CONVEX Architecture Handbook

Document No. 080-000120-000

Version 1.0

CONVEX Computer Corporation

© 1984 CONVEX Computer Corporation

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be
copied, duplicated, reproduced, translated, electronically stored or reduced to machine readable form
without prior written consent from CONVEX Computer Corporation.

Although the material contained herein has been carefully reviewed, CONVEX Computer Corporation
(CCC) does not warrant it to be free of errors or omissions. CCC reserves the right to make corrections,
updates, revisions or changes to the information contained herein. CCC does not warrant the material
described herein to be free of patent infringement.

UNIX is a trademark of Bell Laboratories.

TABLE OF CONTENTS

IntrodUCEioN ..ttt ittt eeenesesnscoconsontsossossossassssossscsonssscces 1-1
1.1 Data Types..... e 1-2
1.2 Register SetsS....iiceitirterrersttetenasoscsansonsnannocsas 1-2
1.2.1 Fixed Point Integer.......cceeeeeeeccscsoscsnssssocns 1-4
1.2.2 Floating Point.......civveccncncns ceesieseannonnns 1-4
1.2.3 Unsigned Values/AddressSeS......cccetnesecassssasns 1-4
1.2.4 Data Type Memory Alignment.............cieueenn. 1-4

1.3 Logical Address Space..... cesessecsrtananns P 1-4
1.3.1 Memory Management.....coeovevesocsccsccsssaosnsssne 1-5
1.3.2 Memory Protection System......ccceeeaeen tesseseeaal=5

1.4 Exceptions, I/0, and Interrupts....... i eicieiaranns 1-6
1.5 Instruction Set.........ccv0a0n checesenes ctes s et 1-6
1.6 The Rest of the Document........ccceuuuen Ceteeer et 1-7
Data Types...cccceeaee ceessssacsaseanse . 2-1
2.1 FEixed Point Ihteger................... 2-1
2.2 Floating Point...ceeeeeeeonesacsnacnnnss Cereceesteeccanann 2-3
2.2.1 Floating Point ValueS.....c.ccaiieecenccnnns RN 2-4
2.2.2 Zero..... reeessssasanns T 2-5
2.2.3 Reserved OperandS....cecececesocccssssacsassnsanas 2-5
2.2.4 Rounding........ Ceeesaaen teesseceecvesann s ceecsns 2-5

2.3 AddresSSeS...ccoc0cc0c00ss0s0t00ssr 000 cesesertssesesseans 2-6
2.4 Unsupported Data TypeS.icceterssetncacercccsccsaccs cenean .2-6
2.5 Data Type Memory Alignment...c.cteiecetoccccnannae ceesesas 2-6
Register Set.cccecceseccsscrcasansans ceecassencessssecsssasssed™l
3.1 Address Registers/Program Counter/PSW............. P A |
3.1.1 Processor Status Word.......cceieeeencccccsscanons 3-2

3.2 ION and VV Flags.....oceee seesssesennes tecseresesanasnes 3-4
3.3 Sequential Execution............ e et sscesarentearsenenan ' .3-5
3.4 Data AccumulatorS...ccecessecccccscaanasns cecsecsenasacans 3-5
3.4.1 Scalar Registers......cceeeecccenes ceeceaesaeans ..3-5
3.4.2 Vector Registers......cceeveecesrtaceccsssanscscans 3-6
3.4.2.1 Vector AccumulatorS......eceeeeaacesan ..3-6

3.4.2.2 Vector Merge....cccce. creccscccsssaveana 3-6

3.4.2.3 Vector Stride....ccievivecsctcecsncans ¢ ..3-6

3.4.2.4 Vector Length............... Cseeteecanen 3-7

Protection System.......... Ceetcecencssncssas e seeeseaseaes 4-1
4.1 Logical Address Space Structure......cieeceveseccscscaccs 4-2
4.2 Protection Notes...... saseseneeseens et eesecessecserannan 4-4
4.3 SDR Validity Bit Protection............... e ressene e 4-5
4.4 Inter-ring Procedure Call/Return......c.teeececansonssaes 4-5
4.4.1 Stack Switching/Argument Reference................ 4-7
4.4.2 Trojan Horse Pointers.....cietiiteenresscescaccnas 4-8
Logical Address Space and Memory Management..... sesecasecanann 5-1
5.1 Indirection.........ccee. et esacesseaasseetose s teeac e ..5-2
5.2 StacCKS..:eteeeeeesesosnossosnssessssasssnsssssssssossnsssas 5-2
5.2.1 Push and Pop Operands..... cteccesasecseerseoeanas 5-3
5.2.2 Creating and Deleting a Stack Frame............... 5-4
5.2.3 Ring O Stack....... sesaesns cen et e teeeenaene ..5-4

iii

5.3 Reserved Logical Memory......... et et ettt e e 5-4

5.3.1 System Page O......... e e e et ettt 5-6
5.3.2 Process Page O..iuivetirennnneneennenneeennennnnn.. 5-9

5.4 Physical Address Space........ceuun.. et te et et eec e 5-9
5.5 Translating Logical To Physical Addresses........co0.... 5-11
5.5.1 Segment Descriptor Register.....iviveennnnnnenn. 5-11

5.6 Page Table Entry (PTE)...... D T T . 5-12
5.6.1 Final Translation............ e et ean ettt e 5-14

5.7 Referenced/Modified BitS......oeveeenennnn.. Creereneena 5-16
5.8 Address Translation Unit...eeeeeeeeeeeeeeneenennnnnnnn.. 5-17
5.9 Process Multiplexing..... ceseeessaans ceeeareane ceceesena 5-18
5.10 Power Up/Bootstrap/Physical Addressing................. 5-19
L S = - 2 6-1
6.1 Overview.....iiiieeeeeeeeooasns cecesosanann testeseeecnanen 6-1
6.2 Process Exceptions........... e s ettt ettt ettt e 6-2
6.2.1 Arithmetic Trap..... cese e eanasnan st ee ettt e 6-2
6.2.1.1 Details Of Arithmetic Traps........ ceeesb6-3

6.2.2 Debugging SUPPOTrt.e.e.eeees... Cereenaaaan e 6-4
6.2.2.1 Instruction Trace............ seceseanns .6-4

6.2.3 Sequential ExecutioN.......oeeeeee... seevesaenn «+.6-5
6.2.3.1 BreaKpoint......eeeeeeeeeeereeeeneeenens 6-5

6.3 System Exceptions............ S r e ettt ettt e enaat e ennan 6-5
6.3.1 Error Exit Trap..... et seenenaen Crreeeeniaaa. cee..6-6
6.3.2 Undefined Opcode Trap........ teeeeaenens ettt .6-6
6.3.3 Vector Valid Fault....... ceecenseaas Teeseensans e..6-6
6.3.4 Ring Violation TrapS.....eceeeveeensnnennnn. teeseaB=7
6.3.5 PTE Violation TrapS...eceeeeseeeeanecennns., I - S
6.3.6 Non-resident Page Faults...... Cesteertiecterttaanann 6-8
6.3.7 Processing of System Exceptions........ cesteceanas 6-8

6.4 Machine Exceptions......ooev.o.. teeseaesaas ct e e ecaentteean 6-9
I/0 and Interrupts............. ceceessaa cesersaanses Ceeetisaann 7-1
7.1 JP and I/0 Interrupt Channels...... B T . .7-1
7.2 Interrupt Mechanism.............. ceseensans . 7-2
7.2.1 Ring O Stack Alignment............. teet st e 7-2
7.2.2 Base-Level ProcesSing............ Ceeteerenans ceeeel=2
7.2.3 Base-Level Ring O....... ceeensne ceceensana N A]
7.2.3.1 Base-Level Processing--Non Ring O....... 7-3

7.2.4 Interrupt....... seseceesans cteerecsans ceeteceteens .7-3
7.2.4.1 Ring O--Interrupt Level.......... csesens 7-3

7.2.4.2 Non-Ring O--Interrupt Level............. 7-3

7.3 Common Interrupt Sequence........... St eeteeter ettt 7-4
7.4 General NotesS.....eoveveenasn D ceeeenn 7-4
Instruction Set Overview............ ctee et ee ettt 8-1
8.1 Overview............. ceeeaae cesesrataean terteesennn ceenane 8-1
8.2 Instruction Formats......... ceseeteraae ct et tecaeetnoanaas 8-1
8.3 Addressing Modes........... et s e caseae st ecetaant s 8-2
8.3.1 Referencing Memory......veeeeeeeennnennnnn cese e e 8-2
8.3.2 Indirection.......eeeveenncansn trctecsccaneaanans 8-4
8.3.3 Branches......... D crecteeneaan 8-4

8.4 Undefined Opcodes...... teeecacaean Pececasaas teieecaceaaas 8-4
8.5 Form Of Presentation............ creerececcenns N .8-4

iv

8.5.1 Meta-notation for Instruction Syntax.............. 8-5

8.5.2 Instruction Page Layout....ciiieseeencretannnnonns 8-5

9 Address Register Instruction Set........citiiieiiniceceeneennn. 9-1
9.1 Overview.....eoc.. St e e e s e s s e et s et st st et ae e 9-1
9.2 Loads and Stores...... e 9-1
9.3 ArithmeticS...iseierteescenseecsoastossanassssnnossossness 9-1
9.4 Logical OperationsS...seeececccesoscsessonsssssanssssanans 9-2
9.5 Shift/Push/Pop/Move/PSW/Effective AddressS....cceeeeeeennnne 9-2
9.6 COMPAreS.cectiseescesescssosnnssssnsossssosnssssssssasssscensss 9-2
9.7 A Register ConversionS.....ceeceeeetienessrtcesncacsanscans S-3

10 Scalar Register Instruction Set..... ct et es et e et e s e 10-1
10.1 Scalar Loads and Stores.....c.ceiecercecsancas ceet e 10-1
10.2 Scalar/Scalar Arithmetic............ St eess et s 10-1
10.3 Scalar/Scalar Logical Operations........cicceeieennnnnn 10-1
10.4 S Register ImmediateS....cceeeeetssscsscssacsssasannonsas 10-2
10.5 Push/Pop Scalar RegistersS.....icereeeecnsonscncscnaanns 10-2
10.6 Scalar/Scalar Compares Signed/Unsigned.........c.veeee 10-2
10.7 S Register Conversions......cceeeeveess S 10-2
10.8 Shifts/Moves/CoUNtS....ccteeertsccsosccoscccsossssnssaonns 10-3

11 Program Control Instruction Set.......ccoceenrenns ce s e 11-1
11.1 Branches/JUmMPS.....ccteoeeccccsass e eeses st eerter e 11-1
11.2 Subroutine Call/Save/Return..... Cereesasaseaeesd SR ..11-1
11.3 Stack Structure/Return Blocks.......... S saesereseasae 11-2
11.4 Quick Calls and RetuUrnN..icescecescosersssssaoasanscnnns ..11-3
11.5 System Call and Return........... Cieesesesesassssesenn 11-3

12 Privileged Control/Status Instruction Set............c0.c0.. 12-1
12.1 ClocksS...ieeescens see s s s sssesssssacesatsatees st ae e 12-1
12.2 Instruction Set....... cscesenseasceseasssntane st eae s 12-3

13 Vector/Scalar Instruction Set........ B 13-1
13.1 Overview....coceeeene D 13-1
13.1.1 Data Types....... ceceressassenene ceeeiecsecnsaas 13-1

13.1.2 Vector Register Specification..... tecesseseeeesa13-1

13.1.3 Chalning..cccsccecseeecsescsscsscccstosscossscananscss 13-2

13.1.4 Functional Unit Reservation.......cceveviceccens 13-3

13.1.5 Register Unit Reservation.....ccccoveenceneeennns 13-3

13.1.6 Accumulator TopologY.cceeescesasenss ceesessane ..13-%

13.1.7 Recursion/Reduction.....cicieeecesacccesanns «...13-5

13.1.8 Scalar Functional Units.....ceeeteeieerneecannns 13-5

13.2 Loads and Stores (Gather and Scatter).................. 13-5
13.3 Vector/Vector ArithmeticsS...i.cecetieecsrocesoccccncanns 13-6
13.4 Vector/Scalar Arithmetics..... cesecsaccsene hessesa s ...13-6
13.5 Vector/Vector Logical Operations.............. ceeaas e 13-6
13.6 Vector/Scalar Logical Operations......ccceiveeicencacnes 13-7
13.7 Shifts and Moves......... Seeeesesniecsasceanstesanenaanne 13-7

14 Comparisons/Mask/Merge/Compress Instructions................ 14-1
14.1 Vector COmpareS.....cceeesssseccssnsccsccoss Cheeresenennn 14-1
14.2 Mask/Merge,/CompresSS...cceeeeesoseccnsannsnscaanssaecanns 14-2
14.2.1 Mask/Merge/Compress Examples.....cccececuieeacann 14-2

v

15 Vector Reduction INStruction Set......eeeeeeeenennonnnnnnnn. 15-1

15.1 Arithmetic Reductions...... S e et et e e ettt et 15-1
15.2 Logical ReductionS...u.eeeeeeeeeeeeennennenennnnennnnnn. 15-1
15.3 Population Count Vector...uu.eereneeensoeeeennnnnnnnnn. 15-1
16 VL, VS, and VM InstrucCtion Set...veueeesseennnnnnenennnnnnn. 16-1
16.1 VL and VS.....covuurvun. D 16-1
16.2 VM Operations....... Tt ettt e ettt ettt et 16-1
APPENDIX A Notational ConventionS............. ceteessenas ceseeas A-1
APPENDIX B Op Codes Sorted By Number............ Ceeeerraseennana B-1
APPENDIX C Op Codes Sorted By Name........ ceeanens ettt st ieeaa C-1
APPENDIX D Floating Point AlgorithmsS...ecuiveeeeeeeeeeeeenn.. ee..D-1
APPENDIX E Assembler Notation.............. ctteetaceeenan Ceeenas E-1
APPENDIX F GloOSSary.:eesivesscecenceessonsnnnnnss ctereseteanann ..F-1

LIST OF FIGURES

1-1 Vector Terminology.e:ccceeeseeeeeeeacecenennn ceeens ceseeaneen 1-3
2-1 Fixed Point Integer RepresentationsS........eeeeeeseeneensss.2=2
4-1 Logical Address Space Structure...... ceseerennean N]
4-2 Gate Array Structure€.......eeeee.. feeteeaenn e creeratecneaaan 4-6
5-1 Push and Pop Operands......... ctetteneenann ctececeneneans ¢e.5-3
5-2 Stack Structure€......eceeee.. crecesecncenn ceccteer e ee..5-5
5-3 Physical Address Space..... e tteeeeieeaa, ettt eereaeaa. 5-10
5-4 32-bit Byte Address: Logical to Physical Translation...... 5-15
5-5 Process/System/Segment PartitionN..e.eeeeeeseeeeeennnnnnnn.. 5-19
8-1 Instruction Page Layout.......veeeoe.. fe et et ittt e .8-6
11-1 Stack Structure for Subroutine Entry......... teeeecreaann 11-4
LIST OF TABLES
4-1 Ring Maximization Source/Target............. et et eteersaaas 4-3
5-1 Page O Logical Memory Organization....... ceseesecannas ceseead5-7
6-1 System Exceptions: Class Codes and Qualifiers......ccvueee. 6-9
E-1 Register Syntax SUMMATY....veeeeeeenennnoeseannnnn Ceers e E-4
E-2 Addressing Modes Syntax Summary...... Cee sttt sttt aesae e E-5

vi

Preface
The CONVEX Family: Systems Methodology

The architecture of the CONVEX family of 64-bit supercomputers was designed
and developed as the result of careful insight and in response to real cus-
tomer demand.

The dominance of the 64-bit supercomputer as the mainstay of the computer
market in the 80's is explained in part by the incessant demand for
increased processing performance inherent in scientific applications.

However, for the high-end scientific market, general purpose computers do
not supply the exceptional performance required. Coupling the host to an
external array processor improves performance, but such systems are diffi-
cult to program and are expensive. Realizing this shortcoming and antici-
pating customer demand, in 1982 CONVEX Computer Corporation made +the com-
mitment to design and develop a family of sophisticated, high-performance
computers for the 1980's and beyond.

At CONVEX Computer Corporation, the concern was to provide the scientific
market with a computer family which would offer the same performance levels
as the most sophisticated systems on the market while also providing supe-
rior software support and programmer productivity tools--all at a price
favorable to our customers. Responding to customer demand and foreseeing
the need for the total computer system, CONVEX architects and design
engineers designed the CONVEX family of computers.

What resulted was the architecture for the whole CONVEX family of comput-
ers, and, notably, CONVEX-1l, the world's first scientific 64-bit supercom-
puter with integrated vector processing capabilities. Offering the best
performance 1levels in the minicomputer industry., our computer family com-
bines proven high-performance architecture with advanced semiconductor
technology, programmed using state-of-the-art software tools.

Central to the development of the CONVEX family of computers is the CONVEX
architecture, where the incorporation of a vector processor as an integral
part of the system resulted in new performance levels and user benefits.
These customer benefits were achieved as a result of the dynamic marriage
of VLSI, the CONVEX instruction set architecture, and interactive, user-
friendly software development tools. For our customers, these benefits
include the following:

* One integrated system means lower total system cost.

* Programmer productivity is optimized.

Preface vii

* Efficient implementation in VLSI and high throughput are
achieved through the use of a RISC (Reduced Instruction Set Com-
puter) architecture.

* A state-of-the-art globally optimizing and vectorizing FORTRAN
compiler assures excellent programmer productivity and cptimum
speed for the scientific market.

* The CONVEX family is fully supported by a robust, flexible
software system that combines efficient implementation with high
performance in user-friendly distributed systems.

* UNIX**, the industry-standard operating system, supports all
user application needs: real time for time-critical applica-
tions; highly-interactive multi-programming, and networking sup-
port for distributed environments.

Finally, the CONVEX architecture itself needs special consideration.
Designed specifically for the scientific market from a solid base (the
CONVEX-1), the architecture prescribes a systems methodology for future
computers. Our pride in our achievement is derived from the architectural
design itself: '

* Central to the architectural design of the CONVEX family of
supercomputers 1s the integrated vector processor for optimal
per formance.

* The family supports a full range of fixed and floating point
' data types for scientific applications.

* The system offers 4 Gigabytes of virtual memory with 2 Gigabytes
available to each user for the support of massive user programs
and data.

* The large, high speed register sets --address, scalar, and
vector--guarantee high performance for address calculations in
parallel with scalar and vector calculations.

* The CONVEX family is developed around a RISC (Reduced Instruc-
tion Set Computer) architecture for optimum implementation and
throughput.

* A clean and powerful multi-level protection mechanism supports
and separates users, enhancing total system reliability, and

increasing the performance of operating system functions.

* Exceptional scalar performance for data management and system
control functions is assured.

* Rapid subroutine entry and exit ensure the remarkable execution
speeds specified in the architectural design.

Preface viii

This handbook has been prepared as an invitation to the user to share with
us in the perspicuous design of the CONVEX family of supercomputers.

** UNIX is a trademark of Bell Telephone Laboratories, Incorporated.

Preface ix

Introduction
CHAPTER 1

1 Introduction

This document is an architectural specification for the CONVEX family of
compatible 64-bit supercomputers. The term architecture has been crisply
defined as "the attributes of a system as seen by the programmer, i.e., the
conceptual structure and functional behavior, as distinct from the organi-
zation of the data flow and controls, the logical design, and the physical
implementation” [Amdahl, 1]. Within this context, an architectural specifi-
cation defines the instruction set, the structure of the 1logical address
space "Logical Address Space" and protection mechanisms, the fault, trap,
and interrupt facilities, and the I/0 space as perceived by the programmer
and properly embodied by the hardware designer. Specifically, in CONVEX
machines, the central processing unit is the portion of the machine which
is defined by this architecture. The document is not meant to convey a
particular implementation. However, no architectural decisions and trade-
offs are made without careful consideration of the potential effects on
both hardware and software.

Throughout this document, we at CONVEX have presented rationales for many

design decisions. This explication is included in order to forestall the
obvious questions and to enable the user to understand the primary design
motivations. These motivations are: the orthogonal projection of the

instruction set; the reduction in hardware complexity (especially as it
relates to performance and instruction decoding--hence the adoption of the
RISC architecture), and the universal guidelines of "garbage in/garbage
out." A frequently used term for this type of design is perspicuous: sim-
ple, elegant, and easy to understand.
In order to introduce the reader to the organization and content of this
handbook, the following pages contain brief summaries of the book's various
chapters. The chapters are arranged as follows:

o Data Types

o Register Set

o Logical Address Space

o Memory Management

o Protection System

o Exceptions

o I/0 and Interrupts

o Instruction Set

Section 1 1-1

Introduction

1.1 Data Types

There are three generic scalar data types: numeric fixed point integer,
numeric floating point, and unsigned numeric values. An array structure
(ordered sequence) is provided for each of these data types. An array has
four general characteristics:

(o}

data types

o rank or dimension

o length

o stride
Refer to Figure 1-1 for a graphic representation of array terminology. In
this example, A is a 3 by 4 array of words. An array is a data structure,
composed of elements. In this case, the elements are words. Data types
are manipulated by instructions defined in the latter sections of this
handbook.
1.2 Register Sets
There are three general register sets and several status registers. The
three general register sets are: '

o Address registers (8 x 32 bits)

o Scalar registers (8 x 64 bits)

o Vector Registers (8 vectors, each 128 elements x 64-bits)

The registers are partitioned according to the operand to be manipulated:
addresses (and scalar indices), scalars, and vectors.

Section 1.2 1-2

Introduction

Figure 1-1: Vector Terminology

Dimension a(3,4)

alt al2 ai3 al4 -

a21 a22 a23 a24

a31 a32 ad3 a34

Store in Logical
Memory (FORTRAN
Convention)

BYTE ADDRESS

CONTENTS

0 a1
4 a21
8 a3t
12 al2
16 a22
44 a34

N Rank =2 2 indices; row and column

. Length = 12 12 elements

Stride =4 or 12 Distance between elements inthe

same dimension: aiong columns,
stride is 4 bytes; along rows,
stride is 12 bytes.

Section 1.2 1-3

Introduction

1.2.1 Fixed Point Integer

The four fixed point integer representations--8, 16, 32, and 64 bits--(also
referred to as byte, halfword, word, and longword, respectively) correspond
to the following FORTRAN lengths: INTEGER*1, INTEGER*2, INTEGER*4, and
INTEGER*8, respectively. Fixed point numbers use the 2's complement
numbering system.

1.2.2 Elcating Point

There are two floating point number representations: single precision word
(32 bits) and double precision longword (64 bits). These formats are
interpreted as binary normalized fractions with an implicit "1" bit in the
most significant bit position of the fraction. The exponent is in biased
form.

1.2 . 3 Unsigned Values/Addresses

An address or logical value is treated as unsigned. - Addresses are 32 bits
in length and reside in the address registers. For numeric purposes, an
address is treated as an unsigned 32 bit integer.

1.2.4 Data Type Memory Alignment

The CONVEX logical address is byte granular; thus, all of the operands can
begin on any byte boundary. However, performance may degrade if some data
types are not aligned on an integral boundary (e.g., 64 bit integer
operands are aligned if the least significant 3 bits of their byte address
are 000).

1.3 Logical Address Space

The CONVEX architecture offers four Cigabytes (4.3 billion bytes) of vir-
tual memory in its logical address space partitioned into 8 x 512 megabyte
segments. Of these 8 segments, 4 are allocated to the user and 4 to the
operating system: thus, the maximum user program (instructions and data)
is 2 Gigabytes.

This allocation means that a user program (instructions and data) written
in FORTRAN can occupy up to 2 Gigabytes of virtual storage. The operating
system data structures and instructions necessary to manage the user pro-
gram occupy the remaining 2 Gigabytes of virtual storage.

Section 1.3 1-4

Introduction

1.3.1 Memory Management

The memory management hardware permits the operating system to provide an

extremely flexible and reliable virtual memory programming environment. As
mentioned above, the logical address space of the CONVEX architecture is
virtual:; so, even though an address may be a valid logical address, the
referenced data may or may not be in main or physical memory. Memory is

managed on a fixed-size page basis. To manage the memory, the CONVEX archi-
tecture defines and supports several attributes:

o Segment Descriptor Register--a 32-bit register that c¢ontains a
pointer to the first level page table.

o Page--a contiguous group of bytes, in particular, 4096. A page
is both logically and physically contiguous.

o Page Frame--a page that is stored in main memory.

o Page Tables--a page that contains entries called Page Table
Entries (PTE). A pagetable begins on an integral page boundary
and is contained in one pageframe or less. First 1level page
tables contain .PTE's which have pointers to second level page
tables:; second level page tables contain pointers to physical
page frames.

o Page Table Entry (PTE)--a 4 byte entry (32 bits) that conveys
information to determine, for instance, whether or not a page is
resident in main memory.

o Referenced and Modified bits--these determine whether a valid
memory read or write has occurred.

o Address Translation Unit--a programmer invisible address cache
that maintains the most recently used 1logical to physical
address translations.

1.3.2 Memory Protection System

The architecture of the CONVEX family of supercomputers provides a full 4
gigabyte virtual address space, supporting very large user programs. In
addition, the program environment is enhanced by embedding the operating
system in the user address space. From these vantage points, the user and
the system benefit enormously. - However, to realize these benefits fully,
the operating system must be protected from the user. The protection sys-
tem designed into the architecture protects the user, his programs, and
other user's programs, while also supporting contemporary notions of shar-
ing and operating system structures. This system is based on hierarchical
structures called rings and has been designed to:

Section 1.3.2 1-5

Introduction

o Support the embedding of the operating system in the user logi-
cal address space

o Contain certain violations to the user's process

o Permit the implementation of the reliable and robust UNIX
operating system

o Enhance the performance of operating system call processing by.
reducing the time for context switching

1.4 Exceptions. 1/0. and Interrupts

Exceptions are invoked when problems occur in a currently executing program
(arithmetic inconsistencies or Address Translation Faults, for example), or
as a result of some asynchronous event (such as an interrupt). Control is
then transferred to some predetermined location, the value of which is a
function of the exception.

To the processor, all I/0 data references are memory mapped, which means
that there are no explicit I/0 data.reference instructions. I/0 registers
and status bits are referenced through the appropriate logical to physical
address mapping. The I/0 register space is 1 billion bytes: 1in essence, up
to one billion I/O registers can be referenced. Generally, I/O operand
references must be on an integral boundary. so that the least significant
address bits equal to the precision of the referenced operand will be all
0.

Interrupts are a result of asynchronously occurring events and belong to
the system and not to the executing process. When an interrupt occurs, the
processor will vector to a particular handler as a function of the source
of the interrupt.

1.5 Instruction Set

The CONVEX family of supercomputers offers an extremely powerful instruc-
tion set designed to provide maximum functionality per instruction con-
sistent with ease of hardware decode and orthogonality of specification.
The instruction set is used to generate logical addresses, load, store, and
manage operands, and manipulate the virtual machine mechanisms.

A CONVEX instruction is one of three lengths: one, two, or three halfwords
(equivalent to instructions of 16, 32, or 48 bits in length). Even though
the fundamental unit of addressability is the byte, instructions are
addressed on a halfword boundary. All instructions begin on even byte
boundaries.

Section 1.5 1-6

Introduction

1.6 TIhe Rest of the Document

The following sections of the document examine the architecture of the CON-
VEX computer family in detail.

Chapter 2 discusses the organization of data types and the addressing modes
available.

Chapter 3 provides full coverage of the register set.
Chapter 4 describes in full the protection system.

Chapter 5 gives an overview of the logical address space and memory manage-
ment structures.

Chapter 6 provides details on exceptions.

Chapter 7 discusses the I/0's and interrupts' capabilities.

Chapter 8 summarizes the instruction set format.

Chapter 9 offers a tutorial on the address register instructions and pro-
vides a detailed description of each instruction available. All entries
are organized after the order in which they are discussed in the tutorial,
and each includes a full description of the operation and effects of that
instruction. Chapters 10, 11, 12, 13, 14, 15, and 16 are organized in the
same way.

Chapter 10 covers the scalar register instruction set.

Chapter 11 describes the program control instruction set.

Chapter 12 details the privileged instruction set.

Chapter 13 defines the vector/scalar instruction set.
Comparisons/mask/merge/compress instructions are covered in Chapter 14.
Chapter 15 lists the vector reduction instructions.

Chapter 16 describes the VL, VS, and VM instruction set.

Appendix A lists notational conventions used in the handbook.

Appendix B sorts the operand codes by number.

Appendix C sorts the operand codes by name.

Appendix D contains the assembler notation.

Appendix E covers floating point computations.

Section 1.6 1-7

Introduction

Appendix F is a glossary of technical terms.

Further Reading

This handbook describing the architecture of the CONVEX computer family is
complemented by The CONVEX Hardware Handbook. This text details the
hardware characteristics of each CONVEX implementation and lists all of the
particulars that would be of interest to a system or application program-
mer, as well as to a hardware designer.

Readers should note that a list of notational conventions, glossary of
technical terms, and complete index are included in the latter sections of
this text. The notational conventions have been established because a
baseline methodology and set of consistent definitions are required for a
proper understanding of this document. Finally, a feedback form is
enclosed as the penultimate page in the handbook, and readers are invited
to share with us their observations on the service and clarity of this
text.

Notes

[Amdahl,1] G. M. Amdahl, G.A. Blaauw, and F. P. Brooks, Jr. "Architecture

of the IBM System/360." IBM Journal of Research and Development 8, 2 (April
1964), 87-101.

Section 1.6 1-8

Data Types
CHAPTER 2
2 Data Types

There are 3 generic scalar data types: numeric fixed point integer, numeric
floating point, and unsigned value. An address or logical value is treated
as unsigned. An array structure is provided for each scalar data type,
except unsigned. An array is an ordered sequence of any of these scalar
data types. Arrays have four general characteristics: data type., rank or
dimension, 1length, and stride. The rank or dimension is simply the number
of indices necessary to reference a particular element. The length is the
total number of elements in the entire array. For example, an array with 10
rows and 10 columns is a rank 2 array that has 100 elements. The length of
the array 1is 1limited by the compiler and the logical address space. The
stride is the distance in bytes between adjacent array elements along the
same dimension. For example, for a one dimension word vector, the stride is
4 bytes. From the user's perspective, data types supported by the processor
are specified below.

In the appropriate chapters, instructions are defined which manipulate the
data types presented in this chapter. Unless otherwise specified mixed mode
arithmetics on data types or manipulations on operands in registers must
rigorously follow the conventions provided. Any attempt to circumvent these
conventions through knowledge of an internal representation can be
dangerous and is not recommended. If conventions are circumvented, it is
not guaranteed that results can be reproduced from one implementation to
another.

2.1 Eixed Point Integer

There are four fixed point integer representations: 8, 16, 32, and 64 bits.
These numbers are referred to as:; byte, halfword, word, and longword
respectively. These numbers also correspond to the following Fortran
lengths: INTEGER*1, INTEGER*2, INTEGER*4, INTEGER*8 respectively.

Fixed point numbers use the 2's complement numbering system, which means
that the most significant bit, the sign bit, has a value equal to (where n
is the bit position within the number num<n>):

(1) * (num<n>) * (2** (n)) .

All other bits have a value equal to (num<n>)*(2**(n)). The format of these
four fixed point data types is shown in Figure 2-1.

Section 2.1 2-1

Data Types

Figure 2-1: Fixed Point Integer Representations

S Byte

7 0
S Halfword

15 0

S Word
31 0

S ‘ Longword

63 0

Note: S represents the sign bit.

A scalar fixed point integer or unsigned value can be loaded into one of
two types of registers (the register set is described in a later chapter):
the address or scalar. Generally, operands that are to be used as an
address or index value, or that are to be manipulated in parallel to a com-
putation performed in the scalar or vector registers, are loaded into the
address registers. The address registers are 32 bits in length. Thus, long-
word operands cannot be directly loaded into an address register. Operands
that are to be used for numeric processing only are generally loaded into
the scalar registers.

When operands with a precision less than the destination register are
loaded, the remaining bits of the register are unchanged. For example,
when a 16-bit integer is lcaded into a 32-bit A register, the higher order
16 bits of the A register (A<32..16>) are unchanged. :

Thus, a byte is loaded into bits<7..0> of a register: a halfword is loaded
into bits<15..0> of a register; a word(integer or single precision) is
loaded into bits<31..0> of a register, and longword is 1loaded into
bits<63..0> of a register.

Because of this register and operand (address and scalar) partition, pro-
cessor architectures can be constructed which allow for asynchronous and
overlapped fetch and execute units. Consequently, all address calculations
can be done in parallel to numeric calculations. This feature is highly

Section 2.1 2-2

Data Types

desirable and provides for increased performance.

2.2 EFloating Point

There are two floating point number representations: single precision word
{32 Dbits) and double precision longword (64 bits). These formats and
their interpretation follow the CONVEX F-format single and CONVEX G-format
double precision architecture. These formats have normalized binary frac-
tions and biased binary exponents. The fractions have an implicit "1" bit
in the most significant bit position. The format of the single precision
(32 bit) floating point number is:

|S| Exponent | FEraction |

where:
S = the sign bit. A binary value of O denotes
positive. A binary value of 1 denotes
negative. Numbers in this form are termed
sign and magnitude.

Exponent = A binary biased exponent. That is,
the decimal value of the exponent is

obtained by evaluating the unsigned binary
value of bits<30..23>. Then 128 is subtracted
from this value. This value is then used as a
power of 2.

Fraction = A fractional value. An implicit 1 bit

is to the left of bit 22. The decimal point is to
the left of the implicit 1 bit.

The range of a single precision dperand is approximately 10**-38 through
10**+38.

The format of the double precision (64 bit) floating point number is:

Section 2.2 2-3

Data Types

|S| Exponent | Fraction |
63,62 52,51 0
where:

S = the sign bit. A binary value of O denotes
positive. A binary value of 1 denotes
negative. Numbers in this form are termed
sign and magnitude.

Exponent = A binary biased exponent. That is

the decimal value of the exponent is obtained
by evaluating the unsigned binary value of

bits <62..52>. Then 1024 is subtracted from this
value. This value is then used as a power of 2

Fraction = A fractional value. An implicit 1 bit
is to the left of bit 51. The decimal point is to
the left of the implicit 1 bit.

The range of a double precision operand is approximately 10**-308 through
10**+308.

2.2.1 Elcating Point Values

The value of a floating point operand is determined in the following
manner. The sign of the operand is determined by the sign bit. Sign bit=
O is positive:; sign bit=l1l is negative. The exponent is expressed as a
biased exponent, which means that a positive number called the bias is
added to the signed 2's complement of the true exponent. The following 1is
an example of this bias. Assume that an exponent of O is desired. Then for
single precision, the value 128 (the bias) is added to 0. Thus the
binary exponent string of (1000 0000) represents an exponent of O, For
double precision, the bias is 1024.

The fraction has a binary point to the left of the most significant bit.
Since the fraction is binary and is always normalized (the most significant
fraction bit is a 1) for non-zero numbers, the fraction is expanded by one
bit in the most significant bit within the processor during computation.
The binary point is to the left of the implicit 1 bit. For computational
purposes only, the fraction is interpreted as follows:

Section 2.2.1 2-4

Data Types

Within these formats, there are certain reserved or special operands. In
particular, these operands are used to represent zero or to initiate an
exception.

2.2.2 Zergo

A zero is a floating point number with a sign of O and an exponent of O.
The value of the fraction is unimportant. For example, if two floating
point zeros with different fractions are compared for equality, the result
is true.

For all computations that have a result of zero for the fraction, an all
zero fraction is generated. A floating point zero with a fraction of all ©
is called a TRUE ZERO.

2.2.3 Reserved Operands

A floating point number (single or double) that has a sign bit of 1 and an
exponent of all O is defined as a reserved operand. The value of the frac-
tion bits is unimportant.

A reserved operand exception is detected if a reserved operand is encoun-
tered during a floating point numeric operation (e.g., ADD, SUBTRACT, COM-
PARE, MAX, and so on).

2.2.4 Rounding

All floating point algorithms use unbiased rounding, denoted as R*. For
single precision, the processor determines the intermediate results of
internal calculations by manipulating 26 bits. These bits include 23 frac-
tion bits: the implicit 1 bit placed at "Unbiased Rounding, Fraction Bits"
the left of the most significant fraction bit, and two guard bits placed at
the right of the least significant fraction bit. In addition, a "sticky"
bit is placed to the right of the guard bits. This bit is used in the
intermediate calculations of floating point operands, and remembers whether
or not any binary l's were shifted out to the right during an alignment or
partial product operation. For double precision, internal calculations use
55 bits plus the sticky bit. 4

Section 2.2.4 2-5

Data Types

2.3 Addresses

A logical address is 32 bits in length, resides in the address registers,
and has the following format:

An address is treated, for numeric purposes, as an unsigned 32 bit integer;
thus, an address is always positive. A logical address of all O is
reserved. Note that for any particular implementation, the interpretation
of an all O logical address may differ.

2.4 Unsupported Data Types

While unusual, it is important to know what data types are not supported by
the instruction set. Byte and bit strings and commercial data types are not
in the CONVEX architecture. CONVEX is a scientific machine, and, while For-
tran '77 defines byte strings, it is up to the compiler to handle these
data types through the appropriate basic instructions. Since the CONVEX
logical address space 1is byte granular and all processors will be highly
pipelined, an in-line string move, constructed of assembly language
instructions, will be as efficient as a microcoded string move instruction.
This is the essence of a RISC architecture.

2.5 Rata Type Memory Alignment

The CONVEX logical address is byte granular. All the operands specified in
this chapter can begin on any byte boundary, unless otherwise noted in an
instruction definition.

However, there may be performance penalties for data types aligned on non-
integral boundaries. In particular the application programmer and the com-
piler writer (when applicable), should follow the following alignment
rules:

* Byte - No preference

* Halfword - least significant address bit = O

* Word - least significant 2 address bits =0

* Longword - least significant 2 address bits = 0

Section 2.5 2-6

Register Set
CHAPTER 3

3 Register Set .

There are three general register sets and additional status registers. The
registers are partitioned according to the operand to be manipulated:
addresses (and indices), scalars, and vectors. This partition permits the
minimal machine state +to be associated with the executing program--be it
the operating system, compiler, scalar application program, or vector
application program.

3.1 Address Registers/Program Counter/PSW

There are eight 32-bit address registers denoted as AO, Al,...,A7. AO, AS,
A6, and A7 have predefined meanings (with the exception of AO, they can
still be used as general purpose address registers). A5 is implicitly used
by some complex instructions: A6 is the Argument Pointer: A7 is the Frame
Pointer, and AO is the Stack Pointer. In addition, AO 1is interpreted in
one of +two ways. If AO is specified as an addressing mode, then the value
of O is used in place of the true value of A0. When A0 is used as a source
or destination for an arithmetic operation, then the true value of AO is
used. All other address registers are available for general use. For com-
plete information on stacks and the registers used to maintain them, see
Chapter 5, "Logical Address Space and Memory Management".

Two additional 32 bit registers exist: the program counter (PC) and a pro-
cessor status word (PSW). The PC is not part of the eight A register set.
The separate definition and existence of a PC permits address generation
not having to concern 1itself with the true state of the PC. Thus, in a
highly pipelined processor with instruction overlap, no additional data
paths or arithmetic logic units need exist to support PC relative address-
ing in a general manner.

The structure of the program counter is as follows:

|SEG| SEGMENT BYTE OFFSET IR|

Program Counter

When the program counter increments to reference the next instruction, the
bits incremented are a function of bit 31. If bit 31 is a 1, then

Section 3.1 3-1

Register Set

bits<30..1> are incremented. If bit 31 is a O, then bits <28..1> are
incremented. Bit O of the program counter 1is not interpreted but is
reserved for future use for hardware design.

3.1.1 Processor Status Word

The other 32 bit register is the user accessible processor status word.
This register contains flags to indicate the results of numerical opera-
tions and flags to enable or disable exception processing. There are no
privileged mode bits in the PSW. The structure of the PSW is as follows:

e e an e e = e R e e S e e 0 s e e = = - e " = = . > = S - = - - = = = - - . - = o= = - - - - - —

Processor Status Word

where the bits have the following meanings:

Bit 31 - C/Carry. The carry bit is set to the carry out for specified
operations on the A (address) registers. For compare operations using the
A registers, the sense of the compare is stored in the carry bit (i.e., was
the compare true or false).

Bit 30 - AIV/Overflow. The address register integer overflow bit is set to
indicate that a fixed point integer overflow occurred for specified opera-
tions on the A registers. An overflow trap occurs if bit 28 is a 1. If AIV
is a 0. then no overflow has occurred since this bit was cleared. If AIV
is a 1. then at least one overflow has occurred since this bit was last
cleared.

Bit 29 - ADZ/Divide by Zero. A divide by zero was detected during an opera-
tion using the A registers. If ADZ is a O, then no integer division with a
zero divisor has occurred since this bit was cleared. If ADZ is a 1, then
at least one integer division with a zero divisor has occurred since this
bit was last cleared.

Bit 28 - IVE - Integer Overflow Enable. If bit 28 is a one, and either bit
22 or bit 30 1is a one, an integer trap occurs. If bit 28 is a zero, no
trap occurs.

Bit 27 - TR/Trace. A one causes an instruction trace trap before the exe-
cution of the instruction referenced by the program counter. A non-
privileged user can set or reset this bit. For trace mode to function
properly, the user must set the SEQ bit (bit 24) to 1.

Bits<26..25> - FRL/Frame Length. Indicates whether the frame created by the

Section 3.1.1 . 3-2

Register Set

last CALL instruction, TRAP, or fault was a short frame (FRL=11) or a long
frame (FRL=10), an extended frame (FRL=01), or a context block (FRL=00).
The FRL bits are used by the return (rtn) instruction to unwind the stack
after a subroutine call or exception. When FRL=00, the current ring must be
0, and the rtnc instruction must be used.

Bit 24 - SEQ/Sequential. This bit determines the degree of pipelining
within the processor. A O indicates that maximum pipelining and overlap is
provided. A 1 indicates that all instructions are executed sequentially.
That is, the execution of an instruction is initiated only after the previ-
ous instruction has completed its execution.

Bit 23 - SC/Scalar Carry. The carry out for operations involving the S
(scalar) registers. This bit is also used to hold the result for scalar
comparisons.

Bit 22 - SIV/Integer Overflow. If SIV is a O, then no overflow has
occurred since this bit was cleared. If SIV is a 1, then at least one
overflow has occurred since this bit was last cleared.

Bit 21 -- SDZ/Divide by Zero. Indicates the occurrence of an integer
divide by zero for a divide on a scalar or vector register. If SDZ is a O,
then no integer division with a zero divisor has occurred since this bit
was cleared. If SDZ is a 1, then at least one integer division with a zero
divisor has occurred since this bit was last cleared.

Bit 20 - DZE - Divide by Zero Enable. If bit 20 is a one, and either bit
21 or bit 29 is a one, a trap occurs. If bit 20 is a O, no trap occurs.

Bit 19 - UN/Underflow. Indicates that a floating point underflow occurred
during an operation on a scalar or vector register. If UN is a O, then no
underflow has occurred since this bit was last cleared. If UN is a 1, then
at least one floating point underflow has occurred since UN was reset to O.

Bit 18 - OV/Overflow. Indicates that a floating point overflow occurred
during an operation on a scalar or vector register. If OV is a O, then no
operation on a scalar or vector register produced an overflow since this
bit was last cleared. If OV is a 1, then at least one floating point over-
flow has occurred since OV was reset to O.

Bit 17 - RO/Reserved Operand. Indicates that a floating point operation on
a reserved operand during an operation on a scalar or vector register has
been detected. A reserved operand is a floating point operand with a sign
bit of 1 and an exponent of all O's. A 1 indicates that a reserved operand
has been detected. A O indicates that a reserved operand has not been
detected. If RO is a O, then no floating point operation on a scalar or
vector register produced an overflow since this bit was last cleared to O.
If UN is a 1, then at least one floating point overflow has occurred since
RO was reset to O.

Bit 16 - FDZ/Floating Divide by Zero. Indicates that a floating point
divisor of O was used during a floating point operation on a scalar or

Section 3.1.1 - 3-3

Register Set

vector register. A O indicates that no zero divisor was detected. A 1
indicates that a zero divisor was detected. If FDZ is a O, then no float-
ing point division with a zero divisor has occurred since this bit was
cleared. If FDZ is a 1, then at least one floating point division with a

zero divisor has occurred since this bit was last cleared.

Bit 15 - FE/Floating Point Trap Enable. If bit 15 is a 1, then if any of
bits PSW<18..16> (Overflow, Reserved Operand, Divide By Zero) are a 1, a
floating point trap occurs. If bit 15 is a O, no floating point trap
occurs.

Bit 14 - FUE/ Floating Point Underflow Enable. If bit 14 is a O, a float-
ing point underflow trap does not occur. If bit 14 is a 1. a floating
point trap underflow does occur. In both cases, if a floating point under-
flow is detected, true zero is the result.

Bits <13..0> - RES/Reserved. These bits are reserved for future system
use.

For bits 30, 29, 22, 21, 19, 18, 17 and 16 (AIV, ADZ, SIV, SDZ, OV, UN, RO,
EDZ) a bit set to 1 stays a 1 unless otherwise cleared by an explicit store
of the PSW. This permits the PSW to remember the occurrence of an exception
which is masked out, but which is to be subsequently explicitly tested.

Thus, the logic equation for these exception bits is (using UN as an exam-
ple): ’

UN = UN .OR. Indication of underflow.
NOTE:

For floating point exceptions, two trap enables are provided: one for
underflow and one for every other floating point exception. The reasoning
for this relates directly to the possibility of continuing computation
after the trap. Underflow forces a true zero result, which for most cir-
cumstances, is sufficient. All other floating point exceptions force a
reserved operand result. Reserved operands are generally markers for future
trap handlers. Two trap enables permit the application programmer to
choose the appropriate reaction to a floating point exception.

Please see the appropriate sections on arithmetic exceptions, subroutine
calls, and system calls for a description of the modification of the PSW.

3.2 ION and VV Elags

There are two privileged binary flags, ION and VV, which control certain
operations. The ION flag is used by the operating system to enable and
disable external interrupts. There are instructions to test the state of
the ION flag (bri.f, bri.t, jmp.f, and jmp.t). There are also privileged
instructions to disable ION or set it to O (dsi), and to enable interrupts

Section 3.2 3-4

Register Set
or set ION to 1 (eni).

The VV or vector valid flag is also used by the operating system to control
the saving and restoring of the vector accumulators in a demand mode. Typ-
ically, when a program first uses vector instructions, a vector valid trap
occurs, and the operating system will then allocate vector register
(VM,VL,VS, and Vector Accumulators) to the user program. There are two
instructions which operate on the VV flag. The privileged instruction mov
Sk,VV loads the VV flag from Sk. The other instruction, tstvv, loads the
value of VV into the SC bit in the PSW. Please see Section 6.3.3 for
details on the vector valid trap.

3.3 Sequential Execution

When bit 24, SEQ, of the PSW is set, all pipelining is disabled. Owing to
the pipelined characteristics of the processor, execution for debugging
purposes (both for hardware and software) must sometimes be serialized.
The numerical results produced are the same regardless of the setting of
the SEQ bit. Only performance and the serial nature of the execution are
affected. The user may freely set or reset this bit.

3.4 Data Accumulators

There 'are two general sets of data registers: scalar and vector. Within
the vector register set, there are four types: vector accumulators(V),
vector merge(VM), vector stride(VS), and vector length (VL).

Within the S and V registers, the architecturally supported data types
occupy the following bit positions:

BYTE - bits<7..0>

HALEWORD - bits<15..0>

WORD ~ bits<31l..0>

LOGICAL - bits<63..0>

LONGWORD - bits<63..0>

SINGLE PRECISION - bits<31l..0>
DOUBLE PRECISION - bits<63..0>

* * X * * * ¥

3.4.1 Scalar Registers

There are eight 64-bit scalar accumulators or S registers. The S registers
contain either fixed point integer, logical, or floating point operands.
When an operand less than 64 bits is loaded into a scalar register, the
unused bits are left unchanged. The scalar registers are referenced as:
so, si, ..., 87.

Section 3.4.1 3-5

Register Set
3.4.2 Vector Registers
3.4.2.1 Vector Accumulators -

There are eight vector accumulators (V). each of which can contain up to
128 64-bit operands. These operands can be:. integer, logical, or floating
point. When an operand less than 64 bits is loaded into a vector accumula-
tor, the unused bits are left unchanged.

Since a vector accumulator can contain up to 128 elements of the same data
type and precision, a means is provided to specify the exact number of
operands stored. The VL or Vector Length register provides this function.

The vector accumulators are referenced as: VO, V1, ..., V7. Individual
elements within a vector accumulator are referenced by appending the ele-
ment number to the vector accumulator designation. Thus, the 22nd element
of V1 is referenced as V1(21), and the first element of V1 is V1(0) (origin
0 indexing).

3.4.2.2 Vector Merge

To support efficient element-by-element array comparisons and array manipu-
lations such as compress, expand, and merge, a Vector Merge or VM register
is provided. VM is 128 bits in length, with one bit position for each pos-
sible element in an array accumulator.

A binary 1 is used to contain the results of compare operations when those
comparisons are true; likewise, a binary O is used to contain the results
of compare operations when those comparisons are false.

Typical uses of VM (as supported by the instruction set) are:

1 Vector Clipping

2 Population Count (the number of successful compares)

3 The manipulation of sparse vectors.

4 Array compression, expansion, and merging.

5 The number and location of zero or threshold crossings.

6 Support arithmetic operations that are performed under mask.

3.4.2.3 Yector Stride

A 32-bit register, VS, is provided to specify the distance, in bytes,
between adjacent array elements. If VS is positive, adjacent array ele-
ments are loaded and stored from memory by adding a multiple of VS to the
initial address of the array base. If VS is negative, adjacent array ele-
ments are loaded and stored from memory by subtracting a multiple of VS
from the initial address of the array base. In this latter case, logically
adjacent elements are in decreasing locations in logical memory.

If VS is smaller than the precision of the operands fetched, undefined

Section 3.4.2 3-6

Register Set

actions can occur. If VS is exactly O, the referenced operand is extended
to a vector whose length is equal to VL (scalar extension).

3.4.2.4 Vector Length

An 8-bit register, VL, is provided to specify the number of elements
contained in a vector accumulator. Since VL is eight bits in length, up
to 255 can be specified, but only 128 elements can reside in a vector
accumulator. The VL register must have:

1 A specification of 128 elements or less.

2 An efficient means for compiler support of arrays greater than
128 where the length of the array is an integer multiple of 128
(often called strip mining or sectioning).

3 An efficient means for compiler support of arrays greater than
128 where the length of the array is not an integer multiple of

- 128.

4 The provision of one mechanism for handling loop control for the
cases where the iteration count of a program loop is a variable.

Note: when VL is zero, no vector operation is performed. With these objec-
tives in mind, the interpretation of VL is exactly equal to its decimal
value. ,

Examples:
1 VL = 1000 0000. VL represents the value 128.
2 VL. = 0000 0111. VL represents the value 7.
3 VL = 0000 0000. VL represents the value O (no-operation)

An attempt to load VL with a value greater than 128 will result in the
decimal value of VL being exactly 128.

The following code sequences would suffice for handling an array of any
length:

Load VS.

Load VL.

Execute the vector instruction sequence.

Subtract 128 from the value used to load VL in step 2.

If the resulting value is less than or equal to O, then all of
the array elements have been manipulated, and thus exit. Other-
wise:

6 Adjust the address pointers to the array section (the next 128
elements) or unroll the DO loop in-line. GOTO step 2. (Note: VS
need not be reloaded).

N whP

Please note that even though the VL register is 8 bits, a vector can be of
any arbitrary length up to the user logical address space of 2 Gigabytes.
As mentioned above, the compiler performs operations on vectors in groups

Section 3.4.2 3-7

Register Set

of 128 elements, through a mechanism called sectioning or strip mining.

Secticn 3.4.2

Protection System

CHAPTER 4

4 Protection System

The protection system protects the user, his programs, and other user's
programs, while also supporting contemporary notions of shared resources
and operating system structures. These features do not get in the way of
system performance or cause undue hardware complexity.

The protection system has been designed to:

1 Support the embedding of the operating system in the user logi-
cal address space (for reasons of performance and software reli-
ability).

2 Contain certain violations to a user's process. A user can and
may modify his/her own process, but not any others.

3 Detect runaway programs in a graceful manner.

4 Permit efficient implementations of virtual machine mechanisms.

In order to achieve these objectives, the protection system is structured
in the following manner. The logical address space is partitioned into S
hierarchical areas called rings. This partitioning is defined by the seg-
ment field (bits <31..29>) of the logical address. Segment O is always
assigned to ring O, which contains the operating system kernel. A set of
instructions, . referred to as privileged instructions, can only be executed
in ring O. Segment 1 is always assigned to ring 1. Segment 2 1is always
assigned to ring 2. Segment 3 1is always assigned to ring 3. Segments
4,5,6, and 7 are always assigned to ring 4. The structure of the logical
address space is graphically shown in Figure 4-1.

Section 4 4-1

Protection System

Figure 4-1: Logical Address Space Structure

Segment
RING PRIORITY
system space 0 RING 0 - Kernel highest
1 RING 1
process
space 2 RING 2
3 RING 3
4 RING 4
5 RING 4
user ‘
space 6 RING 4
7 RING 4 v lowest
increasing
logical
addresses

This particular structure was chosen because the CONVEX family is a 64-bit
supercomputer which supports a 32-bit address space. As a result, the com-
puter can easily support large user programs in a virtual address space.
Furthermore, the Operating System (0OS) can be embedded in the user address
space. From these vantage points, the user and the system benefit enor-
mously. However, to realize these benefits fully, the 0S must be protected
from the user.

Another advantage to this structure is the segmentation support made avail-
able for users. Segmentation may be used to support the mechanisms of dif-
ferent address partitions for user code, static data, dynamic data (stack
or unshared), and system library code. To these ends, four segments are
explicitly provided for the user.

4.1 Logical Address Space Structure
Two other structures are needed to complete the protection system: the

access field contained within a pagetable entry (PTE), and the access
brackets pertaining to the enforcement of the ring structure.

