FAIRCHILD CLIPPERTM
A Sciumberger Coripany 32-Bit Microprocessor
Module

INSTRUCTION SET

| CLIPPER™
32-Bit Microprocessor
Module

INSTRUCTION SET

ADVANCE
INFORMATION

Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice.

CLIPPER is a trademark of Fairchild Camera and Instrument Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

© 1985 Fairchild. Printed in U.S.A. October 1985.

CLIPPER™
32 BIT MICROPROCESSOR MODULE

INSTRUCTION SET

TABLE OF CONTENTS

CHAPTER 1. INSTRUCTION FORMATS
1.1 Introduction 141
1.2 Instruction Formats — Without Address .. 1-3
121 Register, 1-3
122 Quick 1-3
1.2.3 16-Bit Immediate 1-3
1.2.4 32-Bit Immediate 1-4
1.2.5 Control e 1-4
126 Macro 1-4
1.3 Instruction Formats — With Address 1-5
1.3.1 Relative 1-5
1.3.2 Relative With 12-Bit Displacement . . 1-6
1.3.3 Relative With 32-Bit Displacement . . 1-6
1.3.4 16-Bit Absolute 1-7
1.3.5 32-Bit Absolute 1-7
1.3.6 PC Relative With 16-Bit
Displacement 1-7
1.3.7 PC Relative With 32-Bit
Displacement 1-8
1.3.8 Relative Indexed 1-8
139 PClindexed 1-9
CHAPTER 2. INSTRUCTION SET
addd Add Double Floating 27
addi Add Immediate 2-8
addq Add Quick 2-9
adds Add Single Floating 210
addw AddWord 2-11
addwc Add Word With Carry 212
andi And Immediate 213
andw AndWord 214
b* Branch On Condition 215
bf* Branch On Floating Exception .. 2-17
call Call Subroutine 218
calls Call Supervisor 219
cmpc Compare Characters 2-20
cmpd Compare Double Floating 2-21
cmpi Compare Immediate 2-22
cmpq Compare Quick 2-23
cmps Compare Single Floating 2-24
cmpw CompareWord 2-25
cnvds Convert Double to
Single Floating 2-26

cnvdw
cnvrdw

cnvrsw
cnvsd
cnvsw
cnvtdw
cnvtsw
cnvwd
cnvws
divd
divs

divw
divwu

~initc

loada
loadb
loadbu
loadd
loadfs
loadh
loadhu
loadi
loadq
loads
loadw
modw
modwu
movc
movd
movdl

movid
movpw

movs

Convert Double to Word 2-27
Convert Rounding Double '

toWord 2-28
Convert Rounding Single

toWord 2-29
Convert Single to

Double Floating P 2-30
Convert Single Floating

toWord 2-31
Convert Truncating Double

toWord 2-32
Convert Truncating Single

toWord 2-33
Convert Word to

Double Floating 2-34
Convert Word to

Single Floating 2-35
Divide Double Floating 2-36
Divide Single Floating 2-37
DivideWord 2-38
Divide Word Unsigned 2-39
Initialize Characters 2-40
Load Address 2-41
LoadByte 2-42
Load Byte Unsigned 2-43
Load Double Floating 2-44
Load Floating Status 2-45
Load Halfword 2-46
Load Halfword Unsigned 2-47
Load Immediate 2-48
Load Quick 2-49
Load Single Floating 2-50
LoadWord 2-51
ModulusWord 2-52
Modulus Word Unsigned 2-53
Move Characters 2-54
Move Double Floating 2-55
Move Double Floating

toLongword 2-56
Move Longword to Double 2-57
Move Processor Register

toWord 2-58
Move Single Floating 2-59

ADVANCE INFORMATION

movsu
movsw
movus
movw
movwp

movws
muld
muls
mulw
mulwu
mulwux

mulwx
negd
negs
negw
noop
notq
notw
ori
orw
popw
pushw
restdn
restur
restwn
ret

reti
roti
rotl
rotli
rotw
savedn
saveur
savewn
scalbd
scalbs
shai
shal
shali

shaw
shli
shll
shilli

shiw

TABLE OF CONTENTS (CONTINUED)

Move Supervisor to User 2-60
Move Single to Word 2-61
Move User to Supervisor 2-62
MoveWord2-63
Move Word to Processor

Register 2-64

Move Word to Single Floating . .. 2-65

Multiply Double Floating 2-66
Multiply Single Floating 2-67
Multiply Word 2-68
Multiply Word Unsigned 2-69
Multiply Word Unsigned

Extended 2-70
Multiply Word Extended2-71
Negate Double Floating 2-72
Negate Single Floating 2-73
Negate Word 2-74
No Operation 2-75
Not Quick 2-76
NotWord 2-77
Or Immediate 2-78
OrWordcuvnnt. 2-79
PopWord 2-80
PushWord 2-81
Restore Registers fn—f7 2-82
Restore User Registers 2-83
Restore Registers rn-r12 2-84
Return From Subroutine 2-85
Return From Interrupt 2-86
Rotate Immediate 2-87
Rotate Longword 2-88
Rotate Long Immediate 2-89
RotateWord 2-90
Save Registers fn—f7 2-91
Save User Registers 2-92
Save Registers rn-r14 2-93
Scale by Double Floating 2-94
Scale by Single Floating 2-95
Shift Arithmetic Immediate 2-96
Shift Arithmetic Longword 2-97
Shift Arithmetic Longword

Immediate 2-98
Shift Arithmetic Word 2-99
Shift Logical Immediate 2-100
Shift Logical Longword 2-101

Shift Logical Longword
Immediate 2102
Shift Logical Word

ADVANCE INFORMATION

storb StoreByte 2-104
stord Store Double Floating 2-105
storh Store Halfword 2-106
stors Store Single Floating 2107
storw StoreWord 2-108
subd Subtract Double Floating 2-109
subi Subtract Immediate 2-110
subq Subtract Quick 2-111
subs Subtract Single Floating 2-112
subw SubtractWord 2-113
subwc Subtract Word With Carry 2-114
trapfn Trap Floating Unordered 2-115
tsts TestandSet 2-116
wait Wait for Interrupt 2117
xori Exclusive-Or Immediate 2-118
Xorw Exclusive-Or Word 2-119
APPENDICES
A ASCIl Character Set A1
B Instruction Summary B-1
FIGURES
11 Instruction Formats 1-2
21 Instruction Description Example .. 2-3
TABLES
11 Memory Addressing Modes 1-5
241 Alphabetical Listing of the
Instructions 2-2
2-2 Syntax Field Operands 24
2-3 Operation Field Operands 2-4
2-4 Operation Field Operators 2-5
25 Format Field Operands 2-5
2-6 Example Field Operands 2-6
2-7 Integer Branch Conditions 2-16
2-8 Floating Branch Conditions 217
A-1 ASCII Character Set A1
A-2 Nonprintable Characters A-2
B-1 Functional Instruction Set B-2
B-2 Instruction Opcode/Mnemonic
Summary ... B-6
B-3 Macro Instruction Code Field B-7
B-4 Priviledged Macro Instruction
CodeField B-7

PREFACE

This document describes the CLIPPER instruction set. Component information (e.g., internal register
description, programming model, exception processing, bus operation, etc.) is available in the CLIPPER
Module Product Description.

ADVANCE INFORMATION

CHAPTER ONE
INSTRUCTION FORMATS

This chapter discusses:
¢ |nstruction formats without addresses
¢ |nstruction formats with addresses

1.1 INTRODUCTION

The information encoded in each instruction specifies the operation to be performed, the type and number of
operands to use, and the location of the operands. These operands can be located in a register or in memory.
For example, the loadb instruction contains operands that reference memory and a register. If an operand is
located in memory, the instruction must calculate the address of the operand according to the address mode
specified in the instruction format.

The immediate and quick instructions use an operand encoded within the instruction for fast efficient
operation.

All instructions are constructed in multiples of halfwords called parcels (see the general instruction format
below). The size of instructions varies from one to four parcels.

MSB LsB
63 48 47 32 31 615 87 0
| | | [opcone] l
L | | | L | |]
| | [|
FOURTH THIRD SECOND FIRST
PARCEL PARCEL PARCEL PARCEL

1-1

ADVANCE INFORMATION

Figure 1-1 shows the instruction formats used in the CLIPPER architecture. Notice that the formats are divided
into two main categories, non-memory referencing instructions (NO ADDRESS) and memory referencing

instructions (WITH ADDRESS).

INSTRUCTION FORMATS — NO ADDRESS

REGISTER CONTROL
15 8 7 4 3 0 15 8 7 0
1 OPCODE [r | Rz | | OPCODE | BYTE]
QuickK MACRO
15 8 7 4 3 0 15 9 87 6 0
1 OPCODE | auek | R | OPCODE P 0[{0 0 CODE
0 0 0000 0O R | R
31 24 23 20 19 16
16-BIT IMMEDIATE
15 8 7 4 3 0
OPCODE [t o 1 1] R2
s| IMMEDIATE
31 30 16
32-BIT IMMEDIATE
15 8 7 4 3 0
OPCODE Jloo 1 1] R
IMMEDIATE LOW
s | IMMEDIATE HIGH
47 46 32
INSTRUCTION FORMATS — WITH ADDRESS
RELATIVE
15 8 7 4 3 0
| OPCODE ol r1 | Rr |
RELATIVE PLUS 12-BIT DISPLACMENT PC-RELATIVE PLUS 16-BIT DISPLACEMENT
15 8 7 4 3 0 15 8 7 4 3 0
~ OPCODE 11 0 1 0 R1 OPCODE 11 0 0 1] R
s| DISPLACEMENT R2 s DISPLACEMENT .
31 20 19 16 31 30 16
RELATIVE PLUS 32-BIT DISPLACEMENT PC-RELATIVE PLUS 32-BIT DISPLACEMENT
15 8 7 4 3 0 15 8 7 4 3 0
OPCODE 1o 11 0 R1 OPCODE 1]/0 0 0 1| R2
000000000000 R2 DISPLACEMENT LOW
DISPLACEMENT LOW s | DISPLACEMENT HIGH
s]| DISPLACEMENT HIGH 47 46 32
63 62 48
16-BIT ABSOLUTE RELATIVE INDEXED
15 8 7 4 3 0 15 8 7 3 0
OPCODE 1[1 011 R2 OPCODE 11 110 R1
s | ADDRESS 0 0 000000 RX R2
31 30 16 3 24 23 20 19 16
32-BIT ABSOLUTE PC INDEXED
15 8 7 4 3 0 15 8 7 4 3 0
OPCODE 1o 0 1 1] R OPCODE 1[1 1 0 1]o 0 0 0
ADDRESS LOW 0 0 000000 RX R2
s ADDRESS HIGH 31 24 23 20 19 16
47 46 32
Figure 1-1 Instruction Formats

ADVANCE INFORMATION

1-2

1.2 INSTRUCTION FORMATS — NO ADDRESS

1.2.1 REGISTER
The Register format is used for most instructions that take just one or two register arguments.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
movw

r3, ré
vw T 2
| OPCODE [m | e]

The opcode specifies the interpretation of the R1 and R2 fields. Usually the R1 field contains the source oper-
and register number, and R2 contains the destination operand register number. For example, in the movsw
instruction, the R1 field contains the number of the single-precision floating-point register containing the
source operand, and the R2 field contains the number of the general register in which to store the result.

1.2.2 QUICK
The Quick format encodes constant, 4-bit unsigned source operands directly in the instruction. The quick value
is always zero-filled at the left before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
loadq $15, r10

y Y
| OPCODE | auek | R |

1.2.3 16-BIT IMMEDIATE
The 16-bit Immediate format encodes a 16-hit source operand constant directly in the instruction. The immedi-
ate value is always sign-extended before use.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

addi $17, 16

T 1
> OPCODE [t o11 re
> s| IMMEDIATE

1-3 ADVANCE INFORMATION

1.2.4 32-BIT IMMEDIATE
The 32-bit Immediate format encodes a constant, 32-bit source operand directly in the instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
addi $337777, 16
2

Y

> OPCODE [o 011 R

IMMEDIATE LOW
s| IMMEDIATE HIGH

1.2.5 CONTROL
The Control format encodes up to 8 bits of a constant value that is used by a few special instructions. For exam-
ple, the byte operand specifies the system call number in the calls instruction.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
calls $17
i
Yy \
| OPCODE | BYTE |

1.2.6 MACRO
The Macro format is used by those instructions that are implemented in Ml ROM rather than directly in the
hardware. The P bit in the opcode, bit 9 of the format instruction parcel, selects a privileged macro.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT
cnvsw 3, 16

Y Y Y

OPCODE Po|o o CODE
00000000| R | R

ADVANCE INFORMATION 1-4

1.3 INSTRUCTION FORMATS — WITH ADDRESS

The rest of the instruction formats specify an address operand and a register operand. Several address for-
mats, or modes, are provided to support typical high-level language operations. The address mode is
selected first by the opcode (bit 8 of the first instruction parcel), and if necessary, by the AM field (bits 7:4 of
the first instruction parcel). Displacements and absolute addresses are always sign extended.

The address modes used in the memory referencing instructions are summarized in Table 1-1 and explained

on the following pages.

Table 1-1 Memory Addressing Modes

Memory Addressing Mode Address Formation Page
Relative Address <« (R1) 1-7
Relative with 12-bit displacement Address <« (R1)+ 12-bit displacement 1-7
Relative with 32-bit displacement Addreés < (R1) + 32-bit displacement 1-8
16-bit Absolute Address <« 16-bit displacement 1-8
32-bit Absolute Address « 32-bit displacement 1-9
PC Relative with 16-bit displacement Address <« (PC)+ 16-bit displacement 19
PC Relative with 32-bit displacement Address - (PC) + 32-bit displacement 1-10
Relative Indexed Address < (R1)+(RX) 1-10
PC Indexed Address < (PC)+ (RX) 1-11

Notes:

All displacements are signed.

PC addresses the first parcel of the current instruction.

RX is any general register containing the index modifying the effect of the source register.

1.3.1 RELATIVE

The Relative format uses the address in a register (R1) to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

loadw (r5), 4

== e

ADDRESS FORMATION

1
———l OPCODE o| R1] R2] a1 o
L = | ADDRESS - |
1-5 ADVANCE INFORMATION

1.3.2 RELATIVE WITH 12-BIT DISPLACEMENT
The Relative Plus 12-bit Displacement format uses the address in a register (R1), plus a signed 12-bit displace-
ment, to compute an address. The displacement is sign-extended to 32 bits before the address calculation.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
storw 18, 4 (r15)
T

31
OPCODE 11 0 1.0] R1 >l ADDRESS FROM REGISTER]
|| sl DISPLACEMENT Y = |
31 1110 0
ol — — —
=l EXTEND SIGNJ DISPLACEMENT |
3 0
[ADDRESS J

1.3.3 RELATIVE WITH 32-BIT DISPLACEMENT

The Relative Plus 32-bit Displacement format uses the address in a register (R1), plus a signed 32-bit displace-
ment, to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION

loada value (r5), r0

| 31 0

OPCODE 1]0110]| Ri - | ADDRESS FROM REGISTER |
000000000000| R2 | +

DISPLACEMENT LOW 31 0

s| DISPLACEMENT HIGH :|_|—>r SIGNED DISPLACEMENT l

31 0

| ’ ADDRESS l

ADVANCE INFORMATION 16

1.3.4 16-BIT ABSOLUTE
The 16-bit Absolute format uses the address in register (R2). The address is sign-extended to 32 bits before

being used. Because the address field is signed, the range of address that can be accessed with this format is:
Oxffff8000 < address =< Oxffffffff.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
tsts lock, ri
lock, r1
OPCODE 1f1011] re 31 16 15 0
s ADDRESS >}« EXTEND SiGN ApDRESS |
3 0
| ADDRESS |

1.3.5 32-BIT ABSOLUTE
The 32-bit Absolute format uses the signed 32-bit displacement portion of the instruction as an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
loadd 7, f4
T

oPcoDE 1|/ o0011| Re » 0
ADDRESS LOW ADDRESS I
sl ADDRESS HIGH

1.3.6 PC RELATIVE WITH 16-BIT DISPLACEMENT

The 16-bit PC Relative format adds a signed 16-bit displacement to the contents of the Program Counter (PC)
to compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ‘ ADDRESS FORMATION

b . -6
T

31 | 0

—_ OPCODE 11001 R2 L ADDRESS FROM PROGRAM COUNTER J

s| DISPLACEMENT +

31 16 15 0

»f<——exteno sian | DispLAceEmENT |

31 0

[ADDRESS |

1-7 ADVANCE INFORMATION

1.3.7 PC RELATIVE WITH 32-BIT DISPLACEMENT

The 32-bit PC Relative format adds a signed 32-bit displacement to the contents of the Program Counter (PC)

to compute the address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

call sp, far (pc)
T

ADDRESS FORMATION

— OPCODE 1o 0 0 1] Re

DISPLACEMENT LOW

S DISPLACEMENT HIGH

1.3.8 RELATIVE INDEXED

31

ADDRESS FROM PROGRAM COUNTER

— ©

31

+

SIGNED DISPLACEMENT

h— O

o

ADDRESS

The Relative Indexed format uses the address in a register (R1), plus the contents of an index register (RX), to

compute an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT

loadbu [r3] (fp), n

e |] OPCODE 11t 110 R1

ADDRESS FORMATION

000O0O0OOO RX R2

ADDRESS FROM REGISTER

+

o

> ADDRESS FROM REGISTER

ADVANCE INFORMATION 1-8

ADDRESS

_O

1.3.9 PC INDEXED

The PC Indexed format adds the contents of an index register (RX) to the contents of the PC to compute
an address.

