
CompactRISC

CR16B

Programmer’s Reference Manual

Literature Number: 633150-001

September 1997

ΤΜ

[/Title (CR16B Programmer’s Reference Manual) /DOCINFO

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

1.0 September 1997 First release.
ii

PREFACE

This Programmer’s Reference Manual presents the programming model for the CR16B
microprocessor core. The key to system programming, and a full understanding of the
characteristics and limitations of the CompactRISC Toolset, is understanding the pro-
gramming model.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a Trademark of National Semiconductor Corporation.
MICROWIRE is a Trademark of National Semiconductor Corporation.
iii

[/PageMode /UseOutlines /DOCVIEW

CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 PROGRAMMING MODEL

2.1 CR16B SMALL AND LARGE PROGRAMMING MODELS 2-1

2.2 COMPATIBILITY WITH CR16A .. 2-1

2.3 DATA TYPES .. 2-1

2.4 INSTRUCTION SET.. 2-2

2.5 REGISTER SET .. 2-6

2.5.1 General-Purpose Registers .. 2-7

2.5.2 Dedicated Address Registers ... 2-7

2.5.3 The Processor Status Register .. 2-8

2.5.4 The Configuration Register .. 2-10

2.5.5 Debug Registers .. 2-11

2.6 MEMORY ORGANIZATION.. 2-12

2.6.1 Data References .. 2-14

2.6.2 Stacks .. 2-14

2.7 ADDRESSING MODES .. 2-15

Chapter 3 EXCEPTIONS

3.1 INTRODUCTION... 3-1

3.1.1 General .. 3-1

3.1.2 Interrupt Handling ... 3-2

3.1.3 Traps .. 3-3

3.2 DETAILED EXCEPTION PROCESSING .. 3-4

3.2.1 Instruction Endings ... 3-4

3.2.2 The Dispatch Table .. 3-5

3.2.3 Acknowledging an Exception ... 3-6

3.2.4 Exception Service Procedures ... 3-9

3.2.5 Returning From Exception Service Procedures 3-10

3.2.6 Priority Among Exceptions ... 3-10

3.2.7 Nested Interrupts .. 3-12

3.3 RESET .. 3-13
CompactRISC CR16B Programmer’s Reference Manual CONTENTS -v

Chapter 4 ADDITIONAL TOPICS

4.1 DEBUGGING SUPPORT...4-1

4.1.1 Instruction Tracing ..4-1

4.1.2 Compare-Address Match ..4-3

4.1.3 Checking for Debug and Breakpoint Conditions4-4

4.1.4 Controlling the Debug and In-System-Emulator Options4-4

4.1.5 In-System Emulator (ISE) ...4-6

4.2 INSTRUCTION EXECUTION ORDER ..4-7

4.2.1 The Instruction Pipeline ..4-8

4.2.2 Serializing Operations ...4-9

Chapter 5 INSTRUCTION SET

5.1 INSTRUCTION DEFINITIONS...6-1

5.2 DETAILED INSTRUCTION LIST ...6-3

5.3 CR16B/CR16A INSTRUCTION INCOMPATIBILITIES......................................6-65

Appendix A INSTRUCTION EXECUTION TIMING

Appendix B INSTRUCTION SET ENCODING

Appendix C STANDARD CALLING CONVENTIONS

Appendix D COMPARISON OF CR16A AND CR16B

INDEX
CONTENTS-vi CompactRISC CR16B Programmer’s Reference Manual

CompactRISCCR16B Programmer’s Reference Manual FIGURES -vii

FIGURES

Figure 1-1. Code Size Comparison . 1-3
Figure 1-2. RAM Size Comparison . 1-4
Figure 2-1. CR16B Registers . 2-6
Figure 2-2. Memory Organization . 2-13
Figure 2-3. Data Representation . 2-14
Figure 3-1. Dispatch Table and Jump Table . 3-6
Figure 3-2. Saving PC and PSR Contents During an Exception Processing Sequence . 3-8
Figure 3-3. Transfer of Control During an Exception Acknowledge Sequence 3-8
Figure 3-4. Exception Processing Flowchart . 3-11
Figure 4-1. CR16B Operating States . 4-7
Figure 4-2. Memory References for Consecutive Instructions . 4-9
Figure 5-1. Instruction Header Format . 6-1
Figure 5-2. Instruction Example Format . 6-2

CompactRISC CR16B Programmer’s Reference Manual TABLES -viii

TABLES

Table 3-1. Summary of Exception Processing . 3-9
Table 5-1. BR/BRcond Target Addressing Methodology . 6-9
Table 5-2. BAL Target Addressing Methodology . 6-12
Table 5-3. CBIT /SBIT /TBIT Addressing Methodology . 6-17
Table 5-4. LOAD/STOR Memory Addressing Methodology . 6-30

Chapter 1

INTRODUCTION

National’s CompactRISC Technology

National Semiconductor’s CompactRISC architecture was created from
the ground up as an alternative solution to CISC and other accumulator
based architectures. CompactRISC is a RISC architecture specifically
designed for embedded systems. It features the best of RISC and CISC
with compact code generation, low power consumption, silicon-efficient
implementations, the ability to tightly integrate on-chip acceleration,
I/O and memory functions, and scalability from 8- to 64-bits.

CompactRISC implementations greatly reduce the amount of silicon
required for the CPU, code memory and data memory, without signifi-
cantly reducing the overall performance advantages of RISC. In addi-
tion, because any processing core is only as good as its peripheral
support, several key architectural decisions were made to optimize bus
structures and I/O control for embedded systems in order to improve
flexibility and reduce costs.

Since its introduction, the CompactRISC architecture has firmly estab-
lished itself by filling a previously unmet market gap - those embedded
applications that require the performance of RISC, but cannot afford
the processing and cost overheads of 32-bit RISC implementations. The
16-bit members of the CompactRISC family have been particularly pop-
ular with designers because of their optimal balance of cost and perfor-
mance, plus the ability to combine a very small size core with other key
on-chip functions.
CompactRISC CR16B Programmer’s Reference Manual INTRODUCTION 1-1

CR16B - 16-bit CompactRISC Processor Core

The CR16B is a second-generation 16-bit CompactRISC processor core.
It is binary compatible with its predecessor, the CompactRISC CR16A,
and provides expanded options for system designers. The new imple-
mentation provides:

• Expanded linear address space of 2 Mbytes for program code and
data memory

• Atomic, memory-direct bit manipulation of single bits to efficiently
handle semaphores, I/O triggers, etc.

• Load and Store instructions for multiple registers

• Push and Pop instructions for multiple registers

• Addition of a Hardware Multiplier Unit for fast 16-bit multiplication

• On-chip debug features, including hardware breakpoints support

• Fully synthesizable Verilog HDL format

To ensure a seamless transition for existing CompactRISC users, the
CR16B provides two programming models; one that supports the new
2 Mbyte program address space, and a smaller model that provides
backward compatibility with the previous CR16A core.

The CompactRISC Architecture

In many ways, the CompactRISC technology is a traditional RISC
load/store processor architecture, but enhanced for embedded control
functions. For example:

• The CR16B executes an optimized instruction set with 24 internal
registers grouped in 16 general-purpose registers, three special
function registers, a processor status register, a configuration regis-
ter and three debug-control registers.

• The CR16B has a three-stage pipeline that is used to obtain a peak
performance of 50 Million Instructions Per Second (MIPS) at a clock
frequency of 50 MHz.

• The CR16B core includes a pipelined integer unit that supports a
peak execution speed of one instruction per each internal cycle,
with a 100 Mbyte/sec. pipelined bus.

• The CR16B performs fast multiply operations using a 16-bit by 4-
bit hardware multiplier.

In general, the CompactRISC architecture supports little-endian memo-
ry addressing. Which means that the byte order in the CR16B is from
the least significant byte to the most significant byte.
1-2 INTRODUCTION CompactRISC CR16B Programmer’s Reference Manual

Reduced Memory Requirements

To simplify instruction decoder design, RISC architectures have tradi-
tionally employed fixed-width instructions. For 32-bit RISC systems, ev-
ery instruction is encoded in four or eight bytes. In CISC systems, a
variable instruction length is used, resulting in smaller code sizes for a
given application. The CompactRISC architecture utilizes variable in-
struction widths with fixed coding fields within the instruction itself. For
example, the opcode field is always in the first 16 bits with additional
bytes as required for immediate values. Instructions for the CR16B may
be encoded in two bytes or four bytes, but basic instructions are only
two bytes long. This permits optimized instruction processing by the in-
struction decoder, and results in a smaller code size. Code generated
for the CR16B is comparable to CISC code size, or typically 50 percent
smaller than code generated for leading 32-bit RISC CPUs. Another ad-
vantage this provides, is the ability to generate performance with lower
pin-counts or lower-bandwidth buses - again a trait of an embedded
system.

Figure 1-1. Code Size Comparison

32-bit RISC processors store registers and addresses on the stack as
32-bit entities. The CR16B is a 16-bit processor, thus it uses 16 bits for
register image storage and for address storage in main memory. In ad-
dition, 32-bit RISC processors deliver high performance only when
aligned 32-bit data is used. Non-aligned data significantly hampers per-
formance. Intermediate results are stored in memory as 32-bit values
and registers are saved as 32-bit operands on the stack. CompactRISC
instructions operate on 8-, 16- and 32-bit data. Non-aligned accesses
are allowed. Dedicated data type conversion instructions speed data ac-
cess to mixed size data. With smaller code size, and variable length in-
structions and data, the CompactRISC family provides more efficient
use of smaller, lower cost, lower bandwidth memories.

80%

100%

120%

140%

160%

180%

200%

1 3 5 7 9 11

A
vg

.
CR16 32-bit (16-bit pretender) Leading 32-bit
CompactRISC CR16B Programmer’s Reference Manual INTRODUCTION 1-3

Figure 1-2. RAM Size Comparison

Smaller memory enables the designer to choose between several poten-
tial advantages:

• Reduce costs

• Integrate many more system elements with on-chip memory

• Use less pins to access minimum sized off-chip memory

• Allow larger amounts of on-chip memory than similar processors,
at the same cost.

Scalable Architecture from 8 to 64 Bits

The architectural features described above make the CompactRISC
technology ideal for the next generation of embedded systems. But, one
additional design decision opened the door for CompactRISC technology
to be effectively used from low-end to high-end embedded systems. That
decision was to make the CompactRISC architecture flexible enough to
accommodate the whole range of 8-bit to 64-bit implementations, thus
providing a more attractive upgrade path for designers of new low-end
embedded systems.

Thus, the designer of embedded controller-based systems can choose
the optimum processor size for a given target application. This is partic-
ularly useful in leveraging the development investment across several
classes of related end-products. With a single-processor architecture, a
number of different products can be developed using a single develop-
ment platform and using the same HLL-based development and debug
tools. Additionally, a design team that is already experienced with a de-
sign around one CompactRISC core can easily migrate to another core
due to the high similarity in both the architecture and the development
tools.

80%

130%

180%

230%

1 3 5 7 Avg.

CR16 32-bit (16-bit pretender) Leading 32-bit

2 4 6
1-4 INTRODUCTION CompactRISC CR16B Programmer’s Reference Manual

Modular Extensions

The CompactRISC technology was designed to be easily extensible. This
means that specialized functions needed by specific applications can be
easily added to a single-chip design. A modular internal bus provides
predefined processor and I/O interfaces to the core bus and the periph-
eral bus. These buses are designed for maximum flexibility. The core
bus is a high-speed bus and can be used to connect performance-de-
manding functions to the CPU such as fast on-chip memory, DMA
channels, and additional coprocessor units such as DSP. The peripheral
bus is a simple, lower speed bus for less demanding peripherals such
as counters, timers, PWM lines and MICROWIRE serial interfaces. Us-
ing a “template” approach, it is easy to create small, cost-effective cus-
tom systems. It is also easy to expand the functionality of CompactRISC
core-based systems to include any number of application specific fea-
tures.

Development Tools

High-level development tools are essential to rapid, modern design. The
CompactRISC architecture is well supported with a comprehensive C-
based development and debug environment available from National and
third party vendors. Key software development components include an
optimizing C compiler, a macro assembler, run-time libraries, librarian
and a graphical source-level debugger including enhanced simulation
capabilities. In addition, support for debugging of multiple Compact-
RISC/DSP cores on a single die comes from the use of an integrated,
multiple core, graphical debugger. On the hardware side, the Compact-
RISC architecture has modular ISE (In System Emulator) support from
third-party development system vendors, and various development
boards for all current product offerings. As a package, these tools sim-
plify the task of designing and developing advanced embedded systems
in high level languages such as ANSI-C.
CompactRISC CR16B Programmer’s Reference Manual INTRODUCTION 1-5

Chapter 2

PROGRAMMING MODEL

2.1 CR16B SMALL AND LARGE PROGRAMMING MODELS

The CR16B has two programming modes: small and large. The small
model is similar to the CR16A, and is limited to 128 Kbytes of program
address space, and 256 Kbytes of data address space. The large model
supports up to 2 Mbytes of program and data space.

The two programming models are almost identical. They differ only in
the instructions used for branching and program flow control. In the
“INSTRUCTION SET” on page 2-2, instructions which apply only to the
large model (2 Mbytes) are marked with an [L], in the description field,
and instructions which apply only to the small model (128 Kbytes) are
marked with an [S].

This chapter describes both programming models. Any explanation
which does not specify the type of programming model, applies to both
the small and the large programming models.

2.2 COMPATIBILITY WITH CR16A

The CR16B is backward-compatible with the CR16A. In other words,
code that was developed for the CR16A, runs on the CR16B with almost
no modifications. Appendix D provides a summary of the differences be-
tween the CR16A and the CR16B programming models.

2.3 DATA TYPES

The CompactRISC family of processors are little-endian machines. As
such, the least significant bytes always resides in the lower addresses,
both for address and data variables.

Integer data
type

The integer data type is used to represent integers. Integers may be
signed or unsigned. Two integer sizes are supported: 8-bit (1 byte), 16-
bit (1 word). Signed integers are represented as binary two’s comple-
ment numbers, and have values in the range −27 to 27−1 and −215 to
215−1, respectively. Unsigned numbers have values in the range 0 to
28−1, and 0 to 216−1, respectively.
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-1

Boolean data
type

The boolean data type is represented as an integer (byte word). The val-
ue of its least significant bit represents one of two logical values, true or
false. Integer 1 indicates true; integer 0 indicates false.

2.4 INSTRUCTION SET

This section includes a summary list of all the instructions in the
CR16B instruction set. Appendix B, “INSTRUCTION SET ENCODING”
describes each instruction in detail.

The following table summarizes the CR16B instruction set.

Mnemonic Operands Description

MOVES

MOVi Rsrc/imm, Rdest Move

MOVX Rsrc, Rdest Move with sign extension

MOVZ Rsrc, Rdest Move with zero extension

MOVD imm, (Rdest+1, Rdest) Move 21-bit immediate to register-pair

INTEGER ARITHMETIC

ADD[U]i Rsrc/imm, Rdest Add

ADDCi Rsrc/imm, Rdest Add with carry

MULi Rsrc/imm, Rdest Multiply: Rdest(8):= Rdest(8) * Rsrc(8)/Imm
 Rdest(16):= Rdest(16) * Rsrc(16)/Imm

MULSB Rsrc, Rdest Multiply: Rdest(16):= Rdest(8) * Rsrc(8)

MULSW Rsrc, Rdest Multiply: (Rdest+1, Rdest):= Rdest(16) * Rsrc(16)

MULUW Rsrc, Rdest Multiply: Rsrc = {R0,R1,R8,R9 only}
 (Rdest+1,Rdest):= Rdest(16) * Rsrc(16);

SUBi Rsrc/imm, Rdest Subtract: (Rdest := Rdest − Rsrc)

SUBCi Rsrc/imm, Rdest Subtract with carry: (Rdest := Rdest − Rsrc)

INTEGER COMPARISON

CMPi Rsrc/imm, Rdest Compare (Rdest − Rsrc)

BEQ0i Rsrc, disp Compare Rsrc to 0 and branch if EQUAL
 Rsrc = (R0,R1,R8,R9 only)

BNE0i Rsrc, disp Compare Rsrc to 0 and branch if NOT-EQUAL
 Rsrc = (R0,R1,R8,R9 only)

BEQ1i Rsrc, disp Compare Rsrc to 1 and branch if EQUAL
 Rsrc = (R0,R1,R8,R9 only)

BNE1i Rsrc, disp Compare Rsrc to 1 and branch if NOT-EQUAL
 Rsrc = (R0,R1,R8,R9 only)
2-2 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

LOGICAL AND BOOLEAN

ANDi Rsrc/imm, Rdest Logical AND

ORi Rsrc/imm, Rdest Logical OR

Scond Rdest Save condition code as boolean

XORi Rsrc/imm, Rdest Logical exclusive OR

SHIFTS

ASHUi Rsrc/imm, Rdest Arithmetic left/right shift

LSHi Rsrc/imm, Rdest Logical left/right shift

BITS

TBIT Rposition/imm, Rsrc Test bit in register

SBITi Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Set a bit in memory;
Rbase = (R0, R1, R8, R9}

CBITi Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Clear a bit in memory
Rbase = (R0, R1, R8, R9}

TBITi Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Test a bit in memory
Rbase = (R0, R1, R8, R9}

JUMPS AND LINKAGE

Bcond disp9
disp17
disp21

Conditional branch using a 9-bit displacement
Conditional branch to a small address [S]
Conditional branch to a large address [L]

BAL Rlink, disp17
(Rlink+1, Rlink), disp21

Branch and link to a small address [S]
Branch and link to a large address [L]

BR disp9
disp17
disp21

Branch using a 9-bit displacement
Branch to a small address [S]
Branch to a large address [L]

EXCP vector Trap (vector)

Jcond Rtarget
(Rtarget+1, Rtarget)

Conditional Jump to a small address [S]
Conditional Jump to a large address [L]

JAL Rlink, Rtarget
(Rlink+1, Rlink), (Rtar-
get+1, Rtarget)

Jump and link to a small address [S]

Jump and link to a large address [L]

JUMP Rtarget
(Rtarget+1, Rtarget)

Jump to a small address [S]
Jump to a large address [L]

RETX Return from exception

PUSH imm, Rsrc Push “imm” number of registers on user stack,
starting with Rsrc

POP imm, Rdest Restore “imm” number of registers from user
stack, starting with Rdest

Mnemonic Operands Description
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-3

POPRET imm, Rdest Restore registers (similar to POP) and perform
JUMP RA or JUMP (RA, ERA), depending on
memory model

PROCESSOR REGISTER MANIPULATION

LPR Rsrc, Rproc Load processor register

SPR Rproc, Rdest Store processor register

LOAD AND STORE

LOADi disp(Rbase), Rdest Load (register relative)

abs, Rdest Load (absolute)

disp(Rpair+1, Rpair), Rdest Load (far-relative)

STORi Rsrc, disp(Rbase) Store (register relative)

Rsrc, disp(Rpair +1, Rpair) Store (far-relative)

Rsrc, abs Store (absolute)

sm_imm, 0(Rbase)
sm_imm, disp(Rbase)
sm_imm, abs

Store small immediate in memory;

Rbase = (R0, R1, R8, R9)

LOADM imm Load 1 to 4 registers (R2 - R5) from memory, starting
at the address in R0, according to imm count value

STORM imm Store 1 to 4 registers (R2 - R5) to memory, starting
at the address in R1, according to imm count value

MISCELLANEOUS

DI Disable maskable interrupts

EI Enable maskable interrupts

NOP No operation

WAIT Wait for interrupt

EIWAIT Enable interrupts and wait for interrupt

Mnemonic Operands Description
2-4 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

Instructions Table Glossary

Rsrc - Source Register. Any general-purpose register (R0 - R13, ERA, RA, SP)

Rsrcr - A restricted subset of the general-purpose register set (R0, R1, R8, R9)

Rdest - Destination Register. Any general-purpose register (R0 - R13, ERA, RA, SP)

Rproc - Processor registers (PC, PSR, ISP, INTBASEH/L)

Rlink - Link Register. Any general-purpose register (R0 - R13, ERA, RA, SP), holding
the address of the next sequential instruction, used as a return address.

imm - Immediate value

sm_imm - Small immediate - 4-bit data

Rbase - Base register. Any general-purpose register (R0 - R13, ERA, RA, SP), holding
the base address of a memory variable

disp(Rbase) - Relative addressing; Address = disp + (Rbase)

Rpair - Any pair of sequential general-purpose registers (R0 - R13, ERA, RA)

Rtarget - Target Register. Any general-purpose register (R0 - R13, ERA, RA, SP), hold-
ing the JUMP/JAL target address

Rposition - Bit position, stored in any general-purpose register (R0 - R13, ERA, RA, SP).

Iposition - Bit position, specified as an immediate operand

Rsrc(8) - The LSB(8-bits) of any Source Register (R0 - R13, ERA, RA, SP)

Rdest(8) - The LSB(8-bits) of any Destination Register (R0 - R13, ERA, RA, SP)

Rsrc(16) - The complete 16-bits of any Source Register (R0 - R13, ERA, RA, SP)

Rdest(16) - The complete 16-bits of any Destination Register (R0 - R13, ERA, RA, SP)

abs - Absolute address

small address - Address in the range of 0 to 128 Kbytes

large address - Address in the range of 0 to 2 Mbytes

[L] - Instructions exclusive to the large memory model

[S] - Instructions exclusive to the small memory model

disp16 - 16-bit displacement
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-5

2.5 REGISTER SET

This section describes each register, its bits and its fields in detail. In
addition, the format of each register is illustrated.

All registers are 16 bits wide, except for the four address registers,
which are 21 bits wide. Bits specified as “reserved” must be written as
0, and return undefined results when read.

The internal registers of the CR16B are grouped by function:

• 16 general-purpose registers

• Eight processor registers:

– Three dedicated address registers

– One processor status register

– One configuration register

– Three debug control registers

Figure 2-1 shows the internal registers of the CR16B

Figure 2-1. CR16B Registers

PSR

Dedicated Address Registers

Processor Status Register

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13/ERA

RA
SP

General-Purpose Registers

CFG

Configuration Register

15 0

15 0

15 0

DCR
DSR

CARL

Debug Registers
15 0

CARH

20 0

ISP
PC

20 0

00000

 15

INTBASEL

16

INTBASEH

INTBASE
2-6 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

2.5.1 General-Purpose Registers

The CompactRISC cores feature 16 general purpose registers. Due to
the subroutine calling conventions advocated for the architecture, some
of these registers are assigned special, hardware and software func-
tions.

Small
programming
model

Registers R0 - R13 are used for general purposes, such as holding vari-
ables, addresses or index values. The SP general-purpose register is
usually used as a pointer to the program run-time stack. The RA gener-
al-purpose register is usually used as a return address from sub-rou-
tines. If a general-purpose register is specified by an operation that is 8
bits long, then only the low part of the register is used; the high part is
not referenced, or modified.

Large
programming
model

Registers R0 - R12 are used for general purposes, such as holding vari-
ables, addresses or index values. The SP general-purpose register is
usually used as a pointer to the program run-time stack. The (RA, ERA)
general-purpose register-pair, is usually used as a return address from
sub-routines, with RA containing the high address bits (PC(20:17)), and
ERA containing the low address bits (PC(16:1)). If a general-purpose reg-
ister is specified by an operation that is 8 bits long, only the low part of
the register is used; the high part is not referenced or modified.

Notes 1. The POPRET instruction assumes that the return address is placed
in the RA (small model) or [RA, ERA] register-pair (large model) dur-
ing register restore. Thus, a program that does not use this calling
convention, can not use this instruction.

2. For the Large Programming Model, only the ERA mnemonics should
be used, and not R13.

3. Some of the instructions can use only a sub-set of the general-
purpose registers. These appear in “INSTRUCTION SET” on page
2-2, with an “R” in the first column, and in Appendix B.

2.5.2 Dedicated Address Registers

This section describes the three, 21-bit wide, dedicated address regis-
ters that the CR16B uses to implement specific address functions.
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-7

Program
Counter (PC)

The value in the PC register points to the first byte of the instruction
currently being executed. The least significant bit of the PC is always 0.
Thus CR16B instructions are aligned to even addresses. At reset, the
PC is initialized to 0, and the values of the PC, prior to reset, are saved
in the R0 general-purpose register, and the values of bits 17 through 20
are saved in the most significant bits of R1. In the small programming
model, bits 17 through 20 are always 0. Therefore, in the large pro-
gramming model, the instructions reside in the range 0 to 1FFFFE16,
while in the small model, the instructions reside in the range 0 to
1FFFE16. The lower 12 bits of R1 contain the lower 12 bits of PSR prior
to reset.

Interrupt Stack
Pointer (ISP)

The ISP register points to the lowest address of the last item stored on
the interrupt stack. This stack is used by the hardware when interrupts
or exceptions occur. The five most significant bits, and the least signifi-
cant bit of this register, are always 0. Thus the interrupt stack always
starts at an even address, and resides in the address range 0 to
FFFE16. The ISP cannot be used for any purpose other than the auto-
matic storage of registers on the stack during an exception, and the res-
toration of these registers during a RETX.

Interrupt Base
Register
(INTBASE)

The INTBASE register holds the address of the dispatch table for inter-
rupts and traps. This register is derived from the concatenation of bits
0 through 15 of INTBASEL and bits 0 through 4 of INTBASEH, forming
together a 21-bit address. Bit 0 of INTBASEL and bits 5 through 15 of
INTBASEH are always 0. INTBASEH is used for dispatch-table entry
calculation only when working with 21-bit entry dispatch tables (i.e.,
CFG.ED = 1). Otherwise, INTBASEH is considered as 0, when calculat-
ing INTBASE. Thus, in this model, the dispatch table always resides in
the address range 0 to 0FFFE16. or 1FFFFE16, according to CFG.ED.
See Chapter 3, “EXCEPTIONS” for more information.

2.5.3 The Processor Status Register

The Processor Status Register (PSR) holds status information and se-
lects operating modes for the CR16B. It is 16 bits wide.

The format of the PSR is shown below:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I P E 0 N Z F 0 0 L T C
2-8 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

At reset, bits 0 through 11 of the PSR are cleared to 0, except for the
PSR.E bit, which is set to 1. In addition, the value of each bit prior to
reset is saved in the R1 general-purpose register.

Several bits in the PSR have a dedicated condition code in conditional
branch instructions. These bits are Z, C, L, N, and F. Any conditional
branch instruction can cause a branch in the program execution, based
on the value of one of these PSR bits, or a combination of them. For ex-
ample, one of the Bcond instructions, BEQ (Branch EQual), causes a
branch if the PSR.Z flag is set. Refer to the Bcond instruction in “In-
struction Definitions” on page 5-1 for details.