Section 4.1

W
'
[:8)

Protection System

The access bracket structure directly implements a mechanism called 'ring
maximization. Ring maximization means that given a lower access priority,
the references of the instruction are always at this lower ©priority. The
reference starts at the priority implied by the ring field of the program
counter (bits <31..29>). This initial ring is then compared to the ring of
the referenced operand (if one exists). As a function of the numerical
relation between these two ring numbers, a statement concerning the valid-
ity of the reference can be made. In this ring mechanism, higher ring
numbers have lower priority than rings with lower numbers.

A memory reference that satisfies the ring maximization functieon is wvalid.
All wvalid references must then satisfy the access requirements imposed by
the access field of the PTE that references the target operand.

Table 4-1 defines the validity of logical address references. If an invalid
reference 1is detected, a system exception occurs, and an error code is
loaded into A5 while the fault is being serviced (see Chapter 6, "Excep-
tions"). The effective source is the ring of the program counter, and the
effective target is the ring of the address of the referenced operand. If
indirect addressing is specified, the effective source remains the ring of
the program counter, and the new effective target is the ring number con-
tained in the indirect pointer. '

Table 4-1: Ring Maximization Source/Target

Program ' , Target

Counter

Ring Most Privilege Least Privilege
Ring 0 | Valid-R0O Valid-R1 Valid-R2 Valid-R3 Valid-R4
Ring 1 | Trap Valid-R1 Valid-R2 Valid-R3 Valid-R4
Ring 2 | Trap Trap Valid-R2 Valid-R3 Valid-R4
Ring 3 | Trap Trap Trap - Valid-R3 Valid-R4
Ring 4 | Trap Trap Trap Trap Valid-R4

Ring Maximization Source/Target

To determine whether or not a read, write, or execute access should be
allowed for valid references, the system follows these procedures based on
an access field within a PTE:

Section 4.1 4-3

o

Protection System

1 Read Access - The ring maximization function is used to deter-
mine whether or not the reference is valid. If it is, bit 3 of
the valid PTE is examined. If bit 3 is a 1, the read is permit-
ted. If a O, the read is not permitted and a system exception
occurs.

2 Write Access - The ring maximization function is used to deter-
mine whether or not the reference is valid. If it is, bit 2 of
the valid PTE is examined. If bit 2 is a 1, the write access is
permitted. If a O, the write is not permitted, and a system
exception occurs.

3 Execute Access - If transfer of control within the same ring is
performed, bit 1 of the valid PTE is examined. If bit 1 is a 1.
instructions can be fetched and executed from this page. If bit
1 is O, instruction execution is not permitted, and a system
exception occurs.

The protection mechanisms provided for inter-ring transfer of control
within the same ring) are presented in a subsequent section of
chapter.

4.2 Protection Notes

The following notes will help users avoid some pitfalls when using
type of protection system:

1 PC relative addresses are granted no special privileges. The
appropriate read, write, and execute privileges, as previously
specified, apply. ’

2 Access checking is performed if and only if the pagetable entry
associated with a valid address is valid. The state of the
resident bit for checking access privileges is ignored. Thus an
access violation can be detected for non-resident pages.

3 If an access privilege is changed for a process after that pro-
cess has already established a context in the ATU, the ATU must
be purged upon completion of the alteration. ATU entries are not
altered automatically when a PTE is modified.

4 If an instruction specifies an immediate operand (e.g., Add
immediate), the read access privilege of the page containing the
immediate operand is not interpreted: it is treated as an exe-
cute access.

S5 A ring check is not performed for instructions which produce
effective addresses, but which do not immediately use them. For
example, if a load effective address instruction executed in
ring 3 develops a ring 1 address, no ring violation occurs. If

Section 4.2

(not
this

this

Protection System

that ring 1 address is subsequently used by a ring 3 program to
make an operand reference, a ring violation occurs.

6 The intermediate addresses of all instructions which can make
multiple memory references (e.g., Vector Load) are always ring
maximized with the current ring to determine the validity of the
reference (i.e., the address of each array element).

7 When indirection is specified, the page containing the indirect
pointer must permit read access. This read access is indepen-
dent of the instruction type (i.e., load, store, jump)

8 I/0 space operands must be addressed as single bytes. If a valid
I/0 reference is made using a non-byte operand, a protection
violation occurs.

The protection structure uses a construction called effective source, which
has these properties if indirection is specified:

1 The program counter is still the effective source.

2 The second target is the ring number contained within the
"indirect pointer. The first target is the ring number contained
within the effective address that references this indirect
pointer. :

4.3 SDR Validity Bit Protection

If bit 31 of an SDR location is O, a PTE violation occurs. The PTE viola-
tion is vectored through byte address OC (hex) in page O of ring O (a sys-
tem exception). To protect against an invalid SDRO which would cause an
endless PTE violation, the following special test is performed: if SDRO is
invalid, a machine exception occurs (see Chapter 6). The response to a
machine exception is implementation-dependent.

4.4 Inter-ring Procedure Call/Return

Ring crossing can only occur as a result of an explicit attempt by a pro-
gram control instruction to cross rings, or by a system exception. The con-

ditions by which these explicit instructions can cross rings are as fol-
lows:

1 The explicit program control instruction is either a system call
(sysc), return (rtn with FRL=01l, extended return block), or the
privileged instruction: return from context block (rtnc). All
other program control instructions stay within the current ring
of execution (i.e., the ring of the program counter). Thus the
appropriate higher order bits of the target effective address
are, in essence, ignored.

Section 4.4 . 4-5

Protection System

2 The direction of a subroutine system call is inward, toward ring
0. Outward calls are trapped as a ring violation. The direction
of all subroutine system returns is outward, away from ring O,
Inward returns are trapped as a system exception.

3 The immediate field of the system call instruction is inter-
preted as an index into a table within the called ring. This
index is referred to as a gate number. The table contained
within the called ring is referred to as a gate array. The base
of the gate array is pointed to by byte address 4C (hex) of page
O of the called ring.

The structure of the gate array is illustrated in Figure 4-2.

Figure 4-2: Gate Array Structure

31 29 16, 15 0
Byte -called ring-»| Max # of Gates Not used
Address
4C (hex) Brac PC Offset 0| Gate 0
Brac PC Offset 0 | Gate n-1
increasing
addresses gate array

The format of the sysc instruction is:

15 765430 31 29 28 16 15 o]

Inward ring crossing functions in the following manner. The gate index
field (g field) of the sysc instruction is used to indicate the desired
entry point. This gate index field is compared with bits <31..16> of the
first word of the gate array pointed to by byte address 4C (hex) of page O
of the target ring. If the gate index field is greater than or equal to
bits <31..16>, then a ring violation occurs, and the ring crossing does not
occur (the gate is not defined). If the gate index field is less than bits
<31..16>, the ring number of the segment containing the sysc instruction
(current ring) is compared with bit <31..29> of the referenced gate index

Section 4.4 4-6

Protection System

(r field). If the current ring is less than or equal to the bracket (Brac)
field, then bits <28..1> of the gate are loaded into the program counter.
Bits <31..29> are 1loaded with the target ring. If the current ring is
greater than the bracket field, the PC is not loaded, the ring crossing
does not take place, and a system exception occurs.

For example, assume that the operating system kernel has n gates. All the
gates other than gate M are reserved for calls from rings 3,2,and 1. How-
~ever, gate M (owing to the nature of this kernel call) can be directly
called by ring 4. All gates in the kernel other than M have the value 3 in
their gate bracket field. Gate M has the value 4 in its gate bracket
field. If a ring 4 caller attempts to call a kernel gate other than M, the
call fails (4 is greater than 3). If a ring 4 caller attempts to call ker-
nel gate M, the call succeeds (4 is less than or equal to 4).

This mechanism permits individual segments to have entry points with unique
gate brackets. Thus a particular operating system call can be restricted to
a particular ring of origin.

All these actions are performed by the processor. There is no software
overhead or involvement by the operating system kernel, unless an explicit
kernel call is made.

4.4.1 = Stack Switching/Argument Reference

There is one stack per ring, which means‘that the stack allocated to ring 4
is logically different from the stack for ring 3, for ring 2, and so on.

After a successful gate entry, as specified in the previous section, a new
stack frame is created in the target ring, and an extended subroutine
return block is pushed onto the target stack (the called routine's stack).
The stack pointer of this stack is initially loaded from byte address 48
(hex) of page zero of the called ring. After the extended return block is
pushed, the stack pointer (AO) is copied into the frame pointer (A7). The
PC is loaded from the referenced gate.

The stack pointer value saved in the extended return block represents the
value of the caller's stack pointer at the time of the call. It is neces-
sary to save this value to permit a proper return from a multiplexed stack
structure. Thus - the 1link back to the outer ring's stack is contained
within the extended return block pushed on the inner ring's stack. Addi-
tional details for an inward system call are covered in the description of
the sysc instruction. .

Arguments for the system call are maintained in a programmer-defined area.
They may be in an argument packet or on the stack--whatever software-
enforced conventions permit.

The converse of a system call is a system return, which is implemented with
a return (rtn) instruction. Unlike a system call, no gate processing is

Section 4.4.1 4-7

Protection System

necessary. An inner ring can unconditionally access an outer ring, so pro-
tection 1is unnecessary. A system return is like a normal return with the
following four differences. First, the ring field of the Program Counter
can change. Second, all returns must be the same ring or outward (away from
ring 0). Third, the return block on the stack must be an extended or con-
text type. Fourth, after the return block is popped from the stack, the
updated stack pointer of the inner ring is restored to byte address 48
(hex) of page zero of the ring containing the rtn instruction. This guaran-
tees that, with subsequent system calls to the same ring, the stack will be
initialized to the proper values.

4.4.2 Trojan Horse Pointers

Trojan horse pointers can occur on system calls when a passed pointer
references the operating system's data space. Usually, the software agent
invoked as part of the inward ring call uses a passed pointer as part of
system call processing. The agent expects these pointers to reference the
logical address space of the caller (i.e., the ring of the user executing
the sysc instruction). If a passed pointer references an agent's data
space, unexpected (and generally undetected) disasters occur. To prevent
such happenings, the following facilities are provided:

1 An instruction which checks to see that the ring maximization
function is satisfied for passed pointers (compare immediate) is
provided.

2 A load physical instruction is provided +to obtain the access
bits of appropriate pagetable entries.

3 Instructions which access data backwards (decreasing 1logical
memory) always perform the ring maximization function to ensure
that a dynamic Trojan horse pointer is not created.

All of these actions can occur outside the operating system kernel. One of
the objectives of the protection and memory management structure is to
reduce the size of the operating system's kernel. This permits a more
reliable and secure kernel to be constructed. Additionally, virtual
machine structures are easier to construct.

Generally, there is no algorithm which guarantees that Trojan Horse
pointers will not occur. Experience has shown that, for a robust system
call interface, arguments should be copied into the called ring's space,
and then Trojan horse pointer checking initiated.

If the arguments are values, the level of required checking is somewhat
mitigated. This provision prevents one argument pointer from modifying
another argument after Trojan horse checking: this is essentially the
self-modifying argument attack.

Section 4.4.2 4-8

Logical Address Space and Memory Management
CHAPTER 5

5 Logical Address Space and Memory Management

The logical address space of CONVEX is virtual. This means that although an
address may be a valid logical address, the referenced data may or may not
be in main or physical memory. To manage this structure, various entities
are defined and supported. Among these structures are:

1 Segment - A logically contiguous group of bytes--in particular,
512 MB (549,755,813, 888 bytes).

2 Page--A contiguous group of bytes, in particular, 4096 bytes. A
page is both logically and physically contiguous.

3 Segment Descriptor Register (SDR)--A 32-bit register that con-
tains information necessary to translate a logical segment
offset to a physical address in main memory.

4 Page Frame-~-A page that is stored in main memory.

5 Page Table--A Page that contains entries called Page Table
Entries. A pagetable begins on an integral page boundary and is
contained in one page frame or less.

6 Page Table Entry (PTE)--A 4 byte entry (32-bits) that conveys
information necessary to determine if a page is resident in main
memory or not. Other status bits within a PTE determine the
validity of the memory reference from a protection viewpoint. A
PTE is aligned on an integral word boundary.

7 Referenced Bit--A bit associated with a page frame. A referenced
bit indicates that a valid read or write has occurred.

8 Modified Bit--A bit associated with a page frame. A modified bit
" indicates that a valid write has occurred.

9 Address Translation Unit (ATU)--A programmer invisible address
cache that maintains the most recently used logical to physical
address translations.

Sufficient referenced and modified bits exist for the total amount of phy-
sical memory for a particular implementation. These bits are stored in
internal machine state and mapped into the I/O address space.

CONVEX's logical .address space is 4 Cigabytes (approximately 4.3 billion

bytes). This space is partitioned into 8 x 512 Megabyte segments. The
format of the logical address space is:

Section 5 5-1

Logical Address Space and Memory Management

There are no other hardware or architecturally supported pointer formats.
Of these eight segments, four are allocated to the user (essentially
hardware enforced), and four to the operating system. Thus the maximum
user program (instructions and data) is 2 Gigabytes. This permits a user to
share a common subroutine library in one segment, code in another segment,
static (e.g., FORTRAN common) in the third segment, and dynamic (e.gq.,
stack) in the fourth segment. This partitioning is a suggestion, not an
enforced algorithm.

Logical addresses are generated through the use of the program counter,
absolute references, or one of the eight address registers.

Data referenced by a byte logical address can begin on any arbitrary byte
boundary. That is, 'a 64-bit operand can begin on any one of eight byte
boundaries. The byte address generated by an instruction references the
first byte (byte O) of an operand. However, where storage allocation is-
controlled by the system, the preferred boundary is as follows:

byte - not applicable.

halfword - least significant address bit is a 0.
word - least significant 2 address bits are 00.
longword - least significant 2 address bits are 000.

0O 0 0O

The software linker must support, for performance reasons, alignment of
various structures on programmer specified boundaries (e.g.., the page boun-
dary) .

5.1 Indirection

All instructions which reference memory can optionally specify a mechanism
called indirection. Indirection causes the logical address of the refer-
enced operand to be contained in a memory location. The site of this memory
location is obtained from the instruction specifying indirection.

Only one level of indirection can be explicitly specified by an instruc-

tion. The format of the indirect word is a byte pointer.

5.2 Stacks

A stack 1s an array of bytes organized in a "pushdown" manner. Stacks are
used to contain operand temporaries and local variables, as well as to
state information relevant to the environment of the currently executing

Section 5.2 5-2

Logical Address Space and Memory Management
progran.

There are three architecturally-defined registers that are used to maintain
a stack: the stack pointer (SP, A0), the argument pointer (AP, A6), and the
frame pointer (EP, A7). As a function of the type of operation performed
on the stack, one, two, or all three of these registers are affected. Gen-
erally, subroutine entry and exit use all three registers. The following
subsections describe some of the types of operations performed on a stack.
Please consult the appropriate instruction set chapter for specific
details.

5.2.1 Push and Pop Operands

There are two primitive operations on a stack. One operation is a push and
the other operation is a pop. A push stores an operand on the stack; a pop
removes an operand from the stack. Address register AO points to the top
element of the stack (the last location used). A push decrements AO by a
multiple of 4 or 8; a pop increments A0 by a multiple of 4 or 8.

Pushing a word requires that AO be decremented by 4; then the word is
stored in the location referenced by the new value of AO. Popping a word
from the stack requires that the top element is fetched from memory, and AO
is then incremented by 4.

The following example depicts these actions. Initially the top of stack is
at byte 68 (decimal). Thus, a load word from the top of the stack fetches
bytes 68, 69, 70, and 71. Pushing a word onto the stack requires that the
stack pointer first be decremented by 4 (64 = 68-4); then the word to be
pushed is stored into bytes 64, 65, 66, 67, or simply the word that begins
at byte 64. This is illustrated in Figure 5-1.

Figure 5-1: Push and Pop Operands

The stack is managed as an aggregate of 32-bit words, which means that all
instruction set primitives that manipulate the stack do so by incrementing

Section 5.2.1 5-3

Logical Address Space and Memory Management

or decrementing by stack and frame pointer by units of four. Even though
the stack is referenced by a byte address, this convention is always
obeyed. Overt modification of the stack pointer (by Ainstructions which
manipulate AO and A7) by quantities other than multiples of four is not
recommended. Even though the processor will continue to function, perfor-
mance will be lost. The stack should be initialized to begin on an integral
4-byte address boundary.

There is no explicit stack overflow or stack underflow detection per formed
by the hardware. Stack overflow and underflow may be detected by surround-
ing the allocated stack by pages (described in a later chapter) of no
access. Software reserved bits in the protection fields of the no access
page table entries may be used to differentiate this type of access viola-
tion from other possible causes. (Page Table Entries are described in
Chapter 4). Consequently, the protection trap handler can determine the
reason for its invocation.

5.2.2 Creating and Deleting a Stack Erame

Stacks are generally used as dynamic storage, storage that is allocated and
deallocated during the execution of a user program. To assist in the
proper management of the stack, a frame pointer is -defined. The frame
pointer, A7, provides for dynamic linkage between frames contained on a
stack. Typically, a frame consists of an area that contains saved copies of
registers from the previous execution context, an area that contains
storage for temporary variables local to this context, and values necessary
to manage the present frame as well as a link back to the previous franme.
See Figure 5-2 below for details on the stack structure.

5.2.3 Ring Q Stack

The ring O stack (the stack associated with the highest priority ring, ring
0) must always be aligned on a 32-bit word boundary. If it is not, a
machine exception occurs (see Chapter 6).

5.3 Reserved Logical Memory

Reserved logical memory locations are used to obtain addresses or status
when exceptions occur. Generally when one of these conditions occurs. an
implicit subroutine call occurs. The processor provides the subroutine call
opcode, and the reserved area in memory provides the address. Because a
stack has already been defined, arguments may be passed and a handler rou-
tine executed.

The reserved area in logical memory is the first page in the segment refer-
enced by the ring field of the program counter. This page 'is referred to as
Page O. Since there are five rings, there are five page O's. For ring 4,
page O is always in segment 4. The only page O that must be memory resident

Section 5.3 5-4

Logical Address Space and Memory Management

Figure 5-2: Stack Structure

Caller's FP»

Calier's RTN Addr.

Caller's LSI 2

Caller's
Automatic
Storage

Argn

00

AP >

Argl

Callee’s LSI 1

Saved S0-64 bits

Saved S1-64 bits

Saved S7-64 bits

Prior to Push

Saved A0 (SP)

Saved A1

SaVed A5

Saved A6 (AP)

Saved A7 (FP)

Saved PSW
Callee FP»{ Return Addr
After Call
Callee's LSI 2 .
Callee's
Automatic
SP»| Storage

Section 5.3

Language Specific Information

Decreasing
Addresses

(Argument list may not
be located in stack)

Language Specific Information

Extended Frame Only

Long Frames Only

Extended Frame Only

Long Frames Only

(32)

(32)
— Short Frame
(32)

@2 |

Language Specific information
(N*32) '

Direction of
Stack Growth

Logical Address Space and Memory Management
is page O of ring O.

Page 0 is used in one of two ways, depending on the classification of
exception (trap or fault) which has occurred. (Exceptions are detailed in
Chapter 6.) The two types of exceptions which access Page O are process
exceptions and system exceptions. In addition, interrupts also access Page
0.

Process exceptions are characterized by the fact that they are handled by
the user program in the current ring of execution. Examples include arith-
metic traps and instruction trace. This approach supports the PL/1 "ON"
condition and anticipated revisions to FORTRAN. It also permits each user
to have his or her own debugger. The operating system is not involved in
handling process exceptions.

A system exception involves the operating system. ’Examples include address
translation faults and ring-crossing traps. When such an exception arises,
a ring crossing to ring O occurs, and the ring O process stack 1is used.
Rings are discussed in more detail in Chapter 4, "Protection System."

Interrupts also cause a ring crossing to ring 0. An interrupt is an asyn-
chronous event which the operating system must handle. A unique stack in
ring O is established for interrupts: this stack is different from the
ring O process stack.

5.3.1 System Page Q
Table 5-1 shows the logical memory organization of Page 0 of Ring 0. See

Chapter 6, "Exceptions," for definitions of the terms "exception,™ "trap,"
and "fault."

Section 5.3.1 5-6

Logical Address Space and Memory Management

Table 5-1: Page O Logical Memory Organization

BYTE
ADDRESS
(hex) 31 16,15 0
0 Reserved A
4 ‘ inter. Level Reserved
8 1/0 Interrupt
C System Exception Handler System
10 interval Timer Interrupt
14 Reserved
18 Reserved
1C Vector Valid Trap
20 Interrupt Stack Pointer
24 Context Stack Pointer
28 Reserved
2C Previous Stack Pointer
30-3C Reserved v
40 Instruction Trace Trap A
44 Arithmetic Exception Trap
48 Stack Pointef
Process
4C Segment Entry Point
50 Breakpoint Trap Y

Section 5.3.1 5-7

Logical Address Space and Memory Management

Each of the above entries has the following meanings.

0]

1

10

11

12

13

14

Reserved. Should not be used by software. May be used in the
future.

Interrupt Level. A 16-bit memory-based counter that indicates
the number of nested interrupts currently being processed. If
Interrupt Level is O, then no interrupts are being processed.
If Interrupt Level is not O, then interrupts are being pro-
cessed, and the ring O stack is the interrupt stack.

I/0 Interrupt. A byte pointer to the handler for I/0 inter-
rupts.

System Exception Handler. A byte pointer to a system exception
handler. The exceptions that transfer control to this system
exception handler are: error exit trap:; undefined opcode trap:
ring violation: PTE violation, and non-resident page.

Interval Timer. A byte pointer to the interrupt handler that
responds to an interval timer interrupt.

Reserved.
Reserved.

Vector Valid Trap. A byte pointer to a trap handler that
responds to the vector valid trap. A vector valid trap occurs
if an attempt to execute a vector instruction occurs and the
vector valid bit is 0. A vector instruction is an instruction
which manipulates the V, VL,VS, or VM registers.

Interrupt Stack Pointer. A byte pointer that specifies the
stack to be used when an interrupt occurs.

Context Stack Pointer. A byte pointer that specifies the stack
to be used when a system exception occurs.

Reserved.

Previous Stack Pointer. A save area used for interrupt process-
ing. When an interrupt first occurs and the ring O stack is
initialized to the value of the interrupt stack pointer, the
process stack pointer is saved in byte address 2C (hex). This
ensures that there is a proper linkage for stack switching in
ring O for interrupt processing.

Reserved.

Reserved.

Reserved.

Section 5.3.1

Logical Address Space and Memory Management

15 Reserved.

16 Instruction Trace. A byte pointer to the handlér that responds
to an instruction trace trap.

17 Arithmetic Exception. A Dbyte pointer to the handler that

responds to an arithmetic exception. The PSW contains bits
which indicate the type of arithmetic exception (s) that
occurred.

18 Stack Pointer. A save area that maintains the stack pointer for
cross ring call processing.

19 Segment Entry Point. A byte pointer to the base of the gate
array defined in the called ring. Each ring has a unique entry
point and associated gate array.

20 Breakpoint Trap. A byte pointer to the handler that is executed
when the bkpt instruction is executed.

5.3.2 Process Page Q

If a trap is classified as belonging to a user process, page O of the
current ring has the same format as specified above with one excep-
tion: the first 16 words are reserved.

5.4 Physical Address Space

The physical address space is 2 Gigabytes. One Gigabyte 1is allocated to
main memory (i.e., up to 1 billion bytes of physical memory can be config-
ured), and 1 Gigabyte is allocated to I/O registers. Physical addresses O
through 3FFF FFFF (hex) reference main memory. Physical addresses 4000
0000 (hex) through 7EFF FEFEFF (hex) reference 1/0 registers. Figure 5-3 dep-
icts this partition.

Section 5.4 5-9

Logical Address Space and Memory Management

Figure 5-3: Physical Address Space

0000 0000 Increasing Physical
Addresses.

Physical Memory

(1 GB)
3FFF FFFF
4000 0000

1/0 Registers

(1 GB) v

7FFF FFFF
Physical Address Space
Within the I/0 space, one set of registers is presently defined. These

registers contain the referenced and modified bits maintained for each 4096
byte page of physical memory (a page frame). The architectural limit of one
Gigabyte of physical memory means that 2**15 bits must be maintained. The
following allocation has been made:

1 Addresses 4000 0000 to 4000 7EFF (hex) allocated to Referenced
Bits. :

2 Addresses 4000 8000 to 4000 FEFF (hex) allocated to Modified
Bits.

All other I/O registers are reserved for future system use. It should be
noted that I/0 registers are not encached in a processor cache. This per-
mits the I/O registers to change asynchronously without the processor hav-
ing to concern itself with the presence of a cache.

All operands within the I/0 register space must be one byte. If a wvalid
reference 1is made to an operand other than a byte, a process exception
{class C (hex), qualifier 7 Invalid I/O access) occurs. See Table 6-1.

The referenced and modified bits are accessed as byte operands. Thus, the
load and store byte instructions should be used. These instructions load
and store eight referenced or modified bits at a time. The use of any

Section 5.4 5-10

Logical Address Space and Memory Management

other type of instructions will produce undefined actions.
5.5 Iranslating Logical To Physical Addresses

Presently, logical memory is substantially larger than physical memory.
Consequently, a means must be provided to determine if there exists a phy-
sical page or page frame for a valid logical address. This determination is
accomplished by a two level pagetable mechanism. A two level pagetable is
used for accessing data in memory in the same way that a two 1level file
index might be used for accessing data on disk.

5.5.1 Segment Descriptor Register

A segment descriptor register is a 32 bit word aligned to word boundary,
which controls the validity of a segment (the basic partition of the logi-
cal memory space) and provides information relating to address translation.
There are 8 SDR's, one for each segment. Each SDR is 32 bits long. An SDR
has the following format:

3 32
1009 98 76 0
Segment Descriptor Register

The meaning of each of these bits is as follows:
Bit<31> - Valid - If O, this segment is not valid. A system exception is
signaled and an error code is locaded into AS after a context block is
saved. (See Chapter 86).
Bit<30> - Hardware reserved. Must be zero.
Bits<29..9> - Page frame base. The page frame base is the higher order 21
bits of a 30-bit physical address. Bits <8..2> of this physical address
come from bits <28..22> of the logical address to be translated. Bits

<1..0> of the physical address are 0. This physical address references a

page table entry in main memory. The page frame base is modulo 3512 bytes.
See note below.

Bits<8..7> - Hardware Reserved. These bits presently have no meaning. Sys-
tem software must not use these bits.

Bits<6..0> - Software Reserved.

Section 5 5.1 5-11

Logical Address Space and Memory Management

The page frame base in the SDR permits, if desired by the operating system,
for one page (4 KB) to be used to contain the first level page table for
multiple contiguous segments. The first level page table can be structured
so that it is contained in a .512 byte page rather than in a 4096 byte page.
This 512 byte page can be used in one of two ways. It can be used to con-
serve physical memory by only allocating 512 bytes rather than 4096 to the
first level lookup. Or, the 512 byte page can be configured to be one of
the eight possible 512 byte partitions in a 4096 byte page. This last
feature permits multiple first level lookups to be physically contained in
one page frame.

5.6 Rage Table Entry (RIE)

A pagetable entry (PTE) is a 32-bit word aligned on an integral 32-bit
boundary (the least significant two bits of the byte address are 00). A PTE
is one of 128 entries for the first index level or one of 1024 entries for
the second index level. A PTE is used to determine the validity of a refer-
ence and the physical memory location of a valid reference. A valid refer-
ence meets two requirements: first, the PTE must be valid (bit 31=1), and
second, the type of access being made (Read, Write, or Execute) must be
allowed by the appropriate protection bit (bits <3..1> of the PTE). The
format of a valid, resident PTE is shown for first level and second level
page table entries, below: ’

- an = o - - - " - " . - - - - - . . - -

Second Level Page Table Entry

The meaning of each of these bits is as follows:

Bit<31> - Valid. Indicates the validity of the PTE. A O 4indicates an
invalid reference: a 1 indicates a valid reference. A segment out-of-bounds
error is detected when an invalid PTE is accessed. A reference to an
invalid PTE results in a system exception. See Table 6-1.

Section 5.6 5-12

Logical Address Space and Memory Management

When bit <31> and bit <30> are both 1, bit<0> is ignored. A valid PTE that
references I/0 space is always assumed to be resident.

Bits<30..12> - Page Frame Address. If a valid reference to a resident page
occurs, then bits <30..12> become the most significant 19 bits of a 31l-bit
physical byte address. The page frame base is modulo 4096 bytes. For a
first level page table entry, bit 30 is always O, while for a second level
page table entry, bit 30 may be either O or 1.

Bits<1l..9> - Hardware Reserved. These bits are reserved for potential use
by hardware. Presently, there is no interpretation of these bits. It is not
recommended that these bits be used for software.

Bit<8> - Encache. When bit 8 is zero, the data associated with the refer-
ence are encached. When bit 8 is 1, the referenced data are NOT encached.

Bits<7..4> - Software Reserved. These bits are reserved for potential use
for software.

Bit<3> - Read Access. Indicates the validity of a read access to the refer-
enced page. A O indicates that no read access is permitted. A 1 indicates
that a read access is permitted to the referenced page. If a read access is
attempted, and bit 3=0, a system exception is signaled, and an error code
is loaded into AS.

Bit<2> - Write Access. Indicates the validity of a write access to the
referenced page. A O indicates that no write access is permitted. A 1 indi-
cates that a write access is permitted to the referenced page. If a write
access 1is attempted, and bit 2=0, a system exception is signaled, and an
error code is loaded into AS.

Bit<1l> - Execute Access. Indicates the validity of an execute access
(branch or jump to instruction) to the referenced page. A O indicates that
no execute access is permitted. A 1 indicates that an execute access is
permitted to the referenced page. If an execute access is attempted, and
bit 1=0, a system exception is signaled, and an error code is 1loaded into
AS.

Bit<0> - Non-Resident. Indicates the presence or absence of the referenced
page frame in the physical address space of the process. A O indicates the
absence of the referenced page in physical memory. In this case, a page
fault occurs and causes a system exception. A 1 indicates the presence of
the referenced page. In this latter case, bits<30..12> are used as the phy-
sical page frame address of the referenced page. Bit O is interpreted for
valid references only.

NOTE: Segment out-of-bounds errors may be detected by resetting all of the
unused PTE's valid bits to zero. Thus, during logical to physical address
translation for invalid pages, an out-of-bounds reference causes a system
exception.

The physical addresses of all pagetables must reside in physical memory

Section 5.6 513

Logical Address Space and Memory Management

(physical addresses O through 3FFF FFEF (hex)). Thus, all physical address
of pagetable entries are 30 bits in length.

The format of a valid non-resident PTE is:

Note that bit <30> must be zero. If bit <30> is a 1, an I/0 reference

can occur. The read, write, and execute bits are then interpreted to
determine if the reference is valid.

5.6.1 Einal Translation

This section presents a pictorial representation of the logical to physical
translation. The following attributes of this translation are worth noting:

1 The pagetable referenced by the first level index is always
resident in physical memory.

2 The pagetable referenced by the second level index may not be
resident in physical memory. A page fault can occur when
referencing a second level pagetable page.

3 The access bits in the first level pagetable entry are never
interpreted. That is, no protection access checks are per formed
when a first level pagetable entry is used to reference a second
level pagetable entry.

4 If a pagetable entry is invalid, no further translation occurs.

S A page fault occurs only for valid references.

For logical to physical address translation purposes, a 32-bit byte logical
address has the structure shown in Figure 5-2:

Section 5.6.1 5-14

Logical Address Space and Memory Management

Figure 5-4:

Logical
Address:

Selected
SDR
Contents

Physical
Address of
ist PTE:

1st Level
PTE
Contents:

32-bit Byte Address: Logical to Physical Translation
SDR INDEX.1 INDEX.2 PAGE OFFSET
A A A A A A A A
31 129 28 22 21 12 11 0
SDR Select: use 3 highest order bits of logical
address to select correct SDR
V1o PAGE FRAME BASE HW SW
A A A A A A A A
31, 30, 29 9 87 6 0
1st level PTE select: use selected SDR bits <29. .9>,
and logical address bits <28. .22> (INDEX.1) to INDEX.1
determine address of 1st level PTE
PAGE FRAME BASE INDEX.1 0O
A A A A A A
29 09, 08 2,10
V|0 PAGE FRAME ADDRESS HW SW | RD| WR| EX | NR
A A A A A A A A A A A A
31, 30, 29 12, 118 7 4 3 2 1 0
5-15

Section 5.6.1

Logical Address Space and Memory Management

2nd level PTE select: use bits <29. .12> of 1st level
PTE and bits <21..12> (INDEX.2) of logical address INDEX.2
to determine address of 2nd level PTE

Physical
Address of PAGE FRAME ADDRESS INDEX.2 00
2nd PTE:
i A A _ i
30 . 12, 11 2, 1,0
2nd level ,
PTE \ PAGE FRAME ADDRESS HW SW |RD}] WR| EX | NR
Contents:
AA A A A A A A A
31, 30 .12, 118, 7 4 3 2 1

Physical address determination: use bits <30..12>

of the 2nd level PTE and bits <11..0> (page offset) of PAGE OFFSET
the logical address to determine the physical

address being accessed

Physical
Address PAGE FRAME ADDRESS PAGE OFFSET
Accessed:

A A A A

30 . 12, 11 0

5.7 Referenced/Modified Bits

Associated with each page frame are two flags: "referenced" and "modified".
The referenced bit is used to indicate that a successful reference (read,
Wwrite, or execute access) has occurred (bit is set to 1 in the page
corresponding to that page frame). The modified bit is used to indicate
that a successful write has occurred (bit is set to 1). A successful write
also sets the referenced bit to 1.

For the purposes of memory management, a successful reference is defined as
a memory reference which does not result in a PTE violation on a resident

Section 5.7 5-16

Logical Address Space and Memory Management
page.

I/0 memory references do not affect the state of the referenced and modi-
fied bits. When power is first applied, the state of the referenced and
modified bits is indeterminate.

The referenced and modified bits are mapped into the I/O space. Thus the
operating system accesses the referenced and modified bits by mapping the
appropriate I/0 space into the physical address space of a process.

In particular, the referenced and modified bits are grouped into bytes.
Consequently, referenced and modified bits are addressed through the use of
Load and Store byte instructions. References using any other instructions
produce undefined results.

5.8 Address Iranslation Unit

The Address Translation Unit is used to accelerate the translation of logi-
cal to physical addresses. This wunit contains a cache of recently
translated logical addresses.

The steps necessary to translate a logical to physical address have already
been described. Once a translation occurs, the association between the log-
ical to physical addresses should be placed in memory for the following
reasons: .

1 The steps necessary to translate the logical addresses require
machine cycles that would otherwise be used to execute instruc-
tions.

2 Programs exhibit temporal and spatial 1locality of reference.
Thus it is probable that once a logical to physical translation
is accomplished and encached (remembered), subsequent logical
addresses will reference the same page associated with the ini-
tial translation.

Because previous translations can be placed in memory, the number of pro-
cessor cycles allocated to logical address translations is significantly
reduced, a feature which greatly enhances program performance, and makes
the ATU an address cache.

The ATU accelerates address translations by associating a leogical address
with an ATU entry. This ATU entry contains three types of information. One
type is a page frame physical address. This address holds the contents of
the PTE that referenced the addressed operand. A second type is the higher
order bits of the logical address encached. Since the page-offset field of
the 1logical address is not translated, this entry contains, at most, the
most significant 20 bits of the translated logical address. The third type
of Iinformation is concerned with the access privileges associated with the
addressed page. The ATU entry provides a convenient place to store these
privileges. Some characteristics of the ATU are relevant to the system
programmer because:

Section 5.8 5-17

Logical Address Space and Memory Management

1 The size and structure of the ATU are implementation dependent.

2 Individual entries within the ATU are not explicitly address-
akle.

3 Modification of a PTE in memory does not necessarily have an
immediate effect, if any, on ATU entries. ;

4 Several privileged mode instructions exist to permit a level of
control over ATU address translation in a manner that is ATU
implementation independent. These instructions purge the entire
ATU or selective entries. Purging the entire ATU is necessary
for process multiplexing. Purging selective ATU entries is used
when selective PTE modifications occur (e.g., when an address
translation fault finds the physical page in main memory but not
in the physical space of the process).

5.9 Process Multiplexing

A process may be defined as an abstraction of the 1locus of control that
passes through an executing program. CONVEX processes are unique in con-
struction and are composed of two general partitions: one partition is the
user program; the other is that part of the operating system that is shared
by all user processes. This.user -part of the operating system usually
includes such features as pagetables used for translating logical to physi-
cal addresses, buffers for disc or terminal records, and various control
blocks that are created by the operating system on behalf of the user.

CONVEX processes are unusual in that each has its own private logical
address space. Thus logical addresses, though identical in two or more
processes, need not translate to the same physical address. As a result of
this 1logical address space structure, the ATU must be purged when a new
user process is dispatched. Purging an ATU simply involves marking all
entries as invalid, so that no encached translations exist.

Owing to the characteristics of ring O of the protection system, encached
entries for ring O translations need not be purged. This freedom is possi-
ble because ring O is system-wide (not process-wide), which means that
every process shares the same ring 0. Interrupt processing is an example of
a system-wide service that is performed in ring 0. This partition is dep-
icted in Figqure 5-4.

Section 5.9 5-18

Logical Address Space and Memory Management

Figure 5-5: Process/System/Segment Partition

Process Process Process
0 1 vee N Segments
1-7

System Wide - Segment 0 (Ring 0)

Process/System/Segment Partition

5.10 Power Up/Bootstrap/Physical Addressing

When power is first applied and the system is bootstrapped, logical
addresses equal physical addresses. There is no memory mapping or page
faulting, and the least significant bits of the 1logical address space
representing the physical address space are passed directly to the main
memory system.

An instruction exists to initiate virtual address mapping and the control
of the Address Translation Unit. Additional instructions and/or facilities
exist to turn off address translation. Generally the existence of the ATU
is known only to the operating system kernel, and its internal structure is
implementation dependent. All instructions which manipulate or control the
ATU are privileged--they can only be executed in ring O.

When logical addressing is disabled, the processor executes as if it were
always in privileged mode (ring O).

Section 5.10 » 5-19

Exceptions
CHAPTER 6

6 Exceptions

6.1 Overview

An exception is an event which disrupts the running of a program, process,
or system. Exceptions occur because of problems in the currently executing
program (for example, arithmetic inconsistencies or address translation
faults), or as a result of some asynchronous event (such as an interrupt or
hardware failure). Exceptions result in the transfer of control to a
predetermined address known as an exception handler. The starting
addresses of the exception handlers are located in tables in memory
referred to as Page O. The definition of these tables is provided in
Chapter 5. State information is saved on the appropriate stack.

The primary goals for exception processing are:

1 Wherever possible, the operating system kernel will not be
involved.

2 The hardware will structure exceptions as asynchronous kernel
calls. This permits the OS kernel to use a single procedure for
call processing.

3 The hardware will provide a reasonable and open-ended means to
indicate the cause of the exception.

4 The hardware will provide a reasonable means to mask out those
exceptions which are under user control.

To achieve these goals, exceptions are grouped into three different
classes: process, system, and machine.

1 Process exceptions belong to the currently running process, and
may be handled with an exception handler in that process. The

exception handler is in the current ring of execution.

2 System exceptions cannot be handled by the current process and
require intervention by the kernel executing in ring O.

3 Machine exceptions include fatal errors in the system which can-
not be handled by the operating system.

Section 6.1 6-1

[

Exceptions

If exceptions of different classes are pending simultaneocusly, machine
exceptions have the highest priority, followed by system exceptions.

Exceptions may also be subdivided by the way in which they are normally
treated by the exception handler. The exception handler will handle excep-
tions in one of two ways depending on the nature of the exception. In many
cases, the exception handler can correct the underlying cause of an excep-
tion and permit the original program to resume: on the other hand, the
exception handler may choose not to correct the cause of the exception and
not to return control to the original program. Two terms signify the way in
which the system treats each exception type:

1 A fault is an exception which the handler can normally correct.
The exception handler returns control to the program at the
place which it was interrupted.

2 A trap is an exception which the handler cannot normally
correct. Often, the handler terminates the program or process
and supplies error information to the user.

6.2 Brocess Exceptions

Process exceptions occur at the process level and the user can handle them
without system intervention. The exception handler which is called resides
in the current ring of execution. The process exceptions are arithmetic
trap and instruction trace. Instruction trace, together with sequential
execution and the breakpoint instruction (bkpt) , provides support for pro-
gram debugging. In addition, the user can disable or mask out many of the
process exceptions.

6.2.1 Arithmetic Trap

An arithmetic trap occurs when an operation encounters or produces an ille-
gal value, one which is not within the representable range of numbers for
the machine. However, the user can mask out these exceptions using the
appropriate enable bits provided in the PSW. Arithmetic traps are pro-
cessed thus:

1 The processor sets the appropriate bits within the PSW to 1 to
indicate the cause of the trap. Since a CONVEX processor has
multiple arithmetic units, it can set more than one bit in the
saved PSW. Sufficient bits exist to identify multiple trap
types simultaneously.

2 The processor pushes an extended return block onto the current

Section 6.2.1 6-2

Exceptions
stack (no ring crossing occurs).

3 The processor clears PSW bits (C, SC, AIV, ADZ, VN, 0OV, EDZ, RO,
SIV, SDZ, FRL) of the newly-generated PSW to O.

4 Instruction execution for the trap handler begins at the address
contained at byte address 44 (hex) of page O of the current
ring.

5 The machine initiates the trap as soon as steps 1 through 4 have
occurred, unless an exception of higher priority is also pend-
ing. ‘

i

The following PSW bits report the occurrence of exceptions AIV, ADZ, SIV,
SDZ, UN, OV, RO, and FDZ. The PSW bits IVE, DZE, FE, and FUE selectively
enable groups of arithmetic exceptions. The user may choose to ignore cer-
tain exceptions by clearing the appropriate enable bit to O. The
IVE/Integer Overflow Trap Enable bit corresponds to the SIV and AIV bits:
the DZE/Divide by Zero Enable bit corresponds to the ADZ and SDZ bits; the
FE/Floating Point Trap Enable bit corresponds to the OV, RO, and FDZ bits,

and finally, the FUE/Floating Point Underflow Enable bit corresponds to the
UN bit.

Because of the pipelined nature of the machine, more than one instruction
may be executing when a trap occurs. This sequence is:

1 When the machine detects an arithmetic exception that requires a
trap, it places all pending instructions on hold.

2 The system allows all current instructions to complete their
execution.

3 The system honors the exception only after completing steps 1
and 2, and only if there are no events pending with a higher
priority (such as interrupts).

6.2.1.1 Details Of Arithmetic Traps

This section details the characteristics of each type of arithmetic excep-
tion.

Integer Overflow. Integer overflow occurs when a result is too large to
occupy the specified destination. When an integer overflow occurs, the AIV
or SIV bit in the PSW is set to 1. The result loaded into the destination
is correct in the 1least significant bits. When an integer overflow

Section 6.2.1 : . 6-3

Exceptions

exception occurs for integer longword multiplication (64 bits), the result
is correct in the least significant 53 bits. Bits<63..53> are undefined.

Integer Divide By Zero. When the divisor is zero, the processor sets the
appropriate divide by zero bit in the PSW (ADZ or SDZ) to 1. The output of
the divide is the dividend.

Floating Divide By Zero. When the divisor is zero, the processor sets the
EDZ bit to 1. The output of the divide is a reserved operand.

Floating Point Overflow. When the resulting exponent requires more preci-
sion than is allowed (greater than 127 (unbiased) for single and greater
than 1023 for double), a floating point overflow occurs. The result
operand is forced to a reserved operand {sign=1, exponent and fraction all
O's). The OV bit in the PSW is set.

Floating Point Underflow. When the resulting exponent requires an exponent
less than -127 (unbiased) for single precision and less than -1023 for dou-
ble precision, a floating point underflow occurs: The resulting operand is
forced to true zero (sign =0, exponent=0, fraction=0). True zero is forced
regardless of the value of the underflow trap enable bit. The machine sets
the UN bit in the PSW.

Reserved Operand. When an input to a floating point arithmetic operation
has a sign=1 and an exponent of all 0, a reserved operand exception is
detected. The fraction value is a "don't care." The output of an arithmetic
operation with a reserved operand input is a reserved operand output. A
reserved operand output has an all O's fraction. The RO bit in the PSW is
set.

6.2.2 Debugging Support

The remainder of the process exceptions are useful debugging tools.
Instruction trace allows a single instruction to execute between each
exception, the sequential bit (SEQ) in the PSW forces instructions to exe-
cute one at a time without overlap, and a breakpoint instruction {(bkpt)
causes transfer of control when it is executed.

6.2.2.1 Instruction Trace

Instruction trace is a useful debugging tool, one which the user can
directly control. Setting bit 27 of the PSW (TR) enables instruction trace
and causes a trace trap to occur. After the execution of each instruction,
the processor pushes an extended return block onto the stack. The Program

Section 6.2.2 6-4

Exceptions

Counter pushed references the next instruction to be executed in the pro-
gram. The exception handler is located at the address contained at address
40 (hex) of the current ring. Since no ring crossing occurs, the process-
ing of this trap does not involve the operating system. For instruction
trace to function properly, bit 24 of the PSW, SEQ, must also be set to 1.

6.2.3 Sequential Execution

Although sequential execution is not an exception, its value affects the
operation of the machine and perhaps the specific conditions which exist
when an exception occurs. As noted in Chapter 3, when a program sets bit
24, SEQ, of the PSW, all overlapped execution is disabled. Owing to the
pipelined characteristics of the machine, multiple instructions are often
executing simultaneously. The SEQ bit forces execution in a serial manner
for debugging purposes (both for hardware and software). The numerical
results produced are the same regardless of the setting of the SEQ bit.
The procedure only affects performance and the serial nature of the execu-
tion. The user may freely set or reset this bit.

6.2.3.1 Breakpoint

Although the breakpoint instruction (bkpt) is also not a true exception, it
is included here since it qualifies as a debugging tool. The user may
insert bkpt instructions anywhere within a program, and execution of the
bkpt instruction causes a call to the routine addressed by byte 50 (hex) of
the current ring, and pushes an extended return block on the stack.

6.3 System Exceptions

All system exceptions result in a ring crossing to Ring O, the operating
system kernel. The return block saved in each case is either extended
(ERL=01) or context (FRL=00). Many of the system exceptions are related to
virtual memory address translation, as described in Chapter 5. Chapter 6
describes the processing of system exceptions.

All system exceptions have the following characteristics:

1 They are not maskable.

2 They always result in a cross ring call to ring O.

3 There are residency and alignment requirements for Page O. The
ring O stack must always be aligned on a 32-bit (word) boundary,
and ring O page O must be resident. If not, a machine exception

results.

Section 6.3 6-5

Exceptions

6.3.1 Error Exit Trap

An error exit trap occurs if the processor encounters an all-zero opcode.
If the processor attempts to execute code from memory which resides beyond
the boundaries of a program, this trap will occur, assuming that the memory
in question has previously been cleared to zero.

6.3.2 Undefined Opcode Trap

An undefined opcode trap is executed whenever the processor attempts an
illegal instruction.

6.3.3 Vector Valid Fault

The vector valid fault, coupled with the Vector Valid bit (V). permits the
operating system to save and restore the vector accumulators on demand.
Additionally, it permits the O0S to detect unsuspected use of vector
instructions. The example below .details the use of this fault.

Assume that 10 programs are running but that only 2 use the vector accumu-
lators. Upon interrupt processing, during one of these 2 programs, the
system need not save the vector accumulators since the interrupt service
routine does not use them. If subsequent programs do not use the vector
accumulators (either statically because there is no need, or dynamically
because the particular code segment is not vector in nature), no time is
wasted in saving vector machine state. This enhances the real-time charac-
teristics of the system. However, if one of these subsequent programs
correctly uses the vector machine state, a recoverable fault occurs. This
fault indicates to the operating system that it is time to save a previous
process's vector machine state. Once this state is saved, the affected
program can resume.

The vector valid fault functions in this sequence:
1 The Vector Valid (VV) bit must be a O.

2 The processor attempts execution of a vector instruction.

3 The machine now performs a ring crossing to ring O, and pushes
an extended return block on the ring O stack.

4 Finally, the machine jumps to the instruction pointed to by
address 1C (hex) of page O of ring O.

Section 6.3.3 6-6

Exceptions

6.3.4 Ring Violation Traps

Ring violation traps are a group of system exceptions concerning

access to rings.

invalid

The operation of the ring structure is defined in Chapter

4. The following ring violations are defined:

1 Privileged Instruction. This trap occurs when the system
attempts a privileged instruction outside of ring O.

2 Inward Address. A reference to an address which is in an Ainner
ring causes this trap.

3 Cutward Call. A call which crosses rings must proceed to an
inner ring; otherwise this trap will occur.

4 Inward Return. This trap occurs when a return instruction
attempts to move to an inward ring:; all returns must be to the
same or an outward ring.

5 Invalid Gate. If the gate number specified in a call which
crosses rings is incorrect, this trap will occur.

6.3.5 PIE Violation Traps

PTE violation traps encompass a grdup of illegal Page Table Entry accesses.
Pagetables and their usage are defined in Chapter 5. PTE violations
include:

6

Read Protect. This trap is invoked when the processor attempts
a read access to a page whose valid Page Table Entry does not
allow reads.

Write Protect. A write protect trap occurs during an attempted
write to a page whose valid PTE does not have write enabled.

Execute Protect. This trap occurs when the processor attempts
an instruction fetch on a page without execute enabled in its

valid PTE.

Invalid SDR. A memory access to a segment whose SDR's valid bit
is not set causes this trap to occur.

Invalid Level 1 PTE. A memory reference to an address whose
first level PTE's valid bit is not set results in this trap.

Invalid Level 2 PTE. If an address's corresponding Level 2 PTE

Section 6.3.5

Exceptions
is not valid, an invalid level 2 PTE trap occurs.

7 Invalid I/0 Access. .

6.3.6 Non-resident Page Faults

A non-resident page fault occurs when the processor attempts to reference a
memory location which is part of the logical address space but is not part
of the physical address space. The system initiates a page fault only
after it has interpreted the validity and appropriate access bits in a Page
Table Entry. The two forms of this fault are:

1 Non-resident data page. If the actual data page corresponding
to the logical address is not in physical memory, this fault
occurs.

2 Non-resident Level 2 pagetable. A page fault can also occur as
a result of a logical reference which, as part of its logical
address translation, accesses a non-resident pagetable.

Note: if the system detects another page fault while the processor is
responding to a page fault as described in the above sequence, a machine
exception occurs. This check prevents the generation of an infinite number
of page faults.

6.3.7 Processing of System Exceptions

When the machine detects a system exception, it accesses the exception
handler by one of two methods. First, address 1C (hex) of page O of ring O
points to the vector valid fault's exception handler. Second, a single
exception handler serves all other system exceptions; address C (hex) of
page O of ring O contains its address. Information passed in registers A3,
A4, and A5 describes these exceptions. As soon as the system pushes a
return block on the current ring O stack, it loads an exception code into
AS. Byte O and 1 of this code are always O. Byte 2 specifies the class of
the exception, and Byte 3 is an optional qualifier for that particular
class.

In addition to the codes loaded into A5, the processor loads the 1logical
' address of the failure into A4, and loads the number of bytes stored in the
return block into A3 if a context block is saved (FRL=00). In fact., the
FRL field of the PSW pushed specifies the type of return block: short,

Section 6.3.7 6-8

Exceptions

long, extended, or context. Whereas the number of bytes for short, long,
and extended are invariant for the life of the architecture, the context
blogk is implementation dependent.

Table 6-1 lists the class codes and qualifiers placed in A5 for each excep-
tion.

Table 6-1: System Exceptions: Class Codes and Qualifiers

BYTE 2 BYTE 3
EXCEPTION CLASS (Hex) QUALIEIERS
Error Exit O Highest Priority None
Undefined Opcode 4 None
Ring Violation 8 O Privileged Instruction
1 Inward Address
2 Outward Call
3 Inward Return
4 Invalid Gate
5 Invalid Frame Length

on Return Instruction
PTE Violation C Read Protect
Write Protect
Execute Protect
Invalid SDR
Invalid Level 1 PTE
Invalid Level 2 PTE
Invalid I/0 Access

NoOonbdhNNHO

Non-Resident Page 10 Lowest Priority Level 1 PTE2 Page

Level 2 DATA Page

= O

6.4 Machine Exceptions

Machine exceptions comprise the most drastic of exceptions. Hardware
failures, such as memory errors, which cannot be corrected, and parity
errors cause machine exceptions. In addition, the following programmer
visible conditions result in machine exceptions:

Section 6.4 6-9

Exceptions

1 Unaligned Ring O stack. The stacks in ring O must always be
aligned cn a 32-bit boundary. If not, a machine exception
occurs.

2 Page fault during a page fault. If either a PTE violation trap
or a non-resident page fault occurs while the machine is chang-
ing context to service one of these two exceptions, a machine
exception occurs. If this condition were not detected, an
infinite number of page faults would occur.

3 Non-resident data for segment descriptor registers. If a non-
resident page fault occurs for the data read by either the load
kernel segment descriptor registers (ldkdr) or load process seg-
ment descriptor registers (ldsdr), a machine exception results.

4 Unaligned data for segment descriptor registers. If the data to
be loaded by either an ldkdr or an ldsdr are not word aligned on
a 32-bit boundary, a machine exception also occurs.

5 Execution of ldkdr after virtual memory is enabled. The execu-
tion of an 1dkdr (load kernel segment descriptor registers)
instruction after virtual memory has been enabled causes a
machine exception.

6 Invalid SDRO after virtual memory is enabled. If SDRO is
accessed while its valid bit is cleared, the resulting exception
cannot be processed and a machine exception results.

The processing of machine exceptions is implementation dependent. In gen-
eral, however, further processing is not possible. The machine might post
a message to the console or to an error logging device, might alert a diag-
nostic processor (if one exists), or might simply halt the machine. The
details of machine exception processing are presented in The Hardware Hand-
book.

