000
ASL<.f> 0,limm 0010011000101111F111111110000000
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set
= Set if carry is generated
V | « | = Setif the sign bit changes after a shift

Related Instructions:

ASR LSR

ROR RRC

ASL multiple ASR multiple
ROR multiple LSR multiple
Description:

Arithmetically left shift the source operand (src) by one and placesdt into the destination
register (dest). An ASL operation is effectively accomplished by addengdurce operand upon
itself (src + src), with the result being written into the destmategister. Any flag updates will only
occur if the set flags suffix (.F) is used.

Pseudo Code Example:

dest = src + src /* ASL */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

C_flag carry(Q

v_flag = overflow()

Assembly Code Example:
ASL rl,r2 ; Arithmetic shift left contents of r2
; by one bit and write result into rl

ARCompact™ Programmer's Reference 195

ASL multiple Instruction Set Details

ASL multiple

Multiple Arithmetic Shift Left
Logical Operation

Operation:
if (cc=true) then dest- arithmetic shift left of src1 by src2

[srcl |

E dest [0] «— ¢
MSB LSB

Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
ASL<.f> a,b,c 00101bbb00000000FBBBCCCCCCAAAAAA
ASL<.f> a,b,u6 00101bbb01000000FBBBUuuuUUAAAAAA
ASL<.f> b,b,s12 00101bbb10000000FBBBSssSSSSSSSSS
ASL<.cc><.f> b,b,c 00101bbb11000000FBBBCCCCCC0QQQQQ
ASL<.cc><.f> b,b,u6 00101bbb11000000FBBBuUuuuuu1QQQQQ
ASL<.f> alimm,c 0010111000000000F111CCCCCCAAAAAA | L
ASL<.f> a,b,limm 00101bbb00000000FBBB111110AAAAAA |
ASL<.cc><.f> b,b,limm 00101bbb11000000FBBB1111100QQQQQ |L
ASL_ S c,b,u3 01101bbbcccl0uuu
ASL_S b,b,c 01111bbbccc11000
ASL_ S b,b,us 10111bbb000uuUUU
Without Result
ASL<.f> 0,b,c 00101bbb00000000FBBBCCCCCC111110
ASL<.f> 0,b,u6 00101bbb01000000FBBBuUuuUUu111110
ASL<.cc><.f> 0,imm,c 0010111011000000F111CCCCCCOQQQQQ[L]
Flag Affected (32-Bit): Key:
z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
Y = Unchanged
Related Instructions:
ASR LSR
ROR RRC
ASR multiple LSR multiple
ROR multiple
Description:

Arithmetically, shift left src1 by src2 places and place the resuleidléstination register. Only the
bottom 5 bits of src2 are used as the shift value. Any flag updates will onlyibtiwe set flags
suffix (.F) is used.

196 ARCompact™ Programmer's Reference

Instruction Set Details ASL multiple

Pseudo Code Example:

if cc==true then /* ASL */

dest = srcl << (src2 & 31) /% Multiple */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]
Cc_flag = if src2==0 then 0 else srcl[32-src2]

Assembly Code Example:

ASL rl,r2,r3 ; Arithmetic shift left
; contents of r2 by r3 bits
; and write result into rl

ARCompact™ Programmer's Reference 197

ASLS Instruction Set Details

ASLS

Arithmetic +/- Shift Left with Saturation
Extended Arithmetic Operation

Operation:
dest« sat, (srcl << src2)

Positive src2dest— arithmetic shift left of src1 by src2 with saturation on the result.

| srcl |

P

| dest [0] «—

MSB LSB

Negative src2dest— arithmetic shift right of srcl by -src2.

| | srcl |

A

| dest |

MSB LSB
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
ASLS<.f> a,b,c 00101bbb00001010FBBBCCCCCCAAAAAA
ASLS<.f> a,b,ub 00101bbb01001010FBBBuUuuuuuAAAAAA
ASLS<.f> b,b,s12 00101bbb10001010FBBBSSsSSSSSSSSS
ASLS<.cc><.f> b,b,c 00101bbb11001010FBBBCCCCCC0QQQQQ
ASLS<.cc><.f> b,b,u6 00101bbb11001010FBBBUuuuuu1QQQQQ
ASLS<.f> alimm,c 0010111000001010F111CCCCCCAAAAAA | L
ASLS<.f> a,blimm 00101bbb00001010FBBB111110AAAAAA L

ASLS<.cc><.f> b,b,imm 00101bbb11001010FBBB111110QQQQQQ | L
Without Result

ASLS<.f> 0,b,c 00101bbb00001010FBBBCCCCCC111110
ASLS<.f> 0,b,u6 00101bbb01001010FBBBuuuuuu111110
ASLS<.cc><.f> 0,limm,c 0010111011001010F111CCCCCCOQQQQQ
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set

= Unchanged

= Set if result saturated, otherwise cleared

Related Instructions:
ASRS ASL

198 ARCompact™ Programmer's Reference

Instruction Set Details ASLS

Description:
a) If src2 is positive, with a value in the range 0<= operand2 <= 31, arithityesiaift srcl left by
src2 places. The result is saturated and then placed in the destneaister.

When src2 is larger than 31, the result is set to 0x7FFF_FFF and 0x8000_0000 (safaration)
positive non-zero and negative input respectively.

b) If src2 is negative, with a value in the range -31<= operand?2 <0, arithlyesiift src1 right by -
src2 places (positive right shift) and placed in the destinationeegist

When src2 is less than -31, src2 is set to —31, ensuring a maximum rigbf 8tifplaces.

Both saturation flags S1 and S2 will be set if the result of the instructinmatgs. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* ASLS */

if src2 > 0x0000_001F and src2 < OX7FFF_FFFF /* Multiple */
tempdest = srcl << 0x0000_001F /* and */

if src2 > 0x8000_0000 and src2 < OXFFFFFFELl /* Saturated */
tempdest = srcl >> 0x0000_001F /% using */

if src2 >= 0 and src2 <= 0x0000_001F /* unsigned */
tempdest = srcl << src2 /* pseudo code */

if src2 < 0 and src2 >= OXFFFFFFE1
tempdest = srcl >> (0 - src2)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:
; 0 <= operand2 <= 31 : Arithmetically shift left operandl
; by operand2 places with saturation:

AsLS r0O, 0x00001111,
ASLS r0, 0x00001111,
AsLS r0O, 0x00001111,
ASLS r0, 0x10001111,
AsLS r0, 0x10001111,
ASLS r0, 0x10001111,
AsLs.f r0, 0x10001111, 3

; Yields r0=0x0000_2222
; Yields r0=0x0000_4444
; Yields r0=0x0000_8888
; Yields r0=0x2000_2222
; Yields r0=0x4000_4444

WNRWN

Yields rO0=0x7FFF_FFFF (saturation)
Yields rO=0x7fff_ffff
(saturation, V and S flags are set)

ASLS rO, 0x10001111, 31 ; Yields r0=0x7FFF_FFFF (saturation)

; Operand2 > 31 : Result is set to Ox7FFF_FFFF or
; 0x8000_0000 (saturation) for positive (non-zero)
; and negative input respectively.
ASLS r0O, 0x00000001, 33 ; Yields rO0=0x7FFF_FFFF
; (saturate to Targest positive value)
ASLS rO, OXFFFFFFFF, 33 ; Yields r0=0x8000_0000
; (saturate to Tlargest negative value)

; Supports ASRS with negative shift (operand2):

ASLS rO, rl1, -1 ; in effect performs asrs r0, r1, 1
ASLS r0, 0x00001111, -1 Yields r0=0x0000_0888

ASLS r0, 0x00001111, -12 Yields r0=0x0000_0001

ASLS r0, 0x00001111, -13 Yields r0=0x0000_0000

ASLS rO, OXFFFFEEEF, -1 ; Yields rO=0xFFFF_F777
ASLS rO, OXFFFFEEEF, -12 ; Yields rO=0xFFFF_FFFF
ASLS r0O, OXFFFFEEEF, -13 ; Yields rO0=0xFFFF_FFFF (sign filled)

ARCompact™ Programmer's Reference 199

ASR Instruction Set Details

ASR

Arithmetic Shift Right
Logical Operation

Operation:
dest—src >>1

src |

|
Ny W
| dest |
MSB LSB
Format:
inst dest, src
Format Key:
dest = Destination Register
src = Source Operand
Syntax:
With Result Instruction Code
ASR<.f> b,c 00100bbb00101111FBBBCCCCCC000001
ASR<.f> b,u6 00100bbb01101111FBBBuUuuuuu000001
ASR<.f> b,limm 00100bbb00101111FBBB111110000001
ASR_S b,c 01111bbbccc11100
Without Result
ASR<.f> 0,c 0010011000101111F111CCCCCC000001
ASR<.f> 0,u6 0010011001101111F111uuuuuu000001
ASR<.f> 0,limm 0010011000101111F111121110000001
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
\% = Unchanged
Related Instructions:
ASL LSR
ROR RRC
ASL multiple ASR multiple
ROR multiple LSR multiple
Description:

Arithmetically right shift the source operand (src) by one and pleceesult into the destination
register (dest). The sign of the source operand is retained indfirgation register. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

dest = src >> 1 /* ASR */
if src[31]==1 then dest[31] =1

if F==1 then

if dest==0 then 1 else 0

dest[31]

c_flag src[0]

Assembly Code Example:

ASR rl,r2 ; Arithmetic shift right
; contents of r2 by one bit
; and write result into rl

P4
—h
—
QL
Q
o

200 ARCompact™ Programmer's Reference

Instruction Set Details ASR multiple

ASR multiple

Multiple Arithmetic Shift Right
Logical Operation

Operation:
if (cc=true) then dest- arithmetic shift right of src1 by src2

| | srcl |

N
| dest |
MSB LSB
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
ASR<.f> a,b,c 00101bbb00000010FBBBCCCCCCAAAAAA
ASR<.f> a,b,ué 00101bbb01000010FBBBuuuuuuAAAAAA
ASR<.f> b,b,s12 00101bbb10000010FBBBSsssSsSSSSSS
ASR<.cc><.f> b,b,c 00101bbb11000010FBBBCCCCCC0QQQQQ
ASR<.cc><.f> b,b,u6 00101bbb11000010FBBBuuuuuu1QQQQQ
ASR<.f> a,limm,c 0010111000000010F111CCCCCCAAAAAA | L
ASR<.f> a,b,limm 00101bbb00000010FBBB111110AAAAAA L
ASR<.cc><.f> b,b,limm 00101bbb11000010FBBB1111100QQQQQ |L
ASR_S c,b,u3 01101bbbccclluuu
ASR_S b,b,c 01111bbbccc11010
ASR_S b,b,us 10111bbb010uuuuu
Without Result
ASR<.f> 0,b,c 00101bbb00000010FBBBCCCCCC111110
ASR<.f> 0,b,u6 00101bbb01000010FBBBuUuuuuul111110
ASR<.cc><.f> 0,limm,c 0010111011000010F1110CCCCCOQQQQQ
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
\% = Unchanged
Related Instructions:
ASL LSR
ROR RRC
ASR multiple LSR multiple
ROR multiple
Description:

Arithmetically, shift right src1 by src2 places and place the resuleidéktination register. Only the
bottom 5 bits of src2 are used as the shift value. Any flag updates will onlyibtiwe set flags
suffix (.F) is used.

ARCompact™ Programmer's Reference 201

ASR multiple Instruction Set Details

Pseudo Code Example:

if cc==true then /* ASR */
dest = ((signed)srcl) >> (src2 & 31) /% Multiple */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]
Cc_flag = if src2==0 then 0 else srcl[src2-1]

Assembly Code Example:

ASR rl1,r2,r3 ; Arithmetic shift right
; contents of r2 by r3 bits
; and write result into rl

202 ARCompact™ Programmer's Reference

Instruction Set Details ASRS

ASRS

Arithmetic +/- Shift Right with Saturation
Extended Arithmetic Operation

Operation:
dest« sat, (srcl >> src2)

Positive src2dest«— arithmetic shift right of srcl by src2

| | srcl |

Ny

| dest |

MSB LSB

Negative src2dest«— arithmetic shift left of src1 by -src2 with saturation

[srcl |

«

| dest [0] «—

MSB LSB
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
ASRS<.f> a,b,c 00101bbb00001011FBBBCCCCCCAAAAAA
ASRS<.f> a,b,ué 00101bbb01001011FBBBuuuuuuAAAAAA
ASRS<.f> b,b,s12 00101bbb10001011FBBBssssssSSSSSS
ASRS<.cc><.f> b,b,c 00101bbb11001011FBBBCCCCCC0QQQQQ
ASRS<.cc><.f> b,b,ué 00101bbb11001011FBBBuUuuuuu1QQQQQ
ASRS<.f> alimm,c 0010111000001011F111CCCCCCAAAAAA| L
ASRS<.f> a,blimm 00101bbb00001011FBBB111110AAAAAA | L

ASRS<.cc><.f> b,b,limm 00101bbb11001011FBBB111110QQQQQQ| L
Without Result

ASRS<.f> 0,b,c 00101bbb00001011FBBBCCCCCC111110
ASRS<.f> 0,b,u6 00101bbb01001011FBBBuuuuuu111110
ASRS<.cc><.f> 0,limm,c 0010111011001011F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

Y = Set if result saturated, otherwise cleared

S | . | = Setif result saturated (‘sticky’ saturation)

Related Instructions:
ASLS ASR

Description:
a) If src2 is positive, with a value in the range 0<= src2 <=31, ariitaigtshift srcl right by src2
places and put the result in the destination register.

ARCompact™ Programmer's Reference 203

ASRS Instruction Set Details

NOTE When src2 is larger than 31, src2 is set to 31, ensuring a maximum right shift of 31 places.

b) If src2 is negative with a value in the range -31<= src2 <= 0, arithathetbift srcl left by src2
places (positive left shift). Result is saturated and then plackd oestination register.

When src2 is less than -31, the result is set to Ox7FFF_FFF and 0x8000_00afi¢aatior positive
non-zero and negative input respectively.

Both saturation flags S1 and S2 will be set if the result of the instructinmatgs. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* ASRS */

if src2 > 0x0000_001F and src2 < OX7FFF_FFFF /* Multiple */
tempdest = srcl >> 0x0000_001F /* and */

if src2 > 0x8000_0000 and src2 < OXFFFFFFEL1 /* Saturated */
tempdest = srcl << 0x0000_001F /% using */

if src2 >= 0 and src2 <= 0x0000_001F /* unsigned */
tempdest = srcl >> src2 /* pseudo code */

if src2 < 0 and src2 >= OXFFFFFFE1
tempdest = srcl << (0 - src2)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:
; 0 <= operand2 <= 31 : Arithmetically shift right operandl
; by operand2 places:

ASRS r0, 0x00001111, 1 ; Yields r0=0x0000_0888

ASRS r0, 0x00001111, 2 ; Yields r0=0x0000_0444

ASRS r0, 0x00001111, 3 ; Yields r0=0x0000_0222

; operand2 > 31 : The number of right shifts is limited to
; 31 places.

ASRS r0O, Ox7FFFFFFF, 33 ; Yields r0=0x0000_0000

ASRS r0, 0x80000000, 33 ; Yields rO=0xFFFF_FFFF

; Supports ASLS with negative shift (operand2).

; For shifts in the range -31<= operand2 <= 0,

; arithmetically shift left operandl

; by -operand2 places (positive left shift). In the case

; of overflow result is saturated.

ASRS rO, rl1, -1 ; in effect performs ASLS rO, rl, 1

ASRS r0, 0x0000_1111, -1 ; Yields r0=0x0000_2222
ASRS r0, 0x1000_1111, -3 ; Yields rO=0x7FFF_FFFF
; (saturation)
ASRS.f r0O, 0x1000_1111, -3 ; Yields rO=0x7FFF_FFFF
; (saturation, V and S flags are set)
ASRS r0, OXFFFF_FF00, -31 ; Yields r0=0x8000_0000
; (saturation)

; When -operand2 1is Tlarger than 31, result is set to
; OX7FFF_FFFF and 0x8000_0000 (saturation) for positive (non-zero)
; and negative 1input respectively.

204 ARCompact™ Programmer's Reference

Instruction Set Details BBITO

BBITO

Branch on Bit Test Clear

Branch Operation

Operation:
if (src1 AND 2" = 0 then cPG— cPCL+rd

Format:
inst srcl, src2, rd

Format Key:
srcl Source Operand 1

src2 = Source Operand 2
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from tféte of the instruction,
32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of th& Zollowing instruction)
Syntax:
Instruction Code
BBITO<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN01110
BBITO<.d> b,u6,s9 00001bbbsssssss1SBBBuuuuuuN11110

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description

ND 0 Only execute next instruction wheat branching default, if no <.d> field
syntay

D 1 Always execute next instruction

Flag Affected (32-Bit): Key:

Z [] = Unchanged = Limm Data

N = Unchanged

C = Unchanged

\% = Unchanged

Related Instructions:

BBIT1 BRcc

Description:

Test a bit within source operand 1 (srcl) to see if it is clear (0). Sopecand 2 (src2) explicitly
specifies the bit-position that is to be tested within source operancil). @nly the bottom 5 bits of
src2 are used as the bit position. If the condition is true, branch from thatda€C (actually PCL)
with the displacement value specified in the source operand (rd).

The branch target address can be 16-bit aligned. Since the execution efrtiaiom that is in the
delay slot is controlled by the delay slot mode, it should never be thedéayst branch or jump
instruction. The status flags are not updated with this instruction.

| To take advantage of the ARC 600 branch prediction unit, it is prefecabée a negative
displacement with a frequently takBRcc BBITO or BBIT1 instruction, and a positive displacement
I with one that is rarely taken.

| For the ARC 600 processor, ra8¢L) should not be used as a source operand in a branch on
| compare instructiorBBITO, BBIT1, or BRcg.

ARCompact™ Programmer's Reference 205

BBITO Instruction Set Details

CAUTION The BBITO instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRce.D or
BBITn.D instruction.

Pseudo Code Example:
if (srcl & (1 << (src2 & 31)))==0 then /* BBITO */
if N=1 then
DelaySlot(nPC)
KillpelaySlot(dPC)
PC = cPCL + rd
else
PC = nPC

Assembly Code Example:
BBITO rl1,9,label ; Branch to label if bit 9
; of rl is clear

206 ARCompact™ Programmer's Reference

Instruction Set Details BBIT1

BBIT1

Branch on Bit Test Set

Branch Operation

Operation:
if (src1 AND 2" = 1 then cPG— cPCL+rd

Format:
inst srcl, src2, rd

Format Key:
srcl Source Operand 1

src2 = Source Operand 2
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from tfiéogte of the instruction,
32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of th& Zollowing instruction)
Syntax:
Instruction Code
BBIT1<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCNO01111
BBIT1<.d> b,u6,s9 00001bbbsssssss1SBBBuuuuuuN11111

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description

ND 0 Only execute next instruction wheat branching default, if no <.d> field
syntay

D 1 Always execute next instruction

Flag Affected (32-Bit): Key:

Z [] = Unchanged = Limm Data

N = Unchanged

C = Unchanged

\% = Unchanged

Related Instructions:

BBITO BRcc

Description:

Test a bit within source operand 1 (srcl) to see if it is set (1). Sourcaoj2efsrc2) explicitly
specifies the bit-position that is to be tested within source operancil). @nly the bottom 5 bits of
src2 are used as the bit position. If the condition is true, branch from thatde€C (actually PCL)
with the displacement value specified in the source operand (rd).

The branch target address can be 16-bit aligned. Since the execution efrtiaiom that is in the
delay slot is controlled by the delay slot mode, it should never be thedéayst branch or jump
instruction. The status flags are not updated with this instruction.

| To take advantage of the ARC 600 branch prediction unit, it is prefecabée a negative
displacement with a frequently takBRcc BBITO or BBIT1 instruction, and a positive displacement
I with one that is rarely taken.

| For the ARC 600 processor, ra8¢L) should not be used as a source operand in a branch on
| compare instructiorBBITO, BBIT1, or BRcg.

ARCompact™ Programmer's Reference 207

BBIT1 Instruction Set Details

CAUTION The BBIT1 instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRce.D or
BBITn.D instruction.

Pseudo Code Example:
if (srcl & (1 << (src2 & 31)))!=0 then /* BBIT1 */
if N=1 then
DelaySlot(nPC)
KillpelaySlot(dPC)
PC = cPCL + rd
else
PC = nPC

Assembly Code Example:
BBIT1 rl1,9,label ; Branch to label if bit 9
; of rl is set

208 ARCompact™ Programmer's Reference

Instruction Set Details Bcc

Bcc
Branch Conditionally
Branch Operation
Operation:
if (cc=true) then cPG— (cPCL+rd)
Format:
inst rel_addr
Format Key:
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from thbyte of the instruction,
32-bit aligned)
rel_addr = cPCL+rd
nPC = Next PC
cc = Condition Code
Syntax:
Branch Instruction Code
B<cc><.d> s21 00000sssssssssS0SSSSSSSSSSNQQQQQ
Branch Far (Unconditional)
B<.d> s25 00000ssssssssss1SSSSSSSSSSNRuttt

Delay Slot Modes <.d>:

Delay Slot Mode N Flag Description

ND 0 Only execute next instruction wheat branching default, if no <.d> field
syntay
D 1 Always execute next instruction
Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear/V
EQ, Z 00001 Zero 4 GT 01001 Greater than (N and V and
(signed) /Z) or (/N and
IV and /2)
NE, NZ 00010 Non-Zero 1z GE 01010 Greater than ofN and V) or
equal to (/N and /V)
(signed)
PL, P 00011 Positive /N LT 01011 Less than (N and /V) or
(signed) (/N and V)
MI, N 00100 Negative N LE 01100 Lessthanor Zor (N and /V)
equal to or (/N and V)
(signed)
CS, C, 00101 Carry set, lower C HI 01101 Higher than /Cand/zZ
LO than (unsigned) (unsigned)
CC,NC, 00110 Carry clear, /IC LS 01110 Lower thanor CorZ
HS higher or same same
(unsigned) (unsigned)
VS,V 00111 Over-flow set \Y, PNZ 01111 Positive non- /N and /Z
zero
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged

ARCompact™ Programmer's Reference 209

Bcc Instruction Set Details

V [] =Unchanged

Related Instruction:
Blcc Bcc S

Description:

When a conditional branch is used and the specified condition is metr(ex) program execution is
resumed at location PC (actually PCL) + relative displacementgvit@ris the address of the Bcc
instruction . The conditional branch instruction has a maximum range of +/- &l the target
address is 16-bit aligned.

The unconditional branch far format has a maximum branch range of +/- 1&M8ifiee the
execution of the instruction that is in the delay slot is controlled bgldtay slot mode, it should
never be the target of any branch or jump instruction. The status flagst anrgdated with this
instruction.

CAUTION The Bcc instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRce.D or
BBITn.D instruction.

The ARC 700 processor will raise Blegal Instruction Sequenaexception if an executed delay slot
contains:

» Another jump or branch instruction
» Conditional loop instructionLfPcg
* Return from interruptRTIE)

» Any instruction with long-immediate data as a source operand

Pseudo Code Example:
if cc==true then /* Bcc */
if N=1 then
DelaySlot(npPC)
PC = cPC + rd
else
PC = nPC

Assembly Code Example:

BEQ label ; Branch to Tlabel if z flag is ; set
Branch to label and execute

the instruction in the delay

slot if N flag is clear

BPL.D Tabel

210 ARCompact™ Programmer's Reference

Instruction Set Details

Bcc_S

Bcc S
16-Bit Branch
Branch Operation
Operation:
if (cc=true) then cPG— (cPCL+rd)
Format:
inst rel_addr
Format Key:
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from thbyte of the instruction,
32-bit aligned)
rel_addr = cPCL+rd
nPC = Next PC
cc = Condition Code
Syntax:
Branch Conditionally Instruction Code
BEQ_S s10 1111001SSSSSSSSS
BNE_S s10 1111010sssSSSSSS
BGT_S s7 1111011000ssssss
BGE_S s7 1111011001ssssss
BLT_ S s7 1111011010ssssss
BLE_ S s7 1111011011ssssss
BHI_S s7 1111011100ssssss
BHS_S s7 1111011101ssssss
BLO_S s7 1111011110ssssss
BLS S s7 1111011111ssssss
Branch Always
B_S s10 1111000sssssssss
Conditions:
Instruction Description Branch Condition
BEQ_S Branch if Equal if (Z) then cPC— (cPCL+rd)
BNE_S Branch if Not Equal if (/Z) then cPC~ (cPCL+rd)
BGT_S Branch if Greater Than if (N and V and /Z) or (/N and /V and /Z) then cRC
(cPCL+rd)
BGE_S Branch if Greater Than or Equalif (N and V) or (/N and /V) then cPC (cPCL+rd)
to
BLT_S Branch if Less Than if (N and /V) or (/N and V) then cPC (cPCL+rd)
BLE_S Branch if Less Than or Equal if Z or (N and /V) or (/N and V) then cPC (cPCL+rd)
BHI_S Branch if Higher Than if (/C and /Z) then cPG- (cPCL+rd)
BHS_S Branch if Higher than or the if (/C) then cPC— (cPCL+rd)
Same

BLO_S Branch if Lower than if (C) then cPC~ (cPCL+rd)
BLS_S Branch if Lower or the Same if C or Z then cPC~ (CPCL+rd)
Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data

N = Unchanged

C = Unchanged

\% = Unchanged

ARCompact™ Programmer's Reference 211

Bcc S Instruction Set Details

Related Instructions:

Bcc BRcc

Description:

A branch is taken from the current PC with the displacement valueisgenithe source operand
(rd) when a condition(s) are met, depending upon the instruction type used.

When using the B_S instruction a branch is always executed from the cue8-Bit aligned, with
the displacement value specified in the source operand (rd).

For all branch types, the branch target is 16-bit aligned. The stag)gsaite not updated with this
instruction.

CAUTION The Bcec_S instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRce.D or
BBITn.D instruction.

Pseudo Code Example:

if cc==true then /* Bcc_S */
KillpelaySlot(nPC)
PC = cPCL + rd

else
PC = nPC

Assembly Code Example:

BEQ_S Tabel ; Branch to Tabel if z flag is ; set

; Branch to label if N flag is
BPL_S Tabel ; clear

212 ARCompact™ Programmer's Reference

Instruction Set Details BCLR

BCLR

Bit Clear

Logical Operation

Operation:
if (cc=true) therdest— (src1 AND (NOT 29)

Format:
inst dest, srcl, src2

Format Key:

srcl Source Operand 1

src2 = Source Operand 2

dest = Destination

cc = Condition Code

Syntax:

With Result Instruction Code

BCLR<.f> a,b,c 00100bbb00010000FBBBCCCCCCAAAAAA
BCLR<.f> a,b,ué 00100bbb01010000FBBBuUuuuuuAAAAAA
BCLR<.cc><.f> b,b,c 00100bbb11010000FBBBCCCCCC0QQQQC
BCLR<.cc><.f> b,b,u6 00100bbb11010000FBBBuUuuUUU1QQQQQ
BCLR<.f> a,limm,c 0010011000010000F111CCCCCCAAAAAA
BCLR_S b,b,u5 10111bbb101uuuuu

Without Result

BCLR<.f> 0,b,c 00100bbb00010000FBBBCCCCCC111110
BCLR<.f> 0,b,u6 00100bbb01010000FBBBuUuuuuu111110
BCLR<.cc><.f> 0,limm,c 0010011011010000F1110CCCCCOQQQQQ
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

BSET BXOR

BTST BMSK

Description:

Clear (0) an individual bit within the value that is specified by @woperand 1 (srcl). Source
operand 2 (src2) contains a value that explicitly defines the bit-pogitiistto be cleared in source
operand 1 (scrl). Only the bottom 5 bits of src2 are used as the bit valuesilhesrwritten into the
destination register (dest). Any flag updates will only occur if the ag$ fuffix (.F) is used.

Pseudo Code Example:
if cc==true then /* BCLR */
dest = srcl AND NOT(1 << (src2 & 31))
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:
BCLR rl,r2,r3 ; Clear bit r3 of r2
; and write result into rl

ARCompact™ Programmer's Reference 213

BIC Instruction Set Details

BIC

Bitwise AND Operation with Inverted Source

Arithmetic Operation

Operation:
if (cc=true) then dest- src1 AND NOT src2

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

scrl = Source Operand 1

scr2 = Source Operand 2

cc = Condition code

Syntax:

With Result Instruction Code

BIC<.f> a,b,c 00100bbb00000110FBBBCCCCCCAAAAAA
BIC<.f> a,b,u6 00100bbb01000110FBBBuuuuuuAAAAAA
BIC<.f> b,b,s12 00100bbb10000110FBBBSsssSsSSSSSS
BIC<.cc><.f> b,b,c 00100bbb11000110FBBBCCCCCC0QQQQQ
BIC<.cc><.f> b,b,u6 00100bbb11000110FBBBuUuuuuulQQQQQ
BIC<.f> a,limm,c 0010011000000110F111CCCCCCAAAAAA
BIC<.f> a,b,limm 00100bbb00000110FBBB111110AAAAAA
BIC<.cc><.f> b,b,limm 00100bbb11000110FBBB1111100QQQQQ
BIC_S b,b,c 01111bbbccc00110

Without Result

BIC<.f> 0,b,c 00100bbb00000110FBBBCCCCCC111110
BIC<.f> 0,b,u6 00100bbb01000110FBBBuuuuuul111110
BIC<.f> 0,b,limm 00100bbb00000110FBBB111110111110
BIC<.cc><.f> 0,limm,c 0010011011000110F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

AND OR

XOR

Description:

Logical bitwise AND of source operand 1 (scrl) with the inverse of sayresand 2 (src2) with the
result written to the destination register. Any flag updates will onlyra€the set flags suffix (.F) is
used.

