
Arm® Architecture Reference Manual
Supplement

Armv8, for the Armv8-R AArch32 architecture profile
Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0568A.c (ID110520)

Arm Architecture Reference Manual Supplement
Armv8, for the Armv8-R AArch32 architecture profile

Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2016-2017, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Change History

Date Issue Confidentiality Change

12 Aug 2016 A.a Confidential LAC release

31 Mar 2017 A.b Non-Confidential EAC release

06 November 2020 A.c Non-Confidential Updated EAC release
ii Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Note
 • The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture.

The context makes it clear when the term is used in this way.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product. The information in this manual is at EAC quality, which
means that all features of the specification are described in the manual.

Web Address

http://www.arm.com
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. iii
ID110520 Non-Confidential

iv Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Contents
Arm Architecture Reference Manual Supplement
Armv8, for the Armv8-R AArch32 architecture profile

Preface
About this supplement ... x
Using this book ... xi
Conventions ... xii
Additional reading ... xiii
Feedback .. xiv

Part A Introduction and Architecture Overview
Chapter A1 Architecture Overview

A1.1 About the Armv8 architecture and architecture profiles A1-18
A1.2 The Armv8-R AArch32 architecture profile .. A1-19
A1.3 Supported extensions in Armv8-R AArch32 .. A1-20
A1.4 Changes between Armv7-R and Armv8-R AArch32 ... A1-21

Part B Differences in the Armv8-R Architecture from Armv8-A
Chapter B1 Differences between the Armv8-A and Armv8-R AArch32 Profiles

B1.1 Differences from the Armv8-A AArch32 application level architecture B1-26
B1.2 Differences from the Armv8-A AArch32 instruction sets B1-27
B1.3 Differences from the Armv8-A AArch32 system level architecture B1-28
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. v
ID110520 Non-Confidential

Part C Armv8-R Protected Memory System Architecture
Chapter C1 Protected Memory System Architecture

C1.1 About PMSAv8-32 ... C1-32
C1.2 Protection region attributes and access permissions .. C1-35
C1.3 Default memory maps and Background region checks C1-38
C1.4 Memory protection .. C1-40
C1.5 PMSAv8-32 implications for caches .. C1-44

Part D Armv8-R Instructions
Chapter D1 Armv8-R Instruction Set

D1.1 Armv8-R base instructions .. D1-48
D1.2 Armv8-R Advanced SIMD and floating-point instructions D1-53
D1.3 Single-precision only floating-point implementations .. D1-54
D1.4 Instruction encodings .. D1-56

Chapter D2 Description of Redefined and New Instructions
D2.1 Redefined instructions ... D2-58
D2.2 New instruction .. D2-65

Part E Armv8-R System Registers and System Instructions
Chapter E1 Armv8-R System Registers and System Instructions

E1.1 Armv8-R System register list ... E1-70
E1.2 Armv8-R System instructions .. E1-76

Chapter E2 Description of the Redefined or New System Registers
E2.1 Redefined System registers .. E2-78
E2.2 New System registers ... E2-153

Part F Differences in Armv8-R Debug from Armv8-A
Chapter F1 Differences in Armv8-R Debug from Armv8-A

F1.1 Differences from Armv8-A invasive debug ... F1-186
F1.2 Differences from Armv8-A non-invasive debug .. F1-187
F1.3 Differences from Armv8-A external debug ... F1-188

Part G Armv8-R External Debug Registers
Chapter G1 Armv8-R External Debug Registers

G1.1 Armv8-R external debug register list ... G1-194

Chapter G2 Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers .. G2-198

Part H Architectural Pseudocode for Armv8-R AArch32
Chapter H1 Armv8-R AArch32 Pseudocode

H1.1 Pseudocode limitations ... H1-230
H1.2 Pseudocode for AArch32 operation .. H1-231
H1.3 Shared pseudocode .. H1-289
vi Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part I Appendixes
Appendix I1 Armv8-R AArch32 CONSTRAINED UNPREDICTABLE behaviors

I1.1 Reserved values in System registers and memory attribute settings I1-356
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. vii
ID110520 Non-Confidential

viii Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Preface

This preface introduces the Arm® Architecture Reference Manual Supplement Armv8, for the Armv8-R AArch32
architecture profile. It contains the following sections:
• About this supplement on page x.
• Using this book on page xi.
• Conventions on page xii.
• Additional reading on page xiii.
• Feedback on page xiv.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ix
ID110520 Non-Confidential

Preface
 About this supplement
About this supplement
This supplement describes the changes that are introduced by the Armv8-R AArch32 architecture. For a summary
of these changes, see The Armv8-R AArch32 architecture profile on page A1-19.

The supplement must be read with the most recent issue of the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Together, that manual and this supplement provide a full description of the Armv8-R
AArch32 architecture.

This manual is organized into parts as described in Using this book on page xi.
x Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Preface
 Using this book
Using this book
The purpose of this book is to describe the changes that are introduced by the Armv8-R AArch32 architecture. It
describes the Armv8-R AArch32 profile in terms of how it differs from the Armv8-A profile.

This book is a supplement to the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile
(ARM DDI 0487), and is intended to be used with it. There might be inconsistencies between this supplement and
the Armv8-A Architecture Reference Manual due to some late-breaking changes. Therefore, the Armv8-A
Architecture Reference Manual is the definitive source of information about Armv8-A.

It is assumed that the reader is familiar with the Armv8-A and Armv8-R architectures.

The information in this book is organized into parts, as described in this section:

Part A Provides an introduction to the Armv8-R architecture.

Part B Describes the non-debug features in which the Armv8-R profile differs from the Armv8-A
profile.

Part C Describes the Armv8-R Protected Memory System Architecture (PMSAv8-32).

Part D Describes the Armv8-R instruction set.

Part E Describes the Armv8-R System registers and System instructions.

Part F Describes the debug features in which the Armv8-R profile differs from the Armv8-A
profile.

Part G Describes the Armv8-R debug registers.

Part H Describes the Armv8-R pseudocode.

Appendixes Provides additional information.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. xi
ID110520 Non-Confidential

Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions.
• Signals.
• Numbers.
• Pseudocode descriptions.

Typographic conventions

The following table describes the typographic conventions:

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality.

Typographic conventions

Style Purpose

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings, and are included in the Glossary in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Colored text Indicates a link. This can be:
• A URL, for example https://developer.arm.com.
• A cross-reference, that includes the page number of the referenced information if it is not on the current

page, for example, Pseudocode descriptions.
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the

colored term, for example Chapter A1.
xii Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Preface
 Additional reading
Additional reading
This section lists relevant publications from Arm and third parties.

See Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications
• Arm® Architecture Reference Manual, Armv7-A and Armv7-R edition (ARM DDI 0406).
• Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (ARM DDI 0487).
• Arm® CoreSight™ Architecture Specification (ARM IHI 0029).
• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).
• Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0

(ARM IHI 0069).

Other publications

• JEDEC Solid State Technology Association, Standard Manufacturer’s Identification Code, JEP106.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. xiii
ID110520 Non-Confidential

Preface
 Feedback
Feedback
Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title, Arm® Architecture Reference Manual Supplement Armv8, for the Armv8-R AArch32 architecture

profile.
• The number, ARM DDI 0568A.c.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
 Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
xiv Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part A
Introduction and Architecture Overview

Chapter A1
Architecture Overview

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-R AArch32
profile that this manual defines. It contains the following sections:
• About the Armv8 architecture and architecture profiles on page A1-18.
• The Armv8-R AArch32 architecture profile on page A1-19.
• Supported extensions in Armv8-R AArch32 on page A1-20.
• Changes between Armv7-R and Armv8-R AArch32 on page A1-21.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. A1-17
ID110520 Non-Confidential

Architecture Overview
A1.1 About the Armv8 architecture and architecture profiles
A1.1 About the Armv8 architecture and architecture profiles
The Arm architecture that this Architecture Reference Manual describes, defines the behavior of an abstract
machine, referred to as a processing element (PE). Implementations that are compliant with the Arm architecture
must conform to the described behavior of the PE. This manual does not describe how to build an implementation
of the PE, nor does it limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the PE.
This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the PE.

The Arm architecture includes definitions of:

• An associated debug architecture.

• Associated trace architectures, which define trace macrocells that implementers can implement with the
associated processor hardware. For more information, see the Embedded Trace Macrocell Architecture
Specification.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

• Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

Armv8 defines three architecture profiles:

A Application profile:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

• Supports the A64, A32, and T32 instruction sets.

R Real-time profile, described in this manual:

• Supports a Protected Memory System Architecture (PMSAv8-32) based on a Memory
Protection Unit (MPU).

• Supports the A32 and T32 instruction sets.

M Microcontroller profile:

• Implements a programmers’ model that is designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

• Supports a PMSA based on an MPU.

• Supports a variant of the T32 instruction set.

This Architecture Reference Manual Supplement:
• Describes the Armv8-R profile in terms of how it differs from the Armv8-A profile. If a definition is not

mentioned in this Supplement, the definition in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile applies.

• Does not describe details of other profiles but assumes knowledge of the Armv8-A profile.
• Describes differences between the Armv7-R and Armv8-R profiles.
A1-18 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Architecture Overview
A1.2 The Armv8-R AArch32 architecture profile
A1.2 The Armv8-R AArch32 architecture profile
The main features of the Armv8-R AArch32 profile are:
• One Execution state, AArch32.
• The A32 and T32 instruction sets, which are compatible with earlier versions of the Arm architecture.
• The Protected Memory System Architecture (PMSA) that defines memory ordering and memory

management with a single 32-bit physical address (PA) space. The Armv8-R PMSA is not compatible with
the Armv7-R architecture.

• A programmers’ model and its interfaces to System registers that control most PE and memory system
features and provide status information.

• Support for Advanced SIMD and floating-point instructions.
• The Armv8-R virtualization model.
• The Armv8 Debug architecture that provides software access to debug features.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. A1-19
ID110520 Non-Confidential

Architecture Overview
A1.3 Supported extensions in Armv8-R AArch32
A1.3 Supported extensions in Armv8-R AArch32

A1.3.1 Security Extensions

Armv8-R only supports a single Security state, Non-secure.

A1.3.2 Armv8.x extensions for the Armv8-A profile

Armv8-R does not support any of the Armv8.x extensions.

A1.3.3 Advanced SIMD and floating-point extensions

Both the Advanced SIMD and floating-point instructions are OPTIONAL. When they are implemented, they must
conform to the Armv8-A AArch32 specifications.

The inclusion of double-precision floating-point processing is also OPTIONAL. When only the single-precision
encoding format is implemented and Advanced SIMD is not implemented, the floating-point implementation must
be a D16 implementation.

For more information, see Advanced SIMD and floating-point support on page B1-26 and Single-precision only
floating-point implementations on page D1-54.
A1-20 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Architecture Overview
A1.4 Changes between Armv7-R and Armv8-R AArch32
A1.4 Changes between Armv7-R and Armv8-R AArch32
• The architecture is described in terms of the Armv8 Exception levels. Armv8-R implementations support

EL0, EL1, and EL2.
• Armv8-R supports virtualization, which provides:

— Support for the EL2 Exception level.
— A second MPU that provides stage 1 memory protection for memory accesses from EL2 and

optionally provides stage 2 memory protection for accesses from EL1 and EL0. These protection
stages act as address translation regimes in the Armv8-R AArch32 profile.

• A redefined PMSA, PMSAv8, provides:
— A new model for defining protection regions, using a pair of 32-bit addresses to define the region.
— An increase of the minimum protection region size from 32 bytes to 64 bytes.
— No support for subregions or overlapping regions.

• There is no CPACR.D32DIS control in Armv8-R floating-point implementations.
• Armv8-R supports only a trivial Jazelle implementation.
• Divide by zero trapping is not supported in hardware.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. A1-21
ID110520 Non-Confidential

Architecture Overview
A1.4 Changes between Armv7-R and Armv8-R AArch32
A1-22 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part B
Differences in the Armv8-R Architecture from Armv8-A

Chapter B1
Differences between the Armv8-A and Armv8-R
AArch32 Profiles

This chapter describes the Armv8-R AArch32 profile. It contains the following sections:
• Differences from the Armv8-A AArch32 application level architecture on page B1-26.
• Differences from the Armv8-A AArch32 instruction sets on page B1-27.
• Differences from the Armv8-A AArch32 system level architecture on page B1-28.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. B1-25
ID110520 Non-Confidential

Differences between the Armv8-A and Armv8-R AArch32 Profiles
B1.1 Differences from the Armv8-A AArch32 application level architecture
B1.1 Differences from the Armv8-A AArch32 application level architecture

B1.1.1 Advanced SIMD and floating-point support

In addition to the Advanced SIMD and floating-point support in Armv8-A, Armv8-R AArch32 also supports
single-precision floating-point implementations without Advanced SIMD.

If an implementation supports only single-precision floating-point operations and does not support Advanced
SIMD, then it must implement only 16 double-precision registers, D0-D15, that is, it must be a D16 implementation.

See also Armv8-R Advanced SIMD and floating-point instructions on page D1-53 and Single-precision only
floating-point implementations on page D1-54.

Table B1-1 shows the field values that are permitted in Armv8-R in addition to the values that are permitted in
Armv8-A.

The Armv8-A definitions of HCPTR.TASE, NSACR, and CPACR apply for all implementations, including D16.

B1.1.2 Differences from the Armv8-A AArch32 application level programmers’ model

The following are the differences from the Armv8-A profile as it is described in chapter The AArch32 Application
Level Programmers’ Model in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.
• Armv8-R only supports a single Security state.
• Armv8-R implementations cannot include EL3.
• EL2 is required in Armv8-R.
• Exception levels in Armv8-R are based on the Armv8-A AArch32 PE modes. Hyp mode provides the EL2

functionality.
• Armv8-R supports the A32 and T32 instruction sets with some modifications, see Part D Armv8-R

Instructions.

B1.1.3 Differences from the Armv8-A AArch32 application level memory model

Armv8-R redefines DMB and DSB, and defines a new instruction, DFB.

Armv8-R relaxes the ordering requirements for DMB and DSB by enforcing ordering only in terms of certain
Exception level criteria:
• Accesses from EL1 and EL0 are ordered only with respect to accesses using the same VMID.
• Accesses from EL2 are ordered only with respect to other accesses from EL2.

All other memory barrier requirements are unchanged. See Memory barriers in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

Table B1-1 Advanced SIMD and floating-point ID field values additionally permitted in Armv8-R

Field Value Description

MVFR0.FPDP 0000 No double-precision support.

MVFR0.SIMDReg 0001 16x 64-bit register SIMD&FP register file.

MVFR1.FPHP 0001 Support for half-precision to and from single-precision conversion (no double-precision).

MVFR1.SIMDHP 0000 No Advanced SIMD

MVFR1.SIMDSP 0000 No Advanced SIMD

MVFR1.SIMDInt 0000 No Advanced SIMD

MVFR1.SIMDLS 0000 No Advanced SIMD
B1-26 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Differences between the Armv8-A and Armv8-R AArch32 Profiles
B1.2 Differences from the Armv8-A AArch32 instruction sets
B1.2 Differences from the Armv8-A AArch32 instruction sets
See Chapter D1 Armv8-R Instruction Set.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. B1-27
ID110520 Non-Confidential

Differences between the Armv8-A and Armv8-R AArch32 Profiles
B1.3 Differences from the Armv8-A AArch32 system level architecture
B1.3 Differences from the Armv8-A AArch32 system level architecture

B1.3.1 Differences from the Armv8-A AArch32 system level programmers’ model

Virtualization

Armv8-R includes a modified form of the Armv8-A AArch32 virtualization scheme. In common with AArch32
state in Armv8-A, EL2 in Armv8-R AArch32 supports virtualization and adds Hyp mode to the implemented PE
modes. The relationship between Hyp mode and the other implemented PE modes is the same as for an Armv8-A
AArch32 implementation that does not include EL3. See Memory protection units (MPUs) on page C1-32.

GIC

A Generic Interrupt Controller (GIC) implemented with an Armv8-R PE must not implement LPI support.

B1.3.2 Differences from the Armv8-A AArch32 system level memory model

Address space

Armv8-R uses a 32-bit address space with a flat mapping from the virtual address (VA) used by the PE to the
physical address (PA).

Address translation

In Armv8-R, address translation is the process of flat-mapping a VA to a PA and determining the access permissions
and memory attributes of the target PA.

System register support for IMPLEMENTATION DEFINED memory features

The type, presence, and accessibility of tightly-coupled memory (TCM) to EL1 and EL0 or just EL2 is
IMPLEMENTATION DEFINED.

B1.3.3 The Armv8-R Protected Memory System Architecture, PMSAv8

This Supplement defines PMSAv8. See Chapter C1 Protected Memory System Architecture.
B1-28 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part C
Armv8-R Protected Memory System Architecture

Chapter C1
Protected Memory System Architecture

This chapter provides a system-level view of the memory system architecture for an Armv8-R implementation, the
Protected Memory System Architecture (PMSAv8-32). It contains the following sections:
• About PMSAv8-32 on page C1-32.
• Protection region attributes and access permissions on page C1-35.
• Default memory maps and Background region checks on page C1-38.
• Memory protection on page C1-40.
• PMSAv8-32 implications for caches on page C1-44.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-31
ID110520 Non-Confidential

Protected Memory System Architecture
C1.1 About PMSAv8-32
C1.1 About PMSAv8-32
An Arm PMSA is based on a Memory Protection Unit (MPU) that provides a memory protection scheme. The
PMSA uses a flat mapping between the virtual address (VA) accessed by the PE and the 32-bit physical address
(PA) accessed in the memory system. That is, for all accesses, the VA is the same as the PA, see Address translation
and translation regimes in PMSAv8-32 on page C1-33.

PMSAv8-32 only supports a unified memory protection scheme. It does not support separate instruction and data
regions in the address map. PMSAv8-32 is not backwards-compatible with PMSAv7 or earlier Arm PMSAs.

For general information about the Arm memory model, see chapters The AArch32 Application Level Memory Model
and The AArch32 System Level Memory Model in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

C1.1.1 Protection regions

An MPU defines protection regions in the 4GB address map. A protection region is a contiguous memory region
for which the MPU defines the memory attributes, for example the memory type and the access permissions.

Protection regions:
• Are defined by a pair of a Base Address Register and a Limit Address Register, see Memory protection units

(MPUs).
• Have a minimum size of 64 bytes.
• Have a maximum size of the entire address map, 4GB.
• Must not overlap.
• Do not need to be contiguous.

The definition of a protection region specifies the start and the end of the region, the access permissions to the
region, and the memory attributes for the region. For more information, see Memory protection on page C1-40.

C1.1.2 Memory protection units (MPUs)

PMSAv8-32 defines two MPUs:

EL1 MPU

Defines the protection regions for accesses from EL1 and from EL0.

EL2 MPU

Defines the protection regions for accesses from EL2.

When the value of HCR.VM is 1 and for accesses from EL1 and from EL0, the EL2 MPU uses these
protection regions to modify the access permissions and memory attributes that are assigned by the
EL1 MPU.

See Protection region attributes and access permissions on page C1-35. For an address that does not match any
defined protection region, PMSAv8-32 defines Background regions and default memory maps. See Default memory
maps and Background region checks on page C1-38.

An PMSAv8-32 implementation can provide a virtualization scheme in which a single PE supports multiple guest
environments under the control of a single hypervisor that executes at EL2, where executing at EL2 means
executing in Hyp mode. Typically, an operating system executing at EL1 programs the EL1 MPU to define the
memory map for its own operation and for applications it runs at EL0. A hypervisor executing at EL2 programs the
EL2 MPU to define the memory map for its own operation and to modify the access permission and memory
attribute assignments that are performed by the EL1&0 stage 1 translation.
C1-32 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.1 About PMSAv8-32
C1.1.3 Address translation and translation regimes in PMSAv8-32

In Armv8-R:

• Address translation describes the process of flat mapping the virtual address (VA) used by the PE to the
physical address (PA) accessed in the memory system and determining the access permissions and memory
attributes of the target PA.

• A translation regime maps a VA to a PA, using one or two stages of address translation to assign the access
permissions and memory attributes of the target PA. When two translation stages are used, the intermediate
address is treated as an intermediate physical address (IPA).

Note
 These definitions provide consistency between the Armv8-A and Armv8-R descriptions of the memory model.

PMSAv8-32 defines the following translation regimes:

EL1&0 translation regime

This assigns the access permissions and memory attributes for any access from EL1 or EL0.

This translation regime has one or two stages of translation:

• All accesses from EL1 or EL0 are translated by the EL1 MPU if it is enabled. This translation
is a stage 1 translation.

• When the value of HCR.VM is 1, the access is also translated by the EL2 MPU. This
translation is a stage 2 translation, and can modify the access permissions and memory
attributes that are assigned by the stage 1 translation.

For the EL1&0 stage 1 translation, ADDRESS is in protection region n if:

PRBAR<n>.BASE:'000000' <= ADDRESS <= PRLAR<n>.LIMIT:'111111'

EL2 translation regime

This assigns the access permissions and memory attributes for any access from EL2.

This translation regime has a single stage of translation, stage 1, that is performed by the EL2 MPU.

For the EL2 stage 1 translation, ADDRESS is in protection region n if:

HPRBAR<n>.BASE:'000000' <= ADDRESS <= HPRLAR<n>.LIMIT:'111111'

The attributes for a protection region are defined by the combination of:

• The values that are programmed into the Base Address Register and Limit Address Register pair that define
the protection region.

• A Memory Attributes Indirection register that is indexed by those values.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-33
ID110520 Non-Confidential

Protected Memory System Architecture
C1.1 About PMSAv8-32
Figure C1-1 shows how memory accesses are handled when both MPUs are enabled.

Figure C1-1 PMSAv8-32 memory access permission and attribute control

For other scenarios, see Effect of enabling one or both MPUs on attribute assignment and fault generation on
page C1-40.

Access from
EL1 or EL0

Access from
EL1 or EL0

EL1 MPU

EL2 translation regime

HCR.VM == 0 HCR.VM == 1

Controlled from EL2
Controlled from EL1

Protection
region

Access from
EL2

EL2 MPU

Memory

Protection
region

Protection
region

Fault

Fault

Access from
EL0*

HCR.TGE == 1

Protection
region

Fault

HCR.TGE == 0

EL1&0 translation regime

* Access from EL1 is not allowed when HCR.TGE==1

EL2 MPU EL1 MPU

EL2 MPU

Stage 1
translation

Stage 2
translation
C1-34 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.2 Protection region attributes and access permissions
C1.2 Protection region attributes and access permissions
The protection region attribute fields control the memory type, Cacheability, and Shareability of the region.
Armv8-R uses the same memory types and memory attributes as Armv8-A.

The Armv8-R identification scheme is based on the scheme that is used by VMSAv8-32 when using the
Long-descriptor translation table format. See VMSAv8-32 Long-descriptor format memory region attributes in the
Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

The memory attributes and access permissions for a protection region are defined by entries in:
• The PRBAR and PRLAR, or HPRBAR and HPRLAR, that define the region.
• The MAIR<m>.Attr<n> or HMAIR<m>.Attr<n> field that is indexed by PRLAR.AttrIndx or

HPRLAR.AttrIndx, respectively. In Armv8-R, the PE always behaves as if the value of TTBCR.EAE were
1 even though the encoding space that TTBCR uses in Armv8-A is unallocated in Armv8-R. For information
about the behavior when TTBCR.EAE is 1, see the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

See also Assignment model of memory attributes and access permissions.

For the EL1&0 translation regime, when both MPUs are enabled and the value of HCR.VM is 1, the stage 1 memory
attribute and access permission assignments are combined with the stage 2 assignments as described in Combining
attributes on page C1-36.

C1.2.1 Assignment model of memory attributes and access permissions

PRBAR.SH, HPRBAR.SH

Defines the Shareability, for a Normal memory protection region. For any type of Device memory,
and for Normal Inner Non-cacheable, Outer Non-cacheable memory, the value of the SH[1:0] field
is IGNORED.

PRBAR.AP[2:1], HPRBAR.AP[2:1]

Defines the Access permissions. For encoding information, see the register description.

PRBAR.XN, HPRBAR.XN

Defines the Execute-never attribute for the region. For encoding information, see the register
description.

XN == 1 The region is Execute-never.

PMSAv8-32 makes no distinction between Privileged execute-never (PXN) and Unprivileged
execute-never (UXN).

PRLAR.AttrIndx, HPRLAR.AttrIndx

Indexes an Attr<n> field in MAIR<m> or HMAIR<m>, as follows:

• AttrIndx[2] indicates the MAIR register to be used:

AttrIndx[2] == 0 Use MAIR0 or HMAIR0.

AttrIndx[2] == 1 Use MAIR1 or HMAIR1.

• AttrIndx[2:0] indicates the required Attr field, Attr<n>, where n = AttrIndx[2:0].

MAIR<m>.Attr<n>, HMAIR<m>.Attr<n>

Defines:

• The memory type, Normal memory, or a type of Device memory.

• For Normal memory:

— The Inner Cacheability and Outer Cacheability attributes, each of which is one of
Non-cacheable, Write-Through Cacheable, or Write-Back Cacheable.

— For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate
and Write-Allocate policy hints, each of which is Allocate or Do not allocate.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-35
ID110520 Non-Confidential

Protected Memory System Architecture
C1.2 Protection region attributes and access permissions
C1.2.2 Combining attributes

For the EL1&0 translation regime, when both MPUs are enabled and the value of HCR.VM is 1, the stage 1 and
stage 2 attributes and access permissions are combined as follows:
• If the stage 1 access permissions indicate that an access is not permitted, a stage 1 Permission fault is

generated regardless of the stage 2 permissions.
• If the stage 1 access permissions indicate that an access is permitted but the stage 2 access permissions

indicate that it is not permitted, a stage 2 Permission fault is generated.
• If an access is permitted by both the stage 1 and the stage 2 access permissions, the memory attributes are

combined as shown in Table C1-1, Table C1-2, and Table C1-3 on page C1-37.

Regardless of any Shareability attribute that results from the combinations that are described in Table C1-3 on
page C1-37:

• Any location for which the resultant memory type is any type of Device memory is always treated as Outer
Shareable.

• Any location for which the resultant memory type is Normal Inner Non-cacheable, Outer Non-cacheable is
always treated as Outer Shareable.

Table C1-2 shows the assignments at each stage of translation are combined to create the resultant Cacheability
attribute. These rules apply independently for the Inner Cacheability and Outer Cacheability attributes.

A protection region is treated as Outer Shareable, regardless of any Shareability assignments at either stage of
translation if:

• The resultant memory type attribute, as described in Table C1-1, is any type of Device memory.

Table C1-1 Combining the stage 1 and stage 2 memory type assignments

Rule If the memory type assigned
by either stage is:

The resultant memory type
is:

Device has precedence over
Normal

Any Device memory type A Device memory type

non-Gathering has precedence
over Gathering

A Device-nGxx memory type A Device-nGxx memory type

non-Reordering has precedence
over Reordering

A Device-nGnRx memory type A Device-nGnRx memory type

No Early Write
Acknowledgement has
precedence over Early Write
Acknowledgement

The Device-nGnRnE memory
type

The Device-nGnRnE memory
type

Table C1-2 Combining Cacheability assignments for Normal memory

Stage 1 assignment Stage 2 assignment Resultant Cacheability

Non-cacheable Any Non-cacheable

Any Non-cacheable Non-cacheable

Write-Through Cacheable Write-Through or Write-Back Cacheable Write-Through Cacheable

Write-Through or Write-Back Cacheable Write-Through Cacheable Write-Through Cacheable

Write-Back Cacheable Write-Back Cacheable Write-Back Cacheable
C1-36 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.2 Protection region attributes and access permissions
• The resultant memory type attribute, as described in Table C1-1, is Normal memory, and the resultant
Cacheability, as described in Table C1-2, is Inner Non-cacheable, Outer Non-cacheable.

For a protection region with a resultant memory type attribute of Normal that is not Inner Non-cacheable, Outer
Non-cacheable, Table C1-3 shows how the Shareability attribute is obtained from the assignment at each stage of
translation.

Table C1-3 Combining Shareability assignments for Normal not Inner Non-cacheable, Outer
Non-cacheable memory

Stage 1 assignment Stage 2 assignment Resultant Shareability

Outer Shareable Any Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-shareable Inner Shareable

Non-shareable Outer Shareable Outer Shareable

Non-shareable Inner Shareable Inner Shareable

Non-shareable Non-shareable Non-shareable
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-37
ID110520 Non-Confidential

Protected Memory System Architecture
C1.3 Default memory maps and Background region checks
C1.3 Default memory maps and Background region checks
Each PMSAv8-32 MPU has an associated default memory map which is used when the MPU is not enabled.

When the MPU is enabled and Background region checking is enabled, privileged accesses that do not hit defined
protection regions undergo a second check.
• For the EL1 MPU, Background region checking is enabled for privileged access when the value of

SCTLR.BR is 1.
• For the EL2 MPU, Background region checking is enabled for accesses from EL2 when the value of

HSCTLR.BR is 1.

For details, see Effect of enabling one or both MPUs on attribute assignment and fault generation on page C1-40.

C1.3.1 EL1 MPU default memory map

Table C1-4 and Table C1-5 describe the default memory map defined for the EL1 MPU. When the value of
HCR.DC is 0, Background region checking by the EL1 MPU also uses this memory map.

When the value of HCR.DC is 1, the Background region and the Default memory map produce accesses with the
following attributes:
• Normal memory.
• Non-shareable.
• Inner Write-Back Read-Allocate, Write-Allocate Cacheable.
• Outer Write-Back Read-Allocate, Write-Allocate Cacheable.
• Execution permitted.

Table C1-4 Instruction accesses and EL1 Background region checks

Address range SCTLR.I == 0 SCTLR.I == 1 XN

0x00000000 – 0x7FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Through Cacheable

Execution permitted

0x80000000 – 0xFFFFFFFF Not applicable Not applicable Execute-never

Table C1-5 Data accesses and EL1 Background region checks

Address range SCTLR.C == 0 SCTLR.C == 1

0x00000000 – 0x3FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Back, Write-Allocate
Cacheable

0x40000000 – 0x5FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Through Cacheable

0x60000000 – 0x7FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Shareable,
Non-cacheable

0x80000000 – 0xBFFFFFFF Device-nGnRE Device-nGnRE

0xC0000000 – 0xFFFFFFFF Device-nGnRnE Device-nGnRnE
C1-38 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.3 Default memory maps and Background region checks
C1.3.2 EL2 MPU default memory map

Table C1-6 and Table C1-7 describe the default memory map defined for the EL2 MPU. Background region
checking by the EL2 MPU also uses this memory map.

Table C1-6 Instruction accesses and EL2 Background region checks

Address range HSCTLR.I == 0 HSCTLR.I == 1 XN

0x00000000 – 0x7FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Through Cacheable

Execution permitted

0x80000000 – 0xFFFFFFFF Not applicable Not applicable Execute-never

Table C1-7 Data accesses and EL2 Background region checks

Address range HSCTLR.C == 1 HSCTLR.C == 1

0x00000000 – 0x3FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Back, Write-Allocate
Cacheable

0x40000000 – 0x5FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Non-shareable,
Write-Through Cacheable

0x60000000 – 0x7FFFFFFF Normal, Shareable,
Non-cacheable

Normal, Shareable,
Non-cacheable

0x80000000 – 0xBFFFFFFF Device-nGnRE Device-nGnRE

0xC0000000 – 0xFFFFFFFF Device-nGnRnE Device-nGnRnE
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-39
ID110520 Non-Confidential

Protected Memory System Architecture
C1.4 Memory protection
C1.4 Memory protection
An MPU checks whether the address used by a memory access matches a defined protection region. It uses the
properties that are defined for that region or for the Background region to determine whether the access is permitted
and if it is permitted, how it must behave.
• The EL1 MPU is enabled when the value of SCTLR.M is 1.
• The EL2 MPU is enabled when the value of HSCTLR.M is 1.

Each MPU provides two mechanisms for defining its own protection regions by:

• Using indirect accesses, where:
— PRSELR/HPRSELR is programmed to specify the required protection region.
— PRBAR/HPRBAR and PRLAR/HPRLAR are programmed to specify the address range and attributes

for that region.

• Directly specifying the address range and attributes for the first 32 regions using PRBAR<n>/HPRBAR<n>
and PRLAR<n>/HPRLAR<n>.

For the EL2 protection regions, HPRENR provides direct access to the region enable for regions 0-31.

C1.4.1 Effect of enabling one or both MPUs on attribute assignment and fault generation

For accesses that fault:

• MPU-generated faults follow the PMSAv8-32 Long-descriptor format and are reported in the same way as
VMSAv8-32 faults.

• All MPU faults are treated as level 0 faults. For translation operations, PMSA contexts return the 64-bit PAR
format. The PAR format discards the least significant bits but the translation query uses the entire input
address. For more information, see the Types of MMU faults section in the The AArch32 Virtual Memory
System Architecture chapter of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile. For fault status codes, see DFSR, IFSR, and HSR.

• If the value of EDSCR.HDD is 1, stage 2 faults in Debug state are reported as Debug events at EL1. See
Behavior in Debug state on page F1-189.

For an access that does not fault:

When both the EL1 MPU and the EL2 MPU are enabled:

• For an EL2 access (an access from Hyp mode), the EL2 MPU configuration settings
determine the access permissions and memory attributes.

• For EL1 and EL0 accesses, the EL1 MPU configuration settings determine the stage 1 access
permissions and memory attributes. If the Effective value of HCR.VM is 1, those access
permissions and memory attributes are then modified by the EL2 MPU, as described in
Combining attributes on page C1-36.

When the EL1 MPU is disabled and the EL2 MPU is enabled:

• For an EL2 access (an access from Hyp mode), the EL2 MPU configuration settings
determine the access permissions and memory attributes.

• For an EL1 or EL0 access, the EL1 Background region settings determine the stage 1 access
permissions and memory attributes. If the Effective value of HCR.VM is 1, those access
permissions and memory attributes are then modified by the EL2 MPU, as described in
Combining attributes on page C1-36.

When the EL1 MPU is enabled but the EL2 MPU is disabled:

• For an EL2 access (an access from Hyp mode), the EL2 Background region settings
determine the access permissions and memory attributes.
C1-40 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.4 Memory protection
• For EL1 and EL0 accesses, the EL1 MPU configuration settings determine the access
permissions and memory attributes. If the Effective value of HCR.VM is 1, those access
permissions and memory attributes are then combined with the EL2 Background region
settings, as described in Combining attributes on page C1-36.

When both the EL1 MPU and the EL2 MPU are disabled:

• For an EL2 access (an access from Hyp mode), the EL2 Background region settings
determine the stage 1 access permissions and memory attributes.

• For an EL1 or EL0 access, the EL1 Background region settings determine the access
permissions and memory attributes. If the Effective value of HCR.VM is 1, those access
permissions and memory attributes are then modified by the EL2 Background region
settings, as described in Combining attributes on page C1-36.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-41
ID110520 Non-Confidential

Protected Memory System Architecture
C1.4 Memory protection
Figure C1-2 shows the stage 1 translation for EL1 and EL0 accesses.

Figure C1-2 Stage 1 translation for EL1 and EL0 accesses

Attributes from
hit protection region

Alignment
fault

Access from
EL0 or EL1

No

Effective
HCR.VM == 1?

Stage 2
translation

One

HCR.DC == 1? No

Match in how
many protection

regions?

SCTLR.M == 1?

Yes

Alignment check that depends on instruction:
not required or is OK

None

Translation
fault

More
than
one

No

Yes

Aligned access
to Device?

Access permitted
with attributes

assigned in stage 1
Alignment

fault

Access from EL1?

Yes

SCTLR.BR == 1?

No

Permission
fault

No

Permission
fault

Normal, Non-shareable,
Cacheable, Write-back,

Read-allocate, Write-allocate

Attributes defined
in the default
memory map

Yes

Yes

Access permitted?

NoNo

Yes Yes

No

Yes
C1-42 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Protected Memory System Architecture
C1.4 Memory protection
Figure C1-3 shows the stage 2 translation for EL1 and EL0 and stage 1 translation for EL2 accesses.

Figure C1-3 Stage 2 translation for EL1 and EL0, stage 1 translation for EL2 accesses

Combining is trivial if the EL1 MPU check resulted in attributes from the EL1 Background region because the two
Background regions are identical when both of them are enabled.

Access
from EL2

Attributes from
stage 1 translation

Attributes from
stage 1 combined
with attributes from
hit EL2 protection

region

Attributes from
hit EL2 protection

region

Attributes from
stage 1 combined
with attributes from

hit range in
EL2 default map

Attributes from hit range
in EL2 default map

Alignment
fault

Yes

Permission
fault

HSCTLR.M
== 1?

Yes

One

No

No

Yes

Yes

Alignment check that depends on instruction:
not required or is OK

Match in how
many protection

regions?

Translation
fault

None

More
than
one

No

No

HSCTLR.BR
== 1?

Access from
EL2?

Aligned access
to Device?

Access permitted with
assigned attributes

Alignment
fault

Permission
fault

Access
permitted?

NoNo

Yes Yes
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. C1-43
ID110520 Non-Confidential

Protected Memory System Architecture
C1.5 PMSAv8-32 implications for caches
C1.5 PMSAv8-32 implications for caches
Enabling or reconfiguring the MPU, or reprogramming any protection regions, can result in new and different
memory attributes for a previously accessed or speculatively accessed address. In this situation, the rules for
Mismatched memory attributes apply. See the Mismatched memory attributes section in the The AArch32 Virtual
Memory System Architecture chapter of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

C1.5.1 Cache line length

A PMSAv8-32 MPU permits the definition of protection regions that might be smaller than a cache line in the
implementation. Therefore, the following rules apply:
• If the MPU is configured such that multiple differing attributes apply to a single cache line, then for any

access to that cache line the rules for mismatched memory attributes apply. See the Memory region attributes
section in the The AArch32 Virtual Memory System Architecture chapter of the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

• Marking any part of a cache line as Write-Back permits the entire line to be treated as Write-Back.
C1-44 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part D
Armv8-R Instructions

Chapter D1
Armv8-R Instruction Set

This chapter describes the T32 and A32 instruction sets of the Armv8-R profile. It contains the following sections:
• Armv8-R base instructions on page D1-48.
• Armv8-R Advanced SIMD and floating-point instructions on page D1-53.
• Single-precision only floating-point implementations on page D1-54.
• Instruction encodings on page D1-56.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D1-47
ID110520 Non-Confidential

Armv8-R Instruction Set
D1.1 Armv8-R base instructions
D1.1 Armv8-R base instructions
Table D1-1 summarizes the instructions that are new in the Armv8-R AArch32 profile or redefined from Armv8-A.
For instructions that are unchanged with respect to Armv8-A, see the Arm® Architecture Reference Manual Armv8,
for Armv8-A architecture profile.

Table D1-1 Armv8-R base instructions

Instruction
Status with
respect to
Armv8-A

Notes

ADC Unchanged

ADD Unchanged

ADR Unchanged

AESD, AESE, AESIMC,
AESMC

Unchanged

AND Unchanged

ASR Unchanged

B Unchanged

BFC Unchanged

BFI Unchanged

BIC Unchanged

BKPT Unchanged

BL, BLX, BX, BXJ Unchanged

CBNZ

CBZ

Unchanged

CDP

CDP2

Unchanged

CLREX Unchanged

CLZ Unchanged

CMN Unchanged

CMP Unchanged

CPS, CPSID, CPSIE Unchanged

CRC32, CRC32C Unchanged

DBG Unchanged

DCPS1, DCPS2 Unchanged

DCPS3 Unused

DFB on page D2-66 New

DMB on page D2-59 Redefined Differences from the Armv8-A AArch32
application level architecture on page B1-26

DSB on page D2-62 Redefined
D1-48 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R Instruction Set
D1.1 Armv8-R base instructions
EOR Unchanged

ERET Unchanged

HLT Unchanged

HVC Unchanged

ISB Unchanged

IT Unchanged

LDA, LDAB, LDAEX,
LDAEXB, LDAEXD,
LDAEXH, LDAH

Unchanged

LDC, LDC2 Unchanged

LDM, LDMIA, LDMFD,
LDMDA, LDMFA, LDMDB,
LDMEA, LDMIB, LDMED

Unchanged

LDR, LDRB, LDRBT, LDRD Unchanged

LDREX, LDREXB, LDREXD,
LDREXH, LDRH, LDRHT,
LDRSB, LDRSBT, LDRSH,
LDRSHT, LDRT

Unchanged

LSL Unchanged

LSR Unchanged

MCR, MCR2, MCRR, MCRR2 Unchanged

MLA Unchanged

MLS Unchanged

MOV Unchanged

MOVT Unchanged

MRC, MRC2, MRRC, MRRC2 Unchanged

MRS Unchanged

MSR Unchanged

MUL Unchanged

MVN Unchanged

NOP Unchanged

ORN Unchanged

ORR Unchanged

PKHBT, PKHTB Unchanged

Table D1-1 Armv8-R base instructions (continued)

Instruction
Status with
respect to
Armv8-A

Notes
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D1-49
ID110520 Non-Confidential

Armv8-R Instruction Set
D1.1 Armv8-R base instructions
PLD Unchanged

PLI Unchanged

POP Unchanged

PUSH Unchanged

QADD, QADD16, QADD8,
QASX, QDADD

Unchanged

QDSUB, QSAX, QSUB,
QSUB16, QSUB8

Unchanged

RBIT Unchanged

REV, REV16, REVSH Unchanged

RFE, RFEDA, RFEDB,
RFEIA, RFEIB

Unchanged

ROR Unchanged

RRX Unchanged

RSB Unchanged

RSC Unchanged

SADD16, SADD8 Unchanged

SASX Unchanged

SBC Unchanged

SBFX Unchanged

SDIV Unchanged

SEL Unchanged

SETEND Unchanged

SEV Unchanged

SEVL Unchanged

SHA1C, SHA1M, SHA1P,
SHA1H, SHA1SU0,
SHA1SU1

Unchanged

SHA256H, SHA256H2,
SHA256SU0, SHA256SU1

Unchanged

SHADD16, SHADD8 Unchanged

SHASX Unchanged

SHSAX Unchanged

Table D1-1 Armv8-R base instructions (continued)

Instruction
Status with
respect to
Armv8-A

Notes
D1-50 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R Instruction Set
D1.1 Armv8-R base instructions
SHSUB16, SHSUB8 Unchanged

SMC Unused

SMLABB, SMLABT,
SMLATB, SMLATT, SMLAD,
SMLADX, SMLAL, SMLALS,
SMLALBB, SMLALBT,
SMLALTB, SMLALTT,
SMLALD, SMLALDX,
SMLAWB, SMLAWT

Unchanged

SMLSD, SMLSDX, SMLSLD,
SMLSLDX, SMMLA,
SMMLAR

Unchanged

SMMLS, SMMLSR Unchanged

SMMUL, SMMULR, SMUAD,
SMUADX, SMULBB,
SMULBT, SMULTB,
SMULTT, SMULL, SMULLS,
SMULWB, SMULWT

Unchanged

SMUSD, SMUSDX Unchanged

SRS, SRSDA, SRSDB,
SRSIA, SRSIB

Unchanged

SSAT, SSAT16 Unchanged

SSAX Unchanged

SSUB16, SSUB8 Unchanged

STC, STC2 Unchanged

STL, STLB, STLH Unchanged

STRL, STRLB, STRLH Unchanged

STM, STMIA, STMEA,
STMDA, STMED, STMDB,
STMFD, STMIB, STMFA

Unchanged

STR, STRB, STRBT, STRD,
STRH, STRHT, STRT

Unchanged

STRLEX, STRLEXB,
STRLEXH, STRLEXD

Unchanged

SUB Unchanged

SVC Unchanged

SXTAB, SXTAB16, SXTAH Unchanged

SXTB, SXTB16, SXTH Unchanged

Table D1-1 Armv8-R base instructions (continued)

Instruction
Status with
respect to
Armv8-A

Notes
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D1-51
ID110520 Non-Confidential

Armv8-R Instruction Set
D1.1 Armv8-R base instructions
TBB, TBH Unchanged

TEQ Unchanged

TST Unchanged

UADD16, UADD8 Unchanged

UASX Unchanged

UBFX Unchanged

UDF Unchanged

UDIV Unchanged

UHADD16, UHADD8 Unchanged

UHASX Unchanged

UHSAX Unchanged

UHSUB16, UHSUB8 Unchanged

UMAAL Unchanged

UMLAL Unchanged

UMULL Unchanged

UQADD16, UQADD8 Unchanged

UQASX Unchanged

UQSAX Unchanged

UQSUB16, UQSUB8 Unchanged

USAD8 Unchanged

USADA8 Unchanged

USAT, USAT16 Unchanged

USAX Unchanged

USUB16, USUB8 Unchanged

UXTAB, UXTAB16 Unchanged

UXTAH Unchanged

UXTB, UXTB16 Unchanged

UXTH Unchanged

WFE Unchanged

WFI Unchanged

YIELD Unchanged

Table D1-1 Armv8-R base instructions (continued)

Instruction
Status with
respect to
Armv8-A

Notes
D1-52 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R Instruction Set
D1.2 Armv8-R Advanced SIMD and floating-point instructions
D1.2 Armv8-R Advanced SIMD and floating-point instructions
The Armv8-R AArch32 profile supports Advanced SIMD and floating-point operations. For the instruction
descriptions, see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Armv8-R can optionally support single-precision floating-point operations without Advanced SIMD.

