
ARC® 700 IP Library

ARCompact™
Instruction Set Architecture

Programmer's Reference

5115-029

ii ARCompact™ Programmer's Reference

ARCompact™ Programmer's Reference

ARC® International
European Headquarters
ARC International,
Verulam Point,
Station Way,
St Albans, Herts, AL1 5HE, UK
Tel. +44 (0) 1727 891400
Fax. +44 (0) 1727 891401

North American Headquarters
3590 N. First Street, Suite 200
San Jose, CA 95134 USA
Tel. +1 408.437.3400
Fax +1 408.437.3401

www.arc.com

ARC Publicly Available Information
© 2001-2008 ARC International (Unpublished). All rights reserved.

Notice
May not be reproduced in any form, including electronic, without specific written permission of ARC International.

The product described in this manual is licensed, not sold, and may be used only in accordance with the terms of a License
Agreement applicable to it. Use without a License Agreement, in violation of the License Agreement, or without paying the license
fee is unlawful.

Every effort is made to make this manual as accurate as possible. However, ARC International shall have no liability or
responsibility to any person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or
indirectly by this manual, including but not limited to any interruption of service, loss of business or anticipated profits, and all
direct, indirect, and consequential damages resulting from the use of this manual. ARC International's entire warranty and liability
in respect of use of the product are set forth in the License Agreement.

ARC International reserves the right to change the specifications and characteristics of the product described in this manual, from
time to time, without notice to users. For current information on changes to the product, users should read the "readme" and/or
"release notes" that are contained in the distribution media. Use of the product is subject to the warranty provisions contained in the
License Agreement.

Licensee acknowledges that ARC International is the owner of all Intellectual Property rights in such documents and will ensure
that an appropriate notice to that effect appears on all documents used by Licensee incorporating all or portions of this
Documentation.

The manual may only be disclosed by Licensee as set forth below.

• Manuals marked "ARC Confidential & Proprietary" may be provided to Licensee's subcontractors under NDA. The manual
may not be provided to any other third parties, including manufacturers. Examples--source code software, programmer guide,
documentation.

• Manuals marked "ARC Confidential" may be provided to subcontractors or manufacturers for use in Licensed Products.
Examples--product presentations, masks, non-RTL or non-source format.

• Manuals marked "Publicly Available" may be incorporated into Licensee's documentation with appropriate ARC permission.
Examples--presentations and documentation that do not embody confidential or proprietary information.

The ARCompact instruction set architecture processor is covered by one or more of the following U.S. and international patents:
U.S. Patent Nos. 6,178,547, 6,560,754, 6,718,504 and 6,848,074; Taiwan Patent Nos. 155749, 169646, and 176853; and Chinese
Patent Nos. ZL 00808459.9 and 00808460.2. U.S., and international patents pending.

U.S. Government Restricted Rights Legend
Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.

CONTRACTOR/MANUFACTURER IS ARC International I. P., Inc., 3590 N. First Street, Suite 200, San Jose, CA 95134.

Trademark Acknowledgments
ARCangel, ARChitect, ARCompact, ARCtangent, High C/C++, High C++, the MQX Embedded logo, RTCS, and VRaptor, are
trademarks of ARC International. ARC, the ARC logo, High C, MetaWare, MQX, MQX Embedded and VTOC are registered
under ARC International. All other trademarks are the property of their respective owners.

5115-029 April-2008

http://www.arc.com/

ARCompact™ Programmer's Reference iii

Contents

Chapter 1 — Introduction 19
Typographic Conventions 19
Key Features 20
ISA Feature Comparison 21
Programmer’s Model 22

Core Register Set 22
Auxiliary Register Set 22
32-bit Instructions 23
16-bit Instructions 23
Operating Modes 23

Extensions 24
Extension Core Registers 24
Extension Auxiliary Registers 24
Extension Instructions 24
Extension Condition Codes 25

Debugging Features 25
Power Management 25

Chapter 2 — Data Organization and Addressing 27
Address Space 27
Data Formats 28

32-bit Data 28
16-bit Data 29
8-bit Data 29
1-bit Data 30

Extended Arithmetic Data Formats 30
16-bit Data 30
Dual 16-bit Data 30
24-bit Data 31
Q Arithmetic 31

Instruction Formats 32
Packed Middle-Endian Instruction Format 32
Big-Endian Instruction Format 32
32-bit Instruction or 32-bit Immediate Data 32
Two 16-bit Instructions 33
16-bit Instruction Followed by 32-bit Instruction 34
Series of 16-bit and 32-bit Instructions 34

Addressing Modes 36
Null Instruction Format 37
Conditional Execution 37
Conditional Branch Instruction 37
Compare and Branch Instruction 37
Serializing Instructions 38

Chapter 3 — Register Set Details 39
Core Register Set 39

Contents

iv ARCompact™ Programmer's Reference

Core Register Mapping Used in 16-bit Instructions 40
Reduced Configuration of Core Registers 41
Pointer Registers, GP, r26, FP, r27, SP, r28 41
Link Registers, ILINK1, r29, ILINK2, r30, BLINK, r31 41
Loop Count Register, LP_COUNT, r60 42
Reserved Register, r61 44
Immediate Data Indicator, limm, r62 44
Program Counter Long-Word, PCL, r63 44

Extension Core Registers 44
Multiply Result Registers, MLO, MMID, MHI 45

Auxiliary Register Set 45
Illegal Auxiliary Register Usage 47
Status Register (Obsolete), STATUS, 0x00 48
Semaphore Register, SEMAPHORE, 0x01 48
Loop Control Registers, LP_START, 0x02, LP_END, 0x03 49
Identity Register, IDENTITY, 0x04 49
Debug Register, DEBUG, 0x05 50
Program Counter, PC, 0x06 51
Status Register 32-bit, STATUS32, 0x0A 51
Branch Target Address, BTA, 0x412 52
Interrupt Status Link Registers, STATUS32_L1, 0x0B, STATUS32_L2, 0x0C 53
Interrupt Branch Target Link Registers, BTA_L1, 0x413, BTA_L2, 0x414 53
Interrupt Vector Base Register, INT_VECTOR_BASE, 0x25 53
Interrupt Level Status Register, AUX_IRQ_LV12, 0x43 54
Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200 54
Software Interrupt Trigger, AUX_IRQ_HINT, 0x201 55
Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSE2, 0x40B 55
Interrupt Mask Programming Register, AUX_IENABLE, 0x40C 56
Interrupt Sensitivity Programming Register, AUX_ITRIGGER, 0x40D 56
Interrupt Pulse Cancel Register, AUX_IRQ_PULSE_CANCEL, 0x415 56
Interrupt Pending Register, AUX_IRQ_PENDING, 0x416 57
Exception Return Address, ERET, 0x400 57
Exception Return Branch Target Address, ERBTA, 0x401 57
Exception Return Status, ERSTATUS, 0x402 57
Exception Cause Register, ECR, 0x403 58
Exception Fault Address, EFA, 0x404 58
User Mode Extension Enable Register, XPU, 0x410 58
Processor Timers Auxiliary Registers 59
Timer 0 Count Register, COUNT0, 0x21 60
Timer 0 Control Register, CONTROL0, 0x22 60
Timer 0 Limit Register, LIMIT0, 0x23 61
Timer 1 Count Register, COUNT1, 0x100 61
Timer 1 Control Register, CONTROL1, 0x101 61
Timer 1 Limit Register, LIMIT1, 0x102 61

Extension Auxiliary Registers 62
Optional Extensions Auxiliary Registers 62

Multiply Restore Register, MULHI, 0x12 62
Extended Arithmetic Auxiliary Registers 62
MAC Status and Mode Register, AUX_MACMODE, 0x41 62

Build Configuration Registers 63
Build Configuration Registers Version, BCR_VER, 0x60 64
BTA Configuration Register, BTA_LINK_BUILD, 0x63 64
Extended Arithmetic Configuration Register, EA_BUILD, 0x65 64
Interrupt Vector Base Address Configuration, VECBASE_AC_BUILD, 0x68 65
Core Register Set Configuration Register, RF_BUILD, 0x6E 65

Contents

ARCompact™ Programmer's Reference v

Processor Timers Configuration Register, TIMER_BUILD, 0x75 66
Multiply Configuration Register, MULTIPLY_BUILD, 0x7B 66
Swap Configuration Register, SWAP_BUILD, 0x7C 67
Normalize Configuration Register, NORM_BUILD, 0x7D 67
Min/Max Configuration Register, MINMAX_BUILD, 0x7E 67
Barrel Shifter Configuration Register, BARREL_BUILD, 0x7F 67

Chapter 4 — Interrupts and Exceptions 71
Introduction 71
Privileges and Operating Modes 71

Kernel Mode 71
User Mode 71
Privilege Violations 71
Switching Between Operating Modes 73

Interrupts 73
Interrupt Unit Programming 73
Interrupt Unit Configuration 74
Interrupt Priority 74
ILINK and Status Save Registers 74
Interrupt Vectors 74
Level 1 and Level 2 Interrupt Enables 77
Individual Interrupt Enables 77
Priority Level Programming 77
Interrupt Level Status 78
Interrupt Cause Registers 78
Pending Interrupts 78
Software Triggered Interrupt 78
Returning from Interrupts 78
Interrupt Timing 79
Interrupt Flow 79
Interrupt Vector Base Address Configuration 80
Interrupt Sensitivity Level Configuration 80
Interrupt Sensitivity Level Programming 81
Canceling Pulse Triggered Interrupts 81

Exceptions 81
Exception Precision 81
Exception Vectors and Exception Cause Register 82
Exception Types and Priorities 83
Exception Detection 88
Interrupts and Exceptions 88
Exception Entry 89
Exception Exit 90
Exceptions and Delay Slots 91
Emulation of Extension Instructions 91
Emulation of Extension Registers and Condition Codes 92

Chapter 5 — Instruction Set Summary 93
Arithmetic and Logical Operations 93

Summary of Basecase ALU Instructions 94
Syntax for Arithmetic and Logical Operations 94
Add Instruction 95
Subtract Instruction 96
Reverse Subtract Instruction 97
Test and Compare Instructions 97
Bit Test Instruction 99

Contents

vi ARCompact™ Programmer's Reference

Single Bit Instructions 100
Barrel Shift/Rotate 102

Single Operand Instructions 104
Move to Register Instruction 106
Flag Instruction 107
Negate Operation 108

Zero Operand Instructions 108
Breakpoint Instruction 109
Sleep Instruction 109
Software Interrupt Instruction 109
Trap Instruction 109
Return from Interrupt/Exception Instruction 110
Synchronize Instruction 110

Branch Instructions 110
Branch Instructions 110
Branch and Link Instructions 111
Branch On Compare/Bit Test Register-Register 111

Jump Instructions 112
Summary of Jumps and Special Format Instructions 113
Syntax for Jumps and Special Format Instructions 113
Zero Overhead Loop Instruction 113

Auxiliary Register Operations 114
Load from Auxiliary Register 115
Store to Auxiliary Register 115

Load/Store Instructions 115
Load 116
Prefetch 117
Store Register with Offset 117
Stack Pointer Operations 118
Atomic Exchange 118

ARCompact Extension Instructions 118
Syntax for Generic Extension Instructions 119
Syntax for Single Operand Extension Instructions 119
Syntax for Zero Operand Extension Instructions 120

Optional Instructions Library 120
Summary of Optional Instructions Library 120
Multiply 32 X 32, Special Result Registers 121
Multiply 32 X 32, Any Result Register 123
NORM Instruction 125
SWAP Instruction 125

Extended Arithmetic Library 126
Summary of Extended Arithmetic Library Instructions 126
Add with Saturation 127
Subtract with Saturation 128
Negate with Saturation 129
Absolute with Saturation 129
Round 130
Saturate 130
Positive/Negative Barrel Shift with Saturation 130
Division Assist 131

Chapter 6 — 32-bit Instruction Formats Reference 133
Encoding Notation 134
Condition Code Tests 135
Branch Jump Delay Slot Modes 135

Contents

ARCompact™ Programmer's Reference vii

Load Store Address Write-back Modes 136
Load Store Direct to Memory Bypass Mode 136
Load Store Data Size Mode 136
Load Data Extend Mode 137
Use of Reserved Encodings 137
Use of Illegal Encodings 137

Reserved Ranges of Fields 137
Illegal Combinations of Fields 137

Branch Conditionally, 0x00, [0x0] 138
Branch Unconditional Far, 0x00, [0x1] 138
Branch on Compare Register-Register, 0x01, [0x1, 0x0] 138
Branch on Compare/Bit Test Register-Immediate, 0x01, [0x1, 0x1] 139
Branch and Link Conditionally, 0x01, [0x0, 0x0] 140
Branch and Link Unconditional Far, 0x01, [0x0, 0x1] 140
Load Register with Offset, 0x02 141
Store Register with Offset, 0x03 141
General Operations, 0x04, [0x00 - 0x3F] 142

Operand Format Indicators 142
General Operations Register-Register 142
General Operations Register with Unsigned 6-bit Immediate 143
General Operations Register with Signed 12-bit Immediate 143
General Operations Conditional Register 143
General Operations Conditional Register with Unsigned 6-bit Immediate 144
Long Immediate with General Operations 144
ALU Operations, 0x04, [0x00-0x1F] 144
Special Format Instructions, 0x04, [0x20 - 0x3F] 145
Move and Compare Instructions, 0x04, [0x0A - 0x0D] and 0x04, [0x11] 146
Jump and Jump-and-Link Conditionally, 0x04, [0x20 - 0x23] 146
Load Register-Register, 0x04, [0x30 - 0x37] 147
Single Operand Instructions, 0x04, [0x2F, 0x00 - 0x3F] 147
Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00 - 0x3F] 148

32-bit Extension Instructions, 0x05 - 0x08 149
Extension ALU Operation, Register-Register 150
Extension ALU Operation, Register with Unsigned 6-bit Immediate 150
Extension ALU Operation, Register with Signed 12-bit Immediate 150
Extension ALU Operation, Conditional Register 150
Extension ALU Operation, Conditional Register with Unsigned 6-bit Immediate 151
Dual Operand Extension Instructions, 0x05, [0x00-0x2E and 0x30-0x3F] 151
Single Operand Extension Instructions, 0x05, [0x2F, 0x00 - 0x3F] 152
Zero Operand Extension Instructions, 0x05, [0x2F, 0x3F, 0x00 - 0x3F] 153
User Extension Instructions 153

Market Specific Extension Instructions, 0x09 - 0x0B 153
Market Specific Extension Instruction, 0x09 154
Market Specific Extension Instruction, 0x0A 154
Market Specific Extension Instruction, 0x0B 154

Chapter 7 — 16-bit Instruction Formats Reference 155
Load /Add Register-Register, 0x0C, [0x00 - 0x03] 155
Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03] 156
Mov/Cmp/Add with High Register, 0x0E, [0x00 - 0x03] 156

Long Immediate with Mov/Cmp/Add 157
General Register Format Instructions, 0x0F, [0x00 - 0x1F] 157

General Operations, register-register 157
General Operations, Register 158

Contents

viii ARCompact™ Programmer's Reference

General Operations, No Registers 158
General Operations, 0x0F, [0x00 - 0x1F] 158
Single Operand, Jumps and Special Format Instructions, 0x0F, [0x00, 0x00 - 0x07] 159
Zero Operand Instructions, 0x0F, [0x00, 0x07, 0x00 - 0x07] 160

Load/Store with Offset, 0x10 - 0x16 160
Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07] 161
Stack Pointer Based Instructions, 0x18, [0x00 - 0x07] 162

Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07] 163
POP Register from Stack, 0x18, [0x06, 0x00-0x1F] 163
PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F] 163

Load/Add GP-Relative, 0x19, [0x00 - 0x03] 164
Load PCL-Relative, 0x1A 164
Move Immediate, 0x1B 165
ADD/CMP Immediate, 0x1C, [0x00 - 0x01] 165
Branch on Compare Register with Zero, 0x1D, [0x00 - 0x01] 165
Branch Conditionally, 0x1E, [0x00 - 0x03] 166

Branch Conditionally with cc Field, 0x1E, [0x03, 0x00 - 0x07] 166
Branch and Link Unconditionally, 0x1F 167

Chapter 8 — Condition Codes 169
Introduction 169
Flag Setting 169
Status Register 169
Status Flags Notation 169
Condition Code Test 170
Extended Arithmetic Condition Codes 170

Chapter 9 — Instruction Set Details 173
Instruction Set Details 173
List of Instructions 173
Alphabetic Listing 176

ABS 177
ABSS 178
ABSSW 180
ADC 182
ADD 183
ADD1 185
ADD2 187
ADD3 189
ADDS 191
ADDSDW 193
AND 194
ASL 195
ASL multiple 196
ASLS 198
ASR 200
ASR multiple 201
ASRS 203
BBIT0 205
BBIT1 207
Bcc 209
Bcc_S 211
BCLR 213
BIC 214

Contents

ARCompact™ Programmer's Reference ix

BLcc 215
BMSK 217
BRcc 219
BRK 222
BSET 225
BTST 226
BXOR 227
CMP 228
DIVAW 229
EX 232
EXTB 234
EXTW 235
FLAG 236
Jcc 238
JLcc 241
LD 243
LPcc 247
LR 259
LSR 260
LSR multiple 262
MAX 264
MIN 266
MOV 268
MPY 269
MPYH 271
MPYHU 272
MPYU 274
MUL64 275
MULU64 277
NEG 279
NEGS 280
NEGSW 281
NOP 282
NORM 283
NORMW 285
NOT 287
OR 288
POP_S 289
PREFETCH 290
PUSH_S 292
RCMP 293
RLC 294
RND16 295
ROR 296
ROR multiple 297
RRC 299
RSUB 300
RTIE 302
SAT16 304
SBC 305
SEXB 307
SEXW 308
SLEEP 309
SR 312
ST 313
SUB 315

Contents

x ARCompact™ Programmer's Reference

SUB1 317
SUB2 319
SUB3 321
SUBS 323
SUBSDW 325
SWAP 326
SWI/TRAP0 327
SYNC 329
TRAP_S 331
TST 333
UNIMP_S 334
XOR 335

Chapter 10 — The Host 337
The Host Interface 337
Halting 338
Starting 338
Pipecleaning 339
Single Instruction Stepping 339

SLEEP Instruction in Single Instruction Step Mode 340
BRK Instruction in Single Instruction Step Mode 340

Software Breakpoints 340
Core Registers 341
Auxiliary Register Set 341
Memory 341

ARCompact™ Programmer's Reference xi

List of Figures
Figure 1 Block diagram of the ARCompact based processor 22

Figure 2 Address Space Model 27

Figure 3 Unified Address Space Model 28

Figure 4 Register Containing 32-bit Data 28

Figure 5 32-bit Register Data in Byte-Wide Memory, Little-Endian 28

Figure 6 32-bit Register Data in Byte-Wide Memory, Big-Endian 29

Figure 7 Register containing 16-bit data 29

Figure 8 16-bit Register Data in Byte-Wide Memory, Little-Endian 29

Figure 9 16-bit Register Data in Byte-Wide Memory, Big-Endian 29

Figure 10 Register containing 8-bit data 30

Figure 11 8-bit Register Data in Byte-Wide Memory 30

Figure 12 Register containing 1-bit data 30

Figure 13 16-bit data format, upper end 30

Figure 14 16-bit data format, lower end 30

Figure 15 Dual 16 x 16 data format 30

Figure 16 Single 24 x 24 data format 31

Figure 17 Multiply Accumulate 16-bit Input Data Format 31

Figure 18 Multiply Accumulate 24-bit Input Data Format 31

Figure 19 Multiply Accumulate 16-bit Output Data Format with no Q 31

Figure 20 Multiply Accumulate 24-bit Output Data Format with no Q 31

Figure 21 Multiply Accumulate 16-bit Output Data Format with Q 31

Figure 22 Multiply Accumulate 24-bit Output Data Format with Q 32

Figure 23 32-bit Instruction byte representation 33

Figure 24 32-bit instruction in Byte-Wide memory, Little-Endian 33

Figure 25 32-bit instruction in Byte-Wide memory, Big-Endian 33

Figure 26 16-bit Instruction byte representation 33

Figure 27 Two 16-bit instructions in Byte-Wide memory, Little-Endian 33

Figure 28 Two 16-bit instructions in Byte-Wide memory, Big-Endian 34

Figure 29 16-bit and 32-bit Instruction byte representation 34

Figure 30 16-bit and 32-bit instructions in Byte-Wide Memory, Little-Endian 34

List of Figures

xii ARCompact™ Programmer's Reference

Figure 31 16-bit and 32-bit instructions in Byte-Wide Memory, Big-Endian 34

Figure 32 16-bit and 32-bit instruction sequence, byte representation 35

Figure 33 16-bit and 32-bit instruction sequence, in Byte-Wide memory, Little-Endian 35

Figure 34 16-bit and 32-bit instruction sequence, in Byte-Wide memory, Big-Endian. 36

Figure 35 Core Register Map Summary 39

Figure 36 PCL Register 44

Figure 37 Auxiliary Register Map 46

Figure 38 STATUS Register (Obsolete) 48

Figure 39 Semaphore Register 48

Figure 40 LP_START Register 49

Figure 41 LP_END Register 49

Figure 42 Identity Register 49

Figure 43 Debug Register 50

Figure 44 PC Register 51

Figure 45 STATUS32 Register 51

Figure 46 BTA, Branch Target Address 52

Figure 47 STATUS32_L1, STATUS32_L2 Registers 53

Figure 48 BTA_L1 and BTA_L2, Interrupt Return Branch Target Registers 53

Figure 49 INT_VECTOR_BASE Register 54

Figure 50 AUX_IRQ_LV12 Interrupt Level Status Register 54

Figure 51 AUX_IRQ_LEV Interrupt Level Programming Register 54

Figure 52 AUX_IRQ_HINT Software Triggered Interrupt 55

Figure 53 ICAUSE1 and ICAUSE2 Interrupt Cause Registers 56

Figure 54 AUX_IENABLE, Interrupt Mask Programming Register 56

Figure 55 AUX_ITRIGGER, Interrupt Sensitivity Programming Register 56

Figure 56 AUX_IRQ_PULSE_CANCEL Interrupt Pulse Cancel Register 57

Figure 57 AUX_IRQ_PENDING, Interrupt Pending Register 57

Figure 58 ERET, Exception Return Address 57

Figure 59 ERBTA, Exception Return Branch Target Address 57

Figure 60 ERSTATUS, Exception Return Status Register 57

Figure 61 ECR, Exception Cause Register 58

Figure 62 EFA, Exception Fault Address 58

Figure 63 XPU, User Mode Extension Permission Register 59

Figure 64 Interrupt Generated after Timer Reaches Limit Value 60

Figure 65 Timer 0 Count Value Register 60

List of Figures

ARCompact™ Programmer's Reference xiii

Figure 66 Timer 0 Control Register 60

Figure 67 Timer 0 Limit Value Register 61

Figure 68 Timer 1 Count Value Register 61

Figure 69 Timer 1 Control Register 61

Figure 70 Timer 1 Limit Value Register 61

Figure 71 AUX_MACMODE Register 63

Figure 72 BCR_VER Register 64

Figure 73 BTA_LINK_BUILD Configuration Register 64

Figure 74 EA_BUILD Configuration Register 64

Figure 75 VECBASE_AC_BUILD Configuration Register 65

Figure 76 RF_BUILD Configuration Register 65

Figure 77 TIMER_BUILD Configuration Register 66

Figure 78 MULTIPLY_BUILD Configuration Register 66

Figure 79 SWAP_BUILD Configuration Register 67

Figure 80 NORM_BUILD Configuration Register 67

Figure 81 MINMAX_BUILD Configuration Register 67

Figure 82 BARREL_BUILD Configuration Register 67

Figure 83 Interrupt Execution 80

Figure 84 Extension ALU Operation, register-register 150

Figure 85 Extension ALU Operation, register with unsigned 6-bit immediate 150

Figure 86 Extension ALU Operation, register with signed 12-bit immediate 150

Figure 87 Extension ALU Operation, conditional register 150

Figure 88 Extension ALU Operation, cc register with unsigned 6-bit immediate 151

Figure 89 Market-Specific Extension Instruction 0x09 Encoding 154

Figure 90 Market-Specific Extension Instruction 0x0A Encoding 154

Figure 91 Market-Specific Extension Instruction 0x0B Encoding 154

Figure 92 DIVAW 16-bit input numerator data format 230

Figure 93 DIVAW 16-bit input denominator data format 230

Figure 94 DIVAW 16-bit output data format 230

Figure 95 Loop Detection and Update Mechanism, ARCtangent-A5 249

Figure 96 Loop Detection and Update Mechanism, ARC 600 252

Figure 97 Loop Detection and Update Mechanism, ARC 700 256

Figure 98 Example Host Memory Maps, Contiguous Host Memory 337

Figure 99 Example Host Memory Maps, Host Memory and Host IO 337

xiv ARCompact™ Programmer's Reference

List of Examples
Example 1 Null Instruction Format 37

Example 2 Correct set-up of LP_COUNT via a register 42

Example 3 Reading Loop Counter after Writing 43

Example 4 Invalid Loop Count set up 43

Example 5 Valid Loop Count set up 43

Example 6 Invalid Loop Count set up with branch 43

Example 7 Valid Loop Count set up with branch 43

Example 8 Reading Loop Counter near Loop Mechanism 44

Example 9 Claiming and Releasing Semaphore 48

Example 10 Reading Multiply Result Registers 62

Example 11 Restoring the Multiply Results 62

Example 12 Exception Vector Code 75

Example 13 Enabling Interrupts with the FLAG instruction 77

Example 14 No Interrupt Routine for ivect5 79

Example 15 Exception in a Delay Slot 91

Example 16 ARCtangent-A5 Branch on Compare 221

Example 17 ARC 600 Branch on Compare 221

Example 18 To obtain a semaphore using EX 233

Example 19 To Release Semaphore using ST 233

Example 20 Example Loop Code 249

Example 21 Setting up an ARCtangent-A5 Single Instruction Loop 250

Example 22 Setting up an ARC 600 Single Instruction Loop 253

Example 23 Sleep placement in code 310

Example 24 Sleep placement after Branch 311

Example 25 Sleep placement after Branch with killed delay slot 311

Example 26 Enable Interrupts and Sleep, ARCtangent-A5 and ARC 600 311

Example 27 Enable Interrupts and Sleep, ARC 700 311

Example 28 Using SYNC to clear down an interrupt request 329

List of Examples

ARCompact™ Programmer's Reference xv

This page is intentionally left blank.

ARCompact™ Programmer's Reference xvi

List of Tables
Table 1 Processor Supported Features 21

Table 2 Core Register Set 39

Table 3 16-bit instruction register encoding 40

Table 4 Current ABI register usage 41

Table 5 Multiply Result Registers 45

Table 6 Auxiliary Register Set 46

Table 7 Optional Extension Auxiliary Registers 62

Table 8 Extended Arithmetic Auxiliary Registers 62

Table 9 Build Configuration Registers 63

Table 10 BCR_VER field descriptions 64

Table 11 BTA_LINK_BUILD field descriptions 64

Table 12 EA_BUILD field descriptions 65

Table 13 VECBASE_AC_BUILD field descriptions 65

Table 14 RF_BUILD field descriptions 65

Table 15 TIMER_BUILD field descriptions 66

Table 16 MULTIPLY_BUILD field descriptions 66

Table 17 SWAP_BUILD field descriptions 67

Table 18 NORM_BUILD field descriptions 67

Table 19 MINMAX_BUILD field descriptions 67

Table 20 BARREL_BUILD field descriptions 67

Table 21 Overview of ARC 700 Privileges 72

Table 22 ARC 700 Interrupt Vector Summary 75

Table 23 ARCtangent-A5 and ARC 600 Interrupt Vector Summary 76

Table 24 ARCtangent-A5 and ARC 600 Extension Interrupt Vector Summary 77

Table 25 Exception vectors 82

Table 26 Exception Priorities and Vectors 87

Table 27 Exception and Interrupt Exit Modes 90

Table 28 Instruction Syntax Convention 93

Table 29 Basecase ALU Instructions 94

Table 30 Barrel Shift Operations 102

List of Tables

ARCompact™ Programmer's Reference xvii

Table 31 Single operand: moves and extends 104

Table 32 Single operand: Rotates and Shifts 105

Table 33 Basecase ZOP instructions 108

Table 34 Delay Slot Execution Modes 110

Table 35 Branch on compare/test mnemonics 111

Table 36 Branch on compare pseudo mnemonics, register-register 111

Table 37 Branch on compare pseudo mnemonics, register-immediate 111

Table 38 Delay Slot Execution Modes 112

Table 39 Basecase Jump Instructions 113

Table 40 Auxiliary Register Operations 115

Table 41 Dual Operand Optional Instructions for ARCtangent-A5 and ARC 600 120

Table 42 Dual Operand Optional Instructions for ARC 700 121

Table 43 Single Operand Optional Instructions 121

Table 44 Extended Arithmetic Operation Notation 126

Table 45 Extended Arithmetic Dual Operand Instructions 126

Table 46 Extended Arithmetic Single Operand Instructions 127

Table 47 Major opcode Map, 32-bit and 16-Bit instructions 133

Table 48 Key for 32-bit Addressing Modes and Encoding Conventions 134

Table 49 Key for 16-bit Addressing Modes and Encoding Conventions 134

Table 50 Condition codes 135

Table 51 Delay Slot Modes 135

Table 52 Address Write-back Modes 136

Table 53 Direct to Memory Bypass Mode 136

Table 54 Load Store Data Size Mode 136

Table 55 Load Data Extend Mode 137

Table 56 Branch on compare/bit test register-register 139

Table 57 Branch Conditionally/bit test on register-immediate 140

Table 58 Operand Format Indicators 142

Table 59 ALU Instructions 144

Table 60 Special Format Instructions 145

Table 61 Single Operand Instructions 147

Table 62 Zero Operand Instructions 148

Table 63 Summary of Extension Instruction Encoding 149

Table 64 Extension ALU Instructions 151

Table 65 Extension Single Operand Instructions 152

List of Tables

xviii ARCompact™ Programmer's Reference

Table 66 Extension Zero Operand Instructions 153

Table 67 Summary of Market-Specific Extension Instruction Encoding 153

Table 68 16-Bit, LD / ADD Register-Register 155

Table 69 16-Bit, ADD/SUB Register-Immediate 156

Table 70 16-Bit MOV/CMP/ADD with High Register 157

Table 71 16-Bit General Operations 158

Table 72 16-Bit Single Operand Instructions 159

Table 73 16-Bit Zero Operand Instructions 160

Table 74 16-Bit Load and Store with Offset 161

Table 75 16-Bit Shift/SUB/Bit Immediate 161

Table 76 16-Bit Stack Pointer based Instructions 162

Table 77 16-Bit Add/Subtract SP relative Instructions 163

Table 78 16-Bit POP register from stack instructions 163

Table 79 16-Bit PUSH register to stack instructions 163

Table 80 16-Bit GP Relative Instructions 164

Table 81 16-Bit ADD/CMP Immediate 165

Table 82 16-Bit Branch on Compare 165

Table 83 16-Bit Branch, Branch Conditionally 166

Table 84 16-Bit Branch Conditionally 166

Table 85 Condition codes 170

Table 86 Extended Arithmetic Condition Codes 171

Table 87 List of Instructions 173

Table 88 Loop setup and long immediate data, ARCtangent-A5 250

Table 89 Branch and Jumps in loops, flow(1), ARCtangent-A5 251

Table 90 Branch and Jumps in loops, flow(2), ARCtangent-A5 251

Table 91 Loop setup and long immediate data, ARC 600 253

Table 92 Branch and Jumps in loops, flow(1), ARC 600 254

Table 93 Branch and Jumps in loops, flow(2), ARC 600 254

Table 94 Loop setup and long immediate data, ARC 700 257

Table 95 Branch and Jumps in loops, flow(1), ARC 700 257

Table 96 Branch and Jumps in loops, flow(2), ARC 700 258

Table 97 Host Accesses to the ARCompact based processor 338

Table 98 Single Step Flags in Debug Register 340

ARCompact™ Programmer's Reference 19

Chapter 1 — Introduction
This document is aimed at programmers of the ARCompact™ ISA for the ARCtangent™ and ARC®
family of processors.

All aspects of the ARCompact ISA are covered in this document, however certain features are only
available in specific processor implementations. Features that relate only to specific processor
versions are highlighted.

This document covers the instruction set architecture for the following ARCompact based processors:

• ARCtangent-A5 processor

• ARC 600 processor

• ARC 700 processor.

The ARCompact ISA is designed to reduce code size and maximize the opcode space available to
extension instructions.

In the ARCompact ISA, compact 16-bit encodings of frequently used statically occurring 32-bit
instructions are defined. These can be freely intermixed with the 32-bit instructions.

Typographic Conventions
Normal text is displayed using this font.

Any code segments are displayed in this mono-space font.

TIP Tips point out useful information using this style.

NOTE Notes point out important information.

CAUTION Cautions tell you about commands or procedures that could have unexpected or undesirable
side effects or could be dangerous to your files or your hardware.

Sections that relate specifically to the ARC 700 processor are marked with this convention.

Sections that relate specifically to the ARC 600 processor are marked with this convention.

Sections that relate specifically to the ARCtangent-A5 processor are marked with this convention.

Sections that relate specifically to both the ARCtangent-A5 and ARC 600 processor are marked with
this convention.

Key Features Introduction

20 ARCompact™ Programmer's Reference

Key Features
Instructions

• Freely Intermixed 16/32-Bit Instructions

• User and Kernel Modes

Registers

• General Purpose Core Registers

• Special Purpose Auxiliary Register Set

Load/Store Unit

• Register Scoreboard

• Address Register Write-Back

• Pre and Post Address Register Write-Back

• Stack Pointer Support

• Scaled Data Size Addressing Mode

• PC-relative addressing

Program Flow

• Conditional ALU Instructions

• Single Cycle Immediate Data

• Jumps and Branches with Single Instruction Delay Slot

• Combined compare-and-branch instructions

• Delay Slot Execution Modes

• Zero Overhead Loops

Interrupts and Exceptions

• Levels of Exception

• Non-Maskable Exceptions

• Maskable External Interrupts

• Precise Exceptions

• Memory\Instruction\Privilege Exceptions

• Exception Recovery State

• Exception Vectors

• Exception Return Instruction

Multi-Processor Support

• Synchronization and Atomic-exchange instructions

Debug

Introduction ISA Feature Comparison

ARCompact™ Programmer's Reference 21

• Start, stop and single step the processor via special registers

• Full visibility of the processor state via the processors debug interface

• Breakpoint Instruction

Power Management

• Sleep Instruction

Processor Timers

• Two 32-bit programmable timers

ISA Feature Comparison
This document covers the ARCompact ISA definitions for the ARCtangent-A5, ARC 600 and ARC
700 processor implementations.

All processors are upwardly compatible, however due to micro-architectural differences, the timing
behavior of each CPU implementation will vary.

Code that is written for processor architectures that make use of all the ARCompact features will not
execute correctly on processors that utilize a smaller subset of the ARCompact ISA.

The following table summarizes the key features that are supported by the various processor
architectures.

Table 1 Processor Supported Features

ARCompact ISA Features ARCtangent-A5 ARC 600 ARC 700
Freely Intermixed 16/32-Bit Instructions ● ● ●

General Purpose Core Registers ● ● ●

Auxiliary Register Set ● ● ●

User and Kernel Modes ●

Memory Management Unit Support ●

Extended Arithmetic Instructions Optional Optional ●

Register Scoreboard ● ● ●

Address Register Write-Back ● ● ●

Pre and Post Address Register Write-Back ● ● ●

Stack Pointer Support ● ● ●

Scaled Data Size Addressing Mode ● ● ●

PC-relative addressing ● ● ●

Conditional ALU Instructions ● ● ●

Single Cycle Immediate Data ● ● ●

Jumps and Branches with Single Instruction Delay Slot ● ● ●

Combined compare-and-branch instructions ● ● ●

Delay Slot Execution Modes ● ● ●

Zero Overhead Loops ● ● ●

Levels of Exception ● ● ●

Programmer’s Model Introduction

22 ARCompact™ Programmer's Reference

ARCompact ISA Features ARCtangent-A5 ARC 600 ARC 700
Non-Maskable Exceptions ● ● ●

Maskable External Interrupts ● ● ●

Precise Exceptions ●

Maskable External Interrupts ● ● ●

Memory\Instruction\Privilege Exceptions ●

Exception Recovery State ●

Exception Vectors ●

Exception Return Instruction ●

Synchronization and Atomic-exchange instructions ●

Start, stop and single step the processor via special
registers

● ● ●

Full visibility of the processor state via the processors
debug interface

● ● ●

Breakpoint Instruction ● ● ●

Programmer’s Model
The programmer's model is common to all implementations of the ARCompact based processor and
allows upward compatibility of code.

Logically, the ARCompact based processor is based around a general-purpose register file allowing
instructions to have two source operands and one destination register. Other registers are contained in
the auxiliary register set and are accessed with the LOAD-REGISTER (LR) or STORE-REGISTER
(SR) instruction or other special types of instructions.

 Processor Core

LD/ST
Unit

Host
Interface

Fetch

Core
Regs

Ext.
Regs

Aux.
Regs

Ext.
Inst.

ALU

Ext.
Regs

Aligner

Instruction

Instruction

 Figure 1 Block diagram of the ARCompact based proc essor

Core Register Set
The general purpose registers (r0-r28) can be used for any purpose by the programmer. Some of these
core registers have defined special purposes like stack pointers, link registers and loop counters. See
section Core Register Set on page 39.

Auxiliary Register Set
The auxiliary register set contains special status and control registers. Auxiliary registers occupy a
special address space that is accessed using special load register and store register instructions, or
other special types of instructions. See section Auxiliary Register Set on page 45.

Introduction Programmer’s Model

ARCompact™ Programmer's Reference 23

32-bit Instructions
The ARCompact based instruction set, is defined around a 32-bit encoding scheme.

Short immediate values are implied by the various instruction formats. 32-bit long immediate data
(limm) is indicated by using r62 as a source register.

Register r63 (PCL) is a read-only value of the 32-bit PC (32-bit aligned) for use as a source operand
in all instructions allowing PC-relative addressing.

16-bit Instructions
There are compact 16-bit encodings of frequent statically occurring 32-bit instructions. Compressed
16-bit instructions typically use:

• Frequently used instructions only

• Register range reduced from full 64 registers to most frequent 8 registers: r0-r3, r12-r15

• Certain instructions use implied registers like BLINK , SP, GP, FP and PC

• Typically only 1 or 2 operand registers specified (destination and source register are the same)

• Reduced immediate data sizes

• Reduced branch range from maximum offset of ±16MB to maximum offset of ±512B

• No branch delay slot execution modes

• No conditional execution

• No flag setting option (only a few instructions will set flags e.g. BTST_S, CMP_S and TST_S)

Operating Modes
Operating modes are supported in the ARC 700 processor in order to permit different levels of
privilege to be assigned to operating system kernels and user programs – strictly controlling access to
‘privileged’ system-control instructions and special registers. These operating modes and memory
management and protection features combine to ensure that an OS can maintain control of the system
at all times, and that both the OS and user tasks can be protected from a malfunctioning or malicious
task.

The operating mode is used to determine whether a privileged instruction may be executed. The
operating mode is also used by the memory management system to determine whether a specific
location in memory may be accessed.

Two operating modes are provided:

• Kernel mode

 Highest level of privilege

 Default mode from Reset

 Access to all machine state, including privileged instructions and privileged registers

• User mode

 Lowest level of privilege

 Limited access to machine state

Extensions Introduction

24 ARCompact™ Programmer's Reference

 Any attempt to access privileged machine state causes an exception

Extensions
The ARCompact based processor is designed to be extendable according to the requirements of the
system in which it is used. These extensions include more core and auxiliary registers, new
instructions, and additional condition code tests. This section is intended to inform the programmer
where processor extensions occur and how they affect the programmer's view of the ARCompact
based processor.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Core Registers
The core register set has a total of 64 different addressable registers. Registers r32 to r59 are available
for extension purposes. The core register map is shown in Figure 35 on page 39.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Auxiliary Registers
The auxiliary registers are accessed with 32-bit addresses and are long word data size only.
Extensions to the auxiliary register set can be anywhere in this address space except those positions
defined as basecase for auxiliary registers. They are referred to using the load from auxiliary register
(LR) and store to auxiliary register (SR) instructions or special extension instructions. The reserved
auxiliary register addresses are shown in Figure 37 on page 46.

The auxiliary register address region 0x60 up to 0x7F and region 0xC0 up to 0xFF, is reserved for the
Build Configuration Registers (BCRs) that can be used by embedded software or host debug software
to detect the configuration of the ARCompact based hardware. The Build Configuration Registers
contain the version of each ARCompact based extension, as well as configuration information that is
build specific.

Some optional components in an ARCompact based based processor system may only provide
version information registers to indicate the presence of a given component. These version registers
are not necessarily part of the Build Configuration Registers set. Optional component version
registers may be provided as part of the extension auxiliary register set for a component.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extension Instructions
Instruction groups are encoded within the instruction word using a 5 bit binary field. The first 8
encodings define 32-bit instruction groups, the remaining 24 encodings define 16-bit instruction
groups. Two extension instruction groups are reserved in the 32-bit instruction set and another two
instruction groups in the 16-bit instruction set. User extension instructions are provided by one
extension instruction group in the 32-bit instruction set and two extension instruction groups in the
16-bit instruction set. Each extension instruction group can contain dual operand instructions (a ← b
op c), single operand instructions (a ← op b) and zero operand instructions (op c).

Introduction Debugging Features

ARCompact™ Programmer's Reference 25

Extension instructions are used in the same way as the normal ALU instructions, except an external
ALU is used to obtain the result for write-back to the core register set.

Extension Condition Codes
The condition code test on an instruction is encoded using a 5 bit binary field. This gives 32 different
possible conditions that can be tested. The first 16 codes (0x00-0x0F) are those condition codes
defined in the basecase version of ARCompact based processor which use only the internal condition
flags from the status register (Z, N, C, V), see Table 50 Condition codes on page 135.

The remaining 16 condition codes (10-1F) are available for extension and are used to:

• provide additional tests on the internal condition flags or

• test extension status flags from extension function units or

• test a combination external and internal flags

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Debugging Features
It is possible for the processor to be controlled from a host processor using special debugging
features. The host is able to:

• start and stop the processor via the status and debug register

• single step the processor via the debug register

• check and change the values in the register set and memory

• perform code profiling by reading the status register

• enable software breakpoints by using BRK

With these abilities it is possible for the host to provide software breakpoints, single stepping and
program tracing of the processor.

It is possible for the processor to halt itself with the FLAG instruction.

Power Management
All ARCompact based processors support power management features. The SLEEP instruction halts
the pipeline and waits until an interrupt or a restart occurs. Sleep mode stalls the core pipeline and
disables any on-chip RAM.

Power Management Introduction

26 ARCompact™ Programmer's Reference

This page is intentionally left blank.

ARCompact™ Programmer's Reference 27

Chapter 2 — Data Organization and
Addressing

This chapter describes the data organization and addressing used by the ARCompact based processor.

Address Space
Conceptually the ARCompact ISA has three distinct 32-bit address spaces.

• The 32-bit Program Counter supports a 4GB address space for code.

• Data transfer instructions support 32-bit addressing for load/store data operations, providing a
4GB data space.

• An Auxiliary address space provides an additional 4G long word locations for register accesses.

 Code Space

Accessible via
instruction fetch
and PC relative

operations

Auxiliary Data &
IO

Accessible using
load (LR) and

store (SR)
operations

Data & IO

Accessible using
load (LD) and

store (ST)
operations

4GB

0

4GB

0

16GB

0

Figure 2 Address Space Model

All ARCompact based processors have physically independent Instruction and Data paths that allow
for von Neumann or Harvard configurations. However, the default memory configuration for the
processor unifies the Data and Instruction memory spaces. A load or store to memory address
location nn in data memory, will access location nn in the instruction memory.

 Auxiliary Data &
IO

Accessible using
load (LR) and

store (SR)
operations

Code, Data & IO
Space

Accessible via
instruction fetch,
PC relative, load
(LD) and store
(ST) operations

4GB

0

16GB

0

Data Formats Data Organization and Addressing

28 ARCompact™ Programmer's Reference

Figure 3 Unified Address Space Model

Data Formats
All ARCompact based processors by default, support a little-endian architecture. Some configurations
of the ARCompact based processor may be big-endian.

The ARCtangent-A5 processor does not support big-endian addressing.

The processor can operate on data of various sizes. The memory operations (load and store type
operations) can have data of 32 bit (long word), 16 bit (word) or 8 bit(byte) wide. Byte operations use
the low order 8 bits and may extend the sign of the byte across the rest of the long word depending on
the load/store instruction. The same applies to the word operations with the word occupying the low
order 16 bits. Data memory is accessed using byte addresses, which means long word or word
accesses can be supplied with non-aligned addresses. The following data alignments are supported:

• long words on long word boundaries
• words on word boundaries
• bytes on byte boundaries
A misaligned data access generates an exception in the ARC 700 processor.

For the ARCtangent-A5 and ARC 600 processors, control of misaligned data access will depend on
the configuration of the memory subsystem.

32-bit Data
All load/store, arithmetic and logical operations support 32-bit data. The data representation in a
general purpose register is shown in Figure 4 on page 28.

NOTE 32-bit (long word) data should be aligned to 32-bit (long word) boundaries.

Figure 5 on page 28 shows the little-endian representation in byte-wide memory. If the ARCompact
based processor supports big-endian addressing then the data would be stored in memory as shown in
Figure 6 on page 29.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 3 Byte 2 Byte 1 Byte 0

Figure 4 Register Containing 32-bit Data

Address 7 6 5 4 3 2 1 0

N Byte 0

N+1 Byte 1

N+2 Byte 2

N+3 Byte 3

Figure 5 32-bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Byte 3

N+1 Byte 2

N+2 Byte 1

N+3 Byte 0

Data Organization and Addressing Data Formats

ARCompact™ Programmer's Reference 29

Figure 6 32-bit Register Data in Byte-Wide Memory, Big-Endian

The ARCtangent-A5 processor does not support big-endian addressing.

16-bit Data
Load/store and some multiplication instructions support 16-bit data. 16-bit data can be converted to
32-bit data by using unsigned extend (EXTW) or signed extend (SEXW) instructions. The 16-bit data
representation in a general purpose register is shown in Figure 7 on page 29.

For the programmer's model the data is always contained in the lower bits of the core register and the
data memory is accessed using a byte address. This model is sometimes referred to as a data
invariance principle.

NOTE The actual memory bus implementation may have its own representation for data and address.
Please see associated documentation.

16-bit (word) data should be aligned to 16-bit (word) boundaries.

Figure 8 on page 29 shows the little-endian representation of 16-bit data in byte-wide memory. If the
ARCompact based processor supports big-endian addressing then the 16-bit data would be stored in
memory as shown in Figure 9 on page 29.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused Byte 1 Byte 0

Figure 7 Register containing 16-bit data

Address 7 6 5 4 3 2 1 0

N Byte 0

N+1 Byte 1

Figure 8 16-bit Register Data in Byte-Wide Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Byte 1

N+1 Byte 0

Figure 9 16-bit Register Data in Byte-Wide Memory, Big-Endian

The ARCtangent-A5 processor does not support big-endian addressing.

8-bit Data
Load/store operations support 8-bit data. 8-bit data can be converted to 32-bit data by using unsigned
extend (EXTB) or signed extend (SEXB) instructions. The 8-bit data representation in a general
purpose register is shown in Figure 10 on page 30.

For the programmer's model the data is always contained in the lower bits of the core register and the
data memory is accessed using a byte address. This model is sometimes referred to as a data
invariance principle.

NOTE The actual memory bus implementation may have its own representation for data and address.
Please see associated documentation.

Figure 11 on page 30 shows the representation of 8-bit data in byte-wide memory.

Regardless of the endianness of the ARCompact based system, the byte-aligned address, N, of the
byte is explicitly given and the byte will be stored or read from that explicit address.

Extended Arithmetic Data Formats Data Organization and Addressing

30 ARCompact™ Programmer's Reference

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused Byte 0

Figure 10 Register containing 8-bit data

Address 7 6 5 4 3 2 1 0

N Byte 0

Figure 11 8-bit Register Data in Byte-Wide Memory

1-bit Data
The ARCompact instruction set architecture supports single bit operations on data stored in the core
registers. A bit manipulation instruction includes an immediate value specifying the bit to operate on.
Bit manipulation instructions can operate on 8, 16 or 32 bit data located within core registers, as each
bit is individually addressable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b14 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Figure 12 Register containing 1-bit data

Extended Arithmetic Data Formats
The ARCtangent-A5 processor supports the extended arithmetic data formats when the optional
extended arithmetic instruction library is used.

The ARC 600 processor supports the extended arithmetic data formats when the optional extended
arithmetic instruction library is used.

The extended arithmetic instructions are built in to the ARC 700 processor and provide additional
data formats.

16-bit Data
16-bit integer or fractional data represented in the high or low parts of the operand. Certain extended
arithmetic instructions have specific alignment requirements.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit data ignored

Figure 13 16-bit data format, upper end

or
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ignored 16-bit data

Figure 14 16-bit data format, lower end

Dual 16-bit Data
Two 16-bit integer or fractional data packed as 32-bits. This is the source and destination operand
format for the dual 16-bit operations. Channel 1 and channel 2 refer to the high and low parts of the
32-bit data respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

channel 1 (high part) channel 2 (low part)

Figure 15 Dual 16 x 16 data format

Data Organization and Addressing Extended Arithmetic Data Formats

ARCompact™ Programmer's Reference 31

24-bit Data
24-bit fractional data is represented left justified in 32-bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

24-bit data Ignored

Figure 16 Single 24 x 24 data format

Q Arithmetic
The ‘Q’ mode is used for signed fractional math when using the multiply accumulate units.

Input Format
The input format is: sign . fraction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero

Figure 17 Multiply Accumulate 16-bit Input Data For mat

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero

Figure 18 Multiply Accumulate 24-bit Input Data For mat

Examples:

Hexadecimal Decimal
0x7FFFFFFF 0.9999..

0x40000000 0.5

0x10000000 0.125

0xC0000000 -0.5

0x80000000 -1.0

Output Format with No Q
When two of fractions are multiplied the result will always be a fractional number less than 1.

However, the sign bit will duplicate giving: sign sign . fraction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S Fraction zero

Figure 19 Multiply Accumulate 16-bit Output Data Fo rmat with no Q

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S S Fraction zero

Figure 20 Multiply Accumulate 24-bit Output Data Fo rmat with no Q

Output Format with Q
In ‘Q’ arithmetic mode, the multiplier result is shifted left one bit and a zero padded to the right.

The 'Q' arithmetic format is: sign . fraction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero 0

Figure 21 Multiply Accumulate 16-bit Output Data Fo rmat with Q

Instruction Formats Data Organization and Addressing

32 ARCompact™ Programmer's Reference

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S Fraction zero 0

Figure 22 Multiply Accumulate 24-bit Output Data Fo rmat with Q

Representation of +1
A special case arises when using Q arithmetic and multiplying –1.0 by –1.0. The result of this
operation is +1.0 which can be represented in a accumulator with guard bits enabled but not in a 32-
bit register.

For a fractional number represented in a register, the maximum positive number is always
0.99999...... (0x7FFFFFFF), the most positive number that can be represented.

Instruction Formats
The ARCompact instruction set supports freely intermixed 16-bit and 32-bit instructions.

The following instruction information can be contained in the 32-bit memory value:

• 32-bit instruction word

• Two 16-bit instruction words

• One 16-bit instruction word and the first part of a 32-bit instruction word containing the major
opcode

• The second part of a 32-bit instruction word and one 16-bit instruction word

• The second part of a 32-bit instruction word and the first part of the following 32-bit instruction
word containing the major opcode.

• 32-bit long immediate data in the same position as a 32-bit instruction word

Packed Middle-Endian Instruction Format
The basecase ARCompact based processor is, by default, a little-endian architecture. However, the
packed instruction format allows the instruction fetch mechanism to determine the address of the next
PC when a 32-bit memory word contains a 16-bit instruction. Part of this mechanism is to ensure that
any misaligned 32-bit instruction provides the opcode field in the first 16-bits that are retrieved from
memory. For the ARCompact based this means that the upper 16-bits of the 32-bit instruction must be
provided first, even in a little-endian memory system, hence the term middle-endian. Once an
instruction is unpacked into its full 32-bit instruction word the fields are interpreted as documented in
the following chapters.

Big-Endian Instruction Format
If the ARCompact based processor has been configured to be big-endian, then no special packing is
required since the upper 16-bits of a 32-bit instruction are always provided first.

The ARCtangent-A5 processor does not support big-endian addressing.

32-bit Instruction or 32-bit Immediate Data
Assuming a little-endian memory representation, a packed 32-bit instruction, or 32-bit immediate data
will be stored in memory as illustrated in Figure 24 on page 33. Assuming a big-endian memory

Data Organization and Addressing Instruction Formats

ARCompact™ Programmer's Reference 33

representation, a 32-bit instruction, or 32-bit immediate data will be stored in memory as illustrated in
Figure 25 on page 33.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 3 Byte 2 Byte 1 Byte 0

Figure 23 32-bit Instruction byte representation

Address 7 6 5 4 3 2 1 0

N Byte 2

N+1 Byte 3

N+2 Byte 0

N+3 Byte 1

Figure 24 32-bit instruction in Byte-Wide memory, L ittle-Endian

Address 7 6 5 4 3 2 1 0

N Byte 3

N+1 Byte 2

N+2 Byte 1

N+3 Byte 0

Figure 25 32-bit instruction in Byte-Wide memory, B ig-Endian

The ARCtangent-A5 processor does not support big-endian addressing.

Two 16-bit Instructions
Assuming a little-endian memory representation, two packed 16-bit instructions, Figure 26 on page
33, will be stored in memory as illustrated in Figure 27 on page 33. For a big-endian system two 16-
bit instructions will be stored in memory as shown in Figure 28 on page 34.

Instruction 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 1 Byte 1 Ins1 Byte 0

Instruction 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 2 Byte 1 Ins 2 Byte 0

Figure 26 16-bit Instruction byte representation

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte 0

N+1 Ins 1 Byte 1

N+2 Ins 2 Byte 0

N+3 Ins 2 Byte 1

Figure 27 Two 16-bit instructions in Byte-Wide memo ry, Little-Endian

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte 1

N+1 Ins 1 Byte 0

Instruction Formats Data Organization and Addressing

34 ARCompact™ Programmer's Reference

N+2 Ins 2 Byte 1

N+3 Ins 2 Byte 0

Figure 28 Two 16-bit instructions in Byte-Wide memo ry, Big-Endian

The ARCtangent-A5 processor does not support big-endian addressing.

16-bit Instruction Followed by 32-bit Instruction
Assuming a little-endian memory representation, a 16-bit instruction followed by a 32-bit instruction,
Figure 29 on page 34, will be stored in memory as illustrated in Figure 30 on page 34. For a big-
endian system the same instruction sequence will be stored in memory as shown in Figure 31 on page
34.

Instruction 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 1 Byte 1 Ins1 Byte 0

Instruction 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 2 Byte 3 Ins 2 Byte 2 Ins 2 Byte 1 Ins 2 Byte 0

Figure 29 16-bit and 32-bit Instruction byte repres entation

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte 0

N+1 Ins 1 Byte 1

N+2 Ins 2 Byte 2

N+3 Ins 2 Byte 3

N+4 Ins 2 Byte 0

N+5 Ins 2 Byte 1

Figure 30 16-bit and 32-bit instructions in Byte-Wi de Memory, Little-Endian

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte1

N+1 Ins 1 Byte 0

N+2 Ins 2 Byte 3

N+3 Ins 2 Byte 2

N+4 Ins 2 Byte 1

N+5 Ins 2 Byte 0

Figure 31 16-bit and 32-bit instructions in Byte-Wi de Memory, Big-Endian

The ARCtangent-A5 processor does not support big-endian addressing.

Series of 16-bit and 32-bit Instructions
Assuming a little-endian memory representation, a 16-bit and 32-bit instruction sequence, Figure 32
on page 35, will be stored in memory as illustrated in Figure 33 on page 35. For a big-endian system
the same instruction sequence will be stored in memory as shown in Figure 34 on page 36.

Data Organization and Addressing Instruction Formats

ARCompact™ Programmer's Reference 35

Instruction 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 1 Byte 1 Ins1 Byte 0

Instruction 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 2 Byte 3 Ins 2 Byte 2 Ins 2 Byte 1 Ins 2 Byte 0

Instruction 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 3 Byte 3 Ins 3 Byte 2 Ins 3 Byte 1 Ins 3 Byte 0

Instruction 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ins 4 Byte 1 Ins 4 Byte 0

Figure 32 16-bit and 32-bit instruction sequence, b yte representation

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte 0

N+1 Ins 1 Byte 1

N+2 Ins 2 Byte 2

N+3 Ins 2 Byte 3

N+4 Ins 2 Byte 0

N+5 Ins 2 Byte 1

N+6 Ins 3 Byte 2

N+7 Ins 3 Byte 3

N+8 Ins 3 Byte 0

N+9 Ins 3 Byte 1

N+10 Ins 4 Byte 0

N+11 Ins 4 Byte 1

Figure 33 16-bit and 32-bit instruction sequence, i n Byte-Wide memory, Little-Endian

Addressing Modes Data Organization and Addressing

36 ARCompact™ Programmer's Reference

Address 7 6 5 4 3 2 1 0

N Ins 1 Byte 1

N+1 Ins 1 Byte 0

N+2 Ins 2 Byte 3

N+3 Ins 2 Byte 2

N+4 Ins 2 Byte 1

N+5 Ins 2 Byte 0

N+6 Ins 3 Byte 3

N+7 Ins 3 Byte 2

N+8 Ins 3 Byte 1

N+9 Ins 3 Byte 0

N+10 Ins 4 Byte 1

N+11 Ins 4 Byte 0

Figure 34 16-bit and 32-bit instruction sequence, i n Byte-Wide memory, Big-Endian.

The ARCtangent-A5 processor does not support big-endian addressing.

Addressing Modes
There are six basic addressing modes supported by the architecture:

Register Direct operations are performed on values stored in registers
Register Indirect operations are performed on locations specified by the contents of

registers
Register Indirect with offset operations are performed on locations specified by the contents of a

register plus an offset value (in another register, or as immediate data)
Immediate operations are performed using constant data stored within the opcode
PC relative operations are performed relative to the current value of the Program

Counter (usually branch or PC relative loads)
Absolute operations are performed on data at a location in memory specified by a

constant value in the opcode.

The instruction formats for each addressing mode are specified in the following sections. The
descriptions use a format defined below. An instruction is described by the operation (op), including
optional flags, then the operand list.

Operation
<.f> writeback to status register flags

<.cc> condition code field (e.g. conditional branch)

<.d> delay slot follows instruction (used for branch & jump)

<.zz> size definition (Byte, Word. Long)

<.x> perform sign extension

<.di> data cache bypass (load and store operations)

<.aa> address writeback

Data Organization and Addressing Addressing Modes

ARCompact™ Programmer's Reference 37

Operand
a, b & c General Purpose registers (note reduced range for 16-bit instructions)

h General Purpose register, full range for 16-bit instructions.

u<X> unsigned immediate values of size <X>-bits

s<X> signed immediate values of size <X> bits

limm long immediate value of size 32-bits (stored as a second opcode)

Null Instruction Format
The ARCompact ISA supports a special type of instruction format, where the destination of the
operation is defined as null (0). When this instruction format is used the result of the operation is
discarded, but the condition codes may be set – this allows any instruction to act in a manner similar
to compare.

Example 1 Null Instruction Format

ADD.F r1, r2, r3 ;Normal syntax
 ;the result of r2+r3
 ;is written to r1 and
 ;the flags are updated

ADD.F 0,r2,r3 ;Null syntax
 ;the result of r2+r3 is
 ;used to update the
 ;flags, but is not saved.

MOV 0,0 ;Null syntax
 ;recommended NOP equivalent

As all 32-bit instruction formats support this mode, a 32-bit NOP is not explicitly defined. However,
the recommended NOP_L equivalent is MOV 0,0. The 16-bit instruction set provides a no-operation
instruction, NOP_S.

Conditional Execution
A number of the 32-bit instructions in the ARCompact ISA support conditional execution. A 5-bit
condition code field allows up to 32 independent conditions to be tested for before execution of the
instruction. Sixteen conditions are defined by default, with the remainder available for customer
definition, as required.

Conditional Branch Instruction
Both the 32-bit and 16-bit instructions support conditional branch (Bcc) operations. The 32-bit
instructions also include conditional jump and jump and link (Jcc and JLcc respectively), whereas the
16-bit instruction set provides unconditional jumps only.

Compare and Branch Instruction
The ARCompact ISA includes two forms of instruction, which integrate compare/test and branch.

The compare and branch conditionally (BRcc) command is the juxtaposition of compare (CMP) and
conditional branch (Bcc) instructions. These instructions are available in both 32-bit and limited 16-
bit versions.

The Branch if bit set/clear (BBIT0, BBIT1) instructions provide the operation of the bit test (BTST)
and branch if equal/not equal (BEQ/BNE) instructions. These instructions are only available as 32-bit
instructions.

Addressing Modes Data Organization and Addressing

38 ARCompact™ Programmer's Reference

To take advantage of the ARC 600 branch prediction unit, it is preferable to use a negative
displacement with a frequently taken BRcc, BBIT0 or BBIT1 instruction, and a positive displacement
with one that is rarely taken.

Serializing Instructions
Some instructions in the ARCompact based processor are serializing, meaning that they will have full
effect before any other instructions can begin execution. Serializing instructions will complete and
then flush the pipeline before the next instruction is fetched. BRK and SLEEP are serializing
instructions.

In the ARC 700 processor, FLAG, SYNC, and SR are also serializing instructions.

ARCompact™ Programmer's Reference 39

Chapter 3 — Register Set Details

Core Register Set
The following figure shows a summary of the core register set.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

r0

r1

-

r24

Basecase Core Registers

r25

r26 Global Pointer (GP)

r27 Frame Pointer (FP)

r28 Stack Pointer (SP)

r29 Level 1 interrupt link register (ILINK1)

r30 Level 2 interrupt link register (ILINK2)

r31 Branch link register (BLINK)

r32

- Extension Core Registers

r59

r60 LP_COUNT[31:0]

r61 Reserved

r62 Long immediate data indicator

r63 Program Counter [31:2], read-only, 32-bit aligned address. (PCL) 0 0

Figure 35 Core Register Map Summary

The default implementation of the core provides 32 general purpose 32-bit core registers, users can
increase the amount of available registers up to 60 if required. When executing 32-bit instructions, the
full range of core registers is available. 16-bit instructions have a limited access to core registers, as
shown in Table 2 on page 39.

Table 2 Core Register Set

Register 32-bit Instruction Function
and Default Usage

16-bit Instruction Access
to Register

r0 General Purpose Default Access

r1 General Purpose Default Access

r2 General Purpose Default Access

Core Register Set Register Set Details

40 ARCompact™ Programmer's Reference

Register 32-bit Instruction Function
and Default Usage

16-bit Instruction Access
to Register

r3 General Purpose Default Access

r4
-
r11

General Purpose MOV_S, CMP_S & ADD_S

r12 General Purpose Default Access

r13 General Purpose Default Access

r14 General Purpose Default Access

r15 General Purpose Default Access

r16
-
r25

General Purpose MOV_S, CMP_S & ADD_S

r26 (GP) Global Pointer LD_S, MOV_S, CMP_S & ADD_S

r27 (FP) Frame Pointer (default) MOV_S, CMP_S & ADD_S

r28 (SP) Stack Pointer
PUSH_S, POP_S, SUB_S, LD_S, ST_S,
MOV_S, CMP_S & ADD_S

r29 (ILINK1) Level 1 Interrupt Link MOV_S, CMP_S & ADD_S

r30 (ILINK2) Level 2 Interrupt Link MOV_S, CMP_S & ADD_S

r31 (BLINK) Branch Link Register
JL_S, BL_S, J_S, PUSH_S, POP_S,
MOV_S, CMP_S & ADD_S

r32

-
r59

Extension Core Registers MOV_S, CMP_S & ADD_S

r60 (LP_COUNT) Loop Counter MOV_S, CMP_S & ADD_S

R61 Reserved Reserved

R62 Long Immediate MOV_S, CMP_S & ADD_S

R63 (PCL)
Program Counter

(32-bit aligned)
MOV_S, CMP_S & ADD_S, LD_S

Core Register Mapping Used in 16-bit Instructions
The 16-bit instructions use only 3 bits for register encoding. However, the 16-bit move (MOV_S), the
16-bit compare (CMP_S) and the 16-bit add (ADD_S) instructions are capable of accessing the full
set of core registers, this facilitates copy and manipulation of data stored in registers not accessible to
other 16-bit instructions.

The most frequently used registers according to the ARCompact application binary interface (ABI)
are r0-r3 (ABI call argument registers), r12 (temporary register) and r13-r15 (ABI call saved
registers). The special register encoding is shown in Table 3 on page 40 and the ABI usage support is
shown in Table 4 on page 41.

Table 3 16-bit instruction register encoding

16-bit instruction register encoding 32-bit instruc tion register
0 r0

1 r1

2 r2

Register Set Details Core Register Set

ARCompact™ Programmer's Reference 41

16-bit instruction register encoding 32-bit instruc tion register
3 r3

4 r12

5 r13

6 r14

7 r15

Reduced Configuration of Core Registers
The ARC 600 processor can support a reduced set of only 16 core registers. In order to support the
ARCompact based ABI the set of reduced registers is indicated in Table 4 on page 41. The
RF_BUILD register is used to determine the configuration of core registers.

For the ARC 600 processor writes to non-implemented core registers are ignored, reads return zero,
and shortcutting and write-through is disabled. Loads (LD) to non-implemented core registers take
place, but the results are discarded. However, this load mechanism should be avoided.

The ARC 700 processor supports the full register set r0 to r31. However, any reference to a non-
implemented core register will raise an Instruction Error exception.

Table 4 Current ABI register usage

Register Use 16-bit Instruction
Access

Reduced Configuration

r0-r3 argument regs ● ●

r4-r7 argument regs

r8-r9 temp regs

r10-r11 temp regs ●

r12-r15 temp regs ● ●

r16-r25 saved regs

r26 GP (global pointer.) ●

r27 FP (frame pointer) ●

r28 SP (stack pointer) ●

r29 ILINK1 ●

r30 ILINK2 ●

r31 BLINK ●

Pointer Registers, GP, r26, FP, r27, SP, r28
The ARCompact application binary interface (ABI) defines 3 pointer registers: Global Pointer (GP),
Frame Pointer (FP) and Stack Pointer (SP) which use registers r26, r27 and r28 respectively. The
global pointer (GP) is used to point to small sets of shared data throughout execution of a program.
The stack pointer (SP) register points to the lowest used address of the stack. The frame pointer (FP)
register points to a back-trace data structure that can be used to back-trace through function calls. The
ABI usage of core registers is summarized in Table 4 on page 41.

Link Registers, ILINK1, r29, ILINK2, r30, BLINK, r3 1
The link registers (ILINK1, ILINK2, BLINK) are used to provide links back to the position where an
interrupt or branch occurred. They can also be used as general purpose registers, but if interrupts or
branch-and-link or jump-and-link are used, then these are reserved for that purpose.

Core Register Set Register Set Details

42 ARCompact™ Programmer's Reference

For the ARCtangent-A5 and ARC 600 processors ILINK1 or ILINK2 should not be used as targets
from multi-cycle instructions.

For the ARC 700 processor ILINK1 and ILINK2 registers are not accessible in user mode. Illegal
accesses from user mode to ILINK1 or ILINK2 will cause a Privilege Violation exception and the
cause will be indicated in the exception cause register (ECR).

The ILINK1 or ILINK2 registers should not be overwritten by a multi-cycle instruction that retires
out-of-order. This is consistent with the restriction ARC 700 already placed on using LP_COUNT
and minimises the impact on interrupt response time. Instructions affected include: LD, POP_S, EX,
MPY, MPYU, MPYH, MPYHU, and any ARC supplied or user defined extension instructions.

ARC 700 interrupt handling will be delayed until any instruction using ILINK1 or ILINK2 have
completed.

Loop Count Register, LP_COUNT, r60
The loop count register (LP_COUNT) is used for zero delay loops. Because LP_COUNT is
decremented if the program counter equals the loop end address it is not recommended that
LP_COUNT be used as a general purpose register. See LPcc instruction details on page 247 for
further information on the zero delay loop mechanism.

For the ARCtangent-A5 and ARC 600 processor, the LP_COUNT does not have next cycle bypass
like the other core registers.

The LP_COUNT register must not be used as the destination of a memory read instruction like LD or
POP_S. Instead, an intermediary register should be used, as follows:

Example 2 Correct set-up of LP_COUNT via a register

 LD r1,[r0] ; register loaded from memory
 MOV LP_COUNT, r1 ; LP_COUNT loaded from register

An ARC 700 LD, POP_S or EX instruction to the LP_COUNT register will cause an Instruction
Error exception.

The LP_COUNT register must not be used as the destination of multi-cycle instruction. An
intermediate register must be used – as with memory accesses to LP_COUNT. A multi-cycle
instruction writing to the LP_COUNT register will cause an Instruction Error exception.

The ARC 700 micro architecture ensures that the correct value is always returned when reading the
loop count register. The LP_COUNT register can be written at any point within the loop.

