Connex Accelerator

Instruction Set Architecture Specification

Contents

1

Instruction Formats
1.1 Opcode Formats

Instructions
2.1 Scalar Instructions
2.2 Vector Instructions

2.2.1 More About the Vector Instructions

July 3, 2021

NN

D= W W

1 Instruction Formats

The Connex accelerator utilizes a 32-bit Instruction Set Architecture (ISA). Instructions
are divided into Scalar Instructions (SI) and Vector Instructions (VI). There are two main
instruction formats, shown in Table 1. Register addresses are 5 bits in size, allowing for
a maximum of 32 registers (SIMD or Scalar). The immediate value is 16 bits in size,
requiring the removal of the right operand address and the use of a reduced opcode for
immediate value instructions. The immediate value, when present, replaces the right
operand in both the scalar and vector pipelines.

Instruction T Bit Offset

SUHCHON YPE TTR196 [25:23] 22:5 | 1410 | 95 | 40
{/rgﬁzgdlate OPCODE IMMEDIATE VALUE LEFT | DEST
Non OPCODE RESERVED | RIGHT | LEFT | DEST
Immediate

Table 1: Instruction Formats

1.1 Opcode Formats

The Connex opcode is 6 or 9 bits in length and is always present on the most-significant
bits of the instruction. The opcode consists of a 3-bit fixed section and a 6-bit variable
section which is formatted differently depending on the contents of the fixed section.
The PIPE bit is always present at offset 8 and specifies whether the instruction is vector
(PIPE=1) or scalar (PIPE=0). The IMM bit is always present at offset 7 and specifies
whether the instruction is Immediate-Value (IMM=1) or Non-Immediate (IMM=0). The
ALU bit is always present at offset 6 and specifies whether the instruction utilizes ALU
(ALU=1) or other processing resources (ALU=0). When ALU is set the instruction
always writes back results to the register file.

Opcode formats for Vector Instructions are listed in Table 2. The WB bit is present
if ALU is not set and specifies if the instruction writes back results to the register file
(WB=1) or does not write back (WB=0). The NON-ALU SEL field specifies which
processing resource is targeted by the instruction. Table 3 shows the resources selected
by the values of NON-ALU SEL. When IMM is set, bit 0 of NON-ALU SEL is set. This
enables access of Immediate-Value instructions only to the Local Store and Immediate
Value instruction field.

The NON-ALU SEL field specifies which processing resource is targeted by the in-
struction. Table 3 shows the resources selected by the values of NON-ALU SEL. When
IMM is set, bit 0 of NON-ALU SEL is set. This enables access of Immediate-Value
instructions only to the Local Store and Immediate Value instruction field.

The OP field is present if ALU is set and specifies which type of operation is selected
inside the ALU. Table 4 shows available operation types. When IMM is set, bit 0 of
OP is set. This enables access of Immediate Value instructions only to Arithmetic and
Logical operations

The SUB-OP field selects the particular operation to be executed within an operation
type. Table 5 shows how SUB-OP values correspond to ALU operations.

Bit Offset
8 7 6 5 | 4] 3 [2]1] 0
PIPE | IMM | ALU
0 [WB]| NON-ALU-SEL
1 0 1 SUB.OP ‘ OP MODIFIERS
{ 0 | WB [NON-ALU-SEL[2:1] | 1
1 SUB-OP \ OP[1] 1
Table 2: VI Opcode Formats
NON-ALU SEL Value Accessed Resource
000 Register Index Read
100 Inter-Cell Shift
001 Local Store Read
101 Local Store Write
010 Multiply Read
110 Extension Register Read
011 Immediate Value Read
111 Cell Enable
Table 3: NON-ALU SEL Values
OP Value | Operation Type
00 Shift /Popcount
01 Arithmetic
10 Comparison
11 Logical
Table 4: OP Values
SUB-OP) SUB-OP)
Op Type Value Operation Op Type Value Operation
00 Left Shift Logical 00 Equal
Shift 01 Right Shift Logical Comparison 01 Signed Less
Popcount 10 Right Shift Arithmetic P 10 Unsigned Less
11 Popcount 11 Reserved
00 Sum 00 Logical Not
. . 01 Difference . 01 Logical Or
Arithmetic 10 Sum with Carry Logical 10 Logical And
11 Difference with Carry 11 Logical Xor