Bits 3, 4 and 8 have a constant value of 0. Bits 12 through 15 of the
PSR register are reserved. The other bits are described below. In gener-
al, status bits are modified only by instructions which are specified to
do so. Otherwise, status bits maintain their values, throughout instruc-
tions which do not implicitly affect them.

The C Bit The Carry bit indicates whether a carry or borrow occurred after addi-
tion or subtraction. It can be used with the ADDC and SUBC instructions
to perform multiple-precision integer arithmetic calculations. It is
cleared to 0 if no carry or borrow occurred, and set to 1 if a carry or
borrow occurred.

The T Bit The Trace bit causes program tracing. While the T bit is set to 1, a
Trace (TRC) trap is executed after every instruction. Refer to “Instruc-
tion Tracing” on page 4-1 for more information on program tracing. The
T bit is automatically cleared to 0, when a trap or an interrupt occurs.
The T bit is used in conjunction with the P bit, see below.

The L Bit The Low flag is set by comparison operations. In integer comparison,
the L flag is set to 1, if the second operand (Rdest) is less than the first
operand (Rsrc) when both operands are interpreted as unsigned inte-
gers. Otherwise, it is cleared to 0.
Refer to the specific compare instruction in “Instruction Definitions” on
page 5-1 for details.

The F Bit The Flag bit is a general condition flag which is set by various instruc-
tions. It may be used to signal exceptional conditions or to distinguish
the results of an instruction (e.g., integer arithmetic instructions use it
to indicate overflow from addition or subtraction). In addition, it is set,
or cleared, as a result of a Test-Bit, Set-Bit or Clear-Bit instruction.

The Z Bit The Zero bit is set by comparison operations. In integer comparisons it
is set to 1 if the two operands are equal. Otherwise, it is cleared to 0.
Refer to the specific compare instruction in “Instruction Definitions” on
page 5-1 for details.
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-9

The N Bit The Negative bit is set by comparison operations. In integer comparison
it is set to 1 if the second operand (Rdest) is less than the first operand
(Rsrc) when both operands are interpreted as signed integers. Otherwise
it is cleared to 0.
Refer to the specific compare instruction in “Instruction Definitions” on
page 5-1 for details.

The E Bit The local maskable interrupt Enable bit affects the state of maskable in-
terrupts. While this bit and the PSR.I bits are 1, all maskable interrupts
are accepted. While this bit is 0, only the non-maskable interrupt is ac-
cepted.
See “Interrupt Handling” on page 3-2.

There are two dedicated instructions that set and clear the E bit. It is
set to 1 by the Enable Interrupts instruction (EI). It is cleared to 0 by
the Disable Interrupts instruction (DI). This pair can be used to locally
disable maskable interrupts, regardless of the global state of maskable
interrupts, which is determined by the value of the PSR.I bit.
See also “Interrupt Handling” on page 3-2.

The P Bit The Trace (TRC) trap Pending bit is used together with the T bit to pre-
vent a TRC trap from occurring more than once for any instruction. It
may be cleared to 0 (no TRC trap pending) or 1 (TRC trap pending).
See “Exception Service Procedures” on page 3-9 and “Instruction Trac-
ing” on page 4-1 for more information.

The I Bit The global maskable Interrupt enable bit affects the state of maskable
interrupts. While this bit, and the PSR.E bits, are 1, all maskable inter-
rupts are accepted. While this bit is 0, only the non-maskable interrupt
is accepted. The I bit is cleared to 0 on reset. In addition, it is automat-
ically cleared when an interrupt or DBG trap occurs.

2.5.4 The Configuration Register

The ED Bit The ED bit determines the size of INTBASE register and the size of every
entry in the Interrupt Dispatch Table. When ED is set, INTBASE is a
21-bit register (INTBASEH, INTBASEL) and the Interrupt Dispatch Table
contains 21-bits elements, each occupying two adjacent words. When
ED is cleared, INTBASE is a 16-bit register, and the Interrupt Dispatch
Table contains 16-bit elements. On reset the bit is cleared (CR16A com-
patible mode).

The format of the CFG register is shown below.

015

reservedreserved ED

8

2-10 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

2.5.5 Debug Registers

The three dedicated registers, the Debug Control Register (DCR), the
Debug Status Register (DSR), the Compare-Address Register (CAR), con-
trol and monitor a major portion of the debugging support available in
the CR16B. The functionality of these registers, and their usage, is ex-
plained in detail in “DEBUGGING SUPPORT” on page 4-1.

The Debug Status Register (DSR)

The Debug Status Register (DSR) indicates debug and breakpoint condi-
tions that have been detected. When the CPU detects an enabled debug
condition, it sets the appropriate bits in the DSR to 1. For further in-
formation, see “Checking for Debug and Breakpoint Conditions” on page
4-4.

The Debug Control Register (DCR)

The Debug Control Register (DCR) controls the compare-address match,
external tag on fetch, and PC match debug, options. These options are
enabled and controlled by the appropriate bits in the DCR. For more
information, see “Controlling the Debug and In-System-Emulator Op-
tions” on page 4-4.

The Compare Address Register (CAR)

The Compare Address Registers Low and High (CARL, CARH) contain
the address to be used for generating a breakpoint by the on-core
breakpoint unit, in case of PC match or data transactions address
match. For more information, see “PC match” on page 4-2 and “Com-
pare-Address Match” on page 4-3.
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-11

2.6 MEMORY ORGANIZATION

The CR16B implements 21-bit addresses. This allows the CPU to access
up to 256 Kbytes of data, and 128 Kbytes of program memory in the
small model, and 2 Mbytes of program and data in the large model. The
memory is a uniform linear address space. Memory locations are num-
bered sequentially starting at 0 and ending at 218−1 in the small model,
and at 221−1 in the large model. The number specifying a memory loca-
tion is called an address.

CR16B data addressing is always byte-related (i.e., data can be ad-
dressed at byte-resolution). The instructions, by contrast, are always
word-aligned, and therefore instruction addresses are always even-
addressed.

Memory can be logically divided into the following regions: (see Figure
2-2).

• 0-63K (0 through 0FBFF16)
This region can be accessed efficiently for data-manipulation, using
register-relative and absolute addressing. Therefore, it should be
used for RAMs and frequently accessed I/O devices. Also, the user-
stack and interrupt-stack must be located in this region, because
the SP and ISP registers are only 16-bit wide. There are no restric-
tions on code in this region.

• 63K-64K (0FC0016 through 0FFFF16)
This region is reserved for I/O devices, such as the Interrupt Con-
troller Unit and its acknowledge address, as well as other internal
uses.

• 64K - 256K (1000016 through 2000016)
This region can be accessed efficiently using far-relative and abso-
lute addressing. Register-relative addressing (near-pointers) has
only limited addressing capabilities in this region.
For more information, see Table 5-4, “LOAD/STOR Memory Address-
ing Methodology” on page 5-30, and “Medium displacement values”
on page B-5.
Use this region for infrequently used data variables, or for code.
Note that only in the large memory model is the 128K - 256K also
available for code.

• 256K - 2M (2000016 through 1FFFFF16)
This region can only be accessed by the far-relative mode, and in a
limited manner. Use this zone only in the large memory model, for
infrequently used data, and for code.
For more information, see Table 5-4, “LOAD/STOR Memory Address-
ing Methodology” on page 5-30, and “Far- Relative Addressing
Mode” on page B-5.
2-12 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

For more information, see “Detailed Instruction List” on page 5-3, “Ad-
dressing Modes” on page 2-15, and “CR16B Instruction Set Summary”
on page B-12.

Figure 2-2. Memory Organization

~
~

Address

00000016

00FC0016

01000016

Data, Code and I/O
~
~

Interrupt Control (1K)

Far-Data, Code and I/O

~
~

~
~

~
~

~
~

02000016

03FFFF16

Stacks
Dispatch Table

1FFFFF16

~
~

(63K)

(64K)

 (128K)
12

8
K

B
yt

es
 C

od
e

(b
ot

h
m

od
el

s)

25
6

K
B

yt
es

 D
at

a
(b

ot
h

m
od

el
s)

2
M

B
yt

es
 C

od
e

+
D

at
a

(L
ar

ge
 m

od
el

)

Far-Data, I/O and
Large Model Code

Dispatch Table

Dispatch Table

Large Model Far-Data, I/O,
Code and Dispatch Table

(256K - 2M)~
~

CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-13

2.6.1 Data References

Bit and byte
order for data
references

Data memory is byte-addressable in the CompactRISC architecture, and
is organized in “little-endian” format, where the least significant byte
within a word or a double-word resides at the lower address.

Bits are ordered from least significant to most significant. The least-
significant bit is in position zero. The TBIT , SBIT , and CBIT instructions
refer to bits by their ordinal position numbers. Figure 2-3 shows the
memory representation for data values.

Figure 2-3. Data Representation

Data The CR16B supports references to memory by the load and store in-
structions, as well as TBIT , SBIT , CBIT, PUSH,POP,LOADM and STORM.
Bytes, and words can be referenced on any boundary.

2.6.2 Stacks

A stack is a one-dimensional data structure. Values are entered and re-
moved, one item at a time, at one end of the stack called the top-of-
stack. The stack consists of a block of memory, and a variable called
the stack pointer. Stacks are important data structures in both systems
and applications programming. They are used to store status informa-
tion during sub-routine calls and interrupt servicing. In addition, algo-
rithms for expression evaluation in compilers and interpreters use
stacks to store intermediate results. High level languages, such as C,
keep local data and other information on a stack.

The CR16B supports two kinds of stacks: the interrupt stack and the
program stack.

A+1 A

15 0Bit Number

Byte Address

(b) Word at Address A

A

7 0Bit Number

Byte Address

(a) Byte at Address A
2-14 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

The interrupt
stack

The processor uses the interrupt stack to save and restore the program
state during the handling of an exception condition. This information is
automatically pushed, by the hardware, on to the interrupt stack before
entering an exception service procedure. On exit from the exception ser-
vice procedure, the hardware pops this information from the interrupt
stack. See Chapter 3, “EXCEPTIONS” for more information. The inter-
rupt stack can reside in the first 64 Kbytes of the address range, and is
accessed via the ISP processor register.

The program
stack

The program stack is normally used by programs at run time, to save
and restore register values upon procedure entry and exit. It is also
used to store local and temporary variables. The program stack is ac-
cessed via the SP general-purpose register and therefore must reside in
the first 64 Kbytes of the address range. Note that this stack is handled
by software only, e.g., the CompactRISC C Compiler generates code that
pushes data on to, and pops data from, the program stack. Only PUSH
and POP instructions adjust the SP automatically; otherwise, software
must manage the SP during save and restore operations.

Both stacks expand downward in memory, toward address zero.

2.7 ADDRESSING MODES

The CompactRISC is a load/store architecture, with most instructions
operating only on registers.

Most instructions use one, or two, of the CR16B registers (or register
pairs) as operands. Some instructions may also use an immediate value
instead of the first register operand.

Memory is accessed only by the generic Load and Store instructions,
which use the absolute relative, addressing mode, or by a more func-
tion-specific set of instructions. These are the memory-direct bit manip-
ulation instructions (SBIT , CBIT, TBIT), which use absolute and relative
addressing, the PUSH/POP instructions, which can only access the stack
via SP, and the LOADM and STORM instructions, which use a fixed set of
registers for addressing.

The following addressing modes are available:

Register mode In register mode, the operand is located in a general-purpose register,
i.e., R0 through R13, RA or SP. The following instruction illustrates reg-
ister addressing mode.

ADDB R1, R2

Some CR16B instructions use a register-pair to form, or store, the address,

JAL (RA,ERA), (R9,R8)
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-15

where the RA, ERA register-pair is concatenated to form a 20-bit return
address, and R9 and R8 are concatenated to form a 20-bit target ad-
dress.

Immediate
mode

In immediate mode, the operand is a constant value which is specified
within the instruction. For example:

MULW $4, R4

PC-Relative
mode

In PC-Relative mode, the operand is a displacement relative to the cur-
rent value of the PC register. For example:

BR *+10

Relative mode In relative mode, the operand is located in memory. Its address is ob-
tained by adding the contents of a general-purpose register to the con-
stant value in the displacement field encoded in the instruction.

Relative mode limits accesses to the first 256 Kbytes of memory (18-bit
displacement), but only the first 64 Kbytes may be covered with the reg-
ister as a base-pointer since the register used has only 16 bits.

The following instruction illustrates relative addressing mode.

LOADW 12(R5), R6

Restricted
relative mode

In some cases (SBITi , CBITi , TBITi , STORi $imm, <>), the displacement
is limited to 16 bits, and only four registers (R0, R1, R8, R9) can be used
in the addressing. In these cases, addressing is limited to the first 64
Kbytes of memory.

The following instruction illustrates relative addressing mode.

SBITW $3, 12(R0)

Far-relative
mode

In far-relative mode, the operand is located in memory. Its address is
obtained by concatenating a pair of adjacent general-purpose registers
to form a 21-bit value, and adding this value to the 18-bit signed con-
stant value in the displacement field encoded in the instruction. The 16
least significant bits of the 21-bit value are taken from the base register,
and the five most significant bits of the value are taken from the least
significant bits in the next consecutive register.

Utilizing the 18-bit signed displacement, this addressing mode can in-
dex a 2-Mbyte segment of memory, which begins anywhere within the
first 128 Kbytes of memory. Only the LOAD and STOR instructions fea-
ture this mode, and can access beyond the 64K boundary. The following
instruction illustrates far-relative addressing mode.

STORW R7, 4(R3, R2)
2-16 PROGRAMMING MODEL CompactRISC CR16B Programmer’s Reference Manual

Absolute mode In absolute mode, the operand is located in memory, and its address is
specified within the instruction (18 bit). The following example illus-
trates absolute addressing mode.

LOADB 4000, R6

For a more detailed explanation, see “Instruction Formats” on page B-2.
CompactRISC CR16B Programmer’s Reference Manual PROGRAMMING MODEL 2-17

Chapter 3

EXCEPTIONS

3.1 INTRODUCTION

3.1.1 General

Program exceptions are conditions that alter the normal sequence of in-
struction execution, causing the processor to suspend the current pro-
cess, and execute a special service procedure, often called a handler.

Exception
types

An exception resulting from the activity of a source external to the pro-
cessor is known as an interrupt; an exception which is initiated by some
action or condition in the program itself is called a trap. Thus, an inter-
rupt need have no relationship to the executing program, while a trap is
caused by the executing program and recurs each time the program is
executed. The CR16B recognizes ten exceptions: seven traps and three
types of interrupts.

The exception-handling technique employed by an interrupt-driven pro-
cessor determines how fast the processor can perform input/output
transfers, the speed for transfers between tasks and processes, and the
software overhead required for both these activities. Thus, to a large ex-
tent, it determines the efficiency of a processor’s multiprogramming and
multi-tasking (including real-time) capabilities.

Addressing
exceptions

Exception handling in the CR16B uses a Dispatch Table. This table
contains an entry for each exception, which holds the address of the ex-
ception handler. Once an exception is encountered, the processor uses
the exception number to access the table, to extract the handler ad-
dress.
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-1

Dual stacks The CR16B features both an Interrupt Stack and a User Stack. The pro-
cessor uses the Interrupt Stack solely for saving the PC and the PSR
during exception processing. This process occurs in hardware, without
need for software intervention. The software (user written or through
compiler assistance) uses the User Stack for saving the registers and for
passing parameters, upon subroutine entry and subroutine calls. This
stack is managed by software, with the PUSH and POP instructions to
assist.
This dual stack architecture provides the following benefits:

• The essentials of the processor’s state (PC and PSR) are saved cor-
rectly on stack, even during nested, non-maskable interrupts; This
process does not need to rely on disabling interrupts to allow soft-
ware to save the PC and PSR on stack

• Separating the Interrupt and User stacks allows for a multi-tasking
operating system, which can switch user stacks at task switch,
while still maintaining its own PC and PSR on the Interrupt stack

• As the processor saves just the PC and PSR when exception occurs,
interrupt latency is kept at a minimum; During exception handling,
the software can save only the registers it modifies, thus minimiz-
ing interrupt response time, and saving memory.

The exception
process

When an exception occurs, the CPU automatically preserves the basic
state of the program immediately prior to the occurrence of the excep-
tion: A copy of the PC and the PSR is made and pushed onto the Inter-
rupt Stack. Depending on the kind of exception, it restores and/or
adjusts the contents of the Program Counter (PC) and the Processor
Status Register (PSR). The interrupt exception number is then used to
obtain the address of the exception service procedure from the dispatch
table, which is then called.

The RETX instruction returns control to the interrupted program, and
restores the contents of the PSR and the PC registers to their previous
status. See the RETX instruction on page 5-49.

3.1.2 Interrupt Handling

The CR16B provides three types of interrupts: maskable interrupts,
non-maskable interrupt (NMI) and In-System Emulator (ISE).

Maskable
interrupts

Maskable interrupts are disabled whenever PSR.E or PSR.I are cleared
to 0. PSR.I serves as the global interrupt mask, while PSR.E serves as
a local interrupt mask. PSR.E can be easily changed with the EI and DI
instructions (see EI instruction on page 5-22 and DI instruction on
page 5-21). The PSR.E is meant to be used when interrupt-disabling is
needed for a short period of time (e.g., when a read-modify-write se-
quence of instructions, accessing a semaphore, must not be interrupted
by another task).
3-2 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

On receipt of a maskable interrupt, the processor determines the excep-
tion number (the vector) by performing an interrupt acknowledge bus
cycle in which a byte is read from address 00FE0016. This byte contains
a number in the range 16 - 127 (the vector), which is used as an index
into the Dispatch Table to find the address of the appropriate interrupt
handler. Control is then transferred to that interrupt handler.

Non-maskable
interrupt

Non-maskable interrupts cannot be disabled; they occur when cata-
strophic events (such as an imminent power failure) require immediate
handling to preserve system integrity. Non-maskable interrupts use vec-
tor number 1 in the Dispatch Table. When a non-maskable interrupt is
detected, the CR16B performs an interrupt-acknowledge bus cycle to
address 00FF0016, and discards the byte that is read during that bus
cycle.

ISE interrupt In-System Emulator (ISE) interrupts cannot be disabled; they tempo-
rarily suspend execution when an appropriate signal is activated. ISE
interrupts use vector number 15 in the Dispatch Table. When an ISE
interrupt is detected, the CR16B performs an interrupt-acknowledge
bus cycle to address 00FC0016, and discards the byte that is read dur-
ing that bus cycle.

3.1.3 Traps

The CR16B recognizes the following traps:

BPT Trap Breakpoint Trap. Used for program debugging. Caused by the EXCP
BPT instruction.

SVC Trap Supervisor Call Trap. Temporarily transfers control to supervisor soft-
ware, typically to access facilities provided by the operating system.
Caused by the EXCP SVC instruction.

FLG Trap Flag Trap. Indicates various computational exceptional conditions.
Caused by the EXCP FLG instruction.

DVZ Trap Division by Zero Trap. Indicates an integer division by zero. Caused by
the EXCP DVZ instruction, which can be used by integer division emula-
tion code to indicate this exception.

UND Trap Undefined Instruction Trap. Indicates undefined op codes. Caused by
an EXCP UND instruction, or an attempt to execute any of the following:

• any undefined instruction;

• the EXCP instruction when a reserved field is specified in the dis-
patch table (i.e., reserved trap number).

TRC Trap Trace Trap. A TRC trap occurs before an instruction is executed when
the PSR.P bit is 1. Used for program debugging and tracing.
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-3

DBG Trap Debug Trap. A DBG trap occurs as a result of a breakpoint detected by
the hardware-breakpoint module, or by an external instruction-execute
breakpoint using the tag mechanism through the BRKL line. Used for
instruction-execution and data-access breakpoints.

Note: DBG, TRC and BPT traps can also generate an interrupt acknowledge
cycle for observability purposes, to alleviate the design of an In-System
Emulator. This option can be selected by setting ADBG, ATRC, and
ABPT bits respectively in the DCR register. The addresses driven on the
bus during these cycles are 00FC0216, 00FC0C16 and 00FC0E16 re-
spectively.

For further information, see Chapter 4, “ADDITIONAL TOPICS”.

3.2 DETAILED EXCEPTION PROCESSING

3.2.1 Instruction Endings

The CR16B checks for exceptions at various points during the execution
of instructions. Some exceptions, such as interrupts, are acknowledged
between instructions, i.e., before the next instruction is executed. Other
exceptions, such as a Breakpoint (BPT) trap, are acknowledged during
execution of an instruction. In such a case, the instruction is suspend-
ed. See Table 3-1.

If an instruction is suspended, it is not completed, although all other
previously issued instructions have been completed. Result operands
and flags (except for the PSR.P bit on some traps) are not affected.
When an instruction is suspended, the PC and PSR are pushed onto the
interrupt stack; The PC saved on the interrupt stack contains the ad-
dress of the suspended instruction, and the PSR contains the status
flags prior to the instruction’s execution.

When an interrupt is detected while a MULi instruction is being execut-
ed, the MULi instruction is suspended. The same is true for the MULSW,
MULUW and MULSB instructions. All the other instructions complete exe-
cution before an interrupt is serviced.
3-4 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

3.2.2 The Dispatch Table

The CR16B recognizes seven traps, two non-maskable interrupts (NMI
and ISE) and up to 112 more maskable interrupts. The dispatch table,
pointed to by the concatenated register pair INTBASE == (INTBASEH,
INTBASEL), features an entry matching each such exception, containing
the exception-handler address. During an exception, the CPU uses the
dispatch table to obtain the relevant exception-handler’s start address.
See Figure 3-1

The CR16B supports either a 16-bit or a 21-bit entry dispatch table, to
accommodate exception handlers residing below the 128K boundary, or
above it, respectively. In the 16-bit mode, each entry occupies one word
of memory, containing bits 1 through 16 of the exception-handler’s start
address; In the 21-bit mode, each entry occupies two adjacent words in
memory, the first holding bits 1 through 16, and the second holding
bits 17 through 20 of the exception handler address, right justified.
This mode selection is determined by the CFG.ED configuration bit,
which also controls the dispatch table’s start address:

• (CGF.ED = 0) selects the 16-bit entry dispatch table. Under this se-
lection, INTBASEH is forced to 0, limiting the Dispatch Table’s ad-
dress to the first 64K of memory.

• (CGF.ED = 1) selects the 21-bit entry dispatch table. Under this se-
lection, both INTBASEH and INTBASEL contents are used to calcu-
late INTBASE, thus allowing the Dispatch Table to reside anywhere
in memory.

• (CGF.ED = 1), the Dispatch Table’s address is less than 2M. Entries
in the Dispatch table are then 32 bits wide, but only the lower 21
bits are utilized.
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-5

Figure 3-1. Dispatch Table and Jump Table

3.2.3 Acknowledging an Exception

The CR16B performs the following operations in response to interrupt
or trap exceptions:

1. Decrements the Interrupt Stack Pointer (ISP) register by 4.

2. Saves the contents the PSR and the PC on the interrupt stack;
Since PC is a 21-bit wide register, and the stack is only 16 bits wide
(width of memory word in CR16B), the PC and PSR registers are
saved on the stack, in two adjacent words, as follows (see Figure
3-2):

INTBASE

~ ~

~

Non-Maskable Interrupt

reserved

Supervisor Call Trap

Divide by Zero Trap

Flag Trap

Breakpoint Trap

Trace Trap

Undefined Instruction Trap

Maskable Interrupts

NMI

reserved

reserved

SVC

DVZ

FLG

BPT

TRC

UND

reserved

reserved

ISE

INTn

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

n = 16 to 127

In-System Emulator Interrupt

15/31 0

reserved

reserved

DBG Debug Trap

~

3-6 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

– Bits 0 through 11 of the PSR register, and bits 17 through 20 of the
PC register, are saved in a single word, at the higher-index ad-
dress.

– Bits 1 through 16 of the PC register are saved in a single word, at
the lower-index address (bit 0 is always 0).

3. Alters PSR by clearing the control bits shown in Table 3-1.

4. For interrupts, displays address and bus-status information during the
interrupt acknowledge bus cycle to indicate the type of interrupt en-
countered as follows:

If the interrupt is a maskable interrupt, the CPU reads the vector
number during this cycle from address 0FE0016, that is mapped to
the Interrupt Control Unit (ICU). This vector is used as the exception
number, determining which exception needs to be serviced.

If the interrupt is a Non Maskable Interrupt (NMI), the CPU per-
forms a read operation from address 0FF0016 for observability pur-
poses. If the interrupt is an ISE interrupt, the CPU also performs a
read operation from address 0FC0016 for observability purposes.

In case of non-maskable interrupts or traps, the exception number
is set as the vector, to be used while accessing the dispatch table.

5. Reads the double- or single-word entry from the dispatch table at
address (INTBASE) + vector × 4 or (INTBASE) + vector × 2, accord-
ing to the value of CFG.ED, 1 or 0 respectively.

The dispatch table entry is used to call the exception service proce-
dure, and is interpreted as a pointer that is loaded into bits 1
through 16, and, if CFG.ED = 1, also into bits 17 through 20 of the
PC.

Bit 0 of the PC is always cleared. Bits 17 through 20 are cleared
only in case of a 16-bit dispatch table (CFG.ED = 0). See Figure 3-3.

The pointer is stored in the dispatch table in little-endian format.
For a 32-bit entry, the lower address word contains address bits 1
through 16, and the upper address word contains address bits 17
through 20.
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-7

Figure 3-2. Saving PC and PSR Contents During an Exception Processing Sequence

Figure 3-3. Transfer of Control During an Exception Acknowledge Sequence

PC (20-17) PSR(0-11)

~

~

~

~

Lower Addresses

Higher Addresses

Interrupt Stack

(Push)
Return
Address

Saved
Status

(Push)

PC(1-16)

16

ISP After Exception

ISP Before Exception

INTBASE

VECTOR
Absolute
Address

Dispatch Table

+
Entry Point
Addressx 2

PC(1-16)

16

16-bit Dispatch Table (Small Memory Model): CFG.ED = 0

INTBASE

VECTOR
Abs. Address
 (A16 - A1)

Dispatch Table

+
Entry Point
Addressx 4 PC(1-20)

16

Abs. Address
 (A20 - A17)

32-bit Dispatch Table (Large Memory Model): CFG.ED = 1

PC(17-20)=0
3-8 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

Exception
processing
summary

Table 3-1 summarizes how each type of exception is handling.