The update to the LP_COUNT register will take effect immediately after the writing instruction has
finished and after the loop-end mechanism detection has taken place. If the LPcc instruction is in the
last position of a loop, any change of program flow required (i.e. jump to LP_START) will be
completed before the LP_COUNT register is updated by the instruction.

As a result, writing LP_COUNT from the last instruction in the loop will take effect in the next loop
iteration. Writing LP_COUNT from any other position in the loop will take effect in the current loop
iteration.

In ARCtangent-A5, in order to guarantee the new value is read, there must be at least 2 instruction
words fetched between an instruction writing LP_COUNT and one reading LP_COUNT.

In ARC 600, in order to guarantee the new value is read, there must be at least 1 instruction words
fetched between an instruction writing LP_COUNT and one reading LP_COUNT.

Register Set Details Core Register Set

ARCompact™ Programmer's Reference 43

Unlike other core registers, the loop count register does not support short cutting (data forwarding).

Example 3 Reading Loop Counter after Writing

 MOV LP_COUNT,r0 ; update loop count register
 MOV r1,LP_COUNT ; old value of LP_COUNT
 MOV r1,LP_COUNT ; old value of LP_COUNT, ARCtangent-A5
 ; new value of LP_COUNT, ARC 600
 MOV r1,LP_COUNT ; new value of LP_COUNT

In order for the loop mechanism to work properly, the loop count register must be set up with at least
4 instruction words fetched after the writing instruction and before the end of the loop. In Example 4
on page 43, the MOV instruction does not comply with the rule – there are only three instruction
words (LP, OR, AND) fetched before the end of the loop. The MOV instruction must be followed by
a NOP to ensure predictable behavior.

Example 4 Invalid Loop Count set up

 MOV LP_COUNT,r0; do loop r0 times (flags not set)
 LP loop_end ; set up loop mechanism
loop_in: OR r21,r22,r23 ; first instruction in loop
 AND 0,r21,23 ; last instruction in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Example 5 Valid Loop Count set up

 MOV LP_COUNT,r0 ; do loop r0 times (flags not set)
 NOP ; allow time for loop count set up
 LP loop_end ; set up loop mechanism
loop_in: OR r21,r22,r23 ; first instruction in loop
 AND 0,r21,23 ; last instruction in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Note the emphasis on the number of instructions fetched between the LP_COUNT setup and the end
of the loop. Since code flow is not always linear, the programmer must ensure that the rules are
complied with even when a branch forms part of the code sequence between the write to LP_COUNT
and the end of the loop.

Example 6 Invalid Loop Count set up with branch

 MOV LP_COUNT,r0 ; do loop r0 times
 BAL loop_last
 ..
 ..
 LP loop_end ; set up loop mechanism
loop_in: OR r21,r22,r23 ; first instruction in loop
loop_last: AND 0,r21,23 ; last instruction in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Example 7 Valid Loop Count set up with branch

 MOV LP_COUNT,r0 ; do loop r0 times
 NOP ; 1
 NOP ; 2
 BAL loop_last ; 3 (loop_last is 4)
 ..
 ..
 LP loop_end ; set up loop mechanism
loop_in: OR r21,r22,r23 ; first instruction in loop
loop_last: AND 0,r21,23 ; last instruction in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Extension Core Registers Register Set Details

44 ARCompact™ Programmer's Reference

Reading the LP_COUNT register inside a loop is hazardous – multiple rules are overlaid. A previous
paragraph describes that the value read from the LP_COUNT will be unpredictable for two
instructions following the write. When reading LP_COUNT inside a loop, an additional complication
is that the result will be unpredictable if read from the last instruction word position in the loop:

Example 8 Reading Loop Counter near Loop Mechanism

 ...
 MOV r0,LP_COUNT ; loop count for this iteration
 MOV r0,LP_COUNT ; loop count for next iteration
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

The example loads a value into an intermediate register before being transferred to LP_COUNT.

Reserved Register, r61
Register r61 is reserved and cannot be used as a general purpose register.

For the ARC 700 processor any reference to the core register r61 will raise an Instruction Error
exception.

Immediate Data Indicator, limm, r62
Register position 62 is reserved for encoding long (32-bit) immediate data addressing modes onto
instruction words. It is reserved for that purpose and is not available to the programmer as a general
purpose register.

Program Counter Long-Word, PCL, r63
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[31:2] 0 0

Figure 36 PCL Register

Register r63 (PCL) is a read-only value of the 32-bit Program Counter (PC, 32-bit aligned) for use as
a source operand in all instructions allowing PC-relative addressing. The bottom two bits will always
return 0.

For the ARCompact based processor the PCL register returns the current instruction address, whereas
the PC register returns the the next instruction in sequence.

For the ARC 700 processor, using PCL as a destination register in an instruction will raise an
Instruction Error exception.

For the ARC 600 processor, using PCL as a destination register in an instruction will have undefined
behavior. Loads to PCL have unpredictable behavior and should also be avoided.

For the ARC 600 processor, PCL should not be used as a source operand in a branch on compare
instruction (BBIT0, BBIT1, or BRcc).

Extension Core Registers
The register set is extendible in register positions 32-59 (r32-r59).

Results of accessing the extension register region are undefined for the ARCtangent-A5 and ARC 600
processors. If a core register is read that is not implemented, then an unknown value is returned. No
exception is generated. Writes to non-implemented core registers are ignored. Loads to non-
implemented core registers should be avoided.

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 45

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

For the ARC 700 processor any reference to a non-implemented core register will raise an Instruction
Error exception

Illegal accesses from user mode to implemented core registers will cause a Privilege Violation
exception and the cause will be indicated in the exception cause register (ECR).

NOTE When an extension is present but disabled using the XPU register, the exception vector used is
Privilege Violation and not Illegal Instruction.

No extension core register can be the target of a load operation (including LD and EX). Thus register
values above 31 (with the exception of r62, the limm encoding used as the NULL destination) will
cause an Instruction Error exception when used as the destination of a load.

Multiply Result Registers, MLO, MMID, MHI
Table 5 on page 45 shows the defined extension core registers for the optional multiply.

Table 5 Multiply Result Registers

Register Name Use
r57 MLO Multiply low 32 bits, read only

r58 MMID Multiply middle 32 bits, read only

r59 MHI Multiply high 32 bits, read only

Auxiliary Register Set
The following figure shows a summary of the auxiliary register set.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x00

STATUS Z N C V E2 E1 H R PC[25:2]

0x01
SEMAPHORE Reserved S3 S2 S1 S0

0x02
LP_START LP_START[31:1] 0

0x03
LP_END LP_END[31:1] 0

0x04
IDENTITY CHIPID[15:0] ARCNUM[7:0] ARCVER[7:0]

0x05
DEBUG LD SH BH UB Resrvd ZZ Reserved IS Reserved FH SS

0x06
PC PC[31:1] 0

0x0A
STATUS32 Reserved L Z N C V U D

E
A
E A2 A1 E2 E1 H

0x0B
STATUS32_L1 Reserved L Z N C V U D

E
A
E A2 A1 E2 E1 R

0x0C
STATUS32_L2 Reserved L Z N C V U D

E
A
E A2 A1 E2 E1 R

0x25
INT_VECTOR_BASE INT_VECTOR_BASE[31:10] Reserved

0x41
AUX_MACMODE Reserved S2 Reserved S1 R R C

S R

0x43
AUX_IRQ_LV12 Reserved L2 L1

0x60 -
0x7F

Build Configuration Registers

0xC0 -
0xFF

Build Configuration Registers

Auxiliary Register Set Register Set Details

46 ARCompact™ Programmer's Reference

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x200

AUX_IRQ_LEV IRQ[31:3] Resrvd

0x201
AUX_IRQ_HINT Reserved HINT[4:0]

0x400
ERET Address[31:1] R

0x401
ERBTA Address[31:1] T

0x402
ERSTATUS Reserved

0x403
ECR Reserved Vector Number Cause Code Parameter

0x404
EFA Address[31:0]

0x40A
ICAUSE1 Reserved ICAUSE[4:0]

0x40B
ICAUSE2 Reserved ICAUSE[4:0]

0x40C
AUX_IENABLE IRQ[31:3] Resrvd

0x40D
AUX_ITRIGGER IRQ[31:3] Resrvd

0x412
BTA Address[31:1] T

0x413
BTA_L1 Address[31:1] T

0x414
BTA_L2 Address[31:1] T

0x415
AUX_IRQ_PULSE_

CANCEL
IRQ[31:3] R M R

0x416
AUX_IRQ_PENDING IRQ[31:3] Resrvd

Figure 37 Auxiliary Register Map

The basecase ARCompact based processor uses a small set of status and control registers and reserves
registers 0x60 to 0x7F, leaving the remaining 232 registers for extension purposes.

Table 6 Auxiliary Register Set

Number Auxiliary register name LR/SR
r/w

Description

0x0 STATUS r Status register (Original ARCtangent-A4
processor format)

0x1 SEMAPHORE r/w Inter-process/Host semaphore register

0x2 LP_START r/w Loop start address (32-bit)

0x3 LP_END r/w Loop end address (32-bit)

0x4 IDENTITY r Processor Identification register

0x5 DEBUG r Debug register

0x6 PC r PC register (32-bit)

0xA STATUS32 r Status register (32-bit)

0xB STATUS32_L1 r/w Status register save for level 1 interrupts

0xC STATUS32_L2 r/w Status register save for level 2 interrupts

0x21 COUNT0 r/w Processor Timer 0 Count value

0x22 CONTROL0 r/w Processor Timer 0 Control value

0x23 LIMIT0 r/w Processor Timer 0 Limit value

0x25 INT_VECTOR_BASE r/w Interrupt Vector Base address

0x41 AUX_MACMODE r/w Extended Arithmetic Status and Mode

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 47

Number Auxiliary register name LR/SR
r/w

Description

0x43 AUX_IRQ_LV12 r/w Interrupt Level Status

0x60 -
0x7F

RESERVED r Build Configuration Registers

0xC0 -
0xFF

RESERVED r Build Configuration Registers

0x100 COUNT1 r/w Processor Timer 1 Count value

0x101 CONTROL1 r/w Processor Timer 1 Control value

0x102 LIMIT1 r/w Processor Timer 1 Limit value

0x200 AUX_IRQ_LEV r/w Interrupt Level Programming

0x201 AUX_IRQ_HINT r/w Software Triggered Interrupt

0x400 ERET r/w Exception Return Address

0x401 ERBTA r/w Exception Return Branch Target Address

0x402 ERSTATUS r/w Exception Return Status

0x403 ECR r Exception Cause Register

0x404 EFA r/w Exception Fault Address

0x40A ICAUSE1 r Level 1 Interrupt Cause Register

0x40B ICAUSE2 r Level 2 Interrupt Cause Register

0x40C AUX_IENABLE r/w Interrupt Mask Programming

0x40D AUX_ITRIGGER r/w Interrupt Sensitivity Programming

0x410 XPU r/w User Mode Extension Enables

0x412 BTA Branch Target Address

0x413 BTA_L1 r/w Level 1 Return Branch Target

0x414 BTA_L2 r/w Level 2 Return Branch Target

0x415 AUX_IRQ_PULSE_CANCEL w Interrupt Pulse Cancel

0x416 AUX_IRQ_PENDING r Interrupt Pending Register

Illegal Auxiliary Register Usage
Accessing the extension auxiliary register region in the basecase version of the ARCtangent-A5
processor will return the ID register. If an auxiliary register is read that is defined by an extension but
not implemented, then 0 is returned. No exception is generated. Writes to non implemented auxiliary
registers are ignored.

If a non existent extension auxiliary register is read in the ARC 600 processor, the value returned is
the ID register. If an auxiliary register is read that is defined by an extension but not implemented,
then 0 is returned. No exception is generated. Writes to non implemented auxiliary registers are
ignored.

For the ARC 700 processor a read or a write of a non existent auxiliary register will raise an
Instruction Error exception. Unless otherwise stated in each register description, if a write-only
auxiliary register is read, an Instruction Error exception will be raised. Likewise, if a read-only
auxiliary register is written, an Instruction Error exception will be raised.

Particular rules apply to Build Configuration Registers.

Auxiliary Register Set Register Set Details

48 ARCompact™ Programmer's Reference

Status Register (Obsolete), STATUS, 0x00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Z N C V E2 E1 H R NEXT_PC[25:2]

Figure 38 STATUS Register (Obsolete)

The status register (STATUS) is used for legacy code that may be recompiled to use the ARCompact
ISA. Full status and program counter information is provided in the PC register (PC) and 32-bit status
register (STATUS32)

Semaphore Register, SEMAPHORE, 0x01
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED S[3:0]

Figure 39 Semaphore Register

The SEMAPHORE register, Figure 39 on page 48, is used to control inter-process or ARCompact
based processor to host communication. The basecase ARCompact based processor has at least 4
semaphore bits (S[3:0]). The remaining bits of the semaphore register are reserved for future versions
of ARCompact based processors.

Each semaphore bit is independent of the others and is claimed using a set-and-test protocol. The
semaphore register can be read at any time by the host or ARCompact based processor to see which
semaphores it currently owns.

To Claim a Semaphore Bit
Write ‘1’ to the semaphore bit.

Read back the semaphore bit. Then:

• If returned value is ‘1’ then semaphore has been obtained.

• If returned value is ‘0’ then the host has the bit.

To Release a Semaphore Bit.
• Write a ‘0’ to the semaphore bit.

Mutual exclusion is provided between the ARCompact based processor and the host. In other words,
if the host claims a particular semaphore bit, the ARCompact based processor will not be able to
claim that same semaphore bit until the host has released it. Conversely, if the ARCompact based
processor claims a particular semaphore bit, the host will not be able to claim that same semaphore bit
until the ARCompact based processor has released it.

The semaphore bits are cleared to 0 after a Reset, which is the state where neither the ARCompact
based processor nor the host have claimed any semaphore bits. When claiming a semaphore bit (i.e.
setting the semaphore bit to a ‘1’), care should be taken not to clear the remaining semaphore bits.
Keeping a local copy, or reading the semaphore register, and OR-ing that value with the bit to be
claimed before writing back to the semaphore register could accomplish this.

Example 9 Claiming and Releasing Semaphore

 .equ SEMBIT0,1 ; constant to indicate semaphore bit 0
 .equ SEMBIT1,2 ; constant to indicate semaphore bit 1
 .equ SEMBIT2,4 ; constant to indicate semaphore bit 2
 .equ SEMBIT3,8 ; constant to indicate semaphore bit 3

LR r2,[SEMAPHORE] ; r2 <= semaphore pattern already attained
OR r2,r2,SEMBIT1 ; r2 <= semaphore pattern attained and wanted
SR r2,[SEMAPHORE] ; attempt to get the semaphore bit

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 49

LR r2,[SEMAPHORE] ; read back semaphore register
AND.F 0,r2,SEMBIT1 ; test for the semaphore bit being set
 ; EQ means semaphore not attained
 ; NE means semaphore attained

NOTE Replacing the statement OR r2,r2,SEMBIT1 with BIC r2,r2,SEMBIT1 will release the semaphore,
leaving any previously attained semaphores in their attained state.

Loop Control Registers, LP_START, 0x02, LP_END, 0x0 3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LP_START[31:1] R

Figure 40 LP_START Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LP_END[31:1] R

Figure 41 LP_END Register

The loop start (LP_START) and loop end (LP_END) registers contain the addresses for the zero
delay loop mechanism. Figure 40 on page 49 and Figure 41 on page 49 show the format of these
registers. The loop start and loop end registers can be set up with the special loop instruction (LPcc)
or can be manipulated with the auxiliary register access instructions (LR and SR).

LP_START and LP_END registers follow the auxiliary PC register (PC) format.

In the ARCompact based processor bit 0 is reserved and should always be set to zero. When reading,
bit 0 returns zero. Programming cautions exist when using the loop control registers, See LPcc
instruction details on page 247 and Loop Count Register details on page 42 for further information.

Identity Register, IDENTITY, 0x04
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHIPID[15:0] ARCNUM[7:0] ARCVER[7:0]

Figure 42 Identity Register

Figure 42 on page 49 shows the identity register (IDENTITY). It contains the unique chip identifier
assigned by ARC International (CHIPID[15:0]), the additional identity number (ARCNUM[7:0]) and
the ARCompact based basecase version number (ARCVER[7:0]).

The format for ARCVER[7:0] is

• 0x00 to 0x0F = ARCtangent-A4 processor family (Original 32-Bit only processor cores)

• 0x10 to 0x1F = Reserved for ARCtangent-A5 processor family

• 0x20 = Reserved for ARC 600 processor family

• 0x21 = ARC 600 processor family, basecase version 1

• 0x22 = ARC 600 processor family, basecase version 2, supports additional BCR region and
accesses to non-existent BCRs will return 0.

• 0x23 to 0x2F = Reserved for ARC 600 processor family

• 0x30 = Reserved for ARC 700 processor family

• 0x31 = ARC 700 processor family, basecase version 1

Auxiliary Register Set Register Set Details

50 ARCompact™ Programmer's Reference

• 0x32 = ARC 700 processor family, basecase version 2, supports additional BCR region and
accesses to BCR region have updated exception model.

• 0x33 to 0x3F = Reserved for ARC 700 processor family

• 0x40 to 0xFF = Reserved

Debug Register, DEBUG, 0x05
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LD SHBHUB Reserved ZZ RA Reserved IS Reserved FH SS

Figure 43 Debug Register

The debug register (DEBUG) contains the following bits:

• load pending bit (LD);

• self halt (SH);

• breakpoint halt (BH);

• sleep mode (ZZ):

• reset applied (RA);

• single instruction step (IS);

• single step (SS);and

• force halt (FH).

LD can be read at any time by either the host (see The Host on page 337) or the ARCompact based
processor and indicates that there is a delayed load waiting to complete. The host should wait for this
bit to clear before changing the state of the ARCompact based processor.

SH indicates that the ARCompact based processor has halted itself with the FLAG instruction, this bit
is cleared whenever the H bit in the STATUS register is cleared (i.e. The ARCompact based
processor is running or a single step has been executed).

Breakpoint Instruction Halt (BH) bit is set when a breakpoint instruction has been detected in the
instruction stream at stage one of the pipeline. A breakpoint halt is set when BH is ‘1’. This bit is
cleared when the H bit in the status register is cleared, e.g. single stepping or restarting the
ARCompact based processor.

The UB bit indicates that BRK is enabled in user mode. This bit is provided to allow an external
debugger to debug user-mode tasks. Under all other circumstances, this bit will be set to 0 to ensure
that a user-mode task cannot stop the processor by executing a BRK instruction.

ZZ bit indicates that the ARCompact based processor is in "sleep" mode. The ARCompact based
processor enters sleep mode following a SLEEP instruction. ZZ is cleared whenever the ARCompact
based processor "wakes" from sleep mode.

For the ARC 600 processor, the RA bit is set when a reset has occurred. This bit can be read at any
time by either the host (see The Host on page 337) or the ARCompact based processor. The host
reads this bit to determine if the system has reset. The bit can only be cleared by the host by writing to
the DEBUG register.

For the ARC 600 core, single instruction stepping is provided through the use of the IS and SS bits.
Single instruction step (IS) is used in combination with SS. When IS and SS are both set by the host
the ARC 600 core will execute one full instruction.

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 51

For the ARC 700 core single instruction stepping is provided through the use of the IS bit, the SS bit
is ignored. When the IS bit is set by the host the ARC 700 core will execute one full instruction.

The force halt bit (FH) is the correct method of stopping the ARCompact based processor externally
by the host. The host setting this bit does not have any side effects when the ARCompact based
processor is halted already. FH is not a mirror of the STATUS register H bit:- clearing FH will not
start the processor. FH always returns 0 when it is read.

Program Counter, PC, 0x06
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEXT_PC[31:1] R

Figure 44 PC Register

The PC register contains the next instruction address based on the 32-Bit program counter. In the
ARCompact based processor bit 0 is ignored and should always be set to zero. When reading, bit 0
returns zero.

For the ARCompact based processor the PC register returns the next instruction in sequence, or the
target address if the LR instruction is in the delay slot of a branch instruction.

If an LR instruction is in the last instruction position of a zero-overhead loop, the value read from the
PC register is undefined.

Status Register 32-bit, STATUS32, 0x0A
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED L Z N C V U DEAEA2 A1 E2 E1 H

Figure 45 STATUS32 Register

The status register contains the status flags. The status register (STATUS32), shown in Figure 45 on
page 51, contains the following status flags: zero (Z), negative (N), carry (C) and overflow (V); the
interrupt mask bits (E[2:1]); and the halt bit (H).

The status register is updated by the processor during program flow.The FLAG instruction can be
used to set some of the bits in the status register directly, for example to set the Level 1 and Level 2
Interrupt Enables.

The status register can only be read by the processor. However, the status register can be read and
written by the host.

When the ARC 700 processor reads the status register in user mode, only the Z, N, C, and V bits are
valid. In kernel mode all bits of the register are valid when reading the status register.

The A1 and A2 fields indicate that an interrupt service routine is active. A1 is set on entry to a level 1
interrupt, A2 is set on entry to a level 2 interrupt. Only one bit, A1 or A2, is ever set at any one time
in STATUS32. For example, when a level 2 interrupt interrupts a level 1 service routine, A2 is set and
A1 is cleared in STATUS32, and the level 2 interrupt status link register STATUS32_L2 will have
therefore have A2 cleared and A1 set. When the return from interrupt instruction, RTIE, is executed,
A1 and A2 are loaded with values from the selected interrupt status link register (STATUS32_L1 for
a level 1 interrupt or STATUS32_L2 for a level 2 interrupt).

The AE bit is set on entry to an exception, and indicates that an exception is active and that the
Exception Return Address register (ERET) is valid. When the return from interrupt/exception
instruction, RTIE, is executed AE is loaded with the value in the ERSTATUS register.

Auxiliary Register Set Register Set Details

52 ARCompact™ Programmer's Reference

The DE bit is set in order to indicate that the instruction pointed to by PC32 is the delay slot
instruction of a branch. When an instruction completes and this bit is set, the instruction is the delay
slot instruction of a branch, irrespective of whether branch or jump is taken. As a result the next
instruction required is from the target of the branch. Hence the next PC value is loaded from the
Branch Target Address register (BTA). On an exception or interrupt return, the STATUS32 register is
reloaded by the RTIE instruction. If the STATUS32[DE] bit is set true as a result of the RTIE
operation, the Branch Target Address register (BTA) is simultaneously restored from the Exception
Branch Target Address register (ERBTA). The DE bit is only readable by an external debugger or
from kernel mode. Using the LR instruction in user mode will return 0 in this bit.

U indicates User mode. User mode restricts access to machine state. Kernel mode, when U is 0,
allows an operating system full access. Kernel mode is entered on Reset, interrupt or exception. U is
reset to its previous value on interrupt or exception exit when status flags are reloaded from link
register.

L indicates whether the zero-overhead loop mechanism is disabled. L is set to 1, indicating loop is
disabled on an interrupt or exception. L is reset to its previous value when status flags are reloaded
from the link register. L is also cleared when a loop instruction (LPcc) is executed.

The ARCtangent-A5 and ARC 600 processors do not use the A1, A2, AE, DE, U or L fields. These
fields will return 0 when read with the LR instruction.

All fields, except the H bit, are set to 0 when the processor is Reset. The H bit is set dependent on the
configuration of the processor run state on Reset.

CAUTION

There must be at least one instruction between a FLAG instruction and a "J.F<.D> [ILINK1]" or
"J.F<.D> [ILINK2]" instruction.

FLAG 0x100
NOP
J.F [ilink1]

Branch Target Address, BTA, 0x412
The BTA register contains the target address of any branch or jump. The value in the BTA register is
dependent on whether the branch or jump is taken. The BTA register holds the address to be used
after the delay slot has committed in all circumstances.

If the branch or jump is taken the BTA register will contain the target address of the branch or jump.
If the branch or jump is not taken the BTA register will contain the address of the instruction that is
due to execute immediately after the instruction in the delay slot.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address[31:1] T

Figure 46 BTA, Branch Target Address

In the ARCompact based processor, the T field (bit 0) when set indicates whether the address field
contains the target of a taken branch or jump. When the T field is clear, the address field contains
address of the next instruction due to execute if the branch/jump is not executed.

Since interrupts are permitted between a branch/jump and an executed delay slot instruction (an
exception can also occur on the delay slot instruction), special branch target address registers are used
for interrupt and exception handler returns.

When returning from exceptions or interrupts, if the STATUS32[DE] bit will be set true as a result of
the RTIE operation, the value in the BTA register will have been restored from the appropriate
Interrupt or Exception Return BTA register (ERBTA, BTA_L1 or BTA_L2), allowing the program to
resume execution at the correct point.

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 53

When returning from an interrupt, the Branch Target Address register (BTA) is loaded from the
appropriate high- or low-level Interrupt Return Branch Target Address register (BTA_L1 or
BTA_L2).

When returning from an exception, the Branch Target Address register (BTA) is loaded from the
Exception Return Branch Target Address (ERBTA) register.

NOTE

Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Interrupt Status Link Registers, STATUS32_L1, 0x0B,
STATUS32_L2, 0x0C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED L Z N C V U DE AE A2 A1 E2 E1 R

Figure 47 STATUS32_L1, STATUS32_L2 Registers

A level 1 or level 2 interrupt will save the current status register STATUS32 in auxiliary register
STATUS32_L1 or STATUS32_L2.

If J.F<.D> [ILINK1] or J.F<.D> [ILINK2] instructions are executed to return from level 1 or level 2
interrupts then the current status register STATUS32 will be restored from auxiliary register
STATUS32_L1 or STATUS32_L2 accordingly.

In the ARCompact based processor bit 0 is ignored and should always be set to zero. When reading,
bit 0 returns zero.

CAUTION

For the ARCtangent-A5 and ARC 600 processor there must be at least one instruction between
writing to STATUS32_L1 or STATUS32_L2 using an SR instruction and a "J.F<.D> [ILINK1]" or
"J.F<.D> [ILINK2]" instruction.

SR r0,[STATUS32_L1]
NOP
J.F [ilink1]

Interrupt Branch Target Link Registers, BTA_L1, 0x4 13, BTA_L2,
0x414
When returning from an interrupt, the Branch Target Address register (BTA) is loaded from the
appropriate high- or low-level Interrupt Return Branch Target Address register (BTA_L1 or
BTA_L2).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address[31:1] T

Figure 48 BTA_L1 and BTA_L2, Interrupt Return Branc h Target Registers

NOTE

Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Interrupt Vector Base Register, INT_VECTOR_BASE, 0x 25
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT_VECTOR_BASE[31:10] 0 0 0 0 0 0 0 0 0 0

Auxiliary Register Set Register Set Details

54 ARCompact™ Programmer's Reference

Figure 49 INT_VECTOR_BASE Register

The Interrupt Vector Base register (INT_VECTOR_BASE) contains the base address of the interrupt
vectors. On Reset the interrupt vector base address is loaded with a value from the interrupt system,
see Interrupt Vector Base Address Configuration, VECBASE_AC_BUILD on page 80. This value
can be read from INT_VECTOR_BASE at any time. During program execution the interrupt vector
base can be changed by writing to INT_VECTOR_BASE. The interrupt vector base address can be
set to any 1Kbyte-aligned address. The bottom 10 bits are ignored for writes and will return 0 on
reads.

Interrupt Level Status Register, AUX_IRQ_LV12, 0x43
After an interrupt has occurred, the level of an interrupt is indicated by the interrupt level status
register (AUX_IRQ_LV12) auxiliary register. Two sticky bits are provided to indicate when a level 1
or level 2 interrupt has been taken.

The interrupt level status register is complementary to the A1 and A2 bits of the STATUS32 register.

The sticky bits will stay set until reset by software. Writing '1' to the bit position resets the bits in the
interrupt status register, writing a '0' has no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved L2 L1

Figure 50 AUX_IRQ_LV12 Interrupt Level Status Regis ter

The level 1 interrupt status bit (L1) is set in hardware if a level 1 interrupt is taken. The L1 bit is
cleared in software by writing a '1' to L1. The level 2 interrupt status bit L2 is set in hardware if a
level 2 interrupt or exception is taken. The L2 bit is cleared in software by writing a '1' to L2.

Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200
The priority level programming register (AUX_IRQ_LEV) contains the set of interrupts and their
priority set. Each interrupt has a corresponding bit position.

A value of '0' in the interrupts bit position represents that the interrupt belongs to priority level 1 set
of interrupts and a value of '1' means that the interrupt belongs to priority level 2 set of interrupts.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt priority level for IRQ [31:16] Interrupt priority level for IRQ [15:3] Reservd

Figure 51 AUX_IRQ_LEV Interrupt Level Programming R egister

Bits 0 to 2 are reserved and should be written as 0. Reading from these bits returns 0.

Bits 16 to 31 are only used when the extension interrupts IRQ16-IRQ31 are enabled. If the extension
interrupts are not enabled then writing to bits 16 to 31 has no effect and reading returns 0.

After Reset the ARCtangent-A5 processor and ARC 600 processor set all interrupts to their default
priority state as shown in the interrupt vector tables, Table 23 and Table 24.

After Reset the ARC 700 processor sets all interrupts to their default priority state as shown in the
interrupt vector table, Table 22.

In order to update interrupt priority levels, it is recommended that the AUX_IRQ_LEV register is first
read, appropriate bits are updated, and then finally re-written by the ARCompact based code or by the
host (see The Host on page 337).

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 55

Software Interrupt Trigger, AUX_IRQ_HINT, 0x201
In addition to the SWI/TRAP0 instruction, the interrupt system allows software to generate a specific
interrupt by writing to the software interrupt trigger register (AUX_IRQ_HINT). Level 1 and level 2
interrupts (IRQ3 to IRQ31) can be generated through the AUX_IRQ_HINT register. The
AUX_IRQ_HINT register can be written through ARCompact based code or from the host (see The
Host on page 337).

The software triggered interrupt mechanism can be used even if there are no associated interrupts
connected to the ARCompact based processor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Interrupt no.

Figure 52 AUX_IRQ_HINT Software Triggered Interrupt

Writing the chosen interrupt value to the AUX_IRQ_HINT register generates a software triggered
interrupt. For example a value of 0x09 will trigger an IRQ9 interrupt.

Writing 0x00 to the AUX_IRQ_HINT register clears a software triggered interrupt.

Writing a value greater than 0x1F will clear any software triggered interrupt. Writing values 0x0 to
0x2 have no effect

A read from the AUX_IRQ_HINT register will return the value of the current software triggered
interrupt.

A new interrupt should not be generated using the software triggered interrupt system until any
outstanding interrupts have been serviced. The AUX_IRQ_HINT register should be read and checked
as 0x0 before a new value is written.

If the extension interrupts are not enabled then values outside the range 3 to 15 will clear the
AUX_IRQ_HINT register. If extension interrupts are enabled then the valid range of values is
extended from 3 to 31.

Since both the host and the ARCompact based code can use the AUX_IRQ_HINT register, a
semaphore system needs to be used to control ownership.

The SEMAPHORE register which is available in the ARCtangent-A5 and ARC 600 processor can be
used for this purpose.

In the case of pulse sensitive interrupts, no state is kept to indicate what generated the interrupt. It is
best practice not to have multiple interrupt sources for pulse sensitive interrupts. For example if an
interrupt was generated from both a pulse sensitive interrupt and a software triggered interrupt, then
the interrupt service routine would not be able to determine that the pulse sensitive interrupt had also
occurred.

It is recommended that the associated interrupt priority level is masked before generating a pulse
sensitive interrupts using the AUX_IRQ_HINT register.

For the ARC 700 processor, the AUX_IENABLE register can also be used to mask interrupts
generated with AUX_IRQ_HINT.

Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSE2, 0x40B
When the A1 or A2 bit in the STATUS32 register is true, the associated interrupt cause register
(ICAUSE1 or ICAUSE2) will contain the number of the interrupt being handled. Note that a Memory
Error interrupt will cause ICAUSE2 to be set to 0x1.

Auxiliary Register Set Register Set Details

56 ARCompact™ Programmer's Reference

Writing to the Interrupt Cause registers will overwrite any value that has been set by the interrupt
system.

The interrupt cause registers, ICAUSE1 and ICAUSE2, are not affected when returning from an
interrupt, and when read will return the value of the last interrupt taken.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ICAUSE[4:0]

Figure 53 ICAUSE1 and ICAUSE2 Interrupt Cause Regis ters

Interrupt Mask Programming Register, AUX_IENABLE, 0 x40C
The ARC 700 processor uses the AUX_IENABLE register to enable individual masking of each
incoming interrupt. Writing a value of '1' in the interrupts bit position enables that particular interrupt.
To disable all interrupts, by turning off the interrupt unit, use the FLAG instruction to reset the Level
1 and Level 2 Interrupt Enables.

The AUX_IENABLE register can also be used to mask interrupts generated with the
AUX_IRQ_HINT register.

Bits 0 to 2 are reserved and should be written as 0b111. Reading from these bits returns 0b111.

Enable bits for non-present interrupts will return 0, and writes to these bits will be ignored.

If the full set of interrupts are available the AUX_IENABLE register is set to 0xFFFFFFFF when the
processor is Reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Enables for IRQ [31:16] Enables for IRQ [15:3] Reservd

Figure 54 AUX_IENABLE, Interrupt Mask Programming R egister

Interrupt Sensitivity Programming Register, AUX_ITR IGGER, 0x40D
The ARC 700 processor uses the AUX_ITRIGGER register to allow an operating system to select
whether each interrupt will be level or pulse sensitive.

Bits 0 to 2 are reserved and should be written as 0. Reading from these bits returns 0.

A value of '0' in the interrupts bit position represents that the interrupt is level sensitive and a value of
'1' means that the interrupt is pulse sensitive.

This register is set to 0x0 when the processor is Reset which sets all interrupts to be level sensitive.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Trigger Type for IRQ [31:16] Trigger Type for IRQ [15:3] Reservd

Figure 55 AUX_ITRIGGER, Interrupt Sensitivity Progr amming Register

Interrupt Pulse Cancel Register, AUX_IRQ_PULSE_CANC EL, 0x415
A write-only 32-bit register, AUX_IRQ_PULSE_CANCEL, is provided to allow the operating
system to clear a pulse-triggered interrupt after it has been received, and before it is serviced. Writing
'1' to the relevant bit will clear the interrupt if it is set to pulse-sensitivity. If the interrupt is of type
level sensitivity, then writing to its relevant bit position will have no effect.

Bits 0 and 2 are reserved and should be written as 0.

Bit 1 is set when a Memory Error interrupt occurs, it is cleared by writing to it.

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 57

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pulse Cancel for IRQ [31:16] Pulse Cancel for IRQ [15:3] R M R

Figure 56 AUX_IRQ_PULSE_CANCEL Interrupt Pulse Canc el Register

Interrupt Pending Register, AUX_IRQ_PENDING, 0x416
The read-only Interrupt Pending register, AUX_IRQ_PENDING, is provided to allow the operating
system to determine which interrupts are currently asserted and awaiting service.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt Pending IRQ [31:16] Interrupt Pending IRQ [15:3] Reservd

Figure 57 AUX_IRQ_PENDING, Interrupt Pending Regist er

Reading from bits 0 to 2 bits returns 0.

Exception Return Address, ERET, 0x400
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address[31:1] R

Figure 58 ERET, Exception Return Address

When returning from an exception the program counter (PC) is loaded from the Exception Return
Address (ERET) register.

When a fault is detected on an instruction, the exception return address register (ERET) is loaded with
the PC value used to fetch the faulting instruction.

If the exception is coerced using a TRAP_S or TRAP0 instruction, the exception return register
(ERET) is loaded with the address of the next instruction to be fetched after the TRAP instruction.
This value is the architectural PC expected after the TRAP completes – hence pending branches and
loops are taken into account.

In the ARCompact based processor bit 0 is ignored and should always be set to zero. When reading,
bit 0 returns zero.

Exception Return Branch Target Address, ERBTA, 0x40 1
When returning from an exception, the Branch Target Address register (BTA) is loaded from the
Exception Return Branch Target Address (ERBTA) register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address[31:1] T

Figure 59 ERBTA, Exception Return Branch Target Add ress

NOTE

Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits. The support of these registers is indicated by the BTA_LINK_BUILD
configuration register.

Exception Return Status, ERSTATUS, 0x402
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED L Z N C V U DE AE A2 A1 E2 E1 R

Figure 60 ERSTATUS, Exception Return Status Registe r

An exception will save the current status register STATUS32 in auxiliary register ERSTATUS.

Auxiliary Register Set Register Set Details

58 ARCompact™ Programmer's Reference

When the RTIE instruction is executed to return from the exception handler then the current status
register STATUS32 will be restored from auxiliary register ERSTATUS.

In the ARCompact based processor bit 0 is ignored and should always be set to zero. When reading,
bit 0 returns zero.

Exception Cause Register, ECR, 0x403
The Exception Cause register (ECR) is provided to allow an exception handler access to information
about the source of the exception condition. The value in the Exception Cause register is made up as
shown in Figure 61 on page 58.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Vector Number Cause Code Parameter

Figure 61 ECR, Exception Cause Register

The Vector Number is an eight-bit number, directly corresponding to the vector number and vector
name being used. See Table 25 on page 82 for a list of vector numbers.

Since multiple exceptions share each vector, the eight bit Cause Code is used to identify the exact
cause of an exception. See Table 26 on page 87 for a full list of exception cause codes.

The eight bit Parameter is used to pass additional information about an exception that cannot be
contained in the previous fields. See Table 26 on page 87 for a full list of exception parameters.

Writing to the Exception Cause register will overwrite any value that has been set by the exception
system.

Interrupts do not set the exception cause register. Receipt of interrupts sets the appropriate ICAUSEn
register to the number of the last taken interrupt.

Exception Fault Address, EFA, 0x404
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address[31:0]

Figure 62 EFA, Exception Fault Address

When an exception occurs, the exception fault address register (EFA) is loaded with the address
associated with the fault. For memory data operations, this is the target of the operation. For other
faults, the EFA register will be loaded with the PC value used to fetch the faulting instruction.

User Mode Extension Enable Register, XPU, 0x410
The 32-bit register, XPU, is provided to control access to extension instructions and state. The enable
bits of the register is used to control groups of extension functions rather than individual instructions
or registers. The register allows:

• Disabling of extension functions - for example to permit software emulation of extensions to be
tested

• Operating systems to grant user-mode access to extension functions and state

• Intelligent context switching of extension state (lazy context switch)

• Context switching of extension hardware in system containing reconfigurable logic

• Extension enables could be used as part of a power reduction scheme

A group of extensions would be a related set of instructions and registers, for example

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 59

• DSP extensions group

• Cryptography extensions group

• etc

All extension functions are assigned to an extensions group.

When an attempt is made to access an extension function (whether instruction or state), the
permission bit for the extension group is checked. If the permission is enabled, the access is
successful. If the permission is disabled, the CPU will generate a Privilege Violation.

The exception cause register (ECR) is loaded with an appropriate code in order that an OS can:

• Distinguish between an access to a disabled extension and a non-existent extension.

• For a disabled-extension, determine which extension group was accessed

With this functionality, various scenarios are possible for OS control of extensions.

User Mode Extension Enable Register
On Reset, the user mode extensions permission register is set to 0x00000000 in order to disable all
extension functions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

u31 u30 u29 u28 u27 u26 u25 u24 u23 u22 u21 u20 u19 u18 u17 u16 u15 u14 u14 u12 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

Figure 63 XPU, User Mode Extension Permission Regis ter

Groups u0 to u15 are reserved for extensions provided by ARC International. Groups u16 to u31 are
available for customer use.

Processor Timers Auxiliary Registers
The processor timers are two independent 32-bit timers. Timer 0 and timer 1 are identical in
operation, their only difference being that they are connected to different interrupts.

The processor timers are connected to a system clock signal that operates even when the ARCompact
based processor is in sleep mode. The timers can be used to generate interrupt signals that will wake
the processor from sleep mode.

During ARC 700 debug access, for example when the debug system is reading auxiliary registers or
memory, the processor timers are paused so that debug operations are not included in the cycle count.

The processor timers automatically reset and restart their operation after reaching the limit value. The
processor timers can be programmed to count only the clock cycles when the processor is not halted.
The processor timers can also be programmed to generate an interrupt or to generate a system Reset
upon reaching the limit value.

Programming
In order to program a timer n, the following sequence should be used:

• Write 0 to the CONTROLn register to disable interrupts

• Write the limit value to the timer LIMITn register

• Set up the control flags according to the desired mode of operation by updating the timer
CONTROLn register

• Write the count value to the timer COUNTn register.

Auxiliary Register Set Register Set Details

60 ARCompact™ Programmer's Reference

Timer n starts counting from the COUNTn value upwards until it reaches the LIMITn value after
which a level type interrupt, if enabled, is generated. Timer n then automatically restarts to count
from 0 upward until it reaches the limit value again.

Limit value 0xFF 0xFF 0xFF

Count value .. 0xFE 0xFF 0x00

Interrupt

Figure 64 Interrupt Generated after Timer Reaches L imit Value

It is up to the software to clear the timer interrupts. Once an interrupt is generated, writing to
CONTROLn register clears it. This should be performed during the interrupt service routine.

In Watchdog mode, see The reset signal is activated two cycles after the limit condition has been
reached.

Timer 0 Count Register, COUNT0, 0x21
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Count Value

Figure 65 Timer 0 Count Value Register

The timer count value, COUNT0, is a read/write register. Writing to this register sets the initial count
value for the timer, and restarts the timer. Subsequently, the register can be read to reflect the timer 0
count progress.

The COUNT0 register can be updated when the timer is running in which case the internal count
register is updated with the new count value and the timer starts counting up from the updated value.

Timer 0 Control Register, CONTROL0, 0x22
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved IP W NH IE

Figure 66 Timer 0 Control Register

The timer control register (CONTROL0) is used to update the control modes of the timer.

Writing to CONTROL0 will de-assert the timer interrupt, but does not stop the timer from counting.
The timer continues counting and will independently start the next iteration of counting, setting
COUNT0 to 0, when LIMIT0 equals COUNT0.

The Interrupt Enable flag (IE) enables the generation of an interrupt after the timer has reached its
limit condition. If this bit is not set then no interrupt will be generated. The IE flag is set to 0 when
the processor is Reset.

The Not Halted mode flag (NH) causes cycles to be counted only when the processor is running (not
halted). When set to 0 the timer will count every clock cycle. When set to 1 the timer will only count
when the processor is running. The NH flag is set to 0 when the processor is Reset.

Register Set Details Auxiliary Register Set

ARCompact™ Programmer's Reference 61

The Watchdog mode flag (W) enables the generation of a system watchdog reset signal after the timer
has reached its limit condition. If this bit is not set then no watchdog reset signal will be generated.
The watchdog reset signal is activated two cycles after the limit condition has been reached. The
watchdog reset signal can be used to cause a system or processor Reset with appropriate custom logic.

If both the IE and W bits are set then only the watchdog reset is activiated since the ARCompact
based processor will be reset and the interrupt will be lost.

If both the IE and W bits are clear then the timer will automatically reset and restart its operation after
reaching the limit value.

For the ARC 600 processor, the Interrupt Pending flag (IP) is a read only flag that reflects the value
of the timer interrupt line. A 0 indicates the value of the interrupt line is low, a 1 indicates the value of
the interrupt line is high.

All of the control flags should be programmed in one write access to the CONTROL0 register.

Timer 0 Limit Register, LIMIT0, 0x23
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Limit Value

Figure 67 Timer 0 Limit Value Register

The timer limit value, LIMIT0, is a read/write register. The programmer should write the limit value
into this register. The limit value is the value after which an interrupt or reset is to be generated. The
timer limit register is set to 0x00FFFFFF when the processor is Reset for backward compatibility to
previous processor variants.

Timer 1 Count Register, COUNT1, 0x100
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Count Value

Figure 68 Timer 1 Count Value Register

See COUNT0 register on page 60 for field information.

Timer 1 Control Register, CONTROL1, 0x101
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved IP W NH IE

Figure 69 Timer 1 Control Register

See CONTROL0 register on page 60 for field information.

Timer 1 Limit Register, LIMIT1, 0x102
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer Limit Value

Figure 70 Timer 1 Limit Value Register

See LIMIT0 register on page 61 for field information.

Extension Auxiliary Registers Register Set Details

62 ARCompact™ Programmer's Reference

Extension Auxiliary Registers
The auxiliary register set is extendible up to the full 232 register space. If an extension auxiliary
register is accessed that is not implemented then certain conditions apply. See Illegal Auxiliary
Register Usage on page 47.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Optional Extensions Auxiliary Registers
The following table summarizes the auxiliary registers that are used by the optional extensions.

Table 7 Optional Extension Auxiliary Registers

Number Name r/w Description
0x12 MULHI w High part of multiply to restore multiply state

Multiply Restore Register, MULHI, 0x12
The extension auxiliary register MULHI is used to restore the multiply result register if the multiply
has been used, for example, by an interrupt service routine.

NOTE

No interlock is provided to stall writes when a multiply is taking place. For this reason, the user must
ensure that the multiply has completed before writing the MULHI register. Reading one of the
scoreboarded multiplier result registers can easily do this.

The lower part of the multiply result register can be restored by multiplying the desired value by 1.

Example 10 Reading Multiply Result Registers

MOV r1,mlo ;put lower result in r1
MOV r2,mhi ;put upper result in r2

Example 11 Restoring the Multiply Results

MULU64 r1,1 ;restore lower result
MOV 0,mlo ;wait until multiply complete. N.B causes
 ;processor to stall until multiplication is
 ;finished
SR r2,[mulhi] ;restore upper result

Extended Arithmetic Auxiliary Registers
The following table summarizes the auxiliary registers that are used by the extended arithmetic
library.

Table 8 Extended Arithmetic Auxiliary Registers

Number Name r/w Description
0x41 AUX_MACMODE r/w Extended Arithmetic status and mode register

MAC Status and Mode Register, AUX_MACMODE, 0x41
To support the extended arithmetic library, the AUX_MACMODE register is provided. There are two
channels in the AUX_MACMODE registers which correspond to channel 1 data (high 16-bit) and
channel 2 data (low 16-bit) respectively in the packed 16-bit data format. See also Dual 16-bit Data
on page 30. Both channel 1 and channel 2 flags will be updated when any dual word instruction

Register Set Details Build Configuration Registers

ARCompact™ Programmer's Reference 63

completes. When a non dual word extended arithmetic instruction saturates both saturation flags S1
and S2 will be set.

The saturation flags, S1 and S2 are sticky and both are cleared by writing to the AUX_MACMODE
register and setting the CS bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Reserved Reserved S1 Reserved S2 R R CS R

Figure 71 AUX_MACMODE Register

Refer to section Extended Arithmetic Condition Codes on page 170 for discussion of the condition
code tests.

Build Configuration Registers
A reserved set of auxiliary registers, called Build Configuration Registers (BCRs), can be used by
embedded software or host debug software to detect the configuration of the ARCompact based
system. the build configuration registers contain the version of each extension, as well as specific
configuration information.

Some optional components in an ARCompact based based processor system may only provide
version information registers to indicate the presence of a given component. These version registers
are not necessarily part of the Build Configuration Registers set. Optional component version
registers may be provided as part of the extension auxiliary register set for a component.

Generally each register has two fields, the least significant 8 bits contain the version number of the
module, the remaining bits contain configuration information. Any bits within the register that are not
required will return zero. The version number field will be set to zero if the module is not
implemented in the design, and can therefore be used to detect the presence of the component within
the ARCompact based system.

If a non existent extension build configuration register is read in the ARC 600 processor, the value
returned is 0. No exception is generated. Writes to build configuration registers are ignored.

For the ARC 700 processor a read of a non existent build configuration register in kernel mode will
return 0. No exception is generated. In user mode reads from build configuration registers will raise a
Privilege Violation exception. In kernel or user mode writes to build configuration registers will raise
an Instruction Error exception.

The following table summarizes the build configuration registers for components that are described in
this manual.

Table 9 Build Configuration Registers

Number Name r/w Description
0x60 BCR_VER Build Configuration Registers Version

0x63 BTA_LINK_BUILD r Build configuration for: BTA Registers

0x65 EA_BUILD r Build configuration for: Extended Arithmetic

0x68 VECBASE_AC_BUILD r Build configuration for: Interrupts

0x6E RF_BUILD r Build configuration for: Core Registers

0x75 TIMER_BUILD r Build configuration for: Processor Timers

0x7B MULTIPLY_BUILD r Build configuration for: Multiply

Build Configuration Registers Register Set Details

64 ARCompact™ Programmer's Reference

Number Name r/w Description
0x7C SWAP_BUILD r Build configuration for: Swap

0x7D NORM_BUILD r Build configuration for: Normalize

0x7E MINMAX_BUILD r Build configuration for: Min/Max

0x7F BARREL_BUILD r Build configuration for: barrel shift

Build Configuration Registers Version, BCR_VER, 0x6 0
The BCR version register, BCR_VER, specifies which build configuration register implementation is
present.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 72 BCR_VER Register

Table 10 BCR_VER field descriptions

Field Description
Version Version of Build Configuration Registers

0x00 = Reserved

0x01 = BCR Region at 0x60-0x7F only

0x02 = BCR Region at 0x60-0x7F and 0xC0-0xFF

BTA Configuration Register, BTA_LINK_BUILD, 0x63
The BTA configuration register, BTA_LINK_BUILD, specifies whether the BTA registers are
present.

Certain configurations may not support the BTA, ERBTA, BTA_L1 and BTA_L2 registers. When
these registers are not supported, interrupts and exceptions are held off until the instruction in the
delay slot commits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved P

Figure 73 BTA_LINK_BUILD Configuration Register

The field descriptions are shown in the following table.

Table 11 BTA_LINK_BUILD field descriptions

Field Description
P

Presence of BTA Registers

0x0 = BTA registers are absent

0x1 = BTA registers are present

Extended Arithmetic Configuration Register, EA_BUIL D, 0x65
The extended arithmetic configuration register, EA_BUILD, contains the version of the extended
arithmetic instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 74 EA_BUILD Configuration Register

Register Set Details Build Configuration Registers

ARCompact™ Programmer's Reference 65

Table 12 EA_BUILD field descriptions

Field Description
Version Version of Extended Arithmetic

0x00 = Reserved

0x01 = Reserved

0x02 = Current Version

Interrupt Vector Base Address Configuration,
VECBASE_AC_BUILD, 0x68
The default base address of the interrupt vector table is fixed when a particular ARCompact based
system is created. On Reset the programmable vector base register, INT_VECTOR_BASE is set from
the constant value in VECBASE_AC_BUILD .

VECBASE_AC_BUILD is a read only register. Bits 1 to 0 indicate the number of interrupts provided
with the interrupt unit.

Bits 10 to 31 show the interrupt vector base address based on the configuration of the interrupt
system.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR[31:10] Version E1 E0

Figure 75 VECBASE_AC_BUILD Configuration Register

Table 13 VECBASE_AC_BUILD field descriptions

Field Description
Version Version of Interrupt Unit

0x00 = ARCtangent-A5, ARC 600 Interrupt Unit
0x01 = ARC 700 Interrupt Unit

E[1:0] Number of interrupts in system
0x0 = 16 interrupts
0x1 = 32 interrupts
0x2 = 8 interrupts (only available in Version 0x01 Interrupt Unit).
0x3 = Reserved

ADDR[31:10] Interrupt Vector Base Address

Core Register Set Configuration Register, RF_BUILD, 0x6E
The RF_BUILD register is provided to determine whether the base core register set is configured as a
16 or 31 entry set, and whether the register set is cleared on Reset. The RF_BUILD register also
indicates whether the register set is made up from a 3 or 4 port register file.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved R E P Version

Figure 76 RF_BUILD Configuration Register

The field descriptions are shown in the following table.

Table 14 RF_BUILD field descriptions

Field Description
Version

Version of Core Register Set

0x01 = Current Version

Build Configuration Registers Register Set Details

66 ARCompact™ Programmer's Reference

Field Description
P

Number of Ports

0x0 = 3 port register file

0x1 = 4 port register file

E

Number of Entries

0x0 = 32 entry register file

0x1 = 16 entry register file

R

Reset State

0x0 = Not cleared on reset

0x1 = Cleared on reset

Processor Timers Configuration Register, TIMER_BUIL D, 0x75
The TIMER_BUILD configuration register indicates the presence of the Processor Timers Auxiliary
Registers .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved T1 T0 Version

Figure 77 TIMER_BUILD Configuration Register

Table 15 TIMER_BUILD field descriptions

Field Description
Version Current version –

0x01 = Version 1
0x02 = ARCtangent-A5 and ARC 700 Processor Timers
0x03 = ARC 600 R3 Processor Timers, with interrupt pending bits

T0 Timer 0 Present

0x0 = no timer 0
0x1 = timer 0 present

T1 Timer 1 Present

0x0 = no timer 1
0x1 = timer 1 present

Multiply Configuration Register, MULTIPLY_BUILD, 0x 7B
The multiply configuration register, MULTIPLY_BUILD, contains the version of the multiply
instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 78 MULTIPLY_BUILD Configuration Register

Table 16 MULTIPLY_BUILD field descriptions

Field Description
Version Version of Multiply

0x01 = Multiply 32x32 with special result registers

0x02 = Multiply 32x32 with any result register

Register Set Details Build Configuration Registers

ARCompact™ Programmer's Reference 67

Swap Configuration Register, SWAP_BUILD, 0x7C
The multiply configuration register, SWAP_BUILD, contains the version of the SWAP instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 79 SWAP_BUILD Configuration Register

Table 17 SWAP_BUILD field descriptions

Field Description
Version Version of Swap

0x01 = Current Version

Normalize Configuration Register, NORM_BUILD, 0x7D
The multiply configuration register, NORM_BUILD, contains the version of the normalize
instructions, NORM and NORMW.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 80 NORM_BUILD Configuration Register

Table 18 NORM_BUILD field descriptions

Field Description
Version Version of Swap

0x01 = Reserved

0x02 = Current Version

Min/Max Configuration Register, MINMAX_BUILD, 0x7E
The MIN/MAX configuration register, MINMAX_BUILD, contains the version of the MIN and
MAX instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 81 MINMAX_BUILD Configuration Register

Table 19 MINMAX_BUILD field descriptions

Field Description
Version Version of Min/Max

0x01 = Reserved

0x02 = Current Version

Barrel Shifter Configuration Register, BARREL_BUILD , 0x7F
The multiply configuration register, BARREL_BUILD, contains the version of the Barrel
Shift/Rotate instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Version

Figure 82 BARREL_BUILD Configuration Register

Table 20 BARREL_BUILD field descriptions

Build Configuration Registers Register Set Details

68 ARCompact™ Programmer's Reference

Field Description
Version Version of Barrel Shifter

0x01 = Reserved

0x02 = Current Version

Register Set Details Build Configuration Registers

ARCompact™ Programmer's Reference 69

This page is intentionally left blank.

ARCompact™ Programmer's Reference 71

Chapter 4 — Interrupts and Exceptions

Introduction
The ARCompact based processor has interrupts and exceptions. Exceptions are synchronous to an
instruction. Most exceptions can occur at the same place each time a program is executed (apart from
a Memory Error exception that can occur asynchronously), whereas interrupts are typically
asynchronous. There are additionally two sets of maskable interrupts: level 2 (mid priority) and level
1 (low priority). The exception set always has the highest priority over the interrupts.

In the ARC 700 processor,. interrupts and exceptions cause the processor to enter into the Kernel
operating mode. Depending upon the processor operating mode when an exception or interrupt takes
place, the processor can either enter Kernel or User mode upon returning from an interrupt or an
exception.

Privileges and Operating Modes
The operating mode, on the ARC 700 processor, is used to determine whether a task may execute a
privileged instruction. The operating mode is also used by the memory management system to
determine whether a specific location in memory may be accessed.

Two operating modes are provided:

• Kernel mode

• User mode

Various bits in the STATUS32 register are provided in order that kernel mode tasks can determine in
which mode they are running, to enable the processor to correctly recover from all legitimate
interrupt/exception situations, and to enable the complete processor state to be saved and restored.

Kernel Mode
The ARC 700 kernel mode is the highest level of privilege and is the default mode from Reset.
Access to all machine state, including privileged instructions and privileged registers, is provided in
Kernel mode.

User Mode
 The ARC 700 user mode is the lowest level of privilege and provides limited access to machine state.
Any attempt to access privileged machine state, for example privileged instructions or privileged
registers, causes an exception.

Privilege Violations
The section describes the privileges available to ARC 700 tasks running in user mode and kernel
mode. The following table gives an overview of the differences in privilege between the two modes.

Introduction Interrupts and Exceptions

72 ARCompact™ Programmer's Reference

Table 21 Overview of ARC 700 Privileges

Function User Kernel
Access to General Purpose Registers

All except ILINK1/2 – no
access from user mode

●

Memory management / TLB controls ●

Cache management ●

Access to memory with ASID = User PID

By flag bits in Page
Descriptor (PD)

By flag bits in Page
Descriptor (PD)

Access to memory with ASID ≠ User PID If global bit set If global bit set

Unprivileged instructions ● ●

Privileged instructions ●

Access to Basecase Auxiliary Registers

Only LP_START,
LP_END, PC32 and
STATUS32[ZNCV]

●

Build Configuration Registers ●

Timer access ●

TRAP_S n, TRAP0 ● ●

Interrupt Enable, level selection ●

Extension instructions and state permissions in XPU ●

Privileged Instructions
All ARC 700 instructions are unprivileged unless specifically defined as privileged. Privileged
instructions are:

• SLEEP

• RTIE

• J.F [ILINKn]

These instructions are privileged when STATUS32[UB]=0:

• BRK

• BRK_S

Privileged Registers
Access to the majority of general-purpose registers is not affected by the ARC 700 operating mode.
Switching between user and kernel modes does not effect the contents of general-purpose registers.
No accesses are permitted to the ILINK1 or ILINK2 registers from user mode. Illegal accesses from
user mode to ILINK1 or ILINK2 will cause a Instruction Error exception and the cause will be
indicated in the exception cause register (ECR).

Moves to and from auxiliary registers are permitted in both user and kernel mode on the ARC 700
processor. However, in user mode, only a limited set of auxiliary registers may be accessed without
causing a protection-violation exception.

Auxiliary registers accessible in user mode include:

• PC

• STATUS32 - ZNCV flags

Interrupts and Exceptions Interrupts

ARCompact™ Programmer's Reference 73

• LP_START

• LP_END

• Extension Auxiliary Registers - where permitted by extension enables

The remaining auxiliary registers are only accessible in kernel mode.

Switching Between Operating Modes
The ARC 700 processor is set into kernel mode during these transitions:

• TRAP_S, TRAP0

• Interrupt

• Exception

• Reset or Machine check exception

• Write to STATUS32 from debug port when machine is halted

Switching from kernel mode to user mode takes place under the following conditions:

• Return from exception - when machine status register indicates that the last exception was taken
from user mode

• Return from interrupt - when machine status register indicates that the highest priority active
interrupt was taken from user mode

ARC 700 exception and interrupt handlers may choose to adjust the values in their return address
(ERET, ILINK1, ILINK2) and status link registers (ERSTATUS, STATUS32_L1, STATUS32_L2)
in order to simultaneously jump to a kernel-mode or user-mode task whilst clearing the relevant
interrupt-active or exception-active bits in the status register.

The FLAG instruction cannot be used to change the user or kernel mode state of the ARC 700
processor.

Interrupts
The ARCompact based processor features two level of interrupt:

• level 2 (mid priority) interrupts which are maskable.

• level 1 (low priority) interrupts which are maskable

For the ARC 700 processor, interrupts can be serviced whilst the processor is executing in user mode
or kernel mode, and a high-level interrupt can be serviced whilst a low-level interrupt handler is being
executed. Although exceptions can be taken in interrupt service routines, interrupts are disabled on
entry to exception handling routines.

The interrupt unit is provided with a specific configuration and is programmable.

Interrupt Unit Programming
The interrupt unit allows programming of certain parameters.

Before programming the interrupt unit, all interrupts should be disabled and then all pending
interrupts should be dealt with.

Interrupts Interrupts and Exceptions

74 ARCompact™ Programmer's Reference

For the ARC 700 processor, the AUX_IRQ_PENDING register can be used to ensure that there are
no further pending interrupts.

Once the interrupt unit has been programmed accordingly the desired interrupts can be enabled.

Interrupt Unit Configuration
The specific configuration of the interrupt unit can be determined by reading the interrupt vector base
configuration register, VECBASE_AC_BUILD.

The sensitivity level of each interrupt is dependent on the specific configuration.

The ARC 700 AUX_ITRIGGER register allows the level or pulse sensitivity to be programmed.

Interrupt Priority
Exceptions, like Reset and Instruction Error, have a higher priority than interrupts, the level 2
interrupt set has middle priority and level 1 the lowest priority.

In addition there is a relative priority in the set of interrupts associated with each level. The interrupt
vector table indicates a higher priority with a lower "relative priority" value. For example, a relative
priority of M1 has the highest priority within the (mid) priority level 2 set.

For the ARCtangent-A5 processor, for example IRQ7 has the highest priority in the level 2 set and
IRQ6 has the lowest priority in the level 2 set.

In general with the ARCtangent-A5 and ARC 600 processors, the higher the interrupt number (IRQn)
the higher the priority within the interrupt level set. Note, however, that IRQ7 always has the highest
relative priority within its level set in order to ensure backward compatibility to previous ARC
processors.

For the ARC 700 processor, the higher the interrupt number the lower the priority.

Programming the AUX_IRQ_LEV auxiliary register can change the level priority of each maskable
interrupt.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

ILINK and Status Save Registers
When an interrupt occurs, the appropriate link register (ILINK1 or ILINK2) is loaded with the value
of next PC, the associated status save register (STATUS32_L1 or STATUS32_L2) is also updated
with the status register (STATUS32); the PC is then loaded with the relevant address for servicing the
interrupt.

Link register ILINK2 and status save register STATUS32_L2 are associated with the level 2 set of
interrupts and the two exceptions: Memory Error and Instruction Error. ILINK1 and status save
register STATUS32_L1 are associated with the level 1 set of interrupts.

Interrupt Vectors
The ARCompact based processor does not implement interrupt vectors as such, but rather a table of
jumps. When an interrupt occurs the ARCompact based processor jumps to fixed addresses in
memory, which contain a jump instruction to the interrupt handling code. The start of these interrupt
vectors is dependent on the particular ARCompact based system and is often a set of contiguous jump
vectors.

Interrupts and Exceptions Interrupts

ARCompact™ Programmer's Reference 75

The INT_VECTOR_BASE register can be read at any time to determine the start of the interrupt
vectors, and can be used to change the base of the interrupt vectors during program execution, see
section Interrupt Vector Base Register on page 53.

It is possible to execute the code for servicing the last interrupt in the interrupt vector table without
using the jump mechanism. An example set of vectors showing the last interrupt vector is shown in
the following code.

Example 12 Exception Vector Code

 ;Start of exception vectors
reset: JAL res_service ;vector 0
mem_ex: JAL mem_service ;vector 1
ins_err: JAL instr_service ;vector 2
ivect3: JAL iservice3 ;vector 3, ilink1
ivect4: JAL iservice4 ;vector 4, ilink1
ivect5: JAL iservice5 ;vector 5, ilink1
ivect6: JAL iservice6 ;vector 6, ilink2
ivect7: JAL iservice7 ;vector 7, ilink2
 ;start of interrupt service code for
 ;ivect7

In the ARC 700 interrupt system, there are thirty-two default interrupts/ exceptions associated with
vectors 0 to 31, and each has its own vector position.

In the ARCtangent-A5 and ARC 600 configurable interrupt system, there are sixteen default
interrupts/ exceptions associated with vectors 0 to 15, each having its own vector position. A further
16 extension interrupts may also be provided.

The vector offsets are shown in the following table. Two long-words are reserved for each interrupt
line to allow room for a jump instruction with a long immediate address.

Table 22 ARC 700 Interrupt Vector Summary

Vector Name Link register Priority (Default) Relative Priority Byte Offset
0 Reset - - - 0x00

1 Memory Error ILINK2 level 2 : mid M1 0x08

2 Instruction Error - - - 0x10

3 IRQ3 (Timer 0) ILINK1 level 1 : low L1 0x18

4 IRQ4 (Timer 1) ILINK1 level 1 : low L2 0x20

5 IRQ5 (UART) ILINK1 level 1 : low L3 0x28

6 IRQ6 (EMAC) ILINK1 level 1 : low L4 0x30

7 IRQ7 (XY Memory) ILINK1 level 1 : low L5 0x38

8 IRQ8 ILINK1 level 1 : low L6 0x40

9 IRQ9 ILINK1 level 1 : low L7 0x48

10 IRQ10 ILINK1 level 1 : low L8 0x50

11 IRQ11 ILINK1 level 1 : low L9 0x58

12 IRQ12 ILINK1 level 1 : low L10 0x60

13 IRQ13 ILINK1 level 1 : low L11 0x68

14 IRQ14 ILINK1 level 1 : low L12 0x70

15 IRQ15 ILINK1 level 1 : low L13 0x78

16 IRQ16 ILINK1 level 1 : low L14 0x80

17 IRQ17 ILINK1 level 1 : low L15 0x88

Interrupts Interrupts and Exceptions

76 ARCompact™ Programmer's Reference

Vector Name Link register Priority (Default) Relative Priority Byte Offset
18 IRQ18 ILINK1 level 1 : low L16 0x90

19 IRQ19 ILINK1 level 1 : low L17 0x98

20 IRQ20 ILINK1 level 1 : low L18 0xA0

21 IRQ21 ILINK1 level 1 : low L19 0xA8

22 IRQ22 ILINK1 level 1 : low L20 0xB0

23 IRQ23 ILINK1 level 1 : low L21 0xB8

24 IRQ24 ILINK1 level 1 : low L22 0xC0

25 IRQ25 ILINK1 level 1 : low L23 0xC8

26 IRQ26 ILINK1 level 1 : low L24 0xD0

27 IRQ27 ILINK1 level 1 : low L25 0xD8

28 IRQ28 ILINK1 level 1 : low L26 0xE0

29 IRQ29 ILINK1 level 1 : low L27 0xE8

30 IRQ30 ILINK1 level 1 : low L28 0xF0

31 IRQ31 ILINK1 level 1 : low L29 0xF8

Table 23 ARCtangent-A5 and ARC 600 Interrupt Vector Summary

Vector

Name

Link
register

Priority
(Default)

Relative Priority

Byte
Offset

0 Reset - high H1 0x00

1 Memory Error ILINK2 high H2 0x08

2 Instruction Error ILINK2 high H3 0x10

3 IRQ3 (Timer 0) ILINK1 level 1 : low L27 0x18

4 IRQ4 (XY Memory) ILINK1 level 1 : low L26 0x20

5 IRQ5 (UART) ILINK1 level 1 : low L25 0x28

6 IRQ6 (EMAC) ILINK2 level 2 : mid M2 0x30

7 IRQ7 (Timer 1) ILINK2 level 2 : mid M1 0x38

8 IRQ8 ILINK1 level 1 : low L24 0x40

9 IRQ9 ILINK1 level 1 : low L23 0x48

10 IRQ10 ILINK1 level 1 : low L22 0x50

11 IRQ11 ILINK1 level 1 : low L21 0x58

12 IRQ12 ILINK1 level 1 : low L20 0x60

13 IRQ13 ILINK1 level 1 : low L19 0x68

14 IRQ14 ILINK1 level 1 : low L18 0x70

15 IRQ15 ILINK1 level 1 : low L17 0x78

When the extension interrupts are enabled, a further 16 interrupt lines are provided along with their
associated vector addresses. By default all extension interrupts belong to the level 1 interrupt set, and
IRQ31 has the highest priority within the level 1 interrupt set. Note, however, that IRQ7 always has
the highest relative priority within its level set.

The interrupt vector addresses are added contiguously to the default set of interrupt vectors provided
by the configurable interrupt system.

The extension interrupts and their vectors are shown in the following table.

Interrupts and Exceptions Interrupts

ARCompact™ Programmer's Reference 77

Table 24 ARCtangent-A5 and ARC 600 Extension Interr upt Vector Summary

Vector Name Link register Priority (Default) Relative Priority Byte Offset
16 IRQ16 ILINK1 level 1 : low L16 0x80

17 IRQ17 ILINK1 level 1 : low L15 0x88

18 IRQ18 ILINK1 level 1 : low L14 0x90

19 IRQ19 ILINK1 level 1 : low L13 0x98

20 IRQ20 ILINK1 level 1 : low L12 0xA0

21 IRQ21 ILINK1 level 1 : low L11 0xA8

22 IRQ22 ILINK1 level 1 : low L10 0xB0

23 IRQ23 ILINK1 level 1 : low L9 0xB8

24 IRQ24 ILINK1 level 1 : low L8 0xC0

25 IRQ25 ILINK1 level 1 : low L7 0xC8

26 IRQ26 ILINK1 level 1 : low L6 0xD0

27 IRQ27 ILINK1 level 1 : low L5 0xD8

28 IRQ28 ILINK1 level 1 : low L4 0xE0

29 IRQ29 ILINK1 level 1 : low L3 0xE8

30 IRQ30 ILINK1 level 1 : low L2 0xF0

31 IRQ31 ILINK1 level 1 : low L1 0xF8

Level 1 and Level 2 Interrupt Enables
The level 1 set and level 2 set of interrupts are maskable. The interrupt enable bits E2 and E1 in the
status register (see Figure 45 on page 51) are used to enable level 2 set and level 1 set of interrupts
respectively. Interrupts are enabled or disabled with the FLAG instruction.