Section 6.4 6-10

I/0 and Interrupts
CHAPTER 7

7 1/0 and Interrupts

All I/O is memory mapped, which means that there are no explicit central
processing unit . (CPU) instructions that reference I/0 control or data
‘registers. I/0 registers and status bits are referenced through an
appropriate logical to physical address mapping. The I/0 register space is
1 billion bytes. In essence, up to 1 billion I/0 registers can be refer-
enced. As a function of the implementation, however, certain types of
operand references may cause undesirable side effects. Generally, I/O
operand references should be on an integral byte boundary., such that the
least significant address bits equal to the precision of the referenced
operand will be all O's.

Interrupts are a result of asynchronously occurring events and belong to
the system and not to the executing process. They are processed on an
interrupt stack in ring O. Because interrupts can occur during interrupt
processing, a means to nest them must be provided. When an interrupt
occurs, the processor will vector to a particular handler as a function of
the source of the interrupt.

7.1 JP and 1/Q Interrupt Channels

There are two types of channels: central processing unit virtual channels
and I/0 channels. There are 256 interrupt channels in a CONVEX system.
Within these 256 channels, 8 channels are specifically allocated to the
central processing unit (CPU). These 8 channels are referred to as CPU
virtual channels 0-7; they are also addressed as channels 0-7 of the 256
possible system-wide channels. The remaining 248 channels are allocated to-
I/0 processors. The number of I/0 processors and the number of channels
allocated to I/O processors are a function of a particular implementation.
Instructions exist for any one channel to interrupt another channel.

All external devices and controllers, regardless of their local intelli-
gence, interrupt the CPU on one of eight channel ports. These eight ports
bear no relationship to the number of actual I/0 channels. In fact, one
I/0 channel may initiate interrupts using more than one CPU virtual chan-
nel. Conversely, there may be up to 248 I/0 channels competing for eight
CPU virtual channels. The "mski" instruction is used by the CPU to mask out
interrupts selectively from a particular CPU virtual channel.

There are up to 248 I1/0 virtual channels. The CPU can interrupt, individu-
ally, any of the I/O channels through the use of the "xmti" instruction. In
some cases, one physical I/0 controller may be viewed as multiple I/O chan-
nels. The CPU can interrupt itself by addressing channels O through 7.

Section 7.1 7-1

I/0 and Interrupts

7.2 Interrupt Mechanism

When an interrupt (e.g. I/0, or Internal Timer) occurs, the following
actions take place. The 16 bit halfword located at bytes 4 and 5 of page O
of ring O is fetched. If this halfword is O, then the interrupt is the
first interrupt processed. This condition is referred to as base level
interrupt processing. If this halfword is not the first interrupt, then the
interrupt is not the first interrupt, and the processor is already at
interrupt level. (Thus the ring O stack used is the interrupt stack. In
effect, the ring O process stack pointer has temporarily become the inter-
rupt stack pointer).

The fundamental difference between the two classifications is the existence
of an interrupt stack. When the interrupt level is O, an interrupt stack
must be established in ring O. Once the determination is made, the inter-
rupted level's halfword is incremented by 1 and stored back into bytes 4
and 5 (the increment by 1 cannot be interrupted).

In the following discussion, the program counter which is pushed onto the
stack references the instruction that would have been executed if the
interrupt had not occurred. Also, during the sequences described, all
further interrupts are kept pending (ION is reset to 0).

If the interrupt is initiated by an I/0 device interrupting a CPU

virtual channel, then the CPU virtual channel interrupt is reset after the
processor responds to the interrupt.

7.2.1 Ring Q Stack Alignment

The ring O stack must always be aligned on a 32-bit (word) boundary. If it
is not, a machine exception occurs.

7.2.2 Base-Level Processing
Base-level processing occurs when the current interrupt level is 0. The

actions that subsequently occur are detertiined by the current ring of exe-
cution, be it ring O or any other ring.

7.2.3 Base-Level Ring Q

It is assumed that the stack pointer is already initialized to the ring O
address space. Since the interrupt is at base-level, stack multiplexing to
the interrupt stack must occur, and the following sequences are initiated:

1 FRL is set to Ol. (Extended Return Block).

2 The extended return block is saved on the current ring O stack.

Section 7.2.3 7-2

I/0 and Interrupts
3 The PSW is cleared.

4 The updated stack pointer is saved in byte address 2C (hex) of
page O, of ring O. This value is the process stack pointer at
the top of the ring O process stack. This procedure is prepara-
tory to stack multiplexing to the interrupt stack.

5 The stack pointer (AO) and frame pointer (A7) are loaded from
byte address 20 (hex) of page O, of ring O. This is the inter-
rupt stack pointer.

6 A common hardware interrupt sequence is then executed.

When a return to base-level is performed, the interrupt dismissal routine
moves the previous process SP (in byte address 2C (hex) of ring O) toc AO
prior to executing the rtn instruction.

7.2.3.1 Base-Level Processing--Non Ring O

In this case, the hardware performs a crossing to ring O and establishes an
interrupt stack.

1 A ring crossing to ring O is executed (as if the sysc instruc-
tion were executed).

2 The steps described in the above section, for Base Level ring O,
are now executed.

7.2.4 Interrupt

At interrupt level, the ring O stack has already been initialized to the
interrupt stack.

7.2.4.1 Ring Q--Interrupt Level

An extended return block is pushed onto the current stack and the common
interrupt sequence is then entered.

7.2.4.2 Non-Ring QO--Interrupt Level
In this case, the following actions are taken:
1 A ring crossing to ring O is executed.
2 Since the ring O stack has already been initialized to the

interrupt stack, an extended return block is pushed on the ring
0 stack, and the common. interrupt sequence entered.

Section 7.2.4 7-3

I/0 and Interrupts

7.3 Common Interrupt Sequence

The following section describes the actions undertaken after a crossing to
ring O and the establishment of an interrupt stack have occurred. There are
two causes of an interrupt: an I/O device via a virtual channel

address 08 (hex)), and an Interval Timer (byte address 14 (hex)) .

1 Byte addresses 08, 10, and 14 (all hex) of ring O contain the
address of the appropriate interrupt handler. This address,

selected by hardware, is loaded into the program counter.

If

the interrupt is caused by an I/0 device, the identification of
the interrupting device is loaded into A5 after the return block
is pushed. This identification takes the form of 29 O bits fol-

lowed by a 3-bit encoding. The 3-bit encoding identifies
CPU virtual channel initiated the interrupt.

which

2 The first instruction of the interrupt handler is now executed.
Interrupts are not enabled. The interrupt handler must expli-

citly reenable interrupts.

7.4 Ceneral Notes

1 The interrupt return sequence determines whether or not the
return is to base-level or interrupt-level as a function of the

interrupt halfword in ring O, page O.

2 The return to base-level is achieved by executing a rtn instruc-
tion. The return to interrupt level is also achieved by execut-

ing an rtn instruction.

3 In order - to return from an interrupt, the following steps
be taken by the software:

a. First, the interrupt level is decremented by one.

must

b. If the level is now zero, A7 (FP) is loaded from byte address

2C (hex) of page O, and the rtn instruction is executed.

c. If the level is not zero, the rtn instruction is executed.
A7 need not be restored, since the ring O stack must still be

the interrupt stack.

4 The process stack pointer in page zero, of ring O bytes <72..75>
is not modified during the hardware initiated interrupt process-

ing.

Section 7.4

(byte

Instruction Set Overview
CHAPTER 8

8 Instruction Set Qverview

This chapter and subsequent chapters describe the instruction set. The
instruction set is used to generate logical addresses, load, store, and
manipulate operands, and manipulate the virtual machine mechanisms.

8.1 Qverview

A CONVEX instruction is one of three lengths: one, two, or three halfwords.
This is equivalent to instructions that are 16, 32, or 48 bits in length.
Even though the fundamental unit of addressability is the byte, instruec-
tions are addressed on a halfword boundary. All instructions begin on even
byte boundaries. Thus bit O of the Program Counter (PC) is never inter-
preted.

The instruction set was designed to meet high standards and can be charac-
terized as follows:

1 The instruction set is simple and easy to understand and
decode--hence the adoption of a RISC (Reduced Instruction Set
Architecture).

2 All manipulations are generally register to register. Loads and
stores are needed to transfer information to and from the regis-
ter set.

3 Orthogonality of instructions is assured; for every data type

manipulation, there exists the same operation. (In some cases,
this makes no sense, and thus there are exceptions.)

8.2 Instruction Eormats
There are 8 instruction formats. The first 8 bits of the instruction

(<15..8>) are encoded using a modified leading 1's (HUFFMAN) encoding
method to indicate the instruction format. The 8 instruction formats are:

Section 8.2 8-1

Instruction Set Overview

FORMAT
o 1. [op=6]. [Ri], [R3]. [Rk]
1 00, [op=6], [@,L]. [Ak], [Rj] [disp=16/32]
2 010, [op=7] , [R]], [RK]
3 0110, [op=6], [R3]. [Rk]
4 0111l O, [op=3]. [disp=8]
5 0111 10, [op=4]. [Rj]. [RK]
6 0111 110, [op=6], [RK]
7 0111 1110, [op=5], [Rk]

Note that R is either A, S, or V as a function of the particular opcode.

8.3 Addressing Modes

There are two generic types of addressing modes: register to register and
register to/from memory.

In the register to register mode, it is assumed that all source operands to
be manipulated have been pre-loaded into one of the various machine regis-
ters. The destination of the result is also a register. Register to regis-
ter instructions specify none, one, two, or three unique registers. Thus
some instructions can have up to 3 3-bit register designation fields. The
opcode specifies the number of register fields in the remaining bits of the
instruction. All register to register instructions are 16-bits in length.

8.3.1 Referencing Memory
This section describes how to build Effective Addresses. Generally,
_instructions which reference memory to load and store operands are either

32-bits or 48-bits in length. The difference is the length of the displace-
ment field. The structure of these memory reference instructions is:

Section 8.3.1 8-2

Instruction Set Overview

L=0 | Opcode |@|L| Aj | Rk| i Displacement |
15 8, 7,6,5 3,2 O 15 0
L= | Opcode [@|L| Aj | Rk| | Displacement |

15 8,7,6,5 3,2 O 31 0

MEMORY LOAD AND STCORE EORMATS

The meaning of these fields is as follows:

OPCODE = bits<15..8>. Specifies the operation to be performed on the refer-
enced data.

@ = bit<7> - Indirection. Specifies the existence or absence of indirec-
tion. If @=0, no indirection is specified. If @1, indirection is speci-
fied.

L = bit<6> - Length. Specifies the length of the displacement field. If
L=0, the displacement field is a 2's complement 16-bit integer. This field
is sign extended to 32 bits prior to being added to the contents of the
address register specified in bits <5..3> of the opcode halfword of the
instruction.

Rk = bits<2..0>. Specifies the source or destination of the referenced
operand. The opcode specifies the precision, datatype, structure., and
direction of the move. Rk can either be a scalar register (Sk), an address
register (Ak), or a vector register (Vk).

Aj = bits<5..3>., Specifies the A (address) register to be used to generate
the logical address. If AO is specified, the value of O is used as the ‘con-
tents of A0 for absolute addressing. The true contents of A0 are unused. If
Al-7 is specified, then the contents (all 32 bits) of the specified address
register are added to the displacement field to generate the final effec-
tive address of the target address. The first byte of the target operand
is referenced. If indirection is specified, the effective target address
references byte 0 of a 32-bit indirect word.

Displacement. A 16 bit or 32 bit value that is algebraically added to the
entire contents of an A register (Al-A7) or used directly as a byte
address. A 16 bit displacement is sign extended to 32 bits before it is
used.

Section 8.3.1 8-3

Instruction Set Overview

8.3.2 Indirection

Indirection is the means by which an address in logical memory can be used
to reference the ultimate target operand. Indirection occurs after indexing
(adding of the address register). The format of an indirect word is:

Only one level of indirection can be specified.

8.3.3 Branches

Some forms of transfers of control are Program Counter relative. In these
cases, no indirection or indexing is specified. There is a special form of
transfer which permits an 8-bit signed displacement to be specified within
a 16-bit (halfword) instruction. This is covered in more detail in Chapter
11, "Program Control Instruction Set."

8.4 Undefined Opcodes

When an attempt is made to execute an undefined opcode, a system exception
occurs. An undefined opcode is a syntactically correct instruction whose
opcode field has no associated definition.

An undefined opcode results in a system call through byte address OC (hex)
of page O of ring O (the system exception handler). The class code loaded
into byte 2 of A5 after a push of the return block is 1. No qualifier code
is loaded into byte 3 of AS.

8.5 Eorm Of Presentation

The following chapters contain the definition of the CONVEX instruction
set.

Some of the conventions used throughout the instruction set definition are:

Data types are specified with the following suffixes appended to the
opcode:

- Byte/8 bits integer

- Halfword/1l6 bits integer

Word/32 bits integer

- Long/64 bits integer

- Single Precision Floating Point/32 bits
- Double Precision Floating Point/64 bits

an~goo
1

Section 8.5 8-4

Instruction Set Overview

t - True
f - False

Other notation used includes:

VS - Vector Stride

VL Vector Length

VM Vector Merge

#n - a 3 bit immediate with value O0,1,..,7

#N - a 32 bit 2's complement signed immediate

In the instruction set definition, two attributes are the alteration of the
PSW and the detection of exceptions. If these fields in the instruction
set definition are blank, then there is no change to the PSW and no excep-
tions are detected.

8.5.1 Meta-notation for Instruction Syntax

The following meta-notation is used to describe the contents of memory in
the assembly language syntax:

1 Effective Address means the effective memory address of an
operand.

2 c(effective address) = Sk means that the contents of the Sk
register are stored into the memory location specified by the
effective address.

3 Sk = c(effective address) means that the contents of the memory
location specified by the effective address are loaded into Sk.

4 | means alternation. Thus (a|b) means a or b.

5 ! = is used as a comment delimiter. All text to the right of

the H is an English language comment relative to the
metalanguage on that line.

8.5.2 Instruction Page Layout

The generic format and layout used in this handbook for an instruction are
shown in Figure 8-1.

Section 8.5.2 -z

¢

Instruction Set Overview

Figure 8-1: Instruction Page Layout

The Name of the instruction (s) The assembler syntax

Purpose:
"The purpose or intent of the instruction"

Format:
The physical format of the instruction, including
field locations and use.
Operation: y
The EORTRAN metalanguage description of the instruction.

PSW:
The listing of alterations to the PSW, if any. If there is none,
this space is left blank.

Exceptions:
The listing of exceptions that are detected. If a trap is enabled,
a trap occurs. Please note that for all instructions which refer-
ence memory, exceptions related to address translation (such as
page faults or protection violations) can occur.

Opcode:

A listing of the assembly language syntax, binary opcode, and
opcode name. One page may contain the definition of many orthogo-
nal instructions. The binary shown for each opcode is to be placed
in the opcode field of the instruction format. Additional fixed
subfields within the instruction are shown in the above format sec-
tion. The opcode is presented in three columns. The first column
is the opcode name; the second is the binary encoding of the
opcode, and the third is the opcode function. For example, for the
following instruction,

add.w Aj, 6 Ak 0101100001 Add addr. reg. word

add.w Aj,.Ak is the opcode name and the assembly language syntax,
and 0101100001 is the binary encoding of the opcode. Add address
registers is a brief description of the opcode function.

Description:
An English description of the functions performed by the instruc-
tion.

Notes:
A listing of notes that may be of interest to the understanding and
use of this or other appropriate instructions.

Section 8.5.2 8-6

Address Register Instruction Set
CHAPTER 9
9 Address Register Instruction Set

This chapter describes the instructions which manipulate the Address regis-
ters:

Loads and Stores

Arithmetics

Logical Operations
Shift/Push/Pop/Move/PSW/Effective Address
Compares

A Register Conversions

o0 W

s

9.1 QOverview

The instructions defined in this chapter manipulate operands in the A
registers. When these operands are less than 32 bits, only the specified
bits of the A registers are modified in a known way. All other bits are
left unchanged.

Instructions are provided which load and store bytes, halfwords, and words.
Arithmetic instructions are provided to: add, subtract, multiply, and
divide halfwords and words. All arithmetics are performed using 2's comple-
ment manipulations. Overflow is generated and stored in the PSW. Integer
traps can be disabled. Logical operations operate on words only. A full
set of signed and unsigned compares is provided. These compares set or
reset the carry flag.

9.2 Loads and Stores

These instructions describe the means by which operands are 1loaded and
stored to/from address registers. These instructions include Load Address
Register, Store Address Register, and Load Address/ Immediate. Load and
Store work with byte, halfword, and word operands, and Load Immediate with
halfword and word. These instructions do not affect the flags in the Pro-
gram Status Word.

9.3 Arithmetics

These instructions perform 2's complement arithmetics on the contents of
the specified address registers. Included are instructions for Add, Sub-
tract, Multiply, Divide, and Negate Address/Address, and the following
Immediates: Add Address/Immediate, Subtract Address/Immediate, Multiply
Address/Immediate, and Divide Address/Immediate. Add Scalar Address is
also included here. All Arithmetic instructions are either halfword or
word and affect the flags in the Program Status Word as follows:

Section 9.3 o e 9-1

Address Register Instruction Set

Arithmetic Overflow is signified by the AIV bit in the PSW, the C bit
reflects a carry or borrow out of the most significant bit of the opera-
tion, and the ADZ bit is set on the occurrence of a divide by zero.

9.4 ngigal QOperations

Logical operations perform a bitwise operation between two address regis-
ters. Four sets of logicals are provided (AND, OR, XOR, Complement). All
32 bits of Ak and Aj participate in the logical operation. The instruc-
tions are AND Address/Address, OR Address/Address, Exclusive OR
Address/Address, and Complement Address/Address, and the following Logical
Immediates: AND Address/Immediate, OR Address/Immediate, and Exclusive OR
Address/Immediate.

9.5 Shift/Push/Pop/Move/PSW/Effective Address

These instructions include Logical Shift Address/Address, Logical Shift
Address/Immediate, Load Effective Address, Push Effective Address, Move
PC/Address, Move Address/Address, Push Address Register, Pop Address Regis-
ter, Test and Set, Load Physical, Move PSW/Address, and Move Address/PSW.
Move PC/Address, Push, and Pop Address Registers, Move PSW/Address and Move
Address/PSW all use word operands; Test and Set operates on a byte
operand.

9.6 Compares

Address register comparisons result in the setting or clearing of the carry
bit (bit 31 of the PSW). If the specified comparison is true, the carry bit
is set to 1. If the comparison is false, the carry bit 1is cleared to O.
There are 2 sets of comparisons: signed and unsigned. Unsigned comparisons
treat both operands as positive values. For each set of comparisons, an
instruction group is provided which permits the specification of an immedi-
ate. One form of the immediates permits a register within a 16 bit
instruction to compare with the values: 0,1,...,7. This is particularly
useful in comparing with O.

Typically, after the execution of one of these compare instructions, a
branch on carry instruction is executed. The strategy adopted for compares
and branches is as follows: provide a compare register-to-register instruc-
tion for one of three of the possible six compare relations. If the
required relation is not one of the three provided, then the complement of
the relation is used along with the complement of the branch condition.

The following are the complementary relations used for compares:
.LE. <-> .GT.

.LT. <-> .CE.
.NE. <-> .EQ.

Section 9.6 ' 9-2

Address Register Instruction Set

For example A .LE. B , BRANCH TRUE is equivalent to A .GT. B, BRANCH FALSE.
Coincidentally, for many operators A .REL. B is identical to B .not. .REL.
A. Thus A .LE. B, BRANCH TRUE is equivalent to B .GE. A, BRANCH TRUE.

The Compare instructions include Compare Address/Address, Compare
Address/Address Unsigned, Compare Address/Immediate, and Compare
Address/Immediate Unsigned. These operands are all halfword and word
instructions, and affect the C flag as the result of a compare.

9.7 A Register Conversions

This instruction--Convert Integer Address/Address--converts the various A

register integer operands from one precision to another and affects the AIV
flag in integer overflow.

Section 9.7 9-3

Address Register Instruction Set

LOAD ADDRESS REGISTER 1d. (b|h|w) <effa>,bAk

Purpose:
To load memory operands into the address registers.

Format:
| Opcode |@|L| Aj | Ak | | Displacement |
15 8.7.6,5 3.2 (o] (31.15) Cc
Operation:
Ak = c(Effective Address)
PSW:
Exceptions:
Opcode:
ld.b <effa>,Ak 001010000 Load addr. reg. byte
1d.h <effa>,Ak 001010010 Load addr. reg. halfword
ld.w <effa>,Ak 001010100 Load addr. reg. word
Description:
The operand referenced by the effective address is loaded into the
address register Ak.
Notes:

Byte operands are loaded into bits<7..0> of the specified A regis-
ter. Halfword operands are loaded into bits<15..0> of the speci-
fied A register. All other bits are left unchanged.

Section 9.7 9-4

Address Register Instruction Set

STORE ADDRESS REGISTER st. (b|h|w) Ak,<effa>

Purpose:
To store the contents of an address into memory.

Format:
| Opcode |@|L| A | Ak | | Displacement |
15 8,7.6.5 3,2 0 (31,15) 0]
Operation:
c(Effective Address) = Ak
PSW:
Exceptions:
Opcode:
st.b Ak,<effa> 001011000 Store addr. reg. byte
st.h Ak,<effa> 001011010 Store addr. reg. halfword
st.w Ak,<effa> 001011100 Store addr. reg. word
Description:
The contents of the source address register Ak are stored into
memory location referenced by the effective address.
Notes:

the

Higher order bits of the Ak register used as the source are ignored

for byte and halfword stores.

Section 9.7

Address Register Instruction Set

LOAD ADDRESS/IMMEDIATE 1d. (h|w) #(n|N),Ak

Purpose:
To load an address register with an immediate operand.

Format:
Short Immediate
| Opcode | n | Ak |
15 6.5 3.2 (o]
Long Immediate
| Opcode |L| 000 | Ak (I N |
15, 7.6 5 3,2 0 (31}15) o]
Operation:
Short: Ak = #n '4n is 0,1,...,7.
Long: Ak = $#N I#N 1s an Immediate.
PSW:
Exceptions:
Opcode:
1d.h #N, LAk 000100010 Load halfword imm. into Ak
ld.w #N,Ak 000100011 Load imm. into Ak
1d.h #n,Ak 0100010010 Load short imm. into Ak
l1d.w #n,Ak 0100010011 Load short imm. into Ak
Description:
The specified immediate field is loaded into the specifie address
register.)

Section 9.7 9-6

Address Register Instruction Set

ADD ADDRESS/ADDRESS ‘ add. (h|w) Aj,Ak

Purpose:
To add the contents of one address register to another.

Format:
| Opcode | Aj | Ak |
15 6.5 3,2 0
Operation:
Ak = Ak + Aj
PSW:
C = Carry out of the most significant bit
AIV = Integer Overflow
Exceptions:
Integer Overflow
Opcode:
add.h Aj,Ak 0101100000 Add addr. reg. halfword
add.w Aj,LAk 0101100001 Add addr. reg. word
Description:
The contents of the address register Ak are added to the address
register Aj and the result loaded into the Ak.
Notes:

Section 9.7 9-7

Address Register Instruction Set

MULTIPLY ADDRESS/ADDRESS mul. (h|w) Aj, Ak

Purpose:
To multiply the contents of one address register with ancther.

Format:

Operation:
Ak = Ak * Aj

PSW:
C = Unchanged
AIV = Integer overflow
Exceptions:
Integer Overflow
Opcode:
mul.h Aj,6Ak 0101110000 Multiply addr. reg. halfword
mul.w Aj,AK 0101110001 Multiply addr. reg. word
Description:
The contents of the address register Aj are multiplied by the
address register Ak and the results loaded into Ak.
Notes:

The precision of the result is equal to the precision of the Ak.

Section 9.7 ™ g-9

Address Register Instruction Set

DIVIDE ADDRESS/ADDRESS div. (hjw) Aj, Ak

Purpose:
To divide the contents of one address register by another.

Format:
| Opcode | Aj | Ak]
15 6.5 3.2 o
Operation:
Ak = Ak / Aj
PSW:
AIV = Integer overflow
ADZ = Address Register divide by zero
Exceptions:
Integer Overflow
Divide by Zero
Opcode:
div.h Aj,Ak . 0101111000 Divide addr. reg. halfword
div.w Aj.Ak 0101111001 Divide addr. reg. word
Description:
The contents of the address register Ak are divided by the address
register Aj and the result loaded into the address register Ak.
Notes:

1 Integer overflow occurs if the largest negative number
is divided by -1.

2 If a divide by O is detected, the result is the original
dividend.

Section 9.7 9-10

Address Register Instruction Set

NEGATE ADDRESS/ADDRESS neg. (h|w) Aj, Ak

Purpose:
To negate the contents of an address register.

Format:
| Opcode | Aj | Ak |
15 6.5 3.2 0
Operation:
Ak = 0 - Aj
PSW:
AIV = Integer overflow
C = Carry Out
Exceptions:
Integer Overflow
Opcode:
neg.h Aj,Ak 0101011010 Negate addr. reg. halfword
neg.w Aj,Ak 0101011011 Negate addr. reg. word
Description:
The two's complement of Aj are loaded into Ak.
Notes:

1 The negate operation is 1identical +to subtracting the
contents of a register from O.

2 Overflow can occur only for the negation of the most
negative number.

Section 9.7 9-11

Address Register Instruction Set

ADD ADDRESS/IMMEDIATE add. (h|w) #(n|N),Ak

Purpose:
To Add an immediate field to an address register.

Format:
Short Immediate

R e R ———

- - - - - - = = = e - - - —— - - = am -

15, 7.6 5 3,2 0 (31]15) 0

Operation:
Short: Ak = Ak + #n '4n is 0,1,...,7.
Long: Ak = Ak + #N !#N is an Immediate.

PSW:
C = Carry Out
AIV = Integer Overflow

Exceptions:
Integer Overflow

Opcode:
add.h #n,Ak 0101100010 Add short imm. address halfword
add.w #n, Ak 0101100011 Add short imm. address word
add.h #N,6Ak 000101000 Add imm. address halfword
add.w #N,bAk 000101001 Add imm. address word
Description:

The immediate field is added to the destination field with the
result loaded into the destination field.

Section 9.7 9-12

Address Register Instruction Set

SUBTRACT ADDRESS/IMMEDIATE sub. (hiw) #(n|N), 6 Ak

Purpose:
To Subtract an immediate field from an address register.

Format:

Short Immediate

| Opcode | n | Ak]

15 6.5 3.2 0

Long Immediate

| Opcode |L| OO0 | Ak | N]

15, 7.6 5 3.2 0 (31]15) o
Operation:

Short: Ak = Ak - #n 'n is O0,1,...,7.

Long : Ak = Ak - #N !#N is an Immediate.
PSW:

C = Carry Out

AIV = Integer Overflow

Exceptions:
Integer Overflow

Opcode:
sub.h #N,6Ak 000101010 Subtract imm. address halfword
sub.w #N,Ak 000101011 Subtract imm. address word
sub.h #n,Ak 0101101010 Subtract short imm. address hal fword
sub.w #n,AK 0101101011 Subtract short imm. address word

Description:

The immediate field is subtracted from the address register Ak

the result loaded into Ak.

Notes:

Section 9.7

and

Address Register Instruction Set

MULTIPLY ADDRESS/IMMEDIATE mul. (hjw) #(n[N),Ak

Purpose:
To multiply an immediate field with an address register.

Format:
Short Immediate
| Opcode | n | Ak I
15 6.5 3.2 0
Long Immediate
| Opcode |L| OO0 | Ak | | N]
15, 7.6 5 3.2 O (31]15) o
Operation:
Short: Ak = Ak * #n '#$n is 0,1,...,7.
Long : Ak = Ak * #N 1#N is an Immediate.
PSW:
AIV = Integer Overflow
Exceptions:
Integer Overflow
Opcode:
mul.h #n,Ak 0101110010 Multiply short imm. address hal fword
mul.w #n,Ak 0101110011 Multiply short imm. address word
mul.h #N,6 Ak 000101100 Multiply imm. address halfword
mul.w #N,6Ak 000101101 Multiply imm. address word
Description:
The address register Ak is multiplied by the immediate and the
result loaded into Ak.
Notes:

Section 9.7 9-14

Address Register Instruction Set

DIVIDE ADDRESS/IMMEDIATE div. (h|w) #(n|N),6 Ak

Purpose:
To divide an address register by an immediate.

Format:
Short Immediate

| Opcode |L| 000 | Ak [N |
15, 7.6 5 3,2 0 (31)|15) o]
Operation:
Short: Ak = Ak / #n '4n is 0,1,...,7.
Long : Ak = Ak / #N '#N is an Immediate.
PSW:
AIV = integer overflow

ADZ integer divide by ©
Exceptions:

Integer Overflow

Divide by Zero

Opcode:
div.h #n,Ak 0101111010 Divide short imm. address halfword
div.w #n,Ak 0101111011 Divide short imm. address word
div.h #N,6Ak 000101110 Divide imm. address halfword
div.w #N,Ak 000101111 Divide imm. address word
Description:
The address register Ak is divided by the immediate and the result
loaded into the address register Ak.
Notes:

1 Integer overflow occurs if the largest negative number
is divided by -1.
2 For divide by O, the result is the original dividend.

Section 9.7 9-15

Address Register Instruction Set

ADD SCALAR/ADDRESS

add.w Sj,Ak

Purpose:
To add a scalar register to an address register.

Format:

15 6,5 3,2 ©

Operation:
Ak = Ak + Sj<31..0>

PSW:
C = Carry out of the most significant bit

AIV = Integer Overflow

Exceptions:
Integer Overflow

Opcode:
add.w Sj,Ak 0101000000 Add scalar to addr word

Description:

The contents of the Sj register are added to the contents of the Ak

register.

Notes:

Section 9.7 .

Address Register Instruction Set

AND ADDRESS/ADDRESS and Aj.,Ak

Purpose:
To AND the contents of two address registers.

Format:
| Opcode | Aj | Ak I
15 6.5 3,2 o
Operation:
Ak = Ak .AND. Aj
PSW:
Exceptions:
Opcode:
and Aj,Ak 0101001000 AND addr. reg.
Description:
The contents of the address register Ak are ANDed with the address
register Aj and the result loaded into the address register Ak.
All 32 bits of the A registers participate in the operation.
Notes:

Section 9.7 9-17

Address Register Instruction Set

OR ADDRESS/ADDRESS or Aj,Ak

Purpose:
To or the contents of two address registers.

Format:
| Opcode | Aj | Ak |
15 6.5 3,2 o]
Operation:
Ak = Ak .OR. Aj !
PSW:
Exceptions:
Opcode:
or Aj,Ak 0101001001 OR addr. regq.
Description:
The contents of the address register Ak are ored with the address
register Aj and the result loaded into the address register Ak.
All 32 bits of the A registers participate in the operation.
Notes:

Section 9.7 g9-18

Address Register Instruction Set

EXCLUSIVE OR ADDRESS/ADDRESS xor Aj,Ak

Purpose:
To exclusive OR the contents of two address registers.

Format:

Operation:
Ak = Ak .XOR. Aj

PSW:
Exceptions:

Opcode:
xor Aj,Ak 0101001010 Exclusive OR addr. reg.

Description:
¢ The contents of the address register Ak are exclusive ORed with the
address register Aj and the result loaded into the address register
Ak. All 32 bits of the A registers participate in the operation.

Section 9.7 9-19

Address Register Instruction Set

COMPLEMENT ADDRESS/ADDRESS not Aj,Ak

Purpose:
To COMPLEMENT an address register.

Format:
| Opcode | AJ | A< |
s 65 3z o
Operation:
Ak = .NOT. Aj
PSW:

Exceptions:

Opcode:
not Aj, LAk : 0101001011 Complement addr. reg.

Description:
The contents of the Aj address register are complemented; this

value is then loaded into the Ak address register.

Notes:

Section 9.7 9-20

Address Register Instruction Set

AND ADDRESS/IMMEDIATE and #N, Ak

Purpose:
To AND an immediate field to an address register.

15, 6.5 3.2 O 31]16 0

Operation:
Ak = Ak .AND. Immediate

PSW:

Exceptions:

Opcode:
and #N,6 Ak 000100100 AND imm. to addr. regq.

Description:
The address register Ak is logically ANDed with the immediate
operand, and the result is loaded into Ak.

Notes:

1 16-bit immediates are sign-extended to 32 bits.

Section 9.7 9-21

Address Register Instruction Set

OR ADDRESS/IMMEDIATE or #N,Ak

Purpose:
To or an immediate field with an address register.

Format:

- = - - - - - - e - - = - -

15, 6,5 3,2 O 31]16 0

Operation:
Ak = Ak .OR. immediate

PSW:

Exceptions:

Opcode:
or #N,Ak 000100101 OR imm. to addr. reg.

Description:
The address register Ak is logically ORed with the immediate
operand and the result loaded into Ak.

Notes:

1 16-bit immediates are sign-extended to 32 bits.

Section 9.7 9-22

Address Register Instruction Set

EXCLUSIVE OR ADDRESS/IMMEDIATE xor #N,Ak

Purpose:
To exclusive OR an immediate field with an address register.

15, 6.5 3.2 0O 31)16 0

Operation:
Ak = Ak .XOR. Immediate

PSW:

Exceptions:

Opcode:
xor #N,AK 000100110 Exclusive OR imm. to addr. reg.
Description:
The address register Ak is 1logically exclusive ORed with the
jmmediate operand, and the result is loaded into Ak.
Notes:

1l 16-bit immediates are sign extended to 32 bits.

Section 9.7 9-23

Address Register Instruction Set

LOGICAL SHIET ADDRESS/ADDRESS : shf Aj,Ak

Purpose:
To logically shift the contents of an address register.

Operation:
Ak = shift Ak by Aj<7..0>

PSW:

Exceptions:

Opcode:
shf Aj,Ak 0101000001 Shift an address

Description:
The contents of the address register Ak are 1logically shifted
according to a count contained within Aj<7..0>. If the count is
positive, then Ak is shifted left. If the count is negative, then
Ak 1is shifted right. Zeros fill vacated positions. All 32 bits of
Ak participate in the shift.
Bits<7..0> of Aj are examined to determine the shift count.

Notes:

A compare immediate instruction should be used to determine if the
shift count in Aj is greater than 127 or less than -128.

Section 9.7 9-24

Address

LOGICAL

Register Instruction Set

SHIFT ADDRESS/IMMEDIATE shf #(n|N), 6 Ak

Purpose:

To logically shift with an immediate field to an address register.

Format:

Short Immediate

| Opcode | n | Ak |

15 6.5 3,2 0

Immediate

| Opcode |L| 000 | Ak || N |

15, 8,7 6 3,2 O 32|16 (o]
Operation:

Short: Ak = Shift Ak by #n ! #n is 0,1,....7.

Long : Ak = Shift Ak by #N ! #N is an Immediate.
PSW:

Exceptions:

Opcode:

shf #n,Ak ~ 0100010001 Logical shift left short imm.
shf #N,AK 000100111 Logical shift imm. to addr. regq.

Description:

Notes:

Section

The address register Ak is logically shifted. The immediate field
determines the direction and number of bits shifted. A positive
immediate indicates a shift left. A negative immediate indicates a
shift right. For shf by #n only a left shift is supported.

shf by #n provides a convenient way to adjust an ordinal index to a
byte offset. An example of this is A(I). where A is an array con-
taining 64-bit integers, and I is contained in an address register.
I must be shifted left by 3 (multiply by 8) to convert I into into
a byte offset relative to the start of A.

9.7 . 9-25

Address Register Instruction Set

LOAD EFFECTIVE ADDRESS ldea <effa>, Ak

Purpose:
To load an address register with a byte pointer.

Format:
| Opcode |@|L| Aj | Ak | | Displacement |
15 8,7,6,5 3,2 0 (31.,15) 0
Operation:
Ak = Effective Address
PSW:
Exceptions:
Opcode:
ldea <effa>,Ak 000010010 Load effective address
Description:
The effective address, determined by evaluating the L,@,Aj fields,
is loaded into Ak.
Notes:

No ring violation occurs if the developed effective address refer-
ences an inner ring.

Section 9.7 9-26

Address Register Instruction Set

PUSH EEFFECTIVE ADDRESS pshea <effa>

Purpose:
To push a byte pointer onto the stack.

Format:
|Opcode |@|L| Aj| k | | Displacement |
15 8,7 6,5,3,2 O (31|15) 0
Operation:
temp = Effective Address
A0 = AO -4
c(AO) = temp
PSW:

Exceptions:

Opcode:
pshea <effa> 000011010 Push effective address

Description: ‘
The effective address determined by evaluating the L,@,Aj fields is
pushed onto the stack.

Notes:

1 No ring violation occurs if the developed effective
address references an inner ring.

2 The K field of the instruction is not used.

Section 9.7 9-27

Address Register Instruction Set

MOVE PC/ADDRESS mov PC, Ak

Purpose:
To move the address of the next instruction into an address regis-
ter.
Format:
| Opcode | Ak]
15 3,2 o]

Operation:
Ak = Current-Address + 2

PSW:

Exceptions:

Opcode:
mov PC,Ak 0111110001010 Load next PC address

Description:
The address of the instruction following this instruction is loaded
into Ak.

Notes:

Section 9.7 S5-28

Address Register Instruction Set

MOVE ADDRESS/ADDRESS mov Aj,Ak

Purpose:
To move the contents of one address register to another.

Format:
| Opcode | Aj | Ak |
15 6,5 3,2 0
Operation:
Ak = Aj
PSW:
Exceptions:
Opcode: .
mov Aj,Ak 0101000010 Move addr. reg.
Description:
¢ The contents of Aj are moved to Ak. Aj remains unchanged.
Notes:

Section 9.7 9-29

Address Register Instruction Set

PUSH ADDRESS REGISTER psh.w Ak

Purpose:
To push an address register onto the stack.

Format:

Operation:
AO = AO - 4

c (A0) = Ak -
PSW:
Exceptions:
Opcode:
psh.w Ak 0111110100000 Push an addr. regq.
Description:
The contents of the Ak address register are pushed onto the stack
Notes:

1 When the register to be pushed is the stack pointer |
itself, AO, the value pushed is the value after AO is |
decremented by 4; in other words, the value after the |
instruction is executed.

Section 9.7 9-30

Address Register Instruction Set

POP ADDRESS REGISTER pop.w Ak

Purpose:
To pop a word from the stack into an address register.

Format:
| Opcode | Ak |
15 3.2 o)
Operation:
Ak = c(AO)
A0 = A0 + 4
Exceptions:
Opcode:
pop.w Ak 0111110100010 Pop word into addr. regq.

Description:
The contents of Ak are lcaded from a word at the top of the stack.
The stack pointer is then incremented by 4 to reference the rew top
of stack.

Notes:

Section 9.7 CAT e e 2 1

Address Register Instruction Set

TEST AND SET tas <effa>

Purpose:
To indivisibly set a byte in memory.

Format:

|Opcode |@|L| Aj| k | | Displacement |

15 8,7 6,5,3,.2 0 (31]15) 0

Operation:
IF (c(Effective Address) .EQ. 0000 0000) THEN

c=1
ELSE
, cC=0
c(effa) = 1111 1111

The Read and Write of memory is non-divisible.
Exceptions:

Opcode:
tas <effa> 000011000 Test and Set a memory byte

Description:
The referenced byte is tested for all O. If the byte is all O,
then carry is set to 1. Otherwise carry is set to O.

Notes:

1 The test and set byte is used to test a byte in memory
indivisibly. No I/0 operation is permitted between the
read and write of the referenced byte.

2 The K field is unused.

Section 9.7 . 9-32

Address Register Instruction Set

LOAD PHYSICAL ldpa Aj,Ak

Purpose:

To convert a logical address to a physical address and load it into
an address register.

Format:
| Opcode | Aj | Ak |
15 6.5 3.2 0
Operation:
The logical address in Aj is converted into a physical address. The
address is checked for validity in the following sequence:
ATU enabled:
Ring maximization:
Valid SDR:
Valid Level 1 PTE:
Valid Level 2 PTE;
Resident Level 2 Page Table:
Resident Data Page.
If any of the above checks fail, the carry (C) is set to 1, and AS
receives an error code. If the translation succeeds, the carry (C)
is set to O, and A5 receives the physical address. In most cases,
Aj receives the address of the last Page Table Entry (PTE), and Ak
receives the PTE itself. However, Aj and Ak will be set to 0O if:
Logical equals physical,
Ring maximization fails, or
The SDR is invalid.
PSW:
C =1 if invalid reference.
C = 0 if valid reference.

Exceptions:

Opcode:
ldpa Aj.Ak 0100010000 Load a physical byte address into Ak

Description:

The contents of Aj are assumed to be a logical address, and this
address 1is translated to its equivalent physical address. If the
logical address is valid, the physical address is placed in A5 and
the carry bit (C) in the PSW is set to 0. If the logical address
in invalid, error information is returned in A5, and C is set to 1.
In either case, the physical address of the last Page Table Entry
(PTE) is placed in Aj, and the PTE itself is loaded in Ak.

Section 9.7 9-33

Address Register Instruction Set

The error information placed in A5 is consistent with System Excep-
tion Conditions, as described in Chapter 6. The following table
shows the potential errors which can occur with their corresponding

codes:
Error Class Qualifier
ATU not enabled o) none
Ring Violation 8 1 Inward Address Reference
PTE Violation c 4 Invalid SDR
5 Invalid Level 1 PTE
6 Invalid Level 2 PTE
Non-resident Page " 10 o] Non-resident Level 2 Page Tabl:¢
1 Non-resident Data Page

Notes:
1 After the instruction has completed, the carry, C, sig-
nifies the validity of the translation. If C=1, the
address was invalid, and A5 contains an error code as a
result. If C=0, the address was valid and A5 contains
the physical address as a result.

2 For Logical=Physical, Inward Address Reference, and
Invalid SDR errors, the contents of Aj and Ak are unde-
fined.

3 The PTE returned in Ak is useful for checking for Trojan
Horse Pointers (addresses provided by the user to the
system for system call processing -- see Chapter 4 of
the handbook for details). Also contained in the PTE
are the access privileges of the referenced address.

4 This instruction can also be used to determine whether
or not a page 1s resident in main memory.

5 No access checks are performed (i.e. Read, Write, or
Execute) .

Section 9.7 9-34

Address Register Instruction Set

MOVE PSW/ADDRESS mov PSW,Ak

Purpose:
To move the PSW into an address register.

Format:
| Opcode | Ak |
15 3,2]
Operation:
Ak = PSW
PSW:
Exceptions:
Opcode:
mov PSW, Ak 0111110001000 Store the PSW into an addr. reg.
Description:
The PSW is loaded into the specified address register Ak. The PSW
is unchanged after the loading of Ak.
Notes:

Before the PSW is moved to Ak, all existing concurrent processing
is completed. This ensures that all exception condition flags
accurately reflect the state of the processor.

Section 9.7 9-35

Address Register Instruction Set

MOVE ADDRESS/PSW mov Ak, psw

Purpose:
To move an address register into the PSW

Format:
| opcode | m |
s 32 o
Operation:
PSW = Ak
PSW:
Exceptions:
Opcode:
mov Ak, psw 0111110001001 Load an addr. reg. into the PSW
Description:

The contents of the specified Ak are loaded intc the PSW.

Notes:
Before Ak is moved to the PSW, all existing concurrent processing
is completed. This ensures that all exception flags and trap
enables accurately reflect the sequential state of the processor.

Section 9.7 9-36

Address Register Instruction Set

COMPARE ADDRESS/ADDRESS (le|ltleq) . (h|w) Aj,Ak

Purpose:
To compare the contents of 2 address registers.

Format:
| Opcode | Aj | Ak]
15 6.5 3,2 o
Operation:
IF (Aj .OPCODE-TEST. Ak) THEN
Cc=1
ELSE
C=0
ENDIF
PSW:

C is affected (see above).

Exceptions:
None
Opcode:
le.h Aj,Ak 0100110000 Compare less than or equal signed halfword
le.w Aj,AK 0100110001 Compare less than or equal signed word
lt.h Aj,Ak 0100111000 Compare less than signed halfword
lt.w Aj, Ak 0100111001 Compare less than signed word
eq.h Aj,Ak 0100011000 Compare equal halfword
eq.w Aj,Ak " 0100011001 Compare equal word
Description:

The contents of Ak are compared with Aj. The result of the com-
parison is used to modify the C bit of the PSW. If the comparison
is true, the C bit is set to 1. If the comparison is false, the C
bit is reset to O.

Section 9.7 9-37

Address Register Instruction Set

Notes:

=

The contents of the Ak and Aj registers are unmodified.

2 The comparison A .NE. B, A .GT. B and A .GE. B is imple-~
mented by comparing A .EQ. B, A .LT. B and A .LE. B
respectively, and testing for complemented C.

3 Unsigned equal is equivalent to signed equal.

Section 9.7

Address Register Instruction Set

COMPARE ADDRESS/ADDRESS UNSIGNED

(le|lt)u. (h|w) Aj.Ak

Purpose:

registers.

To perform unsigned comparisons between the contents of two address

The contents of Ak are compared with Aj. The result of the unsigned
comparison is used to modify the C bit of the PSW. If the com-
parison is true, the C bit is set to 1. If the comparison is false,

Format:
| Opcode | Aj | Ak |
15 6.5 3.2 0
Operation:
IF (Aj .OPCODE-TEST. Ak) THEN
c=1
* ELSE
cC=0
ENDIF
PSW: »
C is affected (see above).
Exceptions:
None
Description:
the C bit is reset to O.
Opcode:
leu.h Aj, Ak 0100100000
ltu.h gt,Aj,Ak 0100101000
leu.w Aj, Ak 0100100001
ltu.w gt,Aj,Ak 0100101001
Notes:

[

Compare unsigned less
Compare unsigned less

Compare unsigned less
Compare unsigned less

Ak and Aj are not modified.

2 Unsigned equality and inequality are performed
signed comparisons for equality and inequality.

Section 9.7

than or equal halfwor
than halfword

or equal than word '
than word

by the

Address Register Instruction Set

COMPARE ADDRESS/IMMEDIATE (le|lt|eq). (h|w) #(n|N),Ak

Purpose:
To compare the contents of an address register with an immediate.

Format:
Short Immediate

| Opcode |L| 000 | Ak I N |
15, 7.6 5 3,2 0 (31}15) o
Operaticn:

Short:

IF (Ak .OPCODE-TEST. #n) THEN !#n is (0,1,...,7).
cC.=1_

ELSE
C=0

ENDIF

Long:

IF (Ak .OPCODE-TEST. #n) THEN !#N is an Immediate.
cC=1

ELSE
cC=0

ENDIF

PSW:
C is affected (see above).

Exceptions:

None
Opcode: ,
le.h #n,Ak 0100110010 Compare less than or equal halfword
le.w #n,Ak 0100110011 Compare less than or equal word
lt.h #n,Ak 0100111010 Compare less than halfword
lt.w $#n,Ak 0100111011 Compare less than word
eq.h #n,Ak 0100011010 Compare equal halfword
eq.w #n,Ak 0100011011 Compare equal word
le.h #N,LAk 000111100 Compare less than or equal halfword

Section 9.7 9-40

Address Register Instruction Set

le.w #N,Ak 000111101 Compare less than or equal word
l1t.h #N, LAk 000111110 Compare .ess than halfword
lt.w #N,6Ak 00111111 Compare less than word
eg.h #N,Ak 000110110 Compare equal halfword
eqg.w #N,Ak 000110111 Compare equal word
Description:
The contents of the Ak register are compared to the specified

immediate. If the comparison is true, the C bit of the PSW is set
to 1. If the comparison is false, the C bit of the PSW is reset to
0.

Notes: .
1 The contents of the Ak register are not modified.

Section 9.7 S9-41

Address Register Instruction Set

COMPARE ADDRESS/IMMEDIATE UNSIGNED

(lejlt)u. (h|w) #(n|N),6 Ak

Purpose:
To compare the unsigned contents of an
jmmediate.

Format:
Short Immediate

| Opcode | n | Ak !
15 6,5 3,2 o}
Long Immediate
| Opcode |L|{ OGO | Ak (| N
15, 7.6 5 3,2 0 (31|15)
Operation:
IF (Ak .OPCODE-TEST. #n) THEN
cC=1
ELSE
cC=0
ENDIF
IF (Ak .OPCODE-TEST. #n) THEN
C=1
ELSE
cC=0
ENDIF
PSW:
C is affected (see above).
Exceptions:
None
Opcode:

' leu.h #n,Ak 0100100010 Compare
ltu.h #n, Ak 0100101010 Compare
leu.h #N,Ak 000111000 Compare
ltu.h #N, LAk 000111010 Compare
leu.w #n,Ak 0100100011 Compare
ltu.w #n, Ak 0100101011 Compare
leu.w #N,LAk 000111001 Compare
ltu.w #N,6Ak 000111011 Compare

Section 9.7

address register with an

'$n is (0.1,...,7).

I#N is an Immediate.

than
than
than
than

less
less
less
less

unsigned
unsigned
unsigned
unsigned

or equal ha

halfword
halfword
hal fword

than
than
than
than

less
less
less
less

unsigned
unsigned
unsigned
unsigned

or equal wos
word
word
word

9-42

Address Register Instruction Set

Description:
The contents of the Ak register are compared to the specified
immediate. If the comparison is true, the C bit of the PSW is set
to 1. If the comparison is false, the C bit of the PSW is reset to
0.

Notes:

1 The contents of the Ak register are not modified.
2 Compare equal immediate N is performed using the eq.x
#N,Ak instructions.

Section 9.7 9-43

Address Register Instruction Set

CONVERT INTEGER ADDRESS/ADDRESS cvt Aj, Ak

Purpose:
To convert the integer contents of one A register to an integer of
different precision.

Format:
| Opcode | Aj | Ak |
15 6,5 3.2 0
Operation:
Ak = Convert (Aj) ! according to the opcode
PSW:
AIV = Integer Overflow
Exceptions:
Integer Overflow
Opcode:
cvtw.b Aj,Ak 0100000000 Convert word to byte
cvtw.h Aj, LAk 0100000001 Convert word to halfword
cvtb.w Aj,Ak 0100000010 Convert byte to word
cvth.w Aj,LAK 0100000011 Convert half to word
Description:
The specified integer is converted to specified destination integer
and the result is loaded into Ak. An overflow exception can occur
for the word to byte and word to halfword instructions. Bytes and
halfwords are sign extended to words.
Notes:

1 The other possible signed conversions are implemented by
executing two of the provided conversions. Halfword to
byte is performed by cvth.w and cvtw.b. Byte to half-
word is performed by cvtb.w and cvtw.h.

2 Unsigned conversions may be implemented using logical
AND instructions.

Section 9.7 9-44

Scalar Register Instruction Set
CHAPTER 10

10 Scalar Register Instruction Set

This chapter describes the instructions which primarily manipulate the
scalar register set. The instruction categories include Scalar Loads and
Stores, Scalar Load Immediates, Scalar/Scalar Arithmetics, Scalar/Scalar
Logical Operations, Arithmetic Immediates, Logical Immediates, Push/Pop
Scalar Registers, Scalar/Scalar Compares Signed/Unsigned, S Register Com-
pare Immediates, S Register Conversions, and Shifts/Moves/Counts. There are
8 x 64 bit scalar registers. The scalar registers are used to perform com-
putation on fixed and floating point operands. Instructions which affect
both scalar and vector registers are described in the chapter on the Vec-
tor/ Scalar Instruction Set. Detalls are also provided on the scheduling
of these instructions.

10.1 Scalar Loads and Stores

These instructions include Load Scalar Register and Store Scalar Register:
both instruction types work with byte, halfword, word and longword operands
and do not affect flags in the Processor Status Word. The subgroup, Scalar
Load Immediates, includes Load Scalar/Immediate as the only instruction,
and its data types include word and longword. Load Scalar/Immediate does
not affect the flags in the Processor Status.

10.2 Scalar/Scalar Arithmetic

Instructions included in this group include Add Scalar/Scalar, Subtract
Scalar/Scalar, Multiply Scalar/Scalar, Divide Scalar/Scalar, and Negate
Scalar/Scalar. All Scalar/Scalar Arithmetics are either byte, halfword,
word, or longword integers, or single or double precision floating point.
Integer Overflow is signified by the SIV bit in the PSW, Exponent Overflow
by the OV bit, Exponent Underflow by the UN bit, and Carry output by the SC
bit. RO is used to signify a reserved operand. The SDZ bit shows a Divide
by Zero. An integer FDZ indicates a floating point divide by zero.

10.3 Scalar/Scalar Logical Operations
These instructions include AND Scalar/Scalar, OR Scalar/Scalar, Exclusive

OR Scalar/Scalar, and Complement Scalar/Scalar. No flags are affected in
the PSW.

Section 10.3 - 10-1

Scalar Register Instruction Set

10.4 S Register Immediates

These instructions provide a means to perform an operation between an S
register and an immediate. The section has two sub groups: Arithmetic
Immediates and Logical Immediates. Arithmetic Immediates include Add, Sub-
tract, Multiply, and Divide Scalar/Immediate instructions which work with
hal fword, word, or Single Precision Floating Point operands and affect the
following flags in the PSW:

SIV = Integer Overflow:; Integer only

OV = Exponent Overflow; Floating Point only
UN = Exponent Underflow; Floating Point only
SC = Carry Output; Integer only

RO = Reserved Operand: Floating Point only
SDZ = Integer Divide by Zero
EDZ = Floating Point Divide by Zero

Logical Immediates include AND, OR, Exclusive OR, and Logical Shift
Scalar/Immediate instructions, which affect no flags in the PSW.

10.5 Push/Pop Scalar Registers

These instructions--Push Scalar Register and Pop Scalar Register--operate
on word and longword and do not affect the flags in the PSW.

10.6 Scalar/Scalar Compares Signed/Unsigned

This section includes Compare Scalar/Scalar and Compare Scalar/Scalar
Unsigned, and the following S Register Compare Immediates: Compare
Scalar/Immediate and Compare Scalar/Immediate Unsigned. Compare
Scalar/Scalar works with byte, halfword, word, longword, single and double
precision floating point and affects only the SC bit in the PSW. The Com-
pare Scalar/Scalar Unsigned instruction can be byte, word, halfword, or
longword and likewise affects only the SC bit in the PSW. § Register Com-
pare Immediate instructions provide immediate to S register operations.
The immediates provided are either 16 or 32 bit and affects only the SC
bit.