Table 5: SUB-OP Values

2 Instructions

2.1 Scalar Instructions

Scalar instructions (SI) follow the same formats as vector instructions. The PIPE bit is

not set for scalar instructions. Scalar instructions affect two scalar registers:

e L.C — loop counter, specifies how many times a subsequent jump will execute

e PC — program counter, indicates where instructions are fetched from, in the current
instruction stream

Table 6 lists the scalar instructions and their behaviour.

Mnemonic | Description Opcode
nop No operation 000000000
setle LC = Immediate Value 10101
ijmpnzdec | Require: Immediate Value <1023 10011

If (LC !=0): PC = PC — ImmediateV alue

LC=LC-1

If(LC ==0):PC =PC+1

LC reverts to initial value

Table 6: Scalar Instructions

2.2 Vector Instructions

Table 7 presents all vector instructions. Some instructions execute conditionally upon the
value of the Active flag, i.e., if Active is not set, they behave as nop. Certain instructions
set the carry, less and equal flags:

e the carry flag is set by:

— add, when R]left]+R|[right] overflows,
— addc, when R]left|+R[right|+carry overflows,
— sub, when R]left]-R[right] underflows,
— subc, when Rfleft]-R]right]-carry underflows,

e the less flag is set by 1t when R[left] is less than R]right],
e the equal flag is set by eq when Rlleft] is equal to R|right],

In Table 7, referring to flags, a U entry indicates undefined (data dependent) values of
flags after the execution of the instruction. Where no value is indicated, the instruction
does not modify flags. Otherwise, the instruction may behave, with regard to a particular
flag, in an identical way to add, addc, sub, subc, It, or eq.

Notes:

e Memory instructions write, iwrite and read (except iread) require the insertion
of a delay slot of one cycle between them and the instruction(s) that generate their
operands. Following are all relevant examples we can have with delay slots:

R1 = R2 + R3
NOP // or some other instruction to fill the delay slot
R4 = LS[R1] / LS[R1] = R4 / LS[R10] = R1 / LS[5] = R1

e [t is necessary to insert a delay slot of one cycle between selection instructions
(wherexx) and the instruction which affects the flag utilized for selection. For
example:

R1 = (R2 == R3)

NOP // or some other instruction to fill the delay slot
// that does not alter the Equal flag

WHERE_EQUAL

When all or some of the cells are disabled, reduction operations with operands from
the local store (code example: R1 = LS[15] then immediately REDUCE(R1)) return
an undefined result. The programmer must ensure that all cells are re-enabled, by
issuing an endwhere instruction, before any such reduction occurs.

At power-up, Active is zero (i.e., the cell’s register file and local store will be
disabled) until an endwhere instruction is received.

There is no explicit MOV (move instruction), but the programmer can move data
from one register to the other in several ways:

— ishl RO, R1, 0 (produces undefined flags)

— ishr RO, R1, 0 (produces undefined flags)

— ishra RO, R1, 0 (produces undefined flags)

— or RO, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0

Equal = 1)
— and RO, R1, R1 (recommended, produces constant flags: Carry = 0 Less = 0
Equal = 1)

Regarding the functionality of the shift vector unit assembler instructions:

The shift vector unit contains 2 architecturally non-visible vector registers, which
are actually continuously operated by the unit: a 1st register with values to be
moved around and a 2nd register with movement directions, which should have
only non-negative values. The cell-shift instructions take as input 2 (vector) register
operands, which are copied, respectively, in the architecturally non-visible registers
of the shift vector unit. These instructions take normally several cycles to finish
(i.e., the shift vector unit to converge, to obtain a ”steady-state” result). The ldsh
instruction retrieves the result from the shift vector unit.