Example 13 Enabling Interrupts with the FLAG instru ction

.equ EI,6 ; constant to enable both interrupts

.equ EI1,2 ; constant to enable level 1 interrupt only

.equ EI2,4 ; constant to enable level 2 interrupt only

.equ DI,0 ; constant to disable both interrupts

FLAG EI ; enable interrupts and clear other flags

FLAG DI ; disable interrupts and clear other flags

Individual Interrupt Enables
The ARC 700 processor uses the AUX_IENABLE register to enable individual masking of each
incoming interrupt. Writing a value of 1 in the interrupts bit position enables that particular interrupt.
To disable all interrupts, by turning off the interrupt unit, use the FLAG instruction to reset the Level
1 and Level 2 Interrupt Enables.

Priority Level Programming
The configurable interrupt system provides the ability to change the priority set to which an interrupt
belongs. The priority level programming register (AUX_IRQ_LEV) contains the set of interrupts and
their priority set. Each interrupt has a corresponding bit position.

After Reset the ARCtangent-A5 processor and ARC 600 processor set all interrupts to their default
priority state as shown in the interrupt vector tables, Table 23 and Table 24.

Interrupts Interrupts and Exceptions

78 ARCompact™ Programmer's Reference

After Reset the ARC 700 processor sets all interrupts to their default priority state as shown in the
interrupt vector table, Table 22.

Interrupt Level Status
After an interrupt has occurred, the level of an interrupt is indicated by the interrupt level status
register (AUX_IRQ_LV12) auxiliary register. Two sticky bits are provided to indicate if a level 1 or
level 2 interrupt has been taken. The interrupt level status register can be used to indicate nested
interrupts, i.e. a mid priority level 2 interrupt has interrupted a low priority level 1 interrupt. The
sticky bits will stay set until reset by software.

The interrupt level status register is complementary to the A1 and A2 bits of the STATUS32 register

Interrupt Cause Registers
Two bits (A1 and A2) are provided in the STATUS32 register to indicate which interrupt levels are
currently being serviced. These are set on entry to the interrupt and overwritten by the values copied
from STATUS32_L1 or STATUS32_L2 on exit.

When one of these bits in the STATUS32 register is true, the associated interrupt cause register
(ICAUSE1 or ICAUSE2) will contain the number of the interrupt being handled. Note that a Memory
Error interrupt will cause ICAUSE2 to be set to 0x1.

The interrupt cause registers, ICAUSE1 and ICAUSE2, are not affected when returning from an
interrupt.

Pending Interrupts
The read-only Interrupt Pending register, AUX_IRQ_PENDING, is provided to allow the operating
system to determine which interrupts are currently asserted and awaiting service.

Software Triggered Interrupt
In addition to the SWI/TRAP0 instruction, the interrupt system allows software to generate a specific
interrupt by writing to the software interrupt trigger register (AUX_IRQ_HINT). Level 1 and level 2
interrupts (IRQ3 to IRQ31) can be generated through the AUX_IRQ_HINT register. The
AUX_IRQ_HINT register can be written through ARCompact based code or from the host.

The software triggered interrupt mechanism can be used even if there are no associated interrupts
connected to the ARCompact based processor.

Returning from Interrupts
When the interrupt routine is entered, the interrupt enable flags are cleared for the current level and
any lower priority level interrupts. Hence, when a level 2 interrupt occurs, both the interrupt enable
bits in the status register are cleared at the same time as the PC is loaded with the address of the
appropriate interrupt routine.

Returning from an interrupt is accomplished by jumping to the contents of the appropriate link
register, using the JAL.F [ILINKn] instruction. With the flag bit enabled on the jump instruction, the
status register is also loaded from the associate STATUS32_Ln register, thus returning the flags to
their state at point of interrupt, including of course the interrupt enable bits E1 and E2, one or both of
which will have been cleared on entry to the interrupt routine.

The RTIE instruction can also be used to return from an interrupt. RTIE allows an interrupt handler to
use a single instruction for interrupt exit, without needing to know which interrupt level caused entry

Interrupts and Exceptions Interrupts

ARCompact™ Programmer's Reference 79

to the routine. The values contained in the STATUS32[A1/A2] flags are used to determine which link
register pair to use for exit.

There are 2 link registers ILINK1 (r29) and ILINK2 (r30) for use with the maskable interrupts,
memory exception and Instruction Error. These link registers correspond to levels 1 and 2 and the
interrupt enable bits E1 and E2 for the maskable interrupts.

If the branch target register, BTA, is available, it will be returned to the value stored in the BTA_L1
or BTA_L2 registers.

The interrupt cause registers, ICAUSE1 and ICAUSE2, are not affected when returning from an
interrupt.

For example, if there was no interrupt service routine for interrupt number 5, the arrangement of the
vector table would be as shown below.

Example 14 No Interrupt Routine for ivect5

ivect4: JAL iservice4 ;vector 4
ivect5: JAL.F [ILINK1] ;vector 5 (jump to ilink1)
 NOP ;instruction padding
ivect6: JAL iservice6 ;vector 6

Interrupt Timing
Interrupts are held off when a compound instruction has a dependency on the following instruction or
is waiting for immediate data from memory. This occurs during a branch, jump or simply when an
instruction uses long immediate data. The time taken to service an interrupt is basically a jump to the
appropriate vector and then a jump to the routine pointed to by that vector. The timings of interrupts
according to the type of instruction in the pipeline is given later in this documentation.

Interrupts are also held off when a predicted branch is in the pipeline, or when a flag instruction is
being processed.

The time it takes to service an interrupt will also depend on the following:

• Whether a jump instruction is contained in the interrupt vector table

• Allowing stage 1 to stage 2 dependencies to complete

• Returning loads using write-back stage

• An I- Cache miss causing the I-Cache to reload in order to service the interrupt

• The number of register push items onto a software stack at the start of the interrupt service
routine

• Whether an interrupt of the same or higher level is already being serviced

• An interruption by higher level interrupt

• Whether a predicted branch is being processed (ARC 600)

Interrupt Flow
The following diagram illustrates the process involved when and interrupt or exception occurs during
program execution. The priority for each level of interrupt is shown, but the interrupt priority within
each level set is system dependent.

Interrupts Interrupts and Exceptions

80 ARCompact™ Programmer's Reference

Instruction Error?

Reset?

Flush pipeline
E2 � 0
E1 � 0
ZNCV Flags � 0
SEMAPHORE � 0
DEBUG � 0
LP_COUNT, LP_START, LP_END � 0
INT_VEC_BASE � Configured Vector Base
PC � INT_VEC_BASE

Yes

Yes

Execute next instruction

Memory Error? Yes

ILINK2 � NEXT_PC
STATUS32_L2 � STATUS32
E2 � 0
E1 � 0
PC � INT_VEC_BASE + offset

Level 2 Interrupt? Yes

offset=0x08

offset=0x10

offset=0x08*n

Level 1 Interrupt? Yes offset=0x08*n

Level 2 Disabled? Yes

No

No

No

No

Level 1 Disabled? Yes

No

No

No

IRQn

IRQn

ILINK1 � NEXT_PC
STATUS32_L1 � STATUS32
E1 � 0
PC � INT_VEC_BASE + offset

Figure 83 Interrupt Execution

Interrupt Vector Base Address Configuration
The start of the interrupt vectors is dependent on the particular ARCompact based system. On Reset
the start of the interrupt vectors is set by the interrupt vector base configuration register,
VECBASE_AC_BUILD. This value is also loaded into the interrupt vector base address register,
INT_VECTOR_BASE on Reset.

During program execution the start of interrupt vectors can be determined and modified through the
interrupt vector base address register, INT_VECTOR_BASE, see Figure 49 on page 54.

Interrupt Sensitivity Level Configuration
The configurable interrupt system can be either pulse sensitive or level sensitive.

An interrupting device that is set to pulse sensitive interrupt, only has to assert the interrupt line once
and then de-assert the interrupt line. The fact that a pulse sensitive interrupt has occurred is held until
the associated interrupt vector is called. No action is required by the ISR to clear the interrupt.

An interrupting device that is set to level sensitive interrupt must assert and hold the interrupt line
until instructed to de-assert the interrupt line by the appropriate interrupt service routine.

The interrupts (IRQ3 to IRQ31) are level sensitive by default, but can be changed to pulse sensitivity
depending on the configuration of the interrupt system and configuration of the ARCompact based
system.

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 81

Interrupt Sensitivity Level Programming
The ARC 700 processor uses the AUX_ITRIGGER register to allow an operating system to select
whether each interrupt will be level or pulse sensitive.

Canceling Pulse Triggered Interrupts
A write-only 32-bit register, AUX_IRQ_PULSE_CANCEL, is provided to allow the operating
system to clear a pulse-triggered interrupt after it has been received, and before it is serviced. Writing
'1' to the relevant bit will clear the interrupt if it is set to pulse-sensitivity. If the interrupt is of type
level sensitivity, then writing to its relevant bit position will have no effect.

Exceptions
The processor is designed to allow exceptions to be taken and handled from user mode or kernel
mode and from interrupt service routines. An exception taken in an exception handler is a double fault
condition – and causes a fatal Machine Check exception.

All interrupts and exceptions cause an immediate switch into kernel mode. The Memory Management
Unit (if present) is not disabled on entry to an interrupt or exception handler, and the process-ID
(ASID) register is not altered. Both levels of interrupt are disabled on entry to an exception handler.

Exception Precision
In the ARCompact based processor precise exceptions are said to be synchronous interrupts
associated with specific instructions. Imprecise exceptions are asynchronous events that may or may
not be associated with a specific instruction.

In the ARCtangent-A5 and ARC 600 processor the exception scheme is imprecise. The Instruction
Error and Memory Error exceptions are non recoverable, in that the instruction that caused the error
cannot be returned to.

The ARC 700 processor uses a precise exception scheme. Instructions are restartable, they can be
abandoned before completion and restarted later. On receipt of an exception an operating system can
therefore choose to either:

• Kill the process

• Send a signal to the process

• Intervene to remove the cause of the exception, and restart operation with the instruction that
caused the exception

A memory error exception may not be recoverable depending on the machine state that caused the
memory error. For example:

• An instruction cache load that causes a bus error, and hence a Machine Check, Instruction Fetch
Memory Error, is said to be precise since the address of the instruction is known at the time of the
memory error.

• A data cache load that causes a bus error, and hence a Memory Error, is said to be imprecise,
since the instruction is not known at the time of the Memory Error.

Exceptions Interrupts and Exceptions

82 ARCompact™ Programmer's Reference

Exception Vectors and Exception Cause Register
Any exception that occurs has the following associated information

• Vector Name

• Vector Number

• Vector Offset

• Cause Code

• Parameter

Vector Name
The vector name directly corresponds to the vector number.

Vector Numbers
An eight-bit number, directly corresponding to the vector number and vector name being used.

Vector Offset
The Vector Offset is used to determine the position of the appropriate interrupt or exception service
routine for a given interrupt or exception. The vector offset is calculated as 8 times the vector number,
and is offset from interrupt/exception vector base address.

The vector offsets are summarized in the following table.

Table 25 Exception vectors

Name Vector offset Vector Number Exception Types
Reset 0x000 0x00 Exception

Memory Error 0x008 0x01 Interrupt

Instruction Error 0x010 0x02 Exception

Interrupts 0x018 - 0x078 - Interrupt

Interrupts 0x080 - 0x0F8 - Interrupt

EV_MachineCheck 0x100 0x20 Exception

EV_TLBMissI 0x108 0x21 Exception

EV_TLBMissD 0x110 0x22 Exception

EV_TLBProtV 0x118 0x23 Exception

EV_PrivilegeV 0x120 0x24 Exception

EV_Trap 0x128 0x25 Exception

EV_Extension 0x130 0x26 Exception

Reserved 0x138 - 0x1F8 0x27 - 0xFF Exception

Table 26 on page 87 shows further details of the exception priorities and exception cause parameters.

Cause Codes
Since multiple exceptions share each vector, this eight bit number is used to identify the exact cause
of an exception.

Parameters
This eight bit number is used to pass additional information about an exception that cannot be
contained in the previous fields

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 83

For the TRAP exception, this field contains the zero-extended six-bit immediate value from the
TRAP instruction.

For the Privilege Violation, Disabled Extension exception, this field contains the zero-extended five-
bit number of the disabled extension group that was accessed.

When an actionpoint is hit, the parameter contains the number of the actionpoint that triggered the
exception.

The parameter can also be used for extension instruction purposes.

Exception Cause Register
The Exception Cause register (ECR) is provided to allow an exception handler access to information
about the source of the exception condition. The value in the Exception Cause register is made up
from the Vector Number, Cause Code and Parameter, as shown in Figure 61 on page 58.

For example, the TRAP exception has the following values:

Vector Name: EV_Trap

Vector Number: 0x25

Vector Offset: 0x128

Cause Code: 0x00

Parameter: nn

This would mean that the cause code register value for TRAP is 0x002500nn

Exception Types and Priorities
Multiple exceptions can be associated with a single instruction. In the ARC 700 processor, only one
exception can be handled at a time. Remaining exceptions will present themselves when the
instruction is restarted after the first exception handler has completed. This process will continue until
no further exceptions remain.

Interrupts and exceptions will be evaluated with the following priority:

1. Reset

2. Machine Check, Fatal Cache / TLB error

3. Machine Check, Memory Error – Memory error on D$ flush or Kernel data access

4. Privilege Violation, Instruction fetch Actionpoint hit

5. Machine Check, Double Fault – exception detected when STATUS32[AE]=1

6. Machine Check, Instruction Fetch Memory Error

7. Instruction Fetch TLB miss

8. Instruction Fetch TLB Protection violation

9. Instruction Error - Illegal instruction exception

10. Privilege Violation, Instruction or Register access

11. Privilege Violation, Disabled Extension Group

12. Extension Instruction Exception - requested by extension instruction

13. Protection Violation, LD/ST misalignment

Exceptions Interrupts and Exceptions

84 ARCompact™ Programmer's Reference

14. Data access TLB miss

15. Data access TLB Protection violation

16. TRAP_S or TRAP0 instructions

17. Memory Error - external bus error

18. Level 2 Interrupt

19. Level 1 Interrupt

20. Core register, Aux register or Memory-access Actionpoint hit

Table 26 on page 87 shows further details of the exception priorities and exception cause parameters.

Reset
A Reset is an external reset signal that causes the ARCompact based processor to perform a hard
Reset. Upon Reset, various internal states of the ARCompact based processor are pre-set to their
initial values: the pipeline is flushed; interrupts are disabled; status register flags are cleared; the
semaphore register is cleared; loop count, loop start and loop end registers are cleared; the scoreboard
unit is cleared; pending load flag is cleared; and program execution resumes at the interrupt vector
base address (offset 0x00) which is the basecase ARCompact based Reset vector position. The core
registers are not initialized except loop count (which is cleared). A jump to the Reset vector, a soft
Reset, will not pre-set any of the internal states of the ARCompact based processor.

The Reset value of vector base register determines Reset vector address

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Machine Check, Overlapping TLB Entries
Multiple matches for an address lookup in the TLB.

Machine Check, Fatal TLB Error
Any fatal error in the TLB or its memories (such as a parity or ECC error).

Machine Check, Fatal Cache Error
Any fatal error in the cache controllers or their memories (such as a parity or ECC error).

Machine Check, Kernel Data Memory Error
A memory error was received as a result of a kernel-mode data transaction (LD /ST /PUSH_S
/POP_S /EX)

Machine Check, Data Cache Flush Memory Error
A memory error was received as a result of a data cache flush.

Privilege Violation, Actionpoint Hit Instruction Fe tch
Actionpoint hit, triggered by instruction fetch. The parameter field (nn) gives the number of the
actionpoint that triggered the exception.

Machine Check, Double Fault
Exception detected with exception handler outstanding, as indicated by STATUS32[AE] bit set.

Machine Check, Instruction Fetch Memory Error
A memory error was triggered by an instruction fetch. (memory errors triggered by incorrectly
speculated accesses are ignored).

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 85

Instruction Fetch TLB Miss
An instruction fetch caused a TLB miss.

Instruction Fetch Protection Violation
An instruction fetch was fetched without the execute permission set.

Instruction Error
If an invalid instruction is fetched that the ARCompact based processor cannot execute, then an
Instruction Error is caused.

In the ARCtangent-A5 and ARC 600 processor, this exception is non-recoverable in that the
instruction that caused the error cannot be returned to. The mechanism checks all major opcodes and
sub-opcodes to determine whether the instruction is valid. This exception uses the level 2 interrupt
mechanism and the return information is contained in the ILINK2 and STATUS32_L2 registers.

The software interrupt instruction (SWI) will also generate an instruction error exception when
executed.

Full decodes of all instructions are performed in the ARC 700 processor. Use of unimplemented
instructions, condition codes, core registers, auxiliary registers or encodings will trigger the
Instruction Error exception.

In the ARC 700 processor this exception uses the exception mechanism and the return information is
contained in the ERET, ERSTATUS and ERBTA registers.

Illegal Instruction Sequence
Triggered when an instruction sequence has been attempted that is not permitted.

The Illegal Instruction Sequence type will occur when any jump or branch instruction straddles the
loop end position such that:

• the jump or branch instruction is in the last instruction position of the loop and

• the excuted delay slot is outside the the loop

The Illegal Instruction Sequence type also occurs when any of the following instructions are
attempted in an executed delay slot of a jump or branch:

• Another jump or branch instruction (Bcc, BLcc, Jcc, JLcc)

• Conditional loop instruction (LPcc)

• Return from interrupt (RTIE)

• Any instruction with long-immediate data as a source operand

Privilege Violation, Kernel Only Access
Kernel-only instruction, core register or auxiliary register has been accessed from user mode.

Privilege Violation, Disabled Extension
Disabled instruction or register has been accessed. The parameter field (nn) gives the group number
(0-31) of the disabled extension.

Extension Instruction Exception
Triggered by an extension instruction if it requires that an exception be taken (e.g. floating point
extensions would need to generate many different types of exception). The following are supplied by
the extension instruction:

Exceptions Interrupts and Exceptions

86 ARCompact™ Programmer's Reference

mm = subcode
nn = parameter

Protection Violation, Misaligned Data Access
A misaligned data access causes a TLB protection violation.

Data TLB Miss
Data TLB miss caused by LD, ST, PUSH_S, POP_S or EX instruction.

Data TLB Protection Violation
Data TLB protection violation caused by LD, ST, PUSH_S, POP_S or EX instruction. Caused when
the attempted access does not match the permission bits for the page.

Trap
nn = parameter supplied by TRAP_S instruction. TRAP0 supplies nn=00

Note that the instruction always commits, and the return address is the next instruction after the
TRAP. This is unlike all other exceptions where the faulting instruction is aborted, and the return
address is that of the faulting instruction.

Memory Error
A Memory Error exception is a condition that is detected externally to the CPU. Generally the
memory subsystem would detect and raise an error. The types of memory errors typically range from
non-existent memory regions to parity/EEC errors.

A memory error condition that is flagged by the external memory system has different effects
depending on the context.

A level 2 interrupt is generated if a User mode process triggers a Memory Error condition on the
processor bus. This memory error condition is maskable through use of the STATUS32[E2] flag.

An exception is generated if either an instruction fetch access or Kernel mode data access triggers a
Memory Error condition on the processor bus.

As precise exception handling is not supported, Memory Errors are handled as non-maskable
interrupts. The return address stored for a memory error is not guaranteed to be the address of the
faulting instruction. It is the address of the next instruction to be executed in program sequence at the
point when the memory error, non-maskable interrupt was received.

Successful recovery from a memory error is not always possible. The non-maskable interrupts use the
same interrupt return registers as the highest level of maskable interrupts (Level 2). This means a
memory error could be detected whilst the machine is handling a Level 2 interrupt. In this
circumstance, the return address information for the interrupt handler would be overwritten by data
from the non-maskable interrupt.

NOTE The memory error interrupt is not precise, so an error could be triggered by an instruction outside of a
Level 2 Interrupt Service Routine (ISR), but be detected after such an ISR was underway

Systems using Level 2 interrupts cannot guarantee recovery from a memory error non-maskable
interrupt.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Level 2 Interrupt
Only when STATUS32[E2]=1.

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 87

Note that Interrupts do not set the exception cause register. Receipt of this interrupt sets the ICAUSE2
register to the number of the last taken interrupt..

Level 1 Interrupt
Only when STATUS32[E1]=1.

Note that Interrupts do not set the exception cause register. Receipt of this interrupt sets the ICAUSE1
register to the number of the last taken interrupt..

Privilege Violation, Actionpoint Hit Memory or Regi ster
Triggered by Memory access, Core or Auxiliary register access. The parameter field (nn) gives the
number of the actionpoint that triggered the exception.

Table 26 Exception Priorities and Vectors

Exception

Vector Name Vector
offset

Vector
Number

Cause
Code

Exception
Cause Register

Reset Reset 0x000 0x00 0x00 0x000000

Overlapping
TLB Entries

EV_MachineCheck

0x100

0x20

0x01

0x200100

Fatal TLB Error EV_MachineCheck 0x100 0x20 0x02 0x200200

Fatal Cache
Error

EV_MachineCheck

0x100

0x20

0x03

0x200300

Kernel Data
Memory Error

EV_MachineCheck

0x100

0x20

0x04

0x200400

D$ Flush
Memory Error

EV_MachineCheck

0x100

0x20

0x05

0x200500

Actionpoint Hit,
Instruction Fetch

EV_PrivilegeV

0x120

0x24

0x02

0x2402nn

Double Fault EV_MachineCheck 0x100 0x20 0x00 0x200000

Instruction Fetch
Memory Error

EV_MachineCheck

0x100

0x20

0x06

0x200600

Instruction Fetch
TLB Miss

EV_ITLBMiss

0x108

0x21

0x00

0x210000

Instruction Fetch
Protection
Violation

EV_TLBProtV

0x118

0x23

0x00

0x230000

Illegal
Instruction

Instruction Error

0x010

0x02

0x00

0x020000

Illegal
Instruction
Sequence

Instruction Error

0x010

0x02

0x01

0x020000

Privilege
Violation

EV_PrivilegeV

0x120

0x24

0x00

0x240000

Disabled
Extension

EV_PrivilegeV

0x120

0x24

0x01

0x2401nn

Extension
Instruction
Exception

EV_Extension

0x130

0x26

mm

0x26mmnn

Exceptions Interrupts and Exceptions

88 ARCompact™ Programmer's Reference

Exception

Vector Name Vector
offset

Vector
Number

Cause
Code

Exception
Cause Register

Misaligned data
access

EV_ProtV

0x118

0x23

0x04

0x230400

Data TLB Miss,
LD

EV_DTLBMiss

0x110

0x22

0x01

0x220100

Data TLB miss,
ST

EV_DTLBMiss

0x110

0x22

0x02

0x220200

Data TLB miss,
EX

EV_DTLBMiss

0x110

0x22

0x03

0x220300

Data TLB
protection
violation, LD

EV_ProtV

0x118

0x23

0x01

0x230100

Data TLB
protection
violation, ST

EV_ProtV

0x118

0x23

0x02

0x230200

Data TLB
protection
violation, EX

EV_ProtV

0x118

0x23

0x03

0x230300

Trap EV_Trap 0x128 0x25 0x00 0x2500nn

External
Memory Bus
Error

Memory Error

0x008

-

-

-

Level 2 Interrupt

Interrupts

0x018 to
0x0F8

-

-

-

Level 1 Interrupt

Interrupts

0x018 to
0x0F8

-

-

-

Actionpoint Hit,
Memory or
Register

EV_PrivilegeV

0x120

0x24

0x02

0x2402nn

Exception Detection
Exceptions are taken in strict program order. If more than one exception can be attributed to an
instruction, the highest priority exception will be taken and all others ignored. Any remaining
exception conditions will be handled when the faulting instruction is re-executed.

Interrupts and Exceptions
The processor is designed to allow exceptions to be taken and handled from user mode or kernel
mode and from interrupt service routines. An exception taken in an exception handler is a double fault
condition – and causes a fatal machine check exception.

All interrupts and exceptions cause an immediate switch into kernel mode. The Memory Management
Unit is not disabled on entry to an interrupt or exception handler, and the process-ID (ASID) register
is not altered. Both levels of interrupt are disabled on entry to an exception handler.

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 89

Exception Entry
Note that all addresses described below are the logical addresses used by the program itself.

When an exception is detected the following steps are taken:

• The faulting instruction is cancelled

 No state changes caused by this instruction can be committed

 All subsequent instructions that have been fetched into the pipeline are also cancelled.

 Cache behavior is not explicitly defined by the ISA, and is implementation dependent.

 All state changes associated with extension core registers or condition codes must also be
prevented if an instruction is cancelled, in order that the instruction functions correctly when
it is re-fetched.

• When a fault is detected on an instruction, the exception return address register (ERET) is loaded
with the PC value used to fetch the faulting instruction.

 If the exception is coerced using a TRAP_S or TRAP0 instruction, the exception return
register (ERET) is loaded with the address of the next instruction to be fetched after the
TRAP instruction. This value is the architectural PC expected after the TRAP completes –
hence pending branches and loops are taken into account.

• The exception return status register (ERSTATUS) is loaded with the contents of STATUS32 used
for execution of the faulting instruction.

 Since there is a single exception detection point immediately before the commit point, then
the value used to load ERSTATUS will be the last value committed to STATUS32.

 If a delayed program-counter update is pending – due to the faulting instruction being in the
delay slot of a taken branch/jump, then the delay-slot bit will be true. STATUS32[DE] = 1

• If a delayed program-counter update is pending – indicated by the STATUS32[DE] bit being true,
the exception return branch target address register (ERBTA) is loaded with the pending target PC
value. This mechanism is not affected by zero-overhead loops.

• The exception cause register (ECR) is loaded with a code to indicate the cause of the exception –
see Table 26 on page 87.

• The exception fault address register (EFA) is loaded with the address associated with the fault.
For LD/ST operations, this is the target of the operation. For all other faults, the EFA register will
be loaded with the address of the faulting instruction.

• The CPU is switched into kernel mode STATUS32[U] = 0

• Interrupts are disabled STATUS32[E1,E2] = 0

• The exception handler underway flag is set. STATUS32[AE] = 1

• The Program Counter will be loaded with the address of the appropriate exception vector. This is
determined by the type of exception detected and the value in the interrupt/exception vector table
base register.

• The DE bit in the status register is cleared. STATUS32[DE] = 0

No other state is altered –the stack pointer and all other registers remain unchanged.

Exceptions Interrupts and Exceptions

90 ARCompact™ Programmer's Reference

The exception handlers must be able to save and restore all processor state that they alter during
exception handling.

The MMU provides a 32-bit register SCRATCH_DATA0 that can be used by an Operating System to
store data.

Saving of the stack pointer means having a fixed location in the unmapped region of the address
space that is used to swap the user mode stack pointer with the exception stack pointer. The use of
separate exception/interrupt stacks is a feature of many operating systems. It may also be actually
necessary if the memory locations used for the user mode stack for the faulting process do not have
read/write privileges enabled for kernel mode.

Exception Exit
Once the exception handler has completed its operations, it must restore the correct context for the
task that is to continue execution. The RTIE instruction is used to return from exceptions. The JAL.F
[ILINKn] instruction cannot be used.

The RTIE instruction determines which operating mode and interrupt state to return to by checking
the A2, A1 and AE bits of STATUS32 in order to establish which copy of the status register
(ERSTATUS, STATUS32_L1 or STATUS32_L2) should be used to determine the exception return
mode. The U bit of the corresponding link register is used for this purpose.

Table 27 Exception and Interrupt Exit Modes

U AE A2 A1 Current Mode RTIE Response Link Registers Used
0 0 0 0 Kernel Exception Exit ERET ERSTATUS ERBTA

0

0

0

1

ISR Level 1

Interrupt Level 1 Exit

ILINK1 STATUS32_L1
ERBTA_L1

0

0

1

0

ISR Level 2

Interrupt Level 2 Exit

ILINK2 STATUS32_L2
ERBTA_L2

0

0

1

1

ISR Level 2

Interrupt Level 2 Exit

ILINK2 STATUS32_L2
ERBTA_L2

0 1 0 0 Exception Exception Exit ERET ERSTATUS ERBTA

0 1 0 1 Exception Exception Exit ERET ERSTATUS ERBTA

0 1 1 0 Exception Exception Exit ERET ERSTATUS ERBTA

0 1 1 1 Exception Exception Exit ERET ERSTATUS ERBTA

1 - - - User Privilege Violation Kernel

The case when U, AE, A2, and A1 are all set to 0 is used for state changes from kernel mode, for
example when scheduling a user mode task.

If the AE bit is set, or AE, A1 and A2 are all zero, the exception-exit sequence is followed. If AE is
zero and either A1 or A2 are set true, the interrupt-exit sequence is followed. See description of the
RTIE instruction for further details.

The program counter is loaded with the exception return address from the ERET register, the contents
of ERSTATUS are copied into STATUS32and the contents of ERBTA are copied into BTA.

If the delay-slot bit STATUS32[DE] is set as a result, an unconditional delayed branch is set up to the
address contained in the branch target address register BTA.

Interrupts and Exceptions Exceptions

ARCompact™ Programmer's Reference 91

Exceptions and Delay Slots
For the ARCompact based processor exceptions are supported for instructions in the delay slots of
branches.

Example 15 Exception in a Delay Slot

J.D [blink] ; Branch/Jump Instruction
LD fp,[sp,24] ;
… ;
MOV r0,0 ; Target of the branch/jump

The ARC 700 processor has features specifically for recovery from exceptions caused by instructions
found in branch/jump delay slots.

When an exception is detected on a delay slot instruction, the return address stored on exception entry
will be the address of the instruction in the delay slot, which allows an exception handler to return to
the delay slot instruction of a taken branch, and for subsequent instructions to be executed starting at
the branch target address.

This functionality allows branch instructions that can change processor state to also have delay slots,
for example BRcc /BBITn /Jcc using auto-update extension core registers, or simply the BLcc
instruction.

Many possible hazards are removed in this scheme which would otherwise occur when not returning
to a faulting instruction that was previously cancelled, for example the possibility of TLB
thrash/deadlock with a fully-associative scheme

Emulation of Extension Instructions
An illegal exception instruction handler whose intent is to emulate the function of an extension
instruction must be able to:

• Get the address of the faulting instruction from the ERET register

• Disassemble the instruction sufficiently to determine whether it should be emulated

• Perform the emulation function, and make whatever changes to processor state (real or emulated)
that are required

 Note that any required changes to ZNCV flags would have to be made in the ERSTATUS
register to be restored on exception return

• Return to the next instruction after the emulated instruction. The return address could be one of
the following (in order of priority):

 ERBTA – exception branch target address if the faulting instruction was in the delay slot of a
taken branch

 LP_START if the faulting instruction was the last instruction in a zero-overhead loop, and
it’s not the last loop iteration (ERET+emulated_instruction_size = LP_END, and
LP_COUNT>1).

 ERET + emulated_instruction_size for norml linear code execution

NOTE

When an extension is present but disabled using the XPU register, the exception vector used is
Privilege Violation and not Illegal Instruction.

Exceptions Interrupts and Exceptions

92 ARCompact™ Programmer's Reference

Emulation of Extension Registers and Condition Code s
A similar scheme, as defined for emulation of extension instructions, can be used to emulate
extension registers and condition codes, again using the illegal instruction exception, which is
triggered if an instruction references an unmapped extension operand.

ARCompact™ Programmer's Reference 93

Chapter 5 — Instruction Set Summary
This chapter contains an overview of the types of instructions in the ARCompact ISA.

Both 32-bit and 16-bit instructions are available in the ARCompact ISA and are indicated using
particular suffixes on the instruction as illustrated by the following syntax:

OP implies 32-bit instruction

OP_L indicates 32-bit instruction.

OP_S indicates 16-bit instruction

If no suffix is used on the instruction then the implied instruction is 32-bit format. 16-bit instructions
have a reduced range of source and target core registers unless indicated otherwise. See Table 87 on
page 173 for an alphabetic list of instructions. The following notation is used for the syntax of
operations.

Table 28 Instruction Syntax Convention

a destination register (reduced range for 16-bit instruction.)
b source operand 1 (reduced range for 16-bit instruction.)
c source operand 2 (reduced range for 16-bit instruction.)
h full register range for 16-bit instructions
cc condition code
<.cc> optional condition code
Z Zero flag
N Negative flag
C Carry flag
V Overflow flag
<.f> optional set flags
<.aa> optional address writeback
<.d> optional delay slot mode
<.di> optional direct data cache bypass
<.x> optional sign extend
<zz> optional data size
u unsigned immediate, number indicates field size
s signed immediate, number indicates field size
limm long immediate

Arithmetic and Logical Operations
These operations are of the form a ← b op c where the destination (a) is replaced by the result of the
operation (op) on the operand sources (b and c). The ordering of the operands is important for some
non-commutative operations (for example: SUB, SBC, BIC, ADD1/2/3, SUB1/2/3) All arithmetic
and logical instructions can be conditional or set the flags, or both.

If the destination register is set to an absolute value of "0" then the result is discarded and the
operation acts like a NOP instruction. A long immediate (limm) value can be used for either source
operand 1 or source operand 2.

Arithmetic and Logical Operations Instruction Set Summary

94 ARCompact™ Programmer's Reference

Summary of Basecase ALU Instructions
The basecase ALU instructions are summarized in the following table:

Table 29 Basecase ALU Instructions

Instruction Operation Description
ADD a ← b + c add

ADC a ← b + c + C add with carry

SUB a ← b – c subtract

SBC a ← (b – c) - C subtract with carry

AND a ← b and c logical bitwise AND

OR a ← b or c logical bitwise OR

BIC a ← b and not c logical bitwise AND with invert

XOR a ← b exclusive-or c logical bitwise exclusive-OR

MAX a ← b max c larger of 2 signed integers

MIN a ← b min c smaller of 2 signed integers

MOV b ← c move

TST b and c test

CMP b - c compare

RCMP c - b reverse compare

RSUB a ← c - b reverse subtract

BSET a ← b or (1<<c) bit set

BCLR a ← b and not (1<<c) bit clear

BTST b and (1<<c) bit test

BXOR a ← b xor (1<<c) bit xor

BMSK a ← b and ((1<<(c+1))-1) bit mask

ADD1 a ← b + (c << 1) add with left shift by 1

ADD2 a ← b + (c << 2) add with left shift by 2

ADD3 a ← b + (c << 3) add with left shift by 3

SUB1 a ← b - (c << 1) subtract with left shift by 1

SUB2 a ← b - (c << 2) subtract with left shift by 2

SUB3 a ← b - (c << 3) subtract with left shift by 3

ASL a ← b asl c arithmetic shift left

ASR a ← b asr c arithmetic shift right

LSR a ← b lsr c logical shift right

ROR a ← b ror c rotate right

Syntax for Arithmetic and Logical Operations
Including "0" as destination value and a limm as either source operand 1 or source operand 2 expands
the generic syntax for standard arithmetic and logical instructions. The generic instruction syntax is
used for the following arithmetic and logic operations:

SUB; AND; OR; BIC; XOR; ADD1; ADD2; ADD3; ASL; ASR and LSL

Instruction Set Summary Arithmetic and Logical Operations

ARCompact™ Programmer's Reference 95

The following instructions have the same generic instruction format, but do not have a 16 bit
instruction (op_S b,b,c) equivalent.

ADC; SBC; RSUB; SUB1; SUB2; SUB3; ROR; MIN and MAX.

The full generic instruction syntax is:

op<.f> a,b,c

op<.f> a,b,u6

op<.f> b,b,s12

op<.cc><.f> b,b,c

op<.cc><.f> b,b,u6

op<.f> a,limm,c (if b=limm)

op<.f> a,b,limm (if c=limm)

op<.cc><.f> b,b,limm

op<.f> 0,b,c ;if a=0

op<.f> 0,b,u6

op<.f> 0,b,limm (if a=0, c=limm)

op<.cc><.f> 0,limm,c (if a=0, b=limm)

op_S b,b,c (reduced register range)

For example, the syntax for AND is:

AND<.f> a,b,c (a = b and c)

AND<.f> a,b,u6 (a = b and u6)

AND<.f> b,b,s12 (b = b and s12)

AND<.cc><.f> b,b,c (b = b and c)

AND<.cc><.f> b,b,u6 (b = b and u6)

AND<.f> a,limm,c (a = limm and c)

AND<.f> a,b,limm (a = b and limm)

AND<.cc><.f> b,b,limm (b = b and limm)

AND<.f> 0,b,c (b and c)

AND<.f> 0,b,u6 (b and u6)

AND<.cc><.f> 0,b,limm (b and limm)

AND<.cc><.f> 0,limm,c (limm and c)

AND_S b,b,c (b = b and c)

Add Instruction
The ADD instruction extends the generic instruction syntax for 16-bit instruction formats to allow
access to stack pointer (SP) and global pointer (GP), along with further immediate modes. The syntax
for ADD is:

Arithmetic and Logical Operations Instruction Set Summary

96 ARCompact™ Programmer's Reference

ADD<.f> a,b,c (a = b+c)

ADD<.f> a,b,u6 (a = b+u6)

ADD<.f> b,b,s12 (b = b+s12)

ADD<.cc><.f> b,b,c (b = b+c)

ADD<.cc><.f> b,b,u6 (b = b+u6)

ADD<.f> a,limm,c (a = limm+c)

ADD<.f> a,b,limm (a = b+limm)

ADD<.cc><.f> b,b,limm (b = b+limm)

ADD<.f> 0,b,c (b+c)

ADD<.f> 0,b,u6 (b+u6)

ADD<.cc><.f> 0,b,limm (b+limm)

ADD<.cc><.f> 0,limm,c (limm+c)

ADD_S a, b, c (a = b + c, reduced set of regs)

ADD_S c, b, u3 (c = b + u3, reduced set of regs)

ADD_S b, b, u7 (b = b + u7, reduced set of regs)

ADD_S b, b, h (b = b + h, full set of regs for h)

ADD_S b, b, limm (b = b + limm)

ADD_S r0, GP, s11 (32-bit aligned offset)

ADD_S b, SP, u7 (u7 offset is 32-bit aligned)

ADD_S SP, SP, u7 (u7 offset is 32-bit aligned)

Subtract Instruction
The subtract instruction extends the generic instruction syntax for 16-bit instruction formats to allow
access to stack pointer (SP) and further immediate modes. The syntax variants for SUB are:

SUB<.f> a,b,c (a = b-c)

SUB<.f> a,b,u6 (a = b-u6)

SUB<.f> b,b,s12 (b = b-s12)

SUB<.cc><.f> b,b,c (b = b-c)

SUB<.cc><.f> b,b,u6 (b = b-u6)

SUB<.f> a,limm,c (a = limm-c)

SUB<.f> a,b,limm (a = b-limm)

SUB<.cc><.f> b,b,limm (b = b-limm)

SUB<.f> 0,b,c (b-c)

SUB<.f> 0,b,u6 (b-u6)

SUB<.cc><.f> 0,b,limm (b-limm)

Instruction Set Summary Arithmetic and Logical Operations

ARCompact™ Programmer's Reference 97

SUB<.cc><.f> 0,limm,c (limm-c)

SUB_S b,b,c (b = b-c, reduced set of regs)

SUB_S.NE b,b,b (If Z=0 Clear b, reduced set of regs)

SUB_S b, b, u5 (b = b-u5, reduced set of regs)

SUB_S c, b, u3 (c = b-u3, reduced set of regs)

SUB_S SP, SP, u7 (u7 offset is 32-bit aligned)

Reverse Subtract Instruction
The Reverse Subtract instruction (RSUB) is special in that the source1 and source2 operands are
swapped over by the ARCompact based processor ALU before the subtract operation.

The syntax of RSUB, however, stays the same as that for the generic ALU operation:

RSUB<.f> a,b,c (a = c-b)

RSUB<.f> a,b,u6 (a = u6-b)

RSUB<.f> b,b,s12 (b = s12-b)

RSUB<.cc><.f> b,b,c (b = c-b)

RSUB<.cc><.f> b,b,u6 (b = u6-b)

RSUB<.f> a,limm,c (a = c-limm)

RSUB<.f> a,b,limm (a = limm-b)

RSUB<.cc><.f> b,b,limm (b = limm-b)

RSUB<.f> 0,b,c (c-b)

RSUB<.f> 0,b,u6 (u6-b)

RSUB<.cc><.f> 0,b,limm (limm-b)

RSUB<.cc><.f> 0,limm,c (c-limm)

Test and Compare Instructions
TST, CMP and RCMP have special instruction encoding in that the destination is always ignored and
the instruction result is always discarded. The flags are always set according to the instruction result
(implicit ".f", and encoded with F=1). RCMP is special in that the source1 and source2 operands are
swapped over by the ARCompact based processor ALU before the subtract operation.

Register-Register (TST, CMP & RCMP)
The General Operations Register-Register format on page 142 is implemented, where the destination
field A is ignored, and provides the following redundant formats for TST, CMP and RCMP:

op b,c (b=source 1, c=source 2.Redundant format see Conditional Register
format on page 98)

op b,limm (b=source 1, c=limm=source 2. Redundant format see Conditional
Register format on page 98)

op limm,c (limm=source 1, c=source 2. Redundant format see Conditional Register

Arithmetic and Logical Operations Instruction Set Summary

98 ARCompact™ Programmer's Reference

format on page 98)

op limm,limm (limm=source 1, limm=source 2.. Redundant format see Conditional
Register format on page 98)

Register with Unsigned 6-bit Immediate (TST, CMP & RCMP)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented,
where the destination field A is ignored, and provides the following redundant formats for TST, CMP
and RCMP:

op b,u6 (b=source 1, u6=source 2. Redundant format, see Conditional Register
with Unsigned 6-bit Immediate format on page 98.)

op limm,u6 (limm=source 1, u6=source 2. Redundant format, see Conditional Register
with Unsigned 6-bit Immediate format on page 98.)

Register with Signed 12-bit Immediate (TST, CMP & R CMP)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following syntax for TST, CMP and RCMP:

op b,s12 (b=source 1, s12=source 2)

op limm,s12 (limm=source 1, s12=source 2. Not useful format)

Conditional Register (TST, CMP & RCMP)
The General Operations Conditional Register format on page 143 provides the following syntax for
TST, CMP and RCMP:

op<.cc> b,c (b=source 1, c=source 2)

op<.cc> b,limm (b=source 1, c=limm=source 2)

op<.cc> limm,c (limm=source 1, c=source 2)

op<.cc> limm,limm (limm=source 1, limm=source 2. Not useful format)

Conditional Register with Unsigned 6-bit Immediate (TST, CMP & RCMP)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 143
provides the following syntax for TST, CMP and RCMP:

op<.cc> b,u6 (b=source 1, u6=source 2)

op<.cc> limm,u6 (limm=source 1, u6=source 2. Not useful format)

The syntax for test and compare instructions is therefore:

TST b,s12 (b & s12)

TST<.cc> b,c (b & c)

TST<.cc> b,u6 (b & u6)

TST<.cc> b,limm (b & limm)

TST<.cc> limm,c (limm & c)

TST_S b,c (b&c, reduced set of regs)

CMP b,s12 (b-s12)

CMP<.cc> b,c (b-c)

Instruction Set Summary Arithmetic and Logical Operations

ARCompact™ Programmer's Reference 99

CMP<.cc> b,u6 (b-u6)

CMP<.cc> b,limm (b-limm)

CMP<.cc> limm,c (limm-c)

CMP_S b, h (b-h, full set of regs for h)

CMP_S b, limm (b-limm, full set of regs for h)

CMP_S b, u7 (b-u7, reduced set of regs)

RCMP b,s12 (s12-b)

RCMP<.cc> b,c (c-b)

RCMP<.cc> b,u6 (u6-b)

RCMP<.cc> b,limm (limm-b)

RCMP<.cc> limm,c (c-limm)

Bit Test Instruction
The BTST instruction only requires two source operands. BTST has a special instruction encoding in
that the destination is always ignored and the instruction result is always discarded. The second
source operand selects the bit position to test (0 to 31), which can be covered by a u6 immediate
number. The status flags are always set according to the instruction result (implicit ".f", and encoded
with F=1).

Register-Register (BTST)
The General Operations Register-Register format on page 142 is implemented, where the destination
field A is ignored, and provides the following redundant formats for BTST:

BTST b,c (b=source 1, c=source 2.Redundant format see Conditional Register format
on page 100)

BTST b,limm (b=source 1, c=limm=source 2. Redundant format see Conditional Register
with Unsigned 6-bit Immediate format on page 100)

BTST limm,c (limm=source 1, c=source 2. Redundant format see Conditional Register
format on page 100)

BTST limm,limm (limm=source 1, limm=source 2. Redundant format see Conditional
Register with Unsigned 6-bit Immediate format on page 100)

Register with Unsigned 6-bit Immediate (BTST)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented,
where the destination field A is ignored, and provides the following redundant formats for BTST:

BTST b,u6 (b=source 1, u6=source 2. Redundant format, see Conditional Register
with Unsigned 6-bit Immediate format on page 100.)

BTST limm,u6 (limm=source 1, u6=source 2. Redundant format, see Conditional Register
with Unsigned 6-bit Immediate format on page 100.)

Register with Signed 12-bit Immediate (BTST)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following redundant syntax for BTST:

Arithmetic and Logical Operations Instruction Set Summary

100 ARCompact™ Programmer's Reference

BTST b,s12 (b=source 1, s12=source 2. Redundant format, see Conditional
Register with Unsigned 6-bit Immediate format on page 100.)

BTST limm,s12 (limm=source 1, s12=source 2. Redundant format, see Conditional
Register with Unsigned 6-bit Immediate format on page 100.)

Conditional Register (BTST)
The General Operations Conditional Register format on page 143 provides the following syntax for
BTST:

BTST<.cc> b,c (b=source 1, c=source 2)

BTST<.cc> b,limm (b=source 1, c=limm=source 2. Redundant format, see Conditional
Register with Unsigned 6-bit Immediate format on page 100.)

BTST<.cc> limm,c (limm=source 1, c=source 2)

BTST<.cc> limm,limm (limm=source 1, limm=source 2. Redundant format, see Conditional
Register with Unsigned 6-bit Immediate format on page 100.)

Conditional Register with Unsigned 6-bit Immediate (BTST)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144
provides the following syntax for BTST:

BTST<.cc> b,u6 (b=source 1, u6=source 2)

BTST<.cc> limm,u6 (limm=source 1, u6=source 2. Not useful format)

Single Bit Instructions
The single bit instructions (BSET, BCLR, BXOR and BMSK) instructions require two source
operands and one destination operand. The second source operand selects the bit position to test (0 to
31) which can be covered by a u6 immediate number.

BSET, BCLR, BXOR and BMASK are bit-set, bit-clear, bit-xor and bit-mask instructions,
respectively.

Register-Register (BSET, BCLR, BXOR & BMSK)
The General Operations Register-Register format on page 142 is implemented and provides the
following formats for BSET, BCLR, BXOR and BMSK:

op<.f> a,b,c

op<.f> a,limm,c (if b=limm)

op<.f> a,b,limm (if c=limm. Redundant format see Register with Unsigned 6-bit
Immediate format on page 101)

op<.f> a,limm,limm (if b=c=limm. Redundant format see Register with Unsigned 6-bit
Immediate format on page 101)

op<.f> 0,b,c (if a=0)

op<.f> 0,limm,c (Redundant format, see Conditional Register format on page 101)

op<.f> 0,b,limm (if a=0, c=limm. Redundant format see Register with Unsigned 6-bit
Immediate format on page 101)

op<.f> 0,limm,limm (if a=0, b=c=limm. Redundant format see Conditional Register with
Unsigned 6-bit Immediate format on page 101)

Instruction Set Summary Arithmetic and Logical Operations

ARCompact™ Programmer's Reference 101

Register with Unsigned 6-bit Immediate (BSET, BCLR, BXOR & BMSK)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented
and provides the following formats for BSET, BCLR, BXOR and BMSK:

op<.f> a,b,u6

op<.f> a,limm,u6 (Not useful format)

op<.f> 0,b,u6

op<.f> 0,limm,u6 (Redundant format see Conditional Register with Unsigned 6-bit
Immediate format on page 101)

Register with Signed 12-bit Immediate (BSET, BCLR, BXOR & BMSK)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following redundant syntax for BSET, BCLR, BXOR and BMSK:

op<.f> b,b,s12 (Redundant format see Conditional Register with Unsigned 6-bit
Immediate format on page 101)

op<.f> 0,limm,s12 (Redundant format see Conditional Register with Unsigned 6-bit
Immediate format on page 101)

Conditional Register (BSET, BCLR, BXOR & BMSK)
The General Operations Conditional Register format on page 143 provides the following syntax for
BSET, BCLR, BXOR and BMSK:

op<.cc><.f> b,b,c

op<.cc><.f> 0,limm,c

op<.cc><.f> b,b,limm (Redundant format see Conditional Register with Unsigned 6-bit
Immediate format on page 101)

op<.cc><.f> 0,limm,limm (Redundant format see Conditional Register with Unsigned 6-bit
Immediate format on page 101)

Conditional Register with Unsigned 6-bit Immediate (BSET, BCLR, BXOR & BMSK)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144
provides the following syntax for BSET, BCLR, BXOR and BMSK:

op<.cc><.f> b,b,u6

op<.cc><.f> 0,limm,u6 (Not useful format)

The syntax for the single bit operations is therefore:

BSET<.f> a,b,c (a = b | (1<<c))

BSET<.cc><.f> b,b,c (b = b | (1<<c))

BSET<.f> a,b,u6 (a = b | (1<<u6))

BSET<.cc><.f> b,b,u6 (b = b | (1<<u6))

BSET_S b, b, u5 (uses reduced set of regs)

BCLR<.f> a,b,c (a = b & ~(1<<c))

BCLR<.cc><.f> b,b,c (b = b & ~(1<<c))

Arithmetic and Logical Operations Instruction Set Summary

102 ARCompact™ Programmer's Reference

BCLR<.f> a,b,u6 (a = b & ~(1<<u6))

BCLR<.cc><.f> b,b,u6 (b = b & ~(1<<u6))

BCLR_S b, b, u5 (uses reduced set of regs)

BTST<.cc> b,c (b & (1<<c))

BTST<.cc> b,u6 (b & (1<<u6))

BTST_S b, u5 (uses reduced set of regs)

BXOR<.f> a,b,c (a = b xor (1<<c))

BXOR<.cc><.f> b,b,c (b = b xor (1<<c))

BXOR<.f> a,b,u6 (a = b xor (1<<u6))

BXOR<.cc><.f> b,b,u6 (b = b xor (1<<u6))

BMSK<.f> a,b,c (a = b & ((1<<(c+1))-1))

BMSK<.cc><.f> b,b,c (b = b & ((1<<(c+1))-1))

BMSK<.f> a,b,u6 (a= b & ((1<<(u6+1))-1))

BMSK<.cc><.f> b,b,u6 (b= b & ((1<<(u6+1))-1))

BMSK_S b, b, u5 (uses reduced set of regs)

Barrel Shift/Rotate
The barrel shifter provides a number of instructions that will allow any operand to be shifted left or
right by up to 32 positions in one cycle, the result being available for write-back to any core register.
Single bit shift instructions are also provided as single operand instructions as shown in Table 32 on
page 105.

Table 30 Barrel Shift Operations

Instruction Operation Description
ASR

src1

dest C

MSB LSB

multiple arithmetic shift right, sign filled

LSR src1

dest C

MSB LSB

 '0' 0

multiple logical shift right, zero filled

ROR
src1

dest C

MSB LSB

multiple rotate right

ASL src1

dest C 0

MSB LSB

‘0’

multiple arithmetic shift left, zero filled

The ROR instruction does not have any 16 bit instruction (op_S a,b,c) equivalent. The ASR, LSR and
ASL instructions extend the generic instruction syntax to include:

op_S b,b,u5

op_S b,b,c

Instruction Set Summary Arithmetic and Logical Operations

ARCompact™ Programmer's Reference 103

ASR and LSR additionally provide the following syntax

op_S c,b,u3

The syntax for the barrel shifter is:

ASL<.f> a,b,c (a = b<<c)

ASL<.f> a,b,u6 (a = b<<u6)

ASL<.f> b,b,s12 (b = b<<s12)

ASL<.cc><.f> b,b,c (b = b<<c)

ASL<.cc><.f> b,b,u6 (b = b<<u6)

ASL<.f> a,limm,c (a = limm<<c)

ASL<.f> a,b,limm (a = b<<limm)

ASL<.cc><.f> b,b,limm (b = b<<limm)

ASL<.f> 0,b,c (b<<c)

ASL<.f> 0,b,u6 (b<<u6)

ASL<.cc><.f> 0,limm,c (limm<<c)

ASL_S c,b,u3 (c = b<<u3)

ASL_S b,b,c (b = b<<c)

ASL_S b,b,u5 (b=b<<u5)

ASR<.f> a,b,c (a = b>>c)

ASR<.f> a,b,u6 (a = b>>u6)

ASR<.f> b,b,s12 (b = b>>s12)

ASR<.cc><.f> b,b,c (b = b>>c)

ASR<.cc><.f> b,b,u6 (b = b>>u6)

ASR<.f> a,limm,c (a = limm>>c)

ASR<.f> a,b,limm (a = b>>limm)

ASR<.cc><.f> b,b,limm (b = b>>limm)

ASR<.f> 0,b,c (b>>c)

ASR<.f> 0,b,u6 (b>>u6)

ASR<.cc><.f> 0,limm,c (limm>>c)

ASR_S c,b,u3 (c = b>>u3)

ASR_S b,b,c (b = b>>c)

ASR_S b,b,u5 (b=b>>u5)

LSR<.f> a,b,c (a = b>>c)

Single Operand Instructions Instruction Set Summary

104 ARCompact™ Programmer's Reference

LSR<.f> a,b,u6 (a = b>>u6)

LSR<.f> b,b,s12 (b = b>>s12)

LSR<.cc><.f> b,b,c (b = b>>c)

LSR<.cc><.f> b,b,u6 (b = b>>u6)

LSR<.f> a,limm,c (a = limm>>c)

LSR<.f> a,b,limm (a = b>>limm)

LSR<.cc><.f> b,b,limm (b = b>>limm)

LSR<.f> 0,b,c (b>>c)

LSR<.f> 0,b,u6 (b>>u6)

LSR<.cc><.f> 0,limm,c (limm>>c)

LSR_S b,b,c (b = b>>c)

LSR_S b,b,u5 (b = b>>u6)

ROR<.f> a,b,c (a = (b<<(31-c)):(b>>c))

ROR<.f> a,b,u6 (a = (b<<(31-u6)):(b>>u6))

ROR<.f> b,b,s12 (b = (b<<(31-s12)):(b>>s12))

ROR<.cc><.f> b,b,c (b = (b<<(31-c)):(b>>c))

ROR<.cc><.f> b,b,u6 (b = (b<<(31-u6)):(b>>u6))

ROR<.f> a,limm,c (a = (limm<<(31-c)):(limm>>c))

ROR<.f> a,b,limm (a = (b<<(31-limm)):(b>>limm))

ROR<.cc><.f> b,b,limm (b = (b<<(31-limm)):(b>>limm)

ROR<.f> 0,b,c ((b<<(31-c)):(b>>c))

ROR<.f> 0,b,u6 ((b<<(31-u6)):(b>>u6))

ROR<.cc><.f> 0,limm,c ((b<<(31-limm)):(limm>>c))

Single Operand Instructions
Some instructions require just a single source operand. These include sign-extend and rotate
instructions. These instructions are of the form b ← op c where the destination (b) is replaced by the
operation (op) on the operand source (c). Single operand instructions can set the flags.

The following tables shows the move, extend, negate, rotate and shift operations.

Table 31 Single operand: moves and extends

Instruction Operation Description
MOV src

dest

MSB LSB

Move

Instruction Set Summary Single Operand Instructions

ARCompact™ Programmer's Reference 105

Instruction Operation Description
SEX src

dest

MSB LSB

Sign extend byte or word

EXT src

dest

MSB LSB

'0'

Zero extend byte or word

NOT src

dest

MSB LSB

inv inv

Logical NOT

NEG src

dest

MSB LSB

0-src

Negate

ABS
src

dest

MSB LSB

0-src

if '1'

Absolute

FLAG src

STATUS32

MSB LSB

Set flags

Table 32 Single operand: Rotates and Shifts

Instruction Operation Description
ASL src

dest C 0

MSB LSB

‘0’

Arithmetic shift left by one

RLC
src

dest C

MSB LSB

Rotate left through carry

ASR
src

dest C

MSB LSB

Arithmetic shift right by one

LSR src

dest C

MSB LSB

 '0' 0

Logical shift right by one

ROR
src

dest C

MSB LSB

Rotate right

RRC
src

dest C

MSB LSB

Rotate right through carry

The following instructions do not have a 16 bit instruction (op_S b,c) equivalent.

ROR, RRC and RLC;

Single operand instruction syntax is:

op<.f> b,c

op<.f> b,u6

op<.f> b,limm

op<.f> 0,c

op<.f> 0,u6

Single Operand Instructions Instruction Set Summary

106 ARCompact™ Programmer's Reference

op<.f> 0,limm

op_S b,c

Move to Register Instruction
The move instruction, MOV, has a wider syntax than other single operand instructions by being
encoded as a general ALU instruction. The first operand is only used as the destination register; the
final operand is used as the source operand. Using the limm encoding in the first operand field is
ignored in just the same way as it is if used in the destination of other instructions, causing the MOV
instruction result to be discarded.

Register-Register (MOV)
The General Operations Register-Register format on page 142 is implemented, where the destination
field A is ignored and the B field is used instead as the destination register. The MOV instruction
provides the following redundant formats:

MOV<.f> b,c (b=destination, c=source. Redundant format, see Conditional Register
format on page 106.)

MOV<.f> b,limm (b=destination, c=limm=source. Redundant format, see Conditional
Register format on page 106.)

MOV<.f> 0,c (b=limm, c=source. Redundant format, see Conditional Register format on
page 106.)

MOV<.f> 0,limm (if b=limm, b= c=limm=source. Redundant format, see Conditional Register
format on page 106.)

Register with Unsigned 6-bit Immediate (MOV)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented,
where the destination field A is ignored and the B field is used instead as the destination register. The
MOV instruction provides the following redundant formats:

MOV<.f> b,u6 (b=destination, u6=source. Redundant format, see Conditional Register with
Unsigned 6-bit Immediate format on page 107.)

MOV<.f> 0,u6 (b=limm, u6=source. Redundant format, see Conditional Register with
Unsigned 6-bit Immediate format on page 107.)

Register with Signed 12-bit Immediate (MOV)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following syntax for the MOV instruction:

MOV<.f> b,s12 (b=destination, s12=source)

MOV<.f> 0,s12 (b=limm, s12=source)

Conditional Register (MOV)
The General Operations Conditional Register format on page 143 provides the following syntax for
the MOV instruction:

MOV<.cc><.f> b,c (b=destination, c=source)

MOV<.cc><.f> b,limm (b=destination, c=limm=source)

MOV<.cc><.f> 0,c (b=limm, c=source)

MOV<.cc><.f> 0,limm (if b=limm, b= c=limm=source)

Instruction Set Summary Single Operand Instructions

ARCompact™ Programmer's Reference 107

Conditional Register with Unsigned 6-bit Immediate (MOV)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144
provides the following syntax for the MOV instruction:

MOV<.cc><.f> b,u6 (b=destination, u6=source)

MOV<.cc><.f> 0,u6 (b=limm, u6=source)

16-bit Instruction, Move with High Register (MOV)
The Mov/Cmp/Add with High Register, 0x0E, [0x00 - 0x03] format on page 156 provides the
following syntax for the MOV instruction:

MOV_S b, h (b = destination, h=source. Full range of regs for h)

MOV_S b, limm (b = destination, limm=source)

MOV_S h, b (h = destination, b = source. Full range of regs for h)

16-bit Instruction, Move Immediate (MOV)
The Move Immediate, 0x1B format on page 165 provides the following syntax for the MOV
instruction

MOV_S b, u8 (b = destination, u8 = source. Reduced set of regs for b)

Flag Instruction
The FLAG instruction has a special syntax that ignores the destination field. The FLAG instruction
always updates the status flags.

Register-Register (FLAG)
The General Operations Register-Register format on page 142 is implemented, where the destination
field A is ignored, the B field is ignored and the C field is used as the source register. The FLAG
instruction provides the following redundant formats:

FLAG c (a = ignored, b= ignored, c=source. Redundant format, see
Conditional Register format on page 107.)

FLAG b,limm (a = ignored, b= ignored, c=limm=source. Redundant format, see
Conditional Register format on page 107.)

Register with Unsigned 6-bit Immediate (FLAG)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented,
where the destination field A is ignored, the B field is ignored and the u6 immediate field is used as
the source value. The FLAG instruction provides the following redundant formats:

FLAG u6 (a = ignored, b= ignored, u6=source. Redundant format, see
Conditional Register with Unsigned 6-bit Immediate format on
page 108.)

Register with Signed 12-bit Immediate (FLAG)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following syntax for the FLAG instruction:

FLAG s12 (b = ignored, s12=source)

Conditional Register (FLAG)
The General Operations Conditional Register format on page 143 provides the following syntax for
the FLAG instruction:

Zero Operand Instructions Instruction Set Summary

108 ARCompact™ Programmer's Reference

FLAG<.cc> c (b=ignored, c=source)

FLAG<.cc> limm (b=ignored, c=limm=source)

Conditional Register with Unsigned 6-bit Immediate (FLAG)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144
provides the following syntax for the FLAG instruction:

FLAG<.cc> u6 (b=ignored, u6=source)

Negate Operation
Negate is a separate instruction in 16-bit instruction format and is provided in 32-bit instruction
format as an encoding of the reverse subtract instruction using an unsigned 6-bit immediate value set
to 0.

The syntax for negate operations is:

NEG_S b,c (b = 0-c, reduced set of regs)

NEG<.f> a,b (encoded as RSUB<.f> a,b,0, where 0 is u6)

NEG<.cc><.f> b,b (encoded as RSUB<.cc><.f> b,b,0, where 0 is u6)

Zero Operand Instructions
Some instructions require no source operands or destinations. The ARCompact ISA supports these
instructions using the form op c where the operand source c supplies information for the instruction.
Zero operand instructions can set the flags.

Table 33 Basecase ZOP instructions

Instruction Operation Description
NOP No operation Null Instruction

SLEEP Sleep until interrupt or restart Sleep

SWI Raise Instruction Error exception Software interrupt

BRK Stop and flush processor pipeline Breakpoint Instruction

TRAP0 raise an exception of value 0 Software Breakpoint Exception

TRAP_S raise an exception of value n User Exception

UNIMP_S Unimplemented Instruction Raise Instruction Error Exception

RTIE Return from interrupt/exception Return from interrupt/exception

SYNC

Synchronize with memory

Wait for all data-based memory
transactions to complete

Zero operand instruction syntax is:

NOP (encoded as MOV 0,0)

NOP_S (16-bit instruction form)

SLEEP u6

SWI (encoded as SWI 0, i.e. "swi" with u6=0)

Instruction Set Summary Zero Operand Instructions

ARCompact™ Programmer's Reference 109

BRK_S (Breakpoint instruction, 16-bit format)

BRK (Breakpoint instruction, 32-bit format)

TRAP0 (encoded as SWI 0, i.e. "swi" with u6=0)

TRAP_S u6

UNIMP_S

RTIE

SYNC

op<.f> c

op<.f> u6

op<.f> limm

Breakpoint Instruction
The breakpoint instruction is a single operand basecase instruction that halts the program code when
it is decoded at stage one of the pipeline. This is a very basic debug instruction, which stops the
ARCompact based processor from performing any instructions beyond the breakpoint. Since the
breakpoint is a serializing instruction, the pipeline is also flushed upon decode of this instruction.

Sleep Instruction
The sleep mode is entered when the ARCompact based processor encounters the SLEEP instruction.
It stays in sleep mode until an interrupt or restart occurs. Power consumption is reduced during sleep
mode since the pipeline ceases to change state, and the RAMs are disabled. More power reduction is
achieved when clock gating option is used, whereby all non-essential clocks are switched off. The
SLEEP instruction is serializing which means the SLEEP instruction will complete and then flush the
pipeline.

Software Interrupt Instruction
The execution of an undefined extension instruction in ARCompact based processors raises an
Instruction Error exception. A new basecase instruction is introduced that also raises this exception.
Once executed, the control flow is transferred from the user program to the system Instruction Error
exception handler.

The SWI instruction is a single operand instruction in the same class as the SLEEP and BRK
instructions and takes no operands or flags. The SWI instruction cannot immediately follow a BRcc
or BBITn instruction.

While the mnemonic SWI is available, its use is not recommended in the ARC 700 processor, TRAP0
should be used instead which raises a trap exception.

Trap Instruction
The instructions, TRAP_S and TRAP0, raise an exception and call any operating system in kernel
mode. Traps can be raised from user or kernel modes.

Branch Instructions Instruction Set Summary

110 ARCompact™ Programmer's Reference

Return from Interrupt/Exception Instruction
The return from interrupt/exception instruction, RTIE, allows exit from interrupt and exception
handlers, and to allow the processor to switch from kernel mode to user mode.

Synchronize Instruction
The synchronize instruction, SYNC, waits until all data-based memory operations (LD, ST, EX,
cache fills) have completed.

Branch Instructions
Due to the pipeline in the ARCompact based processor, the branch instruction does not take effect
immediately, but after a one cycle delay. The execution of the immediately following instruction after
the branch can be controlled. The following instruction is said to be in the delay slot. The modes for
specifying the execution of the delay slot instruction are indicated by the optional .d field according to
the following table.

Table 34 Delay Slot Execution Modes

Mode Operation
ND Only execute the next instruction when not jumping (default)

D Always execute the next instruction

Since the execution of the instruction that is in the delay slot is controlled by the delay slot mode, it
should never be the target of any branch or jump instruction.

The condition codes that are available for conditional branch instructions are shown in Table 50 on
page 135.

Branch Instructions
Conditional Branch (Bcc) has a branch range of ±1MB, whereas unconditional branch (B) has larger
range of ±16MB. The branch target address is 16-bit aligned.

The syntax of the branch instruction is shown below.

Bcc<.d> s21 (branch if condition is true)

B<.d> s25 (unconditional branch far)

B_S s10 (unconditional branch)

BEQ_S s10

BNE_S s10

BGT_S s7

BGE_S s7

BLT_S s7

BLE_S s7

BHI_S s7

BHS_S s7

BLO_S s7

BLS_S s7

Instruction Set Summary Branch Instructions

ARCompact™ Programmer's Reference 111

Branch and Link Instructions
Conditional Branch and Link (BLcc) has a branch range of ±1MB, whereas unconditional Branch and
Link (BL) has larger range of ±16MB. The target address must be 32-bit aligned.

The syntax of the branch and link instruction is shown below.

BLcc<.d> s21 (branch if condition is true)

BL<.d> s25 (unconditional branch far)

BL_S s13 (unconditional branch)

Branch On Compare/Bit Test Register-Register
Branch on Compare (BRcc) and Branch on Bit Test (BBIT0, BBIT1) have a branch range of ±256B.
The branch target address is 16-bit aligned.

The BRcc instruction is similar in execution to a normal compare instruction (CMP) with the addition
that a branch occurs if the condition is met. No flags are updated and no ALU result is written back to
the register file. A limited set of condition code tests are available for the BRcc instruction as shown
in the following table. Note that additional condition code tests are available through the effect of
reversing the operands, as shown at the end of the table.

Table 35 Branch on compare/test mnemonics

Mnemonic Condition
BREQ Branch if b-c is equal

BRNE Branch if b-c is not equal

BRLT Branch if b-c is less than

BRGE Branch if b-c is greater than or equal

BRLO Branch if b-c is lower than

BRHS Branch if b-c is higher than or same

BBIT0 Branch if bit c in register b is clear

BBIT1 Branch if bit c in register b is set

Table 36 Branch on compare pseudo mnemonics, regist er-register

Mnemonic Condition
BRGT b,u6,s9 Branch if b-c is greater than (encode as BRLT c,b,s9)

BRLE b,u6,s9 Branch if b-c is less than or equal (encode as BRGE c,b,s9)

BRHI b,u6,s9 Branch if b-c is higher than (encode as BRLO c,b,s9)

BRLS b,u6,s9 Branch if b-c is lower than or same (encode as BRHS c,b,s9)

Assembler pseudo-instructions for missing conditions using immediate data, are shown below. Note
that these versions have a reduced immediate range of 0 to 62 instead of 0 to 63.

Table 37 Branch on compare pseudo mnemonics, regist er-immediate

Mnemonic Condition
BRGT b,u6,s9 Branch if b-u6 is greater than (encode as BRGE b,u6+1,s9)

BRLE b,u6,s9 Branch if b-u6 is less than or equal (encode as BRLT b,u6+1,s9)

BRHI b,u6,s9 Branch if b-u6 is higher than (encode as BRHS b,u6+1,s9)

BRLS b,u6,s9 Branch if b-u6 is lower than or same (encode as BRLO b,u6+1,s9)

Jump Instructions Instruction Set Summary

112 ARCompact™ Programmer's Reference

In the ARCtangent-A5 processor there are two delay slots due to the branch occurring a cycle later
than other branches. Only one delay slot can be optionally executed by using the ".D" delay slot
mode. The second delay slot is always nullified if the branch is taken.

Due to the ARC 600 processor pipeline there are 3 delay slots due to the branch occurring a cycle
later than other branches. The first delay slot position can be optionally executed using the ".D" delay
slot mode. The second and third delay slots are always nullified if the branch is taken.

