a—{_7V -

- CRAY-1®
COMPUTER SYSTEMS

CRAY-1 S SERIES
HARDWARE
REFERENCE MANUAL

HR-0808

= PR AY

RESEARCH, INC.

CRAY-1®
COMPUTER SYSTEMS

CRAY-1 S SERIES
HARDWARE
REFERENCE MANUAL

HR-0808

Copyright©1980, 1981 by CRAY RESEARCH, INC. This manual
or parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

R AANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER HR-0808

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level. :

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northiand Drive,

Mendota Heights, Minnesota 55120

Revision Description

June, 1980 - Original printing

01 December, 1980 - This change corrects and updates material
for the Disk Storage Channel and the Block Multiplexer
Channel of the I/0 Subsystem. Parts 3 and 4 are affected.

A June, 1981 - This revision incorporates change packet 0l. No
other changes have been made.

02 July, 1981 - This change corrects the Central memory sizes
and phasing associated with certain configurations. Part 1,
section 2 and part 2, section 2 are affected.

B September, 1981 - Reprint with revision. This printing
includes technical corrections and information on the
expanded 1/0 Subsystem. All previous printings are obsolete.

B-01 November, 1981 - Change packet. This packet corrects block
multiplexer channel information in part 3, section 7,
resulting in partial reorganization of the section.
Miscellaneous changes were made in part 2, section 6.

HR-0808 ii B-01

CONTENTS

PREFACE & & ¢« ¢ ¢ o« &

PART 1 - SYSTEM

1. SYSTEM DESCRIPTION . «. « ¢ v o o o o o o o

INTRODUCTION v v ¢« o « o o o o s s s o o o &
SYSTEM COMPONENTS . & « o o o o o o o o o
Central Processing Unit . . . « « « « .
Maintenance Control Unit
Input/Output Subsystem
Mass storage . « ¢ ¢ ¢ o ¢ o o o o o &
Condensing units . « « ¢ &« o ¢ o « o
Power Distribution Units
Motor-Generators ¢« ¢ ¢ « . . .

2. SYSTEM CONFIGURATION . ¢ ¢ ¢ o o o« o o o« o &

INTRODUCTION + &« & & o o o o o » s o o o o =
S/250, S/500, S/1000 Models .«
S/1200, S/2200, S/4200 Models
S/1300, S/2300, S/4300 Models . . .+ . .
S/1400, S/2400, S/4400 Models

MAINTENANCE CONTROL UNIT . . ¢ ¢ &« « o o « &

INTERFACES TO FRONT-END COMPUTER « .

SYSTEM OPERATION . . ¢ o 4 o o o o o o o o &
I/0 Subsystem communication
Job fIOW . ¢ ¢ ¢ ¢ ¢ ¢ 4 o o o e o o
Deadstart . « ¢« «¢ « o o o o o o o o o @

FIGURES

1-1 Typical CRAY-1 Computer System
1-2 Central Processing Unit chassis variations
1-3 Maintenance Control Unit « « .« &
1-4 I/O Subsystem .« . ¢« ¢ & ¢ o o o o o o o
1-5 DCU-3 Disk Controller Unit
1-6 DD-29 Disk Storage Unit . . « « « & &+ « .
1-7 Condensing Unit . .+« ¢« ¢« ¢ &« ¢« & o o o o &

HR-0808 v

iii

[
| |
—~

l (ST
1
o Oy

el

)}
1
[

DN NN NN ON
|
H = OWW oUW

w N

(= =]

IGURES (continued)

FIG
1-8
1-9
2-1
2-2
2-3

‘J

'‘ABLES

1-1
1-2
1-3

Power Distribution Units ¢ . . ¢ ¢ v v v v ¢ o o .
Motor-generator equipment © e e e e e s e s e
Block diagram of S/250, S/500, and S/lOOO systems
Block diagram of S/1200, S/2200, and S4200 systems
Block diagram of S/1300, $/2300, S/4300 systems with
block multiplexer channels e e e e s s e e e e s
Block diagram of S/1300, S/2300/, and S/4300 systems with
increased disk capacity 0 . 0 0 4 e e .
Block diagram of 5/1400, S/2400, and S/4400 systems w1th
block multiplexer channels + « v ¢« v ¢« ¢ ¢« ¢ ¢ o o« o o o «
Block diagram of S/1400, $S/2400, and S/4400 systems with
increased disk capacity .+ « ¢ ¢ ¢ ¢ ¢ ¢ ¢ e 4 4 e 0 4 o .
I/0 Subsystem communication . . . ¢ @ v v 4 4 4 4
Job flow diagram . . .« ¢ v &« ¢ ¢ 4 4 4 4 4 e e e e e e e

Models of the CRAY-1 S Series of Computer Systems
CRAY-1 System characteristics . . . e e e e e e e e e s
Characteristics of a DD-29 Disk Storage Unit

PART 2 - CENTRAL PROCESSING UNIT

1. GENERAL INFORMATION . . & & & &t 4 4 4 o o o o o o o « o« o &

INTRODUCTION . ¢ ¢ & v ¢ v v o o o s o o o o o s o s o o o

Register conventions . .« ¢« v ¢ ¢ ¢ v v 4 e e o o e o .
Number conventions . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o
Clock period . « ¢ v v v ¢ 4 4 4t e e e e e e e e e

MEMORY SECTION . .« ¢ v & ¢ o o o o o o o o o o = o « & o o
CONTROL SECTION . . & v & ¢ & v« ¢ o o o o o o & o « o s o
COMPUTATION SECTION . . & & ¢ ¢ ¢ o o o o o o « o s o o o »
INPUT/OUTPUT SECTION . & ¢ v & v 4 ¢ o o o o o « o o o o o «

2. CENTRAL MEMORY SECTION . . & & & & « ¢ « o o o o o « o o o =

INTRODUCTION . . . ¢ v v v v 4 ¢ ¢ o o o o o o« o o o o o «
MEMORY CYCLE TIME ¢ ¢ ¢ &+ o o o « o s o o o o o & =
MEMORY ACCESS . & v v 4 v 4 o o o o s o o o o o o o « o «
MEMORY ORGANIZATION . . . ¢ v ¢ v 4o ¢ o o o o o o o o s o« &
MEMORY ADDRESSING . . v & ¢ o & o o o o o o « o « o o« o «
SPEED CONTROL . . . & 4 v v v 4 v o 6 e o o o« o o o o o o

8

“BANK PHASING . . ¢ v v 4 ¢ 4 o ¢ o o o s & « « o « o o o «

MEMORY ERROR CORRECTION . . & & & & v ¢ v v o o o o o o &

HR~-0808 Vi

il
O W+

—
t
[

el
1
Y B O NI N

38}
|
=

NN NNl\lJN NN
U s Wk

3. CPU CONTROL SECTION . . & &« o o « o o o o o s =

INSTRUCTION ISSUE AND CONTROL . . & «o o o o « =«
Pregister .« « o« o o « o o o o o o o o o o

NIP register . . « ¢ ¢ v ¢ ¢« o o ¢ o« o o &

CIP register .« « o o o o o o o o o o o o o

LIP register .« ¢ ¢ o« o ¢ o o o o o o = « =«
Instruction buffers . . « . « ¢« « ¢« « .+ o &
EXCHANGE MECHANISM . & ¢ ¢ ¢ o o o o o o o o o @
Exchange package . « « « « « ¢ o o o o = =«
Memory error data .« « « « ¢« ¢ ¢ o . .

Exchange registers . . « . « ¢« ¢« « « ¢« « &

XA register . ¢ ¢ ¢ 4 ¢« o o o o o o .

M register . ¢« ¢ ¢« ¢ 4 4 e e e 4 o o
Fregister ¢« ¢ ¢ ¢ ¢ o o o o o o o o @

Active exchange packade . « + o « & o « « o«
Exchange Sequence « « « « « « « o o o o o =
Initiated by deadstart sequence . . .

Initiated by interrupt flag set . . .

Initiated by program exit

Exchange sequence ‘issue conditions . .

Exchange package management . « . « . « . .
MEMORY FIELD PROTECTION . & ¢ ¢ o o o o o o o =«
BA register « ¢« « ¢ ¢ ¢« ¢ o ¢ o o o o o o .

LA register « o« ¢ ¢ o o o o o o o o o o o =«
Program range €rror . « « « « s o o o o o =
Operand range €rr0r o « o o o o o o s s o o
REAL-TIME CLOCK . &« ¢ o o o o o o o o o s o o =
PROGRAMMABLE CLOCK &+ ¢« ¢ ¢ o o o = o o o o o o =
INStructions =« « ¢ o o o o o o o o o o o
Interrupt interval register . . . « « ¢« . &«
Interrupt countdown counter o+ < .
Clear programmable clock interrupt request
DEADSTART SEQUENCE . + ¢ & ¢ ¢ o o « o o « o o o

4. CPU COMPUTATION SECTION . . . ¢ ¢ ¢ o o o o o =

INTRODUCTION v ¢ o v o o o o o o o o o o o o o =
OPERATING REGISTERS . +« ¢ « ¢ 2 o o o o « o o« =

ADDRESS REGISTERS . & o o o o o o o o o o o o »
A registers ¢ ¢« ¢ o ¢ o o o o o o o o o o s

B regiSters « « « o o« o « ¢ o o o s ¢ o o =
SCALAR REGISTERS &+« 4« &« o « o o o o o o o o o s =
S registers « ¢ ¢« ¢ ¢ ¢« o o e e s s e . e

T registers « « ¢ ¢ ¢ v ¢ ¢« ¢ ¢ ¢ o o« o o o
VECTOR REGISTERS « « ¢« ¢ o« ¢ o o o o o o o o o =
V registers « o« o o o « o o o o o o o o o =

V register reservations

Vector control registers . . . ¢« « « « . .

VL register . . « o o ¢« « o o s o o =

VM register . ¢ ¢ o« o ¢ o o o o o o &

HR-0808 vii

w
|
—

WWWwWww Wwwwww
R T R UL
NN U WWw NN N

!
= = O O 0

!
o

wwwwww
|
o

? w
I
-
O

3-12
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-16

-
|
=

-l|>~.l>-ll>4>-l>
[
~Noyuvnnon bk Ww N

[NI N
[I |
o o

N N
I
[ol e SRR~ B)

|
[
o

FUNCTIONAL UNITS ¢ & v ¢ &+ ¢ o o o o o o « o o « o « o o« o « = 4-11
Address functional units ¢ 4 4 c e e s e e e e 4-12
Address add unit « .« ¢« ¢ 4 ¢t 4 e e e e e e e e e . 4-12
Address multiply unit . . . ¢ ¢ ¢ ¢« & ¢« & & .+ . o . 4-12
Scalar functional units ¢ ¢ ¢ ¢ 4 4 e e e e e e . 4-12
Scalar add unit .« ¢ ¢ ¢ ¢ ¢ 4 e 4 e 4 e e s s e e . 4-13
Scalar shift unit . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 o v o « . 4-13
Scalar logical unit .« . ¢ ¢ ¢ ¢ ¢ ¢ e 4 s e e e e . 4-13
Scalar population/parity/leading zero unit 4-13
Vector functional units . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o s o o 4-14
Vector functional unit reservation . . « « « ¢« « .+ . 4-14
Vector add unit . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o « 4-14
Vector shift unit . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o« o o & 4-15
Vector logical unit . . . ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o o 4-15
Vector population/parity unit 4-15
Recursive characteristics of vector
functional UNiItsS + « & ¢ ¢ ¢ 4« 4 4 e e e e e e e . . 4-16
FPlocating-point functional units . « . « & . ¢« « ¢ & o o & 4-18
Floating-point add unit . . .« « ¢ ¢ ¢ ¢ ¢« ¢ ¢ « o & 4-18
Floating-point multiply unit «. « « « . « .« . 4-18
Reciprocal approximation unit « . . 4-19
ARITHMETIC OPERATIONS . & ¢ & ¢ o o o o o o o s« o o o o o o « 4-19
Integer arithmetic . . ¢ ¢ ¢ & & ¢ 4 o ¢ 4 o o o o o o & 4-19
Floating-point arithmetic« . ¢« ¢ ¢« ¢« ¢ ¢« o ¢« « & 4-20
Normalized floating-point numbers « 4-21
Floating-point range €rrors . . ¢ « o « ¢ o o o o 4-21
Double-precision numbers . « « « &« « o« ¢ o o 2 o o« 4-23
Addition algorithm . « ¢ & ¢ ¢ ¢ ¢ ¢ ¢« o o o o o » 4-23
Multiplication algorithm . . « « ¢« ¢« ¢« ¢ ¢ ¢ ¢ « « & 4-23
Division algorithm « ¢« ¢ & & ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o ¢ o & 4-25
Derivation of the CRAY-1 Algorithm 4-26
LOGICAL OPERATIONS . & ¢ ¢ o o o o o s s s o s o s s o o o o o 4-31

5. CPU INPUT/OUTPUT SECTION . « o & & « « o = « o o o s o o o s =

T
'—l

INTRODUCTION o o o « ¢ o ¢ o o o s o o o o o o o o o o o o o
MEMORY CHANNEL . . . ¢ v ¢ ¢ ¢ ¢ o o o o o o o o o o o« o o o« =«

IJ/O CHANNELS . v v o« « o o o o o o s o s « s o o s s « o o o« =
Channel grouPS . ¢ « « « o o s o s o o o o s s o « o o @
I/0 instructions =« ¢ ¢ « & o o o o o o o o o s o o s o o
Basic I/0 channel operation . « « « ¢ ¢ « « o o o« o « o« »
Input channel programming . « « « o « o « o « o o o « o

Input channel error conditions . . « « ¢« ¢ ¢ « o .+ &
Output channel programming . « ¢ ¢« ¢ o o ¢ o ¢ o s = o &
Output channel error condition . . . ¢« ¢« &« « « « « &
16-bit asynchronous channels . . ¢ « ¢ ¢ ¢ ¢ ¢« & ¢ o o &
Input channels « « ¢ ¢« o« ¢ ¢ o o o o o o o s s o« o «
Sutpul Channels .« o « ¢ o o o ¢ o o o o o s o o o« o

anmmmmk{lmwmmmm
Wl N Ny w oD N

i

HR-0808 viii B

I/0 CHANNELS (continued)

16-bit high-speed asynchronous channels .

Input channels
Output channels

l6-bit synchronous channels .

Input channels
Output channels

-

.

Programmed master clear to external
Sequence for asynchronous channels . . .
Sequence for high-speed asynchronous
synchronous channels .

Memory access . . .
I/0 lockout

Memory bank conflicts .

I/0 Memory conflicts

I/0 Memory request conditions
I/0 Memory addressing .

6. CPU INSTRUCTIONS

INSTRUCTION FORMAT . . .

Arithmetic, logical format

Shift, mask format

-

Immediate constant format

Memory transfer format

Branch format . . .
SPECIAL REGISTER VALUES
INSTRUCTION ISSUE . . .

INSTRUCTION DESCRIPTIONS

7. CPU INTERFACES

INTRODUCTION . . « .« . .
PHYSICAL DESCRIPTION . .
CABLING LIMITATIONS . .
OPERATION

FIGURES

1-1 Basic organization of the CPU e e .
1-2 Control and data paths in the CPU . .
2-1 Memory address (16 banks) . . . e
2-2 Memory address (8 banks) .« . e e .
2-3 Memory data path with SECDED . .« e e
2-4 Error correction matrix . . - o
3-1 Instruction issue and control elements
3-2 Instruction buffers . . .« . « . .
3-3 Exchange package

HR-0808

device

and

5-11
5-11
5-13
5-15
5-15
5-17
5-19
5-19

5-20
5-22
5-22
5-22
5-23
5-23
5-23

T
—

[
=

1 [
AN W N

O\mmmol\mc\mox

H
)
> W

wwwl\'-’l\)l\)t\)
|
O WH W

F

4

4-2 Scalar
4-3 Vector
4

4

49-bit

4

4

4

4

5

5

6

6 Format
6-3 Format
6-4 Format
6 Format
6

6

6

6

6

6

7 Vector
8 Vector
-9 Vector
1 Vector
1 Vector

Newton'

IGURES (continued)
1 Address registers and functional units .« . « o« o o . o .

registers and functional units
registers and functional units

Integer data formats . . . & ¢ ¢ ¢ i v v 4 e e e e v . .
Floating-point data formats v v & & ¢ & & o « .
Integer multiply in floating-point multiply unit

floating-point addition . « .« . . .+ «

smethod . ¢ ¢ ¢ ¢ v ittt e e e e e e e e e

4
5
6
7 .
-8 Floating-point multiply partial-product sums pyramid . .
9
1 Basic I/0 program flow chart . « v v v v v o o o o o «
2

Channel I/0 control . .« v v v v v v 4 o o o « o o o o
-1 General form for instructions . . . ¢ ¢« v ¢ 4 4 ¢« + o .
2

for arithmetic and logical instructions
for shift and mask instructions
for immediate constant instructions
for memory transfer instructions

Two-parcel format for branch instructions

left double shift, first element, VL greater than
left double shift, second element,VL greater than
left double shift, last element
right double shift, first element
right double shift, second element,

VL greater than 1 . . . & ¢ v v v v 4 v o o o o o « o o

6-12 Vector

right double shift, last operation . . «

7-1 Typical interface cabinet ¢« ¢ « v « ¢ o .

TABLES

1-1

1-2

1-3

1-4

2-1 Vector

5-1

5-2 16-bit

5-3 16-bit

5-4 l6-bit
signal

5-5 l6-bit
signal

5-6 16-bit

5-7 16-bit

HR-0808

Characteristics of the CPU memory section
Characteristics of the CPU control section« . . .
Characteristics of CPU computation section
Characteristics of the CPU input/output section

memory rate x 80 x 106 references per second . .

Channel word assembly/disassembly . ¢ « « ¢ « o « o o«

asynchronous input channel signal exchange . . .

asynchronous output channel signal exchange . . .

high-speed asynchronous input channel
€XChange « « « ¢ ¢ o o o o o o & o s o o o o o
high-speed asynchronous output channel
eXChange v ¢ & & ¢ 4 2 o 4 2 o o o o o s e o o o
synchronous input channel signal exchange
synchronous output channel signal exchange . . .

U UL LU I T N
=g N
U W Do W0

1
o B2 23K *A)
N Oy Oy

AN NN DU U s b b D D s
| |
& W NN DD
'_A

o
R

!
o WwWd o U

k{lU'll-lnNi'"
o

T
—
N

5-14
5-16
5-18

PART 3 - I/0O SUBSYSTEM

1. GENERAL INFORMATION ., . . .

INTRODUCTION
MEMORY SECTION

CONTROL SECTION
COMPUTATION SECTION
INPUT/OUTPUT SECTION
I/0 SUBSYSTEM CLOCK

2. I/0 MEMORY SECTION

INTRODUCTION
MEMORY SPEEDS &«
MEMORY ORGANIZATION
MEMORY ACCESS . . . « « « .
MEMORY ADDRESSING

MEMORY PARITY PROTECTION . .

3. IOP CONTROL SECTION

INTRODUCTION « ¢« ¢ ¢ o o + =«
INSTRUCTION CONTROL NETWORK

Instruction stack . . .

Forward relative branch
Backward relative branch

II register « « « « . .
B register
RP register . «
DP register
P register
Program exit stack . .

Program Exit Stack

Program Exit Stack

e e o & o e e

and I/0 Interrupts

Timing Note .

Program fetch request flag

MA register . . « « o .

4. 1I0P COMPUTATION SECTION . .

INTRODUCTION . . « « « « .« .
OPERAND REGISTERS

FUNCTIONAL UNITS . . . « .« &

Adder « ¢« o o o« o o o
Shifter . « « + « « o &

ACCUMULATOR . « « &« &« o« o

HR-0800

Carry-bit register . .
Addend registers . . .

xi

| |
MM g9 oo U W

o OO

Liuwwww
[

Ww Wwwwwwww
| 1
e

>
|
=

O N N - o
i
B WwWw NN

5. INPUT/OUTPUT SECTION . «. & & v & o o« & o s o o« &

INTRODUCTION . & &« & & o o o o o o o o o o o o =
I/0 CONFIGURATION
I/O SPEEDS . v v &« ¢« ¢ ¢ o o o« o o o o o o o s &
CHANNEL CHARACTERISTICS . v « & « « « o « o o &
Accumulator channels . . ¢« « « ¢ ¢ ¢ o « &
Function designators . « « « « o« +» o« &
Function strobe + ¢« + & « « &
Accumulator data . « ¢ « + ¢ ¢ o o o .
Read done . v ¢ ¢ ¢ o o o o o o o o
Read bUSY + ¢« ¢ o ¢ o ¢ o o o o « & «
Busy/done .« « « « « o o o o o o o o o
Master clear « « ¢« +v « ¢ « o o o o o
Clock ¢ o ¢ v 4o v 6 4 o ¢ o e o o o
Interrupt .« ¢« ¢ & ¢« ¢ & o o o o o o
Channels using a DMA port « « « . .
I/O Memory data =« o« « o o o o o o o &
I/O Memory address . « « « o o o o »
Request read « « & & ¢ &« ¢ o ¢ ¢ o o &
Request write . . . & ¢ ¢« ¢ o o o o
Acknowledge read « « « o « ¢ & o o o o
Acknowledge write . . ¢« « ¢ ¢ ¢ o+ o .
Read sequence . . « « ¢ ¢ o« o o o o o o o «
Write sequence . . .« ¢ ¢ ¢ ¢ o o o o o o
STANDARD CHANNELS . . ¢« o « « o « & '
Channel for I/0 requests (CH. 0) . .
Channel for program fetch request (CH. 1) .
Channel to program exit stack (CH. 2) . . .
Deadstart sequence « . « « « « & « o &
Channel for I/0 Memory error (CH. 3) . . .
Channel to real-time clock (CH. 4)
Channel to Buffer Memory (CH. 5)
Error handling . . . ¢« ¢« o ¢« o ¢ o o &
Buffer Memory interface deadstart . .
Buffer Memory interface dead dump . .

CHANNEL FOR I/0 PROCESSOR INPUT (CH. 6, 10, 12)
CHANNEL FOR I/O PROCESSOR OUTPUT (CH. 7, 11, 13)
INTERRUPT SEQUENCE . . & & o o o « o o o o o o =

6. IOP INSTRUCTIONS . . . o & « ¢ o ¢ o o o o « o =

INSTRUCTION FORMAT . . .+ & ¢ ¢ ¢ o o o o o o o =
INSTRUCTION DESCRIPTICONS ¢ &« ¢ o o o o« « o o o =

HR-0808 xii

w (2]
[1
et

! [| |
oW wwww b -

[SLIXC IV RN, BT R, R R
11 |

[
HHEHEOWOgOAO U T U b b B

(=

oot o Lo o
1
|,-I

7
|

o
w N N

5-16
5-16
5-16
5-16
5-17
5-18

INTERFACES . . . & ¢ & v ¢ ¢ ¢ o« o o o &

INTRODUCTION ¢ v & o o o o « o o o o o «
INTERFACE CHARACTERISTICS . ¢ ¢ ¢ o « =«
INTERFACE FUNCTION CODES . . ¢« ¢ o « o o«
DISK STORAGE UNIT CHANNEL . « « &« o « &
Disk storage unit characteristics .
DSU data sequence pattern
Sector identification word
I/0 Memory address register
Status response register
DKA 0 - clear channel
DKA l] - select mode « « +« + o+ o« .
Parameter 000xxxX - release unit
Parameter 001xxx - reserve unit

.
-
-
.

e o o o o

Parameter 002xxx -
Parameter 003xxx -
Parameter 004xxx -
Parameter 005xxx -
Parameter 006xxx -
Parameter 007000 -
Parameter 007001 -
Parameter 007002 -
register
Parameter 007003 -

clear fault flags . . .
return to zero cylinder
select cylinder margin
read sector number . .
read error flags . . .
read cylinder register
read head register . .
read margin/difference

read interlock register

Timing notes « « ¢« « &« « & + &
DKA : 2 - read disk data
DKA : 2 - abnormal conditions
DKA : 2 - special modes . . .
Buffer echomode
DKA : 3 - write disk data
Fire code generation
Lost data error . . . « « . .
Lost function error

Format mode . ¢« ¢« ¢« « o o o =
Buffer echomode .« « « « « » .