EXAMPLE INSTRUCTION INSTRUCTION FORMAT ADDRESS FORMATION
storh r9, [r3] (pc)
T T
31 0
— OPCODE 1f1101}j0000 I ADDRESS FROM PROGRAM COUNTER I
0000 O0O0O O RX R2 +

w
-
o

ADDRESS FROM REGISTER

Yy
r-

w
-
o

| ADDRESS

1-9 ADVANCE INFORMATION

CHAPTER TWO
INSTRUCTION SET

This chapter contains detailed descriptions of the CLIPPER instructions. The instruc-
tions are listed in alphabetical order.

The CLIPPER instruction set Contains 101 basic instructions and 67 macro instructions. This reduced
instruction set is especially useful to high-level language optimizing compilers.

Memory access in a CLIPPER environment is through load/store instructions to minimize bus traffic and
memory-dependent execution delays. Data operations are performed in registers.

There are two units in the CLIPPER CPU that execute instructions: the Integer Execution Unit (IEU) and the
Floating-Point Execution Unit (FPU). The integer instructions (with the exception of integer multiplies and
divides) are executed by the IEU. Floating-point instructions (and the integer multiplies and divides) are exe-
cuted by the FPU.

The basic instructions are fetched from main memory, through the instruction cache, decoded and then exe-
cuted, either by the IEU or by the FPU. The macro instructions are executed from the Macro Instruction ROM
(MI ROM). : ’

A macro instruction opcode is actually a reference to a sequence of instructions in the Ml ROM. When a
macro instruction is fetched, execution control is switched to the Ml ROM and the macrocoded sequence of
the macro instruction is executed.

The instructions are listed in Table 2-1.

21 ADVANCE INFORMATION

Table 2-1 Alphabetical Listing of the Instructions

ADVANCE INFORMATION

Mnemonic | Description Page | Mnemonic | Description Page
addd Add Double Floating 27 movwp Move Word to Processor Register 2-64
addi Add Immediate 2-8 movws Move Word to Single Floating 2-65
addq Add Quick 29 muld Multiply Double Floating 2-66
adds Add Single Floating 210 muls Multiply Single Floating 2-67
addw Add Word 2-11 mulw Multiply Word 2-68
addwe Add Word with Carry 2-12 mulwu Multiply Word Unsigned 2-69
andi And Immediate 213 mulwux Multiply Word Unsigned Extended 2-70
andw And Word 214 mulwx Multiply Word Extended 2-7
b* Branch on Condition 2-15 negd Negate Double Floating 2-72
bf* Branch on Floating Exception 2417 negs Negate Single Floating 2-73
call Call Subroutine 2-18 negw Negate Word 2-74
calls Call Supervisor 2-19 noop No Operation 2-75
cmpc Compare Characters 2-20 notq Not Quick 2-76
cmpd Compare Double Floating 2-21 notw Not Word 2-77
cmpi Compare Immediate 2-22 ori Or Immediate 2-78
cmpq Compare Quick 2-23 orw Or Word 2-79
cmps Compare Single Floating 2-24 popw Pop Word 2-80
cmpw Compare Word 2-25 pushw Push Word 2-81
cnvds Convert Double to Single Floating 2-26 restdn Restore Registers fn: 0 = n <7 2-82
cnvdw Convert Double to Word 2-27 restur Restore User Registers 2-83
cnvrdw Convert Rounding Double to Word 2-28 restwn Restore Registers rn: 0 < n < 12 2-84
cnvrsw Convert Rounding Single to Word 2-29 ret Return From Subroutine 2-85
cnvsd Convert Single to Double Floating 2-30 reti Return From Interrupt 2-86
cnvsw Convert Single Floating to Word 2-31 roti Rotate Immediate 2-87
cnvtdw Convert Truncating Double to Word 2-32 rotl Rotate Longword 2-88
cnvtsw Convert Truncating Single to Word 2-33 rotli Rotate Long Immediate 2-89
cnvwd Convert Word to Double Floating 2-34 rotw Rotate Word 2-90
cnvws Convert Word to Single Floating 2-35 savedn Save Registers fn: 0 < n <7 291
divd Divide Double Floating 2-36 saveur Save User Registers 2-92
divs Divide Single Floating 2-37 savewn Save Registers r: 0 = n < 12 2-93
divw Divide Word 2-38 scalbd Scale by Double Floating 2-94
divwu Divide Word Unsigned 2-39 scalbs Scale by Single Floating 2-95
initc Initialize Characters 2-40 shai Shift Arithmetic Immediate 2-96
loada Load Address 2-41 shal Shift Arithmetic Longword 2-97
loadb Load Byte 2-42 shali Shift Arithmetic Longword immediate | 2-98
loadbu Load Byte Unsigned 2-43 shaw Shift Arithmetic Word 2-99
loadd Load Double Floating 2-44 shli Shift Logical Inmediate 2-100
loadfs Load Floating Status 2-45 shil Shift Logical Longword 2-101
loadh Load Halfword 2-46 shlli Shift Logical Longword Immediate 2-102
loadhu Load Halfword Unsigned 2-47 shlw Shift Logical Word 2-108
loadi Load Immediate 2-48 storb Store Byte 2-104
loadq Load Quick 2-49 stord Store Double Floating 2-105
loads Load Single Floating 2-50 storh Store Halfword 2-106
loadw Load Word 2-51 stors Store Single Floating 2-107
modw Modulus Word 2-52 storw Store Word 2-108
modwu Modulus Word Unsigned 2-53 subd Subtract Double Floating 2-109
movc Move Characters 2-54 subi Subtract Immediate 2-110
movd Move Double Floating 2-55 subq Subtract Quick 2111
movd| Move Double Floating to Longword 2-56 subs Subtract Single Floating 2-112
movld Move Longword to Double 2-57 subw Subtract Word 2-113
movpw Move Processor Register to Word 2-58 subwc Subtract Word with Carry 2-114
movs Move Single Floating 2-59 trapfn Trap On Floating Unordered 2-115
movsu Move Supervisor to User 2-60 tsts Test and Set 2-116
movsw Move Single to Word 2-61 wait Wait for Interrupt 2-117
movus Move User to Supervisor 2-62 xori Exclusive-OR Immediate 2-118
movw Move Word 2-63 XOrw Exclusive-OR Word 2-119
2-2

The format of each instruction is described in detail in the following pages. Figure 2-1 below illustrates the

information presented.

Instruction Name — mne-
monic and descriptive name
of the instruction.

Assembler Syntax — Bold
means enter item exactly as

shown. [talics means substi-
tute correct value. Punctua-
tion must be included as
shown. See Table 2-2 for
operands.

=

Description — the text that
describes the operation of
the instruction, functionally
equivalent to Operation.

AN

Operation — this is an equa-
tion describing the operation
of the instruction. Tables 2-3
and 2-4 list operands used.
When setting psw flags, the
value of the expression to the
right of the “«<” replaces
the flag.

Exceptions — conitions
under which an exception
may occur. Many traps have
trap enables in the PSW or
SSW. See Chapter 5 for
details.

Insruction Format — the
class, bit patterns, and fields
of the instruction. See Table
2-5 for operand and operator
descriptions.

Instruction Example — an
example of the source state-

ADDD Add Double Floating ADDD
Syntax: addd ad1,d2
Description: Add the double-precision contents of floating register d1 to the double-precision contents of

floating register d2 and put the result in d2. On a trap, the PC and the original value in d2

can be obtained by using the loadfs instruction.
Operation: d2 « (d2)+(d1)

FX « floating inexact result

FU « floating underflow

FV « floating overflow

FI < floating invalid
Traps: Floating inexact result

Floating invalid operation

Floating overflow

Floating underflow
Format: Register

15 8 7 4 3 0

00 1000 10 dt d2

|
Example: loadd dvalue,f0 # Load double floating value at dvalue into f0
loadd (r2),f1 # Load double floating value at (r2) into f1
addd f0,f1 # Add floating regs f0 and 1 put the result in f1

ment entered. See Table 2-6
for a description of the
terms used.

Figure 2-1

Instruction Description Example

2-3 ADVANCE INFORMATION

Table 2-2 lists meanings of the operands used in the Syntax field of the instruction descriptions. The first
character of the notation column specifies the operand’s type and size:

b = byte w = word s = single-precision floating-point
h = halfword | = longword d = double-precision floating-point
: ‘ p = processor register

The second character of the notation column specifies the operand’s field within the instruction and its loca-
tion in the machine (immediate value, register, memory, etc.):

a=R1 q = quick a=address
2=R2 i = immediate b = byte

Table 2-2 Syntax Field Operands

Notation Meaning

ba Byte address (32-bit address on byte boundary)

bb Unsigned byte data (0 — 256 decimal)

da Double floating address (32-bit address on doubleword boundary)
di Double floating register operand 1 (f0 — {7)

d2 Double floating register operand 2 (f0 — {7)

ha Halfword address (32 bit address on halfword boundary)

] Longword register operand 1 (even register pair r0,r1 — ri14,r15)
12 Longword register operand 2 (even register pair r0,r1 — r14,r15)
p1 Processor register operand 1 (0 =psw, 1 =ssw)

sa Single floating address (32-bit address on word boundary)

s1 Single floating register operand 1 (f0 — {7)

s2 Single floating register operand 2 (f0 — {7)

wa Word address (32 bit address on word boundary)

wi Signed 16-bit immediate data (sign extended to 32-bits) or signed 32-bit immediate data
wq Unsigned 4-bit quick data (zero extended to 32-bits)

w1 General register operand 1 (r0 — r15)

w2 General register operand 2 (r0 — r15)

Tables 2-2 and 2-3 list the meanings of the operands used in the Operation field of each description. Table 2-
4 lists the meanings of the operators used in the Operation field of each description.

Table 2-3 Operation Field Operands
Notation Meaning

C PSW carry out flag
FP dest Original floating-point destination
FP PC Floating-point program counter

N PSW integer negative flag

n Number (usually register number)
PC Program counter

r0 — r15 General registers 0 through 15

\Y PSW integer overflow flag

Z PSW integer zero flag

ADVANCE INFORMATION 24

Notation
rot
sha

shl
+

X

mod

l

[2=]

A~
[——

Table 2-4 Operation Field Operators

Meaning

Rotate operator

Shift arithmetic operator

Shift logical operator

Add operator ,

Subtract operator or negate unary operator
Multiply operator

Divide operator -

Modulus operator

Complement operator

Equal operator

Not equal operator

Assignment operator

AND logical operator

OR logical operator

Exclusive-OR logical operator

Contents of operand within

Separators used to indicate value inside in a unit
Value inside symbols indicates bit(s) of a register

Indicates a range of values

Tables 2-2 and 2-5 list meanings of the operands used in the Format field of the instruction descriptions.

Notation

addr mode
cond -
high

low

R1

R2

Table 2-5 Format Field Operands

Meaning

A four bit code for the type of addressing used

Condition code for branch conditions (see Tables 2-7 and 2-8)

Most-significant portion of an address or value
Least-significant portion of an address or value
Register field 1 within the instruction format
Register field 2 within the instruction format

ADVANCE INFORMATION

Table 2-6 lists the assembler instruction operands used in the Example field of the instruction descriptions.
Assembler instruction operands are generally given in source, destination order, independent of their posi-
tions in the machine representation.

r0: r15

fo: f7
psw, ssw
$n
$0xn
n

n(m)
[rx](rn)
n(pc)
4N
[rxl(pc)
#

Table 2-6 Example Field Operands
General registers. Even general registers address longword operands. sp, fp, and ap are syn-1
onyms for r15, r14, and r13. Not to be confused with R1 or R2, which are register fields within-
an instruction.
Floating registers. Each register may contain either a single or double floating value
Processor registers 0 and 1 \
Quick, byte or immediate value (decimal)
Quick, byte or immediate valye (hexadecimal)
Absolute address
Relative or relative with displacement address. n may be 0 or absent.
Relative indexed address
PC relative address
PC relative address
PC indexed address

Indicates a comment field

ADVANCE INFORMATION 2-6

ADDD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Add Double Floating

addd d1,d2

ADDD

Add the double-precision contents of floating register d1 to the double-precision contents of
floating register d2 and put the result in d2. On a trap, the PC and the original value in d2

can be obtained by using the loadfs instruction.

d2 « (d2)+(d1)

FX <« floating inexact result
FU « floating underflow
FV < floating overflow

Fl < floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Register

15 8

d1

d2

loadd dvalue,f0
loadd (r2),f1
addd fo,f1

Load double floating value at dvalue into fO
Load double floating value at (r2) into f1
Add floating regs fO and f1 and put the result in f1

2-7

ADVANCE INFORMATION

ADDI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Add Immediate ADD'

addi wiw2 l

<
Add the immediate value wi to the contents of general register w2 and put the result in w2.
The operands may be signed or unsigned integers. Overflow is set if the operands (which
are treated as signed integers) have the same sign and the result has the opposite sign.

w2 < (W2) + wi

N < w2<31>)

Z < w2=0

V <« integer overflow
C <« integer carry out

none

- Immediate

If =215 < wi = +2'% -1, this format is used:

15 8 7 4 3 0
1 0 0 0 0 0 1 1/1 0 1 1 w2
]
S wi
31 30 16
If +215 < wi = +231 — 1 or -2%5 < wi = —215 - 1, this format
is used:
15 8 7 4 3 0
1 00 00 0 1 1|0 0 1 1 w2
]
wi fow
s wi high
a7 4% 32
addi $180,r1 # Add 16-bit value to r1
addi $99999,r0 # Add 32-bit value to r0
addi $-1r2 # Add Oxffff to r2

ADVANCE INFORMATION 28

ADDQ Add Quick ADDQ

Syntax: addq wq,w2

Description: Add the unsigned quick value wq to the contents of general register w2 and put the result in
w2. The contents of w2 may be a signed or unsigned integer. Overflow is set if the contents
of w2 (which is treated as a signed integer) is positive and the result is negative.

Operation: w2 < (W2) +wq
N < (w2<31>)
Z < w2)=0
V < integer overflow
C <« integer carry out

Traps: none
~ Format: Quick -
15 8 7 4 3 0
1 000001 0 wq w2
A v
Example: addq $4,r1 # Add 4 to (r1)

2-9 ADVANCE INFORMATION

AD DS Add Single Floating | ADDS

Syntax: adds s17,s2

Description: Add the single-precision contents of floating register s1 to the single-precision contents of
floating register s2 and put the result in s2. On a trap, the PC and the original value in s2
can be obtained by using the loadfs instruction.