The syntax of the branch on compare and branch on bit test instructions are shown below.

BRcc<.d> b,c,s9 (branch if reg-reg compare is true, swap regs if inverse condition
required)

BRcc<.d> b,u6,s9 (branch if reg-immediate compare is true, use "immediate+1" if a
missing condition is required)

BRcc b,limm,s9 (branch if reg-limm compare is true)

BRcc limm,c,s9 (branch if limm-reg compare is true)

BREQ_S b,0,s8 (branch if register is 0)

BRNE_S b,0,s8 (branch if register is non-zero)

BBIT0<.d> b,u6,s9 (branch if bit u6 in reg b is clear)

BBIT1<.d> b,u6,s9 (branch if bit u6 in reg b is set)

BBIT0<.d> b,c,s9 (branch if bit c in reg b is clear)

BBIT1<.d> b,c,s9 (branch if bit c in reg b is set)

Jump Instructions
Due to the pipeline in the ARCompact based processor, the jump instruction does not take effect
immediately, but after a one-cycle delay. The execution of the immediately following instruction after
the jump can be controlled. The following instruction is said to be in the delay slot. The modes for
specifying the execution of the delay slot instruction are indicated by the optional .d field according to
the following table.

Table 38 Delay Slot Execution Modes

Mode Operation
ND Only execute the next instruction when not jumping (default)

D Always execute the next instruction

Since the execution of the instruction that is in the delay slot is controlled by the delay slot mode, it
should never be the target of any branch or jump instruction.

NOTE If the jump instruction is used with long immediate data then the delay slot execution mechanism
does not apply.

When source registers ILINK1 and ILINK2 are used with the Jump instruction they are treated in a
special way to allow flag restoring when returning from interrupt handling routines or exceptions
handling routines.

Instruction Set Summary Jump Instructions

ARCompact™ Programmer's Reference 113

Summary of Jumps and Special Format Instructions
Table 39 Basecase Jump Instructions

Instruction Operation Description
Jcc pc ← c jump

Jcc.D pc ← c jump with delay slot

JLcc blink ← next_pc; pc ← c jump and link

JLcc.D blink ← next_pc; pc ← c jump and link with delay slot

Syntax for Jumps and Special Format Instructions
Jump instructions can target any address within the full memory address map, but the target address is
16-bit aligned.

The syntax for the jump and special format instructions is similar to the basecase ALU operation
syntax, but only source operand 2 is used.

The Jump instruction syntax is:

Jcc<.d> [c] (PC = c)

Jcc limm (PC = limm)

Jcc<.d> u6 (PC = u6)

J<.d> s12 (PC = s12)

Jcc.F [ILINK1] (PC = ILINK1: STATUS32 = STATUS32_L1)

Jcc.F [ILINK2] (PC = ILINK2: STATUS32 = STATUS32_L2)

J_S<.d> [b] (reduced set of registers)

J_S<.d> [blink] (PC = BLINK)

JEQ_S [blink] (PC = BLINK)

JNE_S [blink] (PC = BLINK)

Jump and Link instruction syntax is:

JLcc<.d> [c] (PC = c: BLINK = next_pc)

JLcc limm (PC = limm: BLINK = next_pc)

JLcc<.d> u6 (PC = u6: BLINK = next_pc)

JL<.d> s12 (PC = s12: BLINK = next_pc)

JL_S<.d> [b] (reduced set of registers)

Zero Overhead Loop Instruction
The ARCompact based processor has the ability to perform loops without any delays being incurred
by the count decrement or the end address comparison. Zero delay loops are set up with the registers
LP_START, LP_END and LP_COUNT. LP_START and LP_END can be directly manipulated with
the LR and SR instructions and LP_COUNT can be manipulated in the same way as registers in the
core register set.

The special instruction LP is used to set up the LP_START and LP_END in a single instruction. The
LP instruction is similar to the branch instruction. Loops can be conditionally entered. If the condition

Auxiliary Register Operations Instruction Set Summary

114 ARCompact™ Programmer's Reference

code test for the LP instruction returns false, then a branch occurs to the address specified in the LP
instruction. The branch target address is 16-bit aligned. If the condition code test is true, then the
address of the next instruction is loaded into LP_START register and the LP_END register is loaded
by the address defined in the LP instruction.

The loop instruction, LP, has a special syntax that ignores the destination field, and only requires one
source operand. The source operand is a 16-bit aligned target address value.

Register-Register (LP)
The General Operations Register-Register format on page 142 is not implemented for the LP
instruction. Using this format will raise an Instruction Error exception.

Register with Unsigned 6-bit Immediate (LP)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented,
where the destination field A is ignored, the B field is ignored and the immediate field is used as the
source value. The source value is a 16-bit aligned address, which provides the following redundant
syntax for the LP instruction:

LP u7 (a = ignored, b= ignored, u7=source. Redundant format, see
Conditional Register with Unsigned 6-bit Immediate format on
page 114.)

Register with Signed 12-bit Immediate (LP)
The General Operations Register with Signed 12-bit Immediate format on page 143 is implemented,
where the B field is ignored and the immediate field is used as the source value. The source value is a
16-bit aligned address, which provides the following syntax for the LP instruction:

LP s13 (b = ignored, s13=source. aux_reg[LP_END] = pc + s13 and
aux_reg[LP_START] = next_pc)

Conditional Register (LP)
The General Operations Conditional Register format on page 143 is not implemented for the LP
instruction. Using this format will raise an Instruction Error exception.

Conditional Register with Unsigned 6-bit Immediate (LP)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144 is
implemented. where the B field is ignored and the immediate field is used as the source value. The
source value is a 16-bit aligned address, which provides the following syntax for the LP instruction:

LP<.cc> u7 (b=ignored, u7=source.
if cc false pc = pc + u7;
if cc true aux_reg[LP_END] = pc + u7 and aux_reg[LP_START] =
next_pc)

Auxiliary Register Operations
The access to the auxiliary register set is accomplished with the special load register and store register
instructions (LR and SR). They work in a similar way to the normal load and store instructions except
that the access is accomplished in a single cycle due to the fact that address computation is not carried
out and the scoreboard unit is not used. The LR and SR instruction do not cause stalls like the normal
load and store instructions but in the same cases that arithmetic and logic instructions would cause a
stall.

Instruction Set Summary Load/Store Instructions

ARCompact™ Programmer's Reference 115

Access to the auxiliary registers are limited to 32 bit (long word) only and the instructions are not
conditional.

Table 40 Auxiliary Register Operations

Instruction Operation Description
LR b ← aux.reg[c] load from auxiliary register

SR aux.reg[c] ← b store to auxiliary register

Load from Auxiliary Register
The load from auxiliary register instruction, LR, has one source and one destination register. The LR
instruction is not a conditional instruction and uses the General Operations Register-Register format
on page 142, the General Operations Register with Unsigned 6-bit Immediate format on page 143,
and the General Operations Register with Signed 12-bit Immediate format on page 143 to provide the
following syntax:

LR b,[c]

LR b,[limm]

LR b,[u6]

LR b,[s12]

Store to Auxiliary Register
The store to auxiliary register instruction, SR, has two source registers only. The SR instruction is not
a conditional instruction and uses the General Operations Register-Register format on page 142, the
General Operations Register with Unsigned 6-bit Immediate format on page 143, and the General
Operations Register with Signed 12-bit Immediate format on page 143 to provide the following
syntax:

SR b,[c]

SR b,[limm] (c=limm)

SR b,[u6]

SR b,[s12]

SR limm,[c] (b=limm)

SR limm,[s12] (b=limm)

Load/Store Instructions
The transfer of data to and from memory is accomplished with the load and store commands (LD,
ST). It is possible for these instructions to write the result of the address computation back to the
address source register, pre or post calculation. This is accomplished with the optional address write-
back suffices: .A or .AW (register updated pre memory transaction), and .AB (register updated post
memory transaction). Addresses are interpreted as byte addresses unless the scaled address mode is
used, as indicated by the address suffix .AS. The scaled address mode does not write back the result
of the address calculation to the address source register.

Load/Store Instructions Instruction Set Summary

116 ARCompact™ Programmer's Reference

NOTE Using the scaled address mode with 8-bit data size (LDB.AS or STB.AS) has undefined behavior and
should not be used.

If the offset is not required during a load or store, the value encoded will be set to 0.

The size of the data for a Load or Store is indicated by Load-Byte instruction (LDB), Load-Word
instruction (LDW), Store-Byte instruction (STB) and Store-Word instruction (STW). LD or ST with
no size suffix indicates 32-bit data. Byte and word loads are zero or sign extended to 32-bits by using
the sign extend suffix: .X. Note that using the sign extend suffix on the LD instruction with a 32-bit
data size is undefined and should not be used.

Loads are passed to the memory controller with the appropriate address, and the register that is the
destination of the load is tagged to indicate that it is waiting for a result, as loads take a minimum of
one cycle to complete. If an instruction references the tagged register before the load has completed,
the pipeline will stall until the register has been loaded with the appropriate value. For this reason it is
not recommended that loads be immediately followed by instructions that reference the register being
loaded. Delayed loads from memory will take a variable amount of time depending upon the presence
of cache and the type of memory that is available to the memory controller. Consequently, the
number of instructions to be executed in between the load and the instruction using the register will
be application specific.

Stores are passed to the memory controller, which will store the data to memory when it is possible to
do so. The pipeline may be stalled if the memory controller cannot accept any more buffered store
requests.

If a data-cache is available in the memory controller, the load and store instructions can bypass the
use of that cache. When the suffix .DI is used the cache is bypassed and the data is loaded directly
from or stored directly to the memory. This is particularly useful for shared data structures in main
memory, for the use of memory-mapped I/O registers, or for bypassing the cache to stop the cache
being updated and overwriting valuable data that has already been loaded in that cache.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Load
Unlike basecase ALU operations, the load instruction cannot target a long immediate value as the
target register. Two syntaxes are available depending on how the address is calculated: register-
register and register-offset. The syntax for the load instruction is:

LD<zz><.x><.aa><.di> a,[b] (uses ld a,[b,0])

LD<zz><.x><.aa><.di> a,[b,s9]

LD<zz><.x><.di> a,[limm,s9] (Redundant format, use ld
a,[limm])

LD<zz><.x><.di> a,[limm] (= ld a,[limm,0])

LD<zz><.x><.aa><.di> a,[b,c]

LD<zz><.x><.aa><.di> a,[b,limm]

LD<zz><.x><.di> a,[limm,c]

LD<zz><.x><.aa><.di> 0,[b,s9] (Prefetch)

LD<zz><.x><.di> 0,[limm, s9] (Redundant format)

Instruction Set Summary Load/Store Instructions

ARCompact™ Programmer's Reference 117

LD<zz><.x><.di> 0,[limm] (Prefetch)

LD<zz><.x><.aa><.di> 0,[b,c] (Prefetch)

LD<zz><.x><.aa><.di> 0,[b,limm] (Prefetch)

LD<zz><.x><.di> 0,[limm,c] (Prefetch)

LD_S a, [b, c]

LDB_S a, [b, c]

LDW_S a, [b, c]

LD_S c, [b, u7] (u7 offset is 32-bit aligned)

LDB_S c, [b, u5]

LDW_S<.x> c, [b, u6] (u6 offset is 16-bit aligned)

LD_S b, [SP, u7] (u7 offset is 32-bit aligned)

LDB_S b, [SP, u7] (u7 offset is 32-bit aligned)

LD_S r0, [GP, s11] (s11 offset is 32-bit aligned)

LDB_S r0, [GP, s9]

LDW_S r0, [GP, s10] (s10 offset is 16-bit aligned)

LD_S b, [PCL, u10] (u10 offset is 32-bit aligned)

Prefetch
The PREFETCH instruction is provided as a synonym for a particular encoding of the LD instruction.
The PREFETCH instruction is used to initiate a data cache load without writing to any core register.

The syntax for the PREFETCH instruction is:

PREFETCH<.aa> [b,s9] (= ld<.aa> 0,[b,s9])

PREFETCH [limm,s9] (Redundant format, use PREFETCH [limm])

PREFETCH [limm] (= ld 0,[limm])

PREFETCH<.aa> [b,c] (= ld<.aa> 0,[b,c])

PREFETCH<.aa> [b,limm] (= ld<.aa> 0,[b,limm])

PREFETCH [limm,c] (= ld<.aa> 0,[limm,c])

Store Register with Offset
Store register+offset instruction syntax:

ST<zz><.aa><.di> c,[b] (use st c,[b,0])

ST<zz><.aa><.di> c,[b,s9]

ST<zz><.di> c,[limm] (= st c,[limm,0])

ST<zz><.aa><.di> limm,[b,s9]

ST_S b, [SP, u7] (u7 offset is 32-bit aligned)

STB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ARCompact Extension Instructions Instruction Set Summary

118 ARCompact™ Programmer's Reference

ST_S c, [b, u7] (u7 offset is 32-bit aligned)

STB_S c, [b, u5]

STW_S c, [b, u6] (u6 offset is 16-bit aligned)

Stack Pointer Operations
The ARCompact based processor provides stack pointer functionality through the use of the stack
pointer core register (SP). Push and pop operations are provided through normal Load and Store
operations in the 32-bit instruction set, and specific instructions in the 16-bit instruction set. The
instructions syntax for push operations on the stack is:

ST.AW c,[SP,-4] (Push c onto the stack)

PUSH_S b (Push b onto the stack)

PUSH_S BLINK (Push BLINK onto the stack)

The instructions syntax for pop operations on the stack is:

LD.AB a,[SP,+4] (Pop top item of stack to a)

POP_S b (Pop top item of stack to b)

POP_S BLINK (Pop top item of stack to BLINK)

The following instructions are also available in 16-bit instruction format, for working with the stack:

LD_S, LDB_S, ST_S, STB_S, ADD_S, SUB_S, MOV_S, and CMP_S.

Atomic Exchange
An atomic exchange operation, EX, is provided as a primitive for multiprocessor synchronization
allowing the creation of semaphores in shared memory.

Two forms are provided: an uncached form (using the .DI directive) for synchronization between
multiple processors, and a cached form for synchronization between processes on a single-processor
system.

The EX instruction exchanges the contents of the specified memory location with the contents of the
specified register. This operation is atomic in that the memory system ensures that the memory read
and memory write cannot be separated by interrupts or by memory accesses from another processor.

The instruction syntax for the atomic exchange instruction is:

EX<.di> b,[c]

EX<.di> b,[limm]

EX<.di> b,[u6]

ARCompact Extension Instructions
These operations are generally of the form a ← b op c where the destination (a) is replaced by the
result of the operation (op) on the operand sources (b and c). All extension instructions can be
conditional or set the flags or both.

Instruction Set Summary ARCompact Extension Instructions

ARCompact™ Programmer's Reference 119

Syntax for Generic Extension Instructions
If the destination register is set to an absolute value of "0" then the result is discarded and the
operation acts like a NOP instruction. A long immediate (limm) value can be used for either source
operand 1 or source operand 2. The generic extension instruction format is:

op<.f> a,b,c

op<.f> a,b,u6

op<.f> b,b,s12

op<.cc><.f> b,b,c

op<.cc><.f> b,b,u6

op<.f> a,limm,c (if b=limm)

op<.f> a,limm,u6

op<.f> 0,limm,s12

op<.cc><.f> 0,limm,c

op<.cc><.f> 0,limm,u6

op<.f> a,b,limm (if c=limm)

op<.cc><.f> b,b,limm

op<.f> a,limm,limm (if b=c=limm)

op<.cc><.f> 0,limm,limm

op<.f> 0,b,c (if a=0)

op<.f> 0,b,u6

op<.f> 0,limm,c (if a=0, b=limm)

op<.f> 0,limm,u6

op<.f> 0,b,limm (if a=0, c=limm)

op<.f> 0,limm,limm (if a=0, b=c=limm)

op_S b,b,c

Syntax for Single Operand Extension Instructions
Single source operand instructions are supported for extension instructions. ingle operand instruction
syntax is:

op<.f> b,c

op<.f> b,u6

op<.f> b,limm

op<.f> 0,c

op<.f> 0,u6

op<.f> 0,limm

op_S b,c

Optional Instructions Library Instruction Set Summary

120 ARCompact™ Programmer's Reference

Syntax for Zero Operand Extension Instructions
Zero operand instruction syntax is:

op<.f> c

op<.f> u6

op<.f> limm

op_S

Optional Instructions Library
The optional instructions library consists of a number of components that can be used to add
functionality to the ARCtangent-A5 processor. These components are function units, which are
interfaced to the ARCtangent-A5 processor through the use of extension instructions or registers.

The optional instructions library consists of a number of components that can be used to add
functionality to the ARC 600 processor. These components are function units, which are interfaced to
the ARC 600 processor through the use of extension instructions or registers.

The Normalze and Swap instructions are built in to the ARC 700 processor. The multiply instruction,
however, is optional.

Summary of Optional Instructions Library
The library currently consists of the following components:

• 32 bit Multiplier

• Normalize (find-first-bit) instruction

• Swap instruction

Table 41 Dual Operand Optional Instructions for ARC tangent-A5 and ARC 600

Instruction Operation Description
MUL64

 b

MHI

c

X

MLO

MMID

Signed 32x32 Multiply

MULU64

 b

MHI

c

X

MLO

MMID

Unsigned 32x32 Multiply

Instruction Set Summary Optional Instructions Library

ARCompact™ Programmer's Reference 121

Table 42 Dual Operand Optional Instructions for ARC 700

Instruction Operation Description
MPY

b

HI

c

X

LO

a

32 X 32 signed multiply

MPYH

b

HI

c

X

LO

a

32 X 32 signed multiply

MPYHU

b

HI

c

X

LO

a

32 X 32 unsigned multiply

MPYU

b

HI

c

X

LO

a

32 X 32 unsigned multiply

Table 43 Single Operand Optional Instructions

Instruction Operation Description
NORM

src

dest
 MSB

LSB

S
 #

Normalize (find-first-bit)

SWAP
src

dest

 MSB

LSB

Exchange upper and lower 16 bits

Multiply 32 X 32, Special Result Registers
The scoreboarded 32x32 multiplier performs signed or unsigned multiply. The full 64-bit result is
available to be read from special result registers in the core register set. The middle 32 bits of the 64-
bit result are also available. The multiply is scoreboarded in such a way that if a multiply is being
carried out, and if one of the result registers is required by another ARCompact based instruction, the
processor will stall until the multiply has finished. The destination is always ignored for the multiply
instruction and thus the syntax for the multiply instructions can optionally supply a "0" as the
destination register. Two instructions are provided to perform either a 32x32 signed multiply
(MUL64) or a 32x32 unsigned multiply (MULU64).

Register-Register (MUL64 & MULU64)
The General Operations Register-Register format on page 142 is implemented for the multiply
instructions. The destination register is always encoded as an immediate operand. The following
redundant syntax formats are provided for the multiply instructions:

MUL64

<0,>b,c (a = limm, b = source 1, c = source 2. Redundant format see
Conditional Register format on page 122)

Optional Instructions Library Instruction Set Summary

122 ARCompact™ Programmer's Reference

MUL64

<0,>b,limm (a = limm, b limm, c = source 2. Redundant format see Conditional
Register format on page 122)

MUL64

<0,>limm,c (a = limm, b = source 1, c = limm. Redundant format see
Conditional Register format on page 122)

MUL64

<0,>limm,limm (a = limm, b = limm, c = limm. Redundant format see Conditional
Register format on page 122)

MULU64

<0,>b,c (a = limm, b = source 1, c = source 2. Redundant format see
Conditional Register format on page 122)

MULU64

<0,>b,limm (a = limm, b = limm, c = source 2. Redundant format see
Conditional Register format on page 122)

MULU64

<0,>limm,c (a = limm, b = source 1, c = limm. Redundant format see
Conditional Register format on page 122)

MULU64

<0,>limm,limm (a = limm, b = limm, c = limm. Redundant format see Conditional
Register format on page 122)

Register with Unsigned 6-bit Immediate (MUL64 & MUL U64)
The General Operations Register with Unsigned 6-bit Immediate format on page 143 is implemented
for the multiply instructions. The destination register is always encoded as an immediate operand.
The following redundant syntax formats are provided for the multiply instructions:

MUL64

<0,>b,u6 (a = limm, b = source 1, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immediate format on page
123)

MUL64

<0,>limm,u6 (a = limm, b = limm, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immediate format on page
123)

MULU64

<0,>b,u6 (a = limm, b = source 1, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immediate format on page
123)

MUL64

<0,>limm,u6 (a = limm, b = limm, u6 = source 2. Redundant format see
Conditional Register with Unsigned 6-bit Immediate format on page
123)

Register with Signed 12-bit Immediate (MUL64 & MULU 64)
The General Operations Register with Signed 12-bit Immediate format on page 143 provides the
following syntax for the multiply instructions:

MUL64 <0,>b,s12 (b = source 1, s12 = source 2)

MUL64 <0,>limm,s12 (b = limm, s12 = source 2)

MULU64 <0,>b,s12 (b = source 1, s12 = source 2)

MULU64 <0,>limm,s12 (b = limm, s12 = source 2)

Conditional Register (MUL64 & MULU64)
The General Operations Conditional Register format on page 143 provides the following syntax for
the multiply instructions:

MUL64<.cc> <0,>b,c (b = source 1, c = source 2)

Instruction Set Summary Optional Instructions Library

ARCompact™ Programmer's Reference 123

MUL64<.cc> <0,>b,limm (b = source 1, c = limm)

MUL64<.cc> <0,>limm,c (b = limm, c = source 2)

MUL64<.cc> <0,>limm,limm (b = limm, c = limm)

MULU64<.cc> <0,>b,c (b = source 1, c = source 2)

MULU64<.cc> <0,>b,limm (b = source 1, c = limm)

MULU64<.cc> <0,>limm,c (b = limm, c = source 2)

MULU64<.cc> <0,>limm,limm (b = limm, c = limm. Not useful format)

Conditional Register with Unsigned 6-bit Immediate (MUL64 & MULU64)
The General Operations Conditional Register with Unsigned 6-bit Immediate format on page 144
provides the following syntax for the multiply instructions:

MUL64<.cc> <0,>b,u6 (b = source 1, u6 = source 2)

MUL64<.cc> <0,>limm,u6 (b = limm, u6 = source 2. Not useful format)

16-bit Instruction, Multiply (MUL64 & MULU64)
The unsigned multiply operation does not have a 16-bit instruction equivalent. The General Register
Format Instructions, 0x0F, [0x00 - 0x1F] format on page 157 provides the following syntax for the
signed multiply

MUL64_S <0,>b,c

Multiply 32 X 32, Any Result Register
The scoreboarded 32x32 multiplier performs signed or unsigned multiply. The higher or lower 32-bit
portion of the full 64-bit result can be written to any core register. The multiply is scoreboarded in
such a way that if a multiply is being carried out, and if the result registers is required by another
ARCompact based instruction, the processor will stall until the multiply has finished. Four
instructions are provided to perform the 32x32 multiply and write either the signed low (MPY),
signed high (MPYH), unsigned low (MPYU) or unsigned high (MPYHU) result into a specified core
register.

The syntax for the multiply instruction is:

MPYH<.f> a,b,c

MPYH<.f> a,b,u6

MPYH<.f> b,b,s12

MPYH<.cc><.f> b,b,c

MPYH<.cc><.f> b,b,u6

MPYH<.f> a,limm,c

MPYH<.f> a,b,limm

MPYH<.cc><.f> b,b,limm

MPYH<.f> 0,b,c

MPYH<.f> 0,b,u6

MPYH<.cc><.f> 0,limm,c

Optional Instructions Library Instruction Set Summary

124 ARCompact™ Programmer's Reference

MPYH<.f> a,b,c

MPYH<.f> a,b,u6

MPYH<.f> b,b,s12

MPYH<.cc><.f> b,b,c

MPYH<.cc><.f> b,b,u6

MPYH<.f> a,limm,c

MPYH<.f> a,b,limm

MPYH<.cc><.f> b,b,limm

MPYH<.f> 0,b,c

MPYH<.f> 0,b,u6

MPYH<.cc><.f> 0,limm,c

MPYU<.f> a,b,c

MPYU<.f> a,b,u6

MPYU<.f> b,b,s12

MPYU<.cc><.f> b,b,c

MPYU<.cc><.f> b,b,u6

MPYU<.f> a,limm,c

MPYU<.f> a,b,limm

MPYU<.cc><.f> b,b,limm

MPYU<.f> 0,b,c

MPYU<.f> 0,b,u6

MPYU<.cc><.f> 0,limm,c

MPYHU<.f> a,b,c

MPYHU<.f> a,b,u6

MPYHU<.f> b,b,s12

MPYHU<.cc><.f> b,b,c

MPYHU<.cc><.f> b,b,u6

MPYHU<.f> a,limm,c

MPYHU<.f> a,b,limm

MPYHU<.cc><.f> b,b,limm

MPYHU<.f> 0,b,c

Instruction Set Summary Optional Instructions Library

ARCompact™ Programmer's Reference 125

MPYHU<.f> 0,b,u6

MPYHU<.cc><.f> 0,limm,c

NORM Instruction
The NORM instruction gives the normalization integer for the signed value in the operand. The
normalization integer is the amount by which the operand should be shifted left to normalize it as a
32-bit signed integer. To find the normalization integer of a 32-bit register by using software without
a NORM instruction, requires many ARCompact based instruction cycles.

Uses for the NORM instruction include:

• Acceleration of single bit shift division code, by providing a fast 'early out' option.

• Reciprocal and multiplication instead of division

• Reciprocal square root and multiplication instead of square root

The syntax for the normalize instruction is:

NORM<.f> b,c

NORM<.f> b,u6

NORM<.f> b,limm

NORM<.f> 0,c

NORM<.f> 0,u6

NORM<.f> 0,limm

NORMW<.f> b,c

NORMW<.f> b,u6

NORMW<.f> b,limm

NORMW<.f> 0,c

NORMW<.f> 0,u6

NORMW<.f> 0,limm

SWAP Instruction
The swap instruction is a very simple extension that can be used with the multiply-accumulate block.
It exchanges the upper and lower 16-bit of the source value, and stores the result in a register. This is
useful to prepare values for multiplication, since the multiply-accumulate block takes its 16-bit source
values from the upper 16 bits of the 32-bit values presented.

The syntax for the swap instruction is:

SWAP<.f> b,c

SWAP<.f> b,u6

SWAP<.f> b,limm

SWAP<.f> 0,c

Extended Arithmetic Library Instruction Set Summary

126 ARCompact™ Programmer's Reference

SWAP<.f> 0,u6

SWAP<.f> 0,limm

Extended Arithmetic Library
The extended arithmetic instruction library consists of a number of components that can be used to
add functionality to the ARCtangent-A5 processor. These components are function units, which are
interfaced to the ARCtangent-A5 processor through the use of extension instructions or registers.

The extended arithmetic instruction library consists of a number of components that can be used to
add functionality to the ARC 600 processor. These components are function units, which are
interfaced to the ARC 600 processor through the use of extension instructions or registers.

The extensions library is built in to the ARC 700 processor

The extended arithmetic instructions are targeted at telephony applications requiring bit-accuracy for
speech coders and audio applications requiring extended precision.

Summary of Extended Arithmetic Library Instructions
The following notation is used for the operation of the extended arithmetic instructions.

Table 44 Extended Arithmetic Operation Notation

operand.high The top 16-bits of the operand.

operand.low The bottom 16-bits of the operand.

function(operand).high The high part of the result of the function.

accumulator.high The high part of the accumulator.

rnd16 (operand) = round operand to 16-bits

sat16 (operand) = saturate operand to 16-bits

sat32 (operand) = saturate operand to 32-bits

An Internal accumulator n

Table 45 Extended Arithmetic Dual Operand Instructi ons

Instruction Operation Description
ADDS a ← sat32(b+c) Add and saturate.

SUBS a ← sat32 (b-c) Subtract and saturate.

DIVAW b_temp ← b<<1

 if (b_temp>=c)

 a ← ((b_temp-c)+1)

else

 a ← b

Division assist.

ASLS a ← sat32 (b<<c) Arithmetic shift left and saturate. Supports
negative shift values for right shift.

ASRS a ← sat32 (b>>c) Arithmetic shift right and saturate. Supports -ve
shift values for left shift.

Instruction Set Summary Extended Arithmetic Library

ARCompact™ Programmer's Reference 127

Instruction Operation Description
ADDSDW a ← sat16(b.high+c.high):

sat16(b.low+c.low)
Dual 16-bit add and saturate.

SUBSDW a ← sat16(b.high-c.high):
sat16(b.low-c.low)

Dual16-bit subtract and saturate.

Table 46 Extended Arithmetic Single Operand Instruc tions

Instruction Operation Description
SAT16 b ← sat16(c) Saturate 32-bit input to 16-bits

RND16 b ← sat32(c+0x00008000)&0xffff0000 Round 32-bit input to 16-bits

ABSSW b ← sat16(abs(c.low)) Absolute value of 16-bit input

ABSS b ← sat32(abs(c)) Absolute value of 32-bit input

NEGSW b ← sat16(neg(c.low)) Negate and saturate 16-bit input

NEGS b ← sat32(neg(c)) Negate and saturate 32-bit input

Add with Saturation
The ADD instruction is extended to provide saturation logic. A dual-word form is also provided. The
syntax for ADDS is:

ADDS<.f> a,b,c

ADDS<.f> b,b,u6

ADDS<.f> c,b,s12

ADDS<.cc><.f> b,b,c

ADDS<.cc><.f> b,b,u6

ADDS<.f> a,limm,c

ADDS<.f> a,b,limm

ADDS<.cc><.f> b,b,limm

ADDS<.f> 0,b,c

ADDS<.f> 0,b,u6

ADDS<.f> 0,b,limm

ADDS<.cc><.f> 0,limm,c

ADDSDW<.f> a,b,c

ADDSDW<.f> b,b,u6

ADDSDW<.f> c,b,s12

ADDSDW<.cc><.f> b,b,c

ADDSDW<.cc><.f> b,b,u6

ADDSDW<.f> a,limm,c

ADDSDW<.f> a,b,limm

Extended Arithmetic Library Instruction Set Summary

128 ARCompact™ Programmer's Reference

ADDSDW<.cc><.f> b,b,limm

ADDSDW<.f> 0,b,c

ADDSDW<.f> 0,b,u6

ADDSDW<.f> 0,b,limm

ADDSDW<.cc><.f> 0,limm,c

Subtract with Saturation
The SUB instruction is extended to provide saturation logic. A dual-word form is also provided. The
syntax for SUBS is:

SUBS<.f> a,b,c

SUBS<.f> b,b,u6

SUBS<.f> c,b,s12

SUBS<.cc><.f> b,b,c

SUBS<.cc><.f> b,b,u6

SUBS<.f> a,limm,c

SUBS<.f> a,b,limm

SUBS<.cc><.f> b,b,limm

SUBS<.f> 0,b,c

SUBS<.f> 0,b,u6

SUBS<.f> 0,b,limm

SUBS<.cc><.f> 0,limm,c

SUBSDW<.f> a,b,c

SUBSDW<.f> b,b,u6

SUBSDW<.f> c,b,s12

SUBSDW<.cc><.f> b,b,c

SUBSDW<.cc><.f> b,b,u6

SUBSDW<.f> a,limm,c

SUBSDW<.f> a,b,limm

SUBSDW<.cc><.f> b,b,limm

SUBSDW<.f> 0,b,c

SUBSDW<.f> 0,b,u6

SUBSDW<.f> 0,b,limm

SUBSDW<.cc><.f> 0,limm,c

Instruction Set Summary Extended Arithmetic Library

ARCompact™ Programmer's Reference 129

Negate with Saturation
The negate instruction is extended to provide saturation logic. A single-word form is also provided.
The syntax for NEGS is:

NEGSW<.f> b,c

NEGSW<.f> b,u6

NEGSW<.f> b,limm

NEGSW<.f> 0,c

NEGSW<.f> 0,u6

NEGSW<.f> 0,limm

NEGS<.f> b,c

NEGS<.f> b,u6

NEGS<.f> b,limm

NEGS<.f> 0,c

NEGS<.f> 0,u6

NEGS<.f> 0,limm

Absolute with Saturation
The absolute instruction returns the absolute value of a number and saturates. A single-word form is
also provided. The syntax for ABSS is:

ABSSW<.f> b,c

ABSSW<.f> b,u6

ABSSW<.f> b,limm

ABSSW<.f> 0,c

ABSSW<.f> 0,u6

ABSSW<.f> 0,limm

ABSS<.f> b,c

ABSS<.f> b,u6

ABSS<.f> b,limm

ABSS<.f> 0,c

ABSS<.f> 0,u6

ABSS<.f> 0,limm

Extended Arithmetic Library Instruction Set Summary

130 ARCompact™ Programmer's Reference

Round
The round instruction, RND16, rounds to a 16-bit number. The syntax for RND16 is:

RND16<.f> b,c

RND16<.f> b,u6

RND16<.f> b,limm

RND16<.f> 0,c

RND16<.f> 0,u6

RND16<.f> 0,limm

Saturate
The saturate instruction, SAT16, provides the saturated value of a 16-bit number. The syntax for
SAT16 is:

SAT16<.f> b,c

SAT16<.f> b,u6

SAT16<.f> b,limm

SAT16<.f> 0,c

SAT16<.f> 0,u6

SAT16<.f> 0,limm

Positive/Negative Barrel Shift with Saturation
Shift instructions operate with both positive and negative shifts (reverse shift) and provide saturation
according to ETSI/ITU-T definitions. The syntax for the positive and negative shifts is:

ASLS<.f> a,b,c

ASLS<.f> b,b,u6

ASLS<.f> c,b,s12

ASLS<.cc><.f> b,b,c

ASLS<.cc><.f> b,b,u6

ASLS<.f> a,limm,c

ASLS<.f> a,b,limm

ASLS<.cc><.f> b,b,limm

ASLS<.f> 0,b,c

ASLS<.f> 0,b,u6

ASLS<.f> 0,b,limm

ASLS<.cc><.f> 0,limm,c

ASRS<.f> a,b,c

Instruction Set Summary Extended Arithmetic Library

ARCompact™ Programmer's Reference 131

ASRS<.f> b,b,u6

ASRS<.f> c,b,s12

ASRS<.cc><.f> b,b,c

ASRS<.cc><.f> b,b,u6

ASRS<.f> a,limm,c

ASRS<.f> a,b,limm

ASRS<.cc><.f> b,b,limm

ASRS<.f> 0,b,c

ASRS<.f> 0,b,u6

ASRS<.f> 0,b,limm

ASRS<.cc><.f> 0,limm,c

Division Assist
DIVAW is a division accelerator used in the division algorithm as described by the ITU and ETSI.
Repeated execution of DIVAW fifteen times implements a 16-bit conditional add-subtract division
algorithm. The syntax for the DIVAW instruction is:

DIVAW<.f> a,b,c

DIVAW<.f> b,b,u6

DIVAW<.f> c,b,s12

DIVAW<.cc><.f> b,b,c

DIVAW<.cc><.f> b,b,u6

DIVAW<.f> a,limm,c

DIVAW<.f> a,b,limm

DIVAW<.cc><.f> b,b,limm

DIVAW<.f> 0,b,c

DIVAW<.f> 0,b,u6

DIVAW<.f> 0,b,limm

DIVAW<.cc><.f> 0,limm,c

Extended Arithmetic Library Instruction Set Summary

132 ARCompact™ Programmer's Reference

This page is intentionally left blank.

ARCompact™ Programmer's Reference 133

Chapter 6 — 32-bit Instruction Formats
Reference

This chapter shows the available encoding formats for the 32-bit instructions. Some encodings define
instructions that are also defined in other encoding formats. Instruction Set Summary on page 93 lists
and notes the redundant formats. The processor implements all redundant encoding formats. A listing
of syntax and encoding that excludes the redundant formats is contained in Instruction Set Details on
page 173.

A complete list of the major opcodes is shown in Table 47 on page 133.

Table 47 Major opcode Map, 32-bit and 16-Bit instru ctions

Major
Opcode

Instruction and/or type Notes Type

0x00 Bcc Branch 32-bit
0x01 BLcc, BRcc Branch and link conditional

Compare-branch conditional
32-bit

0x02 LD register + offset Delayed load 32-bit
0x03 ST register + offset Buffered store 32-bit
0x04 op a,b,c ARC 32-bit basecase instructions 32-bit
0x05 op a,b,c ARC 32-bit extension instructions 32-bit
0x06 op a,b,c ARC 32-bit extension instructions 32-bit
0x07 op a,b,c User 32-bit extension instructions 32-bit
0x08 op a,b,c User 32-bit extension instructions 32-bit
0x09 op <market specific> ARC market-specific extension instructions 32-bit
0x0A op <market specific> ARC market-specific extension instructions 32-bit
0x0B op <market specific> ARC market-specific extension instructions 32-bit
0x0C LD_S / LDB_S / LDW_S / ADD_S a,b,c Load/add register-register 16-bit
0x0D ADD_S / SUB_S / ASL_S /

LSR_S c,b,u3
Add/sub/shift immediate 16-bit

0x0E MOV_S / CMP_S / ADD_S b,h / b,b,h One dest/source can be any of r0-r63 16-bit
0x0F op_S b,b,c General ops/ single ops 16-bit
0x10 LD_S c,[b,u7] Delayed load (32-bit aligned offset) 16-bit
0x11 LDB_S c,[b,u5] Delayed load (8-bit aligned offset) 16-bit
0x12 LDW_S c,[b,u6] Delayed load (16-bit aligned offset) 16-bit
0x13 LDW_S.X c,[b,u6] Delayed load (16-bit aligned offset) 16-bit
0x14 ST_S c,[b,u7] Buffered store (32-bit aligned offset) 16-bit
0x15 STB_S c,[b,u5] Buffered store (8-bit aligned offset) 16-bit
0x16 STW_S c,[b,u6] Buffered store (16-bit aligned offset) 16-bit
0x17 OP_S b,b,u5 Shift/subtract/bit ops 16-bit
0x18 LD_S / LDB_S / ST_S / STB_S / ADD_S

/ PUSH_S / POP_S
Sp-based instructions 16-bit

0x19 LD_S / LDW_S / LDB_S / ADD_S Gp-based ld/add (data aligned offset) 16-bit
0x1A LD_S b,[PCL,u10] Pcl-based ld (32-bit aligned offset) 16-bit
0x1B MOV_S b,u8 Move immediate 16-bit
0x1C ADD_S / CMP_S b,u7 Add/compare immediate 16-bit
0x1D BRcc_S b,0,s8 Branch conditionally on reg z/nz 16-bit
0x1E Bcc_S s10/s7 Branch conditionally 16-bit
0x1F BL_S s13 Branch and link unconditionally 16-bit

Encoding Notation 32-bit Instruction Formats Reference

134 ARCompact™ Programmer's Reference

Encoding Notation
This chapter shows the full encoding details along with the shortened form, represented by a set of
characters, used in Instruction Set Details on page 173.The list of syntax conventions is shown in
Table 28 on page 93.

All fields that correspond to an instruction word for a particular format are shown. Fields that have
pre-defined values assigned to them are illustrated, and fields that are encoded by the assembler are
represented as letters.

The notation used for the encoding is shown in Table 48 on page 134 and Table 49 on page 134.

Table 48 Key for 32-bit Addressing Modes and Encodi ng Conventions

Encoding
Character

Encoding
Field

Syntax

I I[4:0] instruction major opcode

i i[n:0] instruction sub opcode

A A[5:0] destination register

b B[2:0] lower bits source/destination register

B B[5:3] upper bits source/destination register

C C[5:0] source/destination register

Q Q[4:0] condition code

u U[n:0] unsigned immediate (number is bit field size)

s S[n:0] lower bits signed immediate (number is bit field size)

S S[m:n+1] upper bits signed immediate (number is bit field size)

T S[24:21] upper bits signed immediate (branch unconditionally far)

P P[1:0] operand format

M M conditional instruction operand mode

N N <.d> delay slot mode

F F Flag Setting

R R Reserved

D Di <.di> direct data cache bypass

A A <.aa> address writeback mode

Z Z <.zz> data size

X X <.x> sign extend

Table 49 Key for 16-bit Addressing Modes and Encodi ng Conventions

Encoding
Character

Encoding
Field

Syntax

I I[4:0] instruction major opcode

i i[n:0] instruction sub-opcode

a a[2:0] source/destination register (r0-3,r12-15)

b b[2:0] source/destination register (r0-3,r12-15)

c c[2:0] source/destination register (r0-3,r12-15)

h h[2:0] source/destination register high (r0-r63)

32-bit Instruction Formats Reference Condition Code Tests

ARCompact™ Programmer's Reference 135

Encoding
Character

Encoding
Field

Syntax

H h[5:3] source/destination register high (r0-r63)

u u[n:0] unsigned immediate (number is bit field size)

s s[n:0] signed immediate (number is bit field size)

Condition Code Tests
The following table shows the codes used for condition code tests.

Table 50 Condition codes

Code
Q field

Mnemonic Condition Test

0x00 AL, RA Always 1

0x01 EQ , Z Zero Z

0x02 NE , NZ Non-Zero /Z

0x03 PL , P Positive /N

0x04 MI , N Negative N

0x05 CS , C, LO Carry set, lower than (unsigned) C

0x06 CC , NC, HS Carry clear, higher or same
(unsigned)

/C

0x07 VS , V Over-flow set V

0x08 VC , NV Over-flow clear /V

0x09 GT Greater than (signed) (N and V and /Z) or (/N and /V
and /Z)

0x0A GE Greater than or equal to (signed) (N and V) or (/N and /V)

0x0B LT Less than (signed) (N and /V) or (/N and V)

0x0C LE Less than or equal to (signed) Z or (N and /V) or (/N and V)

0x0D HI Higher than (unsigned) /C and /Z

0x0E LS Lower than or same (unsigned) C or Z

0x0F PNZ Positive non-zero /N and /Z

Branch Jump Delay Slot Modes
The following table shows the codes used for delay slot modes on Branch and Jump instructions.

Table 51 Delay Slot Modes

N Bit Mode Operation
0 ND Only execute the next instruction when not jumping (default)

1 D Always execute the next instruction

Load Store Address Write-back Modes 32-bit Instruction Formats Reference

136 ARCompact™ Programmer's Reference

Load Store Address Write-back Modes
The following table shows the codes used for address write-back modes in Load and Store
instructions.

Table 52 Address Write-back Modes

AA bits Address mode Memory address used Register V alue write-back
00 No write-back Reg + offset no write-back

01 .A or .AW

Reg + offset Reg + offset

Register updated pre
memory transaction.

10 .AB Reg Reg + offset

Register updated post
memory transaction.

11 .AS

Scaled , no write-
back .AS

Reg + (offset << data_size)

Note that using the scaled address
mode with 8-bit data size (LDB.AS
or STB.AS) has undefined behavior
and should not be used.

no write-back

Load Store Direct to Memory Bypass Mode
The following table shows the codes used for direct to memory bypass modes in Load and Store
instructions.

Table 53 Direct to Memory Bypass Mode

Di bit Di Suffix Access mode
0 Default access to memory

1 DI Direct to memory, bypassing data-cache (if available)

Load Store Data Size Mode
The following table shows the codes used for data size modes in Load and Store instructions.

Table 54 Load Store Data Size Mode

ZZ Code ZZ Suffix Access mode
00 Default, Long word

01 B Byte

10 W Word

11 Reserved
Will raise an Instruction Error exception for the ARC 700 processor.

Undefined behavior for the ARCtangent-A5 and ARC 600 processor.

32-bit Instruction Formats Reference Load Data Extend Mode

ARCompact™ Programmer's Reference 137

Load Data Extend Mode
The following table shows the codes used data extend modes in Load instructions.

Table 55 Load Data Extend Mode

X bit X Suffix Access mode
0 If size is not long word then data is zero extended

1 X If size is not long word then data is sign extended

Use of Reserved Encodings
In a given format, one or more bits of an encoding can be marked as Reserved. In some formats, an
entire field may be reserved, such as when a register field is present in a given format but is not used
in the particular opcode (such as a MOV in format 0x04, which does not use source 1).

The presence of reserved bits has the following effect:

• The processor will ignore reserved bits. It will not generate an exception on an instruction based
on the value assigned to reserved bits, the functionality of the instruction will not be affected by
them.

• The reserved bits should be set to 0 when encoding instructions. This permits future revisions of
the architecture to assign new functionality to encodings that set bits currently reserved.

Use of Illegal Encodings
There are two major categories of illegal encodings:

• Reserved ranges of fields

• Illegal combinations of fields

Reserved Ranges of Fields
A given field can support a range of values, not all of which are used for supported functions. For
example, within most major formats there are opcodes that are reserved for future expansion. These
are now to be re-defined as Illegal.

If such an field is used, an Instruction Error exception will result.

Illegal Combinations of Fields
Fields are normally orthogonal, but certain combinations or values between 2 or more fields create an
instruction whose behavior is either nonsense or cannot be realized.

For example, the EX instruction, in format 0x04, exchanges one source (a memory location) with
another (a register). However, format 0x04 has sub-format that allow the source register to be a
constant. For the EX instruction sub-formats such as these do not make sense.

In such cases, nonsense combinations will raise an Instruction Error exception.

Branch Conditionally, 0x00, [0x0] 32-bit Instruction Formats Reference

138 ARCompact™ Programmer's Reference

Branch Conditionally, 0x00, [0x0]
The target address is 16-bit aligned to target 16-bit aligned instructions. See Table 50 on page 135 for
information on condition code test encoding, and Table 51 on page 135 for delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] S[10:1] 0 S[20:11] N Q[4:0]

0 0 0 0 0 s s s s s s s s s s 0 S S S S S S S S S S N Q Q Q Q Q

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

Syntax:

Bcc<.d> s21 (branch if condition is true)

Branch Unconditional Far, 0x00, [0x1]
The target address is 16-bit aligned to target 16-bit aligned instructions. See Table 51 on page 135 for
information on delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] S[10:1] 1 S[20:11] N R S[24:21]

0 0 0 0 0 s s s s s s s s s s 1 S S S S S S S S S S N 0 T T T T

A value of 1 in the reserved field, R, will raise an Instruction Error exception.

Syntax:

B<.d> s25 (unconditional branch far)

Branch on Compare Register-Register, 0x01,
[0x1, 0x0]
The target address is 16-bit aligned to target 16-bit aligned instructions. See Table 51 on page 135 for
information on delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] S[7:1] 1 S8 B[5:3] C[5:0] N 0 i[3:0]

0 0 0 0 1 b b b s s s s s s s s 1 S B B B C C C C C C N 0 i i i i

Values 0x6 to 0xD in the sub-opcode field, i, will raise an Instruction Error exception.

Syntax:

BRcc<.d> b,c,s9 (branch if reg-reg compare is true, swap regs if inverse
condition required)

BRcc b,limm,s9 (branch if reg-limm compare is true)

BRcc limm,c,s9 (branch if limm-reg compare is true)

BBIT0<.d> b,c,s9 (branch if bit c in reg b is clear)

BBIT1<.d> b,c,s9 (branch if bit c in reg b is set)

32-bit Instruction Formats ReferenceBranch on Compare/Bit Test Register-Immediate, 0x01, [0x1, 0x1]

ARCompact™ Programmer's Reference 139

Table 56 Branch on compare/bit test register-regis ter

Sub-opcode
i field
(4 bits)

Instruction Operation Description

0x00 BREQ b - c Branch if reg-reg is equal

0x01 BRNE b - c Branch if reg-reg is not equal

0x02 BRLT b - c Branch if reg-reg is less than

0x03 BRGE b - c Branch if reg-reg is greater than or equal

0x04 BRLO b - c Branch if reg-reg is lower than

0x05 BRHS b - c Branch if reg-reg is higher than or same

0x06 Reserved

0x07 Reserved

0x08 Reserved

0x09 Reserved

0x0A Reserved

0x0B Reserved

0x0C Reserved

0x0D Reserved

0x0E BBIT0 (b and 1<<c) == 0 Branch if bit c in register b is clear

0x0F BBIT1 (b and 1<<c) != 0 Branch if bit c in register b is set

Branch on Compare/Bit Test Register-
Immediate, 0x01, [0x1, 0x1]
The target address is 16-bit aligned to target 16-bit aligned instructions. See Table 51 on page 135 for
information on delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] S[7:1] 1 S8 B[5:3] U[5:0] N 1 i[3:0]

0 0 0 0 1 b b b s s s s s s s 1 S B B B U U U U U U N 1 i i i i

Values 0x6 to 0xD in the sub-opcode field, i, will raise an Instruction Error exception.

Syntax:

BRcc<.d> b,u6,s9 (branch if reg-immediate compare is true, use "immediate+1" if a
missing condition is required)

BBIT0<.d> b,u6,s9 (branch if bit u6 in reg b is clear)

BBIT1<.d> b,u6,s9 (branch if bit u6 in reg b is set)

Branch and Link Conditionally, 0x01, [0x0, 0x0] 32-bit Instruction Formats Reference

140 ARCompact™ Programmer's Reference

Table 57 Branch Conditionally/bit test on register- immediate

Sub-
opcode
i field
(4 bits)

Instruction Operation Description

0x00 BREQ b - u6 Branch if reg-imm is equal

0x01 BRNE b - u6 Branch if reg-imm is not equal

0x02 BRLT b - u6 Branch if reg-imm is less than

0x03 BRGE b - u6 Branch if reg-imm is greater than or equal

0x04 BRLO b - u6 Branch if reg-imm is lower than

0x05 BRHS b - u6 Branch if reg-imm is higher than or same

0x06 Reserved

… Reserved

0x0D Reserved

0x0E BBIT0 (b and 1<<u6) == 0 Branch if bit u6 in register b is clear

0x0F BBIT1 (b and 1<<u6) != 0 Branch if bit u6 in register b is set

Branch and Link Conditionally, 0x01, [0x0, 0x0]
The target address must be 32-bit aligned. See Table 50 on page 135 for information on condition
code test encoding, and Table 51 on page 135 for delay slot mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] S[10:2] 0 0 S[20:11] N Q[4:0]

0 0 0 0 1 s s s s s s s s s 0 0 S S S S S S S S S S N Q Q Q Q Q

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

Syntax:

BLcc<.d> s21 (branch if condition is true)

Branch and Link Unconditional Far, 0x01, [0x0,
0x1]
The target address must be 32-bit aligned. See Table 51 on page 135 for information on delay slot
mode encoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 S[10:2] 1 0 S[20:11] N R S[24:21]

0 0 0 0 1 s s s s s s s s s 1 0 S S S S S S S S S S N 0 T T T T

The reserved field, R, is ignored by the processor.

Syntax:

BL<.d> s25 (unconditional branch far)

32-bit Instruction Formats Reference Load Register with Offset, 0x02

ARCompact™ Programmer's Reference 141

Load Register with Offset, 0x02
See Table 52 on page 136, Table 53 on page 136, Table 54 on page 136 and Table 55 on page 137 for
information on encoding the Load instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] S[7:0] S8 B[5:3] Di a a Z Z X A[5:0]

0 0 0 1 0 b b b s s s s s s s s S B B B D a a Z Z X A A A A A A

Extension core registers and the program counter (PCL) are not permitted to be the destination of a
load instruction. Values 0x20 to 0x3B, 0x3D and 0x3F in the destination register field, A, will raise
an Instruction Error exception.

The loop counter register (LP_COUNT) is not permitted to be the destination of a load instruction,
A=0x3C, and will raise a Privilege Violation exception.

A value of 0x3 in the data size mode field, ZZ, will raise an Instruction Error exception.

The sign extension field, X, should not be set when the load is of longword data ZZ=0x0. This
combination will raise an Instruction Error exception.

Using incrementing addressing modes in combination with a long immediate values as the base
register is illegal. Values 0x1 and 0x2 in the addressing mode field, a, and a value of 0x3E in the base
register field, B, will raise an Instruction Error exception.

Syntax:

LD<zz><.x><.aa><.di> a,[b,s9]

LD<zz><.x><.di> a,[limm,s9] (use ld a,[limm])

LD<zz><.x><.di> a,[limm] (= ld a,[limm,0])

LD<zz><.x><.aa><.di> 0,[b,s9] (Prefetch, a=limm)

LD<zz><.x><.di> 0,[limm] (Prefetch, b=limm, a=limm, s9=0)

Store Register with Offset, 0x03
See Table 52 on page 136, Table 53 on page 136 and Table 54 on page 136 for information on
encoding the Store instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] S[7:0] S8 B[5:3] C[5:0] Di A A Z Z R

0 0 0 1 1 b b b s s s s s s s s S B B B C C C C C C D a a Z Z 0

A value of 0x3 in the data size mode field, ZZ, will raise an Instruction Error exception.

Using incrementing addressing modes in combination with a long immediate values as the base
register is illegal. Values 0x1 and 0x2 in the addressing mode field, a, and a value of 0x3E in the base
register field, B, will raise an Instruction Error exception.

The reserved field, R, is ignored by the processor.

Syntax:

ST<zz><.aa><.di> c,[b,s9]

ST<zz><.di> c,[limm] (= st c,[limm,0])

ST<zz><.aa><.di> limm,[b,s9]

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

142 ARCompact™ Programmer's Reference

General Operations, 0x04, [0x00 - 0x3F]
Operand Format Indicators
There are four operand formats (P[1:0]) in major opcode 0x04 which are used to specify the format of
operands that are used by the instructions. The conditional format has a sub operand format indicator
M. The operand format indicators are summarized in Table 58 on page 142.

Table 58 Operand Format Indicators

Operand format Name Operand
Format
P[1:0]

Sub
Operand
Format M

Comment

REG_REG 00 N/A Destination and both sources are
registers

REG_U6IMM 01 N/A Source 2 is a 6-bit unsigned immediate

REG_S12IMM 10 N/A Source 2 is a 12-bit signed immediate

COND_REG 11 0 Conditional instruction. Destination (if
any) is source 1. Source 2 is a register

COND_REG_U6IMM 11 1 Conditional instruction. Destination (if
any) is source 1. Source 2 is a 6-bit
unsigned immediate

General Operations Register-Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] C[5:0] A[5:0]

0 0 1 0 0 b b b 0 0 i i i i i i F B B B C C C C C C A A A A A A

Syntax:

op<.f> a,b,c

op<.f> a,limm,c (if b=limm)

op<.f> a,b,limm (if c=limm)

op<.f> a,limm,limm (if b=c=limm. Not useful format)

op<.f> 0,b,c (if a=0)

op<.f> 0,limm,c (Redundant format, see General
Operations Conditional Register
format on page 143)

op<.f> 0,b,limm (if a=0, c=limm)

op<.f> 0,limm,limm (if a=0, b=c=limm. Not useful format)

op<.f> b,c (SOP instruction)

op<.f> b,limm (SOP instruction)

op<.f> 0,c (SOP instruction)

op<.f> 0,limm (SOP instruction)

op<.f> c (ZOP instruction)

32-bit Instruction Formats Reference General Operations, 0x04, [0x00 - 0x3F]

ARCompact™ Programmer's Reference 143

op<.f> limm (ZOP instruction)

General Operations Register with Unsigned 6-bit Imm ediate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] U[5:0] A[5:0]

0 0 1 0 0 b b b 0 1 i i i i i i F B B B U U U U U U A A A A A A

Syntax:

op<.f> a,b,u6

op<.f> a,limm,u6 (Not useful format)

op<.f> 0,b,u6

op<.f> 0,limm,u6 (Not useful format)

op<.f> b,u6 (SOP instruction)

op<.f> 0,u6 (SOP instruction)

op<.f> u6 (ZOP instruction)

General Operations Register with Signed 12-bit Imme diate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] S[5:0] S[11:6]

0 0 1 0 0 b b b 1 0 i i i i i i F B B B s s s s s s S S S S S S

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Syntax:

op<.f> b,b,s12

op<.f> 0,limm,s12 (Not useful format)

General Operations Conditional Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] C[5:0] M Q[4:0]

0 0 1 0 0 b b b 1 1 i i i i i i F B B B C C C C C C 0 Q Q Q Q Q

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

Syntax:

op<.cc><.f> b,b,c

op<.cc><.f> 0,limm,c

op<.cc><.f> b,b,limm

op<.cc><.f> 0,limm,limm (Not useful format)

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

144 ARCompact™ Programmer's Reference

General Operations Conditional Register with Unsign ed 6-bit
Immediate

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] U[5:0] M Q[4:0]

0 0 1 0 0 b b b 1 1 i i i i i i F B B B U U U U U U 1 Q Q Q Q Q

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

Syntax:

op<.cc><.f> b,b,u6

op<.cc><.f> 0,limm,u6 (Not useful format)

Long Immediate with General Operations
Any 6-bit register field in an instruction can indicate that long immediate data is used. The long
immediate indicator (r62) can be used multiple times in an instruction. When a source register is set
to r62, an explicit long immediate value will follow the instruction word.

When a destination register is set to r62 there is no destination for the result of the instruction so the
result is discarded. Any flag updates will still occur according to the set flags directive (.F or implicit
in the instruction).

If the long immediate indicator is used in both a source and destination operand the following long
immediate value will be used as the source operand and the result will be discarded as expected.

When an instruction uses long immediate, the first long-word instruction is the instruction that
contains the long immediate data indicator (register r62). The second long-word instruction is the
long immediate (limm) data itself.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Limm[31:0]

Syntax:

limm

ALU Operations, 0x04, [0x00-0x1F]
Table 59 ALU Instructions

Sub-opcode
i field
(6 bits)

Instruction Operation Description

0x00 ADD a ← b + c add

0x01 ADC a ← b + c + C add with carry

0x02 SUB a ← b – c subtract

0x03 SBC a ← (b – c) - C subtract with carry

0x04 AND a ← b and c logical bitwise AND

0x05 OR a ← b or c logical bitwise OR

0x06 BIC a ← b and not c logical bitwise AND with invert

32-bit Instruction Formats Reference General Operations, 0x04, [0x00 - 0x3F]

ARCompact™ Programmer's Reference 145

Sub-opcode
i field
(6 bits)

Instruction Operation Description

0x07 XOR a ← b exclusive-or c logical bitwise exclusive-OR

0x08 MAX a ← b max c larger of 2 signed integers

0x09 MIN a ← b min c smaller of 2 signed integers

0x0A MOV b ← c move. See section Move to
Register Instruction on page
106

0x0B TST b and c test

0x0C CMP b - c compare

0x0D RCMP c - b reverse compare

0x0E RSUB a ← c - b reverse subtract

0x0F BSET a ← b or 1<<c bit set

0x10 BCLR a ← b and not 1<<c bit clear

0x11 BTST b and 1<<c bit test

0x12 BXOR a ← b xor 1<<c bit xor

0x13 BMSK a ← b and ((1<<(c+1))-1) bit mask

0x14 ADD1 a ← b + (c << 1) add with left shift by 1

0x15 ADD2 a ← b + (c << 2) add with left shift by 2

0x16 ADD3 a ← b + (c << 3) add with left shift by 3

0x17 SUB1 a ← b - (c << 1) subtract with left shift by 1

0x18 SUB2 a ← b - (c << 2) subtract with left shift by 2

0x19 SUB3 a ← b - (c << 3) subtract with left shift by 3

0x1A MPY a ← (a X c).low 32 X 32 signed multiply

0x1B MPYH a ← (a X c).high 32 X 32 signed multiply

0x1C MPYHU a ← (a X c).high 32 X 32 unsigned multiply

0x1D MPYU a ← (a X c).low 32 X 32 unsigned multiply

0x1E Instruction Error Reserved

0x1F Instruction Error Reserved

Special Format Instructions, 0x04, [0x20 - 0x3F]
Table 60 Special Format Instructions

Sub-opcode
I field
(6 bits)

Instruction Operation Description

0x20 Jcc pc ← c jump

0x21 Jcc.D pc ← c jump with delay slot

0x22 JLcc blink ← next_pc;
pc ← c

jump and link

0x23 JLcc.D blink ← next_pc;
pc ← c

jump and link with delay slot

0x24 Instruction Error Reserved

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

146 ARCompact™ Programmer's Reference

Sub-opcode
I field
(6 bits)

Instruction Operation Description

0x25 Instruction Error Reserved

0x26 Instruction Error Reserved

0x27 Instruction Error Reserved

0x28 LPcc aux.reg[LP_END] ← pc + c

aux.reg[LP_START] ←
next_pc

loop (16-bit aligned target
address)

0x29 FLAG aux.reg[STATUS32] ← c set status flags

0x2A LR b ← aux.reg[c] load from auxiliary register.
See section Load from
Auxiliary Register on page
115

0x2B SR aux.reg[c] ← b store to auxiliary register. See
section Store to Auxiliary
Register on page 115

0x2C Instruction Error Reserved

0x2D Instruction Error Reserved

0x2E Instruction Error Reserved

0x2F SOPs A field is sub-opcode2 See section:

0x30...0x37 LD Load register-register See section Load Register-
Register, 0x04, [0x30 - 0x37]
on page 147

0x38 Instruction Error Reserved

... Instruction Error Reserved

0x3F Instruction Error Reserved

Move and Compare Instructions, 0x04, [0x0A - 0x0D] and 0x04,
[0x11]
The move and compare instructions (MOV, TST, CMP, RCMP and BTST) use two operands. The
destination field A is ignored for these instructions and instead the B and C fields are used
accordingly.

Jump and Jump-and-Link Conditionally, 0x04, [0x20 - 0x23]
The jump (Jcc) and jump-and link (JLcc) instructions are specially encoded in major opcode 0x04 in
that the B field is reserved and should be set to 0x0. Any value in the B field is ignored by the
processor. The destination register, A field, should also be set to 0x0 when the operand mode, P, is
0x0 or 0x1. In the case where P is 0x0 or 0x1, any value in the A field is ignored.

When using ILINK1 or ILINK2 the flag setting field, F, is always encoded as 1 for these instructions.

If the ILINK1 or ILINK2 registers are used without the flag setting field being set an Instruction Error
exception will be raised. If the flag setting field, F, is set without using the ILINK1 or ILINK2
register, an Instruction Error exception will be raised.

32-bit Instruction Formats Reference General Operations, 0x04, [0x00 - 0x3F]

ARCompact™ Programmer's Reference 147

Load Register-Register, 0x04, [0x30 - 0x37]
Load register+register instruction, LD, is specially encoded in major opcode 0x04 in that the normal
"F and two mode bits" are replaced by the "D and two A bits" in the instruction word bit[15] and
bits[23:22]. The normal "conditional/immediate" mode bits are replaced by addressing mode bits.

Using an immediate value in the destination register field is not allowed for the ARCtangent-A5 or
ARC 600 processor.

Using an immediate value in the destination register field causes a prefetch with the ARC 700
processor.

See Table 52 on page 136, Table 53 on page 136 and Table 54 on page 136 for information on
encoding the Load instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] A A 1 1 0 Z Z X Di B[5:3] C[5:0] A[5:0]

0 0 1 0 0 b b b a a 1 1 0 Z Z X D B B B C C C C C C A A A A A A

Extension core registers and the program counter (PCL) are not permitted to be the destination of a
load instruction. Values 0x20 to 0x3B, 0x3D and 0x3F in the destination register field, A, will raise
an Instruction Error exception.

The loop counter register (LP_COUNT) is not permitted to be the destination of a load instruction,
A=0x3C, and will raise a Privilege Violation exception.

A value of 0x3 in the data size mode field, ZZ, will raise an Instruction Error exception.

The sign extension field, X, should not be set when the load is of longword data ZZ=0x0. This
combination will raise an Instruction Error exception.

Using incrementing addressing modes in combination with a long immediate values as the base
register is illegal. Values 0x1 and 0x2 in the addressing mode field, a, and a value of 0x3E in the base
register field, B, will raise an Instruction Error exception.

Syntax:

LD<zz><.x><.aa><.di> a,[b,c]

LD<zz><.x><.aa><.di> a,[b,limm]

LD<zz><.x><.di> a,[limm,c]

LD<zz><.x><.aa><.di> 0,[b,c] (Prefetch, a=limm)

LD<zz><.x><.aa><.di> 0,[b,limm] (Prefetch, a=limm, c=limm)

LD<zz><.x><.di> 0,[limm,c] (Prefetch, a=limm, b=limm)

Single Operand Instructions, 0x04, [0x2F, 0x00 - 0x 3F]
The sub-opcode 2 (destination 'a' field) is reserved for defining single source operand instructions
when sub-opcode 1 of 0x2F is used.

Table 61 Single Operand Instructions

Sub-opcode2
A field
(6 bits)

Instruction Operation Description

0x00 ASL b ← c+c Arithmetic shift left by one

0x01 ASR b ← asr(c) Arithmetic shift right by one

General Operations, 0x04, [0x00 - 0x3F] 32-bit Instruction Formats Reference

148 ARCompact™ Programmer's Reference

Sub-opcode2
A field
(6 bits)

Instruction Operation Description

0x02 LSR b ← lsr(c) Logical shift right by one

0x03 ROR b ← ror(c) Rotate right

0x04 RRC b ← rrc(c) Rotate right through carry

0x05 SEXB b ← sexb(c) Sign extend byte

0x06 SEXW b ← sexw(c) Sign extend word

0x07 EXTB b ← extb(c) Zero extend byte

0x08 EXTW b ← extw(c) Zero extend word

0x09 ABS b ← abs(c) Absolute

0x0A NOT b ← not(c) Logical NOT

0x0B RLC b ← rlc(c) Rotate left through carry

0x0C EX b ← mem[c];

mem[c] ← b

Atomic Exchange

0x0D Instruction Error Reserved

... Instruction Error Reserved

0x3E Instruction Error Reserved

0x3F ZOPs B field is

sub-opcode3

See Zero operand (ZOP) table

Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00 - 0x3F]
The sub-opcode 3 (source operand b field) is reserved for defining zero operand instructions when
sub-opcode 2 of 0x3F is used.

Table 62 Zero Operand Instructions

Sub-opcode3
B field
(6 bits)

Instruction Operation Description

0x00 Instruction Error Reserved

0x01 SLEEP Sleep Sleep

0x02 SWI/TRAP0 Swi Software interrupt

0x03

SYNC

Synchronize

Wait for all data-based memory
transactions to complete

0x04 RTIE Return Return from interrupt/exception

0x05 BRK Breakpoint Breakpoint instruction

0x06 Instruction Error Reserved

... Instruction Error Reserved

0x3F Instruction Error Reserved

Syntax:

SLEEP

SLEEP u6

SLEEP c

32-bit Instruction Formats Reference 32-bit Extension Instructions, 0x05 - 0x08

ARCompact™ Programmer's Reference 149

SWI

TRAP0

SYNC

RTIE

BRK

(Encoded as REG_U6IMM, but the redundant REG_REG format is also valid. See Table
58 on page 142)

32-bit Extension Instructions, 0x05 - 0x08
Any instruction opcodes that are not implemented will raise an Instruction Error exception.

Three sets of extension instructions are available as shown in the following table.

Table 63 Summary of Extension Instruction Encoding

Major
Opcode

Sub
Opcode1

Sub
Opcode2

Sub
Opcode3

Instruction Usage

[31:27]

[21:16]
i-field

[5:0]
a-field

[14:12]:
[26:24]
b-field

0x05 0x00-0x2E ARC Cores extension instructions

" 0x30-

0x3F

 ARC Cores extension instructions

" 0x2F 0x00-0x3E ARC Cores single operand extension
instructions

" " 0x3F 0x00-0x3F ARC Cores zero operand extension
instructions

0x06 0x00-0x2E ARC Cores extension instructions

" 0x30-

0x3F

 ARC Cores extension instructions

" 0x2F 0x00-0x3E ARC Cores single operand extension
instructions

" " 0x3F 0x00-0x3F ARC Cores zero operand extension
instructions

0x07 0x00-0x2E User extension instructions

" 0x30-

0x3F

 User extension instructions

" 0x2F 0x00-0x3E User single operand extension instructions

" " 0x3F 0x00-0x3F User zero operand extension instructions

0x08 0x00-0x2E User extension instructions

" 0x30-

0x3F

 User extension instructions

" 0x2F 0x00-0x3E User single operand extension instructions

" " 0x3F 0x00-0x3F User zero operand extension instructions

32-bit Extension Instructions, 0x05 - 0x08 32-bit Instruction Formats Reference

150 ARCompact™ Programmer's Reference

Extension ALU Operation, Register-Register
Using major opcode 0x05 as an example, the syntax op<.f> a,b,c is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] C[5:0] A[5:0]

0 0 1 0 1 b b b 0 0 i i i i i I F B B B C C C C C C A A A A A A

Figure 84 Extension ALU Operation, register-registe r

Extension ALU Operation, Register with Unsigned 6-b it Immediate
Using major opcode 0x05 as an example, the syntax of op<.f> a,b,u6 is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] U[5:0] A[5:0]

0 0 1 0 1 b b b 0 1 i i i i I i F B B B U U U U U U A A A A A A

Figure 85 Extension ALU Operation, register with un signed 6-bit immediate

Extension ALU Operation, Register with Signed 12-bi t Immediate
Using major opcode 0x05 as an example, the syntax of op<.f> b,b,s12 is encoded as shown in the
following diagram.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] S[5:0] S[11:6]

0 0 1 0 1 b b b 1 0 i i i i i I F B B B s s s s s s S S S S S S

Figure 86 Extension ALU Operation, register with si gned 12-bit immediate

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Extension ALU Operation, Conditional Register
The syntax of op<.cc><.f> b,b,c is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] i[5:0] F B[5:3] C[5:0] M Q[4:0]

0 0 1 0 1 b b b 1 1 i i i i i I F B B B C C C C C C 0 Q Q Q Q Q

Figure 87 Extension ALU Operation, conditional regi ster

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

32-bit Instruction Formats Reference 32-bit Extension Instructions, 0x05 - 0x08

ARCompact™ Programmer's Reference 151

Extension ALU Operation, Conditional Register with Unsigned 6-bit
Immediate
Using major opcode 0x05 as an example, the syntax of op<.cc><.f> b,b,u6 is encoded as shown
below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] B[2:0] P[1:0] I[5:0] F B[5:3] U[5:0] M Q[4:0]

0 0 1 0 1 b b b 1 1 i i i i i i F B B B U U U U U U 1 Q Q Q Q Q

Figure 88 Extension ALU Operation, cc register with unsigned 6-bit immediate

A value of 0x2F in the sub-opcode field, i, indicates a single operand instruction which is invalid for
this operand mode and will raise an Instruction Error exception.