3.2.4 Exception Service Procedures

a. The PSR.P bit is cleared if an interrupt is acknowledged before a MULi, MULSB,
MULSW or MULUW instruction is completed, to prevent a mid-instruction trace
trap upon return from the exception service procedure.

b. The trap handler may need to clear the P bit of the PSR, which is saved on
stack, to prevent a redundant trace exception, in case Trace trap is used in
conjunction with these exceptions. For more information, refer to “Retry
execution of a suspended instruction” on page 3-10 and “Clearing PSR.P bit
on Interrupt Stack” on page 4-2.

After the CR16B acknowledges an exception, control is transferred to
the appropriate exception service procedure. The TRC trap is disabled
(the PSR.P and PSR.T bits are cleared). Maskable interrupts are also
disabled (the PSR.I bit is cleared) for a service procedure called in re-
sponse to an interrupt or a DBG trap.

At the beginning of each instruction, the PSR.T bit is copied into the
PSR.P. If PSR.P is still set at the end of the instruction, a TRC trap is
executed before the next instruction.

To complete a suspended instruction, program the exception service
procedure either to simulate the suspended instruction, or to retry exe-
cution of the suspended instruction.

Table 3-1. Summary of Exception Processing

Exception
Instruction
Completion

Status

PC
Saved

Cleared PSR Bits

Before
Saving PSR

After
Saving PSR

Interrupt Before start of instruction Next None I P T

Interrupt during execution of
MULi, MULSB, MULSW, MULUW

Suspended Current Pa I P T

BPT, DVZ, FLG, SVC Suspended Current Noneb P T

UND Suspended Current Noneb P T

TRC Before start of instruction Next P P T

DBG Before Instruction Next None I P T
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-9

Simulate a
suspended
instruction

The exception service procedure can use software to simulate execution
of the suspended instruction. After it calculates and writes the results
of the suspended instruction, it should modify the flags in the copy of
the PSR which were saved on the interrupt stack, and update the PC
saved on the interrupt stack to point to the next instruction to be exe-
cuted.

The exception service procedure can then execute the RETX instruction,
and the CR16B begins executing the instruction following the suspend-
ed instruction. For example, when an Undefined Instruction Trap (UND)
occurs, software can be used to perform the appropriate corrective ac-
tions.

Retry execution
of a suspended
instruction

The suspended instruction can be retried after the exception service
procedure has corrected the trap condition that caused the suspension.

In this case, the exception service procedure should execute the RETX
instruction at its conclusion; then the CR16B retries the suspended in-
struction. A debugger takes this action when it encounters an EXCP BPT
instruction that was temporarily placed in another instruction’s location
in order to set a breakpoint. In this case, exception service procedures
should clear the PSR.P bit to prevent a TRC trap from occurring again.

3.2.5 Returning From Exception Service Procedures

Exception service procedures perform actions appropriate for the type of
exception detected. At their conclusion, service procedures execute the
RETX instruction to resume executing instructions at the point where
the exception was detected. For more information about the RETX in-
struction, see “RETX Return from Exception” on page 5-48.

3.2.6 Priority Among Exceptions

The CR16B checks for specific exceptions at various points while exe-
cuting an instruction (see Figure 3-4).

If several exceptions occur simultaneously, the CR16B responds to the
exception with the highest priority, accordingly.

If several maskable interrupts occur simultaneously, the Interrupt Con-
trol Unit (ICU) determines the highest priority interrupt, and requests
the CR16B to service this interrupt.
3-10 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

Figure 3-4. Exception Processing Flowchart

Initialize

PSR.P := 0

PC Match

Update PC
Complete

Instruction
Execution

Begin Instruction
Execution

?

UND
?

Address

?
Compare

?

NMI
Pending

DBG

?
Pending

Suspend Instruction
Execution

PSR.P = 1
?

?

SVC, DVZ, FLG
or BPT

PSR.P := PSR.T

Reset

Yes

No

No

No

Yes

Yes

No

Yes

Yes

No

Yes

No

Clear DBG
Pending Bit

?

ISE
Pending

No

Yes

Set DBG
Pending Bit

No

Yes Set DBG
Pending Bit

?

Interrupt
Pending

No

Yes

Process Exception
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-11

Before
executing an
instruction

Before executing an instruction, the CR16B checks for pending DBG
traps, interrupts and trace traps, in that order. It responds to the inter-
rupts in order of descending priority (i.e., first non-maskable interrupts,
then maskable interrupts and lastly, ISE interrupts.

If no interrupt is pending, and PSR.P is 1 (i.e., a trace trap is pending),
then the CR16B clears PSR.P and processes the trace trap.

If no trace trap or interrupt is pending, the CR16B begins executing the
instruction by copying PSR.T to PSR.P. While executing an instruction,
the CR16B may detect a trap.

During
execution of an
instruction

First, the CR16B checks for an undefined instruction (UND) trap; then
it looks for any of the following mutually exclusive traps: SVC, DVZ,
FLG or BPT. The responds to the first trap it detects by suspending the
current instruction and executing the trap.

If an undefined instruction is detected, then no data references are per-
formed for the instruction.

If an interrupt becomes pending during execution of the MULi, MULSW,
MULSB and MULUW instructions the CR16B clears PSR.P and the DBG
pending bit (if any) to 0 and responds to the requested interrupt. The
different MUL instructions, when interrupted, do not modify any external
register or variable, until completion.

If no exception is detected while the instruction is executing, the in-
struction is completed (i.e., values are changed in registers and memo-
ry, except for PSR.P, which was changed earlier) and the PC is updated
to point to the next instruction.

While the CPU executes an instruction, it checks for enabled debug
conditions. If the CPU detects an enabled address-compare, or a PC-
match debug condition, a Debug (DBG) trap remains pending until after
the instruction is completed.

3.2.7 Nested Interrupts

A nested interrupt is an interrupt that occurs while another interrupt is
being serviced. Since the PSR.I bit is automatically cleared before any
interrupt is serviced (see Table 3-1), nested maskable interrupts are not
serviced by default. However, the Exception Service Procedure can ex-
plicitly allow nested maskable interrupts at any point, by setting the
PSR.I bit using a LPR instruction. However, the handler must verify that
the PSR.E bit is set as well, for interrupts to occur. In this case, pend-
ing maskable interrupts are serviced normally even in the middle of the
currently executing Exception Service Procedure.
3-12 EXCEPTIONS CompactRISC CR16B Programmer’s Reference Manual

It is possible to enable nesting of specific maskable interrupts inside a
certain Exception Service Procedure. This is done by programming the
Interrupt Control Unit (ICU) to mask the undesired interrupt sources,
during the execution of the Exception Service Procedure. This should be
done before the PSR.I bit is set.

Nested Non Maskable Interrupt (NMI) and nested ISE interrupt are al-
ways serviced.

The interrupt nesting level is limited only by the amount of memory that
is available for the interrupt stack.

3.3 RESET

A reset occurs when the appropriate signal is activated. Reset must be
used at power-up to initialize the CR16B.

As a result of a reset operation:

• All instructions currently being executed are terminated.

• Results and flags normally affected by the terminated instruction
are unpredictable.

• The results of instructions, whose execution started but did not yet
end, may not be written to their destinations.

• Any pending interrupts and traps are eliminated.

Upon reset, the following operations are executed:

• The current values of bits 1 through 16 of the PC are stored in R0.

• The current value of the PSR, bits 0 through 11, is concatenated
with the current values of bits 17 through 20 of the PC, and the re-
sult is stored in R1. (See Figure 3-2.)

• The following internal registers are cleared to 0: PC, CFG, DCR and
PSR, except for PSR.E, which is set to 1.

• DCR.DBGL is cleared to 0 .

After reset, the processor begins normal execution at memory location
0, and the reserved bits in these registers, and the contents of all other
registers, are unpredictable.
CompactRISC CR16B Programmer’s Reference Manual EXCEPTIONS 3-13

Chapter 4

ADDITIONAL TOPICS

4.1 DEBUGGING SUPPORT

The following CR16B features make program debugging easier.

• Instruction Tracing

• Soft Break Generation by Breakpoint Instruction (EXCP BPT)

• Breakpoint Triggered by a PC Address Match

• Breakpoint Triggered by a Compare-Address Match (Data transfer)

• Instruction-execute breakpoint triggered by an external source dur-
ing the Fetch.

• ISE Support

The Processor Status Register (PSR), the Debug Control Register (DCR),
the Debug Status Register (DSR), and the Compare-Address Register
(CAR) control and monitor the debug and trace features. Loading and
storing these registers is done through the LPR and SPR instructions.
Accesses to the 21-bit CAR register are done by reading and writing its
low and high 16-bit portions (CARL and CARH).

4.1.1 Instruction Tracing

Instruction tracing can be used during debugging to single-step through
selected portions of a program. The CR16B uses two bits in the PSR to
enable and generate trace traps. Tracing is enabled by setting the T bit
in the PSR register.

During the execution of each instruction, the CR16B copies the PSR.T
bit into the PSR.P (trace pending) bit. Before beginning the next instruc-
tion, the CR16B checks the PSR.P bit to determine whether a Trace
(TRC) trap is pending. If PSR.P is 1, i.e., a trace trap is pending, the
CR16B generates a trace trap before executing the instruction.

For more information on the different exception priorities, see Figure
3-4, “Exception Processing Flowchart” on page 3-11.
CompactRISC CR16B Programmer’s Reference Manual ADDITIONAL TOPICS 4-1

For example, if an Undefined Instruction (UND) trap is detected while
tracing is enabled, the TRC trap occurs after execution of the RETX in-
struction that marks the end of the UND service procedure. The UND
service procedure can use the PC value, saved on top of the interrupt
stack, to determine the location of the instruction. The UND service pro-
cedure is not affected, whether instruction tracing was enabled or not.

Clearing PSR.P
bit on Interrupt
Stack

Trap handlers for exceptions which cause instruction suspension (UND,
BPT, DVZ, FLG and SVC), may need to clear the copy of the PSR.P bit,
saved on the interrupt stack, before resuming execution. This must be
done if the exception service replaces the exception invocation instruc-
tion with code for execution, and attempts to re-execute that location,
according to the saved PC on stack. Otherwise, when attempting to re-
execute that location, the processor will perform a redundant trace ex-
ception before executing the said instruction, since the PSR.P bit is set
in the restored PSR.

Note the following:

• LPR (on PSR) and RETX instructions cannot be reliably traced be-
cause they may alter the PSR.P bit during their execution.

• If instruction tracing is enabled while the WAIT or EIWAIT instruc-
tion is executed, a trace trap occurs after the next interrupt, when
the interrupt service procedure returns.

The breakpoint
instruction

Debuggers can use the breakpoint instruction (EXCP BPT) to stop the ex-
ecution of a program at specified instructions, to examine the status of
the program. The debugger replaces these instructions with the break-
point instruction. It then starts the program execution. When such an
instruction is reached, the breakpoint instruction causes a trap, which
enables the debugger to examine the status of the program at that
point.

PC match The CR16B provides a hardware breakpoint register to allow setting of
breakpoints in ROM, as well as in RAM.

A PC match is detected when both DCR.DEN and DCR.PC are set to 1,
and the address of the instruction equals the value specified in the 21-
bit wide CAR register. Accesses to the CAR register are done by reading
and writing its low and high 16-bit portions (CARL and CARH). Bits 21
through 31 are reserved, and must be set to 0.

When a PC match is detected, a debug trap (DBG) is held pending until
after the instruction is completed. The cause of the DBG trap is indicat-
ed by setting DSR.BPC to 1, and clearing DCR.DEN to 0.

The PC match and the Compare-Address match are mutually exclusive.
The PC match takes precedence (i.e., DCR.PC set to 1 disables the Com-
pare-Address match).
4-2 ADDITIONAL TOPICS CompactRISC CR16B Programmer’s Reference Manual

External tag on
fetch

The CR16B provides an input (BRKL) which allows an external device to
detect a breakpoint condition, and tag an incoming instruction during
the fetch stage.

This line is sampled during the first word fetch of each instruction, dur-
ing the last cycle of the data transfer, in parallel to data_rd sampling by
the core.

The tag is transferred into the decode unit, and just before the instruc-
tion is due for execution, the external break conditions are evaluated. If
DCR.EFB is set, and the tag bit for the instruction is set, a Debug
(DBG) trap is inserted, before the core starts the original instruction.
The cause of the DBG trap is indicated by clearing the DCR.EFB bit,
and setting the DSR.EXF bit.

The exception saves a PC which matches that of the tagged instruction,
thus ensuring correct identification of the breakpoint by the exception
handler.

If the pin count on a part is limited, it is recommended that its line be
multiplexed with the PLI line in the system interface.

4.1.2 Compare-Address Match

A breakpoint may also result from a data access. A compare-address
match is detected when a memory location is either read or written. The
word address used for the comparison is specified in bits 1 through 20
of the Compare-Address Register (CAR). The bytes within the word to be
compared are specified by DCR.CBE0,1. All the bytes accessed in the
load or store operation are compared.

Both DCR.CRD and DCR.CWR can enable a compare-address match for
read and write references. The CR16B examines the compare-address
condition for all data reads and writes, interrupt-acknowledge bus cy-
cles, and memory references for exception processing. A compare-
address match is enabled for read accesses whenever DCR.DEN and
DCR.CRD are set to 1, and DCR.PC is cleared to 0. A compare-address
match is enabled for write accesses whenever DCR.DEN and DCR.CWR
are set to 1, and DCR.PC is cleared to 0.

When the CR16B detects a compare-address match, a Debug (DBG)
trap is held pending until after the instruction is completed. The cause
of the DBG trap is indicated by setting either DSR.BWR or DSR.BRD to
1, and DCR.DEN is cleared to 0.
CompactRISC CR16B Programmer’s Reference Manual ADDITIONAL TOPICS 4-3

4.1.3 Checking for Debug and Breakpoint Conditions

The Debug Status Register (DSR) indicates debug and breakpoint condi-
tions that have been detected. When the CPU detects an enabled debug
condition, it sets the appropriate bits in the DSR to 1. Bits 0 through 3
of the DSR are cleared to 0 at reset. In addition, software must clear all
the bits in the DSR when appropriate.

The format of the DSR is shown below.

BPC Program Counter Bit. Set when a PC match is detected.

BWR Write Bit. Set when a compare-address match is detected for a data
write.

BRD Read Bit. Set when a compare-address match is detected for a data
read.

EXF Fetch-tagged Execution Breakpoint Bit. Set when an instruction
which was tagged during the fetch stage reaches the execution phase.

4.1.4 Controlling the Debug and In-System-Emulator Options

Breakpoint Control

The Debug Control Register (DCR) controls the compare-address match,
external tag on fetch, and PC match debug, options. These options are
enabled and controlled with the appropriate bits in the DCR. When a bit
is set to 1, the condition it controls is enabled; otherwise, it is disabled.
A DBG trap may be triggered by a PC match, by an external tag on
fetch reaching execution, or by a compare-address match. The cause of
a DBG trap is indicated in the DSR register. The DSR register is cleared
to 0 at reset.

Exception Addressing for In System Emulators

The CR16B includes a new option which makes it easier for an external
In System Emulator to detect and identify relevant exceptions.

15 4 3 2 1 0

reserved EXF BRD BWR BPC
4-4 ADDITIONAL TOPICS CompactRISC CR16B Programmer’s Reference Manual

On ISE, DBG, TRC and BPT exceptions, if the appropriate bit in DCR is
set (AISE, ADBG, ATRC, ABPT respectively), the core assumes an INT-
BASE of 0, and assumes a 32-bit entry dispatch table for these excep-
tions, regardless of the value of CFG.ED:

Entry Address = 0 + VECTOR# x 4

Additionally, if the appropriate control bit is set, an interrupt acknowl-
edge cycle precedes the dispatch table access for DBG, TRC and BPT,
for observability purposes.

Debug Control Register (DCR)

The format of the DCR is shown below.

CBE Compare Byte Enable. These bits (0 through 1) specify which corre-
sponding bytes of an aligned word may trigger a breakpoint during ad-
dress or PC comparison.

PC PC Match or Compare-Address Match. Enables generation of a DBG
trap on a PC match, when it is set to 1. When it is cleared to 0, it en-
ables generation of a DBG trap on a compare-address match.

CWR Compare-Address on Write. When set to 1, enables address compari-
son for write operations.

CRD Compare-Address on Read. When set to 1, enables address compari-
son for read operations.

DEN Debug Condition Enable. Enables either the compare-address match
or PC match condition, depending on the value of the PC bit.
DEN is cleared to 0 when PC match is achieved, and DSR.BPC is set to
1, or when address-match is achieved, and DSR.BRD or DSR.BWR is
set to 1.

EFB Enable Tag-at-Fetch Breakpoint. Enable breaking on an instruction
tagged during the fetch phase by an external device.
EFB is cleared to 0 when the tagged instruction reaches execution, and
DSR.EXF is set to 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGL res AISE ADBG ATRC ABPT res EFB DEN CRD CWR PC res CBE
CompactRISC CR16B Programmer’s Reference Manual ADDITIONAL TOPICS 4-5

ABPT Alternate behavior on BPT. Perform an Interrupt-Acknowledge cycle
for BPT and calculate dispatch table entry based on INTBASE = 0, and
32-bit entries.

ATRC Alternate behavior on TRC. Perform an Interrupt-Acknowledge cycle
for TRC and calculate dispatch table entry based on INTBASE = 0, and
32-bit entries.

ADBG Alternate behavior on DBG. Perform an Interrupt-Acknowledge cycle
for DBG and calculate dispatch table entry based on INTBASE = 0, and
32-bit entries.

AISE Alternate behavior on ISE. Calculate dispatch table for ISE based on
INTBASE = 0, and 32-bit entries. ISE always performs an Interrupt-Ac-
knowledge cycle.

DBGL Debug-In-System-Emulation Support Lock: A set-once bit (cleared
only by reset), locking the ABPT, ATRC, ADBG, AISE bits in DCR, and
the ON bit in DBGCFG.

Note: DBGCFG is a chip-level debug-configuration register, used to con-
trol the behavior of the whole part, for debugging purposes. This regis-
ter resides outside the core, and is described in each part-specific
specification, or user manual.

4.1.5 In-System Emulator (ISE)

The CR16B core provides the following to support the development of
real-time In-System Emulator (ISE) equipment and Application Develop-
ment Boards (ADBs).

• Status signals that indicate when an instruction in the execution
pipeline is completed.

• Status signals that indicate the type of each bus cycle, e.g., fetch.

• Status signals that indicate when there is a non-sequential fetch.

• An ISE interrupt signal.

• An interrupt acknowledge cycle for ISE interrupt.

• An interrupt acknowledge cycle for the DBG, TRC and BPT excep-
tions, programmable by the DCR register.

• A BRKL line for accurate external breakpoints on instruction execu-
tion, by tagging instructions during the fetch cycle.

• Forcing of INTBASE to 0 for the ISE, DBG, TRC and BPT excep-
tions, programmable by the DCR register.
4-6 ADDITIONAL TOPICS CompactRISC CR16B Programmer’s Reference Manual

• A set-only lock bit in DCR, protects the ABPT, ADBG, ATRC, AISE bits
in DCR and DBGCFG.ON from erroneous clearing by user software.

• A special bus status signal during exception handling, that indi-
cates that the dispatch table is being read.

• A special early bus status signal (available only on some system in-
terfaces) indicating that either core code fetch, or core dispatch-
table read is being executed.

• Upon reset, the CR16B stores the contents of the PSR and bits 17
through 20 of the PC, in R1, and the contents of bits 1 through 16
of the PC register in R0.

4.2 INSTRUCTION EXECUTION ORDER

The CR16B has four operating states in which instructions may be ex-
ecuted and exceptions may be processed. They are:

• Reset

• Executing Instructions

• Processing Exception

• Waiting for Interrupt

Figure 4-1 shows these states, and the transitions between them.

Figure 4-1. CR16B Operating States

Reset

Processing
Exception

Reset

No Reset

Interrupt or Trap

Service Call Complete

InterruptWAIT or EIWAIT
Instruction Executed

Executing
Instructions

Waiting
for

Interrupt
CompactRISC CR16B Programmer’s Reference Manual ADDITIONAL TOPICS 4-7

Reset When the reset input signal is activated, the CR16B enters the reset
state. In this state, the contents of certain dedicated registers are ini-
tialized, as detailed in “Reset” on page 3-13.

Executing
instructions

When the reset signal is deactivated, the CR16B enters the executing-
instructions state. In this state, the CR16B executes instructions re-
peatedly until an exception is recognized, or a WAIT, or an EIWAIT , in-
struction is executed.

Processing
exception

When an exception is recognized, the CR16B enters the processing ex-
ception state in which it saves the PC and the PSR contents. The pro-
cessor then reads an absolute address from the Interrupt Dispatch
Table and branches to the appropriate exception service procedure. See
“The exception process” on page 3-2 for more information.

To process maskable interrupts, the CR16B also reads a vector value
from an Interrupt Control Unit (ICU).

After successfully completing all data references required to process an
exception, the CR16B reverts to the executing instructions state.

Waiting for
interrupt

When a WAIT or an EIWAIT instruction is executed, the CR16B enters
the wait for interrupt state in which it is idle. When an interrupt is de-
tected the processor enters the processing exception state.

4.2.1 The Instruction Pipeline

The operations for each instruction are not necessarily completed before
the operations of the next instruction begin. The CR16B can overlap op-
erations for several instructions, using a pipelined technique to enhance
its performance. While the CR16B is fetching one instruction, it can si-
multaneously decode a second instruction and calculate results for a
third instruction (see Figure 4-2).

In most cases, pipelined instruction execution improves performance
while producing the same results as strict sequential instruction execu-
tion. Under certain circumstances, however, the effects of this perfor-
mance enhancement are visible to system software and hardware as
differences in the order of memory references performed by the CR16B.
See the explanation below.

Instruction
fetches

The CR16B fetches an instruction only after all previous instructions
have been completely fetched. It may, however, begin fetching the in-
struction before all of the source operands have been read, and before
the results have been written for previous instructions.
4-8 ADDITIONAL TOPICS CompactRISC CR16B Programmer’s Reference Manual

Operands and
memory
references

The source operands for an instruction are read only after all data
reads and data writes, in previous instructions, have been completed.
Figure 4-2 shows this process, and the order of precedence of memory
reference for two consecutive instructions. The arrows indicate the order
of precedence between operations in an instruction, and between in-
structions.

Figure 4-2. Memory References for Consecutive Instructions

Overlapping
operations

As a consequence of overlapping the operations for several instructions,
the CR16B may fetch an instruction, but not execute it (e.g., if the pre-
vious instruction causes a trap). The CR16B reads source operands,
and writes destination operands for executed instructions only.

Dependencies The CR16B does not check for dependencies between the fetching of the
next instruction and the writing of the results of the previous instruc-
tions. Therefore, special care is required when executing self-modifying
code.

4.2.2 Serializing Operations

The CR16B serializes instruction execution after processing an excep-
tion. This means that it finishes writing all the results of the preceding
instructions to a destination, before it fetches the first instruction of the
interrupt service procedure. This fetch is non-sequential.

The CR16B also serializes instruction execution after executing the fol-
lowing instructions: LPR, SPR, RETX, and EXCP.

Instruction n Instruction n+1

Data Read or Write

Instruction Fetch

Instruction Fetch

Data Read or Write
CompactRISC CR16B Programmer’s Reference Manual ADDITIONAL TOPICS 4-9

Chapter 5

INSTRUCTION SET

This chapter describes each of the CR16B instructions, in detail.

5.1 INSTRUCTION DEFINITIONS

The name of each operand appears in bold italics, and indicates its use.
In addition, the valid addressing modes, access class and length are
specified for each operand. The addressing mode may be: reg (register),
regp (register-pair), procreg (processor register), imm (immediate), abs
(absolute) rel (relative) or far (far relative). The access class may be read,
write, rmw (read-modify-write), addr (address) or disp (displacement).
The access class is followed by a data length attribute specifier. See Fig-
ure 5-1.

Figure 5-1. Instruction Header Format

ADDi
ADDUi Add Integer

ADDB, ADDW, ADDUB, ADDUW

ADDi src, dest

reg/imm reg

read.i rmw.i

ADDUi src, dest
reg/imm reg
read.i rmw.i

Name

Syntax

Valid

Forms

Addressing

Access

Operands

Data Length Attribute Specifiers

Short
Description

Data Length Attribute Specifiers in Generic Instruction Name

Mnemonic

Mode

Classes
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-1

The data length attribute specifier specifies how the operands are inter-
preted, and represents a character that is incorporated into the name of
the actual instruction. The i specifier stands for a B (byte) or W (word)
in the actual instruction name. In the access class, the L (long) specifier
stands for the long, 21-bit address/displacement, needed for the
CR16B. In the BR/BRCond instructions, the mnemonics for the CR16B
21bit displacement instructions has been unified with that of the 16A
17-bit displacement instructions. Machine-code encoding is according
to the memory model selected for the compiler/assembler (Large memo-
ry model is 21-bit displacement encoded; Small memory model is 17-bit
displacement encoded).

Each instruction definition is followed by a detailed example of one or
more typical forms of the instruction. In each example, all the operands
of the instruction are identified, both those explicitly stated in assembly
language and those that are implicitly affected by the instruction.

For each example, the values of operands before and after execution of
the instruction are shown. Often the value of an operand is not changed
by the instruction. When the value of an operand changes, its field is
highlighted, i.e., its box is grey. See Figure 5-2.

Figure 5-2. Instruction Example Format

This example adds the low order byte of register R0 to
the low order byte of register R3, and places the result
in the low order byte of register R3. The remaining
bytes of R3 are not affected.

r0
xx9F 16

(-97 10)

addb r0, r3

r0
xx9F 16

(-97 10)

r3
xx62 16

(+98 10)
r3

xx01 16
(+1 10)

PSR enzfltc PSR enz0lt1

Operand Values
Before Execution

Operand Values
After Execution

Description
of Example Instruction Name

Changed by

by Execution
Unchanged

Execution
5-2 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

The least significant digit of the least significant byte is the right-most
digit. Values are expressed in terms of a radix in a subscript to the val-
ue.

An x represents a binary digit or a hexadecimal digit (4 bits) that is ei-
ther ignored or unchanged.

5.2 DETAILED INSTRUCTION LIST

The following pages describe in detail the instruction set.
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-3

ADDi
ADDUi Add Integer

ADDi, ADDUi (Add Integer)ADDB, ADDW, ADDUB, ADDUW

ADDi src , dest
reg/imm reg
read.i rmw.i

ADDUi src , dest
reg/imm reg
read.i rmw.i

The ADDi and ADDUi instructions add the src and dest operands, and
place the result in the dest operand.

Flags: During execution of an ADDi instruction, PSR.C is set to 1 on a carry
from addition, and cleared to 0 if there is no carry. PSR.F is set to 1 on
an overflow from addition, and cleared to 0 if there is no overflow. PSR
flags are not affected by the ADDUi instruction.