10.7 § Register Conversions
This instruction provides conversions from one § register to another.

Integer Overflow is signified by the SIV bit, and Floating Point Overflow
by the OV bit in the PSW.

Section 10.7 - : 10-2

Scalar Register Instruction Set

10.8 Shifts/Moves/Counts

These instructions include Logical Shift Scalar/Scalar, Trailing Zero

Count, Population Count Scalar,
Address/Scalar, and Move Scalar/Scalar.
the flags in the PSW.

Section 10.8

Move Scalar to Address, Move
None of these instructions affects

10-3

Scalar Register Instruction Set

LOAD SCALAR REGISTER 1d. (b|h|w|l|s|d) <effa>,Sk

Purpose:
To load an operand into a scalar accumulator.

Format:
| Opcode |[@|LJAj |Sk |] Displacement |
15 8,7 6,5,3,2 0 (31]15) o
Operation:
Sk = c(Effective Address)
PSW:
Exceptions:
Opcode:
ld.b <effa>,Sk 001100000 Load scalar byte
ld.h <effa>,Sk 001100010 Load scalar halfword
ld.w <effa>,Sk 001100100 Load scalar word
1d.1 <effa>,Sk 001100110 Load scalar longword
ld.s <effa>,Sk 001100100 Load scalar single float
l1d.d <effa>,Sk 001100110 Load scalar double float
Description:
The referenced data is loaded into the specified scalar register.
Notes:

1 Single precision floating point and 32 bit integer
occupy the same bit positions (<31..0>) within a scalar

register.

2 Byte data occupies bit positions <7..0> within a scalar
register.

3 Halfword data occupies bit positions <15..0> within a
scalar register.

4 The .s and .w forms of this instruction are equivalent,

as are the .d and .1 forms.
added for convenience.

The .s and .d forms are

Section 10.8 10-4

Scalar Register Instruction Set

STORE SCALAR REGISTER st.(b|h|w|l]|s|d) Sk,<effa>

Purpose:
To store an operand from a scalar register.

Format:

| Opcode |@|L|Aj |Sk | | Displacement |

15 8,7 6,5,3,20 (31]15) o

Operation:
c(Effective Address) = Sk

PSW:
Exceptions:
Opcode:
st.b Sk,<effa> 001101000 Store scalar byte
st.h Sk,<effa> 001101010 Store scalar halfword.
st.w Sk,<effa> 001101100 Store scalar word
st.l Sk,<effa> 001101110 Store scalar longword
st.s Sk,<effa> 001101100 Store scalar single float
st.d Sk,<effa> 001101110 Store scalar double float
Description:
The referenced data is stored from the specified scalar register Sk
into the referenced memory location.
Notes:

1 Single precision floating pointer and 32-bit integer
occupy the same bit positions within a scalar register.

2 The .s and .w forms of this instruction are equivalent,

as are the .d and .1 forms. The .s and .d forms are
added for convenience.

Section 10.8 10-5

Scalar Register Instruction Set

LOAD SCALAR/IMMEDIATE

1d. (w|l|d[u|du|dl|lu|1ll) #N,Sk

Purpose:
To load a word immediate into a scalar register.

Format:
| Opcode |L{ 001 | Sk | | N |
15 765 3,2 O 31]16 o
Operation:
Sk<63..32> = Immediate ! 1d.d,#N.Sk
Sk<31..0> = 0
Sk<63..32> = Immediate<3l> ! 1d.1,#N,8Sk
Sk<31..0> = Immediate
! 1d. (w|dl}1l1l),#N,Sk
Sk<63..32> = Sk<63..32> ! (unchanged)
Sk<31..0> = Immediate)
‘ !t 1d. (u|du|lu) #N,Sk
Sk<63..32> ='Immediate
Sk<31..0> = Sk<31..0> ! (unchanged)
PSW:
Exceptions:
Opcode:
ld.d #N,Sk 000100000 Load immediate, most significant bits
1d.1 #N,Sk 000100010 Load 64 bit sign extended immediate
l1d.w #N,Sk 000100011 Load a 32 bit immediate
1d.u #N,Sk 000100001 Load immediate, upper half
ld.du #N,Sk 000100001 Load 64 bit floating immed., upper hal
1d.dl #N,Sk 000100011 Load 64 bit floating immed., lower hal
1d.1lu #N,Sk 000100001 Load 64 bit integer immed., upper half
1d.11 #N,Sk 000100011 Load 64 bit integer immed., lower half
Description:
The immediate is loaded into Sk.
Notes:

1. A full 64-bit immediate can be
performing a 1d4.d,#N,Sk and
1d.w, #N, Sk.

Section 10.8

developed by first
then by executing a

10-6

Scalar Register Instruction Set

1. The forms using .du, .lu, .dl,
venient use of 64 bit immediate operators, and load
either the upper half (.du and .lu) or the lower
half (.dl1 and .1l1), respectively. For example,

Section 10.8

"1d.du #3.14159,s0" causes the
bit floating point constant
the upper half of register sO.
are necessary since immediate
bits in length.

and .11 allow con-

upper half of the 64
PI to be loaded into

These four forms
operands are only 32

10-7

Scalar Register Instruction Set

ADD SCALAR/SCALAR add. (b|h|w|1l|s|d) Sj,.Sk

Purpose:
To add a scalar to a scalar.

Format:
| Opcode | Sj | sk |
15 6,5 3,2 O
Operation:
Sk = Sk + Sj
PSW:
SIV = Integer Overflow! Integer Only
OV = Exponent Overflow! Floating Point only
UN = Exponent Underflow! Floating point only
SC = Carry Output! Integer Only
RO = Reserved Operand! Floating point only
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand
Opcode:
add.b Sj,Sk 0101100100 Add scalar/scalar integer byte
add.h Sj,Sk 0101100101 Add scalar/scalar integer halfword
add.w Sj,.Sk 0101100110 Add scalar/scalar integer word
add.l Sj,Sk 0101100111 Add scalar/scalar integer longword
add.s Sj.Sk 0101010100 Add scalar/scalar single float
add.d Sj,Sk 0101010101 Add scalar/scalar double float
Description:
The contents of the scalar register Sk are added to the con-
tents of the scalar register Sj, and the scalar result is
loaded into Sk.
Notes:

Section 10.8 10-8

Scalar Register Instruction Set

SUBTRACT SCALAR/SCALAR sub. (blh|w|l|s]|d) Sj.Sk

Purpose:
To subtract a scalar from a scalar.

Format:
| Opeode 183 | K |
s 6.5 3.2 0
Operation:
Sk = Sk - Sj
PSW:

SIV = Integer Overflow: Integer Only
OV = Exponent Overflow; Floating Point Only

UN = Exponent Underflow; Floating Point Only
SC = Carry output
RO = Reserved Operand Only; Floating Point Only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

integer byte
integer halfword
integer word
integer longword
single float
double float

Opcode:
sub.b Sj,Sk 0101101100 Subtract scalar/scalar
sub.h Sj.S8k 0101101101 Subtract scalar/scalar
sub.w S8j,8k 0101101110 Subtract scalar/scalar
sub.l Sj,Sk 0101101111 Subtract scalar/scalar
sub.s Sj,Sk 0101010110 Subtract scalar/scalar
sub.d Sj,Sk 0101010111 Subtract scalar/scalar
Description:
The contents of the scalar register Sj are subtracted from the
contents of the scalar register Sk, and the scalar result is
loaded into Sk.
Notes:

Section 10.8

10-9

Scalar Register Instruction Set

MULTIPLY SCALAR/SCALAR

mul. (b|hjw|l|s|d) Sj,Sk

Purpose:

To multiply a scalar by a scalar.

Sk * Sj

SIV = Integer Overflow: Integer Only
OV = Exponent Overflow; Floating Point Only
Exponent Underflow; Floating Point Only

Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Sj.sk
Sj.Sk
Sj.sk
Sj.sk
Sj.sk
Sj.sk

0101110100
0101110101
0101110110
oi01iiio1ii1
0101011100
0101011101

Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

Reserved Operand:; Floating Point Only

scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar

integer byte
integer halfwor
integer word
integer longwor
single float
double float

The contents of the scalar register Sk are multiplied with the

Format:

| Op

15
Operation:

Sk =
PSW:

UN =

RO =
Exceptions:
Opcode:

mul.b

mul.h

mul .w

mul.l

mul.s

mul.d
Description:

conte
Notes:

Section 10.8

nts

of the scalar register Sj, and the scalar result is
loaded into Sk.

10-10

Scalar Register Instruction Set

DIVIDE SCALAR/SCALAR

div. (blh]w|1l|s|d) Sj.Sk

Purpose:

To divide a scalar by a scalar.

Format:

Operation:
Sk =

PSW:

SIV = Integer Overflow!

ov =
UN =

SDZ = Divide by zero!

Sk / 83

6,5 3,2 ©

Integer only

Exponent Overflow! Floating Point only
Exponent Underflow! Floating Point only

Integer only

RO = Reserved Operand! Floating Point only
EDZ= Divide by zero! Floating Point only

Exceptions:

Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
div.b
div.h
div.w
div.1
div.s
div.d

Description:

Sj.sk
Sj.sk
S3.sk
S3j.sk
Sj.sk
Sj.sk

0101111100
0101111101
0101111110
0101111111
0101011110
0101011111

Divide
Divide
Divide
Divide
Divide
Divide

scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar

The contents of a scalar Sk are divided by a scalar

the result is loaded into Sk.

Notes:

Section 10.8

integer byte
integer halfword
integer word
integer longword
single float
double float

Sj. and

10-11

Scalar Register Instruction Set

NEGATE SCALAR/SCALAR

neg. (b|lh|w|l|s|d) Sj,sk

Purpose:

To negate a scalar.

Negate
Negate
Negate
Negate
Negate

Format:
| Opcode | 8 | sk
15 6,5 3,2 O
Operation:
Sk =0 - §j
PSW:
SIV = Integer Overflow:; Integer only
SC = Integer Carry Out.
oV =
UN =
RO =
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand
Opcode:
neg.b Sj,Sk 0110111100
neg.h Sj.Sk 0110111101
neg.w Sj,Sk 0110111110
neg.l Sj,Sk 0110111111
neg.s Sj,Sk 0110010110
neg.d Sj,Sk 0110010111

Description:

Negate

The algebraic negation of Sj is loaded
identical to subtracting Sj from O.

Notes:

Section 10.8

Exponent Overflow; Floating Point only
Exponent Underflow; Floating point only
Reserved Operand: Floating Point Only

scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar

integer byte
integer halfword
integer word
integer longword
single float
double float

into Sk. The result is

10-12

Scalar Register Instruction Set

AND SCALAR/SCALAR and Sj,Sk

Purpose:
To AND the contents of two scalars.

Format:
| opcode |83 18k |
s 6.5 3.2 0
Operation:
Sk = Sk .AND. Sj
PSW:

Exceptions:

Opcode:
and Sj.Sk 0101001100 AND scalar/scalar:
Description:
The contents of the Sk register are ANDed with the contents of
the 8j register. The results of the AND are loaded into Sk.
All 64-bits of each scalar register participate in the opera-
tion. ‘
Notes:

Section 10.8 10-13

Scalar Register Instruction Set

OR SCALAR/SCALAR or Sj,Sk

Purpose:
To OR the contents of two scalars.

Format:
| opcode |83 | sk |
s 6.5 3.2 0
Operation:
Sk = Sk .OR. Sj
PSW:

Exceptions:

Opcode:
or Sj,Sk 0101001101 OR scalar/scalar

Description:
The contents of the Sj scalar register are ORed with the con-
tents of the Sk register. The results of the OR are loaded
into Sk. All 64-bits of the scalar registers participate in
the operation.

Notes:

Section 10.8 10-14

Scalar Register Instruction Set

EXCLUSIVE OR SCALAR/SCALAR xor Sj,Sk

Purpose:
To Exclusive OR the contents of two scalar registers.

Format:
| opcode 183 sk |
s 6.5 3.2 0
Operation:
Sk = Sk .XOR. S8j
PSW:

Exceptions:

Opcode:
xor Sj,Sk 0101001110 . .Exclusive OR scalar/scalar
Description:
The contents of the Sj vector register are exclusive ORed with
the contents of the Sk register. The results of the exclusive
or are loaded into Sk. All 64-bits of the scalar registers
participate in the operation.
Notes:

Section 10.8 10-15

Scalar Register Instruction Set

COMPLEMENT SCALAR/SCALAR not Sj,Sk

Purpose:
To COMPLEMENT the contents of a scalar.

Format:
| opcode |89 1k |
s 6.5 3.2 0
Operation:
Sk = .NOT. Sj
PSW:

Exceptions:

Opcode:
not Sj,Sk 0101001111 Complement scalar/scalar

Description:
The contents of the Sj scalar register are complemented and
the results loaded into the Sk scalar register. All 64-bits
of the scalar registers participate in the operation.

Notes:

Section 10.8 10-16

Scalar Register Instruction Set

ADD SCALAR/IMMEDIATE

add. (hi{w|s) #N,Sk

Purpose:
To add an immediate

Format:

| Opcode |L| 001 | Sk | N |

15 765 3.2 © 31])16 (0]
Operation:

Sk = Sk + Immediate
PSW:

SIV = Integer Overflow ! Integer Only

OV = Exponent Overflow ! Floating Point only

UN = Exponent Underflow ! Floating point only

SC = Carry Output ! Integer Only

RO = Reserved Operand ! Floating point only -
Exceptions:

Integer Overflow

Exponent Overflow

Exponent Underflow

Reserved Operand
Opcode:

add.h #N, Sk 000101000 Add scalar/immed.

add.w #N,Sk 000101001 Add scalar/immed.

add.s #N,Sk 000110000 Add scalar/immed.
Description:

The contents of the scalar register Sk are added to

tents of immediate,

~..Section 10.8

to a scalar.

integer halfword
integer word
single float

the con-

and the scalar result is loaded into Sk.

10-17

Scalar Register Instruction Set

SUBTRACT SCALAR/IMMEDIATE sub. (h|w|s) #N,6 Sk

Purpose:
To subtract an immediate from a scalar.

Format:
| opcode (L GOl | Sk 1 1 N |
s 765 3.2 0 s o
Operation:
Sk = Sk - Immediate
PSW:

SIV = Integer Overflow; Integer Only
OV = Exponent Overflow: Floating Point Only

UN = Exponent Underflow; Floating Point Only
SC = Carry output
RO = Reserved Operand Only: Floating Point Only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
sub.h #N,Sk 000101010 Subtract scalar/immed. integer halfwor
sub.w #N,Sk 000101011 Subtract scalar/immed. integer word
sub.s #N,Sk 000110001 Subtract scalar/immed. single float
Description:
The contents of the immediate are subtracted from the contents
of the scalar register Sk, and the scalar result is loaded
into Sk.
Notes:

Section 10.8 10-18

Scalar Register Instruction Set

MULTIPLY SCALAR/IMMEDIATE mul. (h{w|s) #N,Sk

Purpose:

To multiply a scalar by a scalar.

Operation:

PSW:

Exceptions:

Sk

Sk * Sj

SIV = Integer Overflow:; Integer Only

ov
UN
RO

Exponent Overflow: Floating Point Only
Exponent Underflow; Floating Point Only
Reserved Operand; Floating Point Only

Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
mul.h #N,Sk 000101100 Multiply scalar/immed. integer halfword
mul.w #N,Sk 000101101 Multiply scalar/immed. integer word
mul.s #N,Sk 000110010 Multiply scalar/immed. single float
Description:
The contents of the scalar register Sk are multiplied with the
contents of the scalar register Sj, and the scalar result is
loaded into Sk.
Notes:

Section 10.8

10-19

Scalar Register Instruction Set

DIVIDE SCALAR/IMMEDIATE

div. (h|w|s) #N,Sk

Purpose:

To divide a scalar by a scalar.

Format:
| Opcode |L| OO1 | Sk | | N |
15 765 3,2 O 31|16 0
Operation:
Sk = Sk / Immediate
PSW: _
SIV = Integer Overflow; Integer only
OV = Exponent Overflow; Floating Point only
UN = Exponent Underflow; Floating Point only
SDZ = Divide by zero:; Integer only
RO = Reserved Operand: Floating Point only -
FDZ = Divide by zero: Floating Point only
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand
Opcode:
div.h #N,Sk 000101110 Divide scalar/scalar integer halfword
div.w #N,Sk 000101111 Divide scalar/scalar integer word
div.s #N,Sk 000110011 Divide scalar/scalar single float
Description:
The contents of a scalar Sk are divided by an immediate, and
the result is loaded into Sk.
Notes:

Section 10.8

10-20

Scalar Register Instruction Set

AND SCALAR/IMMEDIATE

and #N, Sk

Purpose:

To AND the contents of a scalar and an immediate

| Opcode |L] 001 | Sk | | N I
15 765 3,2 O 31]16 o
Operation:
Sk<31..0> = Sk<31..0> .AND. Immediate
PSW:
Exceptions:
Opcode:
and #N, Sk 000100100 AND scalar/immediate
Description:
The contents of the Sk vector register are ANDed with the
immediate. The results of the AND are loaded into Sk. The
least significant 32 bits of Sk participate in the operation.
Notes:

1 16-bit immediates are sign-extended to 32 bits.

Section 10.8

10-21

Scalar Register Instruction Set

OR SCALAR/IMMEDIATE or #N, Sk
Purpose:
To OR the contents of a scalar and an immediate
Format:
| Opcode |[L| 001 | Sk | | N |
15 765 3.2 © 31|16 o]
Operation:
Sk<31..0> = Sk<31..0> .OR. Immediate
PSW:
Exceptions:
Opcode:
or #N,Sk 000100101 OR scalar/immediate
Description:
The immediate is ORed with contents of the Sk register. The
results of the OR are loaded into Sk. The least significant 32
bits of Sk participate in the operation.
Notes:

1 16-bit immediates are sign-extended to 32 bits.

Section 10.8

10-22

Scalar Register Instruction Set

EXCLUSIVE OR SCALAR/IMMEDIATE xor

#N, Sk

Purpose:
To Exclusive OR the contents of an immediate with a scalar

Format:
| opcode LI OOL | Sk | | N |
15 765 3.2 0 s o
Operation:
Sk<31..0> = 5k<31l..0> .XOR. Immediate
PSW:

Exceptions:

Opcode:
xor #N, Sk 000100110 Exclusive OR scalar/immediate
Description:
The contents of an immediate are exclusive ORed with the con-
tents of the Sk register. The results of the exclusive or are
loaded into Sk. The least significant 32 bits of 8k partici-
pate in the operation.
Notes:

1 16-bit immediates are sign-extended to 32 bits.

Section 10.8

10-23

Scalar Register Instruction Set

LOGICAL SHIFT SCALAR/IMMEDIATE shf #N, Sk

Purpose:

To logically shift the contents of a scalar as controlled by
an immediate

Format:
| opcode ILoOL Sk | | N |
TEE 765 3.2 0 sie o
Operation:
Sk<63..0> = Shift Sk by immediate<7..0>
PSW:
Exceptions:
Opcode:
shf #N,Sk 000100111 Shift Scalar/immediate
Description:

The contents of the Sk scalar register are shifted according
to the value specified in the immediate. Only bits<7..0> are
used to control the shift. The shift count is interpreted as
an 8-bit two's complement number. Thus, if bit<7> is a O, the
logical shift is left. If bit<7> is a 1, the logical shift is
to the right. Vacated positions are zero filled.

Secticon 10.8 10-24

Scalar Register Instruction Set

PUSH SCALAR REGISTER

psh. (w]1l) Sk

Purpose:

To push an Sk register onto the stack.

Format:

Operation:

IF (PSH.W-OPCODE) THEN
AO = AO - 4

ELSE
AO = A0 - 8 ! psh.l
ENDIF
c (AO) = Sk<63..0> ! if long
c (AO) = Sk<31l..0> ! if word
PSW:
Exceptions:
Opcode:
psh.w Sk 0111110100100 Push Sk<31..0> onto the stack
psh.l Sk 0111110100101 Push Sk<63..0> onto the stack.
Description:
The scalar register, Sk, is pushed onto the stack. Either all
64 Dbits of 8k or the least significant 32 bits of Sk are
pushed.
Notes:

Section 10.8

10-25

Scalar Register Instruction Set

POP SCALAR REGISTER pop. (w|l) Sk
Purpose:
To pop an Sk register from the stack.

Format:
| Opcode | Sk |
15 3,2 ©

Operation:

IF (POP.W-OPCODE) THEN
Sk<31l..0> = c(A0)
AO = AO - 4
ELSE
Sk = c (A0)
A0 = A0 - 8 ! pop.l
ENDIF

PSW:

Exceptions:

Opcode:)
pop.w Sk 0111110100110 Pop Sk<31..0> from the stack
pop.l Sk 0111110100111 Pop Sk<63..0> from the stack.

Description:

The scalar register, Sk. is popped from the stack. Either all
64 bits or the least significant 32 bits of Sk are loaded from
the stack.

Notes:

Section 10.8

10-26

Scalar Register Instruction Set

COMPARE SCALAR/SCALAR (lellt]eq). (b|h|w|l]|s|d) Sj.Sk

Purpose:
To sign compare a scalar and scalar and load SC

Format:
| Opcode | 83 | Sk |
15 6,5 3,2 O
Operation:
IF (Sj .OPCODE-TEST. Sk) THEN
sC =1
ELSE
sC =20
ENDIF
PSW:
SC is affected. (see above).
Exceptions:
Reserved Operand (floating point only).
Opcode:
le.b Sj.Sk 0100110100 Compare less than or equal byte
l1t.b §j,.8k 0100111100 Compare less than byte
eq.b Sj.Sk 0100011100 Compare equal byte
le.h Sj,sk 0100110101 Compare less than or equal halfword
l1t.h S§j,8k 0100111101 Compare less than halfword
eq.h Sj,.Sk 0100011101 Compare equal halfword
le.w Sj.Sk 0100110110 Compare less than or equal word
lt.w Sj.8k 0100111110 Compare less than word
eq.w Sj,Sk 0100011110 Compare equal word
le.1 Sj.8k 0100110111 Compare less than or equal longword
l1t.1 S3j.Sk 0100111111 Compare less than longword
eq.l 83,8k 0100011111 Compare equal longword
le.s Sj.Sk 0101010000 Compare less than or equal single float
lt.s Sj.8k 0101010010 Compare less than single float
eq.s Sj,Sk 0101011000 Compare equal single float
le.d Sj.Sk 0101010001 Compare less than or equal double float
1t.d S§j.S8k 0101010011 Compare less than double float
eq.d Sj,Sk 0101011001 Compare equal double float

Section 10.8 10-27

Scalar Register Instruction Set

Description:

The scalar registers Sk and Sj are signed compared. The result
is loaded into SC. If the comparison is .TRUE., then SC is set
to 1. If the comparison is .FALSE., then SC is reset to O.

Notes:

Section 10.8 10-28

Scalar Register Instruction Set

COMPARE SCALAR/SCALAR UNSIGNED (le]lt)u. (b|h|w|l) Sj,sk

Purpose:
To unsigned compare a scalar and scalar and load SC

Format:
| Opcode] S | Sk |
15 6,5 3,2 ©
Operation:
IF (Sj .OPCODE-TEST. Sk) THEN
CcC=1
ELSE
c=20
ENDIF
PSW:

SC is affected (see above).

Exceptions:

Opcode:
leu.b Sj.8k 0100100100 Compare less than or equal byte
ltu.b Sj.Sk 0100101100 Compare less than byte
leu.h Sj,Sk 0100100101 Compare less than or equal halfword
ltu.h Sj,sk 0100101101 Compare less than halfword
leu.w Sj.S8k 0100100110 Compare less than or equal word
ltu.w Sj.Sk 0100101110 Compare less than word
leu.l Sj,Sk 0100100111 Compare less than or equal longword
ltu.l Sj.Sk 0100101111 Compare less than longword

Description:
The scalar registers Sk and Sj are unsigned compared. The
result is loaded into SC. If the comparison is .TRUE., then SC

is set to 1. If the comparison is .FALSE., then SC is reset
to O.

Section 10.8 . 10-29

Scalar Register Instruction Set

Notes:

1 Unsigned compares for equality are performed using
the signed compares.

Section 10.8 10-30

Scalar Register Instruction Set

COMPARE SCALAR/IMMEDIATE (lellt]eq) . (h|w|s) #N,sk

Purpose:
To signed compare a scalar and an immediate and load SC

Format:

Operation:
IF (Ak .OPCODE-TEST. Immediate) THEN

SC=1
ELSE
SC=0
ENDIF
PSW:
SC is affected -(see above).
Exceptions:
Reserved Operand (floating point only).
Opcode: .
le.h #N,Sk 000111100 Compare less than or equal halfword
lt.h #N,Sk 000111110 Compare less than halfword
eq.h #N,Sk 000110110 Compare equal halfword
le.w #N,Sk 000111101 Compare less than or equal word
l1t.w #N,Sk 000111111 Compare less than word
eq.w #N,6Sk 000110111 Compare equal word
le.s #N,Sk 000110100 Compare less than or equal single
lt.s #N,Sk 000110101 Compare less than single
Description:

The scalar register Sk and the immediate are signed compared.
The result is loaded into SC. If the comparison is .TRUE.,
then SC is set to 1. If the comparison is .FALSE., then SC is

reset to O.

Section 10.8

10-31

Scalar Register Instruction Set

Notes:

The signed compare for equality for single precision float is
NOT provided. Reserved operand detection for equality can be
achieved by performing a compare word immediate with the
immediate being a reserved operand. Then a compare word
instruction can be used.

Section 10.8 10-32

Scalar Register Instruction Set

COMPARE SCALAR/IMMEDIATE UNSIGNED

(le]lt)u. (h|w) #N.Sk

Purpose:

To unsigned compare a scalar and an immediate.

Operation:

IF (Immediate .OPCODE-TEST. Sk) THEN

ELSE

ENDIFE

PSW:

SC is affected (see above).

Exceptions:

cC=1

cC=0

Compare
Compare

Compare
Compare

unsigned less
unsigned less

unsigned less
unsigned less

than
than

than
than

or equal halfword
halfword

or equal word
word

The scalar register Sk and an immediate are unsigned compared.
.TRUE.,

loaded into SC.

Opcode:
leu.h #N,Sk 000111000
ltu.h #N,Sk 000111010
leu.w #N,Sk 000111001
ltu.w #N, Sk 000111011
Description:
The result is
then SC is set to 1.
reset to O.
Notes:

If the comparison is
If the comparison is .FALSE., then SC is

1 Compare equal unsigned is perfofmed using the com-

pare signed instruction.

Section 10.8

10-33

Scalar Register Instruction Set

CONVERT SCALAR/SCALAR cvt Sj,Sk

Purpose:
To convert the integer or floating point contents of one S
register to an integer or floating point value of different

precision.
Format:

| opcode 1831 sk

s 6.5 3.2 0
Operation:

Sk = Convert (Sj) ! according to the opcode
PSW:

SIV = Integer Overflow
OV = Exponent Overflow
RO = Reserved Operand

Exceptions:
Integer Overflow
Exponent Overflow

Opcode:
cvtw.s Sj,Sk 0100001000 Convert word to single float
cvts.w Sj,Sk 0100001001 Convert single float to word
cvtd.s Sj,Sk 0100001010 Convert double float to single float
cvts.d Sj,Sk 0100001011 Convert single float to double float
cvtw.b Sj,Sk 0100000100 Convert word to byte
cvtw.h Sj,Sk 0100000101 Convert word to halfword
cvtb.w Sj,Sk 0100000110 Convert byte to word
cvth.w Sj,Sk 0100000111 Convert halfword to word
cvts.l Sj.Sk 0100001100 Convert single float to longword
cvtd.l Sj,Sk 0100001101 Convert double float to longword
cvtl.s Sj,Sk 0100001110 Convert longword to single float
cvtl.d Sj,.Sk 0100001111 Convert longword to double float
cvtl.w Sj,Sk 0100010100 Convert longword to word
cvtw.l Sj,Sk 0100010101 Convert word to longword
Description:

The specified integer or floating point operand is converted
to specified destination data type and the result is loaded
into Sk. An overflow exception can occur for the word to byte

Section 10.8 10-34

Scalar Register Instruction Set

and word to halfword instructions. Bytes and halfwords are
sign extended to words. Conversions from float to fix use

+ truncation (rounding towards 0) as the rounding algorithm.

Notes:

Section 10.8

The other possible signed conversions are Iimple-
mented by executing two of the provided conver-
sions. Halfword to byte is performed by cv.hw and
cv.wb. Byte to halfword is performed by cv.bw and
cv.wh.

Unsigned conversions may be implemented using logi-
cal AND instructions.

Only the specified precision of the destination
operand is modified. All other bits are unchanged.
If an input operand is a floating point reserved
operand, then the destination is unchanged, and the
RO and SIV flags are both set to 1.

Truncation from float to fix follows the FORTRAN
standard. Thus, -5.9 is truncated to -5, and 5.9
is truncated to 5.

Conversion from integer to floating point types is
performed thus:

a. The fixed point number is normalized.

b. The most significant 24 bits (for single) or the
most significant 53 bits (for double) of the nor-
malized fixed point number become the fraction of
the result. The lower order bits of the normalized
fixed point number are truncated.

10-35

Scalar Register Instruction Set

LOGICAL SHIEFT SCALAR/SCALAR shf Sj,Sk

Purpose:
To logically shift a scalar.

Format:
| Opcode | Sj | sk |
15 6,5 3.2 O

Operation:
Sk = Shift Sk by Sj<7..0>

PSW:

Exceptions:

Opcode:
shf Sj,Sk 0101000101 Shift a scalar

Description:
The contents of Sk are shifted according to the contents of
Sj. When Sj is positive, Sk is shifted left. When Sj is nega-
tive, Sk is shifted right. All 64 bits of Sk participate in
the shift. Vacated positions are zero filled. Only S$j<7..0>
are used to control the shift. Sj<63..8> are ignored.

Notes:

Arithmetic shifts are implemented using multiplies and
divides.

Section 10.8 10-36

Scalar Register Instruction Set

TRAILING ZERO COUNT tzc Sj.Sk
Purpose:

To determine the number of trailing zeros in a scalar regis-

ter.
Format:

| Opcode | 85 | Sk |

15 6.5 3,2 ©

Operation:
Sk = Trailing-zero-count (Sj)

Exceptions:

Opcode:
tzc Sj,Sk 0100010111 Count of trailing zeroes in Sj

Description:

The number of trailing zeros in Sj counting from bit O through
bit 63 are loaded into bits<6..0> of Sk. The tzc instruction
searches for the first binary 1 from right to left, the same
way bits are numbered. If S8j 4is all O, the number 64 is
loaded into Sk<63..0>. Otherwise, if bit n is set, then the
binary value of n is loaded into Sk<63..0>.

Section 10.8 10-37

Scalar Register Instruction Set

POPULATION COUNT SCALAR plc.t Sj.sk

Purpose:
To determine the number of 1's in a scalar register.

Format:
| Opcode | 8j | Sk |
15 6,5 3,2 O
Operation:
Sk =0
DO 10 a = 0, 63
IF (Sj<a> .EQ.1) THEN
Sk =Sk + 1
ENDIF
10 CONTINUE
PSW:
Exceptions:
Opcode:
plc.t Sj.Sk 0100010110 Count the number of 1's in Sj
Description:
The number of 1's in Sj are loaded into bits<6..0> in Sk.
All other bits of Sk are reset to O.
Notes:

Section 10.8 10-38

Scalar Register Instruction Set

MOVE SCALAR/ADDRESS mov Sj,Ak

Purpose:
To move a scalar register into an address register.

Format:

15 6,5 3.2 O

Operation:
Ak = Sj<31..0>

PSW:
Exceptions:
Opcode: v v
mov Sj,Ak 0101000011 Move 32 bits of Sj into Ak.
Description:
Move the least significant 32 bits of Sj into Ak. The most
significant 32 bits of Sj are ignored.
Notes:

Section 10.8 10-39

Scalar Register Instruction Set

MOVE ADDRESS/SCALAR mov Aj, Sk

Purpose:
To move an address register into a scalar register.

Format:

Operation:

Sk<31..0> = Aj

Sk<63..32> = Sk<63...62> ! unchanged
PSW:

Exceptions:

Opcode:
mov Aj,Sk 0101000111 Move an address to a scalar

Description:
The Aj address register is moved into the least significant 32
bits of Sk. The most significant 32 bits of Sk are unchanged.

Notes:

Section 10.8) 10-40

Scalar Register Instruction Set

MOVE SCALAR/SCALAR mov. (w|l|s|d) Sj,.Sk

Purpose:
To move one scalar register to another

Format:

| Opcode | 83 | Sk |

15 6.5 3,2 O
Operation:

Sk = §j ! longword

Sk<31..0> = Sj<31..0> ! word
PSW:

Exceptions:

Opcode:
mov.l Sj,Sk 0101000110 Move scalar register longword
mov.w Sj,Sk 0101000100 Move scalar register word
mov.d Sj,Sk 0101000110 Move scalar register single float
mov.s Sj.,Sk 0101000100 Move scalar register double float
Description:
The contents of the specified portion of scalar register Sj
are moved to Sk. Sj and any unreferenced portion of Sk remain
unchanged.
Notes:

1 The .s and .w forms of this instruction are
equivalent, as are the .d and .1 forms. The .s and
.d forms are added for convenience.

Section 10.8 10-41

Program Control Instruction Set
CHAPTER 11

11 Program Control Instruction Set

The instructions defined in this chapter alter the program counter (PC).
Alterations of the program counter may occur as a result of a branch per-
formed after a comparison, an unconditional jump, a subroutine call or
return, or an. operating system call or return. A return from interrupt
processing is also defined.

11.1 Branches/Jumps

These instructions include Branch on PSW Bit, Jump, and Breakpoint. The
branch instructions provide a convenient way to branch relative to the
present value of the PC. All branch instructions are 16-bits in length.
Jump instructions load the program counter with an effective address. The
effective address is developed as an operand address. Only Breakpoint
affects the flags in the PSW, as follows:

FRL, C, AIV, ADz, SC, SIV, SDZ, OV, UN, EDZ, RO = O

When the PC increments to reference the next sequential instruction or a
new value is loaded into the PC, the PC is altered in the following way for
branches and jumps. If the current ring is 4, bits<30..1> are loaded. 1If
the current ring is not ring 4, bits<28..1> are loaded. 1In all cases, the
branch or jump is constrained to be within the current ring.

11.2 Subroutine Call/Save/Return

This section describes the facilities provided for subroutine
call/save/return. The general strategy is to provide the following:

1 An efficient mechanism in both time and space.

2 Flexibility in supporting precompiled argument packets or argu-
ments pushed onto a stack.

3 Passing arguments by reference (a byte pointer) or by value.

4 Support of the notion of a common run-time environment and link-
ing subroutines written in one or more languages. '

With these objectives in mind, the following facilities and/or methodolo-
gies are supplied.

1l An architecturally defined stack pointer, argument pointer, and
frame pointer within the address register space.

2 Three call instructions: call, calls, and <callqg. The calls
instruction pushes minimal machine state. The call instruction
pushes all the scalar machine state. FRL in the saved (pushed)
PSW denotes the amount of machine state pushed. A third, callq,

Section 11.2 11-1

Program Control Instruction Set

is used for local subroutines that do not require the definition
of a new stack frame.

3 A set of instructions which push and pop registers from the
stack. Also an instruction which pushes effective addresses onto
the stack.

The following instructions could be generated for the two most likely sub-
routine invocation sequences: precompiled argument packets, and arguments
pushed on the stack.

Precompiled Arguments

1 Ldea (the effective address) into AP the address of the packet.
2 Call the subroutine.

3 Rtn instruction executed in called subroutine's space.

4 Load the former AP from the stack (the effective address) .

Arguments Pushed onto the Stack

Push arguments onto the stack.

Move SP to AP (address of the argument packet in the stack) .
Call the subroutine.

Rtn instruction executed in the callee's space.

Clear off the pushed arguments by an add.w,#(n|N),Ak instruc-
tion.

Load the former AP from the stack.

N wn -

[+)]

11.3 Stagk Structure/Return Blocks

The structure of the stack for subroutine entry and exits is described
below {(where LSI means Language Specific Information) :

There are 4 types of return blocks:

Short
Long
Extended
Context

* % % *

A short return block is formed as a result of executing a calls instruc-
tion. The return address, psw, A7, and A6 are saved. (FRL<1...0>=11).

A long return block is formed as a result of executing a call instruction.
The return address, psw, A7, A6, AS through Al, and S7 through S1 are
saved. AO and SO are not saved. (FRL<1l...0>=10).

An extended return block is formed as a result of: system call (sysc),

Section 11.3 PR S 11-2

Program Control Instruction Set

trap, or a breakpoint. The return block contains the return address, psw,
all the A registers, and all the S registers. The stack pointer saved (A0)
references the value of AO PRICR to the saving of the extended return
block. (ERL<1l...0>=01).

A context block may be formed as a result of a system exception. The con-
text block contains an extended return block plus internal machine state.
This internal state will change for each implementation. A context block is
pushed on the ring O process stack. (FRL<1l...0>=00).

Returning from each of these return blocks is implemented as follows: the
rtn instruction 1is used for the short, long and extended return blocks.
The rtnc instruction is used to return from system exceptions that save a
context block. The structure of the stack is shown in Figure 11-1.

11.4 Quick Calls and Return

Instructions are provided for subroutine entry that only save and restore
the program counter. The PSW and frame pointer are unaltered. The callg
instruction pushes the address of the next instruction and branches to the
subroutine. The rtnqg pops the program counter value on top of the stack.

11.5 System Call and Return

These instructions are used to perform system calls and system returns, and
perform ring crossings in a protected manner. The System Call instruction
is used to perform the call, and the flags in the PSW are cleared to all
zero. To perform a system return, the standard return instruction (rtn) is
used, and the flags are loaded from the return block.

Section 11.5 11-3

Program Control Instruction Set

Figure 11-1: Stack Structure for

Caller's
Automatic
Storage

- - - —— - -

- - - - - - - — - — -

Callee FEP-> |

After Call |mm=mmmm e
] Callee's LSI 2
fmmmmm e -
| Callee's
| Automatic

SP-> | Storage

Section 11.5

Subroutine Entry

| Language Specific Information

I Decreasing
] Addresses
\ /

I \/

| (Arg. list may not
| be located in stack)

| Language Specific Information

I<--1

| I

| |

| |---Long EFrames Only
| |

I<--1

|<-- Extended Frame Only
|<--1

| |

| |

| |---Long EFrames Only
| ! ‘

f<--1

I (32) I

| I

I (32) I

| | -Short Erame
| (32) |

I I

I (32)]

Language Specific Information

I (N*32) I
!
| Direction of \ /
Stack Growth \/

11-4

Program Control Instruction Set

BRANCH ON PSW BIT br |nop

Purpose:

To conditionally or unconditionally perform a short PC relative
branch.

Format:
| Opcode | Displacement | /
15 8,7 0
Operation:
IF (test .EQ. .TRUE.) THEN
PC = PC + sign-extended-displacement
ELSE
PC = PC+2
END IF
PSW: .
unchanged
Exceptions:
Opcode:
nop 01110000 No Operation
br 01110001 Branch Always
bri.f 01110010 Branch on ION false
bri.t 01110011 Branch on ION true
bra.f 01110100 Branch on address carry false
bra.t 01110101 Branch on address carry true
brs.f 01110110 Branch on scalar carry false
brs.t 01110111 Branch on scalar carry true
Description:

The specified condition is tested. If the tested condition is
asserted, the 8-bit displacement 1is sign extended to 31 bits.
These 31 bits are then added to bits<3l..1> of the program counter.

The program counter value added to contains the address of the
branch instruction. If the tested condition is not asserted, then
the next sequential instruction is executed.

Section 11.5 T e 11-5

Program Control Instruction Set

Notes:

1 These instructions are used for short PC relative
branches. All branches are constrained to stay within
the current ring (indicated by bits<31..29> of the PC).

2 Additional instructions exist to jump to any arbitrary
instruction. See the instruction.

3 The range of the branch instruction is +127 to -128
halfwords, or +254 to -256 bytes.

4 The displacement is unused for the instruction.

Section 11.5

11-6

Program Control Instruction Set

JUMP jmp |exit

Purpose:
To conditionally/unconditionally jump to an address.

Format:
| Opcode |@|L| Aj | Ak | | Displacement |
15 8,7,6,5 3.2 o (31.15) 0
Operation:
IF (OPCODE-COND .EQ. .TRUE.) THEN
PC = Effective Address
ELSE
PC = PC + Instruction Length
END IF
PSW:
Unchanged
Exceptions:
Opcode:
exit 000000000 Error Exit Instruction
jmp <effa> 000000010 Jump Always
jmpi.f <effa> 000000100 Jump on ION false
jmpi.t <effa> 000000110 Jump on ION true
jmpa.f <effa> 000001000 Jump on address carry false
jmpa.t <effa> 000001010 Jump on address carry true
jmps.f <effa> 000001100 Jump on scalar carry false
jmps.t <effa> 000001110 Jump on scalar carry true
Description:
The specified condition is tested. If the condition 1is asserted,
the Program Counter 1is loaded with the effective address. If the
condition is not asserted, the Program Counter is updated to refer-
ence the next sequential instruction.
For the error exit instruction, a system call to ring O, byte
address C (hex) is performed. A class code of O is loaded into
byte 2 of A5. Zero is loaded into byte 3 of AS.
Notes:

1 All jumps (except exit) are constrained to be within
the current ring. That is, if the current ring is 4, the
most significant bit of the effective address is
jgnored. If the current ring is 3,2,1, or O the most
significant 3 bits of the effective address are ignored.

Section 11.5 11-7

Program Control Instruction Set

Section 11.5

2 The error exit instruction is an instruction whose

opcode is all 0. It detects a common programming error
(transfer to a page that was initialized to all O by the
0s). .

For the error exit instruction, the L (length) bit is
interpreted. This means that the error exit can have a
16- or 32-bit displacement. The @ bit (bit 7) is not
interpreted; thus, indirection can never occur for the
error exit instruction.

11-8

Program Control Instruction Set

BREAKPOINT bkpt

Purpose:
To jump to a debugger via a breakpoint call.

Format:
| Opcode | Ak]
15 3,2 o]

Operation:
An extended call is performed to the address contained in byte
address 50 (hex) of the current ring.

PSW:
FRL= 0O
C,AlIV,ADZ,SC,SIV,SDZ,0V,UN,EDZ,RO = O

Exceptions:

Opcode:
bkpt 0111110101010 Breakpoint

Description: .
A subroutine call is executed. The callee's address is the current
ring, byte address 50 (hex). An extended return block is pushed on
the user stack. Thus all the A and S registers are pushed onto
the current stack. The PC saved in the return block references the
instruction immediately following the bkpt instruction.

Notes:

1 The length of the bkpt instruction is 1 halfword. Thus a
bkpt instruction can be substituted for any instruction
in the CONVEX architecture.

2 The Ak field is not used.

Section 11.5 11-9

Program Control Instruction Set

CALL A SUBROUTINE

(call|calls) <effa>

Purpose:

To call a subroutine.

Format:
| Opcode [@|L}j Aj | Ak | | Displacement |
15 8,7,6.5 3,2 (o] (31.15) o)
Operation:
IF (CALLS-OPCODE) THEN
PSW-FRL-BITS = 11 ! short frame
ELSE
PSW-FRL-BITS = 10 ! long frame
END IF
IF (CALL-OPCODE) THEN ! long frame
PUSH S1..87
PUSH Al..AS t{SP is not updated
ENDIF
PUSH A6 ! short and long frame
PUSH A7
PUSH PSW
PUSH next instruction address
PSW(FRL,C,SC,AIV,ADZ,UN,OV,EDZ,RO,SIV,SDZ)=O
IF (CALLS-OPCODE) THEN
A0 = A0 -16 ! short frame
ELSE
A0 = A0 -92 ! long frame
END IF
A7 = AO
PC = Effective Address
PSW:
PSW<ERL>=00
PSW<C,SC,AIV,ADZ,UN,OV,FDZ,RO0, SIV, SDZ>=0
Exceptions:
Opcode:
call <effa> 001000000 Call a subroutine, make a long frame
calls <effa> 001000010 Call a subroutine, make a short frame

Section 11.5

11-10

Program Control Instruction Set

Description:

Notes:

A new stack frame is created. A short frame 1is created for the
calls instruction. A long frame is created for the call instruc-
tion. SO is never saved. The FRL bits in the PSW saved indicate
the frame size created. AO and A7 are updated to reference the new
top of stack. The effective address of the call instruction then
becomes the new value of the program counter. The trap enable bits
of the PSW are propagated from the caller to the callee (i.e., left
unchanged) . Thus, if the caller had floating point overflow traps
enabled, the callee also has floating point trap enabled. The
status bits of the callee's PSW are reset to O.

1 A local area for variables is created by executing a
sub.w #N,SP on entry to the called routine.

2 The previous values of the frame and argument pointers
are saved on the stack.

3 Arguments are referenced with positive displacement from
an argument pointer if defined by software convention.

4 SO is propagated but not saved. Typically, SO is used
to hold return values of functions (by software conven-
tion).

5 AO, the stack pointer, is not saved. A0, however, is
updated to reference the new top of stack.

6 All A and S registers (except AO and A7 -- these refer-
ence the new top of stack) are propagated through the
call.

7 The Ak field is unused.

8 The EFRL bits in the PSW register are always reset to O.
To determine the type of frame created, the FRL bits of
the PSW in the saved frame must be examined.

Section 11.5 11-11

Program Control Instruction Set

RETURN EROM SUBROUTINE rtn

Purpose:

To return from a subroutine.

Format:
| Opcode | Ak]
15 3.2 o

Operation:
SP = FP ! remove local save area
Unwind stack to previous frame (restore stack built by
call, calls, sysc, or exception condition handler). 1If
this is an outward return, then the SP after the pop is
stored into bytes <72..75> of page O of the ring containing the rtn
instruction.

PSW:

Load from current stack frame

Exceptions:

Opcode:

Ring Violation: Inward Return
Ring Violation: Invalid Frame Length

rtn 0111110010010 Return from subroutine call

Description:

An exit from a subroutine is performed. FP is moved to SP to rees-
tablish the top of the stack. It is assumed that the subroutine
was entered using a call, calls instruction, sysc (system call), or
an exception condition that pushed an extended return block.

There are 4 types of return blocks: short, long, extended, and con-
text. Short and 1long, are created as a result of a subroutine
call: extended and context are created as a result of a system
call, fault, or trap. When FRL=00 (indicating a context block), an
rtnc (return from context) must be executed. When a ring crossing
is encountered (as indicated by an extended return block and a
saved PC whose ring field is not the current ring), then the fol-

lowing occurs. First, a check for cutward ring crossing is made.
If the ring crossing is inward, a system exception condition
occurs. If outward, the extended return block is popped. The

stack pointer after the pop is stored in bytes <72..75> of page O
of the ring containing the rtn instruction.

Section 11.5 11-12

Program Control Instruction Set

Notes:

1 The EFRL field from the PSW in the stack indicates the

type of return block saved: 1ll=short, 10=long,
Ol=extended, and OO=context.

2 Ak is not used in this instruction.
3 The rtnc instruction must be used to return when FRL=00,
indicating a context block.

Section 11.5 11-13

Program Control Instruction Set

PUSH PROGRAM COUNTER callg <effa>

Purpose:
To push the PC onto the stack and branch.

Format:
| Opcode |@|L| Aj | Ak | | Displacement |
15 8,7.6.5 3.2 o} (31.15) 0
Operation:
TEMP = PC-NEXT-INSTRUCTION
PC = Effective Address
PUSH TEMP
PSW:

Exceptions:

Opcode:
callg <effa> 001000100 Push the program counter and jump
Description:
The address of the instruction immediately following the callg
instruction 1is pushed onto the stack. The PC is then loaded with
the calculated effective address.
Notes:

This instruction is used as a fast subroutine call when the current
address context need not be altered. The rtng instruction is used
to return from the callq instruction.

Section 11.5 11-14

Program Control Instruction Set

POP PC and JUMP rtng

Purpose:
To pop the top element of the stack and load the PC.

Format:
| Opcode | Ak |
15 3,2 o
Operation:
Temp = c (AO)
A0 = A0 + 4
IF (PC<31> = 1) THEN
PC<30..0> = TEMP <30..0>
ELSE
PC<28..0> = TEMP <28..0>
ENDIF
PSW:

Exceptions:

Opcode:
rtnq 0111110010000 Pop the program counter and jump

Description:)
The top of the stack contains a previously pushed PC value. The PC
is popped into the present PC, the stack is adjusted, and execution
continues at the instruction referenced by the popped PC.

Notes:

The Ak field is not used.
The current ring of execution does not change.

Section 11.5 11-15

Program

Control Instruction Set

SYSTEM CALL sysc #r, #g

Purpose:

Format:

To perform a system call to ring #r.

15 765430 31 29 28 16 15 0

Operation:

PSW:

An inward or current ring crossing with protection checks is per-
formed. Temp = PCt+instruction length, where PC is the address of
the sysc instruction.

If the call is to the current ring, then the current SP is used.
If the call is to an inner ring (#r). then the stack for ring #r is
used. The SP contained in page O of the inner ring is used to
define the base of the inner ring stack.

FRL<1..0> = 01 ! indicates an extended frame

Execute a call to ring #r, GATE_ARRAY (#g).
Get new stack pointer (as described above).
SP = SP - 104 ! Extended return block

EP = SP

PC<31..29> = §#r

PC<28..1> = GATE_ARRAY (#g)

Cleared to all zero

Exceptions:

Opcode:

Ring Violation; Outward call
Ring Violation:; Invalid Gate

sysc #r.#g 000100001 Perform a system call

Description:

Section

The #g field is used to reference an entry in a gate array. The #r
field 1is the number. of the called ring. The base of the gate array
is referenced by bytes <76..79> of page zero of the ring named by
#r.

After the new ring stack is established, an extended return block
is pushed. All of the A and S (including SO and AQ) registers are
saved, as well as the PSW and the address of the instruction

11.5 11-16

Program Control Instruction Set

following this instruction (which is the system call instruction).

The #g field is used to obtain the address of the called instruc-
tion for both intra (same ring) or inward ring crossing.

Notes:

o

The Ak field is not used.

2 See the protection chapter for a more detailed explana-
tion of stack switching and the structure of the gate
array.

3 The stack pointer saved in the extended return block
references the top of stack of the caller's ring.

4 If the ring to be called is O, and the gate entry is
less than 32,768, then the immediate length can be
specified as 16 bits.

S5 If L in the instruction is O, the 16-bits immediately

following the opcode are sign extended to 32 bits.

These 32 bits are interpreted as the #r, #g fields.

Section 11.5 11-17

Privileged Control/Status Instruction Set
CHAPTER 12

12 Privileged Contrel/Status Instruction Set

This chapter contains the definition of the privileged instruction set. A
privileged instruction is 1like any other CONVEX instruction with one
difference: the current ring of execution must be O. This means that
bits<31l..29> of the program counter must be all O. Privileged instructions
are used by the operating system kernel to control process multiplexing,
virtual address space management, and system clock stores.

Other instructions are also included in this chapter. These instructions
generally are used by parts of the extended operating system contained in a
ring other than O.

An attempt to execute a privileged instruction in a ring other than O
results in a system exception and the generation of a system call through
byte address OC (hex) of page O of ring 0.

12.1 Clocks

A series of clocks are available to the operating system and user. These
clocks are used for:

1 Scheduling

2 Maintaining a time chronometer

3 Maintaining an alarm

4 Measuring the time it takes for a program to execute.

The clocks associated with items 2 and 3 are maintained external to the job
processor. By addressing main memory locations appropriately, the time of
day can be determined.

Supporting items 1 and 4 are a 32-bit interval timer register and 2 associ-
ated support registers. Manipulation of all three of these registers is
privileged.

The 3 32-bit registers are the:
Next Internal Timer Counter (NITC)

Interval Timer Counter (ITC)
Interval Timer Status Register (ITSR)

* % %

The format of the NITC (Next Interval Timer Count) is:

Section 12.1 12-1

Privileged Control/Status Instruction Set

When ITC overflows, NITC is loaded into ITC to resume counting.

The format of the ITC (Interval Timer Counter) is:

A m en n e - - - - - - - - —— -

The ITC is a 32-bit register that is incremented every microsecond in bit
8. It is loaded from NITC when ITC becomes all 0. At that time an inter-
rupt may also be generated (as controlled by ITSR) .

The format of the ITSR in read mode is:

T e - -t v = - - = - - - - - - - - - -

31 30 29 28 27 0

where the ITSR bits have the following meanings:

* Bit 28 - OVF. When ITC overflows and if FULL is already set,
then OVE is set to one. This condition occurs when 2 or more
interval timer overflows occur without an interrupt being pro-
cessed. OVE is cleared to O when a value is loaded into ITSR.

* Bit 29 - EULL. When ITC overflows, FULL is set to 1. If INE
is also set to 1, then an interval timer interrupt occurs (vec-
tors through byte address 10 (hex) of ring 0). FULL is reset
to O when a value is loaded into ITSR.

* Bit 30 - INE. When INE is set to 1 and bit 29 (Full) is set to
1., an interval timer interrupt (vectors through byte address 10
(hex) of ring O) occurs. When INE is O, no interrupt occurs.

* Bit 31 - ON. When ON is reset to O, ITC does not increment.
When ON is set to 1, ITC increments every microsecond.

For write mode, the ITSR will operate as follows:

Section 12.1 12-2

Privileged Control/Status Instruction Set

The FULL and OVEL bits act as a pseudo two-bit counter, incremented by an
overflow of the timer counter, and decremented by a write to the ITSR with
DEC (bit 61) set to a one. OVFE and FULL count as follows:

Before WRITE After WRITE (DEC =1)
EULL QVE EULL QVE

o] (o} 0 0

1 o 0 o

1 1 1 0

Note that two writes with DEC=1 will clear both FULL and OVF. A write to
ITSR with DEC=0 will not affect the FULL and OVF bits.