Values 0x12 to 0x1F in the condition code field, Q, will raise an Instruction Error exception.
Condition code tests, 0x10 an 0x11 are used to test the extended arithmetic saturation flag.

Dual Operand Extension Instructions, 0x05, [0x00-0x 2E and 0x30-
0x3F]
The syntax follows the same structure as the arithmetic and logical operations.

Table 64 Extension ALU Instructions

Sub-opcode
i field
(6 bits)

Instruction Operation Description

0x00 ASL a ← b asl c Multiple arithmetic shift left

0x01 LSR a ← b lsr c Multiple logical shift right

0x02 ASR a ← b asr c Multiple arithmetic shift right

0x03 ROR a ← b ror c Multiple rotate right

0x04 MUL64 mulres ← b * c 32 X 32 signed multiply

0x05 MULU64 mulres ← b * c 32 X 32 unsigned multiply

0x06 ADDS a ← sat32(b+c) Add and saturate.

0x07 SUBS a ← sat32 (b-c) Subtract and saturate.

0x08 DIVAW b_temp ← b<<1

 if (b_temp>=c)

 a ← ((b_temp-c)+1)

else

 a ← b

Division assist.

0x0A ASLS a ← sat32 (b<<c) Arithmetic shift left and saturate.
Supports negative shift values for
right shift.

0x0B ASRS a ← sat32 (b>>c) Arithmetic shift right and saturate.
Supports -ve shift values for left
shift.

32-bit Extension Instructions, 0x05 - 0x08 32-bit Instruction Formats Reference

152 ARCompact™ Programmer's Reference

Sub-opcode
i field
(6 bits)

Instruction Operation Description

0x28 ADDSDW a ←
sat16(b.high+c.high):
sat16(b.low+c.low)

Dual 16-bit add and saturate.

0x29 SUBSDW a ← sat16(b.high-
c.high): sat16(b.low-
c.low)

Dual16-bit subtract and saturate.

0x2A Instruction Error Reserved

... Instruction Error Reserved

0x2E Instruction Error Reserved

0x2F SOPs A field is sub-opcode2 See Single operand SOP table

0x30 Instruction Error Reserved

... Instruction Error Reserved

0x3F Instruction Error Reserved

Single Operand Extension Instructions, 0x05, [0x2F, 0x00 - 0x3F]
The sub-opcode 2 (destination 'a' field) is reserved for defining single source operand instructions
when sub-opcode 1 of 0x2F is used.

Table 65 Extension Single Operand Instructions

Sub-opcode2
A field
(6 bits)

Instruction Operation Description

0x00 SWAP b ← swap(c) Swap words

0x01 NORM b ← norm(c) Normalize

0x02 SAT16 b ← sat16(c) Saturate 32-bit input to 16-bits

0x03 RND16 b ←
sat32(c+0x00008000)&0xffff0000

Round 32-bit input to 16-bits

0x04 ABSSW b ← sat16(abs(c.low)) Absolute value of 16-bit input

0x05 ABSS b ← sat32(abs(c)) Absolute value of 32-bit input

0x06 NEGSW b ← sat16(neg(c.low)) Negate and saturate 16-bit input

0x07 NEGS b ← sat32(neg(c)) Negate and saturate 32-bit input

0x08 NORMW b ← norm(c) Normalize word

0x09 Reserved

... Reserved

0x3F ZOPs B field is

sub-opcode3

See Zero operand (ZOP) table

Single operand instruction syntax is:

op<.f> b,c

op<.f> b,u6

op<.f> b,limm

32-bit Instruction Formats Reference Market Specific Extension Instructions, 0x09 - 0x0B

ARCompact™ Programmer's Reference 153

op<.f> 0,c

op<.f> 0,u6

op<.f> 0,limm

Zero Operand Extension Instructions, 0x05, [0x2F, 0 x3F, 0x00 -
0x3F]
The sub-opcode 3 (source operand b field) is reserved for defining zero operand instructions when
sub-opcode 2 of 0x3F is used.

Table 66 Extension Zero Operand Instructions

Sub-opcode3
B field
(6 bits)

Instruction Operation Description

0x00 Instruction Error Reserved

0x01 Instruction Error Reserved

0x02 Instruction Error Reserved

... Instruction Error Reserved

0x3F Instruction Error Reserved

Zero operand instruction syntax is:

op<.f> c

op<.f> u6

op<.f> limm

User Extension Instructions
64 user extension slots are available in op a,b,c format, when using major opcode 0x07. See Table 63
on page 149.

Market Specific Extension Instructions, 0x09 -
0x0B
The market-specific extension instructions are special instructions that use the major opcodes 0x09 to 0x0B.
The remaining encoding fields of each of these instructions are not detailed here and are to be interpreted by the
market-specific extension instructions themselves.

Any instruction opcodes that are not implemented raise an Instruction Error exception.

Three sets of extension instructions are available as shown in the following table.

Table 67 Summary of Market-Specific Extension Instruction En coding

Major Opcode Instruction Usage

0x09 ARC market-specific extension instructions

0x0A ARC market-specific extension instructions

0x0B ARC market-specific extension instructions

Market Specific Extension Instructions, 0x09 - 0x0B 32-bit Instruction Formats Reference

154 ARCompact™ Programmer's Reference

Market Specific Extension Instruction, 0x09
At major opcode 0x09, the market-specific instruction is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] Market specific

0 1 0 0 1 ?

Figure 89 Market-Specific Extension Instruction 0x0 9 Encoding

Market Specific Extension Instruction, 0x0A
At major opcode 0x0A, the market-specific instruction is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] Market specific

0 1 0 1 0 ?

Figure 90 Market-Specific Extension Instruction 0x0 A Encoding

Market Specific Extension Instruction, 0x0B
At major opcode 0x0B, the market-specific instruction is encoded as shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] Market specific

0 1 0 1 1 ?

Figure 91 Market-Specific Extension Instruction 0x0 B Encoding

ARCompact™ Programmer's Reference 155

Chapter 7 — 16-bit Instruction Formats
Reference

This chapter shows the available encoding formats for the 16-bit instructions. Some encodings define
instructions that are also defined in other encoding formats. Instruction Set Summary on page 93 lists
and notes the redundant formats. The processor implements all redundant encoding formats. A listing
of syntax and encoding that excludes the redundant formats is contained in Instruction Set Details on
page 173.

A complete list of the major opcodes is shown in Table 47.on page 133. The list of syntax
conventions is shown in Table 28 on page 93.The encoding notation shown in Table 48 on page 134
and Table 49 on page 134.

Load /Add Register-Register, 0x0C, [0x00 -
0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] c[2:0] i[1:0] a[2:0]

0 1 1 0 0 b b b c c c i i a a a

Syntax:

LD_S a, [b, c]

LDB_S a, [b, c]

LDW_S a, [b, c]

ADD_S a, b, c

Table 68 16-Bit, LD / ADD Register-Register

Sub-
opcode
i field
(2 bits)

Instruction Operation Description

0x00 LD_S a ← mem[b + c].l Load long word (reg.+reg.)

0x01 LDB_S a ← mem[b + c].b Load unsigned byte (reg.+reg.)

0x02 LDW_S a ← mem[b + c].w Load unsigned word (reg.+reg.)

0x03 ADD_S a ← b + c Add

Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03] 16-bit Instruction Formats Reference

156 ARCompact™ Programmer's Reference

Add/Sub/Shift Register-Immediate, 0x0D, [0x00
- 0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] c[2:0] i[1:0] u[2:0]

0 1 1 0 1 b b b c c c i i u u u

Syntax:

ADD_S c, b, u3

SUB_S c, b, u3

ASL_S c, b, u3

ASR_S c, b, u3

Table 69 16-Bit, ADD/SUB Register-Immediate

Sub-opcode
i field
(2 bits)

Instruction Operation Description

0x00 ADD_S c ← b + u3 Add

0x01 SUB_S c ← b + u3 Subtract

0x02 ASL_S c ← b asl u3 Multiple arithmetic shift left

0x03 ASR_S c ← b asr u3 Multiple arithmetic shift right

Mov/Cmp/Add with High Register, 0x0E, [0x00 -
0x03]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] h[2:0] i[1:0] h[5:3]

0 1 1 1 0 b b b h h h i i H H H

For the ARC 700 processor the program counter (PCL) is not permitted to be the destination of an
instruction. A value of in 0x03 in the sub opcode field, i, and a value of 0x3F in destination register
field, H, will raise an Instruction Error exception.

Syntax:

ADD_S b, b, h

ADD_S b, b, limm (h=limm)

MOV_S b, h

MOV_S b, limm (h=limm)

CMP_S b, h

CMP_S b, limm (h=limm)

16-bit Instruction Formats Reference General Register Format Instructions, 0x0F, [0x00 - 0x1F]

ARCompact™ Programmer's Reference 157

MOV_S h, b

MOV_S 0, b (h=limm)

Table 70 16-Bit MOV/CMP/ADD with High Register

Sub-
opcode
i field
(2 bits)

Instruction Operation Description

0x00 ADD_S b ← b + h Add

0x01 MOV_S b ← h Move

0x02 CMP_S b - h Compare

0x03 MOV_S h ← b Move

Long Immediate with Mov/Cmp/Add
The 6-bit register field in the instruction can indicate that long immediate data is used.

When a source register is set to r62, an explicit long immediate value will follow the instruction word.

When a destination register is set to r62 there is no destination for the result of the instruction so the
result is discarded.

If the long immediate indicator is used in both a source and destination operand the following long
immediate value will be used as the source operand and the result will be discarded as expected.

When an instruction uses long immediate, the first instruction word is the instruction that contains the
long immediate data indicator (register r62). The second long-word instruction is the long immediate
(limm) data itself.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Limm[31:0]

Syntax:

 limm

General Register Format Instructions, 0x0F,
[0x00 - 0x1F]
General Operations, register-register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] c[2:0] i[4:0]

0 1 1 1 1 b b b c c c i i i i i

Syntax:

op_S b,b,c

op_S b,c

General Register Format Instructions, 0x0F, [0x00 - 0x1F] 16-bit Instruction Formats Reference

158 ARCompact™ Programmer's Reference

General Operations, Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] i[2:0] 0x00

0 1 1 1 1 b b b i i i 0 0 0 0 0

Syntax:

op_S b

op_S b,b

General Operations, No Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] i[2:0] 0x07 0x00

0 1 1 1 1 i i i 1 1 1 0 0 0 0 0

Syntax:

op_S

General Operations, 0x0F, [0x00 - 0x1F]
Table 71 16-Bit General Operations

Sub-
opcode
i field
(5 bits)

Instruction Operation Description

0x00 SOPs c field is sub-opcode2 See 16-Bit Single Operand Instructions
table on page 159.

0x01 Instruction Error Reserved

0x02 SUB_S b ← b - c Subtract

0x03 Instruction Error Reserved

0x04 AND_S b ← b and c Logical bitwise AND

0x05 OR_S b ← b or c Logical bitwise OR

0x06 BIC_S b ← b and not c Logical bitwise AND with invert

0x07 XOR_S b ← b exclusive-or c Logical bitwise exclusive-OR

0x08 Instruction Error Reserved

0x09 Instruction Error Reserved

0x0A Instruction Error Reserved

0x0B TST_S b and c Test

0x0C MUL64_S mulres ← b * c 32 X 32 Multiply

0x0D SEXB_S b ← sexb(c) Sign extend byte

0x0E SEXW_S b ← sexw(c) Sign extend word

0x0F EXTB_S b ← extb(c) Zero extend byte

0x10 EXTW_S b ← extw(c) Zero extend word

0x11 ABS_S b ← abs(c) Absolute

16-bit Instruction Formats Reference General Register Format Instructions, 0x0F, [0x00 - 0x1F]

ARCompact™ Programmer's Reference 159

Sub-
opcode
i field
(5 bits)

Instruction Operation Description

0x12 NOT_S b ← not(c) Logical NOT

0x13 NEG_S b ← neg(c) Negate

0x14 ADD1_S b ← b + (c << 1) Add with left shift by 1

0x15 ADD2_S b ← b + (c << 2) Add with left shift by 2

0x16 ADD3_S b ← b + (c << 3) Add with left shift by 3

0x17 Instruction Error Reserved

0x18 ASL_S b ← b asl c Multiple arithmetic shift left

0x19 LSR_S b ← b lsr c Multiple logical shift right

0x1A ASR_S b ← b asr c Multiple arithmetic shift right

0x1B ASL_S b ← c + c Arithmetic shift left by one

0x1C ASR_S b ← c asr 1 Arithmetic shift right by one

0x1D LSR_S b ← c lsr 1 Logical shift right by one

0x1E TRAP_S Trap Raise Exception

0x1F BRK_S Break Break (Encoding is 0x7FFF)

Single Operand, Jumps and Special Format Instructio ns, 0x0F,
[0x00, 0x00 - 0x07]
Syntax:

J_S<.d> [b]

JL_S<.d> [b]

SUB_S.ne b,b,b

Table 72 16-Bit Single Operand Instructions

Sub-
opcode2
c field
(3 bits)

Instruction Operation Description

0x00 J_S pc ← b Jump

0x01 J_S.D pc ← b Jump delayed

0x02 JL_S blink ← pc; pc ← b Jump and link

0x03 JL_S.D blink ← pc; pc ← b Jump and link delayed

0x04 Instruction Error Reserved

0x05 Instruction Error Reserved

0x06 SUB_S.NE if (flags.Z==0)

then b ← b - b

If Z flag is 0, clear register

0x07 ZOP s b field is

sub-opcode3

See 16-Bit Zero Operand
Instructions table on page 160

Load/Store with Offset, 0x10 - 0x16 16-bit Instruction Formats Reference

160 ARCompact™ Programmer's Reference

Zero Operand Instructions, 0x0F, [0x00, 0x07, 0x00 - 0x07]
Syntax:

NOP_S

UNIMP_S

J_S<.d> [blink]

JEQ_S [blink]

JNE_S [blink]

Table 73 16-Bit Zero Operand Instructions

Sub-
opcode3
b field
(3 bits)

Instruction Operation Description

0x00 NOP_S nop No operation

0x01 UNIMP_S Instruction Error Unimplemented Instruction

0x02 Instruction Error Reserved

0x03 Instruction Error Reserved

0x04 JEQ_S [blink] pc ← blink Jump using blink register if equal

0x05 JNE_S [blink] pc ← blink Jump using blink register if not equal

0x06 J_S [blink] pc ← blink Jump using blink register

0x07 J_S.D [blink] pc ← blink Jump using blink register delayed

Load/Store with Offset, 0x10 - 0x16
The offset u[4:0] is data size aligned. Syntactically u7 should be multiples of 4, and u6 should be
multiples of 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] c[2:0] u[4:0]

I I I I I b b b c c c u u u u u

Syntax:

LD_S c, [b, u7] (u7 must be 32-bit aligned)

LDB_S c, [b, u5]

LDW_S c, [b, u6] (u6 must be 16-bit aligned)

LDW_S.X c, [b, u6] (u6 must be 16-bit aligned)

ST_S c, [b, u7] (u7 must be32-bit aligned)

STB_S c, [b, u5]

STW_S c, [b, u6] (u6 must be 16-bit aligned)

16-bit Instruction Formats Reference Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07]

ARCompact™ Programmer's Reference 161

Table 74 16-Bit Load and Store with Offset

Major
opcode
I field
(5 bits)

Instruction Operation Description

0x10 LD_S c ← mem[b + u7].l Load long word

0x11 LDB_S c ← mem[b + u5].b Load unsigned byte

0x12 LDW_S c ← mem[b + u6].w Load unsigned word

0x13 LDW_S.X c ← mem[b + u6].wx Load signed word

0x14 ST_S mem[b + u7].l ← c Store long word

0x15 STB_S mem[b + u5].b ← c Store unsigned byte

0x16 STW_S mem[b + u6].w ← c Store unsigned word

Shift/Subtract/Bit Immediate, 0x17, [0x00 -
0x07]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] i[2:0] u[4:0]

1 0 1 1 1 b b b i i i u u u u u

Syntax:

SUB_S b, b, u5

BSET_S b, b, u5

BCLR_S b, b, u5

BMSK_S b, b, u5

BTST_S b, u5

ASL_S b, b, u5

LSR_S b, b, u5

ASR_S b, b, u5

Table 75 16-Bit Shift/SUB/Bit Immediate

Sub-
opcode2
i field
(3 bits)

Instruction Operation Description

0x00 ASL_S b ← b asl u5 Multiple arithmetic shift left

0x01 LSR_S b ← b lsr u5 Multiple logical shift left

0x02 ASR_S b ← b asr u5 Multiple arithmetic shift right

0x03 SUB_S b ← b - u5 Subtract

0x04 BSET_S b ← b or 1<<u5 Bit set

0x05 BCLR_S b ← b and not 1<<u5 Bit clear

0x06 BMSK_S b ← b and ((1<<(u5+1))-1) Bit mask

0x07 BTST_S b and 1<<u5 Bit test

Stack Pointer Based Instructions, 0x18, [0x00 - 0x07] 16-bit Instruction Formats Reference

162 ARCompact™ Programmer's Reference

Stack Pointer Based Instructions, 0x18, [0x00 -
0x07]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] i[2:0] u[4:0]

1 1 0 0 0 b b b i i i u u u u u

Syntax:

LD_S b, [SP, u7] (u7 offset is 32-bit aligned)

LDB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ST_S b, [SP, u7] (u7 offset is 32-bit aligned)

STB_S b, [SP, u7] (u7 offset is 32-bit aligned)

ADD_S b, SP, u7 (u7 offset is 32-bit aligned)

ADD_S SP, SP, u7 (u7 offset is 32-bit aligned)

SUB_S SP, SP, u7 (u7 offset is 32-bit aligned)

POP_S b

POP_S BLINK

PUSH_S b

PUSH_S BLINK

Table 76 16-Bit Stack Pointer based Instructions

Sub-
opcode
i field
(3 bits)

Instruction Operation Description

0x00 LD_S b ← mem[SP + u7].l Load long word sp-rel.

0x01 LDB_S b ← mem[SP + u7].b Load unsigned byte sp-rel.

0x02 ST_S mem[SP + u7].l ← b Store long word sp-rel.

0x03 STB_S mem[SP + u7].b ← b Store unsigned byte sp-rel.

0x04 ADD_S b ← SP + u7 Add

0x05 ADD_S
/SUB_S

sp ← sp +- u7 See Table 77 on page 163

0x06 POP_S Pop register from stack See Table 78 on page 163

0x07 PUSH_S Push register to stack See Table 79 on page 163

16-bit Instruction Formats Reference Stack Pointer Based Instructions, 0x18, [0x00 - 0x07]

ARCompact™ Programmer's Reference 163

Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07]
Table 77 16-Bit Add/Subtract SP relative Instructio ns

Sub-
opcode
b field
(3 bits)

Instruction Operation Description

0x00 ADD_S sp ← sp +- u7 Add immediate to SP

0x01 SUB_S sp ← sp - u7 Subtract immediate from SP

0x02 Instruction Error Reserved

… Instruction Error Reserved

0x07 Instruction Error Reserved

POP Register from Stack, 0x18, [0x06, 0x00-0x1F]
Table 78 16-Bit POP register from stack instruction s

Sub-
opcode
u field
(5 bits)

Instruction Operation Description

0x00 Instruction Error Reserved

0x01 POP_S b b ← mem[SP].l

SP ← SP + 4

Pop register from stack

0x02 Instruction Error Reserved

… Instruction Error Reserved

0x10 Instruction Error Reserved

0x11 POP_S blink blink ← mem[SP].l

SP ← SP + 4

Pop blink from stack

(b=reserved)

0x12 Instruction Error Reserved

… Instruction Error Reserved

0x1F Instruction Error Reserved

PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F]
Table 79 16-Bit PUSH register to stack instructions

Sub-
opcode
u field
(5 bits)

Instruction Operation Description

0x00 Instruction Error Reserved

0x01 PUSH_S b SP ← SP - 4

mem[SP].l ← b

Push register to stack

0x02 Instruction Error Reserved

… Instruction Error Reserved

0x10 Instruction Error Reserved

0x11 PUSH_S blink SP ← SP - 4

mem[SP].l ← blink

Push blink to stack

(b=reserved)

Load/Add GP-Relative, 0x19, [0x00 - 0x03] 16-bit Instruction Formats Reference

164 ARCompact™ Programmer's Reference

Sub-
opcode
u field
(5 bits)

Instruction Operation Description

0x12 Instruction Error Reserved

… Instruction Error Reserved

0x1F Instruction Error Reserved

Load/Add GP-Relative, 0x19, [0x00 - 0x03]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] i[1:0] s[8:0]

1 1 0 0 1 i i s s s s s s s s s

The offset (s[8:0]) is shifted accordingly to provide the appropriate data size alignment.

Syntax:

LD_S r0, [GP, s11] (32-bit aligned offset)

LDB_S r0, [GP, s9] (8-bit aligned offset)

LDW_S r0, [GP, s10] (16-bit aligned offset)

ADD_S r0, GP, s11 (32-bit aligned offset)

Table 80 16-Bit GP Relative Instructions

Sub-
opcode
i field
(2 bits)

Instruction Operation Description

0x00 LD_S r0 ← mem[GP + s11].l Load gp-relative (32-bit aligned)
to r0

0x01 LDB_S r0 ← mem[GP + s9].b Load unsigned byte gp-relative
(8-bit aligned) to r0

0x02 LDW_S r0 ← mem[GP +s10].w Load unsigned word gp-relative
(16-bit aligned) to r0

0x03 ADD_S r0 ← GP + s11 Add gp-relative (32-bit aligned)
to r0

Load PCL-Relative, 0x1A
The offset (u[7:0]) is shifted accordingly to provide the appropriate 32-bit data size alignment.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] u[7:0]

1 1 0 1 0 b b b u u u u u u u u

Syntax:

LD_S b, [PCL, u10] (32-bit aligned offset)

16-bit Instruction Formats Reference Move Immediate, 0x1B

ARCompact™ Programmer's Reference 165

Move Immediate, 0x1B
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] u[7:0]

1 1 0 1 1 b b b u u u u u u u u

Syntax:

MOV_S b, u8

ADD/CMP Immediate, 0x1C, [0x00 - 0x01]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] i u[6:0]

1 1 1 0 0 b b b i u u u u u u u

Syntax:

ADD_S b, b, u7

CMP_S b, u7

Table 81 16-Bit ADD/CMP Immediate

Sub-
opcode
i field
(1 bit)

Instruction Operation Description

0x00 ADD_S b ← b + u7 Add

0x01 CMP_S b - u7 Compare

Branch on Compare Register with Zero, 0x1D,
[0x00 - 0x01]
The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] b[2:0] i s[7:1]

1 1 1 0 1 b b b i s s s s s s s

Syntax:

BREQ_S b, 0, s8

BRNE_S b, 0, s8

Table 82 16-Bit Branch on Compare

Sub-
opcode
i field
(1 bit)

Instruction Operation Description

0x00 BREQ_S Branch if register is zero

0x01 BRNE_S Branch if register is non-zero

Branch Conditionally, 0x1E, [0x00 - 0x03] 16-bit Instruction Formats Reference

166 ARCompact™ Programmer's Reference

Branch Conditionally, 0x1E, [0x00 - 0x03]
The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] i[1:0] s[9:1]

1 1 1 1 0 i i s s s s s s s s s

Syntax:

B_S s10

BEQ_S s10

BNE_S s10

Table 83 16-Bit Branch, Branch Conditionally

Sub-
opcode
i field
(2 bits)

Instruction Operation Description

0x00 B_S Branch always

0x01 BEQ_S Branch if equal

0x02 BNE_S Branch if not equal

0x03 Bcc_S See Bcc table

Branch Conditionally with cc Field, 0x1E, [0x03, 0x 00 - 0x07]
The target address is 16-bit aligned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] 0x03 i[2:0] s[6:1]

1 1 1 1 0 1 1 i i i s s s s s s

Syntax:

BGT_S s7

BGE_S s7

BLT_S s7

BLE_S s7

BHI_S s7

BHS_S s7

BLO_S s7

BLS_S s7

Table 84 16-Bit Branch Conditionally

Sub-
opcode
i field
(3 bits)

Instruction Operation Description

0x00 BGT_S Branch if greater than

0x01 BGE_S Branch if greater than or equal

16-bit Instruction Formats Reference Branch and Link Unconditionally, 0x1F

ARCompact™ Programmer's Reference 167

0x02 BLT_S Branch if less than

0x03 BLE_S Branch if less than or equal

0x04 BHI_S Branch if higher than

0x05 BHS_S Branch if higher or the same

0x06 BLO_S Branch if lower than

0x07 BLS_S Branch if lower or the same

Branch and Link Unconditionally, 0x1F
The target address can only target 32-bit aligned instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I[4:0] s[12:2]

1 1 1 1 1 s s s s s s s s s s s

Syntax:

BL_S s13

Branch and Link Unconditionally, 0x1F 16-bit Instruction Formats Reference

168 ARCompact™ Programmer's Reference

This page is intentionally left blank.

ARCompact™ Programmer's Reference 169

Chapter 8 — Condition Codes

Introduction
The ARCompact based processor has an extensive instruction set most of which can be carried out
conditionally or set the flags or both. Those instructions using short immediate data can not have a
condition code test.

Branch, loop and jump instructions use the same condition codes as instructions. However, the
condition code test for these jumps is carried out one stage earlier in the pipeline than other
instructions. Therefore, a single cycle stall will occur if a jump is immediately preceded by an
instruction that sets the flags.

Flag Setting
For those 32-bit instructions that are able to set the flags, updates will only occur if the set flags
directive (.F) is used. For some instructions the only effect is to set the flags and not update any
general purpose register. Such instructions include CMP, RCMP and TST.

For 16-bit instructions no flag setting will occur, except for a few instructions where flag setting is
implicit e.g. BTST_S, CMP_S and TST_S.

Status Register
The status register contains the status flags. The status register (STATUS32), shown in Figure 45 on
page 51, contains the following status flags for the condition codes: zero (Z), negative (N), carry (C)
and overflow (V).

Status Flags Notation
In the instruction set details in the following chapters the following notation is used for status flags:

Z = Set if result is zero
N = Set if most significant bit of result is set
C = Set if carry is generated
V = Set if overflow is generated

The convention used for the effect of an operation on the status flags is:

• = Set according to the result of the operation
 = Not affected by the operation
0 = Bit cleared after the operation
1 = Bit set after the operation

Condition Code Test Condition Codes

170 ARCompact™ Programmer's Reference

Condition Code Test
Table 85 on page 170 shows condition names and the conditions they test.

Table 85 Condition codes

Mnemonic Condition Test Code
AL, RA Always 1 0x00

EQ, Z Zero Z 0x01

NE, NZ Non-Zero /Z 0x02

PL, P Positive /N 0x03

MI, N Negative N 0x04

CS, C, LO Carry set, lower than (unsigned) C 0x05

CC, NC, HS Carry clear, higher or same (unsigned) /C 0x06

VS, V Over-flow set V 0x07

VC, NV Over-flow clear /V 0x08

GT Greater than (signed) (N and V and /Z) or (/N and
/V and /Z)

0x09

GE Greater than or equal to (signed) (N and V) or (/N and /V) 0x0A

LT Less than (signed) (N and /V) or (/N and V) 0x0B

LE Less than or equal to (signed) Z or (N and /V) or (/N and V) 0x0C

HI Higher than (unsigned) /C and /Z 0x0D

LS Lower than or same (unsigned) C or Z 0x0E

PNZ Positive non-zero /N and /Z 0x0F

NOTE PNZ does not have an inverse condition.

The remaining 16 condition codes (10-1F) are available for extension and are used to:

• provide additional tests on the internal condition flags or

• test extension status flags from external sources or

• test a combination external and internal flags

For the ARCtangent-A5 and ARC 600 processors, if an extension condition code is used that is not
implemented, then the condition code test will always return false (i.e. the opposite of AL - always).

For the ARC 700 processor, if an extension condition code is used that is not implemented then an
Instruction Error exception will be raised.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

Extended Arithmetic Condition Codes
The extended arithmetic library provides additional status flags in the AUX_MACMODE register
which are set by the Extended Arithmetic Library instructions on page 126. See Extended Arithmetic
Auxiliary Registers on page 62 for further details of the AUX_MACMODE register.

Condition Codes Extended Arithmetic Condition Codes

ARCompact™ Programmer's Reference 171

The following extension condition codes are available with the extended arithmetic library and may
be used on any conditionally executable instruction to test the saturate bits:

Table 86 Extended Arithmetic Condition Codes

Mnemonic Condition Test Code
SS Saturate Set S1 or S2 0x10

SC Saturate Clear /S1 and /S2 0x11

Extended Arithmetic Condition Codes Condition Codes

172 ARCompact™ Programmer's Reference

This page is intentionally left blank.

ARCompact™ Programmer's Reference 173

Chapter 9 — Instruction Set Details

Instruction Set Details
This chapter lists the available instruction set in alphabetic order. The syntax and encoding examples
list full syntax for each instruction, but excludes the redundant encoding formats. A full list of
encoding formats can be found in Instruction Set Summary on page 93.

Both 32-bit and 16-bit instructions are available in the ARCompact ISA and are indicated using
particular suffixes on the instruction as illustrated by the following syntax:

OP implies 32-bit instruction

OP_L indicates of 32-bit instruction.

OP_S indicates 16-bit instruction

If no suffix is used on the instruction then the implied instruction is 32-bit format.

The list of syntax conventions is shown in Table 28 on page 93.The encoding notation shown in
Table 48 on page 134 and Table 49 on page 134.

List of Instructions
The ARCompact ISA has 32 base instruction opcodes with additional variations (including NOP) that
provide a set of 86 arithmetic and logical instructions, load/store, and branch/jump instructions. 51
instructions are 32-bit and the remaining 35 instructions are 16-bit. The extended arithmetic library
contains 13 instructions. The extension options provide an additional 4 instructions of 32-bit formats
and 1 instruction in 16-bit format, giving a total of 104 instructions.

The ARC 700 processor additionally supports, 4 multiply instructions (as options) and 7 more
basecase instructions. The 2 ARCtangent-A5 and ARC 600 multiply instructions are not supported,
giving a total of 113 instructions.

The following table summarizes the 32-bit alongside the 16-bit instructions supported by the
ARCompact ISA.

Table 87 List of Instructions

32-Bit Instructions 16-Bit Instructions
Instruction Operation Instruction Operation
ABS Absolute value ABS_S Absolute value

ABSS Absolute and saturate

ABSSW Absolute and saturate of word

ADC Add with carry

ADD Add ADD_S Add

ADD1 Add with left shift by 1 bit ADD1_S Add with left shift by 1 bits

List of Instructions Instruction Set Details

174 ARCompact™ Programmer's Reference

32-Bit Instructions 16-Bit Instructions
Instruction Operation Instruction Operation
ADD2 Add with left shift by 2 bits ADD2_S Add with left shift by 2 bits

ADD3 Add with left shift by 3 bits ADD3_S Add with left shift by 3 bits

ADDS Add and saturate

ADDSDW Add and saturate dual word

AND Logical AND AND_S Logical AND

ASL Arithmetic Shift Left ASL_S Arithmetic Shift Left

ASLS Arithmetic shift left and saturate

ASR Arithmetic Shift Right ASR_S Arithmetic Shift Right

ASRS Arithmetic shift right and saturate

BBIT0 Branch if bit cleared to 0

BBIT1 Branch if bit set to 1

Bcc Branch if condition true Bcc_S Branch if condition true

BCLR Clear specified bit (to 0) BCLR_S Clear specified bit (to 0)

BIC Bit-wise inverted AND BIC_S Bit-wise inverted AND

BLcc Branch and Link BL_S Branch and Link

BMSK Bit Mask BMSK_S Bit Mask

BRcc Branch on compare BRcc_S Branch on compare

BRK Break (halt) processor BRK_S Break (halt) processor

BSET Set specified bit (to 1) BSET_S Set specified bit (to 1)

BTST Test value of specified bit BTST_S Test value of specified bit

BXOR Bit XOR

CMP Compare CMP_S Compare

DIVAW Division assist

EX Atomic Exchange

EXT Unsigned extend EXT_S Unsigned extend

FLAG Write to Status Register

Jcc Jump Jcc_S Jump

JLcc Jump and Link JL_s Jump and Link

LD Load from memory LD_S Load from memory

LPcc Loop (zero-overhead loops)

LR Load from Auxiliary memory

LSR Logical Shift Left LSR_S Logical Shift Right

MAX Return Maximum

MIN Return Minimum

MOV Move (copy) to register MOV_S Move (copy) to register

MUL64 32 x 32 Signed Multiply MUL64_S 32 x 32 Multiply

MULU64 32 x 32 Unsigned Multiply

MPY 32 x 32 Signed Multiply (low)

MPYH 32 x 32 Signed Multiply (high)

MPYHU 32 x 32 Unsigned Multiply (high)

Instruction Set Details List of Instructions

ARCompact™ Programmer's Reference 175

32-Bit Instructions 16-Bit Instructions
Instruction Operation Instruction Operation
MPYU 32 x 32 Unsigned Multiply (low)

NEG Negate NEG_S Negate

NEGSW Negate and saturate of word

NEGS Negate and saturate

NORM Normalize to 32 bits

NORMW Normalize to 16 bits

NOT Logical bit inversion NOT_S Logical bit inversion

OR Logical OR OR_S Logical OR

PREFETCH Prefetch from memory

RCMP Reverse Compare

RLC Rotate Left through Carry

RND16 Round to word

ROR Rotate Right

RRC Rotate Right through Carry

RSUB Reverse Subtraction

RTIE Return from Interrupt/Exception

SAT16 Saturate to word

SBC Subtract with carry

SEX Signed extend SEX_S Signed extend

SLEEP Put processor in sleep mode

SR Store to Auxiliary memory

ST Store to memory ST_S Store to memory

SUB Subtract SUB_S Subtract

SUB1 Subtract with left shift by 1 bit

SUB2 Subtract with left shift by 2 bits

SUB3 Subtract with left shift by 3 bits

SUBS Subtract and saturate

SUBSDW Subtract and saturate dual word

SWAP Swap 16 x 16

SWI Software Interrupt

SYNC Synchronize

TRAP0 Raise exception with param. 0 TRAP_S Raise exception

TST Test TST_S Test

XOR Logical Exclusive-OR XOR_S Logical Exclusive-OR

 NOP_S No Operation

 POP_S Restore register value from
stack

 PUSH_S Store register value on stack

 UNIMP_S Unimplemented Instruction

Alphabetic Listing Instruction Set Details

176 ARCompact™ Programmer's Reference

Alphabetic Listing
The instructions are arranged in alphabetical order. The instruction name is given at the top left and
top right of the page, along with a brief instruction description, and instruction type.

The following terms are used in the description of each instruction.

Operation Operation of the instruction
Format Instruction format
Format Key Key for instruction operation
Syntax The syntax of the instruction and supported constructs
Instruction Code Layout of the field of the instruction
Flag Affected List of status flags that are affected
Related Instructions Instructions that are related
Description Full description of the instruction
Pseudo Code Example Operation of the instruction described in pseudo code
Assembly Code Example A simple coding example

Instruction Set Details ABS

ARCompact™ Programmer's Reference 177

ABS
Absolute

Arithmetic Operation

Operation:
dest ← ABS(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
ABS = Take Absolute Value of Source

Syntax:
With Result Instruction Code
ABS<.f> b,c 00100bbb00101111FBBBCCCCCC001001
ABS<.f> b,u6 00100bbb01101111FBBBuuuuuu001001
ABS<.f> b,limm 00100bbb00101111FBBB111110001001 L
ABS_S b,c 01111bbbccc10001
Without Result
ABS<.f> 0,c 0010011000101111F111CCCCCC001001
ABS<.f> 0,u6 0010011001101111F111uuuuuu001001
ABS<.f> 0,limm 0010011000101111F111111110001001 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if src = 0x8000 0000
C • = MSB of src
V • = Set if src = 0x8000 0000

Related Instructions:
SEXB EXTB
SEXW EXTW
NEG

Description:
Take the absolute value that is found in the source operand (src) and place the result into the
destination register (dest). The carry flag reflects the state of the most significant bit found in the
source register. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
alu = 0 - src
if src[31]==1 then
 dest = alu
else
 dest = src
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = if src==0x8000_0000 then 1 else 0
 C_flag = src[31]
 V_flag = if src==0x8000_0000 then 1 else 0

/* ABS */

Assembly Code Example:
ABS r1,r2 ; Take the absolute value of

; r2 and write result into r1

ABSS Instruction Set Details

178 ARCompact™ Programmer's Reference

ABSS
Absolute with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat32 (abs(src))

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
ABSS<.f> b,c 00101bbb00101111FBBBCCCCCC000101
ABSS<.f> b,u6 00101bbb01101111FBBBuuuuuu000101
ABSS<.f> b,limm 00101bbb00101111FBBB111110000101 L
Without Result
ABSS<.f> 0,c 0010111000101111F111CCCCCC000101
ABSS<.f> 0,u6 0010111001101111F111uuuuuu000101
ABSS<.f> 0,limm 0010111000101111F111111110000101 L

Flag Affected (32-Bit): Key:
Z • = Set if input is zero L = Limm Data
N • = Set if most significant bit of input is set
C = Unchanged
V • = Set if input is 0x8000_0000 otherwise cleared
S • = Set if input is 0x8000_000 (‘sticky’ saturation)

NOTE In contrast with other instructions, the value of the input operand is used to set the flags.

Related Instructions:
SAT16 ABSSW
RND16 NEGSW

Description:
Obtain the absolute value of long word operand and place the result in the destination register. Note
that, the absolute value of 0x8000_0000 yields 0x7FFF_FFFF. Both saturation flags S1 and S2 will
be set if the result of the instruction saturates. Any flag updates will only occur if the set flags suffix
(.F) is used.

Pseudo Code Example:
if src <= 0x7FFF_FFFF
 sat = 0
 dest = src
else
 sat = 0
 dest = 0 - src
if src==0x8000_0000
 sat = 1
 dest = 0x7FFF_FFFF
if F==1 then
 Z_flag = if src==0 then 1 else 0
 N_flag = src[31]
 V_flag = sat
 S_flag = S_flag || sat

/* ABSS */
// Using
// unsigned
// pseudo
// arithmetic

Instruction Set Details ABSS

ARCompact™ Programmer's Reference 179

Assembly Code Example:
ABSS r1,r2 ; Take the absolute saturated value of

; r2 and write result into r1

ABSSW Instruction Set Details

180 ARCompact™ Programmer's Reference

ABSSW
Absolute Word with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat16 (abs(src.low))

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
ABSSW<.f> b,c 00101bbb00101111FBBBCCCCCC000100
ABSSW<.f> b,u6 00101bbb01101111FBBBuuuuuu000100
ABSSW<.f> b,limm 00101bbb00101111FBBB111110000100 L
Without Result
ABSSW<.f> 0,c 0010111000101111F111CCCCCC000100
ABSSW<.f> 0,u6 0010111001101111F111uuuuuu000100
ABSSW<.f> 0,limm 0010111000101111F111111110000100 L

Flag Affected (32-Bit): Key:
Z • = Set if input is zero L = Limm Data
N • = Set if most significant bit of input is set
C = Unchanged
V • = Set if input is 0x8000 otherwise cleared
S • = Set if input is 0x8000 (‘sticky’ saturation)

NOTE In contrast with other instructions, the value of the input operand is used to set the flags.

Related Instructions:
SAT16 ABSS
RND16 NEGSW

Description:
Obtain the result is the absolute value of least significant word (LSW) of the source operand. Note
that the absolute value of 0xFFFF_8000 yields 0x0000_7FFF. Both saturation flags S1 and S2 will be
set if the result of the instruction saturates. Any flag updates will only occur if the set flags suffix (.F)
is used.

Pseudo Code Example:
src16 = src & 0x0000_FFFF
if src16 <= 0x7FFF
 sat = 0
 dest = src16
else
 sat = 0
 dest = 0x0000_0000 - src16
if src16==0x8000
 sat = 1
 dest = 0x0000_7FFF
if F==1 then
 Z_flag = if src==0 then 1 else 0
 N_flag = src[31]
 V_flag = sat
 S_flag = S_flag || sat

/* ABSSW */
// Using
// unsigned
// pseudo
// arithmetic

Instruction Set Details ABSSW

ARCompact™ Programmer's Reference 181

Assembly Code Example:
ABSSW r1,r2 ; Take the LSW absolute saturated value of

; r2 and write result into r1

ADC Instruction Set Details

182 ARCompact™ Programmer's Reference

ADC
Addition with Carry

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 + src2 + carry

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
ADC<.f> a,b,c 00100bbb00000001FBBBCCCCCCAAAAAA
ADC<.f> a,b,u6 00100bbb01000001FBBBuuuuuuAAAAAA
ADC<.f> b,b,s12 00100bbb10000001FBBBssssssSSSSSS
ADC<.cc><.f> b,b,c 00100bbb11000001FBBBCCCCCC0QQQQQ
ADC<.cc><.f> b,b,u6 00100bbb11000001FBBBuuuuuu1QQQQQ
ADC<.f> a,limm,c 0010011000000001F111CCCCCCAAAAAA L
ADC<.f> a,b,limm 00100bbb00000001FBBB111110AAAAAA L
ADC<.cc><.f> b,b,limm 00100bbb11000001FBBB1111100QQQQQ L
Without Result
ADC<.f> 0,b,c 00100bbb00000001FBBBCCCCCC111110
ADC<.f> 0,b,u6 00100bbb01000001FBBBuuuuuu111110
ADC<.f> 0,b,limm 00100bbb00000001FBBB111110111110 L
ADC<.cc><.f> 0,limm,c 0010011011000001F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
ADD ADD2
ADD1 ADD3

Description:
Add source operand 1 (src1) and source operand 2 (src2) and carry, and place the result in the
destination register. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 + src2 + C_flag
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* ADC */

Assembly Code Example:
ADC r1,r2,r3 ; Add r2 to r3 with carry and

; write result into r1

Instruction Set Details ADD

ARCompact™ Programmer's Reference 183

ADD
Addition

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 + src2

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
ADD<.f> a,b,c 00100bbb00000000FBBBCCCCCCAAAAAA
ADD<.f> a,b,u6 00100bbb01000000FBBBuuuuuuAAAAAA
ADD<.f> b,b,s12 00100bbb10000000FBBBssssssSSSSSS
ADD<.cc><.f> b,b,c 00100bbb11000000FBBBCCCCCC0QQQQQ
ADD<.cc><.f> b,b,u6 00100bbb11000000FBBBuuuuuu1QQQQQ
ADD<.f> a,limm,c 0010011000000000F111CCCCCCAAAAAA L
ADD<.f> a,b,limm 00100bbb00000000FBBB111110AAAAAA L
ADD<.cc><.f> b,b,limm 00100bbb11000000FBBB1111100QQQQQ L
ADD_S a,b,c 01100bbbccc11aaa
ADD_S c,b,u3 01101bbbccc00uuu
ADD_S b,b,h 01110bbbhhh00HHH
ADD_S b,b,limm 01110bbb11000111 L
ADD_S b,sp,u7 11000bbb100uuuuu
ADD_S sp,sp,u7 11000000101uuuuu
ADD_S r0,gp,s11 1100111sssssssss
ADD_S b,b,u7 11100bbb0uuuuuuu
Without Result
ADD<.f> 0,b,c 00100bbb00000000FBBBCCCCCC111110
ADD<.f> 0,b,u6 00100bbb01000000FBBBuuuuuu111110
ADD<.f> 0,b,limm 00100bbb00000000FBBB111110111110 L
ADD<.cc><.f> 0,limm,c 0010011011000000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
ADC ADD2
ADD1 ADD3

Description:
Add source operand 1 (src1) to source operand 2 (src2) and place the result in the destination register.
Any flag updates will only occur if the set flags suffix (.F) is used.

ADD Instruction Set Details

184 ARCompact™ Programmer's Reference

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) or global pointer (GP) the
offset is aligned to 32-bit. For example ADD_S sp, sp. u7 only needs to encode the top 5 bits since
the bottom 2 bits of u7 are always zero because of the 32-bit data alignment.

Pseudo Code Example:
if cc==true then
 dest = src1 + src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* ADD */

Assembly Code Example:
ADD r1,r2,r3 ; Add contents of r2 with r3

; and write result into r1

Instruction Set Details ADD1

ARCompact™ Programmer's Reference 185

ADD1
Addition with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 + (src2 << 1)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
ADD1<.f> a,b,c 00100bbb00010100FBBBCCCCCCAAAAAA
ADD1<.f> a,b,u6 00100bbb01010100FBBBuuuuuuAAAAAA
ADD1<.f> b,b,s12 00100bbb10010100FBBBssssssSSSSSS
ADD1<.cc><.f> b,b,c 00100bbb11010100FBBBCCCCCC0QQQQQ
ADD1<.cc><.f> b,b,u6 00100bbb11010100FBBBuuuuuu1QQQQQ
ADD1<.f> a,limm,c 0010011000010100F111CCCCCCAAAAAA L
ADD1<.f> a,b,limm 00100bbb00010100FBBB111110AAAAAA L
ADD1<.cc><.f> b,b,limm 00100bbb11010100FBBB1111100QQQQQ L
ADD1_S b,b,c 01111bbbccc10100
Without Result
ADD1<.f> 0,b,c 00100bbb00010100FBBBCCCCCC111110
ADD1<.f> 0,b,u6 00100bbb01010100FBBBuuuuuu111110
ADD1<.f> 0,b,limm 00100bbb00010100FBBB111110111110 L
ADD1<.cc><.f> 0,limm,c 0010011011010100F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the ADD part of the instruction

Related Instructions:
ADD ADD2
ADC ADD3

Description:
Add source operand 1 (src1) to a scaled version of source operand 2 (src2) (src2 left shifted by 1).
Place the result in the destination register. Any flag updates will only occur if the set flags suffix (.F)
is used.

Pseudo Code Example:
if cc==true then
 shiftedsrc2 = src2 << 1
 dest = src1 + shiftedsrc2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = (src1[31] AND shiftedsrc2[31] and NOT dest[31]
) OR (NOT src1[31] AND NOT shiftedsrc2[31] and dest[31])

/* ADD1 */

ADD1 Instruction Set Details

186 ARCompact™ Programmer's Reference

Assembly Code Example:
ADD1 r1,r2,r3 ; Add contents of r3 shifted

; left one bit to r2
; and write result into r1

Instruction Set Details ADD2

ARCompact™ Programmer's Reference 187

ADD2
Addition with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 + (src2 << 2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
ADD2<.f> a,b,c 00100bbb00010101FBBBCCCCCCAAAAAA
ADD2<.f> a,b,u6 00100bbb01010101FBBBuuuuuuAAAAAA
ADD2<.f> b,b,s12 00100bbb10010101FBBBssssssSSSSSS
ADD2<.cc><.f> b,b,c 00100bbb11010101FBBBCCCCCC0QQQQQ
ADD2<.cc><.f> b,b,u6 00100bbb11010101FBBBuuuuuu1QQQQQ
ADD2<.f> a,limm,c 0010011000010101F111CCCCCCAAAAAA L
ADD2<.f> a,b,limm 00100bbb00010101FBBB111110AAAAAA L
ADD2<.cc><.f> b,b,limm 00100bbb11010101FBBB1111100QQQQQ L
ADD2_S b,b,c 01111bbbccc10101
Without Result
ADD2<.f> 0,b,c 00100bbb00010101FBBBCCCCCC111110
ADD2<.f> 0,b,u6 00100bbb01010101FBBBuuuuuu111110
ADD2<.f> 0,b,limm 00100bbb00010101FBBB111110111110 L
ADD2<.cc><.f> 0,limm,c 0010011011010101F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the ADD part of the instruction

Related Instructions:
ADD ADD1
ADC ADD3

Description:
Add source operand 1 (src1) to a scaled version of source operand 2 (src2) (src2 left shifted by 2).
Place the result in the destination register. Any flag updates will only occur if the set flags suffix (.F)
is used.

Pseudo Code Example:
if cc==true then
 shiftedsrc2 = (src2 << 2)
 dest = src1 + shiftedsrc2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = (src1[31] AND shiftedsrc2[31] and NOT dest[31]) OR
(NOT src1[31] AND NOT shiftedsrc2[31] and dest[31])

/* ADD2 */

ADD2 Instruction Set Details

188 ARCompact™ Programmer's Reference

Assembly Code Example:
ADD2 r1,r2,r3 ; Add contents of r3 shifted

; left two bits to r2
; and write result into r1

Instruction Set Details ADD3

ARCompact™ Programmer's Reference 189

ADD3
Addition with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 + (src2 << 3)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
ADD3<.f> a,b,c 00100bbb00010110FBBBCCCCCCAAAAAA
ADD3<.f> a,b,u6 00100bbb01010110FBBBuuuuuuAAAAAA
ADD3<.f> b,b,s12 00100bbb10010110FBBBssssssSSSSSS
ADD3<.cc><.f> b,b,c 00100bbb11010110FBBBCCCCCC0QQQQQ
ADD3<.cc><.f> b,b,u6 00100bbb11010110FBBBuuuuuu1QQQQQ
ADD3<.f> a,limm,c 0010011000010110F111CCCCCCAAAAAA L
ADD3<.f> a,b,limm 00100bbb00010110FBBB111110AAAAAA L
ADD3<.cc><.f> b,b,limm 00100bbb11010110FBBB1111100QQQQQ L
ADD3_S b,b,c 01111bbbccc10110
Without Result
ADD3<.f> 0,b,c 00100bbb00010110FBBBCCCCCC111110
ADD3<.f> 0,b,u6 00100bbb01010110FBBBuuuuuu111110
ADD3<.f> 0,b,limm 00100bbb00010110FBBB111110111110 L
ADD3<.cc><.f> 0,limm,c 0010011011010110F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the ADD part of the instruction

Related Instructions:
ADD ADD1
ADC ADD2

Description:
Add source operand 1 (src1) to a scaled version of source operand 2 (src2) (src2 left shifted by 3).
Place the result in the destination register. Any flag updates will only occur if the set flags suffix (.F)
is used.

Pseudo Code Example:
if cc==true then
 shiftedsrc2 = src2 << 3
 dest = src1 + shiftedsrc2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = (src1[31] AND shiftedsrc2[31] and NOT dest[31]) OR
(NOT src1[31] AND NOT shiftedsrc2[31] and dest[31])

/* ADD3 */

ADD3 Instruction Set Details

190 ARCompact™ Programmer's Reference

Assembly Code Example:
ADD3 r1,r2,r3 ; Add contents of r3 shifted

; left three bits to r2
; and write result into r1

Instruction Set Details ADDS

ARCompact™ Programmer's Reference 191

ADDS
Signed Add with Saturation

Extended Arithmetic

Operation:
dest ← sat32 (src1 + src2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ADDS<.f> a,b,c 00101bbb00000110FBBBCCCCCCAAAAAA
ADDS<.f> a,b,u6 00101bbb01000110FBBBuuuuuuAAAAAA
ADDS<.f> b,b,s12 00101bbb10000110FBBBssssssSSSSSS
ADDS<.cc><.f> b,b,c 00101bbb11000110FBBBCCCCCC0QQQQQ
ADDS<.cc><.f> b,b,u6 00101bbb11000110FBBBuuuuuu1QQQQQ
ADDS<.f> a,limm,c 0010111000000110F111CCCCCCAAAAAA L
ADDS<.f> a,b,limm 00101bbb00000110FBBB111110AAAAAA L
ADDS<.cc><.f> b,b,limm 00101bbb11000110FBBB111110QQQQQQ L
Without Result
ADDS<.f> 0,b,c 00101bbb00000110FBBBCCCCCC111110
ADDS<.f> 0,b,u6 00101bbb01000110FBBBuuuuuu111110
ADDS<.f> 0,b,limm 00101bbb00000110FBBB111110111110 L
ADDS<.cc><.f> 0,limm,c 0010111011000110F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated from the add
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
SUBS ADDSDW

Description:
Perform a signed addition of the two source operands. If the result overflows, limit it to the maximum
signed value. Both saturation flags S1 and S2 will be set if the result of the instruction saturates. Any
flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 + src2
 sat = sat32(dest)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = 0
 V_flag = sat
 S_flag = S_flag || sat

/* ADDS */

ADDS Instruction Set Details

192 ARCompact™ Programmer's Reference

Assembly Code Example:
ADDS r1,r2,r3 ; Add contents of r2 with r3

; and write result into r1

Instruction Set Details ADDSDW

ARCompact™ Programmer's Reference 193

ADDSDW
Signed Add with Saturation Dual Word

Extended Arithmetic Operation

Operation:
Dest ← sat16(src1.high+src2.high): sat16(src1.low+src2.low)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ADDSDW<.f> a,b,c 00101bbb00101000FBBBCCCCCCAAAAAA
ADDSDW<.f> a,b,u6 00101bbb01101000FBBBuuuuuuAAAAAA
ADDSDW<.f> b,b,s12 00101bbb10101000FBBBssssssSSSSSS
ADDSDW<.cc><.f> b,b,c 00101bbb11101000FBBBCCCCCC0QQQQQ
ADDSDW<.cc><.f> b,b,u6 00101bbb11101000FBBBuuuuuu1QQQQQ
ADDSDW<.f> a,limm,c 0010111000101000F111CCCCCCAAAAAA L
ADDSDW<.f> a,b,limm 00101bbb00101000FBBB111110AAAAAA L
ADDSDW<.cc><.f> b,b,limm 00101bbb11101000FBBB111110QQQQQQ L
Without Result - only flags will be set
ADDSDW<.f> 0,b,c 00101bbb00101000FBBBCCCCCC111110
ADDSDW<.f> 0,b,u6 00101bbb01101000FBBBuuuuuu111110
ADDSDW<.cc><.f> 0,limm,c 0010111011101000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
SUBSDW SUBS
ADDS

Description:
Perform a signed dual-word addition of the two source operands. If the result overflows, limit it to the
maximum signed value. The saturation flags S1 and S2 will be set according to the result of the
channel 1 (high 16-bit) and channel 2 (low 16-bit) calculations respectively. Any flag updates will
only occur if the set flags suffix (.F) is used.

Assembly Code Example:
ADDSDW r1,r2,r3 ;

AND Instruction Set Details

194 ARCompact™ Programmer's Reference

AND
Bitwise AND Operation

Logical Operation

Operation:
if (cc=true) then dest ← src1 AND src2

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
AND<.f> a,b,c 00100bbb00000100FBBBCCCCCCAAAAAA
AND<.f> a,b,u6 00100bbb01000100FBBBuuuuuuAAAAAA
AND<.f> b,b,s12 00100bbb10000100FBBBssssssSSSSSS
AND<.cc><.f> b,b,c 00100bbb11000100FBBBCCCCCC0QQQQQ
AND<.cc><.f> b,b,u6 00100bbb11000100FBBBuuuuuu1QQQQQ
AND<.f> a,limm,c 0010011000000100F111CCCCCCAAAAAA L
AND<.f> a,b,limm 00100bbb00000100FBBB111110AAAAAA L
AND<.cc><.f> b,b,limm 00100bbb11000100FBBB1111100QQQQQ L
AND_S b,b,c 01111bbbccc00100
Without Result
AND<.f> 0,b,c 00100bbb00000100FBBBCCCCCC111110
AND<.f> 0,b,u6 00100bbb01000100FBBBuuuuuu111110
AND<.f> 0,b,limm 00100bbb00000100FBBB111110111110 L
AND<.cc><.f> 0,limm,c 0010011011000100F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
OR XOR
BIC

Description:
Logical bitwise AND of source operand 1 (src1) with source operand 2 (src2) with the result written
to the destination register. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 AND src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* AND */

Assembly Code Example:
AND r1,r2,r3 ; AND contents of r2 with r3

; and write result into r1

Instruction Set Details ASL

ARCompact™ Programmer's Reference 195

ASL
Arithmetic Shift Left

Logical Operation

Operation:
dest ← src + src

 src

dest C 0

MSB LSB

‘0’

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand

Syntax:
With Result Instruction Code
ASL<.f> b,c 00100bbb00101111FBBBCCCCCC000000
ASL<.f> b,u6 00100bbb01101111FBBBuuuuuu000000
ASL<.f> b,limm 00100bbb00101111FBBB111110000000 L
ASL_S b,c 01111bbbccc11011
Without Result
ASL<.f> 0,c 0010011000101111F111CCCCCC000000
ASL<.f> 0,u6 0010011001101111F111uuuuuu000000
ASL<.f> 0,limm 0010011000101111F111111110000000 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if the sign bit changes after a shift

Related Instructions:
ASR LSR
ROR RRC
ASL multiple ASR multiple
ROR multiple LSR multiple

Description:
Arithmetically left shift the source operand (src) by one and place the result into the destination
register (dest). An ASL operation is effectively accomplished by adding the source operand upon
itself (src + src), with the result being written into the destination register. Any flag updates will only
occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src + src
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* ASL */

Assembly Code Example:
ASL r1,r2 ; Arithmetic shift left contents of r2

; by one bit and write result into r1

ASL multiple Instruction Set Details

196 ARCompact™ Programmer's Reference

ASL multiple
Multiple Arithmetic Shift Left

Logical Operation

Operation:
if (cc=true) then dest ← arithmetic shift left of src1 by src2

 src1

dest C 0

MSB LSB

‘0’

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ASL<.f> a,b,c 00101bbb00000000FBBBCCCCCCAAAAAA
ASL<.f> a,b,u6 00101bbb01000000FBBBuuuuuuAAAAAA
ASL<.f> b,b,s12 00101bbb10000000FBBBssssssSSSSSS
ASL<.cc><.f> b,b,c 00101bbb11000000FBBBCCCCCC0QQQQQ
ASL<.cc><.f> b,b,u6 00101bbb11000000FBBBuuuuuu1QQQQQ
ASL<.f> a,limm,c 0010111000000000F111CCCCCCAAAAAA L
ASL<.f> a,b,limm 00101bbb00000000FBBB111110AAAAAA L
ASL<.cc><.f> b,b,limm 00101bbb11000000FBBB1111100QQQQQ L
ASL_S c,b,u3 01101bbbccc10uuu
ASL_S b,b,c 01111bbbccc11000
ASL_S b,b,u5 10111bbb000uuuuu
Without Result

ASL<.f> 0,b,c 00101bbb00000000FBBBCCCCCC111110
ASL<.f> 0,b,u6 00101bbb01000000FBBBuuuuuu111110
ASL<.cc><.f> 0,limm,c 0010111011000000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASR LSR
ROR RRC
ASR multiple LSR multiple
ROR multiple

Description:
Arithmetically, shift left src1 by src2 places and place the result in the destination register. Only the
bottom 5 bits of src2 are used as the shift value. Any flag updates will only occur if the set flags
suffix (.F) is used.

Instruction Set Details ASL multiple

ARCompact™ Programmer's Reference 197

Pseudo Code Example:
if cc==true then
 dest = src1 << (src2 & 31)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = if src2==0 then 0 else src1[32-src2]

/* ASL */
/* Multiple */

Assembly Code Example:
ASL r1,r2,r3 ; Arithmetic shift left

; contents of r2 by r3 bits
; and write result into r1

ASLS Instruction Set Details

198 ARCompact™ Programmer's Reference

ASLS
Arithmetic +/- Shift Left with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat32 (src1 << src2)

Positive src2: dest ← arithmetic shift left of src1 by src2 with saturation on the result.

 src1

dest 0

MSB LSB

‘0’

Negative src2: dest ← arithmetic shift right of src1 by -src2.

src1

dest

MSB LSB

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ASLS<.f> a,b,c 00101bbb00001010FBBBCCCCCCAAAAAA
ASLS<.f> a,b,u6 00101bbb01001010FBBBuuuuuuAAAAAA
ASLS<.f> b,b,s12 00101bbb10001010FBBBssssssSSSSSS
ASLS<.cc><.f> b,b,c 00101bbb11001010FBBBCCCCCC0QQQQQ
ASLS<.cc><.f> b,b,u6 00101bbb11001010FBBBuuuuuu1QQQQQ
ASLS<.f> a,limm,c 0010111000001010F111CCCCCCAAAAAA L
ASLS<.f> a,b,limm 00101bbb00001010FBBB111110AAAAAA L
ASLS<.cc><.f> b,b,limm 00101bbb11001010FBBB111110QQQQQQ L
Without Result
ASLS<.f> 0,b,c 00101bbb00001010FBBBCCCCCC111110
ASLS<.f> 0,b,u6 00101bbb01001010FBBBuuuuuu111110
ASLS<.cc><.f> 0,limm,c 0010111011001010F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ASRS ASL

Instruction Set Details ASLS

ARCompact™ Programmer's Reference 199

Description:
a) If src2 is positive, with a value in the range 0<= operand2 <= 31, arithmetically shift src1 left by
src2 places. The result is saturated and then placed in the destination register.

When src2 is larger than 31, the result is set to 0x7FFF_FFF and 0x8000_0000 (saturation) for
positive non-zero and negative input respectively.

b) If src2 is negative, with a value in the range -31<= operand2 <0, arithmetically shift src1 right by -
src2 places (positive right shift) and placed in the destination register.

When src2 is less than -31, src2 is set to –31, ensuring a maximum right shift of 31 places.

Both saturation flags S1 and S2 will be set if the result of the instruction saturates. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 if src2 > 0x0000_001F and src2 < 0x7FFF_FFFF
 tempdest = src1 << 0x0000_001F
 if src2 > 0x8000_0000 and src2 < 0xFFFFFFE1
 tempdest = src1 >> 0x0000_001F
 if src2 >= 0 and src2 <= 0x0000_001F
 tempdest = src1 << src2
 if src2 < 0 and src2 >= 0xFFFFFFE1
 tempdest = src1 >> (0 - src2)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* ASLS */
/* Multiple */
/* and */
/* Saturated */
/* using */
/* unsigned */
/* pseudo code */

Assembly Code Example:
; 0 <= operand2 <= 31 : Arithmetically shift left operand1
; by operand2 places with saturation:

ASLS r0, 0x00001111, 1 ; Yields r0=0x0000_2222
ASLS r0, 0x00001111, 2 ; Yields r0=0x0000_4444
ASLS r0, 0x00001111, 3 ; Yields r0=0x0000_8888
ASLS r0, 0x10001111, 1 ; Yields r0=0x2000_2222
ASLS r0, 0x10001111, 2 ; Yields r0=0x4000_4444
ASLS r0, 0x10001111, 3 ; Yields r0=0x7FFF_FFFF (saturation)
ASLS.f r0, 0x10001111, 3 ; Yields r0=0x7fff_ffff
 ; (saturation, V and S flags are set)

ASLS r0, 0x10001111, 31 ; Yields r0=0x7FFF_FFFF (saturation)

; Operand2 > 31 : Result is set to 0x7FFF_FFFF or
; 0x8000_0000 (saturation) for positive (non-zero)
; and negative input respectively.
ASLS r0, 0x00000001, 33 ; Yields r0=0x7FFF_FFFF
 ; (saturate to largest positive value)
ASLS r0, 0xFFFFFFFF, 33 ; Yields r0=0x8000_0000
 ; (saturate to largest negative value)

; Supports ASRS with negative shift (operand2):
ASLS r0, r1, -1 ; in effect performs asrs r0, r1, 1
ASLS r0, 0x00001111, -1 ; Yields r0=0x0000_0888
ASLS r0, 0x00001111, -12 ; Yields r0=0x0000_0001
ASLS r0, 0x00001111, -13 ; Yields r0=0x0000_0000

ASLS r0, 0xFFFFEEEF, -1 ; Yields r0=0xFFFF_F777
ASLS r0, 0xFFFFEEEF, -12 ; Yields r0=0xFFFF_FFFF
ASLS r0, 0xFFFFEEEF, -13 ; Yields r0=0xFFFF_FFFF (sign filled)

ASR Instruction Set Details

200 ARCompact™ Programmer's Reference

ASR
Arithmetic Shift Right

Logical Operation

Operation:
dest ← src >> 1

src

dest C

MSB LSB

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand

Syntax:
With Result Instruction Code
ASR<.f> b,c 00100bbb00101111FBBBCCCCCC000001
ASR<.f> b,u6 00100bbb01101111FBBBuuuuuu000001
ASR<.f> b,limm 00100bbb00101111FBBB111110000001 L
ASR_S b,c 01111bbbccc11100
Without Result
ASR<.f> 0,c 0010011000101111F111CCCCCC000001
ASR<.f> 0,u6 0010011001101111F111uuuuuu000001
ASR<.f> 0,limm 0010011000101111F111111110000001 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASL LSR
ROR RRC
ASL multiple ASR multiple
ROR multiple LSR multiple

Description:
Arithmetically right shift the source operand (src) by one and place the result into the destination
register (dest). The sign of the source operand is retained in the destination register. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src >> 1
if src[31]==1 then dest[31] = 1
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = src[0]

/* ASR */

Assembly Code Example:
ASR r1,r2 ; Arithmetic shift right

; contents of r2 by one bit
; and write result into r1

Instruction Set Details ASR multiple

ARCompact™ Programmer's Reference 201

ASR multiple
Multiple Arithmetic Shift Right

Logical Operation

Operation:
if (cc=true) then dest ← arithmetic shift right of src1 by src2

src1

dest C

MSB LSB

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ASR<.f> a,b,c 00101bbb00000010FBBBCCCCCCAAAAAA
ASR<.f> a,b,u6 00101bbb01000010FBBBuuuuuuAAAAAA
ASR<.f> b,b,s12 00101bbb10000010FBBBssssssSSSSSS
ASR<.cc><.f> b,b,c 00101bbb11000010FBBBCCCCCC0QQQQQ
ASR<.cc><.f> b,b,u6 00101bbb11000010FBBBuuuuuu1QQQQQ
ASR<.f> a,limm,c 0010111000000010F111CCCCCCAAAAAA L
ASR<.f> a,b,limm 00101bbb00000010FBBB111110AAAAAA L
ASR<.cc><.f> b,b,limm 00101bbb11000010FBBB1111100QQQQQ L
ASR_S c,b,u3 01101bbbccc11uuu
ASR_S b,b,c 01111bbbccc11010
ASR_S b,b,u5 10111bbb010uuuuu
Without Result
ASR<.f> 0,b,c 00101bbb00000010FBBBCCCCCC111110
ASR<.f> 0,b,u6 00101bbb01000010FBBBuuuuuu111110
ASR<.cc><.f> 0,limm,c 0010111011000010F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASL LSR
ROR RRC
ASR multiple LSR multiple
ROR multiple

Description:
Arithmetically, shift right src1 by src2 places and place the result in the destination register. Only the
bottom 5 bits of src2 are used as the shift value. Any flag updates will only occur if the set flags
suffix (.F) is used.

ASR multiple Instruction Set Details

202 ARCompact™ Programmer's Reference

Pseudo Code Example:
if cc==true then
 dest = ((signed)src1) >> (src2 & 31)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = if src2==0 then 0 else src1[src2-1]

/* ASR */
/* Multiple */

Assembly Code Example:
ASR r1,r2,r3 ; Arithmetic shift right

; contents of r2 by r3 bits
; and write result into r1

Instruction Set Details ASRS

ARCompact™ Programmer's Reference 203

ASRS
Arithmetic +/- Shift Right with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat32 (src1 >> src2)

Positive src2: dest ← arithmetic shift right of src1 by src2

src1

dest

MSB LSB

Negative src2: dest ← arithmetic shift left of src1 by -src2 with saturation

 src1

dest 0

MSB LSB

‘0’

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ASRS<.f> a,b,c 00101bbb00001011FBBBCCCCCCAAAAAA
ASRS<.f> a,b,u6 00101bbb01001011FBBBuuuuuuAAAAAA
ASRS<.f> b,b,s12 00101bbb10001011FBBBssssssSSSSSS
ASRS<.cc><.f> b,b,c 00101bbb11001011FBBBCCCCCC0QQQQQ
ASRS<.cc><.f> b,b,u6 00101bbb11001011FBBBuuuuuu1QQQQQ
ASRS<.f> a,limm,c 0010111000001011F111CCCCCCAAAAAA L
ASRS<.f> a,b,limm 00101bbb00001011FBBB111110AAAAAA L
ASRS<.cc><.f> b,b,limm 00101bbb11001011FBBB111110QQQQQQ L
Without Result

ASRS<.f> 0,b,c 00101bbb00001011FBBBCCCCCC111110
ASRS<.f> 0,b,u6 00101bbb01001011FBBBuuuuuu111110
ASRS<.cc><.f> 0,limm,c 0010111011001011F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ASLS ASR

Description:
a) If src2 is positive, with a value in the range 0<= src2 <=31, arithmetically shift src1 right by src2
places and put the result in the destination register.