Pseudo Code Example:

if cc==true then /* BIC */
dest = srcl AND NOT src2
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
Assembly Code Example:
BIC rl,r2,r3 ; AND r2 with the NOT of r3

; and write result into rl

214 ARCompact™ Programmer's Reference

Instruction Set Details BLcc

BlLcc

Branch and Link
Branch Operation

Operation:

if (cc=true) then (cPG&—- cPCL +rd) & (r31— nPC or dPC)

Format:

inst rel_addr

Format Key:

rel_addr = cPCL + Relative Displacement

rd = Relative Displacement

cc = Condition Code

cPC = Current Program Counter

cPCL = Current Program Counter (Address from thbyte of the instruction,
32-bit aligned)

nPC = NextPC

dPC = Next PC + 4 (address of tHE ®llowing instruction)

Syntax:

Branch and Link Instruction Code

(Conditional)

BL<.cc><.d> s21 00001ssssssssS00SSSSSSSSSSNQQQQQ

Branch Far

(Unconditional)

BL<.d> s25 00001sssssssss10SSSSSSSSSSNRittt

Branch and Link
(Unconditional)

BL_ S s13 11111SSSSSSSSSSS

Delay Slot Modes <.d>:

Delay Slot Mode N Flag Blink (r31) Description

ND 0 Next PC Only execute next instruction whment branching if no

<.d> field syntay

D 1 2nd following PC Always execute next instruatio

Condition Codes <cc>:

Code Q Field Description Test Code Q Field Descript ion Test

AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear/V

EQ, Z 00001 Zero z GT 01001 Greater than (N and V and
(signed) /Z) or (/N and

IV and /2)

NE, NZ 00010 Non-Zero 1z GE 01010 Greater than ofN and V) or
equal to (/N and /V)
(signed)

PL, P 00011 Positive /N LT 01011 Less than (N and /V) or
(signed) (/N and V)

MI, N 00100 Negative N LE 01100 Lessthanor Zor (N and/V)
equal to or (/N and V)
(signed)

CS, C, 00101 Carry set, lower C HI 01101 Higher than /Cand/z

LO than (unsigned) (unsigned)

CC,NC, 00110 Carry clear, /IC LS 01110 Lowerthanor CorZ

HS higher or same same

(unsigned) (unsigned)

ARCompact™ Programmer's Reference 215

BlLcc Instruction Set Details

Code Q Field Description Test Code Q Field Descript ion Test
VS,V 00111 Over-flow set \Y, PNZ 01111 Positive non- /N and /Z
zero
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
\% = Unchanged
Related Instructions:
Bcc S JlLcc
Description:

When a conditional branch and link is used and the specified condition isametr(ie), program
execution is resumed at location PC, 32-bit aligned, + relative disptatewhere PC is the address
of the BLcc instruction. Parallel to this, the return address is stotbd link register BLINK (r31).
This address is taken either from the first instruction followiregbranch (current PC) or the
instruction after that (next PC) according to the delay slot mode (.d).

CAUTION The BLcc and BL_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise Hiegal Instruction Sequenaxception if an executed delay slot
contains:

* Another jump or branch instruction

» Conditional loop instructionLfPcg

* Return from interruptRTIE)

* Any instruction with long-immediate data as a source operand

The conditional branch and link instruction has a maximum branch range of B{Ad M he
unconditional branch far format has a maximum branch range of +/- 16Mbytes. Jéteatddress for
any branch and link instruction must be 32-bit aligned.

Since the execution of the instruction that is in the delay slot is dewltimf the delay slot mode, it
should never be the target of any branch or jump instruction. The stasisiféanot updated with this
instruction.

NOTE Since the 16-bit encoded instructions the target address is aligned to 32-bit, a special encoding
allows for a larger branch displacement. For example BL_S s13 only needs to encode the top 11 bits
since the bottom 2 bits of s13 are always zero because of the 32-bit data alignment.

Pseudo Code Example:
if cc==true then /* BLcc */
if N=1 then
BLINK = dPC
DelaySlot(nPC)
else
BLINK = nPC
PC = cPCL + rd
else
PC = nPC

Assembly Code Example:
BLEQ Tabel ; if the z flag is set then
; branch and Tink to Tabel
; and store the return address in BLINK

216 ARCompact™ Programmer's Reference

Instruction Set Details BMSK

BMSK

Bit Mask

Logical Operation

Operation:
if (cc=true) therdest— src1 AND ((Z"***}-1)

src2

K_H
| [1[2]a]a]a]
&

| srcl |

MSB LSB
Format:
inst dest, srcl, src2
Format Key:
srcl = Source Operand 1
scr2 = Source Operand 2 (Mask Value)
dest = Destination
cc = Condition Code
Syntax:
With Result Instruction Code
BMSK<.f> a,b,c 00100bbb00010011FBBBCCCCCCAAAAAA
BMSK<.f> a,b,u6 00100bbb01010011FBBBuuuuuuAAAAAA
BMSK<.cc><.f> b,b,c 00100bbb11010011FBBBCCCCCC0QQQQQ
BMSK<.cc><.f> b,b,ué 00100bbb11010011FBBBuUuuuuu1QQQQQ
BMSK<.f> alimm,c 0010011000010011F111CCCCCCAAAAAA
BMSK_S b,b,us 10111bbb110uuuuu
Without Result
BMSK<.f> 0,b,c 00100bbb00010011FBBBCCCCCC111110
BMSK<.f> 0,b,u6 00100bbb01010011FBBBuuuuuul111110
BMSK<.cc><.f> 0,limm,c 0010011011010011F111CCCCCC0QQQQQ
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Unchanged
\% = Unchanged
Related Instructions:
BSET BXOR
BTST
Description:

Source operand 2 (src2) specifies the size of a 32-bit mask value snatelogical 1's starting from
the LSB of a 32-bit register up to and including the bit specified by operan@)2(@rdy the bottom
5 bits of src2 are used as the bit value.

A logical AND is performed with the mask value and source operand (stedye$ult is written into
the destination register (dest). Any flag updates will only occteiset flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /* BMSK */
dest = srcl AND ((1 << ((src2 & 31)+1))-1)

ARCompact™ Programmer's Reference 217

BMSK Instruction Set Details

if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:

BMSK rl,r2,8 ; Mask out the top 24 bits
; of r2 and write result into
;orl

218 ARCompact™ Programmer's Reference

Instruction Set Details BRcc

BRcc

Compare and Branch
Branch Operation

Operation:
if (cc=true) then cPG— (cPCL+rd)

Format:
inst srcl, src2, rd

Format Key:
rd Relative displacement

srcl = Source Operand 1
src2 = Source Operand 2
cPC = Current Program Counter
cPCL = Current Program Counter (Address fréhbyte of the instruction, 32-bit aligned)
nPC = NextPC
dPC = NextPC + 4 (address of tHE @llowing instruction)
cc = Condition Code
Syntax:
Instruction Code
BREQ<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00000
BREQ<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10000
BREQ b,limm,s9 00001bbbsssssss1SBBB111110000000 L
BREQ limm,c,s9 00001110sssssss1S111CCCCCC000000 L
BRNE<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00001
BRNE<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10001
BRNE b,limm,s9 00001bbbsssssss1SBBB111110000001 L
BRNE limm,c,s9 00001110sssssss1S111CCCCCC000001 L
BRLT<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00010
BRLT<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10010
BRLT b,limm,s9 00001bbbsssssss1SBBB111110000010 L
BRLT limm,c,s9 00001110sssssss1S111CCCCCC000010 L
BRGE<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00011
BRGE<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10011
BRGE b,limm,s9 00001bbbsssssss1SBBB111110000011 L
BRGE limm,c,s9 00001110sssssss1S111CCCCCC000011 L
BRLO<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCNO00100
BRLO<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10100
BRLO b,limm,s9 00001bbbsssssss1SBBB111110000100 L
BRLO limm,c,s9 00001110sssssss1S111CCCCCC000100 L
BRHS<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCNO00101
BRHS<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10101
BRHS b,limm,s9 00001bbbsssssss1SBBB111110000101 L
BRHS limm,c,s9 00001110sssssss1S111CCCCCC000101 L
BRNE_S b,0,s8 11101bbblsssssss
BREQ_S b,0,s8 11101bbb0sssssss
Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description
ND 0 Only execute next instruction wheat branching default, if no <.d> field
syntay
D 1 Always execute next instruction

ARCompact™ Programmer's Reference 219

BRcc Instruction Set Details

Conditions:
Instruction Description Branch Condition
BREQ Branch if Equal if (src1=src2) then cPC- (cPC+rd)
BRNE Branch if Not Equal if (srcl!=src2) then cPC- (cPC+rd)
BRLT Branch if Less Than (Signed) if (srcl<src2) then cPG- (cPC+rd)
BRGE Branch if Greater Than or Equal (Signed) if (src1>=src2) then cPG- (cPC+rd)
BRLO Branch if Lower Than (Unsigned) if (srcl<src2) then cPG- (cPC+rd)
BRHS Branch if Higher Than or Same (Unsigned) if (src1>=src2) then cPC- (cPC+rd)
Related Instructions:
BBITO BBIT1
Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data

N = Unchanged

C = Unchanged

Vv = Unchanged
Description:

A branch is taken from the current PC, 32-bit aligned, with the displatemkeie specified in the
source operand (rd) when source operand 1 (srcl) and source operand 2 (src2) carelitiens

E For the ARCtangent-A5 processor all 32-bit compare and branch instructionsvbadeay slots.

* The behavior of the®ldelay slot can be controlled by specifying the delay slot mode <.d>, however

* the following delay slot cannot be controlled, and any instruction prest #f delay slot is killed

= if the branch is taken.

I For the ARC 600 processor all 32-bit compare and branch instructions haveetlageslots. The
behavior of the *Ldelay slot can be controlled by specifying the delay slot mode <.d>, however the

| following delay slots cannot be controlled, and any instruction present if'tie@ delay slot is

| killed if the branch is taken.

I To take advantage of the ARC 600 branch prediction unit, it is prefecabge a negative
| displacement with a frequently takBRcc BBITO or BBIT1 instruction, and a positive displacement
| with one that is rarely taken.

| For the ARC 600 processor, rG3GL) should not be used as a source operand in a branch on
| compare instructionrBBITO, BBIT1, or BRcq).

In the case of the 16-bit compare and branch instructions, BRNE_S compare®petsiod 1 (srcl)
against ‘0’, and if scrl is not equal to zero then a branch is takenHeoautrent PC, 32-bit aligned
with the displacement value specified in the source operand (rd).

BREQ_S performs the same comparison, however the branch is taken when soarue beicl)
is equal to zero.

The branch target is 16-bit aligned. Since the execution of the instrtlwipis in the delay slot is
controlled by the delay slot mode, it should never be the target of any brgnofpanstruction.

The status flags are not updated with this instruction.

CAUTION The BRcc and BRcc_S instructions cannot immediately follow a Bee.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

Pseudo Code Example:
Alu = srcl - src2 /* BRcc */
if cc==true then
if N=1 then
DelaySlot(nPC)
KillpelaysTot(dPC)

220 ARCompact™ Programmer's Reference

Instruction Set Details BRcc
PC = cPCL + rd
else
PC = nPC
Assembly Code Example:
Example 16 ARCtangent-A5 Branch on Compare
; if r0=2, rl=2
brne ro,rl,okl ; rO=rl, no branch to "okl1l"
add r2,r2,1 ; executed
add r3,r3,1 ; executed
add rd,r4,1 ; executed
okl:
; if ro=2, rl=3
brne ro,rl,ok?2 ; rO != rl, branch to "ok2"
add r2,r2,1 ; killed
add r3,r3,1 ; killed
add rd,r4,1 ; not fetched
ok2:
; if r0=2, rl=2
brne.d r0,rl,ok3 ; rO=rl, no branch to "ok3"
add r2,r2,1 ; executed
add r3,r3,1 ; executed
add rd,r4,1 ; executed
ok3:
; if ro=2, rl=3
brne.d r0,rl,ok4 ; rO !'= rl, branch to "ok4"
add r2,r2,1 ; executed
add r3,r3,1 ; killed
add rd,r4,1 ; not fetched
ok4:
Example 17 ARC 600 Branch on Compare
; if r0=2, rl=2
brne ro,rl,okl ; rO=rl, no branch to "okl1l"
add r2,r2,1 ; executed
add r3,r3,1 ; executed
add rd,r4,1 ; executed
okl:
; if ro=2, rl=3
brne ro,rl,ok?2 ; rO != rl, branch to "ok2"
add r2,r2,1 ; killed
add r3,r3,1 ; killed
add rd,r4,1 ; killed
ok2:
; if r0=2, rl=2
brne.d r0,rl,ok3 ; rO=rl, no branch to "ok3"
add r2,r2,1 ; executed
add r3,r3,1 ; executed
add rd,r4,1 ; executed
ok3:
; if ro=2, rl=3
brne.d r0,rl,ok4 ; rO !'= rl, branch to "ok4"
add r2,r2,1 ; executed
add r3,r3,1 ; killed
add rd,r4,1 ; killed
ok4:
ARCompact™ Programmer's Reference 221

BRK Instruction Set Details

BRK

Breakpoint
Kernel/Debug Operation

Operation:
Halt and flush the processor
Format:
inst
Format Key:
inst = Instruction Mnemonic
Syntax:
Instruction Code
BRK_S 01111112111111111
BRK 001001010110111100000000001111112
Flag Affected: Key:
z [| =Unchanged = Limm Data
N | | =Unchanged
C | | =Unchanged
\% = Unchanged
BH .| =1
Hle| =1
Related Instructions:
SLEEP FLAG
Description:

The breakpoint instruction is a single operand basecase instructionlthdhé@rogram code when
it is decoded at stage one of the pipeline. This is a very basic delnugtingt which stops the
ARCompact based processor from performing any instructions beyond the bnéaRpwe the
breakpoint is a serializing instruction, the pipeline is also fldisiwn decode of this instruction.

To restart the ARCompact based processor at the correct instructidd th&troction is rewritten
into main memory, immediately followed by an invalidate instruction cankeebmmand (even if an
instruction cache has not been implemented) to ensure that the corractiomsis loaded into the
cache before being executed by the ARCompact based processor andtie riestétl stages of the
pipeline. The program counter must also be rewritten in order to genem@teiastruction fetch,
which reloads the instruction. Most of the work is performed by the debud@heregards to
insertion, removal of instructions with the breakpoint instruction.

The program flow is not interrupted when employing the breakpoint instructidrthare is no need
for implementing a breakpoint service routine. There is also no lirthietaumber of breakpoints you
can insert into a piece of code.

NOTE The breakpoint instruction sets the BH bit (refer to section Debug Redqister on page 50) in the Debug
register when it is decoded at stage one of the pipeline. This allows the debugger to determine what
caused the ARCompact based processor to halt. The BH bit is cleared when the Halt bit in the Status
register is cleared, e.g. by restarting or single—stepping the ARCompact based processor.

Breakpoints are primarily inserted into the code by the host so contnalifigained at all times by
the host. The BRK instruction may however be used in the same way as any dileengdrt based
instruction.

222 ARCompact™ Programmer's Reference

Instruction Set Details BRK

In the ARCtangent-A5 processor, the breakpoint instruction can be placed amymwagrogram,
except immediately following a BRcc or BBilnstruction. The breakpoint instruction is decoded at
stage one of the pipeline which consequently stalls stage one, and alloudionss in stages two,
three and four to continue, i.e. flushing the pipeline.

In the ARC 600 processor, the breakpoint instruction can be placed anywheregnaamprexcept
immediately followinganybranch or jump instruction. The breakpoint instruction is decoded at stage
two of the pipeline which consequently stalls stages one and two, and ialitrustions in stages

| three, four and five to continue, i.e. flushing the pipeline. Therefore the BE afér a break is the

address of the next instruction to be executed. In order to continue aft& im&Riction the
debugger decrements the PC value by 2 to obtain the re-start address.

If a BRK is put at the last location of a zero overhead loop then the PC valuthafbreak could be
the address of first instruction in the loop, so the debugger would not evhkiatrect restart
address. The programmer should never insert a BRK as the last iostimdbops.

Due to stage 2 to stage 1 dependencies, the breakpoint instruction behaver#tigliffdren it is
placed following a Branch or Jump instruction. In these cases, the ARCompmtinithstall stages
one and two of the pipeline while allowing instructions in subsequaemsto proceed to
completion.

The link register is not updated for Branch and Link, BL, (or Jump and Lipkgstruction when the
BRK_S instruction immediately follows. When the ARCompact based prodssstarted, the link
register will update as normal.

Interrupts are treated in the same manner by the ARCompact basedg@raseBranch, and Jump
instructions when a BRK_S instruction is detected. Therefore, an intératpeaches stage two of
the pipeline when a BRK_S instruction is in stage one will keep it g $t@0, and flush the
remaining stages of the pipeline. It is also important to note thatexnuipt that occurs in the same
cycle as a breakpoint is held off as the breakpoint is of a highertyariéni interrupt at stage three is
allowed to complete when a breakpoint instruction is in stage one.

NOTE If the H flag is set by the FLAG instruction (FLAG 1), three sequential NOP instructions should
immediately follow. This means that BRK_S should not immediately follow a FLAG 1 instruction, but
should be separated by 3 NOP instructions.

In the ARC 700 processor, the breakpoint instruction is a kernel only instruciess enabled by
the UB bit in the DEBUG register. Both a 32-bit, BRK, and 16-bit, BRK_S, form are sagpotie
breakpoint instruction is decoded in stage 1 an allows all precedinggciihs to complete. The
processor will halt with the program counter pointing at the address ofethieplint instruction.

The breakpoint instruction can be placed anywhere in a program, includindaheldeof branch
and jump instructions, and also immediately following a BRcc, a BBIT1 or aBBElruction.

NOTE A code sequence where a FLAG 1 is followed by BRK will operate as expected. The FLAG 1 will
complete, halt the processor and flush the pipeline, all before the BRK is executed.

Pseudo Code Example:

FlushpPipe() /* BRK_S */
DEBUG[BH] = 1

DEBUG[H] = 1

Halt(Q)

Assembly Code Example:

A breakpoint instruction may be inserted into any position.

ARCompact™ Programmer's Reference 223

BRK Instruction Set Details

MoV ro, 0x04

ADD rl, rO, rO

XOR.F 0, rl, 0x8

BRK_S ;<----- break here
SUB r2, ro, 0x3

ADD.NZ r1, r0, rO

JZ.D [r8]

OR r5, r4, 0x10

For the ARC 700 processor, the following example shows BRK_S following a @oradifump
instruction.

MoV ro, 0x04

ADD rl, rO, rO

XOR.F 0, rl, 0x8

SUB r2, r0, 0x3

ADD.NZ rl, rO, rO

JZ.D [r8]

BRK_S ;<---- break inserted
; into here

OR r5, r4, 0x10

224 ARCompact™ Programmer's Reference

Instruction Set Details BSET

BSET

Bit Set

Logical Operation

Operation:
if (cc=true) therdest«— (src1 OR (2%9)

Format:
inst dest, srcl, src2

Format Key:

srcl Source Operand 1

src2 = Source Operand 2

dest = Destination

cc = Condition Code

Syntax:

With Result Instruction Code

BSET<.f> a,b,c 00100bbb00001111FBBBCCCCCCAAAAAA
BSET<.f> a,b,ub 00100bbb01001111FBBBuUuuuuuuAAAAAA
BSET<.cc><.f> b,b,c 00100bbb11001111FBBBCCCCCC0QQQQQ
BSET<.cc><.f> b,b,u6 00100bbb11001111FBBBuuuuuu1QQQQQ
BSET<.f> a,limm,c 0010011000001111F111CCCCCCAAAAAA
BSET_S b,b,us 10111bbb100uuuuu

Without Result

BSET<.f> 0,b,c 00100bbb00001111FBBBCCCCCC111110
BSET<.f> 0,b,u6 00100bbb01001111FBBBuuuuuul111110
BSET<.cc><.f> 0,imm,c 0010011011001111F110CCCCCC0QQQQQ
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

BCLR BXOR

BTST BMSK

Description:

Set (1) an individual bit within the value that is specified by source operamndl). (Source operand
2 (src2) contains a value that explicitly defines the bit-positianishia be set in source operand 1
(scrl). Only the bottom 5 bits of src2 are used as the bit value. Theisesgttten into the
destination register (dest). Any flag updates will only occur if the ag$ fuffix (.F) is used.

Pseudo Code Example:
if cc==true then /* BSET */
dest = srcl OR (1 << (src2 & 31))
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:
BSET rl,r2,r3 ; Set bit r3 of r2
; and write result into rl

ARCompact™ Programmer's Reference 225

BTST Instruction Set Details

BTST

Bit Test

Logical Operation

Operation:
if (cc=true) then (srcl AND (2src2))

Format:
inst srcl, src2

Format Key:
srcl = Source Operand 1
src2 = Source Operand 2
cc = Condition Code
Syntax:
Instruction Code
BTST<.cc> b,c 00100bbb110100011BBBCCCCCC0QQQQQ
BTST<.cc> b,u6 00100bbb110100011BBBuuuuuulQQQQQ
BTST<.cc> limm,c 00100110110100011111CCCCCCOQQQQQ
BTST_S b,u5 10111bbb111luuuuu
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Unchanged
Y = Unchanged
Related Instructions:
BCLR BXOR
BSET BMSK
Description:

Logically AND source operand 1 (srcl) with a bit mask specified by sourcendp2iarc2). Source

operand 2 (src2) explicitly defines the bit that is tested in sayresand 1 (srcl). Only the bottom 5
bits of src2 are used as the bit value. The flags are updated tottedleesult. The flag setting field,

F, is always encoded as 1 for this instruction.

There is no result write-back.

NOTE BTST and BTST_S always set the flags even thought there is no associated flag setting suffix.

Pseudo Code Example:
if cc==true then /* BTST */
alu = srcl AND (1 << (src2 & 31))

z_flag = if alu==0 then 1 else 0

N_flag = alu[31]

Assembly Code Example:

BTST rl,r2,28 ; Test bit 28 of r2

; and update flags on result

226 ARCompact™ Programmer's Reference

Instruction Set Details BXOR

BXOR

Bit Exclusive OR (Bit Toggle)
Logical Operation

Operation:
if (cc=true) therdest— (src1 XOR (29)

Format:
inst dest, srcl, src2

Format Key:

srcl Source Operand 1

src2 = Source Operand 2

dest = Destination

cc = Condition Code

Syntax:

With Result Instruction Code

BXOR<.f> a,b,c 00100bbb00010010FBBBCCCCCCAAAAAA
BXOR<.f> a,b,u6 00100bbb01010010FBBBuUuuuuuAAAAAA
BXOR<.cc><.f> b,b,c 00100bbb11010010FBBBCCCCCC0QQQQQ
BXOR<.cc><.f> b,b,u6 00100bbb11010010FBBBuUuuuuu1QQQQQ
BXOR<.f> a,limm,c 0010011000010010F111CCCCCCAAAAAA
Without Result

BXOR<.f> 0,b,c 00100bbb00010010FBBBCCCCCC111110
BXOR<.f> 0,b,u6 00100bbb01010010FBBBuuuuuu111110

BXOR<.cc><.f> 0Jimm,c 0010011011010010F111CCCCCCOQQQQQ

Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

BSET BTST

BCLR BMSK

Description:

Logically XOR source operand 1 (srcl) with a bit mask specified by sourcendf#(arc2). Source
operand 2 (src2) explicitly defines the bit that is to be toggled in soparand 1 (srcl). Only the
bottom 5 bits of src2 are used as the bit value. The result is writtea destination register (dest).
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* BXOR */
dest = srcl XOR (1 << (src2 & 31))

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
Assembly Code Example:
BXOR rl,r2,r3 ; Toggle bit r3 of r2

; and write result into rl

ARCompact™ Programmer's Reference 227

CMP Instruction Set Details

CMP

Comparison
Arithmetic Operation

Operation:
if (cc=true) thersrcl — src2

Format:
inst srcl, src2

Format Key:

srcl Source Operand 1

src2 = Source Operand 2
cc = Condition Code
Syntax:

Instruction Code
CMP b,s12 00100bbb100011001BBBSssssSsSSSSSS
CMP<.cc> b,c 00100bbb110011001BBBCCCCCC0QQQQ!(
CMP<.cc> b,u6 00100bbb110011001BBBuuuuuu1QQQQQ
CMP<.cc> b,limm 00100bbb110011001BBB1111100QQQQQ
CMP<.cc> limm,c 00100110110011001111CCCCCCOQQQQQ L |
CMP_S b,h 01110bbbhhh10HHH
CMP_S b,limm 01110bbb11010111
CMP_S b,u7 11100bbbluuuuuuu
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

V | « | = Setif overflow is generated

Related Instructions:
RCMP

Description:
A comparison is performed by subtracting source operand 2 (src2) from souraeddpésecl) and
subsequently updating the flags. The flag setting field, F, is always ehasdefor this instruction.

There is no destination register therefore the result of theastiigrdiscarded.

NOTE CMP and CMP_S always set the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:

if cc==true then /* CMP */
alu = srcl - src2

Zz_flag = if alu==0 then 1 else 0

N_flag = alu[31]
c_flag = carry()
v_flag = overflow()
Assembly Code Example:
CMP rl,r2 ; Subtract r2 from rl
; and set the flags on the
; result

228 ARCompact™ Programmer's Reference

Instruction Set Details

DIVAW

DIVAW

Operation:
if (srcl ==0)

dest— 0

else

{ srcl_tempe— srcl<<l

if (src1_temp >= src2)

Division Accelerator
Extended Arithmetic Operation

dest— ((srcl_temp - src2) | 1)

else

dest— srcl_temp

}

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:

With Result

DIVAW a,b,c
DIVAW a,b,ué
DIVAW b,b,s12
DIVAW<.cc> b,b,c
DIVAW<.cc> b,b,ué
DIVAW a,limm,c
DIVAW a,b,limm
DIVAW<.cc> b,b,limm
Without Result

DIVAW 0,b,c
DIVAW 0,b,u6
DIVAW<.cc> 0,limm,c
Flag Affected (32-Bit):

4 = Unchanged

N = Unchanged

C = Unchanged

\% = Unchanged

S = Unchanged
Description:

Instruction Code

00101bbb000010000BBBCCCCCCAAAAAA
00101bbb010010000BBBUUULUUAAAAAA
00101bbb100010000BBBssssssSSSSSS
00101bbb110010000BBBCCCCCCOQQQQQ
00101bbb1100210000BBBuULULUL1QQQQQ
001011100000100001 11CCCCCCAAAAAA [L
00101bbb000010000BBB111110AAAAAA
00101bbb110010000BBB111110QQQQQ0Q | L

—

00101bbb000010000BBBCCCCCC111110
00101bbb010010000BBBuuuuuul11110
00101110110010000111CCCCCCOQQQQJ L |

Key:
= Limm Data

DIVAW is a division accelerator used in the division algorithm asridest by the ITU and ETSI.
DIVAW accelerates division by generating a fractional result faodivision of the integer operand 1
(numerator) by the integer operand 2 (denominator).

ARCompact™ Programmer's Reference 229

DIVAW Instruction Set Details

The integer numerator format is shown in Figure 92, the integer denonfioratat in Figure 93, and
the DIVAW result format in Figure 94.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 16-bit data | zero |

Figure 92 DIVAW 16-bit input numerator data format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
16-bit data | zero |

Figure 93 DIVAW 16-bit input denominator data forma t

31 30 29 28 27 26 25 24 23 22 21 20 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 16-bit remainder | 16-bit result (quotient) |

Figure 94 DIVAW 16-bit output data format

The status flags are not updated with this instruction therefofathsetting field, F, is encoded as
0.

The particular code that DIVAW accelerates is shown in the Cripéen. Repeated execution of
DIVAW fifteen times implements a 16-bit conditional add-subtractsitivi algorithm as shown in
Assembly Code Example.

Notice that for the set of 15 executions of the DIVAW instruction in therAsseCode Example:
e The result is positive.

» Both numerator and denominator must be positive and the denominator must have a non-zer
value that is greater or equal to numerator.

* I NUMERATOR = DENOMINATOR then the result of the division algoritler0x00007FFF
(assuming non-zero numerator and denominator).

* I NUMERATOR is zero, regardless of value of DENOMINATOR, the neddrresult is zero.
* The 16-bit result (quotient) is in the low word of the destination register

* The 16-bit remainder is in the high word of the destination register.