The interval timer interrupt handler should execute a store into the ITSR
to clear FULL. An interval timer interrupt is masked out by either INE
being reset to O in the ITSR or by the ION flag being set to 1. When all
three interval timer registers are concurrently moved to/from a scalar
register, the format of Sk is:

- - . s . - > v = - - = e s e 4e o = o= e = e o . - = .

e o e " . - - = > e = = = e e = e e e - ——

12.2 Instruction Set

The instructions defined in this chapter are:
dsi
eni
ldsdr
ldkdr
patu
pate
rtnc
pich
plch
Load ITR
Store ITR
Load ITSR
Load CPUID
xmti
mski

Section 12.2 12-3

Privileged Control/Status Instruction Set
halt

mov Sk,VV
tstvv

Section 12.2

12-4

Privileged Control/Status Instruction Set

LOAD PROCESS SDRs

ldsdr Ak

Purpose:
To load values into the process SDR's.

Format:
| Opccde | Ak |
15 3,2 0

Operation:
SDR(1,2....,7) = Effective Address(Ak) ! memory data
resident and word aligned.

PSW:

Exceptions:
Ring Violation: Privileged Instruction

Opcode:
ldsdr Ak 0111110000000 Load process SDR's

‘Description:
Ak contains the effective address of a 7 entry table. Each
a word. Entry 1 contains a value to be stored into SDR1.
at (Ak)+4, contains a value to be stored into SDR2, and so
completing the store of the 7 table entries into SDR(1:7).
logical cache, and instruction cache are purged of any
associated with segments 1-7.

Notes:

1 The data located in main memory to be 1loaded into

must be

entry is
Entry 2,
on. Upon
the ATU,
entries

the

SDR's must be resident to ensure that an address trans-

lation fault does not occur and must be aligned on 32-
bit words. If the data are not resident or aligned, a
machine exception occurs.

2 The data located in main memory to be 1loaded into the
SDR's must be word aligned on a 32-bit boundary. If

they are not, a machine exception occurs.

Section 12.2

Privileged Control/Status Instruction Set

LOAD KERNEL SDRs ldkdr Ak

Purpose:

To load values in all 8 SDR's.

Format:
| Opcode] Ak]
15 3.2 o

Operation:
SDR(0.1,...,7) = Effective Address (Ak)

PSW:

Exceptions:
Ring Violation: Privileged Instruction

Opcode:
1dkdr Ak 0111110000001 Load all 8 SDR's

Description:
Ak contains the effective address of an 8 entry table. Each entry
is a word. Entry O is stored in SDRO. Entry 1 is stored into SDR1
and so on. (Ak) references the table entry O. {Ak) +4 references
table entry 1. Upon completing the store of all 8 entries into
SDR(0.1,...,7)., the ATU, logical, and instruction caches are
purged. If, prior to ATU purging, logical addressing equaled physi-
cal addressing, then the ATU is enabled. Thus, all subsequent
addresses are virtual. '

Notes:

1 The data located in main memory which are to be loaded
into the SDR's must be resident to ensure that no
address translation fault occurs. If the data are not
resident, a machine exception occurs.

Section 12.2 . 12-6

Privileged Control/Status Instruction Set

2 The data located in main memory which are to

be loaded

into the SDR's must be word aligned on a 32-bit boun-

dary, or a machine exception results.
3 The addressing environment must be physical
must be turned off). If the ATU is turned on,

exception occurs.

4 Memory data must be resident and word aligned.

Section 12.2

(the ATU
a machine

12-7

Privileged Control/Status Instruction Set

PURGE ATU patu

Purpose:
Purge the entire ATU.

Format:
| Opcode | Ak]
15 3.2 o
Operation:
ATU_valid_bits = 0
Purge L_cache
Purge I_cache
PSW:
Exceptions:
Ring Violation:; Privileged Instruction
Opcode: ‘
patu 0111110000100 Purge the entire ATU
Description:
All the entries in the ATU are purged, which means that any virtual
addresses that were encached are invalidated. The logical and
instruction caches are also purged.
Notes:

1 The Ak field of the instruction is unused.

Section 12.2 12-8

Privileged Control/Status Instruction Set

PURGE ATU ENTRY ; pate Ak

Purpose:
To purge an ATU entry.

Format:

Operation:
ATU_valid_bit(Ak) = O
Purge L_cache
Purge I_cache

PSW:

Exceptions:
Ring Violation: Privileged Instruction; class=8, qualifier=0

Opcode:
pate Ak 0111110000101 Purge ATU entry

Description:
Ak contains a virtual address. If there is an ATU entry associ-
ated with the address in Ak, that ATU entry is purged (i.e., marked
invalid). All other ATU entires are left unchanged.

Notes:

1 This instruction is typically used when a pageframe is
added to the working set of a process after an address
translation fault. The page associated with the fault is
found in physical memory but 1is not part of the
process's working set. Thus no I/0 request is necessary
to resolve the fault.

Section 12.2 i 12-9

Privileged Control/Status Instruction Set

RETURN EROM CONTEXT BLOCK rtnc

Purpose:
To return from a context block.

e > - . - - — - —— - - ——

Operation:
Pop context block using AO.
Processor State = Context Block (ERL=00) .
A0 = A0 + context block size
Ring O, bytes <36..39> = A0
AQ0 = stack pointer from context block.

PSwW:

Exceptions: :
Ring Violation:; Privileged Instruction

Opcode:
rtnc 0111110010101 Return from a context block

Description:
The context block on the ring O stack is popped: then the new value
of the stack pointer after the pop. AO, is stored into the context
stack pointer in bytes <36..39> of ring O. Finally, +the stack
pointer value contained within the context block just popped is
loaded into AO.

Notes:

1 The entire processor state was stored in the context
block at the time that the condition that initiated the
exception occurred. The cause of the exception was
loaded into A5 after the context block was stored. This
permits the operating system to recover from the excep-
tion condition, if possible.

2 The Ak field of the instruction is unused.

Section 12.2 12-10

Privileged Control/Status Instruction Set

3 The processor context block is the entire hardware

Section 12.2

machine state at the time of the system exception condi-
tion. After the 0S resolves the exception (if it can),
the machine state (the context block) is restored. Then
the faulted instruction can resume execution.

The paradigm for system exception conditions is identi-
cal to kernel calls, and differs only in the size of the
saved return block, and the stack used.

The processor does not check the FRL bits in the PSW.
They are assumed to be 00.

12-11

Privileged Control/Status Instruction Set

ENABLE/DISABLE INTERRUPTS (eni|dsi)

Purpose:

To enable or disable interrupts.

Format:

| opeode 1 k1

s 3.2 0
Operation:

ion = 1 ! eni ion = 0 ! dsi
PSW:

Exceptions:

Ring Violation: Privileged Instruction

Opcode:
eni 0111110101000 Enable interrupts, set ion to 1
dsi 0111110101001 Disable interrupts,reset ion to O
Description:

Notes:

The ion flag is used to enable or disable interrupts. When ion is
a 1, interrupts are enabled. When ion is a O, interrupts are dis-
abled.

The next sequential instruction is always executed "~ even though
interrupts may be pending when ion is set to 1.

The ion flag enables or disables the interval timer, power fail,
and the CPU virtual channel interrupts.

1 Instructions exist to test the value of the ion.
2 One additional instruction is always executed before any
interrupts are taken.

Section 12.2 12-12

Privileged Control/Status Instruction Set

PURGE INSTRUCTION CACHE

pich

Purpose:

Purge the entire ICACHE.

oaded

Format:
| Opcode | Ak |
15 3,2 o
Operation:
ICACHE _valid_bits = O
PSW:
Exceptions:
Opcode:
pich 0111110000110 Purge the instruction cache
Description:
All the entries in the instruction cache are purged. After the exe-
cution of the pich instruction, the instruction cache is rel
from main memory.
Notes:

Section 12.2

1 The Ak field of the instruction 1is unused. The pich

instruction - does not affect the results produced by the
currently executing program, only its performance. The
pich instruction 1is typically used by a language
debugger to PURGE the Instruction Cache after a modifi-
cation of instruction space is performed.

2 This is NOT a privileged instruction.

12-13

Privileged Control/Status Instruction Set

PURGE LOGICAL CACHE plch
Purpose:
To purge the logical cache.
Format:
| Opcode | Ak]
15 3,2 o
Operation:
LCACHE _valid_bits = O
PSW:
Exceptions:
Opcode:
plch 0111110000111 Purge the logical cache
Description:
All the entries in the logical cache are purged. After the execu-
tion of the plch instruction, the logical cache must be reloaded
from main memory.
Notes:

1 This plch instruction is used by a process that is con-
currently performing I/0 and executing another. task
(multi-tasking within a process). The typical use of
plch occurs when the pended task blocked or on I/0 is
completed and is subsequently dispatched and becomes
running. As part of the dispatching mechanism, the log-
ical cache must be purged. When process multiplexing
occurs (by reloading the process SDR's), the logical
cache is automatically purge.

The plch instruction prevents previous data (stale data)
from the pended task from being re-referenced when the
pended task makes the transition to running. This
instruction is. only necessary for multiple tasks within
the same process.

This instruction is NOT privileged, and Ak is a don't
care.

Section 12.2 12-14

Privileged Control/Status Instruction Set

MOVE SCALAR/ITR mov Sk, ITR

Purpose:
To move Sk to the interval timer registers (nitc,itsr,itc)

Format:

Operation:
nitc = Sk<59..40>
itsr Sk<63..60>
itc = Sk<27..8>

PSW:

Exceptions:
Ring Violation; Privileged Instruction

Opcode:
mov Sk, ITR 0111110001101 Load NITC, ITC, ITSR from Sk

Description:

The contents of Sk are used to load the next iteration count regis-
ter, the iteration counter, and the iteration status register of
Sk.

Notes:
1 For a description of the interval timer and its associ-
ated registers, please see the introduction to Chapter
12 in the CONVEX Architecture Handbook.

Section 12.2 12-15

Privileged Control/Status Instruction Set

MOVE ITR/SCALAR mov ITR, Sk

Purpose:
To move the interval timer registers (itc,nitc,itsr) to Sk

Format:

Operation:
Sk<59..40> = nitc
Sk<63..60> = itsr
Sk<27..8> = itc

PSW:

Exceptions:
Ring Violation: Privileged Instruction: class=8, qualifier=0

Opcode:
mov ITR, Sk 0111110001100 Move the itc,itsr,nitc into Sk

Description:
The current value of the iteration counter, next iteration counter,
and the interval timer status register are loaded into Sk.

Notes:
See the description of the interval timer and its associated regis-
ters at the beginning of this chapter.

Section 12.2 12-16

Privileged Control/Status Instruction Set

MOVE SCALAR/ITSR v mov Sk, ITSR

Purpose:
To Sk<63..0> to the ITSR register

Format:
| Opcode sk |
s 3.2 0
Operation:
ITSR = Sk<63..60>
PSW:

Exceptions:
Ring Violation:; Privileged Instruction; class=8, qualifier=0

Opcode:
mov Sk,itsr 0111110001111 Load ITSR with a scalar

Description:
The current value of itsr is loaded from the specified Sk.

thes:

See the description of the interval timer and its assocliated regis-
ters at the beginning of this chapter.

Section 12.2 12-17

Privileged Control/Status Instruction Set

TRANSMIT INTERRUPT xmti Sk

Purpose:
To interrupt a channel

-t - = - - - - - ——— - =

Operation:
Assert the channel interrupt line of virtual channel c (S8k<7..0>)

PSW:

Exceptions:
Ring Violation; Privileged Instruction

vOpcode:
xmti Sk 0111110101101 Transmit Interrupt

Description:
An interrupt to the specified virtual channel 4is asserted. The
least significant 8 bits of Sk (8k<7..0>) indicate which of the 256
possible virtual channels is interrupted.

Notes:

1 Channels O, 1,...,7 are associated with the CPU. These
CPU channels are referred to as CPU virtual channels.
Interrupts to these channels are maskable: thus, a CPU
can interrupt itself by referencing virtual channels
(0.1....,7). Please see the mski instruction.

2 Sk bits <63..8> are not used.

Section 12.2 12-18

Privileged Control/Status Instruction Set

MASK INTERRUPT mski Sk

Purpose:

Mask the virtual channels

Format:

| opeode I sk |

s 3.2 0
Operation:

Mask out, individually, the virtual channels using Sk<7..0>
PSW:

Exceptions:

Opcode:

Ring Violation:; Privileged Instruction

mski Sk : 0111110101100 Mask Out Interrupt

Description:

Notes:

Section 12.2

The least significant 8 bits of Sk are used as a mask. Bit O masks
out virtual channel O, bit 1 masks out virtual channel 1, and so
on. A O inhibits the interrupt from a channel. A 1 enables the
interrupt from the channel. Each channel can be individually
masked out independently from the others.

If concurrent interrupts are pending on multiple enabled virtual

channels, then the interrupts are responded to in the following
order:

O -- highest priority
7 -- lowest priority

1 The operating system must explicitly perform mask outs
upon interrupt service. This may require the saving of
any previous mask values.

W 12-19

Privileged Control/Status Instruction Set

HALT halt #N,6Ak

Purpose: :
To halt the central processing unit.

Format:
| Opcode (L} 000 | Ak 1 N |
15, 6,5 3,2 0O 31)16 0
Operation:
assert an I/0 interrupt request
Ak = immediate ! Ak is loaded to indicate the halt reason
PSwW:
. Exceptions:
Ring Violation; Privileged Instruction T
Opcode:
halt #N, Ak 000100000 Halt the central processing unit
Description:
The immediate field is loaded into Ak, and the central processing
unit is halted. Further action is machine implementation depen-
dent.
Notes:

This instruction is typically used for diagnostic and debugging
purposes.

Section 12.2 i 12-20

Privileged Control/Status Instruction Set

EXECUTE

DIAGNOSTIC MICROCODE diag Ak

Purpose:

To execute a desired sequence of non-standard microcode

Format:

| opeode | M |

s 5.2 o
Operation:

Execute microcode sequence pointed to by the contents of Ak
PSW:

Exceptions:

Undefined Opcode ! Ak does not contain valid operation code
Ring Violation ! Privileged Instruction; class=8, qualifier=0
Opcode:
diag Ak 0111110111000 Execute non-standard microcode sequence
Description:
This instruction invokes one of a set of privileged instructions.
Ak contains an opcode used by the microcode to jump to a desired
sequence of microcode. Thus, while only one instruction opcode is
used, multiple non-standard operations are accessible using this
instruction. For a list of these operations, see below. An ille-
gal opcode trap occurs if the contents of Ak are not supported by
this instruction.
Ak contents Operation
1 enable lcache
2 disable lcache
3 store P_cache at (a5)
4 load P_cache from (aS5)
5 store Addr_Trans_caches at (a5)
6 load Addr_Trans_caches from (a5)
11 store sdrs 0-7 at (a5)
12 enable forced faults
13 ‘ disable forced faults
14 flush physical cache
15 store hardware physical address contents
16 load hardware physical address contents
17 enable halt in rings 1-4
18 disable halt in rings 1-4
Section 12.2 12-21

Privileged Control/Status Instruction Set

A5 is used as a logical address which references an area in memory.
All loads and stores use AS as a base address, incrementing A5 as
successive addresses are accessed.

Notes:

1 This instruction is used by diagnostics to reference
internal processor registers not accessible to the user
program and is specific to the C-1 implementation..

Section 12.2 12-22

Privileged Control/Status Instruction Set

MOVE SCALAR/VV mov Sk,VV

Purpose:
To move the least significant bit of Sk to the vector valid flag.

Format:
| Opcode | Sk |
15 3,2 O
Operation:
IF (Sk<O> = 1) THEN
VW =1
ELSE
VW =20
PSW:
Exceptions:
Ring Violation; Privileged Instruction
Opcode:
mov Sk,VV 0111110101110 Move scalar to vector valid flag
Description:

The current ring of execution must be 0; otherwise, a privileged
instruction exception occurs. If the current ring is O, the least
significant bit of Sk (bit<0>) is moved to the vector valid flag.

Section 12.2 +12-23

Privileged Control/Status Instruction Set

TEST VECTOR VALID tstvv
Purpose:
To test the value of the vector valid flag.
Format:
| Opcode | Sk |
15 3,2 O
Operation:
IFE (VW = 1) THEN
sC =1
ELSE
sC =0
PSW:
SC is affected (see above).
Exceptions:
Opcode:
tstvv 0111110101111 Test value of vector valid flag
Description:
The SC bit is loaded with the value of the vector valid flag.
Notes:

1. Sk is unused.
1. This instruction is not privileged.

1. A brs instruction is typically used to
value of the SC bit after the execution of the tstvv

instruction.

Section 12.2

determine

12-24

Vector/Scalar Instruction Set
CHAPTER 13

13 Vector/Scalar Instruction Set

13.1 Qverview

This chapter defines the instructions which manipulate the vector accumula-
tors (V). scalar accumulators (S), and the vector merge (VM) register. The
instructions which manipulate these registers are separate and distinct
from the instructions which deal with the address registers. This distinc-
tion permits overlapped execution of instructions, which then perform
operations on these registers (V, S, and VM), for increased performance.
The vector/scalar instructions include Loads and Stores, Vector/Vector
Arithmetics, Vector/Scalar Arithmetics, Vector/Vector Logical Operations,
and Vector/Scalar Logical Operations.

As with the A registers,; the basic instruction set philosophy is for all
memory operands to be loaded first into a scalar or vector accumulator;
then a register to register instruction performs the specified operation.

There are some additional features applicable to the § and V registers that
are not applicable to the A registers. These features are: data types mani-
pulated, chaining, functional unit reservation, register unit reservation,
and register topology.

13.1.1 Data Iypes

There are 6 different data types: integer 8, 16, 32, and 64, referenced as
byte, halfword, word, and longword, respectlively: and single and double
precision floating point (32 and 64 bit). Logical data types are a special
case of integer 64 bit.

13.1.2 Yector Register Specification

As previously discussed in Chapter 3, "Register Set," a vector accumulator
can hold up to 128 elements, where each element can be up to 64 bits of
precision. The VL register specifies the exact number of elements contained
in the vector accumulator. VL applies to all vector accumulators.

Note: when VL is zero, no vector operation is performed.

Care should be taken when loading the VL register. When an operation is
initiated, VL is copied into the internal machine state. Length control is
generated from this internal VL value. However, when chaining is initiated,

VL. should not be changed until after the last chained instruction begins

Section 13.1.2 . 13-1

Vector/Scalar Instruction Set
executing.

The first element in a vector accumulator ,i, is Vi(0). If VL is less than
128, then the Vi(0) through Vi(VL-1) elements are manipulated. All other
elements are unimportant and are left unchanged.

13.1.3 Chaining

Chaining is a vector mechanism that permits the output of one vector
instruction to be immediately used as the input to another vector instruc-
tion. For example, the DOT product operation requires a sum (sigma) of a
series of products. Chaining permits the sum to be initiated while the pro-
ducts are being produced. This form of concurrency results in signifi-
cantly higher performance.

To facilitate chaining, vector register operations can specify up to three
operands; two sources and one destination. This feature permits an output
register to be different from either of the two possible input registers (3
operand addressing). The output register can then be used as an input for
the second (chained) operation.

The following is an example of chaining:

v3
%)

V2 + V1
va * V3

I

In the above example, the output of the "+" that is stored into.V3 can be
immediately used as an input to the "*" operation, which is essentially
equivalent to executing the single statement:

V5 = V4 * V3 = V2 + V1

This single statement equivalent results in execution rates twice that
achieved through sequential execution.

Another example is:

V1l = Merge (VM,VO0:S0)
V3 = V2+V1
V5 = V4+Vy3

This executes as the single expression:
V5 = V4*V3 = V2 + V1 = Merge (VM, VO;S0)

which is essentially adding V2 to the merged elements of VO, and multiply-
ing the results by V4. The output of one functional unit may be chained
into the input of a different functional unit. The actual time of chaining
can occur anytime the output is available. The output can be chained into
stores, masks, reduction operations, etc. Unless otherwise specified,
there are no exceptions to this chaining criterion. In this last example,

Section 13.1.3 13-2

Vector/Scalar Instruction Set

chaining exists across three functional units.

13.1.4 Eunctional Unit Reservation

As explained above, several instructions can be executed at the same time
because more than one arithmetic or functional unit is provided. Multiple
functional units (e.g., ADD, MULTIPLY, and DIVIDE)--rather than multiple
units of the same type (i.e., two or more adders)--are provided to ensure
this higher performance. However, when a vector instruction is decoded
which requires a functional unit currently being used, a functional unit
reservation occurs. This implementation means that the second instruction
CANNOT execute simultaneously with the first.

The types of independent functional units that are present are .implementa-
tion dependent. Generally, the possible arithmetic units are:

1 ADD/SUB

2 MULTIPLY/DIVIDE

3 LOGICAL

4 MASK/MERGE/COMPRESS
5 LOAD FROM MEMORY

6 STORE TO MEMORY

These arithmetic units are structured into three separate and distinct
functional units, grouped as follows:

1 ADD/SUB, LOGICAL, COMPARE, POPULATION COUNT, SHIETING
2 MULTIPLY/DIVIDE
3 LOAD/STORE FROM MEMORY, MASK/MERGE/COMPRESS

The following is an example of functional unit reservation:

va Vi + VO
V5 = V4 + V3

Both of these operations on the indicated vector registers require the ADD
functional unit, and thus cannot function simultaneously.

13.1.5 Register Unit Reservation

To permit simultaneous instruction execution with multiple functional
units, multiple registers must be provided, which means that access must be
provided for all data to be manipulated. If this access is NOT provided,
register reservation occurs, and instruction execution is sequential. In
the following example,

V1
V4

V1l + VO
V3 * V1

Section 13.1.5 13-3

Vector/Scalar Instruction Set

the two instructions are executed sequentially since there are three refer-
ences to V1 across the two instructions. This sequential execution occurs
even though different functional units are specified. If the two instruc-
tions were,

V2
V5

V1 + VO
v4a * V3

then both instructions would execute simultaneously.

13.1.6 Accumulator Topology .

The CONVEX architecture has 8 vector accumulators. Within the processor of
CONVEX-1, these registers are structured in the following manner across 4
memory elements.

- - - - - - - — - - —-——
[e - - - - - e . - - - - — - ———

Each of the above rectangles represents a high speed memory array contained
within the processor. There are 4 such arrays: each has 2 vector accumula-
tors with 64 bits in each element. The following are the access rules
governing manipulations of elements in the array.

NOTE: The noted vector accumulator topology is implementation specific to
CONVEX-1 and is NOT part of the architecture.

1) Two independent accesses can occur during each cycle for each array.
2) These accesses can be any combination of read and write. Thus
(read,read), (read,write), (write,read), and (write,write) are permitted.

3) If more than two accesses are specified to the same array, the operation
will still continue to function, but at reduced performance.

4) Read and writes to the same array during the same operation are permit-
ted. There are no unusual side effects; the array functions exactly as one
would expect. For example, the operation VO = VO + V1 adds vector accumula-
tor O to vector accumulator 1 and stores the result in vector accumulator
0.

Section 13.1.6 13-4

Vector/Scalar Instruction Set

The following are some examples of full and partial speed operations as
they relate to this array accessing.

The operation V2 = V1 + VO proceeds at full speed. The operation V2 = V2 +
VO proceeds at full speed. The operation V2 = V2 + V6 proceeds at half
speed, since both V2 and V6 are in the same array.

13.1.7 Recursion/Reduction

Reduction operators are explicitly provided and are not just a byproduct
of vector accumulator specification. Explicit operators are provided to
perform SUM, PROD, MAX, MIN, and various logical reductions (ANY, ALL,

PARITY). The specification of a vector accumulator as both a source and
destination causes the accumulator to function in the expected way, and
there are no unusual side effects. The output of an operation can be

chained into a reduction operation. For example, a dot product is a mnmulti-
ply chained into a sum operation.

13.1.8 Scalar Functional Units

From the compiler's viewpoint, there is an infinite number of scalar func-
tional units. Thus, for the arithmetic expression,

Z=A+B+C+D+EG+E
the preferred way of evaluating the expression is:
Templ A+B

Temp2 = C+D
Temp3 = E+F

Templ
Templ

Templ + Temp2
Templ + Temp3

This expression is in preference to:

Temp = A +B

Temp = Temp + C
Temp = Temp + D
Temp = Temp + E
Temp = Temp + F

This technique is referred to as "tree height reduction."

13.2 Loads and Stores (Gather and Scatter)

These instructions include Load Vector Register, Store Vector Register,
Load Vector Register/Vector Index, Store Vector Register/Vector Index,

Section 13.2 13-5

Vector/Scalar Instruction Set

Store Scalar Extended/Vector Index, and Store Scalar Extended. The Load
and Store with index instructions allow the user to use a vector register
to specify those indices of another vector which will be affected. These
operations are commonly referred to as gather and scatter. None of the
flags in the PSW are affected. This permits scatter stores and gather
loads to be implemented.

VL elements of a vector are loaded into the specified vector accumulator
Vk. The first element is referenced by the effective address produced by
evaluating the L,@,A fields. The address of the next element accessed is
obtained by adding the signed value in VS. This signed value is the dis-
tance in BYTEs. The address of every successive element is obtained by
adding VS to the address of the previous element.

13.3 VYector/Vector Arithmetics

Included in this section are the following instructions: Add, Subtract,
Multiply, Divide, and Negate Vector/Vector. The flags in the PSW are
affected, as follows:

SIV = Integer Overflow:; Integer Only

OV = Exponent Overflow:; Floating Point Only
UN = Exponent Underflow; Floating Point Only
SDZ = Divide by Zero:; Integer Only

RO = Reserved Operand: Floating Point Only
EDZ = Divide by Zero: Floating Point Only

13.4 VYector/Scalar Arithmetics

The instructions in this section include Add, Subtract, Multiply, and
Divide Vector/Scalar. They affect the following flags in the PSW:

SIV = Integer Overflow; Integer Only

OV = Exponent Overflow; Floating Point Only
UN = Exponent Underflow; Floating Point Only
SDZ = Divide by Zero:; Integer Only

RO = Reserved Operand; Floating Point Only
FDZ = Divide by Zero; Floating Point Only

13.5 VYector/Vector Logical Operations

These instructions include AND, OR, Exclusive OR, and Complement
Vector/Vector: none of the flags in the PSW is affected by their operation.

Section 13.5 . . 13-6

Vector/Scalar Instruction Set

13.6 Vector/Scalar Logical Operations

Instructions included in this group are AND, OR, and Exclusive OR Vector/
Scalar. No flags in the PSW are affected by their operation.

13.7 Shifts and Moves

Logical Shift Vector/Scalar, Move Scalar/Vector, and Move Vector Element/

Scalar are the instructions in this section, and none affects the flags in
the PSW.

Section 13.7 13-7

Vector/Scalar Instruction Set

LOAD VECTOR REGISTER 1d. (b|h|w|l|s[d) <effa>,Vk

Purpose:
To load a vector into a vector accumulator.

Format:
| Opcode |@|L| Aj| Vk| | Displacement |
15 8,7,6,5 3,20 (31{15) o
Operation:
temp = Effective Address
DO 10 a = 0, (VL-1)
Vk(a) = c(temp)
temp = temp + VS
10 CONTINUE
PSW:
Exceptions:
Opcode:
ld.b <effa>,Vk 001110000 Load vector byte
ld.h <effa>,Vk 001110010 Load vector halfword
ld.w <effa>,Vk 001110100 Load vector word
1d.1 <effa>,Vk 001110110» Load vector longword
ld.s <effa>,Vk 001110100 Load vector single float
ld.d <effa>,Vk 001110110 Load vector double float
Description:
VL. elements of a vector are loaded into the specified vector accu-
mulator Vk. The first element is referenced by the effective
address produced by evaluating the L,@,A fields. The address of the
next element accessed is obtained by adding the signed value in VS.
This signed value is the distance in BYTEs.
The address of every successive element is obtained by adding VS to
the address of the previous element.
Notes:

1l The value contained in VS can either
negative.
2 64 bit integers or 64 bit floating point

loaded using the 1d.1 instruction.

be positive or

operands are

Section 13.7 13-8

Vector/Scalar
3

4

Section 13.7

Instruction Set

32 bit integer or 32 bit singal precision floating point
operands are loaded using the ld.w instruction.

If the distance between successive elements is less than
the precision of an element, unpredictable actions
occur.

VS is not changed during the execution of this instruc-
tion.

The .s and .w forms of this instruction are equivalent,
as are the .d and .1 forms. The .s and .d forms are
added for convenience.

13-9

Vector/Scalar Instruction Set

STORE VECTOR REGISTER - st.(blh|w|l|s|d) Vk,<effa>

Purpose:
To store a vector from a vector accumulator.

Format:
| Opcode |@|L| Aj| Vk| | Displacement |
15 8,7,6,5 3,20 (31]15) 0
Operation:
temp = Effective Address
DO 10 a = 0, (VL-1)
c(temp) = Vk(a)
temp = temp + VS
10 CONTINUE
PSW:

Exceptions:

Opcode:
st.b Vk,<effa> 001111000 Store vector byte
st.h Vk,<effa> 001111010 Store vector halfword
st.w Vk,<effa> 001111100 Store vector word
st.1l Vk,<effa> 001111110 Store vector longword
st.s Vk,<effa> 001111100° Store vector single float
st.d Vk,<effa> 001111110 Store vector double float
Description:
VL elements of a vector are stored from the specified vector accu-
mulator Vk. The first element is referenced by the effective
address produced by evaluating the L,@,A fields. The address of the
next element accessed is obtained by adding the signed value in VS.
This signed value is the distance in BYTEs.
The address of every successive element is obtained by adding VS to
the address of the previous element.
Notes:

1 The value contained in VS can either be positive or
negative.

2 64-bit integers or 64-bit floating point operands are
stored using the st.l instruction.

3 32-bit integers or 32-bit singlé precision floating
point operands are stored using the st.w instruction.

Section 13.7 - 13-10

Vector/Scalar

4

Section 13.7

Instruction Set

If the distance between successive elements is less than
the precision of an element, unpredictable actions
occur.

VS is not changed during the execution of this instruc-
tion.

The .s and .w forms of this instruction are equivalent,
as are the .d and .1 forms. The .s and .d forms are
added for convenlience.

13-11

Vector/Scalar Instruction Set

LOAD VECTOR REGISTER/VECTOR INDEX

ldvi. (b|h|w|l|s|d) Vj,Vk

Purpose:
To load a vector into a vector

Format:
| Opcode | Vj | Vk |
15 6,5 3.2 (0]
Operation:
DO 10 a =0, (VL-1)
temp = A5 + Vj(a)<31..0>
Vk(a) = c<temp>
10 CONTINUE
PSW:

Exceptions:

accumulator using
indices (commonly referred to as "vector gather").

is

Load vector byte

a vector of

Load vector halfword .

Load vector word

Load vector longword
Load vector single float

Load vector double float

accu-

referenced by the effective
address produced by adding the contents of A5 and Vj(0). The second
element 1is referenced by the effective address produced by adding

Opcode:
ldvi.b Vj,Vk 0111100000 Index
ldvi.h Vj,Vk 0111100001 Index
ldvi.w Vi, Vk 0111100010 Index
ldvi.l Vj,Vk 0111100011 Index
ldvi.s Vj,Vk 0111100010 Index
ldvi.d Vj.Vk 0111100011 Index
Description:
VL elements of a vector are loaded into the specified vector
mulator, Vk. The first element
the contents of A5 and the least significant 32 bits of Vi(1).
so on.
Notes:

1 A5 is typically loaded with an

address instruction.)

2 64 bit integers or 64 bit floating point

ldea {load

loaded using the 1ldvi.l instruction.

effective

operands are

3 If the distance between successive elements is less than

the precision of an element,

occur.

Section 13.7

unpredictable

actions

and

13-12

Vector/Scala

Section 13.7

r

4

offset. The

Instruction Set

A5 is not changed during the execution of this instruc-
tion.

The contents of Vj(i) are treated as a byte

appropriate shift of Vj may have to be
account for the precision of the operand to

The .s and .w forms of this instruction are
as are the .d and .l forms. The .s and
added for convenience.

performed to
be loaded.

equivalent,
.d forms are

13-13

Vector/Scalar Instruction Set

STORE VECTOR REGISTER/VECTOR INDEX stvi. (blh|w|1l|s|d) Vk,Vj

Purpose:

To store a vector from a vector accumulator using a vector of
indices (commonly referred to as "vector scatter").

Format:
| Opcode I v3 I Vk |
15 6.5 3,2 o
Operation:
DO 10 a = 0O, (VL-1)
temp = Vj(a<31..0>) + AS
c(temp) = Vk(a)
10 CONTINUE
PSW:

Exceptions:

Opcode:

stvi.b Vk,Vj 0111101000 Index Store vector byte

stvi.h Vk,Vj 0111101001 Index Store vector halfword
stvi.w Vk,Vj 0111101010 Index Store vector word

stvi.l Vk,Vj 0111101011 Index Store vector longword
stvi.s Vk,Vj 0111101010 Index Store vector single float
stvi.d Vk,Vj 0111101011 Index Store vector double float

Description:

Notes:

Section

VL elements of a vector are stored from the specified vector accu-
mulator, Vk. The first element is referenced by the effective
address produced by adding the contents of A5 and the least signi-
ficant 32 bits Vj(0). The second element is referenced by the
effective address produced by adding the contents of A5 and Vi(1),
and so on. -

1 A5 is tYpically loaded with an 1ldea (load effective
address instruction.)

2 64-bit integers or 64-bit floating point operands are
stored using the stvi.l instruction.

3 32-bit integers or 32-bit single precision floating
point operands are stored using the stvi.w instruction.

4 If the distance between successive elements is less than

13.7 13-14

Vector/Scalar

Section 13.7

Instruction Set

the precision of an element, unpredictable actions

occur.

tion.

The contents of Vj (i) are treated as a byte
appropriate shift of Vj may have to be
account for the precision of the operand to

The .s and .w forms of this instruction are
as are the .d and .1 forms. The .s and
added for convenience.

‘A5 is not changed during the execution of this instruc-

offset. The
performed to
be stored.

equivalent,
.d forms are

fry
(@]

Vector/Scalar Instruction Set

STORE SCALAR EXTENDED/VECTOR INDEX

stvi.(blh|w|l|s]|d) Sk,Vj

Purpose:
To store a vector from a scalar accumulator using a vector of
indices

Format:
| Opcode | Vj | Sk |
15 6,5 3.2 o

Operation:
DO 10 a = 0, (VL-1)

temp = Vj(a<31..0>) + AS
c(temp) = Sk

10 CONTINUE

PSW:

Exceptions:

Opcode: .
stvi.b Sk,Vj 0111101100 Scalar Index Store vector byte
stvi.h Sk,Vj 0111101101 Scalar Index Store vector halfword
stvi.w Sk,Vj 0111101110 Scalar Index Store vector word
stvi.l Sk,Vj 0111101111 Scalar Index Store vector longword
stvi.s Sk.,Vj 0111101110 Scalar Index Store vector single float
stvi.d Sk.,Vj 0111101111 Scalar Index Store vector double float

Description:
VL elements of a vector are stored from the specified scalar accu-
mulator, Sk. The first vector element to be stored into is refer-
enced by the effective address produced by adding the contents of
A5 and the least significant 32 bits Vj(0). The second element is
referenced by the effective address produced by adding the contents
of A5 and Vj(1)., and so on.

Notes:

1 A5 is typically loaded with an

address instruction.)

2 64-bit integers or 64-bit floating point

ldea

(load effective

operands

are

4

Section 13.7

stored using the stvi.l instruction.

32-bit integers or 32-bit floating point operands are
stored using the stvi.w instruction.

If thé distance between successive elements is less than

13-16

Vector/Scalar

Section 13.7

Instruction Set

the precision of an element, unpredictable actions

occur.
A5 is not changed during the execution of this instruc-
tion.

The contents of Vj(i) are treated as a byte

appropriate shift of Vj may have to be
account for the precision of the operand to

The .s and .w forms of this instruction are
as are the .d and .1 forms. The .s and
added for convenience.

offset. The
performed to
be stored.

equivalent,
.d forms are

13-17

Vector/Scalar Instruction Set

STORE SCALAR EXTENDED ste. (b|h|w|l|s]d) Sk,<effa>

Purpose:
To store a scalar register repetitively into memory.

Format:
| Opcode |@|L|Aj |Sk |] Displacement |
15 8,76,5,3,20 (3115) 0]
Operation:
temp = Effective Address
DO 10 a = 0, (VL-1)
c<temp> = Sk !
temp = temp + VS
10 CONTINUE
Exceptions:
Opcode:
ste.b Sk, <effa> 001001000 Store an extended scalar byte
ste.h Sk,<effa> 001001010 Store an extended scalar halfword
ste.w Sk, <effa> 001001100 Store an extended scalar word
ste.l Sk,<effa> 001001110 Store an extended scalar longword
ste.s Sk, <effa> 001001100 Store an extended scalar single float
ste.d Sk,<effa> 001001110 Store an extended scalar double float
Description:
The contents of the scalar register Sk are repetitively stored into
memory until VL.
Notes:

1 This instruction is used to perform the
A(I)=K.

loop construct

2 Sk is unchanged at the completion of this instruction.

Section 13.7

3 This instructioh can be used to clear memory by initial-
izing Sk with O.

Vector/Scalar Instruction Set
4 The .s and .w forms of this instruction are equivalent

as are the .d and .1 forms. The .s and .d forms are
added for convenience.

Section 13.7 13-19

Vector/Scalar Instruction Set

ADD VECTOR,/VECTOR add. (blh|w|1l|s|d) Vi,Vj,Vk

Purpose:
To add two vectors.

Format:
| Opcode] Vi | V3§ | Vk |
15 9.8 6,5 3,2 o
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) + Vj(a)
10 CONTINUE
PSW:
SIV = Integer Overflow! Integer Only
OV = Exponent Overflow! Floating Point Only
UN = Exponent Underflowz! Floating Point Only
RO = Reserved Operand! Eloating Point Only
Exceptions:
Integer Overflow
Exponent Over flow
Exponent Underflow
Reserved Operand
Opcode:
add.b Vi,Vj,Vk 1100000 Add vector/vector integer byte
add.h Vi,Vj,Vk 1100001 Add vector/vector integer hal fword
add.w Vi,Vj,Vk 1100010 Add vector/vector integer word
add.l Vi,Vj,Vk 1100011 Add vector/vector integer longword
add.s Vi,Vj,Vk 1011000 Add vector/vector single float
add.d Vi,Vj,Vk 1011001 Add vector/vector double float
Description:
The contents of the vector register Vi are added to the contents of
the vector register Vj, and the vector result is loaded into the
vector register Vk. The number of elements added is determined by
the value of VL at the time execution begins.
Notes:

Hold issues: functional unit and register reservation.

Section 13.7 13-20

Vector/Scalar Instruction Set

SUBTRACT VECTOR/VECTOR sub. (b|h|w|l]s|d) Vi, Vi, Vk

Purpose:
To subtract two vectors.

Format:
| Opcode | Vi | Vj | Vk |
15 9.8 6,5 3.2 o
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) - Vi(a)
10 CONTINUE
PSW:
SIV = Integer Overflow; Integer COnly
OV = Exponent Overflow; Floating Point Only
UN = Exponent Underflow; Floating Point Only
RO = Reserved Operand; Floating Point Only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
sub.b Vi,Vj,Vk 1101000 Subtract vector/vector integer byte
sub.h Vi,Vj,Vk 1101001 Subtract vector/vector integer halfword
sub.w Vi,Vj,Vk 1101010 Subtract vector/vector integer word
sub.l Vi,Vj,Vk 1101011 Subtract vector/vector integer longword
sub.s Vi,Vj,Vk 1011010 Subtract vector/vector single float
sub.d Vi,Vj,Vk 1011011 Subtract vector/vector double float
Description: .
The contents of the vector register Vj are subtracted from the con-
tents of the vector register Vi, and the vector result is loaded
into the vector register Vk. The number of elements subtracted is
determined by the value of VL at the time execution begins.
Notes:

Section 13.7 13-21

Vector/Scalar Instruction Set

MULTIPLY VECTOR/VECTOR mul. (bjh|w|l|s|d) Vi,Vj,Vk

Purpose:
To multiply two vectors.

Format:

15 9.8 6,5 3,2 o

Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) * Vj(a)

10 CONTINUE

PSW:
SIV = Integer Overflow: Integer only
OV = Exponent Overflow: Floating Point Only
UN = Exponent Underflow; Floating Point Only
RO = Reserved Operand:; Floating Point Only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
mul.b Vi,Vj,Vk 1110000 Multiply vector/vector integer byte
mul.h Vi,Vj,Vk 1110001 Multiply vector/vector integer halfword
mul.w Vi,Vj,Vk 1110010 Multiply vector/vector integer word
mul.l Vi,Vj,Vk 1110011 Multiply vector/vector integer longword
mul.s Vi,Vj,Vk 1001000 Multiply vector/vector single float
mul.d Vi,Vj,Vk 1001001 Multiply vector/vector double float

Description:
The contents of the vector register Vi are multiplied by the con-
tents of the vector register Vj, and the vector result is loaded
into the vector register Vk. The number of elements multiplied is
determined by the value of VL at the time execution begins.

Notes:

Section 13.7 13-22

Vector/Scalar Instruction Set

DIVIDE VECTOR/VECTOR div. (b|hiw{l|s|d) Vi,Vj,Vk

Purpose:
To divide two vectors.

Format:
| Opcode] Vi | V3§ | Vk |
15 9,8 6,5 3,2 o
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) / Vj(a)
10 CONTINUE
PSW:
SIV = Integer Overflow ! Integer Only
OV = Exponent Overflow ! Floating Point Only
UN = Exponent Underflow 1 Floating Point Only
SDZ = Divide by Zero ! Integer Only
RO = Reserved Operand ! Floating Point Only
EDZ = Divide by Zero ! Floating Point Only
Exceptions:

Integer Overflow
Exponent Overflow
Exponent Underflow
Divide by Zero
Reserved Operand

Opcode:
div.b Vi,Vj,Vk 1111000 Divide vector/vector integer byte
div.h Vi,Vj,Vk 1111001 Divide vector/vector integer hal fword
div.w Vi,Vj,Vk 1111010 Divide vector/vector integer word
div.l Vi ,Vj,Vk 1111011 Divide vector/vector integer longword
div.s Vi,Vj,Vk 1001010 Divide vector/vector single float
div.d Vi,Vj,Vk 1001011 Divide vector/vector double float

Description:

The contents of the vector register Vi are divided by the contents
of the vector register Vj, and the vector result is loaded into the
vector register Vk. The number of elements divided is determined by
the value of VL at the time execution begins.

Section 13.7) 13-23

Vector/Scalar Instruction Set

Notes: .
Hold issues: functional unit and register reservation.

Section 13.7 13-24

Vector/Scalar Instruction Set

NEGATE VECTOR/VECTOR neg. (b|h|w|l|s[d) Vj,Vk

Purpose:
To negate a vector.

Format:
| Opcode | Vj | Vk |
15 6.5 3.2 (o]
Operation:
DO 10 a = (VL-1)
Vk(a) = 0 - Vj(a)
10 CONTINUE
PSW:
SIV = Integer Overflow; Integer Only
OV = Exponent Overflow: Floating Point Only
UN = Exponent Underflow; Floating Point Only
RO = Reserved Operand: Floating Point Only
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand
Opcode:
neg.b Vj,Vk 0110111000 Negate vector/vector integer byte
neg.h Vj,Vk 0110111001 Negate vector/vector integer halfword
neg w Vj,Vk 0110111010 Negate vector/vector integer word
eg.l Vj, vk 0110111011 Negate vector/vector integer longword
neg.s Vj,Vk 0110010010 Negate vector/vector single float
neg.d Vj,Vk 0110010011 Negate vector/vector double float
Description:
The algebraic negation of vector register Vj is 1loaded into Vk.
The number of elements negated is determined by the value of VL at
the time execution begins.
Notes:

Section 13

.7

13-25

Vector/Scalar Instruction Set

ADD VECTOR/SCALAR add. (bjh|w|l|s|d) Vi,Sj,Vk

Purpose:
To add a scalar to a vector.

Format:
| Opcode | Vi | 8 | Vk |
15 . 9,8 6,5 3,2 O©
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a)+Sj
10 CONTINUE
PSW:

SIV = Integer Overflow; Integer Only

ov Exponent Overflow; Floating Point Only
UN Exponent Underflow; Floating Point Only
RO = Reserved Operand; floating point only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
add.b Vi,5j,Vk 1100100 Add vector/scalar integer byte
add.h Vi Sj,Vk 1100101 Add vector/scalar integer halfword
add.w Vi,Sj,Vk 1100110 Add vector/scalar integer word
add.l Vi,Sj,Vk 1100111 Add vector/scalar integer longword
add.s Vi,S5j,Vk 1011100 Add vector/scalar single float
add.d Vi,Sj,Vk 1011101 Add vector/scalar double float
Description:
The contents of the scalar register Sj are added to the contents of
the vector register Vi, and the vector result is loaded into the
vector register Vk. The number of elements added is determined by
the value of VL at the time execution begins.
Notes:

Section 13.7 13-26

Vector/Scalar Instruction Set

SUBTRACT VECTOR/SCALAR sub. (bih|w|l|s|d) Vi,S8j.Vk

Purpose:
To subtract a scalar from a vector.

Format:

15 9.8 6,5 3,2 O

Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) - Sj
10 CONTINUE

PSW:
SIV = Integer Overflow: Integer Only
OV = Exponent Overflow; Floating Point Only
UN = Exponent Underflow; Floating Point Only
RO = Reserved Operand; Floating Point Only
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand
Opcode:
sub.b Vi,S8j,Vk 1101100 Subtract vector/scalar integer byte
sub.h Vi, Sj,Vk 1101101 Subtract vector/scalar integer halfword
sub.w Vi,Sj,Vk 1101110 Subtract vector/scalar integer word
sub.l Vi,Sj,Vk 1101111 Subtract vector/scalar integer longword
sub.s Vi,Sj,Vk 1011110 Subtract vector/scalar single float
sub.d Vi,Sj,Vk 1011111 Subtract vector/scalar double float
Description: :
The contents of the scalar register Sj are subtracted from the con-
tents of the vector register Vi, and the vector result is loaded
into the vector register Vk. The number of elements subtracted is
determined by the value of VL at the time execution begins.
Notes:

Section 13.7 13-27

Vector/Scalar Instruction Set

MULTIPLY VECTOR/SCALAR mul. (b|h|w|l|s|d) Vi,Sj,Vk

Purpose:
To multiply a scalar with a vector.

Format:
| Opcode | Vi | 8 | Vk |
15 9.8 6.5 3,2 0
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) * §j
10 CONTINUE
PSW:

SIV = Integer Overflow; Integer Only

OV = Exponent Overflow: Floating Point Only
UN Exponent Underflow; Floating Point Only
RO Reserved Operand; Floating Point Only

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
mul.b Vi,Sj,Vk 1110100 Multiply vector/scalar integer byte
mul.h Vi,Sj,Vk 1110101 Multiply vector/scalar integer halfword
mul.w Vi,Sj,Vk 1110110 Multiply vector/scalar integer word
mul.l Vi,Sj,Vk 1110111 Multiply vector/scalar integer longword
mul.s Vi,Sj,Vk 1001100 Multiply vector/scalar single float
mul.d Vi, 8j,Vk 1001101 Multiply vector/scalar double float

Description:
The contents of the scalar register Sj are multiplied with the con-
tents of the vector register Vi, and the vector result is loaded
into the vector register Vk. The number of elements multiplied is
determined by the value of VL at the time execution begins.

Notes:

Section 13.7 13-28

Vector/Scalar Instruction Set

DIVIDE VECTOR/SCALAR div. (b|h|w|l|s|d) Vi,Sj,Vk

Purpose:
To divide a vector by a scalar.

Format:
| Opcode | Vi | 83 | Vk |
15 9.8 6,5 3.2 O
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) / Sj
10 CONTINUE
PSW:
SIV = Integer Overflow ! Integer Only
OV = Exponent Overflow ! Floating Point Only
UN = Exponent Underflow ! Floating Point Only
SDZ = Divide by Zero ! Integer Only
RO = Reserved Operand ! Floating Point Only
FDZ = Divide by Zero ! Floating Point Only
Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Divide by Zero
Reserved operand
Opcode:
div.b Vi,Sj,Vk 1111100 Divide vector/scalar integer byte
div.h Vi,Sj,Vk 1111101 Divide vector/scalar integer halfword
div.w Vi,Sj,Vk 1111110 Divide vector/scalar integer word
div.l Vi,Sj,Vk 1111111 Divide vector/scalar integer longword
div.s Vi,Sj.Vk 1001110 Divide vector/scalar single float
div.d Vi,Sj,Vk 1001111 Divide vector/scalar double float
Description:

The contents of the vector Vi are divided by the scalar Sj. and the
vector result is loaded into the vector register Vk. The number of
elements divided is determined by the value of VL at the time exe-
cution begins.

Section 13.7 13-29

Vector/Scalar Instruction Set

Notes:
Hold issues: functional unit and register reservation.

Section 13.7 B 13-30

. Vector/Scalar Instruction Set

AND VECTOR/VECTOR and Vi, Vj,Vk

Purpose:
To AND the contents of two vectors.

Format:

| Opcode] Vi | Vi | Vk |

15 9,8 6.5 3,2 0
Operation:

DO 10 a = 0, (vl-1)
Vk(a) = Vi(a) .AND. Vj(a)

10 CONTINUE

PSW:

Exceptions:

Opcode:
and Vi,Vj,Vk 1010000 AND two vectors

Descriptioﬁ: .
The elements of the Vj vector register are ANDed with the elements
of the Vi register. The results of the AND are loaded into Vk. The
number of ANDs is equal to VL. All 64-bits of each element of a
vector register participate in the operation.

Notes:

The contents of one vector register, Vi, can be moved to another
vector register, Vk, by specifying Vi and Vj as the same register.
Thus, for example, AND VO, VO, V1 moves the contents of VO to V1.

Section 13.7 ’ 13-31

Vector/Scalar Instruction Set

OR VECTOR/VECTOR

or Vi,Vj,Vk

Purpose:
To OR the contents of two vectors.

Format:
| Opcode] Vi | V3§ | Vk |
15 9,8 6,5 3,2 0
Operation: »
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) .OR. Vj(a)
10 CONTINUE
PSW:
Exceptions:
Opcode:
or Vi,Vj,Vvk 1010001 OR two vectors
¢
Description:
The elements of the Vj vector register are ORed with the elements
of the Vi register. The results of the OR are loaded into Vk. The
number of ORs is equal to VL. All 64 bits of each element of a vec-
tor register participate in the operation.
Notes:

Section 13.7

13-32

Vector/Scalar Instruction Set

EXCLUSIVE OR VECTOR/VECTOCR xor Vi,Vj,Vk

Purpose:
To Exclusive OR the contents of two vectors.

Format:

| Opcode | Vi | Vj | Vk |

15 9.8 6,5 3.2 o]
Operation:

DO 10 a = 0, (VL-1)
Vk{a) = Vi(a) .XOR. Vj(a)

10 CONTINUE

PSW:

Exceptions:

Opcode:
xor Vi,Vj,vk 1010010 Exclusive OR two vectors

Description:
The elements of the Vj vector register are exclusive ORed with the
elements of the Vi register. The results of the exclusive OR are
loaded into Vk. The number of exclusive ORs is equal to VL. All 64
bits of each element of a vector register participate in the opera-
tion.

Notes:

Section 13.7 13-33

Vector/Scalar Instruction Set

COMPLEMENT VECTOR/VECTOR not Vj,Vk
Purpose:
To COMPLEMENT the contents of a vector.
Format:
| Opcode 'S | Vk |
15 6,5 3,2 o)
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = .NOT. Vj(a)
10 CONTINUE
PSW:
Exceptions:
Opcode: ;
not Vj, vk 0110001011 Complement a vector
Description:
The elements of the Vj vector register are complemented and the
results loaded into the Vk vector register. The number of opera-

tions is equal to VL. All 64-bits of each element of
register participate in the operation.

Notes:

Section 13.7

a vector

13-34

Vector/Scalar Instruction Set

AND VECTOR/SCALAR : and Vi,Sj,Vk

Purpose:
To AND the contents of a vector and a scalar.

Format:
| Opcode | Vi | Sj | Vk |
15 - 9,8 6,5 3,2 0O
Operation:
DO 10 a = O, (V1-1)
. Vk(a) = Vi(a) .AND. Sj
10 CONTINUE
PSW:

Exceptions:

Opcode:
and Vi,S8j,Vk 1010100 AND vector/scalar

Description:
The‘elements of the Vi vector register are ANDed with the contents
of the Sj register. The results of the AND are loaded into Vk. The
number of ANDs is equal to VL. All 64-bits of each element of a
vector register participate in the operation.

Notes:

Section 13.7 13-35

Vector/Scalar Instruction Set

OR VECTOR/SCALAR or Vi,Sj,Vk

Purpose:
To OR the contents of a vector and a scalar.

Format:
| Opcode | Vi | 85 | Vk |
15 9.8 6,5 3,2 0
Operation:
DO 10 a = 0, (VL-1)
Vk(a) = Vi(a) .OR. Sj
10 CONTINUE
PSW:
Exceptions:
Opcode:
or Vi,Sj,Vk 1010101 OR vector/scalar
Description:
The elements of the Vj vector register are ORed with the contents
of the Sj register. The results of the OR are loaded into Vk. The
number of ORs is equal to VL. All 64 bits of each element of a vec-
tor register participate in the operation.
Notes:

Section 13.7 12-3¢

Vector/Scalar Instruction Set

EXCLUSIVE OR VECTOR/SCALAR

xor Vi,Sj.Vk

Purpose: .
To Exclusive OR the contents of a vector and a scalar

Format:

| Opcode | Vi | 83 | Vk |

15 9,8 6,5 3.2 O
Operation:

DO 10 a = 0O, (VL-1)
Vk(a) = Vi(a) .XOR. Sj

10 CONTINUE

PSW:

Exceptions:

Opcode:
xor Vi,Sj,Vk 1010110 Exclusive OR vector/scalar

Description:
The elements of the Vi vector register are exclusive ORed with the
contents of the Sj register. The results of the exclusive OR are
loaded into Vk. The number of exclusive ORs is equal to VL. All
64 bits of each element of a vector register participate in the
operation.