See also Advanced SIMD and floating-point support on page B1-26 and Single-precision only floating-point
implementations on page D1-54.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D1-53
ID110520 Non-Confidential

Armv8-R Instruction Set
D1.3 Single-precision only floating-point implementations
D1.3 Single-precision only floating-point implementations
Armv8-R permits a floating-point implementation that supports only single-precision floating-point instructions.
Such an implementation must be a D16 implementation, that is, it must support only floating-point registers
D0-D15. Instruction encodings that would access floating-point registers beyond D15 are UNDEFINED.

Table D1-2 shows the A32/T32 instruction encodings that are implemented in a single-precision only floating-point
implementation.

Table D1-2 Armv8-R instructions in an Armv8-R single-precision only implementation

Instruction Encoding Conditions

VABS A2/T2 sz=0

VADD (floating-point) A2/T2 sz=0

VCMP A1/T1
A2/T2

sz=0

VCVT (integer to floating-point, floating-point), VCVTR A1/T1 sz=0

VCVT (between floating-point and fixed-point, floating-point) A1/T1 sz=0

VCVTA (floating-point), VCVTN (floating-point), VCVTP (floating-point),
VCVTM (floating-point)

A1/T1 sz=0

VCVTB, VCVTT A1/T1 sz=0

VDIV A1/T1 sz=0

VFMA, VFMS A2/T2 sz=0

VFNMA, VFNMS A1/T1 sz=0

VLDM, VLDMDB, VLDMIA A1/T1
A2/T2

all

VLDR A1/T1
A2/T2

all

VMAXNM, VMINNM A2/T2 sz=0

VMLA (floating-point), VMLS (floating-point) A2/T2 sz=0

VMOV (immediate) A2/T2 sz=0

VMOV (register, SIMD) A2/T2 sz=0

VMOV (general-purpose register to scalar) A1/T1 opc1:opc2 = ‘0x00’

VMOV (scalar to general-purpose register) A1/T1 U:opc1:opc2 = ‘0x00’

VMOV (between general-purpose register and single-precision register) A1/T1 all

VMOV (between two general-purpose registers and two single-precision
registers)

A1/T1 all

VMOV (between two general-purpose registers and a doubleword
floating-point register)

A1/T1 all

VMRS A1/T1 -

VMSR A1/T1 -
D1-54 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R Instruction Set
D1.3 Single-precision only floating-point implementations
VMUL (floating-point) A2/T2 sz=0

VNEG A2/T2 sz=0

VNMLA, VNMLS, VNMUL A1/T1
A2/T2

sz=0

VPOP A1/T1
A2/T2

all

VPUSH A1/T1
A2/T2

all

VRINTA (floating-point), VRINTN (floating-point), VRINTP (floating-point),
VRINTM (floating-point)

A1/T1 sz=0

VRINTX (floating-point) A1/T1 sz=0

VRINTZ (floating-point), VRINTR A1/T1 sz=0

VSELEQ, VSELGE, VSELGT, VSELVS A1/T1 sz=0

VSQRT A1/T1 sz=0

VSTM, VSTMDB, VSTMIA A1/T1
A2/T2

all

VSTR A1/T1
A2/T2

all

VSUB (floating-point) A2/T2 sz=0

Table D1-2 Armv8-R instructions in an Armv8-R single-precision only implementation (continued)

Instruction Encoding Conditions
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D1-55
ID110520 Non-Confidential

Armv8-R Instruction Set
D1.4 Instruction encodings
D1.4 Instruction encodings
This section contains the encoding for the instructions that are new in Armv8-R. For all other encoding information,
see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

D1.4.1 Miscellaneous system

This section describes the encoding of the Miscellaneous System instruction class. This section is decoded from
Section Branches and miscellaneous control in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Decode fields
Instruction Page

opc

000x Unallocated

0010 CLREX

0011 Unallocated

0100 DSB and DFB

0101 DMB

0110 ISB

0111 Unallocated

1xxx Unallocated

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) opc option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 4 3 0
D1-56 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Chapter D2
Description of Redefined and New Instructions

This chapter contains the description of the instructions that are redefined or new in Armv8-R from Armv8-A. It
contains the following sections:
• Redefined instructions on page D2-58.
• New instruction on page D2-65.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D2-57
ID110520 Non-Confidential

Description of Redefined and New Instructions
D2.1 Redefined instructions
D2.1 Redefined instructions
This section contains the description of the instructions that are redefined in Armv8-R from Armv8-A.
D2-58 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of Redefined and New Instructions
D2.1 Redefined instructions
D2.1.1 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses.

The ordering requirements of DMB are:
• EL0 and EL1 memory accesses are ordered only with respect to memory accesses using the same VMID.
• EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

These ordering requirements are a relaxation from the Armv8-A behavior of DMB.

A1

A1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

<q> See Standard assembler syntax fields in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. For more information, see Data
Memory Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Can be omitted. This option is referred to as the full
system barrier. Encoded as option = 0b1111.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 1 option
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D2-59
ID110520 Non-Confidential

Description of Redefined and New Instructions
D2.1 Redefined instructions
ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. For more information, see Data Memory Barrier
(DMB) in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile. SYST is a synonym for ST. Encoded as option = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. For more information, see Data Memory Barrier (DMB) in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile. Encoded as
option = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. For more information, see
Data Memory Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. For more information, see Data Memory
Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Memory Barrier (DMB) in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile. Encoded as
option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. For more information, see Data
Memory Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. For more information, see Data Memory
Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Memory Barrier (DMB) in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile. Encoded as
option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. For more information, see
Data Memory Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. For more information, see Data Memory
Barrier (DMB) in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Memory Barrier (DMB) in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile. Encoded as
option = 0b0001.

All other encodings of option are reserved. It is IMPLEMENTATION DEFINED whether options other
than SY are implemented. All unsupported and reserved options must execute as a full system DMB
operation, but software must not rely on this behavior.
D2-60 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of Redefined and New Instructions
D2.1 Redefined instructions
Note
 The instruction supports the following alternative <option> values, but Arm recommends that

software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 DataMemoryBarrier(domain, types);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D2-61
ID110520 Non-Confidential

Description of Redefined and New Instructions
D2.1 Redefined instructions
D2.1.2 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses.

The ordering requirements of DSB are:
• EL0 and EL1 memory accesses are ordered only with respect to memory accesses using the same VMID.
• EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

These ordering requirements are a relaxation from the Armv8-A behavior of DSB.

This instruction is used by the alias DFB. See Alias conditions for details of when each alias is preferred.

A1

A1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

T1

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

 // No additional decoding required

Alias conditions

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

<q> See Standard assembler syntax fields in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

Alias is preferred when

DFB option == '1100'

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 option
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
D2-62 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of Redefined and New Instructions
D2.1 Redefined instructions
<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. For more information, see Data
Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Can be omitted. This option is referred to as the full
system DSB. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. For more information, see Data Synchronization
Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile. SYST is a synonym for ST. Encoded as option = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. For more information, see Data Synchronization Barrier (DSB) in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile. Encoded as
option = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. For more information, see
Data Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. For more information, see Data
Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Synchronization Barrier (DSB) in
the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.
Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. For more information, see Data
Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type
both before and after the barrier instruction. For more information, see Data
Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Synchronization Barrier (DSB) in
the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.
Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. For more information, see
Data Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. For more information, see Data
Synchronization Barrier (DSB) in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. For more information, see Data Synchronization Barrier (DSB) in
the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.
Encoded as option = 0b0001.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D2-63
ID110520 Non-Confidential

Description of Redefined and New Instructions
D2.1 Redefined instructions
For option = 0b1100, see DFB. All other encodings of option are reserved. It is IMPLEMENTATION
DEFINED whether options other than SY and DFB are implemented. All unsupported and reserved
options must execute as a full system DSB operation, but software must not rely on this behavior.

Note
 The instruction supports the following alternative <option> values, but Arm recommends that

software does not use these alternative values:

• SH as an alias for ISH.

• SHST as an alias for ISHST.

• UN as an alias for NSH.

• UNST as an alias for NSHST.

Operation for all encodings

 if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
 domain = MBReqDomain_OuterShareable;
 if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
 domain = MBReqDomain_InnerShareable;

 if option == '1100' and PSTATE.EL == EL2 then
 DataFullBarrier();
 else
 DataSynchronizationBarrier(domain, types);
D2-64 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of Redefined and New Instructions
D2.2 New instruction
D2.2 New instruction
This section contains the description of the instruction that is new in Armv8-R from Armv8-A.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. D2-65
ID110520 Non-Confidential

Description of Redefined and New Instructions
D2.2 New instruction
D2.2.1 DFB

Data Full Barrier is a memory barrier that ensures the completion of memory accesses.

If executed at EL2, this instruction orders memory accesses irrespective of their Exception level or associated
VMID. If executed at EL1 or EL0, this instruction behaves as DSB SY.

This instruction is an alias of the DSB instruction. This means that:
• The encodings in this description are named to match the encodings of DSB.
• The description of DSB gives the operational pseudocode for this instruction.

A1

Armv8.0-R

A1 variant

DFB{<c>}{<q>}

is equivalent to

DSB{<c>}{<q>} #12

and is always the preferred disassembly.

T1

Armv8.0-R

T1 variant

DFB{<c>}{<q>}

is equivalent to

DSB{<c>}{<q>} #12

and is always the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

<q> See Standard assembler syntax fields in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

Operation for all encodings

The description of DSB gives the operational pseudocode for this instruction.

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 1 1 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 1 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0

option
D2-66 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part E
Armv8-R System Registers and System Instructions

Chapter E1
Armv8-R System Registers and System Instructions

This chapter contains the list of the System registers and System instructions in Armv8-R. It contains the following
sections:
• Armv8-R System register list on page E1-70.
• Armv8-R System instructions on page E1-76.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E1-69
ID110520 Non-Confidential

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
E1.1 Armv8-R System register list
Table E1-1summarizes the System registers in the Armv8-R AArch32 profile. It specifies whether the register is
unchanged, redefined, new, or not used when the Armv8-R System registers are compared to the registers that are
supported in Armv8-A. For information on the System registers that are unchanged with respect to Armv8-A, see
the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile. Registers that are not listed in
Table E1-1 are UNALLOCATED in v8-R.

The following terms describe register access at each Exception level that Armv8-R supports:
RW Read/write.
RO Read-only.
- Not accessible.
RAZ/WI Read-As-Zero, Writes Ignored.
Cfg Configurable access.
WO Write-only.

Table E1-1 Armv8-R System registers

Register Status with respect to Armv8-A EL2 EL1 EL0

ACTLR Unchanged RW RW -

ACTLR2 Unchanged RW RW -

ADFSR Unchanged RW RW -

AIDR Unchanged RO RO -

AIFSR Unchanged RW RW -

AMAIR0 Unchanged RW RW -

AMAIR1 Unchanged RW RW -

CCSIDR Unchanged RO RO -

CLIDR Unchanged RO RO -

CNTFRQ Unchanged RW RO RO

CNTHCTL Unchanged RW - -

CNTHP_CTL Unchanged RW - -

CNTHP_CVAL Unchanged RW - -

CNTHP_TVAL Unchanged RW - -

CNTKCTL Unchanged RW RW -

CNTPCT Unchanged RO Cfg Cfg

CNTP_CTL Unchanged RW Cfg Cfg

CNTP_CVAL Unchanged RW Cfg Cfg

CNTP_TVAL Unchanged RW Cfg Cfg

CNTVCT Unchanged RO RO Cfg

CNTVOFF Unchanged RW - -

CNTV_CTL Unchanged RW RW Cfg

CNTV_CVAL Unchanged RW RW Cfg
E1-70 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
CNTV_TVAL Unchanged RW RW Cfg

CONTEXTIDR Unchanged RW RW -

CPACR Unchanged RW RW -

CSSELR Unchanged RW RW -

CTR Unchanged RO RO -

DBGAUTHSTATUS Redefined RO RO -

DBGBCR<n> Unchanged RW RW -

DBGBVR<n> Unchanged RW RW -

DBGBXVR<n> Unchanged RW RW -

DBGCLAIMCLR Unchanged RW RW -

DBGCLAIMSET Unchanged RW RW -

DBGDCCINT Unchanged RW RW -

DBGDEVID Unchanged RO RO -

DBGDEVID1 Unchanged RO RO -

DBGDEVID2 Unchanged RO RO -

DBGDIDR Unchanged RO RO Cfg

DBGDRAR Unchanged RO RO RO

DBGDSAR Unchanged RO RO RO

DBGDSCRext Redefined RW RW -

DBGDSCRint Unchanged RO RO RO

DBGDTRRXext Unchanged RW RW -

DBGDTRRXint Unchanged RO RO RO

DBGDTRTXext Unchanged RW RW -

DBGDTRTXint Unchanged WO WO WO

DBGOSDLR Unchanged RW RW -

DBGOSECCR Unchanged RW RW -

DBGOSLAR Unchanged WO WO -

DBGOSLSR Unchanged RO RO -

DBGPRCR Unchanged RW RW -

DBGVCR Unchanged RW RW -

DBGWCR<n> Unchanged RW RW -

DBGWFAR Unchanged RW RW -

Table E1-1 Armv8-R System registers (continued)

Register Status with respect to Armv8-A EL2 EL1 EL0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E1-71
ID110520 Non-Confidential

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
DBGWVR<n> Unchanged RW RW -

DFAR Unchanged RW RW -

DFSR Redefined RW RW -

DLR Unchanged RW RW RW

DSPSR Unchanged RW RW RW

FCSEIDR Unchanged RAZ/WI RAZ/WI -

FPEXC Unchanged Cfg Cfg -

FPSCR Redefined (access only) Cfg Cfg Cfg

FPSID Unchanged Cfg Cfg -

HACR Unchanged RW - -

HACTLR Unchanged RW - -

HACTLR2 Unchanged RW - -

HADFSR Unchanged RW - -

HAIFSR Unchanged RW - -

HAMAIR0 Unchanged RW - -

HAMAIR1 Unchanged RW - -

HCPTR Redefined RW - -

HCR Redefined RW - -

HCR2 Redefined RW - -

HDCR Redefined RW - -

HDFAR Unchanged RW - -

HIFAR Unchanged RW - -

HMAIR0 Unchanged RW - -

HMAIR1 Unchanged RW - -

HMPUIR New RO - -

HPRBAR New RW - -

HPRBAR<n> New RW - -

HPRENR New RW - -

HPRLAR New RW - -

HPRLAR<n> New RW - -

HPRSELR New RW - -

HPFAR Unchanged RW - -

Table E1-1 Armv8-R System registers (continued)

Register Status with respect to Armv8-A EL2 EL1 EL0
E1-72 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
HRMR Unchanged RW - -

HSCTLR Redefined RW - -

HSR Redefined RW - -

HSTR Unchanged RW - -

HTPIDR Unchanged RW - -

HVBAR Unchanged RW - -

ID_AFR0 Unchanged RO RO -

ID_DFR0 Unchanged RO RO -

ID_ISAR0 Unchanged RO RO -

ID_ISAR1 Unchanged RO RO -

ID_ISAR2 Unchanged RO RO -

ID_ISAR3 Unchanged RO RO -

ID_ISAR4 Unchanged RO RO -

ID_ISAR5 Unchanged RO RO -

ID_MMFR0 Redefined RO RO -

ID_MMFR1 Unchanged RO RO -

ID_MMFR2 Redefined RO RO -

ID_MMFR3 Unchanged RO RO -

ID_MMFR4 Unchanged RO RO -

ID_PFR0 Unchanged RO RO -

ID_PFR1 Unchanged
Complying with the general differences between the architecture profiles, the
following field value settings apply in Armv8-R AArch32:
Virtualization 0b0001
Virt_frac 0b0000

Security 0b0000

Sec_frac 0b0001

RO RO -

IFAR Unchanged RW RW -

IFSR Redefined RW RW -

ISR Unchanged RO RO -

JIDR Unchanged RO RO -

JMCR Unchanged RW RW -

JOSCR Unchanged RW RW -

MAIR0 Unchanged RW RW -

Table E1-1 Armv8-R System registers (continued)

Register Status with respect to Armv8-A EL2 EL1 EL0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E1-73
ID110520 Non-Confidential

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
MAIR1 Unchanged RW RW -

MIDR Unchanged RO RO -

MPIDR Unchanged RO RO -

MPUIR New RO RO -

MVBAR Unchanged - - -

MVFR0 Unchanged Cfg Cfg -

MVFR1 Unchanged Cfg Cfg -

MVFR2 Unchanged Cfg Cfg -

NMRR Unused - - -

NSACR Unchanged RO RO -

PAR Unchanged RW RW -

PMCCFILTR Unchanged RW RW Cfg

PMCCNTR Unchanged RW RW Cfg

PMCEID0 Unchanged RO RO Cfg

PMCEID1 Unchanged RO RO Cfg

PMCNTENCLR Unchanged RW RW Cfg

PMCNTENSET Unchanged RW RW Cfg

PMCR Redefined RW RW Cfg

PMEVCNTR<n> Unchanged RW RW Cfg

PMEVTYPER<n> Unchanged RW RW Cfg

PMINTENCLR Unchanged RW RW -

PMINTENSET Unchanged RW RW -

PMOVSR Unchanged RW RW Cfg

PMOVSSET Unchanged RW RW Cfg

PMSELR Unchanged RW RW Cfg

PMSWINC Unchanged WO WO Cfg

PMUSERENR Unchanged RW RW RO

PMXEVCNTR Unchanged RW RW Cfg

PMXEVTYPER Unchanged RW RW Cfg

PRBAR New RW RW -

PRBAR<n> New RW RW -

PRLAR New RW RW -

Table E1-1 Armv8-R System registers (continued)

Register Status with respect to Armv8-A EL2 EL1 EL0
E1-74 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R System Registers and System Instructions
E1.1 Armv8-R System register list
PRLAR<n> New RW RW -

PRSELR New RW RW -

PRRR Unused - - -

REVIDR Unchanged RO RO -

RMR Unused - - -

RVBAR Unchanged RO RO -

SCTLR Redefined RW RW -

SPSR Unchanged

TCMTR Unchanged

TPIDRPRW Unchanged RW RW -

TPIDRURO Unchanged RW RW RO

TPIDRURW Unchanged RW RW RW

VBAR Unchanged RW RW -

VMPIDR Unchanged RW - -

VPIDR Unchanged RW - -

VSCTLR New RW - -

Table E1-1 Armv8-R System registers (continued)

Register Status with respect to Armv8-A EL2 EL1 EL0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E1-75
ID110520 Non-Confidential

Armv8-R System Registers and System Instructions
E1.2 Armv8-R System instructions
E1.2 Armv8-R System instructions
System instructions that are in use in Armv8-R AArch32 are unchanged from the Armv8-A profile.
ID_MMFR2.UniTLB == 0b0000 ensures that TLB maintenance operations, for a unified TLB implementation, are
UNALLOCATED.

For information on the System instructions, see the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.
E1-76 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Chapter E2
Description of the Redefined or New System
Registers

This chapter contains the description of the System registers that are new or redefined in Armv8-R from Armv8-A.
It contains the following sections:
• Redefined System registers on page E2-78.
• New System registers on page E2-153.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-77
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1 Redefined System registers
This section contains the description of the System registers that are redefined in Armv8-R from Armv8-A.
E2-78 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.1 DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Configurations

System register DBGAUTHSTATUS architecturally mapped to External register
DBGAUTHSTATUS_EL1.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS bit assignments are:

Bits [31:12]

Reserved, RES0.

HNID, bits [11:10]

Hyp non-invasive debug. Possible values of this field are:

00 Separate Hyp enable not implemented, or EL2 not implemented.

10 Implemented and disabled. ExternalHypNoninvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalHypNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

For Armv8-R:

• If EL2 is implemented, bit [11] is RAO.

• If EL2 is not implemented, bits [11:10] are RAZ.

HID, bits [9:8]

Hyp invasive debug. Possible values of this field are:

00 Separate Hyp enable not implemented, or EL2 not implemented.

10 Implemented and disabled. ExternalHypInvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalHypInvasiveDebugEnabled() == TRUE.

Other values are reserved.

For Armv8-R:

• If EL2 is implemented, bit [9] is RAO.

• If EL2 is not implemented, bits [9:8] are RAZ.

RES0

31 12

HNID

11 10

HID

9 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-79
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c7, c14, 6 000 110 0111 1110 1110

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p14, 0, <Rt>, c7, c14, 6 0 - RO RO

p14, 0, <Rt>, c7, c14, 6 1 - n/a RO
E2-80 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When EL2 is implemented:

• If HDCR.TDA==1, read accesses to this register from EL1 are trapped to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-81
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.2 DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

This register is required in all implementations.

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DBGDSCRext is a 32-bit register.

Field descriptions

The DBGDSCRext bit assignments are:

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX
full status.

The architected behavior of this field determines the value it returns after a reset.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it

as UNK/SBZP.

31 30 29 28 27 26 25 24 23 22 21 20 19

NS

18 17 16 15 14 13 12

RES0

11 7 6

MOE

5 2 1 0

RES0
RXfull
TXfull
RES0
RXO
TXU
RES0
INTdis
TDA
RES0
SPNIDdis
SPIDdis

RES0
ERR

UDCCdis
RES0

HDE
MDBGen
E2-82 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX
full status.

The architected behavior of this field determines the value it returns after a reset.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it

as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this field is RO, and software must treat
it as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this field is RW and holds the value of
EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Bits [20:19]

Reserved, RES0.

NS, bit [18]

Non-secure status. This bit is RES1.

Arm deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged profiling disabled status bit. This bit is RES0.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-83
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Arm deprecates use of this field.

SPIDdis, bit [16]

Secure privileged AArch32 invasive self-hosted debug disabled status bit. This bit is RES0.

Arm deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

When this register has an architecturally defined reset value, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it
as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

0 EL0 accesses to the DCC registers are not trapped to Undefined mode.

1 EL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR,
DBGDSAR, and DBGDRAR are trapped to Undefined mode.

Note
 All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRTXint and

DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0 (the OS lock is unlocked), this bit is RO, and software must treat it

as UNK/SBZP.

When DBGOSLSR.OSLK == 1 (the OS lock is locked), this bit is RW and holds the value of
EDSCR.ERR.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken, this field is set to indicate
the event that caused the exception.

0001 Breakpoint.

0011 Software breakpoint (BKPT) instruction.

0101 Vector catch.
E2-84 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
1010 Watchpoint.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRext

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Individual fields within this register might have restricted accessibility when DBGOSLSR.OSLK == 0 (the OS lock
is unlocked.) See the field descriptions for more detail.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HDCR.TDA==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p14, 0, <Rt>, c0, c2, 2 000 010 0000 1110 0010

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p14, 0, <Rt>, c0, c2, 2 0 - RW RW

p14, 0, <Rt>, c0, c2, 2 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-85
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.3 DFSR, Data Fault Status Register

The DFSR characteristics are:

Purpose

Holds status information about the last data fault.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DFSR is a 32-bit register.

Field descriptions

The DFSR bit assignments are:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous External abort.

0 DFAR is valid.

1 DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous External abort. It is RES0 for all other Data Abort
exceptions.

Bits [15:14]

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance
instruction generated the fault. The possible values of this bit are:

0 Abort not caused by execution of a cache maintenance instruction.

1 Abort caused by execution of a cache maintenance instruction.

On an asynchronous fault, this bit is UNKNOWN.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

RES0

31 17 16 15 14 13 12 11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
RES0

WnR
ExT
CM

RES0
E2-86 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
WnR, bit [11]

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The
possible values of this bit are:

0 Abort caused by a read instruction.

1 Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the
(coproc==1111) encoding space this bit always returns a value of 1.

Bit [10]

Reserved, RES0.

LPAE, bit [9]

Reserved, RES1.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

000100 Translation fault

001100 Permission fault

010000 Synchronous External abort, other than synchronous parity or ECC error

010001 SError interrupt

011000 Synchronous parity or ECC error on memory access

011001 SError parity or ECC error on memory access

100001 Alignment fault

100010 Debug exception

110100 IMPLEMENTATION DEFINED fault (Cache lockdown fault)

110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)

All other values are reserved.

Accessing the DFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c0, 0 000 000 0101 1111 0000
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-87
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c5, c0, 0 0 - RW RW

p15, 0, <Rt>, c5, c0, 0 1 - n/a RW
E2-88 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.4 HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:

• Trapping to Hyp mode of access, at EL1 or EL0, to trace, and to Advanced SIMD or
floating-point functionality.

• Hyp mode access to trace, and to Advanced SIMD or floating-point functionality.

Note
 Accesses to this functionality:

• Other than Hyp mode are also affected by settings in the CPACR and NSACR.

• From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those generated
by the HCPTR controls.

Usage constraints

This register is accessible as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception
prioritization for exceptions taken to AArch32 state in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Subject to the prioritization rules:

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.

Configurations

Some or all RW fields of this register have defined reset values. These apply only if the PE resets
into EL2. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCPTR is a 32-bit register.

Field descriptions

The HCPTR bit assignments are:

EL0 EL1 EL2

- - RW

31

RES0

30 21 20

RES0

19 16 15 14 13 12 11 10

RES1

9 0

TCPAC
TTA

TCP10
TCP11

RES1
RES0
TASE
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-89
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
TCPAC, bit [31]

Traps EL1 accesses to the CPACR to Hyp mode.

0 This control has no effect on EL1 accesses to the CPACR.

1 EL1 accesses to the CPACR are trapped to Hyp mode.

Note
 The CPACR is not accessible at EL0.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers to Hyp mode.

0 This control has no effect on System register accesses to trace registers.

1 Any System register access to an implemented trace register is trapped to Hyp mode,
unless the access is trapped to EL1 by a CPACR or NSACR control, or the access is
from EL0 and the definition of the register in the appropriate trace architecture
specification indicates that the register is not accessible from EL0. A trapped instruction
generates:

• A Hyp Trap exception, if the exception is taken from EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

If the implementation does not include a PE trace unit, or does not include a System register
interface to the PE trace unit registers, it is IMPLEMENTATION DEFINED whether this bit:

• Is RES0.

• Is RES1.

• Can be written from Hyp mode.

Note
 • The ETMv4 architecture does not permit EL0 to access the trace registers. If the

implementation includes an ETMv4 implementation, EL0 accesses to the trace registers are
UNDEFINED, and a resulting Undefined Instruction exception is higher priority than a
HCPTR.TTA Hyp Trap exception.

• The architecture does not provide traps on trace register accesses through the optional
memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bits [19:16]

Reserved, RES0.

TASE, bit [15]

Traps execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is
0.

0 This control has no effect on execution of Advanced SIMD instructions.
E2-90 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
1 When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD
instruction is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR or NSACR
control. A trapped instruction generates:

• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

If the implementation includes floating-point functionality but does not include Advanced SIMD
functionality, this field is RES1.

Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is
not implemented as a RW field, then it is RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do
not apply to floating-point operation in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit
then this field is UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.

TCP10, bit [10]

Trap accesses to Advanced SIMD and floating-point functionality to Hyp mode:

0 This control has no effect on accesses to Advanced SIMD and floating-point
functionality.

1 Any attempted access to Advanced SIMD and floating-point functionality is trapped to
Hyp mode, unless it is trapped to EL1 by a CPACR or NSACR control. A trapped
instruction generates:

• A Hyp Trap exception, if the exception is taken from EL0 or EL1.

• An Undefined Instruction exception taken to Hyp mode, if the exception is taken
from Hyp mode.

The Advanced SIMD and floating-point features controlled by these fields are:

• Execution of any floating-point or Advanced SIMD instruction.

• Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as
S0-S31 and Q0-Q15.

• Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

If the implementation does not include Advanced SIMD and floating-point functionality, this field
is RES1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field, it resets to 0.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-91
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Bits [9:0]

Reserved, RES1.

Accessing the HCPTR:

To access the HCPTR:

MRC p15,4,<Rt>,c1,c1,2 ; Read HCPTR into Rt
MCR p15,4,<Rt>,c1,c1,2 ; Write Rt to HCPTR

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 100 0001 0001 010
E2-92 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.5 HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure
operations are trapped to Hyp mode.

Configurations

Some or all RW fields of this register have defined reset values. Otherwise, RW fields in this register
reset to architecturally UNKNOWN values.

Attributes

HCR is a 32-bit register.

Field descriptions

The HCR bit assignments are:

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Memory controls. Traps EL1 reads of the memory control registers to Hyp mode. The
registers for which read accesses are trapped are as follows:

SCTLR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0,
AMAIR1, CONTEXTIDR, PRSELR, PRBAR, PRBAR<n>, PRLAR, PRLAR<n>.

0 This control has no effect on EL1 read accesses to memory control registers.

1 EL1 read accesses to the specified memory control registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

BSU

11 10

FB

9 8

VI

7 6 5 4 3 2 1 0

RES0
TRVM
HCD
RES0
TGE
TVM
RES0
TPU
TPC
TSW
TAC
TIDCP
RES0
TID3
TID2
TID1

VM
SWIO
RES0
FMO
IMO

AMO
VF
VA
DC

TWI
TWE
TID0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-93
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
HCD, bit [29]

HVC instruction disable. Disables execution of HVC instructions.

0 HVC instruction execution is enabled at EL2 and EL1.

1 HVC instructions are UNDEFINED at EL2 and EL1. The Undefined Instruction exception
is taken to the Exception level at which the HVC instruction is executed.

Note
 HVC instructions are always UNDEFINED at EL0.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions from EL0.

0 This control has no effect on execution at EL0.

1 All exceptions that would be routed to EL1 are routed to EL2.
The SCTLR.M bit is treated as being 0 for all purposes other than returning the result
of a direct read of SCTLR.
The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes other than
returning the result of a direct read of HCR.
All virtual interrupts are disabled.
Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.
An exception return to EL1 is treated as an illegal exception return.
The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other
than for the purpose of a direct read of HDCR.

When this register has an architecturally defined reset value, this field resets to 0.

TVM, bit [26]

Trap Memory controls. Traps EL1 writes to the memory control registers to Hyp mode.

The registers for which write accesses are trapped are as follows:

SCTLR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0,
AMAIR1, CONTEXTIDR, PRSELR, PRBAR, PRBAR<n>, PRLAR, PRLAR<n>.

0 This control has no effect on EL1 write accesses to EL1 memory control registers.

1 EL1 write accesses to EL1 memory control registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

Bit [25]

Reserved, RES0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps EL1 execution
of those cache maintenance instructions to Hyp mode. This applies to the following instructions:

ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note
 An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and

these instructions are always UNDEFINED at EL0.

0 This control has no effect on the execution of cache maintenance instructions.
E2-94 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
1 EL1 execution of the specified instructions is trapped to Hyp mode.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When this register has an architecturally defined reset value, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
EL1 execution of those cache maintenance instructions to Hyp mode. This applies to the following
instructions:

DCIMVAC, DCCIMVAC, DCCMVAC.

Note
 An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and

these instructions are always UNDEFINED at EL0.

0 This control has no effect on the execution of cache maintenance instructions.

1 EL1 execution of the specified instructions is trapped to Hyp mode.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

When this register has an architecturally defined reset value, this field resets to 0.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps EL1 execution
of those cache maintenance instructions by set/way to Hyp mode.

This applies to the following instructions:

DCISW, DCCSW, DCCISW.

Note
 An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and

these instructions are always UNDEFINED at EL0.

0 This control has no effect on the execution of cache maintenance instructions.

1 EL1 execution of the specified instructions is trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

TAC, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to Hyp
mode.

This applies to the following register accesses:

ACTLR and, if implemented, ACTLR2.

0 This control has no effect on EL1 accesses to the Auxiliary Control Registers.

1 EL1 accesses to the specified registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings for
IMPLEMENTATION DEFINED System Registers to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-95
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
MCR and MRC instructions accessing the following encodings:

• All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm == {c0-c2, c5-c8}, opcode2 == {0-7}.

• All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 ==
{0-7}.

• All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality
accessed from EL0 is trapped to Hyp mode.

If it is not, it is UNDEFINED, and the PE takes an Undefined Instruction exception to Undefined mode.

0 This control has no effect on EL1 and EL0 accesses to the System register encodings for
IMPLEMENTATION DEFINED functionality.

1 EL1 accesses to the specified System register encodings for IMPLEMENTATION DEFINED
functionality is trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

Bit [19]

Reserved, RES0.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of the following registers to Hyp mode:

ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3,
ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5, MVFR0, MVFR1,
MVFR2, and ID_MMFR4, except that if ID_MMFR4 is implemented as RAZ/WI then it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 are trapped.

Also an MRC access to any of the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c3-c7}, opc2 == {0,1}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == 2.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {4,5}.

It is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to the following encodings:

• coproc==p15, opc1 == 0, CRn == c0, CRm == c2, opc2 == 7.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c3, opc2 == {3-7}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == {c4, c6, c7}, opc2 == {2-7}.

• coproc==p15, opc1 == 0, CRn == c0, CRm == c5, opc2 == {2, 3, 6, 7}.

0 This control has no effect on EL1 reads of the ID group 3 registers.

1 The specified EL1 read accesses to ID group 3 registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to Hyp mode.

• EL1 and EL0 reads of the CTR, CCSIDR, CLIDR, and CSSELR.

• EL1 and EL0 writes to the CSSELR.

0 This control has no effect on EL1 and EL0 accesses to the ID group 2 registers.

1 The specified EL1 and EL0 accesses to ID group 2 registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to Hyp mode.

TCMTR, TLBTR, REVIDR, AIDR, MPUIR.

0 This control has no effect on EL1 reads of the ID group 1 registers.

1 The specified EL1 read accesses to ID group 1 registers are trapped to Hyp mode.
E2-96 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When this register has an architecturally defined reset value, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to Hyp mode.

• EL1 reads of the JIDR and FPSID.

• If the JIDR is RAZ from EL0, EL0 reads of the JIDR.

Note
 • It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is

UNDEFINED at EL0 then the Undefined Instruction exception takes precedence over this trap.

• The FPSID is not accessible at EL0.

• Writes to the FPSID are ignored, and not trapped by this control.

0 This control has no effect on EL1 reads of the ID group 0 registers.

1 The specified EL1 read accesses to ID group 0 registers are trapped to Hyp mode.

When this register has an architecturally defined reset value, this field resets to 0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to Hyp mode.

0 This control has no effect on the execution of WFE instructions at EL0 or EL1.

1 Any attempt to execute a WFE instruction at EL0 or EL1 is trapped to Hyp mode, if the
instruction would otherwise have caused the PE to enter a low-power state, except that
when the value of SCTLR.nTWE is 0, the trap of EL0 execution to Undefined mode
takes precedence over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not

guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When this register has an architecturally defined reset value, this field resets to 0.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to Hyp mode.

0 This control has no effect on the execution of WFI instructions at EL1 or EL0.

1 Any attempt to execute a WFI instruction at EL0 or EL1 is trapped to Hyp mode, if the
instruction would otherwise have caused the PE to enter a low-power state, except that
when the value of SCTLR.nTWI is 0, the trap of EL0 execution to Undefined mode
takes precedence over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not

guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When this register has an architecturally defined reset value, this field resets to 0.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-97
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
DC, bit [12]

Default Cacheability.

0 This control has no effect on the EL1&0 translation regime.

1 The HCR.VM field behaves as 1 for all purposes other than a direct read of the value of
the field.
The memory type produced by the first stage default memory map of the EL1&0
translation regime is:

• Normal memory.

• Non-shareable.

• Inner Write-Back Read-Allocate, Write-Allocate Cacheable.

• Outer Write-Back Read-Allocate, Write-Allocate Cacheable.

• For instruction accesses, not XN, meaning that execution is permitted.

This field has no effect on the EL2 translation regime.

When this register has an architecturally defined reset value, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum Shareability domain that is
applied to any barrier instruction executed from EL1 or EL0:

00 No effect.

01 Inner Shareable.

10 Outer Shareable.

11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the Shareability attributes from two stages of address translation.

When this register has an architecturally defined reset value, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from EL1:

BPIALL, ICIALLU.

0 This field has no effect on the operation of the specified instructions.

1 When one of the specified instructions is executed at EL1, the instruction is broadcast
within the Inner Shareable shareability domain.

When this register has an architecturally defined reset value, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

0 This mechanism is not making a virtual SError interrupt pending.

1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.{TGE, AMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally defined reset value, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

0 This mechanism is not making a virtual IRQ pending.

1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.{TGE, IMO} is {0, 1}.
E2-98 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally defined reset value, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

0 This mechanism is not making a virtual FIQ pending.

1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.{TGE, FMO} is {0, 1}.

The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

When this register has an architecturally defined reset value, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of CPSR.A, and
enables virtual exception signaling by the VA bit.

If the value of HCR.TGE is 1, then the HCR.AMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

When this register has an architecturally defined reset value, this field resets to 0.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.I, and enables virtual
exception signaling by the VI bit.

If the value of HCR.TGE is 1, then the HCR.IMO bit behaves as 1 for all purposes other than a direct
read of the value of the bit.

When this register has an architecturally defined reset value, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.F, and enables virtual
exception signaling by the VF bit.

If the value of HCR.TGE is 1, then the HCR.FMO bit behaves as 1 for all purposes other than a
direct read of the value of the bit.

When this register has an architecturally defined reset value, this field resets to 0.

Bit [2]

Reserved, RES0.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidates by set/way
instructions to be treated as data cache clean and invalidate by set/way.

0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

1 Data cache invalidate by set/way instructions operate as data cache clean and invalidate
by set/way.

When this bit is set to 1, DCISW is executed as DCCISW.

As a result of changes to the behavior of DCISW, this bit is redundant in Armv8. This bit can be
implemented as RES1.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 protection for EL1 and EL0 accesses.

This is provided by the EL2 MPU. Possible values of this bit are:

0 EL1 and EL0 stage 2 address protection disabled.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-99
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
1 EL1 and EL0 stage 2 address protection enabled and attribute combination enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a mode other than Hyp
mode is consistent with HCR.VM being 1, regardless of the actual value of HCR.VM, other than
the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 operate as data
cache clean and invalidate instructions. For the invalidate by set/way instruction this behavior
applies regardless of the value of the HCR.SWIO bit.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the HCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 0 100 000 0001 1111 0001

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c1, c1, 0 0 - - RW

p15, 4, <Rt>, c1, c1, 0 1 - n/a RW
E2-100 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.6 HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HCR2 is a 32-bit register.

Field descriptions

The HCR2 bit assignments are:

Bits [31:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regime.

0 For the EL1&0 translation regime, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for those accesses differs from
the Outer Cacheability attribute.

1 For the EL1&0 translation regime, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there might be
a loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see Mismatched memory attributes in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

The value of this field has no effect on translation regimes other than the EL1&0 translation regime.

This field can be implemented as RAZ/WI.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bits [5:0]

Reserved, RES0.

Accessing the HCR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

RES0

31 7 6

RES0

5 0

MIOCNCE
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-101
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 4 100 100 0001 1111 0001

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c1, c1, 4 0 - - RW

p15, 4, <Rt>, c1, c1, 4 1 - n/a RW
E2-102 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.7 HDCR, Hyp Debug Control Register

The HDCR characteristics are:

Purpose

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided
by the debug and trace architectures and the Performance Monitors Extension.

Configurations

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HDCR is a 32-bit register.

Field descriptions

The HDCR bit assignments are:

Bits [31:22]

Reserved, RES0.