The cellshl instruction decreases in each cycle by at most 1 unit each value of the
2nd register if not zero, until all the values of the 2nd register become zero.

During each cycle of execution of cellshl, each element of the 1st register is copied
from the immediate/neighbor right cell, (modulo number of lanes, i.e., it considers
the register to be wrapped around) if the corresponding element of the 2nd register
is not zero (we look for zero at the current element, not in the neighbor right cell),
in which case this latter value is also decremented. Due to the modulo operation,
the cell-shift instruction experiences also a rotate effect.

Example of execution of the instruction cellshl R0, R1, where RO = [34 5 6], R1 =
[0 12 2] (we assume the number of lanes of Connex is 4):

Before cycle 1:
1st reg: 4
1

6 // the data is loaded in the 1st register
2nd reg: 2

345
012 // the move directions are loaded in the 2nd register

End of cycle 1:

1st reg: 356 3

2nd reg: 0011
End of cycle 2:

1st reg: 3 5 3 3

2nd reg: 0000

Key takeaways: cellshl puts values to the left (position 0 being leftmost, 1 the next
right neighbor, etc), while cellshr puts values to the right. The number of cycles
to execute these operations can be considered equal the best description I guess is
that the shift vector unit works continuously independent of its 2 registers it has
to the maximum value of the 2nd vector operand.

2.2.1 More About the Vector Instructions

The Connex-S Instruction Set Architecture (ISA) contains pure SIMD operations like
arithmetic, bitwise logical, logical, memory access, and nop instructions. It also has
special vector instructions: sum-reduce (red, which takes logs(C'V L) cycles to execute),
inter-lane shift operations (cellshl/r and ldsh), which basically move data between lanes
one position per cycle, block predication instructions (whereeq/ 1t /cry and endwhere,
which have in OPINCAA corresponding instructions starting with FEXECUTE) and sim-
ple loop with counter instructions (setlc and ijmpnzdec, in OPINCAA represented by
REPEAT(imm) and END_REPEAT, which currently do not allow loop nesting and have
a body size limited by the capacity of the IIM).

The where blocks are useful because: i) they can reduce the instruction bit length
since the predicate register is not encoded in it; ii) they send fewer decoded control signal
bits to each lane for each predicated instruction, which has the potential of saving energy.

The ISA is presented again in Table 8, this time with OPINCAA mnemonics. As we
can see, Connex-S has rather simple control flow instructions allowing to run normally
only non-nested loops of constant trip counts and to use a predication mechanism using
the Boolean values of the Carry, Less or Equal flags, set previously for each lane. It
does not have call or conditional branch instructions, available, for example, in NVIDIA
GPGPU’s PTX assembly [3]. While the lack of general conditional branches implies
there is no control divergence, the Connex-S predicated blocks can be arbitrarily large
and the processor still experiences the inherent inefficiency of having threads becoming
inactive when executing conditional code on a SIMD processor. We call predicate (or
lane) divergence this architectural property that Connex-S exhibits due to the predication
mechanism.

We can add new instructions to the Connex-S processor. In total, the ISA can have
80 instructions. Currently, it has 41 instructions. We introduced recently in Connex-
S two instructions to power manage the lanes, a technique we call lane gating. These
instructions are useful for the case we have predicate divergence on large assembly code
blocks. Such a case is encountered, for example, when emulating floating point operations.
Due to the lack of space, we will present how we employ this technique in a different paper.

Connex-S is able to access the LS banked vector memory with indirect load and store
instructions, which have the same latency as the direct access ones and can refer in each
lane a different row, as specified by the address register. This simple access pattern is a

generalization of the vector register file with diagonal registers [2] used, for example, for
the efficient implementation of matrix transposition.

All the instructions take vector operands of 16-bit signed integer (i16) elements, un-
less otherwise specified, and a few of them can have an immediate operand. We also re-
quire having 16-bit unsigned integer (ul6) instructions for multiplication and reduction,
mult.ul6 and red.ul6, which help for the efficient emulation of reduction and multi-
plication operations for 32-bit (or larger) signed integers. Note that the mult.i16/ul6,
accompanied by the result reading instructions multlo and multhi, use the DSP48E1
functional units of Xilinx Zynqg, which can perform efficiently, among others, i16 or ul6
multiplication.