Traps: None

Example: Adds the low-order byte of register R0 to the low-order byte of register
R3, and places the result in the low-order byte of register R3. The re-
maining bytes of R3 are not affected.

r0
xx9F 16

(-97 10)

addb r0, r3

r0
xx9F 16

(-97 10)

r3
xx62 16

(+98 10)
r3

xx01 16
(+1 10)

PSR enzfltc PSR enz0lt1
5-4 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

ADDCi Add Integer with Carry

ADDCi (Add Integer with Carry) ADDCB, ADDCW

ADDCi src , dest
reg/imm reg
read.i rmw.i

The ADDCi instructions add the src operand dest operand and the
PSR.C flag, and place the sum in the dest operand.

Flags: PSR.C is set to 1 if a carry occurs, and cleared to 0 if there is no carry.
PSR.F is set to 1 if an overflow occurs, and cleared to 0 if there is no
overflow.

Traps: None

Examples: 1. Adds 32, the low-order byte of register R0, and the PSR.C flag con-
tents, and places the result in the low-order byte of register R0. The
remaining bytes of register R0 are unaffected.

2. Adds the contents of registers R5 and R0, and the contents of the
PSR.C flag, and places the result in register R0.

r0
xx0F 16

(+15 10)

addcb $32, r0
r0

xx30 16
(+48 10)

PSR enzflt1 PSR enz0lt0

r5
FFFF16
(-1 10)

addc r5, r0

r5
FFFF16
(-1 10)

r0
0030 16

(+48 10)
r0

0030 16
(+48 10)

PSR enzflt1 PSR enz0lt1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-5

ANDi Bitwise Logical AND

ANDi (Bitwise Logical AND) ANDB, ANDW

ANDi src , dest
reg/imm reg
read.i rmw.i

The ANDi instructions perform a bitwise logical AND operation on the
src and dest operands, and place the result in the dest operand.

Flags: None

Traps: None

Example: ANDs the low-order bytes of registers R0 and R11 and places the result
in the low-order byte of register R11. The remaining byte of register R11
is unaffected.

r0 xx 16 10010010 2 andb r0, r11 r0 xx 16 10010010 2

r11 xx 16 01110111 2 r11 xx 16 00010010 2
5-6 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

ASHUi Arithmetic Shift

ASHUi (Arithmetic Shift) ASHUB, ASHUW

ASHUi count , dest
reg/imm reg
read.B rmw.i

The ASHUi instructions perform an arithmetic shift on the dest operand
as specified by the count operand. Both operands are interpreted as
signed integers.

The sign of count determines the direction of the shift. A positive count
specifies a shift to the left; a negative count specifies a shift to the
right. The absolute value of the count specifies the number of bit posi-
tions to shift the dest operand. The count operand value must be in
the range −7 to +7 if ASHUB is used; and in the range −15 to +15 if
ASHUW is used. Otherwise, the result is unpredictable.

If the shift is to the left, high-order bits (including the sign bit) shifted
out of dest are lost, and low-order bits emptied by the shift are filled
with zeros. If the shift is to the right, low-order bits shifted out of dest
are lost, and high-order bits emptied by the shift are filled from the
original sign bit of dest .

Flags: None

Traps: None

Examples: 1. Shifts the low-order byte of register R5 two bit positions to the left.
The remaining byte of register R5 is unaffected.

2. Reads a byte from register R4. Based on this value, it shifts the low-
order byte of register R6 accordingly. The remaining byte of register
R6 is unaffected.

r5 xx 16 00011111 2
ashub $2, r5

r5 xx 16 01111100 2

r4 xx 16
11111110 2

(-2 10) ashub r4, r6 r4 xx 16
11111110 2

(-2 10)

r6 xx 16 11111000 2 r6 xx 16 11111110 2
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-7

Bcond Conditional Branch

Bcond (Conditional Branch)BEQ, BNE, BCS, BCC, BHI, BLS, BGT,
BLE, BFS, BFC, BLO, BHS, BLT, BGE

Bcond dest
imm
disp

If the condition specified by cond is true, the Bcond instruction causes
a branch in program execution. Displacement interpretation varies de-
pending on compilation in small or large memory model, and the size of
the displacement. Program execution continues at the location specified
by dest , sign extended to 21 bits, plus the current contents of the Pro-
gram Counter. If the condition is false, execution continues with the
next sequential instruction. Table “BR/BRcond Target Addressing Meth-
odology” on page 5-9 summarizes the different addressing calculations.
See “BR/Bcond ” on page 5-65.

cond is a two-character condition code that describes the state of a flag,
or flags, in the PSR register. If the flag(s) are set as required by the
specified cond , the condition is true; otherwise, the condition is false.
The following table describes the possible cond codes and the related
PSR flag settings:

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0
5-8 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

The following table describes the displacement extension and address
wrap-around calculation, with relation to the displacement size and
memory-model. This methodology keeps backwards compatibility with
most CR16A code in the small memory model, while allowing both us-
age of the short displacement and coverage of the whole 2 Mbytes with
just 21 bits displacement in the large memory model.

Table 5-1. BR/BRcond Target Addressing Methodology

a. Truncate_21 means the whole calculation is performed at 21 bits, creating a
2 Mbyte wrap around. Address bit 0 is cleared to 0.

b. sext21: sign extend the displacement to 21 bits.
c. truncate_17: Truncate the address calculation result at 17 bits - 128K byte

wrap around. Address bits 17 through 20 and bit 0 are cleared to 0.

Flags: None

Traps: None

Examples: 1. Passes execution control to the instruction labeled LOOP by adding
1FFF6816 to the PC register, with a wrap-around at 2M (21-bit trun-
cation at 20000016), if the PSR.Z and PSR.L flags are 0.

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1

cond Code Condition True State

Displacement
Needed
(signed)

Memory
Model

Allowed
Address
Range

Address Calculation

9 bits Small/Large 0 - 2M PC <- Truncate_21a(PC + sext21b(disp))

17 bits Small 0 - 128K PC <- Truncate_17c(PC + sext21b(disp))

21 bits Large 0 - 2M PC <- Truncate_21a(PC + disp)

PC 00909816

blo LOOP

PC 009000 16

LOOP
(9000 16) xxxx 16

LOOP
(9000 16) xxxx 16

PSR en0f0tc PSR en0f0tc
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-9

2. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 16 to
the PC register.

3. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 4090 to
the PC register, wrapping at the 128K boundary (small memory
model).

4. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding 16 to
the PC register, crossing the 128K boundary.

PC
009FF0 16

(40944 10)

bne *+16

PC
00A000 16

(40960 10)

*+16
(A000 16) xxxx 16

*+16
(A000 16) xxxx 16

PSR en0fltc PSR en0fltc

PC
01F220 16

(127520 10)

bne *+4090

PC
00021A 16
(588 10)

*+4090
(00021A 16) xxxx 16

*+4090
(0FFA 16) xxxx 16

PSR en0fltc PSR en0fltc

PC
01FFFA16

(131066 10)

bne *+16

PC
02000A 16

(131082 10)

*+16
(02000A 16) xxxx 16

*+16
(10A000 16) xxxx 16

PSR en0fltc PSR en0fltc
5-10 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

5. Passes execution control to the instruction labeled LOOP by adding
188F6816 to the PC register (wrap at 20000016), if the PSR.Z and
PSR.L flags are 0. (large memory model)

6. Passes execution control to a non-sequential instruction if the PSR.Z
flag is 0. The instruction passes execution control by adding
1507344 to the PC register. (large memory model)

PC 08009816

blo LOOP

PC 009000 16

LOOP
(9000 16) xxxx 16

LOOP
(9000 16) xxxx 16

PSR en0f0tc PSR en0f0tc

PC
009FF0 16

(40944 10)

bne *+1507344

PC
17A000 16

(1548288 10)

*+1507344
(17A000 16) xxxx 16

*+1507344
(17A000 16) xxxx 16

PSR en0fltc PSR en0fltc
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-11

BAL Branch and Link

BAL (Branch and Link) BAL

BAL link , dest
reg/regp imm
write.W/L disp

The address (bits 16 - 1 for small memory model, bits 20 - 1 for large
memory model) of the next sequential instruction is first stored in the
register for small memory model, or in the register pair for large memo-
ry model, specified as the link operand. Then, program execution con-
tinues at the address specified by dest , sign extended to 21 bits, plus
the current contents of the PC register. Table 5-2 shows the addressing
calculations performed for the different flavors of BAL

Table 5-2. BAL Target Addressing Methodology

a. truncate_17: Truncate the address calculation result at 17 bits - 128K byte
wrap around. Address bits 17 through 20, and address bit 0 are cleared to 0.

b. sext21: sign extend the displacement to 21 bits.
c. Truncate_21 means the whole calculation is performed at 21 bits, creating a

2 Mbyte wrap around. Address bit 0 is cleared to 0.

Flags: None

Traps: None

Examples: 1. Saves bits 1 through 16 of the PC register of the next sequential in-
struction in register RA, and passes execution control to the instruc-
tion labeled L by adding 00F6C16 to the current PC register.

Displacement
(signed)

Memory Model Address Calculation

17 bits Small PC <- Truncate_17a(PC + sext21b(disp))

21 bits Large PC <- Truncate_21c(PC + disp)

PC
009098 16

(37016 10)

bal ra,_L

PC
00A004 16

(40964 10)

L
(A004 16) xxxx 16

L
(A004 16) xxxx 16

ra xxxx 16 ra
0484E16

(37020¸¸1̧0 ÷ 2)
5-12 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

2. Saves bits 1 through 16 of the PC register of the next sequential in-
struction in register ERA, bits 17 through 20 in register RA, and
passes execution control to the instruction labeled L by adding
17001016 (150734416) to the current PC register.

PC
009FF0 16

(40944 10)

bal (ra,era),
*+1507344

PC
17A000 16

(1548288 10)

L
(17A000 16) xxxx 16

*+1507344
(17A000 16) xxxx 16

ra,era xxxx 16, xxxx 16 ra,era
0000 16,4FF8 16
(09FF0 16 ÷ 2)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-13

BR Unconditional Branch

BR (Unconditional Branch) BR

BR dest
imm
disp

dest is sign extended to 21 bits and added to the current contents of
the PC register. Displacement interpretation varies depending on com-
pilation in small or large memory model, and the size of the displace-
ment. The result is loaded into the PC register. Program execution
continues at the location specified by the updated PC register.
Table “BR/BRcond Target Addressing Methodology” on page 5-9 de-
scribes the detailed address calculation performed for the BR instruc-
tion. For more information, refer to “BR/Bcond ” on page 5-65.

Flags: None

Traps: None

Examples: 1. Passes execution control to the instruction labeled LOOP by adding
+16 to the PC register.

2. Small memory model: passes execution control to the instruction la-
beled LOOP by adding E00016 to the PC register (wrap at 2000016).

PC
09FF016

(40944 10) br *+16
PC

00A000 16
(40960 10)

LOOP
(A000 16)

xxxx 16
LOOP

(A00016) xxxx 16

PC 1B00016
brl LOOP

PC 009000 16

LOOP
(9000 16) xxxx 16

LOOP
(9000 16) xxxx 16
5-14 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

3. Large memory model: passes execution control to the instruction la-
beled LOOP by adding 188F6816 to the PC register (wrap at
20000016).

4. Large memory model: passes execution control to a non-sequential
instruction. The instruction passes execution control by adding
1507344 to the PC register.

For further examples, see the description of the Bcond instruction;
Branch command executes the same as Bcond , assuming that the con-
dition is always true.

PC 08009816
br LOOP

PC 009000 16

LOOP
(9000 16) xxxx 16

ERROR
(9000 16) xxxx 16

PC
09FF016

(40944 10)
br *+1507344

PC
17A000 16

(1548288 10)

*+1507344
(17A000 16) xxxx 16

*+1507344
(17A000 16) xxxx 16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-15

CBITi Clear Bit in Integer

CBITB, CBITW

CBITi position , dest
imm abs/rel
read.i rmw.i

The CBITi instruction loads the dest operand from memory, clears the
bit specified by position , and stores it back into memory location
dest , in an uninterruptable manner. The position operand value must
be in the range 0 to +7 if CBITB is used, and 0 to +15 if CBITW is used;
otherwise, the result is unpredictable.

The addressing modes supported are:

-rel: 0(Rn), where n is 0, 1, 8, or 9;
disp(Rn), where n is 0, 1, 8, or 9, and disp is 16-bit unsigned

-abs: 18-bit absolute address (covering the first 256 Kbyte addresses)

See “CBIT/SBIT /TBIT Addressing Methodology” on page 5-17.

Flags: Before the specified bit is modified, its value is stored in PSR.F.

Traps: None

Examples: 1. Clears bit in position 5 in a byte operand in address 9 (R1).

2. Clears bit in position 8 in a word operand in address 0 (R8).

r1 2000 16

cbitb $5,9(r1)

r1 2000 16

2009 16
(memory)

7F16
2009 16

(memory)
5F16

PSR enzfltc PSR enz11tc

r8 2004 16
cbitw $5,0(r8)

r8 2004 16

2004 16
(memory)

F5E716
2004 16

(memory)
F4E716

PSR enzfltc PSR enz11tc
5-16 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

3. Clears bit in position 3 in a byte operand in address 3000216

Table 5-3. CBIT /SBIT /TBIT Addressing Methodology

a. DTruncate_18 means the whole calculation is performed at 18 bits, creating a
256 Kbyte wrap around.

b. zext21: zer extend the displacement to 21 bits (can be to 18 in this case).

300021 6
(memory)

009F16
cbitb $3,0x30002 30002 16

(memory)
0097 16

PSR enzfltc PSR enz11tc

Addressing
Format

Displacement
Value Range

Allowed
Address
Range

Address Calculation

0(Rbase) 0 first 64K DTruncate_18a(zext21b(Rbase))

disp16(Rbase) 0 - (64K − 1) first 64K DTruncate_18a(zext21bRbase + zext21b(disp16))

abs18 0 - (256K-1) first 256K DTruncate_18a(abs18)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-17

CMPi Compare Integer

CMPi (Compare Integer) CMPB, CMPW

CMPi src1 , src2
reg/imm reg
read.i read.i

The CMPi instruction subtracts the src1 operand from the src2 oper-
and, and sets the PSR.Z, PSR.N, and PSR.L flags to indicate the com-
parison result. The PSR.N flag indicates the result of a signed integer
comparison; the PSR.L flag indicates the result of an unsigned compar-
ison. Both types of comparison are performed.

Flags: PSR.Z is set to 1 if src1 equals src2 ; otherwise it is cleared to 0. PSR.N
is set to 1 if src1 is greater than src2 (signed comparison); otherwise it
is cleared to 0. PSR.L is set to 1 if src1 is greater than src2 (unsigned
comparison); otherwise it is cleared to 0.

Traps: None

Example: Compares low-order bytes in registers R0 and R3.

r0
xxFF 16

(signed: -1 10)
(unsigned: +255 10)

cmpb r0, r3

r0
xxFF 16

(signed: -1 10)
(unsigned: +255 10)

r3
xx7E 16

(+126 10)
r3

xx7E 16
(+126 10)

PSR enzfltc PSR e00f1tc
5-18 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

BCond0i
Compare Register to 0 and Conditional Branch

BEQ0B, BEQ0W, BNE0B, BNE0W

BCond0i src , dest
reg, imm
read.i disp

The BCond0i instruction compares the signed contents of src (registers
0, 1, 8, 9) to 0, and branches upon equality or non-equality (according
to the cond). The target address is determined by adding the 5-bit dis-
placement (unsigned even 0-30) to the current value of the program
counter. Only forward branching is supported.

The instructions performs byte or word compares according to the i in-
dicator.

Flags: None

Traps: None

Example: Compares the low-order byte in register R0 to 0 and branches to the in-
struction labeled L, since the lower byte of R0 is 0, by adding 16 to the
PC register.

Cond Code Condition True State

EQ Equal Rn is equal to 0

NE Not Equal Rn is not equal to 0

PC
09FF016

(40944 10)

beq0b r0, *+16

PC
0A00016

(40960 10)

r0 xx00 16 r0 xx00 16

*+16
(A000 16) xxxx 16

*+16
(A000 16) xxxx 16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-19

BCond1i
Compare Register to 1 and Conditional Branch

BEQ1B, BEQ1W, BNE1B, BNE1W

Bcond1i src , dest
reg, imm
read.i disp

The BCond1i instruction compares the signed contents of src (registers
0,1,8,9) to 1, and branches on equality or non-equality (according to
cond). The target address is determined by adding the 5-bit displace-
ment (unsigned) to the current value of the program counter. Only for-
ward branching is supported.

The instructions performs byte or word compares according to the i in-
dicator.

Flags: None

Traps: None

Example: Compares low-order byte in register R8 to 1, and branches to the in-
struction labeled L, since the lower byte of R0 is 1, by adding 16 to the
PC register.

Cond Code Condition True State

EQ Equal Rn is equal to 1

NE Not Equal Rn is not equal to 1

PC
09FF016

(40944 10)

beq1b r8, *+16

PC
0A00016

(40960 10)

r0 xx01 16 r0 xx01 16

*+16
(A000 16) xxxx 16

*+16
(A000 16) xxxx 16
5-20 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

DI Disable Maskable Interrupts

DI (Disable Maskable Interrupts) DI

DI

The DI instruction clears PSR.E to 0. Maskable interrupts are disabled
regardless of the value of PSR.I.

Flags: PSR.E is cleared to 0.

Traps: None

Example: Clears the PSR.E bit.

PSR enzfltc
di

PSR 0nzfltc
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-21

EI Enable Maskable Interrupts

EI (Enable Maskable Interrupts) EI

EI

The EI instruction sets PSR.E to 1. If PSR.I is also 1, maskable inter-
rupts are enabled.

Flags: PSR.E is set to 1.

Traps: None

Example: Sets the PSR.E bit to 1.

PSR enzfltc
ei

PSR 1nzfltc
5-22 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

EIWAIT Enable Interrupt and Wait

EIWAIT

EIWAIT

The EIWAIT instruction suspends program execution until an interrupt
occurs. This instruction also sets the PSR.E bit, enabling interrupt to
occur. An interrupt restores program execution by passing it to an in-
terrupt service procedure. When the EIWAIT instruction is interrupted,
the return address saved on the stack is the address of the instruction
following the EIWAIT instruction.

Flags: None

Traps: None

Example: eiwait
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-23

EXCP Exception

EXCP (Exception) EXCP

EXCP vector

The EXCP instruction activates the trap specified by the vector oper-
and. The return address pushed onto the interrupt stack is the address
of the EXCP instruction itself. Specifying an EXCP with a reserved vector
operand results in an Undefined (UND) exception.

Flags: None

Traps: The traps that occur are determined by the value of the vector oper-
and, as shown in the following table.

Example: Activates the Supervisor Call Trap.

excp svc

Vector Trap Name

SVC Supervisor Call

DVZ Division by Zero

FLG Flag

BPT Breakpoint

UND Undefined Instruction

otherwise reserved
5-24 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

Jcond Conditional Jump

JEQ, JNE, JCS, JCC, JHI, JLS, JGT,
JLE, JFS, JFC, JLO, JHS, JLT, JGE

Jcond dest
reg/regp
addr.W/L

If the condition specified by cond is true, the Jcond instruction causes a
jump in program execution. Program execution continues at the address
specified in the dest register (or register pair for large memory model), by
loading the lower index register’s contents into bits 1 through 16, and for
large memory model, bits 0 through 3 of the higher index register into
bits 17 through 20 of the PC register. Bits 0 (and 17 through 20 for small
memory model) of the PC are cleared to 0. If the condition is false, execu-
tion continues with the next sequential instruction.

cond is a two-character condition code that describes the state of a flag
or flags in the PSR. If the flag(s) are set as required by the specified
cond , the condition is true; otherwise, the condition is false. The follow-
ing table describes the possible cond codes and the related PSR flag set-
tings:

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-25

Flags: None

Traps: None

Examples: 1. Small memory model: loads the address held in R3 into bits 1
through 16 of the PC register, and program execution continues at
that address, if the PSR.Z and PSR.L flags are 0.

2. Large memory model: loads the address held in R3, R4 into the bits
1 through 20 of the PC register. Program execution continues at that
address, if the PSR.Z and PSR.L flags are 0.

r3 1004 16

jlo r3

r3 1004 16

PC 0909816 PC
2008 16

(1004 16 × 2)

PSR en0f0tc PSR en0f0tc

r3 1004 16

jlo (r4,r3)

r3 1004 16

r4 000c 16 000c 16

PC 0A909816 PC
182008 16

(C1004 16 × 2)

PSR en0f0tc PSR en0f0tc
5-26 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

JAL Jump and Link

JAL (Jump and Link) JAL

JAL link , dest
reg/regp, reg/regp
write.W/L addr.W/L

Program execution continues at the address specified in the dest regis-
ter (or register-pair for large memory model), by loading the lower index
register’s contents into bits 1 through 16 of the PC register, and, for
large memory model, by also loading bits 0 through 3 of the higher in-
dex register into bits 17 through 20 of the PC register. Bit 0, and for
small memory model, bits 17-20 of the PC register are cleared to 0. Bits
1 through 20 of the address of the next sequential instruction are
stored in the register, or register-pair, specified by the link operand;
For small memory model, only bits 1 through 16 are stored in the single
link register; For large memory model, bits 17 through 20 are also
stored into bits 0 through 3 of the higher index link register.

Flags: None

Traps: None

Examples: 1. Small memory model: loads the address held in R3 into the bits 1
through 16 of the PC register. Program execution continues at that
address. Bits 1 through 16 of the address of the next sequential in-
struction are stored in register RA.

r3 1004 16

jal ra, r3

r3 1004 16

PC 00909816 PC
0016

(1004 16 × 2)

ra xxxx 16 ra
0484D16

(909A 16 ÷ 2)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-27

2. Large memory model: loads the address held in R3, R4 into the bits
1 through 20 of the PC register. Program execution continues at that
address. Bits 1 through 16 of the address of the next sequential in-
struction are is stored in register ERA, and bits 17 through 20 of the
address are stored in ERA+1.

r3 1004 16

jal (ra,era),(r4,r3)

r3 1004 16

r4 000c 16 r4 000c 16

PC 0A909816 PC
182008 16

(C1004 16 × 2)

era xxxx 16 era
484C16

(lower 16 of:A909A 16 ÷ 2)

ra xxxx 16 ra

0005 16

(upper 4
of:A909A 16 ÷ 2)
5-28 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

JUMP Jump

JUMP (Jump) JUMP

JUMP dest
reg/regp
addr.W/L

Program execution continues at the address specified in the dest regis-
ter (or register pair for large memory model), by loading the lower index
register’s contents into bits 1 through 16, and for large memory model,
bits 0 through 3 of the higher index register into bits 17 through 20 of
the PC register. Bits 0 (and 17 through 20 for small memory model) of
the PC register are cleared to 0.

Flags: None

Traps: None

Examples: 1. Small memory model: loads the address held in R3 into bits 1
through 16 of the PC register. Program execution continues at that
address.

2. Large memory model: loads the address held in R3, R4 into the bits
1 through 20 of the PC register. Program execution continues at that
address.

r3 1004 16
jump r3

r3 1004 16

PC 00909816 PC
002008 16

(1004 16 × 2)

r3 1004 16

jump (r4,r3)

r3 1004 16

r4 000c 16 000c 16

PC 0A909816 PC
182008 16

(C1004 16 × 2)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-29

LOADi Load from Memory

LOADi (Load Integer) LOADB, LOADW

LOADi src , dest
abs/rel/far reg
read.i write.i

The LOADi instructions load the src operand from memory, and places
it in the dest register operand.

For far execution, a register-pair is used as base, with bits 0-4 of the
upper register translating to bits 16-20 of the address. Table 5-4 shows
the addressing methodology for the instruction. For more information,
and CR16A/CR16B inconsistencies, see “Load /Store far ” on page 5-65.

Table 5-4. LOAD/STOR Memory Addressing Methodology

a. Truncate_18: Truncate the address calculation result at 18 bits - 256
Kbyte wrap around. Address bits 18 through 20 are cleared to 0.

b. zext21: zero extend to 21 bits.
c. Available only in ’STORi $imm4,disp(Rbase)’ instruction format.
d. sext21: sign extend the displacement to 21 bits.
e. Truncate_21 means the whole calculation is performed at 21 bits, cre-

ating a 2 Mbyte wrap around.

Flags: None

Traps: None

Addressing
Modes

Displacement
Range

Indexing
Range
(reg)

Instr.
Len.
Byte

Addr.
Range

Address Calculation

disp5(Rbase) 0 to 31 64K 2 64K
Truncate_18a

(zext21b(Rbase) + zext21b(disp))

disp16(Rbase)c 0 to 64K−1 64K 4 128K
Truncate_18a

(zext21b(Rbase) + sext21d(disp))

disp18(Rbase)
−128K to 128K−1

or
0 to 256K−1

64K 4 256K
Truncate_18a

(zext21b(Rbase) + sext21d(disp))

abs18 0 to 256K−1 --- 4 256K
Truncate_18a

(abs18)

disp18(Rbase+1,
 Rbase)

−128K to 128K−1 2M 4 2M
Truncate_21e

(reg-pair + sext21d(disp))
5-30 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

Examples: 1. Loads a byte operand in address 9 (R5) to the low-order byte of reg-
ister R7. The remaining byte of register R7 is unaffected.

2. Loads a word operand in address 632 to register R9.

3. Loads a word operand in address 1A000216 to register R7. The ad-
dress is formed by adding 1000016 to the value in R4, concatenated
with the value in R5.

4. Loads a word operand in address 3000216 to register R7. The ad-
dress is formed by adding 3000016 to the value in R4.

r5 2000 16

loadb 9(r5), r7

r5 2000 16

2009 16
(memory)

1716
2009 16

(memory)
1716

r7 xxxx 16 r7 xx17 16

63216
(memory)

0098 16 loadw 0x632, r9
63216

(memory)
0098 16

r9 xxxx 16 r9 0098 16

r4 0002 16

loadw 0x10000(r5,r4),r7

r4 0002 16

r5 xx19 16 r5 xx19 16

1A0002 16

(memory)
AA5516

1A0002 16
(memory)

AA5516

r7 xxxx 16 r7 AA5516

r4 0002 16

loadw 0x30000(r4),r7

r4 0002 16

30002 16

(memory)
AA5516

30002 16
(memory)

AA5516

r7 xxxx 16 r7 AA5516
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-31

LOADM Load Multiple Registers From Memory

LOADM

LOADM count
imm
read,

The LOADM instruction loads up to four adjacent registers from memory.
count reflects the total number registers to be loaded. (i.e., count = 1-4).