Operation: s§2 « (s2)+(s1)

» FX « floating inexact result
FU « floating underflow
FV <« floating overflow
Fl <« floating invalid

Traps: Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Format: Register
15 8 7 4 3 0
0o 01 00 0 0 O s1 s2
l
Example: loads $value1,f0 # Load single floating value at $value1 into fO
loads (r3),f2 # Load single floating value at (r3) into f2
adds f2,f0 # Add floating regs f0 and 2 and put the result in fO

ADVANCE INFORMATION 210

ADDW Add Word ‘ ADDW

Syntax: addw wi,w2 ’

Description: | Add the contents of general register w1 to the contents of general register w2 and put the
result in w2. Operands may be signed or unsigned integers. Overflow is set if the operands
(which are treated as signed integers) have the same sign and the result has the opposite
sign.

Operation: w2 < (W2) + (w1)
N < w2<31>)
Z < (w2)=0
V < integer overflow
C <« integer carry out

Traps: none
Format: Register
15 8 7 4 3 0
1 0 0000 0 0 wi w2
|
Example: addw r12,f0 # Add contents of r12 and r0, put the result in r0

2-11 ADVANCE INFORMATION

AD DWC Add .Word With Carry AD DWC

Syntax:

Description:

Operation:

Traps:

Format:

Example: -

addwc wi,w2

Add the contents of general register w1 and the carry flag to the contents of general register
w2 and put the result in w2. Operands may be signed or unsigned integers.

w2 < (W2)+(w1)+C
N « (w2<31>)

Z < w2)=0

V <« integer overflow
C <« integer carry out

none

Register

15 | 8 7 4 3 0

1 0 01 0 0 0 O wi w2
il

Assume (r0,r1) and (r4,r5) contain two longwords and the operation to be performed is:
(r4,r5) < (r4,r5) + (ro,r1).

addw r0,r4 # Add low words, get carry
addwc r1,r5 # Add high words using carry

ADVANCE INFORMATION 2-12

ANDI

Syntax:

Description:

Operation:

Traps:

Format:

Examples:

And Immediate AN D I

andi wi,w2

Bitwise AND the immediate value wi with the contents of general register w2 and put the
result in w2.

w2 < (W2) & wi
N « (w2<31>)
Z < (w2)=0

V <0

C <0

none

Immediate

If =215 < wi < +2'% -1, this format is used:

15 ‘ 8 7 4 3 0
1 00 01 0 1 1)1 0o 1 1 w2
]
S . wi
31 30 16
If +21° < wi < +231 -1 or —215 < wi < -23' — 1, this format is used:
15 8 7 4 3 0
1 0 0 0 1 0 1 1[0 0 1 1 w2
]
wi low
) wi high
47 46 . 32

Assume r8 contains 0x001100ff.

andi $0xffff,r8 # AND 32-bit value with r8
The result pdt in r8 is 0x000000ff.
Assume r2 contains 0xffff0000.

andi $023,r2 # AND 16-bit value with r2

The result put in r2 is 0x00000000.

2-13 ADVANCE INFORMATION

ANDW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

And Word AN DW

andw wi,w2

Bitwise AND the contents of general register w1 with the contents of general register w2
and put the result in w2. ’

w2 < (W2) & (wl)
N < (w2<31>)
Z < w2)=0

V <0

C <0

none

Register

15 8 7 4 3 0

Assume r2 contains 0x7788ffff and r3 contains 0xffff0000.
andw r2,r3 # AND (r2) with (r3), put result in r3

The result put in r3 is 0x77880000.

ADVANCE INFORMATION 214

B*

Syntax:

Description:

Operation:

Traps:

Format:

Examples:

Branch On Condition

b* ha

B*

If, for the selected condition cond, PSW flags C, V, Z, and, N match one of the patterns
shown in Table 2-7, then the program branches to address ha; otherwise it does not branch.
Cond is set by selecting one of the operands listed in Table 2-7.

When a choice of mnemonics is shown, use the mnemonics beginning with bc if the condi-
tions to be tested were set by a compare instruction; otherwise use the mnemonics begin-

ning with br.

if selected condition,
then PC <« ha

none
Address

If addressing is relative, this format is used:

15 8 7 4 3 0
01 0 0 1 0 0 O R1 cond
l
For all other addressing, this format is used:
15 8 7 4 3 0

0o 1 0 0 1 0 O 1 addr mode

ADDRESS for details on bits 0-3 and 16-63

See Section 1.3, INSTRUCTION FORMATS — WITH

Assume (r3) contains 17, (r6) contains — 19.

movw r3,r4
brgt labelt # Branches
cmpw r3,r6
bcge label2 # Branches
cmpw r3,r6

bcgeu label3 # Doesn’t branch

2-15

ADVANCE INFORMATION

B*

*
Branch On Condition (Continued) A B

Table 2-7 Integer Branch Conditions

PSW Flags
cond | CV Z N | Name Condition
0 XX XX |b Branch always
PSW Flags
cond | CV Z N | Name | Compare R1:R2 Name | Result R2:0
1 § ? 8 (1) bclt Less Than brgt Greater Than
2 ;((?)é ? bcle Less or Equal brge Greater or Equal
3 X X 1 0 | beceq Equal breq Equal
X001
4 X 1X0 begt Greater Than brit Less Than
X1Xo0
5 X 001 bcge | Greater or Equal brle Less or Equal
XX 10 .
XX 0X
6 X X 1 1 bcne Not Equal brne Not Equal
7 0 X 0 X | bcltu Less Than Unsigned brgtu | Greater Than Unsigned
8 0 X X X | bcleu | Less or Equal Unsigned brgeu | Greater Than or Equal Unsigned
9 1 X X X | begtu | Greater Than Unsigned beltu Less Than Unsigned
A)1(§)1())E bcgeu | Greater or Equal Unsigned | brleu | Less or Equal Unsigned
PSW Flags
cond | CV Z N | Name Condition The R2 field of the branch on condi-
8 0 X X X | bnc Not Carry tion instruction selects the conditions
9 1 X X X | be Carry on which to branch. When a choice of
mnemonics is shown, use the ones
B X 1 XX | bv oVerflow beginning with be if the condition
C | X0 XX | bnv Not oVerflow codes to be tested were set by a com-
D XX 01 bn Negative pare instruction. Use the mnemonics
E X X X 0 | bnn Not Negative beginning witl) br !f they were set by
- move or logical instructions (those
F XX 11]|bfn Floating uNordered instructions that set only N or Z).
Legend:

X =don’t care

ADVANCE INFORMATION 2-16

BF*

Syntax:

Description:

Operation:

Traps:

Format:

Example:

*
Branch On Floating Exception BF

bf* ha

If the exceptions selected by the mnemonic are met, put ha in the PC. The cond field
selects exceptions on which to branch as shown in Table 2-8.

Table 2-8 Floating Branch Conditions

cond Name Exception
0 bfany- Floating ANY exception
1 bfbad Floating BAD result
2-F Reserved

if selection condition,
then PC < ha

none

Address

If addressing is relative, this format is used:

15

7

4 3 0

R1

cond

For all other addressing, this format is used:

15

7

4 3 0

addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Assume (f0) contains 1.0, (f1) contains 0.0, and there are no traps enabled.

divd f0,f1
bfdz label1

Divide by
branches

217

zero

ADVANCE INFORMATION

CALL

Syntax:

Description:
Operation:
Traps:

Format:

Example:

CALL

Call Subroutine

call w2,ha

The return address (the address of the instruction following the call instruction) is pushed
onto the stack. The stack pointer is contained in w2. Control is then transferred to the speci-
fied address. On an exception, the stack pointer has not been modified.

w2 < (w2)
(w2) < (PC)
PC <« ha

Page fault
Write protect fault
Memory fault

Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

call sp,print # Call the print routine

ADVANCE INFORMATION 2-18

CALLS Call Supervisor CALLS

Syntax: calls bb

Description: Call the supervisor. Cause one of the 128 unique traps through the indicated supervisor
trap vector bb. The current status registers (SSW, PSW and PC) are pushed on the supervi-
sor’s stack. The new PC and SSW are taken from the trap vector and the PSW is set to

zero.
Operation: trap 400 + 8 x bb
Traps: none
Format: Control
15 8 7 0
0 0 0 1 A 0 0 1 00 bb
|
Example: calls $6 # Invoke supervisor call # 6

2-19 ADVANCE INFORMATION

CM PC Compare Characters | CM PC

Syntax: cmpc

Description: Compare a string of bytes. The string length is in r0, the address of the first string is in r1,
and the address of the second string is in r2. On an exception, the registers are updated so
that restarting the instruction compares the remaining portions of the strings. The bytes are
signed extended to 32 bits, then compared as words. N

Operation: while [(r0) # 0] & [((r2)) = ((r1))],

' r0 < (r0) -1
1< (r1)+1
r2 < (r2)+1

if (r0) =0,

thenN < 0
Z <1
V <0
C+<0

else temp « (r2) - (r1)
N « (temp<31>)
Z < (temp)=0
V « overflow
C « carry out

Traps: Page fault
Read protect fault
Memory fault
Format: Macro

15 8 7 4 3 0

0 0 o 0 0 0 0 0(fO 0 0 O|O O O O

31 24 23 20 19 16
Example: Assume the string “ABCD” is at label str1 and the string “ABXY" is at label str2.
loadq $4,r0 # Load length into r0
loada str1,r1 # Load addr of str1 into r1
loada str2,r2 # Load addr of str2 into r2
cmpc # Compare the strings
bcge label1 # Does not branch, (r0) =2,

(r1) points to “C”, str1 +3
(r2) points to “X”, str2+ 3

ADVANCE INFORMATION 2-20

CMPD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Compare Double Floating CM P D

cmpd a1,d2

Compare the double-precision contents of floating register d1 with the double-precision
contents of floating register d2. Only the condition codes are affected.

NOTE ,
Although +0.0 and - 0.0 are represented differently, they compare equal.

(d2) - (d1)
N « [[(d2) - (d1)] <0] OR [(d2),(d1) unordered]
Z < [[(d2) - (d1)] = 0] OR [(d2),(d1) unordered]

V<0
C<o
none
Register
15 8 7 4 3 0
001 0 0 1 1 1 d1 d2
]
cmpd f1,12 # Compare contents of floating regs 1 & 2

2-21 ADVANCE INFORMATION

CMPI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Compare Immediate CM PI

cmpi wi,w2

Compare the immediate value wi with the contents of general register w2. Only the condi-
tion codes are affected.

(w2) —wi

N « [w2)-wi] < O
Z < [(w2)-wi]l=0

V <« integer overflow
C « integer carry out
none

Immediate

If —21% < wi < +2'%—1, this format is used:

15 8 7 4 3 0
1 0 1 0 0 1 1 1}0 0 1 1 w2
]
S wi
31 30 ' 16

If +215 < wi <= +23' =1 or -21% < wi < 2311, this
format is used:

15 8 7 4 3 0
1 01 0 0 1 1 1]0 0 1 1 w2
|
wi low
S wi high
47 46 32
cmpi $0x1f,r2 # Compare Ox1f to the contents of r2

ADVANCE INFORMATION 222

CM PQ Compare Quick CM PQ

Syntax: cmpq wq,w2

Description: Compare the quick value wg with the contents of general register w2. Only the condition
codes are affected.

Operation: (w2) —wq
N < [w2)-wqg] < O
Z < [(w2)-wq]=0
V <« integer overflow
C <« integer carry out

Traps: none
Format: Quick
15 8 7 4 3 (i}
1 01 0 0 1 1 0 wq w2
|
Example: cmpq $0,r3 # Compare 0 to the contents of r3

223 ADVANCE INFORMATION

CM PS | Compare Single Floating CM PS

Syntax: cmps §1,82

Description: Compare the single-precision contents of floating register s1 with the single-precision con-
tents of floating register s2. Only the condition codes are affected.

NOTE
Although +0.0 and —0.0 are represented differently, they compare equal.

Operation: (s2) - (s1)
N « [[(d2) - (d1)] < 0] OR [(d2),(d1) unordered]
Z « [[(d2) - (d1)] = 0] OR [(d2),(d1) unordered]

V<0
C+<0
Traps: none
Format: Register
15 8 7 4 3 0
0 01 0 0 1 0 1 s1 s2
|
Example: cmps f0,f3 # Compare the contents of fO to the contents of 3

ADVANCE INFORMATION 2-24

CM PW Compare Word CM PW

Syntax: cmpw wi,w2

Description: Compare the contents of general register w1 with the contents of general register w2. Only -
the condition codes are affected.

Operation: (wW2) — (w1)
N < [wW2)-(w1)] <O
Z < [(w2)-(w1)]=0
V < integer overflow
C <« integer carry out

Traps: none
Format: Register
15 8 7 4 3 (]
1 0 1.0 0 1 0 O w1 w2
l
Example: ' cmpw r0,r2 # Compare the contents of r0 to the contents of r2

2-25 ADVANCE INFORMATION

CNVDS Convert Double to Single Floating CNVDS

Syntax: cnvds d1,s2

Description: Convert the double-precision contents of floating register d1 to single-precision and put the
result in floating register s2. On a trap, the PC and the original value in s2 can be obtained
by using the loadfs instruction. The source and destination registers may be the same
register.

Operation: s2 « (d1)
FX « floating inexact result
FU « floating underflow
FV « floating overflow
FlI « floating invalid

Traps: Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow
Format: Macro

15 8 7 0

0 0 0 0 0 0 0 O d1 s2
|
31 24 23 20 19 16
Example: cnvds fo,f2 # Convert double in fO to single, put in f2
cnvds 1,11 # Convert double in f1 to single

ADVANCE INFORMATION 2-26

CNVDW

Syntax: cnvdw

Convert Double Floating to Word

di,w2

CNVDW

Description: Convert the double-precision contents of floating register d1 to a signed integer using the
IEEE rounding mode given in the PSW and put the result in general register w2.

Attempting to convert + o, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number
that is not an exact integer but is small enough for conversion causes a floating inexact
result exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

Operation: w2 « (d1)

FX < floating inexact result
FI « floating invalid

Traps: Floating invalid operation
Floating inexact result

Format: Macro
15 8 (]
1 01 1.0 1 0 0 (] 0
0 0 0 0 0 0 0 O di w2
31 24 23 16
Example: cnvdw f1,r2 # Convert double in f1 to integer, put in r2

2-27

ADVANCE INFORMATION

CNVRDW Convert Rounding ’Double Floating to Word CNVRDW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

cnvrdw di,w2

Convert the double-precision contents of floating register d1 to the nearest signed integer
by adding a properly signed 0.5, truncating toward 0.0, and putting the result in general reg-
ister w2. This is the round operation in 1ISO Pascal, regardless of the IEEE rounding mode
given in the PSW, and differs from the IEEE round-to-nearest mode.

Attempting to convert + o0, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number for
which the truncation portion of the operation is inexact causes a floating inexact result
exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

w2 « (d1)
FX « floating inexact result
Fl « floating invalid

Floating invalid operation
Floating inexact result

Macro

15 8 7 0

0o 0 0 0 0 0 0 O s1 s2

31 24 23 20 19 16

cnvrdw fo,r2 # Convert double in fO to integer, put in r2

ADVANCE INFORMATION 2-28

CNVRSW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

CNVRSW

Convert Rounding Single Floating to Word

cnvrsw s1,w2

Convert the single-precision contents of floating régister s1to the nearest signed integer by
adding a properly signed 0.5, truncating toward 0.0, and putting the result in general regis-
ter w2. This is the round operation in ISO Pascal, independent of the IEEE rounding mode
in the PSW, and differs from the IEEE round to nearest mode.

Attempting to convert +o, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number for
which the truncation portion of the operation is inexact causes a floating inexact result
exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

w2 < (s1)
FX « floating inexact result
FI < floating invalid

Floating invalid operation
Floating inexact result

Macro

15 8 7 0

0 0 0 0 0 0 o0-0 s1 w2

31 24 23 20 19 16

cnvrsw f1,r0 # Convert single in f1 to integer, put in r0

2-29 ADVANCE INFORMATION

CNVSD Convert Single to Double Floating CNVSD

Syntax: 6nvsd s1,d2

Description: Convert the single-precision contents of floating register s1 to double-precision and put the
result in floating register d2. The source and destination registers may be the same register.