C Description:
\:E\Iorle div_s(Wordl6 num, wordl6 denom)

wordl6 var_out =0;
wordl6 iteration;
word32 Lm;

word32 L_denom;

Lm = (hum)<<15;
L_denom = (denom)<<15;

/* DIVAW can be iterated to perform this section of code */
for(iteration=0;iteration<15;iteration++)

Lm << 1;
'{i:f (Lm >= L_denom)

Lm
Lm

L_sub(Lm,L_denom) ;/* 32-bit subtract*/
L_add(Lm,1);

}
} ; remainder in MSW of Lm quotient in LSW of Lm

var_out = (short) Lm;
return(var_out);

230 ARCompact™ Programmer's Reference

Instruction Set Details DIVAW

Pseudo Code Example:
if (srcl == 0) /* DIVAW */
dest = 0
else
{
srcl_temp = srcl << 1
if (srcl_temp >= src2)
1dest = ((srcl_temp - src2) | 0x0000_0001)
else
dest = srcl_temp

}

Assembly Code Example:
; Input: Data is in the LSw of rO (Lm) and rl1 (L_denom)

ASL rO, rO, 15
ASL rl1l, rl, 15
; Division:
.rep 15

DIVAW r0, rO, rl
.endr

; Remainder in Msw of r0
; Quotient in LSW of rO

AND %r0, %r0, 0x0000_7fff ;mask to leave quotient in LSW

ARCompact™ Programmer's Reference 231

EX Instruction Set Details

EX

Atomic Exchange
Memory Operation

Operation:
dest— Result of memory load from address @ src

memory @ sre— dest

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
Instruction Code
EX<.di> b,[c] 00100bbb00101111DBBBCCCCCC001100
EX<.di> b,[u6] 00100bbb01101111DBBBuuuuuu001100
EX<.di> b,[limm] 00100bbb00101111DBBB111110001100
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
\% = Unchanged

Related Instructions:

LD ST

SYNC

Description:

An atomic exchange operation, EX, is provided as a primitive for multipracggschronization
allowing the creation of semaphores in shared memory.

Two forms are provided: an uncached form (using the .DI directive) fohsymization between
multiple processors, and a cached form for synchronization between psogesssingle-processor
system.

The EX instruction exchanges the contents of the specified memorploeath the contents of the
specified register. This operation is atomic in that the memory systsures that the memory read
and memory write cannot be separated by interrupts or by memory acftessanother processor.

The status flags are not updated with this instruction.

An immediate value is not permitted to be the destination of the exchestigestion. Using the long
immediate indicator in the destination field, B=0x3E, will raidestruction Errorexception.

NOTE When used in translated memory, both the read and write permissions must be set in order for EX to
operate without causing a protection violation exception.

Pseudo Code Example:

temp = dest /* EX */
dest = Memory(src)

Memory(src) = temp

232 ARCompact™ Programmer's Reference

Instruction Set Details EX

Assembly Code Example:
In this example the processor attempts to get access to a sharederbgdesting a semaphore
against values 0 and 1.

» If the returned value is a 0 then the resource was free and this deviwve tise owner.
» If the returned value is a 1, the resource is busy and the processor ntifitan@iis returned.

The value 1 is always written to SEMPHORE_ADDR so all processeg) tiyiown the semaphore
should all write the same value.

The value at SEMPHORE_ADDR should not be used for a determination of thatamsmner of the
semaphore.

Example 18 To obtain a semaphore using EX
wait_for_resource:

MOV R2, 0x00000001 ; indicates semaphore 1is owned
wfrl:

EX R2, ; exchange r2 and semaphore
[SEMAPHORE_ADDR] ; see if we own the semaphore
CMP_S R2, O ; wait for resource to free

BNE wfrl

Example 19 To Release Semaphore using ST

release_resource:
MOV R2, 0x00000000 ; indicates semaphore 1is free
ST R2, [SEMAPHORE_ADDR] ; release semaphore

ARCompact™ Programmer's Reference 233

EXTB Instruction Set Details

EXTB

Zero Extend Byte
Arithmetic Operation

Operation:
dest— zero extend from byte (src)

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

Syntax:

With Result Instruction Code

EXTB<.f> b,c 00100bbb00101111FBBBCCCCCC000111
EXTB<.f> b,ué 00100bbb01101111FBBBuUuuuuu000111
EXTB<.f> b,limm 00100bbb00101111FBBB111110000111
EXTB_S b,c 01111bbbccc01111

Without Result

EXTB<.f> 0,c 0010011000101111F111CCCCCCO000111
EXTB<.f> 0,u6 0010011001101111F111uuuuuu000111
EXTB<.f> 0,limm 0010011000101111F111121110000111
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Always Zero

C = Unchanged

Y = Unchanged

Related Instructions:

SEXB ABS

SEXW EXTW

Description:

Zero extend the byte value in the source operand (src) and write thentestiie destination
register. Any flag updates will only occur if the set flags suffi) iSFused.

Pseudo Code Example:
dest = src & OXFF /* EXTB */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

Assembly Code Example:

EXTB r3,r0 ; Zero extend the bottom 8
; bits of r0O and write
; result to r3

234 ARCompact™ Programmer's Reference

Instruction Set Details EXTW

EXTW

Zero Extend Word

Arithmetic Operation

Operation:
dest— zero extend from word (src)

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

Syntax:

With Result Instruction Code

EXTW<.f> b,c 00100bbb00101111FBBBCCCCCC001000
EXTW<.f> b,ué 00100bbb01101111FBBBuuuuuu001000
EXTW<.f> b,limm 00100bbb00101111FBBB111110001000
EXTW_S b,c 01111bbbccc10000

Without Result

EXTW<.f> 0,c 0010011000101111F111CCCCCC001000
EXTW<.f> 0,u6 0010011001101111F111uuuuuu001000
EXTW<.f> 0,limm 0010011000101111F111121110001000
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Always Zero

C = Unchanged

Y = Unchanged

Related Instructions:

SEXB ABS

SEXW EXTB

Description:

Zero extend the word value in the source operand (src) and write the resthieid&stination
register. Any flag updates will only occur if the set flags suffi) iSFused.

Pseudo Code Example:
dest = src & OXFFFF /* EXTW */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

Assembly Code Example:

EXTW r3,r0 ; Zero extend the bottom 16
; bits of rO and write
; result to r3

ARCompact™ Programmer's Reference 235

FLAG Instruction Set Details

FLAG

Set Flags
Control Operation
Operation:
if (cc=true) then flags— src
| src [118] [20]| | src [11:8] [Zo]l
< S
— [t W e
[BL:24] | | [11:8] [2:0]]
MSB LSB MSB LSB
STATUS Register STATUS32 Register
Auxiliary (0x00) Auxiliary (0x0A)
Format:
inst src
Format Key:
src = Source Operand
Syntax:
Instruction Code
FLAG<.cc> c 00100rrr111010010RRRCCCCCC0QQQQQ
FLAG<.cc> ué 00100rrr111010010RRRuuuuuulQQQQQ
FLAG<.cc> limm 00100rrr111010010RRR1111100QQQQQ
FLAG s12 00100rrrl01010010RRRsSSSSSSSSSSSS
Source Operand Flag Positions: Key:
Z [«] = Bit 11 of Source Operand = Limm Data

N |« | = Bit 10 of Source Operand

C | « | = Bit 9 of Source Operand

V | « | = Bit 8 of Source Operand
E2 |+ | = Bit 2 of Source Operand
E1l| « | = Bit 1 of Source Operand

H | « | = Bit 0 of Source Operand (If set ignore all other
flags states)

L = Unchanged
U = Unchanged
DE = Unchanged
AE = Unchanged
A2 = Unchanged
Al = Unchanged
Related Instructions:
SLEEP BRK
Description:

The contents of the source operand (src) are used to set the condition codeessbp control flags
held in the processor status registers.

NOTE Interrupts are held off until the FLAG instruction completes.

Bits [11:8] of the source operand relate to the condition codes, [2:1 teltie interrupt masks and
bit [O] relates to the halt flag. Bits [31:12] and [7:3] are ignored.

236 ARCompact™ Programmer's Reference

Instruction Set Details FLAG

The format of the source operand is identical to the format used by the SBRTrggister (auxiliary
address 0x0A).

If the H flag is set (halt processor flag), all other flag statesgnored and are not updated.

In the ARC 700 processor, the FLAG instruction is serializing — ensuringaHfatther instructions
can be completed before any flag updates take effect.

The halt flag, H, and interrupt enable flags, E1 and E2, can only be set in iede

Bits L, U, DE, AE, A2, Al in the STATUS32 register may not be set with the Fin&€@uction.
These are updated by the processor changing state or by the raise-exestptiotion, TRAP, and
the return from interrupt/exception instructions, RTIE, J.F [ILINK1] andLINK2].

Both the (obsolete) Status Register (auxiliary address 0x00) and STATEBS2r (auxiliary
address 0x0A) are updated automatically upon using the FLAG instructionagsefting field, F,
is always encoded as 0 for this instruction.

Pseudo Code Example:

if src[0]==1 then /* FLAG */
STATUS32[0] =1

Halt(Q)

else

STATUS32[31:1] = src[31:1]

Assembly Code Example:
FLAG 1 ; Halt processor (other flags
not updated)

NOP ; Pipeline Flush
NOP ; Pipeline Flush
NOP ; Pipeline Flush
FLAG 6 ; Enable interrupts and clear

all other flags

NOTE If the H flag is set (FLAG 1), three sequential NOP instructions should immediately follow. This
ensures that instructions that succeed a FLAG 1 instruction upon a processor restart, execute
correctly.

ARCompact™ Programmer's Reference 237

Jcc Instruction Set Details

Jcc
Jump Conditionally
Jump Operation
Operation:
if (cc=true) then cPG— src **
Format:
inst src
Format Key:
src = Source Operand
cPC = Current Program Counter
nPC = Next PC
cc = Condition Code
* = Special condition when instruction sets flggs) and src = ILINK1 or
ILINK2
Syntax:
Jump Instruction Code
(Conditional)
Jcc [c] 00100RRR111000000RRRCCCCCC0QQQ(
Jcc limm 00100RRR111000000RRR1111100QQQQ
Jcc ué 00100RRR111000000RRRuuuuuulQQQQC
Jcc.D ué 00100RRR111000010RRRuuuuuulQQQQC
Jcc.D [c] 00100RRR111000010RRRCCCCCC0QQQ(
Jcc.F [ilink1] 00100RRR111000001RRR0111010QQQQC
Jcc.F [ilink2] 00100RRR111000001RRR0111100QQQQC
JEQ_S [blink] 0111110011100000
JNE_S [blink] 0111110111100000
Jump
(Unconditional)
J [c] 00100RRR001000000RRRCCCCCCRRRRF
J.D [c] 00100RRR001000010RRRCCCCCCRRRRF
J.F [ilink1] 00100RRR001000001RRR011101RRRRRR
J.F [ilink2] 00100RRR001000001RRR011110RRRRRR
J limm 001OORRROOlOOOOOORRRlllllORRRRR
J u6é 00100RRR011000000RRRuuuuuuRRRRRR
J.D ué 00100RRR011000010RRRuuuuuuRRRRRR
J s12 00100RRR101000000RRRssssssSSSSSS
J.D s12 00100RRR101000010RRRssssssSSSSSS
J S [b] 01111bbb00000000
J_SD [b] 01111bbb00100000
J_S [blink] 0111111011100000

J_SD [blink] 0111111111200000

Delay Slot Modes:

Delay Slot Mode Description

JIJ_SIJEQ_S/INE_S Only execute next instructiomwbebranching

Jce.D/J.D/J_S.D Always execute next instruction

Condition Codes <cc>:

Code Q Field Description Test Code Q Field Descript ion Test

AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear/V

EQ, Z 00001 Zero 4 GT 01001 Greater than (N and V and
(signed) /Z) or (/N and

238 ARCompact™ Programmer's Reference

Instruction Set Details Jcc

Code Q Field Description Test Code Q Field Descript ion Test
IV and /2)
NE, NZ 00010 Non-Zero 1z GE 01010 Greater than ofN and V) or
equal to (/N and /V)
(signed)
PL, P 00011 Positive /N LT 01011 Less than (N and /V) or
(signed) (/N and V)
MI, N 00100 Negative N LE 01100 Lessthanor Zor (N and/V)
equal to or (/N and V)
(signed)
CS, C, 00101 Carry set, lower C HI 01101 Higher than /C and /Z
LO than (unsigned) (unsigned)
CC,NC, 00110 Carry clear, /IC LS 01110 Lower thanor CorZ
HS higher or same same
(unsigned) (unsigned)
VS,V 00111 Over-flow set \Y, PNZ 01111 Positive non- /N and /Z
zero
Flags Updated (src=ILINK1\2 & .F) Key:
Z [+ | = Setif bit[11] of STATUS_L1 or STATUS_L2 set = Limm Data

N | « | = Set if bit[10] of STATUS L1 or STATUS L2 set
C |« | = Setif bit[9] of STATUS_L1 or STATUS_L2 set
V | « | = Setif bit[8] of STATUS_L1 or STATUS_L2 set
E2 | « | = Set if bit[2] of STATUS_L1 or STATUS_L2 set
E1l| « | = Setif bit[1] of STATUS_ L1 or STATUS L2 set

Related Instructions:

JLcc Bcc
Special Conditions:
Source Operand (src) Operation
src = ILINK1 & .F pc — ILINK1
STATUS32 ~ STATUS32 L1
src = ILINK2 & .F pc — ILINK2

STATUS32 — STATUS32_L2

Description:

If the specified condition is met (cc=true), then the program execusti@sumed from the new
program counter address that is specified as the absolute addressoinrtieeoperand (src). Jump
instructions have can target any address within the full memory addapséut the target address is
16-bit aligned. Since the execution of the instruction that is in the detag stantrolled by the delay
slot mode, it should never be the target of any branch or jump instruction.

CAUTION The Jcc and Jcc_S instructions cannot immediately follow a Bec.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise Blegal Instruction Sequenaexception if an executed delay slot
contains:

» Another jump or branch instruction
» Conditional loop instructionLPco
* Return from interruptRTIE)

» Any instruction with long-immediate data as a source operand

ARCompact™ Programmer's Reference 239

Jcc Instruction Set Details

When using ILINK1 or ILINK2 as the source operand with Jcc.F or J.F, therdsrof the
corresponding registers STATUS32_L1 or STATUS32_L2 are automaticallydcoper to
STATUS32.

When using ILINK1 or ILINKZ2 the flag setting field, F, is always encoded as thfs instruction.
The reserved field, R, is ignored by the processor but should be set to 0.

If the ILINK1 or ILINK2 registers are used without the flag settirdibeing set amstruction Error
exception will be raised. If the flag setting field, F, is set without uiadLINK1 or ILINK2
register, arnstruction Errorexception will be raised.

For the ARC 700 processor it is recommended thaRTHE instruction is used to return from an
interrupt service routine.

In the ARC 700 processor the appropriate BTA link register is also loaedTA when jump-
based interrupt return is executed.

The operation of J.F [ILINK1] or J_S.F [ILINK1] is thus:

* PC < ILINK1

» STATUS32. STATUS32 L1

 BTA - BTA_ L1

The operation of J.F [ILINK2] or J_S.F [ILINK2] is now as follows:
* PC <~ ILINK2

e STATUS32. STATUS32_L2

* BTA - BTA_L2

As with RTIE, if the STATUS32[DE] bit becomes set as a result of tiseF [ILINKn] or Jcc.F
[ILINKnN] instruction, the processor will be put back into a state wleebranch with a delay slot is
pending. The target of the branch will be contained in the BTA regidtervalue in BTA will have
been restored from the appropriate Interrupt Return BTA register (BTA_BIArL?2).

NOTE A single instruction must separate a FLAG instruction from any type of Jcc.F [ILINK1\2] instruction if
they proceed each other. In addition, a single instruction must also separate the auxiliary register
write update of STATUS32_L1 or STATUS32_L2 and any type of Jcc.F [ilink1\2] instruction.

Pseudo Code Example:
if cc==true then /* Jcc */
if N==1 then

DelaySlot(npPC)

PC = src

if F==1 and src==ILINK1 then

STATUS32 = STATUS32_L1

BTA = BTA_L1l ;ARC 700 on1y
if F==1 and src==ILINK2 then

STATUS32 = STATUS32_L2

BTA = BTA_L2 ;ARC 700 on1y
else

PC = nPC

Assembly Code Example:

JEQ [rl1] ; jump to address in rl if the
z flag is set

J.F [iT1ink1] jump to address 1in ilinkl

and restore STATUS32 from

STATUS_L1

240 ARCompact™ Programmer's Reference

Instruction Set Details JLcc
JLcc
Jump and Link Conditionally
Jump Operation
Operation:
if (cc=true) then (cP&- src) & (BLINK < nPC)
Format:
inst src
Format Key:
src = Source Operand
cPC = Program Counter
cc = Condition Code
BLINK = Branch and Link Register (r31)
nPC = NextPC
dPC = Next PC + 4 (address of tHé @llowing instruction)
Syntax:
Jump Instruction Code
JLcc [c] 00100RRR111000100RRRCCCCCC0QQQ(
JLcc limm 00100RRR111000100RRR1111100QQQQq L |
JlLcc ué 00100RRR111000100RRRuuuuuulQQQQC
JLce.D u6é 00100RRR111000110RRRuuuuuulQQQQC
JLce.D [c] 00100RRR111000110RRRCCCCCC0QQQ(
Jump
(Unconditional)
JL [c] 00100RRR001000100RRRCCCCCCRRRRF
JL.D [c] 00100RRR001000110RRRCCCCCCRRRRF
JL limm 00100RRR001000100RRR111110RRRRRR L |
JL ué 00100RRR011000100RRRuuuuuuRRRRRR
JL.D ué 00100RRR011000110RRRuuuuuuRRRRRR
JL s12 00100RRR101000100RRRSsSSSSSSSSSSS
JL.D s12 00100RRR101000110RRRSssSSSSSSSSSS
JL_S [b] 01111bbb01000000
JL_S.D [b] 01111bbb01100000
Delay Slot Modes:
Delay Slot Mode Description
JLcc/ILAIL_S Only execute next instruction wimebranching
JLcc.D/JL.D/JL_S.D Always execute next instruction
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
\% = Unchanged
Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear/V
EQ, Z 00001 Zero 4 GT 01001 Greater than (N and V and
(signed) /Z) or (/N and
IV and /2)
NE, NZ 00010 Non-Zero 1z GE 01010 Greater than ofN and V) or
equal to (/N and /V)

ARCompact™ Programmer's Reference

241

JLcc Instruction Set Details

Code Q Field Description Test Code Q Field Descript ion Test
(signed)

PL, P 00011 Positive /N LT 01011 Less than (N and /V) or
(signed) (/N and V)

MI, N 00100 Negative N LE 01100 Lessthanor Zor (N and/V)
equal to or (/N and V)
(signed)

CSs, C, 00101 Carry set, lower C HI 01101 Higher than /Cand/zZ

LO than (unsigned) (unsigned)

CC,NC, 00110 Carry clear, /IC LS 01110 Lower thanor CorZ

HS higher or same same

(unsigned) (unsigned)

VS,V 00111 Over-flow set Vv PNz 01111 Positive non- /N and /Z
zero

Related Instructions:

Jecc Blcc

Description:

If the specified condition is met (cc=true), then the program execsti@sumed from the new
program counter address that is specified as the absolute addressourdeeoperand (src). Jump
and link instructions have can target any address within the full memorysaddap, but the target
address is 16-bit aligned. Parallel to this, the program counter add@sbdPimmediately follows
the jump instruction is written into the BLINK register (r31). Sirfee éxecution of the instruction
that is in the delay slot is controlled by the delay slot mode, it should beke target of any
branch or jump instruction.

CAUTION The JLcc and JL_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise Blegal Instruction Sequenaexception if an executed delay slot
contains:

» Another jump or branch instruction
» Conditional loop instructionLfPcg
* Return from interruptRTIE)

» Any instruction with long-immediate data as a source operand

Pseudo Code Example:
if cc==true then /* JLcc */
if N==1 then
BLINK = dPC
DelaySlot(npPC)
else
BLINK = nPC
PC = src
else
PC = nPC

Assembly Code Example:
JLEQ [r1] ; if the z flag is set then jump and 1link to address
; in rl and store the return address in BLINK

242 ARCompact™ Programmer's Reference

Instruction Set Details LD
LD
Delayed Load from Memory
Memory Operation
Operation:
dest— Result of Memory Load address @ (srcl+src2)
Format:
inst dest, srcl, src2
Format Key:
srcl = Source Operand 1
src2 = Source Operand 2 (Offset)
dest = Destination
Syntax:
Instruction Code
LD<zz><.x><.aa><.di> a,[b,s9] 00010bbbssssssssSBBBDaaZZXAAAAAA
LD<zz><.x><.di> a,[limm] 00010110000000000111DRRZZXAAAAAA
LD<zz><.x><.aa><.di> a,[b,C] 00100bbbaal10ZZXDBBBCCCCCCAAAAAA
LD<zz><.x><.aa><.di> a,([b,limm] 00100bbbaall0ZzZXDBBB111110AAAAAA L
LD<zz><.x><.di> a,[limm,c] 00100110RR110ZZXD111CCCCCCAAAAAA L
| LD<zz><.x><.aa><.di> 0,[b,s9] 00010bbbssssssssSBBBDaazZX111110
| LD<zz><x><.di> 0,[limm] 00010110000000000111DRRZZX111110
| LD<zz><.x><.aa><.di> 0,[b,c] 00100bbbaal10ZZXDBBBCCCCCC111110
| LD<zz><.x><.aa><.di> 0,[b,limm] 00100bbbaal10ZzXDBBB111110111110 L
| LD<zz><.x><.di> 0,[limm,c] 00100110RR110ZZXD111CCCCCC111110 | L
LD_S a,[b,c] 01100bbbcccO0aaa
LDB_S a,[b,c] 01100bbbcccOlaaa
LDW_S a,[b,c] 01100bbbcccl0aaa
LD_S c,[b,u7] 10000bbbcccuuuuu
LDB_S c,[b,u5] 10001bbbcccuuuuu
LDW_S c,[b,ub] 10010bbbcccuuuuu
LDW_S.X c,[b,us6] 10011bbbcccuuuuu
LD_S b,[sp,u7] 11000bbb000uuUUU
LDB_S b,[sp,u7] 11000bbb001uuuuu
LD_S r0,[gp,s11] 1100100sssssssss
LDB_S r0,[gp,s9] 1100101sssssssss
LDW_S r0,[gp,s10] 1100110ssSsssssss
LD_S b,[pcl,ul0] 11010bbbuuuuuuuu
Data Size Field <.zz>:
Data Size Syntax ZZ Field Description
No Field Syntax 00 Data is a long-word (32-Bits)x¢ syntax illega)
W 10 Data is a word (16-Bits)
B 01 Data is a byte (8-Bits)
11 reserved
Sign Extend <.x>:
X Flag Description
0 No sign extensiordéfault, if no <.x> field syntgx
1 Sign extend data from most significant bit ofedit the most significant bit of long-word
ARCompact™ Programmer's Reference 243

LD Instruction Set Details

Data Cache Mode <.di>:

D Flag Description
0 Cached data memory accestefault, if no <.di> field syntax
1 Non-cached data memory accdsgp@ss data cache
Address Write-back Mode <.aa>:
Address Write- aa Effective Address Address Write-Back
back Syntax Field
No Field Syntax 00 Address = srcl+sro@gfster+offsel None
Aor AW 01 Address = srcl+srcieister+offset srcl — srcl+src2register+offset
AB 10 Address = srcIdgiste) srcl — srcl+src2register+offset
AS 11 Address = srcl+(src2<<Hzg>= ‘10") None.*Using a byte or signed byte
Address = srcl+(src2<<2¥x£z>=‘'00") data size is invalid and is a
reserved format
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
\% = Unchanged
16-Bit Load Instructions Operation:
Instruction Format Operation Description
LD_S a, [b,c] dest— address[srcl+src2].l Load long word from addcedsulated by
register + register
LDB_S a, [b,c] dest— address[srcl+src2].b Load unsigned byte fromestdcalculated by
register + register
LDW_S a, [b,c] dest— address[srcl+src2].w Load unsigned word from escalculated by
register + register
LD_S c, [b,u7] dest— address[src1+u7].| Load long word from addressutated by
register + unsigned immediate
LDB_S c, [b,u5] dest— address[src1+u5].b Load unsigned byte from addrakulated by

register + unsigned immediate

LDW_S c, [b,ub] dest— address[src1+u6].w Load unsigned word from addraksilated by
register + unsigned immediate

LDW_S.X ¢, [b,u6] dest— address[srcl+u6].w Load signed word from addcegsulated by
register + unsigned immediate

LD_S b, [sp,u7] dest- address[sp+u7].| Load word from address calcdlaieStack
Pointer (r28) + unsigned immediate

LDB_S b, [sp,u7] dest- address[sp+u7].b Load unsigned byte from addralssilated by
Stack Pointer (r28) + unsigned immediate

LD_S r0, [gp,s11] dest address[gp+s11].l Load long word from addressutated by

Global Pointer (r26) + signed immediate (signed
immediate is 32-bit aligned) and write the result
into r0

LDB_S r0, [gp,s9] dest- address[gp+s9].b Load unsigned byte from addralssilated by
Global Pointer (r26) + signed immediate (signed
immediate is 8-bit aligned) and write the result
into r0

LDW_S r0, [gp,s10] dest address[gp+s10].w Load unsigned word from addraksilated by
Global Pointer (r26) + signed immediate (signed
immediate is 16-bit aligned) and write the result

into r0
LD S b, [pcl,ul0] dest- Load long word from address calculated by
address[pcl+ul0] longword aligned program counter (pcl) +
unsigned immediate (unsigned immediate is 32-
bit aligned).

244 ARCompact™ Programmer's Reference

Instruction Set Details LD

Related Instructions:
ST LR

Description:
A memory load occurs from the address that is calculated by adding sourmedopésrcl) with
source operand 2 (scr2) and the returning load data is written into theatiestregister (dest).

CAUTION The addition of srcl to src2 is performed with a simple 32-bit adder which is independent of the
ALU. No exception occurs if a carry or overflow occurs. The resultant calculated address may
overlap into unexpected regions depending of the values of src1 and src2.

The status flags are not updated with this instruction.

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) or global pointer (GP) the
offset is aligned to 32-bit. For example LD_S b,[sp,u7] only needs to encode the top 5 bits since the
bottom 2 bits of u7 are always zero because of the 32-hit data alignment.

The size of the requested data is specified by the data size field Adzby default data is zero
extended from the most significant bit of the data to the most signiifiiit of the long-word.

NOTE When a memory controller is employed: Load bytes can be made to any byte alignments, Load
words should be made from word aligned addresses and Load longs should be made only from long
aligned addresses.

Data can be sign extended by enabling sign extend <.x>.

Note that using the sign extend suffix on the LD instruction with a 32-bit datéssindefined for
the ARCtangent-A5 and ARC 600 processors and should not be used.

Using the sign extend suffix on the LD instruction with a 32-bit data sizeais# arinstruction
Error exception on the ARC 700 processor.

If the processor contains a data cache, load requests can bypasté¢heyaaging the <.di> syntax.
The address write-back mode can be selected by use of the <.aa> syntéixaiNotieen using the
scaled source addressing mode (.AS), the scale factor is dependent upmndhéhe data word
requested (.zz).

I For the ARC 600 processor loads to a null register using the long-intenddia indicator should be
avoided.