The instruction always operates on a fixed set of registers:

• r0 contains the address of the first word in memory to be loaded;

• r2 is loaded with the lowest address word;

• r3 through r5 are loaded from the next count -1 consecutive ad-
dresses

r0 is adjusted (incremented) by 2 for each word loaded, and therefore
points to the next unread word in memory at the transfer-end.

This instruction is not interruptable.

Flags: None

Traps: None

Example: Loads three registers, from memory:

r0 1000 16

loadm $3

r0 1006 16

r2 XXXX16 r2 2F5016

r3 XXXX16 r3 107E16

r4 XXXX16 r4 35EC16

001000
(memory)

2F5016
001000

(memory)
xxxx 16

001002
(memory)

107E16
001002

(memory)
xxxx 16

001004
(memory)

35EC16
001004

(memory)
xxxx 16
5-32 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

LPR Load Processor Register

LPR (Load Processor Register) LPR

LPR src , dest
reg procreg
read.W write.W

The LPR instruction copies the src operand to the processor register
specified by dest .

If dest is ISP, only bits 0 through 15 are written, and the least signifi-
cant bit (bit 0) and the five most significant bits (bits 16-20) of the ad-
dress are cleared to 0. If dest is INTBASEL, bit 0 is cleared to 0. If dest
is INTBASEH, bits 5 through 15 are always written as 0.

The following processor registers may be loaded:

Refer to “REGISTER SET” on page 2-6 and to Chapter 4 “ADDITIONAL
TOPICS” for more information on these registers.

Flags: PSR flags are affected by the values loaded into them. Otherwise, no
PSR flags are affected.

Traps: None

Register procreg

Processor Status Register PSR

Configuration Register CFG

Interrupt Base Low Register INTBASEL

Interrupt Base High Register INTBASEH

Interrupt Stack Pointer ISP

Debug Status Register DSR

Debug Condition Register DCR

Compare Address Register Low CARL

Compare Address Register High CARH
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-33

Example: Loads register PSR from register R1.

r1 0000 16 lpr r1, psr r1 0000 16

PSR enzfltc PSR 0000000 2
5-34 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

LSHi Logical Shift Integer

LSHi (Logical Shift Integer) LSHB, LSHW

LSHi count, dest
reg/imm reg
read.B write.i

The LSHi instruction performs a logical shift on the dest operand as
specified by the count operand.

The count operand is interpreted as a signed integer; the dest operand
is interpreted as an unsigned integer. The sign of count determines the
direction of the shift. A positive count specifies a left shift; a negative
count specifies a right shift. The absolute value of count gives the
number of bit positions to shift the dest operand. The count operand
value must be in the range −7 to +7 if LSHB is used, and −15 to +15 if
LSHW is used; otherwise, the result is unpredictable. All bits shifted out
of dest are lost, and bit positions emptied by the shift are filled with ze-
ros.

Flags: None

Traps: None

Examples: 1. Shifts the low-order byte of register R1 four bit positions to the left.
The remaining bytes of register R1 is unaffected.

2. Reads a byte from register R5. Based on this value, it shifts the low-
order byte of register R7. The remaining bytes of register R7 is unaf-
fected.

r1 xx 16 11111110 2
lshb $4, r1

r1 xx 16 11100000 2

r5 xx 16 11111111 2 lshb r5, r7 r5 xx 16 11111111 2

r7 xx 16 11111110 2 r7 xx 16 01111111 2
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-35

MOVi Move

MOVB, MOVW, MOVD

MOVi src , dest
reg/imm reg/regp
read.i write.i

The MOVi instructions copy the src operand to the dest register.
For MOVD, only a 21-bit immediate src operand is supported, and the
dest operand is a pair of adjacent registers. In this case, bits 5 through
15 of the higher-index register are always cleared to 0.

Flags: None

Traps: None

Examples: 1. Copies the contents of register R0 to register R6.

2. This example sets R8 to the value 1716.

3. Sets register-pair R9, R8 to the value of 1700A716.

r0 1234 16 movw r0, r6 r0 1234 16

r6 xxxx 16 r6 1234 16

r8 xxxx 16
movw $0x17, r8

r8 0017 16

r8 xxxx 16 movd $0x1700A7,
(r9,r8)

r8 00A716

r9 xxxx 16 r9 0017 16
5-36 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

MOVXB Move with Sign-Extension

MOVXiB (Move with Sign-Extension) MOVXB

MOVXBsrc , dest
reg reg
read.i write.W

The MOVXB instruction converts the signed integer src operand to the
word dest operand. The sign is preserved through sign-extension.

Flags: None

Traps: None

Examples: These examples copy the low-order byte of register R8 to the low-order
byte of register R0, and extend the sign bit of the byte through the next
8 bits of register R0.

1. Illustrates negative sign extension.

2. Illustrates positive sign extension.

r8
xxF0 16

(low byte: −1610) movxb r8, r0
r8

xxF0 16
(low byte: −1610)

r0 xxxx 16 r0
FFF016

(−1610)

r8
7016

(low byte: +112 10) movxb r8, r0
r8

7016
(low byte: +112 10)

r0 xxxx 16 r0
0070 16

(+112 10)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-37

MOVZB Move with Zero Extension

MOVZiB (Move with Zero Extension) MOVZB

MOVZBsrc , dest
reg reg
read.i write.W

The MOVZB instruction converts the unsigned integer src operand to the
unsigned word dest operand. The high-order bits are filled with zeros.

Flags: None

Traps: None

Example: Copies the low-order byte of register R8 to the low-order byte of register
R0, and sets the next 8 bits of register R0 to zero.

r8
xxFF 16

(low byte: +255 10) movzb r8, r0
r8

xxFF 16
(low byte: +255 10)

r0 xxxx 16 r0
00FF16

(+255 10)
5-38 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

MULi Multiply

MULi (Multiply Integer) MULB, MULW

MULI src , dest
reg/imm reg
read.i rmw.i

The MULi instructions multiply the src operand by the dest operand
and places the result in the dest operand. Both operands are interpret-
ed as signed integers. If the resulting product cannot be represented ex-
actly in the dest operand, then the high-order bits are truncated.

Flags: None

Traps: None

Example: Multiplies register R5 by R0, and places the result in register R0.

r5
0005 16
(+5 10) mulw r5, r0

r5
0005 16
(+5 10)

r0
000A16

(+10 10)
r0

0032 16
(+50 10)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-39

MULSB Signed Multiply Byte, Word Result

MULSB

MULSW src , dest
reg reg
read.B rmw.W

The MULSB instruction multiplies the 8-bit src operand by the 8-bit
dest operand, and places the 16-bit result in the dest register.

Both source and destination operands are viewed as signed 8-bit oper-
ands, and the result is a signed 16-bit result.

Flags: None

Traps: None

Example: Multiplies signed register R8 by R0, and places the result in register R0.

r8
BB16

(-45 16) mulsb r8, r0
r8

BB16
(-45 16)

r0 3A 16 r0
F05E16

(-FA2 16)
5-40 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

MULSW Signed Multiply Word Long Result

MULSW

MULSW src , dest
reg regp
read.W rmw.D

The MULSW instruction multiplies the 16-bit src operand by the 16-bit
dest operand, and places the 32-bit result in the register-pair dest+1 ,
dest .

Both source and destination operands are viewed as signed 16-bit oper-
ands, and the result is a signed 32-bit result.

Flags: None

Traps: None

Example: Multiplies signed register R8 by R0, and places the result in registers
R1, R0.

r8
DFFB16

(-2005 16) mulsw r8, (r1,r0) r8
DFFB16

(-2005 16)

r0 400A 16 r0 7FCE16

r1 xxxx 16 r1
F7FD16

(-8028032 16)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-41

MULUW Unsigned Multiply Word Long Result

MULUW

MULUW src , dest
reg regp
read.W rmw.D

The MULUW instruction multiplies the 16-bit src operand by the 16-bit
dest operand, and places the 32-bit result in the register-pair
dest+1 ,dest . In this instruction, the choice of source registers for the
first operand are restricted to R0, R1, R8, or R9.

Both source and destination operands are viewed as unsigned 16-bit
operands, and the result is an unsigned 32-bit result.

Flags: None

Traps: None

Example: Multiplies unsigned register R8 by R2, and places the result in registers
R3, R2.

r8
2005 16

(+8197 10) muluw r8, (r3,r2)
r8

2005 16
(+8197 10)

r2
400A16

(+16394 10)
r2

8032 16

r3
xxxx 16
(+x 10)

r3
0802 16

(+134381619 10)
5-42 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

NOP No Operation

NOP (No Operation) NOP

NOP

The NOP instruction passes control to the next sequential instruction.
No operation is performed.

Flags: None

Traps: None

Example: nop
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-43

ORi Bitwise Logical OR

ORi (Bitwise Logical OR) ORB, ORW

ORi src , dest
reg/imm reg
read.i rmw.i

The ORi instructions perform a bitwise logical OR operation on the src
and dest operands, and places the result in the dest operand.

Flags: None

Traps: None

Example: ORs the low-order bytes of registers R5 and R7, and places the result in
the low-order byte of register R7. The remaining byte of register R7 is
unaffected.

r5 xx 16 11011000 2 orb r5, r7 r5 xx 16 11011000 2

r7 xx 16 00001011 2 r7 xx 16 11011011 2
5-44 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

POPrt Pop Multiple Registers From Stack

POP, POPRET

POPrt count , src
imm, reg
read, write.W

The POPrt instructions restore up to four adjacent registers from the
user stack. The registers are be defined by src register, with up to three
more adjacent registers. (e.g., src , src +1, src +2, src +3). count reflects
the total number registers to restore. (i.e., count = 1-4). src is loaded
with the value residing at the lowest address (top of stack). The stack
pointer (SP) is adjusted (incremented) accordingly.

This instruction is not interruptable.

Note: In no way should the parameters to POPrt indicate a restore of
registers r15 (SP) and beyond. Such parameters (i.e., count/src pairs of
1-4/SP, 2-4/ra, 3-4/era, 4/r12) lead to unpredictable results.

After the pop operation has ended, the processor can return control to
a calling routine, according to the rt switch in the instruction.

The POPrt instructions do not change the contents of memory locations
indicated by an asterisk *. However, information that is outside the
stack should be considered unpredictable for other reasons.

Flags: None

Traps: None

rt Switch Operation Implied Instruction

Not specified No-return --

RET Return (small memory model) JUMP ra

Return-Long (large memory model JUMP (ra,era)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-45

Examples: 1. Pops three registers, starting with R3, from the stack:

2. Pops four registers from the stack, and executes a JUMP (RA,ERA)
(Large-memory-model):

PC 00F03416

pop 3,R3

PC 00F036 16

SP 100016 SP 1006 16

r3 XXXX16 r3 2F5016

r4 XXXX16 r4 107E16

r5 XXXX16 r5 35EC16

001000
(stack)

2F5016
001000

(stack)
xxxx 16 ∗

001002
(stack)

107E16
001002

(stack)
xxxx 16 ∗

001004
(stack)

35EC16
001004

(stack)
xxxx 16 ∗

PC 00F03416

popret 4,R11

PC
066BD816

({ra,era) x 2}

SP 100016 SP 1008 16

r11 XXXX16 r11 2F5016

r12 XXXX16 r12 107E16

ra XXXX16 ra 35EC16

era XXXX16 era 0003 16

001000
(stack)

2F5016
001000

(stack)
xxxx 16 ∗

001002
(stack)

107E16
001002

(stack)
xxxx 16 ∗

001004
(stack)

35EC16
001004

(stack)
xxxx 16 ∗

001006
(stack)

0003 16
001006

(stack)
xxxx 16 ∗
5-46 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

PUSH Push Registers on Stack

PUSH

PUSH count src
imm reg
read read.W

The PUSH instruction saves up to four adjacent registers, onto the user
stack, with the count parameter denoting how many registers are saved
(i.e., count = 1-4). The registers are defined by the src register, with up
to three more adjacent registers. (e.g., src , src +1, src +2, src +3).

The registers are stored in count consecutive words on the stack, with
src contents residing at the lowest address (top of stack).

The stack pointer is adjusted (decremented) accordingly, and points to the top
of stack at the end of the instruction. This instruction is not interruptable.

Register pairs containing Long addresses (21 bits), stored within a sin-
gle PUSH instruction, would comply with "Little-endien" methodology.

Note: In no way should the parameters to PUSH indicate a save of reg-
isters r15 (SP) and beyond. Such parameters (i.e., count/src pairs of
1-4/SP, 2-4/ra , 3-4/era , 4/r12) lead to unpredictable results.

Flags: None

Traps: None

Example: Pushes three registers, starting with R5, on the stack:

SP 100616

push $3,r5

SP 1000 16

r5 2F50 16 r5 2F50 16

r6 107E 16 r6 107E 16

r7 35ED 16 r7 35ED 16

001000
(stack)

XXXX16
001000

(stack)
2F5016

001002
(stack)

XXXX16
001002

(stack)
107E16

001004
(stack)

XXXX16
001004

(stack)
35ED16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-47

RETX Return from Exception

RETX (Return from Exception) RETX

RETX

The RETX instruction returns control from a trap service procedure. The
following steps are performed:

1. The instruction pops a 16-bit return address from the interrupt
stack, and loads it into bits 1 through 16 of the PC register.

2. The instruction then pops a 16-bit value containing the upper four
return address bits, and the 12-bit PSR value from the interrupt
stack, storing the four address bits into bits 17 through 20 of the PC
register, and the 12 PSR bits into the PSR register.

The RETX instruction does not change the contents of memory locations
indicated by an asterisk (*). However, information that is outside the
stack should be considered unpredictable for other reasons.

Flags: All PSR flag states are restored from the stack.

Traps: None

Example: Returns control from an interrupt service procedure.

PC 08F03416

retx

PC 132008 16(99004 16 × 2)

ISP 01000 16 ISP 01004 16

PSR xxxx 16 PSR 0845 16

01000
(stack)

9004 16
01000

(stack)
xxxx 16 ∗

01002
(stack)

09845 16
01002

(stack)
xxxx 16 ∗
5-48 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

SBITi Set Bit

SBITB, SBITW

SBITi position , dest
imm abs/rel
read.i read+write.i

The SBITi instructions load the dest operand from memory, set the bit
position specified by position , and store it back into memory location
dest , in an uninterruptable manner. The position operand value must
be in the range 0 to +7 if SBITB is used, and 0 to +15 if SBITW is used;
otherwise, the result is unpredictable.

The memory modes supported are:

-Rel: 0(Rn), where n is 0, 1, 8, or 9;
disp(Rn), where n is 0, 1, 8, or 9, and disp is 16 bit unsigned

-Abs: 18-bit absolute address (covering the first 256K addresses)

See “CBIT/SBIT /TBIT Addressing Methodology” on page 5-17.

Flags: Before the specified bit is modified, its value is stored in PSR.F.

Traps: None

Examples: 1. Sets bit in position 5 in a byte operand in address 9 (R1).

2. Sets bit in position 8 in a word operand in address 0 (R8).

r1 2000 16
sbitb $5,9(r1)

r1 2000 16

2009 16
(memory) 8F16

2009 16
(memory) AF16

PSR enzfltc PSR enz01tc

r8 2004 16
sbitw $5,0(r8)

r8 2004 16

2004 16
(memory) F4E716

2004 16
(memory) F5E716

PSR enzfltc PSR enz01tc
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-49

3. Sets bit in position 3 in a byte operand in address 3000216

3000216
(memory) xx91 16

sbitb $3,0x30002 3000216
(memory) xx99 16

PSR enzfltc PSR enz01tc
5-50 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

Scond Save Condition as Boolean

Scond (Save Condition as Boolean)SEQ, SNE, SCS, SCC, SHI, SLS, SGT,
SLE, SFS, SFC, SLO, SHS, SLT, SGE

Scond dest
reg
write.W

The Scond instruction sets the dest operand to the integer value 1 if
the condition specified in cond is true, and clears it to 0 if it is false.

cond is a two-character condition code that specifies the state of a flag
or flags in the PSR register. If the flag(s) are set as required by the spec-
ified cond , the condition is true; otherwise, the condition is false. The
following table describes the possible cond codes and the related PSR
flag settings:

Flags: None

Traps: None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-51

Examples: 1. Sets register R0 to 1 if the PSR.Z flag is set and to 0 if it is clear.

2. Sets register R2 to 1 if the PSR.Z and PSR.L flags are cleared and to
0 if they are not cleared.

r0 xxxx 16 seq r0 r0
0001 16
(True)

PSR en1fltc PSR en1fltc

r2 xxxx 16 slo r2 r2
0000 16

(False)

PSR en1f1tc PSR en1f1tc
5-52 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

SPR Store Processor Register

SPR (Store Processor Register) SPR

SPR src, dest
procreg reg
read.W write.W

The SPR instruction stores the processor register specified by src , in
the dest operand. If src is ISP, only bits 0 through 15 of src are
stored.

The following processor registers may be stored:

See “REGISTER SET” on page 2-6 for more information.

Flags: None

Traps: None

Examples: 1. Copies the INTBASEL register to register R0.

Register procreg

Processor Status Register PSR

Configuration Register CFG

Interrupt Base Low Register INTBASEL

Interrupt Base High Register INTBASEH

Interrupt Stack Pointer ISP

Debug Status Register DSR

Debug Condition Register DCR

Compare Address Register Low CARL

Compare Address Register High CARH

intbase 00100 16

spr intbasel, r0

intbase 00100 16

intbasel 0100 16 intbasel 0100 16

r0 xxxx 16 r0 0100 16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-53

2. Copies the INTBASEH register to register R1.

intbase 020100 16

spr intbaseh, r1

intbase 020100 16

intbaseh xx02 16 intbaseh xx02 16

r1 xxxx 16 r1 0002 16
5-54 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

STORi Store In Memory

STORi (Store Integer) STORB, STORW

STORi src , dest
reg abs/rel/far
read.i write.i

STORi src , dest
imm4 abs/rel
read.i write.i

The STORi instructions store the src register operand in the dest mem-
ory operand.

For far execution, a register-pair is used as base, with bits 0-4 of the
upper register translating to bits 16-20 of the address.

A second format of the instructions allow storing of a 4-bit immediate
value into the dest memory operand. This format has limited address-
ing modes. The memory modes supported are:

-Rel: 0(Rn), where n is 0, 1, 8, or 9;
disp(Rn), where n is 0, 1, 8, or 9, and disp is 16-bit unsigned

-Abs: 18-bit absolute address (covering the first 256K addresses)

Table 5-4 describes the addressing methodology for the instruction. See
“Load /Store far ” on page 5-65.

Flags: None

Traps: None

Examples: 1. Copies the contents of register R0 to the word at address 912016.

r0 5678 16 storw r0, 0x9120 r0 5678 16

9120 16 xxxx 16 9120 16 5678 16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-55

2. Stores the low-order byte from R7 at address 3000216. The address
is formed by adding 3000016 to the value in R4.

3. Stores the low-order byte from R7 at address 1A000216. The ad-
dress is formed by adding 1000016 to the value in R4 concatenated
with the value in R5.

4. Copies the contents of register R3 to the non-aligned word at ad-
dress 9 (R5).

5. Stores the immediate value of 0x5 to the word at address 912016.

r7 xx55 16

storb r7,0x30000(r4)

r7 xx55 16

r4 0002 16 r4 0002 16

30002 16

(memory)
xx 16

30002 16
(memory) 5516

r7 xx55 16

storb r7,0x10000(r5,r4)

r7 xx55 16

r4 0002 16 r4 0002 16

r5 xx19 16 r5 xx19 16

1A0002 16

(memory)
xx 16

1A0002 16
(memory) 5516

r3 AA55 16

storw r3,9(r5)

r3 xxxxAA55 16

r5 2000 16 r5 2000 16

2008 16

(memory)
xxxx 16

2008 16

(memory)
55xx 16

200A16

(memory)
xxxx 16

200A16

(memory)
xxAA16

9120 16 xxxx 16 storw $5, 0x9120 9120 16 0005 16
5-56 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

6. Stores the immediate value of 0x7 to the word at address 4 (R1).

7. Stores the immediate value of 0x7 to the non-aligned word at ad-
dress 3 (R1).

r1 00002000 16
storw $7,4(r1)

r1 00002000 16

2004 16

(memory)
xxxx 16

2004 16

(memory)
0007 16

r1 00002000 16

storw $7,3(r1)

r1 00002000 16

2002 16

(memory)
xxxx 16

2002 16

(memory)
07xx 16

2004 16

(memory)
xxxx 16

2004 16

(memory)
xx00 16
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-57

STORM Store Multiple Registers To Memory

STORM

STORM count
imm
read,

The STORM instruction stores up to four adjacent registers to memory.
count reflects the total number registers to be stored. (i.e., count = 1-
4).

The instruction always operates on a fixed set of registers:

• r1 contains the target address of the first word in memory;

• r2 is stored into the lowest address word;

• r3 through r5 are stored to the next count -1 consecutive addresses

r1 is adjusted (incremented) by 2 for each word stored, and therefore
points to the next unwritten word in memory at the transfer-end.

This instruction is not interruptable.

Flags: None

Traps: None

Example: Stores three registers into memory:

r1 1000 16

storm $3

r1 1006 16

r2 2F50 16 r2 2F50 16

r3 107E 16 r3 107E 16

r4 35EC 16 r4 35EC 16

001000
(memory)

XXXX16
001000

(memory)
2F5016

001002
(memory)

XXXX16
001002

(memory)
107E16

001004
(memory)

XXXX16
001004

(memory)
35EC16
5-58 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

SUBi Subtract

SUBi (Subtract Integer) SUBB, SUBW

SUBi src , dest
reg/imm reg
read.i rmw.i

The SUBi instructions subtract the src operand from the dest operand,
and places the result in the dest operand.

Flags: During execution of a SUBi instruction, PSR.C is set to 1 if a borrow oc-
curs, and cleared to 0 if no borrow occurs. PSR.F is set to 1 if an over-
flow occurs, and cleared to 0 if there is no overflow.

Traps: None

Examples: 1. Subtracts the low-order byte of register R0 from the low-order byte
of register R1, and places the result in the low-order byte of register
R1. The remaining byte of register R1 is not affected.

2. Subtracts the word in register R7 from the word in register R8, and
places the result in register R8.

r0
xx01 16
(+110)

subb r0, r1

r0
xx01 16
(+110)

r1
xx7F 16

(+127 10)
r1

xx7E 16
(+126 10)

PSR enzfltc PSR enz0lt1

r7
FFFE16
(−210)

subw r7, r8

r7
FFFE16
(−210)

r8
1000 16

(+4096 10)
r8

1002 16
(+4098 10)

PSR enzfltc PSR enz0lt0
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-59

SUBCi Subtract with Carry

SUBCi (Subtract Integer with Carry)SUBCB, SUBCW

SUBCi src , dest
reg/imm reg
read.i rmw.i

The SUBCi instructions subtract the sum of the src operand and the
PSR.C flag from the dest operand, and places the result in the dest op-
erand.

Flags: PSR.C is set to 1 if a borrow occurs and cleared to 0 if there is no bor-
row. 0 PSR.F is set to 1 if an overflow occurs and cleared to 0 if there
is no overflow.

Traps: None

Example: Subtracts the sum of 32 and the PSR.C flag value from the low-order
byte of register R1 and places the result in the low-order byte of register
R1. The remaining byte of register R1 is not affected.

r1
xx50 16

(+80 10) subcb $32, r1 r1
xx2F 16

(+47 10)

PSR enzflt1 PSR enz0lt0
5-60 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

TBIT Test Bit

TBIT, TBITB, TBITW

TBIT position, src
reg/imm reg
read.W read.W

TBITi position , src
imm abs/rel
read.i read.i

The TBIT instruction copies the bit located in register or memory loca-
tion src at the bit position specified by position , to the PSR.F flag.
The memory-direct format of the instruction supports byte and word
operations (TBITB , TBITW), while the register-sourced format does not.
The offset value must be in the range 0 through 15 for a word oper-
and, and in the range of 0 through 7 for a byte operand; otherwise, the
result is unpredictable.

The memory-direct format supports only limited addressing modes:

-Rel: 0(Rn), where n is 0, 1, 8, or 9;
disp(Rn), where n is 0, 1, 8, or 9, and disp is 16-bit unsigned

-Abs: 18 bit absolute address (covering the first 256K addresses)

See “CBIT/SBIT /TBIT Addressing Methodology” on page 5-17.

Flags: PSR.F is set to the value of the specified bit.

Traps: None

Examples: 1. Copies bit number 3, i.e., the fourth bit from the right, in register R1
to the PSR.F flag.

r1 00 16 00001000 2 tbit $3, r1 r1 00 16 00001000 2

PSR enzfltc PSR enz1ltc
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-61

2. Copies bit number 3, i.e., the fourth bit from the right, in memory
location 8 (R1) to the PSR.F flag.

3. Copies bit number 5, i.e., the sixth bit from the right, in memory lo-
cation 0 (R8) to the PSR.F flag.

4. Copies bit number 5, i.e., the sixth bit from the right, in memory lo-
cation 3000216 to the PSR.F flag.

r1 2000 16 r1 2000 16

2008 16
(memory)

0016 00001000 2 tbitw $3, 8(r1)
2008 16

(memory)
0016 00001000 2

PSR enzfltc PSR enz1ltc

r8 2008 16 r8 2008 16

2008 16
(memory)

0016 00100000 2 tbitw $5, 0(r8)
2008 16

(memory)
0016 00100000 2

PSR enzfltc PSR enz1ltc

30002 16
(memory)

0016 00100000 2 tbitw $5, 0x30002
30002 16

(memory)
0016 00100000 2

PSR enzfltc PSR enz1ltc
5-62 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

WAIT Wait for Interrupt

WAIT (Wait for Interrupt) WAIT

WAIT

The WAIT instruction suspends program execution until an interrupt oc-
curs. An interrupt restores program execution by passing it to an inter-
rupt service procedure. When the WAIT instruction is interrupted, the
return address saved on the stack is the address of the instruction fol-
lowing the WAIT instruction.

Flags: None

Traps: None

Example: wait
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-63

XORi Bitwise Logical Exclusive OR

XORi (Bitwise Logical Exclusive OR)XORB, XORW

XORi src , dest
reg/imm reg
read.i rmw.i

The XORi instructions perform a bitwise logical exclusive OR operation
on the src and dest operands, and places the result in the dest oper-
and.