Operation: d2 « (s1)

Fl <« floating invalid
Traps: Floating invalid operation
Format: Macro

15 8 7 0

0 0o o o 0 0 0 O s1 d2

31 24 23 © 20 19 16

Example: cnvsd fo,f2 # Convert single in f2 to double, put in f2

ADVANCE INFORMATION 2-30

CNVSW Convert Single Floating to Word | CNVSW

Syntax: cnvsw st,w2

Description: Convert the single-precision contents of floating register s2 to a signed integer using the
IEEE rounding mode given in th PSW, and put the result in general register w2.

Attempting to convert +, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number
that is not an exact integer but is small enough for conversion causes a floating inexact
result exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

Operation: W2 « (s1)
FX « floating inexact result
Fl < floating invalid

Traps: Floating invalid operation
Floating inexact result

Format: Macro

15 8 7 0

0 0 0 0 0 0 0 O s w2
]
31 24 23 20 19 16

Example: cnvsw f0,r3 # Convert single in f0 to integer, result in w2

2-31 ADVANCE INFORMATION

CNVTDW Convert Truncating Double Floating to Wérd CNVT DW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

cnvtdw di,w2

Convert the double-précision contents of floating register d1 to a signed integer by truncat-
ing toward 0.0 and putting the result in general register w2. This is the INT operation in
ANSI FORTRAN 77 and the trunc operation in ISO Pascal, regardless of the setting of the
IEEE rounding mode in the PSW.

Attempting to convert +, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number
that is not an exact integer but is small enough for conversion causes a floating inexact
result exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

w2 « (d1)
FX « floating inexact result
Fl « floating invalid

Floating invalid operation
Floating inexact result

. Macro

15 8 7 0

0o 0 0 0 0 0 0 O di w2

31 24 23 20 19 16

cnvtdw f1,r1 # Truncate double in f1 to integer, put in r2

ADVANCE INFORMATION 2-32

CNVTSW Convert Truncating Single Floating to Word CNVTSW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

cnvtsw st,w2

Convert the single-precision contents of floating register s1 to a signed integer by truncat-
ing toward 0.0 and putting the result in general register w2. This is the INT operation in
ANSI FORTRAN 77 and the trunc operation in ISO Pascal, regardless of the setting of the
IEEE rounding mode in the PSW.

Attempting to convert +o, a NaN, or a number too large to fit in a word causes an invalid
operation exception, and the stored result is undefined. Attempting to convert a number
that is not an exact integer but is small enough for conversion causes a floating inexact
result exception.

On a trap, the PC can be obtained with the loadfs instruction. The destination original
value, normally returned by the loadfs instruction, is undefined.

w2 « (s1)
FX < floating inexact result
FI <« floating invalid

Floating invalid operation
Floating inexact result

Macro

15 8 7 0

31 24 23 20 19 16

cnvtsw fo,r2 # Truncate fO to integer, store in r2

2-33 ADVANCE INFORMATION

CNVWD Convert Word to Double Floating CNVWD

Syntax:

Description:

Operation:
Traps:

Format:

Example:

cnvwd w1,02

Convert the contents of general register w1 to double-precision and put the result in floating
register d2.

d2 « (w1)
none

Macro

15 8 7 0

0o 0 0 0 0 0 O O w1 d2

3 24 23 20 19 16

cnvwd r1,f0 # Convert integer in r1 to double, result in fO

ADVANCE INFORMATION 2-34

CNVWS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

cnvws w1,s2

Convert Word to Single Floating

CNVWS

Convert the contents of general register w1 to single-precision floating-point and put the
result in floating register s2. If the conversion is not exact, the result is rounded according to
the IEEE rounding mode in the PSW, and floating inexact result is signalled.

s2 « (w1)
FX < floating inexact result

Floating inexact result

Macro
15 8 7 0
1 0 1 1t 0 1 0 0|lo o 10 1
l
0 0 00 0 0 0 O w1 s2
31 I 24 23 20 19 16
cnvws r3,f2 # Convert integer in r3 to single, result in f2

2-35

ADVANCE INFORMATION

DIVD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Divide Double Floating

X

‘divd d1,02

DIVD

Divide the double-precision contents of floating register d2 by the double-precision con-
tents of floating register d1 and put the result in d2. On a trap, the PC and the original value
in d2 can be obtained by using the loadfs instruction.

d2 < (d2) + (d1)

FX « floating inexact result
FU « floating underflow

FD <« floating divide-by-zero
FV « floating overflow

Fl <« floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow
Floating divide-by-zero

Register

d1

d2

divd 2,0

ADVANCE INFORMATION

Divide double in fO by double in f2, put result in fO

2-36

DIVS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Divide Single Floating DIVS

divs s1,82

Divide the single-precision contents of floating register s2 by the single-precision contents
of floating register s1 and put the result in s2. On a trap, the PC and the original value in s2
can be obtained by using the loadfs instruction.

(s2) < (s2) + (s1)

FX « floating inexact result
FU « floating underflow

FD « floating divide-by-zero
FV « floating overflow

Fl « floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow
Floating divide-by-zero

Register
15 8 7 4 3]
0 0 1t 0 1 0 0 1 s s2
l
divs f1,f2 # Divide single i’n f2 by single in 1, put result in f2

2-37 ADVANCE INFORMATION

DIVW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

i Word. DIVW

divw wi,w2

Divide the contents of general register w2 by the contents of general register w1 and put
the quotient in w2. The operands are treated as signed integers. The quotient is positive if
the signs of the divisor and dividend are the same, and negative if they are different. Over-
flow is set if the largest negative number (—23") is divided by —1.

NOTE
For the same dividend and divisor, if the quotient returned by divw is
multiplied by the divisor and then added to the remainder returned by
modw, the result would be the original dividend.

w2 < (W2) = (w1)

N <0

Z <0

V < integer overflow
C <0

Divide-by-zero

Register
5 8 7 4 3 0
1 0 0 1 1 1 0 O wi w2
]
divw r10,r4 # Divide (r4) by (r10), put result in r4

ADVANCE INFORMATION 2-38

D IVWU Divide Word Unsigned D IVWU

Syntax: divwu wiw2

Description: Divide the contents of general register w2 by the contents of general register w1 and put
the quotient in w2. The operands are treated as unsigned integers. Since the quotient is
always positive, overflow cannot occur.

NOTE
For the same dividend and divisor, if the quotient returned by divwu
and the remainder returned by modwu are multiplied, the result would
be the original dividend.

Operation: w2 < (W2) + (w1)
N <0
Z <0
V <0
C <0
Traps: Divide-by-zero
Format: Register

15 8 7 4 3 0

1 0 0 1 1 1 1 0 wi w2

"Example: . divwu r0,r5 # Divide (r5) by (r0), put result in r5

2-39 ADVANCE INFORMATION

INITC

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Initialize Characters ‘ IN ITC

initc

Initialize a byte, halfword, word, or single-precision floating string with a constant value. The
length of the string (in bytes) is in the r0 and the address is in r1. The pattern to be stored is
in r2. For word and single-precision floating strings, r2 contains the initial value. For
halfword strings, both halfwords of r2 must contain the initial value. For byte strings, all four
bytes of r2 must contain the desired value. If a trap occurs, the registers are updated so that
restarting the instruction initializes the remaining portion of the string.

while (r0) #0,

(r1) « (r2<7:0>)
r0 < (r0)-1
o« (r)+1

r2 < (r2) ROT-8

Page fault

Write protect fault
Memory fault
Macro

15 8 7 0

0o 0 o o 0 0 0 0jO O O OO O O0 O

31 24 23 20 19 16

Set the 17 bytes beginning at label str to 19.

loadi $17,r0 # String length
loada str,r1 # String address
loadi $0x13131313,r2 # 19 decimal = 13 hex

initc # Initialize characters

ADVANCE INFORMATION 2-40

LOADA

Syntax:
Description:
Operation:
Traps:

Formats:

Examples:

Load Address ‘ LOADA

loada ba,w2

Load the memory address ba into general register w2.
w2 < ba

none

Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

01 1 0 0 0 1 1| addrmode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

loada value,r0 # Address of value into r0

loada 8(sp),fp # (sp) + 8 into fp

loada addr(r4),r0 # (r4) + addr into r0

loada [r1](r2),r3 # 3 operand addr that sets no flags

241 "~ ADVANCE INFORMATION

LOAD B | Load Byte LOA D B

Syntax: loadb ba,w2

Description: Load the byte at memory address ba, sign-extended, into the least-significant byte of gen-
eral register w2.

Operation: w2 < (ba)
Traps: Page fault
Read protect fault
Memory fault
Format: Address

If addressing is relative, this format is used:

15 8 7 4 3 0

o1 1 0 1 0 0 O R1 w2

For all other addressing, this format is used:

15 8 7 4 3 0

o 1 1 0 1 0 0 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Example: loadb 3(r7),r2 # Load byte at 3(r7) into r2

ADVANCE INFORMATION 2-42

LOADBU Lond yte Unsgnes LOADBU

Syntax:

Description:

Operation:

Traps:

Format:

Example:

loadbu ba,w2

Load the byte at memory address ba, zero-extended, into the least-significant byte of gen-
eral register w2.

w2 < (ba)

Page fault

Read protect fault
Memory fault
Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

o1t 1 0 1 0 1 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

loadbu 4(r5),r2 # Load byte at 4(r5) into r2

2-43 ADVANCE INFORMATION

LOADD Load Double FIoat?ng ‘,\ LOADD

Syntax: loadd da,d2

Description: Load the double-precision floating-point value at memory addresses da and da + 1 into
floating register d2.

Operation: d2 < (da)

Traps: Page fault
Read protect fault
Memory fault

Format: Address

If addressing is relative, this format is used:

15 8 7 4 3 0

o1 1 0 0 1 1 0O R1 d2

For all other addressing, this format is used:

15 8 7 4 3 0

o 11 0 0 1 1 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Examples: loadd addr,f2 # Load double floating value at addr into f2
loadd 4(r2),f2 # Load double floating value at address specified by 4(r2)
into f2 ‘

ADVANCE INFORMATION 244

LOADFS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

loadfs w1,d2

Load Floating Status

LOADFS

Load the floating status following a floating trap. The PC of the offending floating instruction
is put in general register w1. The original value of the destination register is put in floating
register d2. This information allows a trap handler to determine the original operation and

its operands.

w1 < (FP PC)

d2 « (FP dest)

none

Macro

15 8 7 0

1.0 1 1 1 oo o 11 1

|
0 0 0 O 0 0 wi d2
31 I 24 23 20 19 16
loadfs r1,f2 # Load FP PC into r1, and original destination into 2

2-45

ADVANCE INFORMATION

LOADH | Load Halfword LOAD H

Syntax:

Description:

Operation:

Traps:

Format:

Example:

loadh ha,w2

Load the halfword at memory address ha, sign-extended, into the least-significant halfword
of general register w2.

w2 « (ha)
Page fault

Read protect fault
Memory fault

‘ Address

If addressing is relative, this format is used:

15 8 7 4 3 0

o 1t 1 0 1 1 0 O R1 w2

For all other addressing, this format is used:

15 8 7 4 3 0

o1 1 0 1 1 0 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

loadh (r15),r12 # Load the halfword at (r15) into r12

ADVANCE INFORMATION 2-46

LOADH U Load Halfword Unsigned LOADH U

Syntax:

Description:

Operation:

Traps:

Format:

Example:

loadhu ha,w2

Load the halfword at memory address ha, zero-extended, into the least-significant halfword
of general register w2.

w2 < (ha)

Page fault

Read protect fault
Memory fault
Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

o1 1 0 1 1 1 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

loadhu new,r11 # Load the halfword at new into r11

2-47 ADVANCE INFORMATION

LOADI Load Immediate h _ LOADI

Syntax: loadi wi,w2
Description: Load the immediate value wi, sign-extended, into general register w2.
Operation: w2 < wi
N <« (w2<31>)
Z < w2)=0
V <0
C <0
Traps: none
Format: Immediate

If -215 < wi = +2'5 -1, this format is used:

15 8 7 4 3 0
10 0 0 0 1 1 1]1 0 1 1 w2
|
s . wi
31 30 16

If +215 < wi = +231 =1 or =2'5 < wi < —-2'5 - 1, this format

is used:
15 8 7 4 3 0
1 0 0 0 0 1 1 1|0 0 1 1 w2
|
wi low
S wi high
47 46 32
Example: loadi $21,r2 # Load 21 into r2

ADVANCE INFORMATION 248

LOADQ Load Quick LOADQ

Syntax: loadq wq,w2
Description: Load the quick value wq, zero-extended, into general register w2.
Operation: w2 < wq
: N <0
Z < w2)=0
V <0
C <0
Traps: none
Format: Quick
15 8 7 4 3 0
1 0 0 0o 0 1 1 0 wq w2
]
Example: loadq $0xf,r1 # Load f hex into r1

2-49 ADVANCE INFORMATION

LOADS Load Single Floating LOADS

Syntax: loads sa,s2

Description: Load the single-precision floating-point value at memory address sa into floating
register s2.

Operation: §2 « (sa)

Traps: Page fault

Read protect fault
Memory fault

Format: Address
If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

o1 1t 0 0 1 0 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Example: loads clock,f2 # Load single floating value at clock into f2
loads (r3), f3 # Load single floating value at (r3) into f3

ADVANCE INFORMATION 2-50

LOADW ~ Load Word LOADW

Syntax:
Description:
Operation:

Traps:

Formiat:

Example:

loadw wa,w2

Load the contents of memory address wa into general register w2.
w2 < (wa)

Page fault

Read protect fault

memory fault

Address

If addressing is relative, this format is used:

15 8 7 4 3 0

01 1 0 0 0 0 O R1 w2
]

For all other addressing, this format is used:

15 8 7 4 3 0

0 11 0 0 0 0 1 addr mode
I .

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

loadw abc,r2 # Load word at abc into r2

loadw $0xfca2,r1 # Load word at address fca2 hex into r1

2-51 ADVANCE INFORMATION

MODW ~ Modulus Word MODW

Syntax: modw wiw2

Description: Divide the contents of general register w2 by the contents of general register w1 and put
the remainder in w2. The operands are treated as signed integers. The quotient is positive if
the signs of the divisor and dividend are the same, and negative if they are different. If the
remainder is non-zero, it has the same sign as the dividend. (Overflow is set if the largest
negative number (-23) is divided by —1.)

NOTE
For the same dividend and divisor, if the quotient returned by divw is
multiplied by the divisor and then added to the remainder returned by
modw, the result would be the original dividend.

s

Operation: w2 < (w2) MOD (w1)
N <0
Z <0
V <« integer overflow
C <0
Traps: Divide-by-zero
Format: Register
15 8 7 4 3 0
10 0 1 1 1 0 1 wi w2
]
Example: loadi $1234,r2 # Load 1234 into r2
loadq $11,r1 # Load 11 into r1
modw r1,r2 # Divide r2 by r1, save remainder in r2

ADVANCE INFORMATION 2-52

M ODWU Modulus Word Unsigned MODWU

Syntax:

Description:

Operation:

Traps:

Format:.

Example:

modwu wiw2

Divide the contents of general register w2 by the contents of general register w1 and put
the remainder in w2. The operands are treated as unsigned integers. If the remainder is
non-zero, then it is positive.

NOTE
For the same dividend and divisor, if the quotient returned by divwu
and the remainder returned by modwu are multiplied, the result would
be the original dividend.

w2 « (w2) MOD (w1)
N <0
Z <0
V <0
C <0

Divide-by-zero

Register
15 8 7 4 3]
10 0 1 1 1 1 1 w1 w2
|
loadi $0xfffe,r5 # Load fffe hex into r5
loadq $0x11,r0 # Load 11 hex into r0
modw r0,r5 # Divide r5 by r0, save remainder in r5

2-53 ADVANCE INFORMATION

MOVC Move Characters _ MOVC

Syntax: movc

Description: Move a string of bytes. The length of the strings is in r0, the address of the source string is
in r1, and the address of the destination string is in r2. On an exception, the registers are
updated so that restarting the instruction moves the remaining portion of the string.

The source and destination strings may not overlap. The initc instruction should be used to
initialize memory or the source string may be moved in blocks.