DKA : 4 - select head group
DKA : 5 - select cylinder
DKA : 6 - clear interrupt enable .
DKA : 7 - set interrupt enable . .
DKA : 10 - read local memory address
DEKA : 11 - read status response . .
DKA : 14 - enter local memory addres
DKA : 15 - status response register

CONSOLE DISPLAY CHANNEL . ¢ ¢ « o o« « o«
CONSOLE KEYBOARD CHANNEL « ©« « o o o o &«
PERIPHERAL EXPANDER CHANNEL

Interface registers . . « « « . . .

Channel assignments
EXB : 0 - idle channel«

HR-0808 xiii

e e o o o o
e o o e o
e o o o e @

S o o o o o

diagnostic

~
i
[a)

|
H = WY WO g VM-

o

o
b
H o

7-11
7-12
7-15
7-15

7-16
7-17
7-17
7-18
7-19
7-20
7-21
7-21
7-22
7-22
7-22
7-23
7-23
7-24
7-24
7-25
7-25
7-25
7-25
7-26
7-26
7-26
7-27
7-28
7-28
7-29
7-29

PERIPHERAL EXPANDER CHANNEL (continued)

EXB : 1 = DIA . ¢ ¢« ¢ ¢ ¢ « o o o =
EXB 2 2 “DIB v v v v o o o « o «
EXB ¢ 3 = DIC & v v v ¢ ¢ o o o o
EXB : 4 - read busy/done, interrupt
EXB : 5 - load device address . ..
EXB : 6 -~ MSKO mask out . «
EXB : 7 - set interrupt mode . . .
EXB : 10 - read data bus status . .
EXB : 11 - read status 1.
EXB : 13 - read status 2
EXB : 14 - DOA (Data out A)
EXB : 15 - DOB (Data out B)
EXB : 16 - DOC (Data out C)
EXB : 17 - send control «

Delayed functions
Transfer speeds « « « ¢« ¢ &« o« « o« .
CHANNEL FOR INPUT FROM CRAY-]1 CHANNE .

1/0
cIA
CIA
CIAa
CIA
cia
cIa
CIA
CIa
CIA

Memory address register

: 0 - clear channel
: 1 - enter I/0 Memory address
- enter parcel count . . .

clear ready waiting . . .

AN W
1

7 - set interrupt enable flag
10 - read memory address . .
: 11 - read ready waiting/error

2 00 os o

CHANNEL FOR OUTPUT TO CRAY-1l CHANNEL . .

1/0
CcoA
COA
COA
COA
coa
COA
coa
COA
coA

Memory address register

0 - clear channel
- enter I/0 Memory address
- enter parcel count . . .
clear error flag

NSO e W
|

- set interrupt enable flag
10 - read I/0 Memory address
11 - read error flags

es 00 ss e se o0

MEMORY CHANNEL . . . ¢ & & 2 o 2 o o & &
Signal Descriptions . . « « « + « .

HR~0808

Central processing unit to I/O

- clear channel parity error flags .

- clear interrupt enable flag

flags . .

- set/clear external control signals
- clear interrupt enable flag

processor

I/0 Processor to central processing unit

output channel

Memory Channel

functions for input from CPU .

enter I/0 Memory starting address .

Interface registers . . . ¢« ¢« « ¢ « o .
HIA : 0 - clear channel busy, done flags
HIA : 1 -
HIA ; 2 -

enter upper Central Memory address .

xiv

7-29
7-29
7-29
7-29
7-30
7-30
7-32
7-32
7-32
7-33
7-34
7-35
7-35
7-35
7-36
7-36
7-37
7-37
7-37
7-38
7-38
7-38
7-38
7-38
7-38
7-38
7-38
7-40
7-40
7-40
7-41
7-41
7-41
7-41
7-42
7-42
7-42
7-43
7-43
7-44
7-44

7-48
7-50
7-51
7-51
7-51

7-51

HR-0808

Memory Channel functions for input from CPU (continued)

HIA : 3 - enter lower Central Memory

HIA
HIA
HIA
HIA

e e se ee

Memory channel input error processing . .
Memory channel input sequence
Memory Channel functions for output to CPU . .
Interface registers . ¢« ¢« « o o o o o o &

HOA : 0 - clear
HOA : 1 - enter
HOA : 2 - enter
HOA : 3 - enter
HOA : 5 - write
HOA : 6 - clear
HOA : 7

HOA

channel busy, done flags .
I/0 Memory address

address . . .
4 - read Central Memory, enter block
6 - clear interrupt enable
7 - set interrupt enable
14 - enter diagnostic mode

length

upper Central Memory address . . .
lower Central Memory address . . .
Central Memory, enter block length

interrupt enable

- set interrupt enable
14 - enter diagnostic mode

Central Memory output error processing . .
Memory channel output sequence
ERROR LOGGING CHANNEL
Interface Registers .
ERA : 0 — idle channel ¢ ¢« ¢ ¢ « o & &

ERA
ERA
ERA
ERA
ERA
ERA

“e 4o se se o8 ee

6 - clear interrupt enable flag
7 - set interrupt enable flag
10 - read error status . . ¢ ¢ ¢ o o . .
11 - read error information
12 - read error information
13 - read error information
BLOCK MULTIPLEXER CHANNEL

General characteristiCsS « o« o « o o o« o o o o

Transfers rates .
Data handling . .
Record size . . .
Parity . .« . . .
Interrupts « o

BMA : 0 - clear channel busy and done

.

@ o o e 2 s ® e e o o o o

e o o o

lags . .

th *

BMA : 1 - send reset function ¢« ¢« « . .
Parameter xxxxx0 - clear output tag lines
Parameter xxxxxl - interface disconnect .
Parameter xxxxx2 - selective reset
Parameter xxXxxXx3 -~ system reset

BMA : 2 —channel command . « « « « « ¢ ¢ ¢ o o«
Parameter command bits . . « « ¢« ¢ ¢ ¢ o .

BMA

: 3 - read request-in address
BMA : 4 - asynchronous I/O . . « ¢« ¢ o« o o« & @

* o e o

(first parameter) . .
(second parameter) .
(third parameter) . .

7-51
7-52
7-52
7-52
7-52
7-53
7-53
7-56
7-56
7-56
7-56
7-57
7-57
7-57
7-57
7-57
7-57
7-58
7-60
7-61
7-61
7-61
7-62
7-62
7-62
7-63
7-63
7-65
7-66
7-66
7-67
7-67
7-67
7-68
7-68
7-69
7-69
7-69
7-69
7-70
7-170
7-70
7-71
7-73
7-74

B-01

BLOCK MULTIPLEXER CHANNEL (continued)

5 - delay counter diagnostic .
6 - clear channel interrupt enable flag
7 - set channel interrupt enable flag

BMA
BMA
BMA
BMA
BMA
BMA
BMA
BMA
BMA
BMA

8. BUFFER MEMORY

s ss se s

O Y TR Y

10
11
12
13
14
15
16

- read I/0 Memory address .
- read byte counter
- read status

- read input tags

~ enter I/0 Memory address .

- enter byte count

- enter device address/mode

Parameter mode bits
BMA : 17 - enter output tags.
PROGRAMMING EXAMPLES . + ¢ ¢ ¢ ¢ o o o o &«

INTRODUCTION .

MEMORY SPEEDS
MEMORY ORGANIZATION . . . « &« ¢ o o « o &
MEMORY ACCESS
MEMORY ADDRESSING . . « « « ¢ o« o o o o &
ERROR PROTECTION « ¢ ¢ ¢ ¢ o o o o o o o &

FIGURES
1-1
2-1
3-1
3-2
3-3
3-4
5-1
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11

Memory Channel sequence, input
Memory Channel sequence, output from

e e ® o o e e o e & o o o o

. e o o e e e e s e o * o o

o« e o e e e e o e e o o o o

Basic organization of an I/0 Processor .
I/0 Memory address format
I/0 Processor block diagram
Instruction format ¢« ¢« . . .
Instruction stack operation
Program exit stack . . « . . « ¢« ¢ ¢ . .
Buffer Memory address formation.
Instruction format «
DSU data sequence pattern
Sector ID format« ¢ . ¢ o ¢ o .
Status response error flags.
Offset margin status word.
Difference register example. . . . « . .
Interlock register status bits
Format mode sector pattern
Memory Channel signals
Address and word count formats
to 1/0 Processor.
I/0 Processor

7-12 BMC-4 data assembly/disassembly

7=13 Channel read

SEQUENCE. « o« « s+ o o o o &

7-14 Channel ASYNCHRONOUS I/O sequence. . . .

HR-0808

7-76
7-76
7-76
7-76
7-77
7-78
7-79
7-80
7-81
7-81
7-82
7-84
7-84

1
'S

qquc\mgrwwww»—'
XN HHEHOPWNDWN

|
.
w

7-16
7-16
7-17
7-23
7-44
7-47
7-55
7-60
7-68
7-73
7-74

FIGURES (continued)

7-15
8-1
8-2
8-3

Asynchronous data and status processing. . . « . . .
Parcel packing in memory word. . « « o« o o s ¢ « o
Buffer Memory port assignments . . « « ¢« ¢ ¢ ¢ ¢ o =«
Buffer Memory address formation. . . . « « « « « . .

TABLES

U W N
[T L L LI
'_-l

| L [|
MW BWNDFWNOHENHF-

= o

I FIFIIFOY
=
w N

T’\'
[
>

7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30

I/0 Processor memory characteristics . « « « « « . .
Characteristics of the IOP control section
Characteristics of the I/0 computation section . . .
Accumulator sources and destinations
Characteristics of the IOP input/output section. . .
I/0 Processor standard channel assignments
Standard channel functions . . « « ¢« ¢ ¢« ¢« ¢ o o o &
Interface functionS. « « o o o o o o o o o o« o o o
Sector ID parity bit assignments . . « « ¢« + « + o
DKA : 1 parametersS . « « « o « o o o o o o o s o o =
Parameter 006 error flagsS. +« « « « &+ o o ¢ o o o o o
Interlock status bits. « ¢« ¢« ¢« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o
Peripheral device mask bits for interrupt disabling.
Read status 1 bit assignments.« « « « ¢« ¢ ¢ &
Read status 2 bit assignments. . « . ¢« ¢ ¢« ¢« + « o+ &
Accumulator bit control signals. . « . « « ¢« o« ¢ & @
Ready waiting/error flags. . . « ¢ « o o « o o « o &
External control signal bits « . . . « « ¢« ¢« &+ & o &
Brror £lagS. « « o o« o o o o o o o s o o o s o o o o
Input channel diagnostic modes . « . « « « & ¢ & + &
Input channel error COdeS. « « o ¢ o o & o o o o o =
Output channel diagnostic modes. . .« « « « ¢« « « + &
Output channel error codes . « « ¢ o ¢ o ¢ o o o o o
Error status register bits . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ 4 o .
First error parameter selection. . + « « « « &« &« o &
Send reset function parameters . . « « ¢ « ¢ ¢ ¢ o o
Channel command function parameter bits. . . « . « .
Channel command bit assignments « « « « « &
Read I/O Memory address response bits . . «
Status register bits « « ¢ ¢« ¢ ¢ ¢ ¢ ¢ o @ o e o s .
Input tags status bits . . « ¢ + ¢« ¢ 4 0 0 0 o . .
I/0 Memory address register bits . . . « « « + + . .
Device address register bits . . . « ¢« ¢« ¢ ¢ o & . .
Command chaining mode selection . « . « ¢ ¢ « « « &«
Interrupt mode selection . . « « « o o o o o o o o @
Channel type mode selection « « « &« & « « &
OQutput tags register bits. . « + ¢« ¢« ¢ ¢ ¢« ¢ ¢ o o &

HR-0808 xvii

N
[[I S Y |
W WO~ W

N9V O W
I

7-10
7-14
7-18
7-31
7-33
7-34
7-35
7-39
7-42
7-43
7-53
7-54
7-58
7-59
7-62
7-64
7-69
7-71
7-72
7-77
7-79
7-80
7-81
7-82
7-83
7-83
7-83
7-84

B-01

PART 4 - APPENDIX SECTION

SUMMARY OF CPU TIMING INFORMATION. . . « « « o

SCALAR INSTRUCTIONS. . + ¢« « ¢ o ¢ o « o o o &
VECTOR INSTRUCTIONS. . « o« o ¢ 5 « o o o o o &
HOLD ISSUE + ¢ o ¢ ¢ o s o o o o o o o o o o
HOLD MEMORY. . o & ¢ ¢ o ¢ o o o o s o o o o &
INTERRUPT TIMING . ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o =

PHYSICAL ORGANIZATION OF CPU « ¢ « & o« o « o &

MAINFRAME. « « ¢ ¢ ¢ o s ¢ o o o o o » o o o =
MOAULES v v « ¢ o o o o s s o s s o & o
ClOCK v o o o o o o o o o o s o o o o o »
Power SUPPli€s « & & o o o o o o o o o o

COOLING: ©« ¢ o o o o o o s o o s s s o o o o o

SOFTWARE CONSIDERATIONS . ¢ ¢ & ¢ ¢ ¢ « o o

SYSTEM MONITOR . . « ¢ & ¢ o« o o o s o o s o
USER PROGRAM « ¢ ¢ ¢ o« o o ¢ o o s o o o o o«
OPERATING SYSTEM . . « ¢ & o ¢ o o o s o o & o
SYSTEM OPERATION . . ¢ ¢ o« « ¢ ¢ ¢ o o o o & o«
FLOATING-POINT RANGE ERRORS. . « « « ¢« & & « &

CPU INSTRUCTION SUMMARY. . . ¢ &« « o « o o &

I/0 PROCESSOR INSTRUCTION SUMMARY.

SYSTEM CHANNEL ASSIGNMENTS . « &« & & ¢ « o o &

JOP PROGRAMMING CONSIDERATIONS . . « « « + o &
EXIT STACK TIMING. . ¢ « ¢ « o o o s o s o o =
EXIT STACK INTERRUPT HANDLING. « « o « o o o o
SYSTEM INTERRUPT ENABLE. . « ¢ o ¢ ¢« o o o o
SYSTEM INTERRUPT DISABLE e o o o o
SYSTEM INTERRUPT CLEARED OR SET BY THE ENABLES

INDIVIDUAL CHANNELS . . o « ¢ o « « o « &
I/0 CHANNEL TIMING . & « o o« o s « o o o o o &

Buffer memory €rrors . . « o« o o o o o «
BUFFER MEMORY DEADSTART TIME o o e
ERROR LOGGING AND BLOCK MULTIPLEXER CHANNELS .
I/0 INSTRUCTIONS AFTER DEADSTART « . « « « « &
PERIPHERAL EXPANDER CHANNEL TRANSFERS.

LIST OF ABBREVIATIONS. ¢ « « ¢ o s s o« o o o

HR-0808 xviii

FIGURES

B-1 Physical organization of CPU.
B-2 General chassis layout. . « « « « « &« ¢ « . &
B-3 Clock pulse waveform. . . ¢« « ¢« ¢« o o o & « =

TABLES

F-1 Typical Model 4400 system channel assignments

HR-0808 Xix

thfw
B> W N

PART 1

SYSTEM

SYSTEM DESCRIPTION 1

INTRODUCTION

The CRAY-1 S Series of Computer Systems is based on a powerful
general-purpose central processing unit CPU capable of extremely high
processing rates. These rates are achieved by combining scalar and
vector capabilities into the CPU, which is joined to a large, fast,
bipolar integrated circuit memory. Vector processing, which is the
performance of iterative operations on sets of ordered data, provides

results at rates greatly exceeding the result rates of conventional
scalar processing. Scalar operations complement the vector capability by

providing solutions to problems not readily adaptable to vector
techniques. Table 1-1 summarizes the models available in the S Series of

computer systems. These models are described in greater detail in
section 2 under System Configurations. The Model S/250 is no longer

available.

Table 1-1. Models of the CRAY-1 S Series of Computer Systems

MODEL $/250 5/500 $/1000 $/1200 $/13600 $/1400 $§/2200 $/2300 $/2400 5/4200 5/4300 5/4400

forsde]
Central Memory size 1/4M 1/2M M M 1M ™M M ™ M am M M
{64-bit words)

i RONT-END_INTERFACES 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3

1/0 SUBSYSTEM |

1/0 Processors

DCU-4 Disk Controller Units

2

Buffer memory Size 1=
1
2

DD-29 Disk Storage Units

Block Multiplexer Contrcllers

Block Multiplexer Channels

MASS STORAGE SUBSYSTEM
DCU-3 Disk Control Units 2-8 2-8 2-8 ;

DD-29 Disk Storage Units 2-32 2-32 2-32]

The CRAY-1 S Series of Computer Systems encompasses a wide variety of
configurations. On the advanced models, a sophisticated I/0 Subsystem
matches the high processing rates with high input/output transfer rates
for communication with mass storage units, other peripheral devices, and
a wide variety of host computers. Several combinations of memory size
and I/0 capabilities are offered.

An optimum system can be configured for a particular use. This section
briefly describes the system components, configurations, and operation.
Table 1-2 gives the overall system characteristics. Figure 1-1
illustrates a typical system.

Part 1
HR-0808 1-1 B

Figure 1-1. Typical CRAY-1 Computer System

Part 1
HR-0808 1-2 B

Table 1-2. CRAY-1 System characteristics

Configuration - Central Processing Unit
- Maintenance Control Unit (MCU) or I/O Subsystem with 2 to
4 I/0 Processors
CPU Speed - 12.5 ns CPU clock period
- 80 million floating-point additions per second rate
- 80 million floating-point multiplications per second rate
- Simultaneous floating-point addition and multiplication
- 80 million 1/2 precision floating-point divisions per
second rate
- 25 million full precision floating-point divisions per
second rate
Memories - Up to 4 million 64-bit words in CPU Central Memory

65 thousand 16-bit parcels in each I/O Processor I/0
Memory

1 to 8 million 64-bit words of 1/0 Subsystem Buffer Memory

Mass Storage

600 million byte disk drive
48 disk drives maximum

38.7 Mbits/s disk drive transfer rate

Input/Output - Up to 12 CPU channel pairs (if no I/0 Subsystem)
- 1 standard and 1 optional Memory Channel to CPU; approx.
800 Mbits/s
- Many other mainframe interfaces
- 6 Direct memory access (DMA) ports to each I/0 Processor
- 40 channels; input or output sharing the six DMA ports
per 1/0 Processor
Physical - 100 sq ft floor space for CPU

10 sq ft floor space for I/0 Subsystem
5.25 tons, CPU weight

1.5 tons, 1/0 Subsystem weight

Liquid refrigeration of each chassis

400 Hz power from motor-generators

HR-0808

Part 1
1-3 B

SYSTEM COMPONENTS

The CRAY-1 Computer System is composed of a Central Processing Unit
(CPU), a Maintenance Control Unit or I/O Subsystem, and mass storage
devices. Supporting this equipment are condensing units for
refrigeration, power distribution units for the CPU and the I/0
Subsystem, and motor-generators providing system power.

CENTRAL PROCESSING UNIT

The CPU is a single integrated processing unit having a memory section, a
control section, a computation section, and an input/output section.

The memory section contains from 262,144 to 4,194,304 words of 64 bits
each. Memory is organized in 8 or 16 interleaved banks to allow fast
access to successive addresses. The bipolar integrated circuits and the
interleaving give a 4-clock-period (50 nanosecond) bank cycle time and an
overall memory performance of one word every 12.5 nanoseconds. Single
error correction/double error detection (SECDED) protects data integrity.

The control section contains registers and circuitry that controls
instruction issue, transfers execution from program to program, and
recognizes modes, error flags, and interrupt conditions.

The computation section handles the scalar and vector operations. It is
composed of scalar, vector, and address registers; instruction buffers;

and segmented functional units.

The input/output (I/0O) section contains up to 12 channel pairs; each
input or output channel carries 16 data bits, 3 control bits, and 4
parity bits. Normal channel speed is 50 or 160 Mbits per second,
maximum. A single Memory channel communicates with the I/O Subsystem at
approximately 850 Mbits per second.

Because superior performance is achieved using the Memory channel and I/0
Subsystem channels, all but one of the CPU channels are generally not
used when an I/O Subsystem is present.

The Central Processing Unit computation section is located in four
columns of mainframe chassis. An additional four or eight columns
contain Central Memory. Some versions of the CRAY-1 Computer System use
the 8-column chassis with four columns of memory and four columns of
computation section. Other models have an additional four columns to
house more memory. These variations are discussed later with the
description of each configuration. The bench at the base of each column
houses the DC power supplies for that column. Figure 1-2 shows these
variations of CPU chassis. Part 2 of this publication describes the CPU

in detail.

Part 1
HR-0808 1-4 B

Figure 1-2. Central Processing Unit chassis variations

Part 1
HR-0808 1-5 B

MAINTENANCE CONTROL UNIT

The Maintenance Control Unit (MCU) is used for supervisory operation and
maintenance on CRAY-1 System Models S/250, S/500, and S/1000. It
consists of a minicomputer, a tape drive, a card reader, a removable pack
disk drive, a line printer, and 2 operator consoles. It may be used to
enter jobs locally. Figure 1-3 shows the Maintenance Control Unit.

Figure 1-3. Maintenance Control Unit

Part 1
HR-0808 1-6 B

INPUT/OUTPUT SUBSYSTEM

Models S/1200 through S/4400 of the CRAY-1 S Series are equipped with an
1/0 Subsystem composed of 2, 3, or 4 I/0 Processors, a Buffer Memory, and
required interfaces. Each I/0 Processor (IOP) is independent and handles
some portion of the I/O requirements for the system. I1/0 Processors are
designed for fast data transfer between a front-end computer peripheral
device and Buffer Memory or between Buffer Memory and the Central
Processing Unit. Each I/0 Processor has a computation section, a memory
section, a control section, and an I/O section. Part 3 of this
publication describes the I1/0 Processor in detail. One I/O Processor is
assigned a supervisory role for the group of I/0 Processors.

The computation section of an IOP has functional units and operand
registers, and uses an accumulator in single-address operation.

The I/0 Processor Memory holds 65,536 words of 16 bits each in bipolar
integrated circuits; 16-bank phasing is used in this memory to maintain
high-speed data transfers.

The I/0 Processor section has six direct memory access (DMA) ports
divided among the channels. A DMA port can transfer data at peak rates

of approximately 850 Mbits per second; one port may be receiving data at
the same time another port is sending data. Interfaces with internal
buffering connect the I/0 Processor to mass storage devices or to other
high-speed equipment. Several independent channels may share one DMA
port and this is done for some peripheral devices such as disk storage
units. A standard set of peripherals provide for supervisory control and
for maintenance: a tape drive, a line printer, and two operator
consoles. Cray Research interfaces connect I/0 Processors with front-end
or host computers for network operation. Appendix F lists the various
functions assigned to channels in a typical I/O Subsystem.

The Buffer Memory assists data transfer between peripheral devices and
the Central Processing Unit. Buffer memory stores 1 million to 8 million
words of 64 bits each, using single error correction/double error
detection (SECDED) data protection. All I/0 Processors share the Buffer
Memory. The Central Processing Unit is not directly connected to the
Buffer Memory. An I/0 Processor relays data between the Buffer Memory
and the CPU.

The I/0 Subsystem is housed in a 4-column chassis similar to the CPU
chassis. Figure 1-4 shows this chassis.