Flags: None

Traps: None

Example: XORs the low-order bytes of registers R1 and R2, and places the result
in the low-order byte of register R2. The remaining byte of R2 is unaf-
fected.

r1 xx 16 11110000 2 xorb r1, r2 r1 xx 16 11110000 2

r2 xx 16 10010101 2 r2 xx 16 01100101 2
5-64 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

5.3 CR16B/CR16A INSTRUCTION INCOMPATIBILITIES

The CR16B differs from the CR16A by having 21 bits of address space
for both code and data usage, versus the 17 bits of instruction address,
and 18 bits of data space, available on the CR16A. These differences are
usually transparent in most CR16A instructions, when executed on the
CR16B. The two main exceptions are the BR/Bcond and the LOAD/STORE
far instructions.

BR/Bcond This instruction manifests two characteristics in the CR16B, with rela-
tion to the displacement size.

For a medium displacement, when used in the small memory model
(17-bit effective), the instruction still conforms to the CR16A’s model:
the displacement is sign-extended to 18 bits, added to the lower 18 bits
of the PC register, and the result is truncated to 17 bits, resulting in a
wrap-around at the 128 Kbyte boundary. This instruction only works in
the first 128K of memory.

For a short displacement (9 bits), the new CR16B large memory model
is used; the displacement is sign extended to 21 bits, and the whole 21
bits of the PC register are used for the address calculation (truncated at
21 bits), resulting in a wrap around at the 2 Mbyte boundary. This al-
lows usage of the short format of the branch in side routines and pro-
gram portions residing over the 128K boundary, thus keeping the code
size small, at the expense of not conforming to the CR16A model. This
only affects programs using the short branch instruction to reach the
other end of the memory - not a recommended method by itself, and not
used by the compilers.

For a medium displacement, when used in the large memory model,
(21-bits), the whole 21 bits of the PC register are used for the address
calculation (truncated at 21 bits), resulting in a wrap around at the 2
Mbyte boundary. This allows covering the whole 2 Mbyte instruction
space of the CR16B, using the wrap-at-2M to reach the beginning of
memory with just a 21 bit displacement (either signed or unsigned).

Load /Store
far

The load /store far instructions have not changed format in the
CR16B, but since the address space has grown, there are two areas in
which the CR16A and the CR16B differ:

1. The processor now uses bits 2-5 of the upper base address register-
pair, as well as bits 0-1, to calculate the load-store address. If the
program modified those bits to some non-zero value, a CR16B run-
ning this CR16A code would not perform correctly, whereas the
CR16A would, since it disregards bits 2 and above. You should leave
the upper bits of an address register-pair as 0, and not re-use them
for other purposes.
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET 5-65

2. Since the far format must cover the whole 2 Mbyte range, and still
allow a signed displacement, the displacement is limited to −128K to
+128K bytes only, to be sign extended for calculation. Using the 18-
bit displacement as a base in the range of 128K to 256K now gives
erroneous results.
5-66 INSTRUCTION SET CompactRISC CR16B Programmer’s Reference Manual

Appendix A

INSTRUCTION EXECUTION TIMING

This appendix describes the factors which affect instruction execution
timing in the CR16B. A CR16B based microprocessor may include a
write buffer, and a Bus Interface Unit (BIU). This appendix does not de-
scribe instruction execution timing that depends on the architecture of
such modules.

A.1 TIMING PRINCIPLES

Timing
glossary

Clock Cycle - The unit of time for the clock tick. At 33 MHz operation,
there are 33 million clock cycles per second.

Instruction Latency - The number of clock cycles required to process
a given instruction, from the time it enters the pipeline, until it leaves
the pipeline.

Instruction Throughput - The number of instructions that completed
the execution stage in a given number of clock cycles.

Program Execution Time - The number of clock cycles that elapsed,
from the time the first instruction began, until the last instruction left
the pipeline. The program execution time depends on the instruction la-
tency for each instruction in the program and the instruction through-
put.

Timing
factors

Under optimal conditions, the CR16B performs one instruction per
clock cycle. At 33 MHz, this translates to 33 MIPS (Million Instructions
Per Second). However, under a typical workload, unavoidable delays are
caused by the pipeline and memory.

Memory
access time

Each access to memory, when there are zero wait states, takes one
clock cycle. This means that the data arrives one clock cycle after the
address was issued. The access time for off-chip memory depends on
the speed and configuration of the off-chip memory.

When an instruction fetch, a load or a store instruction accesses exter-
nal memory, additional clock cycles may be added depending on the
configuration of the CPU, i.e., the existence and depth of a write buffer,
and the speed and configuration of the off-chip memory.

Evaluating
execution
time

To calculate the total program execution time, in clock cycles, combine
the following:

1. The number of clock cycles required to execute each instruction.
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-1

2. Delays, in clock cycles, caused by contention for memory and stalled
execution of instructions in the pipeline.

3. The number of clock cycles required to handle exceptional condi-
tions, such as interrupts.

A.2 THE PIPELINE

Every instruction executed by the CR16B passes through the three
stages in the pipeline.

• Instruction Fetch (IF) - The instruction is fetched from memory.

• Instruction Decoding (ID) - The instruction is decoded.

• Instruction Execution (EX) - The instruction is executed.

Flow through
the pipeline

Figure A-1 shows how instructions move through the pipeline.

Figure A-1. Instruction Flow Through the Pipeline

The IF stage In the IF stage, the CR16B fetches instructions into an internal register,
the Instruction Register (IR), which holds one instruction at a time.

The ID stage The IR feeds the instruction into the ID pipeline stage. At this point, a
new instruction can be loaded into the IR. A new fetch request is issued
whenever the bus is available and IR becomes available at the end of
the next cycle.

The EX Stage When execution of an instruction is completed, the decoded instruction
(if there is one) is transferred to the Decoded Instruction Register (DIR),
which holds one decoded instruction at a time.

The operations performed during execution depend on the instruction.

ID

EX

IF
A-2 INSTRUCTION EXECUTION TIMING CompactRISC CR16B Programmer’s Reference Manual

If it is an arithmetic or logic instruction:

• The Arithmetic/Logic Unit (ALU) or the shifter computes the result
of the instruction.

• The result is written to the destination register.

If it is a load instruction:

• The ALU computes the effective memory address.

• The memory operand is read.

• The memory operand is written to the destination register.

If it is a store instruction:

• The ALU computes the effective memory address.

• The source operand is written to memory.

If it is a bit manipulation instruction:

• The ALU computes the effective memory address.

• The memory operand is read.

• The bit manipulation operation is done

• The result is written to memory.

If it is a branch or jump instruction:

• The ALU computes the target address.

• The target address is written to the PC register.

If it is a compare and branch instruction:

• The ALU performs the operand compare operation

• The ALU computes the target address.

• The target address is written to the PC register, according to the re-
sult of the compare.

Source operands are read and results are written, only in the EX stage.
The instruction latency, when there are no delays, is usually three clock
cycles.

The following sections describe most of the delays that may occur dur-
ing execution of a program and which should be considered when eval-
uating a program’s execution time.
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-3

A.3 EXECUTION DELAYS

Fetch delays It takes two bus cycles to fetch a double-word instruction from memory,
because only one word can be fetched in each cycle. Decoding of the in-
struction, i.e., the ID stage, is delayed until both of its words have been
fetched, i.e., are completely in the IF stage.

Therefore, if no instruction is in the ID stage when a double-word in-
struction fetch begins, a fetch delay occurs until the instruction cur-
rently being fetched can progress to the ID stage.

Branch delays Upon execution of a non-conditional branch or jump instruction, or a
conditional branch or jump instruction that is true, subsequent instruc-
tions in the sequence may already have entered the pipeline, i.e., been
fetched, and possibly decoded. These instructions are discarded, and
clock cycles are added in which the target address for the branch in-
struction is fetched and decoded. These added clock cycles are called a
branch delay.

For example, even if no wait states are needed while the memory from
which instructions are fetched is accessed, the overall delay for a
branch is two or three cycles (depending on the length of the target in-
struction).

Data delays A data delay occurs whenever the contents of a memory location are
loaded into a register (using a load instruction) or when the contents of
a register are stored in memory (using a store instruction). The length
of the delay, i.e., the number of clock cycles that must be added, de-
pends on the CPU, system configurations and the alignment of the data.

Load delays A load instruction is executed in two three or five cycles. In the first cy-
cle the effective memory address is calculated and sent on the address
bus. When memory is accessed without wait states, the data is returned
on the data bus and stored in the appropriate register in the next cycle.

A load delay occurs in the following cases:

• When a byte to be accessed is not the least significant byte of an
aligned word, i.e., the byte is not word aligned, the execution unit
aligns it in an additional clock cycle. Execution takes three clock
cycles.

• When a word to be accessed is not word-aligned, it is accessed in
two consecutive bus cycles. One byte is accessed in each bus cycle
and data is aligned after each bus cycle. Execution takes five clock
cycles.

• When the main bus is already busy with an off-chip instruction
fetch request, the load operation is deferred.
A-4 INSTRUCTION EXECUTION TIMING CompactRISC CR16B Programmer’s Reference Manual

Store delays A store instruction is executed in two or three cycles. In the first cycle,
the effective memory address is calculated and sent on the address bus.
In the next cycle, the contents of the register are sent on the data bus.
All data is aligned as required, without performance penalties.

A store delay occurs in the following cases:

• When a word to be stored is not word-aligned, it is stored in two
consecutive bus cycles. One byte is accessed in each bus cycle. Ex-
ecution takes three clock cycles.

• When the main bus is already busy with an off-chip instruction
fetch request, the store operation is deferred.

Serialized
execution
delays

When a serializing instruction is executed, all instructions residing in
the IF stage and in the ID stage are discarded. Instructions that follow
are not fetched from memory until the execution is complete. This caus-
es a delay while the instructions following the serializing instruction are
fetched.

See “Serializing Operations” on page 4-9 for more information on serial-
izing instructions.

Long
instructions
execution
delays

Some of the new CR16B instructions take more than 1 or 2 clocks to
execute, since they perform a read-modify-write operation on memory,
and execute complex functions on the data. These instructions, when
encountered, may add delay to the total execution time, and to special
cases, like exceptions and interrupt timings.

A.4 INSTRUCTION EXECUTION TIMING

The following sections specify the execution times in clock cycles, and
other considerations that affect the total time required to execute each
type of instruction. For more information about clock cycles that are
added in the EX stage, see “Execution Delays” on page A-4

Arithmetic
instructions

Table A-1. Execution Times for Arithmetic Instructions

Instruction
Clock Cycles in EX

Stage (Zero Wait States)

ADDi, ADDCi, ADDUi, ANDi, ASHUi, CMPi,
LSHi , MOVi, MOVX, MOVZ, ORi, Scond , SUBCi,
SUBi , NOP, TBIT (imm/reg-reg) and XORi.

 1

MOVD 2

MULB 4

MULW 8
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-5

Load and store
Instructions

Load or store instructions may be stalled in the EX stage for additional
cycles while an instruction fetch is in process. This may occur when in-
structions are fetched from memory that requires wait states, e.g., off-
chip memory.

In this case, additional clock cycles may be added to the number shown
in the table. The number of clock cycles to add for this reason, depends
on the speed at which memory can be accessed.

When zero wait states are used, the number of additional cycles that
are needed to execute each load or store instruction depends on oper-
and alignment on the word boundary.

Table A-2. Execution Times for Load and Store Instructions

PUSH, POPrt ,
LOADM and
STORM
instructions

These instructions access the memory a multiple number of times, de-
pending on the number of registers needing save or restore. Also, these
instruction perform a pointer adjustment, which requires an extra clock
in the store instructions. Each such access may be stalled in the EX
stage for additional cycles while an instruction fetch is in process. This
may occur when instructions are fetched from memory that requires
wait states, e.g., off-chip memory.

MULSB 5

MULSW 15

MULUW 15

Instruction
Clock Cycles in EX

Stage (Zero Wait States)

Instruction
Clock Cycles in EX Stage

(Zero Wait States)
Condition

Bus Accesses
in EX Stage

LOADi 2 Minimum 1

3
Byte access,
not word aligned

1

Word access,
not word aligned

2

STORii 2 Minimum / Byte 1

Word access,
not word aligned

2

A-6 INSTRUCTION EXECUTION TIMING CompactRISC CR16B Programmer’s Reference Manual

In this case, additional clock cycles may be added to the number shown
in the table. The number of clock cycles to add for this reason, depends
on the speed at which memory can be accessed.

When zero wait states are used, the number of additional cycles that
are needed to execute the instructions depend on the operation length
itself, and on operand alignment on the word boundary.

Table A-3. Execution Times for PushM and PopM Instructions

Memory bit
manipulation
instructions

Bit manipulation instructions perform a read-modify-write cycle on
memory operands. As a result, the general timing for such an instruc-
tion is based on Load timing, execution timing, and some Store timing
(somewhat shortened because of internal parallelism). Just as in load
and store, the instructions may be stalled in the EX stage for additional
cycles while an instruction fetch is in process. This may occur when in-
structions are fetched from memory that requires wait states, e.g., off-
chip memory.

In this case, additional clock cycles may be added to the number shown
in the table. The number of clock cycles to add for this reason, depends
on the speed at which memory can be accessed.

When zero wait states are used, the number of additional cycles that
are needed to execute the instructions depend on the operation length
itself, and on operand alignment on the word boundary.

Instruction
Clock Cycles in EX Stage

(Zero Wait States)

Memory
Address / Stack

Alignment

Bus Accesses
 in EX Stage

PUSH[N] N+1 Aligned N

3N Not word aligned 2N

STORM[N] N+2 Aligned N

3N+1 Not word aligned 2N

LOADM[N] /
POP[N]

N+2 Aligned N

6N+1 Not word aligned 2N

+RET
(for POP)

+1 Always -

N = number of registers to load or store (1 - 4)
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-7

Table A-4. Execution Times for Bit Manipulation Instructions

Control
instructions

Some of the control instructions listed in Table A-5 also cause a pipe-
line flush and serialized execution of the next instruction. This delays
execution, because clock cycles must be added to fetch and decode the
instructions that follow the serializing instructions.

Table A-5. Execution Times for Control Instructions

Interrupts and
traps

The interrupt or trap latency of the CR16B for a given interrupt or trap,
in clock cycles, is the sum of the following:

• the longest execution time for a load or store instruction, or the
specific long CR16B instruction interrupted (SBIT /CBIT, TBITi ,
PUSH, POP, LOADM, STORM)

• the time in clock cycles shown in Table A-6 for the specific excep-
tion

• the time it takes to fetch the first instruction in the interrupt han-
dler

• additional clock cycles required as a result of wait states on the
bus, hold requests, disabled interrupts or interrupt nesting

Instruction
Clock Cycles in EX

Stage
(Zero Wait States)

Condition
Bus Accesses

in EX Stage

SBITi /CBITi 4 Always 2

TBITi 3 Always 1

Instruction(s)
Clock Cycles in EX Stage

(Zero Wait States)
Pipeline Flush

Condition

LPR 2 Always

SPR 2 Always

JUMP, BAL, JAL, BR 1 Always

Bcond , Jcond 1 When condition is true

Compare & Branch
(BCond0i , BCond1i)

2 When condition is true

RETX 7 Always

WAIT, EIWAIT 1 Always, by interrupt

EI , DI 1 Never
A-8 INSTRUCTION EXECUTION TIMING CompactRISC CR16B Programmer’s Reference Manual

The execution time for the MULi, MULUW and MULSB/ W instructions
should not be used to calculate interrupt or trap latency. This is be-
cause, when an interrupt is detected while a MULi instruction, or one of
the above, is in the EX pipeline stage, execution of MULi, MULUW and
MULSB/ W, does not continue to completion. Instead, execution of the
MULi instruction or the others is suspended, and interrupt processing
starts immediately. After interrupt processing is complete, execution of
MULi, MULUW and MULSB/ W, starts again, from the beginning.

Table A-6. Execution Times for Interrupts and Traps

Interrupt or Trap Clock Cycles in EX Stage

Small Memory Model
(16-bit Dispatch Table)

Large Memory Model
(32-bit Dispatch Table)

 INT 13 16

NMI and ISE 12 15

TRC 11 14

DBG TBD TBD

SVC, DVZ, FLG,
BPT and UND

10 13
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION EXECUTION TIMING A-9

Appendix B

INSTRUCTION SET ENCODING

This appendix describes instruction encoding. Most instructions are en-
coded using one of the basic instruction formats. Where formats for in-
structions differ from the basic formats, e.g., load and store
instructions, branch instructions and jump instructions, those differ-
ences are described separately.

Tables at the end of this Appendix summarize this instruction encoding
information.

B.1 INTRODUCTION

Instructions may have zero, one or two operands, and are encoded us-
ing two or four bytes. All instructions must be word-aligned.

The basic structure of a two-operand instruction is shown below:

Two, or three, bits code the operation (op code in bits 14, 15 and some-
times bit 0). One bit indicates the operation length (i in bit 13). Four
bits (bits 9 through 12) may further specify the operation, or be used for
a displacement value. Eight bits (bits 1 through 4 and bits 5 through 8)
specify two instruction operands.

Bit 0 Bit 0 is used to extend other fields, e.g., op code or the first operand.
See each format for more details.

Bits 1-4 When bits 1 through 4 (operand 1) specify a general-purpose register, it
is usually the source register. This field may also contain a vector, an
opcode extension, a constant (immediate) value, or a displacement val-
ue. If the constant or displacement value does not fit in the space allot-
ted to it (its length is medium), it may be encoded in the next two bytes.
See the following format descriptions for details.

15 14 13 12 9 8 5 4 1 0

op code i op code operand 2 operand 1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-1

Bits 5-8 When bits 5 through 8 (operand 2) specify a general-purpose register, it
is usually the destination register. This field may also specify other spe-
cial instruction options, such as a condition or a dedicated processor
register, depending on the instruction.

Bits 9-12 Bits 9 through 12 may contain the operation code and/or a displace-
ment value.

Bit 13 Bit 13 indicates the integer operation length (i). If i = 0, it is a byte (8-
bit) operation; if i = 1, it is a word (16-bit) operation.

Bits 14-15 Bits 14 and 15, and sometimes bit 0, specify an operation code. Often,
other bits are used with this op code to further specify the operation.

B.2 INSTRUCTION FORMATS

Most instructions use one of the basic formats described in the next
section. In addition, load and store instructions, branch instructions
(BR, Bcond and BAL) bit manipulation instructions, store-immediate,
MULSi/MULUW instructions, push /pop instructions, and jump instruc-
tions (JUMP, Jcond and JAL) each use a different format. The following
sections describe these formats.

B.2.1 Basic Instruction Formats

The ADDi, ADDCi, ADDUi, ANDi, ASHUi, CMPi, LSHi , MOVi, MULi, ORi,
SUBi , SUBCi, TBIT and XORi instructions use one of the basic formats
described in this section. The format used depends on the operands.

Register to
register
operations

The format for instructions with two general-purpose register operands
is shown below:

Short
immediate to
register
operations

A short immediate value is one that fits in the space provided in a 2-
byte basic instruction format. The value −16 and all values in the range
−14 through 15 can be encoded in this format.

The basic format for instructions that have short immediate values as
operands is shown below. The core sign-extends the value in bits 0
through 4 (imm) to form a 16-bit immediate operand.

15 14 13 12 9 8 5 4 1 0

0 1 i op code dest reg src reg 1
B-2 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

Medium
immediate to
register
operations

An immediate value that does not fit in the space allocated for the first
operand in a 2-byte format, is a medium value. The signed 16-bit medi-
um value is placed (encoded) in the next two bytes. All values in the
range −32768 through 32767 can be encoded in this format.

The basic format, when the first operand is a medium immediate value
(imm), is shown below:

Compare and
Branch
special case

The Compare and Branch instruction, (BEQ0/1i , BNE0/1i) is a special
case of the above, since the destination-registers are limited to a subset
and also holds a portion of the opcode, and since the immediate field is
a short one (5 bits) but with an implied value of 0 on bit 0. The registers
available as base are R0, R1, R8, R9, and the immediate value is be-
tween 0 and 30 (2 x imm).

MOVD
immediate
special case

The MOVD instruction, when used with an immediate argument
($imm21) is also a special case of the above, since the immediate oper-
and is of 21 bits length.

15 14 13 12 9 8 5 4 0

0 0 i op code dest reg imm

31 16 15 14 13 12 9 8 5 4 0

imm 0 0 i op code dest reg 1 0 0 0 1

15 14 13 12 9 8 7 6 5 4 1 0

0 0 i op code rb3 op-ext rb0 imm4-1 1

31 16 15 14 13 12 9 8 5 4 3 1 0

imm (I15 - I0) 0 1 1 0 0 1 I20 dest pair I16 (I19 - I17) 0
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-3

Instructions
with special or
no operands

The DI , EI , EXCP, LPR, MOVXB, MOVZB, RETX, Scond , SPR, EIWAIT , MULSW,
MULUW, MULSB, PUSH, POPrt , LOADM, STORM and WAIT instructions either
have unique operands or no operands at all. These instructions use the
format shown below:.

B.2.2 Load and Store Instructions

The LOADi and STORi instructions use the same formats. However, their
op codes in bits 14 and 15 differ, and they specify different registers
(reg in bits 5 through 8).

For the LOADi instruction, the op code (bits 14 and 15) is 10 and the
reg field identifies the destination register. For the STORi instruction,
the op code is 11 and the reg field identifies the source register.

The format to use for load and store instructions depends on the ad-
dressing mode and on the length of their displacement values. See also
“Addressing Modes” on page 2-15.

Relative Addressing Mode

Short
displacement
values

A short displacement value fits within the field allotted for the displace-
ment value in a 2-byte format (bit 0 and bits 9 through 12). This applies
to any odd or even displacement value in the range 0 through 15, or
any even displacement value in the range 16 through 30.

During execution, the core zero-extends the displacement field to 21
bits.

15 14 13 12 9 8 5 4 1 0

0 1 1 op code
procreg/cond/reg

/reg-pair/opcode-ext
reg/vector/imm/

opcode-ext
0

Instruction op code reg

Load 1 0 Destination Register

Store 1 1 Source Register
B-4 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

The format for load and store instructions, when the displacement value
is short, is shown below:.

Medium
displacement
values

A medium displacement value is one that does not fit in a 2-byte for-
mat. In this case, the 18-bit displacement value is encoded by using two
additional bytes. This format allows a displacement of either −128
Kbyte to 128K −1, or of 0 to 256 Kbyte, but limits the indexing to be be-
tween 0 to 64K−1 bytes (16-bit register). This instruction can be used
to access only the 0 - 256 Kbyte range.

The format for load and store instructions, when the addressing mode
is relative and the displacement value is medium, is shown below:

Far- Relative Addressing Mode

The addressing mode of load and store instructions is called far-relative
when the base address is specified by a pair of adjacent registers.

The base-pair field may encode any general-purpose register except SP,
i.e., R0-RA that contains the 16 least significant bits of the base ad-
dress. The five most significant bits of the base address are taken from
the next consecutive register. In this case, the entire 18-bit displace-
ment value is encoded by using two additional bytes, forming a 21-bit
address space.

The 18-bit displacement is sign-extended to form a 21-bit number, with
permitted values of −128K to 128K−1.

The instruction can index the whole 2 Mbyte range (base-pair concate-
nation).

15 14 13 12 9 8 5 4 1 0

op code i disp (d4−d1) reg base reg d0

31 16 15 14 13 12 11 10 9 8 5 4 1 0

disp (d15−d0) op code i 1 0 d17 d16 reg base reg 1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-5

This instruction can be used to access the whole 2 Mbyte range. The
Load/Store Format, Far-Relative, is shown below:

Absolute Addressing Mode

The format for load and store instructions, when the addressing mode
is absolute, is shown below. This mode is limited to accessing only the
first 256 Kbyte range.

B.2.3 Branch Instructions

Branch instructions, i.e., Bcond , BAL and BR, specify the target address
as a displacement from the address currently in the Program Counter
(PC). The displacement value is interpreted as a signed integer. The tar-
get address is the value in the displacement field plus the address cur-
rently in the PC. These instructions exist in two formats - the small
memory model and the large memory model. The small-memory-model
Bcond and BR instructions with a medium displacement, and the small-
memory-model BAL truncate address calculation at the 128K boundary,
limiting execution to the first 128K of memory. The Bcond and BR in-
structions with a short displacement, the large-memory-model medium
displacement Bcond and BR, and the large-memory-model BAL perform
21-bit address calculation, allowing execution in the whole 2M address
range.

Since all instructions are word-aligned, in the Bcond , BAL and BR in-
structions, displacement values must be even.

31 16 15 14 13 12 11 10 9 8 5 4 1 0

disp (d15−d0) op code i 1 1 d17 d16 reg base-pair 1

31 16 15 14 13 12 11 10 9 8 5 4 0

abs (d15−d0) op code i 1 1 d17 d16 reg 1 1 1 1 1
B-6 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

BR and Bcond Instructions

The BR and Bcond instructions can be encoded in 2 or 4 bytes, depend-
ing on whether the displacement value is short or medium respectively.
The core sign-extends short and medium branch displacement values to
21 bits, and after address calculation, it truncates the resulting address
to either 17 bits (for medium displacement values in the small-memory-
format), or to 21 bits (for short displacement values, or medium dis-
placement values in the large-memory-format).

In the Bcond instruction, bits 5 through 8 specify the condition.

Short
displacement
values

Even displacement values in the range −256 through 254 are called
short. Short values fit in nine bits provided in a 2-byte format. The dis-
placement value is encoded in bits 0 through 4 (d0 through d4, respec-
tively) and bits 9 through 12 (d5 through d8, respectively). The
displacement is sign extended to 21 bits, and the whole address calcu-
lation is done at 21 bits, with the result truncated to 21 bits. This al-
lows short branches throughout the 2M address space, with a wrap-
around at the 2 Mbyte boundary.

The format of BR or Bcond instructions, with short displacement values,
is shown below. Note that in this format, bit 0 (d0) must be 0.

Medium
displacement
values - small
memory format

When the displacement value does not fit in the 2-byte format, it is
called medium and encoded into two additional bytes as shown below.
The displacement is sign extended to 21 bits, and the whole address
calculation is done at 21 bits, with the result truncated to 17 bits. This
forces conformance with the CR16A ‘branch with medium displace-
ment’, which is limited to the first 128 Kbyte of memory, and wraps
around at 128K. This conforms to the small-memory-model of the
CR16B. Note that bit 16 (d0) must be 0.

15 14 13 12 9 8 5 4 0

0 1 0 disp (d8−d5) cond disp (d4−d0)

31 16 15 14 13 12 9 8 5 4 3 0

disp (d15−d0) 0 0 0 1 0 1 0 cond d16 1 1 1 0
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-7

Medium
displacement
values - large
memory format

The large-memory-format of the BR and Bcond instructions expand the
CR16B branch capability to the full 2 Mbyte (21 address bits) address
space. They are always encoded in 4 bytes, allowing a full 21-bit dis-
placement value (large-memory-model). Address calculations are trun-
cated to 21 bits.