For the ARC 700 processor loads to a null register using the long-immeddia performs a pre-
fetch operation

NOTE LP_COUNT should not be used as the destination of a load. For example the following instruction is
not allowed: LD LP_COUNT, [r0]

Pseudo Code Example:
if AA==0 then address = srcl + src2 /* LD */
if AA==1 then address = srcl + src2
if AA==2 then address = srcl
if AA==3 and zZz==0 then
address = srcl + (src2 << 2)
if AA==3 and Zz==2 then
address = srcl + (src2 << 1)
if AA==1 or AA==2 then

srcl = srcl + src2
DEBUG[LD] =1

dest = Memory(address, size) /* Oon Returning Load */
if X==1 then

dest = Sign_Extend(dest, size)

if NoFurtherLoadsPending() then

DEBUG[LD] = O

ARCompact™ Programmer's Reference 245

LD Instruction Set Details

Assembly Code Example:

LD r0,[rl1,4] ; Load Tong word from memory
; address rl+4 and write
; result to rO

246 ARCompact™ Programmer's Reference

Instruction Set Details LPcc

LPcc
Loop Set Up
Branch Operation
Operation:
if (cc=false) then cP&- (cPCL+rd) else (LP_ENB- cPCL+rd) & (LP_START— nPC)
Format:
inst rel_addr
Format Key:
rel_addr = cPCL+rd
rd = Relative Displacement
cc = Condition Code
cPC = Current Program Counter
cPCL = Current Program Counter (Address from thbyte of the instruction,
32-bit aligned)
nPC = NextPC
LP_START = 32-Bit Loop Start Auxiliary Register (@)
LP_END = 32-Bit Loop End Auxiliary Register (0x03)
Syntax:
Loop Set Up Instruction Code
(Conditional)
LP<cc> u7 00100RRR111010000RRRuuuuuulQQQQQ
Loop Set Up
(Unconditional)
LP s13 00100RRR101010000RRRssssssSSSSSS
Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear/V
EQ, Z 00001 Zero z GT 01001 Greater than (N and V and
(signed) /Z) or (/N and
IV and /2)
NE, NZ 00010 Non-Zero 1z GE 01010 Greater than ofN and V) or
equal to (/N and /V)
(signed)
PL, P 00011 Positive /N LT 01011 Less than (N and /V) or
(signed) (/N and V)
MI, N 00100 Negative N LE 01100 Lessthanor Zor (N and/V)
equal to or (/N and V)
(signed)
CS, C, 00101 Carry set, lower C HI 01101 Higher than /Cand/z
LO than (unsigned) (unsigned)
CC,NC, 00110 Carry clear, /IC LS 01110 Lower thanor CorZ
HS higher or same same
(unsigned) (unsigned)
VS,V 00111 Over-flow set \Y, PNz 01111 Positive non- /N and /Z
zero
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
Vv = Unchanged

ARCompact™ Programmer's Reference 247

LPcc Instruction Set Details

Loop Operation:

Loop Format Loop Operation (Conditional Execution < cc>)
True False

LPcc u7 aux_reg[LP_END] = cPCL + u7 cPC« cPCL + u7
aux_reg[LP_START] = nPC

LP s13 aux_reg[LP_END] = cPCL +s13 Always True

aux_reg[LP_START] = nPC

Related Instructions:
None

Description:

When the specified condition i®t met whilst using the LPcc instruction, the relative displacement
value (rd) is added to the current PC (actually cPCL) and programtiexeisusubsequently resumed
from the new 16-bit aligned cPC. In the event that the condition is met, thieguwdgister

LP_END (auxiliary register 0x03) is updated with the resulting addred3Cif & rd. In parallel
LP_START (auxiliary register 0x02) is updated with the next PC (nPC).

The non-conditional LP instruction always updates LP_END and LP_START ayxédgisters.

CAUTION The LPcc instruction should not be in the executed delay slot of branch and jump instructions,
and therefore the LPcc instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The loop mechanism is always active and the registers used by the loop nmecrarsst up with
the LP instruction.

As LP_END is set to 0 updReset it is not advisable to execute an instruction placed at the end of
program memory space (OxFFFFFFFC or OXFFFFFFFE) as this wgétrtbe LP mechanism if no
other LP has been set up sifeset Also, caution is needed if code is copied or overlaid into
memory, that before executing the code that LP_END is initialized tie aaae (i.e. 0) to prevent
accidental LP triggering. Similar caution is required if using any f@rdMU or memory mapping.

The LP instruction is encoded to use immediate values (syntax u7 or si2yakscoding the

operand mode (bits 23:22) to be 0x0 or 0x1 is not recommended. Additionally using operand mode
0x3 with sub-operand mode 0x0 is not recommended. The reserved field, R, is ignored by the
processor.

The LP instruction may be used to set up a loop with a maximum set by thef lihétbranch offset
available in the LP instruction used.

» Conditional branch — 6 bits of unsigned offset gives +128 bytes
* Unconditional branch — 12 bits of signed offset gives +4094/-4096 bytes

Jumps and branches without linking or branch delay slots may be used at any posigdoop.t
The programmer must however be aware of the side-effects on the LP_QO@uylIBtér of using

branches within a loop, and also of the positions within loops where certairboéimch or jump
instructions may not be used.

For the ARCompact based processor, when a branch is used for early temahatloop, the value
of the loop count register after loop exit is undefined under certamnestances:

* When a branch instruction appears in the last instruction fetch of the loop.

» When the delay slot of a branch appears in the last instruction fetchay é.k. a branch with a
delay slot is the penultimate instruction fetch of the loop).

One zero-overhead loop may be used inside another provided that the inner ésopnshxestores
the context of the outer loop and complies with all other rules. An additideasriat a loop

248 ARCompact™ Programmer's Reference

Instruction Set Details LPcc

instruction may not be used in either of the last two instruction slots bhéoemd of an existing
loop.

The use of zero delay loops is illustrated in the following example.

Example 20 Example Loop Code

MOV LP_COUNT, 2 do loop 2 times (flags not set)

Some 1intermediate instructions

LP Toop_end set up loop mechanism to work
between loop_in and Tloop_end
loop_in: LR ro, [ril] ; first instruction
; in loop
ADD r2,r2,ro0 ; sum rO with r2
BIC rl,rl,4 ; last instruction
; in loop
loop_end:
ADD rl9,r19,r20 ; first instruction after Toop

Direct writes to the LP_START and LP_END registers should be used to segeplbops, if
required.

Special care must be taken when directly manipulating LP_START and IIPta&dhsure that the
values written refer to the first address occupied by an instruction.

= ARCtangent-A5 Loop Operation

For the ARCtangent-A5 processor, the operation of the loop mechanism isauNEXT_PC is
constantly compared with the value LP_END. If the comparison is true, then WNT@ tested. If
LP_COUNT is not equal to 1, then the PC is loaded with the contents of LP_SBARKRT
LP_COUNT is decremented. If, however, LP_COUNT is 1, then the PC is alloviecté¢ment
normally and LP_COUNT is decremented. This is illustratdeignre 950n page249.

PC < NEXT_PC

decr LP_COUNT

is LP_END
= NEXT_PC?

No

PC € LP_START

PC € NEXT_PC

Figure 95 Loop Detection and Update Mechanism, ARCt angent-A5

Special care must be taken when directly manipulating LP_START and LPtdEdhsure that the
values written refer to the first address occupied by an instructioth&#&RCtangent-A5 processor,
unpredictable behavior will result when LP_START or LP_END areogatint to any other
locations.

+ For the ARCtangent-A5 processor, the LP instruction must not be used to set upitbapsingle
@ instruction word. The LP instruction can only set up loops containing atweagtstruction words.

ARCompact™ Programmer's Reference 249

LPcc Instruction Set Details

This means that the LP instruction can be used to set up a loop contaimiglg ansitruction that
references long immediate data — since it has in fact two instruatiasw

However, if the user wishes to set up a loop containing only a single irmtruaird, then the
LP_START and LP_END registers can be set explicitly using SR ingtngdixample 21on page
250shows this. The loop rules specify that a minimum of three inigtruvords must béetched
after an SR write to LP_START or LP_END and the end of the loop — hence iagkisnn NOP
instructions are included for padding.

Example 21 Setting up an ARCtangent-A5 Single Instr uction Loop

MOV LP_COUNT, 5 ; no. of times to do loop
MoV r0,dooploop ; load START loop address
MoV rl,dooploopend ; Toad END loop address

SR r0, [LP_START] ; set up loop START register
SR rl, [LP_END] set up loop END register
NOP allow time to update regs

dooploop: OR r2l,r22,r23 single instruction in loop

NOP : can move useful instrs. here
dooploopend: ADD ri19,r19,r20 ; first instruction after Toop

There are also rules about where SLEEP and BRK instructions may be pidiedero-overhead
loops. The programmer should never insert a BRK or a SLEEP as thestasttion in a zero
overhead loop. To summarize the effect that the loop mechanism has on guesecages see the
following tables, according to the the notes:

» Instruction numbers Insn-N refer to the sequence of instructions slois aittop — which is not
the same as the instruction positions if branches are used withaothe |

* Two instruction slots are taken by instructions with long immediate-dahe first position (to
which the rules apply) is the instruction, the second is the long immediate/clal.

The following table covers loop setup and use of long immediate data foRtDE@Agent-AS
processor.

Table 88 Loop setup and long immediate data, ARCtan gent-A5

= Loop Set Up = Writing = Reading 1 Writing = Reading = Long Imm.
= LP Toop_end = LP_COUNT s LP_COUNT = LP_END, = LP_END, = op limm
. . " LP_START ™ LP_START "™
Loop_st:]]] n]]
Insl . . . - . =L
Ins2
Ins3 . . . - L . =L
Insn-4 = ... - = L. s
Insn-3 . . 7 . - L . =L
Insn-2 . . ?1 . - . X . . -
Insn-1 . X . ?1 . . X . . ce
Insn " X " ?1 " 72 " X " " n/a
Loop_end: 3
outinsl
outins2 &
Key: .
! E Writes to the loop count register — the number of loop iterations edebatore the
= loop count mechanism takes account of the change is undefined.
[= Reads from the loop count register — the value returned may not be the nurhieer of t
= current loop iteration.
X 1 An instruction of this type may not be executed in this instruction slot.
n/a 1 Instructions using long immediate data take two slots. Hence thecdiish itself

250 ARCompact™ Programmer's Reference

Instruction Set Details LPcc

E cannot be present in the last instruction slot.

The following tables cover use of branch and jump instructions for theakig€nt-A5 processor:

Table 89 Branch and Jumps in loops, flow(1), ARCtan gent-A5

a Bcc a BRCC a Bcc.d a BRcc.d

= jcc.d
n

0N

[]
()
0
(@]
L
~
=)
—
| |
o
[on}
(-]
_‘
=1

auw

|l
nnnNn

00O
| |
o)
[on}
(-]
_‘
=1
o

Loop_st:
Insl
Ins?2
Ins3

Insn-4
Insn-3
Insn-2
Insn-1
Insn
Loop_end:
outinsl
outins2

Key:
! Loop count register value unpredictable when branch taken to exit earlye

loop.
An instruction of this type may not be executed in this instruction slot.

Table 90 Branch and Jumps in loops, flow(2), ARCtan gent-A5

a Jcc Timm a JLcc Timm s LP other_Toop a SLEEP
n n n n BRK

Loop_st:

Insl

Ins?2 [] [] - [] - [] -

Insn-2 - - e . e - e

Insn-1 [! [X [X [-

Insn . n/a . n/a . X . X

Loop_end:

outinsl

outins2 [[n L]

Key: .

! = Loop count register value unpredictable when branch taken to exit eamlye
= loop.

X E An instruction of this type may not be executed in this instruction slot.

n/a E Instructions using long immediate data take two slots. Hence tinedinsn itself
= cannot be present in the last instruction slot.

ARCompact™ Programmer's Reference 251

LPcc Instruction Set Details

| ARC 600 Loop Operation

] The ARC 600 processor determines the next address from which to fetch aniamstrecording to
whether there is a branch or jump being executed and whether the current pragnéen (cPC) has

I reached the last instruction of a zero overhead loop. If a branch or jumptiostisi¢aken then the
target of that instruction always defines the next PC. Whenewent(?C reaches the last instruction

| of a zero overhead loop the LP_COUNT register is decremented. This hapgardless of whether

| the loop will iterate or whether the loop will terminate.

[]

I On reaching the last instruction of a zero overhead loop the processor wilhextae LP_COUNT
register. If it is not equal to either 0 or 1, and there is no taken bratiat &ication, then the

| program counter will be set to LP_START.

| This is illustrated irFigure 96on page252

PC < NEXT_PC

is LP_END
= NEXT_PC2

Yes

decr LP_COUNT

—»

branch or
jump to be
taken?2

PC < target addr.

is LP_COUNT =
Oor1?

PC & LP_START

Yes

PC < NEXT_PC

Figure 96 Loop Detection and Update Mechanism, ARC 600

I Special care must be taken when directly manipulating LP_START and LPtdEdhsure that the
values written refer to the first address occupied by an instructoth& ARC 600 processor,

I unpredictable behavior will result when LP_START or LP_END areogatint to any other
locations.

I For the ARC 600 processor, the LP instruction must not be used to set up loopsingth a s

| instruction word. The LP instruction can only set up loops containing atweagtstruction words.
| This means that the LP instruction can be used to set up a loop containing &stngction that

| references long immediate data — since it has in fact two instructiasw

| However, if the user wishes to set up a loop containing only a single irmtruaird, then the

| LP_START and LP_END registers can be set explicitly using SR insmscdixample 22on page
253 shows this. The loop rules specify that a minimum of three iniginueords must béetched

| after an SR write to LP_START or LP_END and the end of the loop — hence iagkisnn NOP

I instructions are included for padding.

252 ARCompact™ Programmer's Reference

Instruction Set Details LPcc

1

I Example 22 Setting up an ARC 600 Single Instruction Loop

I MoV LP_COUNT, 5 ; no. of times to do loop
MOV r0,dooploop ; load START loop address

I MOV rl,dooploopend ; Toad END loop address
SR r0, [LP_START] ; set up loop START register

I SR rl, [LP_END] ; set up loop END register

I NOP ; allow time to update regs
NOP ; can move useful 1instrs. here

Idoop'loop: OR r21,r22,r23 ; single instruction in loop

Idoop1oopend: ADD r19,r19,r20 ; first instruction after Toop

I There are also rules about where SLEEP and BRK instructions may be pitiedero-overhead
loops. The programmer should never insert a BRK or a SLEEP as thetiastiois in a zero
| overhead loop.

To summarize the effect that the loop mechanism has on these spexsaemshe tables below.

| Notes:
| - Instruction numbers Insn-N refer to the sequence of instructions slois aitiop — which is not
| the same as the instruction positions if branches are used withaothe |
I. Twoinstruction slots are taken by instructions with long immediate-ddhe first position (to
| which the rules apply) is the instruction, the second is the long immediate/clal.
I The following table covers loop setup and use of long immediate data foRB&BO processor.
I Table 91 Loop setup and long immediate data, ARC 60 0
| | Loop Setup | writing | Reading | writing | Reading | Long Imm.
LP g LP_COUNT y LP_COUNT LP_END, LP_END, g oOp limm
| | Toop_end LP_START N LP_START
e l] l
Ins? I | I |
.. 1 | 1 |
Iia;n_4 I o I I I o I I
Insn-3 . 7! .
Insn-2 . ?1 X
Insn-1 I X I ;: I 52 I X I I /
Insn X ¢ ¢ X n/a
Loop_end: I I I I I I
outinsl | | | | | |
1 outins2 [[[[[[
I Key: !
! I Writes to the loop count register — the number of loop iterations edbatore the
! | loop count mechanism takes account of the change is undefined.
172 Reads from the loop count register — the value returned may not be the nurheer of t
! current loop iteration.
I x | An instruction of this type may not be executed in this instruction slot.
I n/a I |nstructions using long immediate data take two slots. Hence thediish itself
! ! cannot be present in the last instruction slot.
|
|

ARCompact™ Programmer's Reference 253

LPcc Instruction Set Details

| The following tables cover use of branch and jump instructions for the ARCr60€ssor:

I Table 92 Branch and Jumps in loops, flow(1), ARC 60 0
- ¥ Bcc ¥ BRcc T BRcC ¥ BLcC ¥ JLcc ®Bcc.d TFBLcc.d ¥FBRcc.d
| | J[cc] | sBxTn | Timm | | | Jcc.g | Jicc g | BBITN.d

R BBIT J_S. JL_s
| 1 | vinm | | | | |
o= 1 rForr o r o r. .. .1
Iﬂ:g | [RPUURE OO IR REPUDEE R EEOOEE R
1.7 | ISR RSSO ST EEAOA ISR RO S
linins | S R R B RSO RSSO
|%2:2-% | P 0 0 o o
ment b bbb b b b bk
Eg(s)g end: I X2 I X I X I X I X I X I X I X
outinsl | | | | | | | |
[OKut1 ns2] 1 1 1 1 1 1 1

ey:

I X I An instruction of this type may not be executed in this instruction slot.
I x* i A branch or jump may be placed in this position provided its target is outeittmoti
I I Upon exit the value of LP_COUNT will be one less than the number of desati

executed. A branch or jump may not be placed in this position if its iargside the
! ! loop. If this rule is violated the loop may execute an undefined number ofaterati
|
|
| Table 93 Branch and Jumps in loops, flow(2), ARC 60 0
| [3cc Timm [tcc Timm | LP other_Toop | SLEEP

BRK

| | | | | sur
o= . I
I Ins?2 I I . I I e
| | | ... | | .
Insn-2 ca .
Insn-1 I X I X I X I e
Insn . | X | X | X | X
Loop_end:
outinsl I I I I
[Outins?2] 1 | |
] Key L]
: X I An instruction of this type may not be executed in this instruction slot.

ARC 700 Loop Operation

For the ARC 700 processor, the loop mechanism is active when the loop-intt8itTiUS32[L] is
set to zero. This bit is set to disable the loop mechanism on an interruggaregtion (including
TRAP instructions). Loops are enabled (STATUS32[L]=0) d&®eset The loop-inhibit bit is cleared
(loops allowed) whenever the processor commits a taken conditiomagtréction or an
unconditional LP instruction. From kernel mode, the value of the bit can atst/testored using the
RTIE instruction.

254 ARCompact™ Programmer's Reference

Instruction Set Details LPcc

When the loop mechanism is disabled (STATUS32[L]=1), loop-end conditierigrasred - no
change of program flow is taken, loop count is not decremented. The STATUS3Jijter does not
affect reads and writes to the loop control registers.

The machine checks for a loop-end condition when calculating the next program eolainéss,
before each instruction is completed.

A loop-end condition is detected when:

» The instruction to be completed is hda&enbranch or jump - note this includes a LPcc which
evaluates false.

O In the case of takenbranch or jump, the loop-end condition is bypassed, and the next
instruction (NEXT_PC) comes from the branch/jump target.

STATUSS32[DE] is 0 and BTA[OQ] = - the instruction is not in the delay sldtucson of a
branch.

O In the case when STATUS32[DE] = 1 and BTA[O] = 1, the instruction pointed to by € i
delay slot instruction of a branch, therefore the next instruction INIPX) comes from the
address in the Branch Target Address (BTA) register.

O In the case when STATUS32[DE] = 1 and BTA[O] = 0, the preceeding branch wakeo}-t
therefore the current instruction is still considered as end-of-loop.

STATUS32[L] is 0

[0 This bit is set to 1 to disable loop-end detection.

The instruction to be completed is the last in a loop
O Current PC + current instruction_size = LP_END
LP_COUNT is not equal to 1

O Inthe case when LP_COUNT=1, LP_COUNT is decremented and execution corniomaes f
the instruction pointed to by LP_END.

When a loop-end condition is detected, the machine jumps to the address in LA, 8h4R
LP_COUNT is decremented.

If LP_COUNT is 1, then the machine will continue execution from theuosbn pointed to by
LP_END; LP_COUNT is also decremented. This is illustrated in th@rfimg diagram.

ARCompact™ Programmer's Reference 255

LPcc Instruction Set Details

PC € NEXT_PC

decr LP_COUNT

is LP_END
= NEXT_PC?

No

PC < LP_START

PC € NEXT_PC

Figure 97 Loop Detection and Update Mechanism, ARC 700

The ARC 700 processor allows the LP instruction to be used to set up a loop wiimamof one
instruction

If a LP_START value is provided which does not match the start of an instruatid the loop-end
condition is reached, the result will the same as if a branch or jump had &denathe faulty
address.

If a LP_END value is provided which does not match the start of an instructdoptitend
condition will never be detected.

The update to the LP_START and LP_COUNT registers will take effenediately after the LP
instruction has committed. Note that any change of program flow requirgdrtigeto LP_START)
will be completed before LP_START and LP_END are updated.

As a result, executing a LP instruction from the last instruction in the lobfakel effect from the
next loop iteration. Executing LP from any other position in the loop will taleetefi the current
loop iteration.

To summarize the effect that the loop mechanism has on these spexsaemshe tables below.
Notes:

» Instruction numbers Insn-N refer to the sequence of instructions slois aittop — which is not
the same as the instruction positions if branches are used withoothe |

* Two instruction slots are taken by instructions with long immediate-dahe first position (to
which the rules apply) is the instruction, the second is the long immediate/clal.

The following table covers loop setup and use of long immediate data foRIB&B0 processor.

256 ARCompact™ Programmer's Reference

Instruction Set Details

LPcc

Table 94 Loop setup and long immediate data, ARC 70 0

Loop Set Up Writing Reading Writing Reading Long Imm.
LP LP_COUNT LP_COUNT LP_END, LP_END, op 1limm
loop_end LP_START LP_START

Loop_st:

Insl -

Ins?2 -

Ins3 -

Insn-4 .

Insn-3 -

Insn-2 -

Insn-1 e e - - e

Insn n - n n n/a

Loop_end:

outinsl

outins?

Key:

n Updates to loop registers take affect after loop end condition has meated, i.e.
in the next loop iteration

n/a Instructions using long immediate data take two slots. Hence thecinsh itself
cannot be present in the last instruction slot.

The following tables cover use of branch and jump instructions for the ARC-@O€spor:

Table 95 Branch and Jumps in loops, flow(1), ARC70 0
BccC BRcC BLccC Bcc.d BLcc.d BRcc.d
Jcc [Rn] BBITn JLcc Jcc.d JLcc.d BBITn.d

J_s.d JjL_S.d

Loop_st:

Insl - -

Ins?2 e e

Ins3 - -

Insn-4 . .

Insn-3 - -

Insn-2 e e

Insn-1 - - - - o

Insn e e (o] X X X

Loop_end:

outinsl

outins2

Key:

X An instruction of this type may not be executed in this instruction slolleyal
Instruction Sequence exception is taken if the instruction is atempt

o Return address will be outside the loop

ARCompact™ Programmer's Reference 257

LPcc Instruction Set Details

Table 96 Branch and Jumps in loops, flow(2), ARC70 0

I Jcc Timm I JLcc Timm I LP other_Toop SLEEP
BRK

Loop_st:
Insl
Ins?2

Insn-2
Insn-1 e e e
Insn - o n
Loop_end:
outinsl
outins2

Key:
n Updates to loop registers take affect after loop end condition has lmeated,
i.e. in the next loop iteration

o Return address will be outside the loop

Pseudo Code Example:
if cc==true then /* LPcc */
Aux_reg(LP_START) = nPC

Aux_reg(LP_END) = cPCL + rd

PC = nPC
else

PC = cPCL +rd

Assembly Code Example

LPNE Tabel if the z flag is set then
branch to label else

set LP_START to address of
next instruction and set
LP_END to Tabel

The use of zero delay Ioops is illustrated below.

MOV LP_COUNT, 2 ; do loop 2 times (flags not set)
LP Toop_end set up loop mechanism to work
between loop_in and loop_end
first instruction

in Tloop

sum rO with r2

Tast instruction

in Toop

loop_in: LR ro, [ri]

ADD r2,r2,ro0
BIC rl,rl,4

loop_end:
ADD r19,r19,r20 ; first instruction after loop

The LP instruction can be used to set up a loop containing a single instructicfe¢hences long
immediate data — since it has two instruction words:

LP Toop_end ;
Toop_in: ADD r22,r22,0x00010000 ; single instruction in Toop
loop_end:

ADD r19,r19,r20 ; first instruction after Toop

258 ARCompact™ Programmer's Reference

Instruction Set Details LR

LR

Load from Auxiliary Register
Control Operation

Operation:
dest— aux_reg(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
aux_reg = Auxiliary Register
Syntax:
Instruction Code
LR b,[c] 00100bbb001010100BBBCCCCCCRRRRRF
LR b, [limm] 00100bbb001010100BBB111110RRRRRR
LR b,[u6] 00100bbb011010100BBBuuuuuu000000
LR b,[s12] 00100bbb101010100BBBSSSSSSSSSSSS
Flag Affected (32-Bit): Key:
Z []| = Unchanged = Limm Data
N = Unchanged
C = Unchanged
\% = Unchanged
Related Instructions:
SR LD
Description:

Get the data from the auxiliary register whose number is obtained fromutee ®perand (src) and
place the data into the destination register (dest).

The status flags are not updated with this instruction therefofathsetting field, F, is encoded as
0. The reserved field, R, is ignored by the processor, but should be set to 0.

The LR instruction cannot be conditional therefore encoding the operand nmsdz3(BPR) to be 0x3
will raise aninstruction Errorexception in the ARC 700 processor.

For the ARCtangent-A5 and ARC 600 processors, the behavior is undefined ifiastiuRtion is
encoded using the operand mode of Ox3.

Pseudo Code Example:

dest = Aux_reg(src) /* LR */
Assembly Code Example:
LR rl1,[r2] ; Load contents of Aux. register pointed

; to by r2 into rl

ARCompact™ Programmer's Reference 259

LSR Instruction Set Details

LSR

Logical Shift Right
Logical Operation

Operation:
dest— LSR by 1 (src)

o—>|0] dest [C]
MSB LSB

Format:
inst dest, src
Format Key:
dest = Destination Register
src = Source Operand
Syntax:
With Result Instruction Code
LSR<.f> b,c 00100bbb00101111FBBBCCCCCC000010
LSR<.f> b,u6 00100bbb01101111FBBBuuuuuu000010
LSR<.f> b,limm 00100bbb00101111FBBB111110000010
LSR_S b,c 01111bbbccc11101
Without Result
LSR<.f> 0,c 0010011000101111F1112CCCCCC000010
LSR<.f> 0,u6 0010011001101111F111uuuuuu000010
LSR<.f> 0,limm 0010011000101111F111121110000010
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
Y = Unchanged
Related Instructions:
ASL ASR
ROR RRC
ASL multiple ASR multiple
ROR multiple LSR multiple
Description:

Logically right shift the source operand (src) by one and place th¢ irgsuhe destination register
(dest).

The most significant bit of the result is replaced with O.

Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

dest = src >> 1 /* LSR */
dest[31] = O

if F==1 then

if dest==0 then 1 else 0

dest[31]

c_flag src[0]

P4
—h
—
QL
Q
o

260 ARCompact™ Programmer's Reference

Instruction Set Details LSR
Assembly Code Example:
LSR rl,r2 ; Logical shift right
; contents of r2 by one bit
; and write result into rl
ARCompact™ Programmer's Reference 261

LSR multiple Instruction Set Details

LSR multiple

Multiple Logical Shift Right
Logical Operation
Operation:
if (cc=true) then dest logical shift right of src1 by src2

| srcl

|
W
o —> [0] dest [C]
MSB LSB
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
LSR<.f> a,b,c 00101bbb00000001FBBBCCCCCCAAAAAA
LSR<.f> a,b,ub 00101bbb01000001FBBBuUuuuuuuAAAAAA
LSR<.f> b,b,s12 00101bbb10000001FBBBssssssSSSSSS
LSR<.cc><.f> b,b,c 00101bbb11000001FBBBCCCCCC0QQQQQ
LSR<.cc><.f> b,b,u6 00101bbb11000001FBBBuuuuuu1QQQQQ
LSR<.f> a,limm,c 0010111000000001F111CCCCCCAAAAAA | L
LSR<.f> a,blimm 00101bbb00000001FBBB111110AAAAAA L
LSR<.cc><.f> b,b,limm 00101bbb11000001FBBB1111100QQQQQ (L
LSR_S b,b,c 01111bbbccc11001
LSR S b,b,u5 10111bbb001uuuuu
Without Result
LSR<.f> 0,b,c 00101bbb00000001FBBBCCCCCC111110
LSR<.f> 0,b,u6 00101bbb01000001FBBBuUuuuuul111110
LSR<.cc><.f> 0,limm,c 0010111011000001F111CCCCCCOQQQQQ[L]
Flag Affected (32-Bit): Key:
z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
Y = Unchanged
Related Instructions:
ASL LSR
ROR RRC
ASL multiple ASR multiple
ROR multiple
Description:

Logically, shift right srcl by src2 places and place the result ingstindtion register. Only the
bottom 5 bits of src2 are used as the shift value.

Any flag updates will only occur if the set flags suffix (.F) is used.

262 ARCompact™ Programmer's Reference

Instruction Set Details LSR multiple

Pseudo Code Example:

if cc==true then /* LSR */

dest = srcl >> (src2 & 31) /% Multiple */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]
C_flag = if src2==0 then 0 else srcl[sr2-1]

Assembly Code Example:

LSR rl1,r2,r3 ; Logical shift right
; contents of r2 by r3 bits
; and write result into rl

ARCompact™ Programmer's Reference 263

MAX Instruction Set Details

MAX

Return Maximum Value
Arithmetic Operation

Operation:
if (cc=true) then dest- MAX(srcl, src2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

MAX = Return Maximum Value

Syntax:

With Result Instruction Code

MAX<.f> a,b,c 00100bbb00001000FBBBCCCCCCAAAAAA
MAX<.f> a,b,u6 00100bbb01001000FBBBuuuuuuAAAAAA
MAX<.f> b,b,s12 00100bbb10001000FBBBssssssSSSSSS
MAX<.cc><.f> Db,b,c 00100bbb11001000FBBBCCCCCC0QQQQQ
MAX<.cc><.f> b,b,u6 00100bbb11001000FBBBuUuuuuulQQQQQ
MAX<.f> a,limm,c 0010011000001000F111CCCCCCAAAAAA| L
MAX<.f> a,b,limm 00100bbb00001000FBBB111110AAAAAA | L
MAX<.cc><.f> b,b,limm 00100bbb11001000FBBB1111100QQQQQ | L
Without Result

MAX<.f> 0,b,c 00100bbb00001000FBBBCCCCCC111110
MAX<.f> 0,b,u6 00100bbb01001000FBBBuuuuuul111110
MAX<.f> 0,b,limm 00100bbb00001000FBBB111110111110 L
MAX<.cc><.f> 0,limm,c 0010011011001000F111CCCCCC0QQQQQ L
Flag Affected (32-Bit): Key:

z = Set if both source operands are equal = Limm Data
N = Set if most significant bit of result of src1-8rs set
C = Set if src2 is selected (src2 >= srcl)

V | « | = Set if overflow is generated (as a result of SER)

Related Instructions:
MIN CMP

Description:
Return the maximum of the two signed source operands (srcl and src2) anttieptaselt in the
destination register (dest). Any flag updates will only occur if the ag$ fuffix (.F) is used.