ASRS Instruction Set Details

204 ARCompact™ Programmer's Reference

NOTE When src2 is larger than 31, src2 is set to 31, ensuring a maximum right shift of 31 places.

b) If src2 is negative with a value in the range -31<= src2 <= 0, arithmetically shift src1 left by src2
places (positive left shift). Result is saturated and then placed in the destination register.

When src2 is less than -31, the result is set to 0x7FFF_FFF and 0x8000_0000 (saturation) for positive
non-zero and negative input respectively.

Both saturation flags S1 and S2 will be set if the result of the instruction saturates. Any flag updates
will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 if src2 > 0x0000_001F and src2 < 0x7FFF_FFFF
 tempdest = src1 >> 0x0000_001F
 if src2 > 0x8000_0000 and src2 < 0xFFFFFFE1
 tempdest = src1 << 0x0000_001F
 if src2 >= 0 and src2 <= 0x0000_001F
 tempdest = src1 >> src2
 if src2 < 0 and src2 >= 0xFFFFFFE1
 tempdest = src1 << (0 - src2)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* ASRS */
/* Multiple */
/* and */
/* Saturated */
/* using */
/* unsigned */
/* pseudo code */

Assembly Code Example:
; 0 <= operand2 <= 31 : Arithmetically shift right operand1
; by operand2 places:
ASRS r0, 0x00001111, 1 ; Yields r0=0x0000_0888
ASRS r0, 0x00001111, 2 ; Yields r0=0x0000_0444
ASRS r0, 0x00001111, 3 ; Yields r0=0x0000_0222

; Operand2 > 31 : The number of right shifts is limited to
; 31 places.
ASRS r0, 0x7FFFFFFF, 33 ; Yields r0=0x0000_0000
ASRS r0, 0x80000000, 33 ; Yields r0=0xFFFF_FFFF

; Supports ASLS with negative shift (operand2).
; For shifts in the range -31<= operand2 <= 0,
; arithmetically shift left operand1
; by -operand2 places (positive left shift). In the case
; of overflow result is saturated.
ASRS r0, r1, -1 ; in effect performs ASLS r0, r1, 1
ASRS r0, 0x0000_1111, -1 ; Yields r0=0x0000_2222
ASRS r0, 0x1000_1111, -3 ; Yields r0=0x7FFF_FFFF
 ; (saturation)
ASRS.f r0, 0x1000_1111, -3 ; Yields r0=0x7FFF_FFFF
 ; (saturation, V and S flags are set)
ASRS r0, 0xFFFF_FF00, -31 ; Yields r0=0x8000_0000
 ; (saturation)

; When -operand2 is larger than 31, result is set to
; 0x7FFF_FFFF and 0x8000_0000 (saturation) for positive (non-zero)
; and negative input respectively.

Instruction Set Details BBIT0

ARCompact™ Programmer's Reference 205

BBIT0
Branch on Bit Test Clear

Branch Operation

Operation:
if (src1 AND 2src2) = 0 then cPC ← cPCL+rd

Format:
inst src1, src2, rd

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of the 2nd following instruction)

Syntax:
 Instruction Code
BBIT0<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN01110
BBIT0<.d> b,u6,s9 00001bbbsssssss1SBBBuuuuuuN11110

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description
ND 0 Only execute next instruction when not branching (default, if no <.d> field

syntax)
D 1 Always execute next instruction

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
BBIT1 BRcc

Description:
Test a bit within source operand 1 (src1) to see if it is clear (0). Source operand 2 (src2) explicitly
specifies the bit-position that is to be tested within source operand 1 (src1). Only the bottom 5 bits of
src2 are used as the bit position. If the condition is true, branch from the current PC (actually PCL)
with the displacement value specified in the source operand (rd).

The branch target address can be 16-bit aligned. Since the execution of the instruction that is in the
delay slot is controlled by the delay slot mode, it should never be the target of any branch or jump
instruction. The status flags are not updated with this instruction.

To take advantage of the ARC 600 branch prediction unit, it is preferable to use a negative
displacement with a frequently taken BRcc, BBIT0 or BBIT1 instruction, and a positive displacement
with one that is rarely taken.

For the ARC 600 processor, r63 (PCL) should not be used as a source operand in a branch on
compare instruction (BBIT0, BBIT1, or BRcc).

BBIT0 Instruction Set Details

206 ARCompact™ Programmer's Reference

CAUTION The BBIT0 instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRcc.D or
BBITn.D instruction.

Pseudo Code Example:
if (src1 & (1 << (src2 & 31)))==0 then
 if N=1 then
 DelaySlot(nPC)
 KillDelaySlot(dPC)
 PC = cPCL + rd
else
 PC = nPC

/* BBIT0 */

Assembly Code Example:
BBIT0 r1,9,label ; Branch to label if bit 9

; of r1 is clear

Instruction Set Details BBIT1

ARCompact™ Programmer's Reference 207

BBIT1
Branch on Bit Test Set

Branch Operation

Operation:
if (src1 AND 2src2) = 1 then cPC ← cPCL+rd

Format:
inst src1, src2, rd

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of the 2nd following instruction)

Syntax:
 Instruction Code
BBIT1<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN01111
BBIT1<.d> b,u6,s9 00001bbbsssssss1SBBBuuuuuuN11111

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description
ND 0 Only execute next instruction when not branching (default, if no <.d> field

syntax)
D 1 Always execute next instruction

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
BBIT0 BRcc

Description:
Test a bit within source operand 1 (src1) to see if it is set (1). Source operand 2 (src2) explicitly
specifies the bit-position that is to be tested within source operand 1 (src1). Only the bottom 5 bits of
src2 are used as the bit position. If the condition is true, branch from the current PC (actually PCL)
with the displacement value specified in the source operand (rd).

The branch target address can be 16-bit aligned. Since the execution of the instruction that is in the
delay slot is controlled by the delay slot mode, it should never be the target of any branch or jump
instruction. The status flags are not updated with this instruction.

To take advantage of the ARC 600 branch prediction unit, it is preferable to use a negative
displacement with a frequently taken BRcc, BBIT0 or BBIT1 instruction, and a positive displacement
with one that is rarely taken.

For the ARC 600 processor, r63 (PCL) should not be used as a source operand in a branch on
compare instruction (BBIT0, BBIT1, or BRcc).

BBIT1 Instruction Set Details

208 ARCompact™ Programmer's Reference

CAUTION The BBIT1 instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRcc.D or
BBITn.D instruction.

Pseudo Code Example:
if (src1 & (1 << (src2 & 31)))!=0 then
 if N=1 then
 DelaySlot(nPC)
 KillDelaySlot(dPC)
 PC = cPCL + rd
else
 PC = nPC

/* BBIT1 */

Assembly Code Example:
BBIT1 r1,9,label ; Branch to label if bit 9

; of r1 is set

Instruction Set Details Bcc

ARCompact™ Programmer's Reference 209

Bcc
Branch Conditionally

Branch Operation

Operation:
if (cc=true) then cPC ← (cPCL+rd)

Format:
inst rel_addr

Format Key:
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
rel_addr = cPCL+rd
nPC = Next PC
cc = Condition Code

Syntax:
Branch Instruction Code
B<cc><.d> s21 00000ssssssssss0SSSSSSSSSSNQQQQQ
Branch Far (Unconditional)
B<.d> s25 00000ssssssssss1SSSSSSSSSSNRtttt

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description
ND 0 Only execute next instruction when not branching (default, if no <.d> field

syntax)
D 1 Always execute next instruction

Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear /V
EQ, Z 00001 Zero Z GT 01001 Greater than

(signed)
(N and V and
/Z) or (/N and
/V and /Z)

NE, NZ 00010 Non-Zero /Z GE 01010 Greater than or
equal to
(signed)

(N and V) or
(/N and /V)

PL, P 00011 Positive /N LT 01011 Less than
(signed)

(N and /V) or
(/N and V)

MI, N 00100 Negative N LE 01100 Less than or
equal to
(signed)

Z or (N and /V)
or (/N and V)

CS, C,
LO

00101 Carry set, lower
than (unsigned)

C HI 01101 Higher than
(unsigned)

/C and /Z

CC, NC,
HS

00110 Carry clear,
higher or same
(unsigned)

/C LS 01110 Lower than or
same
(unsigned)

C or Z

VS, V 00111 Over-flow set V PNZ 01111 Positive non-
zero

/N and /Z

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged

Bcc Instruction Set Details

210 ARCompact™ Programmer's Reference

V = Unchanged

Related Instruction:
BLcc Bcc_S

Description:
When a conditional branch is used and the specified condition is met (cc = true), program execution is
resumed at location PC (actually PCL) + relative displacement, where PC is the address of the Bcc
instruction . The conditional branch instruction has a maximum range of +/- 1MByte, and the target
address is 16-bit aligned.

The unconditional branch far format has a maximum branch range of +/- 16Mbytes. Since the
execution of the instruction that is in the delay slot is controlled by the delay slot mode, it should
never be the target of any branch or jump instruction. The status flags are not updated with this
instruction.

CAUTION The Bcc instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRcc.D or
BBITn.D instruction.

The ARC 700 processor will raise an Illegal Instruction Sequence exception if an executed delay slot
contains:

• Another jump or branch instruction

• Conditional loop instruction (LPcc)

• Return from interrupt (RTIE)

• Any instruction with long-immediate data as a source operand

Pseudo Code Example:
if cc==true then
 if N=1 then
 DelaySlot(nPC)
 PC = cPC + rd
else
 PC = nPC

/* Bcc */

Assembly Code Example:
BEQ label

BPL.D label

; Branch to label if Z flag is ; set
; Branch to label and execute
; the instruction in the delay
; slot if N flag is clear

Instruction Set Details Bcc_S

ARCompact™ Programmer's Reference 211

Bcc_S
16-Bit Branch

Branch Operation

Operation:
if (cc=true) then cPC ← (cPCL+rd)

Format:
inst rel_addr

Format Key:
rd = Relative Displacement
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
rel_addr = cPCL+rd
nPC = Next PC
cc = Condition Code

Syntax:
Branch Conditionally Instruction Code
BEQ_S s10 1111001sssssssss
BNE_S s10 1111010sssssssss
BGT_S s7 1111011000ssssss
BGE_S s7 1111011001ssssss
BLT_S s7 1111011010ssssss
BLE_S s7 1111011011ssssss
BHI_S s7 1111011100ssssss
BHS_S s7 1111011101ssssss
BLO_S s7 1111011110ssssss
BLS_S s7 1111011111ssssss
Branch Always
B_S s10 1111000sssssssss

Conditions:
Instruction Description Branch Condition
BEQ_S Branch if Equal if (Z) then cPC ← (cPCL+rd)
BNE_S Branch if Not Equal if (/Z) then cPC ← (cPCL+rd)
BGT_S Branch if Greater Than if (N and V and /Z) or (/N and /V and /Z) then cPC ←

(cPCL+rd)
BGE_S Branch if Greater Than or Equal

to
if (N and V) or (/N and /V) then cPC ← (cPCL+rd)

BLT_S Branch if Less Than if (N and /V) or (/N and V) then cPC ← (cPCL+rd)
BLE_S Branch if Less Than or Equal if Z or (N and /V) or (/N and V) then cPC ← (cPCL+rd)
BHI_S Branch if Higher Than if (/C and /Z) then cPC ← (cPCL+rd)
BHS_S Branch if Higher than or the

Same
if (/C) then cPC ← (cPCL+rd)

BLO_S Branch if Lower than if (C) then cPC ← (cPCL+rd)
BLS_S Branch if Lower or the Same if C or Z then cPC ← (cPCL+rd)

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Bcc_S Instruction Set Details

212 ARCompact™ Programmer's Reference

Related Instructions:
Bcc BRcc

Description:
A branch is taken from the current PC with the displacement value specified in the source operand
(rd) when a condition(s) are met, depending upon the instruction type used.

When using the B_S instruction a branch is always executed from the current PC, 32-bit aligned, with
the displacement value specified in the source operand (rd).

For all branch types, the branch target is 16-bit aligned. The status flags are not updated with this
instruction.

CAUTION The Bcc_S instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D, BRcc.D or
BBITn.D instruction.

Pseudo Code Example:
if cc==true then
 KillDelaySlot(nPC)
 PC = cPCL + rd
else
 PC = nPC

/* Bcc_S */

Assembly Code Example:
BEQ_S label

BPL_S label

; Branch to label if Z flag is ; set
; Branch to label if N flag is
; clear

Instruction Set Details BCLR

ARCompact™ Programmer's Reference 213

BCLR
Bit Clear

Logical Operation

Operation:
if (cc=true) then dest ← (src1 AND (NOT 2src2))

Format:
inst dest, src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
dest = Destination
cc = Condition Code

Syntax:
With Result Instruction Code
BCLR<.f> a,b,c 00100bbb00010000FBBBCCCCCCAAAAAA
BCLR<.f> a,b,u6 00100bbb01010000FBBBuuuuuuAAAAAA
BCLR<.cc><.f> b,b,c 00100bbb11010000FBBBCCCCCC0QQQQQ
BCLR<.cc><.f> b,b,u6 00100bbb11010000FBBBuuuuuu1QQQQQ
BCLR<.f> a,limm,c 0010011000010000F111CCCCCCAAAAAA L
BCLR_S b,b,u5 10111bbb101uuuuu
Without Result
BCLR<.f> 0,b,c 00100bbb00010000FBBBCCCCCC111110
BCLR<.f> 0,b,u6 00100bbb01010000FBBBuuuuuu111110
BCLR<.cc><.f> 0,limm,c 0010011011010000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BSET BXOR
BTST BMSK

Description:
Clear (0) an individual bit within the value that is specified by source operand 1 (src1). Source
operand 2 (src2) contains a value that explicitly defines the bit-position that is to be cleared in source
operand 1 (scr1). Only the bottom 5 bits of src2 are used as the bit value. The result is written into the
destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 AND NOT(1 << (src2 & 31))
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* BCLR */

Assembly Code Example:
BCLR r1,r2,r3 ; Clear bit r3 of r2

; and write result into r1

BIC Instruction Set Details

214 ARCompact™ Programmer's Reference

BIC
Bitwise AND Operation with Inverted Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 AND NOT src2

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
scr1 = Source Operand 1
scr2 = Source Operand 2
cc = Condition code

Syntax:
With Result Instruction Code
BIC<.f> a,b,c 00100bbb00000110FBBBCCCCCCAAAAAA
BIC<.f> a,b,u6 00100bbb01000110FBBBuuuuuuAAAAAA
BIC<.f> b,b,s12 00100bbb10000110FBBBssssssSSSSSS
BIC<.cc><.f> b,b,c 00100bbb11000110FBBBCCCCCC0QQQQQ
BIC<.cc><.f> b,b,u6 00100bbb11000110FBBBuuuuuu1QQQQQ
BIC<.f> a,limm,c 0010011000000110F111CCCCCCAAAAAA L
BIC<.f> a,b,limm 00100bbb00000110FBBB111110AAAAAA L
BIC<.cc><.f> b,b,limm 00100bbb11000110FBBB1111100QQQQQ L
BIC_S b,b,c 01111bbbccc00110
Without Result
BIC<.f> 0,b,c 00100bbb00000110FBBBCCCCCC111110
BIC<.f> 0,b,u6 00100bbb01000110FBBBuuuuuu111110
BIC<.f> 0,b,limm 00100bbb00000110FBBB111110111110 L
BIC<.cc><.f> 0,limm,c 0010011011000110F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
AND OR
XOR

Description:
Logical bitwise AND of source operand 1 (scr1) with the inverse of source operand 2 (src2) with the
result written to the destination register. Any flag updates will only occur if the set flags suffix (.F) is
used.

Pseudo Code Example:
if cc==true then
 dest = src1 AND NOT src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* BIC */

Assembly Code Example:
BIC r1,r2,r3 ; AND r2 with the NOT of r3

; and write result into r1

Instruction Set Details BLcc

ARCompact™ Programmer's Reference 215

BLcc
Branch and Link

Branch Operation

Operation:
if (cc=true) then (cPC ← cPCL +rd) & (r31 ← nPC or dPC)

Format:
inst rel_addr

Format Key:
rel_addr = cPCL + Relative Displacement
rd = Relative Displacement
cc = Condition Code
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of the 2nd following instruction)

Syntax:
Branch and Link
(Conditional)

 Instruction Code

BL<.cc><.d> s21 00001sssssssss00SSSSSSSSSSNQQQQQ
Branch Far
(Unconditional)

BL<.d> s25 00001sssssssss10SSSSSSSSSSNRtttt
Branch and Link
(Unconditional)

BL_S s13 11111sssssssssss

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Blink (r31) Description
ND 0 Next PC Only execute next instruction when not branching (if no

<.d> field syntax)
D 1 2nd following PC Always execute next instruction

Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear /V
EQ, Z 00001 Zero Z GT 01001 Greater than

(signed)
(N and V and
/Z) or (/N and
/V and /Z)

NE, NZ 00010 Non-Zero /Z GE 01010 Greater than or
equal to
(signed)

(N and V) or
(/N and /V)

PL, P 00011 Positive /N LT 01011 Less than
(signed)

(N and /V) or
(/N and V)

MI, N 00100 Negative N LE 01100 Less than or
equal to
(signed)

Z or (N and /V)
or (/N and V)

CS, C,
LO

00101 Carry set, lower
than (unsigned)

C HI 01101 Higher than
(unsigned)

/C and /Z

CC, NC,
HS

00110 Carry clear,
higher or same
(unsigned)

/C LS 01110 Lower than or
same
(unsigned)

C or Z

BLcc Instruction Set Details

216 ARCompact™ Programmer's Reference

Code Q Field Description Test Code Q Field Descript ion Test
VS, V 00111 Over-flow set V PNZ 01111 Positive non-

zero
/N and /Z

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
Bcc_S JLcc

Description:
When a conditional branch and link is used and the specified condition is met (cc = true), program
execution is resumed at location PC, 32-bit aligned, + relative displacement, where PC is the address
of the BLcc instruction. Parallel to this, the return address is stored in the link register BLINK (r31).
This address is taken either from the first instruction following the branch (current PC) or the
instruction after that (next PC) according to the delay slot mode (.d).

CAUTION The BLcc and BL_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise an Illegal Instruction Sequence exception if an executed delay slot
contains:

• Another jump or branch instruction

• Conditional loop instruction (LPcc)

• Return from interrupt (RTIE)

• Any instruction with long-immediate data as a source operand

The conditional branch and link instruction has a maximum branch range of +/- 1MByte. The
unconditional branch far format has a maximum branch range of +/- 16Mbytes. The target address for
any branch and link instruction must be 32-bit aligned.

Since the execution of the instruction that is in the delay slot is controlled by the delay slot mode, it
should never be the target of any branch or jump instruction. The status flags are not updated with this
instruction.

NOTE Since the 16-bit encoded instructions the target address is aligned to 32-bit, a special encoding
allows for a larger branch displacement. For example BL_S s13 only needs to encode the top 11 bits
since the bottom 2 bits of s13 are always zero because of the 32-bit data alignment.

Pseudo Code Example:
if cc==true then
 if N=1 then
 BLINK = dPC
 DelaySlot(nPC)
 else
 BLINK = nPC
 PC = cPCL + rd
else
 PC = nPC

/* BLcc */

Assembly Code Example:
BLEQ label ; if the Z flag is set then

; branch and link to label
; and store the return address in BLINK

Instruction Set Details BMSK

ARCompact™ Programmer's Reference 217

BMSK
Bit Mask

Logical Operation

Operation:
if (cc=true) then dest ← src1 AND ((2(src2+1))-1)

src1

&

src2

LSB

1 1 1 1 1

MSB

Format:
inst dest, src1, src2

Format Key:
src1 = Source Operand 1
scr2 = Source Operand 2 (Mask Value)
dest = Destination
cc = Condition Code

Syntax:
With Result Instruction Code
BMSK<.f> a,b,c 00100bbb00010011FBBBCCCCCCAAAAAA
BMSK<.f> a,b,u6 00100bbb01010011FBBBuuuuuuAAAAAA
BMSK<.cc><.f> b,b,c 00100bbb11010011FBBBCCCCCC0QQQQQ
BMSK<.cc><.f> b,b,u6 00100bbb11010011FBBBuuuuuu1QQQQQ
BMSK<.f> a,limm,c 0010011000010011F111CCCCCCAAAAAA L
BMSK_S b,b,u5 10111bbb110uuuuu
Without Result
BMSK<.f> 0,b,c 00100bbb00010011FBBBCCCCCC111110
BMSK<.f> 0,b,u6 00100bbb01010011FBBBuuuuuu111110
BMSK<.cc><.f> 0,limm,c 0010011011010011F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BSET BXOR
BTST

Description:
Source operand 2 (src2) specifies the size of a 32-bit mask value in terms of logical 1’s starting from
the LSB of a 32-bit register up to and including the bit specified by operand 2(src2). Only the bottom
5 bits of src2 are used as the bit value.

A logical AND is performed with the mask value and source operand (src1). The result is written into
the destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 AND ((1 << ((src2 & 31)+1))-1)

/* BMSK */

BMSK Instruction Set Details

218 ARCompact™ Programmer's Reference

 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

Assembly Code Example:
BMSK r1,r2,8 ; Mask out the top 24 bits

; of r2 and write result into
; r1

Instruction Set Details BRcc

ARCompact™ Programmer's Reference 219

BRcc
Compare and Branch

Branch Operation

Operation:
if (cc=true) then cPC ← (cPCL+rd)

Format:
inst src1, src2, rd

Format Key:
rd = Relative displacement
src1 = Source Operand 1
src2 = Source Operand 2
cPC = Current Program Counter
cPCL = Current Program Counter (Address from 1st byte of the instruction, 32-bit aligned)
nPC = Next PC
dPC = Next PC + 4 (address of the 2nd following instruction)
cc = Condition Code

Syntax:
 Instruction Code
BREQ<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00000
BREQ<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10000
BREQ b,limm,s9 00001bbbsssssss1SBBB111110000000 L
BREQ limm,c,s9 00001110sssssss1S111CCCCCC000000 L
BRNE<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00001
BRNE<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10001
BRNE b,limm,s9 00001bbbsssssss1SBBB111110000001 L
BRNE limm,c,s9 00001110sssssss1S111CCCCCC000001 L
BRLT<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00010
BRLT<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10010
BRLT b,limm,s9 00001bbbsssssss1SBBB111110000010 L
BRLT limm,c,s9 00001110sssssss1S111CCCCCC000010 L
BRGE<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00011
BRGE<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10011
BRGE b,limm,s9 00001bbbsssssss1SBBB111110000011 L
BRGE limm,c,s9 00001110sssssss1S111CCCCCC000011 L
BRLO<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00100
BRLO<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10100
BRLO b,limm,s9 00001bbbsssssss1SBBB111110000100 L
BRLO limm,c,s9 00001110sssssss1S111CCCCCC000100 L
BRHS<.d> b,c,s9 00001bbbsssssss1SBBBCCCCCCN00101
BRHS<.d> b,u6,s9 00001bbbsssssss1SBBBUUUUUUN10101
BRHS b,limm,s9 00001bbbsssssss1SBBB111110000101 L
BRHS limm,c,s9 00001110sssssss1S111CCCCCC000101 L
BRNE_S b,0,s8 11101bbb1sssssss
BREQ_S b,0,s8 11101bbb0sssssss

Delay Slot Modes <.d>:
Delay Slot Mode N Flag Description
ND 0 Only execute next instruction when not branching (default, if no <.d> field

syntax)
D 1 Always execute next instruction

BRcc Instruction Set Details

220 ARCompact™ Programmer's Reference

Conditions:
Instruction Description Branch Condition
BREQ Branch if Equal if (src1=src2) then cPC ← (cPC+rd)
BRNE Branch if Not Equal if (src1!=src2) then cPC ← (cPC+rd)
BRLT Branch if Less Than (Signed) if (src1<src2) then cPC ← (cPC+rd)
BRGE Branch if Greater Than or Equal (Signed) if (src1>=src2) then cPC ← (cPC+rd)
BRLO Branch if Lower Than (Unsigned) if (src1<src2) then cPC ← (cPC+rd)
BRHS Branch if Higher Than or Same (Unsigned) if (src1>=src2) then cPC ← (cPC+rd)

Related Instructions:
BBIT0 BBIT1

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Description:
A branch is taken from the current PC, 32-bit aligned, with the displacement value specified in the
source operand (rd) when source operand 1 (src1) and source operand 2 (src2) conditions are met.

For the ARCtangent-A5 processor all 32-bit compare and branch instructions have two delay slots.
The behavior of the 1st delay slot can be controlled by specifying the delay slot mode <.d>, however
the following delay slot cannot be controlled, and any instruction present in the 2nd delay slot is killed
if the branch is taken.

For the ARC 600 processor all 32-bit compare and branch instructions have three delay slots. The
behavior of the 1st delay slot can be controlled by specifying the delay slot mode <.d>, however the
following delay slots cannot be controlled, and any instruction present in the 2nd or 3rd delay slot is
killed if the branch is taken.

To take advantage of the ARC 600 branch prediction unit, it is preferable to use a negative
displacement with a frequently taken BRcc, BBIT0 or BBIT1 instruction, and a positive displacement
with one that is rarely taken.

For the ARC 600 processor, r63 (PCL) should not be used as a source operand in a branch on
compare instruction (BBIT0, BBIT1, or BRcc).

In the case of the 16-bit compare and branch instructions, BRNE_S compares source operand 1 (src1)
against ‘0’, and if scr1 is not equal to zero then a branch is taken from the current PC, 32-bit aligned
with the displacement value specified in the source operand (rd).

BREQ_S performs the same comparison, however the branch is taken when source operand 1 (src1)
is equal to zero.

The branch target is 16-bit aligned. Since the execution of the instruction that is in the delay slot is
controlled by the delay slot mode, it should never be the target of any branch or jump instruction.

The status flags are not updated with this instruction.

CAUTION The BRcc and BRcc_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

Pseudo Code Example:
Alu = src1 - src2
if cc==true then
 if N=1 then
 DelaySlot(nPC)
 KillDelaySlot(dPC)

/* BRcc */

Instruction Set Details BRcc

ARCompact™ Programmer's Reference 221

 PC = cPCL + rd
else
 PC = nPC

Assembly Code Example:

Example 16 ARCtangent-A5 Branch on Compare

 ; if r0=2, r1=2
 brne r0,r1,ok1 ; r0=r1, no branch to "ok1"
 add r2,r2,1 ; executed
 add r3,r3,1 ; executed
 add r4,r4,1 ; executed
ok1:
 ; if r0=2, r1=3
 brne r0,r1,ok2 ; r0 != r1, branch to "ok2"
 add r2,r2,1 ; killed
 add r3,r3,1 ; killed
 add r4,r4,1 ; not fetched
ok2:
 ; if r0=2, r1=2
 brne.d r0,r1,ok3 ; r0=r1, no branch to "ok3"
 add r2,r2,1 ; executed
 add r3,r3,1 ; executed
 add r4,r4,1 ; executed
ok3:
 ; if r0=2, r1=3
 brne.d r0,r1,ok4 ; r0 != r1, branch to "ok4"
 add r2,r2,1 ; executed
 add r3,r3,1 ; killed
 add r4,r4,1 ; not fetched
ok4:

Example 17 ARC 600 Branch on Compare

 ; if r0=2, r1=2
 brne r0,r1,ok1 ; r0=r1, no branch to "ok1"
 add r2,r2,1 ; executed
 add r3,r3,1 ; executed
 add r4,r4,1 ; executed
ok1:
 ; if r0=2, r1=3
 brne r0,r1,ok2 ; r0 != r1, branch to "ok2"
 add r2,r2,1 ; killed
 add r3,r3,1 ; killed
 add r4,r4,1 ; killed
ok2:
 ; if r0=2, r1=2
 brne.d r0,r1,ok3 ; r0=r1, no branch to "ok3"
 add r2,r2,1 ; executed
 add r3,r3,1 ; executed
 add r4,r4,1 ; executed
ok3:
 ; if r0=2, r1=3
 brne.d r0,r1,ok4 ; r0 != r1, branch to "ok4"
 add r2,r2,1 ; executed
 add r3,r3,1 ; killed
 add r4,r4,1 ; killed
ok4:

BRK Instruction Set Details

222 ARCompact™ Programmer's Reference

BRK
Breakpoint

Kernel/Debug Operation

Operation:
Halt and flush the processor

Format:
inst

Format Key:
inst = Instruction Mnemonic

Syntax:
 Instruction Code
BRK_S 0111111111111111
BRK 00100101011011110000000000111111

Flag Affected: Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

BH • = 1
H • = 1

Related Instructions:
SLEEP FLAG

Description:
The breakpoint instruction is a single operand basecase instruction that halts the program code when
it is decoded at stage one of the pipeline. This is a very basic debug instruction, which stops the
ARCompact based processor from performing any instructions beyond the breakpoint. Since the
breakpoint is a serializing instruction, the pipeline is also flushed upon decode of this instruction.

To restart the ARCompact based processor at the correct instruction the old instruction is rewritten
into main memory, immediately followed by an invalidate instruction cache line command (even if an
instruction cache has not been implemented) to ensure that the correct instruction is loaded into the
cache before being executed by the ARCompact based processor and to reset the initial stages of the
pipeline. The program counter must also be rewritten in order to generate a new instruction fetch,
which reloads the instruction. Most of the work is performed by the debugger with regards to
insertion, removal of instructions with the breakpoint instruction.

The program flow is not interrupted when employing the breakpoint instruction, and there is no need
for implementing a breakpoint service routine. There is also no limit to the number of breakpoints you
can insert into a piece of code.

NOTE The breakpoint instruction sets the BH bit (refer to section Debug Register on page 50) in the Debug
register when it is decoded at stage one of the pipeline. This allows the debugger to determine what
caused the ARCompact based processor to halt. The BH bit is cleared when the Halt bit in the Status
register is cleared, e.g. by restarting or single–stepping the ARCompact based processor.

Breakpoints are primarily inserted into the code by the host so control is maintained at all times by
the host. The BRK instruction may however be used in the same way as any other ARCompact based
instruction.

Instruction Set Details BRK

ARCompact™ Programmer's Reference 223

In the ARCtangent-A5 processor, the breakpoint instruction can be placed anywhere in a program,
except immediately following a BRcc or BBITn instruction. The breakpoint instruction is decoded at
stage one of the pipeline which consequently stalls stage one, and allows instructions in stages two,
three and four to continue, i.e. flushing the pipeline.

In the ARC 600 processor, the breakpoint instruction can be placed anywhere in a program, except
immediately following any branch or jump instruction. The breakpoint instruction is decoded at stage
two of the pipeline which consequently stalls stages one and two, and allows instructions in stages
three, four and five to continue, i.e. flushing the pipeline. Therefore the PC value after a break is the
address of the next instruction to be executed. In order to continue after a BRK instruction the
debugger decrements the PC value by 2 to obtain the re-start address.

If a BRK is put at the last location of a zero overhead loop then the PC value after the break could be
the address of first instruction in the loop, so the debugger would not evaluate the correct restart
address. The programmer should never insert a BRK as the last instruction in loops.

Due to stage 2 to stage 1 dependencies, the breakpoint instruction behaves differently when it is
placed following a Branch or Jump instruction. In these cases, the ARCompact based will stall stages
one and two of the pipeline while allowing instructions in subsequent stages to proceed to
completion.

The link register is not updated for Branch and Link, BL, (or Jump and Link, JL) instruction when the
BRK_S instruction immediately follows. When the ARCompact based processor is started, the link
register will update as normal.

Interrupts are treated in the same manner by the ARCompact based processor as Branch, and Jump
instructions when a BRK_S instruction is detected. Therefore, an interrupt that reaches stage two of
the pipeline when a BRK_S instruction is in stage one will keep it in stage two, and flush the
remaining stages of the pipeline. It is also important to note that an interrupt that occurs in the same
cycle as a breakpoint is held off as the breakpoint is of a higher priority. An interrupt at stage three is
allowed to complete when a breakpoint instruction is in stage one.

NOTE

If the H flag is set by the FLAG instruction (FLAG 1), three sequential NOP instructions should
immediately follow. This means that BRK_S should not immediately follow a FLAG 1 instruction, but
should be separated by 3 NOP instructions.

In the ARC 700 processor, the breakpoint instruction is a kernel only instruction unless enabled by
the UB bit in the DEBUG register. Both a 32-bit, BRK, and 16-bit, BRK_S, form are supported. The
breakpoint instruction is decoded in stage 1 an allows all preceding instructions to complete. The
processor will halt with the program counter pointing at the address of the breakpoint instruction.

The breakpoint instruction can be placed anywhere in a program, including the delay slot of branch
and jump instructions, and also immediately following a BRcc, a BBIT1 or a BBIT2 instruction.

NOTE

A code sequence where a FLAG 1 is followed by BRK will operate as expected. The FLAG 1 will
complete, halt the processor and flush the pipeline, all before the BRK is executed.

Pseudo Code Example:
FlushPipe()
DEBUG[BH] = 1
DEBUG[H] = 1
Halt()

/* BRK_S */

Assembly Code Example:
A breakpoint instruction may be inserted into any position.

BRK Instruction Set Details

224 ARCompact™ Programmer's Reference

MOV r0, 0x04
ADD r1, r0, r0
XOR.F 0, r1, 0x8
BRK_S ;<----- break here
SUB r2, r0, 0x3
ADD.NZ r1, r0, r0
JZ.D [r8]
OR r5, r4, 0x10

For the ARC 700 processor, the following example shows BRK_S following a conditional jump
instruction.

MOV r0, 0x04
ADD r1, r0, r0
XOR.F 0, r1, 0x8
SUB r2, r0, 0x3
ADD.NZ r1, r0, r0
JZ.D [r8]
BRK_S ;<---- break inserted
 ; into here
OR r5, r4, 0x10

Instruction Set Details BSET

ARCompact™ Programmer's Reference 225

BSET
Bit Set

Logical Operation

Operation:
if (cc=true) then dest ← (src1 OR (2src2))

Format:
inst dest, src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
dest = Destination
cc = Condition Code

Syntax:
With Result Instruction Code
BSET<.f> a,b,c 00100bbb00001111FBBBCCCCCCAAAAAA
BSET<.f> a,b,u6 00100bbb01001111FBBBuuuuuuAAAAAA
BSET<.cc><.f> b,b,c 00100bbb11001111FBBBCCCCCC0QQQQQ
BSET<.cc><.f> b,b,u6 00100bbb11001111FBBBuuuuuu1QQQQQ
BSET<.f> a,limm,c 0010011000001111F111CCCCCCAAAAAA L
BSET_S b,b,u5 10111bbb100uuuuu
Without Result
BSET<.f> 0,b,c 00100bbb00001111FBBBCCCCCC111110
BSET<.f> 0,b,u6 00100bbb01001111FBBBuuuuuu111110
BSET<.cc><.f> 0,limm,c 0010011011001111F110CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BCLR BXOR
BTST BMSK

Description:
Set (1) an individual bit within the value that is specified by source operand 1 (src1). Source operand
2 (src2) contains a value that explicitly defines the bit-position that is to be set in source operand 1
(scr1). Only the bottom 5 bits of src2 are used as the bit value. The result is written into the
destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 OR (1 << (src2 & 31))
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* BSET */

Assembly Code Example:
BSET r1,r2,r3 ; Set bit r3 of r2

; and write result into r1

BTST Instruction Set Details

226 ARCompact™ Programmer's Reference

BTST
Bit Test

Logical Operation

Operation:
if (cc=true) then (src1 AND (2src2))

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
 Instruction Code
BTST<.cc> b,c 00100bbb110100011BBBCCCCCC0QQQQQ
BTST<.cc> b,u6 00100bbb110100011BBBuuuuuu1QQQQQ
BTST<.cc> limm,c 00100110110100011111CCCCCC0QQQQQ L
BTST_S b,u5 10111bbb111uuuuu

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BCLR BXOR
BSET BMSK

Description:
Logically AND source operand 1 (src1) with a bit mask specified by source operand 2 (src2). Source
operand 2 (src2) explicitly defines the bit that is tested in source operand 1 (src1). Only the bottom 5
bits of src2 are used as the bit value. The flags are updated to reflect the result. The flag setting field,
F, is always encoded as 1 for this instruction.

There is no result write-back.

NOTE BTST and BTST_S always set the flags even thought there is no associated flag setting suffix.

Pseudo Code Example:
if cc==true then
 alu = src1 AND (1 << (src2 & 31))
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]

/* BTST */

Assembly Code Example:
BTST r1,r2,28 ; Test bit 28 of r2

; and update flags on result

Instruction Set Details BXOR

ARCompact™ Programmer's Reference 227

BXOR
Bit Exclusive OR (Bit Toggle)

Logical Operation

Operation:
if (cc=true) then dest ← (src1 XOR (2src2))

Format:
inst dest, src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
dest = Destination
cc = Condition Code

Syntax:
With Result Instruction Code
BXOR<.f> a,b,c 00100bbb00010010FBBBCCCCCCAAAAAA
BXOR<.f> a,b,u6 00100bbb01010010FBBBuuuuuuAAAAAA
BXOR<.cc><.f> b,b,c 00100bbb11010010FBBBCCCCCC0QQQQQ
BXOR<.cc><.f> b,b,u6 00100bbb11010010FBBBuuuuuu1QQQQQ
BXOR<.f> a,limm,c 0010011000010010F111CCCCCCAAAAAA L
Without Result
BXOR<.f> 0,b,c 00100bbb00010010FBBBCCCCCC111110
BXOR<.f> 0,b,u6 00100bbb01010010FBBBuuuuuu111110
BXOR<.cc><.f> 0,limm,c 0010011011010010F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BSET BTST
BCLR BMSK

Description:
Logically XOR source operand 1 (src1) with a bit mask specified by source operand 2 (src2). Source
operand 2 (src2) explicitly defines the bit that is to be toggled in source operand 1 (src1). Only the
bottom 5 bits of src2 are used as the bit value. The result is written to the destination register (dest).
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 XOR (1 << (src2 & 31))
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* BXOR */

Assembly Code Example:
BXOR r1,r2,r3 ; Toggle bit r3 of r2

; and write result into r1

CMP Instruction Set Details

228 ARCompact™ Programmer's Reference

CMP
Comparison

Arithmetic Operation

Operation:
if (cc=true) then src1 – src2

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
 Instruction Code
CMP b,s12 00100bbb100011001BBBssssssSSSSSS
CMP<.cc> b,c 00100bbb110011001BBBCCCCCC0QQQQQ
CMP<.cc> b,u6 00100bbb110011001BBBuuuuuu1QQQQQ
CMP<.cc> b,limm 00100bbb110011001BBB1111100QQQQQ L
CMP<.cc> limm,c 00100110110011001111CCCCCC0QQQQQ L
CMP_S b,h 01110bbbhhh10HHH
CMP_S b,limm 01110bbb11010111 L
CMP_S b,u7 11100bbb1uuuuuuu

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
RCMP

Description:
A comparison is performed by subtracting source operand 2 (src2) from source operand 1 (src1) and
subsequently updating the flags. The flag setting field, F, is always encoded as 1 for this instruction.

There is no destination register therefore the result of the subtract is discarded.

NOTE CMP and CMP_S always set the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:
if cc==true then
 alu = src1 - src2
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]
 C_flag = Carry()
 V_flag = Overflow()

/* CMP */

Assembly Code Example:
CMP r1,r2 ; Subtract r2 from r1

; and set the flags on the
; result

Instruction Set Details DIVAW

ARCompact™ Programmer's Reference 229

DIVAW
Division Accelerator

Extended Arithmetic Operation

Operation:
if (src1 == 0)

 dest ← 0

else

{ src1_temp ← src1<<1

 if (src1_temp >= src2)

 dest ← ((src1_temp - src2) | 1)

 else

 dest ← src1_temp

}

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
DIVAW a,b,c 00101bbb000010000BBBCCCCCCAAAAAA
DIVAW a,b,u6 00101bbb010010000BBBuuuuuuAAAAAA
DIVAW b,b,s12 00101bbb100010000BBBssssssSSSSSS
DIVAW<.cc> b,b,c 00101bbb110010000BBBCCCCCC0QQQQQ
DIVAW<.cc> b,b,u6 00101bbb110010000BBBuuuuuu1QQQQQ
DIVAW a,limm,c 00101110000010000111CCCCCCAAAAAA L
DIVAW a,b,limm 00101bbb000010000BBB111110AAAAAA L
DIVAW<.cc> b,b,limm 00101bbb110010000BBB111110QQQQQQ L
Without Result

DIVAW 0,b,c 00101bbb000010000BBBCCCCCC111110
DIVAW 0,b,u6 00101bbb010010000BBBuuuuuu111110
DIVAW<.cc> 0,limm,c 00101110110010000111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged
S = Unchanged

Description:
DIVAW is a division accelerator used in the division algorithm as described by the ITU and ETSI.
DIVAW accelerates division by generating a fractional result from a division of the integer operand 1
(numerator) by the integer operand 2 (denominator).

DIVAW Instruction Set Details

230 ARCompact™ Programmer's Reference

The integer numerator format is shown in Figure 92, the integer denominator format in Figure 93, and
the DIVAW result format in Figure 94.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit data zero

Figure 92 DIVAW 16-bit input numerator data format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit data zero

Figure 93 DIVAW 16-bit input denominator data forma t

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-bit remainder 16-bit result (quotient)

Figure 94 DIVAW 16-bit output data format

The status flags are not updated with this instruction therefore the flag setting field, F, is encoded as
0.

The particular code that DIVAW accelerates is shown in the C Description. Repeated execution of
DIVAW fifteen times implements a 16-bit conditional add-subtract division algorithm as shown in
Assembly Code Example.

Notice that for the set of 15 executions of the DIVAW instruction in the Assembly Code Example:

• The result is positive.

• Both numerator and denominator must be positive and the denominator must have a non-zero
value that is greater or equal to numerator.

• If NUMERATOR = DENOMINATOR then the result of the division algorithm is 0x00007FFF
(assuming non-zero numerator and denominator).

• If NUMERATOR is zero, regardless of value of DENOMINATOR, the returned result is zero.

• The 16-bit result (quotient) is in the low word of the destination register.

• The 16-bit remainder is in the high word of the destination register.

C Description:
Word16 div_s(Word16 num, Word16 denom)
{
 Word16 var_out =0;
 Word16 iteration;
 Word32 Lm;
 Word32 L_denom;

 Lm = (num)<<15;
 L_denom = (denom)<<15;

/* DIVAW can be iterated to perform this section of code *//* DIVAW can be iterated to perform this section of code *//* DIVAW can be iterated to perform this section of code *//* DIVAW can be iterated to perform this section of code */
 for(iteration=0;iteration<15;iteration++) for(iteration=0;iteration<15;iteration++) for(iteration=0;iteration<15;iteration++) for(iteration=0;iteration<15;iteration++)
 { { { {
 Lm << 1; Lm << 1; Lm << 1; Lm << 1;
 if (Lm >= L_denom) if (Lm >= L_denom) if (Lm >= L_denom) if (Lm >= L_denom)
 { { { {
 Lm = L_sub(Lm,L_denom);/* 32 Lm = L_sub(Lm,L_denom);/* 32 Lm = L_sub(Lm,L_denom);/* 32 Lm = L_sub(Lm,L_denom);/* 32----bit subtract*/bit subtract*/bit subtract*/bit subtract*/
 Lm = L_add(Lm Lm = L_add(Lm Lm = L_add(Lm Lm = L_add(Lm,1); ,1); ,1); ,1);
 } } } }
 } ; remainder in MSW of Lm quotient in LSW of Lm } ; remainder in MSW of Lm quotient in LSW of Lm } ; remainder in MSW of Lm quotient in LSW of Lm } ; remainder in MSW of Lm quotient in LSW of Lm

 var_out = (short) Lm;
 return(var_out);
}

Instruction Set Details DIVAW

ARCompact™ Programmer's Reference 231

Pseudo Code Example:
if (src1 == 0)
 dest = 0
else
{
 src1_temp = src1 << 1
 if (src1_temp >= src2)
 dest = ((src1_temp - src2) | 0x0000_0001)
 else
 dest = src1_temp
}

/* DIVAW */

Assembly Code Example:
; Input: Data is in the LSW of r0 (Lm) and r1 (L_denom)

ASL r0, r0, 15
ASL r1, r1, 15

; Division:
.rep 15
DIVAW r0, r0, r1
.endr

; Remainder in MSW of r0
; Quotient in LSW of r0

AND %r0, %r0, 0x0000_7fff ;mask to leave quotient in LSW

EX Instruction Set Details

232 ARCompact™ Programmer's Reference

EX
Atomic Exchange

Memory Operation

Operation:
dest ← Result of memory load from address @ src

memory @ src ← dest

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
 Instruction Code
EX<.di> b,[c] 00100bbb00101111DBBBCCCCCC001100
EX<.di> b,[u6] 00100bbb01101111DBBBuuuuuu001100
EX<.di> b,[limm] 00100bbb00101111DBBB111110001100 L

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
LD ST
SYNC

Description:
An atomic exchange operation, EX, is provided as a primitive for multiprocessor synchronization
allowing the creation of semaphores in shared memory.

Two forms are provided: an uncached form (using the .DI directive) for synchronization between
multiple processors, and a cached form for synchronization between processes on a single-processor
system.

The EX instruction exchanges the contents of the specified memory location with the contents of the
specified register. This operation is atomic in that the memory system ensures that the memory read
and memory write cannot be separated by interrupts or by memory accesses from another processor.

The status flags are not updated with this instruction.

An immediate value is not permitted to be the destination of the exchange instruction. Using the long
immediate indicator in the destination field, B=0x3E, will raise a Instruction Error exception.

NOTE

When used in translated memory, both the read and write permissions must be set in order for EX to
operate without causing a protection violation exception.

Pseudo Code Example:
temp = dest
dest = Memory(src)
Memory(src) = temp

/* EX */

Instruction Set Details EX

ARCompact™ Programmer's Reference 233

Assembly Code Example:
In this example the processor attempts to get access to a shared resource by testing a semaphore
against values 0 and 1.

• If the returned value is a 0 then the resource was free and this device is now the owner.

• If the returned value is a 1, the resource is busy and the processor must wait till a 0 is returned.

The value 1 is always written to SEMPHORE_ADDR so all processes trying to own the semaphore
should all write the same value.

The value at SEMPHORE_ADDR should not be used for a determination of the current owner of the
semaphore.

Example 18 To obtain a semaphore using EX

wait_for_resource:
 MOV R2, 0x00000001

wfr1:
 EX R2,
[SEMAPHORE_ADDR]
 CMP_S R2, 0
 BNE wfr1

; indicates semaphore is owned

; exchange r2 and semaphore
; see if we own the semaphore
; wait for resource to free

Example 19 To Release Semaphore using ST

release_resource:
 MOV R2, 0x00000000
 ST R2, [SEMAPHORE_ADDR]

; indicates semaphore is free
; release semaphore

EXTB Instruction Set Details

234 ARCompact™ Programmer's Reference

EXTB
Zero Extend Byte

Arithmetic Operation

Operation:
dest ← zero extend from byte (src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
With Result Instruction Code
EXTB<.f> b,c 00100bbb00101111FBBBCCCCCC000111
EXTB<.f> b,u6 00100bbb01101111FBBBuuuuuu000111
EXTB<.f> b,limm 00100bbb00101111FBBB111110000111 L
EXTB_S b,c 01111bbbccc01111
Without Result
EXTB<.f> 0,c 0010011000101111F111CCCCCC000111
EXTB<.f> 0,u6 0010011001101111F111uuuuuu000111
EXTB<.f> 0,limm 0010011000101111F111111110000111 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Always Zero
C = Unchanged
V = Unchanged

Related Instructions:
SEXB ABS
SEXW EXTW

Description:
Zero extend the byte value in the source operand (src) and write the result into the destination
register. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src & 0xFF
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* EXTB */

Assembly Code Example:
EXTB r3,r0 ; Zero extend the bottom 8

; bits of r0 and write
; result to r3

Instruction Set Details EXTW

ARCompact™ Programmer's Reference 235

EXTW
Zero Extend Word

Arithmetic Operation

Operation:
dest ← zero extend from word (src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
With Result Instruction Code
EXTW<.f> b,c 00100bbb00101111FBBBCCCCCC001000
EXTW<.f> b,u6 00100bbb01101111FBBBuuuuuu001000
EXTW<.f> b,limm 00100bbb00101111FBBB111110001000 L
EXTW_S b,c 01111bbbccc10000
Without Result
EXTW<.f> 0,c 0010011000101111F111CCCCCC001000
EXTW<.f> 0,u6 0010011001101111F111uuuuuu001000
EXTW<.f> 0,limm 0010011000101111F111111110001000 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Always Zero
C = Unchanged
V = Unchanged

Related Instructions:
SEXB ABS
SEXW EXTB

Description:
Zero extend the word value in the source operand (src) and write the result into the destination
register. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src & 0xFFFF
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* EXTW */

Assembly Code Example:
EXTW r3,r0 ; Zero extend the bottom 16

; bits of r0 and write
; result to r3

FLAG Instruction Set Details

236 ARCompact™ Programmer's Reference

FLAG
Set Flags

Control Operation

Operation:
if (cc=true) then flags ← src

 src

MSB LSB

[31:24]

[2:0] [11:8]

STATUS Register
Auxiliary (0x00)

MSB LSB

[11:8] [2:0]

STATUS32 Register
Auxiliary (0x0A)

src [2:0] [11:8]

Format:
inst src

Format Key:
src = Source Operand

Syntax:
 Instruction Code
FLAG<.cc> c 00100rrr111010010RRRCCCCCC0QQQQQ
FLAG<.cc> u6 00100rrr111010010RRRuuuuuu1QQQQQ
FLAG<.cc> limm 00100rrr111010010RRR1111100QQQQQ L
FLAG s12 00100rrr101010010RRRssssssSSSSSS

Source Operand Flag Positions: Key:
Z • = Bit 11 of Source Operand L = Limm Data
N • = Bit 10 of Source Operand
C • = Bit 9 of Source Operand
V • = Bit 8 of Source Operand

E2 • = Bit 2 of Source Operand
E1 • = Bit 1 of Source Operand
H • = Bit 0 of Source Operand (If set ignore all other

flags states)

L = Unchanged
U = Unchanged

DE = Unchanged
AE = Unchanged
A2 = Unchanged
A1 = Unchanged

Related Instructions:
SLEEP BRK

Description:
The contents of the source operand (src) are used to set the condition code and processor control flags
held in the processor status registers.

NOTE Interrupts are held off until the FLAG instruction completes.

Bits [11:8] of the source operand relate to the condition codes, [2:1] relate to the interrupt masks and
bit [0] relates to the halt flag. Bits [31:12] and [7:3] are ignored.

Instruction Set Details FLAG

ARCompact™ Programmer's Reference 237

The format of the source operand is identical to the format used by the STATUS32 register (auxiliary
address 0x0A).

If the H flag is set (halt processor flag), all other flag states are ignored and are not updated.

In the ARC 700 processor, the FLAG instruction is serializing – ensuring that no further instructions
can be completed before any flag updates take effect.

The halt flag, H, and interrupt enable flags, E1 and E2, can only be set in Kernel mode.

Bits L, U, DE, AE, A2, A1 in the STATUS32 register may not be set with the FLAG instruction.
These are updated by the processor changing state or by the raise-exception instruction, TRAP, and
the return from interrupt/exception instructions, RTIE, J.F [ILINK1] and J.F [ILINK2].

Both the (obsolete) Status Register (auxiliary address 0x00) and STATUS32 register (auxiliary
address 0x0A) are updated automatically upon using the FLAG instruction. The flag setting field, F,
is always encoded as 0 for this instruction.

Pseudo Code Example:
if src[0]==1 then
 STATUS32[0] = 1
 Halt()
else
 STATUS32[31:1] = src[31:1]

/* FLAG */

Assembly Code Example:
FLAG 1

NOP
NOP
NOP
FLAG 6

; Halt processor (other flags
; not updated)
; Pipeline Flush
; Pipeline Flush
; Pipeline Flush
; Enable interrupts and clear
; all other flags

NOTE If the H flag is set (FLAG 1), three sequential NOP instructions should immediately follow. This
ensures that instructions that succeed a FLAG 1 instruction upon a processor restart, execute
correctly.

Jcc Instruction Set Details

238 ARCompact™ Programmer's Reference

Jcc
Jump Conditionally

Jump Operation

Operation:
if (cc=true) then cPC ← src **

Format:
inst src

Format Key:
src = Source Operand
cPC = Current Program Counter
nPC = Next PC
cc = Condition Code
** = Special condition when instruction sets flags (.F) and src = ILINK1 or

ILINK2

Syntax:
Jump
(Conditional)

 Instruction Code

Jcc [c] 00100RRR111000000RRRCCCCCC0QQQQQ
Jcc limm 00100RRR111000000RRR1111100QQQQQ L
Jcc u6 00100RRR111000000RRRuuuuuu1QQQQQ
Jcc.D u6 00100RRR111000010RRRuuuuuu1QQQQQ
Jcc.D [c] 00100RRR111000010RRRCCCCCC0QQQQQ
Jcc.F [ilink1] 00100RRR111000001RRR0111010QQQQQ
Jcc.F [ilink2] 00100RRR111000001RRR0111100QQQQQ
JEQ_S [blink] 0111110011100000
JNE_S [blink] 0111110111100000
Jump
(Unconditional)

J [c] 00100RRR001000000RRRCCCCCCRRRRRR
J.D [c] 00100RRR001000010RRRCCCCCCRRRRRR
J.F [ilink1] 00100RRR001000001RRR011101RRRRRR
J.F [ilink2] 00100RRR001000001RRR011110RRRRRR
J limm 00100RRR001000000RRR111110RRRRRR L
J u6 00100RRR011000000RRRuuuuuuRRRRRR
J.D u6 00100RRR011000010RRRuuuuuuRRRRRR
J s12 00100RRR101000000RRRssssssSSSSSS
J.D s12 00100RRR101000010RRRssssssSSSSSS
J_S [b] 01111bbb00000000
J_S.D [b] 01111bbb00100000
J_S [blink] 0111111011100000
J_S.D [blink] 0111111111100000

Delay Slot Modes:
Delay Slot Mode Description
J/J_S/JEQ_S/JNE_S Only execute next instruction when not branching
Jcc.D/J.D /J_S.D Always execute next instruction

Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear /V
EQ, Z 00001 Zero Z GT 01001 Greater than

(signed)
(N and V and
/Z) or (/N and

Instruction Set Details Jcc

ARCompact™ Programmer's Reference 239

Code Q Field Description Test Code Q Field Descript ion Test
/V and /Z)

NE, NZ 00010 Non-Zero /Z GE 01010 Greater than or
equal to
(signed)

(N and V) or
(/N and /V)

PL, P 00011 Positive /N LT 01011 Less than
(signed)

(N and /V) or
(/N and V)

MI, N 00100 Negative N LE 01100 Less than or
equal to
(signed)

Z or (N and /V)
or (/N and V)

CS, C,
LO

00101 Carry set, lower
than (unsigned)

C HI 01101 Higher than
(unsigned)

/C and /Z

CC, NC,
HS

00110 Carry clear,
higher or same
(unsigned)

/C LS 01110 Lower than or
same
(unsigned)

C or Z

VS, V 00111 Over-flow set V PNZ 01111 Positive non-
zero

/N and /Z

Flags Updated (src=ILINK1\2 & .F) Key:
Z • = Set if bit[11] of STATUS_L1 or STATUS_L2 set L = Limm Data
N • = Set if bit[10] of STATUS_L1 or STATUS_L2 set
C • = Set if bit[9] of STATUS_L1 or STATUS_L2 set
V • = Set if bit[8] of STATUS_L1 or STATUS_L2 set

E2 • = Set if bit[2] of STATUS_L1 or STATUS_L2 set
E1 • = Set if bit[1] of STATUS_L1 or STATUS_L2 set

Related Instructions:
JLcc Bcc

Special Conditions:
Source Operand (src) Operation
src = ILINK1 & .F pc ← ILINK1

STATUS32 ← STATUS32_L1
src = ILINK2 & .F pc ← ILINK2

STATUS32 ← STATUS32_L2

Description:
If the specified condition is met (cc=true), then the program execution is resumed from the new
program counter address that is specified as the absolute address in the source operand (src). Jump
instructions have can target any address within the full memory address map, but the target address is
16-bit aligned. Since the execution of the instruction that is in the delay slot is controlled by the delay
slot mode, it should never be the target of any branch or jump instruction.

CAUTION The Jcc and Jcc_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise an Illegal Instruction Sequence exception if an executed delay slot
contains:

• Another jump or branch instruction

• Conditional loop instruction (LPcc)

• Return from interrupt (RTIE)

• Any instruction with long-immediate data as a source operand

Jcc Instruction Set Details

240 ARCompact™ Programmer's Reference

When using ILINK1 or ILINK2 as the source operand with Jcc.F or J.F, the contents of the
corresponding registers STATUS32_L1 or STATUS32_L2 are automatically copied over to
STATUS32.

When using ILINK1 or ILINK2 the flag setting field, F, is always encoded as 1 for this instruction.
The reserved field, R, is ignored by the processor but should be set to 0.

If the ILINK1 or ILINK2 registers are used without the flag setting field being set an Instruction Error
exception will be raised. If the flag setting field, F, is set without using the ILINK1 or ILINK2
register, an Instruction Error exception will be raised.

For the ARC 700 processor it is recommended that the RTIE instruction is used to return from an
interrupt service routine.

In the ARC 700 processor the appropriate BTA link register is also loaded into BTA when jump-
based interrupt return is executed.

The operation of J.F [ILINK1] or J_S.F [ILINK1] is thus:

• PC ← ILINK1

• STATUS32 ← STATUS32_L1

• BTA ← BTA_L1

The operation of J.F [ILINK2] or J_S.F [ILINK2] is now as follows:

• PC ← ILINK2

• STATUS32 ← STATUS32_L2

• BTA ← BTA_L2

As with RTIE, if the STATUS32[DE] bit becomes set as a result of the J_S.F [ILINKn] or Jcc.F
[ILINKn] instruction, the processor will be put back into a state where a branch with a delay slot is
pending. The target of the branch will be contained in the BTA register. The value in BTA will have
been restored from the appropriate Interrupt Return BTA register (BTA_L1 or BTA_L2).

NOTE A single instruction must separate a FLAG instruction from any type of Jcc.F [ILINK1\2] instruction if
they proceed each other. In addition, a single instruction must also separate the auxiliary register
write update of STATUS32_L1 or STATUS32_L2 and any type of Jcc.F [ilink1\2] instruction.

Pseudo Code Example:
if cc==true then
 if N==1 then
 DelaySlot(nPC)
 PC = src
 if F==1 and src==ILINK1 then
 STATUS32 = STATUS32_L1
 BTA = BTA_L1 ;ARC 700 only
 if F==1 and src==ILINK2 then
 STATUS32 = STATUS32_L2
 BTA = BTA_L2 ;ARC 700 only
else
 PC = nPC

/* Jcc */

Assembly Code Example:
JEQ [r1]

J.F [ilink1]

; jump to address in r1 if the
; Z flag is set
; jump to address in ilink1
; and restore STATUS32 from
; STATUS_L1

Instruction Set Details JLcc

ARCompact™ Programmer's Reference 241

JLcc
Jump and Link Conditionally

Jump Operation

Operation:
if (cc=true) then (cPC ← src) & (BLINK ← nPC)

Format:
inst src

Format Key:
src = Source Operand
cPC = Program Counter
cc = Condition Code
BLINK = Branch and Link Register (r31)
nPC = Next PC
dPC = Next PC + 4 (address of the 2nd following instruction)

Syntax:
Jump Instruction Code
JLcc [c] 00100RRR111000100RRRCCCCCC0QQQQQ
JLcc limm 00100RRR111000100RRR1111100QQQQQ L
JLcc u6 00100RRR111000100RRRuuuuuu1QQQQQ
JLcc.D u6 00100RRR111000110RRRuuuuuu1QQQQQ
JLcc.D [c] 00100RRR111000110RRRCCCCCC0QQQQQ
Jump
(Unconditional)

JL [c] 00100RRR001000100RRRCCCCCCRRRRRR
JL.D [c] 00100RRR001000110RRRCCCCCCRRRRRR
JL limm 00100RRR001000100RRR111110RRRRRR L
JL u6 00100RRR011000100RRRuuuuuuRRRRRR
JL.D u6 00100RRR011000110RRRuuuuuuRRRRRR
JL s12 00100RRR101000100RRRssssssSSSSSS
JL.D s12 00100RRR101000110RRRssssssSSSSSS
JL_S [b] 01111bbb01000000
JL_S.D [b] 01111bbb01100000

Delay Slot Modes:
Delay Slot Mode Description
JLcc/JL/JL_S Only execute next instruction when not branching
JLcc.D/JL.D/JL_S.D Always execute next instruction

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear /V
EQ, Z 00001 Zero Z GT 01001 Greater than

(signed)
(N and V and
/Z) or (/N and
/V and /Z)

NE, NZ 00010 Non-Zero /Z GE 01010 Greater than or
equal to

(N and V) or
(/N and /V)

JLcc Instruction Set Details

242 ARCompact™ Programmer's Reference

Code Q Field Description Test Code Q Field Descript ion Test
(signed)

PL, P 00011 Positive /N LT 01011 Less than
(signed)

(N and /V) or
(/N and V)

MI, N 00100 Negative N LE 01100 Less than or
equal to
(signed)

Z or (N and /V)
or (/N and V)

CS, C,
LO

00101 Carry set, lower
than (unsigned)

C HI 01101 Higher than
(unsigned)

/C and /Z

CC, NC,
HS

00110 Carry clear,
higher or same
(unsigned)

/C LS 01110 Lower than or
same
(unsigned)

C or Z

VS, V 00111 Over-flow set V PNZ 01111 Positive non-
zero

/N and /Z

Related Instructions:
Jcc BLcc

Description:
If the specified condition is met (cc=true), then the program execution is resumed from the new
program counter address that is specified as the absolute address in the source operand (src). Jump
and link instructions have can target any address within the full memory address map, but the target
address is 16-bit aligned. Parallel to this, the program counter address (PC) that immediately follows
the jump instruction is written into the BLINK register (r31). Since the execution of the instruction
that is in the delay slot is controlled by the delay slot mode, it should never be the target of any
branch or jump instruction.

CAUTION The JLcc and JL_S instructions cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The ARC 700 processor will raise an Illegal Instruction Sequence exception if an executed delay slot
contains:

• Another jump or branch instruction

• Conditional loop instruction (LPcc)

• Return from interrupt (RTIE)

• Any instruction with long-immediate data as a source operand

Pseudo Code Example:
if cc==true then
 if N==1 then
 BLINK = dPC
 DelaySlot(nPC)
 else
 BLINK = nPC
 PC = src
else
 PC = nPC

/* JLcc */

Assembly Code Example:
JLEQ [r1] ; if the Z flag is set then jump and link to address

; in r1 and store the return address in BLINK

Instruction Set Details LD

ARCompact™ Programmer's Reference 243

LD
Delayed Load from Memory

Memory Operation

Operation:
dest ← Result of Memory Load address @ (src1+src2)

Format:
inst dest, src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2 (Offset)
dest = Destination

Syntax:
 Instruction Code
LD<zz><.x><.aa><.di> a,[b,s9] 00010bbbssssssssSBBBDaaZZXAAAAAA
LD<zz><.x><.di> a,[limm] 00010110000000000111DRRZZXAAAAAA L
LD<zz><.x><.aa><.di> a,[b,c] 00100bbbaa110ZZXDBBBCCCCCCAAAAAA
LD<zz><.x><.aa><.di> a,[b,limm] 00100bbbaa110ZZXDBBB111110AAAAAA L
LD<zz><.x><.di> a,[limm,c] 00100110RR110ZZXD111CCCCCCAAAAAA L
LD<zz><.x><.aa><.di> 0,[b,s9] 00010bbbssssssssSBBBDaaZZX111110
LD<zz><.x><.di> 0,[limm] 00010110000000000111DRRZZX111110 L
LD<zz><.x><.aa><.di> 0,[b,c] 00100bbbaa110ZZXDBBBCCCCCC111110
LD<zz><.x><.aa><.di> 0,[b,limm] 00100bbbaa110ZZXDBBB111110111110 L
LD<zz><.x><.di> 0,[limm,c] 00100110RR110ZZXD111CCCCCC111110 L
LD_S a,[b,c] 01100bbbccc00aaa
LDB_S a,[b,c] 01100bbbccc01aaa
LDW_S a,[b,c] 01100bbbccc10aaa
LD_S c,[b,u7] 10000bbbcccuuuuu
LDB_S c,[b,u5] 10001bbbcccuuuuu
LDW_S c,[b,u6] 10010bbbcccuuuuu
LDW_S.X c,[b,u6] 10011bbbcccuuuuu
LD_S b,[sp,u7] 11000bbb000uuuuu
LDB_S b,[sp,u7] 11000bbb001uuuuu
LD_S r0,[gp,s11] 1100100sssssssss
LDB_S r0,[gp,s9] 1100101sssssssss
LDW_S r0,[gp,s10] 1100110sssssssss
LD_S b,[pcl,u10] 11010bbbuuuuuuuu

Data Size Field <.zz>:
Data Size Syntax ZZ Field Description
No Field Syntax 00 Data is a long-word (32-Bits) (<.x> syntax illegal)
W 10 Data is a word (16-Bits)
B 01 Data is a byte (8-Bits)
 11 reserved

Sign Extend <.x>:
X Flag Description
0 No sign extension (default, if no <.x> field syntax)
1 Sign extend data from most significant bit of data to the most significant bit of long-word

LD Instruction Set Details

244 ARCompact™ Programmer's Reference

Data Cache Mode <.di>:
D Flag Description
0 Cached data memory access (default, if no <.di> field syntax)
1 Non-cached data memory access (bypass data cache)

Address Write-back Mode <.aa>:
Address Write-
back Syntax

aa
Field

Effective Address Address Write-Back

No Field Syntax 00 Address = src1+src2 (register+offset) None
.A or .AW 01 Address = src1+src2 (register+offset) src1 ← src1+src2 (register+offset)
.AB 10 Address = src1 (register) src1 ← src1+src2 (register+offset)
.AS 11 Address = src1+(src2<<1) (<zz>= ‘10’)

Address = src1+(src2<<2) (<zz>= ‘00’)
None. *Using a byte or signed byte
data size is invalid and is a
reserved format

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

16-Bit Load Instructions Operation:
Instruction Format Operation Description
LD_S a, [b,c] dest ← address[src1+src2].l Load long word from address calculated by

register + register
LDB_S a, [b,c] dest ← address[src1+src2].b Load unsigned byte from address calculated by

register + register
LDW_S a, [b,c] dest ← address[src1+src2].w Load unsigned word from address calculated by

register + register
LD_S c, [b,u7] dest ← address[src1+u7].l Load long word from address calculated by

register + unsigned immediate
LDB_S c, [b,u5] dest ← address[src1+u5].b Load unsigned byte from address calculated by

register + unsigned immediate
LDW_S c, [b,u6] dest ← address[src1+u6].w Load unsigned word from address calculated by

register + unsigned immediate
LDW_S.X c, [b,u6] dest ← address[src1+u6].w Load signed word from address calculated by

register + unsigned immediate
LD_S b, [sp,u7] dest ← address[sp+u7].l Load word from address calculated by Stack

Pointer (r28) + unsigned immediate
LDB_S b, [sp,u7] dest ← address[sp+u7].b Load unsigned byte from address calculated by

Stack Pointer (r28) + unsigned immediate
LD_S r0, [gp,s11] dest ← address[gp+s11].l Load long word from address calculated by

Global Pointer (r26) + signed immediate (signed
immediate is 32-bit aligned) and write the result
into r0

LDB_S r0, [gp,s9] dest ← address[gp+s9].b Load unsigned byte from address calculated by
Global Pointer (r26) + signed immediate (signed
immediate is 8-bit aligned) and write the result
into r0

LDW_S r0, [gp,s10] dest ← address[gp+s10].w Load unsigned word from address calculated by
Global Pointer (r26) + signed immediate (signed
immediate is 16-bit aligned) and write the result
into r0

LD_S b, [pcl,u10] dest ←
address[pcl+u10]

Load long word from address calculated by
longword aligned program counter (pcl) +
unsigned immediate (unsigned immediate is 32-
bit aligned).

Instruction Set Details LD

ARCompact™ Programmer's Reference 245

Related Instructions:
ST LR

Description:
A memory load occurs from the address that is calculated by adding source operand 1 (src1) with
source operand 2 (scr2) and the returning load data is written into the destination register (dest).

CAUTION The addition of src1 to src2 is performed with a simple 32-bit adder which is independent of the
ALU. No exception occurs if a carry or overflow occurs. The resultant calculated address may
overlap into unexpected regions depending of the values of src1 and src2.

The status flags are not updated with this instruction.

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) or global pointer (GP) the
offset is aligned to 32-bit. For example LD_S b,[sp,u7] only needs to encode the top 5 bits since the
bottom 2 bits of u7 are always zero because of the 32-bit data alignment.

The size of the requested data is specified by the data size field <.zz> and by default data is zero
extended from the most significant bit of the data to the most significant bit of the long-word.

NOTE When a memory controller is employed: Load bytes can be made to any byte alignments, Load
words should be made from word aligned addresses and Load longs should be made only from long
aligned addresses.

Data can be sign extended by enabling sign extend <.x>.

Note that using the sign extend suffix on the LD instruction with a 32-bit data size is undefined for
the ARCtangent-A5 and ARC 600 processors and should not be used.

Using the sign extend suffix on the LD instruction with a 32-bit data size will raise an Instruction
Error exception on the ARC 700 processor.