As in the small memory format, bits 5 through 8 specify the condition.

The format of BR or Bcond instructions, with large-memory-model medi-
um displacement values, is shown below. Note that in this format, bit 0
(d0) is assumed 0.

The BAL Instruction

The BAL
instruction -
small memory
format

For the BAL instruction in the small-memory-format, the displacement
value is encoded as shown below. The displacement is sign extended to
21 bits, and the whole address calculation is done at 21 bits, with the
result truncated to 17 bits. This forces conformance with the CR16A
‘bal ’ instruction, which is limited to the first 128 Kbyte of memory, and
wraps around at 128K (small CR16B-memory-model). Bits 5 through 8
specify the link register. As in the BR and Bcond instructions, bit 16 (d0)
must be 0.

The BAL
instruction -
large memory
format

For the large memory format of the BAL instruction, the displacement
value is encoded as shown below. This command allows branch and
link operation throughout the whole 2M address space, enhancing the
CR16A BAL instruction.

31 17 16 15 14 13 12 9 8 5 4 3 1 0

disp (d15−d1) d20 0 1 1 1 0 1 0 cond d16 d19−d17 0

31 16 15 14 13 12 9 8 5 4 3 0

disp (d15−d0) 0 0 1 1 0 1 0 link reg d16 1 1 1 0
B-8 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

The return address is saved in a pair of adjacent registers. Bits 5
through 8 specify the link-pair selection. The link-pair field may encode
any general-purpose register except SP and RA, i.e., R0-ERA that con-
tains bits 1 through 16 of the address. The four most significant bits
are stored in the next consecutive register, right justified.

As in the BR and Bcond instructions, bit d0 is assumed 0.

B.2.4 Jump Instructions

The JUMP and
Jcond
instructions -
small memory
format

The small-memory-format of the JUMP and Jcond instructions use the
format shown below. This instruction is limited to the lower 128 Kbyte
addresses (small-memory-model).

The JMP and
Jcond
instructions-
large memory
format

The large memory format of the JMP and Jcond instructions use the for-
mat shown below. This format uses a pair of adjacent registers to hold
the jump address (21 bits, bit a0 assumed to be always 0). The target-
pair field may encode any general-purpose register except SP and RA,
i.e., R0-ERA that contains bits 1 through 16 of the address. The four
most significant bits are stored in the next consecutive register, right
justified.

31 17 16 15 14 13 12 9 8 5 4 3 1 0

disp (d15−d1) d20 0 1 1 1 0 1 1 lnk-pair d16 d19−d17 0

15 14 13 12 9 8 5 4 1 0

0 1 0 1 0 1 0 cond target reg 1

15 14 13 12 9 8 5 4 1 0

0 0 0 1 0 1 1 cond target-pair 1
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-9

The JAL
instruction-
small memory
format

In small-memory-format of the JAL instruction, bits 5 through 8 specify
the link register. It is encoded as shown below. This command is limited
to the lower 128 Kbyte addresses (small-memory-model)

The JAL
instruction -
large memory
format

In the large memory format of the JAL instruction, as in BAL and JUMP,
a pair of adjacent registers is used as a link address, and another pair
is used as a jump address. Bits 5 through 8 specify the link-pair, and
bits 4 through 1 specify the target-pair. Registers R0-ERA can be select-
ed as link-pairs or target-pairs. This command covers the whole 2
Mbyte address space (large-memory-model). It is encoded as shown in
below:

B.2.5 Bit Manipulation and Store of Immediate-Value Instructions

The bit manipulation instructions (SBIT , CBIT, TBIT) and the store im-
mediate version of the STOR instruction (STORi $imm4,<>) use part of
the register field to expand the opcode set, thus allowing to encode more
commands, at the expense of a narrower range of base registers. The in-
structions allow only a set of four registers to be used as base (R0, R1,
R8, R9), with three addressing formats to access memory. The first is a
register relative mode, with no displacement, which is encoded in a two-
byte command. The second is a register-relative with a 16-bit displace-
ment, which is encoded in a four-byte command. The third is a 18-bit
absolute address mode, which is also encoded in a four-byte command.

Register-
relative
with no
displacement
memory format

The format is shown below:

15 14 13 12 9 8 5 4 1 0

0 1 1 1 0 1 0 link reg target reg 1

15 14 13 12 9 8 5 4 1 0

0 0 0 1 0 1 1 link-pair target-pair 0

15 14 13 12 9 8 5 4 1 0

0 1 i 0 0 1 0 bs1 ex-op bs0 bit-num/Imm 1
B-10 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

This mode is limited to accessing only the first 64 Kbyte of memory. The
parameters for these instructions are:

1. bs1,bs0
Base register selection bits; bs1,bs0 = [R0,R1,R8,R9]

2. ex-op
Opcode expansion field; these bits are used to differentiate between
SETB, CLRB, STRM and TSTB.

3. bit-num/Imm
This field is either used to select which bit is to be the target of the
bit-operation, or as a 4-bit immediate data for the STORi $imm4,<> .

Register-
relative with 16-
bit
displacement
memory format

The format is shown below:

The displacement in this case is unsigned, and limited to the range of 0
to 64K − 1 bytes. This mode has only limited access to the memory
range over 64 Kbytes

18-bit absolute
memory format

The format is shown below:

The displacement in this case is absolute; this mode can access the first
256 Kbyte of memory

31 16 15 14 13 12 9 8 5 4 1 0

disp (d15−d0) 0 0 i 0 0 1 0 bs1 ex-op bs0 bit-num/Imm 1

31 16 15 14 13 12 9 8 5 4 1 0

ABS (ad15−ad0) 0 0 i 0 0 1 0 ad17 ex-op ad16 bit-num/Imm 0
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-11

B.3 UNDEFINED OP CODES

The following op codes cause an undefined instruction trap.

Table B-1. Undefined Op Codes

B.4 CR16B INSTRUCTION SET SUMMARY

Table B-2. Notation Conventions for Instruction Set Summary

Op Code i Op Code Operand 2 Operand 1
Op Code or
Operand 1

Comment

0 1 1 0 1 1 0 X X X X 0 X X X 0 reserved

0 1 1 1 1 1 1 0000-1110 0 0 1 1 0 reserved

0 1 1 1 1 1 1 X X X X 0 0 1 0 0 reserved

0 1 1 1 1 1 1 1 X X X 0 0 1 0 0 reserved

0 1 1 1 1 1 1 X X X X 1 0 1 X 0 reserved

0 1 1 1 1 1 1 X X X X X 0 0 X 0 reserved

0 1 1 1 1 1 0 X X 0 X X X X X 0 reserved

 i =
Operation length field
0 – Byte (8 bits)
1 – Word (16 bits)

abs = Absolute address

imm = Immediate value

immxx = xx bit Immediate value respectively

disp = Displacement value

dispxx = xx bit Displacement value respectively

dest = Destination

src = Source

SMM, LMM = Small Memory Model and Large Memory Model respectively
B-12 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

Rsrc, Rdest, Rlink, RLpair,
Rbase, Rpair, Rtarget, Roffset =

Source, destination, link, base, base pair, target or offset
register, respectively.

0000 – R0
0001 – R1
0010 – R2
0011 – R3
0100 – R4
0101 – R5
0110 – R6
0111 – R7
1000 – R8
1001 – R9
1010 – R10
1011 – R11
1100 – R12
1101 – R13 , ERA
1110 – RA
1111 – SP

Rproc =

Dedicated CPU register
0001 – PSR
0101 – CFG

0011 – INTBASEL
0100 – INTBASEH
1011 – ISP
0111 – DSR
1001 – DCR
1101 – CARL
1110 - CARH
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-13

cond =

Condition code field
0000 – EQ Equal Z = 1
0001 – NE Not Equal Z = 0
1101 – GE Greater than or Equal N = 1 or Z = 1
0010 – CS Carry Set C = 1
0011 – CC Carry Clear C = 0
0100 – HI Higher than L = 1
0101 – LS Lower than or the Same as L = 0
1010 – LO Lower than L = 0 and Z = 0
1011 – HS Higher than or the Same as L = 1 or Z = 1
0110 – GT Greater Than N = 1
0111 – LE Less than or Equal N = 0
1000 – FS Flag Set F = 1
1001 – FC Flag Clear F = 0
1100 – LT Less Than N = 0 and Z = 0

vector =

Exception vector (used by EXCP instruction)
0101 – SVC
0110 – DVZ
0111 – FLG
1000 – BPT
1010 – UND
1110 – DBG
others− reserved

Rcnt =

PUSH/POP/LOADM/STORM register save/restore/load/store
count

00 – 1 register
01 – 2 registers
10 – 3 registers
11 – 4 registers
B-14 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

a. ITruncate_21: Perform calculation on 21 bit ALU. (Wrap at 2 MByte). Address
bit 0 is cleared to 0 on all instruction addressing calculations.

b. zext21: zero extend the argument to 21 bits.
c. sext21: sign extend the argument to 21 bits.
d. ITruncate_17: Truncate the address calculation result at 17 bits - 128 Kbyte

wrap around. Address bits 17 through 20 and bit 0 are cleared to 0.
e. sext18: sign extend the argument to 18 bits.
f. DTruncate_18: Truncate the address calculation result at 18 bits - 256 Kbyte

wrap around. Address bits 18 through 20 are cleared to 0.
g. DTruncate_21: Truncate the address calculation result at 21 bits - 2 Mbyte

wrap around (full 21 bit ALU).

Table B-3. CompactRISC CR16B Addressing Calculations

Instructions
Addressing

Options
Displacement Type Target Address Calculation

BEQ0/1i, BNE0/1/i dispu5
5-bit unsigned,
even (0-30)

ITruncate_21a

(PC + zext21b(dispu5));

BR/BCond disp9 9-bit signed
ITruncate_21a

(PC + sext21c(disp9))

BR/BCond, BAL
(small memory model)

disp17
17-bit signed/unsigned.
(-64k->64K-1 / 0->128K-1)

ITruncate_17d

(PC + sext18e(disp17))

BR/BCond, BAL
(large memory model)

disp21
21-bit signed/unsigned.
(-1M->1M-1 / 0->2M-1)

ITruncate_21a

(PC + disp21)

JUMP, JAL
(small memory model)

Rtarget -----
ITruncate_17d

(Rtarget << 1)

JUMP, JAL
(large memory model)

(Rtarget+1,
Rtarget)

ITruncate_21a

((Rtarget+1,Rtarget) << 1)

LOADi, STORi dispu5
5 bit unsigned
(0-15; even 16-30);

DTruncate_18f

(zext21b(Rbase)
+ zext21b(dispu5))

TBITi , CBITi , SBITi ,
STORi $imm4,<>

0(Rbase),
disp16(Rbase)

16 bit unsigned
DTruncate_18f

(zext21b(Rbase)
+ z zext21b(disp16))

TBITi , CBITi , SBITi ,
STORi $imm4,<>,
LOADi, STORi

abs18 18 bit absolute DTruncate_18f(abs18)

LOADi, STORi disp18(Rbase)
18 bit signed/unsigned.
(-128k->128K-1 / 0-256K-1)

DTruncate_18f

(zext21b(Rbase)
+ sext21c(disp18))

LOADi, STORi
(far)

disp18
(Rbase+1,Rbas
e)

18 bit signed
(-128k->128K-1)

DTruncate_21g

(Rpair + sext21c(disp18))
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-15

M

M
M

M
M
M

IN
A

A

A

M

M

M

M

S

S

IN
C

B

B

B

B

L
A

O

S

X

Table B-4. Instruction Encoding

nemonic Operands 15 14 13 12 9 8 5 4 1 0

OVES
OVi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

1
1

1
1

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

OVXB Rsrc, Rdest 0 1 1 0 1 0 0 Rdest Rsrc 0
OVZB Rsrc, Rdest 0 1 1 0 1 0 1 Rdest Rsrc 0
OVD imm21, (Rdest+1,Rdest) 0 1 1 0 0 1 I20 Rdest I16 I19 I18 I17 0

TEGER ARITHMETIC
DDi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

0
0

0
0

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

DDUi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

0
0

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

DDCi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

0
0

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

ULi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

0
0

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

ULSB Rsrc, Rdest (signed) 0 1 1 0 0 0 0 Rdest Rsrc 0
ULSW Rsrc, (Rdest+1,Rdest)

(signed)
0 1 1 0 0 0 1 Rdest Rsrc 0

ULUW Rsrc, (Rdest+1,Rdest)
(unsigned)

0 1 1 1 1 1 1 Rdest Rs3 0 0 Rs0 0

UBi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

UBCi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

TEGER COMPARISON
MPi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

0
0

1
1

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

EQ0i Rdest, disp5 0 0 i 1 0 1 0 Rd3 0 0 Rd0 d4 d3 d2 d1 1
EQ1i Rdest, disp5 0 0 i 1 0 1 0 Rd3 0 1 Rd0 d4 d3 d2 d1 1
NE0i Rdest, disp5 0 0 i 1 0 1 0 Rd3 1 0 Rd0 d4 d3 d2 d1 1
NE1i Rdest, disp5 0 0 i 1 0 1 0 Rd3 1 1 Rd0 d4 d3 d2 d1 1

OGICAL AND BOOLEAN
NDi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

1
1

0
0

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

Ri Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

1
1

0
0

Rdest
Rdest

Rsrc
imm

1
i0

cond Rdest 0 1 1 0 1 1 1 cond Rdest 0
ORi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

0
0

1
1

1
1

0
0

Rdest
Rdest

Rsrc
imm

1
i0
B-16 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

S
A

0
LS

0

B
T

0
T

C

S

P
LP

S

JU
B

B

B

E

Jc

JA

JU

R

P

P

P

P

M

HIFTS
SHUi Rsrc, Rdest

imm, Rdest
0
0

1
0

i
i

0
0

1
1

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i

Hi Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

1
1

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i

ITS
BIT Roffset, Rsrc

imm, Rsrc
0
0

1
0

1
1

1
1

0
0

1
1

1
1

Rsrc
Rsrc

Roffset
imm

1
i

BITi imm, 0(Rbase = 0,1,8,9)
imm, disp16(Rbase = 0,1,8,9)
imm, abs18

0
0
0

1
0
0

i
i
i

0
0
0

0
0
0

1
1
1

0
0
0

Rb3
Rb3
d17

1
1
1

0
0
0

Rb0
Rb0
d16

imm (position)
imm (position)
imm (position)

1
1
0

BITi imm, 0(Rbase = 0,1,8,9)
imm, disp16(Rbase = 0,1,8,9)
imm, abs18

0
0
0

1
0
0

i
i
i

0
0
0

0
0
0

1
1
1

0
0
0

Rb3
Rb3
d17

0
0
0

0
0
0

Rb0
Rb0
d16

imm (position)
imm (position)
imm (position)

1
1
0

BITi imm, 0(Rbase = 0,1,8,9)
imm, disp16(Rbase = 0,1,8,9)
imm, abs18

0
0
0

1
0
0

i
i
i

0
0
0

0
0
0

1
1
1

0
0
0

Rb3
Rb3
d17

0
0
0

1
1
1

Rb0
Rb0
d16

imm (position)
imm (position)
imm (position)

1
1
0

ROCESSOR REGISTER MANIPULATION
R Rsrc, Rproc 0 1 1 1 0 0 0 Rproc Rsrc 0

PR Rproc, Rdest 0 1 1 1 0 0 1 Rproc Rdest 0

MPS AND LINKAGE
cond disp9

disp17 - SMM
0
0

1
0

0
0

d8
1

d7
0

d6
1

d5
0

cond
cond

d4
d16

d3
1

d2
1

d1
1

0
0

disp21 - LMM 0 1 1 1 0 1 0 cond d16 d19 d18 d17 0
AL Rlink, disp17 - SMM 0 0 1 1 0 1 0 Rlink d16 1 1 1 0

(Rlink+1,Rlink), disp21 - LMM 0 1 1 1 0 1 1 Rlink d16 d19 d18 d17 0
R disp9

disp17 - SMM
0
0

1
0

0
0

d8
1

d7
0

d6
1

d5
0

1
1

1
1

1
1

0
0

d4
d16

d3
1

d2
1

d1
1

0
0

disp21 - LMM 0 1 1 1 0 1 0 1 1 1 0 d16 d19 d18 d17 0
XCP vector 0 1 1 1 1 0 1 1 1 1 1 vector 0
ond Rtarget - SMM 0 1 0 1 0 1 0 cond Rtarget 1

(Rtarget+1,Rtarget) - LMM 0 0 0 1 0 1 1 cond Rtarget 1
L Rlink, Rtarget - SMM 0 1 1 1 0 1 0 Rlink Rtarget 1

(Rlink+1,Rlink),
(Rtarget+1,Rtarget) - LMM

0 0 0 1 0 1 1 Rlink Rtarget 0

MP
Rtarget - SMM 0 1 0 1 0 1 0 1 1 1 0 Rtarget 1
(Rtarget+1,Rtarget) - LMM 0 0 0 1 0 1 1 1 1 1 0 Rtarget 1

ETX 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
USH imm, Rsrc 0 1 1 0 1 1 0 0 0 Rcnta Rsrc 0
OP imm, Rdest 0 1 1 0 1 1 0 0 1 Rcnta Rsrc 0
OPRET imm, Rdest - SMM 0 1 1 0 1 1 0 1 0 Rcnta Rsrc 0
OPRET imm, Rdest - LMM 0 1 1 0 1 1 0 1 1 Rcnta Rsrc 0

Table B-4. Instruction Encoding (Continued)

nemonic Operands 15 14 13 12 9 8 5 4 1 0
CompactRISC CR16B Programmer’s Reference Manual INSTRUCTION SET ENCODING B-17

L
L 0

L

S 0

S

M
D

E

N

W

E

M

a. Wcnt = imm -1. The encoded count value = number_of_words (or registers) - 1.

OAD AND STORE
OADi disp(Rbase), Rdest 1 0 i d4 d3 d2 d1 Rdest Rbase d

disp(Rbase), Rdest 1 0 i 1 0 d17 d16 Rdest Rbase 1
disp(Rpair+1, Rpair), Rdest 1 0 i 1 1 d17 d16 Rdest Rpair 1
abs, Rdest 1 0 i 1 1 d17 d16 Rdest 1 1 1 1 1

OADM imm 0 1 1 1 1 1 1 0 0 Wcnta 0 0 1 0 0
TORi Rsrc, disp(Rbase) 1 1 i d4 d3 d2 d1 Rsrc Rbase d

Rsrc, disp(Rbase) 1 1 i 1 0 d17 d16 Rsrc Rbase 1
Rsrc, disp(Rpair+1, Rpair) 1 1 i 1 1 d17 d16 Rsrc Rpair 1
Rsrc, abs 1 1 i 1 1 d17 d16 Rsrc 1 1 1 1 1
imm4, 0(Rbase = 0,1,8,9)
imm4, disp16(Rbase=
0,1,8,9)
imm4, abs18

0
0

0

1
0

0

i
i

i

0
0

0

0
0

0

1
1

1

0
0

0

Rb3
Rb3

d17

1
1

1

1
1

1

Rb0
Rb0

d16

imm4 (data)
imm4 (data)

imm4 (data)

1
1

0
TORM imm 0 1 1 1 1 1 1 0 1 Wcnta 0 0 1 0 0

ISCELLANEOUS
I 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0
I 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0
OP 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
AIT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
IWAIT 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0

Table B-4. Instruction Encoding (Continued)

nemonic Operands 15 14 13 12 9 8 5 4 1 0
B-18 INSTRUCTION SET ENCODING CompactRISC CR16B Programmer’s Reference Manual

Appendix C

STANDARD CALLING CONVENTIONS

C.1 CALLING CONVENTION

The primary goal of standard routine-calling conventions is to enable
the routines of one module to communicate with routines in other mod-
ules, even if they are written in different programming languages.

The calling convention is defined as part of the CompactRISC architec-
ture, and is enforced and supported by the CompactRISC Development
Tools. The calling convention consists of a set of rules which form a
handshake between different pieces of code (subroutines), and define
how control is transferred from one to another. It thus defines a general
mechanism for calling subroutines and returning from subroutines.

In summary, calling a routine consists of the following steps:

1. Parameter values are computed, and placed in registers or on the
stack.

2. The BAL or JAL instruction is executed.

3. The called function allocates its area on the run-time stack, and
saves the values of the safe registers it plans to use.

4. The called function executes, i.e., it computes the return value, and
stores it in a register.

5. The called function restores the safe registers, and de-allocates its
stack section.

6. Control is returned to the calling functions by means of a JUMP in-
struction.

The rest of this appendix describes this procedure in greater detail.

C.1.1 Calling a Subroutine

The BAL or JAL instruction is used to call a subroutine. Each of these in-
structions performs two operations:

• It saves the address of the following instruction (the value of the
Program Counter register) in a specified general-purpose register
pair (for large model), or in a single general-purpose register (for
small model).
CompactRISC CR16B Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-1

The calling convention requires the use of (ERA, RA) register pair
(for large model), or the RA register (for small model). This register
pair (or single register) is used to store the return address.

• Transfers control to a specified location in the program (the subrou-
tine address).

Example 1 For large model:

bal (era,ra), get_next # call the subroutine "get_next"

or

jal (era,ra), (r8,r7) # call the subroutine whose address
 is stored in the pair r7, r8

Example 2 For small model:

bal ra, get_next # call the subroutine "get_next"

or

jal ra, r7 # call the subroutine whose
 address is stored in r7

C.1.2 Returning from a Subroutine

The jump instruction is used to return from a subroutine. The Program
jumps to the return address, which is stored in (ERA, RA) register pair
(for large model), or the RA register (for small model), as follows:

For large model:

jump (era,ra) # return to caller

For small model:

jump ra # return to caller

C.2 CALLING CONVENTION ELEMENTS

This section describes conventions for how parameters are passed to a
called subroutine, how values are returned, the program stack, and
calling different types of general purpose registers.
C-2 STANDARD CALLING CONVENTIONS CompactRISC CR16B Programmer’s Reference Manual

C.2.1 Passing Parameters to a Subroutine

Qualifying arguments may be passed to the called subroutine by load-
ing them into registers according to a predefined convention. The regis-
ters used are the integer registers R2, R3, R4, R5.

Qualifying
Arguments

A qualifying argument may be one of the following types:

• Integer type, pointer type

• Aligned structure whose size is less than, or equal to, four bytes.

32-bit long integer types and pointers are considered two-word
structures, in this context. The least significant word of a multi-
word structure is always stored first.

The Algorithm The following algorithm determines how parameters are passed to a giv-
en routine:

1. The parameter list is scanned from left to right.

2. A qualifying argument is allocated to the next free register in as-
cending order, i.e., R2 is allocated before R3, etc. Multi-word struc-
tures use a register pair. The least significant word is allocated to
the first register, and the most significant word to the next consecu-
tive register.

3. If a parameter cannot be passed in a register (either because it is
not qualified, or because the registers have been entirely allocated to
previous parameters) then this parameter is passed on the stack,
least significant byte first.

C.2.2 Returning a Value

A subroutine can return one value to its caller. The calling convention
uses the R0 register for passing a short return value and the register
pair R0 and R1 for passing a long (4-byte) return value, with the least
significant word in R0.

For example, consider the following C code:

return 5;

The assembly code generated from this line is:

For large model:

movw $5, r0 # pass return value
jump (era,ra) # return to caller
CompactRISC CR16B Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-3

For small model:

movw $5, r0 # pass return value
jump ra # return to caller

The only exception to this rule is a function that returns a structure. In
this case, the calling function must store the address of a structure in
R0. The called function then uses R0 as a pointer to store the resulting
structure.

C.2.3 Program Stack

The program stack is a contiguous memory space that may be used by
your program for:

• Allocating memory for local variables which are not in registers.

• Passing arguments in special cases. (See “Passing Parameters to a
Subroutine” on page C-3.)

• Saving registers before calling a subroutine, or after being called.
(See “Scratch Registers” on page C-5.)

The stack is a dynamic memory space which begins at a fixed location
(stack bottom) and grows towards lower memory addresses. Its lowest
address (also called top of stack) is changed dynamically and is pointed
to by the Stack Pointer (SP) register.

Figure C-1. The Program Stack

Address 0

Bottom of Stack

Top of Stack
Stack Pointer (SP)

Stack
Space

Highest Memory Address
C-4 STANDARD CALLING CONVENTIONS CompactRISC CR16B Programmer’s Reference Manual

A subroutine can allocate space on the stack by decrementing the value
of the SP register to adjust the top of stack. When this subroutine re-
turns it must restore the SP to its previous value, thereby releasing the
temporary space that it had occupied on the stack during its life-time.

The program stack always resides in the lowest 64 Kbytes of the CR16B
address space.

C.2.4 Scratch and Safe Registers

According to the convention, CompactRISC general purpose registers
may be used as scratch registers or safe registers.

Scratch Registers

Any of these registers can be freely modified by any subroutine without
first saving a backup of their previous value. The caller cannot assume
that their value will remain the same after a subroutine has returned.
If for any reason the caller needs to keep this value, it is its responsi-
bility to save the scratch register on the stack before calling the subrou-
tine, and to restore it after the subroutine has returned.

Safe Registers

Before using any of these registers, a subroutine must first store its
previous value on the stack. Upon returning to the caller the subroutine
must restore this value. The caller can always assume that these regis-
ters will not be clobbered by any subroutine that it has called.

This calling convention defines R0 through R6 as scratch registers. All
the other general purpose registers, including ERA, RA and SP, are safe.

Exception The interrupt/trap subroutine is an exception to the rule for using
scratch registers. This kind of subroutine must always save and restore
every scratch register that may be used during the interrupt trap. This
is because there is no real caller. The interrupt, or trap, suspends an-
other subroutine which is not aware of, or prepared for, this intercep-
tion. To protect it, its scratch registers must be saved and restored so
that the interrupt, or trap, is transparent.
CompactRISC CR16B Programmer’s Reference Manual STANDARD CALLING CONVENTIONS C-5

Appendix D

COMPARISON OF CR16A AND CR16B

The CR16B architecture is an enhancement of the CR16A architecture.
CR16B has two programming models: large and small. The small pro-
gramming model is backward compatible with the CR16A, in the sense
that CR16A programs can be compiled and executed under the CR16B
small model, with no changes.

The purpose of this appendix is to help CR16A developers migrate to
CR16B. It focuses on both the implications for applications using the
large programming model, and on the differences between the small
programming model of the CR16B and the CR16A programming model
(mainly in the instruction set).