MASS STORAGE

The basic unit of mass storage for the CRAY-1 Series Computer Systems is
the DD-29 Disk Storage Unit (DSU). This is a 600 Mbyte disk drive having
a maximum data transfer rate of 35.4 Mbits per second.

Part 1
HR-0808 1-7 B

Fiqure 1-4., 1I/0 Subsvstem

Part 1
HR-0808 1-8

On Models S/250, S/500, and S/1000, up to four DD-29s can be connected to
one DCU-3 Disk Controller Unit (figure 1-5). A mass storage subsystem

composed of 2 to 8 DCU-3 Disk Controller Units and 2 to 32 Disk Storage
Units can be configured on the Models S/250, S/500, and S/1000. However,
the actual number of units depends on the number of available I/O channel
pairs (e.g., if 4 channel pairs are used from front-end computer systems,
including 1 for the MCU, the remaining 8 can be used for mass storage.)
Operating and programming information for the DCU-3 is included in CRI
Publication HR-0630.

On models S/1200 through S/4400, up to four DD-29s can be connected to
one DCU-4 Disk Controller Unit. The DCU-4 Controller Unit interfaces the
four disk units with the I/O Processor through two DMA ports. The I/O
Processor and the Disk Controller Unit are fast enough to keep all four
DSUs operating at full speed without missing data or skipping
revolutions. A minimum of 2 and a maximum of 48 DD-29s can be
configured. Figure 1-6 shows a DD-29 Disk Storage Unit. The DCU-4 Disk
Controller Unit is housed in the I/O Subsystem chassis.

Each DD-29 Disk Storage Unit has two ports for controllers. A second
independent data path to each disk storage unit may exist through another
Cray Research controller. Reservation logic is provided to control
access to each disk storage unit.

Operational characteristics of the DD-29 Disk Storage Units are
summarized in table 1-3. Further information about the DCU-4 and DD-29

is presented in part 3, section 7 of this publication.

Table 1-3. Characteristics of a DD-29 Disk Storage Unit

Bit capacity per 4.848 x 109 Maximum Latency 16.6 ms

drive

Tracks per surface 823 Access time 15 - 80 ms

Sectors per track 18 Data transfer rate 38.7 x 106
bits/s

Bits per sector 32,768

CPU words per sector 512

Head groups per drive 10 Bits per cylinder 5.9 x 106
Recording surfaces 40 CPU words per cylinder 92,160
per drive

Part 1

HR-0808 1-9 B

Figure 1-5. DCU-3 Disk Controller Unit

Figure 1-6. DD-29 Disk Storage Unit

Part 1
HR-0808 1-10

CONDENS ING UNITS

The condensing units contain the major components of the refrigeration
system used to cool the computer chassis. Heat is removed from the
condensing unit by a secondary cooling system that is not part of the
CRAY-1 Computer System. Figure 1-7 shows the condensing unit.

Figure 1-7. Condensing Unit

Part 1
HR-0808 1-11

POWER DISTRIBUTION UNITS

The Central Processing Unit, I/0 Subsystem, and disk controller units all
operate from 400 Hz 3-phase power. The Power Distribution Unit (PDU) for
the CPU contains adjustable transformers to regulate the voltage to each
power supply for the CPU. The PDU also contains temperature monitoring
equipment that checks temperatures at strategic locations on the CPU
chassis. Automatic warning and shutdown circuitry protect the mainframe
in case of overheating or excessive cooling. The control switches for
the motor-generators and the Condensing Unit are mounted on the CPU Power
Distribution Unit.

The Power Distribution Unit for the I/O Subsystem performs similar
functions for the I/0 Subsystem chassis.

The disk controller units have these functions built into the disk
controller unit cabinet.

Figure 1-8 shows the Power Distribution Units for the CPU and for the I/0
Subsystem.

~ B Lot

Figure 1-8. Power Distribution Units

Part 1
HR-0808 1-12 B

MOTOR-GENERATORS

The Motor-generators (MGs) units convert primary power from the
commercial mains to the 400 Hz power used by the computer system. They
isolate the system from transients and fluctuations on the commercial

] power mains. The equipment consists of two or three MGs and a control
cabinet. Figure 1-9 shows a Motor-generator and the control cabinet.

Figure 1-9. Motor-generator equipment

Part 1
HR-0808 1-13 B

SYSTEM CONFIGURATION 2

INTRODUCTION

Several combinations of the basic system components are supported in the
S Series of CRAY-1 Computer Systems. The Central Memory of the Central
Processing Unit (CPU) is available in several different sizes. The I/0
Subsystem is present on larger models in the S Series and consists of two
to four processors. The following paragraphs describe the models
available in the CRAY-1 S Series.

S/250, S/500, AND S/1000 MODELS

The S/500 has a 1/2-million-word Central Memory, and the S/1000 a
l1-million word Central Memory. The S/250, which is a discontinued model,
has a 1/4-million-word Central Memory. Figure 2-1 shows these types of

configurations.

PRINTER
MCU
1TO03 1703 CPU
FRONT-END seomenes FRONT-END % TO 1 MILLION
COMPUTERS INTERFACES 64-BIT WORDS

MASS STORAGE SUBSYSTEM
2TO 8 DCU-3 CONTROLLERS
2 TO 32 DD-29 DISK UNITS

Figure 2-1. Block diagram of S$/250, S/500, and S/1000 systems

HR-0808 2-1 B

All of these systems use the Maintenance Control Unit for supervision and
maintenance. This consists of a minicomputer supporting the standard
group of peripherals: a magnetic tape unit, a line printer, a removable
pack disk drive, and two operator consoles. The mainframe of the S/250,
S/500 and S/1000 models have eight chassis columns as standard. Up to
three front-end computer interfaces and up to 32 disk storage units can
be connected to the Central Processing Unit via the CRAY-1l I/O channels.

S5/1200, s/2200, S/4200 MODELS

The S/x200 systems all have the common characteristic of a 2-processor
I/0 Subsystem. They differ in size of the Central Memory: S/1200 has 1
million words; S/2200 has 2 million words; and S/4200 has 4 million
words. The S/1200 and S/2200 CPU chassis has 8 columns as standard. The
S/4200 CPU chassis has 12 columns as standard. Figure 2-2 shows a
configuration for these systems.

PRINTER

1 TO 3 FRONT-END COMPUTERS

1703
FRONT-END
INTERFACES PERIPHERAL

*~\\\\\\\\\\ EXPANDER
.,
cPU

1 0R 2 OR 4 MILLION

2 DISPLAYS

" 64.BIT WORDS

BUFFER MEMORY

1 TO 4 DCU-4 270 16 DD-29
CONTROLLERS DISK UNITS

Figure 2-2. Block diagram of S$/1200, S/2200, and S/4200 systems

Part 1
HR-0808 2-2 B

The Master I/0 Processor (MIOP) controls the front-end interfaces and the
standard group of station peripherals. The Peripheral Expander
interfaces the station peripherals to one DMA port of the MIOP. The
Master I/0 Processor also connects to the Buffer Memory and to the CPU
over a CRAY-1 channel pair. Data from the front-end computer goes to
Buffer Memory via the MIOP, and then to the CPU via the Buffer I/0
Processor. The Master I/0 Processor communicates with the CPU operating
system to coordinate the activities of the I/0 Subsystem.

The Buffer I/0 Processor (BIOP) is the main link between the Central
Processing Unit and the mass storage devices. Data from mass storage is
often transferred through the BIOP I/0 Memory to the Buffer Memory. Then
the data is returned to the BIOP I/0 Memory and sent to the CPU. The
BIOP is the only I/0 Processor having a standard Memory Channel to the
CPU. The Memory Channel operates at speeds of approximately 800 Mbits
per second. A second Memory Channel to another IOP is optional. A Model
S5/x200 supports up to 16 disk storage units.

s/1300, S/2300, S/4300 MODELS

The S/x300 systems all have the common characteristic of a 3-processor
I/0 Subsystem. They differ in size of the Central Memory: S/1300 has 1
million words; S/2300 has 2 million words; and the S/4300 has 4 million
words. The S/1300 and S/2300 CPU chassis has 8 columns as standard. The
S5/4300 CPU chassis has 12 columns as standard. These configurations are
the same as those described previously, except for the addition of a
third I/0 Processor. The third I/0 Processor can be used either to
control block multiplexer channels or to handle additional disk storage
units. These two configurations are shown in figures 2-3 and 2-4,
respectively.

The Auxiliary I/0 Processor (XIOP) used for block multiplexer channels
interfaces to a maximum of four BMC-4 Block Multiplexer Controllers, each
of which can handle up to four block multiplexer channels. The XIOP uses
one DMA port for each controller and another DMA port to connect with the
Buffer Memory. Thus, data flow from the block multiplexer channel goes
through the XIOP to the Buffer Memory, then from the Buffer Memory
through the Buffer I/O Processor to the CPU.

Part 1
HR-0808 2-3 B

PRINTER
1 TO 3 FRONT-END COMPUTERS

1703

FRONT-END

INTERFACES PERIPHERAL
' EXPANDER

2 DISPLAYS

AN CPU

1 0R 2 OR 4 MILLION

', 64.BIT WORDS

BUFFER MEMORY

1 TO 4 DCU4 270 16 DD-29
CONTROLLERS DISK UNITS

170 4
BLOCK MULTIPLEXER
CONTROLLERS

/

1TO 16 CHANNELS

Figure 2-3. Block diagram of S/1300, S/2300, and S/4300
systems with block multiplexer channels

When the third I/O Processor is used for additional disk storage units,
it is called a Disk I/0 Processor, or DIOP. This processor can handle up
to four disk controller units with up to 16 disk storage units. This
addition effectively doubles the mass storage capacity over that of the
S/X200 models--up to 32 disk storage units are possible. The disk data
is transferred through the DIOP into Buffer Memory and then to the
Central Processor through the Buffer I/0 Processor.

Part 1
HR-0808 2-4 B

PRINTER

1 TO 3 FRONT-END COMPUTERS

1TO 3
FRONT-END
INTERFACES PERIPHERAL

EXPANDER

2 DISPLAYS

CPU

1 0R 2 OR 4 MILLION

s, 54.BIT WORDS

BUFFER MEMORY

170 4 DCU4 | 27TO 16 DD-29
CONTROLLERS DISK UNITS

1TO4 DCU-4 | 17TO 16 DD-29
CONTROLLERS DISK UNITS

Figure 2-4. Block diagram of $/1300, S/2300, and S/4300
systems with increased disk capacity

S/1400, S/2400, S/4400 MODELS

The S/x400 systems all have the common characteristic of a 4-processor
I/0 Subsystem. They differ in the size of Central Memory: the S/1400
has 1 million words; the S/2400 has 2 million words; and the S/4400 has 4
million words. The S/1400 and S/2400 CPU chassis has 8 columns as
standard. The S/4400 CPU chassis has 12 columns as standard. Figures
2-5 and 2-6 show these configurations. In these configurations, the
third I/0 Processor is assigned to Block Multiplexer Controllers or disk
storage units and the fourth processor handles additional disk storage
units. A MIOP and a BIOP are used as in the configurations described
previously. These two configurations are shown in figure 2-5 for the
block multiplexer channels, and figure 2-6 for the increased disk
capacity. Each configuration is a permanent, factory-wired configuration.

Part 1
HR-0808 2-5 B

PRINTER
1 TO 3 FRONT-END COMPUTERS

1703
FRONT-END
INTERFACES PERIPHERAL

EXPANDER

2 DISPLAYS

i CPU
1 0CR 2 OR 4 MILLION
w 64-BIT WORDS

BUFFER MEMORY

1 7O 4 DCU4 2TO 16 DD-29
CONTROLLERS DISK UNITS

1704
BLOCK MULTIPLEXER
CONTROLLERS

/T \

1TO 16 CHANNELS

1TO4 DCU-4 1TO 16 DD-29
CONTROLLERS DISK UNITS

Figure 2-5. Block diagram of S/1400, S/2400, and S/4400
systems with block multiplexer channels

Part 1
HR-0808 2-6

1 TO 3 FRONT-END COMPUTERS

PRINTER

1703
FRONT-END
INTERFACES PERIPHERAL
\ EXPANDER

2 DISPLAYS

BUFFER MEMORY

1 TO 4 DCU-4

CONTROLLERS |

CPU

1 0R 2 OR 4 MILLION

64-BIT WORDS

2 TO 16 DD-29

DISK UNITS
1704 DCUL4 1TO 16 DD-29
CONTROLLERS DISK UNITS
1TO4 DCU4 170 16 DD-28
CONTROLLERS DISK UNITS

Figure 2-6. Block diagram of S/1400, S/2400, and S/4400
systems with increased disk capacity

When the third I/O Processor is used as an auxiliary I/0 Processor (XIOP)
for block multiplexer channels, it can handle up to 16 channels via a
maximum of four Block Multiplexer Controllers. Channel data flows to the
CPU via the Buffer Memory and the Buffer I/0 Processor.

When the third I/O Processor is used for expanded disk capacity, it is
called a Disk I/O Processor, DIOP. This configuration makes available
the maximum mass storage resource. Up to 48 disk storage units can be
controlled by a BIOP and two DIOPs.

HR-0808 2-7 B

MAINTENANCE CONTROL UNIT

The S/250, $/500, and S/1000 CRAY-1 Computer Systems are each equipped
with a 16-bit minicomputer system that serves as a maintenance tool and
Provides control for the system initialization. After the CRAY-1
operating system has been initialized and is operational, communication
with the Maintenance Control Unit (MCU) is via a software protocol. The
MCU is connected to a CRAY-1 channel pair with additional control signals
for execution of the master clear operation, I/0 master clear operation,
dead dump operation, and sample parity error operation. The Maintenance
Control Unit includes:

1. A 16-bit minicomputer with 32K words of 16-bit memory
2. A 132-column line printer

3. An 800 bpi 9-track tape unit
4, Two display terminals
5. A removable pack disk drive

Included with the MCU system is a software package that enables it to
serve as a local batch station during production hours. As a local
station, it may be used to submit diagnostic routines for execution or to
submit other batch jobs. These diagnostics are typically stored on the
local disk and are submitted to the CRAY-1 by operator command.

The system initialization procedure is referred to in this manual as the
deadstart sequence. This sequence is described in detail with the CPU

control section.

Detailed information about the MCU is presented in separate publications.

INTERFACES TO FRONT-END COMPUTER

A front-end computer system is a self-contained system that executes
under the control of its own operating system. The CRAY-1 computer
systems is interfaced to one or more front-end computer systems that
provide input data to the CRAY-1 Computer System and receive output from
the CRAY-1 to be distributed to a variety of peripheral equipment. The
interfaces compensate for differences in channel widths, machine word
size, electrical logic levels, and control protocols. The MIOP
communicates through a CRAY-1 I/0 channel pair to a channel adapter
module in the CPU chassis. The channel adapter module drives long cables
of up to 300 feet. The interface cabinet is usually placed near the
front-end computer; the CRAY-1 and the front-end computer cables connect
to the interface cabinet. The standard interfaces are described in part
2, section 7.

Part 1
HR-0808 2-8 B

A primary goal of the interface is to maximize the utility of the
front-end channel connected to the CRAY-1. Such a channel is generally
slower than CRAY-1l channels.

Peripheral equipment attached to the front-end computer varies depending
on the use of the System.

A front-end computer may service the CRAY-1 in the following ways:
e As a local operator station
® As a local batch entry station

® As a data concentrator for multiplexing several other stations
into a single CRAY-1l channel

e As a remote batch entry station

Detailed information about the front-end system is not presented in this
publication.

SYSTEM OPERATION

The overall system consists of the components as described previously,
the communication paths among them, and the software that moves the data
within the devices. The following paragraphs briefly describe the system
communication and job flow for systems that include an I/O Subsystem.
Following that is a description of the deadstart process used to bring
the system to an operational state.

I/0 SUBSYSTEM COMMUNICATION

The CRAY-1 S Series system provides communication paths between the
Central Processing Unit and two I/0 Processors, between each 1/0
Processor and the Buffer Memory, and among all the I/0 Processors. The
arrangement is shown in figqure 2-7.

Communication between the Central Processing Unit and the I/0 Processors
is over one approximately 50 Mbits per second CRAY-1 I/0O channel pair to
the Master I/0 Processor, and over one approximately 850 Mbits per second
Memory Channel to the Buffer I/O Processor. The CRAY-1 I/O channel pair
is used for exchanging system control information with the Master IOP,
while the Memory Channel transfers data through the Buffer IOP.

Part 1
HR-0808 2-9 B

One DMA port of each I/0 Processor is connected with the Buffer Memory
through an approximately 800 Mbit/second channel. The Buffer Memory is

used to organize data from one I/0 Processor and store it until the
Buffer I/O Processor can remove that data and pass it to the Central
Processing Unit. 1In this way, each I/0 Processor communicates with every
other I/0 Processor in high-speed data block transfers.

Additionally, each I/O Processor is connected with the other I/0
Processors by slower channels called "accumulator channels". These
channels pass one 16-bit parcel at a time from the accumulator of one I/0O
Processor to the accumulator of another 1/0 Processor. These are used
primarily for control and status reporting.

Any errors occurring in the system memories or Memory Channel are
reported to the Master I/0 Processor via special error channels that are
separate from the data channels. Thus all error handling for the system
is initiated by the Master 1/0 Processor.

The resulting communications network among the processors speeds the flow
of data from the front-end computers, peripheral devices and mass storage
units; it stores the data as necessary; and it passes the data to the
CPU. The network also facilitates transfer of results from the CPU to

the final destination.

Part 1
HR-0808 2-10 B

BUFFER MEMORY

HR-0808

|]

eoeeeee 50 Mbit/s CRAY-1 I/0 Channel Pair
o e e a Approx. 800 Mbit/s Memory Channel
Approx. 800 Mbit/s DMA channel

—— ACcumulator channel

Figure 2-7. I/0 Subsystem communication

Part 1
2-11

A-0l26

cpPU

JOB FLOW

Figure 2-8 shows a simplified view of the job flow within the system;
numbers index the sequence of operations. Jobs originate in the
front-end computer network, with the front-end computer passing (1) job
control statements, programs, and data files to the Master I/O

Processor. The Master I/0 Processor transfers the job (2) to the Buffer
Memory. The MIOP informs the CRAY-1 Operating System (3) of the
existence of data in the Buffer Memory. The CRAY-1 Operating System
stores data by a request (4) to the MIOP to have the DIOP store the

data. The MIOP commands the Disk I/O Processor (5) to transfer data from
the Buffer Memory (6) to mass storage (7).

The operating system analyzes the resources required for the job, and
when these are available, calls the Master I1/0 Processor for the job
(8). The MIOP tells the DIOP (9) to bring the job in from mass storage
(10) and store it in Buffer Memory (11) for transfer to the Buffer IOP.
As soon as possible, the Buffer IOP begins transferring the job from
Buffer Memory (12) to its own I/0 Memory and then to the Central
Processing Unit (13) over the Memory Channel. When the transfer is
complete, the CPU begins executing the job control statements.

Several transfers to and from mass storage may be necessary during job
execution. Output from the job is sent to mass storage (14 - 20), and
when the job is finished, the MIOP is notified. The Master I/O Processor
tells the Disk I/O Processor (21) to bring in the results from mass
storage (22) and place them in Buffer Memory (23). The operating system
tells the MIOP (24) to take data from the Buffer Memory (25) and pass it
to the front-end computer (26).

4 8
o5 |-l EIEIT:

5

3 9
| 2 6 7 10 I 12 13
[FEC HMIOPH BM l—.[DIOPH MSHDIOP*—’{ BM HBIOP I—-—D‘ CcpPU I

IMIOP 0s

24 21 18

22 20 | 17 16
FEC ‘26 MIOP 25 BM -23 DIOP MS DIOP ° BM BIOP = CPU

L-0r044

Figure 2-8. Job flow diagram

Part 1
HR-0808 2-12 B

DEADSTART

A model S/1200 through S/4400 system is initially started from a magnetic
tape bootstrap which loads into the memory of the Master 1/0 Processor.
This program is enough to load further software from the tape and store
it in Buffer Memory. When the Buffer Memory has the deadstart program,
the Master I/O Processor commands the Buffer I/0 Processor to deadstart
from Buffer Memory. The Buffer I/0 Processor loads the program which
enables it to load further program data from a disk storage unit. The
disk data is passed through the Buffer Memory to the Master I/0 Processor
which can completely initiate the I/O Subsystem. Then, under control of
the Master I/O Processor, the main portion of the operating system is
loaded into the Central Memory and the system becomes operational.

Tnitial installation of the deadstart program and operating system on the
disk storage unit is done by maintenance personnel from magnetic tape.

In the case of a failure in the Master I/O Processor, a maintenance
deadstart panel can be used to load a deadstart or diagnostic program
into the Master or Buffer I/0 Processor.

For a Model S/250, S/500, or S/1000 system using a Maintenance Control
Unit, deadstarting occurs from the removable-pack disk storage unit
through the minicomputer. The main operating system is then loaded from
the same disk storage unit into Central Memory. This operation is
described with the control section of the Central Processing Unit.

Part 1
HR-0808 2-13 B

PART 2

CENTRAL PROCESSING UNIT

GENERAL INFORMATION

INTRODUCTION

The Central Processing Unit (CPU) is the computer that executes programs,
runs user Jjobs, and oversees the job flow within the CRAY-1 S Series
Computer System. Scalar and vector processing capabilities are combined
with large, fast Central Memory and high-volume I/O channels. Figure 1-1
represents the basic organization of the Central Processing Unit. The
memory is expandable from one-quarter million to four million words of
64-bits each. The Memory Channels are used for high-speed data transfers
to and from I/0 Processors in the I/O Subsystem. Twelve I/O channel
pairs provide access to front-end computers, mass storage controllers,
and to the I/0 Subsystem.

CONTROL COMPUTATION SECTION

SECTION | o Registers

® Functional units

e Instruction
buffers

e Contro]l
registers

n
|

|

|

|

|

|

|

|

|

|

|

' ® Exchange MEMORY SECTION
' mechanism

| — 0.25 M to 4 M

! ® Interrupt 64-bit bipolar words
| systen ‘

|

[

|

!

|

|

|

I

[

|

e Real-time
clock

® Program-
able clock I/O SECTION
] ® 12 1/0 channel pairs

® 1 or 2 Memory channels

Figure 1-1. Basic organization of the CPU

Part 2
HR-0808 1-1 B

The following paragraphs provide additional general information about the
four sections of the CPU; later sections describe the features in greater

detail.

Figure 1-2 illustrates the components of the CPU and presents a
generalized view of the flow of data in the system.

REGISTER CONVENTIONS

Frequent use is made in this manual of parenthesized register names.
This is shorthand notation for the expression "the contents of register

- For example, "Branch to {P)" means "Branch to the address
indicated by the contents of the program parcel counter, P."

Extensive use is also made of subscripted designations for the A, B, S,

T, and V registers. For example, “"Transmit (Tjk) to Si" means "Transmit
the contents of the T register specified by the jk designators to the S
register specified by the i designator."

In this manual, register bit positions are numbered from right to left as
powers of 2, starting with bit 20, Bit 283 of an S, V, or T register

value represents the most significant bit in the operand. Bit 223 of
an A or B register value represents the most significant bit in the

operand.

NUMBER CONVENTIONS

Unless otherwise indicated, numbers in this manual are decimal numbers.

Octal numbers are indicated with an 8 subscript. Exceptions are register
numbers, channel numbers, and instruction forms, which are given in octal

without the subscript.

CLOCK PERIOD

The basic unit of CPU computation time is 12.5 nanoseconds and is
referred to as a clock period (CP). Instruction issue, memory
references, and other timing considerations are often measured in clock

periods.

Part 2
HR-0808 1-2 B

Memory

Vector Registers

HR-0808

Figure 1-2.