EPMAD, bit [21]

External debug interface access to Hyp mode Performance Monitors registers disable. This disables
access by an external debugger to counters that are reserved for use from Hyp mode:

0 Access to all Performance Monitors counters by an external debugger is permitted.

1 Access to Performance Monitors counters in the range [HPMN..(PMCR.N-1)] by an
external debugger is disabled, unless overridden by
ExternalHypNoninvasiveDebugEnabled().

If the Performance Monitors Extension is not implemented or does not support external debug
interface accesses this bit is RES0.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [20:18]

Reserved, RES0.

HPMD, bit [17]

Hyp Performance Monitors Disable. This control prohibits event counting in Hyp mode by the
counters accessible at EL1.

0 Event counting by EL1-accessible counters allowed in Hyp mode.

1 Event counting by EL1-accessible counters prohibited in Hyp mode.

RES0

31 22 21

RES0

20 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

EPMAD
HPMD

TPMCR
TPM

HPME
TDE
TDA

TDOSA
TDRA
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-103
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
This control applies only to:

• The event counters in the range [0..HPMN-1].

• If PMCR.DP is set to 1, PMCCNTR.

The other event counters are unaffected.

When PMCR.DP is set to 0, PMCCNTR is unaffected.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps EL0 and EL1 System register accesses to the
Debug ROM registers to Hyp mode.

0 EL0 and EL1 System register accesses to the Debug ROM registers are not trapped to
Hyp mode.

1 EL0 and EL1 System register accesses to the DBGDRAR or DBGDSAR are trapped to
Hyp mode unless it is trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally defined reset value, this field resets to 0.

TDOSA, bit [10]

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to Hyp mode.

0 EL1 System register accesses to the powerdown debug registers are not trapped to Hyp
mode.

1 EL1 System register accesses to the powerdown debug registers are trapped to Hyp
mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and the DBGPRCR.

• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation
specifies as trapped by this bit.

Note
 These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally defined reset value, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps EL0 and EL1 System register accesses to those debug System registers in
the (coproc==1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.

• HDCR.TDOSA.

0 Has no effect on System register accesses to the debug registers.

1 EL0 or EL1 System register accesses to the debug registers, other than the registers
trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp mode unless it is
trapped by DBGDSCRext.UDCCdis.

Traps of accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.
E2-104 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct
read.

When this register has an architecturally defined reset value, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. The possible values of this bit are:

0 This control has no effect on the routing of debug exceptions, and has no effect on
accesses to debug registers.

1 Debug exceptions generated at EL1 or EL0 are routed to EL2.
All accesses to Debug registers that would not be UNDEFINED if the value of this field
was 0 are trapped to EL2.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than
returning the value of a direct read of the register.

When this register has an architecturally defined reset value, this field resets to 0.

HPME, bit [7]

Hyp Performance Monitors Enable. The possible values of this bit are:

0 All counters that are not accessible at EL1 are disabled.

1 All counters that are not accessible at EL1 are enabled by PMCNTENSET.

When the value of this bit is 1, the Performance Monitors counters that are reserved for use from
Hyp mode are enabled. For more information see the description of the HPMN field.

Note
 Enabled counters do not count events when counting is prohibited.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

TPM, bit [6]

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitors
registers to Hyp mode.

0 EL0 and EL1 accesses to all Performance Monitors registers are not trapped to Hyp
mode.

1 EL0 and EL1 accesses to all Performance Monitors registers are trapped to Hyp mode.

Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

TPMCR, bit [5]

Trap PMCR accesses. Traps EL0 and EL1 accesses to the PMCR to Hyp mode.

0 This control does not cause any instructions to be trapped.

1 EL0 and EL1 accesses to the PMCR are trapped to Hyp mode, unless it is trapped by
PMUSERENR.EN.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-105
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Note
 EL2 does not provide traps on Performance Monitor register accesses through the optional

memory-mapped external debug interface.

If the Performance Monitors Extension is not implemented, this field is RES0.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

HPMN, bits [4:0]

Defines the number of Performance Monitors counters that are accessible from EL1 modes, and
from EL0 modes if unprivileged access is enabled.

If the Performance Monitors Extension is not implemented, this field is RES0.

HPMN divides the Performance Monitors counters as follows. If software is accessing Performance
Monitors counter n then:

• If n is in the range 0<=n<HPMN, the counter is accessible from EL1 and EL2, and from EL0
if unprivileged access to the counters is enabled. PMCR.E enables the operation of counters
in this range. HDCR.HPMD disables the counters in this range in EL2. The counters in this
range are always accessible from the IMPLEMENTATION DEFINED external debug interface.

• If n is in the range HPMN<=n<PMCR.N, the counter is accessible only from EL2.
HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED
UNPREDICTABLE behavior applies:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves
as if HDCR.HPMN is set to an UNKNOWN non-zero value less than PMCR.N.

— All counters are reserved for EL2 use, meaning no counters are accessible from EL1
and EL0.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to the value of PMCR.N.

Accessing the HDCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c1, 1 100 001 0001 1111 0001
E2-106 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c1, c1, 1 0 - - RW

p15, 4, <Rt>, c1, c1, 1 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-107
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.8 HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top-level control of the system operation in Hyp mode.

Configurations

Some or all RW fields of this register have defined reset values. Otherwise, RW fields in this register
reset to architecturally UNKNOWN values.

Attributes

HSCTLR is a 32-bit register.

Field descriptions

The HSCTLR bit assignments are:

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

0 Exceptions, including reset, taken to A32 state.

1 Exceptions, including reset, taken to T32 state.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode.

The possible values of this bit are:

0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode.

1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode.

31

TE

30 29 28 27 26 25 24 23 22

FI

21 20 19 18

BR

17 16

RES0

15 13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

RES0
RES1
RES0
EE
RES0
RES1
RES0
WXN
RES1
RES1

RES1
CP15BEN

RES0
ITD

SED
RES0
RES1
E2-108 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
If an implementation does not provide big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide little-endian support at Exception levels higher than EL0, this
bit is RES1.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

FI, bit [21]

Fast Interrupts enable. Permitted values of this bit are:

0 All performance features enabled.

1 Low interrupt latency configuration. Some performance features disabled.

In Armv8-R:

• If FI == 1, then asynchronous errors and interrupts can interrupt LDM/STM instructions that
access Normal memory. The register that provides the base address is restored to its original
value and any other modified registers become UNKNOWN.

• Up to two MPUs can determine whether an access is to Normal memory, therefore the value
of the FI field depends on whether the appropriate MPU or MPUs allow the access to the
location as access to Normal memory.

— For EL0 and EL1 accesses, this is the combination of the attributes determined by the
configuration settings of the EL1 MPU and the configuration settings of the EL2 MPU

— For EL2 accesses, these are the attributes determined by the configuration settings of
the EL2 MPU.

When this register has an architecturally defined reset value, this field resets to 0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all
memory regions that are writable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable in the EL2 translation regime is forced to XN for accesses
from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [18]

Reserved, RES1.

BR, bit [17]

Background Region enable for EL2.

0 EL2 MPU Background region disabled. Any EL2 transaction that does not match an
EL2 MPU region results in a fault.

1 EL2 MPU Background region enabled. For EL2 transactions that do not match an EL2
MPU region, the EL2 Background region attributes are used.

When this register has an architecturally defined reset value, this field resets to 0.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-109
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

0 All instruction access to Normal memory from EL2 are Non-cacheable for all levels of
instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

1 All instruction access to Normal memory from EL2 can be cached at all levels of
instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of the EL2 translation
regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through
memory.

This bit has no effect on the EL1&0 translation regime.

When this register has an architecturally defined reset value, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

0 SETEND instruction execution is enabled at EL2.

1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

0 All IT instruction functionality is enabled at EL2.

1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the following values for hw1:

11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF, SVC,
LDM, and STM.

1011xxxxxxxxxxxx

All instructions in Miscellaneous 16-bit instructions in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

10100xxxxxxxxxxx

ADD Rd, PC, #imm

01001xxxxxxxxxxx

LDR Rd, [PC, #imm]
E2-110 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
0100x1xxx1111xxx

ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.

010001xx1xxxx111

ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then
behavior is CONSTRAINED UNPREDICTABLE.

For more information, see Changes to an ITD control by an instruction in an IT block section of the
the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the
HSCTLR. If it is not implemented then this bit is RAZ/WI.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==1111) encoding space from EL2:

0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.

1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in
the HSCTLR. If it is not implemented then this bit is RAO/WI.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to a value that is architecturally UNKNOWN.

Bits [4:3]

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

0 All data accesses to Normal memory from EL2 are Non-cacheable for all levels of data
and unified cache.

1 All data accesses to Normal memory from EL2 can be cached at all levels of data and
unified cache.

This bit has no effect on the EL1&0 translation regime.

When this register has an architecturally defined reset value, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

0 Alignment fault checking disabled when executing at EL2.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-111
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element or data elements being accessed.

1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element or data elements being
accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

M, bit [0]

MPU enable for the EL2 MPU. Possible values of this bit are:

0 EL2 MPU disabled.
See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.

1 EL2 MPU enabled.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the HSCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c1, c0, 0 100 000 0001 1111 0000

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c1, c0, 0 0 - - RW

p15, 4, <Rt>, c1, c0, 0 1 - n/a RW
E2-112 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.9 HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

HSR is a 32-bit register.

Field descriptions

The HSR bit assignments are:

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR
is UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.
Possible values of this field are:

EC == 000000
Unknown reason.
See ISS encoding for exceptions with an unknown reason.

EC == 000001
Trapped WFI or WFE instruction execution.
Conditional WFE and WFI instructions that fail their condition code check do not cause
an exception.
See ISS encoding for an exception from a WFI or WFE instruction.

EC == 000011
Trapped MCR or MRC access with (coproc==1111) that is not reported using EC
0b000000.
See ISS encoding for an exception from an MCR or MRC access.

EC == 000100
Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC
0b000000.
See ISS encoding for an exception from an MCRR or MRRC access.

EC == 000101
Trapped MCR or MRC access with (coproc==1110).
See ISS encoding for an exception from an MCR or MRC access.

EC == 000110
Trapped LDC or STC access.

EC

31 26

IL

25

ISS

24 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-113
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
The only architected uses of these instructions are:

• An STC to write data to memory from DBGDTRRXint.

• An LDC to read data from memory to DBGDTRTXint.
See ISS encoding for an exception from an LDC or STC instruction.

EC == 000111
Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE,
TCP10} control.
Excludes exceptions generated because Advanced SIMD and floating-point are not
implemented. These are reported with EC value 0b000000.
See ISS encoding for an exception from an access to SIMD or floating-point
functionality, resulting from HCPTR.

EC == 001000
Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.
See ISS encoding for an exception from an MCR or MRC access.

EC == 001100
Trapped MRRC access with (coproc==1110).
See ISS encoding for an exception from an MCRR or MRRC access.

EC == 001110
Illegal exception return to AArch32 state.
See ISS encoding for an exception from an Illegal state or PC alignment fault.

EC == 010001
Exception on SVC instruction execution in AArch32 state routed to EL2.
See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 010010
HVC instruction execution in AArch32 state, when HVC is not disabled.
See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 100000
Prefetch Abort from a lower Exception level.
See ISS encoding for an exception from a Prefetch Abort.

EC == 100001
Prefetch Abort taken without a change in Exception level.
See ISS encoding for an exception from a Prefetch Abort.

EC == 100010
PC alignment fault exception.
See ISS encoding for an exception from an Illegal state or PC alignment fault.

EC == 100100
Data Abort from a lower Exception level.
See ISS encoding for an exception from a Data Abort.

EC == 100101
Data Abort taken without a change in Exception level.
See ISS encoding for an exception from a Data Abort.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.
E2-114 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When
this bit is valid, possible values of this bit are:

0 16-bit instruction trapped.

1 32-bit instruction trapped.

This field is RES1 and not valid for the following cases:

• When the EC field is 0b000000, indicating an exception with an unknown reason.

• Prefetch Aborts.

• Data Aborts that do not have valid ISS information, or for which the ISS is not valid.

• When the EC value is 0b001110, indicating an Illegal state exception.

Note
 This is a change from the behavior in Armv7, where the IL field is UNK/SBZP for the

corresponding cases.

The IL field is not valid and is UNKNOWN on an exception from a PC alignment fault.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each
defined Exception class. However, in practice, some ISS encodings are used for more than one
Exception class.

The following subsections describe each ISS format.

ISS encoding for Exceptions with an unknown reason

This encoding is used by:

• Unknown reason.

The ISS encoding for these exceptions is:

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or is not accessible in
the current PE mode in the current Security state, including:

— A read access using a System register encoding pattern that is not allocated for reads or that does not
permit reads in the current PE mode and Security state.

— A write access using a System register encoding pattern that is not allocated for writes or that does not
permit writes in the current PE mode and Security state.

— Instruction encodings that are unallocated.

— Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.

RES0

24 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-115
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug
state.

• The attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted
access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:

— An HVC instruction when disabled by HCR.HCD.

— An HLT instruction when disabled by EDSCR.HDE.

• An exception generated because of the attempted execution of an MSR (banked register) or MRS (banked
register) instruction that would access a banked register that is not accessible from the PE mode at which the
instruction was executed.

Note
 An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the instruction is that it is
UNDEFINED, see MSR (banked register) and MRS (banked register) in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

• Attempted execution, in Debug state, of:

— A DCPS1 instruction from EL0 when the value of HCR.TGE is 1.

— A DCPS2 instruction at EL1 or EL0 when the value of EDSCR.HDD is 1 or when EL2 is not
implemented.

Undefined Instruction exception, when the value of HCR.TGE is 1 in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile describes the configuration settings for a trap that returns an HSR.EC value
of 0b000000.

ISS encoding for an Exception from a WFI or WFE instruction

This encoding is used by:

• Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that fail their condition code check do not cause an exception.

The ISS encoding for these exceptions is:

CV, bit [24]

Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

24

COND

23 20

RES0

19 1

TI

0

CV
E2-116 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. See the description of the COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

0 WFI trapped.

1 WFE trapped.

Trapping use of the WFI and WFE instructions in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile profile describes the configuration settings for this trap.

ISS encoding for an Exception from an MCR or MRC access

This encoding is used by:

• Trapped MCR or MRC access with (coproc==1111) that is not reported using EC 0b000000.

• Trapped MCR or MRC access with (coproc==1110).

• Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.

The ISS encoding for these exceptions is:
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-117
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
CV, bit [24]

Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. See the description of the COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

Bit [9]

Reserved, RES0.

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10 9

Rt

8 5

CRm

4 1 0

CV Direction
RES0
E2-118 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Rt, bits [8:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0 Write to System register space. MCR instruction.

1 Read from System register space. MRC or VMRS instruction.

The following sections describe configuration settings for traps that are reported using EC value 0b000011:

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations in the
Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL1 accesses to the CPACR in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc==0b1111) encoding space in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

The following sections describe configuration settings for traps that are reported using EC value 0b000101:

• ID group 0, Primary device identification registers in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure System register accesses to trace registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Trapping Non-secure System register accesses to Debug ROM registers in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

• Trapping Non-secure System register accesses to powerdown debug registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Trapping general Non-secure System register accesses to debug registers in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

The following sections describe configuration settings for traps that are reported using EC value 0b001000:

• ID group 0, Primary device identification registers in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-119
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
• ID group 3, Detailed feature identification registers in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

ISS encoding for an exception from an MCRR or MRRC access

This encoding is used by:

• Trapped MCRR or MRRC access with (coproc==1111) that is not reported using EC 0b000000.

• Trapped MRRC access with (coproc==1110).

The ISS encoding for these exceptions is:

CV, bit [24]

Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. See the description of the COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

Bits [15:14]

Reserved, RES0.

24

COND

23 20

Opc1

19 16 15 14

Rt2

13 10 9

Rt

8 5

CRm

4 1 0

CV
RES0

Direction
RES0
E2-120 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Rt2, bits [13:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer.

Bit [9]

Reserved, RES0.

Rt, bits [8:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer.

CRm, bits [4:1]

The CRm value from the issued instruction.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0 Write to System register space. MCRR instruction.

1 Read from System register space. MRRC instruction.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

• General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the
(coproc==0b1111) encoding space in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• Traps to Hyp mode of Non-secure System register accesses to trace registers in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

• Trapping Non-secure System register accesses to Debug ROM registers in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

ISS encoding for an Exception from an LDC or STC instruction

This encoding is used by:

• Trapped LDC or STC access.

The only architected uses of these instructions are:

— An STC to write data to memory from DBGDTRRXint.

— An LDC to read data from memory to DBGDTRTXint.

The ISS encoding for these exceptions is:
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-121
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
CV, bit [24]

Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. See the description of the COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

imm8, bits [19:12]

The immediate value from the issued instruction.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate
form of the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

0 Subtract offset.

1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

24

COND

23 20

imm8

19 12

RES0

11 9

Rn

8 5 4

AM

3 1 0

CV Direction
Offset
E2-122 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
AM, bits [3:1]

Addressing mode. The permitted values of this field are:

000 Immediate unindexed.

001 Immediate post-indexed.

010 Immediate offset.

011 Immediate pre-indexed.

100 Literal unindexed.
LDC instruction in A32 instruction set only.
For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
reserved.

110 Literal offset.
LDC instruction only.
For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0 Write to memory. STC instruction.

1 Read from memory. LDC instruction.

Trapping general Non-secure System register accesses to debug registers in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile describes the configuration settings for the trap that is reported
using EC value 0b000110.

ISS encoding for an Exception from an access to SIMD or floating-point functionality, resulting
from HCPTR

This encoding is used by:

• Access to Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE, TCP10} control.

Excludes exceptions generated because Advanced SIMD and floating-point are not implemented. These are
reported with EC value 0b000000.

The ISS encoding for these exceptions is:

Excludes exceptions that occur because Advanced SIMD and floating-point functionality is not implemented, or
because the value of HCR.TGE or HCR_EL2.TGE is 1. These are reported with EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

0 The COND field is not valid.

1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

24

COND

23 20

RES0

19 6

TA

5 4

coproc

3 0

CV RES0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-123
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. See the description of the COND field for more information.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the
instruction.

• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.

• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT
field to determine the condition, if any, of the T32 instruction.

• CV is set to 1 and COND is set to the condition code for the condition that applied to the
instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped
conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110,
or to the value of any condition that applied to the instruction.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

0 Exception was not caused by trapped use of Advanced SIMD functionality.

1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped
to Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see Controls of Advanced SIMD operation that do not apply to
floating-point operation in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 1010, otherwise this field is
RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

• Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality in the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

ISS encoding for an Exception from HVC or SVC instruction execution

This encoding is used by:

• Exception on SVC instruction execution in AArch32 state routed to EL2.
E2-124 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
• HVC instruction execution in AArch32 state, when HVC is not disabled.

The ISS encoding for these exceptions is:

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

• If the instruction is unconditional, then:

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction.

— For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the
instruction.

— For the T32 instruction, this field is zero-extended from the imm8 field of the
instruction. For the A32 instruction, this field is the bottom 16 bits of the imm24 field
of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its
condition code check. Therefore, the syndrome information for these exceptions does not require conditionality
information.

Supervisor Call exception, when the value of HCR.TGE is 1 in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile describes the configuration settings for the trap reported with EC value 0b010001.

ISS encoding for an exception from a Prefetch Abort

This encoding is used by:

• Prefetch Abort from a lower Exception level.

• Prefetch Abort taken without a change in Exception level.

The ISS encoding for these exceptions is:

Bits [24:11]

Reserved, RES0.

RES0

24 16

imm16

15 0

RES0

24 11 10 9 8 7 6

IFSC

5 0

RES0
S1PTW

RES0
EA

FnV
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-125
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
FnV, bit [10]

FAR not Valid, for a Synchronous External abort.

0 HIFAR is valid.

1 HIFAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

Reserved, RES0.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

000100 Translation fault

001100 Permission fault

010000 Synchronous External abort, other than synchronous parity or ECC error

011000 Synchronous parity or ECC error on memory access

100010 Debug exception, only when the EC value is 0b100001

All other values are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating
exceptions that are reported in the HSR with EC value 0b100000:

• Abort exceptions, when the value of HCR.TGE is 1 in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

• Routing debug exceptions to EL2 using AArch32 in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

ISS encoding for an exception from an Illegal state or PC alignment fault

This encoding is used by:

• Illegal exception return to AArch32 state.

• PC alignment fault exception.

The ISS encoding for these exceptions is:

Bits [24:0]

Reserved, RES0.

RES0

24 0
E2-126 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
For more information about the Illegal state exception, see:

• Illegal changes to PSTATE.M in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

• Illegal return events from AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

• Legal returns that set PSTATE.IL to 1 in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

• The Illegal Execution state exception in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

For more information about the PC alignment fault exception, see Branching to an unaligned PC in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

ISS encoding for an exception from a Data Abort

This encoding is used by:

• Data Abort from a lower Exception level.

• Data Abort taken without a change in Exception level.

The ISS encoding for these exceptions is:

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

0 No valid instruction syndrome. ISS[23:14] are RES0.

1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all
the following apply to the instruction that generated the Data Abort exception:

• The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT,
LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT,
STRB, STLB, or STRBT instruction.

• The instruction is not performing register writeback.

• The instruction is not using the PC as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, as described in Data Aborts in Memory access mode in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile, and otherwise indicates whether ISS[23:14] hold
a valid syndrome.

Note
 In the A32 instruction set, LDR*T and STR*T instructions always perform register writeback and

therefore never return a valid instruction syndrome.

24

SAS

23 22 21 20

SRT

19 16 15 14

RES0

13 11 10 9 8 7 6

DFSC

5 0

ISV
SSE
RES0
RES0
AR

WnR
S1PTW

CM
EA

FnV
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-127
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting
operation.

00 Byte

01 Halfword

10 Word

11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates
whether the data item must be sign extended. For these cases, the possible values of this bit are:

0 Sign-extension not required.

1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [20]

Reserved, RES0.

SRT, bits [19:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting
instruction.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bit [15]

Reserved, RES0.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

0 Instruction did not have acquire/release semantics.

1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

Bits [13:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a Synchronous External abort.

0 HDFAR is valid.

1 HDFAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External
aborts.

For any abort other than an External abort this bit returns a value of 0.
E2-128 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance
or address translation instruction. For synchronous faults, the possible values of this bit are:

0 Fault not generated by a cache maintenance or address translation instruction.

1 Fault generated by a cache maintenance or address translation instruction.
For an asynchronous Data Abort exception, this bit is 0.

S1PTW, bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read
instruction. The possible values of this bit are:

0 Abort caused by a read instruction.

1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value
of 1.

For an asynchronous Data Abort exception this bit is UNKNOWN.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

000100 Translation fault

001100 Permission fault

010000 Synchronous External abort, other than synchronous parity or ECC error

011000 Synchronous parity or ECC error on memory access

010001 SError interrupt

011001 SError interrupt, parity or ECC error on memory access

100001 Alignment fault

100010 Debug exception, only when the EC value is 0b100100

110100 IMPLEMENTATION DEFINED fault (Cache lockdown fault)

110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault)

All other values are reserved.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that
are reported in the HSR with EC value 0b100100:

• Abort exceptions, when the value of HCR.TGE is 1 in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

• Routing debug exceptions to EL2 using AArch32 in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the
HSR with EC value of 0b100000 or 0b100100:

• Hyp mode control of Non-secure access permissions in the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

• Memory fault reporting in Hyp mode in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-129
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Accessing the HSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T5==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c5, c2, 0 100 000 0101 1111 0010

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c5, c2, 0 0 - - RW

p15, 4, <Rt>, c5, c2, 0 1 - n/a RW
E2-130 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.10 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32. Must be interpreted with ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Configurations

There are no configuration notes.

Attributes

ID_MMFR0 is a 32-bit register.

Field descriptions

The ID_MMFR0 bit assignments are:

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost Shareability domain implemented. Defined values
are:

0000 Implemented as Non-cacheable.

0001 Implemented with hardware coherency support.

1111 Shareability ignored.

All other values are reserved.

In Armv8 the permitted values are 0000, 0001, and 1111.

This field is valid only if the implementation supports two levels of Shareability, as indicated by
ID_MMFR0.ShareLvl having the value 0001.

When ID_MMFR0.ShareLvl is zero, this field is UNK.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

0000 Not supported.

0001 Support for FCSE.

All other values are reserved.

In Armv8 the only permitted value is 0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

0000 None supported.

0001 Support for Auxiliary Control Register only.

0010 Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary
Control Register.

All other values are reserved.

InnerShr

31 28

FCSE

27 24

AuxReg

23 20

TCM

19 16

ShareLvl

15 12

OuterShr

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-131
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
In Armv8 the only permitted value is 0010.

Note
 Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

0000 Not supported.

0001 Support is IMPLEMENTATION DEFINED. Armv7 requires this setting.

0010 Support for TCM only, Armv6 implementation.

0011 Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-R the permitted values are 0000 and 0001.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of Shareability levels implemented. Defined values are:

0000 One level of shareability implemented.

0001 Two levels of shareability implemented.

All other values are reserved.

In Armv8-R the only permitted value is 0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost Shareability domain implemented. Defined values
are:

0000 Implemented as Non-cacheable.

0001 Implemented with hardware coherency support.

1111 Shareability ignored.

All other values are reserved.

In Armv8-R the permitted values are 0000, 0001, and 1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

0000 Not supported.

0001 Support for IMPLEMENTATION DEFINED PMSA.

0010 Support for PMSAv6, with a Cache Type Register implemented.

0011 Support for PMSAv7, with support for memory subsections. Armv7-R profile.

0100 Support for Armv8-R base and limit PMSA.

All other values are reserved.

In Armv8-R the only permitted value is 0100.

VMSA, bits [3:0]

Indicates support for a VMSA. Defined values are:

0000 Not supported.

0001 Support for IMPLEMENTATION DEFINED VMSA.

0010 Support for VMSAv6, with Cache and TLB Type Registers implemented.

0011 Support for VMSAv7, with support for remapping and the Access flag. Armv7-A
profile.
E2-132 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
0100 As for 0011, and adds support for the PXN bit in the Short-descriptor translation table
format descriptors.

0101 As for 0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

Accessing the ID_MMFR0

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TID3==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, read accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 4 000 100 0000 1111 0001

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c0, c1, 4 0 - RO RO

p15, 0, <Rt>, c0, c1, 4 1 - n/a RO
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-133
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.11 ID_MMFR2, Memory Model Feature Register 2

The ID_MMFR2 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Configurations

There are no configuration notes.

Attributes

ID_MMFR2 is a 32-bit register.

Field descriptions

The ID_MMFR2 bit assignments are:

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for
a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:

0000 Not supported.

0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values
are:

0000 Not supported.

0001 Support for WFI stalling.

All other values are reserved.

In Armv8-R the permitted values are 0000 and 0001.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==1111)
encoding space. Defined values are:

0000 None supported.

0001 Supported memory barrier System instructions are:

• Data Synchronization Barrier (DSB).

0010 As for 0001, and adds:

• Instruction Synchronization Barrier (ISB).

• Data Memory Barrier (DMB).

HWAccFlg

31 28

WFIStall

27 24

MemBarr

23 20

UniTLB

19 16

HvdTLB

15 12

L1HvdRng

11 8

L1HvdBG

7 4

L1HvdFG

3 0
E2-134 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
All other values are reserved.

In Armv8-R the only permitted value is 0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support
for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB
implementation. Defined values are:

0000 Not supported.

0001 Supported unified TLB maintenance operations are:

• Invalidate all entries in the TLB.

• Invalidate TLB entry by VA.

0010 As for 0001, and adds:

• Invalidate TLB entries by ASID match.

0011 As for 0010, and adds:

• Invalidate instruction TLB and data TLB entries by VA All ASID. This is a
shared unified TLB operation.

0100 As for 0011, and adds:

• Invalidate Hyp mode unified TLB entry by VA.

• Invalidate entire EL1&0 unified TLB.

• Invalidate entire Hyp mode unified TLB.

0101 As for 0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS,
TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0110 As for 0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS,
TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

HvdTLB, bits [15:12]

If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is
IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations,
for a Harvard cache implementation. Defined values are:

0000 Not supported.

0001 Supported Level 1 Harvard cache maintenance range operations are:

• Invalidate data cache range by VA.

• Invalidate instruction cache range by VA.

• Clean data cache range by VA.

• Clean and invalidate data cache range by VA.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

L1HvdBG, bits [7:4]

Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch
operations, for a Harvard cache implementation. When supported, background fetch operations are
non-blocking operations. Defined values are:

0000 Not supported.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-135
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
0001 Supported Level 1 Harvard cache background fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

L1HvdFG, bits [3:0]

Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch
operations, for a Harvard cache implementation. When supported, foreground fetch operations are
blocking operations. Defined values are:

0000 Not supported.

0001 Supported Level 1 Harvard cache foreground fetch operations are:

• Fetch instruction cache range by VA.

• Fetch data cache range by VA.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

Accessing the ID_MMFR2

This register can be read using MRC with the following syntax:

MRC <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TID3==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T0==1, read accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c1, 6 000 110 0000 1111 0001

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c0, c1, 6 0 - RO RO

p15, 0, <Rt>, c0, c1, 6 1 - n/a RO
E2-136 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.12 IFSR, Instruction Fault Status Register

The IFSR characteristics are:

Purpose

Holds status information about the last instruction fault.

Configurations

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

IFSR is a 32-bit register.

Field descriptions

The IFSR bit assignments are:

Bits [31:17]

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a Synchronous External abort.

0 IFAR is valid.

1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a Synchronous External abort. It is RES0 for all other Prefetch Abort
exceptions.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of
External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Reserved, RES1.

Bits [8:6]

Reserved, RES0.

RES0

31 17 16

RES0

15 13 12 11 10 9

RES0

8 6

STATUS

5 0

FnV LPAE
RES0

ExT
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-137
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

000100 Translation fault

001100 Permission fault

010000 Synchronous External abort, other than synchronous parity or ECC error

011000 Synchronous parity or ECC error on memory access

100001 PC alignment fault

100010 Debug exception

All other values are reserved.

Accessing the IFSR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T5==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c5, c0, 1 000 001 0101 1111 0000

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c5, c0, 1 0 - RW RW

p15, 0, <Rt>, c5, c0, 1 1 - n/a RW
E2-138 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.13 PAR, Physical Address Register

The PAR characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully,
or fault information if the instruction did not execute successfully.

Usage constraints

PAR is accessible as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception
prioritization for exceptions taken to AArch32 state in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile. Subject to the prioritization rules:

• If HSTR.T7==1, Accesses to this register from EL1 are trapped to Hyp mode.

Configurations

In Armv8-R, PAR returns a 64-bit value.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

In Armv8-R, PAR is a 64-bit register.

Field descriptions

The PAR bit assignments are:

For all register layouts:

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0 Address translation completed successfully.

1 Address translation aborted.

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

EL0 EL1 EL2

- RW RW

ATTR

63 56

RES0

55 40

PA

39 12 11 10

NS

9

SH

8 7

RES0

6 1

F

0

IMP DEF
LPAE
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-139
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values
that appear in the translation table descriptors. More precisely:

• Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted
implementation choices and any applicable configuration bits. This applies to the ATTR and SH fields.

• See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n>
fields in MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits.

Bits [55:40]

Reserved, RES0.

PA, bits [39:12]

Output address. The output address (OA) corresponding to the supplied input address. This field
returns address bits[39:12].

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

1 Long-descriptor translation table format used. This means the PAR returned a 64-bit
value.

IMP DEF, bit [10]

IMPLEMENTATION DEFINED.

NS, bit [9]

In Armv8-R, this bit is UNKNOWN.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

00 Non-shareable.

10 Outer Shareable.

11 Inner Shareable.

The value 01 is reserved.

Note
 This field returns the value 10 for:

• Any type of Device memory.

• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted
implementation choices and any applicable configuration bits.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

0 Address translation completed successfully.
E2-140 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When the instruction returned a 64-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of
the PE.

IMP DEF, bits [63:56]

IMPLEMENTATION DEFINED.

IMP DEF, bits [55:52]

IMPLEMENTATION DEFINED.

IMP DEF, bits [51:48]

IMPLEMENTATION DEFINED.

Bits [47:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

1 The PAR returned a 64-bit value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

0 Translation aborted because of a fault in the stage 1 translation.

1 Translation aborted because of a fault in the stage 2 translation.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1
translation table walk.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

1 Address translation aborted.

IMP DEF

63 56

IMP DEF

55 52

IMP DEF

51 48

RES0

47 12 11 10 9 8 7

FST

6 1

F

0

RES0
S2WLK

FSTAGE
RES0
LPAE
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-141
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Accessing the PAR:

To access the PAR when accessing as a 64-bit register:

MRRC p15,0,<Rt>,<Rt2>,c7 ; Read PAR[31:0] into Rt and PAR[63:32] into Rt2
MCRR p15,0,<Rt>,<Rt2>,c7 ; Write Rt to PAR[31:0] and Rt2 to PAR[63:32]

Register access is encoded as follows:

coproc opc1 CRm

1111 0000 0111
E2-142 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.14 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

System register PMCR bits [6:0] are architecturally mapped to External register PMCR_EL0[6:0].

This register is in the Warm reset domain. Some or all RW fields of this register have defined reset
values. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCR is a 32-bit register.

Field descriptions

The PMCR bit assignments are:

IMP, bits [31:24]

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.
Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A non-zero value has the same interpretation as
MIDR.Implementer. Use of this field is deprecated.

This field is RO with an IMPLEMENTATION DEFINED value.

IDCODE, bits [23:16]

Identification code.

This field is RO with an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that is specific to the implementer. A
specific implementation is identified by the combination of the implementer code and the
identification code. Use of this field is deprecated.

N, bits [15:11]

Number of event counters. A RO field that indicates the number counters implemented. A value of
0b00000 in this field indicates that only the Cycle Count Register PMCCNTR is implemented.

The value of this field is the number of event counters implemented. This value is in the range of
0b00000, in which case only the PMCCNTR is implemented, to 0b11111, which indicates that the
PMCCNTR and 31 event counters are implemented.

In an implementation that includes EL2, reads of this field from EL1 and EL0 return the value of
HDCR.HPMN.

Bits [10:7]

Reserved, RES0.

IMP

31 24

IDCODE

23 16

N

15 11

RES0

10 7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-143
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter
overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[31:0].

0b1 Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR is not affected by this bit.

0b1 When event counting for counters in the range [0..(HDCR.HPMN-1)] is prohibited,
cycle counting by PMCCNTR is disabled.

On a Warm reset, this field resets to 0.

For more information, see Prohibiting event counting in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus. The possible
values of this bit are:

0 Do not export events.

1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an
OPTIONAL trace macrocell. If the implementation does not include such an event bus then this field
is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

D, bit [3]

Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR counts every clock cycle.

1 When enabled, PMCCNTR counts once every 64 clock cycles.

This bit is RW.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

When this register has an architecturally defined reset value, this field resets to 0.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset PMCCNTR to zero.

This bit is always RAZ.

Resetting PMCCNTR does not clear the PMCCNTR overflow bit to 0.
E2-144 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters accessible in the current Exception level, not including
PMCCNTR, to zero.

This bit is always RAZ.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and HDCR.HPMN is less
than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[HDCR.HPMN..(PMCR.N-1)].

• If EL2 is not implemented or HDCR.HPMN is equal to PMCR_EL0.N, a write of 1 to this
bit resets all the event counters.

In EL2, a write of 1 to this bit resets all the event counters.

Note
 Resetting the event counters does not change the event counter overflow bits.

E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR, are disabled.

0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR, are enabled by
PMCNTENSET.

If EL2 is implemented then:

• PMN is HDCR.HPMN.

• If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the
range [PMN..(PMCR.N-1)].

If EL2 is not implemented, PMN is PMCR.N.

Note
 The effect of HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all

Exception levels including EL2, regardless of whether EL2 is enabled in the current Security state.
For more information, see the description of HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c9, c12, 0 000 000 1001 1111 1100
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-145
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

Not dependent on other bits:

• If PMUSERENR.EN==0, accesses to this register from EL0 are trapped to Undefined mode.

When EL2 is implemented:

• If HDCR.TPM==1, accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HDCR.TPMCR==1, accesses to this register from EL0 and EL1 are trapped to Hyp mode.

• If HSTR.T9==1, accesses to this register from EL0 and EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c9, c12, 0 0 RW RW RW

p15, 0, <Rt>, c9, c12, 0 1 RW n/a RW
E2-146 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
E2.1.15 SCTLR, System Control Register

The SCTLR characteristics are:

Purpose

Provides the top-level control of the system, including its memory system.

Configurations

Fields in this register reset to architecturally UNKNOWN values.

Attributes

SCTLR is a 32-bit register.

Field descriptions

The SCTLR bit assignments are:

Bit [31]

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception level that is executing
at EL1 are taken to A32 or T32 state:

0 Exceptions, including reset, taken to A32 state.

1 Exceptions, including reset, taken to T32 state.

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset.

The possible values of this bit are:

0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset.

1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming out of reset

If an implementation does not provide big-endian support for data accesses at Exception levels
higher than EL0, this bit is RES0.

31

TE

30 29 28 27 26 25 24 23 22

FI

21 20 19 18

BR

17 16

RES0

15 13

I

12 11 10 9 8 7 6 5 4 3

C

2

A

1

M

0

RES0
RES1
RES0
EE
RES0
RES1
UWXN
WXN
nTWE
nTWI

RES1
CP15BEN

UNK
ITD

SED
RES0
RES1
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-147
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
If an implementation does not provide little-endian support for data accesses at Exception levels
higher than EL0, this bit is RES1.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

FI, bit [21]

Fast Interrupts enable. This bit is a read-only copy of the HSCTLR.FI bit.

UWXN, bit [20]

Unprivileged write permission implies EL1 XN (Execute-never). This bit can force all memory
regions that are writable at EL0 to be treated as XN for accesses from software executing at EL1.
The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable at EL0 forced to XN for accesses from software executing
at EL1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN. The possible values of this bit are:

0 This control has no effect on memory access permissions.

1 Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

1 This control has no effect on the EL0 execution of WFE instruction.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

BR, bit [17]

Background Region enable. When the EL1 MPU is enabled, this bit controls how an EL1 access
that does not map to any MPU memory region is handled:

0 EL1 MPU Background region disabled. Any EL1 transaction that does not match an
EL1 MPU region results in a fault.

1 EL1 MPU Background region enabled. For EL1 transactions that do not match an EL1
MPU region, the EL1 Background region attributes are used and access is permitted
subject to any stage 2 checks.

This bit only applies to EL1 accesses. An EL0 access that does not match an EL1 MPU region
always results in a Translation fault.
E2-148 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the
instruction would otherwise have caused the PE to enter a low-power state.

1 This control has no effect on the EL0 execution of WFI instructions.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Note
 Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of

WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

0 All instruction access to Normal memory from EL1 and EL0 are Non-cacheable for all
levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

1 All instruction access to Normal memory from EL1 and EL0 can be cached at all levels
of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the EL1&0
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of
the SCTLR.I bit if the value of HCR.DC is 1.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 and EL1.

0 SETEND instruction execution is enabled at EL0 and EL1.

1 SETEND instructions are UNDEFINED at EL0 and EL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is
RES1.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL1 and EL0.

0 All IT instruction functionality is enabled at EL1 and EL0.

1 Any attempt at EL1 or EL0 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-149
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
• All encodings of the subsequent instruction with the following values for hw1:

11xxxxxxxxxxxxxx

All 32-bit instructions, and the 16-bit instructions B, UDF, SVC,
LDM, and STM.

1011xxxxxxxxxxxx

All instructions in Miscellaneous 16-bit instructions in the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

10100xxxxxxxxxxx

ADD Rd, PC, #imm

01001xxxxxxxxxxx

LDR Rd, [PC, #imm]

0100x1xxx1111xxx

ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.

010001xx1xxxx111

ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail
the condition code check that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the second 16-bit
instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit
instruction or the first half of a 32-bit instruction.

ITD is optional. If it is not implemented then this bit is RAZ/WI.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System
instructions in the (coproc==1111) encoding space from EL1 and EL0:

0 EL0 and EL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
UNDEFINED.

1 EL0 and EL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is
enabled.

CP15BEN is optional. If it is not implemented then this bit is RAO/WI.

Bits [4:3]

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

0 All data access to Normal memory from EL1 and EL0 are Non-cacheable for all levels
of data and unified cache.

1 All data access to Normal memory from EL1 and EL0 can be cached at all levels of data
and unified cache

The PE ignores SCTLR.C and data accesses to Normal memory from EL1 and EL0 are Cacheable
if the value of HCR.DC is 1.
E2-150 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.1 Redefined System registers
A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0:

0 Alignment fault checking disabled when executing at EL1 or EL0.
Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element being accessed.

1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element being accessed. If this
check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

M, bit [0]

MPU enable for EL1 MPU. Possible values of this bit are:

0 EL1 MPU disabled.
See the SCTLR.I field for the behavior of instruction accesses to Normal memory.

1 EL1 MPU enabled.

The PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the
value of a direct read of the field if the value of HCR.TGE is 1.

Accessing the SCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c1, c0, 0 000 000 0001 1111 0000

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c1, c0, 0 0 - RW RW

p15, 0, <Rt>, c1, c0, 0 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-151
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.1 Redefined System registers
When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T1==1, accesses to this register from EL1 are trapped to Hyp mode.
E2-152 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2 New System registers
This section contains the description of the System registers that are new in Armv8-R from Armv8-A.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-153
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.1 HMPUIR, Hypervisor MPU Type Register

The HMPUIR characteristics are:

Purpose

Identifies the number of regions supported by the EL2 MPU.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

HMPUIR is a 32-bit register.

Field descriptions

The HMPUIR bit assignments are:

Bits [31:8]

Reserved, RES0.

REGION, bits [7:0]

The number of EL2 MPU regions implemented.

An EL2 MPU region controls EL2 access and stage 2 of EL1 and EL0 access.

Accessing the HMPUIR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

RES0

31 8

REGION

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c0, c0, 4 100 100 0000 1111 0000

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c0, c0, 4 0 - - RW

p15, 4, <Rt>, c0, c0, 4 1 - n/a RW
E2-154 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T0==1, accesses to this register from EL1 are trapped to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-155
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.2 HPRBAR, Hypervisor Protection Region Base Address Register

The HPRBAR characteristics are:

Purpose

Provides indirect access to the base address of the EL2 MPU region currently defined by
HPRSELR.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

HPRBAR is a 32-bit register.