Notes:

Section 13.7

13-37

Vector/Scalar Instruction Set

LOGICAL SHIFT VECTOR/SCALAR shf Sj,Vk
Purpose:
To logically shift the contents of a vector register by a scalar
register.
Format:
| Opcode | Sj | Vk |
15 6.5 3.2 o
Operation:

DO 10 a = 0, (VL-1)
Vk(a) = Shift Vk(a) by Sj<7..0>
10 CONTINUE

PSW:
Exceptions:

Opcode:
shf Sj.Vk 0110001100 Shift a vector accumulator

Description:
The contents of Vk(i) are shifted according to the contents of Sj.
When Sj 1is positive Vk(i) is shifted left. When Sj is negative
Vk (i) is shifted right. Each vector element of Vk until VL is
shifted. All 64 bits of Vk(i) participate in the shift. Vacated
positions are zero filled. Only Sj<7..0> are used to control the
shift. Sj<63..8> are ignored.

Notes:
‘ Arithmetic shifts are implemented using multiplies and divides.

Section 13.7 13-38

Vector/Scalar Instruction Set

MOVE SCALAR/VECTOR mov Si,Sj,Vk

Purpose:
To move a scalar register to a vector register element.

Format:
| Opcode | Si | Sj | Vk |
15 9,8 6,5 3,2 0
Operation:
Vk (Sj<6..0>) = Si
PSW:
Exceptions:
Opcode: v
mov S8i,Sj,Vk 1000001 Move a scalar to a vector element
Description: .
The contents of the scalar fegister Si are loaded into an element
of the vector register Vk. The particular Vk{(i) is determined from
bits<6..0> of Sj. All other bits of Sj are ignored.
Notes:

Section 13.7 13-39%9

Vector/Scalar Instruction Set

MOVE VECTOR ELEMENT/SCALAR mov Vi,Sj, Sk

Purpose:
To move a vector element into a scalar register.

Format:
| Opcode | Vi | S | Sk |
15 9,8 6,5 3,2 0]
Operation:
8k = Vi(S5j<6..0>)
PSW:
Exceptions:
Opcode:
mov Vi, Sj, Sk 1000000 Move a vector element to a scalar
Description:
The vector element in the Vi register referenced by bits<6..0> of
Sj is loaded in Sk.
Notes:

13-40

Comparisons/Mask/Merge/Compress Instructions
CHAPTER 14

14 Comparisons/Mask/Merge/Compress Instructions .

The instructions in this chapter perform comparisons between vectors and
scalars, and perform manipulations using the vector merge (VM) register.
The general methodology is for a comparison to produce a bit vector, where
a 1 indicates that the comparison is .TRUE., and a O indicates that the
comparison is .FALSE. This method is similar to the way comparisons with
address and scalar registers function. The results of a vector compare
(and consequently the contents of the VM register) are used quite dif-
ferently from manipulations on the A registers, however.

On most machines, many common operations performed on vectors, such as
compress, mask, and merge, require the use of branch instructions. In CON-
VEX machines, these operations are included as primitives in the Jinstruc-
tion set. To eliminate the use of branch instructions when manipulating
vectors, a full set of primitives is provided that implements compress,
mask, and merge operations on vector accumulators. These primitives permit
vector operations to be implemented with a sequence of chained vector
instructions--as with vector clip, for example, where every element greater
than 5 is replaced with 5. Other typical operations using these instruction
set primitives include: operations on sparse vectors using a compress
operation, the number and location of zero crossings: the number of suc-
cessful comparisons; sorts, and others.

Three forms of compare operations are provided: .LE., .LT., and .EQ. For
the other 3 operations, the following identities hold: .NOT. (V .REL. B5)
<=> V (.NOT. .REL.) S, where the following relations are complements:

.NE. <--> [EQ.
.LE. <--> .GT.
.LT. <--> .GE.

14.1 Vector Compares

The two instructions defined in this section are Compare Vector/Vector,
(used between two vectors) and Compare Vector/Scalar (used between one vec-
tor and one scalar). Note: the instruction Compare Scalar/Scalar, covered
in Chapter 10--"Scalar Register Instruction Set"--is used between two
scalars. The three Compare instructions are lt, le, and eq:

(l1t., le, eq)x(b.h,w,1l.s,d)

There are six different data types: integer 8, 16, 32, and 64, and single
and double precision floating' point (32 and 64 bit). The only flag
affected in the PSW is the RO bit, the Reserved Operand used for Floating
Point only.

Section 14.1 14-1

Comparisons/Mask/Merge/Compress Instructions

14.2 Mask/Merge/Compress

The instructions defined in this section are Compress, Merge Vector/Vector,
Merge Vector/Scalar, Mask Vector/Vector, and Mask Vector/Scalar:

CPRS MERG mask

The Compress instruction uses the VM register to extract elements selec-
tively from one vector register and place them in another. Either O's or
1's of VM may be used by specifying the .f or .t (false or true) version of
the instruction, respectively. Both Mask and Merge instructions take two
input operands and produce a third operand as the result. These operands
are referred to as Vi, Rj, and Vk, where Vk is the output. Rj may be
either a vector or a scalar register. The Merge and Mask instructions
differ only in the way in which the indices are used to create the result
vector. For the Mask instruction., element n of Vk is either element n of
Vi or element n of Rj. In the case of the Merge instruction, the indices
of Vi and Rj are only incremented if that particular register 1is selected
by VM.

These instructions are best described by a few examples. First, a simple
rule 1is presented. Each instruction either has a single, "true" version,
or both a true (.t) and a false (.f) version. - This facility allows the
user to utilize either the 1's of VM (.t) or the O's (.f). Thus, in the .t
case, when the appropriate bit of VM is a 1, the Rj operand is selected.

The various combinations of VM, .t, and .f are shown in the following
diagram.
W™
o 1
.t | Vi Rj
I
.£ | Rj Vi

14.2.1 Mask/Merge/Compress Examples

Examples of compress, mask, and merge are. now presented. The following
values are assumed before instruction execution:

Section 14.2.1 14-2

Comparisons/Mask/Merge/Compress Instructions
VO=012345
Vi=abcdef

VWM=011001

VL = 6
S1 =8
Performing a compress on VO produces the following:
1 25 = cprs.t VO,V5
0 3 4 =cprs.f VO,V5

Performing a mask of VO and V1 produces the following:
Obc 3 4 f =mask.t VO,V1,V5

and:

al2deS5 mask.t V1,VO,V5S
and:

088348

mask.t VO,S1,VS

Per forming a merge of VO and V1 produces the following:
Oabdl2c456de f=merg.t VO,V1,V5
where VL = 12, and
VWVMW=011001000111

Performing a merge of VO and S1 produces the following:

0881283458838

merg.t VO,S51,V5
or:

801882888345

merg.f VO,S81,V5
where VL = 12, and

VWM=011001000111

Section 14.2.1

14-3

Comparisons/Mask/Merge/Compress Instructions

COMPARE VECTOR/VECTOR (le|lt]eq). (blh|w|l|s|d|) Vj,Vk

Purpose:
To compare two vectors and locad VM

Format:
| Opcode I V3 I Vk |
15 6,5 3.2 o]
Operation:
DO 10 a = 0, (VL-1)
IF(Vj .OPCODE-TEST. Vk(a)) THEN
VM(a) = 1
ELSE
VM(a) =0
10 CONTINUE
PSW:
RO = Reserved Operand : Floating Point Only
Exceptions:
Reserved Operand (floating point only)
Opcode:
le.b Vj,Vk 0110101000 Compare less than or equal byte
1t.b Vj.Vk 0110110000 Compare less than byte
eq.b Vj,Vk 0110100000 Compare equal byte
le.h Vj,Vk 0110101001 Compare less than or equal halfword
lt.h Vj,Vk 0110110001 Compare less than halfword
eq.h Vj,Vk 0110100001 Compare equal halfword
le.w Vj,Vk 0110101010 Compare less than or equal word
l1t.w V3, Vk 0110110010 Compare less than word
eq.w Vj,Vk 0110100010 Compare equal word
le.1l Vj,Vk 0110101011 Compare less than or equal longword
1.1 Vi, vk 0110110011 Compare less than longword
eq.l Vj,Vk 0110100011 Compare equal longword
le.s Vj, vk 0110011000 Compare less than or equal single
lt.s Vj.Vk 0110011010 Compare less than single
eq.s Vj,Vk 0110010000 Compare equal single
le.d Vj,Vk 0110011001 Compare less than or equal double float
lt.d Vj.vk 0110011011 Compare less than double float
eq.d Vj,Vk 0110010001 Compare equal double precision

Section 14.2.1 14-4

Comparisons/Mask/Merge/Compress Instructions

Description:

The elements of the Vj vector register are signed compared with the
elements of the Vk register. The results of the compare are loaded
into VM. The number of compares is equal to VL. VM(n) is loaded
with the result of the compare between Vk(n) and Vj(n). When VL is
less than 128, the remaining bit positions of VM are reset to O.

Notes:

1 There are no unsigned vector compares.

2 The plc instruction can be used to determine the number
of successful compares.

3 By removing VM to a scalar register and performing a

leading zero count, the index of the first successful
compare can be performed.

Section 14.2.1

Comparisons/Mask/Merge/Compress Instructions

COMPARE VECTOR/SCALAR

(lellt]eq). (b|h|w|l]|s|d|) Sj,Vk

Purpose:

To compare a vector and a scalar and load VM

- e e . - - - -~ - . ——

IF (Sj .OPCODE-TEST. Vk(a)) THEN

VM(a) =1

VM (a) o

Format:
| Opcode |
15 6.5
Operation:
DO 10 a = 0, (VL-1)
ELSE
CONTINUE
PSW:

Exceptions:

RO = Reserved Operand ;

Reserved Operand (floating point only)

Opcode:

le.b
1t.b
eq.b

le.h
1t.h
eq.h

le.w
lt.w
eq.w

le.l
1t.1
eq.1l

le.s
lt.s
eq.s

le.d
1t.d
eq.d

0 nmn
e e L
~ ~

-~

S35 S55 S55 FF5 S5 s5r5

[N

.~

nounn
(SRR

nwnn
e e L

~

nwnn
e .
~ ~

.~

]

n 0n
e L L.

.~

Section 14.2.1

0110101100
0110110100
0110100100

0110101101
0110110101
0110100101

0110101110
0110110110
0110100110

0110101111
0110110111
0110100111

0110011100
0110011110
0110010100

0110011101
0110011111
0110010101

Compare
Compare
Compare

Compare
Compare
Compare

Compare
Compare
Compare

Compare
Compare
Compare

Compare
Compare
Compare

Compare
Compare
Compare

Floating Point Only

less than or equal byte
less than byte
equal byte

less than or equal halfword
less than halfword
equal halfword

less than or equal word
less than word
equal word

less than or equal longword
less than longword
equal longword

less than or equal single
less than single
equal single

less than or equal double float
less than double float
equal double precision

Comparisons/Mask/Merge/Compress Instructions

Description:

Notes:

Sj is signed compared with the elements of the Vk register. The
results of the compare are loaded into VM. The number of compares

'is equal to VL. VM(n) is loaded with the result of the compare

between Vk(n) and Sj. When VL is less than 128, the remaining bit
positions of VM are reset to O.

There are no unsigned vector compares.

Section 14.2.1 14-7

Comparisons/Mask/Merge/Compress Instructions

COMPRESS cprs. (t]£f) Vji,vk

Purpose:
To compress a vector using VM.

Format:
| Opcode | Vj | Vk |
15 6,5 3.2 (o]
Operation:
Vk = VM Compress Vj
a=20
DO 10 b = 0, (VL-1) teprs. £
IF (VM(b) .EQ. O) THEN 10 for false
Vk(a) = Vj(b)
a=a+ 1
END IF
10 CONTINUE
DO 10 b = 0, (VL-1) !cprs.t
IF (VM(b) .EQ. 1) THEN !1 for true
Vk(a) = Vj(b)
a=a+1
END IF
10 CONTINUE
PSW:

Exceptions:

Opcode:
cprs.f Vj,Vk 0110001110 Compress a vector using not VM
cprs.t Vj,Vk 0110001111 Compress a vector using VM

Description:
The vector Vj is compressed using VM. The result is loaded into Vk.
The number of elements loaded into Vk is equal to the number of
O/1's in VM, up to VL. Vj and VM are unchanged upon completion of
the instruction. All 64-bits of a vector element participate in the
compress operation.

Notes:
1 The compress operation provides a useful means to
operate on vector elements that satisfy a constraint
condition. Since compress is a pipelined operation, the

Section 14.2.1 14-8

Comparisons/Mask/Merge/Compress Instructions

use of scalar operations or compares
achieve the same result is avoided.

2 The compress operation can be useful for
particular class of binary sorts.

3 The plc VM instruction should be used to
number of elements loaded into Vk.

Section 14.2.1

and branches to

implementing a

determine the

14-9

Comparisons/Mask/Merge/Compress Instructions

MERGE VECTOR/VECTOR merg.t Vi,Vj,Vk

Purpose:

To MERGE one vector into another.

Operation:

PSW:

| Opcode | Vi | Vi | Vk |
15 9,8 6,5 3,2 ¢)
a=20
b=0

DO 10 e = 0, (VL-1)
IF (VM(e) .eq. 1) THEN
Vk(e) = Vj(b)
b=Db + 1
ELSE
Vk(e) = Vi(a)
a=a+ 1
END IF
10 CONTINUE

Exceptions:

Opcode:

merg.t Vi,Vj,Vk 1000010 Merge vector/vector

Description:

The vectors Vi and Vj are merged into the vector Vk using VM. The
number of merge operations is equal to VL. Vi, Vj, and VM are
unchanged after the merge operation is completed. The merge opera-
tion moves sequential elements from either the Vi or Vj vectors to
Vk according to values contain in VM.

Section 14.2.1 14-10

Comparisons/Mask/Merge/Compress Instructions

Notes:
1 The merge provides a convenient means by which to
reassemble operands from two vectors into one vector.
Typically., the operands were initially scrambled using a
compress operation. '
2 Merge using .NOT. VM is equivalent to MERGE with Vi and
" Vj interchanged.

Section 14.2.1

14-11

Comparisons/Mask/Merge/Compress Instructions

MERGE VECTOR/SCALAR merg. (t]f) Vi,sj,Vk

Purpose:

To MERGE a scalar into a vector.

Format:
| Opcode I Vi | 83 | Vk |
15 9.8 6,5 3,2 0
Operation:
b=0
IF (MERG.T) THEN
BIT =1
ELSE
BIT =0
ENDIF
DO 10 a = 0, (VL-1)
IF (VM(a) .EQ. BIT) THEN
Vk(a) = sj
ELSE
Vk(a) = Vi(b)
b=Db +1
END IF
10 CONTINUE
PSW:
Exceptions:
Opcode:
merg.t Vi, Sj,Vk 1000110 Merge vector/scalar
merg.f Vi,Sj,Vk 1000100 Merge vector/scalar using not VM
Description:
The scalar Sj and the vector Vi are merged into the vector Vk using
VM. The number of merge operations is equal to VL. Sj, Vi, and VM
are unchanged after the merge operation is completed.
Notes:

The merge provides a convenient means by which to reassemble
operands into one vector. Typically, the operands were initially
scrambled using a compress operation.

Section 14.2.1 . 14-12

Comparisons/Mask/Merge/Compress Instructions

MASK VECTOR/VECTOR mask.t Vi,Vj,K Vk

Purpose:
To MASK one vector into another.

Format:
| Opcode | Vi | Vj | Vk |
15 9.8 6.5 3,2 o
Operation:
Vk = VM MASK (Vi, Vj)
DO 10 a = 0, (VL-1)
IF (VM(a) .EQ. 1) THEN
Vk (a)= Vj (a)
ELSE
Vk (a)= Vi (a)
END IF
10 CONTINUE
PSW:
Exceptions:
Opcode:
mask.t Vi,Vj,Vk 1000011 Mask vector/vector
Description:

The vectors Vi and Vj are masked into the vector Vk using VM. The
number of mask operations is equal to VL. Vi, Vj, and VM are
unchanged after the mask operation is completed.

Notes: .
Rearranging Vi and Vj is equivalent to using .NOT. VM.

Section 14.2.1 © 14-13

Comparisons/Mask/Merge/Compress Instructions

MASK VECTOR/SCALAR mask. (t|f) Vi,S8j,Vk

Purpose:
To MASK a scalar into a vector

Format:
| Opcode | Vi | 83 | Vk |
15 9.8 6,5 3,2 0
Operation:
Vk = VM MASK (Vi, Sj)
IF (MASK.T) THEN
BIT =1
ELSE
BIT =0
ENDIF
DO 10 a = 0, (VL-1)
IF (VM(a) .EQ. BIT) THEN
Vk(a)= Sj
ELSE
Vk (a)= Vi (a)
END IF
10 CONTINUE
PSW:
Exceptions:
Opcode: :
mask.t Vi, 8j,Vk 1000111 Mask vector/scalar using VM
mask.f Vi, Sj,Vk 1000101 Mask vector/scalar using not VM
Description:

The scalar Sj and the vector Vi are masked into the vector Vk using
VM. The number of mask operations is equal to VL. Sj., Vi, and VM
are unchanged after the mask operation is completed.

Section 14.2.1 14-14

Comparisons/Mask/Merge/Compress Instructions

Notes:

1 The mask scalar operation provides a convenient means to
perform the vector clip operation. Typically, the clip
threshold is used to compute a bit vector loaded into
VM. The mask scalar operation is then used to load the
threshold value into the vector elements whose values
exceeded this threshold.

2 IF VM is all 1's, the scalar Sj is extended and loaded
into all the elements of Vk, for mask.t. This is a con-
venient way of loading a scalar into all elements of a
vector accumulator.

Section 14.2.1 14-15

Vector Reduction Instruction Set
CHAPTER 15

15 Vector Reduction Instruction Set

Reduction operations reduce a vector to a scalar. There are two inputs to a
reduction operator: one input is a scalar register, the other input a vec-
tor register. A scalar input is provided so that reduction operations can
‘be performed for vectors greater than 128 elements. Mathematically, reduc-
tion operations are the SUM (sum reduction) and PROD (multiply or product
reduction) . Additional reduction operations are provided to implement the
FORTRAN MAX and MIN intrinsics, as well as reduction using logical opera-
tors, such as AND(ALL) , OR(ANY), and XOR(PARITY). These latter reduction
operations are used for a certain class of pattern recognition algorithms.

For these operations, the scalar register Sk must be initialized to the
identity operand of the particular operation. Thus, for add the identity
operand is O, for multiply 1, for and all 1's, for OR all O's, for XOR all
O's, for MAX the smallest number, and for MIN the maximum number. Other
operations are providéed to manipulate the VM register. These take the form
of reductions on VM to determine the number of 1's or O's.

15.1 Arithmetic Reductions
The instructions defined in this section are Sum, Product, Max, and Min

Vector on the following data types: (b|lhiw|l|s|d). The flags in the PSW
affected by these instructions are as follows:

SIV Integer Overflow
OV = Exponent Overflow
UN = Exponent Underflow
RO = Reserved Operand

15.2 Logical Reductions

This section supports the following instructions: OR Reduce Vector (ANY),
AND Reduce Vector (ALL), and EXCLUSIVE OR Reduce Vector (PARITY). None of
the flags in the PSW are affected by these instructions.

15.3 Population Count Vector

The Population Count Vector instruction affects no flags in the PSW. It
returns the number of ones in each element of the input vector.

Section 15.3 15-1

Vector Reduction Instruction Set

SUM VECTOR sum. (bjh|w{l|s]|d) Vk

Purpose:
To SUM all the elements of a vector.

Format:

Operation:
DO 10 a = 0, (VL-1)
Sk = Sk + Vk(a) ! See notes below.
10 CONTINUE

PSW:
SIV. = Integer Overflow
UN Exponent Underflow
ov Exponent Overflow
RO Reserved Operand

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:

0111111000000 Sum
0111111000001 Sum
0111111000010 Sum

Vk vector of bytes
Vk

Vk

Vk 0111111000011 Sum

Vk

Vk

vector of halfwords
vector of words

vector of longwords
vector of single float
vector of double float

0111111010000 Sum
0111111010001 Sum

U O I)

Description:
The sum of the scalar register Sk and all elements of Vk until VL
is calculated. The number of elements added is determined by VL,
and the result is loaded into Sk.

Notes:
1 The scalar register should be initialized to =zero for
the first use of the summation instruction.

2 The sequence of the sum executed by the hardware is NOT

Section 15.3 15-2

Vector Reduction Instruction Set

Section 15.3

identical to the FORTRAN sequence as noted above.
Please see the Hardware Reference Manual for the exact
sequence of operations.

Since this instruction reduces a Vk and Sk into Sk, the
assembler will accept either Vk or Sk as the argument to
this instruction.

15-3

Vector Reduction Instruction Set

PRODUCT VECTOR

prod. (blh|w|l|s|d) Vk

Purpose:

To obtain the products of all the elements of a vector.

Format:

Operation:
DO 10 a =
Sk =
10 CONTINUE

||
w0 o
x‘~
» o~
58
T

PSW:
SIV = Integer Overflow
OV = Exponent Overflow
UN = Exponent Underflow
RO = Reserved. Operand

]

Exceptions:
Integer Overflow
Exponent Overflow
Exponent Underflow
Reserved Operand

Opcode:
prod.b Vk 0111111011000
prod.h Vk 0111111011001
prod.w Vk 0111111011010
prod.l Vk 0111111011011
prod.s Vk 0111111010010
prod.d Vk 0111111010011

Description:

! See notes below.

Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

reduce
reduce
reduce
reduce
reduce
reduce

The product of the scalar register Sk and all
calculated. The number of elements multiplied is determined by VL,
and the result is loaded into Sk.

Notes:

MY e p

vector
vector
vector
vector
vector
vector

elements

of
of
of
of
of
of

of

bytes
halfwords
words
longwords
single flo:
double flo:

Vk is

1 The scalar register should be initialized to one for the
first use of the multiply reduce instruction.

2 The sequence of the products performed by the hardware

Section 15.3

15-4

Vector Reduction Instruction Set

Section 15.3

is NOT identical to the FORTRAN sequence as noted above.
Please refer to the Hardware Reference Manual for the
exact sequence of operations. .

Since this instruction reduces a Vk and Sk into Sk, the
assembler will accept either Vk or Sk as the argument to
this instruction.

15-5

Vector Reduction Instruction Set

MAX VECTOR max. (b|h|w|l|s|d) Vk

Purpose:
To find the maximum element of a vector.

Format:
| Opcode | Vk/Sk |
15 3.2 o)
Operation:
DO 10 a =0, (VL-1)
IF (Vk(a).GT.Sk) THEN
Sk = Vk (a)
ENDIF
10 CONTINUE
PSW:
RO = Reserved Operand
Exceptions:
Reserved Operand: floating point
Opcode:)
max.b Vk 0111111001000 Max of a vector of bytes
max.h Vk 0111111001001 Max of a vector of halfwords
max.w Vk 0111111001010 Max of a vector of words
max.l Vk 0111111001011 Max of a vector of longwords
max.s Vk 0111111010100 Max of a vector of single float
max.d Vk 0111111010101 Max of a vector of double float
Description:
The maximum of Sk and all the elements of Vk is determined. The
number of elements searched is determined by VL, and the maximum
element is loaded into Sk.
Notes:

1 The scalar register should be initialized to the minimum
value for the first use of the max instruction.

2 Since this instruction reduces a Vk and Sk into Sk, the

assembler will accept either Vk or Sk as the argument to
this instruction.

Section 15.3 15-6

Vector Reduction Instruction Set

MIN VECTOR

min. (b|h|w|l]|s|d) Vk

Purpose:

To find the minimum element of a vector.

Min
Min
Min
Min
Min
Min

of
of
of
of
of
of

LR

vector
vector
vector
vector
vector
vector

of
of
of
of
of
of

searched is determined by VL,

Format:

| Opcode | Vk/Sk |

15 3.2 0
Operation:

DO 10 a = 0, (VL-1)

IF (Vk(a) .LT. Sk) THEN
Sk = Vk (a)
ENDIE

10 CONTINUE
PSW:

RO = Reserved Operand
Exceptions:

Reserved Operand: floating point only
Opcode:

min.b Vk 0111111001100

min.h Vk 0111111001101

min.w Vk 0111111001110

min.l Vk 0111111001111

min.s Vk 0111111010110

min.d Vk 0111111010111
Description:

The minimum of Sk and all the elements of Vk is

number of elements

element is loaded into Sk.
Notes:

bytes

hal fwords
words
longwords
single float
double float

determined. The
and the minimum

1 The scalar register should be initialized to the maximum
value for the first use of the MIN instruction.

2 Since this instruction reduces Vk and Sk into ©Sk, the
will accept either a Vk or Sk as the argument
to this instruction.

assembler

Section 15.3

15-7

Vector Reduction Instruction Set

AND REDUCE VECTOR all Vk

Purpose:)
To AND reduce all the elements of a vector.

Format:
| Opcode | Vk/Sk |
15 3.2 0
Operation:
DO 10 a = 0, (VL-1)
Sk = Sk .AND. Vk(a)
10 CONTINUE
PSW:

Exceptions:

Opcode:
all Vk 0111111000100 AND reduce a vector

Description:
The AND of the scalar register Sk and all elements of Vk is calcu-
lated. The number of elements ANDed is determined by VL. The
result is loaded into Sk. If all the corresponding bits in Sk and
Vk are a 1, then a 1 is loaded in the corresponding bit position of
the result Sk. *

Notes:

1 The scalar register should be initialized to one for the
first use of the AND reduce instruction.

2 All 64-bits of each element participate in the reduction
operation.

3 Since this instruction reduces Vk and Sk into Sk, the

assembler will accept either a Vk or Sk as the argument
to this instruction.

Section 15.3 15-8

Vector Reduction Instruction Set

OR REDUCE VECTOR ; any Vk

Purpose:
To OR reduce all the elements of a vector.

Format:
| Opcode | Vk/Sk |
15 3.2 o]
Operation:
DO 10 a = 0, (VL-1)
Sk = Sk .OR. Vk(a)
10 CONTINUE
PSW:
Exceptions:
Opcode:
any Vk 0111111000101 OR reduce a vector
Description:

The OR of the scalar register Sk and all elements of Vk 1is calcu-
lated . The number of elements ORed is determined by VL. The
result is loaded into Sk. If any of the corresponding bits in Sk or
Vk(i) 4is a 1, then a 1 is loaded into the corresponding bit posi-
tion ‘in the result loaded into Sk.

Notes: :
1 The scalar register should be initialized to =zero for
the first use of the ANY instruction.

2 All 64-bits of each element participate in the reduc-
tion.

3 Since this instruction reduces Vk and Sk into Sk, the

assembler will accept either a Vk or Sk as the argument
to this instruction.

Section 15.3 15-9

Vector Reduction Instruction Set

EXCLUSIVE OR REDUCE VECTOR parity Vk

Purpose:
To EXCLUSIVE OR reduce all the elements of a vector.

Format:

| - Opcode | Vk/Sk |

15 3,2 0
Operation:

DO 10 a = 0, (VL-1)

Sk = Sk .Exclusive OR. Vk(a)

10 CONTINUE

PSW:

Exceptions:

Opcode:
parity Vk 0111111000110 Exclusive OR reduce a vector
Description:
The exclusive OR of the scalar register Sk and all elements of Vk
is calculated. The number of elements exclusively ORed is deter-
mined by VL. The result is loaded into Sk.
Notes:

1 The scalar register should be initialized to zero for
the first use of the reduction instruction.

2 All 64 bits of each vector element participate in the
operation.

3 Since this instruction reduces Vk and Sk into Sk, the

assembler will accept either a Vk or Sk as the argument
to this instruction.

Section 15.3 15-10

Vector Reduction Instruction Set

POPULATION COUNT VECTOR plc.t Vi, Vk

Purpose:
To count the number of one's in each vector element.

Format:

| Opcode | Vj | Vk |

15 6.5 3.2 o
Operation:

DO 10 a = 0, (VL-1)

Vk(a) = O
DO 10 j = 0, 63
IF (Vj .EQ. 1) THEN
Vk(a) = Vk(a) + 1
ENDIF

10 CONTINUE
PSW:
Exceptions:
Opcode:

plc.t Vj,Vk 0110001101 Population Count of a Vector
Description:

The number of l1l's in each vector element of Vj is loaded in the

corresponding element of Vk. The number loaded is zero extended on

the left. The number of vector elements is equal to VL.
Notes:

The parity of the population count of each element can be calcu-
lated by performing a population count and then by performing a
vector and Vi,Sj,Vk with the scalar register loaded with a 1 in the
least significant bit, and O's elsewhere.

Section 15.3 15-11

VL, VS, and VM Instruction Set
CHAPTER 16

16 VL. VS, and VM Instiruction Set

This chapter is divided into two sections: VL and VS operators; and VM
Operations.

16.1 VL and ¥S

Included in this section are the following instructions: Move Address/VL;
Load VL/Immediate; Move Address/VS: Load VS Immediate; Load VS and VL:
Store VS and VL; Move Scalar/VL, and Move Scalar/VS. None of the flags in
the PSW are affected by these operations.

16.2 VM Qperations

The VM operations include the following: Load VM; Store VM; Population
Count VM, and Move VM/Scalar.

Section 16.2 16-1

VL, VS, and VM Instruction Set

MOVE ADDRESS/VL mov Ak, VL

Purpose:
To move the contents of an address register to the vector length
register, VL.

Format:
| Opcode | Ak |
15 3,2 o]
Opefation:
IF (Ak .GE. 128) THEN ; mov Ak, VL
VL = 128
ELSE
IF (Ak .LT. O) THEN
VL =0
ELSE
VL = Ak<6..0> -
END IF
END IF
Ak = VL ! mov VL, LAk
PSw:
Exceptions:
Opcode:
mov Ak,VL 0111110110011 Move Ak to VL
mov VL, Ak 0111110110010 Move VL to Ak
Description:
The contents of the A register are moved to V.. If the contents of
Ak are greater than 128, then 128 is loaded into VL. If the con-
tents of Ak are less than 128, then Ak is loaded into VL. When VL
is moved to Ak, Ak<31l..7> are loaded with O.
Notes:

Section 16.2 : 16-2

VL, VS, and VM Instruction Set

LOAD VL/IMMEDIATE ld.w #N,VL
Purpose:
To load the vector length register with an immediate
Format:
| Opcode |L| OCO | Ak [N |
15, 6,5 3,2 O 31}16 o
Operation:
IF (Immediate .GE. 128) THEN
VL = 128
ELSEIF (Aj .LT. O) THEN
VL =0
ELSE
VL = Immediate<6..0>
END IF
END IF
PSW:
Exceptioris:
Opcode:
ld.w #N,VL 000110000 Load VL with an immediate
Description:
The immediate field is used to load VL. If the immediate field is
greater than 128 then 128 is loaded into VL. If the immediate is
less than 128 then immediate<6..0> is loaded into VL.
Notes:

Section 16.2

16-3

VL, VS, and VM Instruction Set

MOVE ADDRESS/VS

mov Ak, VS

Purpose:

To move the contents of an address register to/from

stride register, VS.

Format:
| Opcode | Ak]
15 3,2 o
Operation:
VS = Ak ! mov Ak,VS
Ak = VS ! mov VS, Ak
PSW:
Exceptions:
Opcode:
mov VS, Ak 0111110110000 Move VS to Ak
mov Ak, VS 0111110110001 Move Ak to VS
Description:
The contents of the A register are moved to/from VS.
Notes:

Section 16.2

the

vector

16-4

VL, VS, and VM Instruction Set

LOAD VS/IMMEDIATE ld.w #N,VS

Purpose:
To load the vector stride register from an immediate

Format:
| opcode ILIOOO | Ak | | N
s, 65 3.2 o s o
Operation:
VS = Immediate
PSW:

Exceptions:

Opcode:
l1d.w #N,VS 000110001 Load VS from an immediate
Description: '
The immediate field is loaded into VS.
Notes:

Section 16.2 16-5

VL, VS, and VM Instruction Set

LOAD VS AND VL 1d.1 <effa>,VLS

Purpose:
To load the vector stride register and the vector length register
from memory '

Format:
| Opcode |@|L|] Aj | Ak | | Displacement |
15 8,7.6,5 3.2 0 (31.15) o
Operation:
VS = c(Effective Address<63..31>) ! VS loaded from higher order 32 bit
VL = c(Effective Address<31..0>) ! VL loaded from lower order 32 bits
PSW:
Exceptions:
Opcode:
1d.1 <effa>,VLS 000010100 Load VS and VL from memory
Description:
The 64 bit operand in memory is fetched. Bits<63..32> are loaded
into the vector stride register, VS. Bits<31l..0> are loaded into
the vector length register, VL.
Notes:

1 VL is unconditionally loaded with the exact contents of
memory.

Section 16.2 16-6

VL, VS, and VM Instruction Set

STORE VS AND VL st.1l VLS, <effa>

Purpose:

To store the vector stride register and the vector length register
to memory ’

Format:
| Opcode |@|L| Aj | Ak | | Displacement |
15 8,7,6,5 3,2 o) (31.15) 0
Operation:
c(Effective Address<63..31>) = VS ! VS stored into higher order 32 bits
c (Effective Address<31..0>) = VL ! VL stored into lower order 32 bits
PSW:
Exceptions:
Opcode:
st.l VLS, <effa> 000011100 Store VS and VL to memory
Description: .
A 64-bit operand is stored in memory. Bits<63..32> are stored
from the vector stride register, VS. Bits<3l..0> are stored from
the vector length register, VL.
Notes:

Section 16.2 16-7

VL, VS, and VM Instruction Set

MOVE SCALAR/VL mov.w Sk,VL

Purpose:
To move the contents of Sk to VL.

Format:
| Opcode | Ak |
15 3.2 o]
Operation:
IF (Sk .GE 128) THEN ! mov.w Sk VL
VL = 128
ELSE . .
IF (Sk .LT. O) THEN
VL =0
ELSE ‘
VL = Sk<6..0>
ENDIF
ENDIF
PSW: s
Opcode: .
mov.w Sk,VL 0111110110111 Move Sk to VL
Description:

The least significant 32 bits of Sk (Sk<31..0>) are moved to VL.

Section 16.2 16-8

VL, VS, and VM Instruction Set

MOVE SCALAR/VS

mov.w Sk,VS

Purpose:
To move the contents of Sk to VS.

Format:
| Opeode 1 Ak |
s .2 o
Operation:
VS = Sk ! mov.w, Sk, VS
PSW:
Opcode:
mov.w Sk,VS 0111110110101 Move Sk to VS
Description:

The least significant 32 bits of Sk (Sk<31l..0>) are moved to VS.

Section 16.2

16-9

VL, VS, and VM Instruction Set

LOAD VM 1d.x <effa>, VM

Purpose:
To load the VM register from memory

Format:
| Opcode |[@|L| Aj | Ak | | Displacement |
15 8,7,6,5 3,2 o} (31,15) 0
Operation:
VM = c(Effective Address<127..0>) ! Load 128 bits beginning at
<effa>
PSW:
Exceptions:
Opcode:
ld.x <effa>, VM 000010110 Load VM from memory
Description:
The 128 bits (16 bytes), beginning at the effective address are
loaded into VM.
\
Notes:

1 VM <127..120> are loaded from the byte referenced by the
effective address. VM <7..0> are loaded from the byte
referenced by effective address + 15.

Section 16.2 16-10

VL, VS, and VM Instruction Set

STORE VM

st.x VM,<effa>

Purpose:

To store the VM register into memory

Format:

| Opcode |@IL| Aj | Ak |

Operation:

c(Effective Address<127..0>) = VM ! Store 128 bits beginning at

Effective Address.
PSW:

Exceptions:

Opcode:
st.x VM, <effa> 000011110

Description:
VM is stored into the 128 bits (16 bytes), beginning at the
tive address.

Notes:

store VM into memory

effec-

1 VM <127..120> are stored in the byte referenced by the

effective address.

<7..0> are stored in the byte

referenced by the effective address + 15.

Section 16.2

16-11

VL, VS, and VM Instruction Set

POPULATION COUNT VM plc. (t|f) VM,Sk

Purpose:
To load the number of ones or zeros in VM into an § register.

Format:

Operation:
IF (PLC.T) THEN

DO 10 a = 0, (VL-1)
Sk = Sk + VM<a>
10 CONTINUE
ELSE
DO 10 a = 0, (VL-1)
Sk = Sk + .NOT. VM<a>
10 CONTINUE
ENDIF
Exceptions:
Opcode:
pPlc.f VM, Sk 0111111011100 Load the number of O's in VM into Sk
plc.t VM, Sk 0111111011101 Load the number of 1l's in VM into Sk
Description:
The number of 1's or O's in VM until VL is loaded into Sk, bits
6..0. All other Sk bits are reset to O.
Notes:

These instructions typically determine the number of successful
compare operations performed. The VM set by the compare could also
be used to compress a vector register, and then further processing
would use a VL value determined by the plc VM instructions.

Section 16.2 16-12

VL, VS, and VM Instruction Set

MOVE VM/SCALAR mov Sj,VM, Sk

Purpose:
To move VM to and from a scalar register.

Format:
| Opcode | 8§ | Sk |
15 6,5 3,2 O
Operafion:
Sk = VM(Sj) ! use Sj<0> to index VM<127..64> or VM <63..0>
VM(Sj) = Sk ! move Sk to VM
PSW:

Exceptions:

Opcode:
mov Sj,S8k,VM 0110000100 Load VM(Sj) from Sk.
mov Sj.VM, Sk 0110000101 Load Sk from VM

]

Description:)
The contents of Sj determine which part of VM is manipulated. If
the 1least significant bit in Sj is a 0, VM<63..0> are manipulated.
If Sj is a 1, VM<127..63> are manipulated. Sk is moved to and from
VM(Sj). Bits<63..1> of Sj are ignored.

Notes:

Typically, a move of VM into the Sk scalar register is used to

determine all of the elements that satisfy a multi-value logical

relation. These logical relations may involve zero crossing algo-

rithms or all elements that are between several boundary conditions
. (greater than x and less than y).

Section 16.2 16-13

APPENDIX A
NOTATIONAL CONVENTIONS

This text utilizes the notational conventions listed below:

o Bit numbering is right to left, O through N-1. The most signifi-
cant numerical bit is N-1, the least significant 0. In essence,
the bit numbering represents the binary weight of a position.

o Bit fields are specified using the following convention:

REG<15..0>

vhere the bit field is REG from bits 15 through O.
o Individual bit positions within a register are denoted by
specific positions separated by commas. For example,
REG<15,4,0> denotes bits 15, 4, and O of REG.
Byte numbering is from left to right.
A bit is a single binary value or entity.
A byte is 8 bits.
A halfword is 16 bits.
A word is 32 bits.
A longword is 64 bits.
Single precision is a 32 bit floating point word.
Double precision is a 64 bit floating point longword.
An instruction is a multi-halfword operand.
A register is a programmer visible hardware storage element
internal to the processor.
Main memory or physical memory is the physical storage present
in the computer system.
Loglcal or virtual memory or memory is the perceived amount of
qzh;n memory as seen by the application programmer.
e symbol K is an abbreviation for 1,024.
a*symbol M is an abbreviation for 1,048,576.
?he symbol G is an abbreviation for 1,073,741,824.
o TBD means to be determined.
A 'stack is a linked-1list group of words. A stack is useful for
dynamic allocation and deallocation of memory.
o A return Block is a collection of registers that is pushed or
popped from a stack 1in response to an instruction or other
event.

o 0O 00 0O0OOOOO

o’ 0

o

Where used in the document, the terms "reserved" or "undefined" are meant
to convey to the hardware and software engineer what to expect, if any-
thing, from unused fields in registers. The programming of algorithms
which are based on the use of undefined or reserved fields is not recom-
mended.

Wherever feasible, the FORTRAN language (F'77 and 8x) will be used as a
metalanguage to describe algorithms. All of the proper FORTRAN syntax and
semantics will be used. For example, the symbol "G" as defined above is
represented by 2**30 in FORTRAN. Comments on a line are indicated with a
"." preceding the comment.

Appendix A Page A-1

Appendix A Page A-2

0x0000 11-7
0x0100 11-7
0Ox0200 11-7
0x0300 11-7
0x0400 11-7
0x0500 11-7
Ox0600 11-7
0x0700 11-7
O0x0900 9-26
0x0a00 16-6
Ox0b00 16-10
0x0c00 9-32
0x0d00 9-27
0x0e00 16-7
Ox0f00 16-11
0x1000 12-20
0x1008 10-6
0x1080 11-16
0x1088 10-6
0x1088 10-6
0x1088 10-6
0x1100 9-6
0x1108 10-6
0x1180 9-6
0x1188 10-6
0x1188 10-6
0x1188 10-6
0x1200 9-21
0x1208 10-21
0x1280 9-22
0x1288 10-22
0x1300 9-23
Ox1308 10-23
0x1380 9-2S
0x1388 10-24
0x1400 9-12
0x1408 10-17
Ox1480 9-12
0x1488 10-17
Ox1500 9-13
0x1508 10-18
0x1580 9-13
0x1588 10-18
0x1600 9-14
0x1608 10-19
0x1680 9-14
0x1688 10-19
0x1700 9-15
Ox1708 10-20
0x1780 9-15
0x1788 10-20

Appendix B

exit
jmp
Jmpi.f
jmpi.t

<effa>
<effa>
<effa>

jmpa.f <effa>

jmpa.t

<effa>

jmps.f <effa>

jmps.t

<effa>

APPENDIX B
OP CODES SORTED BY NUMBER

Error Exit Instruction

Jump Always

Jump on ION false

Jump on ION true

Jump on address carry false
Jump on address carry true
Jump on scalar carry false

Jump on scalar carry true

ldea <effa>,Ak
1d.1 <effa>,VLS

1d.x <effa>,
tas <effa>

pshea <effa>
st.l VLS,6<effa>
st.x VM, <effa>

halt #N.,Ak
1d.d #N,S8k
sysc #r,#g
ld.du #N, Sk
1d.1lu #N,Sk
ld.u #N, Sk
1d.h #N, Ak
1d.1 #N,Sk
ld.w #N,Ak
1d.d1l #N,Sk
1d.11 #N,Sk
l1d.w #N, Sk
and #N, Ak
and #N, Sk
or #N,Ak

or #N,Sk
xor #N,AK
xor #N,Sk
shf #N,AK
shf #N,Sk
add.h #N, Ak
add.h #N,Sk
add.w #N, Ak
add.w #N,Sk
sub.h #N,Ak
sub.h #N,Sk
sub.w #N,6Ak
sub.w #N, Sk
mul .h #N,Ak
mul.h #N,Sk
mul .w #N,6 Ak

mul .w #N, Sk
div.h #N,LAk
div.h #N,Sk
div.w #N,6 Ak
div.w #N,Sk

Load effective address

Load VS8 and VL from memory

Load VM from memory

Test and Set a memory byte

Push effective address

Store VS and VL to memory

store VM into memory

Halt the central processing unit

Load immediate, most significant bits
Perform a system call

Load 64 bit floating immed., upper half
Load 64 bit integer immed., upper half
Load immediate, upper half

Load halfword imm. into Ak

Load 64 bit sign extended immediate
Load imm. into Ak

Load 64 bit floating immed..
Load 64 bit integer immed.,
Load a 32 bit immediate
AND imm. to addr. regq.

AND scalar/immediate

OR imm. to addr. reg.

OR scalar/immediate
Exclusive OR imm. to addr. regq.
Exclusive OR scalar/immediate

Logical shift imm. to addr. regq.

Shift Scalar/immediate

Add imm. address halfword

Add scalar/immed. integer halfword
Add imm. address word

Add scalar/immed. ‘integer word
Subtract imm. address halfword
Subtract scalar/immed. integer halfword
Subtract imm. address word

Subtract scalar/immed. integer word

lower half
lower half

Multiply imm. address halfword
Multiply scalar/immed. integer halfword
Multiply imm. address word

Multiply scalar/immed. integer word
Divide imm. address halfword

Divide scalar/scalar integer halfword
Divide imm. address word

Divide scalar/scalar integer word

Page B-1

0x1800
0x1808
0x1880
0x1888
0x1908
0x1988
0x1a08
Ox1a88
0x1b00
Ox1b08
Ox1b80
Ox1b88
Ox1c00
Ox1c08
Ox1c80
Ox1c88
0x1d00
0x1d08
0x1d80
0x1d8s8
Ox1e00
Ox1le08
Ox1e80
Oxle88
Ox1£00
Ox1£08
Ox1£80
Ox1£88
0x2000
0x2100
0x2200
0x2400
0x2500
0x2600
0x2600
0x2700
0x2700
0x2800
0x2900
0x2a00
0x2c00
0x2d400
0x2e00
0x3000
0x3100
0x3200
0x3200
0x3300
0x3300
0x3400
0x3500
0x3600
0x3600
0x3700

16-3
10-17
16-5
10-18
10-19
10-20
10-31
10-31
9-41
10-31
9-41
10-31
9-42
10-33
9-42
10-33
9-42
10-33
9-43
10-33
9-41
10-31
9-41
10-31
9-41
10-31
9-41
10-31
11-10
11i-11
11-14
13-18
13-18
13-18
13-18
13-18
13-18

HEKFBEFEOOOOOO
QO t
[¥ I ¥ ¥ Y - NN

[

[

BB
1
UG abd b d

[e
O 0O0O0 ? O 00O

[s

Appendix B

ld.w

#N, VL

add.s #N, Sk

1d.w

#N,VS

sub.s #N, Sk
mul.s #N, Sk
div.s #N,Sk

le.s #N,Sk
lt.s #N,Sk
eq.h #N,6 Ak
eq.h #N,Sk
eq.w #N,6Ak
eq.w #N,Sk

leu.h
leu.h
leu.w
leu.w
ltu.h
ltu.h
ltu.w
ltu.w

le.h
le.h
le.w
le.w
l1t.h
1t.h
l1t.w
l1t.w
call

calls
callg
ste.b
ste.h
ste.s
ste.w
ste.d
ste.l

1d.b
1d.h
1d.w
st.b
st.h
st.w
1d.b
1d.h
1d.s
1d.w
1d.d
1d.1
st.b
st.h
st.s
st.w
st.d

#N, Ak
#N, Sk
#N, Ak
#N, Sk
#N, Ak
#N, Sk
#N, Ak
#N, Sk
#N, Ak
#N, Sk
#N, Ak
#N, Sk
#N,Ak -
#N, Sk
#N, Ak
#N, Sk
<effa>
<effa>
<effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>
<effa>, Ak
<effa>,Ak
<effa>, Ak
Ak, <effa>
Ak, <effa>
Ak, <effa>
<effa>, Sk
<effa>, Sk
<effa>, Sk
<effa>, Sk
<effa>, Sk
<effa>, Sk
Sk, <effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>
Sk, <effa>

"Load

Load VL with an immediate
Add scalar/immed. single float
Load VS from an immediate
Subtract scalar/immed. single float
Multiply scalar/immed. single float
Divide scalar/scalar single float

Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare

less than or equal single
less than single

equal halfword

equal halfword

equal word

equal word

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
less than
less than
less than
less than
less than
less than
less than
less than

than
than
than
than
than
than
less than
less than
or equal
or equal
or equal
or equal
halfword
hal fword
word

word

less
less
less
less
less
less

halfword
or equal halfword
word
or equal word
halfword
halfword
word
word
halfword
halfword
word
word

Call a subroutine, make a long frame
Call a subroutine, make a short frame

Push the program counter

Store
Store
Store
Store
Store
Store

an
an
an
an
an
an

extended
extended
extended
extended
extended
extended

scalar
scalar
scalar
scalar
scalar
scalar

Load addr. reg. byte

Load add

r. reg.

hal fword

Load addr. reg. word

Store ad
Store ad
Store ad
Load sca
Load sca
Load sca
Load sca
sca
sca
sc
sc
sc
sc
sc

Load

Store
Store
Store
Store
Store

dr.
dr.
dr.
lar
lar
lar
lar
lar
lar
alar
alar
alar
alar
alar

reg.
byte

word

byte

sing
word
doub

reg. byte
reg. halfword
word

halfword »
single float

double float
longword

halfword

le float

le float

and jump
byte
halfword
single float
word

double float
longword

Page B-2

0x3700
0x3800
0x3900
0x3a00
0x3a00
Ox3b00
0x3b00
0x3c00
0x3d00
0x3e00
0x3e00
Ox3£00
O0x3£00
0x4000
0x4040
0x4080
0x40c0
0x4100
0x4140
0x4180
Ox41cO
0x4200
0x4240
0x4280
0x42c0
0x4300
0x4340
0x4380
0x43c0
0x4400
0x4440
0x4480
0x44c0O
0x4500
0x4540
0x4580
0x45c0
0x4600
0x4640
0x4680
0x46c0
0x4700
0x4740
0x4780
0x47c0
0x4800
0x4840
0x4880
0x48c0
0x4900
0x4940
0x4980
0x49c0
0x4a00

10-5
13-8
13-8
13-8
13-8
13-8
13-8
13-10
13-10
13-10
13-10
13-10
13-10
9-44
9-44
9-44
9-44
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
10-34
9-33
9-25
9-6
9-6
10-34
10-34
10-38
10-37
9-37
9-37
9-40
9-40
10-27
10-27
10-27
10-27
9-39
9-39
9-42
9-42
10-29
10-29
10-29
10-29
9-39

Appendix B

" leu.b

st.1l
1d.b
1d.h
id.s
1d.w
1d.d
1d.1
st.b
st.h
st.s
st.w

Sk, <effa>
<effa>,Vk
<effa>,Vk
<effa>,Vk
<effa>,Vk
<effa>,Vk
<effa>,Vk
Vk, <effa>
Vk,<effa>
Vk, <effa>
Vk, <effa>
st.d Vk,<effa>
st.1l Vk,<effa>
cvtw.b Aj, Ak
cvtw.h Aj,Ak
cvtb.w Aj,Ak
cvth.w Aj,AK
cvtw.b Sj,Sk
cvtw.h S§j,8k
cvtb.w Sj,S8k
cvth.w Sj,Sk
cvtw.s Sj,Sk
cvts.w Sj,8k
cvtd.s Sj.Sk
cvts.d Sj, Sk
cvts.l S§j,S8k
cvtd.l Sj,Sk
cvtl.s4S), 5k
cvtl.d Sj.Sk
ldpa Aj,Ak

shf #n,Ak
ld.h #n, Ak
ld.w #n,Ak
cvtl.w Sj,Sk
cvtw.1l Sj,.Sk
plc.t Sj.S8k
tzc Sj.8k

eq.h Aj,Ak
eq.w Aj, Ak
eq.h #n,Ak
eq.w #n,Ak
eq.b Sj,Sk
eq.h §j,8k
eq.w Sj,S8k
eq.l S§j,Sk
leu.h Aj, Ak
leu.w Aj, Ak
leu.h #n,Ak
leu.w #n,Ak
Sj.8k
Sj.sk
Sj.8k
Sj.Sk
gt.Aj, Ak

leu.h
leu.w
leu.l
ltu.h

Store scalar longword

Load

Load

Load

Load

Load

Load

Store
Store
Store
Store
Store
Store
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert

vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector

byte
halfword
single float
word

double float
longword
byte
halfword
single float
word

double float
longword

to byte

to halfword
to word

to word

to byte
word to halfword
byte to word
halfword to word

word
word
byte
half
word

word to single float

float to
float to
float to
single float to
double float to
longword to single
longword to double

single
double
single

word

single float
double float
longword
longword

float
float

Load a physical byte address into Ak
Logical shift left short imm.

Load short imm. into Ak
Load short imm. into Ak

Convert
Convert

longword to word
word to longword

Count the number of 1l's in Sj
Count of trailing zeroes in Sj

Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare

halfword
word
halfword
word
byte
hal fword

equal
equal
equal
equal
equal
equal
equal word
equal longword
unsigned less than

or equal halfword

unsigned less or equal than word

unsigned less than
unsigned less than
less than or equal
less than or equal
less than or equal
less than or equal
unsigned less than

or equal halfword
or equal word
byte

hal fword

word

longword

hal fword

. Page B-3

Ox4a40
0x4a80
Ox4acO
0x4b00
0x4b40
0x4b80
Ox4bc0O
0x4c00
Ox4c40
0x4c80
Ox4ccO
0x4d00
0x4d40
0x4d80
Ox4dcO
0x4e00
0x4e40
Ox4e80
Ox4ecO
0x4£00
0x4£40
Ox4£80
Ox4£fcO
0x5000
0x5040
0x5080
0x50c0O
0x5100
0x5100
0x5140
0x5180
0x5180
0x51cO
0x5200
0x5240
0x5280
0x52c0
0x5300
0x5340
0x5380
0x53c0O
0x5400
0x5440
0x5480
0x54c0
Ox5500
0x5540
0x5580
0x55¢c¢0
0x5600
0x5640
Ox5680
O0x56c0
0x5700

9-39
9-42
9-42
10-29
10-29
10-29
10-29
9-37
9-37
9-40
9-40
10-27
10-27
10-27
10-27
9-37
9-37
9-40
9-40
10-27
10-27
10-27
10-27
9-16
9-24
9-29
10-39
10-41
10-41
10-36
10-41
10-41
10-40
9-17
9-18
9-19
9-20
10-13
10-14
10-15
10-16
10-27
10-27
10-27
10-27
10-8
10-8
10-9
10-9
10-27
10-28
9-11
9-11
10-10

Appendix B

ltu.w gt,Aj,Ak Compare unsigned less than word

ltu.h #n,Ak
ltu.w #n,Ak
ltu.b Sj,Sk
ltu.h Sj, Sk
ltu.w Sj, Sk
ltu.l Sj.sSk
le.h Aj, Ak

‘le.w Aj,AK

le.h #n, Ak
le.w #n, Ak
le.b Sj.sk
le.h Sj,sk
le.w Sj,Sk
le.1 Sj.sk
lt.h Aj,Ak
lt.w Aj, Ak
1t.h #n,Ak
lt.w #n,Ak
l1t.b Sj.8k
l1t.h Sj.sk
lt.w Sj.sk
lt.1 Sj.sk
add.w Sj,Ak
shf Aj, Ak~
mov Aj,Ak
mov Sj,Ak
mov.s Sj,Sk
mov.w Sj,Sk
shf Sj,Sk
mov.d Sj,Sk
mov.l Sj,Sk
mov Aj,Sk
and Aj, Ak
or Aj,Ak
xor Aj,Ak
not Aj,Ak
and Sj,Sk
or Sj.Sk
xor Sj.Sk
not Sj,Sk
le.s Sj,Sk
le.d Sj,sk
lt.s Sj,Sk
lt.d Sj.Sk
add.s Sj,Sk
add.d Sj,Sk
sub.s Sj,Sk
sub.d Sj,Sk
eq.s Sj,Sk
eq.d Sj,Sk
neg.h Aj,LAk
neg.w Aj,Ak
mul.s Sj,Sk

Compare unsigned less than hal fword
Compare unsigned less than word
Compare less than byte

Compare less than halfword

Compare less than word

Compare less than longword

Compare less than or equal signed halfword

Compare less than or equal signed word
Compare less than or equal hal fword
Compare less than or equal word
Compare less than or equal byte
Compare less than or equal halfword
Compare less than or equal word
Compare less than or equal longword
Compare less than signed hal fword
Compare less than signed word
Compare less than halfword

Compare less than word

Compare less than byte

Compare less than halfword

Compare less than word

Compare less than longword

Add scalar to addr word

Shift an address

Move addr. regq.