Part

2

0
Pop/Parity
((A0)+(AK)) 1 Logical
Add
Vector
Sj Functional
Vo - Vi Units
vk - e« Ak
|] / Vi ||
- "
vi Recip. Appr
I Multipl
77 ply
Add
Vector
Control Vk
y S Vi Floating
r Vector Mask I~ Si | Point
. S | Functional
- 1] .
r Real-Time Clock [Units -
I Sk
Sj -
[Prog. Clock Int. Lr J
Scalar Registers
AK
Logical
Add
Scalar
Functional
Exchange Units
Control -
Vector
XA Control .
Address Registers Vector ak
Length
Ak
| Multiply
Add
Address
Functional
Units
Ak Y Ai Ak §
—_ _]
'LT_—L_I' ——|———'|I' ———‘——u‘ 31y
I_I: P = =
| —— |
2 1 :ll ——'—‘!lll d
1 i H T
] | /
00 H |l I ’ B-00794
0] | [ea] Lo J°,-
: 1 i * The vector population count
| 1 1/0 ' functional unit shares its
| Y control v input path with the Reciprocal
I Approximation unit. Therefore,
|' N chaining of these units can
- > NIP H cIp I only be done with great care.
H
I— i “* Execution
LIP -——
17 Instruction
Buffers

Control and data paths in the CPU

MEMORY SECTION

The memory for the CRAY-1l consists of 8 or 16 banks of bipolar LSI
memory. Four memory size options are available: 524,288 or 1,048,576 or

2,097,152 or 4,194,304 words. A 226,144-word memory is no longer
available. Each word is 72 bits--64 data bits and 8 check bits. The
banks are independent of each other.

Sequentially addressed words reside in sequential banks. The memory
cycle time is 4 CPs (50 ns). The access time, that is, the time required

to fetch an operand from memory to an operational register, is 11 CPs
(137.5 ns). There is no inherent memory speed degradation for l6-bank
memories of less than 4 million words.

The maximum transfer rate for B, T, and V registers is one word per CP.
For A and S registers, it is one word per 2 CPs. Transfer of
instructions to the instruction buffers occurs at a rate of 16 parcels
(four words) per CP.

Thus, the CPU memory sizes support the requirements of scientific
applications, while the low cycle time is well suited to random access
applications. The phased memory banks allow high communication rates
through the I/O section and provide low read/store times for vector

registers.

Table 1-1 summarizes the features of the CPU memory section. CPU Memory
is described in detail in section 2.

Table 1-1. Characteristics of the CPU memory section

- From 0.25M to 4M words of bipolar integrated circuit memory
- 64 data bits and 8 error correction bits per word

- 8 or 16 interleaved banks

- 4 CP bank cycle time

- 1 word per CP transfer rate to B, T, and V registers

- 1 word per 2 CP transfer rate to A and S registers

- 4 words per CP transfer rate to instruction buffers

- Single error correction/double error detection (SECDED)

CONTROL SECTION

The control section performs all decisions related to instruction issue
and coordinates the activities for the three types of processing:

address, scalar, and vector.

Part 2
HR-0808 1-4 B

The control section executes 128 basic instruction codes as either
16-bit (1 parcel) or 32-bit (2 parcel) instructions and provides for
register reservation, memory field protection, memory access, and

interrupt control.

Table 1-2 summarizes features of the control section. This section is
described in greater detail in section 3.

Table 1-2. Characteristics of the CPU contrcl section

12.5 nanosecond clock period (CP)

— 4 instruction buffers of 64 16-bit parcels each

128 basic instruction codes

- Program exchange mechanism

Error/monitor interrupt flags

Memory and program field protection

COMPUTATION SECTION

The computation section contains registers and functional units that
operate together to execute a program of instructions stored in memory.

Eight address (A) registers are used to store 24-bit integers or
addresses. Sixty-four intermediate address (B) registers store data
for use by the A registers. Eight scalar (S) registers store 64-bit
operands for scalar operations. Sixty-four intermediate (T) registers
store data temporarily for the S registers. Eight vector (V)
registers are made up of 64 elements in each register. Each element
stores one 64-bit operand. The vector registers are used in vector
processing.

A series of operands can be an ordered set, called a vector. A vector
instruction operates on a series of operands, doing the same function

repetitively, and producing a series of results. Scalar processing

starts an instruction, handles one operand or operand pair, then stops
the operation. The main advantage of vector over scalar processing is
the elimination of the instruction start-up time for all but the first

operand.

Arithmetic operations are integer or floating-point. Integer
arithmetic is performed in twos complement mode. Floating-point
gquantities have signed magnitude representation.

Part 2
HR-0808 1-5

Floating-point instructions provide for addition, subtraction,
multiplication, and reciprocal approximation. The reciprocal

approximation instructions allow a floating-point divide operation using
a multiple instruction sequence. These instructions produce 64-bit
results.

Integer or fixed-point operations are provided as follows: integer
addition, integer subtraction, and integer multiplication. An integer
multiply operation produces a 24-bit result; additions and subtractions
produce either 24-bit or 64-bit results. No integer divide instruction
is provided; the operation is accomplished through a software algorithm
using floating—-point hardware.

The instruction set includes Boolean operations for OR, AND, equivalence,
and exclusive OR and for a mask-controlled merge operation. Shift
operations allow the manipulation of either 64-bit or 128-bit operands to
produce 64-bit results. With the exception of 24-bit integer arithmetic,
most operations are implemented in vector as well as scalar

instructions. The integer product is a scalar instruction designed for
index calculation. Full indexing capability allows the programmer to
index throughout memory in either scalar or vector modes. The index may
be positive or negative in either mode. This allows matrix operations in
vector mode to be performed on rows or the diagonal as well as
conventional column-oriented operations.

Population and parity counts are provided for both vector and scalar
operations. Additionally, scalar operations may include leading zero
counts.

Table 1-3 summarizes the characteristics of the CPU computation section.

Table 1-3. Characteristics of CPU computation section

- Integer and floating-point arithmetic

- Twos complement integer arithmetic

- Sign and magnitude floating—-point arithmetic

- Address, scalar, and vector processing modes

- Thirteen functional units

- Eight 24-bit address (A) registers

- Sixty-four 24-bit intermediate address (B) registers
- Eight 64-bit scalar (S) registers

- Sixty-four 64-bit intermediate scalar (T) registers

- Eight 64-element vector (V) registers, 64 bits per element

Part 2
HR-0808 1-6 B

INPUT/OUTPUT SECTION

One or two Memory Channels transfer data between Central Memory and the
Buffer I/O Processor. Each channel is 64 bits wide and uses 8 check bits
with each word. Data words are transferred in blocks of 16 under control
of Data Ready and Data Transmit control signals. A maximum transfer rate
of approximately 850 Mbits per second is possible on this channel.

Normal input and output communication with the CPU is over 12 full duplex
16-bit channel pairs. Associated with each channel are control lines

that indicate the presence of data on the channel.

Table 1-4 summarizes features of the channels in the CPU input/output
section. Channels are described in detail in section 5.

Table 1-4. Characteristics of the CPU input/output section

Up to twelve I/0 channel pairs; 50 or 160 Mbits/s maximum rate
- Four channel groups containing either 6 input or 6 output channels

- Channel groups served equally by memory (scans each group every 4
CPs)

-~ Channel priority resolved within channel groups
- 16 data bits, 3 control bits, and 4 parity bits in each direction

- Lost data detection

One or two Memory Channels; approx. 800 Mbits/s maximum rate each

- 64 data bits, 3 control bits, and 8 check bits in each direction

HR-0808 1-7 B

CENTRAL MEMORY SECTION 2

INTRODUCTION

The Central Memory of the CPU consists of 8 or 16 banks of bipolar LSI
memory. Four memory sizes are available:

524,288 words - 8 banks,

1,048,576 words - 8 banks,
2,097,152 words - 8 banks,
4,194,304 words - 16 banks.

The banks are independent of each other. A 262,144-word 8-bank memory is
no longer available.

MEMORY CYCLE TIME

The memory cycle time is 4 CPs (50 ns). The access time, that is, the
time required to fetch an operand from memory to an operational register,

is 11 CPs (137.5 ns).

MEMORY ACCESS

The Central Memory of the CPU is shared by the computation section and
the I/0 section. A single port access is provided.

Because of the interleaving scheme used to address the independent banks,
it is possible to reference memory every clock period with a new

request. It is not possible, however, to reference any one bank sooner
than its 4-CP cycle time. Trying to reference a bank more often than

every 4 CPs causes memory conflicts. These conflicts are handled in an
orderly, predictable manner.

Block transfers require all memory requests to be completed before the
block transfers can issue. Once issued, they inhibit all other memory

requests. Multiple block transfers cannot issue without allowing one
waiting I/0 reference to complete. The maximum duration of a lockout

caused by block transfers is one block length.

Part 2
HR-0808 2-1 B

Vector block transfers may conflict with themselves. Therefore, the
vector logic provides for identifying these conditions (speed control)

and for slowing or disallowing the vector operations that would be
affected by the slowed memory referencing rate. The vector logic

identifies 1/4 speed (4 CPs), 1/2 speed (2 CPs), and full speed (1 CP)
data rates from memory.

Fetch operations bring instructions from Central Memory to the
instruction buffers. Fetch operations require completion of all other
types of memory references before the fetch operations reference memory.
Once the fetch request is honored, all other types of memory reference

are inhibited.

Exchange operations require memory to be quiet before referencing
memory. After the exchange has issued, all other memory references are

inhibited.

Scalar and I/0 memory references are examined in three registers for
possible memory conflicts. These three registers contain the low-order
bits of each of the referenced memory addresses. These registers, plus
the address register, represent the 4 CPs between referencing any one
bank. The first register is rank A, the second is rank B, and the third
is rank C. At each clock period, the contents of the registers are
shifted down one rank until they are discarded unless a conflict arises,
in which case the conflicting address is held in rank B until the

conflict is resolved.

I/0 requests are tested against ranks A, B, and C. Coincidence with rank
A, B, or C disallows the request. An I/O request that is disallowed must
wait 8 CPs before it can request again.

The following conditions must be present for an I/0O memory request to be
processed:

1. I/0 request
2. No coincidence in rank A, B, or C

3. No scalar memory reference in CP 2 of its
sequence (scalar priority over I/0)

4. No fetch request
5. No 176, 177, or 034 through 037 instruction in progress
6. No exchange sequence or request

7. No 033 request (not a memory conflict)

Scalar instruction memory reguests are tested in ranks A, B, and C for
- -

memory conflicts. Scalar instructions have priority over I/0 requests
arriving in memory in the same cloCk period.

Part 2
HR-0808 2-2 B

A scalar conflict in rank A (CP 2 of a scalar instruction) causes a hold
storage on this instruction for 3 CPs. At the same time, a hold issue

signal blocks the issue of another scalar reference instruction. The
only memory conflict that may occur in rank A is a scalar reference
conflicting with a previous I/O reference. It is not possible for a
scalar to conflict with a scalar in rank A because it takes 2 CPs to
issue a scalar reference instruction.

A scalar conflict in rank B (CP 3) causes a hold storage on this
instruction for 2 CPs. Also, a hold issue signal blocks issue of another

scalar reference instruction.

A scalar conflict in rank C (CP 4) causes a hold storage on this
instruction for 1 CP. There is also a hold issue signal, which blocks

issue of another scalar reference instruction.

The Memory Channel shares the same access with the normal I/0 channels,

but the normal I/O channels have priority. The Memory Channel operates
in blocks of 16 words with a 1-CP pause between blocks to allow other

memory operations to break the Memory Channel transfer.

Under normal operating conditions on codes performing a mix of vector and
scalar instructions, the memory access supports four disk and three
interface channel pairs without degrading the CPU computation rate.
However, a single program requiring memory access continuously will be
measurably degraded by maximum I/O transfer conditions. This degradation
is caused by the delays imposed on the issue of vector memory
instructions because block transfers require memory quiet before issue.

MEMORY ORGANIZATION

Central Memory is organized into 8 or 16 banks to minimize memory
conflicts and to exploit the speed of the memory chips. In a l6-bank
machine, each bank occupies half a column and contains 72 modules. Each
module contributes one data or check bit to each 72-bit word in the bank:
a memory word consists of 64 data bits and 8 check bits.

The 8-bank organization is standard on the 8-column mainframes. The
16-bank phasing is standard on the S/4200 and larger mainframes. A
maintenance feature for all 16-bank systems permits them to operate with
only 8 banks using either the left or right half of memory. This is
accomplished by installing two special modules and setting the bank
select switch (on the Power Distribution Unit) to the left or right banks.

Part 2
HR-0808 2~-3 B

MEMORY ADDRESSING

A word in a l6-bank memory is addressed in a maximum of 22 bits as shown
in figure 2-1. The low-order 4 bits specify one of the 16 banks. The
next field specifies an address within the chip. The high-order bits
specify one of the chips on the module.

521 23 20

chip bit address 4-bit
address in chip bank

Figure 2-1. Memory address (16 banks)

A word in an 8-bank memory is addressed in a maximum of 21 bits as shown
in figure 2-2. 1In this case, the low-order 3 bits specify one of the
eight banks. The next field specifies an address within the chip. The
high-order bits specify one of the chips on the module.

220 22 20

chip bit address 3-bit
address in chip bank

Figure 2-2. Memory address (8 banks)

SPEED CONTROL

For vector read and vector store instructions, the low-order 4 bits of
(Ak) determines speed control (table 2-1).

Table 2-1. Vector memory rate x 80 x 106 references per second

-Increment or multiple in (Ak)
Phasing | ;-3 4 5-7 8 9-11 12 13-15| 16
8-bank 1 1/2 1 1/4 1 1/2 1 1/4
16-bank 1 1 1 1/2 1 1 1 1/4
Part 2

HR-0808 2-4 B

For eight banks, incrementing by eight places causes successive
references in the same bank so that a word is transferred every 4 CPs.

If (Ak) is incremented by 4, an 8-bank memory transfers words every 2 CPs.

8-BANK PHASING

A l6-bank system can be readily modified to run on either the right or
left 8 banks for maintenance purposes. This is accomplished by replacing
two modules and setting the bank select switch on the Power Distribution
Unit to the right or left banks. If the situation warrants it, the
machine can continue running on one half of memory while repairs are made
to the other half.

The effect of 8-bank phasing on instruction fetches is a predictable
increase of 4 CPs for filling an instruction buffer. Otherwise, the

amount of performance degradation for 8 banks as compared with 16 banks
is not readily predictable since it largely results from an increase of

memory conflicts.

For other differences, refer to the preceding paragraphs on Memory
Addressing and Speed Control.

MEMORY ERROR CORRECTION

An error correction and detection network between the CPU and memory
assures that the data written into memory can be returned to the CPU with
consistent precision (figure 2-3).

o]
ERROR CORRECT
DATA BITS —— MEMORY ————p» DATA MERGE ———® 5 DATA FANOUT |—™ CPU
63
/64
CHECK BITS \—' —————» ERROR DETECT A-0063
i

Figure 2-3. Memory data path with SECDED

HR-0808 2-5 B

The network operates on the basis of single error correction, double
error detection (SECDED). If 1 bit of a data word is altered, the single
error alteration is automatically corrected before passing the data word
to the computer. If 2 bits of the same data word are altered, the double
error is detected but not corrected. 1In either case, the CPU may be
interrupted depending on interrupt options selected to prevent incorrect
data from contaminating a job. For 3 or more bits in error, results are
ambiguous.

The SECDED error processing scheme is based on error detection and
correction codes devised by R. W. Hamming§. An 8-bit check byte is
appended to the 64-bit data word before the data is written in memory.
The 8 check bits are each generated as even parity bits for a specific
group of data bits. Figure 2-4 shows the bits of the data word used to
determine the state of each check bit. An X in the horizontal row
indicates that data bit contributes to the generation of that check bit.
Thus, check bit 254 is the bit making group Farit¥ even for the group
of bits 2%, 23, 25, 27, 29, 211, 2137 215,217, 219 221, 223,

225, 227, 229, and 231 through 2°5.

The 8 check bits are stored in memory at the same location as the data
word. When read from memory, the same 72-bit matrix of figure 2-4 is
used to generate a new set of parity bits, which are even parity bits of
the data word, and the old check bits. The resulting 8 parity bits are
called syndrome§§ bits (S bits), shown as bits 64 through 71 in figure
2-4. The states of these S bits are all symptoms of any error that
occurred. If all syndrome bits are 0, no memory error occurred.

Any change of state of 1 data bit will cause an odd number of syndrome
bits to be set to 1. An error in two columns changes the parity states

of an even number of bit groups. Therefore, a double error appears as an
even number of syndrome bits set to 1.

The matrix is designed so that SECDED decodes the syndrome bits and
determines the error condition using the following five rules:

1. If all syndrome bits are 0, no error occurred.

2. If only 1 syndrome bit is 1, the associated check bit is in
error.

§ Hamming, R.W., "Error Detection and Correcting Codes”, Bell System
Technical Journal, 29, No. 2, pp. 147-160 (April, 1950).

§§ Syndrome: Any set of characteristics regarded as identifying a certain
type, condition, etc. Websters New World Dictionary.

Part 2
HR-C0808 2-6 B

3. If more than 1 syndrome bit is 1 and the parity of all syndrome
bits SO0 through S7 is even, then a double error (or an even number

of bit errors) occurred within the data bits or
check bits.

4. If more than 1 syndrome bit is 1 and the parity of all syndrome
bits is odd, then a single and correctable error is assumed to
have occurred. The syndrome bits can be decoded
to identify the bit in error.

5. If 3 or more memory bits are in error, the parity of all syndrome
bits is odd and results are ambiguous.

CHECK BYTE

271 270 269 268 267 266 265 64 263 562 561 260 59 558 557 356 255 25k 553 252 551 550 543 548
s0 x X X x x b X X x
Sl X X X X X X X X X
S2 x X X X X X X X X X X b3 X X x X X
s3 X X X X X X X X X X X X X X X X X
s4 b4 X X X x X x X X
S5 x X X X X X X X X
s6 X X X X X X x x x
s7 x X x X x x x x X

247 46 U5 il H43 542 54l 540 239 238 237 236 235 534 533 532 231 230 529 528 527 326 25 24
S0 x X X X X X X X X X X X X X X X x x X X
sl x x X X X X X X X X X X X X X X X X X X
s2 X X X X X X X X X X X
S3 x X X X X b4 X b4 X X X
s4 x b4 X X X X X X
s5 x b3 X X X X X % b4 x X x X X
S6 x X X X X X X X X X X X X X
s7 x X X X X X X X X X X X X X

223 222 321 3208 518 518 317 316 215 21% 213 512 511 510 23 58 27 268 25 % 23 22 1 0
s0 x X X X X X X X X X X X
sl x x X X X X x X x x X X
S2 x x X X X X X X X X
S3 x X X x X X x x
sS4 x X X X X X X X X X X X X X X X b X X x
s5 X X X X X X b X x X X X X
S6 x x X X X X x X X X X X X X X X
s7 x x X x b4 X X x X b3 x b4 X X X x

B-o072

Figure 2-4. Error correction matrix

Part 2
HR-0808 2-7 B

CPU CONTROL SECTION 3

INSTRUCTION ISSUE AND CONTROL

This section describes the instruction buffers and registers involved
with instruction issue and control. Figure 3-1 illustrates the general ’
flow of instruction parcels through the registers and buffers.

P '<ﬁ]
L-+|

T
I
|_"_' I
3 |
2 I
I |
00 0 :
|
|
|
NIP - CIP
1
e
EXECUTION
LIP pm—m—m———— -
INSTRUCTION
17 BUFFERS A-0070

Figure 3-1. Instruction issue and control elements

P REGISTER

The P register is a 24-bit register which indicates the next parcel of
program code to enter the next instruction parcel (NIP) register in a
linear program sequence. The high-order 22 bits of the P register
indicate the word address for the program word in memory. The low-order
2 bits indicate the parcel within the word. The contents of the P
register are normally advanced by 1 as each parcel successfully enters
the NIP register. The value in the P register normally corresponds to
the parcel address for the parcel currently moving to the NIP register.

Part 2
HR-0808 3-1 B

The P register is entered with new data on an instruction branch or on an
exchange sequence. The contents of P are then advanced sequentially

until the next branch or exchange sequence. The value in the P register
is stored directly into the terminating exchange package during an
exchange sequence.

The P register is not master cleared. An indeterminate value is stored
in the terminating exchange package at address 0 during the deadstart
sequence.

NIP REGISTER

The NIP (next instruction parcel) register is a 16-bit register that
holds a parcel of program code prior to entering the CIP register. A
parcel of program code that has entered the NIP register must be
executed. There 1s no mechanism to discard 1it.

The NIP register is not master cleared. An undetermined instruction may
issue during the master clear interval before the interrupt condition
blocks data entry into the NIP register.

CIP REGISTER

The CIP (current instruction parcel) register is a 16-bit register that
holds the instruction waiting to issue. If this instruction is a
2-parcel instruction, the CIP register holds the upper half of the
instruction and the LIP holds the lower half. Once an instruction enters
the CIP register, it must issue. Issue may be delayed until previous
operations have been completed but then the current instruction waiting
for issue must proceed. Data arrives at the CIP register from the NIP
register. The indicators which make up the instruction are distributed
to all modules which have mode selection requirements when the
instruction issues.

The control flags associated with the CIP register are generally master
cleared; the register itself is not. An undetermined instruction will
issue during the master clear sequence.

LIP REGISTER

The LIP (lower instruction parcel) register is a 16-bit register that
holds the lower half of a 2-parcel instruction at the time the 2-parcel
instruction issues from the CIP register.

Part 2
HR-0808 3-2 B

INSTRUCTION BUFFERS

The CPU has four instruction buffers, each of which holds 64 consecutive
16-bit instruction parcels (figure 3-2). Instruction parcels are held in
the buffers prior to being delivered to the NIP or LIP registers.

The beginning instruction parcel in a buffer always has a word address
that is a multiple of 208, (that is, a parcel address that is a
multiple of 100g) « This allows the entire range of addresses for
instructions in a buffer to be defined by the high-order 18 bits of the
beginning parcel address. For each buffer, there is an 18-bit beginning
address register that contains this value.

The beginning address registers are scanned each clock period. If the
high-order 18 bits of the P register match one of the beginning
addresses, an in-buffer condition exists and the proper instruction
parcel is selected from the instruction buffer. An instruction parcel to
be executed is normally sent to the NIP. However, the second half of a
2-parcel instruction is blocked from entering the NIP and is sent to the
LIP instead, and is available when the upper half issues from the CIP.

At the same time, a blank parcel is entered into the NIP.

l |
[' l I I l I 7 A-0/39
o] | 2 3 1717
2 s s |7 {111
(o o |2 |]
e s e []
ENEENEN
ENENENESIn
ENENENEN
ENENENESIN
" 20 e [a2z | a3 ||
"aa | as | ae | a7 |11
e b —_—] 4 4
50 51 52 53
_;;__§;——a;—_a:—.”-
oo | e |2 | &5 || e nurrers
[e+ | o5 [es | o7 || fe——ourrene
70 71 72 73 ¢—— BUFFER |
_;4-__7_5')——_;6_—_;7_ l<¢——— BUFFER O

Figure 3-2 Instruction buffers

Part 2
HR-0808 3-3 B

On an in-buffer conditon, if the instruction is in a different buffer
than the previous instruction, a change of buffers occurs, normally

necessitating a 2-CP delay of issue.

An out-of-buffer condition exists when the high~order 18 bits of the P
register do not match any instruction buffer beginning address. When
this conditon occurs, instructions must be loaded into one of the
instruction buffers from memory before execution can continue. The
instruction buffer that receives the instructions is determined by a
2-bit counter. Each occurrence of an out-of-buffer condition causes the
counter to be incremented by 1 so that the buffers are selected in

rotation.

Buffers are loaded from memory four words per CP, an operation that fully
occupies memory. The first group of 16 parcels delivered to the buffer
always contains the instruction required for execution. For this reason,
the branch out-of-buffer time is an apparent constant 11 CPs for 1l6-bank
memories and 15 CPs for 8-bank memories.