Operation: while (r0) # 0
(r2)«< ((r1))
r0 < (ro)—1
r1 < (r1)+1
r2 < (r2)+1

Traps: Page fault
Read protect fault
Write protect fault
Memory fault

Format: Macro

15 8 7 0

0 0 0 0 0 0 0 OjO O O OO O 0 O

31 24 23 20 19 16
Example: Move a string of 124 characters at label string1 to string2.
loadi $124,r0 # Load string length into r0
loada string1,r1 # Load address of source string into r1
loada string2,r2 # Load address of destination string into r2
movc # Move the characters

ADVANCE INFORMATION 2-54

MOVD Move Double Floating MOVD

Syntax: movd d1,d2

Description: Move the double-precision contents of floating register d1 to floating register d2. On a trap,
the PC and the original value in d2 can be obtained by using the loadfs instruction.

Operation: d2 « (d1)
Traps: none
Format: Register
15 8 7 4 3 0
0 01 0 0 1 1 0 -~ odt d2
]
Example: movd f1,f2 # Move (f1) to 2

2-55 ADVANCE INFORMATION-

MOVDL Move Double Floating to Longword | MOVDL |

Syntax: movdl ainl2
Description: Move the dquble-precision contents of floating register d1 to longword register pair 12 with-

out conversion. :
Operation: 12 « (d1)
Traps: - none
Format: Register

15 8 7 4 3 0

001 0 1 1 1 0 di 12

|

Example: movdl f1,r2 # Move (f1) to reg pair (r2,r3)

ADVANCE INFORMATION - 2-56

MOVLD Move Longword to Double Floating MOVLD

Syntax: movid 11,02
Description: Move the contents of longword register pair |1 to floating register d2 without conversion.
Operation: (d2) « (1)
Traps: none
Format: Register

15 8 7 -4 3 0

00 1.0 1 1 1 1 " (] d2

|

Example: movld ro,f2° # Move (r2,r3) to double floating reg f2

2-57 ADVANCE INFORMATION

MOVPW

Syntax: movpw pl,w2

Description: Move the contents of processor register p1 to general register w2.

preted as follows:

Move Processor Register to Word

p1 Name Meaning
0 PSW Program status word
1 SSW Supervisor status word
215 — (Reserved)
Operation: w2 < (p1)
Traps: none
Format: Register
15 8 7
0 0 0 1 0 0 0 1 p1 w2
|
Examples: movpw psw,r2 # Move (PSW) to r2
movpw ssw,r2 # Move (SSW) to r2

ADVANCE INFORMATION

2-58

MOVPW

The p1 value is inter-

M OVS Move Single Floating M OVS

Syntax: movs s1,s2
Description: Move the single-precision contents of floating register s1 to floating register s2.
Operation: §2 « (s1)
Traps: none
Format: Register

15 8 7 4 3 0

06 01 0 0 1 0 O s1 s2

]

Example: movs f1,f2 # Move (f1) to f2

2-59 ADVANCE INFORMATION

M OVS U Move Supervisor to User (Privileged) M OVS U

Syntax: movsu wi,w2

Description: Move the contents of supervisor general register w1 to user general register w2. A privi-
leged instruction trap occurs if this instruction is executed in user mode.

Operation: wW2usr < (W1)sup
N « (W2<31 >)usr

Z < (W2)ysr=0

V <0
C«<0
Traps: Privileged instruction
Format: Macro
15 8 7 (]

i 0 1t 1 0 1 1 0f0 0 0 0 0 O0 0 1

0 0 o 0 0 0 0 O wi w2

31 24 23 20 19 16

Example: movsu r0,r11 # Move (r0) to r11

ADVANCE INFORMATION 2-60

MOVSW Move Single Floating to Word M OVSW

Syntax: inovsw s1,w2
Description: Movg the single-precision contents of floating register s1 to general register w2 without con-
version.
Operation: w2 < (s1)
Traps: none
Format: Register
15 8 7 4 3 (]
0 01 0 1 1 0 0 s1 w2
l
Example: movsw f1,r2 # Move (f1) to r2

2-61 - ADVANCE INFORMATION

MOVUS Move User to Supervisor (Privileged)

MOVUS

Syntax: movus wi,w2
Description: Move the contents of user general register w1 to supervisor general register w2.
Operation: W2sup < (W1)usr

N < (W2<31>)syp

Z < (W2)sup=0

V<0
C<0
Traps: Privileged instruction
Format: Macro
15 8 7 0
1 0 1 1 0 1 6jo o0 0 0 O (]
l
0 0 0 0 0 O] wi w2
31 l 24 23 20 19 16

Example: movus ri,r2

ADVANCE INFORMATION

Move (r1) to r2

2-62

MOVW

Syntax:
Description:

Operation:

Traps:

Format:

Example:

Move Word M OVW

movw wiw2
Move the contents of general register w1 to general register w2.

w2 < (wt)

N < w2<31>)
Z < (w2)=0

V <0

C <0

none
Register

15 8 7 4 3 0

1 0 0 0 0 1 0 O wi w2

movw r3,r0 # Move (r3) to r0

2-63 ADVANCE INFORMATION

MOVWP Move Word to Processor Register MOVWP

Syntax:

Description:

Operation:

Traps:

Format:

Examples:

movwp w2,p1

Move the contents of general register w2 to processor register p1. The p1 value is inter-
preted as follows:

p1 Name Meaning

0 PSW Program status word
1 SSW Supervisor status word
2-15 — (Reserved)

If p1 represents the PSW, then the condition codes are also set. Attempting to modify the
SSW in user mode will cause a noop.

p1 < (w2)

N <« [p1=psw] AND PSW<N>
Z <« [p1=psw] AND PSW<Z>
V <« [p1=psw] AND PSW<V >
C < [p1=psw] AND PSW<C>

none
Register
15 8 7 4 3 0
0 0 01 0 0 0 0 p1 w2
]
movwp r2,psw # Move (r2) to PSW

The following example only works in supervisor mode:

movwp r2,ssw # Move (r2) to SSW

ADVANCE INFORMATION 2-64

MOVWS | Move Word to Single Floating MOVWS

Syntax: movws w1,s2
Description: Move the contents of general register w1 to floating register s2 without conversion.
Operation: 2 « (w1)
Traps: none
Format: Register

15 8 7 4 3 (]

0 0 1 0 1 1 0 1 wi s2

]

Example: movws r1,f2 # Move (r1) to f2

265 ADVANCE INFORMATION

~

MULD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Multiply Double Floating M U LD

muld d1,d2

Multiply the double-precision contents of floating register d2 by the double-precision con-
tents of floating register d1 and put the result in d2. On a trap, the PC and the original value
in d2 can be obtained by using the loadfs instruction.

d2 « (d2)x(d1)

FX « floating inexact result
FU « floating underflow
FV « floating overflow

FI < floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Register
15 ; 8 7 4 3 0
00 1 0 1 0 1 0 d1 d2

|

Assume fpvali contains 1239237.1234 and fpval2 contains 8989.44334.

loadd fpval1,f1 - # Load double floating value
loadd fpval2,f2 # Load double floating value
muld f1,f2 # Multiply the values

The result is 11140051905.62889.

ADVANCE INFORMATION 2-66

MULS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Multiply Single Floating M U LS

muls s1,82

Multiply the single-precision contents of floating register s2 by the single-precision contents
of floating register s1 and put the result in s2. On a trap, the PC and the original value in d2
can be obtained by using the loadfs instruction.

82 « (s2)x(s1)

FX « floating inexact result
FU « floating underflow
FV « floating overflow

Fl < floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Register
15 8 7 4 3 0
0 0 1. 0 1 0 0 O s1 s2

l

loadi $0xf8ccd,r0 # Load r0 with value
movws r0,f0 # Transfer to fO

loadi $0xc27dd,r0 # Load r0 with value
movws r0,f1 # Transfer to f1

muls fo,f1 # Multiply the numbers
stors f1,place1 # Save the result

place1: .space

2-67 ADVANCE INFORMATION

M U LW Multiply Word M U LW

Syntax: mulw wi,w2

Description: Multiply the contents of general register w2 by general register w1 and and put the least-
significant word of the product in w2. The operands are treated as signed integers. Over-
flow is set if the product cannot be represented in one word.

Operation: w2 < (W2) x (w1)
N <0
Z <0
V <« integer overflow
C <0
Traps: none
Format: Register
15 8 7 4 3 (]
1 0 0 1 1 0 0 0 w1 w2
]
Example:
loadi $999,r4 # Load 999 into r4
loadw wdata,r2 # Get value at wdata
mulw . r2,r4 # Multiply the numbers

ADVANCE INFORMATION 2-68

M U LWU Multiply Word Unsigned M U LWU

Syntax:

Description:

Operation:

Traps:

Format:

Example:

mulwu wiw2

Multiply the contents of general register w2 by the contents of general register w1 and put
the least-significant word of the product in w2. The operands are treated as unsigned inte-
gers. Overflow is set if the result cannot be represented in one word.

w2 < (W2) x (w1)

N <0
Z <0
V < integer overflow
C <0
none
Register
15 8 7 4 3 0
10 0 1 1 0 1 O w1 w2
|
loadhu hwval,r0 # Load the value at hwval
loadq $33,r1 # Load 33 into r1
mulwu ro,r # Multiply the numbers

2-69 ADVANCE INFORMATION

M U LWUX Multiply Word Unsigned Extended M U LWUX

Syntax:

Description:

Operation:

Traps:

Format:

Example:

mulwux w12

Multiply the contents of general register w1 by the contents of general register w2 and put
the product in longword register pair I2. The operands are treated as unsigned integers.
Overflow is set if the product cannot be represented in one word.

12 « (W2) x (w1)

N<O
Z <0
V <« result requires a longword
C+<o0
none
Register
15 8 7 4 3 0
1 0 0 1 1 0 1 1 wi 2 o0
|
loadhu uhwval,r3 # Load the value at uhwval
loadi $Oxff,ré # Load ff hex into r6
mulwux r3,r6 # Multiply the numbers

ADVANCE INFORMATION 2-70

M U LWX Multiply Word-Extended M U LWX

Syntax:

Description:

Operation:

Traps:

Format:

Example:

‘mulwx w112

Multiply the contents of general register w1 by the contents of general register w2 and put
the product in longword register pair I2. Overflow is set if the product cannot be represented
in one word.

12 « (W2) x (w1)

N<O
Z <0
V « product requires a longword
C«<0
none
Register
15 8 7 4 3 0
1 0 0 1 1+ 0 0 1 wi 12 (]
|
loadhu wxval,r0 # Load the value at wxval
loadi $1023,r4 # Load 1023 into r4
mulwx ro,r4 # Multiply the numbers

27 ADVANCE INFORMATION

NEGD

Syntax:

Description:

Operation:
Traps:

Format:

Example:

Negate Double Floating N EGD

negd di1,d2

Negate the double-precision contents of floating register d1 and put the result in floating
register d2. The sign of d1 is reversed so that +0.0 and NaNs are handled properly.

d2 « —(d1)
none

Macro

15 8 7 0

0 0 0 0 0 0 0 O d1 d2

31 24 23 20 19 16

negd f0,f0 # Negate the register

ADVANCE INFORMATION 2-72

NEGS

Syntax:

Description:

Operation:
Traps:

Format:

Example:

Negate Single Floating

negs s1,82

NEGS

Negate the single-precision contents of floating register s1 and put the result in floating reg-
ister s2. The sign of s1 is reversed so that +0.0 and NaNs are handled properly.

2-73

© 82 « —(s1)

none

Macro

15 8 7 0
1 0 1 1 0 1 0 0f0 O 1 1 0 0

l
0 0 0 0 0 0 0 O s1 s2
31 I 24 23 20 19 16
negs 1,12 # Negate the value in f1, store in f2

ADVANCE INFORMATION

N EGW . ‘ Negate Word N EGW

Syntax: negw wi,w2

Description: Two’s complement the contents of general register w1 and put the result in general register
w2. Overflow is set if w1 contains the largest negative number (-23'). Carry is set if w1 does
not equal 0.

Operation: w2 <« —(w1)
N < w2<31>)
Z < w2)=0
V < integer overflow
C <« borrow in

Traps: none
Format: Register
15 8 7 4 3 0
1 0 0 1 0 0 1 1 w1 w2
]
Example: negw r,r # Two’s 6omplement (r1)

ADVANCE INFORMATION 2-74

N OOP A No Operation N OO P

Syntax: noop bb
Description: No operation is performed. bb is ignored.
Operation: * none
Traps: none
Format: Control

15 8 7 0

0 0 0 0 0 0 0 O 7 bb

I s
Exampies: noop $0 # No operation
noop # Operand is optional

\
275 ADVANCE INFORMATION

N OTQ Not Quick N OTQ

Syntax: notq wq,w2

Description: Zero fill the quick value wq on the left, take its one’s complement and put the result in gen-
eral register w2.

Operation: w2 < ~wq
N <1
Z <0
V <0
C <0
Traps: none
Format: Quick
15 , 8 7 4 3 0
i 01 0 1 1 1 0 wq w2
]
Example: notq $4,r0 # Load -5 into rO

ADVANCE INFORMATION 2-76

NOTW Not Word NOTW

Syntax: notw wilw2

Description: Take the one’s complement of the contents of general register w1 and put the result in gen-
eral register w2.

Operation: w2 < ~(wl)
N < (w2<31>)
Z < (w2)=0
V <0
C <0
Traps: none
Format: Register
15 8 7 4 3 0
1 01 0 1 1 0 0 wi w2
l
Example: notw r1,r2 # One’s complement r1, put in r2

2-77 ADVANCE INFORMATION

O RI OR Immediate O RI

Syntax: ori wi,w2

Description: Bitwise OR the contents of general register w2 with immediate value wi, and put the result
in w2. A 16-bit immediate value is sign-extended first.

Operation: w2 < (W2) | wi
N < w2<31>)
Z < (w2)=0
V <0
C <0

Traps: none

Formats: Immediate

If —21% < wi = +2%5 -1, this format is used:

15 8 7 4 3 0
1 0 0 0 1 1 1 1|1 0 1 1 w2
|
S wi
31 30 _ 16
If +21° < wi <= +231 =1 or -2'5 < wi < -215 - 1, this format
is used:
15 ‘ 8 7 4 3 0
1 0 0 0 1 1 1 1|0 0 1 1 w2
]
wi low
S wi high
47 46 32
Example: Assume r0 contains 0x00ffOOff.)
©oori $0xff,r0 # Or Oxff with (r0)

The result put in r0 is 0x00ffQOff.

ADVANCE INFORMATION 2-78

ORW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

OR Word o RW

orw wi,w2

Bitwise OR the contents of general register w2 with the contents of general register w1 and
put the result in w2.

w2 < (W2) | (w1)
N « w2<31>)
Z < w2)=0

V <0

C <0

none
Register

15 8 7 4 3 0

Assume r0 contains 0x7770088f and r1 contains 0x001100ff.
orw r1,r0 # Or (r0) with (r1)

The result put in r0 is 0x777108ff.

2-79 ADVANCE INFORMATION

PO PW Pop Word PO PW

Syntax: popw wi,w2

Description: Pop the word on the top of the stack into general register w2. General register w1 contains
the stack address. The stack grows from high to low addresses.

On a data page fault, the contents of w1 will have been incremented. The page fault han-
dler must check for this case and decrement the stack pointer by 4 before restarting the
instruction.

Operation: wl < (wi)+4
w2 < ((w1)-4

Traps: Page fault
Read protect fault
Memory fault
Format: Register

15 8 7 4 3 0

Example: Assume sp = r15 = stack pointer.

popw sp,r0 # Pop word into r0

ADVANCE INFORMATION - 2-80

PUSHW Push Word PUSHW

Syntax: pushw w2,wi

Description: Push the contents of general register w2 onto the stack. General register w1 contains the
stack address. The stack grows from high to low addresses.

On a data page fault, the contents of w1 will have been decremented. The page fault han-
dler must check for this case and increment the stack pointer by 4 before restarting the
instruction.

Operation: wl <« (w1)-4
(w1) < (w2)

Traps: Page fault
Write protect fault
Memory fault
Format: Register

15 8 7 4 3 0

0 0 01 0 1 0 O wi w2

Example: Assume sp = r15 = stack pointer.

pushw r2,sp # Push (r2) onto stack

2-81 ADVANCE INFORMATION

RESTDI‘I Restore Double Floating Registers fn - {7 RESTDI‘]

Syntax: restdn

Description: This description represents the eight instructions restd0 through restd7. The restdn
instruction restores the double-precision, floating registers fn through 7 from the stack.
The stack pointer is assumed to be in register r15. On a data page fault, the stack pointer is
unchanged to permit restarting. A floating register containing a single-precision value will
be restored properly by the appropriate restdn instruction, but will not appear in |IEEE
single-precision format while in memory.