Field descriptions

The HPRBAR bit assignments are:

BASE, bits [31:6]

Address[31:6] concatenated with zeroes to form Address[31:0], the lower inclusive limit used as the
base address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SH[1:0], bits [4:3]

Shareability attribute:

00 Non-shareable.

01 Reserved, CONSTRAINED UNPREDICTABLE.

10 Outer Shareable.

11 Inner Shareable.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

AP[2:1], bits [2:1]

Access permissions attribute:

00 Read/write at EL2, no access at EL1 or EL0.

01 Read/write at EL2, EL1 and EL0.

10 Read-only at EL2, no access at EL1 or EL0.

11 Read-only at EL2, EL1 and EL0.

BASE

31 6 5 4 3 2 1

XN

0

AP[2:1]
SH[1:0]

RES0
E2-156 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
For accesses at EL1 or EL0, the access permission attribute applies only when the value of
HCR.VM is 1, in which case these stage 2 permissions are combined with the stage 1 permissions
for the access.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

XN, bit [0]

Execute-never.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the HPRBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c3, 0 100 000 0110 1111 0011

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c6, c3, 0 0 - - RW

p15, 4, <Rt>, c6, c3, 0 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-157
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.3 HPRBAR<n>, Hypervisor Protection Region Base Address Registers, n = 0 - 31

The HPRBAR<n> characteristics are:

Purpose

Provides access to the base addresses for the first 32 defined EL2 MPU regions.

Configurations

These registers are available in all implementations that support the Armv8 Protected Memory
System Architecture (PMSAv8-32).

Attributes

HPRBAR<n> is a 32-bit register.

Field descriptions

The HPRBAR<n> bit assignments are:

BASE, bits [31:6]

Address[31:6] concatenated with zeroes to form Address[31:0], the lower inclusive limit used as the
base address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SH[1:0], bits [4:3]

Shareability attribute:

00 Non-shareable.

01 Reserved, CONSTRAINED UNPREDICTABLE.

10 Outer Shareable.

11 Inner Shareable.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

AP[2:1], bits [2:1]

Access permissions attribute:

00 Read/write at EL2, no access at EL1 or EL0.

01 Read/write at EL2, EL1 and EL0.

10 Read-only at EL2, no access at EL1 or EL0.

11 Read-only at EL2, EL1 and EL0.

BASE

31 6 5 4 3 2 1

XN

0

AP[2:1]
SH[1:0]

RES0
E2-158 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
For accesses at EL1 or EL0, the access permission attribute applies only when the value of
HCR.VM is 1, in which case these stage 2 permissions are combined with the stage 1 permissions
for the access.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

XN, bit [0]

Execute-never.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the HPRBAR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Direct access is provided to HPRBAR0-HPRBAR31. HPRBAR<n>, can be accessed via MCR/MRC
p15,<i>,<Rt>,c6,c<j>,<k. where:

i = ‘10’ : n[4]

j = ‘1’ : n[3:1]

k = n[0] : ‘00’

Registers beyond the number of implemented regions are UNALLOCATED.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T10==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0110 1111

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0 - - RW

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-159
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.4 HPRENR, Hypervisor Protection Region Enable Register

The HPRENR characteristics are:

Purpose

Provides direct access to the HPRLAR.EN bits for EL2 MPU regions 0 to 31.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

HPRENR is a 32-bit register.

Field descriptions

The HPRENR bit assignments are:

ENABLE_bits, bits [31:0]

An alias of the HPRLAR[31:0].EN bits.

Bits associated with unimplemented regions are RAZ/WI.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the HPRENR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

ENABLE_bits

31 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c1, 1 100 001 0110 1111 0001

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c6, c1, 1 0 - - RW

p15, 4, <Rt>, c6, c1, 1 1 - n/a RW
E2-160 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-161
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.5 HPRLAR, Hypervisor Protection Region Limit Address Register

The HPRLAR characteristics are:

Purpose

Provides indirect access to the limit address of the EL2 MPU region currently defined by
HPRSELR.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

The AttrIndx[2:0] field is associated with the HMAIR0 and HMAIR1 registers.

Attributes

HPRLAR is a 32-bit register.

Field descriptions

The HPRLAR bit assignments are:

LIMIT, bits [31:6]

Address[31:6] concatenated with the value 0x3F to form Address[31:0], the upper inclusive limit
address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [5:4]

Reserved, RES0.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Hyp Memory Attribute Indirection Register:

000 Select the Attr0 field from HMAIR0.

001 Select the Attr1 field from HMAIR0.

010 Select the Attr2 field from HMAIR0.

011 Select the Attr3 field from HMAIR0.

100 Select the Attr4 field from HMAIR1.

101 Select the Attr5 field from HMAIR1.

110 Select the Attr6 field from HMAIR1.

111 Select the Attr7 field from HMAIR1.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

LIMIT

31 6 5 4 3 1 0

EN
AttrIndx[2:0]

RES0
E2-162 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
EN, bit [0]

Region enable.

0 Region disabled.

1 Region enabled.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the HPRLAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c3, 1 100 001 0110 1111 0011

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c6, c3, 1 0 - - RW

p15, 4, <Rt>, c6, c3, 1 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-163
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.6 HPRLAR<n>, Hypervisor Protection Region Limit Address Registers, n = 0 - 31

The HPRLAR<n> characteristics are:

Purpose

Provides access to the limit addresses for the first 32 defined EL2 MPU regions.

Configurations

These registers are available in all implementations that support the Armv8 Protected Memory
System Architecture (PMSAv8-32).

The AttrIndx[2:0] field is associated with the HMAIR0 and HMAIR1 registers.

Attributes

HPRLAR<n> is a 32-bit register.

Field descriptions

The HPRLAR<n> bit assignments are:

LIMIT, bits [31:6]

Address[31:6] concatenated with the value 0x3F to form Address[31:0], the upper inclusive limit
address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [5:4]

Reserved, RES0.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Hyp Memory Attribute Indirection Register:

000 Select the Attr0 field from HMAIR0.

001 Select the Attr1 field from HMAIR0.

010 Select the Attr2 field from HMAIR0.

011 Select the Attr3 field from HMAIR0.

100 Select the Attr4 field from HMAIR1.

101 Select the Attr5 field from HMAIR1.

110 Select the Attr6 field from HMAIR1.

111 Select the Attr7 field from HMAIR1.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EN, bit [0]

Region enable.

0 Region disabled.

LIMIT

31 6 5 4 3 1 0

EN
AttrIndx[2:0]

RES0
E2-164 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
1 Region enabled.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the HPRLAR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Direct access is provided to HPRLAR0-HPRLAR31. HPRLAR<n>, can be accessed via MCR/MRC
p15,<i>,<Rt>,c6,c<j>,<k> where:

i = ‘10’ : n[4]

j = ‘1’ : n[3:1]

k = n[0] : ‘01’

Registers beyond the number of implemented regions are UNALLOCATED.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T10==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0110 1111

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0 - - RW

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-165
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.7 HPRSELR, Hypervisor Protection Region Selector Register

The HPRSELR characteristics are:

Purpose

Selects the region number for the EL2 MPU region associated with the HPRBAR and HPRLAR
registers.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

HPRSELR is a 32-bit register.

Field descriptions

The HPRSELR bit assignments are:

Bits [31:8]

Reserved, RES0.

REGION, bits [7:0]

The region number, HPRSELR<N:0>, where the value is zero extended if N < 7.

The size of the region field, N, is Log2(Number of regions supported), rounded up to an integer.

For X implemented regions, memory region numbering starts at 0 and increments by 1 to the value
X-1.

Writing a value greater than or equal to X is UNPREDICTABLE.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the HPRSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 8

REGION

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c6, c2, 1 100 001 0110 1111 0010
E2-166 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c6, c2, 1 0 - - RW

p15, 4, <Rt>, c6, c2, 1 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-167
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.8 MPUIR, MPU Type register

The MPUIR characteristics are:

Purpose

Identifies the number of regions supported by the EL1 MPU.

Regions only support unified instruction and data address spaces; Armv7 supported separate
instruction and data regions controlled by bit 0.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

MPUIR is a 32-bit register.

Field descriptions

The MPUIR bit assignments are:

Bits [31:16]

Reserved, RES0.

REGION, bits [15:8]

The number of EL1 MPU regions implemented.

An EL1 MPU region controls EL1 and EL0 access.

Bits [7:0]

Reserved, RES0.

Accessing the MPUIR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 16

REGION

15 8

RES0

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c0, c0, 4 000 100 0000 1111 0000
E2-168 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T0==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TID1==1, read accesses to this register from EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c0, c0, 4 0 - RW RW

p15, 0, <Rt>, c0, c0, 4 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-169
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.9 PRBAR, Protection Region Base Address Register

The PRBAR characteristics are:

Purpose

Provides indirect access to the base address of the EL1 MPU region currently defined by PRSELR.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

PRBAR is a 32-bit register.

Field descriptions

The PRBAR bit assignments are:

BASE, bits [31:6]

Address[31:6] concatenated with zeroes to form Address[31:0], the lower inclusive limit used as the
base address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SH[1:0], bits [4:3]

Shareability attribute:

00 Non-shareable.

01 Reserved, CONSTRAINED UNPREDICTABLE.

10 Outer Shareable.

11 Inner Shareable.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

AP[2:1], bits [2:1]

Access permissions attribute:

00 Read/write at EL1, no access at EL0.

01 Read/write, at EL1 or EL0.

10 Read-only at EL1, no access at EL0.

11 Read-only at EL1 and EL0.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

BASE

31 6 5 4 3 2 1

XN

0

AP[2:1]
SH[1:0]

RES0
E2-170 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
XN, bit [0]

Execute-never.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the PRBAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c6, c3, 0 000 000 0110 1111 0011

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c6, c3, 0 0 - RW RW

p15, 0, <Rt>, c6, c3, 0 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-171
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.10 PRBAR<n>, Protection Region Base Address Registers, n = 0 - 31

The PRBAR<n> characteristics are:

Purpose

Provides access to the base addresses for the first 32 defined EL1 MPU regions.

Configurations

These registers are available in all implementations that support the Armv8 Protected Memory
System Architecture (PMSAv8-32).

Attributes

PRBAR<n> is a 32-bit register.

Field descriptions

The PRBAR<n> bit assignments are:

BASE, bits [31:6]

Address[31:6] concatenated with zeroes to form Address[31:0], the lower inclusive limit used as the
base address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [5]

Reserved, RES0.

SH[1:0], bits [4:3]

Shareability attribute:

00 Non-shareable.

01 Reserved, CONSTRAINED UNPREDICTABLE.

10 Outer Shareable.

11 Inner Shareable.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

AP[2:1], bits [2:1]

Access permissions attribute:

00 Read/write at EL1, no access at EL0.

01 Read/write, at EL1 or EL0.

10 Read-only at EL1, no access at EL0.

11 Read-only at EL1 and EL0.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

BASE

31 6 5 4 3 2 1

XN

0

AP[2:1]
SH[1:0]

RES0
E2-172 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
XN, bit [0]

Execute-never.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the PRBAR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Direct access is provided to PRBAR0-PRBAR31. PRBAR<n>, can be accessed via MCR/MRC
p15,<i>,<Rt>,c6,c<j>,<k> where:

i = ‘00’ : n[4]

j = ‘1’ : n[3:1]

k = n[0] : ‘00’

Registers beyond the number of implemented regions are UNALLOCATED.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0110 1111

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0 - RW RW

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-173
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.11 PRLAR, Protection Region Limit Address Register

The PRLAR characteristics are:

Purpose

Provides indirect access to the limit address of the EL1 MPU region currently defined by PRSELR.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

The AttrIndx[2:0] field is associated with the MAIR0 and MAIR1 registers.

Attributes

PRLAR is a 32-bit register.

Field descriptions

The PRLAR bit assignments are:

LIMIT, bits [31:6]

Address[31:6] concatenated with the value 0x3F to form Address[31:0], the upper inclusive limit
address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [5:4]

Reserved, RES0.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register:

000 Select the Attr0 field from MAIR0.

001 Select the Attr1 field from MAIR0.

010 Select the Attr2 field from MAIR0.

011 Select the Attr3 field from MAIR0.

100 Select the Attr4 field from MAIR1.

101 Select the Attr5 field from MAIR1.

110 Select the Attr6 field from MAIR1.

111 Select the Attr7 field from MAIR1.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EN, bit [0]

Region enable:

0 Region disabled.

LIMIT

31 6 5 4 3 1 0

EN
AttrIndx[2:0]

RES0
E2-174 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
1 Region enabled.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the PRLAR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c6, c3, 1 000 001 0110 1111 0011

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c6, c3, 1 0 - RW RW

p15, 0, <Rt>, c6, c3, 1 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-175
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.12 PRLAR<n>, Protection Region Limit Address Registers, n = 0 - 31

The PRLAR<n> characteristics are:

Purpose

Provides access to the limit addresses for the first 32 defined EL1 MPU regions.

Configurations

These registers are available in all implementations that support the Armv8 Protected Memory
System Architecture (PMSAv8-32).

The AttrIndx[2:0] field is associated with the MAIR0 and MAIR1 registers.

Attributes

PRLAR<n> is a 32-bit register.

Field descriptions

The PRLAR<n> bit assignments are:

LIMIT, bits [31:6]

Address[31:6] concatenated with the value 0x3F to form Address[31:0], the upper inclusive limit
address for the selected memory region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bits [5:4]

Reserved, RES0.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register:

000 Select the Attr0 field from MAIR0.

001 Select the Attr1 field from MAIR0.

010 Select the Attr2 field from MAIR0.

011 Select the Attr3 field from MAIR0.

100 Select the Attr4 field from MAIR1.

101 Select the Attr5 field from MAIR1.

110 Select the Attr6 field from MAIR1.

111 Select the Attr7 field from MAIR1.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

EN, bit [0]

Region enable:

0 Region disabled.

LIMIT

31 6 5 4 3 1 0

EN
AttrIndx[2:0]

RES0
E2-176 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
1 Region enabled.

When this register has an architecturally defined reset value, this field resets to 0.

Accessing the PRLAR<n>

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Direct access is provided to PRLAR0-PRLAR31. PRLAR<n> can be accessed via MCR/MRC
p15,<i>,<Rt>,c6,c<j>,<k> where:

i = ‘00’ : n[4]

j = ‘1’ : n[3:1]

k = n[0] : ‘01’

Registers beyond the number of implemented regions are UNALLOCATED.

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T10==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0110 1111

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 0 - RW RW

p15, <opc1>, <Rt>, c6, <CRm>, <opc2> 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-177
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.13 PRSELR, Protection Region Selector Register

The PRSELR characteristics are:

Purpose

Selects the region number for the EL1 MPU region associated with the PRBAR and PRLAR
registers.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

PRSELR is a 32-bit register.

Field descriptions

The PRSELR bit assignments are:

Bits [31:8]

Reserved, RES0.

REGION, bits [7:0]

The region number, PRSELR<N:0>, where the value is zero extended if N < 7.

The size of the region field, N, is Log2(Number of regions supported), rounded up to an integer.

For X implemented regions, memory region numbering starts at 0 and increments by 1 to the value
X-1.

Writing a value greater than or equal to X is UNPREDICTABLE.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the PRSELR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

RES0

31 8

REGION

7 0

<syntax> opc1 opc2 CRn coproc CRm

p15, 0, <Rt>, c6, c2, 1 000 001 0110 1111 0010
E2-178 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HCR.TVM==1, write accesses to this register from EL1 are trapped to Hyp mode.

• If HCR.TRVM==1, read accesses to this register from EL1 are trapped to Hyp mode.

• If HSTR.T6==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 0, <Rt>, c6, c2, 1 0 - RW RW

p15, 0, <Rt>, c6, c2, 1 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-179
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2.2.14 VSCTLR, Virtualization System Control register

The VSCTLR characteristics are:

Purpose

Provides control and configuration information for PMSA virtualization.

Configurations

This register is available in all implementations that support the Armv8 Protected Memory System
Architecture (PMSAv8-32).

Attributes

VSCTLR is a 32-bit register.

Field descriptions

The VSCTLR bit assignments are:

Bits [31:24]

Reserved, RES0.

VMID, bits [23:16]

Virtual machine identifier.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [15:3]

Reserved, RES0.

S2NIE, bit [2]

Stage 2 Normal Interrupt Enable.

0 Feature disabled.

1 Feature enabled. Multi-word accesses are interruptible, regardless of stage 1 attributes,
where the access:

• Uses base-restore addressing.

• Is executed at EL1 or EL0.

• Is an access to memory marked as Normal in the corresponding EL2 MPU
region.

In Armv8-R, this field only has any effect when HSCTLR.FI == 1.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

S2DMAD, bit [1]

Stage 2 Device Multiword Access Disable.

0 Feature disabled.

RES0

31 24

VMID

23 16

RES0

15 3 2 1 0

RES0
S2DMAD

S2NIE
E2-180 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined or New System Registers
E2.2 New System registers
1 Feature enabled. Multi-word accesses at EL1 or EL0 that span an aligned 64-bit
boundary generate a stage 2 Permission Fault if the memory region is marked as Device
in the corresponding EL2 MPU region.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Bit [0]

Reserved, RES0.

Accessing the VSCTLR

This register can be read using MRC with the following syntax:

MRC <syntax>

This register can be written using MCR with the following syntax:

MCR <syntax>

This syntax is encoded with the following settings in the instruction encoding:

Accessibility

The register is accessible in software as follows:

Traps and Enables

For a description of the prioritization of any generated exceptions, see Synchronous exception prioritization for
exceptions taken to AArch32 state in the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile.

When EL2 is implemented:

• If HSTR.T2==1, accesses to this register from EL1 are trapped to Hyp mode.

<syntax> opc1 opc2 CRn coproc CRm

p15, 4, <Rt>, c2, c0, 0 100 000 0010 1111 0000

<syntax>
Control Accessibility

TGE EL0 EL1 EL2

p15, 4, <Rt>, c2, c0, 0 0 - - RW

p15, 4, <Rt>, c2, c0, 0 1 - n/a RW
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. E2-181
ID110520 Non-Confidential

Description of the Redefined or New System Registers
E2.2 New System registers
E2-182 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part F
Differences in Armv8-R Debug from Armv8-A

Chapter F1
Differences in Armv8-R Debug from Armv8-A

This chapter describes the Debug features of the Armv8-R AArch32 profile. It contains the following sections:
• Differences from Armv8-A invasive debug on page F1-186.
• Differences from Armv8-A non-invasive debug on page F1-187.
• Differences from Armv8-A external debug on page F1-188.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. F1-185
ID110520 Non-Confidential

Differences in Armv8-R Debug from Armv8-A
F1.1 Differences from Armv8-A invasive debug
F1.1 Differences from Armv8-A invasive debug
Because Armv8-R implements only AArch32 state:
• Self-hosted debug is always disabled at EL2.
• Self-hosted debug is always enabled at EL1 and EL0.
• EL2 can trap any attempted use of self-hosted debug to Hyp mode.
• The Software Step exception is not implemented.
F1-186 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Differences in Armv8-R Debug from Armv8-A
F1.2 Differences from Armv8-A non-invasive debug
F1.2 Differences from Armv8-A non-invasive debug
When the value of HDCR.HPMD is 1, event counting by the following counters is prohibited at EL2:
• Counters in the range 0 - n, where n is one less than the value of HDCR.HPMN.
• If the value of PMCR.DP is 1, PMCCNTR.

Other counters are controlled by HDCR.HPME. See AArch32.CountEvents().

If ExternalHypNoninvasiveDebugEnabled() returns FALSE, then the following apply:

• When the value of HDCR.EPMAD is 1, an external debugger cannot access counters in the range a-b,
including the values a and b, where:
— a is the value of HDCR.HPMN.
— b is one less than the value of PMCR.N.

For a counter x that is in this range, for accesses using the external debug interface:

— PMEVTYPER<n> and PMEVCNTR<n> are RAZ/WI.

— The register bits PMOVSCLR_EL0, PMOVSSET, PMCNTENSET, PMCNTENCLR,
PMINTENSET, and PMINTENCLR are RAZ/WI.

— A write of 1 to PMCR.P does not reset PMEVCNTR<n> to 0.

• When the value of HDCR.EPMAD is 1, a read of PMCFGR.N using the external debug interface returns the
value of HDCR.HPMN.

• PC Sample-based Profiling and Trace are prohibited both:
— At EL2.
— When the value of HCR.TGE is 1.

If ExternalNoninvasiveDebugEnabled() returns FALSE, the external debugger cannot access the PMU registers.

See also AllowExternalPMUAccess() and ExternalHypNoninvasiveDebugEnabled().
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. F1-187
ID110520 Non-Confidential

Differences in Armv8-R Debug from Armv8-A
F1.3 Differences from Armv8-A external debug
F1.3 Differences from Armv8-A external debug
This section describes how the authentication interface might prevent an external debugger from debugging
software executing at:
• EL2
• EL0 when the value of HCR.TGE is 1.

See also HaltingAllowed().

F1.3.1 Required debug authentication

Any implementation must provide the debug authentication to control:
• Whether the PE can halt.
• Whether non-invasive debug is permitted.

The pseudocode functions, together with the following conditions, define the architectural requirements for debug
authentication.

• If ExternalInvasiveDebugEnabled() returns FALSE, then ExternalHypInvasiveDebugEnabled() returns FALSE.

• If ExternalNoninvasiveDebugEnabled() returns FALSE, then ExternalHypNoninvasiveDebugEnabled() returns
FALSE.

• If ExternalInvasiveDebugEnabled() returns TRUE, then ExternalNoninvasiveDebugEnabled() returns TRUE.

• If ExternalHypInvasiveDebugEnabled() returns TRUE, then ExternalHypNoninvasiveDebugEnabled() returns
TRUE.

F1.3.2 Recommended authentication interface

The details of the debug authentication interface are IMPLEMENTATION DEFINED, but Arm recommends the use of
the CoreSight interface, which includes the following signals for external debug authentication:
• DBGEN
• HIDEN
• NIDEN
• HNIDEN

shared/debug/authentication/Debug_authentication defines the authentication signals DBGEN, HIDEN, NIDEN,
and HNIDEN. See the Arm® CoreSight™ v2.0 Architecture Specification.

If EL2 is not implemented, HIDEN and HNIDEN are not implemented and the PE behaves as if these signals were
tied LOW.

It is IMPLEMENTATION DEFINED how the authentication signals are driven. The architecture permits, but does not
require, PEs within a cluster to have independent authentication interfaces. Arm recommends that any Trace
extension has the same authentication interface as the PE it is connected to. For more information, see the Arm®
Embedded Trace Macrocell Architecture Specification, ETMv4.

Table F1-1 shows the debug authentication pseudocode functions and the recommended implementations.

Table F1-1 Recommended implementation of debug authentication pseudocode functions

Pseudocode function Implementation

ExternalHypNoninvasiveDebugEnabled() (DBGEN OR NIDEN) AND (HIDEN OR HNIDEN)

ExternalHypInvasiveDebugEnabled() (DBGEN AND HIDEN)

ExternalNoninvasiveDebugEnabled() (DBGEN OR NIDEN)

ExternalInvasiveDebugEnabled() DBGEN
F1-188 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Differences in Armv8-R Debug from Armv8-A
F1.3 Differences from Armv8-A external debug
F1.3.3 Halting enabled and prohibited

When ExternalHypInvasiveDebugEnabled() returns FALSE:
• Halting is prohibited:

— From EL2.
— When the value of HCR.TGE is 1.

• Writes to EDRCR.CBRRQ are ignored.
• Writes to EDPRCR.CWRR are ignored.
• EDSCR.TDA is ignored at EL2.
• EDSCR.INTdis does not mask interrupts that are taken to EL2.

For information on behavioral restrictions in Armv8-R when moving between [EL2 when
ExternalHypInvasiveDebugEnabled() returns FALSE (halting is prohibited)] and [EL1 or EL0 when
ExternalInvasiveDebugEnabled() returns TRUE and the value of HCR.TGE is 0 (halting is allowed)], see the
information in Armv8-A about moving between [Secure state with ExternalSecureInvasiveDebugEnabled() returns
FALSE (halting is prohibited)] and [Non-secure state with ExternalInvasiveDebugEnabled() returns TRUE (halting
is allowed)].

When the PE is in Non-debug state, EDSCR.HDD returns the inverse of the value that
ExternalHypInvasiveDebugEnabled() returns.

For more information, see the Halting Step debug events and Detailed Halting Step state machine behavior sections
of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

F1.3.4 Behavior in Debug state

On entry to Debug state:
• If the PE is at EL2 or the value of HCR.TGE is 1, EDSCR.HDD is set to 0.
• Otherwise, EDSCR.HDD is set to the inverse of ExternalHypInvasiveDebugEnabled().

When the PE is in Debug state, the value of EDSCR.HDD cannot change.

When the value of EDSCR.HDD is 1 in Debug state:

• DCPS2 is UNDEFINED.

• Instructions that are executed at EL1 or EL0 that are configured by an EL2 control register to trap to EL2
become UNDEFINED.

• Faults that are generated by the EL2 MPU that would be taken as an exception to EL2 are taken as an
exception to EL1. The EL1 fault syndrome registers are updated as for any other exception that is taken to
EL1 but the fault status in DFSR.STATUS or DFSR.FS[4:0] is set to Debug event.

F1.3.5 Halting Step Debug events

The following criteria determine the value that is written to EDESR.SS on taking an exception during stepping an
instruction:

• Whether halting is allowed at the Exception level that the exception targets. If halting is allowed, the PE must
step into the exception.

If halting is prohibited, it must step over it.

• If stepping over the exception, whether the exception handler will return to re-execute the instruction or
return to the next instruction. That is, whether the preferred return address of the exception is the instruction
itself or the next instruction.

This means that the behavior in the active-not-pending state is modified for Armv8-R.

For more information, see chapter Halting Debug Events of the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. F1-189
ID110520 Non-Confidential

Differences in Armv8-R Debug from Armv8-A
F1.3 Differences from Armv8-A external debug
PE behavior in the active-not-pending state if an exception or debug event is generated

The PE sets EDESR.SS according to all of the following:
• The type of exception.
• The target Exception level of the exception.
• Depending on the result of ExternalHypNoninvasiveDebugEnabled(), whether halting is prohibited at EL2.

If an exception or debug event is generated, the PE sets EDESR.SS to 1 if one of the following applies:
• A synchronous exception is generated by the instruction and at least one of the following applies:

— The exception is taken to EL1.
— The exception is taken to EL2 and ExternalHypInvasiveDebugEnabled() returns TRUE.
— The exception is an HVC exception.

• An asynchronous exception is generated before executing an instruction, and either:
— The exception is taken to EL1.
— The exception is taken to EL2 and ExternalHypInvasiveDebugEnabled() returns TRUE.

Otherwise EDESR.SS is unchanged. These other cases are either:

• No instruction is executed because either:
— An asynchronous exception is taken to EL2 and ExternalHypInvasiveDebugEnabled() returns FALSE.
— An asynchronous debug event caused entry to Debug state.

• An instruction is executed and either:

— ExternalHypInvasiveDebugEnabled() returns FALSE and the instruction generates a synchronous
exception, other than an HVC exception, that is taken to EL2.

— The instruction generates a synchronous debug event and causes entry to Debug state.

For more information about halting step, see section Halting Step debug events in the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.

F1.3.6 Access to debug registers

HIDEN has no effect on the access permissions for debug registers. See AllowExternalDebugAccess().

Software must be aware that if HIDEN is LOW and DBGEN is HIGH, an external debugger can modify breakpoint
and watchpoint control registers. Self-hosted debug is disabled at EL2, so an untrusted debugger cannot impact
software executing at EL2. However, it can impact software executing at EL0 when the value of HCR.TGE is 1. If
DBGEN is HIGH, then such a debugger can also halt the processor at EL1 or EL0 when the value of HCR.TGE is 0.

Writes to OSLAR_EL1 by an external debugger return an error when ExternalInvasiveDebugEnabled() returns
FALSE.

Table F1-2 Summary of active-not-pending state behavior

Event
Target
Exception
level

ExternalHypInvasiveDebugEnabled()
Value written to
EDESR.SS

No exception or debug event Not applicable x 1

HVC exception EL2 x 1

Reset Highest x 1

Exception, other than HVC
exception

EL1 x 1

EL2 TRUE 1

FALSE Unchanged

Debug event Debug state x Unchanged
F1-190 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part G
Armv8-R External Debug Registers

Chapter G1
Armv8-R External Debug Registers

This chapter contains the description of the external debug registers that are new or redefined in Armv8-R from
Armv8-A. It contains the following section:

• Armv8-R external debug register list on page G1-194.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G1-193
ID110520 Non-Confidential

Armv8-R External Debug Registers
G1.1 Armv8-R external debug register list
G1.1 Armv8-R external debug register list
The external debug interface register map is described by:
• External debug interface register map.
• Performance Monitors external register views on page G1-195.
• Cross-Trigger Interface registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A

architecture profile.

All other locations are reserved. For information on the external debug registers that are unchanged with respect to
Armv8-A, see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Table G1-1 External debug interface register map

Offset Mnemonic

0x020 EDESR

0x024 EDECR

0x030

0x034

EDWAR[31:0]
EDWAR[63:32]

0x080 DBGDTRRX_EL0

0x084 EDITR

0x088 EDSCR

0x08C DGDTRTX_EL0

0x090 EDRCR

0x094 EDACR

0x098 EDECCR

0x0A0 EDPCSR

0x0A4 EDCIDSR

0x0A8 EDVIDSR

0x300 OSLAR_EL1

0x310 EDPRCR

0x314 EDPRSR

0x400+16×n

0x404+16×n

DBGBVR<n>_EL1[31:0]
DBGBVR<n>_EL1[63:32]

0x408+16×n DBGBCR<n>_EL1

0x800+16×n

0x804+16×n

DBGWVR<n>_EL1[31:0]
DBGWVR<n>_EL1[63:32]

0x808+16×n DBGWCR<n>_EL1

0xC00-0xCFC IMPLEMENTATION DEFINED

0xD00 MIDR_EL1

0xD20 EDPFR[31:0]

0xD24 EDPFR[63:32]
G1-194 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R External Debug Registers
G1.1 Armv8-R external debug register list
0xD28 EDDFR[31:0]

0xD2C EDDFR[63:32]

0xD30 RAZ

0xD38 RAZ

0xD60 EDAA32PFR[31:0]

0xD64 EDAA32PFR[63:32]

0xE80-0xEFC IMPLEMENTATION DEFINED

0xF00-0xFFC Management registers, see Table G1-3 on page G1-196

Table G1-2 Performance Monitors external register views

Offset Name

0x000+8×n PMEVCNTR<n>_EL0

0x0F8

0x0FC

PMCCNTR_EL0[31:0]
PMCCNTR_EL0[63:32]

0x400+4×n PMEVTYPER<n>_EL0

0x47C PMCCFILTR_EL0

0x600-0x6FC IMPLEMENTATION DEFINED

0xA00-0xBFC IMPLEMENTATION DEFINED

0xC00 PMCNTENSET_EL0

0xC20 PMCNTENCLR_EL0

0xC40 PMINTENSET_EL1

0xC60 PMINTENCLR_EL1

0xC80 PMOVSCLR_EL0

0xCA0 PMSWINC_EL0

0xCC0 PMOVSSET_EL0

0xD80-0xDFC IMPLEMENTATION DEFINED

0xE00 PMCFGR

0xE04 PMCR_EL0

0xE20 PMCEID0

0xE24 PMCEID1

0xE80-0xEFC IMPLEMENTATION DEFINED

0xF00-0xFFC Management registers, see Table G1-3 on page G1-196

Table G1-1 External debug interface register map (continued)

Offset Mnemonic
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G1-195
ID110520 Non-Confidential

Armv8-R External Debug Registers
G1.1 Armv8-R external debug register list
Table G1-3 shows the external management register maps for the following registers:
ED These are the external debug registers.
CTI These are the Cross-trigger interface registers.
PMU These are the Performance Monitors registers.

Some of these registers are required for compliance with the Armv8 architecture and some are required for
compliance with the CoreSight architecture. Other registers are optional. See the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile for more information.

Table G1-3 CoreSight interface register map of management registers

Offset
Mnemonic

ED CTI PMU

0xF00 EDITCTRL CTIITCTRL PMITCTRL

0xFA0 DBGCLAIMSET_EL1 CTICLAIMSET -

0xFA4 DBGCLAIMCLR_EL1 CTICLAIMCLR -

0xFA8 EDDEVAFF0 CTIDEVAFF0 PMDEVAFF0

0xFAC EDDEVAFF1 CTIDEVAFF1 PMDEVAFF1

0xFB0 EDLAR CTILAR PMLAR

0xFB4 EDLSR CTILSR PMSLR

0XFB8 DBGAUTHSTATUS_EL1 CTIAUTHSTATUS PMAUTHSTATUS

0xFBC EDDEVARCH CTIDEVARCH PMDEVARCH

0xFC0 EDDEVID2 CTIDEVID2 -

0xFC4 EDDEVID1 CTIDEVID1 -

0xFC8 EDDEVID CTIDEVID -

0xFCC EDDEVTYPE CTIDEVTYPE PMDEVTYPE
G1-196 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Chapter G2
Description of the Redefined External Debug
Registers

This chapter contains the description of the external debug registers that are redefined in Armv8-R from Armv8-A.
It contains the following section:
• Redefined external debug registers on page G2-198.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-197
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1 Redefined external debug registers
This section contains the description of the external debug registers that are redefined in Armv8-R from Armv8-A.
G2-198 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
debug.

Usage constraints

This register is accessible as follows:

Configurations

External register DBGAUTHSTATUS_EL1 is architecturally mapped to System register
DBGAUTHSTATUS.

DBGAUTHSTATUS_EL1 is in the Debug power domain.

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS_EL1 bit assignments are:

Bits [31:12]

Reserved, RES0.

HNID, bits [11:10]

Hyp non-invasive debug. Possible values of this field are:

00 Separate Hyp enable not implemented, or EL2 not implemented.

10 Implemented and disabled. ExternalHypNoninvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalHypNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

For Armv8-R:

• If EL2 is implemented, HNID[1] is RAO.

• If EL2 is not implemented, HNID[1:0] are RAZ.

HID, bits [9:8]

Hyp invasive debug. Possible values of this field are:

00 Separate Hyp enable not implemented, or EL2 not implemented.

10 Implemented and disabled. ExternalHypInvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalHypInvasiveDebugEnabled() == TRUE.

Default

RO

RES0

31 12

HNID

11 10

HID

9 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-199
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
Other values are reserved.

For Armv8-R:

• If EL2 is implemented, HID[1] is RAO.

• If EL2 is not implemented, HID[1:0] are RAZ.

SNID, bits [7:6]

Secure non-invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

NSNID, bits [3:2]

Non-secure non-invasive debug. Possible values of this field are:

10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

Other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.

11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

Other values are reserved.

Accessing the DBGAUTHSTATUS_EL1:

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

Component Offset

Debug 0xFB8
G2-200 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

Note
 The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that

defined this register only when AArch64 was not supported at any Exception level. In the previous
version of this manual, this register was called the External Debug AArch32 Processor Feature
Register, but is changed now to align with other Armv8 architecture profiles.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Usage constraints

This register is accessible as follows:

Configurations

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain
or in the Debug power domain.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

The EDAA32PFR bit assignments are:

Bits [63:16]

Reserved, RES0.

EL3, bits [15:12]

AArch32 EL3 Exception level handling. Defined values are:

0000 EL3 is not implemented

0001 EL3 can be executed in AArch32 state only.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

Note
 EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Off DLK Default

IMP DEF IMP DEF RO

RES0

63 16

EL3

15 12

EL2

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-201
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
EL2, bits [11:8]

AArch32 EL2 Exception level handling. Defined values are:

0000 EL2 is not implemented.

0001 EL2 can be executed in AArch32 state only.

All other values are reserved.

In Armv8-R the only permitted value is 0001.

Note
 EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

PMSA, bits [7:4]

Indicates support for PMSAv8-32. Defined values are:

0000 PMSAv8-32 not supported.

0100 PMSAv8-32 supported.

All other values are reserved.

In Armv8-R, the only permitted value is 0100.

VMSA, bits [3:0]

Indicates support for a VMSA. When the PMSA field is nonzero, determines support for a VMSA.
When the PMSA field is 0000, VMSA is supported. Defined values are:

0000 VMSA not supported.

All other values are reserved. In Armv8-R, the only permitted value is 0000.

Accessing the EDAA32PFR:

EDAA32PFR can be accessed through the external debug interface:

Component Offset

Debug 0xD60
G2-202 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.3 EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

Usage constraints

This register is accessible as follows:

Configurations

EDDEVARCH is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

The EDDEVARCH bit assignments are:

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.

This field is 1 in Armv8-R.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8-R is 0x0.

All other values are reserved.

ARCHID, bits [15:0]

Defines this part to be an Armv8-R debug component. For architectures defined by Arm this is
further subdivided.

For debug:

• Bits [15:12] are the architecture version, 0x6.

• Bits [11:0] are the architecture part number, 0xA05.

Default

RO

ARCHITECT

31 21 20

REVISION

19 16

ARCHID

15 0

PRESENT
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-203
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
This corresponds to the Armv8-R debug architecture version.

Accessing the EDDEVARCH:

EDDEVARCH can be accessed through the external debug interface:

Component Offset

Debug 0xFBC
G2-204 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.4 EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top-level information about the debug system.

Note
 Debuggers use EDDEVARCH to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Usage constraints

This register is accessible as follows:

Configurations

It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in
the Debug power domain.

Attributes

EDDFR is a 64-bit register.

Field descriptions

The EDDFR bit assignments are:

Bits [63:32]

Reserved, RES0.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

Off DLK Default

IMP DEF IMP DEF RO

RES0

63 32

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

RES0

3 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-205
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
PMUVer, bits [11:8]

Performance Monitors Extension version. Indicates whether System register interface to
Performance Monitors Extension is implemented. This field does not follow the standard ID
scheme, but uses the alternative ID scheme described in the Alternative ID scheme used for the
Performance Monitors Extension version section in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

Defined values are:

0000 Performance Monitors Extension System registers not implemented.

0001 Performance Monitors Extension System registers implemented, PMUv3.

1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported.

All other values are reserved.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:

0000 PE trace unit System registers not implemented.

0001 PE trace unit System registers implemented.

All other values are reserved.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented.
A PE trace unit might nevertheless be implemented without a System register interface.

Bits [3:0]

Reserved, RES0.

Accessing the EDDFR:

EDDFR[31:0] can be accessed through the external debug interface:

EDDFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD28

Component Offset

Debug 0xD2C
G2-206 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.5 EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Usage constraints

This register is accessible as follows:

Configurations

EDPCSR is in the Core power domain.

RW fields in this register reset to architecturally UNKNOWN values. These apply only on a Cold reset.
The register is not affected by a Warm reset and is not affected by an External Debug reset.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented.

Attributes

EDPCSR is a 32-bit register.

Field descriptions

The EDPCSR bit assignments are:

Bits [31:0]

PC Sample. The sampled instruction address value.

EDPCSR reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.

• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR is permitted
but not required to return 0xFFFFFFFF.

EDPCSR reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.

• No instruction has retired since the PE left Reset state, Debug state, or a state where PC
Sample-based Profiling is prohibited.

• No instruction has retired since the last read of EDPCSR.

For the cases where a read of EDPCSR returns 0xFFFFFFFF or an UNKNOWN value, the read has the
side-effect of setting EDCIDSR and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR returns the sampled instruction address value and has the side-effect
of indirectly writing to EDCIDSR and EDVIDSR. The translation regime that EDPCSR samples
can be determined from EDVIDSR.{E2}.

For a read of EDPCSR from the memory-mapped interface, if EDLSR.SLK == 1, meaning the
OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and EDCIDSR
and EDVIDSR are unchanged.

Off DLK OSLK SLK Default

Error Error Error RO RO

PC Sample word, EDPCSR

31 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-207
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the EDPCSR:

EDPCSR[31:0] can be accessed through its memory-mapped interface:

Component Offset

Debug 0x0A0
G2-208 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.6 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see Principles of the ID scheme
for fields in ID registers in the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Usage constraints

This register is accessible as follows:

Configurations

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the
Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

The EDPFR bit assignments are:

Bits [63:28]

Reserved, RES0.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

0000 No System register interface to the GIC is supported.

0001 System register interface to version 3.0 of the GIC CPU interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

0000 Advanced SIMD is implemented.

1111 Advanced SIMD is not implemented.

All other values are reserved.

FP, bits [19:16]

Floating-point. Defined values are:

0000 Floating-point is implemented.

1111 Floating-point is not implemented.

Off DLK Default

IMP DEF IMP DEF RO

RES0

63 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-209
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
All other values are reserved.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

0000 EL3 is not implemented or cannot be executed in AArch64 state.

0001 EL3 can be executed in AArch64 state only.

0010 EL3 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0000.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

0000 EL2 is not implemented or cannot be executed in AArch64 state.

0001 EL2 can be executed in AArch64 state only.

0010 EL2 can be executed in either AArch64 or AArch32 state.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0000.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

0000 EL1 can be executed in AArch32 state only.

0001 EL1 can be executed in AArch64 state only.

0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

0000 EL0 can be executed in AArch32 state only.

0001 EL0 can be executed in AArch64 state only.

0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

In Armv8-R the only permitted value is 0000.

Accessing the EDPFR:

EDPFR[31:0] can be accessed through the external debug interface:

EDPFR[63:32] can be accessed through the external debug interface:

Component Offset

Debug 0xD20

Component Offset

Debug 0xD24
G2-210 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.7 EDRCR, External Debug Reserve Control Register

The EDRCR characteristics are:

Purpose

This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

Usage constraints

This register is accessible as follows:

Configurations

EDRCR is in the Core power domain.

Attributes

EDRCR is a 32-bit register.

Field descriptions

The EDRCR bit assignments are:

Bits [31:5]

Reserved, RES0.

CBRRQ, bit [4]

Allow imprecise entry to Debug state. The actions on writing to this bit are:

0 No action.

1 Allow imprecise entry to Debug state, for example by canceling pending bus accesses.

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug
Request debug event must be pending before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

Writes to this bit are also ignored if either:

• External debugging is not enabled (ExternalInvasiveDebugEnabled() == FALSE).

• EL2 is implemented and Hyp mode external debugging is not enabled
(ExternalHypInvasiveDebugEnabled() == FALSE).