An instruction buffer is loaded with one word of instructions from each
of the 16 memory banks or two words from each of 8 banks. The first four
instruction parcels residing in an instruction buffer are always from
bank 0.

An exchange sequence voids the instruction buffers by setting their
beginning address registers to all ones. This prevents a match with the
P register and causes the buffers to be loaded as needed.

Both forward and backward branching is possible within the buffers. A
branch does not cause reloading of an instruction buffer if the
instruction being branched to is within one of the buffers. Multiple
copies of instruction parcels cannot occur in the instruction buffers.
Because instructions are held in instruction buffers prior to issue, no
attempt should be made to dynamically modify instruction sequences. As
long as the unmodified instruction is in an instruction buffer, the
modified instruction in memory will not be loaded into an instruction
buffer.

Although optimization of code segment lengths for instruction buffers is
not a prime consideration when programming the CPU, the number and size
of the buffers and the capability for both forward and backward branching
can be used to good advantage. Large loops containing up to 256
consecutive instruction parcels can be maintained in the four buffers, or
as an alternative, a main program sequence in one or two of the buffers
could make repeated calls to short subroutines maintained in the other
buffers. The program and subroutines remain in the buffers undisturbed
as long as no out-of-buffer condition causes a buffer to be reloaded.

HR-0808 3~4 B

EXCHANGE MECHANISM

Exchange mechanism refers to the technique employed in the CPU for
switching instruction execution from program to program. This technique
involves the use of blocks of program parameters known as eXchange
packages and a CPU operation referred to as an exchange sequence.

Throughout the discussion of the exchange package, an alternate bit
position representation is used. The bits are numbered from left to

right with bit 0 assigned to the 263 bit position. This notation is
for the convenience of CAL programmers.

EXCHANGE PACKAGE

An exchange package (figure 3-3) is a l6-word block of data in memory
which is associated with a particular computer program. It contains the
basic parameters necessary to provide continuity from one execution
interval for the program to the next. These parameters consist of the

following:

Program address redgister (P) - 24 bits
Base address register (BA) - 18 bits
Limit address register (LA) - 18 bits
Mode register (M) - 4 bits

Exchange address register (XA) - 8 bits
Vector length register (VL) - 7 bits

Flag register (F) - 9 bits

Current contents of the eight A registers
Current contents of the eight S registers

The exchange package contents are arranged in a 16-word block. Data is
swapped from memory to the computer operating registers and back to
memory by the exchange sequence. This sequence exchanges the data in a
currently active exchange package residing in the operating registers
with an inactive exchange package in memory. The XA address of the
currently active exchange package specifies the address of the inactive
exchange package to be used in the swap. The data is exchanged and a new
program execution interval is initiated by the exchange sequence.

The B register, T register, and V register contents are not swapped in
the exchange sequence. The data in these registers must be stored and
replaced as required by specific coding in the program which supervises
the object program execution, or by any program that needs this data.

Part 2
HR-0808 3-5 : B

LA
XA
VL

e RA Z BA 7% Al
o N, /] LA M A2
nt3 ////////// XA }/// A3
nts //////////////////////////// A5
W Vi a6
N /i A7

Syndrome bits

Read address for error
221219 20

R' B

RA

Program address, 24 bits
18 bits
18 bits

Base address,
Limit address,
Exchange address, 8 bits

Vector length, 7 bits

E - Error type (bits 0,1)

10
01

Uncorrectable memory

Correctable memory

R - Read mode (bits 10,11)

00 Scalar
0l 1/0
10 Vector
11 Fetch
Figure 3-3.
HR-0808

36

37
38

39

31
32
33
34
35
36
37
38
39

Interrupt on correctable
memory error

Interrupt on floating-point

Interrupt on uncorrectable
memory error

Monitor mode

F - Flags

PCI interrupt

MCU interrupt
Floating-point error
Operand range
Program range
Memory error

I/0 interrupt

Error exit

Normal exit

Exchange Package

Memory error data

Two bits in the M (mode) register determine whether or not the exchange
package contains data relevant to a memory error if one occurs prior to
an exchange sequence. The bits are bit 36, the "Interrupt on correctable
memory error bit" and bit 38, the "Interrupt on uncorrectable memory
error bit". The error data, consisting of four fields of information,
appears in the exchange package if bit 38 is set and an uncorrectable
memory error is detected or if bit 36 is set and correctable memory error
is encountered.

Error type (E) - The type of memory error encountered, uncorrectable or
correctable, is indicated in bits 0 and 1 of the first word of the
exchange package. Bit 0 is set for an uncorrectable memory error; bit 1
is set for a correctable memory error.

Syndrome (S) - The 8 syndrome bits used in detecting a memory data error
are returned in bits 2 through 9 of the first word of the exchange
package. Refer to section 2 for additional information.

Read mode (R) - This field indicates the read mode in progress when a
memory data error occurred and consists of bits 10 and 11 of the first
word of the exchange package. These bits assume the following values:

00 Scalar (includes memory references with A, B, S, or T
registers, or exchange sequence)

01 1/0
10 Vector

11 Instruction fetch

These bits are not valid for range errors.

Read address (R'RAB) - The R'RAB field contains the address at which a
memory data error occurred. Bits 12 through 15 (B) of the first word of

the exchange package contain bits 23 through 20 of the address and
may be considered as the bank address; bits 0 through 15 (RA) of the

second word of the exchange package contain bits 219 through 24 of
the address. Bits 214 and 215 of the third word of the exchange
package (R') contain bits 221 (or 0) and bit 220 65f the address.

EXCHANGE REGISTERS

Three special registers are instrumental in the exchange mechanism: the
exchange address (XA) register, the mode (M) register, and the flag (F)

register.

HR-0808 3-7 B

XA Register

The XA (exchange address) register specifies the first word address of a
16-word exchange package loaded by an exchange operation. The register

contains the high-order 8 bits of a 12-bit field that specifies the
address. The low-order bits of the field are always 0; an exchange
package must begin on a l6-word boundary. The 12-bit limit requires that
the absolute address be in the lower 4096 (10,0008) words of memory.

When an execution interval terminates, the exchange sequence exchanges
the contents of the registers with the contents of the exchange package
at the beginning address (XA) in memory.

M Register

The M (mode) register is a 4-bit register that contains part of the
exchange package for a currently active program. Bits are assigned as
follows in word 2 of the exchange package:

Bit 36 Correctable memory error mode flag. When this bit is set,
interrupts on correctable memory data errors are enabled.

Bit 37 Floating-point error mode flag. When this bit is set,
interrupts on floating point errors are enabled.

Bit 38 Uncorrectable memory error mode flag. When this bit is set,
interrupts on uncorrectable memory data errors are enabled.

Bit 39 Monitor mode flag. When this bit is set, all interrupts
other than memory errors are inhibited.

The 4 bits are selectively set during an exchange sequence. Bit 37, the
floating-point error mode flag, can be set or cleared during the
execution interval for a program through use of the 0021 (EFI) and 0022
(DFI) instructions. The remaining bits are not altered during the
execution interval for the exchange package and can be altered only when
the exchange package is inactive in storage.

F Register

The F (flag) register is a 9-bit register that contains part of the
exchange package for the currently active program. This register
contains nine flags which are individually identified within the exchange
package. Setting any of these flags causes interruption of program
execution. Wnen one or more fiags are set, a request interrupt signal is
sent to initiate an exchange sequence. The content of the F register is

Part 2
HR-0808 3-8 B

stored along with the rest of the exchange package and the monitor
program can analyze the nine flags for the cause of the interruption.

Before the monitor program exchanges back to the package, it may clear
the flags in the F register area of the package. If any bit is set,
another exchange occurs immediately.

Any flag other than the memory error flag can be set in the F register
only if the currently active exchange package is not in monitor mode.

This means that these flags will set only if the low-order bit of the M
register is 0. With the exception of the memory error flag, if the
program is in monitor mode and the conditions for setting an F register
are otherwise present, the flag remains cleared and no exchange sequence
is initiated.

ACTIVE EXCHANGE PACKAGE

An active exchange package is an exchange package that is currently
residing in the computer operating registers. The interval of time in
which the exchange package is active is called the execution interval for
the exchange package and also for the program with which it is
associated. The execution interval begins with an exchange sequence in
which the subject exchange package moves from memory to the operating
registers. The execution interval ends as the exchange package moves
back to memory in a subsequent exchange sequence.

EXCHANGE SEQUENCE

The exchange sequence is the vehicle for moving an inactive exchange
package from memory into the operating registers and at the same time
moving the currently active exchange package from the operating registers
back into memory. This swapping operation is done in a fixed sequence
when all computational activity associated with the currently active
exchange package has stopped. The same 16-word block of memory is used
as the source of the inactive exchange package and the destination of the
currently active exchange package. The location of this block is
specified by the content of the exchange address register and is a part
of the currently active exchange package. The exchange sequence may be
initiated in three different ways.

1. Deadstart sequence
2. Interrupt flag set

3. Program exit

Part 2
HR-0808 3-9 B

Initiated by deadstart sequence

The deadstart sequence forces the exchange address register content to 0
and also forces a 000 code in the NIP register. These two actions cause
the execution of a program error exit using memory address 0 as the
location of the exchange package. The inactive exchange package at
address 0 is then moved into the operating registers and a program is
initiated using these parameters. The exchange package swapped out to
address 0 is largely indeterminate as a result of the deadstart operation
and is in effect discarded by the subsequent entry of new data at these
storage addresses.

Initiated by interrupt flag set

An exchange sequence can be initiated by setting any one of the interrupt
flags in the F register. One or more flags set results in a request

interrupt signal which initiates an exchange sequence.

Initiated by program exit

Two program exit instructions cause the initiation of an exchange
sequence. The timing of the instruction execution is the same in either
case and the difference is only in which of the two flags in the F
register is set. The two instructions are:

Program code 000 ERR - Error exit
Program code 004 EX - Normal exit

The two exits provide a means for a program to request its own
termination. A non-monitor (object) program will usually use the normal
exit instruction to exchange back to the monitor program. The error exit
allows for termination of an object program that has branched into an
unused area of memory or into a data area. The exchange address selected
is the same as for a normal exit.

Each of these instructions has a flag in the F register. The appropriate
flag is set providing the currently active exchange package is not in
monitor mode. The inactive exchange package called in this case is
normally one that executes in monitor mode and the flags are sensed for
evaluation of the cause of program termination.

The monitor program selects an inactive exchange package for activation
by setting the address of the inactive exchange package into the XA
register and then executing a normal exit instruction.

Part 2
HR-0808 3-10 B

Exchange sequence issue conditions

An exchange sequence initiated by an instruction other than 000 or 004
has the following hold issue conditions, execution time, and special
cases: (The corresponding information for the 000 and 004 instructions is
provided with the instruction descriptions in section 6 of this manual.)

Hold issue conditions:

Instruction buffer data invalid
NIP not blank
Wait exchange flag not set

S, V, or A registers busy

Execution time:

50 CPs; consists of an exchange sequence (36 CPs)
and a fetch operation (14 CPs)

Special cases:
Block instruction issue
Block I1I/0 references

Block fetch

EXCHANGE PACKAGE MANAGEMENT

Each 16-word exchange package resides in an area defined during system
deadstart that must lie within the lower 4096 words of memory. The
package at address 0 is that of the monitor program. Other packages
provide for object programs and monitor tasks. These packages lie
outside of the field lengths for the programs they represent as
determined by the base and limit addresses for the programs. Only the
monitor program has a field defined so that it can access all of memory
including the exchange package areas. This allows the monitor program to
define or alter all exchange packages other than its own when it is the
currently active exchange package.

Proper management of exchange packages dictates that a non-monitor
program always exchange back to the monitor program that exchanged to
it. This ensures that the program information is always swapped back
into its proper exchange package.

Part 2
HR-0808 3-11 B

Consider the case where exchange packages exist for programs A, B, and
C. Program A is the monitor program, program B is a user program, and
program C is an interrupt-processing program.

The monitor program, A, begins an execution interval following

deadstart. No interrupts can terminate its execution interval since it
is in monitor mode. The monitor pProgram voluntarily exits by issuing a
004 EX exit instruction. Before doing so, however, it sets the contents
of the XA register to point to B's exchange package so that B will be the
next program to execute and it sets the exchange address in B's exchange
package to point back to the monitor.

The exchange sequence to B causes the exchange address from B's exchange
pPackage to be entered in the XA register. At the same time, the exchange
address in the XA register goes to B's exchange package area along with
all other program parameters for the monitor program. When the exchange
is complete, program B begins its execution interval.

Suppose further that while B is executing, an interrupt flag sets
initiating an exchange Sequence. Since B cannot alter the XA register,
the exit is back to the monitor program. Program B's parameters swap
back into B's exchange package area; the monitor program parameters held
in B's package during the execution interval swap back into the operating
registers.

The monitor, upon resuming execution, determines that an interrupt has
caused the exchange and sets the XA register to call the proper interrupt
processor into execution. It does this by setting XA to point to the
exchange package for program C. Then, it clears the interrupt and
initiates execution of C by executing a 004 exit instruction. Depending
on the design of the operating system, the interrupt-processing program
could execute in monitor mode or in user mode.

Further guidance on exchange package management is contained in the Cray
Research, Inc. CRAY-1 Operating System maintenance documentation.

MEMORY FIELD PROTECTION

Each object program at execution time has a designated field of memory
holding instructions and data. The field limits are specified by the
monitor program when the object program is loaded and initiated. The
field may begin at any word address that is a multiple of 16 and may
continue to another address that is one less than a multiple of 16. The
field limits are contained in two registers, the base address register
(BA) and the limit address register (LA), described later.

Part 2
HR-0808 3-12 B

All memory addresses contained in the object program code are relative to
the base address which begins the defined field. An object program

cannot read or alter any memory location with an absolute address lower
than the base address. Each object program reference to memory is
checked against the limit and base addresses to determine if the address
is within the bounds assigned. A memory write reference beyond the
assigned field limits is allowed to issue, but no write occurs. A memory
read reference beyond the assigned field limits issues and completes, but
data consisting of all zeros is transferred to the appropriate registers.

BA REGISTER

The 18-bit BA register holds the base address of the user field during
the execution interval for each exchange package. The contents of this
register are interpreted as the high-order 18 bits of a 22-bit memory
address. The low-order 4 bits of the address are assumed 0. Absolute
memory addresses are formed by adding the product of 24 x (BA) to the
relative address specified by the CPU instructions. The BA register
always indicates a bank 0 memory address.

LA REGISTER

The 18-bit LA register holds the limit address of the user field during
the execution interval for each exchange package. The contents of LA are
interpreted as the high-order 18 bits of a 22-bit memory address. The

low-order 4 bits of the address are assumed 0. The LA register always
indicates a bank 0 memory address.

The final address that can be executed or referenced by a program is at

[(LA) x 24} - 1. Note that the (LA) is absolute, not relative; it is
not added to (BA).

PROGRAM RANGE ERROR

The program range error flag sets if an out-of-range memory reference was
for an instruction fetch. This could occur in a non-monitor mode program
on a branch or jump instruction that calls for a program address that is
above or below the limits. The program range error flag causes an error
condition that terminates program execution. The monitor program should

check the state of the program range error flag and take appropriate
action, perhaps aborting the user program.

Part 2
HR-0808 3-13 B

OPERAND RANGE ERROR

The operand range error flag sets if an out-of-range memory reference was
called to read or write an operand for an A, B, S, T, or V register. The
operand range error flag causes an error condition that terminates the
user program execution. The monitor program should check the state of
the operand range error flag and take appropriate action, perhaps
aborting the user program.

REAL-TIME CLOCK

Programs can be timed precisely by using the clock period counter. This
counter is advanced one count each clock period of 12.5 nanoseconds.
Since the clock is advanced synchronously with program execution, it may
be used to time the program to an exact number of clock periods.

Instructions used with the real-time clock are:
0014j0 RT Enter the real-time clock register with (Sj)
072ixx Si RT Transmit (RTC) to Si

The clock period counter is a 64-bit counter that can be read by a
program through the use of the 072 instruction and can be reset only by
the 001430 monitor instruction.

PROGRAMMABLE CLOCK

A programmable clock is incorporated to measure the duration of intervals
accurately. A periodic interrupt can be generated with intervals
selected under monitor program control. The clock frequency is 80 Mhz.
Intervals from 12.5 nanoseconds to about 53.7 seconds are possible;
however, intervals shorter than about 100 microseconds are not practical
due to the monitor overhead involved in processing the interrupt.

INSTRUCTIONS

Supporting the programmable clock are four monitor mode instructions and
two additional registers: the interrupt interval register (II) and the
interrupt countdown counter (ICD).

Part 2
HR-0808 3-14 B

0014j4 Enter interrupt interval (II) register with (Sj)
001435 Clear the programmable clock interrupt request
0014j6 Enable the programmable clock interrupt request

001437 Disable the programmable clock interrupt request

INTERRUPT INTERVAL REGISTER

The interrupt interval (II) register is a 32-bit register that can be
loaded with a binary value equal to the number of clock periods that are
to elapse between programmable clock interrupt requests. The interrupt
interval is transferred from the lower 32 bits of the §j register into
both the interrupt interval and the interrupt countdown (ICD) counter
when the 0014j4 instruction is executed.

This value is held in the II register and is transferred to the ICD each
time the counter reaches 0 and generates an interrupt request. The
content of the II register is changed only by another 0014j4 instruction.

INTERRUPT COUNTDOWN COUNTER

The interrupt countdown (ICD) counter is a 32-bit counter that is preset
to the contents of the interrupt interval register when the 0014j4
instruction is executed. This counter runs continuously but counts down,
decrementing by 1 each clock period until the content of the counter is
0. At this time, it sets the programmable clock interrupt request. The
counter then samples the interval value held in the interrupt interval
register and repeats the countdown to zero cycle, setting the
programmable clock interrupt request at regular intervals determined by
the interval value. When the programmable clock interrupt request is
set, it remains set until a 0014j5 instruction, clear programmable clock
interrupt request, is executed. A programmable clock interrupt request
can be set only after the 0014j6 instruction has been executed to enable
the interrupt. A programmable clock interrupt request only causes an
interrupt when not in monitor mode; a request set in monitor mode is held
until the system switches to user mode.

CLEAR PROGRAMMABLE CLOCK INTERRUPT REQUEST

Following a program interrupt interval, an active programmable clock
interrupt request may be cleared by executing the 0014j5 clear
programmable clock interrupt instruction.

Part 2
HR-0808 3-15 B

Following any deadstart, the monitor program should ensure the state of
the programmable clock interrupt by clearing programmable clock interrupt

requests (0014j5) and disabling programmable clock interrupt requests
(001437).

DEADSTART SEQUENCE

The deadstart sequence is that sequence of operations that starts a
program running in the CPU after power has been turned off and then
turned on again or whenever a new system is to be re-initialized in the
CPU. All registers in the machine, all control latches, and all words in
memory are assumed to be invalid after power has been turned on. The
following sequence of operations to begin a program is initiated by the
MCU or the I/0O Subsystem.

1. Turn on master clear signal.
2. Turn on 1/0 clear signal.
3. Turn off I/O clear signal.
4. Load memory via MCU channel.

5. Turn off master clear signal.

The master clear signal halts all internal computation and forces the
critical control latches to predetermined states. The I/0 clear signal
clears the input channel address register of the MCU channel and
activates the MCU input channel. All other input channels remain
inactive. The MCU or I/O Subsystem then loads an initial exchange
package and monitor program. The exchange package must be located at
address 0 in memory. Turning off the master clear signal initiates the
exchange sequence to read this package and to begin execution of the
monitor program. Subsequent actions are dictated by the design of the

operating system.

Part 2
HR-0808 3-16 B

CPU COMPUTATION SECTION 4

INTRODUCTION

The CPU section consists of operating registers and functional units
which are associated with three types of processing: address, scalar,
and vector. For address processing, there are two levels of 24-bit
registers and two integer arithmetic functional units. For scalar
processing, there are two levels of 64-bit scalar registers, four

" functional units dedicated solely to scalar processing and three
floating-point units shared with the vector operations. For vector
processing, there are a set of 64-element registers of 64 bits each, four
functional units dedicated solely to vector applications, and three
floating-point functional units supporting both scalar and vector
operations.

Vector and scalar processing are performed on data while address
processing operates on internal control information such as addresses and
indexes. The flow of data in the computation section is generally from
memory to registers and from registers to functional units. The flow of
results is from functional units to registers and from registers to
memory or back to functional units. Data flows along either the scalar
or vector path depending on the mode of processing it is undergoing. An
exception is that scalar registers can provide one of the operands
required for vector operations performed in the vector functional units.

The flow of address information is from memory or from control registers
to address registers. Information in the address registers can then be
distributed to various parts of the control network for use in
controlling the scalar, vector, and I/0 operations. The address
registers can also supply operands to two integer functional units. The
units generate address and index information and return the result to the
address registers. Address information can also be transmsitted to
memory from the address registers.

OPERATING REGISTERS

Operating registers are a primary programmable resource of the CPU. They
enhance the speed of the system by satisfying the heavy demands for data
that are made by the functional units. A single functional unit may

require one to three operands per clock period and may deliver results at

HR-0808 4-1 B

a rate of one per clock period. Moreover, multiple functional units can
be in use concurrently. To meet these requirements, the CPU has five

sets of registers: three primary sets and two intermediate sets.

The three primary sets of registers are address, scalar, and vector
designated in this manual as A, S, and V, respectively. These registers
are considered primary because functional units can access them directly.

For the scalar and address registers, an intermediate level of registers
exists which is not accessible to the functional units. These registers
act as buffers for the primary registers. Block transfers are possible
between these registers and memory so that the number of memory reference
instructions required for scalar and address operands can be greatly
reduced. The intermediate registers that support scalar registers are
referred to as T registers. The intermediate registers that support the
address registers are referred to as B registers.

ADDRESS REGISTERS

The two types of address registers (figure 4-1) are designated A
registers and B registers.

Exchange 1
Control
Vector S Si
Control

I XA I 4
Pop/LZ
Vector d -~
Length Shifts
>
Multiply

Add

Memory

Address
X Functional
((An) +| j Units

” ,/ 5-0079

Figure 4-1. Address registers

Part 2
HR-0808 4-2 B

A REGISTERS

The eight 24-bit A registers serve a variety of applications, but are
primarily used as address registers for memory references and as index
registers. They are used to provide values for shift counts, loop
control, and channel 1/0 operations, and also to receive values of
population count and leading zeros count. In address applications, they
are used to index the base address for scalar memory references and for
providing both a base address and an index increment for vector memory
references.

The address functional units support address and index generation by
performing 24-bit integer arithmetic on operands obtained from A
registers and by delivering the results to A registers. There are
several address adders devoted exclusively to calculations for memory
references. These are not available tc the program.

Data can move directly between memory and A registers or can be placed in
B registers as an intermediate step. This allows buffering of the data
between A registers and memory.

Data can also be transferred between A and S registers.

The vector length register and XA register are set by transmitting a
value to it from an A register.

At most, one A register can be entered with data during each clock
period. Issue of an instruction is delayed if it would have caused data
to arrive at the A registers at the same time as data already being
processed which is scheduled to arrive from another source.

When an instruction issues that delivers new data to an A register, a
reservation is set for that register to prevent issue of instructions
that use the register until the new data has been delivered.

In this manual, the A registers are individually referred to by the
letter A and a numeric subscript in the range 0 through 7. Instructions
reference A registers by specifying the subscript as the h, i, j, or k
designator as described in part 2, section 6.