Operation: dn: d7 < ((r15)) : ((r15) + 8 x [7 — n])
r15 < (r15) + 8 x [8 — n]

Traps: Page fault
Read protect fault
Memory fault
Format: Macro

15 8 7 3 2 0

0O 0 o 0 0 0 0 O0(O 0 O O|O O o0 O

31 24 23 20 19 16
Example: restd3 # Restore floating registers f3 : {7
restd7 # Restore floating register f7

ADVANCE INFORMATION 2-82

R EST U R Restore Usgr Registers (Privileged) R EST U R

Syntax: restur wi

Description: Restore all the user registers. Restore the contents of all user registers r0 through r15 from
supervisor memory addressed by supervisor general register w1. Register w1 may be the
supervisor stack pointer, r15. On a data page fault, w1 is unchanged to permit restarting.

A privileged instruction trap occurs if this instruction is executed in user mode.

Operation: 10 : r1dygr < ((W1)) : (W1) + 60)syp
w1l < (w1) + 64

Traps: Privileged instruction
Page fault
Read protect fault
Memory fault

Format: " Macro

15 8 7 4 3 0

1 0 11 0 1 1 0f0o o o 0|0 o0 1 1

0 0 0 0 0 0 0 O wi 0 0 0 0O
l
31 ' -24 23 20 19 16
Example: restur r # Restore user’s registers

2-83 ADVANCE INFORMATION

RESTWI‘I Restore Registers rn - r14 RESTWI‘I

Syntax:

Description:

Operation:

Traps:

Format:

Example:

restwn

This description represents the 13 instructions restw0 through restw12. The restwn
instruction restores the general registers rn through r14 from the stack. The stack pointer is
assumed to be in register r15. On a data page fault, the stack pointer is unchanged to per-
mit restarting.

n : r14 < ((r15)) : ((r15) + 4 x (14— n))
r15 « (r15)+ 4 x [15-n]

Page fault
Read protect fault
memory fault

Macro

15 8 7 3 2 0

o 0 o o 0o 0 0 0J]O O O O O O O O

31 24 23 20 19 16

restwb # Restore registers r5 : r14

ADVANCE INFORMATION 2-84

RET

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Return from Subroutine RET

ret w2

Pop the word on top of the stack into the PC. General register w2 contains the stack
address. This undoes the effect of the call instruction.

PC « (wW2))
w2 <« (W2)+4

Page fault
Read protect fault
Memory fault

Register

15 8 7 4 3 0

Assume sp =r15 = stack pointer.

ret sp # Return to calling program

2-85 ADVANCE INFORMATION

RETI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

RETI

Return from Interrupt (Privileged)

reti w1

Return from interrupt or trap. Restore the contents of the SSW, PSW, and PC from the
supervisor stack addressed by the contents of general register wi. The supervisor must
assure that the stack references do not cause page or protect faults.

A privileged instruction trap occurs if this instruction is executed in user mode.

SSW « ((w1))

PSW « ((w1)+4)
PC « ((w1)+8)
wl < (w1)+12
Privileged instruction

Macro

15 8 7 0

1t 01 1 0 1 1 0/0 0 0 0 0 1 0 O

wi 0

31 24 23

Assume sp = r15 = stack pointer.

reti sp

ADVANCE INFORMATION

20 19

Return from interrupt

286

16

ROTI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Rotate Immediate ROTI

roti wi,w2

Rotate the contents of general register w2 by the number of bits given in the 16-bit immedi-
ate value wi. A positive count rotates the contents of w2 to the left, moving bit 31 into bit O:

31 0

- < —

A negative count rotates to the right, moving bit 0 into bit 31:

31 0

» — — —

w2 < (w2) ROT wi
N « (w2<31>)
Z < (w2)=0

V <0

C <0

none

Immediate

15 8 7 4 3 0

o o0 1+ 1 1t 1 0 01 0 1 1 w2

S wi

31 30 16

Assume r1 contains 0x3333ffff.

roti $1,r1 # Rotate r1 left 1 place
The result put in r1 is 0x6667fffe.
Assume r1 contains 0x3333ffff.

roti $-1,n # Rotate r1 right 1 place

The result put in r1 is 0x9999ffff.

2-87 ADVANCE INFORMATION

ROTL Rotate Longword : ROTL

Syntax: rotl wi, 2
Des;:ription: Rotate the cbntents of longword register pair 12 by the number of bits given in general regis-
ter wi. A positive count rotates the contents of 12 to the left, moving bit 63 into bit 0:
63 0
- - - - -— |-

A negative count rotates the contents of w2 to the right, moving bit 0 into bit 63:

63 0

Operation: 12 < (12) ROT (w1) N
N < (2<63>)
Z < (12)=0
V<0
C+0

Traps: none
Format: Register

15 8 7 4 3 0

o 0 1 1 0 1 0 1 wi 2 o0

Example: Assume r0 contains 2, r4,r5 contains 0x3333ffff 77770000.
rotl r0,r4 # Rotate r4,r5 left 2 place
The result put in r4,r5 is Oxcccfffffbbb80000.
Assume r0 contains -2, r4,r5 contains 0x3333ffff 77770000.
rotl ‘ r0,r4 # Rotate r4,r5 right 2 places

The result put in r4,r5 is 0xOcccfffffbbb8000.

ADVANCE INFORMATION 2-88

ROTLI Rotate Long Immediate ROTLI

Syntax: rotli wi,l2
Description: Rotate the contents of longword register pair 12 by the number of bits given in the 16-bit
immediate value wi. A positive count rotates the contents of I2 to the left, moving bit 63 into
bit 0:
63 0
< - - - - |-

‘A negative count rotates the contents of I2 to the right, moving bit 0 into bit 63:

63 0

> — — —_— — P>

Operation: 12 < (12) ROT wi
N < (12<63>)
Z < (2)=0
V<0
C<o

Traps: none

Formats: 15 8 7 4 3 0

31 30 16

Example: rotli $8,r2 # Rotate left 1 byte

2-89 ADVANCE INFORMATION

ROTW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Rotate Word

rotw wiw2

ROTW

Rotate the contents of general register w2 by the number of bits given in w1. A positive
count rotates the contents of general register w2 to the left, moving bit 31 into bit 0:

31 0

- -

A negative count rotates right, moving bit 0 into bit 31:

31 0

> — — —>

w2 < (w2) ROT (w1)
N <« w2<31>)

Z < w2)=0

V <0

C «0

none
Register

15 8 7 4 3

Assume r0 contains 8 and r2 contains 0x000f0071.
rotw r0,r2 # Rotate r2 left 8 bits

The result put in r2 is 0x0f007100.

ADVANCE INFORMATION 2-90

SAVE Dn Save Registers fn : {7 SAVE Dn

Syntax: savedn

Description: This description represents the eight instructions saved0 through saved7. The savedn
instructions save the double-precision floating registers dn through d7 on the stack. The
stack pointer is assumed to be in register r15. On a data page fault, the stack pointer is
unchanged to permit restarting. A floating register that contains a single-precision value will
be restored properly by the appropriate restdn instruction, but it will not appear in IEEE
single-precision format while in memory.

Operation: (r15) -8 x [8 —n] : (r15) « (dn) : (d7)
r15 < (r15)-8x[8 - n]

Traps: Page fault
Write protect fault
Memory fault

Format: Macro
15 8 7 3 2 0
1 0 1.1 0 1 0 0|0 0 1 0 O n
] |

6 0 0 0 0 0 0 0[O0 0 0 0 0 0 0 O

31 24 23 16

Example: saved4 # Save floating registers f4 : {7

201 ~ ADVANCE INFORMATION

SAV E U R Save User Registers (Privileged) SAV E U R

Syntax: saveur wi

Description: Save the contents of user general registers r0 through r15 in supervisor memory addressed
by supervisor general register w1. Register w1 may be the supervisor stack pointer, r15. On
a data page fault, w1 is unchanged to permit restarting.

A privileged instruction trap occurs if this instruction is executed outside of supervisor
mode.

Operation: (w1) =4 : (W1) = 64gyp < (r15) : (rO)usr
wi « (w1)-64
Traps: Privileged instruction
Page fault
Write protect fault
Memory fault

Format: Macro

15 8 7 0

0o 0 0 0 0 0 0 O S wi 0 0 0 O
| ,
31 24 23 20 19 16
Example: saveur r1 # Save user’s registers r1 : r15

ADVANCE INFORMATION 292

SAVEWn

Syntax:

Description:

Operation:

Traps:

, Format:

Example:

SAVEWn

Save Registers rn : r14

savewn

This description represents the 13 instructions savew0, through savew12. The savewn
instruction saves the general registers rn through r14 on the stack. The stack pointer is
assumed to be in register r15. On a data page fault, the stack pointer is unchanged to per-
mit restarting.

(r18) =4 x[15-n] : (r15) « (rn) : (r14)
r15 < (r15)— 4 x [15 - n]

Page fault
Write protect fault
Memory fault

Macro

15 . 8 7 3 2 0

savew6

24 23 16

Save registers 6 : r14

2-93 ADVANCE INFORMATION

SCALBD Scale By, Double Floating SCALBD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

scalbd w1,d2

Multiply the double-precision contents of floating register d2 by two raised to the integer
contents of general register w1 and put the result in d2. In the normal case, just the expo-
nent is modified; a multiply operation is not performed. On a trap, the PC and the original
value in d2 can be obtained by using the loadfs instruction.

d2 « (d2) x 2W1)

FX « floating inexact result
FU « floating underflow
FV « floating overflow

Fl « floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Macro

15 8 7 0

00 0 0 0 O O O wi d2

31 24 23 20 19 16

scalbd r1,f0 # Scale the floating number

ADVANCE INFORMATION 2-94

SCALBS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

scalbs w1,s2

Scale By, Single Floating

SCALBS

Multiply the contents of single-precision floating register s2 by two raised to the integer con-
tents of general register w1 and put the result in s2. In the normal case, just the exponent is
modified; a multiply operation is not performed. On a trap, the PC and the original value in

d2 can be obtained by using the loadfs instruction.

§2 « (s2) x 2W1)

FX « floating inexact result
FU « floating underflow
FV < floating overflow

FI « floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Macro
15 8 7 (]
10 1 1 0 1 0 o0/|0 o 11 0o o
l
0 0 0 0 0 0 0 O wi s2
31 I 24 23 20 19 16
scalbs r1,f0 # Scale the double floating value

2-95

ADVANCE INFORMATION

SHAI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Shift Arithmetic Immediate SHAI

shai wi,w2

Shift arithmetically the contents of general register w2 by the number of bits given by the
16-bit immediate value wi. Overflow is set at the end of the operation if the sign of the result
changes at any time during the operation. A positive count shifts the contents of general
register w2 left, bringing zeros into bit 0 and shifting the bit 31 out:

31 0

- -— - - |0

A negative count shifts right, bringing in copies of bit 31:

31 0

|
w2 « (w2) SHA wi
N « (w2<31>)
Z < (w2)=0
V < integer overflow
C <0
none
Immediate
15 8 7 4 3 0
001 1 1 0 0 01 0 1 1 w2
|
S wi
31 30 16

Assume r2 contains 0xffff0000.

shaw $8,r2 # Shift r2 left 8 places
The result put in r2 is 0xff000000.
Assume r2 contains 0xffff0000.

shaw $-8,r2 # Shift r2 right 8 places

The result put in r2 is 0xffffff00.

ADVANCE INFORMATION 2-96

SHAL

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Shift Arithmetic Longword SHAL

shal wi,l2

Shift arithmetically the contents of longword register pair 12 by the number of bits given in
wi1. Overflow is set at the end of the operation if the sign of the result changes at any time
during the operation. A positive count shifts the contents of I2 to the left, bringing zeros into
bit 0:

63 0

] B - - - |—

A negative count shifts right, bringing in copies of bit 63:

63 0

> > —_— — — E—

—

12 < (12) SHA (w1)

N < (12<63>)

Z < (12)=0

V <« integer overflow
C«<o0

none
Register

15 8 7 4 3 0

Assume r1 contains 5, r6,r7 contains 0x1111ffff00ffO0ff.
shal r1,ré # Shift r6,r7 left 5 places
The result put in r6,r7 is 0x223fffe01fe01fe0.
Assume r1 = -5, r6,r7 = Oxffff111100ff00ff.
shal r1,ré # Shift r6,r7 right 5 places

The result put in r6,r7 is Oxfffff8888 8807f807.

2-97 ADVANCE INFORMATION

S HALI Shift Arithmetic Longword Immediate S HALI
Syntax: shali wi, 12
Description: Shift arithmetically the contents of longword register pair 12 by the number of bits given in

the 16-bit immediate value wi. Overflow is set at the end of the operation if the sign of the
result changes at any time during the operation. A positive count shifts the contents of 12 to

the left, bringing zeros into bit O:

63 0

-—] -— - - -+ |e—0

A negative count shifts right, bringing in copies of bit 63:

63 0

Operation: 12 < (12) SHA wi
N « (w2<31>)
Z <« (w2)=0
V <« integer overflow
C«<o0

Traps: none

Format: Immediate

15 8 7 4 3 0

S wi

31 30 16
Example: Assume r8 contains 0x1110ffff.

shali $-4,8 # Shift r8 right 4 bits

The result put in r8 is 0x01110ff.

ADVANCE INFORMATION 2-98

SHAW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Shift Arithmetic Word SHAW

shaw wi,w2

Shift arithmetically the contents of general register w2 by the number of bits given in gen-
eral register w1. Overflow is set at the end of the operation'if the sign of the result changes
at any time during the operation. A positive count shifts the contents of general register w2
to the left, bringing zeros into bit 0:

31 0

- - < |

A negative count shifts right, bringing in copies of bit 31:

31 0

> | — — [

L]

w2 < (w2) SHA (w1)
N < w2<31>)

Z < (w2)=0

V < integer overflow
C <0

none

Register

15 8 7 4 3 0

Assume r10 contains 8, r2 contains 0xffff0000.
shaw r10,r2 # Shift r2 left 8 places
The result put in r2 is 0xff000000.
Assume r10 contains - 8, r2 contains 0xffff0000.
shaw r10,r2 # Shift r2 right 8 places

The result put in r2 is 0xffffff00.

299 ADVANCE INFORMATION

SHLI

Syntax:

Description:

Operation:

Traps:

Format;

Example:

Shift Logical Inmediate SH LI

shli wi,w2

Shift logically the contents of general register w2 by the number of bits given in the 16-bit
immediate value wi. A positive count shifts the contents of w2 out the left; bringing zeros
into bit 0:

31 0

- % - - [0

A negative count shifts the contents of w2 out the right; bringing zeros into bit 31.

31 0

00— —» —» G S

w2 < (w2) SHL wi
N < w2<31>)
Z < (w2)=0

V <0

C <0

none

Immediate

15 8 7 4 3 0

o o0 1 1 1 0 1 0|1 0 1 1 w2

S wi

31 30 16

Assume r4 contains 0xffff0000.
shli $-8,r4 # Shift r4 right 8 places

The result put in r4 is 0x00ffff00.

ADVANCE INFORMATION 2-100

SHLL

Syntax:

Description:

Operation:

Traps:

Format:

Examples:

Shift Logical Longword S H LL

shll wi,l2

Shift logically the contents of longword register pair 12 by the number of bits given in gen-
eral register w1. A positive count shifts the contents of I2 to the left, bringing zeros into bit 0:

63 0

-— — - - — - |e—0

A negative count shifts right, bringing zeros into bit 63:

63 0

00— —> —_— —_— > >

12 « (12) SHL (w1)
N « (12<63>)

Z < (2)=0

V <0

C <0

none
Register

15 8 7 4 3 0

0o 0 11 0 0 1 1 wi 12 0

Assume r1 contains 16 and r2,r3 contains 0x123456780000ffff.
sh11 r1,r2 # Shift (r2,r3) by (r1)

The result put in r2,r3 is 0x56780000ffff0000.