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions
on writing to this bit are:

0 No action.

Off DLK OSLK SLK Default

Error Error Error WI WO

RES0

31 5 4 3 2 1 0

RES0
CSE

CSPA
CBRRQ
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-211
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
1 Clear the EDSCR.PipeAdv bit to 0.

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to
this bit are:

0 No action.

1 Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the
EDSCR.ITO bit, to 0.

Bits [1:0]

Reserved, RES0.

Accessing the EDRCR:

EDRCR can be accessed through the external debug interface:

Component Offset

Debug 0x090
G2-212 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.8 EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose

Main control register for the debug implementation.

Usage constraints

This register is accessible as follows:

Configurations

EDSCR is in the Core power domain. Some or all RW fields of this register have defined reset
values. These apply only on a Cold reset. The register is not affected by a Warm reset and is not
affected by an External Debug reset.

Attributes

EDSCR is a 32-bit register.

Field descriptions

The EDSCR bit assignments are:

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. This bit is RO.

When this register has an architecturally defined reset value, this field resets to 0.

Off DLK OSLK SLK Default

Error Error Error RO RW

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

RES0

13 10

EL

9 8

A

7 6

STATUS

5 0

RES0
RXfull
TXfull
ITO
RXO
TXU
PipeAdv
ITE
INTdis
TDA
MA
RES0
RES1
RES0
RES1

ERR
HDE
HDD
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-213
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
TXfull, bit [29]

DTRTX full. This bit is RO.

When this register has an architecturally defined reset value, this field resets to 0.

ITO, bit [28]

ITR overrun. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

RXO, bit [27]

DTRRX overrun. This bit is RO.

When this register has an architecturally defined reset value, this field resets to 0.

TXU, bit [26]

DTRTX underrun. This bit is RO.

When this register has an architecturally defined reset value, this field resets to 0.

PipeAdv, bit [25]

Pipeline advance. This bit is RO. Set to 1 every time the PE pipeline retires one or more instructions.
Cleared to 0 by a write to EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen
periodically in Non-debug state to indicate that software execution is progressing.

ITE, bit [24]

ITR empty. This bit is RO.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

INTdis, bits [23:22]

Interrupt disable.

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the
DBGDSCRext System register.

Disables taking interrupts (including virtual interrupts, asynchronous Data Abort exceptions, and
SError interrupts) in Non-Debug state.

If ExternalInvasiveDebugEnabled() = FALSE, the value of this field is ignored.

If ExternalInvasiveDebugEnabled() = TRUE, the possible values of this field are:

00 Do not disable interrupts.

01 Disable interrupts taken to EL1.

10 Reserved

11 Disable interrupts taken to EL1. If ExternalHypInvasiveDebugEnabled() == TRUE,
also disable all other interrupts.

The value of INTdis does not affect whether an interrupt is a WFI wake-up event, but can mask an
interrupt as a WFE wake-up event.

If EL2 is not implemented, the value 0b01 is reserved. If programmed with a reserved value the PE
behaves as if INTdis has been programmed with a defined value, other than for a direct read of
EDSCR, and the value returned by a read of EDSCR.INTdis is UNKNOWN.

When this register has an architecturally defined reset value, this field resets to 0.

TDA, bit [21]

Traps accesses to DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, and
DBGWVR<n>.

The possible values of this field are:

0 Accesses to the registers listed above do not generate a Software Access debug event.
G2-214 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
1 Accesses to the registers listed above generate a Software Access debug event, if
OSLSR.OSLK is 0 and if halting is allowed.

When this register has an architecturally defined reset value, this field resets to 0.

MA, bit [20]

Memory access mode. Controls use of memory-access mode for accessing ITR and the DCC. This
bit is ignored if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

0 Normal access mode.

1 Memory access mode.

Bit [19]

Reserved, RES0.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

HDD, bit [15]

Hyp debug disabled. This bit is RO. On entry to Debug state:

• If entering Debug state in Hyp mode, this bit is set to 0.

• Otherwise, this bit is set to the inverse of ExternalHypInvasiveDebugEnabled().

In Debug state, the value of the HDD bit does not change, even if
ExternalHypInvasiveDebugEnabled() changes.

In Non-debug state, HDD returns the inverse of ExternalHypInvasiveDebugEnabled(). If the
authentication signals that control ExternalHypInvasiveDebugEnabled() change, a context
synchronization event is required to guarantee their effect.

If EL2 is not implemented, this bit is RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.

1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.

When this register has an architecturally defined reset value, this field resets to 0.

Bits [13:10]

Reserved, RES0.

EL, bits [9:8]

Exception level. Read-only. In Debug state, this gives the current Exception level of the PE.

In Non-debug state, this field is RAZ.

A, bit [7]

Asynchronous Data Abort or SError interrupt pending. Read-only. In Debug state, indicates whether
an asynchronous Data Abort or SError interrupt is pending:

• If HCR.{AMO, TGE} = {1, 0} and in EL0 or EL1, a virtual asynchronous Data Abort or
SError interrupt.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-215
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
• Otherwise, a physical asynchronous Data Abort or SError interrupt.

0 No asynchronous Data Abort or SError interrupt pending.

1 Asynchronous Data Abort or SError interrupt pending.

A debugger can read EDSCR to check whether an asynchronous Data Abort or SError interrupt is
pending without having to execute further instructions. A pending asynchronous Data Abort or
SError might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

ERR, bit [6]

Cumulative error flag. This field is RO. It is set to 1 following exceptions in Debug state and on any
signaled overrun or underrun on the DTR or EDITR.

When this register has an architecturally defined reset value, this field resets to 0.

STATUS, bits [5:0]

Debug status flags. This field is RO.

The possible values of this field are:

000001 PE is restarting, exiting Debug state.

000010 PE is in Non-debug state.

000111 Breakpoint.

010011 External debug request.

011011 Halting step, normal.

011111 Halting step, exclusive.

100011 OS Unlock Catch.

100111 Reset Catch.

101011 Watchpoint.

101111 HLT instruction.

110011 Software access to debug register.

110111 Exception Catch.

111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Accessing the EDSCR:

EDSCR can be accessed through the external debug interface:

Component Offset

Debug 0x088
G2-216 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.9 EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose

Contains sampled values captured on reading EDPCSR.

Usage constraints

This register is accessible as follows:

Configurations

EDVIDSR is in the Core power domain.

Fields in this register reset to architecturally UNKNOWN values.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the
external debug registers space.

Attributes

EDVIDSR is a 32-bit register.

Field descriptions

The EDVIDSR bit assignments are:

NS, bit [31]

Reserved, RAO.

E2, bit [30]

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated
with EL2.

0b0 Sample is not from EL2.

0b1 Sample is from EL2.

If EL2 is not implemented, this bit is RES0.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

E3, bit [29]

Exception level 3 status sample. RES0.

Bits [28:8]

Reserved, RES0.

Off DLK OSLK Default

Error Error Error RO

NS

31 30 29

RES0

28 8

VMID

7 0

E2
E3
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-217
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
VMID, bits [7:0]

VMID sample. The VMID associated with the most recent EDPCSR sample. When the most recent
EDPCSR sample was generated, this field is RES0 if the PE is executing at EL2.

When this register has an architecturally defined reset value, this field resets to a value that is
architecturally UNKNOWN.

Accessing the EDVIDSR:

EDVIDSR can be accessed through the external debug interface:

Component Offset

Debug 0x0A8
G2-218 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.10 PMAUTHSTATUS, Performance Monitors Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for
Performance Monitors.

Usage constraints

This register is accessible as follows:

Configurations

PMAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. Arm recommends that this
register is implemented.

Attributes

PMAUTHSTATUS is a 32-bit register.

Field descriptions

The PMAUTHSTATUS bit assignments are:

Bits [31:12]

Reserved, RES0.

HNID, bits [11:10]

Holds the same value as DBGAUTHSTATUS_EL1.HNID.

HID, bits [9:8]

Hyp invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

SNID, bits [7:6]

Secure non-invasive debug.

Possible values of this field are:

00 Not implemented.

Other values are reserved.

SLK Default

RO RO

RES0

31 12

HNID

11 10

HID

9 8

SNID

7 6

SID

5 4 3 2

NSID

1 0

NSNID
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-219
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
SID, bits [5:4]

Secure invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

NSNID, bits [3:2]

Holds the same value as DBGAUTHSTATUS_EL1.NSNID.

NSID, bits [1:0]

Non-secure invasive debug. Possible values of this field are:

00 Not implemented.

Other values are reserved.

Accessing the PMAUTHSTATUS:

PMAUTHSTATUS can be accessed through the external debug interface:

Component Offset

PMU 0xFB8
G2-220 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.11 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Usage constraints

This register is accessible as follows:

Configurations

External register PMCR_EL0[6:0] is architecturally mapped to System register PMCR[6:0].

PMCR_EL0 is in the Core power domain. Some or all RW fields of this register have defined reset
values. These apply on a Warm or Cold reset. The register is not affected by an External Debug reset.

This register is only partially mapped to the internal PMCR System register. An external agent must
use other means to discover the information held in PMCR[31:11], such as accessing PMCFGR and
the ID registers.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

Bits [31:11]

RAZ/WI. Hardware must implement this field as RAZ/WI. Software must not rely on the register
reading as zero, and must use a read-modify-write sequence to write to the register.

Bits [10:7]

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines which PMCCNTR_EL0 bit generates an overflow recorded
by PMOVSR[31].

0 Cycle counter overflow on increment that changes PMCCNTR_EL0[31] from 1 to
0.Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[31:0].

1 Cycle counter overflow on increment that changes PMCCNTR_EL0[63] from 1 to
0.Cycle counter overflow on increment that causes unsigned overflow of
PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Off DLK OSLK EPMAD SLK Default

Error Error Error Error RO RW

RAZ/WI

31 11

RES0

10 7

LC

6

DP

5

X

4

D

3

C

2

P

1

E

0

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-221
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
DP, bit [5]

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0b0 Cycle counting by PMCCNTR is not affected by this bit.

0b1 When event counting for counters in the range [0..(HDCR.HPMN-1)] is prohibited,
cycle counting by PMCCNTR_EL0 is disabled.

For more information, see Prohibiting event counting in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

On a Warm reset, this field resets to 0.

X, bit [4]

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus. The possible
values of this bit are:

0 Do not export events.

1 Export events where not prohibited.

This field enables the exporting of events over an event bus to another device, for example to an
OPTIONAL trace macrocell. If the implementation does not include such an event bus then this field
is RAZ/WI, otherwise it is an RW field.

In an implementation that includes an event bus, no events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally defined reset value, if this field is implemented as an RW
field, it resets to 0.

D, bit [3]

Clock divider. The possible values of this bit are:

0 When enabled, PMCCNTR_EL0 counts every clock cycle.

1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally defined reset value, this field resets to 0.

C, bit [2]

Cycle counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Resetting PMCCNTR_EL0 does not clear the PMCCNTR_EL0 overflow bit to 0.

P, bit [1]

Event counter reset. This bit is WO. The effects of writing to this bit are:

0 No action.

1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Resetting the event counters does not clear any overflow bits to 0.

If EL2 is implemented and HDCR.EPMAD is set to 1, a write of 1 to this bit does not reset event
counters that HDCR.HPMN reserves for EL2 use.

E, bit [0]

Enable.

0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are disabled.
G2-222 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are enabled by
PMCNTENSET_EL0.

If EL2 is implemented then:

• PMN is HDCR.HPMN.

• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note
 The effect of HDCR.HPMN on the operation of this bit applies if EL2 is implemented regardless of

whether EL2 is enabled in the current Security state. For more information, see the description of
HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0:

PMCR_EL0 can be accessed through the external debug interface:

Component Offset

PMU 0xE04
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-223
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2.1.12 PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose

Contains PMU-specific configuration data.

Configurations

PMCFGR is in the Core power domain.

Attributes

PMCFGR is a 32-bit register.

Field descriptions

The PMCFGR bit assignments are:

NCG, bits [31:28]

This feature is not supported, so this field is RAZ.

Bits [27:20]

Reserved, RES0.

UEN, bit [19]

User-mode Enable Register supported. PMUSERENR is not visible in the external debug interface,
so this bit is RAZ.

WT, bit [18]

This feature is not supported, so this bit is RAZ.

NA, bit [17]

This feature is not supported, so this bit is RAZ.

EX, bit [16]

Export supported. Value is IMPLEMENTATION DEFINED.

0b0 PMCR_EL0.X is RES0.

0b1 PMCR_EL0.X is read/write.

CCD, bit [15]

Cycle counter has prescale.

In Armv8-R this is RES1.

0b0 PMCR_EL0.D is RES0.

0b1 PMCR_EL0.D is read/write.

NCG

31 28

RES0

27 20 19 18 17 16 15 14

SIZE

13 8

N

7 0

UEN
WT
NA
EX

CC
CCD
G2-224 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
CC, bit [14]

Dedicated cycle counter (counter 31) supported. This bit is RAO.

SIZE, bits [13:8]

Size of counters, minus one. This field defines the size of the largest counter implemented by the
Performance Monitoring Unit.

From Armv8, the largest counter is 64-bits, so the value of this field is 0b111111.

This field is used by software to determine the spacing of the counters in the memory-map. From
Armv8, the counters are a doubleword-aligned addresses.

N, bits [7:0]

Number of counters implemented in addition to the cycle counter, PMCCNTR_EL0. The maximum
number of event counters is 31.

When the value of HDCR.EPMAD is 1, a read of PMCFGR.N using the external debug interface
returns the value of HDCR.HPMN.

0x00 Only PMCCNTR_EL0 implemented.

0x01 PMCCNTR_EL0 plus one event counter implemented.

and so on up to 0b00011111, which indicates PMCCNTR_EL0 and 31 event counters implemented.

Accessing the PMCFGR:

PMCFGR can be accessed through the external debug interface:

This interface is accessible as follows:
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses

to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE00 PMCFGR
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. G2-225
ID110520 Non-Confidential

Description of the Redefined External Debug Registers
G2.1 Redefined external debug registers
G2-226 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part H
Architectural Pseudocode for Armv8-R AArch32

Chapter H1
Armv8-R AArch32 Pseudocode

This chapter contains pseudocode that describes many features of the Armv8-R architecture. It contains the
following sections:
• Pseudocode limitations on page H1-230.
• Pseudocode for AArch32 operation on page H1-231.
• Shared pseudocode on page H1-289.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-229
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.1 Pseudocode limitations
H1.1 Pseudocode limitations
• Functions that address both AArch32 and AArch64 functionality might contain cases or comments that apply

to only AArch64 state, EL3, Monitor mode, or Secure state, and are therefore not applicable to the Armv8-R
AArch32 profile.

• Some functions and comments might contain information related to the Short-descriptor format that is not
applicable to the Armv8-R AArch32 profile.

• Tests might contain clauses that always return TRUE or FALSE in AArch32 state and therefore do not test
the Armv8-R AArch32 profile. For example, in Armv8-R AArch32:
— UsingAArch32() always returns TRUE.
— IsSecure always returns FALSE.

• Assertions that are not applicable to Armv8-R AArch32 might be present. For example:

— assert ELUsingAArch32(S1ValidationRegime()).

• Enumerations might contain values that are not applicable to Armv8-R AArch32. For example:

— AccType_PTW.

— Fault_TLBConflict.
H1-230 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
H1.2 Pseudocode for AArch32 operation
This section holds the pseudocode for execution in AArch32 state. Functions that are listed in this section are
identified as AArch32.FunctionName. This section is organized by functional groups, with the functional groups being
indicated by hierarchical path names, for example aarch32/debug/breakpoint.

The top-level sections of the AArch32 pseudocode hierarchy are:
• aarch32/debug.
• aarch32/exceptions on page H1-237.
• aarch32/functions on page H1-251.
• aarch32/translation on page H1-275.

H1.2.1 aarch32/debug

aarch32/debug/VCRMatch/AArch32.VCRMatch

 // AArch32.VCRMatch()
 // ==================

 boolean AArch32.VCRMatch(bits(32) vaddress)

 if UsingAArch32() && ELUsingAArch32(EL1) && IsZero(vaddress<1:0>) && PSTATE.EL != EL2 then
 // Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
 match_word = Zeros(32);

 if vaddress<31:5> == ExcVectorBase()<31:5> then
 match_word<UInt(vaddress<4:2>)> = '1';
 mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0

 match_word = match_word AND DBGVCR AND mask;
 match = !IsZero(match_word);

 // Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
 if !IsZero(match_word<4:3>) && DebugTarget() == PSTATE.EL then

match = ConstrainUnpredictableBool();
 else
 match = FALSE;

 return match;

aarch32/debug/breakpoint/AArch32.BreakpointMatch

 // AArch32.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch32 translation regime.

 (boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1ValidationRegime());
 assert n <= UInt(DBGDIDR.BRPs);

 enabled = DBGBCR[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR[n].BT == '0x01';
 isbreakpnt = TRUE;
 linked_to = FALSE;

 state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
 linked, DBGBCR[n].LBN, isbreakpnt, ispriv);
 (value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

 if size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-231
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 (match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();
 if value_mismatch && !mismatch_i then
 value_mismatch = ConstrainUnpredictableBool();

 if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGBVR[n]+2.
 if value_match then value_match = ConstrainUnpredictableBool();
 if !value_mismatch then value_mismatch = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;
 mismatch = value_mismatch && state_match && enabled;

 return (match, mismatch);

aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

 // AArch32.BreakpointValueMatch()
 // ==============================
 // The first result is whether an Address Match or Context breakpoint is programmed on the
 // instruction at "address". The second result is whether an Address Mismatch breakpoint is
 // programmed on the instruction, that is, whether the instruction should be stepped.

 (boolean,boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n > UInt(DBGDIDR.BRPs) then
 (c, n) = ConstrainUnpredictableInteger(0, UInt(DBGDIDR.BRPs));
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking.)
 if DBGBCR[n].E == '0' then return (FALSE,FALSE);

 context_aware = (n >= UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 type = DBGBCR[n].BT;

 if (type IN {'011x','11xx'} || // Reserved
 (type == '010x' && HaltOnBreakpointOrWatchpoint()) || // Address mismatch
 (type != '0x0x' && !context_aware) || // Context matching
 (type == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, type) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return (FALSE,FALSE);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (type == '0x0x');
 mismatch = (type == '010x');
 match_vmid = (type == '10xx');
 match_cid = (type == 'x01x');
 linked = (type == 'xxx1');
H1-232 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return (FALSE,FALSE);

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return (FALSE,FALSE);

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 assert byte IN {0,2}; // "vaddress" is halfword aligned.
 byte_select_match = (DBGBCR[n].BAS<byte> == '1');
 BVR_match = vaddress<31:2> == DBGBVR[n]<31:2> && byte_select_match;
 elsif match_cid then
 BVR_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);
 if match_vmid then
 vmid = VSCTLR.VMID;
 BXVR_match = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 vmid == DBGBXVR[n]<7:0>);

 bvr_match_valid = (match_addr || match_cid);
 bxvr_match_valid = match_vmid;

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return (match && !mismatch, !match && mismatch);

aarch32/debug/breakpoint/AArch32.StateMatch

 // AArch32.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 if ((HMC:SSC:PxC) IN {'011xx','100x0','x01xx','x10xx','11101','1111x'} || // Reserved
 (HMC == '0' && PxC == '00' && !isbreakpnt) || // Usr/Svc/Sys

 (HMC == '1' && !HaveEL(EL2))) then // No EL2
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();

 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 PL2_match = HaveEL(EL2) && HMC == '1';
 PL1_match = PxC<0> == '1';
 PL0_match = PxC<1> == '1';
 SSU_match = isbreakpnt && HMC == '0' && PxC == '00' && SSC != '11';

 if SSU_match then
 priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
 else
 case PSTATE.EL of
 when EL3, EL1 priv_match = if ispriv then PL1_match else PL0_match;
 when EL2 priv_match = PL2_match;
 when EL0 priv_match = PL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-233
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = TRUE; // Both

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = (UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));
 last_ctx_cmp = UInt(DBGDIDR.BRPs);
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(32) UNKNOWN;
 linked_to = TRUE;
 (linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);

aarch32/debug/enables/AArch32.GenerateDebugExceptions

 // AArch32.GenerateDebugExceptions()
 // =================================

 boolean AArch32.GenerateDebugExceptions()
 return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());

aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

 // AArch32.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

 if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 enabled = from != EL2;

 return enabled;

aarch32/debug/pmu/AArch32.CheckForPMUOverflow

 // AArch32.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 boolean AArch32.CheckForPMUOverflow()

 pmuirq = (PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1');
 for n = 0 to UInt(PMCR.N) - 1
 if HaveEL(EL2) then
 hpmn = HDCR.HPMN;
 hpme = HDCR.HPME;
 E = (if n < UInt(hpmn) then PMCR.E else hpme);
 else
 E = PMCR.E;
 if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;

H1-234 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;

aarch32/debug/pmu/AArch32.CountEvents

 // AArch32.CountEvents()
 // =====================
 // Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

 boolean AArch32.CountEvents(integer n)
 assert (n == 31 || n < UInt(PMCR.N));

 // Event counting is disabled in Debug state
 debug = Halted();

 // In Non-secure state, some counters are reserved for EL2
 if HaveEL(EL2) then
 hpmn = HDCR.HPMN;
 hpme = HDCR.HPME;
 E = (if n < UInt(hpmn) || n == 31 then PMCR.E else hpme);
 else
 E = PMCR.E;
 enabled = (E == '1' && PMCNTENSET<n> == '1');

 if !IsSecure() then

// Event counting is allowed unless all of:
// * EL2 is implemented, and executing at EL2
// * HPMD is implemented, PMNx is not reserved for Hyp, and HDCR.HPMD == 1

 if PSTATE.EL == EL2 && (n < UInt(hpmn) || n == 31) then
 prohibited = (HDCR.HPMD == '1');
 else

prohibited = FALSE;
 else
 // Event counting in Secure state is prohibited unless any one of:
 // * EL3 is not implemented
 prohibited = FALSE;

 // For the cycle counter, PMCR_EL0.DP enables counting when otherwise prohibited
 if prohibited && n == 31 then prohibited = (PMCR.DP == '1');

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
 filter = (if n == 31 then PMCCFILTR<31:27> else PMEVTYPER[n]<31:27>);

 H = if !HaveEL(EL2) then '0' else filter<0>;
 P = filter<4>; U = filter<3>;
 if !IsSecure() && HaveEL(EL3) then
 P = P EOR filter<2>; U = U EOR filter<1>;

 case PSTATE.EL of
 when EL0 filtered = U == '1';
 when EL1,EL3 filtered = P == '1';
 when EL2 filtered = H == '0';

 return !debug && enabled && !prohibited && !filtered;

aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

 // AArch32.EnterHypModeInDebugState()
 // ==================================
 // Take an exception in Debug state to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-235
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 EDSCR.ERR = '1';
 UpdateEDSCRFields();
 EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

 // AArch32.EnterModeInDebugState()
 // ===============================
 // Take an exception in Debug state to a mode other than Monitor and Hyp mode.

 AArch32.EnterModeInDebugState(bits(5) target_mode)
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 AArch32.WriteMode(target_mode);
 SPSR[] = bits(32) UNKNOWN;
 R[14] = bits(32) UNKNOWN;
 // In Debug state, the PE always execute T32 instructions when in AArch32 state, and
 // PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
 PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.
 EndOfInstruction();

aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

 // AArch32.WatchpointByteMatch()
 // =============================

 boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

 bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR[n].MASK);

 // If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
 // DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
H1-236 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 WVR_match = (vaddress<31:mask> == DBGWVR[n]<31:mask>);
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
 WVR_match = vaddress<31:bottom> == DBGWVR[n]<31:bottom>;

 return WVR_match && byte_select_match;

aarch32/debug/watchpoint/AArch32.WatchpointMatch

 // AArch32.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch32 translation regime.

 boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv,
 boolean iswrite)
 assert ELUsingAArch32(S1ValidationRegime());
 assert n <= UInt(DBGDIDR.WRPs);

 // "ispriv" is FALSE for LDRT/STRT instructions executed at EL1 and all
 // load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
 // loads.
 enabled = DBGWCR[n].E == '1';
 linked = DBGWCR[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
 linked, DBGWCR[n].LBN, isbreakpnt, ispriv);

 ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

H1.2.2 aarch32/exceptions

aarch32/exceptions/aborts/AArch32.Abort

 // AArch32.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch32 translation regime.

 AArch32.Abort(bits(32) vaddress, FaultRecord fault)

 if fault.acctype == AccType_IFETCH then
 AArch32.TakePrefetchAbortException(vaddress, fault);
 else
 AArch32.TakeDataAbortException(vaddress, fault);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-237
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/exceptions/aborts/AArch32.AbortSyndrome

 // AArch32.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort exceptions taken to Hyp mode
 // from an AArch32 translation regime.

 ExceptionRecord AArch32.AbortSyndrome(Exception type, FaultRecord fault, bits(32) vaddress)

 exception = ExceptionSyndrome(type);

 d_side = type == Exception_DataAbort;

 exception.syndrome = FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.ipaddress = ZeroExtend(fault.ipaddress);
 else
 exception.ipavalid = FALSE;

 return exception;

aarch32/exceptions/aborts/AArch32.CheckPCAlignment

 // AArch32.CheckPCAlignment()
 // ==========================

 AArch32.CheckPCAlignment()

 bits(32) pc = ThisInstrAddr();
 if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then

 // Generate an Alignment fault Prefetch Abort exception
 vaddress = pc;
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 secondstage = FALSE;
 AArch32.Abort(vaddress, AArch32.AlignmentFault(acctype, iswrite, secondstage));

aarch32/exceptions/aborts/AArch32.ReportDataAbort

 // AArch32.ReportDataAbort()
 // =========================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)

 // The encoding used in the IFSR or DFSR can be Long-descriptor format or Short-descriptor
 // format. Normally, the current translation table format determines the format. For an abort
 // from Non-secure state to Monitor mode, the IFSR or DFSR uses the Long-descriptor format if
 // any of the following applies:
 // * The Secure TTBCR.EAE is set to 1.
 // * The abort is synchronous and either:
 // - It is taken from Hyp mode.
 // - It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
 // In the current implementation, PE supports PMSA at both EL1 and EL2.
 // v8R PMSA MPU follow Long-descriptor format
 long_format = TRUE;
 d_side = TRUE;
 if long_format then
 syndrome = AArch32.FaultStatusLD(d_side, fault);
 else
 syndrome = AArch32.FaultStatusSD(d_side, fault);

 if fault.acctype == AccType_IC then
H1-238 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 if (!long_format &&
 boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
 i_syndrome = syndrome;
 syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);
 else
 i_syndrome = bits(32) UNKNOWN;
 if route_to_monitor then
 IFSR_S = i_syndrome;
 else
 IFSR = i_syndrome;

 if route_to_monitor then
 DFSR_S = syndrome;
 DFAR_S = vaddress;
 else
 DFSR = syndrome;
 DFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

 // AArch32.ReportPrefetchAbort()
 // =============================
 // Report syndrome information for aborts taken to modes other than Hyp mode.

 AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
 // In the current implementation, PE supports PMSA at both EL1 and EL2.
 // v8R PMSA MPU follow Long-descriptor format
 long_format = TRUE;

 d_side = FALSE;
 if long_format then
 fsr = AArch32.FaultStatusLD(d_side, fault);
 else
 fsr = AArch32.FaultStatusSD(d_side, fault);

 if route_to_monitor then
 IFSR_S = fsr;
 IFAR_S = vaddress;
 else
 IFSR = fsr;
 IFAR = vaddress;

 return;

aarch32/exceptions/aborts/AArch32.TakeDataAbortException

 // AArch32.TakeDataAbortException()
 // ================================

 AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = FALSE;
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-239
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

 // AArch32.TakePrefetchAbortException()
 // ====================================

 AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
 route_to_monitor = FALSE;
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0C;
 lr_offset = 4;

 if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
 if PSTATE.EL == EL2 || route_to_hyp then
 if fault.type == Fault_Alignment then // PC Alignment fault
 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();
 else
 exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalFIQException

 // AArch32.TakePhysicalFIQException()
 // ==================================

 AArch32.TakePhysicalFIQException()

 route_to_monitor = FALSE;
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.FMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;
 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_FIQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalIRQException

 // AArch32.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch32.TakePhysicalIRQException()

 route_to_monitor = FALSE;
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.IMO == '1'));
H1-240 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;
 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IRQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalSErrorException

 // AArch32.TakePhysicalSErrorException()
 // =====================================

 AArch32.TakePhysicalSErrorException(boolean parity, bit extflag, boolean syndrome_valid,
 bits(24) full_syndrome)

 route_to_monitor = FALSE;
 route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 fault = AArch32.AsynchExternalAbort(parity, extflag);
 vaddress = bits(32) UNKNOWN;
 if PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualFIQException

 // AArch32.TakeVirtualFIQException()
 // =================================

 AArch32.TakeVirtualFIQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 assert HCR.TGE == '0' && HCR.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;

 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualIRQException

 // AArch32.TakeVirtualIRQException()
 // =================================

 AArch32.TakeVirtualIRQException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 assert HCR.TGE == '0' && HCR.IMO == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;

 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-241
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/exceptions/asynch/AArch32.TakeVirtualSErrorException

 // AArch32.TakeVirtualSErrorException()
 // ====================================

 AArch32.TakeVirtualSErrorException()
 assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
 if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1
 assert HCR.TGE == '0' && HCR.AMO == '1';

 route_to_monitor = FALSE;

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x10;
 lr_offset = 8;

 vaddress = bits(32) UNKNOWN;
 parity = FALSE;
 extflag = bit IMPLEMENTATION_DEFINED "Virtual SError ExT bit";
 fault = AArch32.AsynchExternalAbort(parity, extflag);
 HCR.VA = '0';
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

 // AArch32.SoftwareBreakpoint()
 // ============================

 AArch32.SoftwareBreakpoint(bits(16) immediate)

 vaddress = bits(32) UNKNOWN;
 acctype = AccType_IFETCH; // Take as a Prefetch Abort
 iswrite = FALSE;
 entry = DebugException_BKPT;

 fault = AArch32.DebugFault(acctype, iswrite, entry);
 AArch32.Abort(vaddress, fault);

aarch32/exceptions/debug/DebugException

 constant bits(4) DebugException_Breakpoint = '0001';
 constant bits(4) DebugException_BKPT = '0011';
 constant bits(4) DebugException_VectorCatch = '0101';
 constant bits(4) DebugException_Watchpoint = '1010';

aarch32/exceptions/exceptions/AArch32.ExceptionClass

 // AArch32.ExceptionClass()
 // ========================
 // Return the Exception Class and Instruction Length fields for reported in HSR

 (integer,bit) AArch32.ExceptionClass(Exception type)

 il = if ThisInstrLength() == 32 then '1' else '0';

 case type of
 when Exception_Uncategorized ec = 0x00; il = '1';
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03;
 when Exception_CP15RRTTrap ec = 0x04;
 when Exception_CP14RTTrap ec = 0x05;
 when Exception_CP14DTTrap ec = 0x06;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_CP14RRTTrap ec = 0x0C;
H1-242 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 when Exception_IllegalState ec = 0x0E; il = '1';
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_InstructionAbort ec = 0x20; il = '1';
 when Exception_PCAlignment ec = 0x22; il = '1';
 when Exception_DataAbort ec = 0x24;
 when Exception_FPTrappedException ec = 0x28;
 otherwise Unreachable();

 if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
 ec = ec + 1;

 return (ec,il);

aarch32/exceptions/exceptions/AArch32.ReportHypEntry

 // AArch32.ReportHypEntry()
 // ========================
 // Report syndrome information to Hyp mode registers.

 AArch32.ReportHypEntry(ExceptionRecord exception)

 Exception type = exception.type;

 (ec,il) = AArch32.ExceptionClass(type);
 iss = exception.syndrome;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 HSR = ec<5:0>:il:iss;

 if type IN {Exception_InstructionAbort, Exception_PCAlignment} then
 HIFAR = exception.vaddress<31:0>;
 HDFAR = bits(32) UNKNOWN;
 elsif type == Exception_DataAbort then
 HIFAR = bits(32) UNKNOWN;
 HDFAR = exception.vaddress<31:0>;

 if exception.ipavalid then
 HPFAR<31:4> = exception.ipaddress<39:12>;
 else
 HPFAR<31:4> = bits(28) UNKNOWN;

 return;

aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally defined
 // reset values to those values.
 AArch32.ResetControlRegisters(boolean cold_reset);

aarch32/exceptions/exceptions/AArch32.TakeReset

 // AArch32.TakeReset()
 // ===================
 // Reset into AArch32 state

 AArch32.TakeReset(boolean cold_reset)
 assert HighestELUsingAArch32();

 // Enter the highest implemented Exception level in AArch32 state
 if HaveEL(EL2) then
 AArch32.WriteMode(M32_Hyp);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-243
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 else
 AArch32.WriteMode(M32_Svc);

 // Reset the CP14 and CP15 registers and other system components
 AArch32.ResetControlRegisters(cold_reset);
 FPEXC.EN = '0';

 // Reset all other PSTATE fields, including instruction set and endianness according to the
 // SCTLR values produced by the above call to ResetControlRegisters()
 PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
 PSTATE.IT = '00000000'; // IT block state reset

 if HaveEL(EL2) && !HaveEL(EL3) then
 PSTATE.T = HSCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
 PSTATE.E = HSCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
 else
 PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
 PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian

 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally-defined way.
 AArch32.ResetGeneralRegisters();
 AArch32.ResetSIMDFPRegisters();
 AArch32.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(32) rv; // IMPLEMENTATION DEFINED reset vector

 rv = RVBAR<31:1>:'0';
 // The reset vector must be correctly aligned
 assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

 BranchTo(rv, BranchType_UNKNOWN);

aarch32/exceptions/exceptions/ExcVectorBase

 // ExcVectorBase()
 // ===============

 bits(32) ExcVectorBase()
 return VBAR;

aarch32/exceptions/ieeefp/AArch32.FPTrappedException

 // AArch32.FPTrappedException()
 // ============================

 AArch32.FPTrappedException(bits(8) accumulated_exceptions)
 FPEXC.DEX = '1';
 FPEXC.TFV = '1';
 FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

 AArch32.TakeUndefInstrException();

aarch32/exceptions/syscalls/AArch32.CallHypervisor

 // AArch32.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch32.CallHypervisor(bits(16) immediate)
H1-244 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 assert HaveEL(EL2);

 AArch32.TakeHVCException(immediate);

aarch32/exceptions/syscalls/AArch32.CallSupervisor

 // AArch32.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch32.CallSupervisor(bits(16) immediate)

 if AArch32.CurrentCond() != '1110' then
 immediate = bits(16) UNKNOWN;
 AArch32.TakeSVCException(immediate);

aarch32/exceptions/syscalls/AArch32.TakeHVCException

 // AArch32.TakeHVCException()
 // ==========================

 AArch32.TakeHVCException(bits(16) immediate)
 assert HaveEL(EL2) && ELUsingAArch32(EL2);

 AArch32.ITAdvance();
 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

aarch32/exceptions/syscalls/AArch32.TakeSVCException

 // AArch32.TakeSVCException()
 // ==========================

 AArch32.TakeSVCException(bits(16) immediate)

 AArch32.ITAdvance();
 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/takeexception/AArch32.EnterHypMode

 // AArch32.EnterHypMode()
 // ======================
 // Take an exception to Hyp mode.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-245
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
 integer vect_offset)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 spsr = GetPSRFromPSTATE();
 if !(exception.type IN {Exception_IRQ, Exception_FIQ}) then
 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = spsr;
 ELR_hyp = preferred_exception_return;
 PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 PSTATE.A = '1';
 PSTATE.I = '1';
 PSTATE.F = '1';
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 BranchTo(HVBAR + vect_offset, BranchType_UNKNOWN);
 EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMode

 // AArch32.EnterMode()
 // ===================
 // Take an exception to a mode other than Monitor and Hyp mode.

 AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

 spsr = GetPSRFromPSTATE();
 AArch32.WriteMode(target_mode);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.SS = '0';
 if target_mode == M32_FIQ then
 PSTATE.<A,I,F> = '111';
 elsif target_mode IN {M32_Abort, M32_IRQ} then
 PSTATE.<A,I> = '11';
 else
 PSTATE.I = '1';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 PSTATE.IT = '00000000';
 BranchTo(ExcVectorBase() + vect_offset, BranchType_UNKNOWN);
 EndOfInstruction();

aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrap

 // AArch32.AArch32SystemAccessTrap()
 // =================================
 // Trapped AArch32 System register access other than due to CPTR_EL2 or CPACR_EL1.

 AArch32.AArch32SystemAccessTrap(bits(2) target_el, bits(32) instr)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 assert target_el IN {EL1,EL2};

 if target_el == EL2 then
 exception = AArch32.AArch32SystemAccessTrapSyndrome(instr);
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();
H1-246 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrapSyndrome

 // AArch32.AArch32SystemAccessTrapSyndrome()
 // ===
 // Return the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS instructions,
 // other than traps that are due to HCPTR or CPACR.

 ExceptionRecord AArch32.AArch32SystemAccessTrapSyndrome(bits(32) instr)

 ExceptionRecord exception;
 cpnum = UInt(instr<11:8>);

 bits(20) iss = Zeros();
 if instr<27:24> == '1110' && instr<4> == '1' && instr<31:28> != '1111' then
 // MRC/MCR
 case cpnum of
 when 10 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 14 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 otherwise Unreachable();
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:21> == '1100010' && instr<31:28> != '1111' then
 // MRRC/MCRR
 case cpnum of
 when 14 exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 when 15 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 otherwise Unreachable();
 iss<19:16> = instr<7:4>; // opc1
 iss<13:10> = instr<19:16>; // Rt2
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<27:25> == '110' && instr<31:28> != '1111' then
 // LDC/STC
 assert cpnum == 14;
 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,21>; // P,W
 if instr<19:16> == '1111' then // Literal addressing
 iss<8:5> = bits(4) UNKNOWN;
 iss<3> = '1';
 else
 iss<8:5> = instr<19:16>; // Rn
 iss<3> = '0';
 else
 Unreachable();
 iss<0> = instr<20>; // Direction

 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<19:0> = iss;

 return exception;

aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

 // AArch32.CheckAdvSIMDOrFPEnabled()
 // =================================
 // Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

 AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)

 cpacr_asedis = CPACR.ASEDIS;
 cpacr_cp10 = CPACR.cp10;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-247
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 if HaveEL(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
 if NSACR.cp10 == '0' then cpacr_cp10 = '00';

 if PSTATE.EL != EL2 then
 // Check if Advanced SIMD disabled in CPACR
 if advsimd && cpacr_asedis == '1' then UNDEFINED;

 // Check if access disabled in CPACR
 case cpacr_cp10 of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then UNDEFINED;

 // If required, check FPEXC enabled bit.
 if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

 AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

 // AArch32.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch32.CheckFPAdvSIMDTrap(boolean advsimd)

 if HaveEL(EL2) && !IsSecure() then
 hcptr_tase = HCPTR.TASE;
 hcptr_cp10 = HCPTR.TCP10;

 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
 if NSACR.cp10 == '0' then hcptr_cp10 = '1';

 // Check if access disabled in HCPTR
 if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

 if advsimd then
 exception.syndrome<5> = '1';
 else
 exception.syndrome<5> = '0';
 exception.syndrome<3:0> = '1010'; // coproc field, always 0xA

 if PSTATE.EL == EL2 then
 AArch32.TakeUndefInstrException(exception);
 else
 AArch32.TakeHypTrapException(exception);
 return;

aarch32/exceptions/traps/AArch32.CheckForWFxTrap

 // AArch32.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch32.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
 assert HaveEL(target_el);

 case target_el of
H1-248 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 when EL1 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
 when EL2 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
 if trap then
 if target_el == EL2 then
 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<0> = if is_wfe then '1' else '0';
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.CheckITEnabled

 // AArch32.CheckITEnabled()
 // ========================
 // Check whether the T32 IT instruction is disabled.

 AArch32.CheckITEnabled(bits(4) mask)

 if PSTATE.EL == EL2 then
 it_disabled = HSCTLR.ITD;
 else
 it_disabled = SCTLR.ITD;

 if it_disabled == '1' then
 if mask != '1000' then UNDEFINED;

 // Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
 next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];

 if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
 '01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then
 // It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
 // taken on the IT instruction or the next instruction. This is not reflected in
 // the pseudocode, which always takes the exception on the IT instruction. This
 // also does not take into account cases where the next instruction is UNPREDICTABLE.
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.CheckIllegalState

 // AArch32.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch32.CheckIllegalState()

 if PSTATE.IL == '1' then
 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IllegalState);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.TakeUndefInstrException();
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-249
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

 // AArch32.CheckSETENDEnabled()
 // ============================
 // Check whether the AArch32 SETEND instruction is disabled.

 AArch32.CheckSETENDEnabled()

 if PSTATE.EL == EL2 then
 setend_disabled = HSCTLR.SED;
 else
 setend_disabled = SCTLR.SED;

 if setend_disabled == '1' then
 UNDEFINED;

 return;

aarch32/exceptions/traps/AArch32.TakeHypTrapException

 // AArch32.TakeHypTrapException()
 // ==============================
 // Exceptions routed to Hyp mode as a Hyp Trap exception.