Pseudo Code Example:
if cc==true then /* MAX */
alu = srcl - src2
if src2 >= srcl then
dest = src2
else
dest = srcl
if F==1 then

z_flag = if alu==0 then 1 else 0
N_flag = alu[31]

v_flag = overflow()

C_flag = if src2>=srcl then 1 else 0

264 ARCompact™ Programmer's Reference

Instruction Set Details MAX

Assembly Code Example:
MAX rl,r2,r3 ; Take maximum of r2 and r3
; and write result into rl

ARCompact™ Programmer's Reference 265

MIN Instruction Set Details

MIN

Return Minimum Value

Arithmetic Operation

Operation:
if (cc=true) then dest- MIN(src1, src2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

MIN = Return Minimum Value

Syntax:

With Result Instruction Code

MIN<.f> a,b,c 00100bbb00001001FBBBCCCCCCAAAAAA
MIN<.f> a,b,u6 00100bbb01001001FBBBuuuuuuAAAAAA
MIN<.f> b,b,s12 00100bbb10001001FBBBsSsssssSSSSSS
MIN<.cc><.f> b,b,c 00100bbb11001001FBBBCCCCCC0QQQQQ
MIN<.cc><.f> b,b,u6 00100bbb11001001FBBBuuuuuulQQQQQ
MIN<.f> a,limm,c 0010011000001001F111CCCCCCAAAAAA| L
MIN<.f> a,b,limm 00100bbb00001001FBBB111110AAAAAA | L
MIN<.cc><.f> b,b,limm 00100bbb11001001FBBB1111100QQQQQ | L
Without Result

MIN<.f> 0,b,c 00100bbb00001001FBBBCCCCCC111110
MIN<.f> 0,b,u6 00100bbb01001001FBBBuuuuuul111110
MIN<.f> 0,b,limm 00100bbb00001001FBBB111110111110 L
MIN<.cc><.f> 0,limm,c 0010011011001001F111CCCCCC0QQQQQ L
Flag Affected (32-Bit): Key:

z = Set if both source operands are equal = Limm Data
N = Set if most significant bit of result of src1-8rs set
C = Set if src2 is selected (src2 <= srcl)

V | « | = Set if overflow is generated (as a result of SER)

Related Instructions:
MAX CMP

Description:
Return the minimum of the two signed source operands (srcl and src2) antiglaslt in the
destination register (dest). Any flag updates will only occur if the ag$ fuffix (.F) is used.

Pseudo Code Example:
if cc==true then /* MIN */
alu = srcl - src2
if src2 <= srcl then
dest = src2
else
dest = srcl
if F==1 then

z_flag = if alu==0 then 1 else 0
N_flag = alu[31]

v_flag = overflow()

C_flag = if src2<=srcl then 1 else 0

266 ARCompact™ Programmer's Reference

Instruction Set Details MIN

Assembly Code Example:
MIN rl,r2,r3 ; Take minimum of r2 and r3
; and write result into rl

ARCompact™ Programmer's Reference 267

MOV Instruction Set Details

MOV

Move Contents

Arithmetic Operation

Operation:
if (cc=true) therdest«— src

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

cc = Condition Code

Syntax:

With Result Instruction Code

MOV<.f> b,s12 00100bbb10001010FBBBssssssSSSSSS
MOV<.cc><.f> b,c 00100bbb11001010FBBBCCCCCC0QQQQ!
MOV<.cc><.f> b,u6 00100bbb11001010FBBBuUUuuuu1QQQQQ
MOV<.cc><.f> b,limm 00100bbb11001010FBBB1111100QQQQQ
MOV_S b,h 01110bbbhhh01HHH

MOV_S b,limm 01110bbb11001111
MOV_S hob 01110bbbhhh11HHH

MOV_S b,u8 11011bbbuuuuuuuu

Without Result

MOV<.f> 0,s12 0010011010001010F111sS555SSSSSSS
MOV<.cc><.f> 0,c 0010011011001010F111CCCCCC0QQQQG
MOV<.cc><.f> 0,u6 0010011011001010F111uuuuuulQQQQQ
MOV<.cc><.f> 0,limm 0010011011001010F1111111100QQQQQ
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

EXTB SWAP

EXTW SEXB

Description:

The contents of the source operand (src) are moved to the destinatiom (dgit)e Any flag
updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /* MOV */ /* MOV */
dest = src
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag dest[31]

Assembly Code Example:
MOV rl,r2 ; Move contents of r2 into ril

268 ARCompact™ Programmer's Reference

Instruction Set Details

MPY

MPY

Operation:

Format:

dest« (srcl X src2).low

inst dest, srcl, src2

32 x 32 Signed Multiply Low
Extension Option

o
o

Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code

| MPY<.f> a,b,c 00100bbb00011010FBBBCCCCCCAAAAAA

| MPY<.f> a,b,u6 00100bbb01011010FBBBuuuuuuAAAAAA

| MPY<.f> b,b,s12 00100bbb10011010FBBBSsssssSSSSSS
MPY<.cc><.f> b,b,c 00100bbb11011010FBBBCCCCCC0QQQQQ
MPY<.cc><.f> b,b,u6 00100bbb11011010FBBBuuuuuu1QQQQQ
MPY<.f> a,limm,c 0010011000011010F111CCCCCCAAAAAA| L
MPY<.f> a,b,limm 00100bbb00011010FBBB111110AAAAAA L
MPY<.cc><.f> b,b,limm 00100bbb11011010FBBB1111100QQQQQ | L
Without
Result
MPY<.f> 0,b,c 00100bbb00011010FBBBCCCCCC111110
MPY<.f> 0,b,u6 00100bbb01011010FBBBUuuuuu111110
MPY<.cc><.f> Olimmc 0010011011011010F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:
Z « = Setwhen the destination register is zero. L =Limm Data
N « = Set when the sign bit of the 64-bit result is set
C = Unchanged
V « = Set when the signed result cannot be wholly

contained within the lower part of the 64-bit reéslr
other words, when bits 62:31 do not equal bit B4, t

sign bit.
Related Instructions:

MPYH
MPYHU

Description:

MPYU
DIVAW

ARCompact™ Programmer's Reference

Perform a signed 32-bit by 32-bit multiply of operandl and operand2 then place tisiglefisant
32 bits of the 64-bit result in the destination register. Any flag updatiesnlyi occur if the set flags
suffix (.F) is used.

269

MPY Instruction Set Details

Pseudo Code Example:
if cc==true then /% MPY */
dest = (srcl * src2) & 0x0000_0000_FFFF_FFFF

Assembly Code Example:
MPY rl,r2,r3 ; Multiply r2 by r3
; and put Tow part of the result in rl

270 ARCompact™ Programmer's Reference

Instruction Set Details MPYH

MPYH

32 x 32 Signed Multiply High
Extension Option

Operation:
dest« (srcl X src2).high

]
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
| MPYH<.f> a,b,c 00100bbb00011011FBBBCCCCCCAAAAAA
| MPYH<.f> a,b,ué 00100bbb01011011FBBBuUuuuuuuAAAAAA
| MPYH<.f> b,b,s12 00100bbb10011011FBBBSsssssSSSSSS
MPYH<.cc><.f> b,b,c 00100bbb11011011FBBBCCCCCC0QQQQQ
MPYH<.cc><.f> b,b,u6 00100bbb11011011FBBBUuuuuulQQQQQ
MPYH<.f> a,limm,c 0010011000011011F111CCCCCCAAAAAA| L
MPYH<.f> a,b,limm 00100bbb00011010FBBB111110AAAAAA L

MPYH<.cc><.f> b,b,limm 00100bbb11011011FBBB1111100QQQQQ | L
Without Result

MPYH<.f> 0,b,c 00100bbb00011011FBBBCCCCCC111110
MPYH<.f> 0,b,u6 00100bbb01011011FBBBuuuuuu111110
MPYH<.cc><.f> 0limm,c 0010011011011011F111CCCCCCOQQQQ] L |
Flag Affected (32-Bit): Key:

Z « = Setwhen the destination register is zero. L =Limm Data
N « = Set when the sign bit of the 64-bit result is set

C = Unchanged

V « = Always cleared.

Related Instructions:

MPY MPYU

MPYHU DIVAW

Description:

Perform a signed 32-bit by 32-bit multiply of operandl and operand2 then place theggmbsast
32 bits of the 64-bit result in the destination register. Any flag updatiesnlyi occur if the set flags
suffix (.F) is used.

Pseudo Code Example:

if cc==true then /¥ MPYH */
dest = (srcl * src2) >> 32

Assembly Code Example:
MPYH rl,r2,r3 ; Multiply r2 by r3 and put high part of the result in rl

ARCompact™ Programmer's Reference 271

MPYHU Instruction Set Details

MPYHU

32 x 32 Unsigned Multiply High
Extension Option

Operation:
dest« (srcl X src2).high

]
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
| MPYHU<.f> a,b,c 00100bbb00011100FBBBCCCCCCAAAAAA
| MPYHU<.f> a,b,u6 00100bbb01011100FBBBUuuuuuAAAAAA
| MPYHU< > b,b,s12 00100bbb10011100FBBBSsssssSSSSSS
MPYHU<.cc><.f> b,b,c 00100bbb11011100FBBBCCCCCC0QQQQQ
MPYHU<.cc><.f> Db,b,u6 00100bbb11011100FBBBUUUULU1QQQQQ
MPYHU<.f> a,limm,c 0010011000011100F111CCCCCCAAAAAA| L
MPYHU<.f> a,b,limm 00100bbb00011100FBBB111110AAAAAA L

MPYHU<.cc><.f> Db,b,limm 00100bbb11011100FBBB1111100QQQQQ | L
Without Result

MPYHU<.f> 0,b,c 00100bbb00011100FBBBCCCCCC111110
MPYHU<.f> 0,b,u6 00100bbb01011100FBBBuUuuuuu111110
MPYHU<.cc><.f> 0,limm,c 0010011011011100F111CCCCCCOQQQQ] L |
Flag Affected (32-Bit): Key:

Z « = Setwhen the destination register is zero. L =Limm Data
N « = Always cleared.

C = Unchanged

V « = Always cleared.

Related Instructions:

MPY MPYU

MPYH DIVAW

Description:

Perform an unsigned 32-bit by 32-bit multiply of operandl1 and operand2 then place the most
significant 32 bits of the 64-bit result in the destination register.flagyupdates will only occur if
the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /* MPYHU */
dest = (srcl * src2) >> 32

272 ARCompact™ Programmer's Reference

Instruction Set Details MPYHU

Assembly Code Example:
MPYHU rl,r2,r3 ; Multiply r2 by r3
; and put high part of the result in rl

ARCompact™ Programmer's Reference 273

MPYU Instruction Set Details

MPYU

32 x 32 Unsigned Multiply Low
Extension Option

Operation:
dest« (srcl X src2).low

I
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
| MPYU<.f> a,b,c 00100bbb00011101FBBBCCCCCCAAAAAA
| MPYU<.f> a,b,ué 00100bbb01011101FBBBuUuuuuuuAAAAAA
| MPYU<.f> b,b,s12 00100bbb10011101FBBBSSssssSSSSSS
MPYU<.cc><.f> b,b,c 00100bbb11011101FBBBCCCCCC0QQQQQ
MPYU<.cc><.f> b,b,u6 00100bbb11011101FBBBUUUUUU1QQQQQ
MPYU<.f> a,limm,c 0010011000011101F111CCCCCCAAAAAA| L
MPYU<.f> a,b,limm 00100bbb00011101FBBB111110AAAAAA L

MPYU<.cc><.f> b,b,limm 00100bbb11011101FBBB1111100QQQQQ | L
Without Result

MPYU<.f> 0,b,c 00100bbb00011101FBBBCCCCCC111110
MPYU<.f> 0,b,u6 00100bbb01011101FBBBuUuuuuu111110
MPYU<.cc><.f> 0Jlimm,c 0010011011011101F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

Z « = Setwhen the destination register is zero. L =Limm Data

N « = Always cleared

C = Unchanged

V « = Set when the high part of the 64-bit result in-zero
Related Instructions:

MPY MPYH
MPYHU DIVAW
Description:

Perform an unsigned 32-bit by 32-bit multiply of operandl1 and operand?2 then placsthe lea
significant 32 bits of the 64-bit result in the destination register.flagyupdates will only occur if
the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /¥ MPYU */
dest = (srcl * src2) & 0x0000_0000_FFFF_FFFF

Assembly Code Example:
MPYU rl,r2,r3 ; Multiply r2 by r3 and put low part of the result in rl

274 ARCompact™ Programmer's Reference

Instruction Set Details MUL64

MULG4

32 x 32 Signed Multiply
Extension Option

Operation:

MLO <« low part of (srcl * src2)
MHI < high part of (srcl * src2)
MMID « middle part of (srcl * src2)

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

Instruction Code

lIMuLe4 <0,>b,c 00101bbb000001000BBBCCCCCC111110
lIMuLe4 <0,>b,u6 00101bbb010001000BBBuuuUUU111110
lIMuLe4 <0,>b,s12 00101bbb100001000BBBssssssSSSSSS

MUL64 <0,>limm,c 00101110000001000111CCCCCC111110

MUL64<.cc> <0,>b,c 00101bbb110001000BBBCCCCCCOQQQQQ

MUL64<.cc> <0,>b,u6 00101bbb110001000BBBuuuuuu1QQQQQ

—

MUL64<.cc> <0,>limm,c 00101110110001000111CCCCCCOQRAQQQ
MUL64<.cc> <0,>b,limm 00101bbb110001000BBB1111100QQQQQ | L

MUL64_S <0,>b,c 01111bbbccc01100

Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data
N = Unchanged

C = Unchanged

V = Unchanged

Related Instructions:

MULUG64 DIVAW

Description:

Perform a signed 32-bit by 32-bit multiply of operandl and operand2 then place th@gnifisast
32 bits of the 64-bit result in register MHI, the least significant 32dfithe 64-bit result in register
MLO, and the middle 32 bits of the 64-bit result in register MMID.

If an instruction condition placed on a MUL64 is found to be false, the multiiiypot be
performed, and the instruction will complete on the same cycle withouctiaffehe values stored in
the multiply result registers.

ARCompact™ Programmer's Reference 275

MULG4 Instruction Set Details

The extension auxiliary register MULHI is used to restore the high partbiply result register if
the multiply has been used, for example, by an interrupt service routinexwérepart of the
multiply result register can be restored by multiplying the desirkek\ay 1.

The status flags are not updated with this instruction therefofathsetting field, F, should be
encoded as 0.

Pseudo Code Example:

if cc==true then /* MUL64 */
mlo = srcl * src2

mmid = (srcl * src2) >> 16

mhi = (srcl * src2) >> 32

Assembly Code Example:

MUL64 r2, r3 ; Multiply r2 by r3
; and put the result in the special
; result registers

276 ARCompact™ Programmer's Reference

Instruction Set Details MULU64

MULUG4

32 x 32 Unsigned Multiply
Extension Option

Operation:

MLO <« low part of (srcl * src2)
MHI < high part of (srcl * src2)
MMID « middle part of (srcl * src2)

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

Instruction Code

lIMuLue4 <0,>b,c 00101bbb000001010BBBCCCCCC111110
lIMuLUB4 <0,>b,u6 00101bbb010001010BBBuuuuuU111110
lIMuLUB4 <0,>b,s12 00101bbb100001010BBBssssssSSSSSS

MULU64 <0,>limm,c 00101110000001010111CCCCCC111110

MULU64<.cc> <0,>b,c 00101bbb110001010BBBCCCCCCOQQQQQ

MULU6G4<.cc> <0,>b,u6 00101bbb110001010BBBuuuuuu1QQQQQ
MULU64<.cc> <0,>limm,c 00101110110001010111CCCCCCOQQQQJ L
MULUB4<.cc> <0,>b,limm 00101bbb110001010BBB1111100QQQQQ | L

Flag Affected (32-Bit): Key:

Z = Unchanged L =Limm Data
N = Unchanged

C = Unchanged

Y = Unchanged

Related Instructions:

MUL64 DIVAW

Description:

Perform an unsigned 32-bit by 32-bit multiply of operandl and operand2 then place the most
significant 32 bits of the 64-bit result in register MHI, the leagtifitant 32 bits of the 64-bit result
in register MLO, and the middle 32 bits of the 64-bit result in register MMID

If an instruction condition placed on a MULUG64 is found to be false, the multiilpetibe
performed, and the instruction will complete on the same cycle withouctiaffehe values stored in
the multiply result registers.

ARCompact™ Programmer's Reference 277

MULUG64 Instruction Set Details

The extension auxiliary register MULHI is used to restore the high partbiply result register if
the multiply has been used, for example, by an interrupt service routinexwérepart of the
multiply result register can be restored by multiplying the desirkek\ay 1.

The status flags are not updated with this instruction therefofathsetting field, F, should be
encoded as 0.

Pseudo Code Example:

if cc==true then /* MULUG4 */
mlo = srcl * src2

mmid = (srcl * src2) >> 16

mhi = (srcl * src2) >> 32

Assembly Code Example:

MULU64 r2, r3 ; Multiply r2 by r3
; and put the result in the special
; result registers

278 ARCompact™ Programmer's Reference

Instruction Set Details NEG

NEG

Negate
Arithmetic Operation

Operation:
dest— 0 - src

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
Syntax:
Instruction Code
NEG<.f> a,b 00100bbb01001110FBBBO00000AAAAAA
NEG<.cc><.f> b,b 00100bbb11001110FBBB0000001QQQQQ
NEG_S b,c 01111bbbccc10011
Flag Affected (32-Bit): Key:
Z [] = Setif result is zero = Limm Data

N | «| = Set if most significant bit of result is set
C . = Set if carry is generated
V | | = Setif overflow is generated

Related Instructions:
ABS RSUB

Description:
The negate instruction subtracts the source operand (src) from zero asdh@aesult into the
destination register (dest). Any flag updates will only occur if theasgs Buffix (.F) is used.

NOTE The 32-bit instruction format is an encoding of the reverse subtract instruction using an unsigned 6-
bit immediate value set to 0.

Pseudo Code Example:

dest = 0 - src /* NEG */
Assembly Code Example:
NEG rl,r2 ; Negate r2 and write result

; into rl

ARCompact™ Programmer's Reference 279

NEGS Instruction Set Details

NEGS

Negate with Saturation
Extended Arithmetic Operation

Operation:
dest« sag,(0-src)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1
Syntax:
With Result Instruction Code
NEGS<.f> b,c 00101bbb00101111FBBBCCCCCC000111
NEGS<.f> b,u6 00101bbb01101111FBBBuuuuuu000111
NEGS<.f> b,limm 00101bbb00101111FBBB111110000111
Without Result
NEGS<.f> 0,c 0010111000101111F111CCCCCCO000111
NEGS<.f> 0,u6 0010111001101111F111uuuuuu000111
NEGS<.f> 0,limm 0010111000101111F111121110000111
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set

= Unchanged

= Set if input is 0x8000_0000 otherwise cleared
S | « | =Setif input is 0x8000_0000 (‘sticky’ saturation)

Related Instructions:

SAT16 NEGSW
RND16 ABSS
Description:

Negate the 32-bit operand with saturation and place the result in thties register. Note that,
NEGS 0x8000_0000 yields Ox7FFF_FFFF. Both saturation flags S1 and S2 will béneetgult of
the instruction saturates. Any flag updates will only occur if théasgs suffix (.F) is used.

Pseudo Code Example:

if src==0x8000_0000 /* NEGS */
sat = 1 // Using

dest = OX7FFF_FFFF // unsigned
else // pseudo
sat = 0 // arithmetic

dest = 0 - src
if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
v_flag = sat

s_flag s_flag || sat

Assembly Code Example:
NEGS rl,r2 ; Negate and saturate the value of
; r2 and write result into rl

280 ARCompact™ Programmer's Reference

Instruction Set Details NEGSW

NEGSW

Negate Word with Saturation
Extended Arithmetic

Operation:
dest«— safg(0-src.low)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1
Syntax:
With Result Instruction Code
NEGSW<.f> b,c 00101bbb00101111FBBBCCCCCC000110
NEGSW<.f> b,u6 00101bbb01101111FBBBuuuuuu000110
NEGSW<.f> b,limm 00101bbb00101111FBBB111110000110
Without Result
NEGSW<.f> 0,c 0010111000101111F111CCCCCC000110
NEGSW<.f> 0,u6 0010111001101111F111uuuuuu000110
NEGSW<.f> 0,limm 0010111000101111F111121110000110
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set

= Unchanged

= Set if input is 0x8000 otherwise cleared

Related Instructions:

SAT16 NEGS
RND16 ABSSW
Description:

Obtain the negated value of the least significant word (LSW) oft3@akerand with saturation. Place
the result in the LSW of the destination register with MSW being sitgmded. Note that, negate of
OxFFFF_8000 yields 0x0000_7FFF. Any flag updates will only occur if the setsildips (.F) is
used.

Pseudo Code Example:

srcle = src & 0x0000_FFFF /* NEGSW */
if srclée <= OX7FFF // Using

sat = 0 // unsigned
dest = 0 - srcl6 // pseudo
else // arithmetic
sat = 0

dest = 0x0000_0000 - srclé6
if srcl6==0x8000

sat = 1

dest = 0x0000_7FFF

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

v_flag = sat

s_flag = s_flag || sat

Assembly Code Example:
NEGSW rl,r2 ; Negate the LSw value of r2 and write result into rl

ARCompact™ Programmer's Reference 281

NOP Instruction Set Details

NOP

No Operation
Control Operation

Operation:
No Operation

Format:
inst

Format Key:
inst = Instruction

Syntax:
Instruction Code
NOP_S 0111100011100000
NOP 00100110010010100111000000000000

Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data
N = Unchanged

C = Unchanged

Y = Unchanged

Related Instructions:
UNIMP_S

Description:

No operation. The state of the processor is not changed by this instruti@go82-bit NOP is an
encoding of the MOV instruction (syntax MOV 0,u6) using@eneral Operations Register with
Unsigned 6-bit Immediattrmat on pagé43.

Pseudo Code Example:
/% NOP_S */

Assembly Code Example:
NOP_S ; No operation

282 ARCompact™ Programmer's Reference

Instruction Set Details NORM

NORM

Normalize

Extension Option

Operation:
dest— normalization integer of src

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

Syntax:

With Result Instruction Code

NORMK<.f> b,c 00101bbb00101111FBBBCCCCCC000001
NORM<.f> b,u6 00101bbb01101111FBBBuuuuuu000001
NORM<.f> b,limm 00101bbb00101111FBBB111110000001
Without Result

NORMK<.f> 0,c 0010111000101111F1112CCCCCC000001
NORM<.f> 0,u6 0010111001101111F111uuuuuu000001
NORM<.f> 0,limm 0010111000101111F111111110000001
Flag Affected (32-Bit): Key:

Z = Set if source is zero = Limm Data

N = Set if most significant bit of source is set

C = Unchanged

\% = Unchanged

Related Instructions:

EXTB SEXB

NORMW

Description:

Gives the normalization integer for the signed value in the operand. Thelimatima integer is the
amount by which the operand should be shifted left to normalize it as a 32akit digeger. This
function is sometimes referred to as "find first bit". Any flag updaiéonly occur if the set flags
suffix (.F) is used.

Note that, the returned value for source operand of zero is 0xX0O000001F. Exametemefirvalues
are shown in the table below:

Operand Value Returned Value

0x00000000 0x0000001F
0x00000001 0x0000001E
OX1FFFFFFF 0x00000002
Ox3FFFFFFF 0x00000001
OX7FFFFFFF 0x00000000
0x80000000 0x00000000
0xC0000000 0x00000001
O0xEO0000000 0x00000002
OXFFFFFFFF 0x0000001F

ARCompact™ Programmer's Reference

283

NORM Instruction Set Details

Pseudo Code Example:
dest = NORM(src) /* NORM */
if F==1 then

z_flag = if src==0 then 1 else 0

N_flag = src[31]

Assembly Code Example:
NORM rl1,r2 ; Normalization integer for r2
; write result into rl

284 ARCompact™ Programmer's Reference

Instruction Set Details NORMW

NORMW

Normalize Word

Extension Option

Operation:
dest— normalization integer of src

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

Syntax:

With Result Instruction Code

NORMWK<.f> b,c 00101bbb00101111FBBBCCCCCC001000
NORMW<.f> b,u6 00101bbb01101111FBBBuuuuuu001000
NORMW<.f> b,limm 00101bbb00101111FBBB111110001000
Without Result

NORMWK<.f> 0,c 0010111000101111F1112CCCCCC001000
NORMWS<.f> 0,u6 0010111001101111F111uuuuuu001000
NORMWS<.f> 0,limm 0010111000101111F111111110001000
Flag Affected (32-Bit): Key:

Z = Set if source is zero = Limm Data

N = Set if most significant bit of source is set

C = Unchanged

\% = Unchanged

Related Instructions:

EXTW SEXW

NORM

Description:

Gives the normalization integer for the signed value in the operand. Thelimatima integer is the
amount by which the operand should be shifted left to normalize it as a 1@bkid sideger. When
normalizing a 16-bit signed integer the lower 16 bits of the source datés(gsgd. This function is
sometimes referred to as "find first bit". Any flag updates will only pddhe set flags suffix (.F) is
used. Note that the returned value for source operand of zero is OxO00F. Exaimgtiened values
are shown in the table below:

Operand Value Returned Value
0x0000 0x000F
0x0001 0x000E
Ox1FFF 0x0002
Ox3FFF 0x0001
OX7FFF 0x0000
0x8000 0x0000
0xC000 0x0001
OxEO000 0x0002
OxFFFF 0x000F

ARCompact™ Programmer's Reference 285

NORMW Instruction Set Details

Pseudo Code Example:
dest = NORMW(src) /* NORMW */
if F==1 then

z_flag = if (src & 0x0000FFFF)==0 then 1 else 0

N_flag = src[15]

Assembly Code Example:
NORMW rl,r2 ; Normalization integer for r2
; write result into rl

286 ARCompact™ Programmer's Reference

Instruction Set Details NOT

NOT

Logical Bitwise NOT
Logical Operation

Operation:
dest— NOT(src)

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

NOT = Negate Source

Syntax:

With Result Instruction Code

NOT<.f> b,c 00100bbb00101111FBBBCCCCCC001010
NOT<.f> b,u6 00100bbb01101111FBBBuuuuuu001010
NOT<.f> b,limm 00100bbb00101111FBBB111110001010
NOT_S b,c 01111bbbccc10010

Without Result

NOT<.f> 0,c 0010011000101111F111CCCCCC001010
NOT<.f> 0,u6 0010011001101111F111uuuuuu001010
NOT<.f> 0,limm 0010011000101111F111121110001010
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

ABS NEG

Description:

Logical bitwise NOT (inversion) of the source operand (src) withreélelt placed into the destination
register (dest). Any flag updates will only occur if the set flagfxs(.F) is used.

Pseudo Code Example:
dest = NOT(src) /* NOT */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

Assembly Code Example:
NOT rl,r2 ; Logical bitwise NOT r2 and
; write result into rl

ARCompact™ Programmer's Reference 287

OR Instruction Set Details

OR

Logical Bitwise OR
Logical Operation

Operation:
if (cc=true) then dest- (srcl OR src2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

OR = Logical Bitwise OR

Syntax:

With Result Instruction Code

OR<.f> a,b,c 00100bbb00000101FBBBCCCCCCAAAAAA
OR<.f> a,b,u6 00100bbb01000101FBBBuuuuuuAAAAAA
OR<.f> b,b,s12 00100bbb10000101FBBBssssssSSSSSS
OR<.cc><.f> b,b,c 00100bbb11000101FBBBCCCCCC0QQQQQ
OR<.cc><.f> b,b,ué 00100bbb11000101FBBBuuuuuulQQQQQ
OR<.f> a,limm,c 0010011000000101F111CCCCCCAAAAAA
OR<.f> a,b,limm 00100bbb00000101FBBB111110AAAAAA
OR<.cc><.f> b,b,limm 00100bbb11000101FBBB1111100QQQQQ
OR_S b,b,c 01111bbbccc00101

Without Result

OR<.f> 0,b,c 00100bbb00000101FBBBCCCCCC111110
OR<.f> 0,b,u6 00100bbb01000101FBBBuuuuuul111110
OR<.f> 0,b,limm 00100bbb00000101FBBB111110111110
OR<.cc><.f> 0,limm,c 0010011011000101F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

Y = Unchanged

Related Instructions:

AND BIC

XOR

Description:

Logical bitwise OR of source operand 1 (srcl) with source operand 2 {Ene)esult is written into
the destination register (dest). Any flag updates will only occur is¢hdlags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* OR */
dest = srcl OR src2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
Assembly Code Example:
OR rl,r2,r3 ; Logical bitwise OR contents of r2 with r3

; and write result into rl;

288 ARCompact™ Programmer's Reference

Instruction Set Details POP_S

POP_S

Pop from Stack
Memory Operation

Operation:
dest«—Result of Memory Load from Address [sp] then<spsp+4

Format:
inst dest

Format Key:
dest Destination Register
sp Stack Pointer (r28)

Syntax:

Instruction Code
POP_S b 11000bbb11000001
POP_S blink 11000RRR11010001

Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data
N = Unchanged

C = Unchanged

Y = Unchanged

Related Instructions:
PUSH S LD

Description:

Perform a long word memory load from the long word aligned address specifiedimplicit Stack
Pointer (r28) and place the result into the destination registaj.(8absequently the implicit stack
pointer is automatically incremented by 4-bytes (sp=sp+4). Thesdtags are not updated with this
instruction.