Assume r1 contains - 16 and r2,r3 contains 0x123456780000ffff.
sh11 r1,r2 # Shift (r2,r3) by (r1)

The result put in r2,r3 is 0x0000000012345678.

2-101 ADVANCE INFORMATION

SHLLI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Shift Logical Longword Immediate S H L L I

shlli wi,l2

Shift logically the contents of longword register pair 12 by the number of bits given in the 16-
bit immediate value wi. A positive count shifts the contents of I2 to the left, bringing zeros
into bit O:

63 0

- -+ - - |«—70

A negative count shifts right, bringing zeros into bit 63:

63 0

00— —> [— N —_—

12 « (12) SHL wi
N « (12<63>)
V < (2)=0

Z <0

C+0

none
Immediate

15 8 7 4 3 0

S wi

31 30 16
Assume r2,r3 contains 0x7777ftff7777ffff.
sh11i $8,r2 # Shift (r2,r3) left 8 places
The result put in r2,r3 is 0x77ffff77771fff00.
Assume r2,r3 contains 0x7777{fff7777ffff.
~ shiii $-8,r2 # Shift (r2,r3) right 8

The result put in r2,r3 is 0x007777{fff7777ff.

ADVANCE INFORMATION 2-102

SHLW

Syntax:

Description:

Operation:

Traps:

Format:

Examples:

Shift Logical Word

shiw wi,w2

SHLW

Shift logically the contents of general register w2 by the number of bits given in general reg-
ister w1. A positive count shifts the contents of general register w2 to the left, bringing zeros

into bit O:

31

0

-+ — -

-— |0

A negative count shifts right, bringing zeros into bit 31:

31 0
00— —» —» —> |—>
w2 < (w2) SHL (w1)
N <« w2<31>)
Z < (w2)=0
V <0
C <0
none
Register
15 8 7 4 3 0
0 0o 1 1. 0 0 1 O wi w2
l

Assume r1 contains 4 and rO contains Oxff.
shiw *r1,r0 # Shift (r0) by (r1)

The result put in r0 is 0x000000ff0.

Assume r1 contains -4 and r0 contains Oxff.
shiw r1,r0 # Shift (r0) by (r1)

The result put in r0 is 0x0000000f.

2-103

ADVANCE INFORMATION

STORB

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Store Byte

storb w2,ba

STORB

Store the least-significant byte of the contents of general register w2 into memory

address ba.

ba « (w2)

Page fault

Write protect fault
Memory fault
Address

If addressing is relative, this format is used:

15 8 7 4 3

For all other addressing, this format is used:

15 8 7 4 3

0 1 1 1 1 0 0 1| addrmode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

storb r2,label1 # Store (r2) at labell

ADVANCE INFORMATION 2-104

STORD Store Double Floating STO RD

Syntax: stord d2,da

Description: Store the double-precision contents of floating register d2 into memory addresses da.
Operation: da « (d2)

Traps: Page fault

Write protect fault
Memory fault

Format: Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

0 1 1.1 0 1 1 1| addrmode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Example: stord f0,fpsave # Store (f0) at fpsave

2-105 ADVANCE INFORMATICN

STO R H Store Halfword STO R H

Syntax: storh w2,ha

Description: Store the least-significant halfword of the contents of general register w2 into memory
address ha.

Operation: ha < (w2)

Traps: Page fault

Write protect fault
Memory fault

Format: Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

0 1 1 1 1 1 0 1| addrmode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Example: storh r12,hwsav1 # Store (r12) at hwsav1

ADVANCE INFORMATION 2-106

STO RS Store Single Floating STO RS

Syntax: stors s2,sa
Description: Store the single-precision contents of floating register s2 into memory address sa.
Operation: sa < (s2)
Traps: Page fault
Write protect fault
Memory fault
Format: Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

0 1 1 1 0 1 0 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

Example: stors f0,sfbuff # Store (f0) at sfbuff

2-107 ADVANCE INFORMATION

STO RW Store Word STO RW

Syntax:
Description:
Operation:

Traps:

Format:

Example:

storw w2,wa

Store the contents of general register w2 into memory address wa.
wa < (w2)

Page fault

Write protect fault

Memory fault

Address

If addressing is relative, this format is used:

15 8 7 4 3 0

For all other addressing, this format is used:

15 8 7 4 3 0

o 1 1 1 0 0 0 1 addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

storw r0,waddr # Store (r0) at waddr

ADVANCE INFORMATION 2-108

SUBD

Syntax:

Description:

Operation:

Traps:

Format:

Example:

subd

di,d2

Subtract Double Floating

SUBD

Subtract the double-precision contents of floating register d1 from the double-precision
contents of floating register d2 and put the result in d2.

d2 < (d2)-(d1)

FX « floating inexact result
FU « floating underflow
FV « floating overflow

FI < floating invalid

Floating inexact result

Floating invalid operation
Floating overflow

Floating underflow

Register
15 7 0
0 1 0 di d2
subd 1,10 # Subtract (f1) from (f0)

2-109

ADVANCE INFORMATION

SUBI

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Subtract Inmediate S U BI

subi wi,w2

Subtract the immediate value wi from the contents of general register w2 and put the result
in w2. Operands may be signed or unsigned integers. Overflow is set if the input operands
(which are treated as signed integers) have different signs and the sign of the result has the
same sign as wi.

w2 < (W2) — wi

N < w2<31>)

Z < (w2)=0

V « integer overflow
C <« borrow in

none

Immediate

If -2 < wi < +215—1, this format is used:

15 8 7 4 3 (]
1 01 0 0 0 1 1|1 0 1 1 w2
]
S wi
31 30 16
If +25 < wi < +231 =1 or -2'5 < wi < -2'% - 1, this format
is used:
15 8 7 4 3 0
1 0 1t 0 0 0 1 1/0 0 1 1 w2
|
wi low
S wi high
47 46 32
subi $0x18,r2 # Subtract 18 hex from (r2)

ADVANCE INFORMATION 2110

S U BQ Subtract Quick S U BQ

Syntax: subq wq,w2

Description: Subtract the quick value wq from the contents of general register w2 and put the result in
w2. Operands may be signed or unsigned integers. Overflow is set if the input operands
(which are treated as signed integers) have different signs and the result is positive.

Operation: w2 < (W2)-wq
N < w2<31>)
Z < (w2)=0
V <« integer overflow
C <« borrow in

Traps: none
Format: Quick
15 8 7 4 3 0
1 0 1 0 0 0 1 0O wq w2
]
Example: subq $10,r3 # Subtract 10 from (r3)

2-111 ADVANCE INFORMATION

SUBS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Subtract Single Floating S U BS

subs s1,82

Subtract the single-precision contents of floating register s1 from the single-precision con-
tents of floating register s2 and put the result in d2.

§2 « (s2)—(s1)

FX « floating inexact result
FU « floating underflow
FV « floating overflow

Fl < floating invalid

Floating inexact result
Floating invalid operation
Floating overflow
Floating underflow

Register
15 8 7 4 3 0
0o 0 1 0 0 0 0 1 s1 s2
|
subs f1,f2 # Subtract (f1) from (f2)

ADVANCE INFORMATION 2112

S U BW Subtract Word S U BW

Syntax: subw wi,w2

Description: Subtract the contents of general register w1 from the contents of general register w2 and
put the result in w2. Operands may be signed or unsigned integers. Overflow is set if the
operands (which are treated as signed integers) have different signs and the sign of the
result is the same as the subtrahend (w1).

Operation: w2 < (W2) — (w1)
N < w2<31>)
Z < (w2)=0
V < integer overflow
C <« borrow in
Traps: none
Format: Register
15 8 7 4 3 0
1 0 1. 0 0 0 0 O wi w2
l
Example: subw ro,r2 # Subtract (r0) from (r2)

2113 ADVANCE INFORMATION

SU BWC - Subtract Word with Carry S U BWC

Syntax: subwc wi,w2

Description: Subtract the contents of general register w1 and the carry condition code from the contents
of general register w2 and put the result in w2.

Operation: w2 « (w2)—-(w1)-C
N < w2<31>)
Z « (w2)=0
V <« integer overflow
C <« borrow in

Traps: none
Format: Register
15 8 7 4 3 (]
1 0 0 1 0 0 0 1 wi w2
]
Example: subwc r1,r2 # Subtract (r1) + C from (r2)

ADVANCE INFORMATION 2114

T RAP Fn Trap Floating Unordered T RAP Fn

Syntax: trapfn

Description: Causes an illegal instruction trap if a floating unordered condition exists. The IEEE draft
standard specifies that the six predicates =, #, >, =, <, and < shall cause floating invalid
exceptions on unordered comparisons. The trapfn instruction, put before a branch instruc-
tion, supports the IEEE predicates. The supervisor trap handier must interpret an illegal
instruction trap from a trapfn instruction as if it were a floating invalid operation trap.

Operation: if PSW <ZN> indicates unordered,
then illegal instruction trap
Traps: lllegal instruction
Format: Macro
15 8 7 4 3 0

0 0 o 0 0 0 0 O(O O 0 0 O 0 o0 O

31 24 23 20 19 16

Example: The following sequence branches to addr if the IEEE < predicate is satisfied.
cmps 13,15 # Compare single floating values
trapfn # Checks for floating unordered
belt addr # branches

2-115 ADVANCE INFORMATION

TSTS

Syntax:

Description:

Operation:

Traps:

Format:

Example:

TSTS

Test and Set

tsts wa,w2

Test and set a software lock. Load the contents of memory address wa into general register
w2 and set bit 31 in wa (the lock). The operation is indivisible and can be used in a multi-
processor configuration. The lock has been acquired if (w2 <31 >) = 0 after the instruction
has executed.

This instruction may not refer to Boot ROM space or I/O space (System Tag 4 or 5).

w2 < (wa)
wa<31>) < 1

Page fault

Read protect fault
Write protect fault
Memory fault
Address

If addressing is relative, this format is used:

15

7

4

3

R1

w2

For all other addressing, this format is used:

15

7

4

3

addr mode

See Section 1.3, INSTRUCTION FORMATS — WITH
ADDRESS for details on bits 0-3 and 16-63

tsts addr,r2 # Set software lock

ADVANCE INFORMATION 2116

WAIT

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Wait for Interrupt (Privileged) WA'T

wait

Wait for an interrupt. When an enabled interrupt occurs, the instruction terminates and the
interrupt is taken. The interrupt routine may then decide to whether or not to continue the
interrupted instruction stream at the instruction following the wait instruction.

A privileged instruction trap occurs if this instruction is executed in user mode.

while no interrupt pending
do nothing

Privileged instruction

Macro

15 8 7 0

0o 0 0 0 0 0 0 00O 0 O O0|O0O O O O

31 24 23 20 19 16

wait # Wait for interrupt

2117 ADVANCE INFORMATION

XO RI Exclusive-OR Immediate XO RI

Syntax: xori wi,w2

Description: Bitwise exclusive-OR the contents of general register w2 with the immediate value wi and
put the result in w2.

Operation: w2 « (W2) & wi
N « (w2<31>)
Z <~ w2)=0
V <0
C <0

Traps: none
Formats: Immediate

If —215 < wi < +215—1, this format is used:

15 8 7 4 3 0
1 01 01 0 1 1|1t 0 1 1 w2
|
S wi
31 30 16

If +215 < wi < +231 - 1 or =215 < wi < —2'%— 1, this format is used:

15 8 7 4 3 0

1 01 01 0 1 1|0 0 1 1 w2

]
wi low

S wi high

47 46 32
Examples: Assume r0 contains 0xff00.

xori $0xa07f601f,r0 # XOR 0x7f601f with (r0)

The result put in r0 is 0xa07f9f1f.
Assume r2 contains 0OxcOffee12.
XOri $0xfe,r2 # XOR 0Oxfe with (r2)

The result put in r2 is 0xc0ff10.

ADVANCE INFORMATION 2118

XORW

Syntax:

Description:

Operation:

Traps:

Format:

Example:

Exclusive-OR Word XO RW

Xorw wiw2

Bitwise exclusive-OR the contents of general register w1 with the contents of general regis-
ter w2 and put the result in w2.

w2 < (W2) ® (wl) -
N < w2<31>)

Z < w2)=0

V <0

C <0

none
Register

15 8 7 4 3 0

Assume r1 contains 0xffff0000 and r2 contains 0x00ff0Off.
Xxorw r1,r2 # XOR regs, result in r2

The result put in r2 is 0xff0000ff.

2-119 ADVANCE INFORMATION

This appe_ndix lists:
¢ The ASCII character set
¢ A description of the non-printing ASCII characters

Dec Hex Char

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

00
01
02
03
04
05
06
07

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
sI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
suB

ESC (

FS
GS
RS
us

Dec Hex
032 20
033 21

034 22
035 23
036 24
037 25
038 26
039 27
040 28
041 29
042 2A
043 2B
044 2C
045 2D
046 2E
047 2F
048 30
049 31

050 32
051 33
052 34
053 35
054 36
055 37
056 38
057 39
058 3A
059 3B
060 3C
061 3D
062 3E
063 3F

APPENDIX A
ASCIl CHARACTER SET

Table A-1 ASCII Character Set

Char

SP

OCoONOOUPA,WN—-O ™"

NyvonAT T

AA

Dec Hex
064 40
065 41

066 42
067 43
068 44
069 45
070 46
071 47
072 48
073 49
074 4A
075 4B
076 4C
077 4D
078 4E
079 4F
080 50
081 51

082 52
083 53
084 54
085 55
086 56
087 57
088 58
089 59
090 5A
091 5B
092 5C
093 5D
094 5E
095 5F

Char

T TNXXS<CHOIOTVOZZECrXC—IQOMMUOT>EP

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
m
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
7
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Dec Hex Char

I~w——-~«N'~<><§<C""U)“‘.Q'0033—X‘_'—'3'LQ_"(‘D [o NN o N o 2]

ALT
ESC
DEL

ADVANCE INFORMATION

Char

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

LF
VT
FF
CR
e
sl
DLE
DC1

Table A-2 Nonprintable Characters

Definition

Null

Start of message
Start of Text

End of Text

End of Transmission
Enquiry
Acknowledge

Bell

Back Space
Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return
Shift Out

Shift In

Data Link Escape
Device Control 1 (X-ON)

ADVANCE INFORMATION

Char

DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

Definition

Device Control 2 (TAPE)
Device Control 3 (X-OFF)
Device Control 4
Negative Acknowledge
Synchronous idle

End of Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

Space

Alt mode

Escape prefix

Delete, Rubout

APPENDIX B

INSTRUCTION SUMMARY

This appendix summaries the instruction set. For a detailed description of each
instruction, see Chapter 2.
Table B-1 Functional Instruction Set
LOAD/STORE INSTRUCTIONS PSW Flags
FFFFF
Instruction Name Syntax Opcode Format Parcels Operation IVDUX CVZN Traps
Load Address loada ba,w2 62,63 Address 1-4 w2<ba L.
Load Byte loadb baw2 68,69 Address 1-4 w2 < (ba) PR,M,
Load Byte Unsigned loadbu ba,w2 6a,6b Address 1-4 w2 « (ba) R PR,M,
Load Double Floating loadd da,d2 66,67 Address 1-4 d2<@day ... PR,M,
Load Floating Status loadfs w1,d2 b4 3f Macro 2 w1 « (FP PC), d2 « (FP dest)
Load Halfword loadh haw2 6c,6d Address 1-4 w2 « (ha) PRM,
Load Halfword Unsigned loadhu ha,w2 6e,6f Address 1-4 w2 < (ha) se... «... PRM,
Load Immediate loadi wiw2 87 Immediate 2,3 w2 ewio 00**
Load Quick loadq wqw2 86 Quick 1 w2ewq L. 00*0
Load Single Floating loads sa,s2 64,65 Address 1-4 s2 « (sa) oo ... PWM,
Load Word loadw wa,w2 60,61 Address 1-4 w2 < (wa) PR.M,
Store Byte storb w2,ba 78,79 Address 1-4 ba-w2 ... PW,M,
Store Double Floating stord d2,da 76,77 Address 1-4 da « (d2) PW,M,
Store Halfword storh w2,ha 7¢,7d Address 1-4 ha « (w2) PR PWM,
Store Single Floating stors s2,sa 74,75 Address 1-4 sa<((2 ... PW,M,
Store Word storw w2,wa 70,7 Address 1-4 wae<w2) L PW,M,
DATA MOVEMENT INSTRUCTIONS PSW Flags
FFFFF
Instruction Name Syntax Opcode Format Parcels Operation IVDUX CVZN Traps
Move Double Floating movd did2 26 Register 1 2@y L.
Move Double Floating to Longword movdl d7,/2 2e Register 1 Re@dy ...
Move Longword to Double Floating ~ movld /1,d2 2f Register 1 d2 < (1) P
Move Processor Register to Word movpw plw2 11 Register 1 w2e<@p) L.
Move Single Floating movs s1,s2 24 Register 1 s2«<(st) ... Ca
Move Supervisor to User (priviledge) movsu wl,w2 b6 01 Macro 2 w2 < (w1) o 00** S
Move Single Floating to Word movsw sTw2 2c Register 1 w2 « (s1) e
Move User to Supervisor (priviledge) movus w?,w2 b6 00 Macro 2 w2 « (w1) 00** S
Move Word movw wiw2 84 Register 1 w2 —(wt) 00**
Move Word to Processor Register movwp w2,p7 10 Register 1 ptew2 ... i
Move Word to Single Floating movws w1s2 2d Register 1 s2«<wi) L.
Legend: PSW Flags Field Traps Field
.=Flag not affected by instruction D = Divide-by-zero
* = Flag set according to operation I =lllegal instruction
0=Flag set to 0 M = Memory fault
1=Flag set to 1 P =Page fault
R =Read protect fault
S = Supervisor only (priviledged) instruction
W = Write protect fault
B-1 ADVANCE INFORMATION