 AArch32.TakeHypTrapException(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x14;

 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

aarch32/exceptions/traps/AArch32.TakeUndefInstrException

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException()
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch32.TakeUndefInstrException(exception);

 // AArch32.TakeUndefInstrException()
 // =================================

 AArch32.TakeUndefInstrException(ExceptionRecord exception)

 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 elsif route_to_hyp then
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.UndefinedFault

 // AArch32.UndefinedFault()
 // ========================

H1-250 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 AArch32.UndefinedFault()

 AArch32.TakeUndefInstrException();

H1.2.3 aarch32/functions

aarch32/functions/aborts/AArch32.CreateFaultRecord

 // AArch32.CreateFaultRecord()
 // ===========================

 FaultRecord AArch32.CreateFaultRecord(Fault type, bits(32) ipaddress, bits(4) domain,
 integer level, AccType acctype, boolean write, bit extflag,
 bits(4) debugmoe, boolean secondstage, boolean s2fs1walk)

 FaultRecord fault;
 fault.type = type;
 if (type != Fault_None && PSTATE.EL != EL2 && TTBCR.EAE == '0' && !secondstage && !s2fs1walk &&
 AArch32.DomainValid(type, level)) then
 fault.domain = domain;
 else
 fault.domain = bits(4) UNKNOWN;
 fault.debugmoe = debugmoe;
 fault.ipaddress = ZeroExtend(ipaddress);
 fault.level = level;
 fault.acctype = acctype;
 fault.write = write;
 fault.extflag = extflag;
 fault.secondstage = secondstage;
 fault.s2fs1walk = s2fs1walk;

 return fault;

aarch32/functions/aborts/AArch32.DomainValid

 // AArch32.DomainValid()
 // =====================
 // Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

 boolean AArch32.DomainValid(Fault type, integer level)
 assert type != Fault_None;

 case type of
 when Fault_Domain
 return TRUE;
 when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk
 return level == 2;
 otherwise
 return FALSE;

aarch32/functions/aborts/AArch32.FaultStatusLD

 // AArch32.FaultStatusLD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Long-descriptor format.

 bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(32) fsr = Zeros();
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-251
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '1';
 fsr<5:0> = EncodeLDFSC(fault.type, fault.level);

 return fsr;

aarch32/functions/aborts/AArch32.FaultStatusSD

 // AArch32.FaultStatusSD()
 // =======================
 // Creates an exception fault status value for Abort and Watchpoint exceptions taken
 // to Abort mode using AArch32 and Short-descriptor format.

 bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(32) fsr = Zeros();
 if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '0';
 fsr<10,3:0> = EncodeSDFSC(fault.type, fault.level);
 if d_side then
 fsr<7:4> = fault.domain; // Domain field (data fault only)

 return fsr;

aarch32/functions/aborts/EncodeSDFSC

 // EncodeSDFSC()
 // =============
 // Function that gives the Short-descriptor FSR code for different types of Fault

 bits(5) EncodeSDFSC(Fault type, integer level)

 bits(5) result;
 case type of
 when Fault_AccessFlag
 assert level IN {1,2};
 result = if level == 1 then '00011' else '00110';
 when Fault_Alignment
 result = '00001';
 when Fault_Permission
 assert level IN {1,2};
 result = if level == 1 then '01101' else '01111';
 when Fault_Domain
 assert level IN {1,2};
 result = if level == 1 then '01001' else '01011';
 when Fault_Translation
 assert level IN {1,2};
 result = if level == 1 then '00101' else '00111';
 when Fault_SyncExternal
 result = '01000';
 when Fault_SyncExternalOnWalk
 assert level IN {1,2};
 result = if level == 1 then '01100' else '01110';
 when Fault_SyncParity
 result = '11001';
 when Fault_SyncParityOnWalk
 assert level IN {1,2};
H1-252 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 result = if level == 1 then '11100' else '11110';
 when Fault_AsyncParity
 result = '11000';
 when Fault_AsyncExternal
 result = '10110';
 when Fault_Debug
 result = '00010';
 when Fault_TLBConflict
 result = '10000';
 when Fault_Lockdown
 result = '10100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive
 result = '10101'; // IMPLEMENTATION DEFINED
 when Fault_ICacheMaint
 result = '00100';
 otherwise
 Unreachable();

 return result;

aarch32/functions/common/A32ExpandImm

 // A32ExpandImm()
 // ==============

 bits(32) A32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/A32ExpandImm_C

 // A32ExpandImm_C()
 // ================

 (bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

 unrotated_value = ZeroExtend(imm12<7:0>, 32);
 (imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

 return (imm32, carry_out);

aarch32/functions/common/DecodeImmShift

 // DecodeImmShift()
 // ================

 (SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

 case type of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-253
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/common/DecodeRegShift

 // DecodeRegShift()
 // ================

 SRType DecodeRegShift(bits(2) type)
 case type of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
 return shift_t;

aarch32/functions/common/RRX

 // RRX()
 // =====

 bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;

aarch32/functions/common/RRX_C

 // RRX_C()
 // =======

 (bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

aarch32/functions/common/SRType

 enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

aarch32/functions/common/Shift

 // Shift()
 // =======

 bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
 (result, -) = Shift_C(value, type, amount, carry_in);
 return result;

aarch32/functions/common/Shift_C

 // Shift_C()
 // =========

 (bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
 assert !(type == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case type of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
H1-254 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);

aarch32/functions/common/T32ExpandImm

 // T32ExpandImm()
 // ==============

 bits(32) T32ExpandImm(bits(12) imm12)

 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

 return imm32;

aarch32/functions/common/T32ExpandImm_C

 // T32ExpandImm_C()
 // ================

 (bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == '00' then
 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 when '11'
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;
 else
 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);

aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

 // AArch32.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained CP15 traps in HSTR and HCR.

 boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

 // Check for coarse-grained Hyp traps
 if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then

 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !(major IN {4,14}) && HSTR<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR.TIDCP
 if (HCR.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
 return TRUE;

 return FALSE;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-255
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/coproc/AArch32.CheckSystemAccess

 // AArch32.CheckSystemAccess()
 // ===========================
 // Check System register access instruction for enables and disables

 AArch32.CheckSystemAccess(integer cp_num, bits(32) instr)
 assert cp_num == UInt(instr<11:8>) && (cp_num IN {14,15});

 // Decode the AArch32 System register access instruction
 if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR
 cprt = TRUE; cpdt = FALSE; nreg = 1;
 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
 cprt = TRUE; cpdt = FALSE; nreg = 2;
 opc1 = UInt(instr<7:4>);
 CRm = UInt(instr<3:0>);
 elsif instr<31:28> != '1111' && instr<27:25> == '110' && instr<22> == '0' then // LDC/STC
 cprt = FALSE; cpdt = TRUE; nreg = 0;
 opc1 = 0;
 CRn = UInt(instr<15:12>);
 else
 allocated = FALSE;

 //
 // Coarse-grain decode into CP14 or CP15 encoding space. Each of the CPxxxInstrDecode functions
 // returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 if cp_num == 14 then
 // LDC and STC only supported for c5 in CP14 encoding space
 if cpdt && CRn != 5 then
 allocated = FALSE;
 else
 // Coarse-grained decode of CP14 based on opc1 field
 case opc1 of
 when 0 allocated = CP14DebugInstrDecode(instr);
 when 1 allocated = CP14TraceInstrDecode(instr);
 when 7 allocated = CP14JazelleInstrDecode(instr); // JIDR only
 otherwise allocated = FALSE; // All other values are unallocated

 elsif cp_num == 15 then
 // LDC and STC not supported in CP15 encoding space
 if !cprt then
 allocated = FALSE;
 else
 allocated = CP15InstrDecode(instr);

 // Coarse-grain traps to EL2 have a higher priority than exceptions generated because
 // the access instruction is UNDEFINED
 if AArch32.CheckCP15InstrCoarseTraps(CRn, nreg, CRm) then
 // For a coarse-grain trap, if it is IMPLEMENTATION DEFINED whether an access from
 // Non-secure User mode is UNDEFINED when the trap is disabled, then it is
 // IMPLEMENTATION DEFINED whether the same access is UNDEFINED or generates a trap
 // when the trap is enabled.
 if PSTATE.EL == EL0 && !IsSecure() && !allocated then
 if boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at NS EL0" then
 UNDEFINED;
 AArch32.AArch32SystemAccessTrap(EL2, instr);

 else
 allocated = FALSE;

 if !allocated then
 UNDEFINED;

 // If the instruction is not UNDEFINED, it might be disabled or trapped to a higher EL.
H1-256 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 AArch32.CheckSystemAccessTraps(instr);

 return;

aarch32/functions/coproc/AArch32.CheckSystemAccessTraps

 // Check for configurable disables or traps to a higher EL of an System register access.
 AArch32.CheckSystemAccessTraps(bits(32) instr);

aarch32/functions/coproc/CP14DebugInstrDecode

 // Decodes an accepted access to a debug System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14DebugInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP14JazelleInstrDecode

 // Decodes an accepted access to a Jazelle System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14JazelleInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP14TraceInstrDecode

 // Decodes an accepted access to a trace System register in the CP14 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP14TraceInstrDecode(bits(32) instr);

aarch32/functions/coproc/CP15InstrDecode

 // Decodes an accepted access to a System register in the CP15 encoding space.
 // Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
 boolean CP15InstrDecode(bits(32) instr);

aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

 // AArch32.ExclusiveMonitorsPass()
 // ===============================

 // Return TRUE if the Exclusive Monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;
 aligned = (address == Align(address, size));

 if !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

 passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;
 memaddrdesc = AArch32.ValidateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-257
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 if passed then
 ClearExclusiveLocal(ProcessorID());
 if memaddrdesc.memattrs.shareable then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch32/functions/exclusive/AArch32.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

 // AArch32.SetExclusiveMonitors()
 // ==============================

 // Sets the Exclusive Monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch32.SetExclusiveMonitors(bits(32) address, integer size)

 acctype = AccType_ATOMIC;
 iswrite = FALSE;
 aligned = (address != Align(address, size));
 memaddrdesc = AArch32.ValidateAddress(address, acctype, iswrite, aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch32.MarkExclusiveVA(address, ProcessorID(), size);

aarch32/functions/float/CheckAdvSIMDEnabled

 // CheckAdvSIMDEnabled()
 // =====================

 CheckAdvSIMDEnabled()

 fpexc_check = TRUE;
 advsimd = TRUE;
H1-258 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

 // Make temporary copy of D registers
 // _Dclone[] is used as input data for instruction pseudocode
 for i = 0 to 31
 _Dclone[i] = D[i];

 return;

aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

 // CheckAdvSIMDOrVFPEnabled()
 // ==========================

 CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/CheckCryptoEnabled32

 // CheckCryptoEnabled32()
 // ======================

 CheckCryptoEnabled32()
 CheckAdvSIMDEnabled();
 // Return from CheckAdvSIMDEnabled() occurs only if access is permitted
 return;

aarch32/functions/float/CheckVFPEnabled

 // CheckVFPEnabled()
 // =================

 CheckVFPEnabled(boolean include_fpexc_check)
 advsimd = FALSE;
 AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
 return;

aarch32/functions/float/FPHalvedSub

 // FPHalvedSub()
 // =============

 bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 != sign2 then
 result = FPZero(sign1);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-259
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 else
 result_value = (value1 - value2) / 2.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);
 return result;

aarch32/functions/float/FPRSqrtStep

 // FPRSqrtStep()
 // =============

 bits(32) FPRSqrtStep(bits(32) op1, bits(32) op2)
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(32) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 result = FPHalvedSub(FPThree('0'), product, fpcr);
 return result;

aarch32/functions/float/FPRecipStep

 // FPRecipStep()
 // =============

 bits(32) FPRecipStep(bits(32) op1, bits(32) op2)
 FPCRType fpcr = StandardFPSCRValue();
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 bits(32) product;
 if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
 else
 product = FPMul(op1, op2, fpcr);
 result = FPSub(FPTwo('0'), product, fpcr);
 return result;

aarch32/functions/float/StandardFPSCRValue

 // StandardFPSCRValue()
 // ====================

 FPCRType StandardFPSCRValue()
 return '00000' : FPSCR.AHP : '11000000000000000000000000';

aarch32/functions/memory/AArch32.CheckAlignment

 // AArch32.CheckAlignment()
 // ========================

 boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype,
H1-260 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 boolean iswrite)

 if PSTATE.EL == EL2 then
 A = HSCTLR.A;
 else
 A = SCTLR.A;
 aligned = (address == Align(address, alignment));

 // AccType_VEC is used for SIMD element alignment checks only
 check = (acctype == AccType_ATOMIC || acctype == AccType_ORDERED || acctype == AccType_VEC || A ==
'1');

 if check && !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch32/functions/memory/AArch32.MemSingle

 // AArch32.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned]
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 // MMU or MPU
 memaddrdesc = AArch32.ValidateAddress(address, acctype, iswrite, wasaligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Memory array access
 value = _Mem[memaddrdesc, size, acctype];
 return value;

 // AArch32.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8)
value
 assert size IN {1, 2, 4, 8, 16};
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 // MMU or MPU
 memaddrdesc = AArch32.ValidateAddress(address, acctype, iswrite, wasaligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-261
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 // Memory array access
 _Mem[memaddrdesc, size, acctype] = value;
 return;

aarch32/functions/memory/Hint_PreloadData

 Hint_PreloadData(bits(32) address);

aarch32/functions/memory/Hint_PreloadDataForWrite

 Hint_PreloadDataForWrite(bits(32) address);

aarch32/functions/memory/Hint_PreloadInstr

 Hint_PreloadInstr(bits(32) address);

aarch32/functions/memory/MemA

 // MemA[] - non-assignment form
 // ============================

 bits(8*size) MemA[bits(32) address, integer size]
 acctype = AccType_ATOMIC;
 return Mem_with_type[address, size, acctype];

 // MemA[] - assignment form
 // ========================

 MemA[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ATOMIC;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemO

 // MemO[] - non-assignment form
 // ============================

 bits(8*size) MemO[bits(32) address, integer size]
 acctype = AccType_ORDERED;
 return Mem_with_type[address, size, acctype];

 // MemO[] - assignment form
 // ========================

 MemO[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ORDERED;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU

 // MemU[] - non-assignment form
 // ============================

 bits(8*size) MemU[bits(32) address, integer size]
 acctype = AccType_NORMAL;
 return Mem_with_type[address, size, acctype];

 // MemU[] - assignment form
 // ========================

 MemU[bits(32) address, integer size] = bits(8*size) value
H1-262 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 acctype = AccType_NORMAL;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU_unpriv

 // MemU_unpriv[] - non-assignment form
 // ===================================

 bits(8*size) MemU_unpriv[bits(32) address, integer size]
 acctype = AccType_UNPRIV;
 return Mem_with_type[address, size, acctype];

 // MemU_unpriv[] - assignment form
 // ===============================

 MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_UNPRIV;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/Mem_with_type

 // Mem_with_type[] - non-assignment (read) form
 // ==
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch32.MemSingle directly.

 bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 integer i;
 boolean iswrite = FALSE;

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);
 if !aligned then
 assert size > 1;
 value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];
 else
 value = AArch32.MemSingle[address, size, acctype, aligned];

 if BigEndian() then
 value = BigEndianReverse(value);
 return value;

 // Mem_with_type[] - assignment (write) form
 // ===
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
 integer i;
 boolean iswrite = TRUE;

 if BigEndian() then
 value = BigEndianReverse(value);

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-263
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

 if !aligned then
 assert size > 1;
 AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 else
 AArch32.MemSingle[address, size, acctype, aligned] = value;
 return;

aarch32/functions/registers/AArch32.ResetGeneralRegisters

 // AArch32.ResetGeneralRegisters()
 // ===============================

 AArch32.ResetGeneralRegisters()

 for i = 0 to 7
 R[i] = bits(32) UNKNOWN;
 for i = 8 to 12
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
 for i = 13 to 14
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
 Rmode[i, M32_Svc] = bits(32) UNKNOWN;
 Rmode[i, M32_Abort] = bits(32) UNKNOWN;
 Rmode[i, M32_Undef] = bits(32) UNKNOWN;
 if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

 // AArch32.ResetSIMDFPRegisters()
 // ==============================

 AArch32.ResetSIMDFPRegisters()

 for i = 0 to 15
 Q[i] = bits(128) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSpecialRegisters

 // AArch32.ResetSpecialRegisters()
 // ===============================

 AArch32.ResetSpecialRegisters()

 // AArch32 special registers
 SPSR_fiq = bits(32) UNKNOWN;
 SPSR_irq = bits(32) UNKNOWN;
 SPSR_svc = bits(32) UNKNOWN;
H1-264 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 SPSR_abt = bits(32) UNKNOWN;
 SPSR_und = bits(32) UNKNOWN;
 if HaveEL(EL2) then
 SPSR_hyp = bits(32) UNKNOWN;
 ELR_hyp = bits(32) UNKNOWN;
 if HaveEL(EL3) then
 SPSR_mon = bits(32) UNKNOWN;

 // External debug special registers
 DLR = bits(32) UNKNOWN;
 DSPSR = bits(32) UNKNOWN;

 return;

aarch32/functions/registers/AArch32.ResetSystemRegisters

 AArch32.ResetSystemRegisters(boolean cold_reset);

aarch32/functions/registers/ALUExceptionReturn

 // ALUExceptionReturn()
 // ====================

 ALUExceptionReturn(bits(32) address)
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 AArch32.ExceptionReturn(address, SPSR[]);

aarch32/functions/registers/ALUWritePC

 // ALUWritePC()
 // ============

 ALUWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 BXWritePC(address);
 else
 BranchWritePC(address);

aarch32/functions/registers/BXWritePC

 // BXWritePC()
 // ===========

 BXWritePC(bits(32) address)
 if address<0> == '1' then
 SelectInstrSet(InstrSet_T32);
 address<0> = '0';
 else
 SelectInstrSet(InstrSet_A32);
 // For branches to an unaligned PC counter in A32 state, the processor takes the branch
 // and does one of:
 // * Forces the address to be aligned
 // * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
 if address<1> == '1' && ConstrainUnpredictableBool() then
 address<1> = '0';
 BranchTo(address, BranchType_UNKNOWN);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-265
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/BranchWritePC

 // BranchWritePC()
 // ===============

 BranchWritePC(bits(32) address)
 if CurrentInstrSet() == InstrSet_A32 then
 address<1:0> = '00';
 else
 address<0> = '0';
 BranchTo(address, BranchType_UNKNOWN);

aarch32/functions/registers/D

 // D[] - non-assignment form
 // =========================

 bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 return _V[n DIV 2]<base+63:base>;

 // D[] - assignment form
 // =====================

 D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 _V[n DIV 2]<base+63:base> = value;
 return;

aarch32/functions/registers/Din

 // Din[] - non-assignment form
 // ===========================

 bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 return _Dclone[n];

aarch32/functions/registers/LR

 // LR - assignment form
 // ====================

 LR = bits(32) value
 R[14] = value;
 return;

 // LR - non-assignment form
 // ========================

 bits(32) LR
 return R[14];

aarch32/functions/registers/LoadWritePC

 // LoadWritePC()
 // =============

 LoadWritePC(bits(32) address)
 BXWritePC(address);
H1-266 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/LookUpRIndex

 // LookUpRIndex()
 // ==============

 integer LookUpRIndex(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;

 case n of // Select index by mode: usr fiq irq svc abt und hyp
 when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
 when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
 when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
 when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
 when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
 when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
 when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
 otherwise result = n;

 return result;

aarch32/functions/registers/Monitor_mode_registers

 bits(32) SP_mon;
 bits(32) LR_mon;

aarch32/functions/registers/PC

 // PC - non-assignment form
 // ========================

 bits(32) PC
 return R[15]; // This includes the offset from AArch32 state

aarch32/functions/registers/PCStoreValue

 // PCStoreValue()
 // ==============

 bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before Armv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe A32 instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC;

aarch32/functions/registers/Q

 // Q[] - non-assignment form
 // =========================

 bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return _V[n];

 // Q[] - assignment form
 // =====================

 Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 _V[n] = value;
 return;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-267
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/registers/Qin

 // Qin[] - non-assignment form
 // ===========================

 bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

aarch32/functions/registers/R

 // R[] - assignment form
 // =====================

 R[integer n] = bits(32) value
 Rmode[n, PSTATE.M] = value;
 return;

 // R[] - non-assignment form
 // =========================

 bits(32) R[integer n]
 if n == 15 then
 offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
 return _PC<31:0> + offset;
 else
 return Rmode[n, PSTATE.M];

aarch32/functions/registers/RBankSelect

 // RBankSelect()
 // =============

 integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
 integer svc, integer abt, integer und, integer hyp)

 case mode of
 when M32_User result = usr; // User mode
 when M32_FIQ result = fiq; // FIQ mode
 when M32_IRQ result = irq; // IRQ mode
 when M32_Svc result = svc; // Supervisor mode
 when M32_Abort result = abt; // Abort mode
 when M32_Hyp result = hyp; // Hyp mode
 when M32_Undef result = und; // Undefined mode
 when M32_System result = usr; // System mode uses User mode registers
 otherwise Unreachable(); // Monitor mode

 return result;

aarch32/functions/registers/Rmode

 // Rmode[] - non-assignment form
 // =============================

 bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then return SP_mon;
 elsif n == 14 then return LR_mon;
 else return _R[n]<31:0>;
 else
H1-268 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 return _R[LookUpRIndex(n, mode)]<31:0>;

 // Rmode[] - assignment form
 // =========================

 Rmode[integer n, bits(5) mode] = bits(32) value
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then SP_mon = value;
 elsif n == 14 then LR_mon = value;
 else _R[n]<31:0> = value;
 else
 // It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
 // register are unchanged or set to zero. This is also tested for on
 // exception entry, as this applies to all AArch32 registers.
 if !HighestELUsingAArch32() && ConstrainUnpredictableBool() then
 _R[LookUpRIndex(n, mode)] = ZeroExtend(value);
 else
 _R[LookUpRIndex(n, mode)]<31:0> = value;

 return;

aarch32/functions/registers/S

 // S[] - non-assignment form
 // =========================

 bits(32) S[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 return _V[n DIV 4]<base+31:base>;

 // S[] - assignment form
 // =====================

 S[integer n] = bits(32) value
 assert n >= 0 && n <= 31;
 base = (n MOD 4) * 32;
 _V[n DIV 4]<base+31:base> = value;
 return;

aarch32/functions/registers/SP

 // SP - assignment form
 // ====================

 SP = bits(32) value
 R[13] = value;
 return;

 // SP - non-assignment form
 // ========================

 bits(32) SP
 return R[13];

aarch32/functions/registers/_Dclone

 array bits(64) _Dclone[0..31];
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-269
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/system/AArch32.ExceptionReturn

 // AArch32.ExceptionReturn()
 // =========================

 AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

 // Attempts to change to an illegal mode or state will invoke the Illegal Execution state
 // mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 EventRegisterSet();

 // Align PC[1:0] according to the target instruction set state
 if spsr<5> == '1' then // T32
 new_pc = Align(new_pc, 2);
 else // A32
 new_pc = Align(new_pc, 4);

 BranchTo(new_pc, BranchType_UNKNOWN);

aarch32/functions/system/AArch32.ITAdvance

 // AArch32.ITAdvance()
 // ===================

 AArch32.ITAdvance()
 if PSTATE.IT<2:0> == '000' then
 PSTATE.IT = '00000000';
 else
 PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
 return;

aarch32/functions/system/AArch32.SysRegRead

 // Read from a 32-bit AArch32 System register and return the register's contents.
 bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegRead64

 // Read from a 64-bit AArch32 System register and return the register's contents.
 bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

 // AArch32.SysRegReadCanWriteAPSR()
 // ================================
 // Determines whether the AArch32 System register read instruction can write to APSR flags.

 boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
 assert UsingAArch32();
 assert (cp_num IN {14,15});
 assert cp_num == UInt(instr<11:8>);

 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);

 if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
 return TRUE;

 return FALSE;
H1-270 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/system/AArch32.SysRegWrite

 // Write to a 32-bit AArch32 System register.
 AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

aarch32/functions/system/AArch32.SysRegWrite64

 // Write to a 64-bit AArch32 System register.
 AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

aarch32/functions/system/AArch32.WriteMode

 // AArch32.WriteMode()
 // ===================
 // Function for dealing with writes to PSTATE.M from AArch32 state only.
 // This ensures that PSTATE.EL and PSTATE.SP are always valid.

 AArch32.WriteMode(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 assert valid;
 PSTATE.M = mode;
 PSTATE.EL = el;
 PSTATE.nRW = '1';
 PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
 return;

aarch32/functions/system/AArch32.WriteModeByInstr

 // AArch32.WriteModeByInstr()
 // ==========================
 // Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
 // illegal state changes are correctly flagged in PSTATE.IL.

 AArch32.WriteModeByInstr(bits(5) mode)
 (valid,el) = ELFromM32(mode);

 // 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
 // of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
 // PSTATE.EL if it would result in any of:
 // * A change to a mode that would cause entry to a higher Exception level.
 if UInt(el) > UInt(PSTATE.EL) then
 valid = FALSE;

 // * A change to or from Hyp mode.
 if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then
 valid = FALSE;

 if !valid then
 PSTATE.IL = '1';
 else
 AArch32.WriteMode(mode);

aarch32/functions/system/BadMode

 // BadMode()
 // =========

 boolean BadMode(bits(5) mode)
 // Return TRUE if 'mode' encodes a mode that is not valid for this implementation
 case mode of
 when M32_Hyp
 valid = HaveEL(EL2);
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 valid = TRUE;
 when M32_User
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-271
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 valid = TRUE;
 otherwise
 valid = FALSE; // Passed an illegal mode value
 return !valid;

aarch32/functions/system/BankedRegisterAccessValid

 // BankedRegisterAccessValid()
 // ===========================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
 // other than the SPSRs that are invalid. This includes ELR_hyp accesses.

 BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

 case SYSm of
 when '000xx', '00100' // R8_usr to R12_usr
 if mode != M32_FIQ then UNPREDICTABLE;
 when '00101' // SP_usr
 if mode == M32_System then UNPREDICTABLE;
 when '00110' // LR_usr
 if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
 when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '1000x' // LR_irq, SP_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '1001x' // LR_svc, SP_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '1010x' // LR_abt, SP_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '1011x' // LR_und, SP_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '1110x' // LR_mon, SP_mon
 if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
 when '11110' // ELR_hyp, only from Monitor or Hyp mode
 if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
 when '11111' // SP_hyp, only from Monitor mode
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/CPSRWriteByInstr

 // CPSRWriteByInstr()
 // ==================
 // Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

 CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

 // Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
 if bytemask<3> == '1' then
 PSTATE.<N,Z,C,V,Q> = value<31:27>;
 // Bits <26:24> are ignored

 if bytemask<2> == '1' then
 // Bits <23:20> are RES0
 PSTATE.GE = value<19:16>;
 if bytemask<1> == '1' then
 // Bits <15:10> are RES0
 PSTATE.E = value<9>; // PSTATE.E is writable at EL0
 if privileged then
 PSTATE.A = value<8>;

 if bytemask<0> == '1' then
H1-272 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 if privileged then
 PSTATE.<I,F> = value<7:6>;
 // Bit <5> is RES0
 // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(value<4:0>);

 return;

aarch32/functions/system/ConditionPassed

 // ConditionPassed()
 // =================

 boolean ConditionPassed()
 return ConditionHolds(AArch32.CurrentCond());

aarch32/functions/system/CurrentCond

 bits(4) AArch32.CurrentCond();

aarch32/functions/system/InITBlock

 // InITBlock()
 // ===========

 boolean InITBlock()
 if CurrentInstrSet() == InstrSet_T32 then
 return PSTATE.IT<3:0> != '0000';
 else
 return FALSE;

aarch32/functions/system/LastInITBlock

 // LastInITBlock()
 // ===============

 boolean LastInITBlock()
 return (PSTATE.IT<3:0> == '1000');

aarch32/functions/system/SPSRWriteByInstr

 // SPSRWriteByInstr()
 // ==================

 SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

 new_spsr = SPSR[];

 if bytemask<3> == '1' then
 new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

 if bytemask<2> == '1' then
 new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

 if bytemask<1> == '1' then
 new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

 if bytemask<0> == '1' then
 new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

 SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

 return;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-273
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/functions/system/SPSRaccessValid

 // SPSRaccessValid()
 // =================
 // Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
 // that are UNPREDICTABLE

 SPSRaccessValid(bits(5) SYSm, bits(5) mode)
 case SYSm of
 when '01110' // SPSR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '10000' // SPSR_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '10010' // SPSR_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '10100' // SPSR_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '10110' // SPSR_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '11100' // SPSR_mon
 if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;
 when '11110' // SPSR_hyp
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;

 return;

aarch32/functions/system/SelectInstrSet

 // SelectInstrSet()
 // ================

 SelectInstrSet(InstrSet iset)
 assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
 assert iset IN {InstrSet_A32, InstrSet_T32};

 PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

 return;

aarch32/functions/v6simd/Sat

 // Sat()
 // =====

 bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;

aarch32/functions/v6simd/SignedSat

 // SignedSat()
 // ===========

 bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

aarch32/functions/v6simd/UnsignedSat

 // UnsignedSat()
 // =============

H1-274 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

H1.2.4 aarch32/translation

aarch32/translation/attrs/AArch32.InstructionDevice

 // AArch32.InstructionDevice()
 // ===========================
 // Instruction fetches from memory marked as Device but not execute-never might generate a
 // Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

 AddressDescriptor AArch32.InstructionDevice(AddressDescriptor addrdesc, bits(32) vaddress,
 bits(32) ipaddress, integer level, bits(4) domain,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_FAULT};

 if c == Constraint_FAULT then
 addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 else
 addrdesc.memattrs.type = MemType_Normal;
 addrdesc.memattrs.inner.attrs = MemAttr_NC;
 addrdesc.memattrs.inner.hints = MemHint_No;
 addrdesc.memattrs.outer = addrdesc.memattrs.inner;
 addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

 return addrdesc;

aarch32/translation/attrs/AArch32.ValidateAddressS1Off

 // AArch32.ValidateAddressS1Off()
 // ==============================
 // Called for getting default attributes when stage 1 validation is disabled.

 MPURecord AArch32.ValidateAddressS1Off(bits(32) address, AccType acctype, boolean iswrite)

 MPURecord result;
 boolean secondstage = FALSE;
 result.br_enabled = FALSE;
 default_cacheable = HasS2Validation() && (HCR.DC == '1');

 if default_cacheable then
 // Use Default Cacheability settings
 result.addrdesc.memattrs.type = MemType_Normal;
 result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
 result.addrdesc.memattrs.inner.hints = MemHint_RWA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;

 elsif acctype != AccType_IFETCH then
 // Background memory map for data access
 result.addrdesc.memattrs = BackgroundMemoryAttr(address, secondstage);

 else
 // Background memory map for instruction fetch
 // Check for instruction fetch from execute-never memory address range
 if address<31> == '1' then
 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '1';
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-275
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 result.perms.pxn = '0';
 result.addrdesc.paddress.physicaladdress = address;

 // Instruction fetch from execute-never memory address range should be
 // marked as permission fault and return.
 result.addrdesc.fault = AArch32.PermissionFault(address,bits(4) UNKNOWN, integer UNKNOWN,
 acctype, iswrite, secondstage, FALSE);
 return result;

 else
 // Instruction Cacheability controlled by SCTLR/HSCTLR.I
 if PSTATE.EL == EL2 then
 cacheable = HSCTLR.I == '1';
 else
 cacheable = SCTLR.I == '1';

 result.addrdesc.memattrs.type = MemType_Normal;
 if cacheable then
 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
 result.addrdesc.memattrs.inner.hints = MemHint_RA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;
 else
 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 result.addrdesc.memattrs.inner.hints = MemHint_No;
 result.addrdesc.memattrs.shareable = TRUE;
 result.addrdesc.memattrs.outershareable = TRUE;

 // Use outer attributes as same as inner attributes
 // If no faults, populate rest of memattrs.
 result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
 result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

 // Update permission information
 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '0';
 result.perms.pxn = '0';

 result.addrdesc.paddress.physicaladdress = address;
 result.addrdesc.fault = AArch32.NoFault();
 return result;

aarch32/translation/attrs/AArch32.ValidateAddressS2Off

 // AArch32.ValidateAddressS2Off()
 // ==============================
 // Called for getting default attributes when stage 2 validation is disabled.

 MPURecord AArch32.ValidateAddressS2Off(bits(32) address, AccType acctype, boolean iswrite)

 MPURecord result;
 boolean secondstage = TRUE;
 result.br_enabled = FALSE;

 if acctype != AccType_IFETCH then
 // Background memory map for data access
 result.addrdesc.memattrs = BackgroundMemoryAttr(address, secondstage);

 else
 // Background memory map for instruction fetch
 // Check for instruction fetch from execute-never memory address range
 if address<31> == '1' then
 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '1';
 result.perms.pxn = '0';
 result.addrdesc.paddress.physicaladdress = address;

H1-276 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 // Instruction fetch from execute-never memory address range should be
 // marked as permission fault and return.
 result.addrdesc.fault = AArch32.PermissionFault(address,bits(4) UNKNOWN, integer UNKNOWN,
 acctype, iswrite, secondstage, FALSE);
 return result;

 else
 // Stage2 validation happens for transactions from EL0/EL1 on PL2 MPU.
 cacheable = HSCTLR.I == '1';

 result.addrdesc.memattrs.type = MemType_Normal;
 if cacheable then
 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
 result.addrdesc.memattrs.inner.hints = MemHint_RA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;
 else
 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 result.addrdesc.memattrs.inner.hints = MemHint_No;
 result.addrdesc.memattrs.shareable = TRUE;
 result.addrdesc.memattrs.outershareable = TRUE;

 // Use outer attributes as same as inner attributes
 // If no faults, populate rest of memattrs.
 result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
 result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

 // Update permission information
 result.perms.ap = bits(3) UNKNOWN;
 result.perms.xn = '0';
 result.perms.pxn = '0';

 result.addrdesc.paddress.physicaladdress = address;
 result.addrdesc.fault = AArch32.NoFault();
 return result;

aarch32/translation/checks/AArch32.CheckPermission

 // AArch32.CheckPermission()
 // =========================
 // Function used for permission checking from AArch32 stage 1 translations

 FaultRecord AArch32.CheckPermission(Permissions perms, bits(32) vaddress, integer level,
 bits(4) domain, bit NS, AccType acctype, boolean iswrite)
 assert ELUsingAArch32(S1ValidationRegime());

 if PSTATE.EL != EL2 then
 wxn = SCTLR.WXN == '1';
 // v8R PMSA MPU follow Long-descriptor format
 priv_r = TRUE;
 priv_w = perms.ap<2> == '0';
 user_r = perms.ap<1> == '1';
 user_w = perms.ap<2:1> == '01';
 uwxn = SCTLR.UWXN == '1';

 user_xn = !user_r || perms.xn == '1' || (user_w && wxn);
 priv_xn = (!priv_r || perms.xn == '1' || perms.pxn == '1' ||
 (priv_w && wxn) || (user_w && uwxn));
 ispriv = PSTATE.EL != EL0 && acctype != AccType_UNPRIV;

 if ispriv then
 (r, w, xn) = (priv_r, priv_w, priv_xn);
 else
 (r, w, xn) = (user_r, user_w, user_xn);
 else
 // Access from EL2
 wxn = HSCTLR.WXN == '1';
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-277
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 r = TRUE;
 w = perms.ap<2> == '0';
 xn = perms.xn == '1' || (w && wxn);

 // Restriction on Secure instruction fetch

 if acctype == AccType_IFETCH then
 fail = xn;
 elsif iswrite then
 fail = !w;
 failedread = FALSE;
 else
 fail = !r;
 failedread = TRUE;

 if fail then
 secondstage = FALSE;
 s2fs1walk = FALSE;
 ipaddress = bits(32) UNKNOWN;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
 else
 return AArch32.NoFault();

aarch32/translation/checks/AArch32.CheckS2Permission

 // AArch32.CheckS2Permission()
 // ===========================
 // Function used for permission checking from AArch32 stage 2 translations

 FaultRecord AArch32.CheckS2Permission(Permissions perms, bits(32) vaddress, bits(32) ipaddress,
 integer level, AccType acctype, boolean iswrite,
 boolean s2fs1walk)

 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Validation();

 r = perms.ap<1> == '1';
 w = perms.ap<2> == '1';
 xn = !r || perms.xn == '1';

 // Stage 1 walk is checked as a read, regardless of the original type
 if acctype == AccType_IFETCH && !s2fs1walk then
 fail = xn;
 elsif iswrite && !s2fs1walk then
 fail = !w;
 failedread = FALSE;
 else
 fail = !r;
 failedread = !iswrite;

 if fail then
 domain = bits(4) UNKNOWN;
 secondstage = TRUE;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckBreakpoint

 // AArch32.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime.
 // The breakpoint can in fact be evaluated well ahead of execution, for example, at instruction
 // fetch. This is the simple sequential execution of the program.
H1-278 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1ValidationRegime());
 assert size IN {2,4};

 match = FALSE;
 mismatch = FALSE;

 for i = 0 to UInt(DBGDIDR.BRPs)
 (match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
 match = match || match_i;
 mismatch = mismatch || mismatch_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif (match || mismatch) && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_Breakpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckDebug

 // AArch32.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = AArch32.NoFault();

 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
 halt = HaltOnBreakpointOrWatchpoint();
 // Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
 vector_catch_first = ConstrainUnpredictableBool();

 if !d_side && vector_catch_first && generate_exception then
 fault = AArch32.CheckVectorCatch(vaddress, size);

 if fault.type == Fault_None && (generate_exception || halt) then
 if d_side then
 fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch32.CheckBreakpoint(vaddress, size);

 if fault.type == Fault_None && !d_side && !vector_catch_first && generate_exception then
 return AArch32.CheckVectorCatch(vaddress, size);

 return fault;

aarch32/translation/debug/AArch32.CheckVectorCatch

 // AArch32.CheckVectorCatch()
 // ==========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime.
 // Vector Catch can in fact be evaluated well ahead of execution, for example, at instruction
 // fetch. This is the simple sequential execution of the program.

 FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1ValidationRegime());

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-279
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 match = AArch32.VCRMatch(vaddress);
 if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then
 match = ConstrainUnpredictableBool();

 if match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_VectorCatch;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckWatchpoint

 // AArch32.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address".

 FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert ELUsingAArch32(S1ValidationRegime());

 match = FALSE;
 ispriv = PSTATE.EL != EL0 && !(PSTATE.EL == EL1 && acctype == AccType_UNPRIV);

 for i = 0 to UInt(DBGDIDR.WRPs)
 match = match || AArch32.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 Halt(reason);
 elsif match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
 debugmoe = DebugException_Watchpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/faults/AArch32.AccessFlagFault

 // AArch32.AccessFlagFault()
 // =========================

 FaultRecord AArch32.AccessFlagFault(bits(32) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AccessFlag, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AddressSizeFault

 // AArch32.AddressSizeFault()
 // ==========================

 FaultRecord AArch32.AddressSizeFault(bits(32) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AddressSize, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);
H1-280 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/translation/faults/AArch32.AlignmentFault

 // AArch32.AlignmentFault()
 // ========================

 FaultRecord AArch32.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

 ipaddress = bits(32) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 s2fs1walk = boolean UNKNOWN;

 return AArch32.CreateFaultRecord(Fault_Alignment, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AsynchExternalAbort

 // AArch32.AsynchExternalAbort()
 // =============================
 // Wrapper function for asynchronous External aborts

 FaultRecord AArch32.AsynchExternalAbort(boolean parity, bit extflag)

 type = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 ipaddress = bits(32) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(type, ipaddress, domain, level, acctype, iswrite, extflag,
 debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.BackgroundFault

 // AArch32.BackgroundFault()
 // =========================

 FaultRecord AArch32.BackgroundFault(bits(32) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Background, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DebugFault

 // AArch32.DebugFault()
 // ====================

 FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)

 ipaddress = bits(32) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-281
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation

 return AArch32.CreateFaultRecord(Fault_Debug, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DomainFault

 // AArch32.DomainFault()
 // =====================

 FaultRecord AArch32.DomainFault(bits(4) domain, integer level, AccType acctype, boolean iswrite)

 ipaddress = bits(32) UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(Fault_Domain, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.NoFault

 // AArch32.NoFault()
 // =================

 FaultRecord AArch32.NoFault()

 ipaddress = bits(32) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 acctype = AccType_NORMAL;
 iswrite = boolean UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 return AArch32.CreateFaultRecord(Fault_None, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.PermissionFault

 // AArch32.PermissionFault()
 // =========================

 FaultRecord AArch32.PermissionFault(bits(32) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Permission, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.TranslationFault

 // AArch32.TranslationFault()
 // ==========================

 FaultRecord AArch32.TranslationFault(bits(32) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
H1-282 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 debugmoe = bits(4) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Translation, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, secondstage, s2fs1walk);

aarch32/translation/validation/AArch32.AttrDecode

 // AArch32.AttrDecode()
 // ====================
 // Converts the attribute fields, using the HMAIR/MAIR, to orthogonal attributes and hints.

 MemoryAttributes AArch32.AttrDecode(bits(2) SH, bits(3) attr, AccType acctype,
 boolean secondstage)

 MemoryAttributes memattrs;

 if !secondstage && PSTATE.EL != EL2 then
 mair = MAIR1:MAIR0;
 else
 mair = HMAIR1:HMAIR0;

 index = 8 * UInt(attr);
 attrfield = mair<index+7:index>;

 if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
 (attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
 // Reserved, maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();

 if attrfield<7:4> == '0000' then // Device
 memattrs.type = MemType_Device;
 case attrfield<3:0> of
 when '0000' memattrs.device = DeviceType_nGnRnE;
 when '0100' memattrs.device = DeviceType_nGnRE;
 when '1000' memattrs.device = DeviceType_nGRE;
 when '1100' memattrs.device = DeviceType_GRE;
 otherwise Unreachable(); // Reserved, handled above

 elsif attrfield<3:0> != '0000' then // Normal
 memattrs.type = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype, secondstage);
 memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype, secondstage);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';

 else
 Unreachable(); // Reserved, handled above

 return MemAttrDefaults(memattrs);

aarch32/translation/validation/AArch32.CheckAddress

 // AArch32.CheckAddress()
 // ======================
 // Returns the result of address checks.

 MPURecord AArch32.CheckAddress(bits(32) address, AccType acctype, boolean iswrite,
 boolean secondstage)
 S1 = MPUCheck(address, acctype, iswrite, secondstage);
 return S1;

aarch32/translation/validation/AArch32.FirstStageValidate

 // AArch32.FirstStageValidate()
 // ============================
 // Perform stage 1 validation for the memory access.