After you have familiarized yourself with the differences between the
CR16A and CR16B instruction sets, you will be able to improve the per-
formance and the code optimization of your existing applications.
CompactRISC CR16B Programmer’s Reference Manual COMPARISON OF CR16A AND CR16B D-1

D.1 REGISTER SETS

Figure D-1. The CR16A and CR16B Register Sets

D.1.1 General-Purpose Registers

The general-purpose registers are 16 bits wide in both the CR16A and
the CR16B. Some of the new CR16B instructions can operate on specif-
ic general-purpose registers, whereas in the CR16A all general-purpose
registers are equal for all instructions.

PC
ISP

INTBASE

PSR

Dedicated Address

Processor Status

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R11
R12
R13

RA
SP

General-Purpose

17 0

CFG

Configuration

15 0

15 0

15 0
RegistersRegisters

Register

Register

CR16A Register Set CR16B Register Set

PSR

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13/ERA

RA
SP

CFG

15 0

15 0

15 020 0

00000

15

INTBASE

ISP
PC

General-Purpose
Registers

Dedicated Address
Registers

Processor Status
Register

Configuration
Register

INTBASEH INTBASEL

DCR
15 0

Debug Registers

DSR
CARLCARH

20

R10

16
D-2 COMPARISON OF CR16A AND CR16B CompactRISC CR16B Programmer’s Reference Manual

CR16A and the CR16B Small Programming Model

Both the CR16A and the CR16B small programming model make simi-
lar use of the general-purpose registers:

• Registers r0 - r13 are used for general purposes, such as holding
variables, addresses or index values.

• The SP register is usually used as the program stack pointer.

• The RA register is usually used for storing the return address from a
subroutine.

CR16B Large Programming Model

The CR16B large programming model makes the following use of the
general-purpose registers:

• Registers r0 - r12 are used for general purposes, such as holding
variables, addresses or index values.

• The SP register is usually used as the program stack pointer.

• The ERA and RA register pair is usually used for storing the return
addresses from a subroutine.

Use of Specific General-purpose Registers by CR16B Instructions

In the CR16B only, several instructions operate on specific registers.

The MULUW, BEQ1, BENEQ1, BEQ0, BNEQ0, CBIT, SBIT, TBIT instructions
and the STORi instruction (when its sources is an immediate operand)
use a sub-set of the general-purpose registers set (r0 , r1 , r8 and r9).

The PUSH and POP instruction make specific use of the SP register. The
POPRET instruction makes specific use of RA (small model) or ERA-RA, in
addition to the SP register.

The LOADM instruction makes specific use of registers r0 and r2 -r5 .

The STORM instruction makes specific use of registers r1 and r2 -r5 .
CompactRISC CR16B Programmer’s Reference Manual COMPARISON OF CR16A AND CR16B D-3

D.1.2 Dedicated Address Registers

The dedicated address registers, used by the CR16B to implement spe-
cific address functions, are 18 bits wide in the CR16A, and 21 bits wide
in both models of the CR16B. See “Dedicated Address Registers” on
page 2-7 for a detailed description of these registers.

CR16A Programming Model

The three dedicated address registers PC, ISP and INTBASE, are 18 bits
wide. However, the most significant bit of the PC, and the two most sig-
nificant bits of the ISP and INTBASE registers, are always cleared. There-
fore, program code is limited to the lowest 128K of the address space and
the interrupt stack and the interrupt dispatch table must reside in the
lowest 64 Kbytes of the address space.

CR16B Small Programming Model

The three dedicated address registers PC, ISP and INTBASE, are 21 bits
wide. However, the four most significant bits of the PC, and the five most
significant bits of the ISP and INTBASE registers, are always cleared.
Therefore, program code is limited to the lowest 128K of the address
space and the interrupt stack and the interrupt dispatch table must re-
side in the lowest 64 Kbytes of the address space.

CR16B Large Programming Model

The three dedicated address registers, PC, ISP and INTBASE, are 21 bits
wide. However, the five most significant bits of the ISP registers are al-
ways cleared. Therefore, program code, and the interrupt dispatch table,
can reside anywhere in the CR16B 2 Mbytes address space. The interrupt
stack must reside in the lowest 64 Kbytes of the address space.
D-4 COMPARISON OF CR16A AND CR16B CompactRISC CR16B Programmer’s Reference Manual

D.2 MEMORY MAPS

Figure D-2. Memory Maps

D.3 INSTRUCTION SET

The CR16B instruction set is a super-set of the CR16A instruction set.
Thus, any program written for the CR16A can be assembled using the
CR16B assembler. However, using the CR16B instruction set can re-
duce the code size of the and increase the performance of the program.

D.3.1 Bit Manipulation

The CR16A carries out all operations in registers, and only the LOADi
and STORi instructions can access memory. Thus, CR16A applications
use several instructions to manipulate a memory bit: loading the data
from memory into a general-purpose register, modifying the specific bit
with the ORi or ANDi instructions, and storing the result back into
memory. Furthermore, this bit modification sequence is not atomic and
there it is interruptable. If two asynchronous tasks may modify the
same bit, one must protect the bit modification sequence by disabling
interrupts during the modification.

The CR16B bit manipulation instructions, SBIT , CBIT, and TBIT set,
clear, and test respectively a bit in memory. A memory bit is modified in
a single instruction and this instruction is not interruptable.

0x2FFFF

0x1FFFF

0xFFFF

0

64
K

 D
at

a

12
8K

 C
od

e

12
8K

 F
ar

 D
at

a

0x1FFFFF

0x1FFFF

0xFFFF

0

64
K

 D
at

a
12

8K
 F

ar
 D

at
a

2M
 C

od
e

0x2FFFF

CR16A & CR16B Small Model CR16B Large Model
Memory MapMemory Map
CompactRISC CR16B Programmer’s Reference Manual COMPARISON OF CR16A AND CR16B D-5

Example Consider the following C code:

struct {
 int bit0:1;
 int bit1:1;
 int bit2:1;
 int bit3:1;
 } bit_flags;

bit_mask.bit3 = 1;

D.3.2 POP / PUSH / POPRET Instructions

The PUSH, POP and POPRET instructions save and restore up to four
sequential registers on/from the program stack.

PUSH • Saves up to four consecutive general-purpose registers on the
stack.

• Adjusts the value of the SP register accordingly.

POP • Restores up to four consecutive general-purpose registers from the
stack

• Adjusts the value of the SP register accordingly.

POPRET • Restores up to four consecutive general-purpose registers from the
stack

• Adjusts the value of the SP register accordingly.

• Jumps to the return address by copying the value of either the RA
register (small model) or the ERA-RA register pair (large model) to
the PC.

Note that the PUSH, POP and POPREET instructions assume that the SP
general-purpose register is used as the program stack pointer.

These functions are very efficient for cases when a sequence of registers
has to be saved on or restored from the program stack. The most com-
mon examples are entry and exit sequences of functions.

CR16A CR16B

di
loadb _bit_mask, r0
orb $0x8, r0
storb r0, _bit_mask
ei

sbitw 0x3,_bit_mask
D-6 COMPARISON OF CR16A AND CR16B CompactRISC CR16B Programmer’s Reference Manual

Example In the following example func1 uses registers r0 -r7 .

D.3.3 Multiply

The CR16A instruction set includes the following multiply instructions:

• dest (8-bits) = src (8-bits) * dest (8-bits)

• dest (16-bits) = src (16-bits) * dest (16-bits)

In addition to the CR16A multiply instructions, the CR16B includes the
following multiply instructions:

• sign dest (16-bits) = sign src (8-bits) * sign dest (8-bits)
Note: the application is responsible for zero extending the operand
into 16-bit registers before the multiplication.

• unsign dest (16-bits) = unsign src (8-bits) * unsign dest (8-bits)

• sign dest (32-bits) = sign src (16-bits) * sign dest (16-bits)

• unsign dest (32-bits) = unsign src (16-bits) * unsign dest (16-bits)
Note: restricted to a subset of the general-purpose registers (r0 , r1 ,
r8 and r9).

Since there is no multiplication of a 16-bit register by a 16-bit register, ei-
ther the compiler or the assembly user called a __mulsi3 emulation li-
brary to perform the multiplication.

Example Consider the following C code:

short a, b;
long l;

l = a * b;

CR16A CR16B

_func1::

add $-8, sp
storw r7, 0(sp)
storw r8, 2(sp)
storw r9, 4(sp)
storw r10, 6(sp)
 .
 .
loadw r7, 0(sp)
loadw r8, 2(sp)
loadw r9, 4(sp)
loadw r10, 6(sp)
add $8, sp
jump ra

_func1::

push $4, r7
 .
 .
popret $4, r7
CompactRISC CR16B Programmer’s Reference Manual COMPARISON OF CR16A AND CR16B D-7

D.3.4 MOVD

A CR16A application needs two MOVW instructions to load an immediate
value of more than 16 bits. The CR16B can perform this operation in a
single MOVD instruction, that loads an immediate of up to 21 bits into a
pair of consecutive registers. This is especially useful for loading ad-
dresses of far pointers into register pairs.

D.3.5 Compare and Branch

Whenever a CR16A program needs to test the value of a variable stored in
memory, and branch accordingly, it performs the following instructions:

• Loads the value of the variable into a general-purpose register (un-
less it was previously loaded).

• Compares the general-purpose register value with an immediate value.

• Conditionally branches to a destination address according to the
results of the comparison.

In the CR16B it is possible to combine the last two steps into one, for a
sub-set of general-purpose registers, and for a given immediate values
of 0 and 1 (which are the most common immediate values in compari-
sons).

Example extern int b, c;

void foo()
{
 int a;
 b = 5;
 if (c == 0)

 a = 1;
 if (a != 1)
 b = 3;
}

CR16A CR16B

loadw _a,r2
movw r2,r3
ashuw $-15,r3
loadw _b,r4
movw r4,r5
ashuw $-15,r5
bal ra,___mulsi3
storw r0,_l
storw r1,_l+2

loadw _a,r2
mulsw r2,r3
D-8 COMPARISON OF CR16A AND CR16B CompactRISC CR16B Programmer’s Reference Manual

D.3.6 Store Small Immediate

In the CR16A, two steps are required to store an immediate value into
memory:

• Load the immediate value into a general-purpose register using a
MOVi instruction.

• Store the register into memory using a STORi instruction.

In the CR16B it is possible to store small immediate values directly into
memory, without loading the immediate value into an intermediate
general-purpose register. This is done with the STORi instruction, which
now supports a 4-bit immediate value in the source operand. The des-
tination operand is either an 18-bit absolute address, or a register-
relative operand. Note that in the latter case only r0 , r1 , r8 and r9 are
supported as base registers.

Example The following example shows how to improve the code shown in Section D.3.5.

extern int x, *p;

foo()
{
 x = 0;
 *p = 1;
}

CR16A CR16B

_foo:
movw $_b,r1
movw $5,r0
storw r0,0(r1)
loadw _c,r0
cmpw $0,r0
bne .L2
movw $1,r2

.L2:
cmpw $1,r2
beq .L3
movw $3,r0
storw r0,0(r1)

.L3:
jump ra

_foo:
movw $_b,r2
movw $5,r3
storw r2,0(r3)
loadw _c,r0
bne0 r0,.L2
movw $1, r1

.L2:
beq1 r1,.L3
movw $3,r3
storw r3,0(r1)

.L3:
jump ra
CompactRISC CR16B Programmer’s Reference Manual COMPARISON OF CR16A AND CR16B D-9

D.4 EIWAIT

The new CR16B EIWAIT instruction first enables the interrupt and then
waits, as opposed to the WAIT instruction, which does not enable inter-
rupts.

CR16A CR16B

_foo:

 movw $0,r0

 storw r0,_x

 loadw _p,r1

 movw $1,r0

 storw r0,0(r1)

 jump ra

_foo:

 storw $0,_x

 loadw _p,r0

 storw $1,0(r0)

 jump ra
D-10 COMPARISON OF CR16A AND CR16B CompactRISC CR16B Programmer’s Reference Manual

INDEX
A

absolute addressing mode 2-17
acknowledge

exception 3-6
ADDCi instructions 6-5
ADDi instructions 6-4
addition

integer instructions, ADD[U]i 6-4
integer with carry instructions, ADDCi 6-5
with carry 2-9

address
compare 4-1, 4-3, 4-4
registers, dedicated 2-7

address-compare match, write
bit, DSR.BWR 4-4

addressing mode
absolute 2-17
immediate 2-16
in instructions 6-1
register 2-15
relative 2-16

ADDUi instructions 6-4
ANDi instructions 6-6
arithmetic

shift instructions, ASHUi 6-7
ASHUi instructions 6-7

B

BAL instruction 6-12
Bcond instructions 6-8
bitwise logical

AND instructions, ANDi 6-6
OR instructions, ORi 6-44

boolean data type 2-2
boolean, instructions to save condition as,

Scond 6-51
borrow, see also carry 2-9
BPC, PC bit in DSR 4-4
BPC, PC match bit in DSR 4-4
BPT trap 3-3, 3-12
BR instruction 6-14
branch

and link instruction, BAL 6-12
unconditional, instruction, BR 6-14

BRD, compare address bit in DSR 4-4
breakpoint

generation 4-1
trap, BPT 3-3, 3-12

BWR, write, address-compare match bit in DSR 4-
4

byte order
for data references 2-14

C

C, carry bit in PSR 2-9
CAR register 2-11, 4-1, 4-2, 4-3
carry bit, PSR.C 2-9
CBE0-3, compare-address enable bits in DCR 4-5
clock

cycle A-1
CLRBi instructions 6-16
CMP0BCondi instructions 6-19
CMPi instructions 6-18
compare address

for debugging 4-1, 4-3
compare address bit in DSR

BRD 4-4
compare-address

bits in DCR 4-5
PC match enable bits 4-5

comparison
integer instructions, CMP0BCondi 6-19
integer instructions, CMP1BCondi 6-20
integer instructions, CMPi 6-18
operations 2-9

cond , condition code 6-51
conditional instructions

branch, Bcond 6-8
jump, Jcond 6-25
save, Scond 6-51

configuration register, see also CFG 2-10
convert

sign integer to word, MOVXB 6-37
unsigned integer to unsigned double-word,

MOVZi 6-38
unsigned integer to unsigned word, MOVZB 6-

38
CRD, compare address read enable bit in DCR 4-5
CWR, compare address write enable bit in DCR 4-

4, 4-5
cycle, in instruction execution timing A-1

D

data
length attribute specifier in instructions 6-1
organization 2-12
CompactRISC CR16B Programmer’s Reference Manual INDEX-1

references, byte order 2-14
types 2-1

DBG trap
and exception service procedures 3-9

DCR register 2-11, 4-1, 4-4
debug

control register, DCR 2-11, 4-4
dedicated address registers 2-7
delays during instruction execution A-1
DEN, address-compare and PC match enable bit in

DCR 4-5
DI instruction 6-21
DISABLE instruction 2-10
dispatch table, IDT

in SF architecture 3-1
see also IDT 3-1

division by zero
trap, DVZ 3-3

DSR register 2-11, 4-1
DVZ trap 3-3

E

E, local maskable interrupt enable bit in PSR 2-10
EI instruction 6-22
EIWAIT instruction 6-23
ENABLE instruction 2-10
encoding, instruction set B-1
exception

acknowledge 3-6, 3-8
defined 3-1
handler 3-1
instruction, EXCP 6-24
priority 3-10
processing 3-4
processing table 3-9
processing, flowchart 3-11
return instruction, RETX 6-48
service procedure 3-9

EXCP instruction
and serialized instructions 4-9

EXCP instruction 3-10, 6-24
executing-instructions operating state 4-7
execution

program suspension instruction, EIWAIT 6-
23

program suspension instruction, WAIT 6-63
timing for instructions A-1

F

F
flag bit of PSR 2-9, 6-61

fetch
stage in integer pipeline, IF 2-8

flag
bit, PSR.F 2-9, 6-61

FLG trap 3-3

G

general purpose registers 2-7

H

handler
exception 3-1

I

I, maskable interrupt enable bit of PSR 2-10
ICU, interrupt control unit 4-8
ID, stage in integer pipeline A-1, A-2
IDT, interrupt dispatch table 3-1, 4-8
IF

stage in integer pipeline 2-8
immediate

addressing mode 2-16
instruction

decoding, stage in integer pipeline, ID A-1, A-
2

dependency 4-9
endings 3-4
execution timing A-1
format 6-1
latency, defined A-1
latency, in example A-3
parallel execution 4-8
pipeline execution 4-8
serial execution 4-9
set, encoding B-1
set, summary 2-2
suspended, completion 3-9
throughput, defined A-1
tracing 4-1

In-System Emulator interrupt, see ISE interrupt
INTBASE register 2-8
integer

addition instructions, ADD[U]i 6-4
addition with carry instructions, ADDCi 6-5
arithmetic shift instructions, ASHUi 6-7
comparison instructions, CMP0BCondi 6-19
comparison instructions, CMP1BCondi 6-20
comparison instructions, CMPi 6-18
convert to unsigned 6-38
data type 2-1
load instructions, CLRBi 6-16
load instructions, LOADi 6-30
load instructions, SETBi 6-49
logical shift integer instructions, LSHi 6-35
INDEX-2 CompactRISC CR16B Programmer’s Reference Manual

move instructions, MOVi 6-36
multiplication instructions, MULi 6-39
multiplication instructions, SMULB 6-40
multiplication instructions, SMULW 6-41
multiplication instructions, UMULW 6-42
pipeline organization A-2
sizes 2-1
store instructions, STORi 6-55
subtract with carry instructions, SUBCi 6-60
subtraction instruction, SUBi 6-59

internal register 2-6
interrupt

defined 3-1
dispatch table, IDT 3-1
maskable 2-10
maskable, DI instruction 6-21
maskable, EI instruction 6-22
non-maskable 2-10, 3-2
priority 3-10
stack pointer, see also ISP register 2-8
stack, and RETX instruction 6-48
stack, description 2-14
stack, during exception 3-2, 3-10
vector, see also, dispatch table, INTBASE 6-

24
wait for interrupt instruction, EIWAIT 6-23
wait for interrupt instruction, WAIT 6-63

ISE interrupt 3-2
ISE support 4-1
ISP register 2-8

J

JAL instruction 6-27
Jcond instructions 6-25
jump

conditional, instructions, Jcond 6-25
jump and link instruction, JUMP 6-29
jump and link insturction, JAL 6-27
JUMP instruction 6-29

L

L, low flag of PSR 2-9
latency, instruction A-1
link after branch instruction, BAL 6-12
load

integer instructions, CLRBi 6-16
integer instructions, LOADi 6-30
integer instructions, SETBi 6-49
processor register instruction, LPR 6-33

LOADi instructions 6-30
logical

AND instructions, ANDi 6-6
exclusive OR instructions, XORi 6-64
OR instructions, ORi 6-44
shift integer instructions, LSHi 6-35

low flag, PSR.L 2-9
LPR instruction

and PSR.P bit 4-2
and serialized instructions 4-9

LPR instruction
accessing DCR, DSR 4-1
description 6-33

LSHi instructions 6-35

M

maskable
interrupt enable bit, PSR.E 2-10

maskable interrupt 3-2
maskable interrupt disable instruction, DI 6-21
maskable interrupt enable bit, PSR.I 2-10
maskable interrupt enable instruction, EI 6-22
memory

organization 2-12
references using LOAD and STORE 2-14

model, programming 2-1
move

integer instructions, MOVi 6-36
MOVi instructions 6-36
MOVXB instruction 6-37
MOVZB instruction 6-38
MULi instructions 6-39
multiplication

integer instructions, MULi 6-39
integer instructions, SMULB 6-40
integer instructions, SMULW 6-41
integer instructions, UMULW 6-42

N

N, negative bit in PSR 2-10
negative bit, PSR.N 2-10
no operation instruction, NOP 6-43
non-maskable interrupt 3-2
NOP instruction 6-43

O

operand
access class and length in instructions 6-1
in instructions 6-1

OR logical
exclusive, instructions, XORi 6-64

order, byte, for data references 2-14
ORi instructions 6-44
CompactRISC CR16B Programmer’s Reference Manual INDEX-3

P

P, trace trap pending bit in PSR 2-10, 4-1
parallel processing

in pipeline 4-8
PC match

and compare-address enable bits 4-5
PC match bit, DSR.BPC 4-4
PC register

and exceptions 3-2
bit, DSR.BPC 4-4
match 4-1, 4-2
match enable bits in DCR 4-5

pipeline
organization, integer A-2

pipelined instruction execution 4-8
POPrt instructions 6-45
priority, exception 3-10
processing-an-exception operating state 4-7
processor

registers and load instruction, LPR 6-33
status register, see also PSR 2-8, 3-2

program
execution time A-1
modes 2-1
stack 2-14

PSR register
and CMPi instructions 6-18
and DI instruction 6-21
and exceptions 3-2
description 2-8

PUSH instructions 6-47

R

R0, R1 registers 2-9
references to memory 2-14
register

addressing mode 2-15
configuration, see also CFG 2-10
dedicated address 2-7
general purpose 2-7
internal 2-6
processor, and store instruction, SPR 6-53

relative addressing mode 2-16
reset 3-13, 4-7
resume execution after EIWAIT 6-23
resume execution after WAIT 6-63
return

from exception instruction, RETX 6-48
RETX instruction

after exceptions 3-2
and serialized instructions 4-9
tracing 4-2

RETX instruction
description 6-48
in exception service procedure 3-10

RST signal 3-13

S

save, on condition instructions, Scond 6-51
Scond instructions 6-51
SETBi instructions 6-49
shift

arithmetic, instructions, ASHUi 6-7
logical, integer instructions, LSHi 6-35

signed integer data type 2-1
SMULB instructions 6-40
SMULW instructions 6-41
SP

general purpose register 2-7
SPR instruction

accessing DCR, DSR 4-1
description 6-53

stack
interrupt and program 2-14
interrupt, during exception 3-2, 3-10
interrupt, in RETX instruction 6-48

store
integer instructions, STORii 6-55
processor register instruction, SPR 6-53

STORi instructions 6-55
SUBCi instructions 6-60
SUBi instructions 6-59
subtraction

integer instruction, SUBi 6-59
with carry 2-9
with carry, integer instructions, SUBCi 6-60

supervisor
call trap, SVC 3-3

suspend execution instruction, EIWAIT 6-23
suspend execution instruction, WAIT 6-63
SVC trap 3-3

T

T, trace bit in PSR 2-9, 4-1
TBIT instruction 2-14, 6-61
test bit instruction, TBIT 6-61
throughput, instruction

defined A-1
timing

instruction execution A-1
trace

bit, PSR.T 2-9, 4-1
trap pending bit, PSR.P 2-10, 4-1
trap TRC, description 3-3

tracing
instructions 4-1
program 2-9

trap
defined 3-1
list and descriptiohns 3-3
table with vecor for each type 6-24
trace, TRC 2-10
INDEX-4 CompactRISC CR16B Programmer’s Reference Manual

TRC trap
description 3-3
in exception service procedure 3-9
pending bit, PSR.P 2-10

U

UMULW instructions 6-42
unconditional branch instruction, BR 6-14
UND trap 3-3

definition 3-10
undefined

instruction trap, UND 3-3
undefined instruction

trap, UND 3-10
unsigned integer data type 2-1

V

vector
interrupt table 6-24

W

WAIT instruction 4-8, 6-63
waiting-for-an-interrupt operating state 4-7

X

XORi instructions 6-64

Z

Z, zero bit in PSR 2-9
zero

bit, PSR.Z 2-9
CompactRISC CR16B Programmer’s Reference Manual INDEX-5

	CONTENTS
	FIGURES
	TABLES
	INTRODUCTION
	PROGRAMMING MODEL
	2.1 CR16B Small and Large Programming Models
	2.2 Compatibility WITH CR16A
	2.3 DATA TYPES
	2.4 INSTRUCTION SET
	2.5 REGISTER SET
	2.5.1 General-Purpose Registers
	2.5.2 Dedicated Address Registers
	2.5.3 The Processor Status Register
	2.5.4 The Configuration Register
	2.5.5 Debug Registers

	2.6 Memory ORGANIZATION
	2.6.1 Data References
	2.6.2 Stacks

	2.7 Addressing Modes

	EXCEPTIONS
	3.1 Introduction
	3.1.1 General
	3.1.2 Interrupt Handling
	3.1.3 Traps

	3.2 Detailed Exception Processing
	3.2.1 Instruction Endings
	3.2.2 The Dispatch Table
	3.2.3 Acknowledging an Exception
	3.2.4 Exception Service Procedures
	3.2.5 Returning From Exception Service Procedures
	3.2.6 Priority Among Exceptions
	3.2.7 Nested Interrupts

	3.3 Reset

	ADDITIONAL TOPICS
	4.1 DEBUGGING SUPPORT
	4.1.1 Instruction Tracing
	4.1.2 Compare-Address Match
	4.1.3 Checking for Debug and Breakpoint Conditions...
	4.1.4 Controlling the Debug and In-System-Emulator...
	4.1.5 In-System Emulator (ISE)

	4.2 INSTRUCTION EXECUTION ORDER
	4.2.1 The Instruction Pipeline
	4.2.2 Serializing Operations

	INSTRUCTION SET
	5.1 Instruction Definitions
	5.2 Detailed Instruction List
	5.3 CR16B/CR16A INSTRUCTION INCOMPATIBILITIES

	INSTRUCTION EXECUTION TIMING
	A.1 Timing Principles
	A.2 The PIPELINE
	A.3 Execution Delays
	A.4 Instruction Execution Timing

	INSTRUCTION SET ENCODING
	B.1 Introduction
	B.2 Instruction Formats
	B.2.1 Basic Instruction Formats
	B.2.2 Load and Store Instructions
	B.2.3 Branch Instructions
	B.2.4 Jump Instructions
	B.2.5 Bit Manipulation and Store of Immediate-Valu...

	B.3 Undefined Op Codes
	B.4 CR16B Instruction Set Summary

	STANDARD CALLING CONVENTIONS
	C.1 Calling Convention
	C.1.1 Calling a Subroutine
	C.1.2 Returning from a Subroutine

	C.2 CALLING CONVENTION ELEMENTS
	C.2.1 Passing Parameters to a Subroutine
	C.2.2 Returning a Value
	C.2.3 Program Stack
	C.2.4 Scratch and Safe Registers

	COMPARISON OF CR16A AND CR16B
	D.1 Register SetS
	D.1.1 General-Purpose Registers
	D.1.2 Dedicated Address Registers

	D.2 Memory MapS
	D.3 Instruction Set
	D.3.1 Bit Manipulation
	D.3.2 POP / PUSH / POPRET Instructions
	D.3.3 Multiply
	D.3.4 MOVD
	D.3.5 Compare and Branch
	D.3.6 Store Small Immediate

	D.4 EIWAIT