Part 2
HR-0808 4-3 B

The only register to which an implicit reference is made is the Ag

register. The use of this register is implied in the following
instructions:

010ijkm JAZ
01lijkm JAN
012ijkm JAP
013ijkm JAM

034ijk Bjk,Ai ,A0
035ijk A0 Bik,Ai
036ijk Tijk,Ai ,A0
037ijk ,A0 Tik,Ai

Refer to part 2, section 6 for additional information concerning the use
of A registers by instructions.

B REGISTERS

There are sixty-four 24-bit B registers in the computation section. The
B registers are used as intermediate storage for the A registers.
Typically, the B registers contain data to be referenced repeatedly over
a sufficiently long span so that it is not desirable to retain the data
in either A registers or in memory. Examples of uses are loop counts,
variable array base addresses, and dimensions.

The transfer of a value between an A register and a B register requires
only 1 CP. A block of B registers may be transferred to or from memory
at the maximum rate of one 24-bit value per clock period. No
reservations are made for B registers and no instructions can issue
during block transfers to and from B registers.

In this manual, B registers are individually referred to by the letter B
and a 2-digit octal subscript in the range 00 through 77. Instructions
reference B registers by specifying the B register number in the jk
designator as described in part 2, section 6.

The only B register to which an implicit reference is made is the By,
register. On execution of the return jump instruction (007), register
Bpg is set to the next instruction parcel address (P) and a branch to
an address specified by ijkm occurs. Upon receiving control, the called
routine_conventionally saves (Bgpg) so that the Bog register is free

for the called routine to initiate return jumps of its own. When a
called routine wishes to return to its caller, it restores the saved
address and executes a 005000 instruction. This instruction, which is a
branch to (B00), causes the address saved in B0O to be entered into P as
the address of the next instruction parcel to be executed.

Part 2
HR-0808 4-4 B

SCALAR REGISTERS

The two types of scalar registers (figure 4-2) are designated S registers
and T registers.

T0: V. Reg
F.P. F. Units
VM, RTC

Scalar Registers Y

Pop/L2
Shift
Logical
Add
Memory .
Scalar
Functional
Units u
///1//1/ A Ak |

Figure 4-2. Scalar registers and functional units

S REGISTERS

The eight 64-bit S registers are the principal scalar registers for the
CPU. These registers serve as the source and destination for operands in
the execution of scalar arithmetic and logical instructions. The related
functional units perform both integer and floating-point arithmetic
operations.

S registers may furnish one operand in vector instructions. Single-word
transmission of data between an S register and an element of a V register
is also possible.

Data can move directly between memory and S registers or can be placed in
T registers as an intermediate step. This allows buffering of scalar

operands between S registers and memory.
Data can also be transferred between A and S registers.
Other uses of the S registers are the setting or reading of the vector

mask (VM) register or the real-time clock (RTC) register, or setting the
interrupt interval (II) register.

Part 2
HR-0808 4-5 B

At most, one S register can receive data during each clock period. Issue
of an instruction is delayed if it would have caused data to arrive at
the S registers at the same time as data already being processed which is
scheduled to arrive from another source.

When an instruction issues that delivers new data to an S register, a
reservation is set for that register to prevent issue of instructions
that use the register until the new data has been delivered.

In this manual, the S registers are individually referred to by the
letter S and a numeric subscript in the range 0 through 7. Instructions
reference S registers by specifying the subscript as the i, j, or k
designator as described in part 2, section 6.

The only register to which an implicit reference is made is the S

register. The use of this register is implied in the following branch
instructions.

014ijkm JsSz
015ijkm JSN
016ijkm JSP
017ijkm JSM

Refer to part 2, section 6 for additional information concerning the use
of S registers by instructions.

T REGISTERS

There are sixty-four 64-bit T registers in the computation section. The
T registers are used as intermediate storage for the S registers.

Data may be transferred between T and S registers and between T registers
and memory. The transfer of a value between a T register and an S
register requires only 1 CP. T registers reference memory through block
read and block write instructions. Block transfers occur at a maximum
rate of one word per clock period. No reservations are made for T
registers and no instructions can issue during block transfers to and
from T registers.

In this manual, T registers are referred to by the letter T and a 2-digit
octal subscript in the range 00 through 77. Instructions reference T
registers by specifying the octal subscript as the jk designator as
described in part 2, section 6.

Part 2
HR-0808 4-6 B

VECTOR REGISTERS

Figure 4-3 illustrates the registers and functional units used for vector
operations.

Vector Registers

Pop/Parity
Ak ——| Shift
{47 Logical
Add
Vector
Sj Functional
Vj “Junits
vk -
Vi [
vj - '
Memory Recip. Appr
[MMﬁpU
” Add
Vector
Control vk
yector |<Sj Vi : Floating
Control | Vector Mask | Si | Point
. Sj | Functional
Vector Units
/l// Length - |

A-0/93

i) | 4
Sisj sk

Figure 4-3. Vector registers and functional units

V REGISTERS

Eight V registers, each with 64 elements are the major computational
registers of the CPU. Each element of a V register has 64 bits. When
associated data is grouped into successive elements of a V register, the
register quantity may be treated as a vector. Examples of vector
quantities are rows or columns of a matrix or elements of a table.

Computational efficiency is achieved by identically processing each
element of a vector. Vector instructions provide for the iterative
processing of successive vector register elements. A vector operation
begins by obtaining operands from the first element of one or more V

HR-0808 4-7 B

registers and delivering the result to the first element of a Vv

register. Successive elements are provided each clock period and as each
operation is performed, the result is delivered to successive elements of
the result V register. The vector operation continues until the number
of operations performed by the instruction equals a count specified by
the content of the vector length (VL) register.

Since many vectors exceed 64 elements, a long vector is processed as one
or more 64-element segments and a possible remainder of less than 64
elements. Generally, it is convenient to compute the remainder and
process this short segment before processing the remaining number of
64-element segments. However, a programmer may choose to construct the
vector loop code in any of a number of ways. The processing of long
vectors in FORTRAN is handled by the compiler and is transparent to the
programmer.

A result may be received by a V register and retransmitted as an operand
to a subsequent operation in the same clock period. This use of a
register as both a result and operand register allows for the "chaining"
of two or more vector operations together. In this mode, two or more
results may be produced per clock period. Chained operation is detected
automatically by the CPU and is not explicitly specified by the
programmer, although the programmer may reorder certain code segments in
order to enable chained operation.

A conflict may occur between scalar and vector operations only for the
floating-point operations and storage access. With the exception of
these operations, the functional units are always available for scalar
operations. A vector operation occupies the selected functional unit
until the vector is processed.

Parallel vector operations may be processed in two ways:
l. Using different functional units and all different V registers

2. Using the result stream from one vector register simultaneously
as the operand to another operation using a different functional

unit (chain mode)

‘Parallel operations on vectors allow the generation of two or more
results per clock period. Most vector operations use two vector
registers as operands or one scalar and one vector register as operands.
Exceptions are vector shifts, vector reciprocal, and the load or store
instructions.

The contents of a V register are transferred to or from memory in a block
mode by specifying a first word address in memory, an increment or
decrement for the memory address, and a vector length. The transfer then
proceeds beginning with the first element of the V register at a maximum
rate of one word per clock perind, depending npon bank conflicts.

Part 2
HR-0808 4-8 B

Single-word data transfers are possible between an S register and an
element of a V register.

In this manual, the V registers are individually referred to by the
letter V and a numeric postscript in the range 0 through 7. Vector
instructions reference V registers by specifying the postscript as the i,
j. or k designator as described in section 6 of this manual.

Individual elements of a V register are designated in this manual by
decimal numbers in the range 00 through 63. These appear as subscripts
to vector register references. For example, V6,9 refers to element 29
of vector register 6.

V register reservations

The term "reservation" describes the register condition when a register
is in use and therefore not available for use as a result or as an
operand register for another operation. During execution of a vector
instruction, reservations are placed on the operand V registers and on
the result V register. These reservations are placed on the registers
themselves, not on individual elements of the V register.

A reservation for a result register is lifted during "chain slot" time.
Chain slot time is the clock period that occurs at functional unit time
plus 2 CPs. During this clock period, the result is available for use as
an operand in another vector operation. Chain slot time has no effect on
the reservation placed on operand V registers. A V register may serve
only one vector operation as the source of one or both operands.

No reservation is placed on the VL register during vector processing. If
a vector instruction employs an S register, no reservation is placed on
the S register. It may be modified in the next instruction after vector
issue without affecting the vector operation. The length and scalar
operand (if appropriate) of each vector operation is maintained apart
from the VL register. Vector operations employing different lengths may
proceed concurrently; however, the vector length should not normally be
changed between operations that chain because chaining implies operations
of the same length.

The A0 and Ak registers in a vector memory reference are treated in a
similar fashion. They are available for modification immediately after
use. ’

The vector store instruction (177) is blocked from chain slot execution.

A vector read cannot chain if speed control is in effect. Speed control
is caused by bank conflict due to the increment, which varies between
16-bank and 8-bank machines. Speed control is in effect if the memory
address increment is a multiple of eight on a l6-bank machine or is a
multiple of four on an 8-bank machine.

Part 2
HR-0808 4-9 B

VECTOR CONTROL REGISTERS

Two registers are associated with vector registers and'provide control
information needed in the performance of vector operations. They are the
vector length (VL) register and the vector mask (VM) register.

VL register

The 7-bit vector length register can be set to 0 through 100g and
specifies the length of all vector operations performed by vector
instructions and the length of the vectors held by the V registers. This
register controls the number of operations performed for instructions 140

through 177. The VL register may be set to an A register value using the
0020 instruction.

CAUTION

Cray Research cautions users against increasing VL
between operations that may chain together. In some
code sequences where the vector length is increased,
unexpected results may occur.

Suppose, for example, that during a vector sequence
the contents of VL are changed to a larger value and a
second operation is initiated to chain to the first
operation. The user may expect that the second
operation will use the results of the first operation
and the operands in the register unaltered by the
first operation. However, when the instructions chain
together, the second instruction does not receive the
anticipated operands beyond the VL specified for the
first operation. The user who intends to use the
system in this manner must take care to avoid chained
operations. Although there may be applications of the
characteristic produced by chained operations with
different contents for VL, Cray Research takes no
responsibility for its use. Chained operation cannot
be assured since I/0 or other interrupts may "break"
the chain.

VM register

The vector mask register has 64 bits, each of which corresponds to a word
element in a vector register. Bit 0 corresponds to element 0, bit 63 to
element 63. The mask is used in conjunction with vector merge and test
instructicns to allow operations to be performed on individual vector
elements.

Part 2
HR-0808 4-10 B

The vector mask register may be set from an S register through the 003
instrucion or may be created by testing a vector register for a condition

using the 175 instrucion. The mask controls element selection in the
vector merge instructions (146 and 147). The contents of VM may be sent
to an S register with an 073 instruction.

FUNCTIONAL UNITS

Instructions other than simple transmits or control operations are
performed by hardware organizations known as functional units. Each unit
implements an algorithm or a portion of the instruction set. Units are
independent with the exception of the Reciprocal Approximation and Vector
Population Count units, which share some logic. A number of functional
units can be in operation at the same time.

A functional unit receives operands from registers and delivers the
result to a register when the function has been performed. The units
operate essentially in 3-address mode with source and destination
addressing limited to register designators.

All functional units perform their algorithms in a fixed amount of time;
no delays are possible once the operands have been delivered to the
unit. The amount of time required from delivery of the operands to the
unit until completion of the calculation is termed the functional unit
time and is measured in 1l2.5-nanosecond clock periods.

The functional units are fully segmented. This means that a new set of
operands for unrelated computation may enter a functional unit each clock
period even though the functional unit time may be more than 1 CP. This
segmentation is possible by capturing and holding the information
arriving at the unit or moving within the unit at the end of every clock
period.

Thirteen functional units are identified in this manual and are
arbitrarily described in four groups: address, scalar, vector, and
floating-point. The first three groups each act in conjunction with one
of the three primary register types, A, S, and V, to support the address,
scalar, and vector modes of processing available in the CRAY-1l. The
fourth group, floating-point, supports either scalar or vector operations
and accepts operands from or delivers results to S or V registers
accordingly. In addition, for vector operations, memory acts like a
fourteenth functional unit.

Part 2)
HR-0808 4-11 B

ADDRESS FUNCTIONAL UNITS
The address functional units perform 24-bit integer arithmetic on

operands obtained from A registers and deliver the results to an A
register. The arithmetic is twos complement.

Address add unit

The address add unit performs 24-bit integer addition and subtraction.
The unit executes instructions 030 and 031. The addition and subtraction
are performed in a similar manner. The twos complement subtraction for
the 031 instruction occurs as follows. The ones complement of the Ak
operand is added to the Aj operand. Then a 1 is added in the low order
bit position of the result.

No overflow is detected in the functional unit.

The result register reservation time is 2 CPs.

Address multiply unit

The address multiply unit executes instruction 032 which forms a 24-bit
integer product from two 24-bit operands. No rounding is performed. The
result consists of the least significant 24 bits of the product.

This functional unit is designed to handle address manipulations that do
not exceed its data capabilities. Therefore, the programmer must be
careful when multiplying integers in the unit, because the unit does not
detect overflow of the product and significant portions of the product
could be lost.

The result register reservation time is 6 CPs.

SCALAR FUNCTIONAL UNITS

The scalar functional units perform operations on 64-bit operands
obtained from S registers and in most cases deliver the 64-bit results to
an S register. The exception is the population/leading zero count unit
which delivers its 7-bit result to an A register.

Four functional units are exclusively associated with scalar operations
and are described here. Three functional units are used for both scalar
and vector operations and are described in the section, Floating-Point
Functional Units.

Part 2
HR-0808 4-12 B

Scalar add unit

The scalar add unit performs 64-bit integer addition and subtraction. It
executes instructions 060 and 061. The addition and subtraction are
performed in a similar manner. The twos complement subtraction for the
061 instruction occurs as follows. The ones complement of the Sk operand
is added to the Sj operand. Then a 1 is added in the low-order bit
position of the result.

No overflow is detected in the unit.

The result register reservation time is 3 CPs.

Scalar shift unit

The scalar shift unit shifts the entire 64-bit contents of an S register
or shifts the double 128-bit contents of two concatenated S registers.
Shift counts are obtained from an A register or from the jk portion of
the instruction. Shifts are end off with zero fill. For a double shift,
a circular shift is effected if the shift count does not exceed 64 and
the i and j designators are equal and non-zero.

All A register shift counts are considered positive, unsigned integers.
If any bit higher than 25 is set, the shifted result is all zeros.

The scalar shift unit executes instructions 052 through 057.
Single~register shift instructions, 052 through 055, are executed in 2
CPs. Double-register shift instructions, 056 and 057, are executed in 3
CPs.

Scalar logical unit

The scalar logical unit performs bit-by-bit manipulation of 64-bit
guantities obtained from S registers. It executes instructions 042
through 051, the mask and Boolean instructions. The 042-051 instructions
execute in 1 CP.

Scalar population/parity/leading zero unit

This functional unit executes instructions 026 and 027. Instruction
02613j0 counts the number of bits in an S register having a value of 1 in
the operand and executes in 4 CPs. The 026ijl instruction returns a
1-bit population parity count of the Sj register's contents. Instruction
027, which counts the number of bits of 0 preceding a 1 bit in the
operand, executes in 3 CPs. For these instructions, the 64-bit operand
is obtained from an S register and the 7-bit result is delivered to an A
register.

Part 2
HR-0808 4-13 B

VECTOR FUNCTIONAL UNITS

Most vector functional units perform operations on operands obtained from
one or two V registers or from a V register and an S register. The
reciprocal unit and the population/parity unit, which require only one
operand, are exceptions. Results from a vector functional unit are
delivered to a V register.

Successive operand pairs are transmitted from a vector register to a
functional unit each clock period. The corresponding result arrives at a
vector register n+2 CPs later, where n is the functional unit time and is
constant for a given functional unit. The vector length determines the
number of operand pairs to be processed by a functional unit.

Four functional units are exclusively associated with vector operations
and are described in this subsection. Three functional units are
associated with both vector operations and scalar operations and are
described in the subsection entitled Floating-Point Functional Units.
When a floating-point unit is used for a vector operation, the general
description of vector functional units given in this subsection applies.

Vector functional unit reservation

A functional unit engaged in a vector operation remains busy during each
clock period and may not participate in other operations. In this state,
the functional unit is said to be reserved. Other instructions that
require the same functional unit will not issue until the previous
operation is completed. Only one functional unit of each type is
available to the vector instruction hardware. When the vector operation
completes, the reservation is dropped and the functional unit is then
available for another operation.

The functional unit is reserved for (VL)+4 CP.

Vector add unit

The vector add unit performs 64-bit integer addition and subtraction for
a vector operation and delivers the results to elements of a V register.
The unit executes instructions 154 through 157. The addition and
subtraction are performed in a similar manner. For the subtraction
operations, 156 and 157, the Vk operand is complemented prior to addition
and during the addition a 1 is added into the low order bit position of
the result.

No overflow is detected by the unit.

The functional unit time for the vector add unit is 3 CPs; the chain slot
time is 5 CPs.

Part 2
HR-0808 4~14 B

Vector shift unit

The vector shift unit shifts the entire 64-bit contents of a V register
element or the 128-bit value formed from two consecutive elements of a V
register. Shift counts are obtained from an A register. Shifts are
end-off with zero fill.

All shift counts are considered positive unsigned integers. If any bit
higher than 2° is set, the shifted result is all zeros.

The vector shift unit executes instructions 150 through 153.

Functional unit time is 4 CPs; chain slot time is 6 CPs.

Vector logical unit

The vector logical unit performs bit-by-bit manipulation of 64-bit
quantities for instructions 140 through 147. The unit also performs the
logical operations associated with the vector mask instruction, 175.

Because the 175 instruction uses the same functional unit as instructions
140 through 147, it cannot be chained with these logical operations.

Functional unit time is 2 CPs, chain slot time is 4 CPs.

Vector population/parity unit

The vector population count unit counts the 1 bits in each element of the
source vector register. The total number of 1 bits is the population
count. This population count may be an odd or an even number, as shown
by the low-order bit of the population count.

The 174ijl instruction (vector population count) and the 174ij2 (vector
population count parity) use the same operation code as the vector
reciprocal approximation instruction. Therefore, some of the
restrictions for the reciprocal approximation unit also apply for the
vector population instructions. The vector population count instruction
delivers the total population count to elements of the destination V
register.

The vector population count parity instruction delivers the low-order bit
of the count to the destination V register.

The functional unit time is 6 CPs; chain slot time is 8 CPs.

Part 2
HR-0808 4-15 B

Recursive characteristic of vector functional units

In a vector operation, the result register (designated by i in the
instruction) is not normally the same V register as the source of either
of the operands (designated by j or k). However, turning the output
stream of a vector functional unit back into the input stream by setting
i to the same register designator as j or k may be desirable under
Certain circumstances since it provides a facility for reducing 64
aleseiité dowh to just a few. The number of terms generated by the
partial reduction is determined by the number of values that can be in
process in a functional unit at one time (i.e., functional unit time + 2
Cp).

When the i designator is the same as the j or k designator, a recursive
characteristic is introduced into the vector processing because of the
handling of element counters. At the beginning of an operation for which
i is the same as j or k, the element counters for both the operand
register and the operand/result register are set to 0. Operand registers
begin incrementing while the element counter for the result register is
held at 0 until functional unit time +2 CP. However, when an operand
register is the same as the result register, the element counter for the
operand/result register is held at 0 and does not begin incrementing
until the first result arrives from the functional unit at functional
unit time + 2 CP. This counter then begins to advance by 1 each clock
period.

Note that until functional unit time + 2, the initial contents of element
0 of the operand/result register are repeatedly sent to the functional
unit. The element counter for the other operand register, however,
immediately begins advancing by 1 on each successive clock period,

sending the contents of elements 0, 1, 2, ... on successive clock periods.

Thus, the first functional unit time + 2 elements of the operand/result
register contain results based on the contents of element 0 of the
operand/result register and on successive elements of the other operand
register. These functional unit time + 2 elements then provide one of
the operands used in calculating the results for the next functional unit
time + 2 elements. The third group contains results based on the results
delivered to the second group, and so on until the final group of
functional unit time + 2 elements is generated as determined by the
vector length.

This recursive characteristic of vector processing is applicable to any
vector operation, arithmetic or logical. The value initially placed in
element 0 of the operand/result register may depend on the operation
being performed. For example, when using the floating-point multiply
unit recursively, element 0 of the operand/result register is usually set
to an initial value of 1.0.

As an example, consider the summation of a vecteor of fleoating-peoint
numbers with the following initial conditions for the vector operation:

Part 2
HR~-0808 4-16 B

- All elements of register V1 contain floating-point values.

- Register V2 provides one set of operands and receives the
results. Element 0 of this register contains a 0 value.

- The vector length register (VL) contains 64.

A floating-point add instruction (171212) is then executed using register
V1 for one operand and using register V2 as an operand/result register.
This instruction uses the floating-point add unit which has a functional
unit time of 6 CPs causing sums to be generated in groups of eight
(functional unit time + 2 = 8). The final eight partial sums of the 64
elements of V1 are contained in elements 56 through 63 of V2.

Specifically, elements of V2 contain the following sums.