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-283
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 AddressDescriptor AArch32.FirstStageValidate(bits(32) address, AccType acctype, boolean iswrite,
 boolean wasaligned)
 // Check whether stage 1 is enabled
 if PSTATE.EL == EL2 then
 s1_enabled = HSCTLR.M == '1';
 elsif HaveEL(EL2) then
 tge = HCR.TGE;
 dc = HCR.DC;
 s1_enabled = tge == '0' && SCTLR.M == '1';
 else
 dc = HCR.DC;
 s1_enabled = && SCTLR.M == '1';

 secondstage = FALSE;
 if s1_enabled then
 // First stage enabled
 S1 = AArch32.CheckAddress(address, acctype, iswrite, secondstage);
 permissioncheck = TRUE;

 // Check whether to use background memory map or default Cacheability
 if !s1_enabled || S1.br_enabled then
 S1 = AArch32.ValidateAddressS1Off(address, acctype, iswrite);
 permissioncheck = FALSE;

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

 if !IsFault(S1.addrdesc) && permissioncheck then
 S1.addrdesc.fault = AArch32.CheckPermission(S1.perms, address, integer UNKNOWN,
 bits(4) UNKNOWN, '1',
 acctype, iswrite);

 // Check for instruction fetches from Device memory not marked as execute-never. If there has
 // not been a Permission Fault then the memory is not marked execute-never.
 if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 S1.addrdesc = AArch32.InstructionDevice(S1.addrdesc, bits(32) UNKNOWN, address, integer UNKNOWN,
 bits(4) UNKNOWN, acctype, iswrite, secondstage, FALSE);

 return S1.addrdesc;

aarch32/translation/validation/AArch32.FullValidate

 // AArch32.FullValidate()
 // ======================
 // Perform both stage 1 and stage 2 address validation for the current memory access regime.

 AddressDescriptor AArch32.FullValidate(bits(32) address, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)
 // First Stage Validation
 S1 = AArch32.FirstStageValidate(address, acctype, iswrite, wasaligned);

 // Second Stage Validation
 if !IsFault(S1) && HasS2Validation() then
 result = AArch32.SecondStageValidate(S1, address, acctype, iswrite, wasaligned, size);
 else
 result = S1;

 return result;
H1-284 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/translation/validation/AArch32.MPUCheck

 // AArch32.MPUCheck()
 // ==================
 // Returns the result of MPU checks on the address.

 MPURecord MPUCheck(bits(32) address, AccType acctype, boolean iswrite, boolean secondstage)

 MPURecord memrecord;
 memrecord.br_enabled = FALSE;

 if !secondstage && PSTATE.EL != EL2 then
 // Access controlled by EL1 MPU
 pl2mpu = FALSE;
 br = SCTLR.BR == '1';
 num_regions = (UInt(MPUIR.REGION) - 1);
 else
 // Access controlled by EL2 MPU
 pl2mpu = TRUE;
 br = HSCTLR.BR == '1';
 num_regions = (UInt(HMPUIR.REGION) - 1);

 regionMatched = FALSE;
 for r = 0 to num_regions
 if pl2mpu then
 rbar = HPRBAR[r];
 rlar = HPRLAR[r];
 else
 rbar = PRBAR[r];
 rlar = PRLAR[r];

 // MPU region enable check
 if rlar.EN == '1' then
 // Checking for a matching MPU region
 if ((UInt(address) >= UInt(rbar.BASE : '00000')) &&
 (UInt(address) <= UInt(rlar.LIMIT : '11111'))) then

 // More than one region match will generate a translation fault
 if regionMatched then
 memrecord.addrdesc.fault = AArch32.TranslationFault(address,
 bits(4) UNKNOWN, integer UNKNOWN,
 acctype, iswrite, secondstage,
 boolean UNKNOWN);
 memrecord.perms = Permissions UNKNOWN;
 return memrecord;

 else
 regionMatched = TRUE;
 memrecord.perms.ap = rbar.AP:'0';
 memrecord.perms.xn = rbar.XN;
 memrecord.perms.pxn = '0';

 memrecord.addrdesc.paddress.physicaladdress = address;
 SH = rbar.SH;
 attr = rlar.AttrIndx;
 memrecord.addrdesc.memattrs = AArch32.AttrDecode(SH, attr, acctype,
 secondstage);

 // Check for single MPU region match
 if regionMatched then
 memrecord.addrdesc.fault = AArch32.NoFault();

 // In case of no match, check whether use of background memory region
 // enabled. If not, raise background fault
 elsif !br then
 memrecord.addrdesc.fault = AArch32.BackgroundFault(address, bits(4) UNKNOWN,
 integer UNKNOWN, acctype, iswrite,
 secondstage, boolean UNKNOWN);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-285
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 // if background region is enabled, i.e. br = TRUE, check whether mpu background
 // region matching is enabled for the current memory access regime.
 // Check whether EL1 MPU background region enabled
 elsif !pl2mpu && PSTATE.EL == EL1 then
 memrecord.br_enabled = TRUE;
 // Check whether EL2 MPU background region enabled
 elsif pl2mpu && PSTATE.EL==EL2 then
 memrecord.br_enabled = TRUE;
 // else, raise translation fault
 else
 memrecord.addrdesc.fault = AArch32.TranslationFault(address, bits(4) UNKNOWN,
 integer UNKNOWN, acctype, iswrite,
 secondstage, boolean UNKNOWN);
 return memrecord;

aarch32/translation/validation/AArch32.SecondStageValidate

 // AArch32.SecondStageValidate()
 // =============================
 // Perform a stage 2 validation for memory access.

 AddressDescriptor AArch32.SecondStageValidate(AddressDescriptor S1, bits(32) address,
 AccType acctype, boolean iswrite, boolean wasaligned,
 integer size)
 assert HasS2Validation();
 s2_enabled = HCR.VM == '1' || HCR.DC == '1';
 secondstage = TRUE;

 // Second stage enabled
 if s2_enabled then
 // Check whether stage2 MPU is enabled
 if HSCTLR.M == '1' then
 S2 = AArch32.CheckAddress(address, acctype, iswrite, secondstage);
 permissioncheck = TRUE;
 else
 // if stage2 MPU is disabled and HCR.VM == 1, then stage2 validation uses background
 // memory map
 S2 = AArch32.ValidateAddressS2Off(address, acctype, iswrite);
 permissioncheck = FALSE;

 // Check for unaligned data accesses to Device memory
 if (!wasaligned && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype != AccType_IFETCH) then
 S2.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

 if !IsFault(S2.addrdesc) && permissioncheck then
 S2.addrdesc.fault = AArch32.CheckS2Permission(S2.perms, bits(32) UNKNOWN, address,
 integer UNKNOWN, acctype,
 iswrite, FALSE);

 // Check for instruction fetches from Device memory not marked as execute-never. As there
 // has not been a Permission Fault then the memory is not marked execute-never.
 if (!IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&
 acctype == AccType_IFETCH) then
 domain = bits(4) UNKNOWN;
 S2.addrdesc = AArch32.InstructionDevice(S2.addrdesc, bits(32) UNKNOWN, address,
 integer UNKNOWN, bits(4) UNKNOWN,
 acctype, iswrite,secondstage, FALSE);
 result = CombineS1S2Desc(S1, S2.addrdesc);
 else
 result = S1;

 return result;
H1-286 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
aarch32/translation/validation/AArch32.ValidateAddress

 // AArch32.ValidateAddress()
 // =========================
 // Main entry point for validating address for current memory access regime.

 AddressDescriptor AArch32.ValidateAddress(bits(32) address, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)
 result = AArch32.FullValidate(address, acctype, iswrite, wasaligned, size);

 if !(acctype IN {AccType_IC}) && !IsFault(result) then
 result.fault = AArch32.CheckDebug(address, acctype, iswrite, size);

 return result;

aarch32/translation/validation/BackgroundMemoryAttr

 // BackgroundMemoryAttr()
 // ======================
 // Called for getting background memory map attributes for a given address.

 MemoryAttributes BackgroundMemoryAttr(bits(32) address, boolean secondstage)

 MemoryAttributes memattrs;
 memregion = UInt(address<31:28>);

 if PSTATE.EL != EL2 then {use SCTLR.C}

 else {use HSCTLR.C}

 // memory attributes not set here will be filled by MemAttrDefaults().
 if memregion >= UInt('1100') then
 // mpu region : 0xC0000000 - 0xFFFFFFFF
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;

 elsif memregion >= UInt('1000') then
 // mpu region : 0x80000000 - 0xBFFFFFFF
 memattrs.type = MemType_Device;
 memattrs.device = DeviceType_nGnRE;

 elsif memregion >= UInt('0110') then
 // mpu region : 0x60000000 - 0x7FFFFFFF
 memattrs.type = MemType_Normal;
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.inner.hints = MemHint_No;
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;

 elsif memregion >= UInt('0100') then
 // mpu region : 0x40000000 - 0x5FFFFFFF
 memattrs.type = MemType_Normal;
 if cacheable then
 memattrs.inner.attrs = MemAttr_WT;
 memattrs.inner.hints = MemHint_RA;
 memattrs.shareable = FALSE;
 memattrs.outershareable = FALSE;

 else
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.inner.hints = MemHint_No;
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;

 else
 // mpu region : 0x00000000 - 0x3FFFFFFF
 memattrs.type = MemType_Normal;
 if cacheable then
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-287
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.2 Pseudocode for AArch32 operation
 memattrs.inner.attrs = MemAttr_WB;
 memattrs.inner.hints = MemHint_RWA;
 memattrs.shareable = FALSE;
 memattrs.outershareable = FALSE;

 else
 memattrs.inner.attrs = MemAttr_NC;
 memattrs.inner.hints = MemHint_No;
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;

 return memattrs;
H1-288 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
H1.3 Shared pseudocode
This section holds the pseudocode that is common to execution in AArch64 state and in AArch32 state. Armv8-R
does not support AArch64 state but for ease of correlating this manual with that on the Armv8-A profile, this manual
follows the structure of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Functions listed in this section are identified only by a FunctionName, without an AArch64. or AArch32. prefix. This
section is organized by functional groups, with the functional groups being indicated by hierarchical path names,
for example shared/debug/DebugTarget.

The top-level sections of the shared pseudocode hierarchy are:
• shared/debug.
• shared/exceptions on page H1-301.
• shared/functions on page H1-303.
• shared/translation on page H1-348.

H1.3.1 shared/debug

shared/debug/ClearStickyErrors/ClearStickyErrors

 // ClearStickyErrors()
 // ===================

 ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag
 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag
 EDSCR.ERR = '0'; // Clear cumulative error flag
 return;

shared/debug/DebugTarget/DebugTarget

 // DebugTarget()
 // =============
 // Returns the debug exception target Exception level

 bits(2) DebugTarget()
 return (if HDCR.TDE == '1' || HCR.TGE == '1' then EL2 else EL1);

shared/debug/DoubleLockStatus/DoubleLockStatus

 // DoubleLockStatus()
 // ==================
 // Returns the state of the OS Double Lock.
 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

 boolean DoubleLockStatus()
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();

shared/debug/FindWatchpoint/FindWatchpoint

 // FindWatchpoint()
 // ================

 integer FindWatchpoint()
 address = FAR[];
 base = Align(address, ZVAGranuleSize());
 limit = base + ZVAGranuleSize();
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-289
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 repeat
 for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
 if WatchpointByteMatch(i, address) then // Candidate found
 return i;
 address = address + 1;
 if address == limit then address = base; // Wrap round, as this must be a DC ZVA
 while address != FAR[];
 return -1; // No candidate found (should not happen)

shared/debug/authentication/AllowExternalDebugAccess

 // AllowExternalDebugAccess()
 // ==========================
 // Returns the status of EDPRSR.EDAD.

 boolean AllowExternalDebugAccess()
 // The access may also be subject to OS lock, power-down, etc.
 return ExternalInvasiveDebugEnabled();

shared/debug/authentication/AllowExternalPMUAccess

 // AllowExternalPMUAccess()
 // ========================
 // If the first return value is FALSE, then the access returns an error response. Otherwise, the second
 // return value specifies a bit mask. In this bit mask, each zero bit is RAZ/WI in the access.
 // If "indexed" == TRUE then this is a PMEVCNTR<n> or PMEVTYPER<n> register and "n" is the index of the
 // event counter. If "mask" == TRUE then this is one of PMCNTENSET/CLR, PMINTENSET/CLR, or PMOVSSET/CLR.

 (boolean,bits(32)) AllowExternalPMUAccess(boolean indexed, integer n, boolean mask)
 // The access may also be subject to OS lock, power-down, etc.
 if ExternalNoninvasiveDebugEnabled() then
 if HaveEL(EL2) && !ExternalHypNoninvasiveDebugEnabled() && HDCR.EPMAD == '1' then
 if mask then
 return (TRUE, '1':ZeroExtend(Ones(UInt(HDCR.HPMN)), 31));
 elsif indexed && n >= UInt(HDCR.HPMN) then
 return (TRUE, Zeros(32));
 return (TRUE, Ones());
 else
 return (FALSE, bits(32) UNKNOWN);

shared/debug/authentication/Debug_authentication

 signal DBGEN;
 signal NIDEN;
 signal HIDEN;
 signal HNIDEN;

shared/debug/authentication/ExternalHypInvasiveDebugEnabled

 // ExternalHypInvasiveDebugEnabled()
 // =================================

 boolean ExternalHypInvasiveDebugEnabled()
 // In the recommended interface, ExternalHypInvasiveDebugEnabled returns the state of the
 // (DBGEN AND HIDEN) signal.
 return ExternalInvasiveDebugEnabled() && HIDEN == HIGH;

shared/debug/authentication/ExternalHypNoninvasiveDebugEnabled

 // ExternalHypNoninvasiveDebugEnabled()
 // ====================================

 boolean ExternalHypNoninvasiveDebugEnabled()
H1-290 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // In the recommended interface, ExternalHypNoninvasiveDebugEnabled returns the state of the
 // (DBGEN OR NIDEN) AND (HIDEN OR HNIDEN) signal.
 return ExternalNoninvasiveDebugEnabled() && (HIDEN == HIGH || HNIDEN == HIGH);

shared/debug/authentication/ExternalInvasiveDebugEnabled

 // ExternalInvasiveDebugEnabled()
 // ==============================

 boolean ExternalInvasiveDebugEnabled()
 // In the recommended interface, ExternalInvasiveDebugEnabled returns the state of the DBGEN
 // signal.
 return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

 // ExternalNoninvasiveDebugAllowed()
 // =================================

 boolean ExternalNoninvasiveDebugAllowed()
 // Return TRUE if Trace and Sample-based profiling are allowed
 return ExternalNoninvasiveDebugEnabled();

shared/debug/authentication/ExternalNoninvasiveDebugEnabled

 // ExternalNoninvasiveDebugEnabled()
 // =================================

 boolean ExternalNoninvasiveDebugEnabled()
 // In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
 // OR NIDEN) signal.
 return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/cti/CTI_SetEventLevel

 // Set a Cross Trigger multi-cycle input event trigger to the specified level.
 CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

 // Signal a discrete event on a Cross Trigger input event trigger.
 CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCInterrupts

 // CheckForDCCInterrupts()
 // =======================

 CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-291
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

 // The value to be driven onto the common COMMIRQ signal.
 commirq = ((commrx && DBGDCCINT.RX == '1') ||
 (commtx && DBGDCCINT.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

 return;

shared/debug/dccanditr/DBGDTRRX_EL0

 // DBGDTRRX_EL0[] (external write)
 // ===============================
 // Called on writes to debug register 0x08C.

 DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;

 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(32) UNKNOWN;
 else
 // "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
 assert EDSCR.RXfull == '0';

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
 return;

 // DBGDTRRX_EL0[] (external read)
 // ==============================

 bits(32) DBGDTRRX_EL0[boolean memory_mapped]
 return DTRRX;

shared/debug/dccanditr/DBGDTRTX_EL0

 // DBGDTRTX_EL0[] (external read)
 // ==============================
 // Called on reads of debug register 0x080.

H1-292 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 bits(32) DBGDTRTX_EL0[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
 value = if underrun then bits(32) UNKNOWN else DTRTX;

 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
 return value;

 if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN

 EDSCR.TXfull = '0';

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(32) UNKNOWN;
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
 assert EDSCR.TXfull == '1';

 R[1] = bits(32) UNKNOWN;

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

 return value;

 // DBGDTRTX_EL0[] (external write)
 // ===============================

 DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
 DTRTX = value;
 return;

shared/debug/dccanditr/DBGDTR_EL0

 // DBGDTR_EL0[] (write)
 // ====================
 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

 DBGDTR_EL0[] = bits(N) value
 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
 assert N IN {32,64};
 if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
 // On a 64-bit write, implement a half-duplex channel
 if N == 64 then DTRRX = value<63:32>;
 DTRTX = value<31:0>; // 32-bit or 64-bit write
 EDSCR.TXfull = '1';
 return;

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-293
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // DBGDTR_EL0[] (read)
 // ===================
 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

 bits(N) DBGDTR_EL0[]
 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
 assert N IN {32,64};
 bits(N) result;
 if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
 else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<63:32> = DTRTX;
 result<31:0> = DTRRX;
 EDSCR.RXfull = '0';
 return result;

shared/debug/dccanditr/DTR

 bits(32) DTRRX;
 bits(32) DTRTX;

shared/debug/dccanditr/EDITR

 // EDITR[] (external write)
 // ========================
 // Called on writes to debug register 0x084.

 EDITR[boolean memory_mapped] = bits(32) value
 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if !Halted() then return; // Non-debug state: ignore write

 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
 return;

 // ITE indicates whether the processor is ready to accept another instruction; the processor
 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
 // is no indication that the pipeline is empty (all instructions have completed). In this
 // pseudocode, the assumption is that only one instruction can be executed at a time,
 // meaning ITE acts like "InstrCompl".
 EDSCR.ITE = '0';

 if !UsingAArch32() then
 ExecuteA64(value);
 else
 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

 EDSCR.ITE = '1';

 return;
H1-294 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/halting/DCPSInstruction

 // DCPSInstruction()
 // =================
 // Operation of the DCPS instruction in Debug state

 DCPSInstruction(bits(2) target_el)

 SynchronizeContext();

 case target_el of
 when EL1
 if PSTATE.EL == EL2 then handle_el = PSTATE.EL;
 elsif HaveEL(EL2) && !IsSecure() && HCR.TGE == '1' then UNDEFINED;
 else handle_el = EL1;

 when EL2
 if !HaveEL(EL2) || EDSCR.HDD == '1' then UNDEFINED;

 else handle_el = EL2;
 otherwise
 UNDEFINED;

 if ELUsingAArch32(handle_el) then
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32
 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 when EL2 AArch32.WriteMode(M32_Hyp);
 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 if handle_el == EL2 then
 PSTATE.E = HSCTLR.EE;
 else
 PSTATE.E = SCTLR.EE;
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR PE state flags.
 return;

shared/debug/halting/DRPSInstruction

 // DRPSInstruction()
 // =================
 // Operation of the A64 DRPS and T32 ERET instructions in Debug state

 DRPSInstruction()

 SynchronizeContext();

 SetPSTATEFromPSR(SPSR[]);

 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR PE state flags.

 return;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-295
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/halting/DebugHalt

 constant bits(6) DebugHalt_Breakpoint = '000111';
 constant bits(6) DebugHalt_EDBGRQ = '010011';
 constant bits(6) DebugHalt_Step_Normal = '011011';
 constant bits(6) DebugHalt_Step_Exclusive = '011111';
 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
 constant bits(6) DebugHalt_ResetCatch = '100111';
 constant bits(6) DebugHalt_Watchpoint = '101011';
 constant bits(6) DebugHalt_HaltInstruction = '101111';
 constant bits(6) DebugHalt_SoftwareAccess = '110011';
 constant bits(6) DebugHalt_ExceptionCatch = '110111';
 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

 DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

 // Execute an A64 instruction in Debug state.
 ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

 // Execute a T32 instruction in Debug state.
 ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

 // ExitDebugState()
 // ================

 ExitDebugState()
 assert Halted();
 SynchronizeContext();

 // Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
 // detect that the PE has restarted.
 EDSCR.STATUS = '000001'; // Signal restarting
 EDESR<2:0> = '000'; // Clear any pending Halting debug events

 bits(64) new_pc;
 bits(32) spsr;

 new_pc = ZeroExtend(DLR);
 spsr = DSPSR;
 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0.

 if UsingAArch32() then
 if ConstrainUnpredictableBool() then new_pc<0> = '0';
 BranchTo(new_pc<31:0>, BranchType_UNKNOWN); // AArch32 branch
 else
 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
 if spsr<4> == '1' && ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();
 BranchTo(new_pc, BranchType_DBGEXIT); // A type of branch that is never predicted

 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 UpdateEDSCRFields(); // Stop signalling PE state.
 DisableITRAndResumeInstructionPrefetch();

 return;
H1-296 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/halting/Halt

 // Halt()
 // ======

 Halt(bits(6) reason)

 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt
 DLR = ThisInstrAddr();
 DSPSR = GetPSRFromPSTATE();

 EDSCR.ITE = '1'; EDSCR.ITO = '0';
 if HaveEL(EL2) && (PSTATE.EL == EL2 || HCR.TGE == '1') then
 EDSCR.HDD = '0'; // If entered in Hyp or with TGE set, allow debug
 elsif HaveEL(EL2) then
 EDSCR.HDD = (if ExternalHypInvasiveDebugEnabled() then '0' else '1');
 else
 assert EDSCR.HDD == '1'; // Otherwise EDSCR.HDD is RES1
 EDSCR.MA = '0';
 // PSTATE.{A,I,F} are not observable and ignored in Debug state, so behave as if
 // UNKNOWN. PSTATE.{N,Z,C,V,Q,GE} are also not observable, but since these are not changed on
 // exception entry, this function also leaves them unchanged. PSTATE.{E,M,nRW,EL,SP} are
 // unchanged. PSTATE.IL is set to 0.
 PSTATE.<A,I,F> = bits(3) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 PSTATE.IL = '0';

 StopInstructionPrefetchAndEnableITR();
 EDSCR.STATUS = reason; // Signal entered Debug state
 UpdateEDSCRFields(); // Update EDSCR PE state flags.

 return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

 // HaltOnBreakpointOrWatchpoint()
 // ==============================
 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
 // state entry, FALSE if they should be considered for a debug exception.

 boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && DBGOSLSR.OSLK == '0';

shared/debug/halting/Halted

 // Halted()
 // ========

 boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

 // HaltingAllowed()
 // ================
 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

 boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
 return FALSE;
 elsif HaveEL(EL2) && (PSTATE.EL == EL2 || HCR.TGE == '1') then
 return ExternalHypInvasiveDebugEnabled();
 else
 return ExternalInvasiveDebugEnabled();
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-297
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/halting/Restarting

 // Restarting()
 // ============

 boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

 StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

 // UpdateEDSCRFields()
 // ===================
 // Update EDSCR PE state fields

 UpdateEDSCRFields()

 if !Halted() then
 EDSCR.EL = '00';
 else
 EDSCR.EL = PSTATE.EL;
 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch()
 // Called after taking an exception, that is, such that IsSecure() and PSTATE.EL are correct
 // for the exception target.
 base = if IsSecure() then 0 else 4;
 if HaltingAllowed() && EDECCR<UInt(PSTATE.EL) + base> == '1' then
 Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep()
 if HaltingAllowed() && EDESR.SS == '1' then
 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
 if HaltingStep_DidNotStep() then
 Halt(DebugHalt_Step_NoSyndrome);
 elsif HaltingStep_SteppedEX() then
 Halt(DebugHalt_Step_Exclusive);
 else
 Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()
 if EDECR.OSUCE == '1' && !Halted() then EDESR.OSUC = '1';
H1-298 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/haltingevents/CheckPendingOSUnlockCatch

 // CheckPendingOSUnlockCatch()
 // ===========================
 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

 CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 Halt(DebugHalt_OSUnlockCatch);

shared/debug/haltingevents/CheckPendingResetCatch

 // CheckPendingResetCatch()
 // ========================
 // Check whether EDESR.RC has been set by a Reset Catch debug event

 CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckResetCatch

 // CheckResetCatch()
 // =================
 // Called after reset

 CheckResetCatch()
 if EDECR.RCE == '1' then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

 // CheckSoftwareAccessToDebugRegisters()
 // =====================================
 // Check for access to Breakpoint and Watchpoint registers.

 CheckSoftwareAccessToDebugRegisters()
 if HaltingAllowed() && EDSCR.TDA == '1' && DBGOSLSR.OSLK == '0' then
 Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/ExternalDebugRequest

 // ExternalDebugRequest()
 // ======================

 ExternalDebugRequest()
 if HaltingAllowed() then
 Halt(DebugHalt_EDBGRQ);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.
 boolean HaltingStep_SteppedEX();
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-299
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/debug/haltingevents/RunHaltingStep

 // RunHaltingStep()
 // ================

 RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
 boolean reset)
 // "exception_generated" is TRUE if the previous instruction generated a synchronous exception
 // or was cancelled by an asynchronous exception.
 // if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
 // "syscall" is TRUE if the exception is a synchronous exception where the preferred return
 // address is the instruction following that which generated the exception.
 // "reset" is TRUE if exiting reset state into the highest EL.

 if reset then assert !Halted(); // Cannot come out of reset halted
 active = EDECR.SS == '1' && !Halted();

 if active && reset then // Coming out of reset with EDECR.SS set.
 EDESR.SS = '1';
 elsif active && HaltingAllowed() then
 if exception_generated && exception_target == EL2 then
 advance = syscall || ExternalHypInvasiveDebugEnabled();
 else
 advance = TRUE;
 if advance then EDESR.SS = '1';

 return;

shared/debug/interrupts/InterruptID

 enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
 InterruptID_COMMRX, InterruptID_COMMTX};

shared/debug/interrupts/SetInterruptRequestLevel

 // Set a level-sensitive interrupt to the specified level.
 SetInterruptRequestLevel(InterruptID id, signal level);

shared/debug/samplebasedprofiling/CreatePCSample

 // CreatePCSample()
 // ================

 CreatePCSample()
 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
 // executes an instruction that can be sampled. An implementation is not constrained such that
 // reads of EDPCSR return the current values of PC, etc.

 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
 pc_sample.pc = ThisInstrAddr();
 pc_sample.el = PSTATE.EL;
 pc_sample.contextidr = CONTEXTIDR;
 if HaveEL(EL2) && !IsSecure() then
 pc_sample.vmid = VSCTLR.VMID;
 return;

shared/debug/samplebasedprofiling/EDPCSR

 // EDPCSR[] (read)
 // ===============

 bits(32) EDPCSR[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
H1-300 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 return bits(32) UNKNOWN;

 // The Software lock is OPTIONAL.
 update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 EDCIDSR = pc_sample.contextidr;
 EDVIDSR.VMID = (if HaveEL(EL2) && pc_sample.el IN {EL1,EL0}
 then pc_sample.vmid else Zeros(8));
 EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
 else
 sample = Ones(32);
 if update then
 EDCIDSR = bits(32) UNKNOWN;
 EDVIDSR = (bits(4) UNKNOWN):Zeros(20):(bits(8) UNKNOWN);

 return sample;

shared/debug/samplebasedprofiling/PCSample

 type PCSample is (
 boolean valid,
 bits(32) pc,
 bits(2) el,
 bits(32) contextidr,
 bits(8) vmid
)

 PCSample pc_sample;

H1.3.2 shared/exceptions

shared/exceptions/exceptions/ConditionSyndrome

 // ConditionSyndrome()
 // ===================
 // Return CV and COND fields of instruction syndrome

 bits(5) ConditionSyndrome()

 bits(5) syndrome;

 if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xE, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool() then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
 else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // * CV set to 0 and COND is set to an UNKNOWN value
 // * CV set to 1 and COND is set to the condition code for the condition that
 // applied to the instruction.
 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
 syndrome<4> = '1';
 syndrome<3:0> = cond;
 else
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-301
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
 else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';

 return syndrome;

shared/exceptions/exceptions/Exception

 enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
 Exception_WFxTrap, // Trapped WFI or WFE instruction
 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access to CP15
 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access to CP15
 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access to CP14
 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access to CP14
 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
 // Trapped BXJ instruction not supported in Armv8-A
 Exception_CP14RRTTrap, // Trapped MRRC access to CP14 from AArch32
 Exception_IllegalState, // Illegal Execution state
 Exception_SupervisorCall, // Supervisor Call
 Exception_HypervisorCall, // Hypervisor Call
 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
 Exception_SystemRegisterTrap, // Trapped MRS or MSR System register access
 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
 Exception_PCAlignment, // Misaligned PC
 Exception_DataAbort, // Data Abort
 Exception_SPAlignment, // Misaligned SP
 Exception_FPTrappedException, // IEEE trapped FP exception
 Exception_SError, // SError interrupt
 Exception_Breakpoint, // (Hardware) Breakpoint
 Exception_SoftwareStep, // Software Step
 Exception_Watchpoint, // Watchpoint
 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
 Exception_VectorCatch, // AArch32 Vector Catch
 Exception_IRQ, // IRQ interrupt
 Exception_FIQ}; // FIQ interrupt

shared/exceptions/exceptions/ExceptionRecord

 type ExceptionRecord is (Exception type, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Physical fault address is valid
 bits(48) ipaddress) // Physical fault address for second stage faults

shared/exceptions/exceptions/ExceptionSyndrome

 // ExceptionSyndrome()
 // ===================
 // Return a blank exception syndrome record for an exception of the given type.

 ExceptionRecord ExceptionSyndrome(Exception type)

 ExceptionRecord r;

 r.type = type;

 // Initialize all other fields
 r.syndrome = Zeros();
 r.vaddress = Zeros();
 r.ipavalid = FALSE;
 r.ipaddress = Zeros();

 return r;
H1-302 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
H1.3.3 shared/functions

shared/functions/aborts/EncodeLDFSC

 // EncodeLDFSC()
 // =============
 // Function that gives the Long-descriptor FSC code for types of Fault

 bits(6) EncodeLDFSC(Fault type, integer level)

 bits(6) result;
 case type of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
 when Fault_Permission result = '0011':level<1:0>; assert level IN {1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncExternal result = '010000';
 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncParity result = '011000';
 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AsyncParity result = '011001';
 when Fault_AsyncExternal result = '010001';
 when Fault_Alignment result = '100001';
 when Fault_Debug result = '100010';
 when Fault_TLBConflict result = '110000';
 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
 otherwise Unreachable();

 return result;

shared/functions/aborts/FaultSyndrome

 // FaultSyndrome()
 // ===============
 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
 // AArch32 Hyp mode or an Exception level using AArch64.

 bits(25) FaultSyndrome(boolean d_side, FaultRecord fault)
 assert fault.type != Fault_None;

 bits(25) iss = Zeros();
 if d_side then
 if IsSecondStage(fault) && !fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.type, fault.level);

 return iss;

shared/functions/aborts/IPAValid

 // IPAValid()
 // ==========
 // Return TRUE if the IPA is reported for the abort

 boolean IPAValid(FaultRecord fault)
 assert fault.type != Fault_None;

 if fault.s2fs1walk then
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-303
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 return fault.type IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,
 Fault_AddressSize};
 elsif fault.secondstage then
 return fault.type IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
 else
 return FALSE;

shared/functions/aborts/IsDebugException

 // IsDebugException()
 // ==================

 boolean IsDebugException(FaultRecord fault)
 assert fault.type != Fault_None;
 return fault.type == Fault_Debug;

shared/functions/aborts/IsExternalAbort

 // IsExternalAbort()
 // =================
 // Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

 boolean IsExternalAbort(Fault type)
 assert type != Fault_None;

 return (type IN {Fault_SyncExternal, Fault_SyncParity, Fault_AsyncExternal, Fault_AsyncParity,
 Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk});

 // IsExternalAbort()
 // =================

 boolean IsExternalAbort(FaultRecord fault)
 return IsExternalAbort(fault.type);

shared/functions/aborts/IsFault

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with an address descriptor

 boolean IsFault(AddressDescriptor addrdesc)
 return addrdesc.fault.type != Fault_None;

shared/functions/aborts/IsSErrorInterrupt

 // IsSErrorInterrupt()
 // ===================
 // Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
 // otherwise.

 boolean IsSErrorInterrupt(Fault type)
 assert type != Fault_None;

 return (type IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsSErrorInterrupt()
 // ===================

 boolean IsSErrorInterrupt(FaultRecord fault)
 return IsSErrorInterrupt(fault.type);
H1-304 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/aborts/IsSecondStage

 // IsSecondStage()
 // ===============

 boolean IsSecondStage(FaultRecord fault)
 assert fault.type != Fault_None;

 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

 bits(11) LSInstructionSyndrome();

shared/functions/common/ASR

 // ASR()
 // =====

 bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

shared/functions/common/ASR_C

 // ASR_C()
 // =======

 (bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/Abs

 // Abs()
 // =====

 integer Abs(integer x)
 return if x >= 0 then x else -x;

 // Abs()
 // =====

 real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align

 // Align()
 // =======

 integer Align(integer x, integer y)
 return y * (x DIV y);

 // Align()
 // =======
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-305
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode

 bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

 // BitCount()
 // ==========

 integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;

shared/functions/common/CountLeadingSignBits

 // CountLeadingSignBits()
 // ======================

 integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

shared/functions/common/CountLeadingZeroBits

 // CountLeadingZeroBits()
 // ======================

 integer CountLeadingZeroBits(bits(N) x)
 return N - 1 - HighestSetBit(x);

shared/functions/common/Elem

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<e*size+size-1 : e*size>;

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e]
 return Elem[vector, e, size];

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e] = bits(size) value
 Elem[vector, e, size] = value;
 return;
H1-306 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/common/Extend

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, boolean unsigned)
 return Extend(x, N, unsigned);

shared/functions/common/HighestSetBit

 // HighestSetBit()
 // ===============

 integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

shared/functions/common/Int

 // Int()
 // =====

 integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

shared/functions/common/IsOnes

 // IsOnes()
 // ========

 boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

 // IsZero()
 // ========

 boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

 // IsZeroBit()
 // ===========

 bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

 // LSL()
 // =====

 bits(N) LSL(bits(N) x, integer shift)
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-307
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;

shared/functions/common/LSL_C

 // LSL_C()
 // =======

 (bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

shared/functions/common/LSR

 // LSR()
 // =====

 bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

shared/functions/common/LSR_C

 // LSR_C()
 // =======

 (bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/LowestSetBit

 // LowestSetBit()
 // ==============

 integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;

shared/functions/common/Max

 // Max()
 // =====

 integer Max(integer a, integer b)
 return if a >= b then a else b;

 // Max()
 // =====
H1-308 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode

 real Max(real a, real b)
 return if a >= b then a else b;

shared/functions/common/Min

 // Min()
 // =====

 integer Min(integer a, integer b)
 return if a <= b then a else b;

 // Min()
 // =====

 real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/NOT

 bits(N) NOT(bits(N) x);

shared/functions/common/Ones

 // Ones()
 // ======

 bits(N) Ones(integer N)
 return Replicate('1',N);

 // Ones()
 // ======

 bits(N) Ones()
 return Ones(N);

shared/functions/common/ROR

 // ROR()
 // =====

 bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

 // ROR_C()
 // =======

 (bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-309
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/common/Replicate

 // Replicate()
 // ===========

 bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);

 bits(M*N) Replicate(bits(M) x, integer N);

shared/functions/common/RoundDown

 integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

 // RoundTowardsZero()
 // ==================

 integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

shared/functions/common/RoundUp

 integer RoundUp(real x);

shared/functions/common/SInt

 // SInt()
 // ======

 integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

shared/functions/common/SignExtend

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x)
 return SignExtend(x, N);

shared/functions/common/UInt

 // UInt()
 // ======

 integer UInt(bits(N) x)
 result = 0;
H1-310 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;

shared/functions/common/ZeroExtend

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);

shared/functions/common/Zeros

 // Zeros()
 // =======

 bits(N) Zeros(integer N)
 return Replicate('0',N);

 // Zeros()
 // =======

 bits(N) Zeros()
 return Zeros(N);

shared/functions/crc/BitReverse

 // BitReverse()
 // ============

 bits(N) BitReverse(bits(N) data)
 bits(N) result;
 for i = 0 to N-1
 result<N-i-1> = data<i>;
 return result;

shared/functions/crc/HaveCRCExt

 // HaveCRCExt()
 // ============

 boolean HaveCRCExt()
 return boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

 // Poly32Mod2()
 // ============

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

 bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
 assert N > 32;
 for i = N-1 downto 32
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-311
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR poly:Zeros(i-32);
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

 bits(128) AESInvMixColumns(bits (128) op);

shared/functions/crypto/AESInvShiftRows

 bits(128) AESInvShiftRows(bits(128) op);

shared/functions/crypto/AESInvSubBytes

 bits(128) AESInvSubBytes(bits(128) op);

shared/functions/crypto/AESMixColumns

 bits(128) AESMixColumns(bits (128) op);

shared/functions/crypto/AESShiftRows

 bits(128) AESShiftRows(bits(128) op);

shared/functions/crypto/AESSubBytes

 bits(128) AESSubBytes(bits(128) op);

shared/functions/crypto/HaveCryptoExt

 boolean HaveCryptoExt();

shared/functions/crypto/ROL

 // ROL()
 // =====

 bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

 // SHA256hash()
 // ============

 bits(128) SHA256hash (bits (128) X, bits(128) Y, bits(128) W, boolean part1)
 bits(32) chs, maj, t;

 for e = 0 to 3
 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
 X<127:96> = t + X<127:96>;
 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
 <Y, X> = ROL(Y : X, 32);
 return (if part1 then X else Y);
H1-312 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/crypto/SHAchoose

 // SHAchoose()
 // ===========

 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

 // SHAhashSIGMA0()
 // ===============

 bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

 // SHAhashSIGMA1()
 // ===============

 bits(32) SHAhashSIGMA1(bits(32) x)
 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

 // SHAmajority()
 // =============

 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
 return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

 // SHAparity()
 // ===========

 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
 return (x EOR y EOR z);

shared/functions/exclusive/ClearExclusiveByAddress

 // Clear the global Exclusive Monitors for all PEs EXCEPT processorid if they
 // record any part of the physical address region of size bytes starting at paddress.
 // It is IMPLEMENTATION DEFINED whether the global Exclusive Monitor for processorid
 // is also cleared if it records any part of the address region.
 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

 // Clear the local Exclusive Monitor for the specified processorid.
 ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

 // ClearExclusiveMonitors()
 // ========================

 // Clear the local Exclusive Monitor for the executing PE.

 ClearExclusiveMonitors()
 ClearExclusiveLocal(ProcessorID());
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-313
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/exclusive/ExclusiveMonitorsStatus

 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.
 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal

 // Return TRUE if the global Exclusive Monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/IsExclusiveLocal

 // Return TRUE if the local Exclusive Monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveGlobal

 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusive Monitor for processorid.
 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal

 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusive Monitor for processorid.
 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ProcessorID

 // Return the ID of the currently executing PE.
 integer ProcessorID();

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point OP with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
 assert N IN {32,64};
 assert M IN {32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero('0');
 else
H1-314 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 result = FPRound(real_operand, fpcr, rounding);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // =======

 bits(N) FPAbs(bits(N) op)
 assert N IN {32,64};
 return '0' : op<N-2:0>;

shared/functions/float/fpadd/FPAdd

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpcompare/FPCompare

 // FPCompare()
 // ===========

 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = '0011';
 if type1==FPType_SNaN || type2==FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-315
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 else // value1 > value2
 result = '0010';
 return result;

shared/functions/float/fpcompareeq/FPCompareEQ

 // FPCompareEQ()
 // =============

 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 if type1==FPType_SNaN || type2==FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);
 return result;

shared/functions/float/fpcomparege/FPCompareGE

 // FPCompareGE()
 // =============

 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 return result;

shared/functions/float/fpcomparegt/FPCompareGT

 // FPCompareGT()
 // =============

 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);
 return result;

shared/functions/float/fpconvert/FPConvert

 // FPConvert()
 // ===========

 // Convert floating point OP with N-bit precision to M-bit precision,
 // with rounding controlled by ROUNDING.

 bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)
H1-316 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 assert M IN {16,32,64};
 assert N IN {16,32,64};
 bits(M) result;

 // Unpack floating-point operand optionally with flush-to-zero.
 (type,sign,value) = FPUnpack(op, fpcr);

 alt_hp = (M == 16) && (fpcr.AHP == '1');

 if type == FPType_SNaN || type == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign);
 elsif fpcr.DN == '1' then
 result = FPDefaultNaN();
 else
 result = FPConvertNaN(op);
 if type == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elsif type == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr, rounding);

 return result;

 // FPConvert()
 // ===========

 bits(M) FPConvert(bits(N) op, FPCRType fpcr)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============

 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op)
 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;

 return result;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-317
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fpcrtype/FPCRType

 type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============

 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)
 case rm of
 when '00' return FPRounding_TIEAWAY; // A
 when '01' return FPRounding_TIEEVEN; // N
 when '10' return FPRounding_POSINF; // P
 when '11' return FPRounding_NEGINF; // M

shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // ==================

 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)
 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
 when '01' return FPRounding_POSINF; // P
 when '10' return FPRounding_NEGINF; // M
 when '11' return FPRounding_ZERO; // Z

shared/functions/float/fpdefaultnan/FPDefaultNaN

 // FPDefaultNaN()
 // ==============

 bits(N) FPDefaultNaN()
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = '0';
 exp = Ones(E);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

shared/functions/float/fpdiv/FPDiv

 // FPDiv()
 // =======

 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
H1-318 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 result = FPInfinity(sign1 EOR sign2);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1/value2, fpcr);
 return result;

shared/functions/float/fpexc/FPExc

 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

 // FPInfinity()
 // ============

 bits(N) FPInfinity(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Ones(E);
 frac = Zeros(F);
 return sign : exp : frac;

shared/functions/float/fpmax/FPMax

 // FPMax()
 // =======

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 if value1 > value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr);
 return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

 // FPMaxNormal()
 // =============

 bits(N) FPMaxNormal(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Ones(E-1):'0';
 frac = Ones(F);
 return sign : exp : frac;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-319
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ==========

 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};

 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // treat a single quiet-NaN as -Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1');

 return FPMax(op1, op2, fpcr);

shared/functions/float/fpmin/FPMin

 // FPMin()
 // =======

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 if value1 < value2 then
 (type,sign,value) = (type1,sign1,value1);
 else
 (type,sign,value) = (type2,sign2,value2);
 if type == FPType_Infinity then
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign);
 else
 result = FPRound(value, fpcr);
 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // ==========

 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};

 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // Treat a single quiet-NaN as +Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('0');

 return FPMin(op1, op2, fpcr);
H1-320 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fpmul/FPMul

 // FPMul()
 // =======

 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);
 return result;

shared/functions/float/fpmuladd/FPMulAdd

 // FPMulAdd()
 // ==========
 //
 // Calculates addend + op1*op2 with a single rounding.