We note that the red and red.ul16 Connex-S instructions perform sum-reduction over
a vector of 16-bit signed, respectively unsigned, elements, the latter being required for the
efficient implementation of reduction for 32-bit (or 64, etc) integer element vectors - for
example, we can send from the CPU to the standard Connex-S with 128 (16-bit) lanes a
vector of 64 32-bit integers for reduction, which fills a vector line of the accelerator. Note
that, for example, on the standard Connex-S with 128 16-bit lanes the result of red[.u16]
is actually returned on 16 + 7 bits, so for red we have to sign extend this result up to the
most significant bit of a 32-bit integer. Similarly, the multiplication instructions can be
performed on signed or unsigned 16-bit integer vector operands, the latter being required
for the efficient multiplication of 32-bit (or larger) signed integers.

An interesting property is that the lowest 16 bits of the 32-bit result, returned by the
multlo instruction, is the same for signed and unsigned 16-bit operand multiplication,
so we should normally add to the Connex-S ISA only multhi.ul6 and mult.ul6, for
16-bit unsigned integer input operands.

References

[1] G. E. Blelloch. Vector Models for Data-parallel Computing. MIT Press, Cambridge, MA,
USA, 1990.

[2] B. Hanounik and X. Hu. Linear-time Matrix Transpose Algorithms Using Vector Register
File With Diagonal Registers. In Proceedings of the 15th International Parallel and Dis-
tributed Processing Symposium, IPDPS 01, pages 36—, Washington, DC, USA, 2001. IEEE
Computer Society.

[3] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fifth Edition:
The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2013.

Mnemonic | Description Condition | Opcode glaar ;y ;T:Z 1]:31(;1?1
nop No operation 000000000
red Launch reduction with Rleft] 100000000
iwrite LS[Immediate Value] = R]left] Active 110010
iread R[dest] = LS[Immediate Value] Active 110100
write LS[R|[right]] = R[left] Active 100010100 | Sub | Lt Eq
read R[dest] = LS[R]right]] Active 100100100
vload R[dest] = Immediate Value Active 110101
1dix R[dest] = INDEX Active 100100000
endwhere | Enable All Cells (set Active every- 100011111
where)
wherecry | Load Carry Flag into Active 100011100
whereeq Load Equal Flag into Active 100011101
wherelt Load Less Flag into Active 100011110
mult Initiate R[left] * R]right] 100001000 | Add | Lt | Eq
multlo R[dest] = Low half of multiplication | Active 100101000
result
multhi R[dest] = High half of multiplica- | Active 100111000
tion result
cellshr Shift Register = R]left] then shift 100010001 | Sub | Lt Eq
right by R[right] positions
cellshl Shift Register = Rlleft] then shift 100010010 | Sub | Lt Eq
left by R[right] positions
ldsh R[dest] = Shift Register Active 100110000
add R[dest] = R[left] + R[right] Active 101000100 | Add | Lt Eq
sub R[dest] = R[left] - R[right] Active 101010100 | Sub | Lt Eq
addc R[dest] = R[left] + R[right] + Carry | Active 101100100 | Addc | Ult | Eq
subc R[dest] = R[left] - R[right] - Carry | Active 101110100 | Subc | Ult | Eq
eq R[dest] = (R[left] == R]right]) ? | Active 101001000 | Add | Lt Eq
1:0
ult R[dest] = (R[left] <R[right]) 7 1:0 | Active 101101000 | Addc | Ult | Eq
(unsigned)
It R[dest] = (R[left] <R[right]) ? 1:0 | Active 101011000 | Sub | Lt Eq
shl R[dest] = Rleft] <<R[right] Active | 101000000 | Add | Lt | Eq
ishl R[dest] = Rfleft] <<right Active 101000001 | U U U
shr R[dest] = R[left] >>R][right] Active 101010000 | Sub | Lt Eq
ishr R[dest] = Rf[left] >>right Active 101010001 | U U U
shra R[dest] = Rfleft] >>>R][right] Active 101100000 | Addc | Ult | Eq
ishra R[dest] = Rfleft] >>>right Active 101100001 | U U U
popcount | Rldest] = Sum of bits of R[left] Active 101110000
not R[dest] = ~R[left] Active 101001100 | U U U
or R[dest] = R[left] | R[right] Active 101011100 | Sub | Lt Eq
and R[dest] = R[left] & R|[right] Active 101101100 | Addc | Ult | Eq
XOT R[dest] = R[left] "R]right] Active 101111100 | Subc | Ult | Eq