Pseudo Code Example:

dest = Memory(SpP, 4) /* POP */
SP = SP + 4

Assembly Code Example:

POP rl ; Load Tong word from memory

at address SP and write
result to rl and then add 4
to SP

ARCompact™ Programmer's Reference 289

PREFETCH Instruction Set Details

PREFETCH

Prefetch from Memory
Memory Operation

Operation:
prefetch @ (srcl+src2)

Format:
inst srcl, src2

Format Key:
srcl = Source Operand 1
src2 = Source Operand 2 (Offset)
Syntax:
Instruction Code
PREFETCH<.aa> [b,s9] 00010bbbssssssssSBBB0aa000111110
PREFETCH [limm] 000101100000000001110RR000111110
PREFETCH<.aa> [b,c] 00100bbbaa1100000BBBCCCCCC111110
PREFETCH<.aa> [b,limm] 00100bbbaa1100000BBB111110111110 L
PREFETCH [limm,c] 00100110RR1100000111CCCCCC111110 L
Address Write-back Mode <.aa>:
Address Write- aa Field Effective Address Address Write-Back
back Syntax
No Field Syntax 00 Address = srcl+srceister+offset None
A or AW 01 Address = srcl+src2egister+offsex srcl — srcl+src2
(register+offse}t
| AB 10 Address = srclrégiste) srcl — srcl+src2
(register+offse}t
| As 11 Address = srcl+(src2<<1) (<zz>='10") None

Address = srcl+(src2<<2) (<zz>='00")

NOTE Using a byte or signed byte data size is invalid and is a reserved format.

Flag Affected (32-Bit): Key:
z = Unchanged L =Limm Data
N = Unchanged

C = Unchanged

\% = Unchanged

Related Instructions:

LD ST

POP_S

Description:

The PREFETCH instruction is provided as a synonym for a particuladieigcof the LD instruction.

A memory load occurs from the address that is calculated by adding sourmedopésrcl) with
source operand 2 (scr2) and the returning load data is loaded into the datdleackéurning load is
not written to any core register.

The address write-back mode can be selected by use of the <.aa> syntaxaiNetieen using the
scaled source addressing mode (.AS), the scale factor is set to long-\werdtaflis flags are not
updated with this instruction.

290 ARCompact™ Programmer's Reference

Instruction Set Details

PREFETCH

Pseudo Code Example:
if AA==0 then address
if AA==1 then address
if AA==2 then address
if AA==3 then

address = srcl + (src2
if AA==1 or AA==2 then
srcl = srcl + src2
DEBUG[LD] =1

srcl + src2
srcl + src2
srcl

<< 2)

if NoFurtherLoadsPending() then

DEBUG[LD] = 0
Assembly Code Example:

/* PREFETCH */

/* Oon Returning Load */

PREFETCH [rl,4] ; Prefetch Tong word from memory

; address rl+4

ARCompact™ Programmer's Reference

291

PUSH_S Instruction Set Details

PUSH_S

Push onto Stack

Memory Operation

Operation:
sp «— sp-4 then Memory Write Address [sp} src

Format:
inst src

Format Key:
src = Source Operand
sp = Stack Pointer (r28)

Syntax:

Instruction Code
PUSH_S b 11000bbb11100001
PUSH_S blink 11000RRR11110001

Flag Affected (32-Bit): Key:

z = Unchanged = Limm Data
N = Unchanged

C = Unchanged

Y = Unchanged

Related Instructions:
POP S

Description:

Decrement 4-bytes from the implicit stack pointer address found im2peaform a long word
memory write to that address with the data specified in the sourcendifsre). The status flags are
not updated with this instruction.

Pseudo Code Example:
SP =SP - 4 /* PUSH */
Memory(SP, 4) = src

Assembly Code Example:

PUSH rl ; Subtract 4 from SP and then
; store Tong word from rl
; to memory at address SP

292 ARCompact™ Programmer's Reference

Instruction Set Details RCMP

RCMP

Reverse Comparison
Arithmetic Operation

Operation:
if (cc=true) thersrc2 — srcl

Format:
inst srcl, src2

Format Key:
srcl = Source Operand 1
src2 = Source Operand 2
cc = Condition Code
Syntax:

Instruction Code
RCMP b,s12 00100bbb100011011BBBSsssssSSSSSS
RCMP<.cc> b,c 00100bbb110011011BBBCCCCCCO0QQQQ!
RCMP<.cc> b,u6 00100bbb110011011BBBuuuuuulQQQQQ
RCMP<.cc> b,limm 00100bbb110011011BBB1111100QQQQQ
RCMP<.cc> limm,c 00100110110011011111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

V | « | = Setif overflow is generated

Related Instructions:
CMP

Description:

A reverse comparison is performed by subtracting source operand 1 (src$pfrara operand 2
(src2) and subsequently updating the flags. The flag setting field, Iwaigsaencoded as 1 for this
instruction.

There is no destination register therefore the result of theastiigrdiscarded.

NOTE RCMP always sets the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:

if cc==true then /* RCMP */
alu = src2 - srcl

z_flag = if alu==0 then 1 else 0

N_flag = alu[31]
c_flag = carry(Q)
v_flag = overflow()
Assembly Code Example:
RCMP rl,r2 ; Subtract rl from r2
; and set the flags on the
; result

ARCompact™ Programmer's Reference 293

RLC Instruction Set Details

RLC

Rotate Left Through Carry
Logical Operation

Operation:
dest— RLC by 1 (src)

[] src |

e N
| dest [
MSB LSB

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

cc = Condition Code

RLC = Rotate Source Operand Left Through Carry by 1

Syntax:

With Result Instruction Code

RLC<.f> b,c 00100bbb00101111FBBBCCCCCC001011
RLC<.f> b,u6 00100bbb01101111FBBBuuuuuu001011
RLC<.f> b,limm 00100bbb00101111FBBB111110001011
Without Result

RLC<.f> 0,c 0010011000101111F111CCCCCC001011
RLC<.f> 0,u6 0010011001101111F111uuuuuu001011
RLC<.f> 0,limm 0010011000101111F111121110001011
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Set if carry is generated

\% = Undefined

Related Instructions:

RRC ROR

Description:

Rotate the source operand (src) left by one and place the result in thataestegister (dest).

The carry flag is shifted into the least significant bit of thelteand the most significant bit of the
source is placed in the carry flag. Any flag updates will only occur ifahiagys suffix (.F) is used.

Pseudo Code Example:

dest = src << 1 /* RLC */
dest[0] = c_flag

if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

C_flag = src[31]

v_flag = UNDEFINED

Assembly Code Example:

RLC rl1,r2 ; Rotate Teft through carry

; contents of r2 by one bit
; and write result into rl

294 ARCompact™ Programmer's Reference

Instruction Set Details RND16

RND16

Twao’s complement Rounding
Extended Arithmetic Operation

Operation:
dest— (saty(src+0x00008000) & OxFFFF0000)>>16

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1
Syntax:
With Result Instruction Code
RND16<.f> b,c 00101bbb00101111FBBBCCCCCC000011
RND16<.f> b,u6 00101bbb01101111FBBBuUuuuuu000011
RND16<.f> b,limm 00101bbb00101111FBBB111110000011
Without Result
RND16<.f> 0,c 0010111000101111F111CCCCCC000011
RND16<.f> 0,u6 0010111001101111F111uuuuuu000011
RND16<.f> 0,limm 0010111000101111F111121110000011
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set

= Unchanged

= Set if result saturated, otherwise cleared
S | « | =Setif result saturated (‘sticky’ saturation)

Related Instructions:

ABSSW ABSS
SAT16 NEGSW
Description:

Round the 32-bit source operand into its most significant word (MSW) using twoipliment
rounding with saturation. Place the result in the LSW of the destinaiister with the MSW of the
result being sign extended. Any flag updates will only occur if the setdl#6s (.F) is used.

Twao's complement rounding is equivalent to adding 0x0000_8000 to the 32-bit input, andriguncat
the result to its MSW.

Pseudo Code Example:

if src >= Ox7FFF_8000 and src <= OX7FFF_FFFF /* RND16 */
dest = OX7FFF // Using
sat = 1 // unsigned
else // pseudo
dest = (src + 0x0000_8000) >> 16 // arithmetic
sat = 0

if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

v_flag = sat

s_flag = s_flag || sat

Assembly Code Example:
RND16 rl1,r2 ; write the rounded result of r2 into rl

ARCompact™ Programmer's Reference 295

ROR Instruction Set Details

ROR

Rotate Right
Logical Operation

Operation:
dest— ROR by 1 (src)

|
|
AW

| src

N
5] dest <]
MSB LSB
Format:
inst dest, src
Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
ROR = Rotate Source Operand Right by 1
Syntax:
With Result Instruction Code
ROR<.f> b,c 00100bbb00101111FBBBCCCCCC000011
ROR<.f> b,ué 00100bbb01101111FBBBuUuuuuu000011
ROR<.f> b,limm 00100bbb00101111FBBB111110000011
Without Result
ROR<.f> 0,c 0010011000101111F111CCCCCC000011
ROR<.f> 0,u6 0010011001101111F111uuuuuu000011
ROR<.f> 0,limm 0010011000101111F111121110000011
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
\% = Unchanged
Related Instructions:
RRC RLC
ROR multiple
Description:

Rotate the source operand (src) right by one and place the result in thetidagteggster (dest).

The least significant bit of the source operand is copied to the carryAtagflag updates will only
occur if the set flags suffix (.F) is used.

Pseudo Code Example:

dest = src >> 1 /* ROR */
dest[31] = src[0]

if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

c_flag = src[0]

Assembly Code Example:

ROR rl,r2 ; Rotate right contents of r2 by one bit

; and write result into rl

296 ARCompact™ Programmer's Reference

Instruction Set Details ROR multiple

ROR multiple

Multiple Rotate Right
Logical Operation

Operation:
if (cc=true) then dest rotate right of srcl by src2

| srcl

|
|
M M
5] dest k=
MSB LSB
Format:
inst dest, srcl, src2
Format Key:
dest = Destination Register
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
With Result Instruction Code
ROR<.>@ a,b,c 00101bbb00000011FBBBCCCCCCAAAAAA
ROR<.f> a,b,u6 00101bbb01000011FBBBuuuuuuAAAAAA
ROR<.f> b,b,s12 00101bbb10000011FBBBssssssSSSSSS
ROR<.cc><.f> b,b,c 00101bbb11000011FBBBCCCCCC0QQQQQ
ROR<.cc><.f> b,b,u6 00101bbb11000011FBBBuuuuuulQQQQQ
ROR<.f> alimm,c 0010111000000011F111CCCCCCAAAAAA | L
ROR<.f> a,b,limm 00101bbb00000011FBBB111110AAAAAA L
ROR<.cc><.f> b,b,limm 00101bbb11000011FBBB1111100QQQQQ |L
Without Result
ROR<.f> 0,b,c 00101bbb00000011FBBBCCCCCC111110
ROR<.f> 0,b,u6 00101bbb01000011FBBBuUuuuuu111110
ROR<.cc><.f> 0,imm,c 0010111011000011F111CCCCCCOQQQQQ|[L]
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Set if carry is generated
Y = Unchanged
Related Instructions:
ASR LSR
RLC RRC
ASL multiple ASR multiple
LSR multiple
Description:

Rotate right srcl by src2 places and place the result in the destiregister. Only the bottom 5 bits
of src2 are used as the shift value. Any flag updates will only occursgetiags suffix (.F) is used.

Pseudo Code Example:

if cc=true then /* ROR */

dest = srcl >> (src2 & 31) /* Multiple */
dest [31:(31-src2)] = srcl [(src2-1):0]

if F==1 then

ARCompact™ Programmer's Reference 297

ROR multiple

Instruction Set Details

if dest==0 then 1 else 0
dest[31]
Cc_flag if src2==0 then 0 else srcl[src2-1]

Assembly Code Example:

ROR rl,r2,r3 ; Rotate right
; contents of r2 by r3 bits
; and write result into rl

P4
-+
—
o]
Q
o

298

ARCompact™ Programmer's Reference

Instruction Set Details RRC

RRC

Rotate Right through Carry
Logical Operation

Operation:
dest— RRC by 1 (src)

Format:
inst dest, src

Format Key:
src Source Operand

dest = Destination

cc = Condition Code

RRC = Rotate Source Operand Right Through Carry by

Syntax:

With Result Instruction Code

RRC<.f> b,c 00100bbb00101111FBBBCCCCCC000100
RRC<.f> b,ué 00100bbb01101111FBBBuuuuuu000100
RRC<.f> b,limm 00100bbb00101111FBBB111110000100
Without Result

RRC<.f> 0,c 0010011000101111F111CCCCCC000100
RRC<.f> 0,u6 0010011001101111F111uuuuuu000100
RRC<.f> 0,limm 0010011000101111F111121110000100
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Set if carry is generated

\% = Unchanged

Related Instructions:

ROR RLC

Description:

Rotate the source operand (src) right by one and place the result in thataestegister (dest).

The carry flag is shifted into the most significant bit of the resntt,the most significant bit of the
source is placed in the carry flag. Any flag updates will only occur ifahtagys suffix (.F) is used.

Pseudo Code Example:
dest = src >> 1 /* RRC */
dest[31] = c_flag

if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

c_flag src[0]

Assembly Code Example:

RRC rl,r2 ; Rotate right through carry
; contents of r2 by one bit
; and write result into rl

ARCompact™ Programmer's Reference 299

RSUB Instruction Set Details

RSUB

Reverse Subtract
Arithmetic Operation

Operation:
if (cc=true) then dest- src2 — srcl

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

Syntax:

With Result Instruction Code

RSUB<.f> a,b,c 00100bbb00001110FBBBCCCCCCAAAAAA
RSUB<.f> a,b,u6 00100bbb01001110FBBBuuuuuuAAAAAA
RSUB<.f> b,b,s12 00100bbb10001110FBBBsSsssssSSSSSS
RSUB<.cc><.f> b,b,c 00100bbb11001110FBBBCCCCCC0QQQQQ
RSUB<.cc><.f> b,b,u6 00100bbb11001110FBBBuuuuuulQQQQQ
RSUB<.f> a,limm,c 0010011000001110F111CCCCCCAAAAAA
RSUB<.f> a,b,limm 00100bbb00001110FBBB111110AAAAAA
RSUB<.cc><.f> b,b,limm 00100bbb11001110FBBB1111100QQQQQ
Without Result

RSUB<.f> 0,b,c 00100bbb00001110FBBBCCCCCC111110
RSUB<.f> 0,b,u6 00100bbb01001110FBBBuuuuuul111110
RSUB<.f> 0,b,limm 00100bbb00001110FBBB111110111110
RSUB<.cc><.f> 0,limm,c 0010011011001110F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

V | « | = Set if overflow is generated

Related Instructions:

SUB SUB3
SUB1 SUBS
SuB2 SBC
Description:

Subtract source operand 1 (srcl) from source operand 2 (src2) and placeltiretresdestination
register.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /* RSUB */
dest = src2 - srcl
if F==1 then
z_flag = if dest==0 then 1 else 0

N_flag = dest[31]
c_flag = carry(Q
v_flag = overflow()

300 ARCompact™ Programmer's Reference

Instruction Set Details RSUB

Assembly Code Example:
RSUB rl1,r2,r3 ; Subtract contents of r2 from
; r3 and write result into rl

ARCompact™ Programmer's Reference 301

RTIE Instruction Set Details

RTIE

Return from Interrupt/Exception
Kernel Operation

Operation:
Return from interrupt or exception.
Format:
inst
Format Key:
inst = Instruction
Syntax:
Instruction Code
RTIE 00100100011011110000000000111111
Flag Affected (32-Bit): Key:
z «| = Set according to status register update = Limm Data
IN «| = Set according to status register update
lc «| = Set according to status register update
v «| = Set according to status register update
| E1 | .| = Setaccording to status register update
| E2 | .| = Setaccording to status register update
ju [.] =1
lAE [<] =0
Related Instructions:
TRAP_S SWI/TRAPO
J.F [ILINK1 J.F [ILINK2
Description:

The return from interrupt/exception instruction, RTIE, allows exit fronriapt and exception
handlers, and to allow the processor to switch from kernel mode to user mode.

The RTIE instruction is available only in kernel mode. Attempted use wheseirmode causes a
Privilege Violationexception.

The RTIE instruction can be used by interrupt and exception handlers as ansitiglgion for exit.
The RTIE instruction updates the program counter and status registersidgenaghether a high
or low interrupt, or an exception is being serviced according to the following

* High level interrupt return registers — ILINK2, STATUS32_L2
* Low level interrupt return registers — ILINK1, STATUS32_L1
* Exception return registers — ERET, ERSTATUS

Bits in the STATUSS32 register are provided to allow the RTIE instndb determine from where to
reload the pre-interrupt/exception machine state.

Since interrupts and exceptions are permitted between a branch/jump xedwrdaddelay slot
instruction, special branch target address registers are used faughserd exception handler
returns.

If the STATUS32[DE] bit becomes set as a result of the RTIE inginydhe processor will be put
back into a state where a branch with a delay slot is pending. The target i@frttie Wwill be

302 ARCompact™ Programmer's Reference

Instruction Set Details RTIE

contained in the BTA register. The value in BTA will have been restosedthe appropriate
Interrupt or Exception Return BTA register (ERBTA, BTA_L1 or BTA_L2).

When returning from an interrupt, the Branch Target Address reddté) (s loaded from the
appropriate high- or low-level Interrupt Return Branch Target Addresstee¢BTA L1 or
BTA_L2).

When returning from an exception, the Branch Target Address regista) {8loaded from the
Exception Return Branch Target Address (ERBTA) register.

NOTE Exit of an interrupt handler is also supported through the use of Jcc.F [ILINKn] and J_S.F [ILINKn].
Using these instructions will cause the appropriate Interrupt Return Link Register (BTA_L1 or
BTA_L2) to be copied to BTA.

Pseudo Code Example

if STATUS[AE] == 1 then /* RTIE */
PC = ERET
STATUS32 = ERSTATUS
BTA = ERBTA
else if STATUS[A2] == 1 then
PC = ILINK2

STATUS32 = STATUS32_L2
BTA = BTA_L?2
else if STATUS[Al] == 1 then
PC = ILINK1
STATUS32 = STATUS32_L1
BTA = BTA_L1
else
PC = ERET
STATUS32 = ERSTATUS
BTA = Verbatim STATUS[AE]

Assembly Code Example:
RTIE ; Return from interrupt/exception

ARCompact™ Programmer's Reference

303

SAT16 Instruction Set Details

SATI16

Saturation
Extended Arithmetic Operation

Operation:
dest— satg(src)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1
Syntax:
With Result Instruction Code
SAT16<.f> b,c 00101bbb00101111FBBBCCCCCC000010
SAT16<.f> b,ué 00101bbb01101111FBBBuuuuuu000010
SAT16<.f> b,limm 00101bbb00101111FBBB111110000010
Without Result
SAT16<.f> 0,c 0010111000101111F111CCCCCC000010
SAT16<.f> 0,u6 0010111001101111F111uuuuuu000010
SAT16<.f> 0,limm 0010111000101111F111121110000010
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data

= Set if most significant bit of result is set

= Unchanged

= Set if result saturated, otherwise cleared
S | « | =Setif result saturated (‘sticky’ saturation)

Related Instructions:

ABSSW ABSS
RND16 NEGSW
Description:

Limit the 32-bit signed input operand to the range of a 16 bit signed Whedresult of this operation
has a signed value in the range OXFFFF_8000 (negative value) up to 0x0000_7FFFIe (s
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if src >= OXFFFF_8000 and src <= 0x0000_7FFF /* SAT16 */
dest = src // Using
sat = 0 // unsigned
if src < OxFFFF_8000 // pseudo
dest = Oxffff_8000 // arithmetic
sat = 1

if src > O0x0000_7FFF

dest = 0x0000_7FFF

sat =1

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

v_flag = sat

s_flag = s_flag || sat

Assembly Code Example:
SAT16 rl,r2 ; Take the 16 bit saturated value of
; r2 and write result into rl

304 ARCompact™ Programmer's Reference

Instruction Set Details SBC

SBC

Subtract with Carry
Arithmetic Operation

Operation:
if (cc=true) then dest- (srcl —src2) - C

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

C = Carry Flag Value

Syntax:

With Result Instruction Code

SBC<.f> a,b,c 00100bbb00000011FBBBCCCCCCAAAAAA
SBC<.f> a,b,u6 00100bbb01000011FBBBuuuuuuAAAAAA
SBC<.f> b,b,s12 00100bbb10000011FBBBssssssSSSSSS
SBC<.cc><.f> b,b,c 00100bbb11000011FBBBCCCCCC0QQQQQ
SBC<.cc><.f> b,b,ué 00100bbb11000011FBBBuuuuuulQQQQQ
SBC<.f> a,limm,c 0010011000000011F111CCCCCCAAAAAA| L
SBC<.f> a,b,limm 00100bbb00000011FBBB111110AAAAAA | L
SBC<.cc><.f> b,b,limm 00100bbb11000011FBBB1111100QQQQQ | L
Without Result

SBC<.f> 0,b,c 00100bbb00000011FBBBCCCCCC111110
SBC<.f> 0,b,u6 00100bbb01000011FBBBuuuuuul111110
SBC<.f> 0,b,limm 00100bbb00000011FBBB111110111110 L
SBC<.cc><.f> 0,limm,c 0010011011000011F111CCCCCC0QQQQQ L
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Set if carry is generated

V | « | = Set if overflow is generated
Related Instructions:

SUB RSUB
SUB1 SUB3
SuUB2 SUBS
Description:

Subtract source operand 2 (src2) from source operand 1 (srcl) and also swbgitetof the carry
flag (if set then subtract ‘1’, otherwise subtract ‘0’). Placeréisailt in the destination register.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /% SBC */
dest = (srcl - src2) - c_flag
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
c_flag = carryQ

ARCompact™ Programmer's Reference 305

SBC Instruction Set Details

v_flag = overflow()

Assembly Code Example:

SBC rl,r2,r3 ; Subtract with carry contents
; of r3 from r2 and write
; result into rl

306 ARCompact™ Programmer's Reference

Instruction Set Details

SEXB

SEXB

Operation:
dest— SEXB(src)

Format:
inst dest, src

Sign Extend Byte
Arithmetic Operation

Format Key:

src = Source Operand

dest = Destination

cc = Condition Code

SEXB = Sign Extend Byte

Syntax:

With Result Instruction Code

SEXB<.f> b,c 00100bbb00101111FBBBCCCCCC000101
SEXB<.f> b,u6 00100bbb01101111FBBBuUuuuuu000101
SEXB<.f> b,limm 00100bbb00101111FBBB111110000101
SEXB_S b,c 01111bbbccc01101

Without Result

SEXB<.f> 0,c 0010011000101111F111CCCCCCO000101
SEXB<.f> 0,u6 0010011001101111F112uuuuuu000101
SEXB<.f> 0,limm 0010011000101111F111111110000101

Flag Affected (32-Bit):

Key:

= Limm Data

z = Set if result is zero

N = Set if most significant bit of result is set
C = Unchanged

\% = Unchanged

Related Instructions:

SEXW EXTB
Description:

Sign extend the byte contained in the source operand (src) to the mostangiit in a long word
and place the result into the destination register (dest). Any flag updhtesly occur if the set

flags suffix (.F) is used.

Pseudo Code Example:
dest = src & OXFF
dest[31:8] = src[7]
if F==1 then
z_flag
N_flag dest[31]

Assembly Code Example:
SEXB rl,r2

’

if dest==0 then 1 else 0

; Sign extend the bottom 8
bits of r2 and write
; result to rl

ARCompact™ Programmer's Reference

/* SEXB */

307

SEXW Instruction Set Details

SEXW

Sign Extend Word
Arithmetic Operation

Operation:
dest— SEXW(src)

Format:
inst dest, src

Format Key:

src = Source Operand

dest = Destination

cc = Condition Code

SEXW = Sign Extend Word

Syntax:

With Result Instruction Code

SEXW<.f> b,c 00100bbb00101111FBBBCCCCCC000110
SEXW<.f> b,ué 00100bbb01101111FBBBuuuuuu000110
SEXW<.f> b,limm 00100bbb00101111FBBB111110000110
SEXW_S b,c 01111bbbccc01110

Without Result

SEXW<.f> 0,c 0010011000101111F111CCCCCC000110
SEXW<.f> 0,u6 0010011001101111F111uuuuuu000110
SEXW<.f> 0,limm 0010011000101111F111121110000110
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

\% = Unchanged

Related Instructions:

SEXB EXTW

Description:

Sign extend the word contained in the source operand (src) to the mostangiificn a long word
and place the result into the destination register (dest). Any flag updhtesly occur if the set
flags suffix (.F) is used.

Pseudo Code Example:
dest = src & OXFFFF /* SEXW */
dest[31:16] = src[15]
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag dest[31]

Assembly Code Example:

SEXW rl,r2 ; Sign extend the bottom 16
; bits of r2 and write
; result to rl

308 ARCompact™ Programmer's Reference

Instruction Set Details SLEEP

SLEEP

Enter Sleep Mode
Kernel/Control Operation

Operation:
Enter Processor Sleep Mode
Format:
inst
Format Key:
inst = Instruction
Syntax:
Instruction Code
SLEEP <u6> 00100001011011110000uuuuuul11111
SLEEP c 00100001001011110000CCCCCC111111
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
Vv = Unchanged
Y4 =1
Related Instructions:
BRK
Description:

The sleep mode is entered when the ARCompact based processor encountdtg Ehan&ruction.

It stays in sleep mode until an interrupt or restart occurs. Power consanspteduced during sleep
modesincethe pipeline ceases to change state, and the RAMs are disabled. Mereguhwetion is
achieved when clock gating option is used, whereby all non-essential clockgtahed off.

The SLEEP instruction is a single operand instruction without flags. ABLi&struction without a
source operand is encoded as SLEEP 0.

When a SLEEP instruction is detected at the decode stage of the pipelimstruction fetch stage is
stalled and the pipeline is flushed ensuring that all instructe&maining in the pipeline are executed
until the pipeline is empty. The the sleep mode flag, ZZ, found in the DEBUGeragishen set.

The SLEEP instruction is serializing meaning the SLEEP instructidrcoviiplete and then flush the
pipeline.

NOTE If the H flag is set by the FLAG instruction (FLAG 1), three sequential NOP instructions should
immediately follow. This means that SLEEP should not immediately follow a FLAG 1 instruction, but
should be separated by 3 NOP instructions.

When in sleep mode, the sleep mode flag (ZZ) is set and the pipelinead,diali not halted. The
host interface operates as normal allowing access to the DEBUG a&®@AfR&S registers and also
has the ability to halt the processor. The host cannot clear the sleeplagothetfit can wake the
processor by halting it then restarting it. The program counter PC pothts next instruction in
sequence after the sleep instruction.

i For the ARC 600 processor the SLEEP instruction should not be placedasttimestruction position
I of a zero overhead loop.

ARCompact™ Programmer's Reference 309

SLEEP Instruction Set Details

For the ARCtangent-A5 and ARC 600 processor, the SLEEP instruction canndatiatetyefollow a
BRcc or BBITn instruction.

The SLEEP instruction can be used in RTOS type applications by using a ®t083ollowed by a
SLEEP instruction. This allows interrupts to be re-enabled atthe §ime as SLEEP is entered.
Note that interrupts remain disabled until FLAG has completed itseipfithe flag registers in stage
4 of the ARCompact based pipeline. Hence, if SLEEP follows into the pipelinedrately behind
FLAG, then no interrupt can be taken between the FLAG and SLEEP.

NOTE For the ARCtangent-A5 and ARC 600 processor, the FLAG followed by SLEEP instruction sequence
must not encounter an instruction-cache miss. This can be accomplished by ensuring that the FLAG
is aligned to the instruction-cache line length.

CAUTION In some circumstances, for the ARC 600 processor with certain memory systems it may not be
possible to guarantee that the FLAG/SLEEP instruction pair is atomic. For example if the memory
system wait states are 2 or greater and the instruction cache is disabled or not capable of line
locking (direct mapped) then even aligning the FLAG/SLEEP pair to a cache line will not
necessarily ensure atomic operation.