(v200) = = (v200) + (V100)
(v201) = 2 (v200) + (vi01)
(v202) = = (v200) + (V102)
(v203) = = (v200) + (V103)
tv204) = z (v200) + (V104)
(v205) = = (v200) + (V105)
(v206) = = (v200) + (V106)
(v207) = = (v200) + V1o7)
(V208) = (V200) + (vi08) = (v200) + (V100) + (V108)
(v209) = (V201) + (V109) = (v200) + (V101) + (V109)
(V210) = (V202) + (V110) = (v200) + (V102) + (V110D
(V211) = (V203) + (Vi11) = (v200) + (V103) + (V111)
(v212) = (v204) + (V112) = (v200) ¢ (V104) + (V112)
(V213) = (V205) + (V113) = (v200) 4+ (V105) + (V113)
(¥214) = (V206) + (V114) = (v200) + (V106) + (V11a)
(V215) = (V207) + (V115) s (v200) + (V107) + (V115)
(V216) = (V208) + (V116) = (v200) + (V100) + (V108) + (V116)
(V217) = (V209) + (V117) = (v200) + (V101) + (V109) + (VILT)
(V218) = (V216) + (V118) = (v200) + (V102) + (V110) + (V118)
(V219) = (V211) + (V119) = (v200) + (V103) + (V111) + (V119)
(v220) = (V212) + (V120) = (v200) + (V104) ¢ (V112) + (V120)
(V221) = (V213) ¢ (V121) = (v200) + (VI0S) + (VI13) + (V121)
(v222) = (V214) + (V122) = (v200) + (V106) + (V114) + (Vi22)
(v223) = (v215) + (V123) =3 (v200) + (V107) 4 (V11S) + (V123)
(V224) = (V2163 + (V124) = (v200) 4+ (V100) + (V108) ¢ (V116) & (Vi2a)
(V225) = (V217) + (V125) = (v200) ¢ (V101) + (V109) ¢ (VI17) + (V125)
(v226) = (V21R) + (V126) = (v200) + (V102) + (V110) ¢ (V118) + (V126)
(V227) = (V219) + (V127) = (v200) + (V103) + (V111) + (V119) ¢ (V12T7)
(V228) =® (V220) + (v128) = (v200) 4 (VI04) # (V112) + (V120) + (V328)
(V229) = (V221) + (V129) = (v200) 4+ (V105) + (V1I13) + (V121) + (V129)
(v230) = (v222) + (V130) = (v200) + (V106) + (V114) + (V122) + (V130)
(V231) = (V223) + (V131) = (v200) 4 (V107) + (V115) + (V123) + (Vi3Y)
(V232) & (V224) + (V132) = (v200) + (V100) + (V108) ¢ (V116) + (V124) ¢ (VI32)
(V233) = (V225) + (V133) = (v200) + (V101) ¢ (V109) ¢ (VI17) + (VI25) + (VI33)
(y234) = (v226) + (V13a4) = (v200) + (V102) + (V110) ¢ (V118) + (V126) + (V13a)
(V235) & (V227) + (V135) = (v200) + (V103) + CVI11) + (V119) + (VI27) + (V135)
(V236) = (V228) + (V136) = (v200) « (V104) + (VI12) ¢ (V120) + (V128) + (Vi36)
(¥237) = (V229) + (Vi37) = (v200) ¢ (V105) & (VI13) + (V121) ¢ (V129) + (VI37)
(V238) = (V230) + (V138) = (v200) ¢ (V106) ¢ (V114) + (V122) + (V130) + (Vi38)
(v239) = (V231) + (V139) = (v200) + (V107) + (V115) + (V123) + (V131) + (V139)
(v280) = (V232) + (V140) = (v200) ¢ (V100) ¢ (VI08) & (V116) ¢ (V123) + (V132) + (V140)
(v241) = (V233) + (Vv141) = (v200) + (VI01) ¢ (V1093 + (V117) + (V125) + (V133) + (Vid1)
(V242) = (V234) + (V142) = (v200) + (V102) ¢ (V110) + (V118) + (V126) + (V134) ¢ (V142)
(v243) = (v235) + (V1a3) = (v200) + (V103) + (V111) + (V119) + (V127) ¢ (V135) ¢ (v1a3)
(v244) = (V236) + (V14a) = (v200) ¢ (V108) 4 (VI12) + (V1203 + (V128) + (V136) + (V144)
(v2a5) = (V237) + (V1aS) = (v200) ¢ (V10S) + (V113) + (V121) + (V129) + (V137) + (V145)
(v2as) = (v238) + (V146) = (v200) ¢ (V1063 ¢ (VI14) & (V122) + (V130) + (V138) ¢ (V146)
(V247) = (V239) + (V14a7) = (v200) ¢ (V107) ¢ (VI15) + (V123) + (VI31) ¢ (V139) ¢ (V14T)
(v2a8) = (v2an) + (vias) = (v200) + (VI00) + (V108) + (V116) + (V128) + (V132) + (V140) + (V1a8)
(V249) = (v241) + (V1a9) = (v200) + (VI01) # (V109) + (V117) ¢ (V125) + (V133) + (V1a1) + (V1a9)
(V250) = (v242) + (ViS0) = (v200) + (V102) ¢ (V110) » (V118) + (V126) ¢ (V134) + (V142) + (V150)
(V251) = (V243) + (ViS1) = (v200) ¢ (V103) ¢ (VI11) ¢ (V119) ¢ (VI2T) ¢ (V135) + (V143) + (Vi51)
(V252) = (v24a) + (V152) = (v200) 4+ (V1083 ¢ (V112) ¢ (V120) + (V128) ¢ (V136) + (V184) + (V152)
(V253) = (V245) + (V1S3) = (v200) + (VI05) + (V113) ¢ (V121) ¢ (V129) + (V137) + (V145) + (V153)
(v258) = (V2a46) + (V154) = (v200) ¢ (V106) ¢ (V114) ¢ (V122) + (V130) + (V138) + (V146) + (V158)
(v255) = (v2a7) + (V155) = (v200) + (VI0T) + (VI1S) + (VI23) « (VI31) + (VI39) + (V1a7) + (V1SS)
(V2S6) = (V24R) + (VIS6) = (V200) ¢ (V100) + (V108) + (V116) + (V124) + (V132) « (V140) + (ViaB8) + (V156)
(V257) = (V249) + (VIS7) = (v200) + (V101) + (V109) + (V117) ¢ (V125) + (V133) + (V141) + (V149) + (VI57)
(V258) = (V250) 4 (V158) = (v200) + (V102) + (V110) + (V118) ¢ (V126) ¢ (Vi34) + (V142) + (V150) ¢+ (V158)
(V259) = (V251) ¢ (V159) = (v200) + (V103) 4 (V111) # (V119) % (VI2T) ¢ (VI35) + (V143) + (VI51) ¢ (V1S9)
(V260) = (V252) + (V160) = (v200) + (V104) + (V112) + (V120) + (V128) ¢ (V136) + (V148) + (V152) + (V160)
(V261) ® (V253) + (Vi61) = (v200) & (VI05) + (V113) ¢ (V121) & (V129) & (VI3IT) + (V145) + (V153) + (Viey)
(V262) = (V253) + (V162) = (v200) & (V106) + (V114) ¢ (V122) + (VI30) « (VI38) + (V146) + (V154) + (V162)
(V263) = (V255) + (V163) = (v200) + (VI07) + (V115) + (V123) + (V131) ¢ (V139) + (V147) + (V155) + (Vie3)
Part 2

HR-0808 4-17 B

FLOATING-POINT FUNCTIONAL UNITS

The three floating-point functional units perform floating-point
arithmetic for both scalar and vector operations. When executing a scalar
instruction, operands are obtained from S registers and the result is
delivered to an S register. When executing most vector instructions,
operands are obtained from pairs of V registers or from a V register and
an S register and the results are delivered to a V register. The
reciprocal approximation unit, which requires only one input operand, is
an exception.

A particular floating-point unit is reserved during the entire execution
of the vector instruction.

Information on floating-point out-of-range conditions is contained in the
subsection entitled Floating-Point Arithmetic, in this section.

Floating-point add unit

The floating-point add unit performs addition or subtraction of 64-bit
operands in floating-point format. The unit executes instructions 062,
063, and 170 through 173.

A result is normalized even if the operands are unnormalized.

Out-of-range exponents are detected as described under Floating-Point
Arithmetic.

Functional unit time is 6 CPs; chain slot time is 8 CPs.

Floating-point multiply unit

The floating-point multiply unit executes instructions 064 through 067 and
160 through 167. These instructions provide for full- and half-precision
multiplication of 64-bit operands in floating-point format and for
computing two minus a floating-point product for reciprocal iterations.

The half-precision product is rounded; the full-precision product is
either rounded or unrounded.

Input operands are assumed to be normalized. The unit delivers a
normalized result except that the result is not guaranteed to be correct
if either input operand is not normalized.

Out-of-range exponents are detected as described under Floating-Point
Arithmetic. However, if both operands have zero exponents, the result is
considered as an integer product and is not normalized and is not
considered out-of-range. This provides a fast method of computing a
48-bit integer product.

Part 2
HR-0808 4-18 B

Functional unit time is 7 CPs; chain slot time is 9 CPs.

Reciprocal approximation unit

The reciprocal approximation unit finds the approximate reciprocal of a
64-bit operand in floating-point format. The unit executes instructions
070 and 174ij0. Since the Vector Population Count Unit shares some logic
with this unit, the k designator must be 0 for the reciprocal
approximation instruction to be recognized.

The input operand is assumed to be normalized and if so the result is
normalized. The high-order bit of the coefficient is not tested but is

assumed to be a 1. If it is not a 1, the result will be incorrect.

Functional unit time is 14 CPs; chain slot time is 16 CPs.

ARITHMETIC OPERATIONS

Functional units in the CPU perform either twos-complement integer
arithmetic or floating-point arithmetic.

INTEGER ARITHMETIC

All integer arithmetic, whether 24 bits or 64 bits, is twos complement
and is so represented in the registers as illustrated in figure 4-4. The
address add unit and multiply units perform 24-bit arithmetic. The
scalar add unit and the vector add unit perform 64-bit arithmetic.

223 20

SIGN
TWOS COMPLEMENT INTEGER (24 BITS)
263 20

SIGN
TWOS COMPLEMENT INTEGER (64 BITS)

Figure 4-4. 1Integer data formats

Part 2
HR-0808 4-19 B

Mu%tiplication of two scaled integer operands may be accomplished by
using the floating-point multiply instruction. The floating-point

multiply unit recognizes the conditions where both operands have zero
exponents as a special case and returns the high-order 48 bits of the
product of the coefficients as the coefficient of the result and leaves
the exponent field zero. See figure 4-6.

Division of integers would require that they first be converted to
floating-point format and then divided using the floating-point units.

FLOATING-POINT ARITHMETIC

Floating-point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent (or power of two). The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient as shown in figure 4-5. Since the coefficient is signed
magnitude, it is not complemented for negative values.

BINARY POINT

263 262 zqav o7 20
COEFF. EXPONENT COEFFICIENT
SIGN

Figure 4-5. Floating-point data formats

The exponent portion of the floating-point format is represented as a
biased integer in bits 262 through 248, The bias that is added to
the exponents is 40000g. The positive range of exponents is 40000g
through 57777g. The negative range of exponents is 37777g through
20000g. Thus, the unbiased range of exponents is the following:

2-200008 through 2%177778

In terms of decimal values, the floating-point format of the CRAY-1
allows the expression of numbers accurate to about 15 decimal digits in
the approximate decimal range of 1072466 through 10%2466,

A zero value or an underflow result is not biased and is represented as a
word of all zeros.

A negative 0 is not generated by any floating-point functional unit,
except in the case of a negative 0 operand going to the floating-point
multiply functional unit.

Part 2
HR-0808 4-20 B

Normalized floating-point numbers

A non-zero floating-point number in packed format is normalized if the
most significant bit of the coefficient is non-zero. This condition
implies that the coefficient has been shifted to the left as far as
possible and, therefore, the floating-point number has no leading zeros
in the coefficient.

When a floating-point number has been created by inserting an exponent of
400608 into a word containing a 48-bit integer, the result should be
normalized before being used in a floating-point operation.

Normalization is accomplished by adding the unnormalized floating-point
operand to 0. Since S0 provides a 64-bit zero when used in the Sj field
of an instruction, an operand in Sk can be normalized using the 062i0k
instruction. Si, which can be Sk, contains the normalized result.

The 170i0k instruction normalizes Vk into Vi if Vk and Vi are different
registers.

Floating-point range errors

Overflow of the floating-point range is indicated by an exponent value of
600008 or greater in packed format. Underflow is indicated by an
exponent value of 17777g or less in packed format. Detection of the

overflow condition initiates an interrupt if the floating-point mode flag
is set in the mode register and monitor mode is not in effect. The

floating-point mode flag can be set or cleared by a user mode program.

Detection of floating-point error conditions by the floating-point units
is described in the following paragraphs.

Floating-point add unit - A floating-point add range error condition is
generated for scalar operands when the larger incoming exponent is
greater than or equal to 600008. The floating-point error flag is set
and an exponent of 60000g is sent to the result register along with the
computed coefficient, as in the following example:

60000.4 Range error
+57777.4
60000.6 Result register

NOTE

If the operands to a floating-point add are identical
except for sign, the error is suppressed, even though
both have exponents greater than or equal to 600008.

Part 2
HR-0808 4-21 B

An underflow condition occurs when the smaller incoming unnormalized
exponent is less than or equal to 177778' This underflow condition is

not detected, and the calculated result goes to the result register.

Floating-point multiply unit - The out-of-range conditions are tested
before normalizing. In the floating-point multiply unit, if the exponent
of either operand is greater than or equal to 600005 or if the sum

minus 1 of the two exponents is greater than or equal to 60000g, the
floating-point error flag is set and an exponent of 60000g is sent to

the result register along with the computed coefficient.

NOTE

If either of the operands is (plus, minus) zero, the
error is suppressed, even though the other operand may
be out of range.

An underflow condition is detected when the result exponent is less than
or equal to l77778 and causes an all-zero exponent and coefficient to

be returned to the result register.

Underflow is also generated when either, but not both, of the incoming
exponents is 0. The condition where both exponents are equal to 0 is

treated as an integer multiply and the result is treated normally with no
normalization shift of the result allowed. The result is a 48-bit
quantity starting with bit 247. When using this feature, one may

consider the operands as 24-bit integers in bits 247 through 224 even
though they are actually fractions with the binary point between bits

248 ana 247. 1n figure 4-6, operand 1 is 4 and operand 2 is 5 which
produce a 48-bit result of 24g. (In this case bit 2 3 obeys the

usual rules for multiplying signs, i.e. = * + = 4+ *¥ — = -, and - * - = +
* 4 o= 4),

263 247 223 20

Operand 1 0 === 0 S 04 7////////////%
Operand 2 0-—0 0 —=—mmmmmmm——m e 05 W// //

Result 0 -——0 0 === e 024

A-0/95

Figure 4-6. Integer multiply in floating-point multiply unit

Part 2
HR-0808 4-22 B

Floating-point reciprocal approximation unit - For the floating-point
reciprocal approximation unit, an incoming operand with an exponent less
than or equal to 200018 or greater than or equal to 600008 causes a
floating-point range error. The error flag is set and an exponent of
60000g is sent to the result register along with the computed
coefficient.

Double-precision numbers

The CPU does not provide special hardware for performing double- or
multiple-precision operations. Double-precision computations with 95-bit
accuracy are available through software routines provided by Cray
Research.

Addition algorithm

Floating-point addition or subtraction is performed in a 49-bit register
(figure 4-7). Trial subtraction of the exponents occurs to select the
operand to be shifted down for aligning the operands. The larger
exponent operand carries the sign. The coefficient of the number with
the smaller exponent is shifted right to align with the coefficient of
the number with larger exponent. Bits shifted out of the register are
lost; no round-up takes place. If the sum carries into the high-order
bit, the low-order bit is discarded and an appropriate exponent
adjustment is made. All results are normalized and if there is
underflow, an all zero result is returned.

1 48
b discarded

: %

A-0/32

Figure 4-7. 49-bit floating-point addition

Multiplication algorithm

The floating-point multiply unit in the CPU has an input of 48 bits of
coefficient into a multiply pyramid (figure 4-8). The pyramid truncates
part of the low-order bits of the 96-bit product. To adjust for this
truncation, a constant is unconditionally added above the truncation.
The value of this constant is 9/256. This is an average value
determined by summing all carries produced by all possible combinations
that could be truncated, and dividing the sum by the number of possible
combinations. This averages to nine carries which are injected at the
2756 position.

Part 2
HR-0808 4-23 B

The errors due to this truncation and rounding are in the range:
-0.23 x 2748 to +0.57 x 2748
or -8.17 x 10716 to +20.25 x 10716,

The effect of this error is, at most, a round up of bit 2_48 of the
result.

i (MULTIPLICAND)

N
L
n
L
="
n
N
o
™
2
N
a
N
1
o4
o

k ..J’V

(MULTIPLIER)

(:) h 1 for half-precision round
f = 1 for full-precision round
Truncation constant

Figure 4-8. Floating-point multiply partial-product sums pyramid

The multiplication is commutative, that is, A times B equals B times A.

In a full-precision rounded multiply, 2 round bits are entered into the
pyramid at kit positicn 2750 ana 2791 ana allowed to propagate up the
pyramid.

Part 2
HR-0808 4-24

For a half-precision multiply, round bits are entered into the pyramid at
bit positions 2=32 ang 2-31. a carry resulting from this entry is

allowed to propagate up and a 29-bit result (271 to 2729y is
transmitted back.

Division algorithm

The CRAY-1 performs floating-point division by the method of reciprocal
approximation. This facilitates the hardware implementation of a fully
segmented functional unit. Operands may enter the reciprocal unit each
clock period because of this segmentation. In vector mode, results are
produced at a 1-CP rate. These results may be used in other vector
operations during chaining because all functional units in the CRAY-1
have the same result rate. The reciprocal approximation is based on
Newton's method.

Newton's method - The division algorithm is an application of Newton's
method for approximating the real roots of an arbitrary equation

F(x) = 0, for which F(x) must be twice differentiable with a continuous
second derivative. The method requires making an initial approximation
(guess), Xgr sufficiently close to the true root, Ko being sought

(see figure 4-9). For a better approximation, a tangent line is drawn to
the graph of y = F(x) at the point (XO' F(xo)). The X intercept of

this tangent line is the better approximation X1. This may be again
repeated using xj to find x5, etc.

y= F(x)

(xg»Flxy)

X
/(t % % %o

A-0/28

Figure 4-9. Newton's method

Part 2
HR-0808 4-25 B

Derivation of the division algorithm

A definition for the derivative F'(x) of a function F(x) at point Xy is

F'(xg) = limit F(x) - F(xy)

X——)Xt X - Xt

if this limit exists. If the limit does not exist, F(x) 1is not
differentiable at the point t.

For any point X; near to Xxg,

F'(x,) % Flx)) = F(xy)

where ¥ means "approximately equal to".

Xi“Xt

This approximation improves as Xj approaches x¢. Let xX; stand for
an approximate solution and let Xt stand for the true answer being
sought. The exact answer is the value of x that makes F(x) equal 0.
This is the case for x = R therefore F(xt) may be replaced by 0,
giving:

F'(xg) v Flx5) (1)
X T Xt
Notice that X¢ — X; is the correction that must be applied to an
approximate answer, Xjr to give the right answer since x, +
(xt - Xi) equals Xy . Solving approximation (1) for (xt - xi)
dives:
M- F(xg)
F'(xe)

If this quantity is substituted into the approximation, then:

Xt = Xj = correction

aN . 1 = .
Xp 2 (x%; + correction) = xj47-

This gives, then, an equation of the form:

Xi+1 T % ~ E;fil ' (2)

F (Xi)

where xj4+] is a better approximation than xj to the true value, Xt,

being sought. The exact answer is generally not obtained at once because
the correction term is not generally exact. However, the operation may
be repeated until the answer becomes sufficiently close for practical use.

To make use of Newton's method to find the reciprocal of a number B,
simply use F(x) = (1/x - B).

Part 2
HR-0808 4-26 B

First calculating F'(x) we have:

1 -1 .
where F'(x) = (- - B)' = (;5). thus for any point x3 # 0,

F'(Xl) = —= 7 Choosing for x, a value near A
B

and applying equation (2),

1l -8B
X
><2=X1-_1l !
X2
1
2 1
= + __ =B
X, = X, * X (x),
1
X, =X, + X, - x.B,

2
x2 = 2xl - XlB = xl(2-xlB).

This approximation technique using Newton's method is implemented in the
CRAY-1. A hardware table look up provides an initial guess, X5, toO

start the process.

x0(2 - %XqgB) lst approximation, Il
Done

x1(2 - xlB) 2nd approximation, I2 in reciprocal
unit

x2(2 - sz) 3rd approximation, I3

x3(2 - x3B) 4th approximation Done with
software

The CRAY-1 reciprocal approximation functional unit performs three
iterations: I1, I2 and I3. Il is accurate to 8 bits and is found after a
table look-up to choose the initial guess, Xg- I2 is the second

iteration and is accurate to 16 bits. I3 is the final (third) iteration
answer of the reciprocal functional unit and its result is accurate to 30

bits.

A fourth iteration which uses a special instruction within the
floating-point multiply functional unit to calculate the correction term,
may be used to increase the accuracy of the reciprocal unit's answer to

full precision.

The division algorithm that computes S;/S; to full-precision requires
four operations:

1. 83 = 1/8, Performed by the reciprocal
approximation unit

Part 2
HR-0808 4-27 B

2. S84 = (2 - (53 * 53)) Performed by the floating-point
multiply unit in iteration mode

3. S5 =8, * s3 Performed by the floating-point
multiply unit using
full-precision. 55 now equals
1/85 to 48 bit accuracy.

4. Sg = Sg * Sy Performed by the floating-point
multiply unit using full-precision
rounded

The reciprocal approximation at step 1 is correct to 30 bits. The
additional Newton iteration (fourth iteration) at steps 2 and 3 increases
this accuracy to 48 bits. This iteration answer is applied as an operand
in a full-precision rounded multiply operation to obtain the quotient

accurate to 48 bits. Additional iterations should not be attempted since
erroneous results could be obtained.

Where 29 bits of accuracy is sufficient, the reciprocal approximation
instruction may be used with the half-precision multiply to produce a
half-precision quotient in only two operations.

1. 53 =1/8, Performed by the reciprocal
approximation unit
2. S¢g = Sl * S3 Performed by the floating-point

multiply unit in half-precision

The 19 low-order bits of the half-precision results are returned as zeros
with a round applied to the low-order bit of the 29-bit result.

Another method of computing divisions is as follows:

1. s3 =1/s, Performed by the reciprocal
approximation unit

2. S5 =5y * 53 Performed by the floating-point
multiply unit

3. Sy = (2 - (S3 * 52)) Performed by the floating-point
multiply unit

4. Sg

S4 * Sg Performed by the floating-point
multiply unit

A scalar quotient is computed in 29 CPs since operations 2 and 3 issue in
successive clock periods. With this method the full precision reciprocal

1 e
1/8; is never formed.

Part 2
HR-0808 4-28 B

A vector quotient using this procedure requires less than four vector
times since operations 1 and 2 are chained together. This overlaps one

of the multiply operations. (A vector time is 1 CP for each element in
the vector.)

For example, two 60-element vectors are divided in 3 * 60 CPs plus

overhead. (The overhead associated with the functional units for this
case is 38 CPs).

LOGICAL OPERATIONS

The scalar and vector logical units perform bit-by-bit manipulation of
64-bit quantities. Operations provide for forming logical products,
differences, sums and merges.

A logical product is the AND function:

operand 1 1010
operand 2 1100
result 1000

A logical difference is the exclusive OR function:

operand 1 1 010
operand 2 1100
result 0110

A logical sum is the inclusive OR function:

operand 1 1 0
operand 2 11 00
1

result 1

[I
e [N o)

A logical equivalence is the exclusive NOR function:

operand 1 1010
operand 2 11 0 0
result 1001

The merge uses two operands and a mask to produce results as follows:

operand 1 10101010
operand 2 11001100
mask 11110000
result 10101100

The bits of operand 1 pass where the mask bit is 1. The bits of operand
2 pass where the mask bit is 0.

Part 2
HR-0808 4-29

CPU INPUT/OUTPUT SECTION 5

INTRODUCTION

The Input/Output section of the Central Processing Unit contains one
Memory Channel and 12 I/0 channel pairs. The Memory Channel has one
input channel and one output channel. The 12 I/0 channel pairs are
composed of 12 input channels and 12 output channels. The I/O channels
are 16 bits wide, while the Memory Channel is 64 bits wide.

MEMORY CHANNEL

The Memory Channel transfers data between the Central Memory and the
Buffer I/0 Processor (BIOP). It has two independent channels, one for
input to Central Memory, and one for output from Central Memory. Each
channel is 64 bits wide, and handles data at approximately 850 Mbits per
second. Each channel uses an additional 8 check bits for single error
correction/double error detection (SECDED), just as is used in Central
Memory.

The CPU side of the channel uses a pair of l16-word buffers to stream the
data out of Central Memory. As one buffer block is being sent to the I/0
Processor, the other buffer is filling from Central Memory. Another pair
of buffers is used to speed data into Central Memory.

At the I/0 Processor end of the channels, the data passing into I/0
Memory is double-buffered and disassembled into 16-bit parcels. The
channel end passing data from I/O Memory simply assembles 64-bit words
from the 16-bit parcels.

The instruction fetch, exchange sequence, and normal I/0 channel memory
requests all take precedence over a Memory Channel Central Memory
request. Data is sent in blocks, with 16 words as the normal block
length. Each block transfer keeps Central Memory busy for 7 CPs and
locks out all other memory requests.

Between block transfers there is a 1-CP wait that allows any other active
memory requests to take over Central Memory.

Part 2
HR-0808 5-1 B

The Memory Channel is controlled by the Buffer I/0 Processor. There are
no CPU instructions for the Memory Channel. All data transfers between

the Central Memory and the BIOP are initiated by the BIOP. All error
handling is initiated by the BIOP. Since the Memory Channel is
supervised by an I/O Processor, the programming details are contained in
part 3, section 7.

I/0 CHANNELS
The I/0 channels have three basic types of control logic:

1. 16-bit asynchronous; used for Maintenance Control Unit interface
or front-end interfaces; the standard CRAY-1 I/0O channel

2. 16-bit high-speed asynchronous
3. 16-bit synchronous; used for disk storage access

Each type of I/0 channel has the same electrical interface to the I/0
cable but differs in timing, protocol, and data rates.