ARITHMETIC INSTRUCTIONS

Instruction Name

Add Double Floating
Add Immediate

Add Quick

Add Single Floating

Add Word

Add Word with Carry
Subtract Double Floating
Subtract Immediate
Subtract Quick

Subtract Single Floating
Subtract Word

Subtract Word with Carry

Muitiply Double Floating

Multiply Single Floating

Multiply Word

Multiply Word Unsigned

Multiply Word Unsigned Extended
Multiply Word Extended

Divide Double Floating
Divide Single Floating
Divide Word

Divide Word Unsigned

Negate Double Floating
Negate Single Floating
Negate Word

Modulus Word
Modulus Word Unsigned

Scale by, Double Floating
Scale by, Single Floating

Legend: PSW Flags Field

Table B-1 Functional Instruction Set (Continued)

Synt Opcode Format Parcels Operation

addd did2 22 Register 1 d2 « (d2) + (d1)
addi wiw2 83 Immediate 2,3 w2 < (W2) +wi

addq wg,w2 82 Quick 1 w2 < (W2) +wq
adds s1,s2 20 Register 1 s2 « (s2) +(s1)
addw wiw2 80 Register 1 w2 < (W2) +(w1)
addwc wi,w2 90 Register 1 w2 « (wW2)+(w1)+C
subd d1,d2 23 Register 1 d2 « (d2) - (d1)
subi wiw2 a3 Immediate 2,3 w2 « (W2) - wi

subq wgq,w2 a2 Quick 1 w2 < (w2)—wq
subs 51,82 21 Register 1 s2 « (s2) - (s1)
subw wiw2 a0 Register 1 w2 « (w2)—(wl)
subwc wiw2 91 Register 1 w2 « (w2)—(w1)-C
muld d1,d2 2a Register 1 d2 « (d2) x (d1)
muls s1,s2 28 Register 1 $2 « (s2) x (s1)
mulw wiw2 98 Register 1 w2 < (wW2) x (w1)
mulwu wiw2 9a Register 1 w2 < (W2) x (w1)
mulwux w1,/2 9b Register 1 12 « (W2) x (w1)
mulwx w17,/2 99 Register 1 12 < (W2) x (w1)

divd dr,d2 2b Register 1 d2 « (d2) + (d1)
divs s1,82 29 Register 1 2 « (s2) + (s1)
divw wiw2 9c Register 1 w2 < (W2) + (w1)
divwu wiw2 Qe Register 1 w2 < (W2) + (w1)
negd d7,d2 b4 3b Macro 2 d2 < (d1)

negs s1,82 b4 3a Macro 2 s2 «+ (s1)

negw wiw2 93 Register 1 w2 « (w1)

modw wiw2 9d Register 1 w2 « (w2) MOD (w1)
modwu wiw2 Of Register 1 w2 < (w2) MOD (w1)
scalbd w1,d2 b4 3d Macro 2 d2 « (d2) x 2(w1)
scalbs w1,s2 b4'3c Macro 2 82 « (s2) x 2(w1)

.= Flag not affected by instruction
* = Flag set according to operation

0=Flag setto 0
1=Flag set to 1

Traps Field

D = Divide-by-zero

| =lllegal instruction

M = Memory fault

P =Page fault

R = Read protect fault

S = Supervisor only (priviledged) instruction
W = Write protect fault

ADVANCE INFORMATION B-2

PSW Flags
FFFFF
IVDUX CVZN

Traps

Table B-1 Functional Instruction Set (Continued)

LOGICAL INSTRUCTIONS PSW Flags
FFFFF
Instruction Name Syntax Opcode Format Parcels Operation IVDUX CVZN Traps
And Immediate andi wiw2 8b Immediate 2,3 w2 - w2)&wi 00**
And Word andw wiw2 88 Register 1 w2 < (w2) &(wt) L 00*~
Or Immediate ori wiw2 8f Immediate 2,3 w2~ w2 |wi 00**
Or Word orw wiw2 8c Register 1 w2 < (wW2) [(w1) ... 00**
Exclusive-OR Immediate xori wiw2 ab Immediate 2,3 w2ew)ewi L, 00**
Exclusive-OR Word xorw wiw2 a8 Register 1 w2 w2 e wl) L. 00**
Not Word notw wiw2 ac Register 1 w2 - ~(wt) 00**
Not Quick notq wqw2 ae Quick 1 w2 < ~ wq 0001
SHIFT/ROTATE INSTRUCTIONS PSW Flags
FFFFF
Instruction Name Syntax Opcode Format Parcels Operation IVDUX CVZN Traps
Shift Arithmetic Immediate shai wiw2 38 Immediate 2 w2 < (w2) SHAwi ..., o***
Shift Arithmetic Longword shal wil2 3 Register 1 2 (2)SHAwW1) o***
Shift Arithmetic Longword Immediate shali wi,l2 39 Immediate 2 12 < (12) SHAwi ... ox**
Shift Arithmetic Word shaw wiw2 30 Register 1 w2 < (Ww2) SHA(w1) ... o***
Shift Logical Immediate shli wiw2 3a Immediate 2 w2 < (w2) SHLwi ... 00**
Shift Logical Longword shil wij2 33 Register 1 12 < (12)SHL(w1) ... 00**
Shift Logical Longword Immediate shili wi,l2 3b Immediate 2 2 < (2)SHLwi ..., 00**
Shift Logical Word shiw wiw2 32 Register 1 w2 < (w2) SHL (w1) 00**
Rotate Immediate roti wiw2 3¢ Immediate 2 w2 < (w2) ROT wi ... 00**
Rotate Longword rotl w12 35 Register 1 12 «< (12) ROT (w1) 00"
Rotate Longword Immediate rotli wi,l2 3d Immediate 2 2<(@ROTWI ... 00**
Rotate Word rotw wiw2 34 Register 1 w2 < (w2) ROT (w1) 00**
CONVERSION INSTRUCTIONS PSW Flags
FFFFF
Instruction Name Syntax Opcode Format Parcels Operation IVDUX CVZN Traps
Convert Double Floating to Single cnvds d7,s2 b4 39 Macro 2 s2 « (d1) L
Convert Double Floating to Word cnvdw di,w2 b4 34 Macro 2 w2 « (d1) L.
Convert Rounding Double to Word cnvrdw d7,w2 b4 35 Macro 2 w2 « (d1) PR
Convert Rounding Single to Word cnvrsw sl,w2 b4 31 Macro 2 w2 « (s1) AP
Convert Single Floating to Double cnvsd s7,02 b4 38 Macro 2 d2 « (s1) .
Convert Single Floating to Word cnvsw s,w2 b4 30 Macro 2 w2 « (s1) L.
Convert Truncating Double to word cnvtdw d7,w2 b4 36 Macro 2 w2 « (d1) .
Convert Truncating Single to word cnvtsw sT,w2 - b4 32 Macro 2 w2 < (s1) oo
Convert Word to Double Floating cnvwd w1,d2 b4 37 Macro 2 a2« w1 .
Convert Word to Single Floating cnvws w1,s2 b4 33 Macro 2 s2 « (w1) R
Legend: PSW Flags Field Traps Field
. =Flag not affected by instruction D = Divide-by-zero
* = Flag set according to operation I =lllegal instruction
0=Flag setto 0 M = Memory fault
1=Flag set to 1 P =Page fault

R = Read protect fault
S = Supervisor only (priviledged) instruction
W = Write protect fault

B-3 ADVANCE INFORMATION

Table B-1 Functional Instruction Set (Continued)

COMPARE AND TEST INSTRUCTIONS

Instruction Name Syntax
Compare Double Floating cmpd
Compare Immediate cmpi
Compare Quick cmpq
Compare Single Floating cmps
Compare Word cmpw
Test and Set tsts

CHARACTER STRING INSTRUCTIONS

Instruction Name Syntax
Compare Characters cmpc
r0 = length, r1 = string1, r2 = string2

Initialize Characters initc

r0 = length, r1 =string1, r2 = string2

Move Characters move

10 = length, r1 =string1, r2 = string2

STACK MANIPULATION INSTRUCTIONS

Instruction Name Syntax
Pop Word popw
Push Word pushw
Restore Registers fn: {7 restdn
Restore User Registers (priviledged) restur
Restore Registers rn: r14 restwn
Save Registers fn: {7 savedn
Save User Registers (priviledged) saveur
Save Registers rn: r14 savewn

Legend: PSW Flags Field
.=Flag not affected by instruction
* = Flag set according to operation
O=Flag setto 0
1=Flag setto 1

"ADVANCE INFORMATION

PSW Flags
FFFFF
Opcode Format Parcels Operation IVDUX CVZN Traps
drd2 27 Register 1 d2)-@y 00**
wiw2 a7 Immediate 2,3 w2)-wi rEwr
wq,w2 a6 Quick 1 (w2) -wq rrer
s1,s2 25 Register 1 s2)-(¢s1) 00**
wiw2 a4 Register 1 w2)-wt) i
wa,w2 72,73 Address 1 w2 < (wa), wva<31> < 1 PR,WM
PSW Flags
FFFFF
Opcode Format Parcels Operation IVDUX CVZN Traps
b4 of Macro 2 WHILE [(r0) = 0] & [((r2)) = ((r1))], **** PRM
- r0 < (r0)—1,r1 « (r)+1
2 < (r2)+1 ,
b4 Oe Macro 2 WHILE (r1) « (r2<7:0>) PWM
r0 « (r0)—1, 11 < (r1) +1
r2 « (r2) ROT -8
b4 0d Macro 2 WHILE (r0) =0, (r2) < ((r1)) PR,W,M,
r0 < (r0)=1, 11 « (r)+1
r2 « (r2)+1
PSW Flags
FFFFF
Opcode Format Parcels Operation IVDUX CVZN Traps
wiw2 16 Register 1 wilewh)+4 L. PRM
w2 < ((w2)-4)
w2,wl 14 Register 1 wl < w)-4 ... PWM
w1) < w2)
b4 28 Macro 2 fn:f7 < ((r15)): ... PRM,
. ((r15) + 8 x [7-n])
b4 2F r15 « (r15) + 8 x [8-n]
wi b6 03 Macro 2 r0 : r15 « ((w1)) : ((w1) + 60) PRM,S
b4 10 Macro 2 mirid < (r5): ...
. ((r15) + 4 x [14-n)),
b4 1C r15 « (r15) + 4 x [15-n]
b4 20 Macro 2 (r15)-8x[8n]: ... PWM
- (r15) — 8 « (fn) : (f7)
b4 27 r15 « (r15)— 8 x [8-n]
wi b6 02 Macro 2 (wi1)—4:(w1)—64 < (r15) : (r0) PWM,S
b4 00 Macro 2 (r15)-4x[15n}: ... PWM
L. (r15) — 4 « (rn) : « (r14),
b4 0C r15 « (r15)-8 x [8-n]
Traps Field

D = Divide-by-zero

I =lllegal instruction

M = Memory fault

P = Page fault

R =Read protect fault

S = Supervisor only (priviledged) instructior
W = Write protect fault

Table B-1 Functional Instruction Set (Continued)

CONTROL INSTRUCTIONS

Instruction Name Syntax
Branch Conditional b*
Branch Floating Exception bf*
Call Subroutine call
Call Supervisor calls
No Operation noop
Return From Subroutine ret
Return From Interrupt (priviledged) reti
Trap on Floating Unordered trapfn
Wait for Interrupt (priviledged) wait
Legend: PSW Flags Field

. =Flag not affected by instruction
* =Flag set according to operation
0=Flag setto 0
1=Flag set to 1

Opcode Format

ha 48,49
ha 4c,4d
w2,ha 44,45
bb 12
bb 00
w2 13
wi b6 04
b4 3e
b6 05
Traps Field

D = Divide-by-zero

Address
Address

Address

Control
Control

Register
Macro

Macro

Macro

I =lllegal instruction

M = Memory fault

P = Page fault
R =Read protect fault
S = Supervisor only (priviledged) instruction
W = Write protect fault

B-5

Parcels Operation

14
1-4

1-4

1

-

PSW Flags
FFFFF
IVDUX CVZN Traps

IFcond, PC<~ha
IFcond, PC~ha

w2 « (W2)-4, (W2) « (PC), PWM,
PC < ha

trap 400 +8xbb<7:0>

none ..

PC « (W2), w2 « W2)+4 PRM
Restore SSW, PSW and PC R

IF PSW<ZN> indicated |
unordered, illegal

instruction trap

Wait for interrupt =~~~ S

ADVANCE INFORMATION

Table B-2 Instruction Opcode/Mnemonic Summary

LsB
M [} 1 2 3 4 5 6 7 8 9 A B [D E F
S
B 0| noop
1| movwp | movpw | calls ret pushw popw
2| adds subs addd subd movs cmps movd cmpd muls divs muld divd movsw | movws | movdl | movid
3| shaw shal shiw - shll rotw rotl shai shali shli shili roti rotli
b* bf*
4 call see Table see Table
2-7 2.8
5
6 loadw loada loads loadd loadb loadbu loadh loadhu
7 storw tsts stors stord storb storh
8| addw addq addi movw loadq loadi andw andi orw ori
9| addwc | subwc negw mulw mulwx | mulwu | mulwux | divw modw | divwu | modwu
A| subw subq subi cmpw cmpg cmpi Xorw xori notw notq
macros priviledged
B see Table macros see
B-3 Table B-4
[+
D
E
F |
|
\

ADVANCE INFORMATION B-6

Table B-3 Macro Instruction Code Field (opcode B4)

LsB
m 0 1 2 3 4 5 6 7 8 9 A B [D E F
S
B savewQ | savew1 | savew2 savew4 5 savew7 | savew8 | savew9 |savew10 [savew11 |savew12| movc initc cmpe
restw0. | restwl | restw2 | restw3 | restwd | restw5 | restw6 | restw7 | restw8 | restw9 | restw10 | restw1i | restw12
saved0 | saved! | saved2 | saved3 | saved4 | saved5 | saved6 | saved7 | restd0 | restd1 | restd2 | restd3 | restd4 | restd5 | restd6 | restd7
cnvsw | cnvrsw | cnvtsw | cnvws | cnvdw | cnvrdw | cnvtdw | cnvwd | cnvsd | cnvds negs negds | scalbs | scalbd | trapfn loadfs
Table B-4 Priviledged Macro Instruction Code Field (opcode B6)
LsB
M [} 1 2 3 4 5 6 7 8 9 A B [D E F
S
B movus | movsu | saveur | restur reti wait

B-7 ADVANCE INFORMATION

)
FAIRCHILD
Y|

A Schlumberger Company

Advanced Processor
Division

4001 Miranda Ave.
Palo Alto, CA 94304
800 423-5516

In California:
415 858-4249