If the processor contains a data cache, load requests can bypass the cache by using the <.di> syntax.
The address write-back mode can be selected by use of the <.aa> syntax. Note than when using the
scaled source addressing mode (.AS), the scale factor is dependent upon the size of the data word
requested (.zz).

For the ARC 600 processor loads to a null register using the long-immediate data indicator should be
avoided.

For the ARC 700 processor loads to a null register using the long-immediate data performs a pre-
fetch operation

NOTE LP_COUNT should not be used as the destination of a load. For example the following instruction is
not allowed: LD LP_COUNT, [r0]

Pseudo Code Example:
if AA==0 then address = src1 + src2
if AA==1 then address = src1 + src2
if AA==2 then address = src1
if AA==3 and ZZ==0 then
 address = src1 + (src2 << 2)
if AA==3 and ZZ==2 then
 address = src1 + (src2 << 1)
if AA==1 or AA==2 then
 src1 = src1 + src2
DEBUG[LD] = 1

/* LD */

dest = Memory(address, size)
if X==1 then
 dest = Sign_Extend(dest, size)
if NoFurtherLoadsPending() then
 DEBUG[LD] = 0

/* On Returning Load */

LD Instruction Set Details

246 ARCompact™ Programmer's Reference

Assembly Code Example:
LD r0,[r1,4] ; Load long word from memory

; address r1+4 and write
; result to r0

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 247

LPcc
Loop Set Up

Branch Operation

Operation:
if (cc=false) then cPC ← (cPCL+rd) else (LP_END ← cPCL+rd) & (LP_START ← nPC)

Format:
inst rel_addr

Format Key:
rel_addr = cPCL + rd
rd = Relative Displacement
cc = Condition Code
cPC = Current Program Counter
cPCL = Current Program Counter (Address from the 1st byte of the instruction,

32-bit aligned)
nPC = Next PC
LP_START = 32-Bit Loop Start Auxiliary Register (0x02)
LP_END = 32-Bit Loop End Auxiliary Register (0x03)

Syntax:
Loop Set Up
(Conditional)

 Instruction Code

LP<cc> u7 00100RRR111010000RRRuuuuuu1QQQQQ
Loop Set Up
(Unconditional)

LP s13 00100RRR101010000RRRssssssSSSSSS

Condition Codes <cc>:
Code Q Field Description Test Code Q Field Descript ion Test
AL, RA 00000 Always 1 VC, NV 01000 Over-flow clear /V
EQ, Z 00001 Zero Z GT 01001 Greater than

(signed)
(N and V and
/Z) or (/N and
/V and /Z)

NE, NZ 00010 Non-Zero /Z GE 01010 Greater than or
equal to
(signed)

(N and V) or
(/N and /V)

PL, P 00011 Positive /N LT 01011 Less than
(signed)

(N and /V) or
(/N and V)

MI, N 00100 Negative N LE 01100 Less than or
equal to
(signed)

Z or (N and /V)
or (/N and V)

CS, C,
LO

00101 Carry set, lower
than (unsigned)

C HI 01101 Higher than
(unsigned)

/C and /Z

CC, NC,
HS

00110 Carry clear,
higher or same
(unsigned)

/C LS 01110 Lower than or
same
(unsigned)

C or Z

VS, V 00111 Over-flow set V PNZ 01111 Positive non-
zero

/N and /Z

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

LPcc Instruction Set Details

248 ARCompact™ Programmer's Reference

Loop Operation:
Loop Format Loop Operation (Conditional Execution < cc>)
 True False
LPcc u7 aux_reg[LP_END] = cPCL + u7

aux_reg[LP_START] = nPC
cPC ← cPCL + u7

LP s13 aux_reg[LP_END] = cPCL + s13
aux_reg[LP_START] = nPC

Always True

Related Instructions:
None

Description:
When the specified condition is not met whilst using the LPcc instruction, the relative displacement
value (rd) is added to the current PC (actually cPCL) and program execution is subsequently resumed
from the new 16-bit aligned cPC. In the event that the condition is met, the auxiliary register
LP_END (auxiliary register 0x03) is updated with the resulting address of cPCL + rd. In parallel
LP_START (auxiliary register 0x02) is updated with the next PC (nPC).

The non-conditional LP instruction always updates LP_END and LP_START auxiliary registers.

CAUTION The LPcc instruction should not be in the executed delay slot of branch and jump instructions,
and therefore the LPcc instruction cannot immediately follow a Bcc.D, BLcc.D, Jcc.D, JLcc.D,
BRcc.D or BBITn.D instruction.

The loop mechanism is always active and the registers used by the loop mechanism are set up with
the LP instruction.

As LP_END is set to 0 upon Reset, it is not advisable to execute an instruction placed at the end of
program memory space (0xFFFFFFFC or 0xFFFFFFFE) as this will trigger the LP mechanism if no
other LP has been set up since Reset. Also, caution is needed if code is copied or overlaid into
memory, that before executing the code that LP_END is initialized to a safe value (i.e. 0) to prevent
accidental LP triggering. Similar caution is required if using any form of MMU or memory mapping.

The LP instruction is encoded to use immediate values (syntax u7 or syntax s12). Encoding the
operand mode (bits 23:22) to be 0x0 or 0x1 is not recommended. Additionally using operand mode
0x3 with sub-operand mode 0x0 is not recommended. The reserved field, R, is ignored by the
processor.

The LP instruction may be used to set up a loop with a maximum set by the limit of the branch offset
available in the LP instruction used.

• Conditional branch – 6 bits of unsigned offset gives +128 bytes

• Unconditional branch – 12 bits of signed offset gives +4094/-4096 bytes

Jumps and branches without linking or branch delay slots may be used at any position in the loop.
The programmer must however be aware of the side-effects on the LP_COUNT register of using
branches within a loop, and also of the positions within loops where certain other branch or jump
instructions may not be used.

For the ARCompact based processor, when a branch is used for early termination of a loop, the value
of the loop count register after loop exit is undefined under certain circumstances:

• When a branch instruction appears in the last instruction fetch of the loop.

• When the delay slot of a branch appears in the last instruction fetch of a loop (i.e. a branch with a
delay slot is the penultimate instruction fetch of the loop).

One zero-overhead loop may be used inside another provided that the inner loop saves and restores
the context of the outer loop and complies with all other rules. An additional rule is that a loop

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 249

instruction may not be used in either of the last two instruction slots before the end of an existing
loop.

The use of zero delay loops is illustrated in the following example.

Example 20 Example Loop Code

 MOV LP_COUNT,2 ; do loop 2 times (flags not set)
 ... ; Some intermediate instructions
 LP loop_end ; set up loop mechanism to work
 ; between loop_in and loop_end
loop_in: LR r0,[r1] ; first instruction
 ; in loop
 ADD r2,r2,r0 ; sum r0 with r2
 BIC r1,r1,4 ; last instruction
 ; in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Direct writes to the LP_START and LP_END registers should be used to set up larger loops, if
required.

Special care must be taken when directly manipulating LP_START and LP_END to ensure that the
values written refer to the first address occupied by an instruction.

ARCtangent-A5 Loop Operation
For the ARCtangent-A5 processor, the operation of the loop mechanism is such that NEXT_PC is
constantly compared with the value LP_END. If the comparison is true, then LP_COUNT is tested. If
LP_COUNT is not equal to 1, then the PC is loaded with the contents of LP_START, and
LP_COUNT is decremented. If, however, LP_COUNT is 1, then the PC is allowed to increment
normally and LP_COUNT is decremented. This is illustrated in Figure 95 on page 249.

is LP_END
= NEXT_PC?

is LP_COUNT = 1?

PC � NEXT_PC

decr LP_COUNT

PC � LP_START

Yes

Yes

No

No

PC � NEXT_PC

Figure 95 Loop Detection and Update Mechanism, ARCt angent-A5

Special care must be taken when directly manipulating LP_START and LP_END to ensure that the
values written refer to the first address occupied by an instruction. For the ARCtangent-A5 processor,
unpredictable behavior will result when LP_START or LP_END are set to point to any other
locations.

For the ARCtangent-A5 processor, the LP instruction must not be used to set up loops with a single
instruction word. The LP instruction can only set up loops containing at least two instruction words.

LPcc Instruction Set Details

250 ARCompact™ Programmer's Reference

This means that the LP instruction can be used to set up a loop containing a single instruction that
references long immediate data – since it has in fact two instruction words.

However, if the user wishes to set up a loop containing only a single instruction word, then the
LP_START and LP_END registers can be set explicitly using SR instructions. Example 21 on page
250 shows this. The loop rules specify that a minimum of three instruction words must be fetched
after an SR write to LP_START or LP_END and the end of the loop – hence in this case two NOP
instructions are included for padding.

Example 21 Setting up an ARCtangent-A5 Single Instr uction Loop

 MOV LP_COUNT,5 ; no. of times to do loop
 MOV r0,dooploop ; load START loop address
 MOV r1,dooploopend ; load END loop address
 SR r0,[LP_START] ; set up loop START register
 SR r1,[LP_END] ; set up loop END register
 NOP ; allow time to update regs
 NOP ; can move useful instrs. here
dooploop: OR r21,r22,r23 ; single instruction in loop
dooploopend: ADD r19,r19,r20 ; first instruction after loop

There are also rules about where SLEEP and BRK instructions may be placed within zero-overhead
loops. The programmer should never insert a BRK or a SLEEP as the last instruction in a zero
overhead loop. To summarize the effect that the loop mechanism has on these special cases see the
following tables, according to the the notes:

• Instruction numbers Insn-N refer to the sequence of instructions slots within a loop – which is not
the same as the instruction positions if branches are used within the loop.

• Two instruction slots are taken by instructions with long immediate data – The first position (to
which the rules apply) is the instruction, the second is the long immediate data word.

The following table covers loop setup and use of long immediate data for the ARCtangent-A5
processor.

Table 88 Loop setup and long immediate data, ARCtan gent-A5

 Loop Set Up Writing Reading Writing Reading Long Imm.

LP loop_end LP_COUNT

LP_COUNT

LP_END,
LP_START

LP_END,
LP_START

op limm

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4 ... …
Insn-3 ... ?¹
Insn-2 … ?¹ ... x
Insn-1 x ?¹ … x
Insn x ?¹ ?² x ... n/a
Loop_end:
Outins1
Outins2

Key:
?¹

Writes to the loop count register – the number of loop iterations executed before the
loop count mechanism takes account of the change is undefined.

?²

Reads from the loop count register – the value returned may not be the number of the
current loop iteration.

x

An instruction of this type may not be executed in this instruction slot.
n/a Instructions using long immediate data take two slots. Hence the instruction itself

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 251

cannot be present in the last instruction slot.

The following tables cover use of branch and jump instructions for the ARCtangent-A5 processor:

Table 89 Branch and Jumps in loops, flow(1), ARCtan gent-A5

Bcc
Jcc [Rn]

BRcc
BBITn

Bcc.d
Jcc.d
J_S.d
BLcc
JLcc

BLcc.d
JLcc.d
JL_S.d

BRcc.d
BBITn.d

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4
Insn-3
Insn-2 ... ! !
Insn-1 ! ! ! x !
Insn ! ! x x x
Loop_end:
Outins1
Outins2

Key:
!

Loop count register value unpredictable when branch taken to exit early from the
loop.

x

An instruction of this type may not be executed in this instruction slot.

Table 90 Branch and Jumps in loops, flow(2), ARCtan gent-A5

Jcc limm

JLcc limm

LP other_loop

SLEEP
BRK

Loop_st:
Ins1
Ins2
...
...
Insn-2
Insn-1 ! x x ...
Insn n/a n/a x x
Loop_end:
Outins1
Outins2

Key:
!

Loop count register value unpredictable when branch taken to exit early from the
loop.

x

An instruction of this type may not be executed in this instruction slot.
n/a

Instructions using long immediate data take two slots. Hence the instruction itself
cannot be present in the last instruction slot.

LPcc Instruction Set Details

252 ARCompact™ Programmer's Reference

ARC 600 Loop Operation
The ARC 600 processor determines the next address from which to fetch an instruction according to
whether there is a branch or jump being executed and whether the current program counter (cPC) has
reached the last instruction of a zero overhead loop. If a branch or jump instruction is taken then the
target of that instruction always defines the next PC. Whenever current PC reaches the last instruction
of a zero overhead loop the LP_COUNT register is decremented. This happens regardless of whether
the loop will iterate or whether the loop will terminate.

On reaching the last instruction of a zero overhead loop the processor will examine the LP_COUNT
register. If it is not equal to either 0 or 1, and there is no taken branch at that location, then the
program counter will be set to LP_START.

This is illustrated in Figure 96 on page 252.

is LP_END
= NEXT_PC?

is LP_COUNT =
0 or 1?

PC � NEXT_PC

decr LP_COUNT

PC � LP_START

Yes

Yes

No

No

PC � NEXT_PC

branch or
jump to be

taken?
PC � target addr.

No

Yes

Figure 96 Loop Detection and Update Mechanism, ARC 600

Special care must be taken when directly manipulating LP_START and LP_END to ensure that the
values written refer to the first address occupied by an instruction. For the ARC 600 processor,
unpredictable behavior will result when LP_START or LP_END are set to point to any other
locations.

For the ARC 600 processor, the LP instruction must not be used to set up loops with a single
instruction word. The LP instruction can only set up loops containing at least two instruction words.
This means that the LP instruction can be used to set up a loop containing a single instruction that
references long immediate data – since it has in fact two instruction words.

However, if the user wishes to set up a loop containing only a single instruction word, then the
LP_START and LP_END registers can be set explicitly using SR instructions. Example 22 on page
253 shows this. The loop rules specify that a minimum of three instruction words must be fetched
after an SR write to LP_START or LP_END and the end of the loop – hence in this case two NOP
instructions are included for padding.

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 253

Example 22 Setting up an ARC 600 Single Instruction Loop

 MOV LP_COUNT,5 ; no. of times to do loop
 MOV r0,dooploop ; load START loop address
 MOV r1,dooploopend ; load END loop address
 SR r0,[LP_START] ; set up loop START register
 SR r1,[LP_END] ; set up loop END register
 NOP ; allow time to update regs
 NOP ; can move useful instrs. here
dooploop: OR r21,r22,r23 ; single instruction in loop
dooploopend: ADD r19,r19,r20 ; first instruction after loop

There are also rules about where SLEEP and BRK instructions may be placed within zero-overhead
loops. The programmer should never insert a BRK or a SLEEP as the last instruction in a zero
overhead loop.

To summarize the effect that the loop mechanism has on these special cases see the tables below.

Notes:

• Instruction numbers Insn-N refer to the sequence of instructions slots within a loop – which is not
the same as the instruction positions if branches are used within the loop.

• Two instruction slots are taken by instructions with long immediate data – The first position (to
which the rules apply) is the instruction, the second is the long immediate data word.

The following table covers loop setup and use of long immediate data for the ARC 600 processor.

Table 91 Loop setup and long immediate data, ARC 60 0

 Loop Set Up Writing Reading Writing Reading Long Imm.

LP
loop_end

LP_COUNT LP_COUNT LP_END,
LP_START

LP_END,
LP_START

op limm

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4
Insn-3 ... ?¹
Insn-2 ... ?¹ ... x
Insn-1 x ?¹ … x
Insn x ?¹ ?² x ... n/a
Loop_end:
Outins1
Outins2

Key:
?¹

Writes to the loop count register – the number of loop iterations executed before the
loop count mechanism takes account of the change is undefined.

?²

Reads from the loop count register – the value returned may not be the number of the
current loop iteration.

x

An instruction of this type may not be executed in this instruction slot.
n/a

Instructions using long immediate data take two slots. Hence the instruction itself
cannot be present in the last instruction slot.

LPcc Instruction Set Details

254 ARCompact™ Programmer's Reference

The following tables cover use of branch and jump instructions for the ARC 600 processor:

Table 92 Branch and Jumps in loops, flow(1), ARC 60 0

Bcc
Jcc
[Rn]

BRcc
BBITn

BRcc
limm
BBITn
limm

BLcc

JLcc

Bcc.d
Jcc.d
J_S.d

BLcc.d
JLcc.d
JL_S.d

BRcc.d
BBITn.d

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4
Insn-3
Insn-2
Insn-1 x ... x x x x
Insn x² x x x x x x x
Loop_end:
Outins1
Outins2

Key:
x

An instruction of this type may not be executed in this instruction slot.
x²

A branch or jump may be placed in this position provided its target is outside the loop.
Upon exit the value of LP_COUNT will be one less than the number of iterations
executed. A branch or jump may not be placed in this position if its target is inside the
loop. If this rule is violated the loop may execute an undefined number of iterations.

Table 93 Branch and Jumps in loops, flow(2), ARC 60 0

Jcc limm

JLcc limm

LP other_loop

SLEEP
BRK
SWI

Loop_st:
Ins1
Ins2
...
...
Insn-2
Insn-1 x x x ...
Insn x x x x
Loop_end:
Outins1
Outins2

Key:
x

An instruction of this type may not be executed in this instruction slot.

ARC 700 Loop Operation
For the ARC 700 processor, the loop mechanism is active when the loop-inhibit bit STATUS32[L] is
set to zero. This bit is set to disable the loop mechanism on an interrupt or an exception (including
TRAP instructions). Loops are enabled (STATUS32[L]=0) after Reset. The loop-inhibit bit is cleared
(loops allowed) whenever the processor commits a taken conditional LP instruction or an
unconditional LP instruction. From kernel mode, the value of the bit can also be set/restored using the
RTIE instruction.

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 255

When the loop mechanism is disabled (STATUS32[L]=1), loop-end conditions are ignored - no
change of program flow is taken, loop count is not decremented. The STATUS32[L] register does not
affect reads and writes to the loop control registers.

The machine checks for a loop-end condition when calculating the next program counter address,
before each instruction is completed.

A loop-end condition is detected when:

• The instruction to be completed is not a taken branch or jump - note this includes a LPcc which
evaluates false.

 In the case of a taken branch or jump, the loop-end condition is bypassed, and the next
instruction (NEXT_PC) comes from the branch/jump target.

• STATUS32[DE] is 0 and BTA[0] = - the instruction is not in the delay slot instruction of a
branch.

 In the case when STATUS32[DE] = 1 and BTA[0] = 1, the instruction pointed to by PC is the
delay slot instruction of a branch, therefore the next instruction (NEXT_PC) comes from the
address in the Branch Target Address (BTA) register.

 In the case when STATUS32[DE] = 1 and BTA[0] = 0, the preceeding branch was not-taken,
therefore the current instruction is still considered as end-of-loop.

• STATUS32[L] is 0

 This bit is set to 1 to disable loop-end detection.

• The instruction to be completed is the last in a loop

 Current PC + current instruction_size = LP_END

• LP_COUNT is not equal to 1

 In the case when LP_COUNT=1, LP_COUNT is decremented and execution continues from
the instruction pointed to by LP_END.

When a loop-end condition is detected, the machine jumps to the address in LP_START, and
LP_COUNT is decremented.

If LP_COUNT is 1, then the machine will continue execution from the instruction pointed to by
LP_END; LP_COUNT is also decremented. This is illustrated in the following diagram.

LPcc Instruction Set Details

256 ARCompact™ Programmer's Reference

is LP_END
= NEXT_PC?

is LP_COUNT = 1?

PC � NEXT_PC

decr LP_COUNT

PC � LP_START

Yes

Yes

No

No

PC � NEXT_PC

Figure 97 Loop Detection and Update Mechanism, ARC 700

The ARC 700 processor allows the LP instruction to be used to set up a loop with a minimum of one
instruction

If a LP_START value is provided which does not match the start of an instruction, and the loop-end
condition is reached, the result will the same as if a branch or jump had been made to the faulty
address.

If a LP_END value is provided which does not match the start of an instruction, the loop-end
condition will never be detected.

The update to the LP_START and LP_COUNT registers will take effect immediately after the LP
instruction has committed. Note that any change of program flow required (i.e. jump to LP_START)
will be completed before LP_START and LP_END are updated.

As a result, executing a LP instruction from the last instruction in the loop will take effect from the
next loop iteration. Executing LP from any other position in the loop will take effect in the current
loop iteration.

To summarize the effect that the loop mechanism has on these special cases see the tables below.

Notes:

• Instruction numbers Insn-N refer to the sequence of instructions slots within a loop – which is not
the same as the instruction positions if branches are used within the loop.

• Two instruction slots are taken by instructions with long immediate data – The first position (to
which the rules apply) is the instruction, the second is the long immediate data word.

The following table covers loop setup and use of long immediate data for the ARC 700 processor.

Instruction Set Details LPcc

ARCompact™ Programmer's Reference 257

Table 94 Loop setup and long immediate data, ARC 70 0

 Loop Set Up Writing Reading Writing Reading Long Imm.
 LP

loop_end
LP_COUNT LP_COUNT LP_END,

LP_START
LP_END,
LP_START

op limm

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4
Insn-3
Insn-2
Insn-1
Insn n ... n n ... n/a
Loop_end:
Outins1
Outins2

Key:
n

Updates to loop registers take affect after loop end condition has been evaluated, i.e.
in the next loop iteration

n/a

Instructions using long immediate data take two slots. Hence the instruction itself
cannot be present in the last instruction slot.

The following tables cover use of branch and jump instructions for the ARC 700 processor:

Table 95 Branch and Jumps in loops, flow(1), ARC 70 0

 Bcc
Jcc [Rn]

BRcc
BBITn

BLcc
JLcc

Bcc.d
Jcc.d
J_S.d

BLcc.d
JLcc.d
JL_S.d

BRcc.d
BBITn.d

Loop_st:
Ins1
Ins2
Ins3
...
...
Insn-4
Insn-3
Insn-2
Insn-1 o ...
Insn o x x x
Loop_end:
Outins1
Outins2

Key:
x

An instruction of this type may not be executed in this instruction slot. An Illegal
Instruction Sequence exception is taken if the instruction is attempted.

o

Return address will be outside the loop

LPcc Instruction Set Details

258 ARCompact™ Programmer's Reference

Table 96 Branch and Jumps in loops, flow(2), ARC 70 0

 Jcc limm JLcc limm LP other_loop SLEEP
BRK

Loop_st:
Ins1
Ins2
...
...
Insn-2
Insn-1
Insn ... o n ...
Loop_end:
Outins1
Outins2

Key:
n

Updates to loop registers take affect after loop end condition has been evaluated,
i.e. in the next loop iteration

o

Return address will be outside the loop

Pseudo Code Example:
if cc==true then
 Aux_reg(LP_START) = nPC
 Aux_reg(LP_END) = cPCL + rd
 PC = nPC
else
 PC = cPCL +rd

/* LPcc */

Assembly Code Example:
LPNE label ; if the Z flag is set then

; branch to label else
; set LP_START to address of
; next instruction and set
; LP_END to label

The use of zero delay loops is illustrated below.

 MOV LP_COUNT,2 ; do loop 2 times (flags not set)
 LP loop_end ; set up loop mechanism to work
 ; between loop_in and loop_end
loop_in: LR r0,[r1] ; first instruction
 ; in loop
 ADD r2,r2,r0 ; sum r0 with r2
 BIC r1,r1,4 ; last instruction
 ; in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

The LP instruction can be used to set up a loop containing a single instruction that references long
immediate data – since it has two instruction words:

 LP loop_end ;
loop_in: ADD r22,r22,0x00010000 ; single instruction in loop
loop_end:
 ADD r19,r19,r20 ; first instruction after loop

Instruction Set Details LR

ARCompact™ Programmer's Reference 259

LR
Load from Auxiliary Register

Control Operation

Operation:
dest ← aux_reg(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
aux_reg = Auxiliary Register

Syntax:
 Instruction Code
LR b,[c] 00100bbb001010100BBBCCCCCCRRRRRR
LR b,[limm] 00100bbb001010100BBB111110RRRRRR L
LR b,[u6] 00100bbb011010100BBBuuuuuu000000
LR b,[s12] 00100bbb101010100BBBssssssSSSSSS

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
SR LD

Description:
Get the data from the auxiliary register whose number is obtained from the source operand (src) and
place the data into the destination register (dest).

The status flags are not updated with this instruction therefore the flag setting field, F, is encoded as
0. The reserved field, R, is ignored by the processor, but should be set to 0.

The LR instruction cannot be conditional therefore encoding the operand mode (bits 23:22) to be 0x3
will raise an Instruction Error exception in the ARC 700 processor.

For the ARCtangent-A5 and ARC 600 processors, the behavior is undefined if an LR instruction is
encoded using the operand mode of 0x3.

Pseudo Code Example:
dest = Aux_reg(src) /* LR */

Assembly Code Example:
LR r1,[r2] ; Load contents of Aux. register pointed

; to by r2 into r1

LSR Instruction Set Details

260 ARCompact™ Programmer's Reference

LSR
Logical Shift Right

Logical Operation

Operation:
dest ← LSR by 1 (src)

‘0’

src

dest C

MSB LSB

0

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand

Syntax:
With Result Instruction Code
LSR<.f> b,c 00100bbb00101111FBBBCCCCCC000010
LSR<.f> b,u6 00100bbb01101111FBBBuuuuuu000010
LSR<.f> b,limm 00100bbb00101111FBBB111110000010 L
LSR_S b,c 01111bbbccc11101
Without Result
LSR<.f> 0,c 0010011000101111F111CCCCCC000010
LSR<.f> 0,u6 0010011001101111F111uuuuuu000010
LSR<.f> 0,limm 0010011000101111F111111110000010 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASL ASR
ROR RRC
ASL multiple ASR multiple
ROR multiple LSR multiple

Description:
Logically right shift the source operand (src) by one and place the result into the destination register
(dest).

The most significant bit of the result is replaced with 0.

Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src >> 1
dest[31] = 0
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = src[0]

/* LSR */

Instruction Set Details LSR

ARCompact™ Programmer's Reference 261

Assembly Code Example:
LSR r1,r2 ; Logical shift right

; contents of r2 by one bit
; and write result into r1

LSR multiple Instruction Set Details

262 ARCompact™ Programmer's Reference

LSR multiple
Multiple Logical Shift Right

Logical Operation

Operation:
if (cc=true) then dest ← logical shift right of src1 by src2

‘0’

src1

dest C

MSB LSB

0

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
LSR<.f> a,b,c 00101bbb00000001FBBBCCCCCCAAAAAA
LSR<.f> a,b,u6 00101bbb01000001FBBBuuuuuuAAAAAA
LSR<.f> b,b,s12 00101bbb10000001FBBBssssssSSSSSS
LSR<.cc><.f> b,b,c 00101bbb11000001FBBBCCCCCC0QQQQQ
LSR<.cc><.f> b,b,u6 00101bbb11000001FBBBuuuuuu1QQQQQ
LSR<.f> a,limm,c 0010111000000001F111CCCCCCAAAAAA L
LSR<.f> a,b,limm 00101bbb00000001FBBB111110AAAAAA L
LSR<.cc><.f> b,b,limm 00101bbb11000001FBBB1111100QQQQQ L
LSR_S b,b,c 01111bbbccc11001
LSR_S b,b,u5 10111bbb001uuuuu
Without Result
LSR<.f> 0,b,c 00101bbb00000001FBBBCCCCCC111110
LSR<.f> 0,b,u6 00101bbb01000001FBBBuuuuuu111110
LSR<.cc><.f> 0,limm,c 0010111011000001F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASL LSR
ROR RRC
ASL multiple ASR multiple
ROR multiple

Description:
Logically, shift right src1 by src2 places and place the result in the destination register. Only the
bottom 5 bits of src2 are used as the shift value.

Any flag updates will only occur if the set flags suffix (.F) is used.

Instruction Set Details LSR multiple

ARCompact™ Programmer's Reference 263

Pseudo Code Example:
if cc==true then
 dest = src1 >> (src2 & 31)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = if src2==0 then 0 else src1[sr2-1]

/* LSR */
/* Multiple */

Assembly Code Example:
LSR r1,r2,r3 ; Logical shift right

; contents of r2 by r3 bits
; and write result into r1

MAX Instruction Set Details

264 ARCompact™ Programmer's Reference

MAX
Return Maximum Value

Arithmetic Operation

Operation:
if (cc=true) then dest ← MAX(src1, src2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code
MAX = Return Maximum Value

Syntax:
With Result Instruction Code
MAX<.f> a,b,c 00100bbb00001000FBBBCCCCCCAAAAAA
MAX<.f> a,b,u6 00100bbb01001000FBBBuuuuuuAAAAAA
MAX<.f> b,b,s12 00100bbb10001000FBBBssssssSSSSSS
MAX<.cc><.f> b,b,c 00100bbb11001000FBBBCCCCCC0QQQQQ
MAX<.cc><.f> b,b,u6 00100bbb11001000FBBBuuuuuu1QQQQQ
MAX<.f> a,limm,c 0010011000001000F111CCCCCCAAAAAA L
MAX<.f> a,b,limm 00100bbb00001000FBBB111110AAAAAA L
MAX<.cc><.f> b,b,limm 00100bbb11001000FBBB1111100QQQQQ L
Without Result
MAX<.f> 0,b,c 00100bbb00001000FBBBCCCCCC111110
MAX<.f> 0,b,u6 00100bbb01001000FBBBuuuuuu111110
MAX<.f> 0,b,limm 00100bbb00001000FBBB111110111110 L
MAX<.cc><.f> 0,limm,c 0010011011001000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if both source operands are equal L = Limm Data
N • = Set if most significant bit of result of src1-src2 is set
C • = Set if src2 is selected (src2 >= src1)
V • = Set if overflow is generated (as a result of src1-src2)

Related Instructions:
MIN CMP

Description:
Return the maximum of the two signed source operands (src1 and src2) and place the result in the
destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 alu = src1 - src2
 if src2 >= src1 then
 dest = src2
 else
 dest = src1
 if F==1 then
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]
 V_flag = Overflow()
 C_flag = if src2>=src1 then 1 else 0

/* MAX */

Instruction Set Details MAX

ARCompact™ Programmer's Reference 265

Assembly Code Example:
MAX r1,r2,r3 ; Take maximum of r2 and r3

; and write result into r1

MIN Instruction Set Details

266 ARCompact™ Programmer's Reference

MIN
Return Minimum Value

Arithmetic Operation

Operation:
if (cc=true) then dest ← MIN(src1, src2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code
MIN = Return Minimum Value

Syntax:
With Result Instruction Code
MIN<.f> a,b,c 00100bbb00001001FBBBCCCCCCAAAAAA
MIN<.f> a,b,u6 00100bbb01001001FBBBuuuuuuAAAAAA
MIN<.f> b,b,s12 00100bbb10001001FBBBssssssSSSSSS
MIN<.cc><.f> b,b,c 00100bbb11001001FBBBCCCCCC0QQQQQ
MIN<.cc><.f> b,b,u6 00100bbb11001001FBBBuuuuuu1QQQQQ
MIN<.f> a,limm,c 0010011000001001F111CCCCCCAAAAAA L
MIN<.f> a,b,limm 00100bbb00001001FBBB111110AAAAAA L
MIN<.cc><.f> b,b,limm 00100bbb11001001FBBB1111100QQQQQ L
Without Result
MIN<.f> 0,b,c 00100bbb00001001FBBBCCCCCC111110
MIN<.f> 0,b,u6 00100bbb01001001FBBBuuuuuu111110
MIN<.f> 0,b,limm 00100bbb00001001FBBB111110111110 L
MIN<.cc><.f> 0,limm,c 0010011011001001F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if both source operands are equal L = Limm Data
N • = Set if most significant bit of result of src1-src2 is set
C • = Set if src2 is selected (src2 <= src1)
V • = Set if overflow is generated (as a result of src1-src2)

Related Instructions:
MAX CMP

Description:
Return the minimum of the two signed source operands (src1 and src2) and place the result in the
destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 alu = src1 - src2
 if src2 <= src1 then
 dest = src2
 else
 dest = src1
 if F==1 then
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]
 V_flag = Overflow()
 C_flag = if src2<=src1 then 1 else 0

/* MIN */

Instruction Set Details MIN

ARCompact™ Programmer's Reference 267

Assembly Code Example:
MIN r1,r2,r3 ; Take minimum of r2 and r3

; and write result into r1

MOV Instruction Set Details

268 ARCompact™ Programmer's Reference

MOV
Move Contents

Arithmetic Operation

Operation:
if (cc=true) then dest ← src

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code

Syntax:
With Result Instruction Code
MOV<.f> b,s12 00100bbb10001010FBBBssssssSSSSSS
MOV<.cc><.f> b,c 00100bbb11001010FBBBCCCCCC0QQQQQ
MOV<.cc><.f> b,u6 00100bbb11001010FBBBuuuuuu1QQQQQ
MOV<.cc><.f> b,limm 00100bbb11001010FBBB1111100QQQQQ L
MOV_S b,h 01110bbbhhh01HHH
MOV_S b,limm 01110bbb11001111 L
MOV_S hob 01110bbbhhh11HHH
MOV_S b,u8 11011bbbuuuuuuuu
Without Result
MOV<.f> 0,s12 0010011010001010F111ssssssSSSSSS
MOV<.cc><.f> 0,c 0010011011001010F111CCCCCC0QQQQQ
MOV<.cc><.f> 0,u6 0010011011001010F111uuuuuu1QQQQQ
MOV<.cc><.f> 0,limm 0010011011001010F1111111100QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
EXTB SWAP
EXTW SEXB

Description:
The contents of the source operand (src) are moved to the destination register (dest). Any flag
updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then /* MOV */
 dest = src
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* MOV */

Assembly Code Example:
MOV r1,r2 ; Move contents of r2 into r1

Instruction Set Details MPY

ARCompact™ Programmer's Reference 269

MPY
32 x 32 Signed Multiply Low

Extension Option

Operation:
dest ← (src1 X src2).low

b

HI

c

X

LO

a

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
MPY<.f> a,b,c 00100bbb00011010FBBBCCCCCCAAAAAA
MPY<.f> a,b,u6 00100bbb01011010FBBBuuuuuuAAAAAA
MPY<.f> b,b,s12 00100bbb10011010FBBBssssssSSSSSS
MPY<.cc><.f> b,b,c 00100bbb11011010FBBBCCCCCC0QQQQQ
MPY<.cc><.f> b,b,u6 00100bbb11011010FBBBuuuuuu1QQQQQ
MPY<.f> a,limm,c 0010011000011010F111CCCCCCAAAAAA L
MPY<.f> a,b,limm 00100bbb00011010FBBB111110AAAAAA L
MPY<.cc><.f> b,b,limm 00100bbb11011010FBBB1111100QQQQQ L
Without
Result

MPY<.f> 0,b,c 00100bbb00011010FBBBCCCCCC111110
MPY<.f> 0,b,u6 00100bbb01011010FBBBuuuuuu111110
MPY<.cc><.f> 0,limm,c 0010011011011010F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set when the destination register is zero. L = Limm Data
N • = Set when the sign bit of the 64-bit result is set
C = Unchanged
V • = Set when the signed result cannot be wholly

contained within the lower part of the 64-bit result. In
other words, when bits 62:31 do not equal bit 64, the
sign bit.

Related Instructions:
MPYH MPYU
MPYHU DIVAW

Description:
Perform a signed 32-bit by 32-bit multiply of operand1 and operand2 then place the least significant
32 bits of the 64-bit result in the destination register. Any flag updates will only occur if the set flags
suffix (.F) is used.

MPY Instruction Set Details

270 ARCompact™ Programmer's Reference

Pseudo Code Example:
if cc==true then
 dest = (src1 * src2) & 0x0000_0000_FFFF_FFFF

/* MPY */

Assembly Code Example:
MPY r1,r2,r3

; Multiply r2 by r3
; and put low part of the result in r1

Instruction Set Details MPYH

ARCompact™ Programmer's Reference 271

MPYH
32 x 32 Signed Multiply High

Extension Option

Operation:
dest ← (src1 X src2).high

b

HI

c

X

LO

a

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
MPYH<.f> a,b,c 00100bbb00011011FBBBCCCCCCAAAAAA
MPYH<.f> a,b,u6 00100bbb01011011FBBBuuuuuuAAAAAA
MPYH<.f> b,b,s12 00100bbb10011011FBBBssssssSSSSSS
MPYH<.cc><.f> b,b,c 00100bbb11011011FBBBCCCCCC0QQQQQ
MPYH<.cc><.f> b,b,u6 00100bbb11011011FBBBuuuuuu1QQQQQ
MPYH<.f> a,limm,c 0010011000011011F111CCCCCCAAAAAA L
MPYH<.f> a,b,limm 00100bbb00011010FBBB111110AAAAAA L
MPYH<.cc><.f> b,b,limm 00100bbb11011011FBBB1111100QQQQQ L
Without Result
MPYH<.f> 0,b,c 00100bbb00011011FBBBCCCCCC111110
MPYH<.f> 0,b,u6 00100bbb01011011FBBBuuuuuu111110
MPYH<.cc><.f> 0,limm,c 0010011011011011F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set when the destination register is zero. L = Limm Data
N • = Set when the sign bit of the 64-bit result is set
C = Unchanged
V • = Always cleared.

Related Instructions:
MPY MPYU
MPYHU DIVAW

Description:
Perform a signed 32-bit by 32-bit multiply of operand1 and operand2 then place the most significant
32 bits of the 64-bit result in the destination register. Any flag updates will only occur if the set flags
suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = (src1 * src2) >> 32

/* MPYH */

Assembly Code Example:
MPYH r1,r2,r3 ; Multiply r2 by r3 and put high part of the result in r1

MPYHU Instruction Set Details

272 ARCompact™ Programmer's Reference

MPYHU
32 x 32 Unsigned Multiply High

Extension Option

Operation:
dest ← (src1 X src2).high

b

HI

c

X

LO

a

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
MPYHU<.f> a,b,c 00100bbb00011100FBBBCCCCCCAAAAAA
MPYHU<.f> a,b,u6 00100bbb01011100FBBBuuuuuuAAAAAA
MPYHU<.f> b,b,s12 00100bbb10011100FBBBssssssSSSSSS
MPYHU<.cc><.f> b,b,c 00100bbb11011100FBBBCCCCCC0QQQQQ
MPYHU<.cc><.f> b,b,u6 00100bbb11011100FBBBuuuuuu1QQQQQ
MPYHU<.f> a,limm,c 0010011000011100F111CCCCCCAAAAAA L
MPYHU<.f> a,b,limm 00100bbb00011100FBBB111110AAAAAA L
MPYHU<.cc><.f> b,b,limm 00100bbb11011100FBBB1111100QQQQQ L
Without Result
MPYHU<.f> 0,b,c 00100bbb00011100FBBBCCCCCC111110
MPYHU<.f> 0,b,u6 00100bbb01011100FBBBuuuuuu111110
MPYHU<.cc><.f> 0,limm,c 0010011011011100F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set when the destination register is zero. L = Limm Data
N • = Always cleared.
C = Unchanged
V • = Always cleared.

Related Instructions:
MPY MPYU
MPYH DIVAW

Description:
Perform an unsigned 32-bit by 32-bit multiply of operand1 and operand2 then place the most
significant 32 bits of the 64-bit result in the destination register. Any flag updates will only occur if
the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = (src1 * src2) >> 32

/* MPYHU */

Instruction Set Details MPYHU

ARCompact™ Programmer's Reference 273

Assembly Code Example:
MPYHU r1,r2,r3

; Multiply r2 by r3
; and put high part of the result in r1

MPYU Instruction Set Details

274 ARCompact™ Programmer's Reference

MPYU
32 x 32 Unsigned Multiply Low

Extension Option

Operation:
dest ← (src1 X src2).low

b

HI

c

X

LO

a

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
MPYU<.f> a,b,c 00100bbb00011101FBBBCCCCCCAAAAAA
MPYU<.f> a,b,u6 00100bbb01011101FBBBuuuuuuAAAAAA
MPYU<.f> b,b,s12 00100bbb10011101FBBBssssssSSSSSS
MPYU<.cc><.f> b,b,c 00100bbb11011101FBBBCCCCCC0QQQQQ
MPYU<.cc><.f> b,b,u6 00100bbb11011101FBBBuuuuuu1QQQQQ
MPYU<.f> a,limm,c 0010011000011101F111CCCCCCAAAAAA L
MPYU<.f> a,b,limm 00100bbb00011101FBBB111110AAAAAA L
MPYU<.cc><.f> b,b,limm 00100bbb11011101FBBB1111100QQQQQ L
Without Result
MPYU<.f> 0,b,c 00100bbb00011101FBBBCCCCCC111110
MPYU<.f> 0,b,u6 00100bbb01011101FBBBuuuuuu111110
MPYU<.cc><.f> 0,limm,c 0010011011011101F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set when the destination register is zero. L = Limm Data
N • = Always cleared
C = Unchanged
V • = Set when the high part of the 64-bit result is non-zero

Related Instructions:
MPY MPYH
MPYHU DIVAW

Description:
Perform an unsigned 32-bit by 32-bit multiply of operand1 and operand2 then place the least
significant 32 bits of the 64-bit result in the destination register. Any flag updates will only occur if
the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = (src1 * src2) & 0x0000_0000_FFFF_FFFF

/* MPYU */

Assembly Code Example:
MPYU r1,r2,r3 ; Multiply r2 by r3 and put low part of the result in r1

Instruction Set Details MUL64

ARCompact™ Programmer's Reference 275

MUL64
32 x 32 Signed Multiply

Extension Option

Operation:
MLO ← low part of (src1 * src2)
MHI ← high part of (src1 * src2)
MMID ← middle part of (src1 * src2)

b

MHI

c

X

MLO

MMID

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
 Instruction Code
MUL64 <0,>b,c 00101bbb000001000BBBCCCCCC111110
MUL64 <0,>b,u6 00101bbb010001000BBBuuuuuu111110
MUL64 <0,>b,s12 00101bbb100001000BBBssssssSSSSSS
MUL64 <0,>limm,c 00101110000001000111CCCCCC111110 L
MUL64<.cc> <0,>b,c 00101bbb110001000BBBCCCCCC0QQQQQ
MUL64<.cc> <0,>b,u6 00101bbb110001000BBBuuuuuu1QQQQQ
MUL64<.cc> <0,>limm,c 00101110110001000111CCCCCC0QQQQQ L
MUL64<.cc> <0,>b,limm 00101bbb110001000BBB1111100QQQQQ L
MUL64_S <0,>b,c 01111bbbccc01100

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
MULU64 DIVAW

Description:
Perform a signed 32-bit by 32-bit multiply of operand1 and operand2 then place the most significant
32 bits of the 64-bit result in register MHI, the least significant 32 bits of the 64-bit result in register
MLO, and the middle 32 bits of the 64-bit result in register MMID.

If an instruction condition placed on a MUL64 is found to be false, the multiply will not be
performed, and the instruction will complete on the same cycle without affecting the values stored in
the multiply result registers.

MUL64 Instruction Set Details

276 ARCompact™ Programmer's Reference

The extension auxiliary register MULHI is used to restore the high part of multiply result register if
the multiply has been used, for example, by an interrupt service routine. The lower part of the
multiply result register can be restored by multiplying the desired value by 1.

The status flags are not updated with this instruction therefore the flag setting field, F, should be
encoded as 0.

Pseudo Code Example:
if cc==true then
 mlo = src1 * src2
 mmid = (src1 * src2) >> 16
 mhi = (src1 * src2) >> 32

/* MUL64 */

Assembly Code Example:
MUL64 r2, r3

; Multiply r2 by r3
; and put the result in the special
; result registers

Instruction Set Details MULU64

ARCompact™ Programmer's Reference 277

MULU64
32 x 32 Unsigned Multiply

Extension Option

Operation:
MLO ← low part of (src1 * src2)
MHI ← high part of (src1 * src2)
MMID ← middle part of (src1 * src2)

b

MHI

c

X

MLO

MMID

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
 Instruction Code
MULU64 <0,>b,c 00101bbb000001010BBBCCCCCC111110
MULU64 <0,>b,u6 00101bbb010001010BBBuuuuuu111110
MULU64 <0,>b,s12 00101bbb100001010BBBssssssSSSSSS
MULU64 <0,>limm,c 00101110000001010111CCCCCC111110 L
MULU64<.cc> <0,>b,c 00101bbb110001010BBBCCCCCC0QQQQQ
MULU64<.cc> <0,>b,u6 00101bbb110001010BBBuuuuuu1QQQQQ
MULU64<.cc> <0,>limm,c 00101110110001010111CCCCCC0QQQQQ L
MULU64<.cc> <0,>b,limm 00101bbb110001010BBB1111100QQQQQ L

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
MUL64 DIVAW

Description:
Perform an unsigned 32-bit by 32-bit multiply of operand1 and operand2 then place the most
significant 32 bits of the 64-bit result in register MHI, the least significant 32 bits of the 64-bit result
in register MLO, and the middle 32 bits of the 64-bit result in register MMID.

If an instruction condition placed on a MULU64 is found to be false, the multiply will not be
performed, and the instruction will complete on the same cycle without affecting the values stored in
the multiply result registers.

MULU64 Instruction Set Details

278 ARCompact™ Programmer's Reference

The extension auxiliary register MULHI is used to restore the high part of multiply result register if
the multiply has been used, for example, by an interrupt service routine. The lower part of the
multiply result register can be restored by multiplying the desired value by 1.

The status flags are not updated with this instruction therefore the flag setting field, F, should be
encoded as 0.

Pseudo Code Example:
if cc==true then
 mlo = src1 * src2
 mmid = (src1 * src2) >> 16
 mhi = (src1 * src2) >> 32

/* MULU64 */

Assembly Code Example:
MULU64 r2, r3

; Multiply r2 by r3
; and put the result in the special
; result registers

Instruction Set Details NEG

ARCompact™ Programmer's Reference 279

NEG
Negate

Arithmetic Operation

Operation:
dest ← 0 - src

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
 Instruction Code
NEG<.f> a,b 00100bbb01001110FBBB000000AAAAAA
NEG<.cc><.f> b,b 00100bbb11001110FBBB0000001QQQQQ
NEG_S b,c 01111bbbccc10011

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
ABS RSUB

Description:
The negate instruction subtracts the source operand (src) from zero and places the result into the
destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

NOTE The 32-bit instruction format is an encoding of the reverse subtract instruction using an unsigned 6-
bit immediate value set to 0.

Pseudo Code Example:
dest = 0 - src /* NEG */

Assembly Code Example:
NEG r1,r2 ; Negate r2 and write result

; into r1

NEGS Instruction Set Details

280 ARCompact™ Programmer's Reference

NEGS
Negate with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat32(0-src)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
NEGS<.f> b,c 00101bbb00101111FBBBCCCCCC000111
NEGS<.f> b,u6 00101bbb01101111FBBBuuuuuu000111
NEGS<.f> b,limm 00101bbb00101111FBBB111110000111 L
Without Result
NEGS<.f> 0,c 0010111000101111F111CCCCCC000111
NEGS<.f> 0,u6 0010111001101111F111uuuuuu000111
NEGS<.f> 0,limm 0010111000101111F111111110000111 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if input is 0x8000_0000 otherwise cleared
S • = Set if input is 0x8000_0000 (‘sticky’ saturation)

Related Instructions:
SAT16 NEGSW
RND16 ABSS

Description:
Negate the 32-bit operand with saturation and place the result in the destination register. Note that,
NEGS 0x8000_0000 yields 0x7FFF_FFFF. Both saturation flags S1 and S2 will be set if the result of
the instruction saturates. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if src==0x8000_0000
 sat = 1
 dest = 0x7FFF_FFFF
else
 sat = 0
 dest = 0 - src
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 V_flag = sat
 S_flag = S_flag || sat

/* NEGS */
// Using
// unsigned
// pseudo
// arithmetic

Assembly Code Example:
NEGS r1,r2 ; Negate and saturate the value of

; r2 and write result into r1

Instruction Set Details NEGSW

ARCompact™ Programmer's Reference 281

NEGSW
Negate Word with Saturation

Extended Arithmetic

Operation:
dest ← sat16(0-src.low)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
NEGSW<.f> b,c 00101bbb00101111FBBBCCCCCC000110
NEGSW<.f> b,u6 00101bbb01101111FBBBuuuuuu000110
NEGSW<.f> b,limm 00101bbb00101111FBBB111110000110 L
Without Result
NEGSW<.f> 0,c 0010111000101111F111CCCCCC000110
NEGSW<.f> 0,u6 0010111001101111F111uuuuuu000110
NEGSW<.f> 0,limm 0010111000101111F111111110000110 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if input is 0x8000 otherwise cleared
S • = Set if input is 0x8000 (‘sticky’ saturation)

Related Instructions:
SAT16 NEGS
RND16 ABSSW

Description:
Obtain the negated value of the least significant word (LSW) of 32-bit operand with saturation. Place
the result in the LSW of the destination register with MSW being sign extended. Note that, negate of
0xFFFF_8000 yields 0x0000_7FFF. Any flag updates will only occur if the set flags suffix (.F) is
used.

Pseudo Code Example:
src16 = src & 0x0000_FFFF
if src16 <= 0x7FFF
 sat = 0
 dest = 0 - src16
else
 sat = 0
 dest = 0x0000_0000 - src16
if src16==0x8000
 sat = 1
 dest = 0x0000_7FFF
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 V_flag = sat
 S_flag = S_flag || sat

/* NEGSW */
// Using
// unsigned
// pseudo
// arithmetic

Assembly Code Example:
NEGSW r1,r2 ; Negate the LSW value of r2 and write result into r1

NOP Instruction Set Details

282 ARCompact™ Programmer's Reference

NOP
No Operation

Control Operation

Operation:
No Operation

Format:
inst

Format Key:
inst = Instruction

Syntax:
 Instruction Code
NOP_S 0111100011100000
NOP 00100110010010100111000000000000

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
UNIMP_S

Description:
No operation. The state of the processor is not changed by this instruction. The 32-bit NOP is an
encoding of the MOV instruction (syntax MOV 0,u6) using the General Operations Register with
Unsigned 6-bit Immediate format on page 143.

Pseudo Code Example:
 /* NOP_S */

Assembly Code Example:
NOP_S ; No operation

Instruction Set Details NORM

ARCompact™ Programmer's Reference 283

NORM
Normalize

Extension Option

Operation:
dest ← normalization integer of src

 src

dest

MSB LSB

S

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
With Result Instruction Code
NORM<.f> b,c 00101bbb00101111FBBBCCCCCC000001
NORM<.f> b,u6 00101bbb01101111FBBBuuuuuu000001
NORM<.f> b,limm 00101bbb00101111FBBB111110000001 L
Without Result
NORM<.f> 0,c 0010111000101111F111CCCCCC000001
NORM<.f> 0,u6 0010111001101111F111uuuuuu000001
NORM<.f> 0,limm 0010111000101111F111111110000001 L

Flag Affected (32-Bit): Key:
Z • = Set if source is zero L = Limm Data
N • = Set if most significant bit of source is set
C = Unchanged
V = Unchanged

Related Instructions:
EXTB SEXB
NORMW

Description:
Gives the normalization integer for the signed value in the operand. The normalization integer is the
amount by which the operand should be shifted left to normalize it as a 32-bit signed integer. This
function is sometimes referred to as "find first bit". Any flag updates will only occur if the set flags
suffix (.F) is used.

Note that, the returned value for source operand of zero is 0x0000001F. Examples of returned values
are shown in the table below:

Operand Value Returned Value
0x00000000 0x0000001F
0x00000001 0x0000001E
0x1FFFFFFF 0x00000002
0x3FFFFFFF 0x00000001
0x7FFFFFFF 0x00000000
0x80000000 0x00000000
0xC0000000 0x00000001
0xE0000000 0x00000002
0xFFFFFFFF 0x0000001F

NORM Instruction Set Details

284 ARCompact™ Programmer's Reference

Pseudo Code Example:
dest = NORM(src)
if F==1 then
 Z_flag = if src==0 then 1 else 0
 N_flag = src[31]

/* NORM */

Assembly Code Example:
NORM r1,r2 ; Normalization integer for r2

; write result into r1

Instruction Set Details NORMW

ARCompact™ Programmer's Reference 285

NORMW
Normalize Word

Extension Option

Operation:
dest ← normalization integer of src

 src

dest

MSB LSB

S

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
With Result Instruction Code
NORMW<.f> b,c 00101bbb00101111FBBBCCCCCC001000
NORMW<.f> b,u6 00101bbb01101111FBBBuuuuuu001000
NORMW<.f> b,limm 00101bbb00101111FBBB111110001000 L
Without Result
NORMW<.f> 0,c 0010111000101111F111CCCCCC001000
NORMW<.f> 0,u6 0010111001101111F111uuuuuu001000
NORMW<.f> 0,limm 0010111000101111F111111110001000 L

Flag Affected (32-Bit): Key:
Z • = Set if source is zero L = Limm Data
N • = Set if most significant bit of source is set
C = Unchanged
V = Unchanged

Related Instructions:
EXTW SEXW
NORM

Description:
Gives the normalization integer for the signed value in the operand. The normalization integer is the
amount by which the operand should be shifted left to normalize it as a 16-bit signed integer. When
normalizing a 16-bit signed integer the lower 16 bits of the source data (src) is used. This function is
sometimes referred to as "find first bit". Any flag updates will only occur if the set flags suffix (.F) is
used. Note that the returned value for source operand of zero is 0x000F. Examples of returned values
are shown in the table below:

Operand Value Returned Value
0x0000 0x000F
0x0001 0x000E
0x1FFF 0x0002
0x3FFF 0x0001
0x7FFF 0x0000
0x8000 0x0000
0xC000 0x0001
0xE000 0x0002
0xFFFF 0x000F

NORMW Instruction Set Details

286 ARCompact™ Programmer's Reference

Pseudo Code Example:
dest = NORMW(src)
if F==1 then
 Z_flag = if (src & 0x0000FFFF)==0 then 1 else 0
 N_flag = src[15]

/* NORMW */

Assembly Code Example:
NORMW r1,r2 ; Normalization integer for r2

; write result into r1

Instruction Set Details NOT

ARCompact™ Programmer's Reference 287

NOT
Logical Bitwise NOT

Logical Operation

Operation:
dest ← NOT(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
NOT = Negate Source

Syntax:
With Result Instruction Code
NOT<.f> b,c 00100bbb00101111FBBBCCCCCC001010
NOT<.f> b,u6 00100bbb01101111FBBBuuuuuu001010
NOT<.f> b,limm 00100bbb00101111FBBB111110001010 L
NOT_S b,c 01111bbbccc10010
Without Result
NOT<.f> 0,c 0010011000101111F111CCCCCC001010
NOT<.f> 0,u6 0010011001101111F111uuuuuu001010
NOT<.f> 0,limm 0010011000101111F111111110001010 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
ABS NEG

Description:
Logical bitwise NOT (inversion) of the source operand (src) with the result placed into the destination
register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = NOT(src)
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* NOT */

Assembly Code Example:
NOT r1,r2 ; Logical bitwise NOT r2 and

; write result into r1

OR Instruction Set Details

288 ARCompact™ Programmer's Reference

OR
Logical Bitwise OR

Logical Operation

Operation:
if (cc=true) then dest ← (src1 OR src2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code
OR = Logical Bitwise OR

Syntax:
With Result Instruction Code
OR<.f> a,b,c 00100bbb00000101FBBBCCCCCCAAAAAA
OR<.f> a,b,u6 00100bbb01000101FBBBuuuuuuAAAAAA
OR<.f> b,b,s12 00100bbb10000101FBBBssssssSSSSSS
OR<.cc><.f> b,b,c 00100bbb11000101FBBBCCCCCC0QQQQQ
OR<.cc><.f> b,b,u6 00100bbb11000101FBBBuuuuuu1QQQQQ
OR<.f> a,limm,c 0010011000000101F111CCCCCCAAAAAA L
OR<.f> a,b,limm 00100bbb00000101FBBB111110AAAAAA L
OR<.cc><.f> b,b,limm 00100bbb11000101FBBB1111100QQQQQ L
OR_S b,b,c 01111bbbccc00101
Without Result
OR<.f> 0,b,c 00100bbb00000101FBBBCCCCCC111110
OR<.f> 0,b,u6 00100bbb01000101FBBBuuuuuu111110
OR<.f> 0,b,limm 00100bbb00000101FBBB111110111110 L
OR<.cc><.f> 0,limm,c 0010011011000101F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
AND BIC
XOR

Description:
Logical bitwise OR of source operand 1 (src1) with source operand 2 (src2). The result is written into
the destination register (dest). Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 OR src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* OR */

Assembly Code Example:
OR r1,r2,r3 ; Logical bitwise OR contents of r2 with r3

; and write result into r1;

Instruction Set Details POP_S

ARCompact™ Programmer's Reference 289

POP_S
Pop from Stack

Memory Operation

Operation:
dest ←Result of Memory Load from Address [sp] then sp ← sp+4

Format:
inst dest

Format Key:
dest = Destination Register
sp = Stack Pointer (r28)

Syntax:
 Instruction Code
POP_S b 11000bbb11000001
POP_S blink 11000RRR11010001

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
PUSH_S LD

Description:
Perform a long word memory load from the long word aligned address specified in the implicit Stack
Pointer (r28) and place the result into the destination register (dest). Subsequently the implicit stack
pointer is automatically incremented by 4-bytes (sp=sp+4). The status flags are not updated with this
instruction.

Pseudo Code Example:
dest = Memory(SP, 4)
SP = SP + 4

/* POP */

Assembly Code Example:
POP r1 ; Load long word from memory

; at address SP and write
; result to r1 and then add 4
; to SP

PREFETCH Instruction Set Details

290 ARCompact™ Programmer's Reference

PREFETCH
Prefetch from Memory

Memory Operation

Operation:
prefetch @ (src1+src2)

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2 (Offset)

Syntax:
 Instruction Code
PREFETCH<.aa> [b,s9] 00010bbbssssssssSBBB0aa000111110
PREFETCH [limm] 000101100000000001110RR000111110 L
PREFETCH<.aa> [b,c] 00100bbbaa1100000BBBCCCCCC111110
PREFETCH<.aa> [b,limm] 00100bbbaa1100000BBB111110111110 L
PREFETCH [limm,c] 00100110RR1100000111CCCCCC111110 L

Address Write-back Mode <.aa>:
Address Write-
back Syntax

aa Field Effective Address Address Write-Back

No Field Syntax 00 Address = src1+src2 (register+offset) None
.A or .AW 01 Address = src1+src2 (register+offset) src1 ← src1+src2

(register+offset)
.AB 10 Address = src1 (register) src1 ← src1+src2

(register+offset)
.AS 11 Address = src1+(src2<<1) (<zz>='10')

Address = src1+(src2<<2) (<zz>= '00')
None

NOTE Using a byte or signed byte data size is invalid and is a reserved format.

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
LD ST
POP_S

Description:
The PREFETCH instruction is provided as a synonym for a particular encoding of the LD instruction.

A memory load occurs from the address that is calculated by adding source operand 1 (src1) with
source operand 2 (scr2) and the returning load data is loaded into the data cache. The returning load is
not written to any core register.

The address write-back mode can be selected by use of the <.aa> syntax. Note than when using the
scaled source addressing mode (.AS), the scale factor is set to long-word. The status flags are not
updated with this instruction.

Instruction Set Details PREFETCH

ARCompact™ Programmer's Reference 291

Pseudo Code Example:
if AA==0 then address = src1 + src2
if AA==1 then address = src1 + src2
if AA==2 then address = src1
if AA==3 then
 address = src1 + (src2 << 2)
if AA==1 or AA==2 then
 src1 = src1 + src2
DEBUG[LD] = 1

/* PREFETCH */

if NoFurtherLoadsPending() then
 DEBUG[LD] = 0

/* On Returning Load */

Assembly Code Example:
PREFETCH [r1,4]

; Prefetch long word from memory
; address r1+4

PUSH_S Instruction Set Details

292 ARCompact™ Programmer's Reference

PUSH_S
Push onto Stack

Memory Operation

Operation:
sp ← sp-4 then Memory Write Address [sp] ← src

Format:
inst src

Format Key:
src = Source Operand
sp = Stack Pointer (r28)

Syntax:
 Instruction Code
PUSH_S b 11000bbb11100001
PUSH_S blink 11000RRR11110001

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
POP_S

Description:
Decrement 4-bytes from the implicit stack pointer address found in r28 and perform a long word
memory write to that address with the data specified in the source operand (src). The status flags are
not updated with this instruction.

Pseudo Code Example:
SP = SP - 4
Memory(SP, 4) = src

/* PUSH */

Assembly Code Example:
PUSH r1 ; Subtract 4 from SP and then

; store long word from r1
; to memory at address SP

Instruction Set Details RCMP

ARCompact™ Programmer's Reference 293

RCMP
Reverse Comparison

Arithmetic Operation

Operation:
if (cc=true) then src2 – src1

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
 Instruction Code
RCMP b,s12 00100bbb100011011BBBssssssSSSSSS
RCMP<.cc> b,c 00100bbb110011011BBBCCCCCC0QQQQQ
RCMP<.cc> b,u6 00100bbb110011011BBBuuuuuu1QQQQQ
RCMP<.cc> b,limm 00100bbb110011011BBB1111100QQQQQ L
RCMP<.cc> limm,c 00100110110011011111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
CMP

Description:
A reverse comparison is performed by subtracting source operand 1 (src1) from source operand 2
(src2) and subsequently updating the flags. The flag setting field, F, is always encoded as 1 for this
instruction.

There is no destination register therefore the result of the subtract is discarded.

NOTE RCMP always sets the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:
if cc==true then
 alu = src2 - src1
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]
 C_flag = Carry()
 V_flag = Overflow()

/* RCMP */

Assembly Code Example:
RCMP r1,r2 ; Subtract r1 from r2

; and set the flags on the
; result

RLC Instruction Set Details

294 ARCompact™ Programmer's Reference

RLC
Rotate Left Through Carry

Logical Operation

Operation:
dest ← RLC by 1 (src)

src

dest C

MSB LSB

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
RLC = Rotate Source Operand Left Through Carry by 1

Syntax:
With Result Instruction Code
RLC<.f> b,c 00100bbb00101111FBBBCCCCCC001011
RLC<.f> b,u6 00100bbb01101111FBBBuuuuuu001011
RLC<.f> b,limm 00100bbb00101111FBBB111110001011 L
Without Result
RLC<.f> 0,c 0010011000101111F111CCCCCC001011
RLC<.f> 0,u6 0010011001101111F111uuuuuu001011
RLC<.f> 0,limm 0010011000101111F111111110001011 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Undefined

Related Instructions:
RRC ROR

Description:
Rotate the source operand (src) left by one and place the result in the destination register (dest).

The carry flag is shifted into the least significant bit of the result, and the most significant bit of the
source is placed in the carry flag. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src << 1
dest[0] = C_flag
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = src[31]
 V_flag = UNDEFINED

/* RLC */

Assembly Code Example:
RLC r1,r2 ; Rotate left through carry

; contents of r2 by one bit
; and write result into r1

Instruction Set Details RND16

ARCompact™ Programmer's Reference 295

RND16
Two’s complement Rounding

Extended Arithmetic Operation

Operation:
dest ← (sat32(src+0x00008000) & 0xFFFF0000)>>16

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
RND16<.f> b,c 00101bbb00101111FBBBCCCCCC000011
RND16<.f> b,u6 00101bbb01101111FBBBuuuuuu000011
RND16<.f> b,limm 00101bbb00101111FBBB111110000011 L
Without Result
RND16<.f> 0,c 0010111000101111F111CCCCCC000011
RND16<.f> 0,u6 0010111001101111F111uuuuuu000011
RND16<.f> 0,limm 0010111000101111F111111110000011 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ABSSW ABSS
SAT16 NEGSW

Description:
Round the 32-bit source operand into its most significant word (MSW) using two’s compliment
rounding with saturation. Place the result in the LSW of the destination register with the MSW of the
result being sign extended. Any flag updates will only occur if the set flags suffix (.F) is used.

Two’s complement rounding is equivalent to adding 0x0000_8000 to the 32-bit input, and truncating
the result to its MSW.

Pseudo Code Example:
if src >= 0x7FFF_8000 and src <= 0x7FFF_FFFF
 dest = 0x7FFF
 sat = 1
else
 dest = (src + 0x0000_8000) >> 16
 sat = 0
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 V_flag = sat
 S_flag = S_flag || sat

/* RND16 */
// Using
// unsigned
// pseudo
// arithmetic

Assembly Code Example:
RND16 r1,r2 ; write the rounded result of r2 into r1

ROR Instruction Set Details

296 ARCompact™ Programmer's Reference

ROR
Rotate Right

Logical Operation

Operation:
dest ← ROR by 1 (src)

src

dest C

MSB LSB

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
ROR = Rotate Source Operand Right by 1

Syntax:
With Result Instruction Code
ROR<.f> b,c 00100bbb00101111FBBBCCCCCC000011
ROR<.f> b,u6 00100bbb01101111FBBBuuuuuu000011
ROR<.f> b,limm 00100bbb00101111FBBB111110000011 L
Without Result
ROR<.f> 0,c 0010011000101111F111CCCCCC000011
ROR<.f> 0,u6 0010011001101111F111uuuuuu000011
ROR<.f> 0,limm 0010011000101111F111111110000011 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
RRC RLC
ROR multiple

Description:
Rotate the source operand (src) right by one and place the result in the destination register (dest).

The least significant bit of the source operand is copied to the carry flag. Any flag updates will only
occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src >> 1
dest[31] = src[0]
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = src[0]

/* ROR */

Assembly Code Example:
ROR r1,r2 ; Rotate right contents of r2 by one bit

; and write result into r1

Instruction Set Details ROR multiple

ARCompact™ Programmer's Reference 297

ROR multiple
Multiple Rotate Right

Logical Operation

Operation:
if (cc=true) then dest ← rotate right of src1 by src2

src1

dest C

MSB LSB

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
ROR<.f>@ a,b,c 00101bbb00000011FBBBCCCCCCAAAAAA
ROR<.f> a,b,u6 00101bbb01000011FBBBuuuuuuAAAAAA
ROR<.f> b,b,s12 00101bbb10000011FBBBssssssSSSSSS
ROR<.cc><.f> b,b,c 00101bbb11000011FBBBCCCCCC0QQQQQ
ROR<.cc><.f> b,b,u6 00101bbb11000011FBBBuuuuuu1QQQQQ
ROR<.f> a,limm,c 0010111000000011F111CCCCCCAAAAAA L
ROR<.f> a,b,limm 00101bbb00000011FBBB111110AAAAAA L
ROR<.cc><.f> b,b,limm 00101bbb11000011FBBB1111100QQQQQ L

Without Result

ROR<.f> 0,b,c 00101bbb00000011FBBBCCCCCC111110
ROR<.f> 0,b,u6 00101bbb01000011FBBBuuuuuu111110
ROR<.cc><.f> 0,limm,c 0010111011000011F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ASR LSR
RLC RRC
ASL multiple ASR multiple
LSR multiple

Description:
Rotate right src1 by src2 places and place the result in the destination register. Only the bottom 5 bits
of src2 are used as the shift value. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc=true then
 dest = src1 >> (src2 & 31)
 dest [31:(31-src2)] = src1 [(src2-1):0]
 if F==1 then

/* ROR */
/* Multiple */

ROR multiple Instruction Set Details

298 ARCompact™ Programmer's Reference

 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = if src2==0 then 0 else src1[src2-1]

Assembly Code Example:
ROR r1,r2,r3 ; Rotate right

; contents of r2 by r3 bits
; and write result into r1

Instruction Set Details RRC

ARCompact™ Programmer's Reference 299

RRC
Rotate Right through Carry

Logical Operation

Operation:
dest ← RRC by 1 (src)

src

dest C

MSB LSB

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
RRC = Rotate Source Operand Right Through Carry by 1

Syntax:
With Result Instruction Code
RRC<.f> b,c 00100bbb00101111FBBBCCCCCC000100
RRC<.f> b,u6 00100bbb01101111FBBBuuuuuu000100
RRC<.f> b,limm 00100bbb00101111FBBB111110000100 L
Without Result
RRC<.f> 0,c 0010011000101111F111CCCCCC000100
RRC<.f> 0,u6 0010011001101111F111uuuuuu000100
RRC<.f> 0,limm 0010011000101111F111111110000100 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V = Unchanged

Related Instructions:
ROR RLC

Description:
Rotate the source operand (src) right by one and place the result in the destination register (dest).

The carry flag is shifted into the most significant bit of the result, and the most significant bit of the
source is placed in the carry flag. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
dest = src >> 1
dest[31] = C_flag
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = src[0]

/* RRC */

Assembly Code Example:
RRC r1,r2 ; Rotate right through carry

; contents of r2 by one bit
; and write result into r1

RSUB Instruction Set Details

300 ARCompact™ Programmer's Reference

RSUB
Reverse Subtract

Arithmetic Operation

Operation:
if (cc=true) then dest ← src2 – src1

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
With Result Instruction Code
RSUB<.f> a,b,c 00100bbb00001110FBBBCCCCCCAAAAAA
RSUB<.f> a,b,u6 00100bbb01001110FBBBuuuuuuAAAAAA
RSUB<.f> b,b,s12 00100bbb10001110FBBBssssssSSSSSS
RSUB<.cc><.f> b,b,c 00100bbb11001110FBBBCCCCCC0QQQQQ
RSUB<.cc><.f> b,b,u6 00100bbb11001110FBBBuuuuuu1QQQQQ
RSUB<.f> a,limm,c 0010011000001110F111CCCCCCAAAAAA L
RSUB<.f> a,b,limm 00100bbb00001110FBBB111110AAAAAA L
RSUB<.cc><.f> b,b,limm 00100bbb11001110FBBB1111100QQQQQ L
Without Result
RSUB<.f> 0,b,c 00100bbb00001110FBBBCCCCCC111110
RSUB<.f> 0,b,u6 00100bbb01001110FBBBuuuuuu111110
RSUB<.f> 0,b,limm 00100bbb00001110FBBB111110111110 L
RSUB<.cc><.f> 0,limm,c 0010011011001110F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
SUB SUB3
SUB1 SUBS
SUB2 SBC

Description:
Subtract source operand 1 (src1) from source operand 2 (src2) and place the result in the destination
register.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src2 - src1
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* RSUB */

Instruction Set Details RSUB

ARCompact™ Programmer's Reference 301

Assembly Code Example:
RSUB r1,r2,r3 ; Subtract contents of r2 from

; r3 and write result into r1

RTIE Instruction Set Details

302 ARCompact™ Programmer's Reference

RTIE
Return from Interrupt/Exception

Kernel Operation

Operation:
Return from interrupt or exception.