Move 32 bits of Sj into Ak.

Move scalar register double float
Move scalar register word

Shift a scalar

Move scalar register single float
Move scalar register longword

Move an address to a scalar

AND addr. regq.

OR addr. regq.

Exclusive OR addr. reg.

Complement addr. regq.

AND scalar/scalar

OR scalar/scalar

Exclusive OR scalar/scalar
Complement scalar/scalar

Compare less than or equal single float
Compare less than or equal double float
Compare less than single float
Compare less than double float

Add scalar/scalar single float

Add scalar/scalar double float
Subtract scalar/scalar single float
Subtract scalar/scalar double float
Compare equal single float

Compare equal double float

Negate addr. reg. halfword

Negate addr. reg. word

Multiply scalar/scalar single float

Page B-4

0x5740
0x5780
0x57c0O
0x5800
0x5840
0x5880
0x58c0
0x5900
0x5940
0x5980
0x59c0
0x5a00
0Ox5a40
0x5a80
Ox5acO
0x5b00
Ox5b40
0x5b80
Ox5bcO
0x5c00
0x5c40
Ox5c80
Ox5ccO
0x5400
0x5d40
0x5d80
0x5dc0O
0x5e00
Ox5e40
Ox5e80
Ox5ecO
Ox5£00
O0x5f40
0x5£80
Ox5£fcO
0x6100
0x6140
O0x62c0
0x6300
0x6340
0x6380
0x63c0
0x6400
0x6440
0x6480
O0x64c0O
0x6500
0x6540
0x6580
0x65c0
0x6600
0x6640
0x6680
0x66c0O

10-10
10-11
10-11
9-7
9-7
9-12
S-12
10-8
10-8
10-8
10-8
9-8
9-8
9-13
9-13
10-9
10-9
10-9
10-9
9-9
9-9
9-14
9-14
10-10
10-10
10-10
10-10
9-10
9-10
9-15
9-15
10-11
10-11
10-11
10-11
16-13
16-13
13-34
13-38
15-11
14-8
14-8
14-4
14-5
13-25
13-25
14-6
14-7
10-12
10-12
14-4
14-4
14-4
14-4

Appendix B

mul.
div.
div.
add.
add.
add.
add.
add.
add.
add.
add.
sub.
.w Aj,Ak

d Sj.Sk
s Sj.Sk
d 8j.8k
h Aj,Ak
w Aj,Ak
h #n,Ak
w #n,Ak
b Sj.8k
h Sj.S8k
w 8j.Sk
1 Sj.8k
h Aj,Ak

#n,Ak
#n, AK
Sj.Sk

Multiply scalar/scalar double float
Divide scalar/scalar single float
Divide scalar/scalar double float

Add
Add
Add
Add
Add
Add
Add
Add
Subtract
Subtract
Subtract
Subtract
Subtract

halfword
word

addr. regq.
addr. regq.
short imm.
short imm. address word

scalar/scalar integer byte

scalar/scalar integer word

addr. reg. halfword
addr. reg. word

short imm.
short imm.
scalar/scalar integer

Sj.sk
S3.Sk
Sj.sk
Aj,Ak

Subtract
Subtract
Subtract
Multiply

scalar/scalar integer
scalar/scalar integer
scalar/scalar integer
addr. reg. halfword

w Aj,AK
#n, Ak

.W #n,Ak
.b Sj.sk
.h S§j.8k

w Sj.Sk
1 8j.sk

div.h Aj,Ak
div.w Aj, Ak

not
shf

ple.

#n, Ak
#n, Ak
Sj.Sk
Sj.sk

.w Sj.Sk
.1 §8j.8k

S3j.Sk, VM
S3j.VM, sk
Vi, Vk
s3.Vk
t Vi, Vk

cprs.f Vj,Vk
cprs.t Vj,Vk
eq.s Vj,Vk
eq.d Vj,Vk

negq.
neg.

s Vj.,Vk

d Vi, Vk

eq.s Sj.Vk
eq.d Sj.Vk

neg.
neq.

s Sj.sk
d sj,sk

le.s Vj,Vk
le.d Vj,Vk
lt.s Vj,Vk
lt.d Vj,Vk

Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Divide
Divide
Divide
Divide
Divide
Divide

addr. reg. word
short imm.
short imm. address
scalar/scalar integer
scalar/scalar integer
scalar/scalar integer
scalar/scalar integer
addr. reg. halfword
addr. reg. word

short imm.
short imm. address word
scalar/scalar integer
scalar/scalar integer
Divide scalar/scalar integer
Divide scalar/scalar integer
Load VM(Sj) from Sk.

Load Sk from VM

Complement a vector

Shift a vector accumulator
Population Count of a Vector
Compress a vector using not VM
Compress a vector using VM
Compare equal single
Compare equal double
Negate vector/vector
Negate vector/vector
Compare equal single
Compare equal double precision
Negate scalar/scalar
Negate scalar/scalar
Compare less than or
Compare less than or
Compare less than
Compare less than

precision

single
double float

address halfword

scalar/scalar integer halfword

scalar/scalar integer longword

address halfword
address word

byte
halfword
word
longword

address halfword
word

byte
halfword
word
longword

address halfword

byte
halfword
word
longword

single float
double float

single float
double float
equal single
equal double float

Page B-5

0x6700
0x6740
0x6780
0x67c0
0x6800
O0x6840
0x6880
Ox68c0
O0x6900
0x6940
0x6980
0x69c0
0x6a00
Ox6a40
0x6a80
Ox6acO
Ox6b00
Ox6b40
Ox6b80
Ox6bcO
Ox6c00
Ox6c40
0x6¢c80
Oxb6ccO
0x6d00
Ox6440
Ox6d80
Ox6dcO
Ox6e00
Ox6e40
Ox6e80
Ox6ecO
Ox6 £00
Ox6 £40
Ox6 £80
Ox6 £cO
0x7000
0x7100
0x7200
0x7300
0x7400
0x7500
0x7600
0x7700
0x7800
0x7840
0x7880
0x7880
0x78c0
O0x78cO
Ox7E70
' Ox7E78
0x7a00
O0x7a40

14-6
14-6
14-6

14-6

14-4
14-4
14-4
14-4
14-6
14-6
14-6
14-6
14-4
14-4
14-4
14-4
14-6
14-6
14-6
14-6
14-4
14-4
14-4
14-4

14-6

14-6
14-6
14-6
13-25
13-25
13-25
13-25
10-12
10-12
10-12
10-12
11-5
11-5
11-5
11-5
11-5
11-5
11-5
11-5
13-12
13-12
13-12
13-12
13-12
13-12
12-23
12-24
13-14
13-14

Appendix B

N

.~

~

[
&
o
P LEERR.
SFFFSSSS

.~ .

"Uo‘:hu-‘
RRRRISAS

¢

’

.

nnunnc
e L Lo ULae L

.

brs.

ldvi.b Vj,Vk
ldvi.h Vj,Vk
ldvi.s Vj,Vk
ldvi.w Vj,Vk
ldvi.d Vj,Vk
ldvi.l Vj,Vvk
mov Sk,VV
tstvv

stvi.b Vk,Vj
stvi.h Vk,Vj

Compare
Compare
Compar
Compar
Compar
Compar
Compar
Compar
Compar
Compar
Compar
Compar
Compar

Compare

Compar
Compar

Compare less

Compar

Compare
Compare
Compare
Compare
Compare
Compare less
Compare
Compare

Compar

Compare

Negate
Negate
Negate
Negate
Negate
Negate
Negate
Negate
No Ope
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Index
Index
Index
Index
Index
Index

less than
less than

or equal single
or equal double float

e less than
€ less than
e equal byte
e equal
e equal
e equal
e equal
e equal
e equal
e equal
e less
less
e less
e less

word
byte
word

than
than
than
than
than
than
than
than
than
than
than
than
‘than
than
e less than
less than
vector/vector
vector/vector
vector/vector
vector/vector
scalar/scalar
scalar/scalar
scalar/scalar
scalar/scalar
ration

Always

on ION false
on ION true
on
on
on
on
Load
Load
Load
Load
Load
Load

or
or
or
or
or
or
or
or

e less
less
less
less
less
less

less
less

vector
vector
vector
vector
vector
vector

single
double float

halfword
longword
halfword

longword

equal byte
equal halfword
equal word

equal
equal
equal
equal
equal

byte »
halfword
word
longword
byte
halfword
word
longword

integer
integer
integer
integer
integer
integer
integer
integer

longword
byte
halfword
word
longword

byte
halfword
word
longword
byte
halfword
word
longword

address carry false
address carry true
scalar carry false
scalar carry true
byte
halfword
single float
word
double float
longword

Move scalar to vector valid flag
Test value of vector valid flag
Index Store vector byte

Index Store vector halfword

Page E-6.

0x7a80 13-14
0x7a80 13-14
Ox7acO 13-14
Ox7acO 13-14
0x7b00 13-16
0x7b40 13-16
O0x7b80 13-16
0x7b80 13-16
0x7bcO 13-16
0x7bcO 13-16
0x7c00 12-5
0x7c08 12-6
0x7c20 12-8
0x7c28 12-9
0x7c30 12-13
Ox7c38 12-14
0x7c40 9-35
O0x7c48 9-36
0x7c50 9-28
Ox7c60 12-16
0x7c68 12-15
0x7¢c78 12-17
0x7c80 11-15
0x7c90 11-12
Ox7ca8 12-10
Ox7ca8 16-9
Ox7cb8 16-8
0x7d00 9-30
0x7d10 9-31
0x7d420 10-25
0x7d28 10-25
0x7d30 10-26
0x7d38 10-26
O0x7d40 12-12
0x7d48 12-12
0x7d50 11-9

Ox7d60 12-19

0x7d68 12-18
0x7d80 16-4
0x7d88 16-4
0x7d90 16-2
0x7d498 16-2
Ox7dcO 12-21
O0x7e00 15-2
Ox7e08 15-2
Ox7el0 15-2
Ox7el8 15-2
O0x7e20 15-8
Ox7e28 15-9
0x7e30 15-10
Ox7e40 15-6
Ox7e48 15-6
Ox7e50 15-6
Ox7e58 15-6

Appendix B

stvi.s
stvi.w
stvi.d
stvi.l
stvi.b
stvi.h
stvi.s
stvi.w
stvi.d
stvi.l

Vk, V3
Vk, Vj
Vk, Vj
Vk, Vj
Sk, Vj
Sk, Vj
Sk, Vj
Sk, Vj
Sk, Vj
Sk, Vj

ldsdr Ak
ldkdr Ak

patu

pate Ak

Index Store vector
Index Store vector
Index Store vector
Index Store vector
Scalar Index Store
Scalar Index Store
Scalar Index Store
Scalar Index Store
Scalar Index Store
Scalar Index Store
Load process SDR's
Load all 8 SDR's

single float

word

double float

longword

vector byte

vector halfword
vector single float

vector word

vector double float
vector longword

Purge the entire ATU

Purge ATU entry

‘pop.w

pich

plch

mov PSW,Ak
mov AK,psw
mov PC,Ak

mov ITR, Sk
mov Sk,ITR

mov Sk, itsr

rtng
rtn
rtnc

mov.w Sk,VS
mov.w Sk,VL

psh.w

=

psh.w Sk
psh.l Sk
pop.w Sk
pop.l Sk
eni

dsi

bkpt
mski Sk
xmti Sk

~ mov VS,Ak

mov Ak,VS
mov VL, Ak
mov Ak, VL
diag Ak
sum.b Vk
sum.h Vk
sum.w Vk
sum.1l Vk
all Vk
any Vk
parity Vk
max.b Vk
max.h Vk
max.w Vk
max.l Vk

Purge the instruction cache
Purge the logical cache

Store the PSW into an addr. regq.
Load an addr. reg. into the PSW
Load next PC address

Move the itc,itsr,nitc into Sk

Load NITC, ITC,

ITSR from Sk

Load ITSR with a scalar

Pop the program counter and jump
Return from subroutine call
Return from a context block ~

Move Sk to VS
Move Sk to VL

Push an addr. regq.

Pop word into addr. reg.

Push Sk<31l..0> onto the stack
Push Sk<63..0> onto the stack.
Pop Sk<31..0> from the stack
Pop Sk<63..0> from the stack.

Enable interrupts,

set ion to 1

Disable interrupts,reset ion to O

Breakpoint

Mask Out Interrupt
Transmit Interrupt

Move VS to Ak
Move Ak to VS
Move VL to Ak
Move Ak to VL

Execute ndn-standard microcode sequence
Sum a vector of bytes

Sum a vector of halfwords

Sum a vector of words

Sum a vector of

longwords

AND reduce a vector
OR reduce a vector
Exclusive OR reduce a vector

Max of a vector
Max of a vector
Max of a vector
Max of a vector

of bytes
of halfwords
of words
of longwords

[Page B-7

Ox7e60
Ox7e68
Ox7e70
Ox7e78
Ox7e80
Ox7e88
Ox7e90
Ox7e98
Ox7eal
Ox7ea8
Ox7eb0
Ox7eb8
Ox7ecO
Ox7ec8
0x7edQ
Ox7ed8
Ox7ee0
Ox7ee8
0x8000
0x8200
0x8400
Ox8600
0x8800
0x8a00
0x8c00
0x8e00
0x9000
0x9200
0x9400
0x9600
0x9800
0x9a00
0x9c00
0x9e00
0xa000
0xa200
Oxa400
0xa800
Oxaa00
Oxac00
Oxb000
Oxb200
Oxb400
Oxb600
Oxb800
Oxba00
OxbcO0
OxbeO0
Oxc000
Oxc200
Oxc400
Oxc600
Oxc800
Oxca00

15-7

15-7

15-7

15-7

15-2

15-2-
15-4

15-4

15-6

15-6

15-7

15-7

15-4

15-4

15-4

15-4

16-12
16-12
13-40
13-39
14-10
14-13
14-12
14-14
14-12
14-14
13-22
13-22
13-23
13-23
13-28
13-28
13-29
13-29
13-31
13-32
13-33
13-35
13-36
13-37
13-20
13-20
13-21
13-21
13-26
13-26
13-27
13-27
13-20
13-20
13-20
13-20
13-26
13-26

Appendix B .

prod.h Vk
prod.w Vk
prod.l Vk

VM, Sk

Min of a
Min of a
Min of a
Min of a
Sum
Sum
Multiply
Multiply
Max of a
Max of a
Min of a
Min of a
Multiply
Multiply
Multiply
Multiply
Load the

vector
vector
vector
vector

a vector of
a vector of

reduce
reduce
vector
vector
vector
vector
reduce
reduce
reduce
reduce
number

of bytes
of halfwords
of words
of longwords
single float
double float

a vector of single float
a vector of double float

of single float
of double float
of single float
of double float
a vector of bytes

a vector of halfwords

a vector of words

a vector of longwords

of O's in VM into

Sk

plc.f
plec.t

VM, Sk

mov Vi, Sj, sk
mov Si,S8j,Vk

merg.t Vi,Vj,Vk
mask.t Vi,Vj,Vk
merg.f Vi,Sj,Vk
mask.f Vi,8j,Vk
merg.t Vi,Sj,Vk
mask.t Vi,Sj,Vk

nul.s
nul.d
div.s
div.d
mul.s
mul.d
div.s
div.d

Vi,Vj,Vk
Vi,Vji,Vk
Vi, Vi, Vk
Vi, Vi, Vk
Vi,sj,Vk
Vi,Sj.Vk

Vi,Sj,Vk

Vi.8j.Vvk

and Vi,Vj,Vk

or Vi,

Vi, Vk

xor Vi,Vj,Vk
and Vi,bSj,Vk

or Vi,

$3.Vk

xor Vi,S8j.Vk

add.s
add.d
sub.s
sub.d
add.s
add.d
sub.s
sub.d
add.b
add.h
add.w
add.l
add.b
add.h

Vi,Vj,Vk
Vi,Vj,Vk
Vi,Vj,Vk
Vi,Vj,Vk
Vi,Sj,Vk
Vi,Sj,Vk
Vi,Sj.Vk
Vi,Sj.Vk
Vi, Vi, Vk
Vi,Vj,Vk
Vi,Vj,Vk
Vi,Vj,Vk
Vi,Sj.Vk
Vi Sj,Vk

Load the number of 1's in VM into Sk
Move a vector element to a scalar
Move a scalar to a vector element
Merge vector/vector

Mask vector/vector

Merge vector/scalar using not VM
Mask vector/scalar using not VM
Merge vector/scalar - - :
Mask vector/scalar using VM
Multiply vector/vector single float
Multiply vector/vector double float
Divide vector/vector single float
Divide vector/vector double float
Multiply vector/scalar single float
Multiply vector/scalar double float
Divide vector/scalar single float
Divide vector/scalar double float
AND two vectors

OR two vectors

Exclusive OR two vectors

AND vector/scalar

OR vector/scalar

Exclusive OR vector/scalar

Add vector/vector single float

Add vector/vector double float
Subtract vector/vector single float
Subtract vector/vector double float
Add vector/scalar single float

Add vector/scalar double float
Subtract vector/scalar single float
Subtract vector/scalar double float
Add vector/vector integer byte

Add vector/vector integer halfword
Add vector/vector integer word

Add vector/vector integer longword
Add vector/scalar integer byte

Add vector/scalar integer halfword

Page B-8

Oxcc00
OxceQ0
0xd000
0xd200
0xd400
0xd600
0xd800
OxdaC0
Oxdc00
Oxde00
0xeQ00
Oxe200
Oxe400
Oxe600
0xe800
Oxeal0
Oxec00
OxeeQ0O
Ox£000
Ox£200
0x£400
Ox£600
O0x£800
Ox£fa00
Ox£fc00
OxfeQ0

13-26-

13-26
13-21
13-21
13-21
13-21
13-27
13-27
13-27
13-27
13-22
13-22
13-22
13-22
13-28
13-28
13-28
13-28
13-23
13-23
13-23
13-23
13-29
13-29
13-29
13-29

Appendix B

add.w
add.l
sub.b
sub.h
sub.w
sub.1l
sub.b

. sub.h

sub.w
sub.1l
mul.b
mul.h
mul.w
mul.l
mul.b
mul.h
mul . w
mul.l
div.b
div.h
div.w
div.1
div.b
div.h
div.w
div.1l

Vi,Sj,Vk
Vi,Sj.,Vk
Vi,Vj,Vk
Vi,Vj,Vk
Vi, Vi, Vk
Vi, Vj,Vk
Vi,Sj,Vk
Vi,Sj,Vk
Vi,Sj,Vk
Vi,8j,Vk
Vi,Vj.Vk
Vi,Vj.,Vk
Vi,Vj,Vk
Vi,Vji,Vk
Vi,Sj,Vk
Vi,Sj.Vk
Vi,Sj.Vk
Vi,S3,Vk
Vi, Vi, Vk
Vi,Vj,Vk
Vi, Vi, Vk
Vi,Vji.Vk
Vi,Sj.Vk
Vi,Sj.Vk
Vi,8j.Vk
Vi,Sj,Vk

Add vector/scalar integer word
Add vector/scalar integer longword

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

vector/vector
vector/vector
vector/vector
vector/vector
vector/scalar
vector/scalar
vector/scalar
vector/scalar
vector/vector
vector/vector
vector/vector
vector/vector
vector/scalar
vector/scalar
vector/scalar
vector/scalar

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

byte
halfword
word
longword
byte
halfword
word
longword
byte
halfword
word
longword
byte
halfword
word
longword

Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide

vector/vector
vector/vector
vector/vector
vector/vector
vector/scalar
vector/scalar
vector/scalar
vector/scalar

integer
integer
integer
integer
integer
integer
integer
integer

byte
hal fword
word
longword
byte
hal fword
word
longword

Page B-9

0x5900
0xc800
Oxc000
0x5540
Oxba00
Oxb200
0x1400
0x1408
0x5880
0x5800
0x5940
Oxca00
0xc200
0x59c0
OxceCO
Oxc600
0x1808
0x5500
Oxb800
Oxb000
0x1480
0x1488
Ox58c0
0x5840
0x5000
0x5980
Oxcc00
Oxc400
Ox7e20
0x1200
0x1208
0x5200
0x5300
0xa800
Oxa000
Ox7e28
0x7d450
0x7100
0x7400
0x7500
0x7200
0x7300
0x7600
0x7700
0x2000
0x2200
0x2100
0x6380
0x63c0
0x4080
0x4180

10-8
13-26
13-20
10-8
13-26
13-20
9-12
10-17
9-12
9-7
10-8
13-26
13-20
10-8
13-26
13-20
10-17
10-8
13-26
13-20
9-12
10-17
9-12
9-7
9-16
10-8
13-26
13-20
15-8
9-21
10-21
9-17
10-13
13-35
13-31
15-9
11-9
11-5
11-5
11-5
11-5
11-5
11-5
11-5
11-10
11-14
11-11
14-8
14-8
9-44
10-34

Appendix C

add.b
add.b
add.b
add.d
add.d
add.d

Sj.sk
Vi,Sj.Vk
Vi,Vj,Vk
Sj.sk

Vi,Sj,Vk

add.h
add.h
add.h
add.h
add.h
add.h
add.h
add.l
add.1l

,add.1l

add.s
add.s
add.s
add.s
add.w
add.w
add.w
add.w
add.w
add.w
add.w
add.w

Vi,Vj,Vk
#N, Ak
#N, Sk
#n, Ak
Aj,Ak
Sj.sk
Vi Sj,Vk
Vi,Vi,Vk
S3.8k
Vi,Sj.Vk
Vi,Vj,Vk
#N, Sk
8j.Sk
Vi,Sj.Vk

Vi,Vi,Vk

#N, Ak
#N, Sk
#n,Ak
Aj,Ak
Sj.Ak
S3.Sk
Vi,Sj,Vk
Vi, Vi, Vk

all Vk

and #N, Ak
and #N, Sk
and Aj,Ak
and Sj,Sk
and Vi, Sj,Vk
and Vi,Vj,Vk
any Vk

bkpt

br

bra.f

bra.t

bri.f

bri.t

brs.f

brs.t

call <effa>
callq <effa>
calls <effa>
cprs.f Vj,Vk
cprs.t Vj,Vk
cvtb.w Aj,bAk
cvtb.w Sj,S8k

APPENDIX C
OP CODES SORTED BY NAME

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

. Add

Add
Add
Add
Add

AND

scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
imm. address
scalar/immed.
short imm.
addr. reg. hal
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
scalar/immed.
scalar/scalar
vector/scalar
vector/vector
imm. address w

integer byte
integer byte
integer byte
double float
double float
double float

hal fword

integer

fword
integer
integer
integer
integer
integer
integer
single
single
single
single
ord

hal fword

address hal fword

hal fword
hal fword
hal fword
longword
longword
longword
float
float
float
float

scalar/immed. integer word

short imm.
addr. reg. wor
scalar to addr

d
word

address word

scalar/scalar integer word
vector/scalar integer word
vector/vector integer word

reduce a vecto
imm. to addr.
scalar/immedia
addr. regq.
scalar/scalar
vector/scalar
two vectors

OR reduce a vector
Breakpoint

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Call a

Always

on address

on address

on ION fals
on ION true
on scalar c
on scalar c

Call a subroutine,
Compress a vector using not VM
Compress a vector using VM
Convert byte to word

Convert byte to word

r

reqg.
te

carry false
carry true
e

arry false
arry true

subroutine, make a long frame
Push the program counter and jump

make a short frame

Page C-1

0x4340
0x4280
0x40c0O
Ox41cO
0x43c0O
0x4380
0x4500
0x42c0
0x4300
0x4240
0x4000
0x4100
0x4040
0x4140
0x4540
0x4200
Ox7dcO
Ox5£f00
0x£800
Ox£000
0x57¢0
0x9e00
0x9600
0x1700
0x1708
0x5e80
0x5e00
0x5£40
Ox£fa00
Ox£200
Ox5f£fc0
Ox£fe00
Ox£600
0x1988
0x5780
0x9c00
0x9400
0x1780
0x1788
OxS5ec0O
OxSe40
Ox5£80
Ox£fc00
Ox£400
0x7448
0x7d440
0x4700
0x6900
0x6800
0x5640
0x6540
0x6440
Ox1b00
Ox1b08

10-34
10-34
9-44

10-34
10-34
10-34
10-34
10-34
10-34
10-34
9-44

10-34
9-44

10-34
10-34
10-34
12-21
10-11
13-29
13-23
10-11
13-29
13-23
9-15

10-20
9-15

9-10

10-11
13-29
13-23
10-11
13-29
13-23
10-20
10-11
13-29
13-23
9-15

10-20
9-15

9-10

10-11
13-29
13-23
12-12
12-12
10-27
14-6

14-4

10-28
14-7

14-5

9-41

10-31

Appendix C

cvtd.1l
cvtd.s
cvth.w
cvth.w
cvtl.d
cvtl.s
cvtl.w
cvts.d
cvts.1l
cvts.w
cvtw.b
cvtw.b
cvtw.h
cvtw.h
cvtw.1l
cvtw.s
diag Ak

div.b Sj,Sk
div.b Vi,kSj,Vk
div.b Vi, Vj,Vk
div.d Sj,Sk
div.d Vi, ksj,Vk
div.d Vi,Vj, vk
div.h #N, Ak
div.h #N,Sk
div.h #n,Ak
div.h Aj,Ak
div.h Sj,sSk
div.h Vi,§j,Vk
div.h Vi,Vj, Vk
div.l Sj.Sk
div.l Vi,kS3,Vk
div.1l Vi,Vj,vk
div.s #N,Sk
div.s S5j,8k
div.s Vi,Sj,Vk
div.s Vi,Vj, vk
div.w #N,6Ak
div.w #N,Sk
div.w #n,Ak
div.w Aj.Ak
div.w Sj.8k
div.w Vi, Sj,Vk
div.w Vi,Vj,kVk
dsi
eni
eq.b

Sj.sk
Sj.sk
Aj,AK
Sj.sk
Sj.sk
Sj.sk
Sj.sk
Sj, sk
Sj.sk
Sj.sk
Aj. Ak
Sj.sk
Aj,Ak
Sj.sk
Sj.sk
Sj. sk

Sj.sk
Sj,Vk
V3, Vk
Sj.sk
Sj.Vk
d Vj,Vk
.h #N, Ak
h #N,sSk

Convert double float to longword
double float to single float

Convert

Convert half to word

Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Execute
Divide
Divide
Divide
Divide
Divide
Divide
Divide

‘Divide

Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide

Disable interrupts,reset ion

halfword to word
longword to double float
longword to single float
longword to word
single float to double fleat

single float
single float
word to byte
word to byte
word
word
word
word to
non-standard
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector

to longword
to word

to halfword
to halfword
to longword
single float

microcode sequence

integer byte
integer byte
integer byte
double float
double float
double float

imm. address halfword
scalar/scalar integer halfword

short imm.
addr. reg.
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
scalar/scalar
vector/scalar
vector/vector
imm.
scalar/scalar
short imm.

address hal fword
hal fword

integer halfword

integer

hal fword

integer halfword

integer

longword

Integer longword

integer
single float
single float
single float
single float

address word

integer word

address word

addr. reg. word

scalar/scalar
vector/scalar
vector/vector

word
word
word
to O

integer
integer
integer

Enable interrupts, set ion to 1

Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare

byte
byte
byte
double

equal
equal
equal
equal
equal
equal
equal
equal

float

double precision
double precision
hal fword
hal fword

longword

Page C-2

0x4680
0x4600
0x4740
0x6940
0x6840
0x47c0
0x69cO
Ox68c0O
0x5600
0x6500
0x6400
O0x1b80
Ox1b88
0x46c0
0x4640
0x4780
0x6980
0x6880
O0x0000
0x1000
0x0100
0x0400
0x0500
0x0200
0x0300
0x0600
0x0700
0x2800
0x3000
0x3800
0x1008
0x3300
0x3b00
0x1188
0x1088
0x1100
0x4480
0x2900
0x3100
0x3900
0x1108
0x3300
0x0a00
0x3b00
0x1188
0x1088
0x3200
0x3a00
0x1088
0x1180
0x1188
0x1800
0x1880
Ox44c0O

9-4

[

|

|

=

B

-

I~ o
owooo?moowo
OO D DO DO 0D

=

P
o

10-6
16-3
16-5
9-6

Appendix C

eq.h #n,Ak
eq.h Aj, Ak
eq.h Sj, Sk
eq.h S8j,Vk
eq.h Vj.,Vk
eq.1 Sj,8k
eqg.l S§j.Vk
eq.l Vj,Vk
eq.s Sj.,Sk
eq.s Sj.Vk
eq.s Vj,Vk
eq.w #N,Ak
eq.w #N,Sk
eq.w #n,Ak
eq.w Aj,Ak
eq.w 83,8k
eq.w Sj,Vk
eg.w Vj,Vk
exit

halt #N,Ak

hal fword
hal fword
hal fword
hal fword
halfword
longword
longword
longword
single float
single
single
word
word
word
word
word

Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare equal word

Compare equal word

Error Exit Instruction

Halt the central processing unit

equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal
equal

jmp

jmpa.
jmpa.
jmpi.
jmpi.
jmps.
jmps.

1d.b
1d.b
1d.b
1d.d
1d.d
1d.d

<effa>
f <effa>
t <effa>
f <effa>
t <effa>
f <effa>
t <effa>
<effa>, Ak
<effa>, Sk
<effa>,Vk
#N, Sk
<effa>, Sk
<effa>,Vk

1d.dl #N,Ssk
1d.du #N,Sk

1d.h
ld.h
ld.h
1d.h
l1d.h
1d.1
1d.1
1d.1
1d.1

#N, Ak
#n, Ak
<effa>, Ak
<effa>, Sk
<effa>,Vk
#N, Sk
<effa>, Sk
<effa>, VLS
<effa>,Vk

1d.11 #N,Sk
ld.lu #N,6Sk

ld.s
ld.s
ld.u
ld.w
ld.w
l1d.w
1d.w
1d.w

<effa>, Sk
<effa>,Vk
#N, Sk
#N, Ak
#N, Sk
#N, VL
#N,VS
#n, Ak

Jump
Jump
Jump
Jump
Jump
Jump
Jump

Load

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

Always

on address carry false

on address carry true

on ION false

on ION true

on scalar carry false

on scalar carry true

addr. reg. byte

scalar byte

vector byte

immediate, most significant bits
scalar double float
vector double float

64 bit floating immed.,
64 bit floating immed.,
halfword imm. into Ak
short imm. into Ak
addr. reg. halfword
scalar halfword

vector halfword

64 bit sign extended immediate
scalar longword

VS and VL from memory
vector longword

64 bit integer immed.,
64 bit integer immed.,
scalar single float
vector single float
immediate, upper half
imm. into Ak

a 32 bit immediate

VL with an immediate
VS from an immediate
short imm. into Ak

lower half
upper half

lower half
upper half

Page C-3

0x2a00
0x3200
0x3a00
0x0b00
0x0900
0x7c08
0x4400
0x7c00
0x7800
0x78c0
0x7840
0x78c0
0x7880
0x7880
0x4d00
Ox6b00
0x6a00
0x5440
0x6740
Ox6640
0x1e00
Ox1e08
0x4c80
0x4c00
0x4440
Ox6b40
0x6a40
0x4dcO
0x6bcO
Ox6acO
0x1a08
0x5400
0x6700
Ox6600
Ox1e80
Oxle88
Ox4ccO
0x4c40
Ox4d80
Ox6b80
Ox6a80
0x4900
Ox1c00
Ox1c08
0x4880
0x4800
0x4940
0x49c0
0x1c80
Ox1c88
0x48c0
0x4840
0x4980
0x4£00

9-4
10-4
13-8
16-10
9-26
12-6
9-33
12-5
13-12
13-12
13-12
13-12
13-12
13-12
10-27
14-6
14-4
10-27
14-6
14-4
9-41
10-31
9-40
9-37
10-27
14-6
14-4
10-27
14-6
14-4
10-31
10-27
14-6
14-4
9-41
10-31
9-40
9-37
10-27
14-6
14-4
10-29
9-42
10-33
9-42
9-39
10-29
10-29
9-42
10-33
9-42
9-39
10-29
10-27

- Appendix C

ld.w <effa>,Ak Load addr. reg. word

ld.w <effa>,Sk Load scalar word

ld.w <effa>,Vk Load vector word

ld.x <effa>, VM Load VM from memory

ldea <effa>,Ak Load effective address

ldkdr Ak Load all 8 SDR's

ldpa Aj.Ak Load a physical byte address into Ak
ldsdr Ak Load process SDR's

ldvi.b Vj,Vk Index Load vector byte

ldvi.d Vj, vk Index Load vector double float

lavi.h Vj,vk Index Load vector halfword

ldvi.l Vj,Vk Index Load vector longword

ldvi.s Vj,vk Index Load vector single float

ldvi.w Vj,Vk Index Load vector word

le.b Sj.s8k Compare less than or equal byte

le.b Sj.Vk Compare less than or equal byte

le.b Vj,Vk Compare less than or equal byte

le.d Sj,sk Compare less than or equal double float
le.d Sj,Vvk Compare less than or equal double float
le.d Vj,Vk Compare less than or equal double float
le.h #N,Ak Compare less than or equal halfword

le.h #N,Sk Compare less than or equal halfword

le.h #n,Ak Compare less than or equal halfword

le.h Aj.Ak Compare less than or equal signed halfword
le.h Sj,sk Compare less than or equal halfword

le.h Sj,Vk Compare less than or equal halfword

le.h Vj,Vk Compare less than or equal halfword

le.1l Sj,.sk Compare less than or equal longword

le.1 Sj,Vk Compare less than or equal longword

le.1 Vj, vk Compare less than or equal longword

le.s #N,sk Compare less than or equal single

le.s Sj,Sk Compare less than or equal single float
le.s Sj,Vk Compare less than or equal single

le.s Vj,Vk Compare less than or equal single

le.w #N,6 Ak Compare less than or equal word

le.w #N,Sk Compare less than or equal word

le.w #n, Ak Compare less than or equal word

le.w Aj,AK Compare less than or equal signed word
le.w Sj,Sk Compare less than or equal word

le.w Sj,Vk Compare less than or equal word

le.w Vj, vk Compare less than or equal word

leu.b S5j.8k Compare less than or equal byte

leu.h #N,Ak Compare unsigned less than halfword
leu.h #N,Sk Compare unsigned less than or equal halfword
leu.h #n,Ak Compare unsigned less than or equal halfword
leu.h Aj Ak Compare unsigned less than or equal halfword
leu.h Sj,Sk Compare less than or equal halfword
leu.l Sj,s8k Compare less than or equal longword
leu.w #N,Ak Compare unsigned less than word

leu.w #N,Sk Compare unsigned less than or equal word
leu.w $#n,6Ak Compare unsigned less than or equal word
leu.w Aj,Ak Compare unsigned less or equal than word
leu.w Sj,8k Compare less than or equal word

lt.b Sj.8k Compare less than byte

Page C-4

0x6400
0x6c00
0x54c0
0x67c0O
0x66c0O
Ox1£f00
Ox1£08
0x4e80
0x4e00
0x4£40
0x6d40
Ox6c40
Ox4£fcO
Ox6dcO
Ox6ccO
O0x1a88
0x5480
0x6780
0x6680
0x1£80
0x1£88
Ox4ecO
0x4e40
0x4£80
0x6d80
0x6c80
0x4b00
0x1d00
0x1d08
0x4a80
0x4b40
0x4a00
Ox4bcO
0x1d80
0x1d88
Ox4acO
0x4b80
0x4a40
0x8a00
0x8e00
0x8600
0x7e40
Ox7ea8
Ox7e48
Ox7e58
Ox7eal
0x7e50
0x8800
0x8¢c00
0x8400
0x7e60
Ox7eb8
Ox7e68
O0x7e78

14-6
14-4
10-27
14-6
14-4
9-41
10-31
9-40
9-37
10-27
14-6
14-4
10-27
14-6
14-4
10-31
10-27
14-6
14-4
9-41
10-31
9-40
9-37
10-27
14-6
14-4
10-29
9-42
10-33
9-42
10-29
9-39
10-29
9-43
10-33
9-42
10-29
9-39
14-14
14-14
14-13
15-6
15-6
15-6
15-6
15-6
15-6
14-12
14-12
14-10
15-7
15-7
15-7
15-7

Appendix C

lt.b Sj.Vk

lt.b Vj,Vk

l1t.d Sj.8k

lt.d Sj.Vk

lt.d Vj.,Vk

lt.h #N,6Ak

lt.h #N,Sk

lt.h #n,Ak

lt.h Aj, Ak

l1t.h S8j.8k

1t.h Sj.Vk

l1t.h Vj,Vk

1t.1l Sj,sk

1t.1l Sj.Vk

1t.1 Vj,Vk

lt.s #N,Sk

lt.s Sj,Sk

lt.s Sj.Vk

lt.s Vj.Vk

lt.w #N,Ak

lt.w #N,Sk

l1t.w #n,Ak

lt.w Aj.Ak

lt.w Sj.Sk

lt.w S8j.Vk

lt.w Vj,Vk
ltu.b Sj.Sk
ltu.h #N,Ak
ltu.h #N, Sk
ltu.h #n,Ak
ltu.h Sj,Sk
ltu.h gt,Aj,Ak
ltu.l Sj,Sk
ltu.w #N,6Ak
ltu.w #N,Sk
ltu.w #n,Ak
ltu.w Sj.Sk
ltu.w gt ,Aj, Ak
mask.f Vi, Sj,Vk
mask.t Vi, Sj,Vk
mask.t Vi, Vj,Vk
max.b Vk

max.d Vk

max.h Vk

max.l Vk

max.s Vk

max.w Vk
merg.f Vi,Sj,Vk
merg.t Vi,S8j,Vk
merg.t Vi,Vj,Vk
min.b Vk

min.d Vk

min.h Vk

min.1l Vk

Compare less than byte

Compare less than byte

Compare less than double float
Compare less than double float
Compare less than double float
Compare less than halfword
Compare less than halfword
Compare less than halfword
Compare less than signed halfword
Compare less than halfword
Compare less than halfword
Compare less than halfword
Compare less than longword
Compare less than longword
Compare less than longword
Compare less than single

Compare less than single float
Compare less than single

Compare less than single

Compare less than word

Compare less than word

Compare less than word

Compare less than signed word
Compare less than word

Compare less than word

Compare less than word

Compare less than byte

Compare unsigned less than halfword
Compare unsigned less than halfword
Compare unsigned less than halfword
Compare less than halfword
Compare unsigned less than halfword
Compare less than longword
Compare unsigned less than word
Compare unsigned less than word
Compare unsigned less than word
Compare less than word

Compare unsigned less than word
Mask vector/scalar using not VM
Mask vector/scalar using VM

Mask vector/vector

Max of vector of bytes

Max of a vector of double float
Max of vector of halfwords

Max of vector of longwords

Max of vector of single float
Max of a vector of words

Merge vector/scalar using not VM
Merge vector/scalar

Merge vector/vector

Min of a vector of bytes

Min of a vector of double float
Min of a vector of halfwords

Min of a vector of longwords

[I)

Page C-5

0x7eb0
Ox7e70
0x5080
0x51c0O
0x7d498
0x7d88
0x7c48
O0x7c60
0x7c50
Ox7c40
0x8200
0x50c0
0x6100
0x6140
O0x7c68
Ox7E70
Ox7c78
0x7d490
0x7d480
0x8000
0x5180
0x5180
0x5100
0x5100
0x7¢cb8
Ox7ca8
0x7460
.0x5d00
Oxe800
0xe000
0x5740
Ox9a00
0x9200
0x1600
0x1608
0x5¢80
0x5¢00
0x5d40
Oxeal0
Oxe200
0x5dc0O
Oxee0O
Oxe600
0x1908
0x5700
0x9800
0x9000
0x1680
0x1688
0x5ccO
0x5c40
0x5d80
Oxec00
Oxe400

15-7
15-7
9-29
10-40
16-2
16-4
9-36
12-16
9-28
9-35
13-39
10-39
16-13
16~-13
12-15
12-23
12-17
16-2
16-4
13-40
10-41
10-41
10-41
10-41
16-8
16-9
12-19
10-10
13-28
13-22
10-10
13-28
13-22
9-14
10-19
9-14
9-9
10-10
13-28
13-22
10-10
13-28
13-22
10-19
10-10
13-28
13-22
9-14
10-19
9-14
9-9
10-10
13-28
13-22

Appendix C

min.
min.
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

C(ll

FREC

EL

Vk
Vk
Ak

Aj Sk

. VL
. Vs

114
.Sk

PC,Ak
PSW, Ak
Si,8j,Vk
S3j.Ak
Sj.sSk,WM
Sj.,VM, Sk
Sk, ITR
Sk, VW
Sk, itsr
VL, Ak
VS, Ak

mov Vi, Sj,Sk
mov.d Sj,Sk
mov.l Sj,Sk

Min of a vector of single float

Min of a vector

Move
Move
Move
Move
Load
Move
Load

addr. regq.
an address
Ak to VL
Ak to VS
an addr.

to a

reg.

of words

scalar

into the PSW

the itc,itsr,nitc into Sk

next PC address

Store the PSW into an addr. reg.
a scalar to a vector element
32 bits of Sj into Ak.

Move
Move
Load
Load
Load
Move
Load
Move
Move
Move
Move
Move

VM(Sj) from Sk.
Sk from VM
NITC,

ITC, ITSR from Sk

scalar to vector valid flag
ITSR with a scalar

VL to Ak
VS to Ak

a vector element to a scalar
scalar register single float

scalar register

mov.s
mov.w
mov.w
MOV .W

Sj.sk
§3.8k
Sk, VL
sk, Vs

mski Sk

mul.b
mul.b
mul.b
mul.d
mul.d
mul.d
mul.h
mul.h
nul.h
mul.h
mul.h
mul.h
mul.h
mul.l
mul.l
mul.l
mul.s
mul.s
mul.s
mul.s
mul.w
mul.w
mul.w
mul.w
mul.w
mul.w
mul.w

8j.sk
Vi,Sj.vk
Vi,Vj.Vk
Sj.Sk
Vi,Sj,Vk
Vi,Vvj, vk
#N, Ak
#N, Sk
#n, Ak
Aj,Ak
Sj,sk
Vi,8j.Vk
Vi,Vj.vk
83j.8k
Vi,Sj.Vk
Vi,Vj,vk
#N, Sk
Sj.Sk
Vi,s8j,vk
Vi,Vj,vk
#N, Ak
#N, Sk
#n, Ak
Aj,AK
Sj,sk
Vi,8j.vk
Vi,Vvj,vk

Move
Move
Move
Move
Mask Out
Multiply

Multiply:

Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply
Multiply

Interrupt

scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
imm. address
scalar/immed.
short imm.
addr. regq.
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
scalar/immed.
scalar/scalar
vector/scalar
vector/vector
imm. address

longword

word

integer
integer
integer
double
double
double

scalar register double float
scalar register
Sk to VL
Sk to VS

byte
byte
byte
float
float
float

halfword

integer

integer
integer
integer
integer
integer
single
single
single
single
word

hal fword

address halfword
halfword
integer

halfword
halfword
halfword
longword
longword
longword
float
float
float
float

scalar/immed. integer word

short imm.
addr. req.

address
word

word

scalar/scalar integer word
vector/scalar integer word
vector/vector integer word

Page C-6

Ox6 £00
0x6e00
Ox65c0
Ox64cO
0x5680
Ox6£40
Ox6e40
Ox6 fcO
Ox6ecO
0x6580
0x6480
0x56¢c0
Ox6£80
Ox6e80
0x7000
0x52c0
0x53c0O
0x62c0
0x1280
0x1288
0x5240
0x5340
Oxaal0
0xa200
Ox7e30
Ox7c28
Ox7c20
0x7c30
Ox7eeO
0x4580
Ox7ee8
0x6340
0x7c38
0x7438
0x7d10
0x7d430
Ox7ecO
Ox7e98
Ox7ec8
Ox7ed8
O0x7e90
Ox7edO
O0x7d28
0x7d400
0x7d420
0x0d00
0x7c90
Ox7ca8
0x7c80
0x1380
0x1388
0x4440
0x5040
0x5140

10-12
13-25
10-12
13-25
9-11
10-12
13-25
10-12
13-25
10-12
13-25
9-11
10-12
13-25
11-5
9-20
10-16
13-34
9-22
10-22
9-18
10-14
13-36
13-32
15-10
12-9
12-8
12-13
16-12
10-38
16-12
15-11
12-14
10-26
9-31
10-26
15-4
15-4
15-4
15-4
15-4
15-4
10-25
9-30
10-25
9-27
11-12
12-10
11-15
9-25
10-24
9-25
9-24
10-36

Appendix C

neg.b Sj,Sk
neg.b Vj,Vk
neg.d Sj.Sk
neg.d Vj,Vk
neg.h Aj,Ak
neg.h Sj,Sk
neg.h Vj,Vk
neg.l Sj.Sk
neg.l Vj,Vk
neg.s Sj,Sk
neg.s Vj,Vk
neg.w Aj,Ak
neg.w Sj,Sk
neg.w Vj,Vk
nop

not Aj, LAk
not Sj,Sk
not Vj,Vk
or #N,Ak

or #N,Sk

or Aj, Ak

or 8j.Sk

or Vi, Sj.Vk
or Vi,Vj,Vk
parity Vk
pate Ak
patu

pich

ple.f VM, Sk
plc.t Sj.Sk
plc.t VM, Sk
plc.t Vi, Vk
plch

pop.l Sk
pop.w Ak
pop.w Sk
prod.b Vk
prod.d Vk
prod.h Vk
prod.l Vk
prod.s Vk
prod.w Vk
psh.1 Sk
psh.w Ak

" psh.w Sk

pshea <effa>
rtn

rtnc

rtngq

shf #N,AK
shf #N,Sk
shf #n,Ak
shf Aj.,Ak
shf Sj,Sk

Negate scalar/scalar integer byte
Negate vector/vector integer byte
Negate scalar/scalar double float
Negate vector/vactor double float
Negate addr. reg. halfword

Negate scalar/scalar integer halfword
Negate vector/vector integer halfword
Negate scalar/scalar integer longword
Negate vector/vector integer longword
Negate scalar/scalar single float
Negate vector/vector single float
Negate addr. reg. word

Negate scalar/scalar integer word
Negate vector/vector integer word

No Operation

Complement addr. regqg.

Complement scalar/scalar

Complement a vector

OR imm. to addr. regq.

OR scalar/immediate

OR addr. regq.

OR scalar/scalar

OR vector/scalar

OR two vectors

Exclusive OR reduce a vector

Purge ATU entry

Purge the entire ATU

Purge the instruction cache

Load the number of O's in VM into Sk
Count the number of 1's in Sj

Load the number of 1's in VM into Sk
Population Count of a Vector

Purge the logical cache

Pop Sk<63..0> from the stack.

Pop word into addr. req.

Pop Sk<31..0> from the stack

Multiply reduce a vector of bytes
Multiply reduce a vector of double float
Multiply reduce a vector of halfwords
Multiply reduce a vector of longwords
Multiply reduce a vector of single float
Multiply reduce a vector of words
Push Sk<63..0> onto the stack.

Push an addr. reg.

Push Sk<31l..0> onto the stack

Push effective address

Return from subroutine call

Return from a context block

Pop the program counter and jump
Logical shift imm. to addr. reg.
Shift Scalar/immediate

Logical shift left short imm.

Shift an address

Shift a scalar

Page C-7

0x6300
Ox2c00
0x3400
0x3c00
0x3700
Ox3£00
0x2d00
0x3500
0x3d00
0x3700
0x0e00
Ox3£00
0x3600
Ox3e00
0x2e00
0x3600
0x3e00
0x0£00
0x2400
0x2700
0x2500
0x2700
0x2600
0x2600
0x7b00
0x7a00
O0x7bcO
Ox7acO
Ox7b40
0x7a40
Ox7bcO
Ox7acO
0x7b80
0x7a80
O0x7b80
0x7a80
O0x5b00
0xd800
0xd000
0x55c0
Oxbe00O
Oxb600
0x1500
0x1508
0x5a80
0x5a00
Ox5b40
Oxda00
0xd 200
Ox5bc0O
Oxde00
0Oxd600
0x1888
0x5580

13-38
9-5
10-5
13-10
10-5
13-10
9-5
10-5
13-10
10-5
16-7
13-10
10-5
13-10
9-5
10-5
13-10
16-11
13-18
13-18
13-18
13-18
13-18
13-18
13-16
13-14
13-16
13-14
13-16
13-14
13-16
13-14
13-16
13-14
13-16
13-14
10-9
13-27
13-21
10-9
13-27
13-21
9-13
10-18
9-13
9-8
10-9
13-27
13-21
10-9
13-27
13-21
10-18
10-9

Appendix C

shf Sj.Vk

st.b Ak, <effa>

st.b Sk,<effa>

st.b Vk,<effa>

st.d Sk, <effa>

st.d Vk,<effa>

st.h Ak, <effa>

st.h Sk,<effa>

st.h Vk,<effa>

st.1l Sk,<effa>

st.1l VLS, <effa>
st.1l Vk,<effa>

st.s Sk,<effa>

st.s Vk,<effa>

st.w Ak, <effa>

st.w Sk,<effa>

st.w Vk,<effa>

st.x VM, <effa>

ste.b Sk, <effa>
ste.d Sk, <effa>
ste.h Sk, <effa>
ste.l Sk, <effa>
ste.s Sk, <effa>
ste.w Sk, <effa>

stvi.b Sk, V]
stvi.b Vk,Vj
stvi.d Sk,Vj
stvi.d Vk,Vj
stvi.h Sk,Vj
stvi.h Vk,Vj
stvi.l Sk,Vj
stvi.l Vk,Vj
stvi.s Sk,Vj
stvi.s Vk,Vj
stvi.w Sk,Vj
stvi.w Vk,Vj
sub.b Sj, Sk
sub.b Vi, Sj,Vk
sub.b Vi,Vj,Vk
sub.d Sj,Sk
sub.d Vi,Sj,Vk
sub.d Vi, Vj,Vk
sub.h #N, Ak
sub.h #N,Sk
sub.h #n,Ak
sub.h Aj,Ak
sub.h S§j, sk
sub.h Vi, Sj.Vk
sub.h Vi, Vj,Vk
sub.l Sj,Sk
sub.l Vi, Sj,Vk
sub.1l Vi,Vj, vk
sub.s #N, Sk
sub.s Sj,Sk

Shift a vector accumulator

Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
Store
store VM
Store an
Store an
Store an
Store an
Store an
Store an

Vs

Scalar Index Store
Index Store vector
Scalar Index Store
Index Store vector
Scalar Index Store
Index Store vector
Scalar Index Store
Index Store vector
Scalar Index Store
Index Store vector
Scalar Index Store
Index Store vector

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract

addr.
scalar byte
vector byte
scalar double float
vector double float
addr. reg. halfword
scalar
vector
scalar

vector
scalar
vector
addr.

scalar word
vector word

reg. byte

halfword
halfword
longword
and
longword

word

reg.

into memory

extended scalar
‘'scalar
scalar
scalar
scalar
scalar
vector byte
byte

vector double float
double float

vector halfword
halfword
vector longword
longword
vector single float
single float
vector word
word

extended
extended
extended
extended
extended

scalar/sc¢alar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
imm.