It is possible for the instruction fetch to stall after the FLAG is passed to the pipeline in these
circumstances which means an interrupt could occur between the FLAG instruction and the
SLEEP instruction.

For the ARC 700 processor the bottom 2 bits of the source field, u6 or ¢, assukednable flags
value, the remaining 4 bits are ignored. The SLEEP instruction wititeerupt enables according to
the following values of the source operand:

Instruction Operand Effect on interrupt enables (E1/E2)
SLEEP 0x0 -

SLEEP 0x1 el=1,e2=0

SLEEP 0x2 el=0,e2=1

SLEEP 0x3 el=1e2=1

The processor will wake from sleep mode on an interrupt or when it igeedstéan interrupt wakes
it, the ZZ flag is cleared and the instruction in pipeline stage 1lesikiThe interrupt routine is
serviced and execution resumes at the instruction in sequence afteEte Bistruction. When it is
started after having been halted the ZZ flag is cleared.

SLEEP behaves as a NOP during single step mode. Every single-step opemtiestart and the
ARCompact based processor wakes up at the next single-step. ConsequeSIEER instruction
behaves exactly like a NOP propagating through the pipeline.

Pseudo Code Example:

FlushpPipe() /* SLEEP */
DEBUG[ZzZ] =1

waitForInterrupt()

DEBUG[zZ] = 0

ServiceInterrupt()

Assembly Code Example:
The SLEEP instruction can be put anywhere in the code, as in the follexangple.

I For the ARC 600 processor the SLEEP instruction should not be placedastthestruction position
| of a zero overhead loop.

For the ARCtangent-A5 and ARC 600 processor, the SLEEP instruction canrediaety follow a
BRcc or BBITn instruction.

Example 23 Sleep placement in code

310 ARCompact™ Programmer's Reference

Instruction Set Details SLEEP

SUB r2, r2, Ox1
ADD rl1, rl, Ox2
SLEEP

A“SLEEP instruction can follow a branch or jump instruction as in the followddg example:

Example 24 Sleep placement after Branch

BAL.D after_sleep
SLEEP

2.11':1.:er_s'leep:
ADD rl1,rl,0x2

NOTE In this example, the ARCompact based processor goes to sleep after the branch instruction has
been executed. When the ARCompact based processor is sleeping, the PC points to the “add”
instruction after the label "after_sleep ". When an interrupt occurs, the ARCompact based
processor wakes up, executes the interrupt service routine and continues with the “add” instruction.

If the delay slot is not enabled or not executed (i.e. killed), as in tlsvinti code example, the
SLEEP instruction that follows is never executed:

Example 25 Sleep placement after Branch with killed delay slot

BAL.ND after_sleep
SLEEP

after_s'fe'ep:
ADD rl1,rl1,0x2

The following example shows the code sequence to ensure successfulhgsSIdEEP instruction
for RTOS type applications.

Example 26 Enable Interrupts and Sleep, ARCtangent- A5 and ARC 600

.equ EI,0x06 ; Constant to enable both interrupt levels
.align 8 ; ensure cache alignment is to 8 bytes
FLAG EI ; Enable interrupts

SLEEP ; Put processor into sleep mode

For the ARC 700 processor the following code will ensure successful useSifERd instruction
for RTOS type applications.

Example 27 Enable Interrupts and Sleep, ARC 700

.equ el, Ox1
.equ e2, Ox2
.equ ele2, 0x3

SLEEP

SLEEP el ; el
SLEEP e2 ; el
SLEEP ele2 ; el

T
N
™
N
T
RROo

ARCompact™ Programmer's Reference 311

SR Instruction Set Details

SR

Store to Auxiliary Register
Control Operation

Operation:
aux_reg(src2}— srcl

Format:
inst srcl, src2

Format Key:
srcl = Source Operand 1
src2 = Source Operand 2
Syntax:
Instruction Code
SR b,[c] 00100bbb001010110BBBCCCCCCRRRRRF
SR b,[limm] 00100bbb001010110BBB111110RRRRRR
SR b,[u6] 00100bbb011010110BBBuuuuuu000000
SR b,[s12] 00100bbb101010110BBBSSSSSSSSSSSS
SR limm,[c] 00100110001010110111CCCCCCRRRRRR L |
SR limm,[u6] 00100110011010110111uuuuuu000000
SR limm,[s12] 00100110101010110111SssSSSSSSSSS
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
Y = Unchanged
Related Instructions:
LR ST
Description:

Store the data that is held in source operand 1 (srcl) into the auxiliatereghose number is
obtained from the source operand 2 (src2).

The status flags are not updated with this instruction therefofathsetting field, F, should be
encoded as 0.

The reserved field, R, is ignored by the processor, but should be set to 0.

The SR instruction cannot be conditional therefore encoding the operand me@3:@i2) to be 0x3
will raise aninstruction Errorexception.

For the ARCtangent-A5 and ARC 600 processors, the behavior is undefined ifiastri@Btion is
encoded using the operand mode of Ox3.

Pseudo Code Example:

Aux_reg(src2) = srcl /* SR */
Assembly Code Example:
SR rl1,[r2] ; Store contents of rl into

; Aux. register pointed to by r2

312 ARCompact™ Programmer's Reference

Instruction Set Details

ST

ST

Store to Memory

Memory Operation

Operation:
Memory Store Address @ (src2+sre3)srcl

Format:
inst srcl, src2, src3

Format Key:

srcl = Source Operand 1

src2 = Source Operand 2

src3 = Source Operand 3 (Offset)
Syntax:

Instruction Code
ST<zz><.aa><.di> ¢,[b,s9] 00011bbbssssssssSBBBCCCCCCDaaZZR

ST<zz><.di> c,[limm] 00011110000000000111CCCCCCDRRZZR
ST<zz><.aa><.di> limm,[b,s9] 00011bbbssssssssSBBB111110DaaZZR
ST S c,[b,u7] 10100bbbcccuuuuu
STB_S c,[b,u5] 10101bbbcccuuuuu
STW_S c,[b,u6] 10110bbbcccuuuuu
ST_S b,[sp,u7] 11000bbb010uuuuu
STB_S b,[sp,u7] 11000bbb01luuuuu
Data Size Field <zz>:
Data Size Syntax ZZ Field Description
No Field Syntax 00 Data is a long-word (32-Bits)x¢ syntax illega)
W 10 Data is a word (16-Bits)
B 01 Data is a byte (8-Bits)
11 reserved
Data Cache Mode <.di>:
D Flag Description
0 Cached data memory accestefault, if no <.di> field syntax
1 Non-cached data memory accdsgp@ss data cache
Address Write-back Mode <.aa>:
Address Write- aa Field Effective Address Address Write-Back
back Syntax
No Field Syntax 00 Address = src2+sre8yister+offset None
A or AW 01 Address = src2+srcBefjister+offset src2«— src2+src3register+offsex
.AB 10 Address = src2dgiste) src2« src2+src3register+offset
AS 11 Address = src2+(src3<<¥zg>= None. Using a byte data size is
‘10) invalid and is a reserved format
Address = src2+(src3<<2¥fz>=
‘00")
16-Bit Store Instructions Operation:
Instruction Format Operation Description
ST S c, [b,u7] address[src2+u7Ht srcl Store long word to address calculated by
register + unsigned immediate
STB_S ¢, [b,u5] address[src2+u5}b srcl Store unsigned byte to address
calculated by register + unsigned
immediate
STW_S c, [b,ub] address[src2+ub}w srcl Store unsigned word to address

ARCompact™ Programmer's Reference

313

ST Instruction Set Details

Instruction Format Operation Description

calculated by register + unsigned
immediate

ST S b, [sp,u7] address[sp+u#H srcl Store long word to address calculated by
Stack Pointer (r28) + unsigned
immediate

STB_S b, [sp,u7] address[sp+u7fbsrcl Store unsigned byte to address
calculated by Stack Pointer (r28) +
unsigned immediate

Related Instructions:
LD SR
PUSH S

Description:

Data that is held in source operand 1 (srcl) is stored to a memory atidtéssalculated by adding
source operand 2 (src2) with an offset specified by source operand 3 (scr3atiiélags are not
updated with this instruction.

CAUTION The addition of src2 to src3 is performed with a simple 32-bit adder which is independent of the
ALU. No exception occurs if a carry or overflow occurs. The resultant calculated address may
overlap into unexpected regions depending of the values of src2 and src3.

The size of the data written is specified by the data size field <zzbit(B&tructions).

NOTE When a memory controller is employed: Store bytes can be made to any byte alignments, Store
words should be made from word aligned addresses and Store longs should be made only from long
aligned addresses.

If the processor contains a data cache, store requests can bypaskdh®y asming the <.di> syntax.

NOTE For the 16-bit encoded instructions the u offset is aligned accordingly. For example ST_S c, [b. u7]
only needs to encode the top 5 bits since the bottom 2 bits of u7 are always zero because of the 32-
bit data alignment.

The address write-back mode can be selected by use of the <.aa> syntax.

NOTE When using the scaled source addressing mode (.AS), the scale factor is dependent upon the size of
the data word requested (zz).

Pseudo Code Example:

if AA==0 then address = src2 + src3 /* ST */
if AA==1 then address = src2 + src3
if AA==2 then address = src2

if AA==3 and zz==0 then
address = src2 + (src3 << 2)
if AA==3 and Zz==2 then
address = src2 + (src3 << 1)
Memory(address, size) = srcl
if AA==1 or AA==2 then

src2 = src2 + src3

Assembly Code Example:

ST r0,[rl,4] ; Store Tong word value of
; rO to memory address
; rl+4

314 ARCompact™ Programmer's Reference

Instruction Set Details SUB

SUB

Subtract
Arithmetic Operation

Operation:
if (cc=true) then dest- srcl — src2

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

Syntax:

With Result Instruction Code

SuUB<.f> a,b,c 00100bbb00000010FBBBCCCCCCAAAAAA
SUB<.f> a,b,u6 00100bbb01000010FBBBuuuuuuAAAAAA
SUB<.f> b,b,s12 00100bbb10000010FBBBssssssSSSSSS
SUB<.cc><.f> b,b,c 00100bbb11000010FBBBCCCCCC0QQQQQ
SUB<.cc><.f> b,b,u6 00100bbb11000010FBBBuUuuuuu1QQQQQ
SUB<.f> a,limm,c 0010011000000010F111CCCCCCAAAAAA
SUB<.f> a,b,limm 00100bbb00000010FBBB111110AAAAAA
SUB<.cc><.f> b,b,limm 00100bbb11000010FBBB1111100QQQQQ
SUB_S c,b,u3 01101bbbcccOluuu

SUB_S b,b,c 01111bbbccc00010

SUB_S b,b,u5 10111bbb011uuuuu

SUB_S.NE b,b,b 01111bbb11000000

SUB_S sp,sp,u7 11000001101uuuuu

Without Result

SUB <.f> 0,b,c 00100bbb00000010FBBBCCCCCC111110
SUB <.f> 0,b,u6 00100bbb01000010FBBBuuuuuu111110

SUB <.f> 0,b,limm 00100bbb00000010FBBB111110111110
SUB <.cc><.f> 0,limm,c 0010011011000010F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

Y - = Set if overflow is generated

Related Instructions:

RSUB SuUB2 SBC
SuB1 SUB3
Description:

Subtract source operand 2 (src2) from source operand 1 (srcl) and placeltiretresdestination
register.

SUB_S.NE is a conditional instruction used to clear a register, and igedaehen the Z flag is
equal to zero.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

ARCompact™ Programmer's Reference 315

SUB Instruction Set Details

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) the offset is aligned to 32-hit.
For example SUB_S sp, sp. u7 only needs to encode the top 5 bits since the bottom 2 bits of u7 are
always zero because of the 32-bit data alignment.

Pseudo Code Example:

if cc==true then /* SUB */
dest = srcl - src2

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]
Cc_flag = carry(Q
v_flag = overflow()
Assembly Code Example:
SUB rl,r2,r3 ; Subtract contents of r3 from

; r2 and write result into rl

316 ARCompact™ Programmer's Reference

Instruction Set Details SUB1

SUB1

Subtract with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest- srcl — (src2 << 1)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

Syntax:

With Result Instruction Code

SUB1<.f> a,b,c 00100bbb00010111FBBBCCCCCCAAAAAA
SUB1<.f> a,b,u6 00100bbb01010111FBBBuuuuuuAAAAAA
SUB1<.f> b,b,s12 00100bbb10010111FBBBsSsssssSSSSSS
SUB1<.cc><.f> b,b,c 00100bbb11010111FBBBCCCCCC0QQQQQ
SUB1<.cc><.f> b,b,u6 00100bbb11010111FBBBuuuuuulQQQQQ
SUB1<.f> a,limm,c 0010011000010111F111CCCCCCAAAAAA
SUB1<.f> a,b,limm 00100bbb00010111FBBB111110AAAAAA
SUB1<.cc><.f> b,b,limm 00100bbb11010111FBBB1111100QQQQQ
Without Result

SUB1<.f> 0,b,c 00100bbb00010111FBBBCCCCCC111110
SUB1<.f> 0,b,u6 00100bbb01010111FBBBuuuuuul111110
SUB1<.f> 0,b,limm 00100bbb00010111FBBB111110111110
SUB1<.cc><.f> 0,limm,c 0010011011010111F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated

\% - = Set if overflow is generated from the SUB parttaf instruction

Related Instructions:

RSUB SUB2 SBC
SUB SUB3
Description:

Subtract a scaled version of source operand 2 (src2) (src2 left shifteérdoy Bpurce operand 1
(srcl) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* SUB1 */
dest = srcl - (src2 << 1)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

c_flag = carry(Q

v_flag = overflow()

ARCompact™ Programmer's Reference 317

SUB1 Instruction Set Details

Assembly Code Example:

SUBl rl,r2,r3 ; Subtract contents of r3 Teft
; shifted one bit from r2
; and write result into rl

318 ARCompact™ Programmer's Reference

Instruction Set Details SUB2

SuUB2

Subtract with Scaled Source
Arithmetic Operation

Operation:
if (cc=true) then dest- srcl — (src2 << 2)

Format:
inst dest, srcl, src2

Format Key:
dest Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

Syntax:

With Result Instruction Code

SUB2<.f> a,b,c 00100bbb00011000FBBBCCCCCCAAAAAA
SUB2<.f> a,b,u6 00100bbb01011000FBBBUuuUUUAAAAAA
sSuUB2<.f> b,b,s12 00100bbb10011000FBBBSssssSsSSSSSS
SUB2<.cc><.f> b,b,c 00100bbb11011000FBBBCCCCCC0QQQQQ
SUB2<.cc><.f> b,b,u6 00100bbb11011000FBBBuuuuuulQQQQQ
SUB2<.f> a,limm,c 0010011000011000F111CCCCCCAAAAAA
SUB2<.f> a,b,limm 00100bbb00011000FBBB111110AAAAAA
SUB2<.cc><.f> b,b,limm 00100bbb11011000FBBB1111100QQQQQ
Without Result

SUB2<.f> 0,b,c 00100bbb00011000FBBBCCCCCC111110
SUB2<.f> 0,b,u6 00100bbb01011000FBBBuuuuuu111110
SUB2<.f> 0,b,limm 00100bbb00011000FBBB111110111110
SUB2<.cc><.f> 0,limm,c 0010011011011000F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

= Set if most significant bit of result is set
= Set if carry is generated
V | « | = Set if overflow is generated from the SUB parthef instruction

Related Instructions:

RSUB SUB SBC
SUB1 SUB3
Description:

Subtract a scaled version of source operand 2 (src2) (src2 left shifteérday Zpurce operand 1
(srcl) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* SUB2 */
dest = srcl - (src2 << 2)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

c_flag = carry(Q

v_flag = overflow()

ARCompact™ Programmer's Reference 319

SuB2 Instruction Set Details

Assembly Code Example:

SUB2 rl,r2,r3 ; Subtract contents of r3 Teft
; shifted two bits from r2
; and write result into rl

320 ARCompact™ Programmer's Reference

Instruction Set Details SUB3

SUB3

Subtract with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest- srcl — (src2 << 3)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition Code

Syntax:

With Result Instruction Code

SUB3<.f> a,b,c 00100bbb00011001FBBBCCCCCCAAAAAA
SUB3<.f> a,b,u6 00100bbb01011001FBBBuuuuuuAAAAAA
SUB3<.f> b,b,s12 00100bbb10011001FBBBssssssSSSSSS
SUB3<.cc><.f> b,b,c 00100bbb11011001FBBBCCCCCC0QQQQQ
SUB3<.cc><.f> b,b,u6 00100bbb11011001FBBBuuuuuulQQQQQ
SUB3<.f> a,limm,c 0010011000011001F111CCCCCCAAAAAA
SUB3<.f> a,b,limm 00100bbb00011001FBBB111110AAAAAA
SUB3<.cc><.f> b,b,limm 00100bbb11011001FBBB1111100QQQQQ
Without Result

SUB3<.f> 0,b,c 00100bbb00011001FBBBCCCCCC111110
SUB3<.f> 0,b,u6 00100bbb01011001FBBBuuuuuul111110
SUB3<.f> 0,limm,c 0010011000011001F111CCCCCC111110
SUB3<.cc><.f> 0,limm,c 0010011011011001F111CCCCCCOQQQQJ L |
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set
= Set if carry is generated

Related Instructions:

RSUB SUB2 SBC
SUB1 SUB
Description:

Subtract a scaled version of source operand 2 (src2) (src2 left shiftedrday 3purce operand 1
(srcl) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flaggbeuhterpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:

if cc==true then /* SUB3 */
dest = srcl - (src2 << 3)

if F==1 then

z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

c_flag = carry(Q

v_flag = overflow()

ARCompact™ Programmer's Reference 321

SUB3 Instruction Set Details

Assembly Code Example:

SUB3 rl,r2,r3 ; Subtract contents of r3 Teft
; shifted three bits from r2
; and write result into rl

322 ARCompact™ Programmer's Reference

Instruction Set Details SUBS

SUBS

Signed Subtraction with Saturation
Extended Arithmetic Operation

Operation:
dest« sat, (srcl - src2)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

With Result Instruction Code

SUBS<.f> a,b,c 00101bbb00000111FBBBCCCCCCAAAAAA
SUBS<.f> a,b,u6 00101bbb01000111FBBBuUuuuuuuAAAAAA
SUBS<.f> b,b,s12 00101bbb10000111FBBBssssssSSSSSS

SUBS<.cc><.f> b,b,c 00101bbb11000111FBBBCCCCCC0QQQQQ
SUBS<.cc><.f> b,b,u6 00101bbb11000111FBBBuuuuuulQQQQQ
SUBS<.f> a,limm,c 0010111000000111F111CCCCCCAAAAAA | L
SUBS<.f> a,b,limm 00101bbb00000111FBBB111110AAAAAA L
SUBS<.cc><.f> b,b,limm 00101bbb11000111FBBB111110QQQQQ0Q | L
Without Result

SUBS<.f> 0,b,c 00101bbb00000111FBBBCCCCCC111110
SUBS<.f> 0,b,u6 00101bbb01000111FBBBuuuuuu111110
SUBS<.f> 0,b,limm 00101bbb00000111FBBB111110111110 L
SUBS<.cc><.f> 0,limm,c 0010111011000111F111CCCCCCOQQQQQ| L
Flag Affected (32-Bit): Key:

= Set if result is zero = Limm Data
= Set if most significant bit of result is set

= Set if carry is generated by the subtract

= Set if result saturated, otherwise cleared

S - = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ADDS SUB

Description:

Perform a signed subtraction of the two source operands. If the resulbwsetimit it to the
maximum signed value. Both saturation flags S1 and S2 will be set if theakthe instruction
saturates. Any flag updates will only occur if the set flags suffiki¢ used.

Pseudo Code Example:
if cc==true then /* SUBS */
dest = srcl - src2
sat = sat32(dest)
if F==1 then
z_flag = if dest==0 then 1 else 0

N_flag = dest[31]
c_flag = 0

v_flag = sat

s_flag = s_flag || sat

ARCompact™ Programmer's Reference

323

SUBS Instruction Set Details

Assembly Code Example:
SUBS rl,r2,r3 ; Subtract contents of r3 from r2
; and write result into rl

324 ARCompact™ Programmer's Reference

Instruction Set Details SUBSDW

SUBSDW

Signed Subtract with Saturation Dual Word
Extended Arithmetic Operation

Operation:
dest«— satg(srcl.high-src2.high) : sgfsrcl.low-src2.low)

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

Syntax:

With Result Instruction Code

SUBSDW<.f> a,b,c 00101bbb00101001FBBBCCCCCCAAAAAA
SUBSDW<.f> a,b,u6 00101bbb01101001FBBBuuuuuuAAAAAA
SUBSDW-<.f> b,b,s12 00101bbb10101001FBBBssssssSSSSSS

SUBSDW<.cc><.f> bb,c 00101bbb11101001FBBBCCCCCCOQQQQQ
SUBSDW<.cc><.f> b,b,u6 00101bbb11101001FBBBUULLUU1QQQQQ

SUBSDW<.f> a,limm,c 0010111000101001F111CCCCCCAAAAAA| L
SUBSDW<.f> a,b,limm 00101bbb00101001FBBB111110AAAAAA | L
SUBSDW-<.cc><.f> b,b,limm 00101bbb11101001FBBB111110QQQQQQ| L
Without Result - only flags will be set
SUBSDW<.f> 0,b,c 00101bbb00101001FBBBCCCCCC111110
SUBSDW<.f> 0,b,u6 00101bbb01101001FBBBuuuuuul111110
SUBSDW-<.cc><.f> 0,limm,c 0010111011101001F111CCCCCCOQQQQ
Flag Affected (32-Bit): Key:

z = Set if result is zero = Limm Data

N | « | = Setif most significant bit of result is set

C = Unchanged

\Y « | = Set if result saturated, otherwise cleared
S | « | = Setif result saturated (‘sticky’ saturation)

Related Instructions:

ADDSDW SUB
ADDS SUBS
Description:

Perform a signed dual-word subtraction of the two source operands. If theovestitiws, limit it to
the maximum signed value. The saturation flags S1 and S2 will be set accortiegesult of the
channel 1 (high 16-bit) and channel 2 (low 16-bit) calculations respectivelflanypdates will
only occur if the set flags suffix (.F) is used.

Assembly Code Example:
SUBSDW rl1,r2,r3 ;

ARCompact™ Programmer's Reference 325

SWAP Instruction Set Details

SWAP

Swap words
Extension Option

Operation:
dest— word swap of src

—
S
R
Format:
inst dest, src
Format Key:
src = Source Operand
dest = Destination
Syntax:
With Result
SWAP<.f> b,c 00101bbb00101111FBBBCCCCCC000000
SWAP<.f> b,ué 00101bbb01101111FBBBuuuuuu000000
SWAP<.f> blimm 00101bbb00101111FBBB111110000000 @ L[|
Without Result
SWAP<.f> 0,c 0010111000101111F111CCCCCC000000
SWAP<.f> 0,u6 0010111001101111F111uuuuuu000000
SWAP<.f> 0limm 0010111000101111F111111110000000 L [|
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Unchanged
Y = Unchanged
Related Instructions:
NORM MOV
Description:

Swap the lower 16 bits of the operand with the upper 16 bits of the operand and ptesaltiu#
that swap in the destination register. Any flag updates will only ottue set flags suffix (.F) is
used.

Pseudo Code Example:
dest = SWAP(src) /* SWAP */
if F==1 then

z_flag = if dest==0 then 1 else 0

N_flag = dest[31]

Assembly Code Example:
SWAP rl,r2 ; Swap top and bottom 16 bits of r2
; write result into rl

326 ARCompact™ Programmer's Reference

Instruction Set Details SWI/TRAPO

SWI/TRAPO

Software Interrupt or Software Breakpoint
Control Operation

Operation:
TriggerInstruction ErrorLevel Interrupt
Format:
inst
Format Key:
inst = Instruction
Syntax:
Instruction Code
SWwi 00100010011011110000000000111111
TRAPO 001000100110111100000000001111112
Flag Affected (32-Bit): Key:
Z | | =Unchanged = Limm Data
N | | =Unchanged
C | | =Unchanged
Vv = Unchanged
E1| .| =0
E2| .| =0
| ul. =0
|l AE|] =1
Related Instructions:
TRAP_S
Description:

The software interrupt instruction is decoded in stage two of the papaatid if executed, then it
immediately raises thiastruction Errorinterrupt. Thenstruction Errotinterrupt will be serviced
using the normal interrupt system. ILINK2 is used as the return addresssertie routine.

Once arlInstruction Errorinterrupt is taken, then the medium and low priority interrupts are masked
off so that ILINK2 register can not be updated again as a result of ampttdus preserving the
return address of tHastruction Errorexception.

NOTE Only the Reset and Memory Error exceptions have higher priorities than the Instruction Error
exception.

CAUTION The SWI instruction cannot immediately follow a BRcc or BBITn instruction.

The TRAPO instruction raises an exception and calls any operating spstemel mode. Traps can
be raised from user or kernel modes. A value of 0 is loaded into the exaspigmregisteHCR) as
the cause parameter along with the cause code for a trap and the toapweber.

The source value of 0 is used for software breakpoints. TRAP_S 0 providdstaaéeding of the
TRAPO instruction.

ARCompact™ Programmer's Reference 327

SWI/TRAPO Instruction Set Details

The Exception Fault Address registBFQ) is set to point to the address of the trap instruction. The
Exception Return Address regist&fRET) is set to the address of the instruction immediately
following the trap instruction.

When the exception handler has completed, program execution will resume atrtioti dms
immediately following the trap instruction.

When inserting a software breakpoint, the instruction at the appepddress is replaced by a trap
instruction of the same size TRAP_S 0 for 16-bit instructions and TRAPOuit Btructions.

While the mnemonic SWI is available, its use is not recommended in the ARCote8gwor, TRAPO
should be used instead.

Pseudo Code Example:
ILINK2 = nPc /* SWI */
STATUS32_L2 = STATUS32
STATUS32[E2] = O
STATUS32[E1l] = 0
PC = INT_VECTOR_BASE + 0x10
ERET = NEXTPC /% TRAPQ */
ERSTATUS = STATUS32
if STATUS32[DE] == 1 then
ERBTA = pending PC
ECR = 0x00 : 0Ox25 : O0x00 : 0x00

EFA = PC

STATUS32[U] = 0O
STATUS32[E2] = 0
STATUS32[E1] = 0
STATUS32[AE] =1

PC = INT_VECTOR_BASE + 0x128

Assembly Code Example:
SWI ; Software interrupt
TRAPO ; Software Breakpoint

328 ARCompact™ Programmer's Reference

Instruction Set Details SYNC

SYNC

Synchronize
Control Operation

Operation:
Wait for all data memory transactions to complete
Format:
inst
Format Key:
inst = Instruction
Syntax:
Instruction Code
SYNC 00100011011011110000000000111111
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
Vv = Unchanged
Related Instructions:
LD | sT
Description:

The synchronize instruction, SYNC, waits until all data based memorytigpsré D, ST, EX, cache
fills) have completed. The status flags are not updated with thiadtistr therefore the flag setting
field, F, should be encoded as 0.

In order to provide the instruction sync function, the instruction segatimecompletion, meaning
that the contents of the pipeline are discarded, and fetching restartethé stored program counter
value.

For data synchronization, the purpose of the SYNC instruction is to ehatiedltmemory operations
started by the processor have finished before any new operations (of angakirgin. This
includes all of the following memory operations:

» All outstanding LD, ST and EX instructions
» All data cache operations
O line fills and flushes

» Allinstruction cache fill operations

NOTE The SYNC instruction does not wait on memory operations started by other processors.

The SYNC instruction can also be used to ensure that the interrupt rebaesemory mapped
peripheral has been cleared down before an interrupt handler exits.

Example 28 Using SYNC to clear down an interrupt re quest
* A peripheral generates interrupt to the processor by setting a signal t
* The control registers for the peripheral are memory mapped

* The processor's interrupt unit is set to ‘level sensitive’ figrititerrupt.

ARCompact™ Programmer's Reference 329

SYNC Instruction Set Details

* The interrupt handler must clear the interrupt request signal beditirgye

O The SYNC instruction is used to ensure that the store to change the @dSpdneis happens
before the interrupt exit

If the SYNC was not used, the peripheral may still be asserting theupiteequest signal after the
interrupt exit — hence a bogus interrupt would be generated.

Pseudo Code Example:
do /% SYNC */
null
until not (load_pending or store_pending or
dcache_fill or dcache_fTlush or
icache_fill)

Assembly Code Example:
SYNC | ; Synchronize

330 ARCompact™ Programmer's Reference

Instruction Set Details TRAP_S

TRAP_S

Trap
Control Operation
Operation:
Raise an exception
Format:
inst src
Format Key:
inst = Instruction
Syntax:
Instruction Code
TRAP_S u6 01111uuuuuull1lio
Flag Affected (32-Bit): Key:
Z | | =Unchanged = Limm Data
N | | =Unchanged
C | | =Unchanged
Vv = Unchanged
El1| .| =0
E2| .| =0
U|le =0
AE | «| =1
Related Instructions:
SWI/TRAPO
Description:

The TRAP_S instruction raises an exception and calls any operating sgydternel mode. Traps
can be raised from user or kernel modes. The source operand is loaded inteptieregkause
register ECR) as the cause parameter along with the cause code for a trap and teetvapumber.