Format:
inst

Format Key:
inst = Instruction

Syntax:
 Instruction Code
RTIE 00100100011011110000000000111111

Flag Affected (32-Bit): Key:
Z • = Set according to status register update L = Limm Data
N • = Set according to status register update
C • = Set according to status register update
V • = Set according to status register update
E1 • = Set according to status register update
E2 • = Set according to status register update
U • = 1
AE • = 0

Related Instructions:
TRAP_S SWI/TRAP0
J.F [ILINK1] J.F [ILINK2]

Description:
The return from interrupt/exception instruction, RTIE, allows exit from interrupt and exception
handlers, and to allow the processor to switch from kernel mode to user mode.

The RTIE instruction is available only in kernel mode. Attempted use when in user mode causes a
Privilege Violation exception.

The RTIE instruction can be used by interrupt and exception handlers as a single instruction for exit.
The RTIE instruction updates the program counter and status registers depending on whether a high
or low interrupt, or an exception is being serviced according to the following:

• High level interrupt return registers – ILINK2, STATUS32_L2

• Low level interrupt return registers – ILINK1, STATUS32_L1

• Exception return registers – ERET, ERSTATUS

Bits in the STATUS32 register are provided to allow the RTIE instruction to determine from where to
reload the pre-interrupt/exception machine state.

Since interrupts and exceptions are permitted between a branch/jump and an executed delay slot
instruction, special branch target address registers are used for interrupt and exception handler
returns.

If the STATUS32[DE] bit becomes set as a result of the RTIE instruction, the processor will be put
back into a state where a branch with a delay slot is pending. The target of the branch will be

Instruction Set Details RTIE

ARCompact™ Programmer's Reference 303

contained in the BTA register. The value in BTA will have been restored from the appropriate
Interrupt or Exception Return BTA register (ERBTA, BTA_L1 or BTA_L2).

When returning from an interrupt, the Branch Target Address register (BTA) is loaded from the
appropriate high- or low-level Interrupt Return Branch Target Address register (BTA_L1 or
BTA_L2).

When returning from an exception, the Branch Target Address register (BTA) is loaded from the
Exception Return Branch Target Address (ERBTA) register.

NOTE

Exit of an interrupt handler is also supported through the use of Jcc.F [ILINKn] and J_S.F [ILINKn].
Using these instructions will cause the appropriate Interrupt Return Link Register (BTA_L1 or
BTA_L2) to be copied to BTA.

Pseudo Code Example
if STATUS[AE] == 1 then
 PC = ERET
 STATUS32 = ERSTATUS
 BTA = ERBTA
else if STATUS[A2] == 1 then
 PC = ILINK2
 STATUS32 = STATUS32_L2
 BTA = BTA_L2
else if STATUS[A1] == 1 then
 PC = ILINK1
 STATUS32 = STATUS32_L1
 BTA = BTA_L1
else
 PC = ERET
 STATUS32 = ERSTATUS
 BTA = Verbatim STATUS[AE]

/* RTIE */

Assembly Code Example:
RTIE ; Return from interrupt/exception

SAT16 Instruction Set Details

304 ARCompact™ Programmer's Reference

SAT16
Saturation

Extended Arithmetic Operation

Operation:
dest ← sat16(src)

Format:
inst dest, src

Format Key:
dest = Destination Register
src = Source Operand 1

Syntax:
With Result Instruction Code
SAT16<.f> b,c 00101bbb00101111FBBBCCCCCC000010
SAT16<.f> b,u6 00101bbb01101111FBBBuuuuuu000010
SAT16<.f> b,limm 00101bbb00101111FBBB111110000010 L
Without Result
SAT16<.f> 0,c 0010111000101111F111CCCCCC000010
SAT16<.f> 0,u6 0010111001101111F111uuuuuu000010
SAT16<.f> 0,limm 0010111000101111F111111110000010 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ABSSW ABSS
RND16 NEGSW

Description:
Limit the 32-bit signed input operand to the range of a 16 bit signed word. The result of this operation
has a signed value in the range 0xFFFF_8000 (negative value) up to 0x0000_7FFFF (positive value).
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if src >= 0xFFFF_8000 and src <= 0x0000_7FFF
 dest = src
 sat = 0
if src < 0xFFFF_8000
 dest = 0xffff_8000
 sat = 1
if src > 0x0000_7FFF
 dest = 0x0000_7FFF
 sat =1
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 V_flag = sat
 S_flag = S_flag || sat

/* SAT16 */
// Using
// unsigned
// pseudo
// arithmetic

Assembly Code Example:
SAT16 r1,r2 ; Take the 16 bit saturated value of

; r2 and write result into r1

Instruction Set Details SBC

ARCompact™ Programmer's Reference 305

SBC
Subtract with Carry

Arithmetic Operation

Operation:
if (cc=true) then dest ← (src1 – src2) - C

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code
C = Carry Flag Value

Syntax:
With Result Instruction Code
SBC<.f> a,b,c 00100bbb00000011FBBBCCCCCCAAAAAA
SBC<.f> a,b,u6 00100bbb01000011FBBBuuuuuuAAAAAA
SBC<.f> b,b,s12 00100bbb10000011FBBBssssssSSSSSS
SBC<.cc><.f> b,b,c 00100bbb11000011FBBBCCCCCC0QQQQQ
SBC<.cc><.f> b,b,u6 00100bbb11000011FBBBuuuuuu1QQQQQ
SBC<.f> a,limm,c 0010011000000011F111CCCCCCAAAAAA L
SBC<.f> a,b,limm 00100bbb00000011FBBB111110AAAAAA L
SBC<.cc><.f> b,b,limm 00100bbb11000011FBBB1111100QQQQQ L
Without Result
SBC<.f> 0,b,c 00100bbb00000011FBBBCCCCCC111110
SBC<.f> 0,b,u6 00100bbb01000011FBBBuuuuuu111110
SBC<.f> 0,b,limm 00100bbb00000011FBBB111110111110 L
SBC<.cc><.f> 0,limm,c 0010011011000011F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
SUB RSUB
SUB1 SUB3
SUB2 SUBS

Description:
Subtract source operand 2 (src2) from source operand 1 (src1) and also subtract the state of the carry
flag (if set then subtract ‘1’, otherwise subtract ‘0’). Place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = (src1 - src2) - C_flag
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()

/* SBC */

SBC Instruction Set Details

306 ARCompact™ Programmer's Reference

 V_flag = Overflow()

Assembly Code Example:
SBC r1,r2,r3 ; Subtract with carry contents

; of r3 from r2 and write
; result into r1

Instruction Set Details SEXB

ARCompact™ Programmer's Reference 307

SEXB
Sign Extend Byte

Arithmetic Operation

Operation:
dest ← SEXB(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
SEXB = Sign Extend Byte

Syntax:
With Result Instruction Code
SEXB<.f> b,c 00100bbb00101111FBBBCCCCCC000101
SEXB<.f> b,u6 00100bbb01101111FBBBuuuuuu000101
SEXB<.f> b,limm 00100bbb00101111FBBB111110000101 L
SEXB_S b,c 01111bbbccc01101
Without Result
SEXB<.f> 0,c 0010011000101111F111CCCCCC000101
SEXB<.f> 0,u6 0010011001101111F111uuuuuu000101
SEXB<.f> 0,limm 0010011000101111F111111110000101 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
SEXW EXTB

Description:
Sign extend the byte contained in the source operand (src) to the most significant bit in a long word
and place the result into the destination register (dest). Any flag updates will only occur if the set
flags suffix (.F) is used.

Pseudo Code Example:
dest = src & 0xFF
dest[31:8] = src[7]
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* SEXB */

Assembly Code Example:
SEXB r1,r2 ; Sign extend the bottom 8

; bits of r2 and write
; result to r1

SEXW Instruction Set Details

308 ARCompact™ Programmer's Reference

SEXW
Sign Extend Word

Arithmetic Operation

Operation:
dest ← SEXW(src)

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination
cc = Condition Code
SEXW = Sign Extend Word

Syntax:
With Result Instruction Code
SEXW<.f> b,c 00100bbb00101111FBBBCCCCCC000110
SEXW<.f> b,u6 00100bbb01101111FBBBuuuuuu000110
SEXW<.f> b,limm 00100bbb00101111FBBB111110000110 L
SEXW_S b,c 01111bbbccc01110
Without Result
SEXW<.f> 0,c 0010011000101111F111CCCCCC000110
SEXW<.f> 0,u6 0010011001101111F111uuuuuu000110
SEXW<.f> 0,limm 0010011000101111F111111110000110 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
SEXB EXTW

Description:
Sign extend the word contained in the source operand (src) to the most significant bit in a long word
and place the result into the destination register (dest). Any flag updates will only occur if the set
flags suffix (.F) is used.

Pseudo Code Example:
dest = src & 0xFFFF
dest[31:16] = src[15]
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* SEXW */

Assembly Code Example:
SEXW r1,r2 ; Sign extend the bottom 16

; bits of r2 and write
; result to r1

Instruction Set Details SLEEP

ARCompact™ Programmer's Reference 309

SLEEP
Enter Sleep Mode

Kernel/Control Operation

Operation:
Enter Processor Sleep Mode

Format:
inst

Format Key:
inst = Instruction

Syntax:
 Instruction Code
SLEEP <u6> 00100001011011110000uuuuuu111111
SLEEP c 00100001001011110000CCCCCC111111

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

ZZ • = 1

Related Instructions:
BRK

Description:
The sleep mode is entered when the ARCompact based processor encounters the SLEEP instruction.
It stays in sleep mode until an interrupt or restart occurs. Power consumption is reduced during sleep
mode since the pipeline ceases to change state, and the RAMs are disabled. More power reduction is
achieved when clock gating option is used, whereby all non-essential clocks are switched off.

The SLEEP instruction is a single operand instruction without flags. A SLEEP instruction without a
source operand is encoded as SLEEP 0.

When a SLEEP instruction is detected at the decode stage of the pipeline, the instruction fetch stage is
stalled and the pipeline is flushed ensuring that all instructions remaining in the pipeline are executed
until the pipeline is empty. The the sleep mode flag, ZZ, found in the DEBUG register is then set.

The SLEEP instruction is serializing meaning the SLEEP instruction will complete and then flush the
pipeline.

NOTE If the H flag is set by the FLAG instruction (FLAG 1), three sequential NOP instructions should
immediately follow. This means that SLEEP should not immediately follow a FLAG 1 instruction, but
should be separated by 3 NOP instructions.

When in sleep mode, the sleep mode flag (ZZ) is set and the pipeline is stalled, but not halted. The
host interface operates as normal allowing access to the DEBUG and the STATUS registers and also
has the ability to halt the processor. The host cannot clear the sleep mode flag, but it can wake the
processor by halting it then restarting it. The program counter PC points to the next instruction in
sequence after the sleep instruction.

For the ARC 600 processor the SLEEP instruction should not be placed in the last instruction position
of a zero overhead loop.

SLEEP Instruction Set Details

310 ARCompact™ Programmer's Reference

For the ARCtangent-A5 and ARC 600 processor, the SLEEP instruction cannot immediately follow a
BRcc or BBITn instruction.

The SLEEP instruction can be used in RTOS type applications by using a FLAG 0x06 followed by a
SLEEP instruction. This allows interrupts to be re-enabled at the same time as SLEEP is entered.
Note that interrupts remain disabled until FLAG has completed its update of the flag registers in stage
4 of the ARCompact based pipeline. Hence, if SLEEP follows into the pipeline immediately behind
FLAG, then no interrupt can be taken between the FLAG and SLEEP.

NOTE

For the ARCtangent-A5 and ARC 600 processor, the FLAG followed by SLEEP instruction sequence
must not encounter an instruction-cache miss. This can be accomplished by ensuring that the FLAG
is aligned to the instruction-cache line length.

CAUTION

In some circumstances, for the ARC 600 processor with certain memory systems it may not be
possible to guarantee that the FLAG/SLEEP instruction pair is atomic. For example if the memory
system wait states are 2 or greater and the instruction cache is disabled or not capable of line
locking (direct mapped) then even aligning the FLAG/SLEEP pair to a cache line will not
necessarily ensure atomic operation.

It is possible for the instruction fetch to stall after the FLAG is passed to the pipeline in these
circumstances which means an interrupt could occur between the FLAG instruction and the
SLEEP instruction.

For the ARC 700 processor the bottom 2 bits of the source field, u6 or c, are used as the enable flags
value, the remaining 4 bits are ignored. The SLEEP instruction will set interrupt enables according to
the following values of the source operand:

Instruction Operand Effect on interrupt enables (E1/E2)
SLEEP 0x0 -
SLEEP 0x1 e1 = 1, e2 = 0
SLEEP 0x2 e1 = 0, e2 = 1
SLEEP 0x3 e1 = 1, e2 = 1
The processor will wake from sleep mode on an interrupt or when it is restarted. If an interrupt wakes
it, the ZZ flag is cleared and the instruction in pipeline stage 1 is killed. The interrupt routine is
serviced and execution resumes at the instruction in sequence after the SLEEP instruction. When it is
started after having been halted the ZZ flag is cleared.

SLEEP behaves as a NOP during single step mode. Every single-step operation is a restart and the
ARCompact based processor wakes up at the next single-step. Consequently, the SLEEP instruction
behaves exactly like a NOP propagating through the pipeline.

Pseudo Code Example:
FlushPipe()
DEBUG[ZZ] = 1
WaitForInterrupt()
DEBUG[ZZ] = 0
ServiceInterrupt()

/* SLEEP */

Assembly Code Example:
The SLEEP instruction can be put anywhere in the code, as in the following example.

For the ARC 600 processor the SLEEP instruction should not be placed in the last instruction position
of a zero overhead loop.

For the ARCtangent-A5 and ARC 600 processor, the SLEEP instruction cannot immediately follow a
BRcc or BBITn instruction.

Example 23 Sleep placement in code

Instruction Set Details SLEEP

ARCompact™ Programmer's Reference 311

SUB r2, r2, 0x1
ADD r1, r1, 0x2
SLEEP
...

A SLEEP instruction can follow a branch or jump instruction as in the following code example:

Example 24 Sleep placement after Branch

BAL.D after_sleep
SLEEP
...
after_sleep:
ADD r1,r1,0x2

NOTE In this example, the ARCompact based processor goes to sleep after the branch instruction has
been executed. When the ARCompact based processor is sleeping, the PC points to the “add”
instruction after the label "after_sleep ". When an interrupt occurs, the ARCompact based
processor wakes up, executes the interrupt service routine and continues with the “add ” instruction.

If the delay slot is not enabled or not executed (i.e. killed), as in the following code example, the
SLEEP instruction that follows is never executed:

Example 25 Sleep placement after Branch with killed delay slot

BAL.ND after_sleep
SLEEP
 ...
after_sleep:
ADD r1,r1,0x2

The following example shows the code sequence to ensure successful use of the SLEEP instruction
for RTOS type applications.

Example 26 Enable Interrupts and Sleep, ARCtangent- A5 and ARC 600

.equ EI,0x06 ; Constant to enable both interrupt levels

.align 8 ; ensure cache alignment is to 8 bytes
FLAG EI ; Enable interrupts
SLEEP ; Put processor into sleep mode

For the ARC 700 processor the following code will ensure successful use of the SLEEP instruction
for RTOS type applications.

Example 27 Enable Interrupts and Sleep, ARC 700

.equ e1, 0x1

.equ e2, 0x2

.equ e1e2, 0x3

SLEEP
SLEEP e1 ; e1 = 1, e2 = 0
SLEEP e2 ; e1 = 0, e2 = 1
SLEEP e1e2 ; e1 = 1, e2 = 1

SR Instruction Set Details

312 ARCompact™ Programmer's Reference

SR
Store to Auxiliary Register

Control Operation

Operation:
aux_reg(src2) ← src1

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
 Instruction Code
SR b,[c] 00100bbb001010110BBBCCCCCCRRRRRR
SR b,[limm] 00100bbb001010110BBB111110RRRRRR L
SR b,[u6] 00100bbb011010110BBBuuuuuu000000
SR b,[s12] 00100bbb101010110BBBssssssSSSSSS
SR limm,[c] 00100110001010110111CCCCCCRRRRRR L
SR limm,[u6] 00100110011010110111uuuuuu000000
SR limm,[s12] 00100110101010110111ssssssSSSSSS L

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
LR ST

Description:
Store the data that is held in source operand 1 (src1) into the auxiliary register whose number is
obtained from the source operand 2 (src2).

The status flags are not updated with this instruction therefore the flag setting field, F, should be
encoded as 0.

The reserved field, R, is ignored by the processor, but should be set to 0.

The SR instruction cannot be conditional therefore encoding the operand mode (bits 23:22) to be 0x3
will raise an Instruction Error exception.

For the ARCtangent-A5 and ARC 600 processors, the behavior is undefined if an SR instruction is
encoded using the operand mode of 0x3.

Pseudo Code Example:
Aux_reg(src2) = src1 /* SR */

Assembly Code Example:
SR r1,[r2] ; Store contents of r1 into

; Aux. register pointed to by r2

Instruction Set Details ST

ARCompact™ Programmer's Reference 313

ST
Store to Memory

Memory Operation

Operation:
Memory Store Address @ (src2+src3) ← src1

Format:
inst src1, src2, src3

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
src3 = Source Operand 3 (Offset)

Syntax:
 Instruction Code
ST<zz><.aa><.di> c,[b,s9] 00011bbbssssssssSBBBCCCCCCDaaZZR
ST<zz><.di> c,[limm] 00011110000000000111CCCCCCDRRZZR L
ST<zz><.aa><.di> limm,[b,s9] 00011bbbssssssssSBBB111110DaaZZR L
ST_S c,[b,u7] 10100bbbcccuuuuu
STB_S c,[b,u5] 10101bbbcccuuuuu
STW_S c,[b,u6] 10110bbbcccuuuuu
ST_S b,[sp,u7] 11000bbb010uuuuu
STB_S b,[sp,u7] 11000bbb011uuuuu

Data Size Field <zz>:
Data Size Syntax ZZ Field Description
No Field Syntax 00 Data is a long-word (32-Bits) (<.x> syntax illegal)
W 10 Data is a word (16-Bits)
B 01 Data is a byte (8-Bits)
 11 reserved

Data Cache Mode <.di>:
D Flag Description
0 Cached data memory access (default, if no <.di> field syntax)
1 Non-cached data memory access (bypass data cache)

Address Write-back Mode <.aa>:
Address Write-
back Syntax

aa Field Effective Address Address Write-Back

No Field Syntax 00 Address = src2+src3 (register+offset) None
.A or .AW 01 Address = src2+src3 (register+offset) src2 ← src2+src3 (register+offset)
.AB 10 Address = src2 (register) src2 ← src2+src3 (register+offset)
.AS 11 Address = src2+(src3<<1) (<zz>=

‘10’)
Address = src2+(src3<<2) (<zz>=
‘00’)

None. Using a byte data size is
invalid and is a reserved format

16-Bit Store Instructions Operation:
Instruction Format Operation Description
ST_S c, [b,u7] address[src2+u7].l ← src1 Store long word to address calculated by

register + unsigned immediate
STB_S c, [b,u5] address[src2+u5].b ← src1 Store unsigned byte to address

calculated by register + unsigned
immediate

STW_S c, [b,u6] address[src2+u6].w ← src1 Store unsigned word to address

ST Instruction Set Details

314 ARCompact™ Programmer's Reference

Instruction Format Operation Description
calculated by register + unsigned
immediate

ST_S b, [sp,u7] address[sp+u7].l ← src1 Store long word to address calculated by
Stack Pointer (r28) + unsigned
immediate

STB_S b, [sp,u7] address[sp+u7].b ← src1 Store unsigned byte to address
calculated by Stack Pointer (r28) +
unsigned immediate

Related Instructions:
LD SR
PUSH_S

Description:
Data that is held in source operand 1 (src1) is stored to a memory address that is calculated by adding
source operand 2 (src2) with an offset specified by source operand 3 (scr3). The status flags are not
updated with this instruction.

CAUTION The addition of src2 to src3 is performed with a simple 32-bit adder which is independent of the
ALU. No exception occurs if a carry or overflow occurs. The resultant calculated address may
overlap into unexpected regions depending of the values of src2 and src3.

The size of the data written is specified by the data size field <zz> (32-bit instructions).

NOTE When a memory controller is employed: Store bytes can be made to any byte alignments, Store
words should be made from word aligned addresses and Store longs should be made only from long
aligned addresses.

If the processor contains a data cache, store requests can bypass the cache by using the <.di> syntax.

NOTE For the 16-bit encoded instructions the u offset is aligned accordingly. For example ST_S c, [b. u7]
only needs to encode the top 5 bits since the bottom 2 bits of u7 are always zero because of the 32-
bit data alignment.

The address write-back mode can be selected by use of the <.aa> syntax.

NOTE When using the scaled source addressing mode (.AS), the scale factor is dependent upon the size of
the data word requested (zz).

Pseudo Code Example:
if AA==0 then address = src2 + src3
if AA==1 then address = src2 + src3
if AA==2 then address = src2
if AA==3 and ZZ==0 then
 address = src2 + (src3 << 2)
if AA==3 and ZZ==2 then
 address = src2 + (src3 << 1)
Memory(address, size) = src1
if AA==1 or AA==2 then
 src2 = src2 + src3

/* ST */

Assembly Code Example:
ST r0,[r1,4] ; Store long word value of

; r0 to memory address
; r1+4

Instruction Set Details SUB

ARCompact™ Programmer's Reference 315

SUB
Subtract

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 – src2

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
With Result Instruction Code
SUB<.f> a,b,c 00100bbb00000010FBBBCCCCCCAAAAAA
SUB<.f> a,b,u6 00100bbb01000010FBBBuuuuuuAAAAAA
SUB<.f> b,b,s12 00100bbb10000010FBBBssssssSSSSSS
SUB<.cc><.f> b,b,c 00100bbb11000010FBBBCCCCCC0QQQQQ
SUB<.cc><.f> b,b,u6 00100bbb11000010FBBBuuuuuu1QQQQQ
SUB<.f> a,limm,c 0010011000000010F111CCCCCCAAAAAA L
SUB<.f> a,b,limm 00100bbb00000010FBBB111110AAAAAA L
SUB<.cc><.f> b,b,limm 00100bbb11000010FBBB1111100QQQQQ L
SUB_S c,b,u3 01101bbbccc01uuu
SUB_S b,b,c 01111bbbccc00010
SUB_S b,b,u5 10111bbb011uuuuu
SUB_S.NE b,b,b 01111bbb11000000
SUB_S sp,sp,u7 11000001101uuuuu
Without Result
SUB <.f> 0,b,c 00100bbb00000010FBBBCCCCCC111110
SUB <.f> 0,b,u6 00100bbb01000010FBBBuuuuuu111110
SUB <.f> 0,b,limm 00100bbb00000010FBBB111110111110 L
SUB <.cc><.f> 0,limm,c 0010011011000010F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated

Related Instructions:
RSUB SUB2 SBC
SUB1 SUB3

Description:
Subtract source operand 2 (src2) from source operand 1 (src1) and place the result in the destination
register.

SUB_S.NE is a conditional instruction used to clear a register, and is executed when the Z flag is
equal to zero.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

SUB Instruction Set Details

316 ARCompact™ Programmer's Reference

NOTE For the 16-bit encoded instructions that work on the stack pointer (SP) the offset is aligned to 32-bit.
For example SUB_S sp, sp. u7 only needs to encode the top 5 bits since the bottom 2 bits of u7 are
always zero because of the 32-bit data alignment.

Pseudo Code Example:
if cc==true then
 dest = src1 - src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* SUB */

Assembly Code Example:
SUB r1,r2,r3 ; Subtract contents of r3 from

; r2 and write result into r1

Instruction Set Details SUB1

ARCompact™ Programmer's Reference 317

SUB1
Subtract with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 – (src2 << 1)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
With Result Instruction Code
SUB1<.f> a,b,c 00100bbb00010111FBBBCCCCCCAAAAAA
SUB1<.f> a,b,u6 00100bbb01010111FBBBuuuuuuAAAAAA
SUB1<.f> b,b,s12 00100bbb10010111FBBBssssssSSSSSS
SUB1<.cc><.f> b,b,c 00100bbb11010111FBBBCCCCCC0QQQQQ
SUB1<.cc><.f> b,b,u6 00100bbb11010111FBBBuuuuuu1QQQQQ
SUB1<.f> a,limm,c 0010011000010111F111CCCCCCAAAAAA L
SUB1<.f> a,b,limm 00100bbb00010111FBBB111110AAAAAA L
SUB1<.cc><.f> b,b,limm 00100bbb11010111FBBB1111100QQQQQ L
Without Result
SUB1<.f> 0,b,c 00100bbb00010111FBBBCCCCCC111110
SUB1<.f> 0,b,u6 00100bbb01010111FBBBuuuuuu111110
SUB1<.f> 0,b,limm 00100bbb00010111FBBB111110111110 L
SUB1<.cc><.f> 0,limm,c 0010011011010111F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the SUB part of the instruction

Related Instructions:
RSUB SUB2 SBC
SUB SUB3

Description:
Subtract a scaled version of source operand 2 (src2) (src2 left shifted by 1) from source operand 1
(src1) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 - (src2 << 1)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* SUB1 */

SUB1 Instruction Set Details

318 ARCompact™ Programmer's Reference

Assembly Code Example:
SUB1 r1,r2,r3 ; Subtract contents of r3 left

; shifted one bit from r2
; and write result into r1

Instruction Set Details SUB2

ARCompact™ Programmer's Reference 319

SUB2
Subtract with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 – (src2 << 2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
With Result Instruction Code
SUB2<.f> a,b,c 00100bbb00011000FBBBCCCCCCAAAAAA
SUB2<.f> a,b,u6 00100bbb01011000FBBBuuuuuuAAAAAA
SUB2<.f> b,b,s12 00100bbb10011000FBBBssssssSSSSSS
SUB2<.cc><.f> b,b,c 00100bbb11011000FBBBCCCCCC0QQQQQ
SUB2<.cc><.f> b,b,u6 00100bbb11011000FBBBuuuuuu1QQQQQ
SUB2<.f> a,limm,c 0010011000011000F111CCCCCCAAAAAA L
SUB2<.f> a,b,limm 00100bbb00011000FBBB111110AAAAAA L
SUB2<.cc><.f> b,b,limm 00100bbb11011000FBBB1111100QQQQQ L
Without Result
SUB2<.f> 0,b,c 00100bbb00011000FBBBCCCCCC111110
SUB2<.f> 0,b,u6 00100bbb01011000FBBBuuuuuu111110
SUB2<.f> 0,b,limm 00100bbb00011000FBBB111110111110 L
SUB2<.cc><.f> 0,limm,c 0010011011011000F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the SUB part of the instruction

Related Instructions:
RSUB SUB SBC
SUB1 SUB3

Description:
Subtract a scaled version of source operand 2 (src2) (src2 left shifted by 2) from source operand 1
(src1) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 - (src2 << 2)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* SUB2 */

SUB2 Instruction Set Details

320 ARCompact™ Programmer's Reference

Assembly Code Example:
SUB2 r1,r2,r3 ; Subtract contents of r3 left

; shifted two bits from r2
; and write result into r1

Instruction Set Details SUB3

ARCompact™ Programmer's Reference 321

SUB3
Subtract with Scaled Source

Arithmetic Operation

Operation:
if (cc=true) then dest ← src1 – (src2 << 3)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
With Result Instruction Code
SUB3<.f> a,b,c 00100bbb00011001FBBBCCCCCCAAAAAA
SUB3<.f> a,b,u6 00100bbb01011001FBBBuuuuuuAAAAAA
SUB3<.f> b,b,s12 00100bbb10011001FBBBssssssSSSSSS
SUB3<.cc><.f> b,b,c 00100bbb11011001FBBBCCCCCC0QQQQQ
SUB3<.cc><.f> b,b,u6 00100bbb11011001FBBBuuuuuu1QQQQQ
SUB3<.f> a,limm,c 0010011000011001F111CCCCCCAAAAAA L
SUB3<.f> a,b,limm 00100bbb00011001FBBB111110AAAAAA L
SUB3<.cc><.f> b,b,limm 00100bbb11011001FBBB1111100QQQQQ L
Without Result
SUB3<.f> 0,b,c 00100bbb00011001FBBBCCCCCC111110
SUB3<.f> 0,b,u6 00100bbb01011001FBBBuuuuuu111110
SUB3<.f> 0,limm,c 0010011000011001F111CCCCCC111110 L
SUB3<.cc><.f> 0,limm,c 0010011011011001F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated
V • = Set if overflow is generated from the SUB part of the instruction

Related Instructions:
RSUB SUB2 SBC
SUB1 SUB

Description:
Subtract a scaled version of source operand 2 (src2) (src2 left shifted by 3) from source operand 1
(src1) and place the result in the destination register.

If the carry flag is set upon performing the subtract, the carry flag should be interpreted as a ‘borrow’.
Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 - (src2 << 3)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = Carry()
 V_flag = Overflow()

/* SUB3 */

SUB3 Instruction Set Details

322 ARCompact™ Programmer's Reference

Assembly Code Example:
SUB3 r1,r2,r3 ; Subtract contents of r3 left

; shifted three bits from r2
; and write result into r1

Instruction Set Details SUBS

ARCompact™ Programmer's Reference 323

SUBS
Signed Subtraction with Saturation

Extended Arithmetic Operation

Operation:
dest ← sat32 (src1 - src2)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
SUBS<.f> a,b,c 00101bbb00000111FBBBCCCCCCAAAAAA
SUBS<.f> a,b,u6 00101bbb01000111FBBBuuuuuuAAAAAA
SUBS<.f> b,b,s12 00101bbb10000111FBBBssssssSSSSSS
SUBS<.cc><.f> b,b,c 00101bbb11000111FBBBCCCCCC0QQQQQ
SUBS<.cc><.f> b,b,u6 00101bbb11000111FBBBuuuuuu1QQQQQ
SUBS<.f> a,limm,c 0010111000000111F111CCCCCCAAAAAA L
SUBS<.f> a,b,limm 00101bbb00000111FBBB111110AAAAAA L
SUBS<.cc><.f> b,b,limm 00101bbb11000111FBBB111110QQQQQQ L
Without Result

SUBS<.f> 0,b,c 00101bbb00000111FBBBCCCCCC111110
SUBS<.f> 0,b,u6 00101bbb01000111FBBBuuuuuu111110
SUBS<.f> 0,b,limm 00101bbb00000111FBBB111110111110 L
SUBS<.cc><.f> 0,limm,c 0010111011000111F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C • = Set if carry is generated by the subtract
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ADDS SUB

Description:
Perform a signed subtraction of the two source operands. If the result overflows, limit it to the
maximum signed value. Both saturation flags S1 and S2 will be set if the result of the instruction
saturates. Any flag updates will only occur if the set flags suffix (.F) is used.

Pseudo Code Example:
if cc==true then
 dest = src1 - src2
 sat = sat32(dest)
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]
 C_flag = 0
 V_flag = sat
 S_flag = S_flag || sat

/* SUBS */

SUBS Instruction Set Details

324 ARCompact™ Programmer's Reference

Assembly Code Example:
SUBS r1,r2,r3 ; Subtract contents of r3 from r2

; and write result into r1

Instruction Set Details SUBSDW

ARCompact™ Programmer's Reference 325

SUBSDW
Signed Subtract with Saturation Dual Word

Extended Arithmetic Operation

Operation:
dest ← sat16(src1.high-src2.high) : sat16(src1.low-src2.low)

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2

Syntax:
With Result Instruction Code
SUBSDW<.f> a,b,c 00101bbb00101001FBBBCCCCCCAAAAAA
SUBSDW<.f> a,b,u6 00101bbb01101001FBBBuuuuuuAAAAAA
SUBSDW<.f> b,b,s12 00101bbb10101001FBBBssssssSSSSSS
SUBSDW<.cc><.f> b,b,c 00101bbb11101001FBBBCCCCCC0QQQQQ
SUBSDW<.cc><.f> b,b,u6 00101bbb11101001FBBBuuuuuu1QQQQQ
SUBSDW<.f> a,limm,c 0010111000101001F111CCCCCCAAAAAA L
SUBSDW<.f> a,b,limm 00101bbb00101001FBBB111110AAAAAA L
SUBSDW<.cc><.f> b,b,limm 00101bbb11101001FBBB111110QQQQQQ L
Without Result - only flags will be set
SUBSDW<.f> 0,b,c 00101bbb00101001FBBBCCCCCC111110
SUBSDW<.f> 0,b,u6 00101bbb01101001FBBBuuuuuu111110
SUBSDW<.cc><.f> 0,limm,c 0010111011101001F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V • = Set if result saturated, otherwise cleared
S • = Set if result saturated (‘sticky’ saturation)

Related Instructions:
ADDSDW SUB
ADDS SUBS

Description:
Perform a signed dual-word subtraction of the two source operands. If the result overflows, limit it to
the maximum signed value. The saturation flags S1 and S2 will be set according to the result of the
channel 1 (high 16-bit) and channel 2 (low 16-bit) calculations respectively. Any flag updates will
only occur if the set flags suffix (.F) is used.

Assembly Code Example:
SUBSDW r1,r2,r3 ;

SWAP Instruction Set Details

326 ARCompact™ Programmer's Reference

SWAP
Swap words

Extension Option

Operation:
dest ← word swap of src

 src

dest

MSB LSB

Format:
inst dest, src

Format Key:
src = Source Operand
dest = Destination

Syntax:
With Result
SWAP<.f> b,c 00101bbb00101111FBBBCCCCCC000000
SWAP<.f> b,u6 00101bbb01101111FBBBuuuuuu000000
SWAP<.f> b,limm 00101bbb00101111FBBB111110000000 L
Without Result

SWAP<.f> 0,c 0010111000101111F111CCCCCC000000
SWAP<.f> 0,u6 0010111001101111F111uuuuuu000000
SWAP<.f> 0,limm 0010111000101111F111111110000000 L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
NORM MOV

Description:
Swap the lower 16 bits of the operand with the upper 16 bits of the operand and place the result of
that swap in the destination register. Any flag updates will only occur if the set flags suffix (.F) is
used.

Pseudo Code Example:
dest = SWAP(src)
if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* SWAP */

Assembly Code Example:
SWAP r1,r2 ; Swap top and bottom 16 bits of r2

; write result into r1

Instruction Set Details SWI/TRAP0

ARCompact™ Programmer's Reference 327

SWI/TRAP0
Software Interrupt or Software Breakpoint

Control Operation

Operation:
Trigger Instruction Error Level Interrupt

Format:
inst

Format Key:
inst = Instruction

Syntax:
 Instruction Code
SWI 00100010011011110000000000111111
TRAP0 00100010011011110000000000111111

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

E1 • = 0
E2 • = 0
U • = 0

AE • = 1

Related Instructions:
TRAP_S

Description:
The software interrupt instruction is decoded in stage two of the pipeline and if executed, then it
immediately raises the Instruction Error interrupt. The Instruction Error interrupt will be serviced
using the normal interrupt system. ILINK2 is used as the return address in the service routine.

Once an Instruction Error interrupt is taken, then the medium and low priority interrupts are masked
off so that ILINK2 register can not be updated again as a result of an interrupt thus preserving the
return address of the Instruction Error exception.

NOTE Only the Reset and Memory Error exceptions have higher priorities than the Instruction Error
exception.

CAUTION The SWI instruction cannot immediately follow a BRcc or BBITn instruction.

The TRAP0 instruction raises an exception and calls any operating system in kernel mode. Traps can
be raised from user or kernel modes. A value of 0 is loaded into the exception cause register (ECR) as
the cause parameter along with the cause code for a trap and the trap vector number.

The source value of 0 is used for software breakpoints. TRAP_S 0 provides a 15-bit encoding of the
TRAP0 instruction.

SWI/TRAP0 Instruction Set Details

328 ARCompact™ Programmer's Reference

The Exception Fault Address register (EFA) is set to point to the address of the trap instruction. The
Exception Return Address register (ERET) is set to the address of the instruction immediately
following the trap instruction.

When the exception handler has completed, program execution will resume at the instruction
immediately following the trap instruction.

When inserting a software breakpoint, the instruction at the appropriate address is replaced by a trap
instruction of the same size TRAP_S 0 for 16-bit instructions and TRAP0 for 32-bit instructions.

While the mnemonic SWI is available, its use is not recommended in the ARC 700 processor, TRAP0
should be used instead.

Pseudo Code Example:
ILINK2 = nPc
STATUS32_L2 = STATUS32
STATUS32[E2] = 0
STATUS32[E1] = 0
PC = INT_VECTOR_BASE + 0x10

/* SWI */

ERET = NEXTPC
ERSTATUS = STATUS32
if STATUS32[DE] == 1 then
 ERBTA = pending PC
ECR = 0x00 : 0x25 : 0x00 : 0x00
EFA = PC
STATUS32[U] = 0
STATUS32[E2] = 0
STATUS32[E1] = 0
STATUS32[AE] = 1
PC = INT_VECTOR_BASE + 0x128

/* TRAP0 */

Assembly Code Example:
SWI
TRAP0

; Software interrupt
; Software Breakpoint

Instruction Set Details SYNC

ARCompact™ Programmer's Reference 329

SYNC
Synchronize

Control Operation

Operation:
Wait for all data memory transactions to complete

Format:
inst

Format Key:
inst = Instruction

Syntax:
 Instruction Code
SYNC 00100011011011110000000000111111

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
LD ST

Description:
The synchronize instruction, SYNC, waits until all data based memory operations (LD, ST, EX, cache
fills) have completed. The status flags are not updated with this instruction therefore the flag setting
field, F, should be encoded as 0.

In order to provide the instruction sync function, the instruction serializes on completion, meaning
that the contents of the pipeline are discarded, and fetching restarted from the stored program counter
value.

For data synchronization, the purpose of the SYNC instruction is to ensure that all memory operations
started by the processor have finished before any new operations (of any kind) can begin. This
includes all of the following memory operations:

• All outstanding LD, ST and EX instructions

• All data cache operations

 line fills and flushes

• All instruction cache fill operations

NOTE The SYNC instruction does not wait on memory operations started by other processors.

The SYNC instruction can also be used to ensure that the interrupt request of a memory mapped
peripheral has been cleared down before an interrupt handler exits.

Example 28 Using SYNC to clear down an interrupt re quest

• A peripheral generates interrupt to the processor by setting a signal true.

• The control registers for the peripheral are memory mapped

• The processor's interrupt unit is set to ‘level sensitive’ for this interrupt.

SYNC Instruction Set Details

330 ARCompact™ Programmer's Reference

• The interrupt handler must clear the interrupt request signal before exiting

 The SYNC instruction is used to ensure that the store to change the peripheral status happens
before the interrupt exit

If the SYNC was not used, the peripheral may still be asserting the interrupt-request signal after the
interrupt exit – hence a bogus interrupt would be generated.

Pseudo Code Example:
do
 null
until not (load_pending or store_pending or
 dcache_fill or dcache_flush or
 icache_fill)

/* SYNC */

Assembly Code Example:
SYNC ; Synchronize

Instruction Set Details TRAP_S

ARCompact™ Programmer's Reference 331

TRAP_S
Trap

Control Operation

Operation:
Raise an exception

Format:
inst src

Format Key:
inst = Instruction

Syntax:
 Instruction Code
TRAP_S u6 01111uuuuuu11110

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

E1 • = 0
E2 • = 0
U • = 0

AE • = 1

Related Instructions:
SWI/TRAP0

Description:
The TRAP_S instruction raises an exception and calls any operating system in kernel mode. Traps
can be raised from user or kernel modes. The source operand is loaded into the exception cause
register (ECR) as the cause parameter along with the cause code for a trap and the trap vector number.

The source value can be used to signal a type of command to any operating system that is running on
the processor. Source values 1 to 63 should be used of operating system calls and a source value of 0
for software breakpoints. TRAP_S 0 provides a 15-bit encoding of the TRAP0 instruction.

The Exception Fault Address register (EFA) is set to point to the address of the trap instruction. The
Exception Return Address register (ERET) is set to the address of the instruction immediately
following the trap instruction.

When the exception handler has completed, program execution will resume at the instruction
immediately following the trap instruction.

When inserting a software breakpoint, the instruction at the appropriate address is replaced by a trap
instruction of the same size TRAP_S 0 for 16-bit instructions and TRAP0 for 32-bit instructions.

Pseudo Code Example:
ERET = NEXTPC
ERSTATUS = STATUS32
if STATUS32[DE] == 1 then
 ERBTA = pending PC
ECR = 0x00 : 0x25 : 0x00 : src
EFA = PC
STATUS32[U] = 0
STATUS32[E2] = 0
STATUS32[E1] = 0

/* TRAP_S */

TRAP_S Instruction Set Details

332 ARCompact™ Programmer's Reference

STATUS32[AE] = 1
PC = INT_VECTOR_BASE + 0x128

Assembly Code Example:
TRAP_S 0 ; Trap

Instruction Set Details TST

ARCompact™ Programmer's Reference 333

TST
Test

Logical Operation

Operation:
if (cc=true) then src1 AND src2

Format:
inst src1, src2

Format Key:
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition Code

Syntax:
 Instruction Code
TST b,s12 00100bbb100010111BBBssssssSSSSSS
TST<.cc> b,c 00100bbb110010111BBBCCCCCC0QQQQQ
TST<.cc> b,u6 00100bbb110010111BBBuuuuuu1QQQQQ
TST<.cc> b,limm 00100bbb110010111BBB1111100QQQQQ L
TST<.cc> limm,c 00100110110010111111CCCCCC0QQQQQ L
TST_S b,c 01111bbbccc01011

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
BTST CMP

Description:
Logical bitwise AND of source operand 1 (src1) with source operand 2 (src2) and subsequently
updating the flags. The flag setting field, F, is always encoded as 1 for this instruction.

There is no destination register therefore the result of the AND is discarded.

NOTE TST and TST_S always set the flags even thought there is no associated flag setting suffix .

Pseudo Code Example:
if cc==true then
 alu = src1 AND src2
 Z_flag = if alu==0 then 1 else 0
 N_flag = alu[31]

/* TST */

Assembly Code Example:
TST r1,r2 ; Logical AND r2 with r1

; and set the flags on the
; result

UNIMP_S Instruction Set Details

334 ARCompact™ Programmer's Reference

UNIMP_S
Unimplemented Instruction

Control Operation

Operation:
InstError

Format:
inst

Format Key:
inst = Instruction
InstError = Raise Instruction Error Exception

Syntax:
 Instruction Code
UNIMP_S 0111100111100000

Flag Affected (32-Bit): Key:
Z = Unchanged L = Limm Data
N = Unchanged
C = Unchanged
V = Unchanged

Related Instructions:
NOP

Description:
An Instruction Error exception will be generated. Used by debugging tools to fill unused memory
regions. The status flags are not updated with this instruction.

Pseudo Code Example:
InstError = 1; /* UNIMP_S */

Assembly Code Example:
UNIMP_S ; Unimplemented Instruction

Instruction Set Details XOR

ARCompact™ Programmer's Reference 335

XOR
Logical Bitwise Exclusive OR

Logical Operation

Operation:
if (cc=true) then dest ← src1 XOR src2

Format:
inst dest, src1, src2

Format Key:
dest = Destination Register
src1 = Source Operand 1
src2 = Source Operand 2
cc = Condition code
XOR = Logical Bitwise Exclusive OR

Syntax:
With Result Instruction Code
XOR<.f> a,b,c 00100bbb00000111FBBBCCCCCCAAAAAA
XOR<.f> a,b,u6 00100bbb01000111FBBBuuuuuuAAAAAA
XOR<.f> b,b,s12 00100bbb10000111FBBBssssssSSSSSS
XOR<.cc><.f> b,b,c 00100bbb11000111FBBBCCCCCC0QQQQQ
XOR<.cc><.f> b,b,u6 00100bbb11000111FBBBuuuuuu1QQQQQ
XOR<.f> a,limm,c 0010011000000111F111CCCCCCAAAAAA L
XOR<.f> a,b,limm 00100bbb00000111FBBB111110AAAAAA L
XOR<.cc><.f> b,b,limm 00100bbb11000111FBBB1111100QQQQQ L
XOR_S b,b,c 01111bbbccc00111
Without Result
XOR<.f> 0,b,c 00100bbb00000111FBBBCCCCCC111110
XOR<.f> 0,b,u6 00100bbb01000111FBBBuuuuuu111110
XOR<.f> 0,b,limm 00100bbb00000111FBBB111110111110 L
XOR<.cc><.f> 0,limm,c 0010011011000111F111CCCCCC0QQQQQ L

Flag Affected (32-Bit): Key:
Z • = Set if result is zero L = Limm Data
N • = Set if most significant bit of result is set
C = Unchanged
V = Unchanged

Related Instructions:
AND BIC OR

Description:
Logical bitwise exclusive OR of source operand 1 (src1) with source operand 2 (src2). The result is
written into the destination register (dest). Any flag updates will only occur if the set flags suffix (.F)
is used.

Pseudo Code Example:
if cc==true then
 dest = src1 XOR src2
 if F==1 then
 Z_flag = if dest==0 then 1 else 0
 N_flag = dest[31]

/* XOR */

Assembly Code Example:
XOR r1,r2,r3 ; Logical XOR contents of r2 with r3 and write result into r1

XOR Instruction Set Details

336 ARCompact™ Programmer's Reference

This page is intentionally left blank.

ARCompact™ Programmer's Reference 337

Chapter 10 — The Host

The Host Interface
The ARCompact based processor was developed with an integrated host interface to support
communications with a host system. It can be started, stopped and communicated by the host system
using special registers. How the various parts of the ARCompact based processor appear to the host is
host interface dependent but an outline of the techniques to control ARCompact based processor are
given in this section.

Most of the techniques outlined here will be handled by the software debugging system, and the
programmer, in general, need not be concerned with these specific details.

NOTE The implemented system may have extensions or customizations in this area, please see associated
documentation.

It is expected that the registers and the program memory of ARCompact based processor will appear
as a memory mapped section to the host. Figure 98 on page 337 shows an example host system using
contiguous part of host memory. Figure 99 on page 337 shows an example host system using a
section of memory and a section of I/O space.

ARCompact Core Registers

ARCompact Auxiliary Registers

ARCompact Main Memory

Figure 98 Example Host Memory Maps, Contiguous Host Memory

Host I/O Map

ARCompact Core Registers

ARCompact Auxiliary Registers

Host Memory Map

ARCompact Memory

Figure 99 Example Host Memory Maps, Host Memory and Host IO

Once a Reset has occurred, the ARCompact based processor is put into a known state and executes
the initial Reset code. From this point, the host can make the changes to the appropriate part of the
ARCompact based processor , depending on whether the ARCompact based processor is running or
halted as shown in Table 97 on page 338.

Halting The Host

338 ARCompact™ Programmer's Reference

Table 97 Host Accesses to the ARCompact based proce ssor

 Running Halted
Memory Read/Write Read/Write
Auxiliary Registers Mainly No access Read/Write
Core Registers No access Read/Write

Halting
The ARCompact based processor can halt itself with the FLAG instruction or it can be halted by the
host. The host halts the ARCompact based processor by setting the H bit in the status register
(STATUS32), or by setting the FH bit in the DEBUG register. See Figure 43 on page 50 and Figure
45 on page 51.

Note that when the ARCompact based processor is running that only the H bit will change if the host
writes to STATUS32 register. However, if ARCompact based processor had halted itself, the whole
of the STATUS32 register will be updated when the host writes to the STATUS32 register.

The consequence of this is that the host may assume that the ARCompact based processor is running
by previously reading the STATUS32 register. By the time that the host forces a halt, the ARCompact
based processor may have halted itself. Therefore, the write of a “halt” number, e.g. 0x01, to the
STATUS32 register would overwrite any flag status information that the host required.

In order to force the ARCompact based processor to halt without overwriting the other status flags the
additional FH bit in the DEBUG register is provided. See Figure 43 on page 50. The host can test
whether the ARCompact based processor has halted by checking the state of the H bit in the
STATUS32 register. Additionally, the SH bit in the debug register is available to test whether the halt
was caused by the host, the ARCompact based processor , or an external halt signal. The host should
wait for the LD (load pending) bit in the DEBUG register to clear before changing the state of the
ARCompact based processor.

Starting
The host starts the ARCompact based processor by clearing the H bit in the STATUS32 register. It is
advisable that the host clears any instructions in the pipeline before modifying any registers and re-
starting the ARCompact based processor, by sending NOP instructions through, so that any pending
instructions that are about to modify any registers in the ARCompact based processor are allowed to
complete.

If the ARCompact based processor has been running code, and is to be restarted at a different
location, then it will be necessary to put the processor into a state similar to the post-Reset condition
to ensure correct operation.

• reset the three hardware loop registers to their default values

• flush the pipeline. This is known as ‘pipecleaning’

• disable interrupts, using the status register

• any extension logic should be reset to its default state

If the ARCompact based processor has been running and is to be restarted to continue where it left
off, then the procedure is as follows:

The Host Pipecleaning

ARCompact™ Programmer's Reference 339

• host reads the status from the STATUS32 Register

• host writes back to the STATUS32 register with the same value as was just read, but clearing the
H bit

• The ARCompact based processor will continue from where it left off when it was stopped.

NOTE At first glance it appears that the same instruction would be executed twice, but in fact this has been
taken care of in the hardware; the pipeline is held stopped for the first cycle after the STATUS32
register has been written and thus the execution starts up again as if there has been no interruption.

Pipecleaning
If the processor is halted whilst it is executing a program, it is possible that the later stages of the
pipeline may contain valid instructions. Before re-starting the processor at a new address, these
instructions must be cleared to prevent unwanted register writes or jumps from taking place.

If the processor is to be restarted from the point at which it was stopped, then the instructions in the
pipeline are to be executed, hence pipecleaning should not be performed.

Pipecleaning is not necessary at times when the pipeline is known to be clean - e.g. immediately after
a Reset, or if the processor has been stopped by a FLAG instruction followed by three NOPs.

Pipecleaning is achieved as follows:

• Stop the ARCompact based processor

• Download a NOP instruction into memory.

• Invalidate instruction cache to ensure that the NOP is loaded from memory

• Point the PC register to the downloaded NOP

• Single step until the values in the program counter or loop count register change.

• Point the PC register to the downloaded NOP

• Single step until the values in the program counter or loop count register change.

• Point the PC register to the downloaded NOP

• Single step until the values in the program counter or loop count register change.

Notice that the program counter is written before each single step, so all branches and jumps, that
might be in the pipeline, are overridden, ensuring that the NOP is fetched every time.

It should be noted that the instructions in the pipeline may perform register writes, flag setting, loop
set-up, or other operations which change the processor state. Hence, pipecleaning should be
performed before any operations which set up the processor state in preparation for the program to be
executed - for example loading registers with parameters.

Single Instruction Stepping
The Single Instruction Step function is controlled by a bit in the DEBUG register. This bit can be set
by the debugger to enable Instruction Stepping. The Instruction Step (IS), is write-only by the host
and keeps it value for one cycle (see Table 98 on page 340).

Software Breakpoints The Host

340 ARCompact™ Programmer's Reference

Table 98 Single Step Flags in Debug Register

Field Description Access Type
IS Instruction Step:- Instruction Step enable Write only from the host

The Single Instruction Step function enables the processor for completion of a whole instruction.

For the ARC 600 core the Single Instruction Step function is enabled by setting both the SS and IS
bits in the debug register when the processor is halted.

For the ARC 700 core the Single Instruction Step function is enabled by setting the IS bit in the
debug register when the processor is halted. The SS bit is ignored.

On the next clock cycle the processor is kept enabled for as many cycle as required to complete the
instruction. Therefore, any stalls due to register conflicts or delayed loads are accounted for when
waiting for an instruction to complete. All earlier instructions in the pipeline are flushed, the
instruction that the program counter is pointing to is completed, the next instruction is fetched and the
program counter is incremented.

If the stepped instruction was:

• A Branch, Jump or Loop with a killed delay slot,
or

• Using Long Immediate data.

Then two instruction fetches are made so that the program counter would be updated appropriately.

The processor halts after the instruction is completed.

SLEEP Instruction in Single Instruction Step Mode
The SLEEP instruction is treated like a NOP instruction when the processor is in Single Step Mode.
This is because every single step acts as a restart or a wake up call. Consequently, the SLEEP
instruction behaves like a NOP propagating through the pipeline.

See SLEEP on page 309 for further details.

BRK Instruction in Single Instruction Step Mode
The BRK instruction behaves exactly as when the processor is not in the Single Step Mode. The BRK
instruction is detected in the initial stages of the pipeline and kept there forever until removed by the
host.

Software Breakpoints
The BRK instruction can also be used to insert a software breakpoint. BRK will halt the ARCompact
based processor and flush all previous instructions through the pipe. The host can read the PC register
to determine where the breakpoint occurred.
As long as the host has access to the ARCompact based processor code memory, it can also replace a
ARCompact based processor instruction with a branch instruction. This means that a “software
breakpoint” can be set on any instruction, as long as the target breakpoint code is within the branch
address range. Since a software breakpoint of this type is a branch instruction, the rules for use of Bcc
apply. Care should be taken when setting breakpoints on the last instructions in zero overhead loops
and also on instructions in delay slots of jump, branch and loop instructions.

The Host Core Registers

ARCompact™ Programmer's Reference 341

Core Registers
The core registers of ARCompact based processor are available to be read and written by the host.
These registers should be accessed by the host once the ARCompact based processor has halted.

Auxiliary Register Set
Some auxiliary registers, unlike the core registers, may be accessed while the ARCompact based
processor is running. These dual access registers in the base case are:

STATUS32
The host can read the status register (STATUS32) when the ARCompact based processor is running.
The main purpose is to see if the processor has halted. See Figure 45 on page 51.

PC
Reading the PC is useful for code profiling. See Figure 44 on page 51.

SEMAPHORE
The semaphore register (SEMAPHORE) is used for inter-processor and host to ARCompact based
processor communications. Protocols for using shared memory and provision of mutual exclusion can
be accomplished with this register. See Figure 39 on page 48.

IDENTITY
The host can determine the version of ARCompact based processor by reading the identity register
(IDENTITY). See Figure 41 on page 49. Information on extensions added to the ARCompact based
processor can be determined through build configuration registers.

NOTE For more information on build configuration registers please refer to associated documentation.

DEBUG
In order to halt the ARCompact based processor, the host needs to set the FH bit of the debug register
(DEBUG). The host can determine how the ARCompact based was halted and if there are any
pending loads. See Figure 43 on page 50.

Memory
The program memory may be changed by the host. The memory can be changed at any time by the
host.

NOTE If program code is being altered, or transferred into ARCompact based memory space, then the
instruction cache should be invalidated.

	ARCompact™ Programmer's Reference
	Trademark Acknowledgments
	Contents
	List of Figures
	List of Examples
	List of Tables
	Introduction
	Typographic Conventions
	Key Features
	ISA Feature Comparison
	Programmer’s Model
	Core Register Set
	Auxiliary Register Set
	32-bit Instructions
	16-bit Instructions
	Operating Modes

	Extensions
	Extension Core Registers
	Extension Auxiliary Registers
	Extension Instructions
	Extension Condition Codes

	Debugging Features
	Power Management

	Data Organization and Addressing
	Address Space
	Data Formats
	32-bit Data
	16-bit Data
	8-bit Data
	1-bit Data

	Extended Arithmetic Data Formats
	16-bit Data
	Dual 16-bit Data
	24-bit Data
	Q Arithmetic

	Instruction Formats
	Packed Middle-Endian Instruction Format
	Big-Endian Instruction Format
	32-bit Instruction or 32-bit Immediate Data
	Two 16-bit Instructions
	16-bit Instruction Followed by 32-bit Instruction
	Series of 16-bit and 32-bit Instructions

	Addressing Modes
	Null Instruction Format
	Conditional Execution
	Conditional Branch Instruction
	Compare and Branch Instruction
	Serializing Instructions

	Register Set Details
	Core Register Set
	Core Register Mapping Used in 16-bit Instructions
	Reduced Configuration of Core Registers
	Pointer Registers, GP, r26, FP, r27, SP, r28
	Link Registers, ILINK1, r29, ILINK2, r30, BLINK, r31
	Loop Count Register, LP_COUNT, r60
	Reserved Register, r61
	Immediate Data Indicator, limm, r62
	Program Counter Long-Word, PCL, r63

	Extension Core Registers
	Multiply Result Registers, MLO, MMID, MHI

	Auxiliary Register Set
	Illegal Auxiliary Register Usage
	Status Register (Obsolete), STATUS, 0x00
	Semaphore Register, SEMAPHORE, 0x01
	Loop Control Registers, LP_START, 0x02, LP_END, 0x03
	Identity Register, IDENTITY, 0x04
	Debug Register, DEBUG, 0x05
	Program Counter, PC, 0x06
	Status Register 32-bit, STATUS32, 0x0A
	Branch Target Address, BTA, 0x412
	Interrupt Status Link Registers, STATUS32_L1, 0x0B, STATUS32_L2, 0x0C
	Interrupt Branch Target Link Registers, BTA_L1, 0x413, BTA_L2, 0x414
	Interrupt Vector Base Register, INT_VECTOR_BASE, 0x25
	Interrupt Level Status Register, AUX_IRQ_LV12, 0x43
	Interrupt Level Programming Register, AUX_IRQ_LEV, 0x200
	Software Interrupt Trigger, AUX_IRQ_HINT, 0x201
	Interrupt Cause Registers, ICAUSE1, 0x40A, ICAUSE2, 0x40B
	Interrupt Mask Programming Register, AUX_IENABLE, 0x40C
	Interrupt Sensitivity Programming Register, AUX_ITRIGGER, 0x40D
	Interrupt Pulse Cancel Register, AUX_IRQ_PULSE_CANCEL, 0x415
	Interrupt Pending Register, AUX_IRQ_PENDING, 0x416
	Exception Return Address, ERET, 0x400
	Exception Return Branch Target Address, ERBTA, 0x401
	Exception Return Status, ERSTATUS, 0x402
	Exception Cause Register, ECR, 0x403
	Exception Fault Address, EFA, 0x404
	User Mode Extension Enable Register, XPU, 0x410
	Processor Timers Auxiliary Registers
	Timer 0 Count Register, COUNT0, 0x21
	Timer 0 Control Register, CONTROL0, 0x22
	Timer 0 Limit Register, LIMIT0, 0x23
	Timer 1 Count Register, COUNT1, 0x100
	Timer 1 Control Register, CONTROL1, 0x101
	Timer 1 Limit Register, LIMIT1, 0x102

	Extension Auxiliary Registers
	Optional Extensions Auxiliary Registers
	Multiply Restore Register, MULHI, 0x12
	Extended Arithmetic Auxiliary Registers
	MAC Status and Mode Register, AUX_MACMODE, 0x41

	Build Configuration Registers
	Build Configuration Registers Version, BCR_VER, 0x60
	BTA Configuration Register, BTA_LINK_BUILD, 0x63
	Extended Arithmetic Configuration Register, EA_BUILD, 0x65
	Interrupt Vector Base Address Configuration, VECBASE_AC_BUILD, 0x68
	Core Register Set Configuration Register, RF_BUILD, 0x6E
	Processor Timers Configuration Register, TIMER_BUILD, 0x75
	Multiply Configuration Register, MULTIPLY_BUILD, 0x7B
	Swap Configuration Register, SWAP_BUILD, 0x7C
	Normalize Configuration Register, NORM_BUILD, 0x7D
	Min/Max Configuration Register, MINMAX_BUILD, 0x7E
	Barrel Shifter Configuration Register, BARREL_BUILD, 0x7F

	Interrupts and Exceptions
	Introduction
	Privileges and Operating Modes
	Kernel Mode
	User Mode
	Privilege Violations
	Switching Between Operating Modes

	Interrupts
	Interrupt Unit Programming
	Interrupt Unit Configuration
	Interrupt Priority
	ILINK and Status Save Registers
	Interrupt Vectors
	Level 1 and Level 2 Interrupt Enables
	Individual Interrupt Enables
	Priority Level Programming
	Interrupt Level Status
	Interrupt Cause Registers
	Pending Interrupts
	Software Triggered Interrupt
	Returning from Interrupts
	Interrupt Timing
	Interrupt Flow
	Interrupt Vector Base Address Configuration
	Interrupt Sensitivity Level Configuration
	Interrupt Sensitivity Level Programming
	Canceling Pulse Triggered Interrupts

	Exceptions
	Exception Precision
	Exception Vectors and Exception Cause Register
	Exception Types and Priorities
	Exception Detection
	Interrupts and Exceptions
	Exception Entry
	Exception Exit
	Exceptions and Delay Slots
	Emulation of Extension Instructions
	Emulation of Extension Registers and Condition Codes

	Instruction Set Summary
	Arithmetic and Logical Operations
	Summary of Basecase ALU Instructions
	Syntax for Arithmetic and Logical Operations
	Add Instruction
	Subtract Instruction
	Reverse Subtract Instruction
	Test and Compare Instructions
	Bit Test Instruction
	Single Bit Instructions
	Barrel Shift/Rotate

	Single Operand Instructions
	Move to Register Instruction
	Flag Instruction
	Negate Operation

	Zero Operand Instructions
	Breakpoint Instruction
	Sleep Instruction
	Software Interrupt Instruction
	Trap Instruction
	Return from Interrupt/Exception Instruction
	Synchronize Instruction

	Branch Instructions
	Branch Instructions
	Branch and Link Instructions
	Branch On Compare/Bit Test Register-Register

	Jump Instructions
	Summary of Jumps and Special Format Instructions
	Syntax for Jumps and Special Format Instructions
	Zero Overhead Loop Instruction

	Auxiliary Register Operations
	Load from Auxiliary Register
	Store to Auxiliary Register

	Load/Store Instructions
	Load
	Prefetch
	Store Register with Offset
	Stack Pointer Operations
	Atomic Exchange

	ARCompact Extension Instructions
	Syntax for Generic Extension Instructions
	Syntax for Single Operand Extension Instructions
	Syntax for Zero Operand Extension Instructions

	Optional Instructions Library
	Summary of Optional Instructions Library
	Multiply 32 X 32, Special Result Registers
	Multiply 32 X 32, Any Result Register
	NORM Instruction
	SWAP Instruction

	Extended Arithmetic Library
	Summary of Extended Arithmetic Library Instructions
	Add with Saturation
	Subtract with Saturation
	Negate with Saturation
	Absolute with Saturation
	Round
	Saturate
	Positive/Negative Barrel Shift with Saturation
	Division Assist

	32-bit Instruction Formats Reference
	Encoding Notation
	Condition Code Tests
	Branch Jump Delay Slot Modes
	Load Store Address Write-back Modes
	Load Store Direct to Memory Bypass Mode
	Load Store Data Size Mode
	Load Data Extend Mode
	Use of Reserved Encodings
	Use of Illegal Encodings
	Reserved Ranges of Fields
	Illegal Combinations of Fields

	Branch Conditionally, 0x00, [0x0]
	Branch Unconditional Far, 0x00, [0x1]
	Branch on Compare Register-Register, 0x01, [0x1, 0x0]
	Branch on Compare/Bit Test Register-Immediate, 0x01, [0x1, 0x1]
	Branch and Link Conditionally, 0x01, [0x0, 0x0]
	Branch and Link Unconditional Far, 0x01, [0x0, 0x1]
	Load Register with Offset, 0x02
	Store Register with Offset, 0x03
	General Operations, 0x04, [0x00 - 0x3F]
	Operand Format Indicators
	General Operations Register-Register
	General Operations Register with Unsigned 6-bit Immediate
	General Operations Register with Signed 12-bit Immediate
	General Operations Conditional Register
	General Operations Conditional Register with Unsigned 6-bit Immediate
	Long Immediate with General Operations
	ALU Operations, 0x04, [0x00-0x1F]
	Special Format Instructions, 0x04, [0x20 - 0x3F]
	Move and Compare Instructions, 0x04, [0x0A - 0x0D] and 0x04, [0x11]
	Jump and Jump-and-Link Conditionally, 0x04, [0x20 - 0x23]
	Load Register-Register, 0x04, [0x30 - 0x37]
	Single Operand Instructions, 0x04, [0x2F, 0x00 - 0x3F]
	Zero Operand Instructions, 0x04, [0x2F, 0x3F, 0x00 - 0x3F]

	32-bit Extension Instructions, 0x05 - 0x08
	Extension ALU Operation, Register-Register
	Extension ALU Operation, Register with Unsigned 6-bit Immediate
	Extension ALU Operation, Register with Signed 12-bit Immediate
	Extension ALU Operation, Conditional Register
	Extension ALU Operation, Conditional Register with Unsigned 6-bit Immediate
	Dual Operand Extension Instructions, 0x05, [0x00-0x2E and 0x30-0x3F]
	Single Operand Extension Instructions, 0x05, [0x2F, 0x00 - 0x3F]
	Zero Operand Extension Instructions, 0x05, [0x2F, 0x3F, 0x00 - 0x3F]
	User Extension Instructions

	Market Specific Extension Instructions, 0x09 - 0x0B
	Market Specific Extension Instruction, 0x09
	Market Specific Extension Instruction, 0x0A
	Market Specific Extension Instruction, 0x0B

	16-bit Instruction Formats Reference
	Load /Add Register-Register, 0x0C, [0x00 - 0x03]
	Add/Sub/Shift Register-Immediate, 0x0D, [0x00 - 0x03]
	Mov/Cmp/Add with High Register, 0x0E, [0x00 - 0x03]
	Long Immediate with Mov/Cmp/Add

	General Register Format Instructions, 0x0F, [0x00 - 0x1F]
	General Operations, register-register
	General Operations, Register
	General Operations, No Registers
	General Operations, 0x0F, [0x00 - 0x1F]
	Single Operand, Jumps and Special Format Instructions, 0x0F, [0x00, 0x00 - 0x07]
	Zero Operand Instructions, 0x0F, [0x00, 0x07, 0x00 - 0x07]

	Load/Store with Offset, 0x10 - 0x16
	Shift/Subtract/Bit Immediate, 0x17, [0x00 - 0x07]
	Stack Pointer Based Instructions, 0x18, [0x00 - 0x07]
	Add/Subtract SP Relative, 0x18, [0x05, 0x00-0x07]
	POP Register from Stack, 0x18, [0x06, 0x00-0x1F]
	PUSH Register to Stack, 0x18, [0x07, 0x00-0x1F]

	Load/Add GP-Relative, 0x19, [0x00 - 0x03]
	Load PCL-Relative, 0x1A
	Move Immediate, 0x1B
	ADD/CMP Immediate, 0x1C, [0x00 - 0x01]
	Branch on Compare Register with Zero, 0x1D, [0x00 - 0x01]
	Branch Conditionally, 0x1E, [0x00 - 0x03]
	Branch Conditionally with cc Field, 0x1E, [0x03, 0x00 - 0x07]

	Branch and Link Unconditionally, 0x1F

	Condition Codes
	Introduction
	Flag Setting
	Status Register
	Status Flags Notation
	Condition Code Test
	Extended Arithmetic Condition Codes

	Instruction Set Details
	Instruction Set Details
	List of Instructions
	Alphabetic Listing
	ABS
	ABSS
	ABSSW
	ADC
	ADD
	ADD1
	ADD2
	ADD3
	ADDS
	ADDSDW
	AND
	ASL
	ASL multiple
	ASLS
	ASR
	ASR multiple
	ASRS
	BBIT0
	BBIT1
	Bcc
	Bcc_S
	BCLR
	BIC
	BLcc
	BMSK
	BRcc
	BRK
	BSET
	BTST
	BXOR
	CMP
	DIVAW
	EX
	EXTB
	EXTW
	FLAG
	Jcc
	JLcc
	LD
	LPcc
	LR
	LSR
	LSR multiple
	MAX
	MIN
	MOV
	MPY
	MPYH
	MPYHU
	MPYU
	MUL64
	MULU64
	NEG
	NEGS
	NEGSW
	NOP
	NORM
	NORMW
	NOT
	OR
	POP_S
	PREFETCH
	PUSH_S
	RCMP
	RLC
	RND16
	ROR
	ROR multiple
	RRC
	RSUB
	RTIE
	SAT16
	SBC
	SEXB
	SEXW
	SLEEP
	SR
	ST
	SUB
	SUB1
	SUB2
	SUB3
	SUBS
	SUBSDW
	SWAP
	SWI/TRAP0
	SYNC
	TRAP_S
	TST
	UNIMP_S
	XOR

	The Host
	The Host Interface
	Halting
	Starting
	Pipecleaning
	Single Instruction Stepping
	SLEEP Instruction in Single Instruction Step Mode
	BRK Instruction in Single Instruction Step Mode

	Software Breakpoints
	Core Registers
	Auxiliary Register Set
	Memory