VL to memory

single float
single float

byte

word

integer
integer
integer

double float
halfword
longword
single float

byte
byte
byte

double float
double float
double float

address hal fword

scalar/immed. integer halfword

short imm.
addr. regq.
scalar/scalar
vector/scalar
vector/vector
scalar/scalar
vector/scalar
vector/vector
scalar/immed.
scalar/scalar

integer
integer
integer
integer
integer
integer

address hal fword
hal fword

hal fword
hal fword
hal fword
longword
longword
longword

single float
single float

Page C-8

Oxbc00
0xb400
0x1580
0x1588
Ox5ac0
0x5a40
0x5b80
OxdcO0
0xd400
0x7e00
Ox7e88
0x7e08
Ox7el8
0x7e80
Ox7el0
0x1080
0x0c00
Ox7E78
0x45c0
0x7d68
0x1300
0x1308
0x5280
0x5380
Oxac00
Oxa400

13-27
13-21
9-13
10-18
9-13
9-8
10-9
13-27
13-21
15-2
15-2
15-2
15-2
15-2
15-2
11-16
9-32
12-24
10-37
12-18
9-~-23
10-23
9-19
10-15
13-37
13-33

Appendix C

sub.s
sub.s
sub.w
sub.w
sub.w
sub.w
sub.w
sub.w
sub.w
sum.b
sum.d
sum.h
sum.l
sum.s
sum.w

Vi,Sj,Vk
Vi,Vj,Vk
#N, Ak
#N, Sk
#n, AK
Aj, Ak

sysc #r,#g
tas <effa>

tstvv

tzc Sj,Sk
xmti Sk

Xor
xXor
xXor
xXor
Xor
xXor

#N, AK
#N, Sk
Aj,Ak
Sj.Sk
Vi,Sj.Vk
Vi,Vi,Vk

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Sum a vec
Sum vec
Sum vec
Sum vec
Sum vec
Sum a vec

PP

vector/scalar single float
vector/vector single float

imm.

address word

scalar/immed. integer word

short imm.

addr. reg. word
scalar/scalar integer word
vector/scalar integer word
vector/vector integer word

tor
tor
tor
tor
tor
tor

of bytes

of double float
of halfwords

of longwords

of single float
of words

Perform a system call

Test and Set a memory byte

Test value of vector valid flag
Count of trailing zeroes in Sj
Transmit Interrupt

Exclusive
Exclusive
Exclusive
Exclusive
Exclusive
Exclusive

OR
OR
OR
OR
OR
OR

imm. to addr. regq.
scalar/immediate
addr. reg.
scalar/scalar
vector/scalar

two vectors

address word

Page C-9

APPENDIX D
ELOATING POINT ALGORITHMS

QVERVIEW
This appendix details the floating point algorithms used by the CONVEX
instruction set. These algorithms involve rounding, sequencing of opera-

tions, and other considerations.

The CONVEX format for a double precision floating point operand in memory
is:

| S | Exponent | Fraction |
63,62 52,51 o]
BYTE © BYTE 7

The CONVEX format for a single precision floating point operand in memory
is:

| S | Exponent | Fraction |
31,30 23,22 0
BYTE O BYTE 3

ADD/SUBTRACT

The fraction of the floating point operands are expanded internally as fol-
lows:

1'A1 is‘appended to the higher bit position of the fraction.

2 Two guard bits are appended to the right of the least signifi-
cant fraction bit. These bits are referred to as G and R in
that order.

3 A sticky bit is appended to the right of the two guard bits. The
sticky or S bit is the OR of all bits to the right of the R bit.

4 An additional bit is appended to the higher fraction, the V bit,
for overflow.

Thus the internal floating point format is:

Appendix D Page D-1

10

11

The initial values of the V,G,R, and S bits are all O.

The exponents of the two fractions are compared. The fraction
of the smaller exponent is shifted right an amount equal to the
absolute difference of the exponents. All right shifted bits
are shifted through the G, R, and S bits.

Any binary l's shifted past the 2 guard bits are remembered in
S.

If any of the input operands were zero (Sign is O, and Exponent
is 0) no shifting occurs.

If any of the input operands was reserved (Sign is 1, and
Exponent is 0), no shifting occurs, a reserved operand exception
occurs, and the output of the ADD/SUB is a reserved operand.

Otherwise, the two fractions are algebraically added/subtracted
according to the sign and opcode. ’

The result is normalized. If V became 1, the intermediate
result is right shifted one bit position. R is ORed with S. If a
generated subtract was performed, the intermediate result is
left shifted until a normalized intermediate result is obtained.
S need not participate in the left shifts:; zero or S may be
shifted into R from the right. G is loaded with R. § is always
unchanged.

The intermediate normalized result is rounded as follows:

G R S " Round Performed (to LSB)

O 0 © Add ©

o 0 1 Add 0O

o 1 0© Add O

o 1 1 Add ©

1 0 O Add LSB of fraction - round to nearest even.
i 0 1 Add 1

i1 1 ©° Add 1

1 1 1 Add 1

12 The rounded intermediate result is normalized again and the exponent

is adjusted if necessary to yield the final result.

MULTIPLY

Multiplication of 2 normalized floating point numbers produces an

intermediate result that is either normalized or at most requires one

left shift. The steps for multiplication are as follows:

Appendix D

Page D-2

1 If either of the two operands is a reserved operand, the result is a
reserved operand.

2 If either of the two operands is zero (Sign is O, and Exponent is O
). then the result is a true zero (Sign., Exponent, and fraction of all
0).

3 Otherwise. add the exponents, keeping an extra bit of precision to
account for a normalization shift that could correct an exponent
overflow.

4 Multiply the two fractions right to left.

5 Maintain the G, R, and S bits during intermediate calculations.

6 Post normalize if required.

7 Round the intermediate result per step 11 in the description in ADD/SUB.

8 The rounded intermediate result is normalized again and the exponent
adjusted if necessary to yield the final result.

DIVIDE

Division of 2 normalized floating point numbers produces an intermediate
result that is normalized.

1 If either of the two operands is a reserved operand, the result
is a reserved operand.

2 If the divisor is zero, then the result is a reserved operand.
Also the FDZ bit in the PSW is set to 1.

3 Subtract the exponents producing the result exponent.

4 Divide the numerator by the denominator mantissa until a normal-
ized result 1is obtained. A (n+2) bit quotient is generated
where n is the length of the mantissa of the operands. The two
additional quotient bits represent the G and R bits. The state
of the S bit is implementation specific. The S bit may always
be assumed to be O, or may represent the OR of some portion if
not the entire remainder.

5 Round the intermediate result per step 11 in the description of
ADD/SUB.

6 The rounded intermediate result is normalized again and the
exponent adjusted if necessary to yield the final result.

Appendix D Page D-3

CONVERSIONS

Converting from float to fix: always round toward O (truncate). This
conversion obeys the FORTRAN rounding convention.

Converting from fix to float: properly normalize the integer, then truncate
to the appropriate mantissa size.

Please note that rounding from float to fix can be achieved by first adding
.5 to the floating point operand and then by executing the float to fix
instruction. Thus, RND (3.4) equals TRUNCATE (3.9) = 3 and RND (3.5)
equals TRUNCATE (4.0) = 4.

Appendix D : ‘ - .Page D-4

APPENDIX E
ASSEMBLER NOTATION

Introduction

The CONVEX instruction set has eight possible operand addressing modes:
register mode, immediate operands and six modes for specifying operands in
memory. Since the CONVEX architecture is based on three sets of high speed
registers, most of the instructions are limited to register operands only.
Each addressing mode is described in detail in the following sections.

Instruction Eormat

An assembly language program is a sequence of instructions. These instruc-
tions may be machine instructions that will be translated into machine
language instructions, or they may be directives to the assembler. Both
types of instructions follow the same basic format, as follows.

The instruction is composed of five fields: label, mnemonic, operand list,
comment, and the terminator. The only field that is required is the termi-
nator field (exclamation point or newline). The format for an instruction
is shown below:

[label:] mnemonic [operand list] [;comment] terminator

Sample code:

Arg = 4

loop: eq.w #0,s0
jmps.t exit
add.w #1,s0
1d.w arg(a2).sl
add.w sl,s0
br loop

exit:

Addressing Modes
Register Mode

The majority of the instructions in the instruction set requires one or
more register mode operands. A register mode operand specifies the regis-
ter set and the particular register in the set to be used as the operand.
The actual machine instruction generated by the assembler will depend on
both the register set used and the register within that register set.

Apperdix E Padge E-1

General register operands are specified by a 1letter and a number. The
letter denotes the register set, and the number specifies the register
number in the set. The general register sets for the machine are the
address registers (A), the scalar registers (S). and the vector registers
(V) . The register set letter can be specified in either upper case or lower
case. Each register set contains eight registers denoted by the numbers
zero to seven.

To aid in program readability, three of the address registers can also be
referenced by special names. These are the Stack Pointer (SP) , Argument
Pointer (AP), and Frame Pointer (FP).

The assembler itself uses reserved words to denote the registers in the
machine. Each register is referenced by the reserved words only: hence
additional symbols may not be defined to denote machine registers.

There are also ten special purpose registers--items 8 through 16 listed in
the Register Syntax Summary Table below--in the machine that are used for
machine control. These registers are specified by reserved words.

Immediate Operands

Immediate operands provide a method for referencing data in the program's
instruction stream. The assembler syntax for specifying an immediate
operand is written as "#" followed by the expression that defines the value
of the immediate operand in question.

Mem;;zx&AddraisingMndes

In addition to the register and immediate addressing modes, there are six
modes for specifying operands in memory. In general, these modes are used
for loading registers from memory and for storing the contents of a regis-
ter in memory.

Absolute Addressing Mode
A program can reference an absolute address in the virtual address space by
specifying the 1location desired. This specification can be done by using

an expression that evaluates to the address of the location desired:

ld.w addr,reg

Register Deferred Mode

Via the register deferred mode, the address registers can contain the
address of an operand to be used by the instruction. Thus, the register
contains a pointer to the operand rather than the operand itself. This

addressing mode is specified by enclosing the address register that con-
tains the pointer in parentheses:

ld.w (INDEX reg). reg

Indexed Mode

Appendix [Page E-2

The indexed mode adds an offset or base to the contents of the address
register specified and uses the result as a pointer to the operand. This
addressing mode is formed by preceding a deferred register specifier with
an expression:

l1d.w addr (INDEX reg)., reg

Indirect Absolute Mode

This mode provides for one level of indirection from an absolute address..
The operand pointer is located at the absolute address specified by an
expression. This addressing mode is specified by preceding an expression
for the absolute location by the character "@".

ld.w @addr, reg

Indirect Deferred Mode

This mode provides an additional level of indirection over the deferred
mode. The register specified contains the address of the pointer to the
desired operand. The character "@", followed by a deferred register
operand, specifies this addressing mode.

ld.w @ (INDEX reqg), reg
Indirect Indexed Mode
Indirect indexed mode is denoted by preceding an indexed operand by the
character "@". In +this mode, the value of the register and the value of
the index expression are added together to form the address of a pointer to

the desired operand:

1d.w @ addr (INDEX reg), reg

Appendix E Pzge =I-3

Table E-1: Register Syntax Summary

Symbolic Assembled Mode

l. Aor a Address Register Set

2. Sor s Scalar Register Set

3. Vor v Vector Register Set

4. SP or sp Stack Pointer (A0O)

5. AP or ap Argument Pointer (A6)

6. FP or fp Frame Pointer (A7)

7. VS or vs Vector Stride Register

8. VL or vl Vector Length Register

9. VLS or vls - Vector Stride and Length Combination
10. PSW or psw Processor Status Word
11l. PC or pc Program Counter
12. ITR or itr Interval Timer Register
13. ITSR or itsr Interval Timer Status Register

Appendix E Page E-4

Table E-2:

Addressing Modes Syntax Summary

Symbolic Assembled Mode

1. #n immediate

2. n absolute or PC

relative

3. R register
4. (Rn) register deferred mode
5. n(Rn) indexed mode
6. @ indirect absolute mode
7. @(Rn) indirect deferred mode
8. @n(Rn) indirect indexed mode

Appendix E Page E-5

APPENDIX F
GLOSSARY OF TECHNICAL TERMS USED IN THIS MANUAL

Access Mode
Any of the five processor access modes in which software executes. On
the CONVEX system, processor access modes are: (in order from most to
least privileged and protected): kernel (mode O), executive (mode 1),
supervisor (mode 2), agent (mode 3) and user (mode 4). The operating
system uses access modes to define protection levels for software exe-
cuting in the context of a process.

Accumulator
A hardware register. This register contains the results of arithmetic
and logical operations.

Address

User assigned number used by the operating system to identify a
.storage location.

Addressing mode
How the effective address of an instruction operand is calculated
using the general registers.

Address space
Address space, either physical or virtual, available to a process.

Address Translation Fault
An exception that results from a PTE violation or a non-resident page.

Address Translation Unit
The address translation unit (ATU) translates logical addresses to
physical addresses and stores them in a cache. Thus the ATU is an
address cache which accelerates the generation of physical addresses.

Architecture
The conceptual structure and functional behavior of the system.

Argument Pointer
An address register specifically dedicated to point to the subroutine
argument portion of a program. This program portion can either be in
the stack or in part of logical memory pre-allocated by the compiler.

Arrays
An ordered structure of operands of the same data type. The structure
of an array is defined as: length, rank or dimension, stride, and data
type.

Base-level interrupt
An interrupt which occurs when the kernel stack is the process stack.
A base-level interrupt is thus an interrupt which occurs when no other
interrupts are pending or currently being processed.

Bit
A binary digit.

Appendix F ~ Page F-1

Bit complement
Exchanging O's and 1's in the binary representation of a number (also
known as 1's complement).

Bootstrap
The procedure by which a program is initiated the first time. Typi-
cally a bootstrap is performed when power is first applied to the pro-
cessor.

Branch
A class of instructions used to transfer control of a program, specif-
ically relative to the Program Counter.

Breakpoint
An instruction which aids in the debugging of a program. In particu-
lar, a breakpoint is a particular location in a program that one would
desire to determine the various values of programmer-defined vari-
ables.

Byte (b)
A byte is a number of contiguous bits starting on an addressable byte
boundary. In CONVEX machines, a byte is eight bits.

The systems programming language of the UNIX operating system.

Cache
(See Logical, Physical, Instruction).

Cache memory
A small, high-speed memory placed between main memory and the proces-
sor and transparent to the user. CONVEX computers contain many
separate caches.

Cache purge
The act of invalidating or removing entries in a cache memory.

Central processing unit
The central processing unit is the portion of a CONVEX machine which
recognizes and executes the instruction set.

Chaining
Chaining is the ability to overlap vector operations in the central
processing unit. For instance, in the case of a vector load followed
by a vector add, the add may be started as soon as the first operands
are available rather than waiting for the load to complete.

Compiler
Software tool used to compile a high-level language (e.g., Fortran)
into assembly code.

Context (processor)
The entire, current state of the machine associated with the executing

process.

Appendix F . Page F-2

Data type
The way in which bits are grouped and interpreted. For processor
instructions, the data type identifies the size of the operand and the
significance of the bits in the operand.

Destination
The operand specified in an instruction which receives the result of
the operation.

Displacement
A derived 32-bit value used to indicate the distance in bytes that the
referenced datum is relative to some base value. This base value can
either be O or the contents of an address register. Please note that
16-bit displacement values are sign extended to 32 bits.

Double (d)
A double precision floating point number, stored in 64 bits.

Exception
An exception is a hardware-detected event which disrupts the running
of a program, process, or system.

Fault
An exception, which, while halting the instruction, leaves the regis-
ters and memory in a consistent state. The instruction can often
resume its course when the cause of the fault is corrected.

Flag
A 1-bit operand that is generally used to indicate the results of an
.operation. The results are in the form true or false.

Floating point
A numerical representation. A floating point operand has a sign
(positive or negative, an exponent, and a fraction). The fraction is
a fractional representation. The exponent is the value used to pro-
duce a power of two scale factor that is subsequently used to multiply
the fractions to produce an unsigned value.

EORTRAN
High-level software language mainly used for scientific applications.

Fraction
A part of a floating point number. The fraction is the unsigned frac-
tional part that denotes the magnitude of the operand.

Frame
See Page Frame, Stack Frame

Function unit
A function unit is a part of the central processing unit (CPU) which

performs a set of operations on quantities stored in registers.

Gate array
A structure that is used by the ring protection mechanism. The gate

Appendix F Page F-3

array defines the entry points from a lower privileged ring to a
higher privileged ring.

Gather
Loading a vector register using another vector of indices instruction.
See the ldvi instruction.

Guard bit
A bit to the right (the least significant bit positions) of a floating
point fraction. The guard bit is used in intermediate calculations
using floating point operands.

Halfword (h)
Two bytes (16 bits)

HUEEMAN's encoding
A binary encoding that results in the densest packing of information.

Icache
See Instruction Cache.

Immediates
Operands which are contained within the instruction stream.

Indexing
The process of adding a displacement to the contents of an address
register. '

Indirection ‘
The process of obtaining the address of an operand by first referenc-
ing a word contained within memory.

Instruction
Used by the programmer to direct operations on the systems' register
set and memory.

Instruction cache (ICACHE)
The I-Cache contains the most recently accessed instructions. The I-
Cache accelerates the decoding of instructions. This permits the
simultaneous decoding on one instruction with the execution of another
instruction.

Interrupt
An occurrence other than an exception which changes the normal flow of
instruction execution. An interrupt originates from hardware, such as
an I/0 device.

Interval timer
A privileged register. The interval timer is wused to generate an
interrupt based on the passage of a period of time.

Kernel
A part of the operating system that resides in ring O. The kernel

typically manages process creation and deletion, scheduling, and other

Appendix F Page F-4

high level, system wide features.

Linker
A software tool. The 1linker "links" together separate software
modules into one monolithic module.

Loads
A class of instructions which move data from memory to a register.

Locality of reference
An attribute of a memory reference pattern. Locality of reference
refers to the 1likelihood of an address of a memory reference being
numerically close to a recent memory reference address, or the likeli-
hood of a subsequent memory reference being identical to a previous
memory reference within a given period of time.

Logical address
Logical address space is that space seen by the application program-
mer.

Logical cache
The logical cache is a cache that is accessed with logical addresses
for fast retrieval of data. It resides in the central processing
unit.

Logical memory
Logical or virtual memory is that memory seen by the programmer. The
logical memory of a CONVEX computer is 4 Gigabytes.

Longword (1)
Eight bytes (64 bits), the largest integer data type directly sup-
ported by hardware in the CONVEX-1.

LSI (Language Specific Informatioh)
The area in the stack that is created as part of a subroutine call.
It is langauge dependent and may be zero.

Machine exceptions
Machine exceptions include fatal errors in the system which cannot be
handled by the operating system. (See Exception).

Main memory
See Physical Memory.

Maskable interrupt
An interrupt that is masked out. That is, an interrupt that the
operating system wishes, at this time, not to respond to.

Memory management
The hardware and software features which control page mapping and pro-
tection.

Microcode

Appendix F Page F-5

A control program that resides within the central processing unit.
Microcode also refers to firmware, providing the necessary control
that maps assembly language instructions onto processor hardware.

Modified bit
A bit within the central processing unit. The modified bit records
all valid write references to pageframes. The modified bit is used by
the operating system for memory management.

Negate
An instruction which performs a 2's complement.

Normalization
The process of left shifting a fraction until the leading bit is a 1.

Opcode
The code or sequence of bits in an instruction which determines the
operation to be performed.

Operand
A register or memory location referenced by an instruction.

Orthogonality
A characteristic that pertains to the relationship of instructions and
the operands they manipulate. An instruction set is orthogonal if one
can change one property without having to change other related proper-
ties. '

4

Packets
A group of related items. A packet may refer to the subroutine argu-
ments or to a group of bytes that is transmitted over a network.

Page
A page is the unit of logical memory controlled by the memory manage-
ment algorithms. In CONVEX-1, a page is 4 K (4096) contiguous bytes.

Pagefault
An exception caused by a reference to a valid non-existent page.

Page Frame
A page frame is the unit of physical (main) memory in which pages are
placed. Associated with each pageframe are referenced and modified
‘bits to aid in memory management.

Page Table Entry (PTE)
An entry in a page table. A PTE is a word. A PTE contains various
flags and fields that are used in the translation of logical to physi-
cal addresses. Address translation uses two levels of page table
indexing. ' The first level page table is referenced using bits 28
through 22 of a logical address. This is called the Index.l field.
The second level page table is referenced using bits 21 through 12 of
a logical address. This is called the Index.2 field. See Figure 5-4.

Physical address

Appendix F . Page F-6

Hardware-identified address in physical (main) memory consisting of a
page frame number and the number of a byte within the page.

Physical cache
The physical cache provides rapid access to recently used physical
memory data items.

Pipelining ’
A technique used to construct high performance processors. Pipelining
provides a means by which multiple operations occur concurrently.

Porting
Moving software from one type of machine to another.

Priority
An ordering of events. Priority is applied to protection levels as
well as I/0 interrupt levels.

Privileged instruction
An instruction used by the operating system or privileged systems pro-
grams. It must execute in ring O, or an exception occurs.

Process
A process is the fundamental unit of program which is managed by the
job scheduler.

Process exceptions
Process exceptions belong to the currently running process and may be
handled with an exception handler in that process. The exception
handler is in the current ring of execution. (See Exception).

Protection
A mechanism provided by hardware and software. Protection is used to
ensure that one user is protected from another user or to ensure that
a user does not perform an unsafe computation.

Processor Status Word (PSW) .
A word that contains control flags. The PSW is used to control and
indicate the state of various computations and sequences within the
processor.

Push
The act of storing an operand on the stack.

Queue
A data structure in which entries are made at one end and deletions at
the other. Often referred to as first-in first-out or FIFO.

Quotient
The result of a division operation.

Read
A memory operation in which the contents of a memory 1location are
accessed and passed to another part of the machine.

Appendix F Page E-7

Recursion
An arithmetic operation that uses the output of a calculation as the
input of the same calculation.

Reduced Instruction Set Computer (RISC)
An architectural concept that applies to the definition of the
instruction set of a processor. A RISC instruction set is an orthogo-
nal instruction set that is easy to decode in hardware and for which a
compiler can generate highly optimized code.

Reductions
An arithmetic operation that performs a transformation on an array
that produces a scalar result.

Register
A hardware entity that is used to contain addresses, operands, and
status.

Reservation
Reservation is the process of managing the various function units in
the central processing unit. A reservation table is used to record
the current status and availability of the function units.

Reset
The process of establishing a known state in a machine register.

Rings
A ring is the unit of logical memory used for protection purposes.
There are five rings in CONVEX machines: four for system level usage
and one for users. The system rings (Ring0-Ring3) each correspond to
one Segment of logical memory, while the user ring (Ring4) contains
four segments.

Ring Maximization
Ring maximization is the mechanism used to enforce protection in the
logical address space.

Round bit
One of the two guard bits used in the intermediate representation of
a floating point number.

Rounding
The process of transforming the intermediate representation of a
floating point number to the memory representation. Unbiased rounding
uses the round, guard, and sticky bits to determine the exact nature

of this transformation. Truncation (as used in converting floating
point to fixed point integer) does not use the round, guard, or sticky
bits.

Runtime

A software module. A runtime is a software module that is referenced
as a procedure. A runtime represents a required function that is not
directly supported by the hardware, but it is required by the
software.

Appendix F ' Page F-8

Scatter
Storing a vector register using another vector of indices. See the
stvi instruction.

Segmented ALU
A logic design technique that permits multiple arithmetic operations
of the same type to be pipelined.

Segment
The segment is the basic partition of the logical memory space. A
segment is 512 megabytes.

Segment descriptor register
Each segment of virtual memory has a segment descriptor register asso-
ciated with it. Each SDR contains information pertinent to the access
and mapping of virtual addresses.

Shift
A class of instructions used to shift the contents of a register right
or left.

Single (s)
A single precision floating point number stored in 32 bits.

Source
A register or memory location used as an input to a CONVEX instruc-
tion. '

Spatial reference
An attribute of a memory reference pattern. Spatial reference per-
tains to the 1likelihood of a subsequent memory reference address
being numerically close to a previous address.

Stack
A data structure in which the last item entered is the first to be
removed. Also referred to as last-in first-out (LIFO). In particu-
lar, stacks are used by the Call and Return instructions.

Sticky bit
A Dbit used in the intermediate calculations of floating point
operands. The sticky bit remembers if any binary 1l's were shifted out
during an alignment or partial product operation.

Stores
A class of instructions used to move the contents of registers to
memory.

Subroutine
A software module. A subroutine is a frequently used program that is
called from various places in a program.

System exceptions
System exceptions cannot be handled by the current process: they

require intervention by the kernel executing in ring 0. (See

Appendix F Page F-9

Exception).

Trace of instruction execution
The process of tracking the execution of every instruction of a pro-

gram.
Trap

An out of sequence branch due to the occurrence of an abnormal condi-

tion. Typically, this condition is a result of unexpected arithmetic

results. (See Exception.)

Trojan Horse Pointer
The Trojan Horse Pointer is an addresss that is passed from one ring
to another as part of a system call. In particular, this passed
pointer references the more privileged ring as contrasted to the less
privileged ring. This is unexpected and undesirable.

True Zero
A floating point number with zero sign bit, zero exponent, and zero
fraction.

Unbiased rounding
The process of interpreting the round, guard, and sticky bits.
Unbiased rounding, as contrasted to biased rounding, rounds to even in
the event that the intermediate floating point result is exactly mid-
way between two floating point representations.

UNIX
An operating system.

Unsigned
A value that is always positive.

Valid bit
A bit used in the control of caches. The valid bit is used to deter-
mine if a cache entry contains an entry that can be used.

Valid reference
A valid reference meets two requirements: first, the PTE must be
valid (bit 31=1), and second, the type of access being made (Read,
Write, or Execute) must be allowed by the appropriate protection bit
(bits <3..1> of the PTE).

Vector
An array with one dimension.

Virtual address space
See Logical Address Space.

Word
Four bytes (32 bits)--the fundamental width of items in the CONVEX
family of computers.

Working set

Appendix F -Page EF-10

That portion of a user's program that is currently
Typically the working set is much smaller that the

Write
A memory operation in which a memory location is
data.

Zero

In floating point number representations, zero is
zero sign bit and zero exponent.

Arpen:dix F

in physical memory.
user program.

updated with new

represented by a

Page F-11

A Register Conversions............ cececits e asann Geeteereseceseseaneas 9-3
Access Bracket.......... ctsesessesesnenas C et et ee s st eeanesteassnnanennn 4-3
AddresS...cceceercnennncns e certaseecserssesseanesssenensaan Ceceneen 5-14
Address Calculations with Numeric Calculations....... see e ceer e . 2-2
Address Register Instruction Set......iiiiiiniretsereersencesonceeannes 9-1
Address Registers......ceveeeencsncsnnas certrtaeenes veel-2,1-4,2-2,3-1,5-2
Address Translation Fault......civeeeens et ec et et e s et et eeeans o s 6-1
Address Translation FaultS..ceeeieeseeceossostsenaasesnnnasnns cses.1-6,5-6
Address Translation Unit..ceeeeericeceennreencnsensannanns 1-5,5-1,5-17,5-19
Address Translation, Logical to Physical........... tesseeseesaan ceses5-17
Address, Unsigned Values...... seceesscsenassscsssens Ceetsceeaacessennas 1-4
Addresses....cccceeecaans teeecsecsceancnana S et s et eesceneetennassseasne 2-6
Addresses, Length.....cceieeeeesesseeesesnsecsastsasenssscesccsacsnnsss 1-4
Addressing ModeS...c.ceietrieeeosssocessaosrssassanssnsssoccs ceeessssanans .8-2
Architecture.....cveeeeeeiieeneennn ceetcescessenansas ses.a.vii, K 1-1,1-5,1-8
Architecture, definition......cveeeesccss PPN seeesserecnneen 1-1
Argument Pointer (AP)......ccteeeensaan e e et eceaseteee e 3-1,5-3
Arithmetic RedUucCtionS...ciieeieiitecseesecersosssssssncscssansannsssnass 15-1
Arithmetic Trap..cccecceetscesscsasccsnssncsasansssans ctetes et aaenas 6-2
Arithmetic Trap BitsS...i.iiretieinteencrtoenecnsonssensnansns ceseecanaan 3-2
Arithmetic Trap Enable Bits....c.coecccescsss cesseorrscennan cetereeenas 3-2
Arithmetics..ccceeieniirerincacesenns Cisesessssaaacanen ceeteceee e 9-1
Array Length, Limitations...cceceeeenceesoerecnoanns Cteeereseeenssaan . e2-1
Arrays..... S e et e eeesecesecccscev et ose e es e sassesannan a0 s 1-2,2-1,3-7
Arrays, Data TyPeS..cccettesecesssesansssscssssnnssccasnnsnos ceseeal-2,2-1
Arrays, Length...cceeeeeeciecnsenns cheeseanne sececerssrsassnsbasas 1-2,2-1
Arrays, Rank Or DimenSion...secuseeoeeceseeeasseesnaontccnnannnnnsoaness 1-2
Arrays, Rank or Dimension,............................:. ces.2-1
Arrays, Stride....cccceeicicctcnnnnnnn Ceeeeerececaeeaae ereeeeeeaal-2,2-1
Base-Level Interrupt Processing...... cereecaaes ctecesctesaans s Ceeaees 7-2
Base-Level Processing--Non Ring O...cesesesnanns ceessteecenieaannn eeess7-3
Base-Level Ring O...iiieiieeeneesossesaosssssarssosenssnsnsssassonsasaas e oo 7-2
Branches/JumMpS...ccceeeeeecsccsasoscsassnsnscscnsns ceetesacntsnnans cee..11-1
Breakpoint..eoeeeeeoeeeenssoaceassasscensesas cesessaneeanaene crtireecans 6-5
Central Processing Unit....ceeeeeceosecssessssssssonossessssnsnscesa 1-1,7-1
Chaining........ St e tassateseetteceaacnataaettentenataennas Ceeeean ..13-2
CloCKS .ttt eeeeeeesneoscosensnesesesasescssasssnsassssanas sesesncssans .12-1
COMPaArES. o v caseecassoscscescsenssssassnssonnnscsnss Cesessessenaass ceeees 9-2
Comparisons/Mask/Merge/Compress Instructions....ceceeees.. B B A
CPU Interrupt Chamnel......c..c... e et ess e st e st ee st esesees s snneannn 7-2
Data Accumulators.....coceeeees cheetssenenseesan Geetrieses ittt aaaann 3-5
Data Byte Boundaries......ieceeeveeenss tee et e et ettt 5-2
Data Type, Memory Alignment.....iceeeeeeetnessccannesoanses e e 1-4,2-6
Data TypeS..ccceeeveessnns es s s ecceinatecsn ot asesas s nen oo 1-2,2-1,13-1
Data Types, Length...c.ciiiiieenecenencncsscsananns cesssseneaen Gaeanas 2-1
Data Types, Numeric Fixed Point Integer.......ceeveeeececessscnsnacnns 2-1
Data Types, Numeric Floating Point.......eeicivesecnsnsoncnosannnns eee2-1
Data Types, RanK...eeoeoteoresecascssesasscescossansasansansas .S §
Data Types, Stride.......ciiitteiitnecantannnans seesereesssan s ceseaeas 2-1
Data Types, Unsigned Value, Address or Logical ValuesS...:iioceereeenns 2-1
Data Types: Scalar, Array Structure......... Cieeees e see ettt anae s 2-1
Debugging...cceeeeecessase cresesconnona c et et et et e aacnacennnanonn weeseen 6-4

INDEX-1

Double Precision Rounding........... ettt e ettt ettt 2-5
Effective SOUTCE. ittt iiteeoessssonsroesssnecaenoseneenanesansennesas 4-5
Error Exit...cvvvnnnen cecaacen tesessisecccneneesasrssss Cteceeranen e 6-6
Exception......... Cesecrrrressecasananearas ce ittt reaees sttt et tanon 6-1
Exception Handler.....oooenteeearosnonseeonnas ceete s 6-1,6-2,6-8
Exceptions.....coveveennacaens e e s e e s e eeeteaancests et cnenna 1-6.3-4,5-6
Exceptions, I/0, and InNterruptS. v ieeeeeceeeeeeeeseaneesennsansnsnsens 1-6
F-Format Single Precision......ceceeeeennennns ce et e eaetesaas e 2-3
FaultsS..ieeeiiireieteseasseasonsoancnoonnnas C et e et ettt et 6-2
Fetch and Execute Units........... cecescaees Cteeeeeeesaetes et 2-2
Fixed Point Integer..... seeeeneccnes Gesecsetveacsransos Cersceceas e 1-4,2-1
Fixed Point Integer RepresentationsS....c.c.eueeeceeeenmeennennnenennns 2-1
Fixed Point Integer, 16 bits (halfword)..... Geveseestecseveivneanna 1-4,2-1
Fixed Point Integer, 32 bits (word)...... Ce i esecrereteet e 1-4,2-1
Fixed Point Integer, 64 bits (longword)........ tetnsenans ceeseensal-4,2-1
Fixed Point Integer, 8 bits (byte)....couvveenuans ceenas . 1-4,2-1
Fixed Point Integer, Loading Operands..... Se et e e sttt esessensaennsans 2-2
Fixed Point Integer, Two's Complement Number System............. veeessl-4
Fixed Point Numbers, Two's Complement Number System........... ceeseesa2-1
Floating Point...i.itiniieiiinreneeeneeeeonoaroncesenaceaaansnn «..1-4,2-3
Floating Point Exceptions.....cceveeueenn e et ees et et eeeeearseanaanns 3-4
Floating Point Number Representations.......... ceesnoes cesreeneanean eeel-4
Floating Point Numeric Operation......vceeceececcceenceseannnen ceeeans 2-5
Floating Point Values......oeevevnveen Peestteescesersencssennann N
Floating Point Values, Assignment.......ceveeeceaess Ceesessteeterennnne 2-4
Floating Point Values, Assignment Example.............. fes et enennans 2-4
Floating Point Values, Interpreting the Fraction......c.ceeeeeeeeean .. 2-4
Floating Point Values, Reserved or Special OperandsS........eeeee.. «eee2-5
Floating Point Zero....ccetieieeesccccescnn s estseeerseseressersanna eees2-5
Floating Point, Binary Fractions......... ces sttt et et eecaaeasanaan ceea2-3
Floating Point, Double Precision (64 bits)....cccveennnnn. ceeseesal-4,2-3
Floating Point, EXpPONnentS.....veeeeeeesesesccececcncnanaeneas checeaenan 2-3
Floating Point, Interpretation............. ceeeeee ceesecsecaraneasal=4,2-3
Floating Point, Single Precision (32 bits).......... st eceersansn 1-4,2-3
Floating Point, Single Precision Format....ceeeeeereenneenesnons coenes 2-3
Floating Point: Double Precision Format....ceeeeeeerecanasas . A
Floating Point: Double Precision Format, Range.......... cseesesenssnna 2-4
Floating Point: Single Precision Format, Range..........c... ceesreenns 2-3
EFORTRAN Compiler.......... st eseareccecannssa . Ce et eeceeasaasnn Sviii
Fractions, Floating Point...sieieietsncssencennnnn tet et eseanansans 2-3,2-4
Frame Length Bits....oeveveen.e ceieresaens tereerateeetetannnna ceeereaa3-2
Frame Pointer (EP)......cccvievcncncans ceecesescceerancananan «+3-1,5-3,5-4
Frame Pointer, Definition of....... ceseeane ctecieccecnonacestean ceeaen 5-4
Functional Unit Reservation.......... cesensas St t et eretsteceennessnans 13-3
G-Format Double Precision........... PN ceeteacaneasnan Ceeecsesnena 2-3
Gate Array..cecescivescsaoens e Seesersenesanas 4-6
Gate Array StructuUre.......coiseicrecscsocennsnennss Ce ettt e e et 4-6
Gather and Scatter.....ciivieeeesosescceaneens Ceseesecncnccnnnan «s+..13-5
I/0cieiiiennnnns teeettersensaesnsnnan caens csesessesenennan Ceetenenas 7-1
I/OChannel..c.ceeeesoceenanans vesenaae e it s et esssaceesaa ettt acennnas 7-1
I/0 Operand References......cicveeeeeeeenceess ceeecernesesatsnnne R K]
I/O Register Space.....ieeveeeseneneennns ceesesne crecencaaanas 1-6,5-10,7-1
Indirection..... et es ettt e eaneanas e es et et eet et et 5-2,8-4
Instruction FormatsS.....cieveeneennnn . D T 8-1

Instruction
Instruction
Instruction
Instruction
Instruction
Instruction
Instruction
Instruction
Instruction

Page Layout.........

Set..

Set Conventions.....
Set Definitions.......

Set Notation......e...
Set Overview...ceeeeeee
Set, Definition.......

Trace......
Trace Bit..

Instructions.....ccccc..
Instructions, Halfword.....
Instructions, Length.......

INTEGER

INTEGER*2..cceveeceasansons
INTEGER*4 .. cceeeronsoccnane
INTEGER*8..cieeeseerecsacononans
Integrated Vector Processor.....
Inter-ring Procedure Call/Return...........
Interpreting Address Registers.............
Interrupt Channels.....cc.iitveeeennnccccans
Interrupt Sequence........ciceeerennseccoancas
InterruptS. e ceeeceeetecsessecscssnassonses
Common Sequence....ccceececesss
Interrupts, Processor Response........cc...
Interval Timer.....cccceeeetecsasncaccnncese
Inward System CallsS..c.cceeereerencoassonsns
TIPN Flag.eeoeessoosoessaasssonsnasenansnnna
JP Interrupt Channel....ccceevcescaescnsons
Load Physical Instruction.....ciecceeeccaessn
Loading OperandsS....ccceesecacsccscaraasnns
ILoads and StoOreS.....ceereccenccsoccnsannna
Address References......cceceveeeees
Address Space...cicececccccnccrncas
Address Space, Virtual Memory......
Definition.....cceevevenen
Format....ccceevecoeocnns
AddressesS..ccccteesscccccsccascsccs
OperationS..ccececriecceccencacacss
ReductionsS...ciceeereieeeecenecnnnes
to Physical Address Translation...
Value, Unsigned.......ccccvevuenns
Exceptions......oieeesescesacsnans
Mask/Merge/Compress Instructions..........
Management....ceoeeeeesessccoccssnss

Interrupts,

Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical
Logical

Machine

Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory
Memory

Modified Bit...eeeeieereennnennennnns

*1..

Address,
Address,

Management,
Management,
Management,
Management,
Management,
Management,
Managenent,

D I I R R N A

L I I I R I R R R A A Y
e s e e st s e s s s s
e e s e s seassssas s
s s e e e s e s st s e s
D I I N N R R)
D R I R R R R N I I I AR
s o0 e esses s e
ces s e esesae s ee
D R I N A A A A A A)
e s o0 e
ce e e
s e e e e
e e e
ce s s o
seee e
e e e e e
v e e e e
e e
ces e
.
ce s e
“coseen
IREEEE
EEERE
se e e
e
EREREE
s ve s e e
ssese e
seeee e
s re e
s ee e e e
EEREEER)
s s e
ess s
s ee e s

Address Translation Unit......
Page....ccieeiertnnencocannsans
Page Frame.....cooesveceessss
Page Table Entry....cccccveeen.
Page Tables..........
Referenced and Modified Bits..
Segment Descriptor Register...

Protection System......coveeeitencsccosannas

INDEX-3

.5-1,5-10,5-1

o oK o
]

s 2]
I

cees.l-4,2-
ceesal-4,2-
ceesel-4, 2~

1-4,2-

<

NIl R

>]
BMHERERORREREBROOHNODOKR UGB DEWN

<..1-6
..12-1
. e d=7
«e.3-4,7-2
ceea7-1
ce..4-8
cee2-2
«e.9-1
Y

o e e e e

.1-4,4-1,4-2,5-1,5-11,5-18

I R
csecasees2=6
cessaas2=6
..5-2,5-18
ee...15-1
cese.5-14
cerssol-4

i
U noeounm

Non-resident Page.....ccireeceeerecensennensenns et c e e aeeeneosaennan 6-8
Non-Ring O--Interrupt Level...cicieeeeereeenesneenenns e s et 7-3
Notation for Instruction Syntax...... e ettt e e e et e eas e et ananeeen 8-5
Operands and Address Registers.........cce.c.. Ct et ec et et aenean 2-2
Operands for Numeric Processing............ ceseas S et e eec et e 2-2
Operands, Used as Address or Index Value..... t et e e e s een e se e 2-2
Operating System..... G eecetreaaa e «¢1-5,4-2,4-7,4-8,5-2,5-6,5-18,6-5
Operating System, Call Processing........ creactsnsesnen cecteereseenacans 1-6
Operations Performed on a StacK.....veeeeeeeeenn cesecsesnsecnannaas ee.5-3
Optimizing and Vectorizing FORTRAN Compiler....ceeeeeeceeess ceeeesasaVviii
Page...oovivennnnns e eteerenacsssatassensann tereerecnrsenennan seeee1-5,5-1
Page O....... Certtesces ettt enonnaenen sereccesteteeanaans ee20..5-4,5-6,6-1
Page O Logical Memory Organization.....ueveeeeeeennaeas Ceeeveacsiensans 5-6
Page O Residency and Alignment RequirementsS........ceeeeenecececcensses 6-5
Page O, Arithmetic Exception.......... cseecesensans ceevsase ceerssnsaeas5-9
Page O, Breakpoint..... C e st et s te e s s e e et e tat et ees st caaeconananas 5-9
Page O, Context Stack Pointer.....c.cceiereeenereeencoonannns Ceieeenn ...5-8
Page O, I/0 InterrUpPt.e.. ieeeeeeseeesnseensssooeasccaecaosannnonenssennss 5-8
Page O, Instruction Trace......... cessssan cetrteesesetnesassannee esess.5-9
Page O, Interrupt Level.. ... ittt ieeenoetosensnnacosnnanssssscenss 5-8
Page O, Interrupt Stack Pointer........ Cetsessessceanans tesesesssesss.5-8
Page O, Interval Timer....... sacenssans ceceresensasns acenes veeseevnnas 5-8
Page O, Previous Stack Polnter......cceeeevececnasnncnaess ceeecesessans 5-8
Page O, Segment Entry Point............. ceeeereerssens ceesevrecssenanen 5-9
Page O, Stack Pointer..... ceersasserssssenan caseae cesesseencasaas ees2.5-9
Page O, System Exception Handler............ Cesene ceeees vesnseeeseens .5-8
Page O, Vector Valid Trap....cceeecsecscssorsssscocsescsccasasassssess5=8
Page Fault........ ceesescececatetesacnsnanaes Teeseseccsesueasnnns ceoceees 6-8
Page Faults....coeeeteeeennean ceecsrstecteseasencansnensnan vedeeteennns 6-10
Page Frame...... cesteeresaaannnn csessenns ceseccasnancenen ¢eses+1-5,5-1,5-12
Page Frame Address........ Gesessecsassenasasanaan Ceseseccsesssanennn .5-13
Page Table......coveuu.. teeesessesnsccenasassasen ceseene Certeseernaaes 5-12
Page Table Entry....sveeeeeececeacas sessens ceesaan Cevoenn 1-5,4-3,5-1,5-12
Page Table Entry, Execute AccesS.....ccoee.. heeeernensenas I S <
Page Table Entry, Format.....iceeverecccocnceannnsas sseveseaanss 5-12,5-14
Page Table Entry, Read Access....cvvsuann- feererceasecsensanan ceesess5-13
Page Table Entry, Write ACCeSS....cicteveecccccccesonsanesnannens eeeess5-13
Page Tables, Memory Management.......... crestseeesaenn ceeaees B R)
Page, Memory Management.......coeeeveecsonccecanenas csesecencacensaens 1-5
Pagetable.....cceveuensen e esesesesesenssasescanses csecescesssaenas 5-1,5-11
Pagetable Entry...cieeeresvncecsoscsnsenens creeenas tet ettt eeneenanns eood-2
PC. s iei ittt ticeenens B seecenrearenennas eeee3-1
Physical Address......eieetesceoccnncas ceereasecaas ceecessesannn eee..5-19
Physical Address Space......veeeeconecacoeneocnnenens C ettt e e e 5-9
Pop Operands....... Ceeeerseeenenase seecseeseretansseassaans creeneesnans 5-3
Power Up....cisierececannnnnanas teseestscestes s anan s nante ceereaaes 5-19
Privileged Control/Status Instruction Set......... et cecersesinennanas 12-1
Privileged Instructions....... st esacsssceneanaa St cecetsteenea e nannnn .4-1
Process.......... cesceesnecnases sessecccs ettt ecer e seseesess5-18
Process Exceptions....cceceeceee. ce st escesss s enannsen ceeees5-6,6-1,6-2
Process Multiplexing.......... ctecececeestnasantasaansannas Ceeerteenaas 5-18
Process Page O...cvvvencnnnnn ceeesane certecenenennan ceeesa ceseaeersnas 5-9
Processing System ExceptionS....oceeieeeeneneeseanns Cecerreecat s 6-8
Processor Status Word...... csteeseertcesesessasaan creesaes tesenees 3-1,3-2

INDEX-4

Processor Status Word, Bit Definitions....
Processor Status Word, Structure...
Program Control Instruction Set...........

Program Counter............ cree e
Program Counter Register..........
Program Counter, Operation........
Program Counter, Structure........
Protection Mechanism..........c...
Protection Mechanisms.............
Protection System.......ccc0t00eean
Protection System, Cautions.......
Protection System, Design.........

Protection System, Effective Source.......

POW. . ittt iiieiieteeietteanonnnnns

PSW Bit Definitions.........cc00..
PSW Bits and Exceptions....sseeeas
PSW, Structure.....ccceeeeeescncas
2 3
PTE Violation....cieausen. ceesenes
Push and Pop Operands.......ccc00e
Push/Pop Scalar Registers.........
Rank...cceeeeeerieieenconsocssssanas

D I I I I R R T R A S S A
e s s s s s s s s e s e s e
D I R I R .o
...... s s s s e ns s e s e s e s
“ s s e s s s s s s s a0t s es e s e e
e e e s s s s s s s s 0 ee e e
e s s e e s s s e s e s
s s s e 0 s s a0 s 0000 seev e e
s s e s s e e s e s 000 s 0000 s
s s s s s e e ecs s ses s e
DR R A R I) e s e e s s
© s e s e s s s s e e s e s e e e e e
s 0000800 ees e s e 00 s e
s e e e o e e e s s s s e
........ LI R S R
R I I I e R
LR R R R R I
4 e s s s 0 s s e s e e e s e ec e
e s e e s e s e s e cesses s e e
s e e esessss et aans

Reduced Instruction Set Architecture......
Reduced Instruction Set Computer..........
Reduction.ceeeeneeeneeseenmossneeesseasanssssosasasasssnaneas
Referenced and Modified BitS....ieeeeeecececnssnnnsnsoancsas
Referenced and Modified Bits, Memory Management.........c.c000c0e2ee...1-5
Referenced Bit....ceeerieeroctoasosnosesacsssosenssasnsasssns
Referencing Memory.....ceecieeeciecasnssacesosssaanssanannas

Register Set...ciivererescnoccsannnssns

Register Set, Partitioning........
Register Sets.....ccciiiiivnseeans
Register Unit Reservation.........
Registers, Partitioning...........
Reserved Logical Memory...........
Reserved Operand....ccccveeessncss
Reserved Operand Exception........
Reserved Operands....ccccceeeeeesas
Ring O..iiiiennnetieennenanennanns
Ring O StacK..eiceieeaterenoconcans
Ring O Stack Alignment............
Ring O--Interrupt Level...........
Ring Checking...cceeeceennsnennases
Ring Crossing..vciieeeeeessacscasns
Ring Maximization........coeeveese

Ring Violation.....eeeeesanesoanns .

RiNgS.cveeveeoesnssennannas ceeeans
RISC. .t ieieeneseennnansoscaesanans
Rounding....eeeeeeeneneesosocennns
Rounding, Double Precision........
S Register Conversions........s...

e e s 0 0 e

e e s 0 s

e e e 0 s o

e s s s s 0 e

S Register Immediates.....vciveeeeneencces
Saving and Restoring Vector Accumulators..
Scalar Data Types, Array Structure........

INDEX-5

.

" s e s s 0 s e s s s

st ecacaseeed=2
D e
cereseessaviii

ceeesead-2,

ceeeee.d4-5,6-7
ceesesesees5-3

..viii,1-1,2-6
ceesreasesl3-5
B 1)

.5-1,5-10,5-16
B -
B S
ceseseannasd-l

..... viii,1-2

creseessceacsassal3-3

T]

B -1

e A

D

teetssesssscscacssanssanssa3-4d

+e+.4-1,4-6,5-6,5-18,6-5,6-10,7-3,12-1

- N

P

¢ves24+.4-5,4-6,4-7,5-6,.6-5,7-3
tieresccesasertsseanesad=-3,4-8

..

o

.

e e 0000

s o0 000 0

D IR

D

veee-...1-5,4-1,6-7
...viii,f1-1,2-6,8-1

B A

teetrtsecceecasa2-5

e e s e

e s e es s 0000000

I X o
Cesevas ..10-2
B
B A

Scalar Fixed Point Integers.......... cheastseon s
Scalar Functional Units....vveeeeiineeeeeennnnns
Scalar Loads and StoOreS....cicisseseseccooasones
Scalar Performance...............,........
Scalar Register Instruction Set......cvceveeeen.
Scalar Register Sef.....ciieitiriiecnceennnennns
Scalar Registers...iicieeireetseerenenroennennas
Scalar Registers: Data Types, Bit Positions.....

Scalar/Scalar ArithmeticsS..icvieriviereeennencenas

Scalar/Scalar Compares Signed/Unsigned..........
Scalar/Scalar Logical Operations......cceceeeeea.
SRt eeveeneteasssassssssssssnsennsssosonsncenass
SDR Validity Bit Protection.......iiiieeeeneeenan
Segment... ...ttt ittt ittt sttereannen
Segment Descriptor Register......ceieeeeeeenenas
Segment Out-of-Bounds Error....ieecieeecececanas
Segment Out-of-Bounds Errors.....cveeeececscceas
Segmentation......ciiiiiiiiiiiiiii ittt arerannan
Sequential Execution.....ccucirerercrocnnsoesnns
Sequential Mode Bit...ciieeseeersnesoseoccosnoaans
Shifts/Moves/CoUuntS...oveteeesscsscssscenancnnns
Single Precision Rounding...c.ieevevecacececeanas

Stack Management, CautionS.....cseeeveececscoccsan

Stack OperationsS. . cieeeeeeceatencccecscanssnanans
Stack Overflow or Underflow Detection...........
Stack Pointer....iviiiererneertsrecetcsasnnnconns
Stack Structure.......ciiseeertserorcrancicncnns
Stack Structure for Subroutine Entry............
Stack Structure/Return BlocKS.....cceveveeeennns
Stack Switching......iiiiiiiiririennssoeeeenenna
) o= Lo -
Stacks, Dynamic Storage.....cceveeeeenseccececas
Status BitsS....iiiiirtiitireenreriensnosesccccanoas
Status Registers............ ceerteecseenennnnsns
Storage Allocation...iesiceeeeeccensnoonesonnones
Stride. ...ttt ittt e ettt
Subroutine Call/Save/RetUrn.....ceceeececesennss
Subroutine Entry and ExXit....ciieieececocnsennns
sysc Instruction......iiiiiiiiienrinerensennanns
System Call and Return.....cceceeeeeecorencensnens
System CallsS...ieeereeennsesossosoonsseocsannanan
System EXception..cicieseetsrrtesessctecceccannns
System Exceptions....coviiieierttettoncnoneeannnns
System Exceptions: Class Codes and Qualifiers...
System Page O...ciiitieirorsosrscencencnnnnonsns
System Return......cieeeiesecencenna ceceesesocsen
Translating Logical to Physical Addresses.......
AP S .ot vteetteeasesasnesessosssssossancanensennnss
Trojan Horse Pointer.....ciieieivreronececnnanns
Irue ZeroO. ...t uieiseoroersenosssasscacanennnnnas
Two's Complement Number System..........ceceee..
Types of Arithmetic Exceptions....ceeeevoceeaans
Unbiased Rounding.....cieeeesosorsssossnasoannsens
Unbiased Rounding, Guard Bits......c.00ne... oo

INDEX-6

..... ee..10-1

creeees..10-1
e....5-1,5-11
B
o S
.1-5,5-1,5-11
creesesaa5-12
creeeesss5-13

+++..3-5,6-5
teeeneaa3-3
seseee..s10-3
cieeenseaa2-5
cirsceses.5-4

e

L
«.3-1,4-7,5-3
. L
P s
seeesee..11-2
ceereeeeed-7
ceeseassesD-2
cetreesea.5-4
cetseeaees3-2
ceeeeal=2,3-1
ceessesees5-2
P A
ceeeeseel1l-1
ceeeevss.viii
[- -
ceeeeas..11-3
P -
terescsa..8-4
..5-6,6-1,6-5
N
ceresiae.5-6
R 4
ceereseaa5-11
ceee..6-2
N -

.
.
.
.
.

teeserssess2-5

ceeeerena6-3
B
ceetecesss2-5

Unbiased Rounding,

Sticky Bit......

Undefined Opcode....ccoceereeennnes
Undefined Opcodes....cccenereesnans

UNIX...oonunun
UNIX Operating System........

Unsigned Numeric Value Data Type...
Unsigned Value, Data Type..........
Unsupported Data Types......
Valid Memory References.......ceetvieeicaaas .

Valid Memory References,

" e s e s 80080 0ece s e o

Execute Access......

Valid Memory References, Read AccesS.........
Valid Memory References, Write Access........
Vector AccumulatorS...cceecesesenass
Vector Compares....cceeeeese

Vector Length

Register......

Vector Loads and Stores.....
Vector Merge Register.......
Vector Processing....c.cce..
Vector Reduction Instruction Set...
Vector Register Set..........cc.....

Vector Registers.......ccceeeeen.
Vector Registers: Data Types,
Vector Stride Register............

ee s 0 s

s e s e e

Vector Terminology..ceeeececessesas
Vector Terminology, Length..
Vector Terminology. Rank....
Vector Terminology. Stride..
Vector Valid.....eieesuencoccsnnnas
Vector Valid Bit....eieeeeceasannes
Vector Valid Flag..eeeecosssasensas
Arithmetics..........
Instruction Set......
Logical Operations...

Vector/Scalar
Vector/Scalar
Vector/ScaIar
Vector/Vector
Vector/Vector

Arithmetics...

® e e e

e e s oo

Logical Operations...
Vectorizing FORTRAN Compiler...ceceescsacccas
Virtual Address Space€...cccesceesossacscennas
Virtual Memory, capacity.csceeecscetsevancnns
VL, VS, and VM Instruction Set......ccc00e0u.
VST et teeeeenseensacacnsesassassasssssasanans
VV Flageeeeeesseesensaesssassascacaseasoanncans
Zerc Floating Point, Definition...ciceeeveans

e e e e s 0

Bit Positions..

e e e s 0 e

" s e e e s

s ee 0o 000

INDEX-7

.......... 1-2
teeseesesa2-1
..... cees.2-6
ceeseecs.4-3
seecesesna 4-4
P
P
.3-6,6-6,13-4
e R
B
ceerees..13-5

P R4
ceieeessaaal=3
T I <
cecesessaal=3
teecscscssb6-6
cseceesss.B-6