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (typeA,signA,valueA) = FPUnpack(addend, fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr);

 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an Invalid
 // Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-321
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);

 return result;

shared/functions/float/fpmulx/FPMulX

 // FPMulX()
 // ========

 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 bits(N) result;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);
 return result;

shared/functions/float/fpneg/FPNeg

 // FPNeg()
 // =======

 bits(N) FPNeg(bits(N) op)
 assert N IN {32,64};
 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

 // FPOnePointFive()
 // ================

 bits(N) FPOnePointFive(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = '0':Ones(E-1);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;
H1-322 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fpprocessexception/FPProcessException

 // FPProcessException()
 // ====================
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 FPProcessException(FPExc exception, FPCRType fpcr)
 // Determine the cumulative exception bit number
 case exception of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;
 when FPExc_Overflow cumul = 2;
 when FPExc_Underflow cumul = 3;
 when FPExc_Inexact cumul = 4;
 when FPExc_InputDenorm cumul = 7;
 enable = cumul + 8;
 if fpcr<enable> == '1' then
 // Trapping of the exception enabled.
 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
 // if so then how exceptions may be accumulated before calling FPTrapException()
 IMPLEMENTATION_DEFINED "floating-point trap handling";
 elsif UsingAArch32() then
 // Set the cumulative exception bit
 FPSCR<cumul> = '1';
 else
 // Set the cumulative exception bit
 FPSR<cumul> = '1';
 return;

shared/functions/float/fpprocessnan/FPProcessNaN

 // FPProcessNaN()
 // ==============

 bits(N) FPProcessNaN(FPType type, bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 assert type IN {FPType_QNaN, FPType_SNaN};

 topfrac = if N == 32 then 22 else 51;
 result = op;
 if type == FPType_SNaN then
 result<topfrac> = '1';
 FPProcessException(FPExc_InvalidOp, fpcr);
 if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN();
 return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

 // FPProcessNaNs()
 // ===============
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
 bits(N) op1, bits(N) op2,
 FPCRType fpcr)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-323
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

 // FPProcessNaNs3()
 // ================
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCRType fpcr)
 assert N IN {32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

 // FPRecipEstimate()
 // =================

 bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)
 assert N IN {32, 64};
 (type,sign,value) = FPUnpack(operand, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, fpcr);
 elsif type == FPType_Infinity then
 result = FPZero(sign);
 elsif type == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
 elsif (N == 32 && Abs(value) < 2.0^-128)
 || (N == 64 && Abs(value) < 2.0^-1024) then
 case FPRoundingMode(fpcr) of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
H1-324 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO
 overflow_to_inf = FALSE;
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 FPProcessException(FPExc_Inexact, fpcr);
 elsif fpcr.FZ == '1'
 && ((N == 32 && Abs(value) >= 2.0^126)
 || (N == 64 && Abs(value) >= 2.0^1022)) then
 // Result flushed to zero of correct sign
 result = FPZero(sign);
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 else
 // Scale to a double-precision value in the range 0.5 <= x < 1.0, and
 // calculate result exponent. Scaled value has copied sign bit,
 // exponent = 1022 = double-precision biased version of -1,
 // fraction = original fraction extended with zeros.

 if N == 32 then
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 else // N == 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 if fraction<51> == 0 then
 exp = -1;
 fraction = fraction<49:0>:'00';
 else
 fraction = fraction<50:0>:'0';
 scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44);

 if N == 32 then
 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
 else // N == 64
 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

 // Call C function to get reciprocal estimate of scaled value.
 // Input is rounded down to a multiple of 1/512.
 estimate = recip_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Convert to scaled single-precision result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.

 fraction = estimate<51:0>;
 if result_exp == 0 then
 fraction = '1' : fraction<51:1>;
 elsif result_exp == -1 then
 fraction = '01' : fraction<51:2>;
 result_exp = 0;
 if N == 32 then
 result = sign : result_exp<N-25:0> : fraction<51:29>;
 else // N == 64
 result = sign : result_exp<N-54:0> : fraction<51:0>;

 return result;

shared/functions/float/fprecpx/FPRecpX

 // FPRecpX()
 // =========

ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-325
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 bits(N) FPRecpX(bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 bits(N) result;
 integer esize = if N == 32 then 8 else 11;
 bits(esize) exp;
 bits(esize) max_exp;
 bits(N-esize-1) frac = Zeros();

 if N == 32 then
 exp = op<23+esize-1:23>;
 else
 exp = op<52+esize-1:52>;
 max_exp = Ones(esize) - 1;

 (type,sign,value) = FPUnpack(op, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 else
 if IsZero(exp) then // Zero and denormals
 result = sign:max_exp:frac;
 else // Infinities and normals
 result = sign:NOT(exp):frac;

 return result;

shared/functions/float/fpround/FPRound

 // FPRound()
 // =========

 // Convert a real number OP into an N-bit floating-point value using the
 // supplied rounding mode RMODE.

 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
 assert N IN {16,32,64};
 assert op != 0.0;
 assert rounding != FPRounding_TIEAWAY;
 bits(N) result;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 // Split value into sign, unrounded mantissa and exponent.
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 // Deal with flush-to-zero.
 if fpcr.FZ == '1' && N != 16 && exponent < minimum_exp then
 // Flush-to-zero never generates a trapped exception
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 return FPZero(sign);

H1-326 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped.
 if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
 FPProcessException(FPExc_Underflow, fpcr);

 // Round result according to rounding mode.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

 // Handle rounding to odd aka Von Neumann rounding
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

 // Deal with Inexact exception.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

 // FPRound()
 // =========

 bits(N) FPRound(real op, FPCRType fpcr)
 return FPRound(op, fpcr, FPRoundingMode(fpcr));
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-327
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fprounding/FPRounding

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRounding_ZERO,
 FPRounding_TIEAWAY, FPRounding_ODD};

shared/functions/float/fproundingmode/FPRoundingMode

 // FPRoundingMode()
 // ================

 // Return the current floating-point rounding mode.

 FPRounding FPRoundingMode(FPCRType fpcr)
 return FPDecodeRounding(fpcr.RMode);

shared/functions/float/fproundint/FPRoundInt

 // FPRoundInt()
 // ============

 // Round OP to nearest integral floating point value using rounding mode ROUNDING.
 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to OP.

 bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)
 assert rounding != FPRounding_ODD;
 assert N IN {32,64};

 // Unpack using FPCR to determine if subnormals are flushed-to-zero
 (type,sign,value) = FPUnpack(op, fpcr);

 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 elsif type == FPType_Infinity then
 result = FPInfinity(sign);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 else
 // extract integer component
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

H1-328 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // Generate inexact exceptions
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

 // FPRSqrtEstimate()
 // =================

 bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)
 assert N IN {32, 64};
 (type,sign,value) = FPUnpack(operand, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, operand, fpcr);
 elsif type == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif type == FPType_Infinity then
 result = FPZero('0');
 else
 // Scale to a double-precision value in the range 0.25 <= x < 1.0, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.

 if N == 32 then
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 else // N == 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 while fraction<51> == 0 do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';

 if exp<0> == '0' then
 scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44);
 else
 scaled = '0' : '01111111101' : fraction<51:44> : Zeros(44);

 if N == 32 then
 result_exp = (380 - exp) DIV 2;
 else // N == 64
 result_exp = (3068 - exp) DIV 2;

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(scaled);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Convert to scaled single-precision result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.

 if N == 32 then
 result = '0' : result_exp<N-25:0> : estimate<51:29>;
 else // N == 64
 result = '0' : result_exp<N-54:0> : estimate<51:0>;
 return result;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-329
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fpsqrt/FPSqrt

 // FPSqrt()
 // ========

 bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
 assert N IN {32,64};
 (type,sign,value) = FPUnpack(op, fpcr);
 if type == FPType_SNaN || type == FPType_QNaN then
 result = FPProcessNaN(type, op, fpcr);
 elsif type == FPType_Zero then
 result = FPZero(sign);
 elsif type == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPRound(Sqrt(value), fpcr);
 return result;

shared/functions/float/fpsub/FPSub

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpthree/FPThree

 // FPThree()
 // =========

 bits(N) FPThree(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
H1-330 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 exp = '1':Zeros(E-1);
 frac = '1':Zeros(F-1);
 return sign : exp : frac;

shared/functions/float/fptofixed/FPToFixed

 // FPToFixed()
 // ===========

 // Convert N-bit precision floating point OP to M-bit fixed point with
 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
 assert N IN {32,64};
 assert M IN {32,64};
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero
 (type,sign,value) = FPUnpack(op, fpcr);

 // If NaN, set cumulative flag or take exception
 if type == FPType_SNaN || type == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Scale by fractional bits and produce integer rounded towards minus-infinity
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Generate saturated result and exceptions
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fptwo/FPTwo

 // FPTwo()
 // =======

 bits(N) FPTwo(bit sign)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = '1':Zeros(E-1);
 frac = Zeros(F);
 return sign : exp : frac;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-331
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/float/fptype/FPType

 enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,
 FPType_QNaN, FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

 // FPUnpack()
 // ==========
 //
 // Unpack a floating-point number into its type, sign bit and the real number
 // that it represents. The real number result has the correct sign for numbers
 // and infinities, is very large in magnitude for infinities, and is 0.0 for
 // NaNs. (These values are chosen to simplify the description of comparisons
 // and conversions.)
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
 assert N IN {16,32,64};

 if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 // Produce zero if value is zero
 if IsZero(frac16) then
 type = FPType_Zero; value = 0.0;
 else
 type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 then

 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;
 if IsZero(exp32) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac32) || fpcr.FZ == '1' then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac32) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64

H1-332 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;
 if IsZero(exp64) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac64) || fpcr.FZ == '1' then
 type = FPType_Zero; value = 0.0;
 if !IsZero(frac64) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 type = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 type = FPType_Infinity; value = 2.0^1000000;
 else
 type = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 type = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;
 return (type, sign, value);

shared/functions/float/fpzero/FPZero

 // FPZero()
 // ========

 bits(N) FPZero(bit sign)
 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 exp = Zeros(E);
 frac = Zeros(F);
 return sign : exp : frac;

shared/functions/float/vfpexpandimm/VFPExpandImm

 // VFPExpandImm()
 // ==============

 bits(N) VFPExpandImm(bits(8) imm8)
 assert N IN {32,64};
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
 frac = imm8<3:0>:Zeros(F-4);
 return sign : exp : frac;

shared/functions/integer/AddWithCarry

 // AddWithCarry()
 // ==============
 // Integer addition with carry input, returning result and NZCV flags

 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 bit n = result<N-1>;
 bit z = if IsZero(result) then '1' else '0';
 bit c = if UInt(result) == unsigned_sum then '0' else '1';
 bit v = if SInt(result) == signed_sum then '0' else '1';
 return (result, n:z:c:v);
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-333
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/memory/AccType

 enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
 AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
 AccType_ATOMIC, // Atomic loads and stores
 AccType_ORDERED, // Load-Acquire and Store-Release
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_PTW, // Page table walk
 // Other operations
 AccType_DC, // Data cache maintenance
 AccType_IC, // Instruction cache maintenance
 AccType_AT}; // Address translation

shared/functions/memory/AddressDescriptor

 type AddressDescriptor is (
 FaultRecord fault, // fault.type indicates whether the address is valid
 MemoryAttributes memattrs,
 FullAddress paddress,
 bits(32) vaddress
)

shared/functions/memory/Allocation

 constant bits(2) MemHint_No = '00'; // No allocate
 constant bits(2) MemHint_WA = '01'; // Write-allocate, Read-no-allocate
 constant bits(2) MemHint_RA = '10'; // Read-allocate, Write-no-allocate
 constant bits(2) MemHint_RWA = '11'; // Read-allocate and Write-allocate

shared/functions/memory/BigEndian

 // BigEndian()
 // ===========

 boolean BigEndian()
 boolean bigend;

 bigend = (PSTATE.E != '0');
 return bigend;

shared/functions/memory/BigEndianReverse

 // BigEndianReverse()
 // ==================

 bits(width) BigEndianReverse (bits(width) value)
 assert width IN {8, 16, 32, 64, 128};
 integer half = width DIV 2;
 if width == 8 then return value;
 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/Cacheability

 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
 constant bits(2) MemAttr_WT = '10'; // Write-through
 constant bits(2) MemAttr_WB = '11'; // Write-back

shared/functions/memory/DataFullBarrier

 DataFullBarrier();
H1-334 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/memory/DataMemoryBarrier

 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DataSynchronizationBarrier

 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DeviceType

 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/Fault

 enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_AsyncParity,
 Fault_AsyncExternal,
 Fault_Debug,
 Fault_TLBConflict,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

 type FaultRecord is (Fault type, // Fault Status
 AccType acctype, // Type of access that faulted
 bits(32) ipaddress,
 boolean s2fs1walk, // Is on a Stage 1 page table walk
 boolean write, // TRUE for a write, FALSE for a read
 integer level, // For translation, access flag and permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
 boolean secondstage, // Is a Stage 2 abort
 bits(4) domain, // Domain number, AArch32 only
 bits(4) debugmoe) // Debug method of entry, from AArch32 only

shared/functions/memory/FullAddress

 type FullAddress is (
 bits(32) physicaladdress
)

shared/functions/memory/Hint_Prefetch

 // Signals the memory system that memory accesses of type HINT to or from the specified address are
 // likely in the near future. The memory system may take some action to speed up the memory accesses
 // when they do occur, such as pre-loading the the specified address into one or more caches as
 // indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint stream.
 // Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a synchronous
 // abort due to alignment or translation faults and the like. Its only effect on software visible
 // state should be on caches and TLBs associated with address, which must be accessible by reads,
 // writes or execution as defined in the translation regime of the current Exception level.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-335
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // It is guaranteed not to access Device memory.
 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
 // memory location that cannot be accessed by instruction fetches.
 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/MBReqDomain

 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MPURecord

 type MPURecord is (
 Permissions perms,
 AddressDescriptor addrdesc,
 boolean br_enabled
)

shared/functions/memory/MemAttrHints

 type MemAttrHints is (
 bits(2) attrs, // The possible encodings for each attributes field are as below
 bits(2) hints, // The possible encodings for the hints are below
 boolean transient
)

shared/functions/memory/MemType

 enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/MemoryAttributes

 type MemoryAttributes is (
 MemType type,

 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes

 boolean shareable,
 boolean outershareable
)

shared/functions/memory/Permissions

 type Permissions is (
 bits(3) ap, // Access permission bits
 bit xn, // Execute-never bit
 bit pxn // Privileged execute-never bit
)

shared/functions/memory/PrefetchHint

 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};
H1-336 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/memory/TLBRecord

 type TLBRecord is (
 Permissions perms,
 bit nG, // '0' = Global, '1' = not Global
 bits(4) domain, // AArch32 only
 boolean contiguous, // Contiguous bit from page table
 integer level, // In AArch32 Short descriptor format, indicates Section/Page
 integer blocksize, // Describes size of memory translated in KBytes
 AddressDescriptor addrdesc
)

shared/functions/memory/_Mem

 // These two _Mem[] accessors are the hardware operations which perform
 // single-copy atomic, aligned, little-endian memory accesses of size
 // bytes from/to the underlying physical memory array of bytes.
 //
 // The functions address the array using desc.PADDRESS which supplies:
 //
 // * A 48-bit physical address
 // * A single NS bit to select between Secure and Non-secure parts of
 // the array.
 //
 // The acctype parameter describes the access type: normal, exclusive,
 // ordered, streaming, etc.
 bits(8*size) _Mem[AddressDescriptor desc, integer size, AccType acctype];

 _Mem[AddressDescriptor desc, integer size, AccType acctype] = bits(8*size) value;

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========

 // Set program counter to a new address, which may include a tag in the top eight bits,
 // with a branch reason hint for possible use by hardware fetching the next instruction.

 BranchTo(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============

 // Set program counter to a new address, which does not include a tag in the top eight bits,
 // with a branch reason hint for possible use by hardware fetching the next instruction.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 return;

shared/functions/registers/BranchType

 enumeration BranchType {BranchType_CALL, BranchType_ERET, BranchType_DBGEXIT,
 BranchType_RET, BranchType_JMP, BranchType_EXCEPTION,
 BranchType_UNKNOWN};
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-337
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/registers/Hint_Branch

 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
 Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

 // Return address of the next instruction.
 bits(N) NextInstrAddr();

shared/functions/registers/ResetExternalDebugRegisters

 // Reset the External Debug registers in the Core power domain.
 ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

 // ThisInstrAddr()
 // ===============
 // Return address of the current instruction.

 bits(N) ThisInstrAddr()
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

 bits(64) _PC;

shared/functions/registers/_R

 array bits(64) _R[0..30];

shared/functions/registers/_V

 array bits(128) _V[0..31];

shared/functions/sysregisters/SPSR

 // SPSR[] - non-assignment form
 // ============================

 bits(32) SPSR[]
 bits(32) result;
 if UsingAArch32() then
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq;
 when M32_IRQ result = SPSR_irq;
 when M32_Svc result = SPSR_svc;
 when M32_Abort result = SPSR_abt;
 when M32_Hyp result = SPSR_hyp;
 when M32_Undef result = SPSR_und;
 otherwise Unreachable();

 return result;

 // SPSR[] - assignment form
 // ========================

 SPSR[] = bits(32) value
 if UsingAArch32() then
 case PSTATE.M of
H1-338 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 when M32_FIQ SPSR_fiq = value;
 when M32_IRQ SPSR_irq = value;
 when M32_Svc SPSR_svc = value;
 when M32_Abort SPSR_abt = value;
 when M32_Hyp SPSR_hyp = value;
 when M32_Undef SPSR_und = value;
 otherwise Unreachable();

 return;

shared/functions/system/ArchVersion

 enumeration ArchVersion {
 ARMv8p0,
 };

shared/functions/system/ClearEventRegister

 ClearEventRegister();

shared/functions/system/ConditionHolds

 // ConditionHolds()
 // ================

 // Return TRUE iff COND currently holds

 boolean ConditionHolds(bits(4) cond)
 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.V == '1'); // VS or VC
 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate always true
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

shared/functions/system/CurrentInstrSet

 // CurrentInstrSet()
 // =================

 InstrSet CurrentInstrSet()

 if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
 else
 result = InstrSet_A64;
 return result;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-339
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/system/CurrentPL

 // CurrentPL()
 // ===========

 PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/EL0

 constant bits(2) EL3 = '11';
 constant bits(2) EL2 = '10';
 constant bits(2) EL1 = '01';
 constant bits(2) EL0 = '00';

shared/functions/system/ELFromM32

 // ELFromM32()
 // ===========

 (boolean,bits(2)) ELFromM32(bits(5) mode)
 // Convert an AArch32 mode encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
 // and the current value of SCR.NS/SCR_EL3.NS.
 // 'EL' is the Exception level decoded from 'mode'.
 bits(2) el;
 boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
 case mode of
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 el = EL1;
 when M32_User
 el = EL0;
 otherwise
 valid = FALSE; // Passed an illegal mode value
 if !valid then el = bits(2) UNKNOWN;
 return (valid, el);

shared/functions/system/ELFromSPSR

 // ELFromSPSR()
 // ============

 // Convert an SPSR value encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'spsr'.

 (boolean,bits(2)) ELFromSPSR(bits(32) spsr)
 return ELFromM32(spsr<4:0>);

shared/functions/system/ELUsingAArch32

 // ELUsingAArch32()
 // ================

 boolean ELUsingAArch32(bits(2) el)
 if !HaveEL(el) then
 return FALSE; // The Exception level is not implemented
 else
 return TRUE;
H1-340 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/system/EndOfInstruction

 // Terminate processing of the current instruction.
 EndOfInstruction();

shared/functions/system/EventRegisterSet

 // Set the local event register in this PE.
 EventRegisterSet();

shared/functions/system/EventRegistered

 boolean EventRegistered();

shared/functions/system/GetPSRFromPSTATE

 // GetPSRFromPSTATE()
 // ==================
 // Return a PSR value which represents the current PSTATE

 bits(32) GetPSRFromPSTATE()
 bits(32) spsr = Zeros();
 spsr<31:28> = PSTATE.<N,Z,C,V>;
 spsr<21> = PSTATE.SS;
 spsr<20> = PSTATE.IL;
 if PSTATE.nRW == '1' then // AArch32 state
 spsr<27> = PSTATE.Q;
 spsr<26:25> = PSTATE.IT<1:0>;
 spsr<19:16> = PSTATE.GE;
 spsr<15:10> = PSTATE.IT<7:2>;
 spsr<9> = PSTATE.E;
 spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
 spsr<5> = PSTATE.T;
 assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
 spsr<4:0> = PSTATE.M;
 else // AArch64 state
 spsr<9:6> = PSTATE.<D,A,I,F>;
 spsr<4> = PSTATE.nRW;
 spsr<3:2> = PSTATE.EL;
 spsr<0> = PSTATE.SP;
 return spsr;

shared/functions/system/HasArchVersion

 // HasArchVersion()
 // ================

 // Return TRUE if the implemented architecture includes the extensions defined in the specified
 // architecture version.

 boolean HasArchVersion(ArchVersion version)
 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAnyAArch32

 // HaveAnyAArch32()
 // ================
 // Return TRUE if AArch32 state is supported at any Exception level

 boolean HaveAnyAArch32()
 return boolean IMPLEMENTATION_DEFINED;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-341
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/system/HaveEL

 // HaveEL()
 // ========
 // Return TRUE if Exception level 'el' is supported

 boolean HaveEL(bits(2) el)
 if el IN {EL1,EL0} then
 return TRUE; // EL1 and EL0 must exist
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HighestEL

 // HighestEL()
 // ===========
 // Returns the highest implemented Exception level.

 bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
 return EL2;
 else
 return EL1;

shared/functions/system/HighestELUsingAArch32

 // HighestELUsingAArch32()
 // =======================
 // Return TRUE if configured to boot into AArch32 operation

 boolean HighestELUsingAArch32()
 if !HaveAnyAArch32() then return FALSE;
 return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH

shared/functions/system/Hint_Yield

 Hint_Yield();

shared/functions/system/IllegalExceptionReturn

 // IllegalExceptionReturn()
 // ========================

 boolean IllegalExceptionReturn(bits(32) spsr)

 // Check for return:
 // * With an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if UInt(target) > UInt(PSTATE.EL) then return TRUE;

 // Check for return to EL1 in Non-secure state when HCR.TGE is set
 if HaveEL(EL2) && target == EL1 && HCR.TGE == '1' then return TRUE;
 return FALSE;

shared/functions/system/InstrSet

 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};
H1-342 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/system/InstructionSynchronizationBarrier

 InstructionSynchronizationBarrier();

shared/functions/system/InterruptPending

 boolean InterruptPending();

shared/functions/system/IsSecure

 // IsSecure()
 // ==========

 boolean IsSecure()
 return FALSE;

shared/functions/system/Mode_Bits

 constant bits(5) M32_User = '10000';
 constant bits(5) M32_FIQ = '10001';
 constant bits(5) M32_IRQ = '10010';
 constant bits(5) M32_Svc = '10011';
 constant bits(5) M32_Monitor = '10110';
 constant bits(5) M32_Abort = '10111';
 constant bits(5) M32_Hyp = '11010';
 constant bits(5) M32_Undef = '11011';
 constant bits(5) M32_System = '11111';

shared/functions/system/PLOfEL

 // PLOfEL()
 // ========

 PrivilegeLevel PLOfEL(bits(2) el)
 case el of
 when EL3 return if HighestELUsingAArch32() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

 ProcState PSTATE;

shared/functions/system/PrivilegeLevel

 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

shared/functions/system/ProcState

 type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // oVerflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // SError interrupt mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception level
 bits (1) nRW, // not Register Width: 0=64, 1=32
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-343
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
 bits (5) M // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

 // RestoredITBits()
 // ================
 // Get the value of PSTATE.IT to be restored on this exception return.

 bits(8) RestoredITBits(bits(32) spsr)
 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
 // to zero or copied from the SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then return '00000000';
 else return it;

 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && IsZero(it<3:0>) then
 return '00000000';

 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
 else
 return it;

shared/functions/system/SCRType

 type SCRType;

shared/functions/system/SendEvent

 // Signal an event to all PEs.
 SendEvent();

shared/functions/system/SetPSTATEFromPSR

 // SetPSTATEFromPSR()
 // ==================
 // Set PSTATE based on a PSR value

 SetPSTATEFromPSR(bits(32) spsr)

 SynchronizeContext();
 if IllegalExceptionReturn(spsr) then
 PSTATE.IL = '1';
 else
 // State that is reinstated only on a legal exception return
 PSTATE.IL = spsr<20>;
 // If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
 // the T bit is set to zero or copied from SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then spsr<5> = '0';

H1-344 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // State that is reinstated regardless of illegal exception return
 PSTATE.<N,Z,C,V> = spsr<31:28>;
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>;
 PSTATE.T = spsr<5>;

 return;

shared/functions/system/SynchronizeContext

 SynchronizeContext();

shared/functions/system/ThisInstr

 bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

 integer ThisInstrLength();

shared/functions/system/Unreachable

 Unreachable()
 assert FALSE;

shared/functions/system/UsingAArch32

 // UsingAArch32()
 // ==============
 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

 boolean UsingAArch32()
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAnyAArch32() then assert !aarch32;
 if HighestELUsingAArch32() then assert aarch32;
 return aarch32;

shared/functions/system/WaitForEvent

 WaitForEvent();

shared/functions/system/WaitForInterrupt

 WaitForInterrupt();

shared/functions/unpredictable/ConstrainUnpredictable

 // Return the appropriate Constraint result to control the caller's behavior. The return value
 // is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
 // (The permitted list is determined by an assert or case statement at the call site.)
 Constraint ConstrainUnpredictable();
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-345
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/functions/unpredictable/ConstrainUnpredictableBits

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
 // value is always an allocated value; that is, one for which the behavior is not itself
 // CONSTRAINED.
 (Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

 // ConstrainUnpredictableBool()
 // ============================

 // This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

 boolean ConstrainUnpredictableBool()

 c = ConstrainUnpredictable();
 assert c IN {Constraint_TRUE, Constraint_FALSE};
 return (c == Constraint_TRUE);

shared/functions/unpredictable/ConstrainUnpredictableInteger

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
 // the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
 // low to high, inclusive.
 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high);

shared/functions/unpredictable/Constraint

 enumeration Constraint {// General:
 Constraint_NONE, Constraint_UNKNOWN,
 Constraint_UNDEF, Constraint_NOP,
 Constraint_TRUE, Constraint_FALSE,
 Constraint_DISABLED,
 Constraint_UNCOND, Constraint_COND, Constraint_ADDITIONAL_DECODE,
 // Load-store:
 Constraint_WBSUPPRESS, Constraint_FAULT,
 // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK};

shared/functions/vector/AdvSIMDExpandImm

 // AdvSIMDExpandImm()
 // ==================

 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 imm64 = Replicate(imm8:Zeros(8), 4);
 when '110'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
H1-346 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == '0' && op == '1' then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == '1' && op == '0' then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == '1' && op == '1' then
 if UsingAArch32() then ReservedEncoding();
 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

 return imm64;

shared/functions/vector/PolynomialMult

 // PolynomialMult()
 // ================

 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = ZeroExtend(op2, M+N);
 for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
 return result;

shared/functions/vector/SatQ

 // SatQ()
 // ======

 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);

shared/functions/vector/SignedSatQ

 // SignedSatQ()
 // ============

 (bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

shared/functions/vector/UnsignedRSqrtEstimate

 // UnsignedRSqrtEstimate()
 // =======================

 bits(32) UnsignedRSqrtEstimate(bits(32) operand)

 if operand<31:30> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
 // Generate double-precision value = operand * 2^(-32). This has zero sign bit, with:
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-347
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 // exponent = 1022 or 1021 = double-precision representation of 2^(-1) or 2^(-2)
 // fraction taken from operand, excluding its most significant one or two bits.
 if operand<31> == '1' then
 dp_operand = '0 01111111110' : operand<30:0> : Zeros(21);
 else // operand<31:30> == '01'
 dp_operand = '0 01111111101' : operand<29:0> : Zeros(22);

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_sqrt_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = '1' : estimate<51:21>;

 return result;

shared/functions/vector/UnsignedRecipEstimate

 // UnsignedRecipEstimate()
 // =======================

 bits(32) UnsignedRecipEstimate(bits(32) operand)

 if operand<31> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(32);
 else
 // Generate double-precision value = operand * 2^(-32). This has zero sign bit, with:
 // exponent = 1022 = double-precision representation of 2^(-1)
 // fraction taken from operand, excluding its most significant bit.
 dp_operand = '0 01111111110' : operand<30:0> : Zeros(21);

 // Call C function to get reciprocal estimate of scaled value.
 estimate = recip_estimate(dp_operand);

 // Result is double-precision and a multiple of 1/256 in the range 1 to 511/256.
 // Multiply by 2^31 and convert to an unsigned integer - this just involves
 // concatenating the implicit units bit with the top 31 fraction bits.
 result = '1' : estimate<51:21>;

 return result;

shared/functions/vector/UnsignedSatQ

 // UnsignedSatQ()
 // ==============

 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

H1.3.4 shared/translation

shared/translation/attrs/CombineS1S2AttrHints

 // CombineS1S2AttrHints()
 // ======================

H1-348 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 MemAttrHints CombineS1S2AttrHints(MemAttrHints s1desc, MemAttrHints s2desc)

 MemAttrHints result;

 if s2desc.attrs == '01' || s1desc.attrs == '01' then
 result.attrs = bits(2) UNKNOWN; // Reserved
 elsif s2desc.attrs == MemAttr_NC || s1desc.attrs == MemAttr_NC then
 result.attrs = MemAttr_NC; // Non-cacheable
 elsif s2desc.attrs == MemAttr_WT || s1desc.attrs == MemAttr_WT then
 result.attrs = MemAttr_WT; // Write-through
 else
 result.attrs = MemAttr_WB; // Write-back

 result.hints = s1desc.hints;
 result.transient = s1desc.transient;

 return result;

shared/translation/attrs/CombineS1S2Desc

 // CombineS1S2Desc()
 // =================
 // Combines the address descriptors from stage 1 and stage 2

 AddressDescriptor CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc)

 AddressDescriptor result;

 result.paddress = s2desc.paddress;

 if IsFault(s1desc) || IsFault(s2desc) then
 result = if IsFault(s1desc) then s1desc else s2desc;
 elsif s2desc.memattrs.type == MemType_Device || s1desc.memattrs.type == MemType_Device then
 result.memattrs.type = MemType_Device;
 if s1desc.memattrs.type == MemType_Normal then
 result.memattrs.device = s2desc.memattrs.device;
 elsif s2desc.memattrs.type == MemType_Normal then
 result.memattrs.device = s1desc.memattrs.device;
 else // Both Device
 result.memattrs.device = CombineS1S2Device(s1desc.memattrs.device,
 s2desc.memattrs.device);
 else // Both Normal
 result.memattrs.type = MemType_Normal;
 result.memattrs.device = DeviceType UNKNOWN;
 result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner);
 result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer);
 result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
 result.memattrs.outershareable = (s1desc.memattrs.outershareable ||
 s2desc.memattrs.outershareable);

 result.memattrs = MemAttrDefaults(result.memattrs);

 return result;

shared/translation/attrs/CombineS1S2Device

 // CombineS1S2Device()
 // ===================
 // Combines device types from stage 1 and stage 2

 DeviceType CombineS1S2Device(DeviceType s1device, DeviceType s2device)

 if s2device == DeviceType_nGnRnE || s1device == DeviceType_nGnRnE then
 result = DeviceType_nGnRnE;
 elsif s2device == DeviceType_nGnRE || s1device == DeviceType_nGnRE then
 result = DeviceType_nGnRE;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-349
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
 elsif s2device == DeviceType_nGRE || s1device == DeviceType_nGRE then
 result = DeviceType_nGRE;
 else
 result = DeviceType_GRE;

 return result;

shared/translation/attrs/LongConvertAttrsHints

 // LongConvertAttrsHints()
 // =======================
 // Convert the long attribute fields for Normal memory as used in the MAIR fields
 // to orthogonal attributes and hints

 MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType acctype, boolean secondstage)
 assert !IsZero(attrfield);
 MemAttrHints result;
 if !secondstage && PSTATE.EL != EL2 then
 enable = if acctype == AccType_IFETCH then SCTLR.I else SCTLR.C;
 else
 enable = if acctype == AccType_IFETCH then HSCTLR.I else HSCTLR.C;

 if enable == '0' then
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 else
 if attrfield<3:2> == '00' then // Write-through transient
 result.attrs = MemAttr_WT;
 result.hints = attrfield<1:0>;
 result.transient = TRUE;
 elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 result.transient = FALSE;
 elsif attrfield<3:2> == '01' then // Write-back transient
 result.attrs = attrfield<1:0>;
 result.hints = MemAttr_WB;
 result.transient = TRUE;
 else // Write-through/Write-back non-transient
 result.attrs = attrfield<3:2>;
 result.hints = attrfield<1:0>;
 result.transient = FALSE;

 return result;

shared/translation/attrs/MemAttrDefaults

 // MemAttrDefaults()
 // =================
 // Supply default values for memory attributes, including overriding the Shareability attributes
 // for Device and Non-cacheable memory types.

 MemoryAttributes MemAttrDefaults(MemoryAttributes memattrs)

 if memattrs.type == MemType_Device then
 memattrs.inner = MemAttrHints UNKNOWN;
 memattrs.outer = MemAttrHints UNKNOWN;
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;
 else
 memattrs.device = DeviceType UNKNOWN;
 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareable = TRUE;
 memattrs.outershareable = TRUE;

 return memattrs;
H1-350 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
shared/translation/validation/HasS2Validation

 // HasS2Validation()
 // =================
 // Returns TRUE if stage 2 address validation is present for the current memory
 // access regime

 boolean HasS2Validation()
 return (HaveEL(EL2) && PSTATE.EL IN {EL0,EL1});

shared/translation/validation/S1ValidationRegime

 // S1ValidationRegime()
 // ====================
 // Returns the Exception level controlling the current Stage 1 memory access regime.

 bits(2) S1ValidationRegime()
 if PSTATE.EL != EL0 then
 return PSTATE.EL;
 else
 return EL1;
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. H1-351
ID110520 Non-Confidential

Armv8-R AArch32 Pseudocode
H1.3 Shared pseudocode
H1-352 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

Part I
Appendixes

Appendix I1
Armv8-R AArch32 CONSTRAINED
UNPREDICTABLE behaviors

This chapter describes the architectural constraints on UNPREDICTABLE behaviors in the Armv8-R AArch32
architecture. It contains the following sections:

• Reserved values in System registers and memory attribute settings on page I1-356.
ARM DDI 0568A.c Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. I1-355
ID110520 Non-Confidential

Armv8-R AArch32 CONSTRAINED UNPREDICTABLE behaviors
I1.1 Reserved values in System registers and memory attribute settings
I1.1 Reserved values in System registers and memory attribute settings
Unless otherwise stated, all unallocated or reserved values of fields with allocated values in the System registers
and memory attribute settings behave in one of the following ways:
• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED

UNPREDICTABLE behavior.
• The encoding causes effects that could be achieved by a combination of more than one of the allocated

encodings.
• The encoding causes the field to have no functional effect.
I1-356 Copyright © 2016-2017, 2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0568A.c
Non-Confidential ID110520

	Arm Architecture Reference Manual Supplement Armv8, for the Armv8-R AArch32 architecture profile
	Contents
	Preface
	About this supplement
	Using this book
	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book

	Part A: Introduction and Architecture Overview
	A1: Architecture Overview
	A1.1 About the Armv8 architecture and architecture profiles
	A1.2 The Armv8-R AArch32 architecture profile
	A1.3 Supported extensions in Armv8-R AArch32
	A1.3.1 Security Extensions
	A1.3.2 Armv8.x extensions for the Armv8-A profile
	A1.3.3 Advanced SIMD and floating-point extensions

	A1.4 Changes between Armv7-R and Armv8-R AArch32

	Part B: Differences in the Armv8-R Architecture from Armv8-A
	B1: Differences between the Armv8-A and Armv8-R AArch32 Profiles
	B1.1 Differences from the Armv8-A AArch32 application level architecture
	B1.1.1 Advanced SIMD and floating-point support
	B1.1.2 Differences from the Armv8-A AArch32 application level programmers’ model
	B1.1.3 Differences from the Armv8-A AArch32 application level memory model

	B1.2 Differences from the Armv8-A AArch32 instruction sets
	B1.3 Differences from the Armv8-A AArch32 system level architecture
	B1.3.1 Differences from the Armv8-A AArch32 system level programmers’ model
	B1.3.2 Differences from the Armv8-A AArch32 system level memory model
	B1.3.3 The Armv8-R Protected Memory System Architecture, PMSAv8

	Part C: Armv8-R Protected Memory System Architecture
	C1: Protected Memory System Architecture
	C1.1 About PMSAv8-32
	C1.1.1 Protection regions
	C1.1.2 Memory protection units (MPUs)
	C1.1.3 Address translation and translation regimes in PMSAv8-32

	C1.2 Protection region attributes and access permissions
	C1.2.1 Assignment model of memory attributes and access permissions
	C1.2.2 Combining attributes

	C1.3 Default memory maps and Background region checks
	C1.3.1 EL1 MPU default memory map
	C1.3.2 EL2 MPU default memory map

	C1.4 Memory protection
	C1.4.1 Effect of enabling one or both MPUs on attribute assignment and fault generation

	C1.5 PMSAv8-32 implications for caches
	C1.5.1 Cache line length

	Part D: Armv8-R Instructions
	D1: Armv8-R Instruction Set
	D1.1 Armv8-R base instructions
	D1.2 Armv8-R Advanced SIMD and floating-point instructions
	D1.3 Single-precision only floating-point implementations
	D1.4 Instruction encodings
	D1.4.1 Miscellaneous system

	D2: Description of Redefined and New Instructions
	D2.1 Redefined instructions
	D2.1.1 DMB
	D2.1.2 DSB

	D2.2 New instruction
	D2.2.1 DFB

	Part E: Armv8-R System Registers and System Instructions
	E1: Armv8-R System Registers and System Instructions
	E1.1 Armv8-R System register list
	E1.2 Armv8-R System instructions

	E2: Description of the Redefined or New System Registers
	E2.1 Redefined System registers
	E2.1.1 DBGAUTHSTATUS, Debug Authentication Status register
	E2.1.2 DBGDSCRext, Debug Status and Control Register, External View
	E2.1.3 DFSR, Data Fault Status Register
	E2.1.4 HCPTR, Hyp Architectural Feature Trap Register
	E2.1.5 HCR, Hyp Configuration Register
	E2.1.6 HCR2, Hyp Configuration Register 2
	E2.1.7 HDCR, Hyp Debug Control Register
	E2.1.8 HSCTLR, Hyp System Control Register
	E2.1.9 HSR, Hyp Syndrome Register
	E2.1.10 ID_MMFR0, Memory Model Feature Register 0
	E2.1.11 ID_MMFR2, Memory Model Feature Register 2
	E2.1.12 IFSR, Instruction Fault Status Register
	E2.1.13 PAR, Physical Address Register
	E2.1.14 PMCR, Performance Monitors Control Register
	E2.1.15 SCTLR, System Control Register

	E2.2 New System registers
	E2.2.1 HMPUIR, Hypervisor MPU Type Register
	E2.2.2 HPRBAR, Hypervisor Protection Region Base Address Register
	E2.2.3 HPRBAR<n>, Hypervisor Protection Region Base Address Registers, n = 0 - 31
	E2.2.4 HPRENR, Hypervisor Protection Region Enable Register
	E2.2.5 HPRLAR, Hypervisor Protection Region Limit Address Register
	E2.2.6 HPRLAR<n>, Hypervisor Protection Region Limit Address Registers, n = 0 - 31
	E2.2.7 HPRSELR, Hypervisor Protection Region Selector Register
	E2.2.8 MPUIR, MPU Type register
	E2.2.9 PRBAR, Protection Region Base Address Register
	E2.2.10 PRBAR<n>, Protection Region Base Address Registers, n = 0 - 31
	E2.2.11 PRLAR, Protection Region Limit Address Register
	E2.2.12 PRLAR<n>, Protection Region Limit Address Registers, n = 0 - 31
	E2.2.13 PRSELR, Protection Region Selector Register
	E2.2.14 VSCTLR, Virtualization System Control register

	Part F: Differences in Armv8-R Debug from Armv8-A
	F1: Differences in Armv8-R Debug from Armv8-A
	F1.1 Differences from Armv8-A invasive debug
	F1.2 Differences from Armv8-A non-invasive debug
	F1.3 Differences from Armv8-A external debug
	F1.3.1 Required debug authentication
	F1.3.2 Recommended authentication interface
	F1.3.3 Halting enabled and prohibited
	F1.3.4 Behavior in Debug state
	F1.3.5 Halting Step Debug events
	F1.3.6 Access to debug registers

	Part G: Armv8-R External Debug Registers
	G1: Armv8-R External Debug Registers
	G1.1 Armv8-R external debug register list

	G2: Description of the Redefined External Debug Registers
	G2.1 Redefined external debug registers
	G2.1.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register
	G2.1.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register
	G2.1.3 EDDEVARCH, External Debug Device Architecture register
	G2.1.4 EDDFR, External Debug Feature Register
	G2.1.5 EDPCSR, External Debug Program Counter Sample Register
	G2.1.6 EDPFR, External Debug Processor Feature Register
	G2.1.7 EDRCR, External Debug Reserve Control Register
	G2.1.8 EDSCR, External Debug Status and Control Register
	G2.1.9 EDVIDSR, External Debug Virtual Context Sample Register
	G2.1.10 PMAUTHSTATUS, Performance Monitors Authentication Status register
	G2.1.11 PMCR_EL0, Performance Monitors Control Register
	G2.1.12 PMCFGR, Performance Monitors Configuration Register

	Part H: Architectural Pseudocode for Armv8-R AArch32
	H1: Armv8-R AArch32 Pseudocode
	H1.1 Pseudocode limitations
	H1.2 Pseudocode for AArch32 operation
	H1.2.1 aarch32/debug
	H1.2.2 aarch32/exceptions
	H1.2.3 aarch32/functions
	H1.2.4 aarch32/translation

	H1.3 Shared pseudocode
	H1.3.1 shared/debug
	H1.3.2 shared/exceptions
	H1.3.3 shared/functions
	H1.3.4 shared/translation

	Part I: Appendixes
	I1: Armv8-R AArch32 CONSTRAINED UNPREDICTABLE behaviors
	I1.1 Reserved values in System registers and memory attribute settings