The source value can be used to signal a type of command to any operatinglsfsigenunning on
the processor. Source values 1 to 63 should be used of operating systendaabl®arce value of 0
for software breakpoints. TRAP_S 0 provides a 15-bit encoding of the TRARG:toN.

The Exception Fault Address registBFQ) is set to point to the address of the trap instruction. The
Exception Return Address regist&RET) is set to the address of the instruction immediately
following the trap instruction.

When the exception handler has completed, program execution will resume atrrtfodioms
immediately following the trap instruction.

When inserting a software breakpoint, the instruction at the apppddress is replaced by a trap
instruction of the same size TRAP_S 0 for 16-bit instructions and TRAPOuit Btructions.

Pseudo Code Example:
ERET = NEXTPC /* TRAP_S */
ERSTATUS = STATUS32
if STATUS32[DE] == 1 then
ERBTA = pending PC
ECR = 0x00 : Ox25 : Ox00 : src
EFA = PC
STATUS32[U] = 0
STATUS32[E2]

0
STATUS32[E1] 0

ARCompact™ Programmer's Reference 331

TRAP_S Instruction Set Details

STATUS32[AE] =1
PC = INT_VECTOR_BASE + 0x128

Assembly Code Example:
TRAP_S O ; Trap

332 ARCompact™ Programmer's Reference

Instruction Set Details TST

TST

Test

Logical Operation

Operation:
if (cc=true) thersrcl AND src2

Format:
inst srcl, src2

Format Key:
srcl = Source Operand 1
src2 = Source Operand 2
cc = Condition Code
Syntax:
Instruction Code
TST b,s12 00100bbb100010111BBBSsssSSSSSSSS
TST<.cc> b,c 00100bbb110010111BBBCCCCCC0QQQQ!(
TST<.cc> b,u6 00100bbb110010111BBBuuuuuulQQQQQ
TST<.cc> b,limm 00100bbb110010111BBB1111100QQQQQ
TST<.cc> limm,c 00100110110010111111CCCCCCOQQQQQ L |
TST_S b,c 01111bbbccc01011
Flag Affected (32-Bit): Key:
Z = Set if result is zero = Limm Data
N = Set if most significant bit of result is set
C = Unchanged
Y = Unchanged
Related Instructions:
BTST CMP
Description:

Logical bitwise AND of source operand 1 (srcl) with source operand 2 égrdZubsequently
updating the flags. The flag setting field, F, is always encoded as 1dangtmuction.

There is no destination register therefore the result of the ANIBcarded.

NOTE TST and TST_S always set the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:

if cc==true then /* TST */
alu = srcl AND src2

z_flag = if alu==0 then 1 else 0

N_flag alu[31]

Assembly Code Example:

TST rl,r2 ; Logical AND r2 with rl
; and set the flags on the
; result

ARCompact™ Programmer's Reference 333

UNIMP_S Instruction Set Details

UNIMP_S

Unimplemented Instruction
Control Operation

Operation:
InstError
Format:
inst
Format Key:
inst = Instruction
InstError = Raiselnstruction ErrorfException
Syntax:
Instruction Code
UNIMP_S 0111100111100000
Flag Affected (32-Bit): Key:
z = Unchanged = Limm Data
N = Unchanged
C = Unchanged
Y = Unchanged
Related Instructions:
NOP |
Description:

An Instruction Errorexception will be generated. Used by debugging tools to fill unused memory
regions. The status flags are not updated with this instruction.

Pseudo Code Example:
InstError = 1; | /* UNIMP_S */

Assembly Code Example:
UNIMP_S | ; unimplemented Instruction

334 ARCompact™ Programmer's Reference

Instruction Set Details XOR

XOR

Logical Bitwise Exclusive OR
Logical Operation

Operation:
if (cc=true) then dest- src1 XOR src2

Format:
inst dest, srcl, src2

Format Key:

dest = Destination Register

srcl = Source Operand 1

src2 = Source Operand 2

cc = Condition code

XOR = Logical Bitwise Exclusive OR

Syntax:

With Result Instruction Code

XOR<.f> a,b,c 00100bbb00000111FBBBCCCCCCAAAAAA
XOR<.f> a,b,u6 00100bbb01000111FBBBuuuuuuAAAAAA
XOR<.f> b,b,s12 00100bbb10000111FBBBssssssSSSSSS
XOR<.cc><.f> b,b,c 00100bbb11000111FBBBCCCCCC0QQQQQ
XOR<.cc><.f> b,b,u6 00100bbb11000111FBBBuuuuuulQQQQQ
XOR<.f> a,limm,c 0010011000000111F111CCCCCCAAAAAA
XOR<.f> a,b,limm 00100bbb00000111FBBB111110AAAAAA
XOR<.cc><.f> b,b,limm 00100bbb11000111FBBB1111100QQQQQ
XOR_S b,b,c 01111bbbccc00111

Without Result

XOR<.f> 0,b,c 00100bbb00000111FBBBCCCCCC111110
XOR<.f> 0,b,u6 00100bbb01000111FBBBuuuuuul111110
XOR<.f> 0,b,limm 00100bbb00000111FBBB111110111110
XOR<.cc><.f> 0,limm,c 0010011011000111F111CCCCCCOQQQQQ L |
Flag Affected (32-Bit): Key:

Z = Set if result is zero = Limm Data

N = Set if most significant bit of result is set

C = Unchanged

Y = Unchanged

Related Instructions:

AND BIC OR
Description:

Logical bitwise exclusive OR of source operand 1 (srcl) with source operarg®2p The result is
written into the destination register (dest). Any flag updates wijl ootur if the set flags suffix (.F)
is used.

Pseudo Code Example:
if cc==true then /* XOR */
dest = srcl XOR src2
if F==1 then
z_flag = if dest==0 then 1 else 0
N_flag = dest[31]

Assembly Code Example:
XOR rl,r2,r3 ; Logical XOR contents of r2 with r3 and write result into rl

ARCompact™ Programmer's Reference 335

XOR Instruction Set Details

This page is intentionally left blank.

336 ARCompact™ Programmer's Reference

Chapter 10 — The Host

The Host Interface

The ARCompact based processor was developed with an integrated érfaténto support
communications with a host system. It can be started, stopped and communich&etdst system
using special registers. How the various parts of the ARCompact basedgmoappear to the host is
host interface dependent but an outline of the techniques to control ARGdrapad processor are
given in this section.

Most of the techniques outlined here will be handled by the software debsggteg, and the
programmer, in general, need not be concerned with these specific details.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

It is expected that the registers and the program memory of ARCobgsstt processor will appear
as a memory mapped section to the Hagure 98on page837 shows an example host system using
contiguous part of host memofigure 99on page8337 shows an example host system using a
section of memory and a section of /O space.

ARCompact Core Registers

ARCompact Auxiliary Registers

ARCompact Main Memory

Figure 98 Example Host Memory Maps, Contiguous Host Memory

Host I/0O Map

ARCompact Core Registers

ARCompact Auxiliary Registers

Host Memory Map

ARCompact Memory

Figure 99 Example Host Memory Maps, Host Memory and Host 10

Once aResethas occurred, the ARCompact based processor is put into a known state atekexec
the initial Resetcode. From this point, the host can make the changes to the appropriate @art of th
ARCompact based processor , depending on whether the ARCompact based poo@ssiog or
halted as shown ihable 97on page338

ARCompact™ Programmer's Reference 337

Halting The Host

Table 97 Host Accesses to the ARCompact based proce ssor

Running Halted
Memory Read/Write Read/Write
Auxiliary Registers Mainly No access Read/Write
Core Registers No access Read/Write

Halting

The ARCompact based processor can halt itself with the FLAG instructiobnam be halted by the
host. The host halts the ARCompact based processor by setting the Hhbisiatus register
(STATUS32, or by setting the FH bit in tieEBUG register. Se€igure 43on pages0 andFigure
450n pagel

Note that when the ARCompact based processor is running that only thevili ddiange if the host
writes toSTATUS32reqgister. However, if ARCompact based processor had halted itseifhthe
of theSTATUS32register will be updated when the host writes toSSRATUS32register.

The consequence of this is that the host may assume that the ARCompagirbesssor is running

by previously reading th8TATUS32register. By the time that the host forces a halt, the ARCompact
based processor may have halted itself. Therefore, the write ot’arfiraber, e.g. 0x01, to the
STATUS32register would overwrite any flag status information that thé teogiired.

In order to force the ARCompact based processor to halt without ovagithig other status flags the
additional FH bit in thé©EBUG register is provided. Séegure 43on page0. The host can test
whether the ARCompact based processor has halted by checking the state bit ihehe
STATUS32register. Additionally, the SH bit in the debug register is availebtest whether the halt
was caused by the host, the ARCompact based processor , or an externaildialfisgghost should
wait for the LD (load pending) bit in tH2EBUG register to clear before changing the state of the
ARCompact based processor.

Starting

The host starts the ARCompact based processor by clearing the H biSinATEIS32reqister. It is
advisable that the host clears any instructions in the pipeline beforgyimgdiny registers and re-
starting the ARCompact based processor, by semidiginstructions through, so that any pending
instructions that are about to modify any registers in the ARCompact pasmssor are allowed to
complete.

If the ARCompact based processor has been running code, and is to badrastadiferent
location, then it will be necessary to put the processor into a statardionihe posResetcondition
to ensure correct operation.

» reset the three hardware loop registers to their default values
» flush the pipeline. This is known as ‘pipecleaning’

» disable interrupts, using the status register

* any extension logic should be reset to its default state

If the ARCompact based processor has been running and is to be resteotgthtewhere it left
off, then the procedure is as follows:

338 ARCompact™ Programmer's Reference

The Host Pipecleaning

* host reads the status from tBREATUS32Register

* host writes back to th8TATUS32register withthe samevalue as was just read, but clearing the
H bit

» The ARCompact based processor will continue from where it left offivutheas stopped.

NOTE Atfirst glance it appears that the same instruction would be executed twice, but in fact this has been
taken care of in the hardware; the pipeline is held stopped for the first cycle after the STATUS32
register has been written and thus the execution starts up again as if there has been no interruption.

Pipecleaning

If the processor is halted whilst it is executing a program, it is pedsiat the later stages of the
pipeline may contain valid instructions. Before re-starting the procassanew address, these
instructions must be cleared to prevent unwanted register writes or fromptaking place.

If the processor is to be restarted from the point at which it was stoppethetiestructions in the
pipeline are to be executed, hence pipecleaning should not be performed.

Pipecleaning is not necessary at times when the pipeline is known to be&lgaimmediately after
aReset or if the processor has been stopped BLAG instruction followed by threBlOPs.

Pipecleaning is achieved as follows:

» Stop the ARCompact based processor

* Download aNOP instruction into memory.

» Invalidate instruction cache to ensure thatNi@&P is loaded from memory

» Point the PC register to the downloaddP

» Single step until the values in the program counter or loop count registgrecha
» Point the PC register to the downloaddP

» Single step until the values in the program counter or loop count registgrecha
» Point the PC register to the downloaddP

» Single step until the values in the program counter or loop count registgrecha

Notice that the program counter is written before each single stafh bsanches and jumps, that
might be in the pipeline, are overridden, ensuring thalNtbB is fetched every time.

It should be noted that the instructions in the pipeline may performeewgistes, flag setting, loop
set-up, or other operations which change the processor state. Hence, pipgsleand be
performed before any operations which set up the processor state in pregarahe program to be
executed - for example loading registers with parameters.

Single Instruction Stepping

The Single Instruction Step function is controlled by a bit ilBE8UG register. This bit can be set
by the debugger to enable Instruction Stepping. The Instruction Step (I8}eiomty by the host
and keeps it value for one cycle (Sexble 98on page340).

ARCompact™ Programmer's Reference 339

Software Breakpoints The Host

Table 98 Single Step Flags in Debug Register

Field Description Access Type
IS Instruction Step:- Instruction Step enable Write only from the host

The Single Instruction Step function enables the processor for completiavhole@instruction.

I For the ARC 600 core the Single Instruction Step function is enabled by $ettinthe SS and IS
| bits in the debug register when the processor is halted.

For the ARC 700 core the Single Instruction Step function is enabled by skéitfg bit in the
debug register when the processor is halted. The SS bit is ignored.

On the next clock cycle the processor is kept enabled for as manyasyeguired to complete the
instruction. Therefore, any stalls due to register conflicts or dellads are accounted for when
waiting for an instruction to complete. All earlier instructions in tipelpe are flushed, the
instruction that the program counter is pointing to is completed, the nextciitt is fetched and the
program counter is incremented.

If the stepped instruction was:

e A Branch, Jump or Loop with a killed delay slot,
or

* Using Long Immediate data.
Then two instruction fetches are made so that the program counter would teligpiaopriately.

The processor halts after the instruction is completed.

SLEEP Instruction in Single Instruction Step Mode

The SLEEPInstruction is treated like [MOP instruction when the processor is in Single Step Mode.
This is because every single step acts as a restart oeaupaall. Consequently, tisd EEP
instruction behaves like MOP propagating through the pipeline.

SeeSLEEPon page809for further details.

BRK Instruction in Single Instruction Step Mode

TheBRK instruction behaves exactly as when the processor is not in the Sl &le. Tha8RK
instruction is detected in the initial stages of the pipeline and keptfitrever until removed by the
host.

Software Breakpoints

TheBRK instruction can also be used to insert a software breakgétit.will halt the ARCompact
based processor and flush all previous instructions through the pipe. The hoatiddwe feC register
to determine where the breakpoint occurred.

As long as the host has access to the ARCompact based processor code ineamayso replace a
ARCompact based processor instruction with a branch instruction. Ehissthat a “software
breakpoint” can be set on any instruction, as long as the target brealqui®ris within the branch
address range. Since a software breakpoint of this type is a bratngbtios, the rules for use &tcc
apply. Care should be taken when setting breakpoints on the last instruttzens overhead loops
and also on instructions in delay slots of jump, branch and loop instructions.

340 ARCompact™ Programmer's Reference

The Host Core Registers

Core Registers

The core registers of ARCompact based processor are availdddeead and written by the host.
These registers should be accessed by the host once the ARCompact lezssoiphas halted.

Auxiliary Register Set

Some auxiliary registers, unlike the core registers, may be adcebile the ARCompact based
processor is running. These dual access registers in the baseecase a

STATUS32
The host can read the status regisErATUS32 when the ARCompact based processor is running.
The main purpose is to see if the processor has halte@igege 450n pagesl.

PC
Reading thé>Cis useful for code profiling. Sdégure 44on pages1l.

SEMAPHORE

The semaphore regist8EMAPHORE is used for inter-processor and host to ARCompact based
processor communications. Protocols for using shared memory and provisiatuaf exclusion can
be accomplished with this register. g@gure 39on pagel8.

IDENTITY

The host can determine the version of ARCompact based processor by reaiegtttyeregister
(IDENTITY). SeeFigure 41on paged9. Information on extensions added to the ARCompact based
processor can be determined through build configuration registers.

NOTE For more information on build configuration registers please refer to associated documentation.

DEBUG

In order to halt the ARCompact based processor, the host needs to set thefRkkelidebug register
(DEBUG). The host can determine how the ARCompact based was halted and if there are any
pending loads. Sdegure 43on page0.

Memory

The program memory may be changed by the host. The memory can be changed attantheme
host.

NOTE If program code is being altered, or transferred into ARCompact based memory space, then the
instruction cache should be invalidated.

ARCompact™ Programmer's Reference 341

	ARCompact™ Programmer's Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	List of Examples
	List of Tables
	Introduction
	Typographic Conventions
	Key Features
	ISA Feature Comparison
	Programmer’s Model
	Core Register Set
	Auxiliary Register Set
	32-bit Instructions
	16-bit Instructions
	Operating Modes

	Extensions
	Extension Core Registers
	Extension Auxiliary Registers
	Extension Instructions
	Extension Condition Codes

	Debugging Features
	Power Management

	Data Organization and Addressing
	Address Space
	Data Formats
	32-bit Data
	16-bit Data
	8-bit Data
	1-bit Data

	Extended Arithmetic Data Formats
	16-bit Data
	Dual 16-bit Data
	24-bit Data
	Q Arithmetic

	Instruction Formats
	Packed Middle-Endian Instruction Format
	Big-Endian Instruction Format
	32-bit Instruction or 32-bit Immediate Data
	Two 16-bit Instructions
	16-bit Instruction Followed by 32-bit Instruction
	Series of 16-bit and 32-bit Instructions

	Addressing Modes
	Null Instruction Format
	Conditional Execution
	Conditional Branch Instruction
	Compare and Branch Instruction
	Serializing Instructions

	Register Set Details
	Core Register Set
	Core Register Mapping Used in 16-bit Instructions
	Reduced Configuration of Core Registers
	Pointer Registers, GP, r26, FP, r27, SP, r28
	Link Registers, ILINK1, r29, ILINK2, r30, BLINK, r31
	Loop Count Register, LP_COUNT, r60
	Reserved Register, r61
	Immediate Data Indicator, limm, r62
	Program Counter Long-Word, PCL, r63

	Extension Core Registers
	Multiply Result Registers, MLO, MMID, MHI

	Auxiliary Register Set
	Illegal Auxiliary Register Usage
	Status Register (Obsolete), STATUS, 0x00
	Semaphore Register, SEMAPHORE, 0x01
	Loop Control Registers, LP_START, 0x02, LP_END, 0x03
	Identity Register, IDENTITY, 0x04
	Debug Register, DEBUG, 0x05
	Program Counter, PC, 0x06
	Status Register 32-bit, STATUS32, 0x0A
	Branch Target Address, BTA, 0x412
	Interrupt Status Link Registers, STATUS32_L1, 0x0B, STATUS32_L2, 0x0C
	Interrupt Branch Target Link Registers, BTA_L1, 0x413, BTA_L2, 0x414
	Interrupt Vector Base Register, INT_VECTOR_BASE, 0x25
	Interrupt Level Status Register, AUX_IRQ_LV12, 0x43
	Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200
	Software Interrupt Trigger, AUX_IRQ_HINT, 0x201
	Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSE2, 0x40B
	Interrupt Mask Programming Register, AUX_IENABLE, 0x40C
	Interrupt Sensitivity Programming Register, AUX_ITRIGGER, 0x40D
	Interrupt Pulse Cancel Register, AUX_IRQ_PULSE_CANCEL, 0x415
	Interrupt Pending Register, AUX_IRQ_PENDING, 0x416
	Exception Return Address, ERET, 0x400
	Exception Return Branch Target Address, ERBTA, 0x401
	Exception Return Status, ERSTATUS, 0x402
	Exception Cause Register, ECR, 0x403
	Exception Fault Address, EFA, 0x404
	User Mode Extension Enable Register, XPU, 0x410
	Processor Timers Auxiliary Registers
	Timer 0 Count Register, COUNT0, 0x21
	Timer 0 Control Register, CONTROL0, 0x22
	Timer 0 Limit Register, LIMIT0, 0x23
	Timer 1 Count Register, COUNT1, 0x100
	Timer 1 Control Register, CONTROL1, 0x101
	Timer 1 Limit Register, LIMIT1, 0x102

	Extension Auxiliary Registers
	Optional Extensions Auxiliary Registers
	Multiply Restore Register, MULHI, 0x12
	Extended Arithmetic Auxiliary Registers
	MAC Status and Mode Register, AUX_MACMODE, 0x41

	Build Configuration Registers
	Build Configuration Registers Version, BCR_VER, 0x60
	BTA Configuration Register, BTA_LINK_BUILD, 0x63
	Extended Arithmetic Configuration Register, EA_BUILD, 0x65
	Interrupt Vector Base Address Configuration, VECBASE_AC_BUILD, 0x68
	Core Register Set Configuration Register, RF_BUILD, 0x6E
	Processor Timers Configuration Register, TIMER_BUILD, 0x75
	Multiply Configuration Register, MULTIPLY_BUILD, 0x7B
	Swap Configuration Register, SWAP_BUILD, 0x7C
	Normalize Configuration Register, NORM_BUILD, 0x7D
	Min/Max Configuration Register, MINMAX_BUILD, 0x7E
	Barrel Shifter Configuration Register, BARREL_BUILD, 0x7F

	Interrupts and Exceptions
	Introduction
	Privileges and Operating Modes
	Kernel Mode
	User Mode
	Privilege Violations
	Switching Between Operating Modes

	Interrupts
	Interrupt Unit Programming
	Interrupt Unit Configuration
	Interrupt Priority
	ILINK and Status Save Registers
	Interrupt Vectors
	Level 1 and Level 2 Interrupt Enables
	Individual Interrupt Enables
	Priority Level Programming
	Interrupt Level Status
	Interrupt Cause Registers
	Pending Interrupts
	Software Triggered Interrupt
	Returning from Interrupts
	Interrupt Timing
	Interrupt Flow
	Interrupt Vector Base Address Configuration
	Interrupt Sensitivity Level Configuration
	Interrupt Sensitivity Level Programming
	Canceling Pulse Triggered Interrupts

	Exceptions
	Exception Precision
	Exception Vectors and Exception Cause Register
	Exception Types and Priorities
	Exception Detection
	Interrupts and Exceptions
	Exception Entry
	Exception Exit
	Exceptions and Delay Slots
	Emulation of Extension Instructions
	Emulation of Extension Registers and Condition Codes

	Instruction Set Summary
	Arithmetic and Logical Operations
	Summary of Basecase ALU Instructions
	Syntax for Arithmetic and Logical Operations
	Add Instruction
	Subtract Instruction
	Reverse Subtract Instruction
	Test and Compare Instructions
	Bit Test Instruction
	Single Bit Instructions
	Barrel Shift/Rotate

	Single Operand Instructions
	Move to Register Instruction
	Flag Instruction
	Negate Operation

	Zero Operand Instructions
	Breakpoint Instruction
	Sleep Instruction
	Software Interrupt Instruction
	Trap Instruction
	Return from Interrupt/Exception Instruction
	Synchronize Instruction

	Branch Instructions
	Branch Instructions
	Branch and Link Instructions
	Branch On Compare/Bit Test Register-Register

	Jump Instructions
	Summary of Jumps and Special Format Instructions
	Syntax for Jumps and Special Format Instructions
	Zero Overhead Loop Instruction

	Auxiliary Register Operations
	Load from Auxiliary Register
	Store to Auxiliary Register

	Load/Store Instructions
	Load
	Prefetch
	Store Register with Offset
	Stack Pointer Operations
	Atomic Exchange

	ARCompact Extension Instructions
	Syntax for Generic Extension Instructions
	Syntax for Single Operand Extension Instructions
	Syntax for Zero Operand Extension Instructions

	Optional Instructions Library
	Summary of Optional Instructions Library
	Multiply 32 X 32, Special Result Registers
	Multiply 32 X 32, Any Result Register
	NORM Instruction
	SWAP Instruction

	Extended Arithmetic Library
	Summary of Extended Arithmetic Library Instructions
	Add with Saturation
	Subtract with Saturation
	Negate with Saturation
	Absolute with Saturation
	Round
	Saturate
	Positive/Negative Barrel Shift with Saturation
	Division Assist

	32-bit Instruction Formats Reference
	Encoding Notation
	Condition Code Tests
	Branch Jump Delay Slot Modes
	Load Store Address Write-back Modes
	Load Store Direct to Memory Bypass Mode
	Load Store Data Size Mode
	Load Data Extend Mode
	Use of Reserved Encodings
	Use of Illegal Encodings
	Reserved Ranges of Fields
	Illegal Combinations of Fields

	Branch Conditionally, 0x00, [0x0]
	Branch Unconditional Far, 0x00, [0x1]
	Branch on Compare Register-Register, 0x01, [0x1, 0x0]
	Branch on Compare/Bit Test Register-Immediate, 0x01, [0x1, 0x1]
	Branch and Link Conditionally, 0x01, [0x0, 0x0]
	Branch and Link Unconditional Far, 0x01, [0x0, 0x1]
	Load Register with Offset, 0x02
	Store Register with Offset, 0x03
	General Operations, 0x04, [0x00 - 0x3F]
	Operand Format Indicators
	General Operations Register-Register
	General Operations Register with Unsigned 6-bit Immediate
	General Operations Register with Signed 12-bit Immediate
	General Operations Conditional Register
	General Operations Conditional Register with Unsigned 6-bit Immediate
	Long Immediate with General Operations
	ALU Operations, 0x04, [0x00-0x1F]
	Special Format Instructions, 0x04, [0x20 - 0x3F]
	Move and Compare Instructions, 0x04, [0x0A - 0x0D] and 0x04, [0x11]
	Jump and Jump-and-Link Conditionally, 0x04, [0x20 - 0x23]
	Load Register-Register, 0x04, [0x30 - 0x37]
	Single Operand Instructions, 0x04, [0x2F, 0x00 - 0x3F]
	Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00 - 0x3F]

	32-bit Extension Instructions, 0x05 - 0x08
	Extension ALU Operation, Register-Register
	Extension ALU Operation, Register with Unsigned 6-bit Immediate
	Extension ALU Operation, Register with Signed 12-bit Immediate
	Extension ALU Operation, Conditional Register
	Extension ALU Operation, Conditional Register with Unsigned 6-bit Immediate
	Dual Operand Extension Instructions, 0x05, [0x00-0x2E and 0x30-0x3F]
	Single Operand Extension Instructions, 0x05, [0x2F, 0x00 - 0x3F]
	Zero Operand Extension Instructions, 0x05, [0x2F, 0x3F, 0x00 - 0x3F]
	User Extension Instructions

	Market Specific Extension Instructions, 0x09 - 0x0B
	Market Specific Extension Instruction, 0x09
	Market Specific Extension Instruction, 0x0A
	Market Specific Extension Instruction, 0x0B

	16-bit Instruction Formats Reference
	Load /Add Register-Register, 0x0C, [0x00 - 0x03]
	Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03]
	Mov/Cmp/Add with High Register, 0x0E, [0x00 - 0x03]
	Long Immediate with Mov/Cmp/Add

	General Register Format Instructions, 0x0F, [0x00 - 0x1F]
	General Operations, register-register
	General Operations, Register
	General Operations, No Registers
	General Operations, 0x0F, [0x00 - 0x1F]
	Single Operand, Jumps and Special Format Instructions, 0x0F, [0x00, 0x00 - 0x07]
	Zero Operand Instructions, 0x0F, [0x00, 0x07, 0x00 - 0x07]

	Load/Store with Offset, 0x10 - 0x16
	Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07]
	Stack Pointer Based Instructions, 0x18, [0x00 - 0x07]
	Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07]
	POP Register from Stack, 0x18, [0x06, 0x00-0x1F]
	PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F]

	Load/Add GP-Relative, 0x19, [0x00 - 0x03]
	Load PCL-Relative, 0x1A
	Move Immediate, 0x1B
	ADD/CMP Immediate, 0x1C, [0x00 - 0x01]
	Branch on Compare Register with Zero, 0x1D, [0x00 - 0x01]
	Branch Conditionally, 0x1E, [0x00 - 0x03]
	Branch Conditionally with cc Field, 0x1E, [0x03, 0x00 - 0x07]

	Branch and Link Unconditionally, 0x1F

	Condition Codes
	Introduction
	Flag Setting
	Status Register
	Status Flags Notation
	Condition Code Test
	Extended Arithmetic Condition Codes

	Instruction Set Details
	Instruction Set Details
	List of Instructions
	Alphabetic Listing
	ABS
	ABSS
	ABSSW
	ADC
	ADD
	ADD1
	ADD2
	ADD3
	ADDS
	ADDSDW
	AND
	ASL
	ASL multiple
	ASLS
	ASR
	ASR multiple
	ASRS
	BBIT0
	BBIT1
	Bcc
	Bcc_S
	BCLR
	BIC
	BLcc
	BMSK
	BRcc
	BRK
	BSET
	BTST
	BXOR
	CMP
	DIVAW
	EX
	EXTB
	EXTW
	FLAG
	Jcc
	JLcc
	LD
	LPcc
	LR
	LSR
	LSR multiple
	MAX
	MIN
	MOV
	MPY
	MPYH
	MPYHU
	MPYU
	MUL64
	MULU64
	NEG
	NEGS
	NEGSW
	NOP
	NORM
	NORMW
	NOT
	OR
	POP_S
	PREFETCH
	PUSH_S
	RCMP
	RLC
	RND16
	ROR
	ROR multiple
	RRC
	RSUB
	RTIE
	SAT16
	SBC
	SEXB
	SEXW
	SLEEP
	SR
	ST
	SUB
	SUB1
	SUB2
	SUB3
	SUBS
	SUBSDW
	SWAP
	SWI/TRAP0
	SYNC
	TRAP_S
	TST
	UNIMP_S
	XOR

	The Host
	The Host Interface
	Halting
	Starting
	Pipecleaning
	Single Instruction Stepping
	SLEEP Instruction in Single Instruction Step Mode
	BRK Instruction in Single Instruction Step Mode

	Software Breakpoints
	Core Registers
	Auxiliary Register Set
	Memory