Table 7: Vector Instructions

Category Connex-S Instructions
arithmetic R(d) = R(sl) + R(s2); // add
(elementwise) R(d) = R(sl) - R(s2); // sub
R(d) = ADDC(R(sl), R(s2)); // addc
R(d) = SUBC(R(sl), R(s2)); // subc
R(sl) * R(s2); // mult[.ul6], multiply
R(d;) = MULTLO() and
R(dp) = MULTHI[-U]()
/* multlo and multhi, get 16-bit lower
and higher part of result of multiplication */

bitwise R(d) = - R(s); // not
logical R(d) = R(s1) | R(s2); // or
(elementwise) R(d) = R(s1) & R(s2); // and

R(d) = R(sl) ~ R(s2); Xor
R(d) = R(sl) << R(s2); // shl
R(d) = R(sl) << imm; // ishl, imm € {0..31}
R(d) = R(s1) > R(s2); // shr
R(d) = R(sl) > imm; // ishr, imm € {0..31}
R(d) = SHRA(R(sl), R(s2)); // shra
R(d) = ISHRA(R(s), imm); // ishra
R(d) = POPCNT(R(s)); // popcount, bits sum

logical R(d) = R(sl) == R(s2); // eq
(elementwise) R(d) = R(s1) < R(s2); // It
R(d) = ULT(R(s1), R(s2)); ult
load/store R(d) = LS[imm]; // iread, imm.-addr. load
(elementwise) R(d) = LS[R(s)]; read, indirect load

LS[imm] = R(s); // iwrite, imm.-addr. store
LS[R(s)] = R(s); // write, indirect store

(elementwise, R(d) = INDEX; // 1dix, load index of each lane
special) R(d) = imm; vload, load immediate

predication EXECUTE_IN_ALL(...); endwhere

(elementwise) EXECUTE.WHERE_EQ(...); // whereeq

EXECUTE-WHERE.LT(...); // wherelt
EXECUTE.-WHERE_CRY(...); // wherecry

lane gating DISABLE_CELL; disablecell
(elementwise) ENABLE.ALL.CELLS; // enableallcells
loop with REPEAT (imm); setlc, imm € {032767}
counter (scalar) END_REPEAT; // ijmpnzdec at previous setlc
(scalar) NOP; nop
inter-lane shift /* load in shift register vector R(sl),
(permute) then shift left/right by R(s2) positions */

CELLSHL(R(s1), R(s2)); // cellshl
CELLSHR(R(sl), R(s2)); // cellshr
/* load in R(d) the current value of
the shift register */

R(d) = SHIFT_REG; 1dsh
sum-reduce RED(R(s)); red, result has 32 bits

(vector-scalar) RED.ul6(R(s)); // red.ul6, also 32 bits
(to read result call on CPU the OPINCAA method readReduction())

Table 8: The Connex-S instructions with OPINCAA syntax, also with normal mnemonics
in bold. R(d) is an arbitrary destination register, R(sl) is the first source register for
a binary operator (d,sl,s2 € {0..31}). All instructions take vector operands of i16
element type, unless otherwise specified. imm is the immediate constant operand with
imm € {—32768..32767}, unless otherwise specified. In the first column, in paranthesis
is the instruction category inspired from the scan vector model [1].