CHANNEL GROUPS

I/0 channels are numbered 2 through 318 and are divided into four
groups as follows:

Group 1 Input channels 2, 6, 12, 16, 22, 26
Group 2 Output channels 3, 7, 13, 17, 23, 27
Group 3 Input channels 4, 10, 14, 20, 24, 30
Group 4 Output channels 5, 11, 15, 21, 25, 31

I/0 INSTRUCTIONS
The instructions used with 1/0 channels are:

00107k Set the current address (CA) register for the channel
indicated by (Aj) to (Ak) and activate the channel

0011jk Set the limit address (CL) register tor the channel
indicated by (Aj) to (Ak)

Part 2
HR-0808 5-2 B

0012jx Clear the interrupt flag and error flag for the channel
indicated by (Aj)

033i0x Transmit channel number to Ai
033ij0 Transmit address of channel (Aj) to Ai

033ij1 Transmit error flag of channel (2j) to Ai

BASIC I/0 CHANNEL OPERATION

Each input or each output channel directly accesses the Central Memory.
Input channels store external data in memory and output channels read
data from memory. A primary task of a channel is to convert 64-bit
Central Memory words into 16-bit parcels or 16-bit parcels into 64-bit
Central Memory words. Four parcels make up one Central Memory word, with
bits of the parcels assigned to memory bit positions as shown in table
5-1. 1In both input and output operations, parcel 0 is always transferred

first.

Each channel consists of a data channel (4 parity bits, 16 data bits, and
3 control lines), a 64-bit assembly or disassembly register, a channel

current address register (CA), and a channel limit address register (CL}.

The three control signals are Ready, Resume, and Disconnect. These
control signals coordinate the transfer of parcels over the channels.

The method of coordination varies among the types of channel; the
different methods are explained later.

In addition to the three control signals, either the input or output
channel of a pair has a Master Clear line.

Table 5-1. Channel word assembly/disassembly

Characteristic Bit position Number Comment
of bits
Channel data bits 215—20 16 Four 4-bit groups
Channel parity bits 4 One per 4-bit group
CRAY-1 word 263-20 64
Parcel 0O 263.248 16 First in or out
Parcel 1 247-232 16 Second in or out
Parcel 2 231-216 16 Third in or out
Parcel 3 215—20 16 Fourth in or out
Part 2

HR-0808 5-3 B

I1/0 interrupts can be caused by the following:

- On all output channels, if (CA) becomes equal to (CL), then for
each of the channel types on the transmission of the last four
parcels:

16~bit asynchronous Resume for last parcel
transmitted sets interrupt

l6-bit high-speed asynchronous Resume for last four parcels
transmitted sets interrupt

l16-bit synchronous Interrupt sets when last Ready is
sent

l16-bit asynchronous Disconnect received and channel
active, or CA = CL and channel
active

16-bit high-speed asynchronous Disconnect received and channel
active

16-bit synchronous Disconnect received and channel
active and CA = CL

- External device disconnect received on any input channel and
channel is active

- Channel error condition (described later in this section)

The number of the channel causing an interrupt can be determined by the
use of a 033 instruction, which reads to Ai the highest priority channel

number requesting an interrupt. The lowest numbered channel has the
highest priority. The interrupt request continues until cleared by the
monitor program at which time an interrupt from the next highest priority
channel, if present, may be sensed.

INPUT CHANNEL PROGRAMMING

To start an input operation, the CPU program must perform the following
steps:

1. Set the channel limit address to the last word address+l
(LWA+1). See figure 5-1.

2. Set the channel current address to the first word address (FWA).

Part 2
HR-0808 5-4 B

Setting the current address causes the channel active flag to be set.
The channel is then ready to receive data. When a 4-parcel word is
assembled, the word is stored in memory at the address contained in the
channel current address register. When the word is accepted by memory,

the current address is advanced by 1.

BEGIN

'<
SET
CHANNEL
LIMIT

1

SET
CURRENT ADDRESS
(Channe) is activated)

DATA IS TLANSFERRED
[}
RECEIVE ;NTERRUPT

GET
CHANNEL
INTERRUPT NO.

ERROR?

CLEAR

INTERRUPT YES

FLAG
DETERMINE
‘ NUMBER OF WORDS]
TRANSFERRED
CONT INUE
NO YES CLEAR
ABORT RETRY? INT. & ERROR

FLAGS

Figure 5-1. Basic I/0O program flow chart

The external transmitting device sends a Disconnect pulse to indicate the
end of the transfer. When the Disconnect is received, the channel
interrupt flag sets and a test is performed to check for a partially
assembled word. If the partial word is found, the valid portion of the
word is stored in memory and the unreceived, low-order parcels are stored

as zZeros.

The interrupt flag sets when a Disconnect pulse is received or when an
error condition is detected. Setting the interrupt flag deactivates the
input channel.

Part 2
HR-0808 5-5 B

Input channel error conditions

1.

HR-0808

Parity error

16-bit asynchronous channel - When a parcel in error occurs, the

parity fault flag sets immediately. The parity fault flag does
not generate an interrupt; it is saved and sets the error flag
when a disconnect occurs. Therefore, the program should check
the state of the error flag when an interrupt is honored.

16-bit high-speed asynchronous channel - Same as for 16-bit

asynchronous channel.

16~bit synchronous channel - The parcel that contains the error
sets the parity fault flag. The parity fault flag causes the
subsequent parcels to be stored as all zero parcels. No
interrupt is generated by the parity fault. When the data
transfer is complete, and the channel goes inactive, the parity
fault flag sets the channel error flag. The program should check
the state of the error flag when an interrupt is honored.

Unexpected Ready pulse

16~bit asynchronous channel - If a Ready pulse is received when
the channel is not active, the ready condition is saved until the

channel is activated. At this time a Resume pulse is sent. No
error flag is set and no interrupt request is generated.

If a Ready pulse is received when the memory reference for the
previous four parcels is not yet complete, or is received when
the channel is active but CA = CL (an extra Ready), the error
flag is set. An interrupt reqguest is generated, but no Resume is
sent and the data is discarded. When servicing the I/0
interrupt, if the channel error flag is set and CA is not equal
to CL, a programmed master clear sequence (described later in
this section) should be executed on the interrupting channel to
clear the external device.

16-bit high-speed asynchronous channel - If an unexpected Ready
pulse is received during a memory reference, the normal burst of
four Resume pluses is sent and the data is not sampled. The
error flag is set and an interrupt is generated. If the channel
is not active or CA = CL when the unexpected Ready pulse arrives,
no Resume pulses are sent; the data is not sampled; and the error
flag is set to generate an interrupt.

Part 2

16-bit synchronous channel - A Ready signal is not expected when
the channel is inactive, or when CA = CL, or after the first
Ready but before the end of the transfer. If an unexpected Ready
signal is received, the error flag is set and an interrupt is
generated. No further data of the block is transferred. No
Resume signal is returned in response to the unexpected Ready
signal.

OUTPUT CHANNEL PROGRAMMING

To start an output operation, the CPU program must:

1. Set the channel limit address to the last word address+l (LWA+1)
2. Set the channel current address to the first word address (FWA) .

Setting the current address causes the channel active flag to be set.
The channel reads the first word from memory addressed by the contents of

the channel's current address register. When the word is received from
memory, the channel advances the current address by 1 and starts the data

transfer.

After each word is read from memory and the current address is advanced,
the limit test is made. The test compares the contents of the channel's
current address register and the channel's 1imit address register. if
they are equal, the operation is complete as soon as the last parcel
transfer is finished. Tables 5-3, 5-5, and 5-7 show the terminating

sequence.

Output channel error condition

The interrupt flag also sets if an error is detected. The only error
that an output channel detects is a Resume pulse received when the
channel is not active. No external response is generated.

16-BIT ASYNCHRONOUS CHANNELS

Input channels

Table 5-2 illustrates a general view of an input signal sequence.

Part 2
HR-0808 5-7 B

. 0 15 , .
Data bits 2 through 2 - Data bits 20, 21, ceey 215 are signals
carrying the 16-bit parcel of data from the external device to the CPU.
They must all be valid within 80 nanoseconds after the leading edge of

the Ready signal. Data bit signals must remain unchanged on the lines
until the corresponding resume is received by the external device.
Normally, data is sent coincident with the Ready pulse and is held until
the subsequent Ready pulse.

Table 5-2. 16-bit asynchronous input channel signal exchange

CPU EXTERNAL

1. Activate channel (Set CL and CA).

2. <«———Data 263-248 yith Ready

3. Resume ——m

4. <«———Dpata 247-232 yitn Ready

5. Resume ———

6. <«—————Data 231-216 yith Ready

7. Resume —————p

8. <———Data 215-20 yith Ready

9. Write word to memory and advance
current address.

10a. Resume——»

10b. If (CA) = (CL), go to 13.

11. If more data, go to 2.

12. <«—— Disconnect (ignored if
CA = CL or if channel not
active

13. Set interrupt and deactivate channel.

Part 2
HR-0808 5-8 B

Parity bits 0 through 3 - Parity bits 0 through 3 are each assigned to a
4-bit group of data bits. The parity bits are set or cleared to give the

bit group odd parity. Bit assignments are as follows:

Parity Bit 0 Data Bits 20 - 23
Parity Bit 1 Data Bits 24 - 27
Parity Bit 2 Data Bits 28 - 211
Parity Bit 3 Data Bits 212 - 215

Parity bits are sent from the external device to the CPU at the same time
as the data bits. They are held stable in the same way as are the data

bits.

Ready - The Ready signal sent to the CPU indicates that a parcel of data
is being sent to the CPU input channel and may be sampled. The Ready

signal is a pulse 50 +10 nanoseconds wide (at 50% voltage points). The
leading edge of Ready at the CPU begins the timing for sampling the data

bits.

Resume - Resume is sent from the CPU to the external device to show that
the parcel was received and that the CPU is ready for the next data

transmission. Resume is a pulse 50 +3 nanoseconds wide (at 50% voltage
points).

Disconnect - This signal is sent from the external device to the CPU and
means that the transmission from the external device is complete. It is

sent after the Resume is received for the last Ready. Disconnect is a
pulse 50 +10 nanoseconds wide (at the 50% voltage points).

Channel Master Clear - This signal may be programmed (see description of
Programmed Master Clear later in this section) or may result from a Clear
I/0 Signal.

Output channels

Table 5-3 illustrates a general view of an output signal sequence.

0 15 .
Data bits 2 through 2 - Data bits 20, 21, ceey 215 are signals
carrying a lo-bit parcel of data from the CPU to an external device.

They are all sent at the same time, within 5 nanoseconds of the leading
edge of the Ready pulse. Data bit signals remain steady on the lines

until the Resume pulse is received.

Part 2
HR-0808 5-9 B

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to
a 4-bit group of data bits. The parity bits are set or cleared to give

the bit group odd parity. Bit assignments are as follows:

Parity Bit 0 Data Bits 20 - 23
Parity Bit 1 Data Bits 24 - 27
Parity Bit 2 Data Bits 28 - 211
Parity Bit 3 Data Bits 212 - 215

Parity bits are sent from the CPU to the external device at the same time
as the data bits. They are held stable in the same way as are the data

bits.

Table 5-3. 16-bit asynchronous output channel signal exchange

CPU EXTERNAL

1. Activate channel (set CL and CA).

2. Read word from memory and advance
current address.

3. Data 263-248 witn Ready ——»

4. ~———— Resume
5. Data 2%47-232 yith Ready —»

6. ~¢——————— Resume
7. Data 231216 yitn Ready —»

8. ~«————— Resume
9. Data 215-20 with Ready——»

10. -<«——— Resume
11. If (CA) # (CL), go to 2.

12. Disconnect ———»

13. Set interrupt and deactivate channel.

Part 2
HR-0808 5-10 B

Ready - The Ready signal sent from the CPU to the external device
indicates that the data is present and may be sampled. The Ready signal

is a pulse 50 +3 nanoseconds wide (at 50% voltage points). The leading
edge of Ready may be used to time data sampling in the external device.

Resume - Resume is sent from the external device to the CPU to show that
the parcel was received and that the external device is ready for the
next parcel transmission. Resume is a pulse 50 +10 nanoseconds wide (at
50% voltage points).

Disconnect - Disconnect is a signal sent from the CRAY-1 to the external
Jdevice that means the transmission from the CRAY-1 is complete. It is

sent after the CPU has received the Resume from the last Ready. The
Disconnect is a pulse 50 +3 nanoseconds wide (at 50% voltage points).

Cabling Restrictions - The normal length of cable for the 16-bit
asynchronous channel is 70 feet (21.3 meters). This assumes a 10-foot

(305-cm) drop cable at the CPU, a 50-foot (15.3-meter) data cable, and
another 10-foot (305-cm) drop cable at the external device. When used
with a Cray Research, Inc. front-end interface, the cable length
increases to 300 feet (91.5 meters).

16-BIT HIGH-SPEED ASYNCHRONOUS CHANNELS

Input channels

Table 5-4 illustrates a general view of an input signal sequence.

0 15 .
Data bits 2 through 2~ - Data bits 20, 21, ..., 215 are signals
carrying a 16-bit parcel of data to the CPU. The data lines must be

stable no later than 80 nanoseconds after the leading edge of the
associated Ready pulse and must be held stable until at least 120
nanoseconds after the leading edge of the same Ready. Note that if the
device is transmitting at the maximum allowable rate, it is normal for a
data parcel to overlap the subsequent Ready pulse. Typically, data is
transmitted 50 nanoseconds after the leading edge of Ready and held until
50 nanoseconds after the leading edge of the following Ready pulse.

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each a parity
bit assigned to a 4-bit group of data bits. The parity bits are set or
cleared to give the bit group odd parity. Bit assignments are as follows:

Parity Bit 0 Data Bits 20 - 23
Parity Bit 1 Data Bits 24 - 27
Parity Bit 2 Data Bits 28 - 211
Parity Bit 3 Data Bits 212 _ 215

Part 2
HR-0808 5-11 B

Table 5-4. 16-bit high-speed asynchronous input channel signal exchange

CpPU EXTERNAL

1. Activate channel (Set CL and CAa).
2. Resume —————»
3. Resume ————

4, Resume ————»

5. Resume ———» If done, go to 11.

6. <«—————Dpata 203-248 yith Ready
7. <«———Data 247-232 yith Ready
8. <«—— Dpata 231-216 yith Ready
9. <«—————pata 215-20 ywith Ready

10. Write word to memory and advance
current address; go to 2.

11. -<————Disconnect

12, Set interrupt and deactivate channel.

Parity bits are sent from the external device to the CPU at the same time
as the data bits. They are held stable in the same way as are the data

bits.

Ready - The Ready signal sent to the CPU indicates that data will soon be
sent to the CPU input channel and may be sampled. The Ready signal is a
pulse 50 +10 nanoseconds wide (at the 50% voltage points) sent in groups
of four. The leading edge of Ready at the CPU begins the timing for

sampling the data bits.

The first Ready pulse of a group may be transmitted by the device as soon
as it detects the leading edge of the first Resume pulse for that group.
The time from the leading edge of one Ready pulse to the leading edge of
the following Ready pulse in the same group must be greater than 90
nanoseconds.

Part 2
HR-0808 5-12 B

Resume - This signal is sent to the external device to show that the CPU
is ready for the next data transmission. Resume is a pulse 50 *3

nanoseconds wide (at the 50% voltage points) sent in groups of four.

For any group of Resume pulses, the time from the leading edge of one
Resume to the leading edge of the next Resume is 100 +3 nanoseconds.

Disconnect - This signal is sent from the external device to the CPU and
indicates that the transmission from the external device is complete. It
is sent after the last Ready. The Input Disconnect pulse must be
transmitted no earlier than 20 nanoseconds after the leading edge of the
final Ready pulse. Disconnect is a pulse 50 +10 nanoseconds wide (at the
50% voltage points).

Qutput channels

Table 5-5 illustrates a general view of an output signal sequence.

0 15
Data bits 2 through 2 - Data bits 20, 21, ..., 215 are signals
carrying a 16-bit parcel of data from the CPU to an external device.

They are all sent at the same time, within 5 nanoseconds of the leading
edge of the Ready pulse. Data bits remain steady on the lines until the
next parcel is sent, or until the Resume pulse is received, whichever
occurs first.

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to
a 4-bit group of data bits. The parity bits are set or cleared to give
the bit group odd parity. Bit assignments are as follows:

Parity Bit 0 Data Bits 20 - 23
Parity Bit 1 Data Bits 24 - 27
Parity Bit 2 Data Bits 28 - 211
Parity Bit 3 Data Bits 212 - 215

Parity bits are sent from the CPU to the external device at the same time
as the data bits. They are held stable in the same way as are the data
bits.

Channel Master Clear - The Channel Master Clear may be programmed (see
description of Programmed Master Clear later in this section) or may
result from a Clear I/0 signal. The Master Clear signal may be used by
the external devices for control purposes or may be ignored.

Ready - The Ready signal sent from the CPU to the external device
indicates that the data is present and may be sampled. The Ready signal
is a pulse 50 +3 nanoseconds wide (at the 50% voltage points) sent in
groups of four. For any group of Ready pulses, the time from the leading
edge of one Ready to the leading edge of the next Ready is 100 +3
nanoseconds. The leading edge of Ready may be used to time data sampling

in the external device.

Part 2
HR-0808 5-13 B

Table 5-5. 16-bit high-speed asynchronous output channel signal exchange

CPU EXTERNAL

1. Activate channel (set CL and CA).

2. Read word from memory and advance
current address.

3. Data 263-248 yith Ready ——»
4. Data 247-232 yith Ready ———
5. Data 231-216 yith Ready ——>»
6. Data 21°-20 with Ready ——»
(with Disconnect if this is the last
word)
7. -———— Resume

8. If (CA) # (CL), go to 2.

9. Set interrupt and deactivate channel.

Resume - Resume is sent from the external device to the CPU to show that
the 64-bit word of four parcels was received and that the external device

is ready for the next word (four parcels). Resume is a pulse 50 +10
nanoseconds wide (at the 50% voltage points). The pulse must be received
at the CPU no earlier than 230 nanoseconds after the leading edge of the
first Ready pulse is transmitted.

Disconnect - Disconnect is a signal sent from the CPU to the external
device that means the transmission from the CPU is complete. It is sent

with the last Ready +3 nanoseconds. The Disconnect pulse is 50 +3
nanoseconds wide (at the 50% voltage points).

Cabling Restrictions - The 16-bit high-speed asynchronous channel can
handle a cable length of up to 70 feet (21.3 meters). This assumes a
10-foot (305-cm) drop cable at the CPU, a 50-foot (15.3-meter) data

cable, and another 10-foot (305-cm) drop cable at the external device.

Part 2
HR-0808 5-14 B

16-BIT SYNCHRONOUS CHANNELS

Input channels

Table 5-6 illustrates a general view of an input signal sequence.

0 15
Data bits 2 through 2 - Data bits 20, 21, ..., 215 are signals
carrying a 16-bit parcel of data from the external device to the CPU.

They are all valid within 5 nanoseconds of each other. Data bit signals
must remain unchanged on the lines until the next parcel is sent. Data
lines must be stable at the CPU backpanel within 90 nanoseconds after the
corresponding Resume pulse is transmitted from the CPU backpanel.

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to
a 4-bit group of data bits. The parity bits are set or cleared to give
the bit group odd parity. Bit assignments are as follows:

Parity Bit O Data Bits 20 - 23
Parity Bit 1 Data Bits 24 - 27
Parity Bit 2 Data Bits 28 - 211
Parity Bit 3 Data Bits 212 - 215

Parity bits are sent from the external device to the CPU at the same time
as the data bits. They are held stable in the same way as are the data

bits.

Ready - The Ready signal is a block ready in response to the first resume
of a block. The Ready signal is a pulse 50 +10 nanoseconds wide (at the
50% voltage pointsj. It is sent from the external device to the CPU.
Ready occurs within 5 nanoseconds of the leading edges of the first

parcel of data bits.

Resume - Resume is sent from the CPU to the external device to initiate
the synchronous data transfer and to time the sending of data at the
CPU. The first Resume pulse is 50 +3 nanoseconds wide {at the 50%
voltage points). Following the first Resume, which awaits a Ready
response, the signal is sent in one group of three Resumes (150 +7 ns)
followed by as many groups of four Resumes (200 +9 ns) as required to
complete the block transfer.

Disconnect - Disconnect is a signal sent from the external device to the
CPU indicating that transmission from the external device is complete.

It is sent with parcel 2 of the last data word or at any later time.
Disconnect is a pulse 50 +10 nanoseconds wide (at the 50% voltage points).

Block length restrictions - The input channel has no restrictions on
block length. The disk controller, which is the only device connected to
this type of channel, has rigid restrictions on its block lengths. Input
transmissions are limited to 1 or 4 or 512 64-bit words.

Part 2
HR-0808 5-15 B

Table 5-6. 16-bit synchronous input channel signal exchange

CPU EXTERNAL

1. Activate channel (set CL and CA).
2. Resume———»
3. -<«+———Data 263--248 with Ready

4. Resume ————»

150 ns 47,32
5. Resume ———» 1 -«——Data 2%*/-224, no Ready
Pulse
6. Resume——» -<«—— Data 231—216, no Ready
7. ' -«——— Data 215-20 , ho Ready

8. Write word to memory; advance
current address.

9. If last word, go to 16.

10. Resume ———»

11. Resume———» | 200 ns <«——Data 263—248, no Ready
12. Resume——» |Pulse <«——Dpata 247-232, no Ready
13. Resume ——» -<«——Data 231-216, no Ready
14. «—— Data 215.,0 , ho Ready
15. Go to 8.

16. Wait for Disconnect. <«——1f last word, Disconnect.

17. Set interrupt and deactivate channel.

Clock - A Clock signal is supplied over a separate cable (one per DCU
cabinet) to the external device from the CPU. This Clock signal
synchronizes signals at the external device interface connector.

Part 2
HR-0808 5-16

Cabling restrictions - The synchronous channels use a fixed length cable
providing constant propagation time for the signals. This cable delay is

designed into the control logic; therefore, the cable length and
propagation speed cannot be changed. The total cable length between the
CPU and the external device is 17 feet (518 cm). The cable run for a
synchronous channel uses one 10 foot (305 cm) drop cable at the CPU and
one 7 foot (213 cm) length of data cable at the external device.

Output channels

Table 5-7 illustrates a general view of an output signal sequence.

0 15
Data bits 2 through 2 - Data bits 20, 21, ..., 215 are signals
carrying a 16-bit parcel of data from the CPU to the external device.
They are sent with the leading edge of the Ready pulse * 5 nanoseconds.

Data bit signals remain unchanged on the lines until the next parcel is
sent.

Parity bits 0 through 3 - Parity bits 0, 1, 2, and 3 are each assigned to
a 4-bit group of data bits. The parity bits are set or cleared to give

the bit group odd parity. Bit assignments are as follows:

Parity Bit 0 Data Bits 20 - 23
Parity Bit 1 Data Bits 2% - 27
Parity Bit 2 Data Bits 28 - 2ll
Parity Bit 3 Data Bits 212 - 215

Parity bits are sent from the CPU to the external device at the same time
as the data bits. They are held stable in the same way as are the data

bits.

Channel Master Clear - The Channel Master Clear may be programmed (see
description of Programmed Master Clear later in this section) or may be
the result of a Clear I/O signal. The programmed Master Clear is a
static signal sent from the CPU to an external device. The Master Clear
signal may be used by the external device for control purposes or it may
be ignored.

Ready - The Ready signal is sent from the CPU to the external device to
indicate that the data is valid. The first Ready signal is a pulse 50 +3
nanoseconds wide (at the 50% voltage points). Following the first Ready,
which awaits a Resume response, the signal is sent in one group of three
Readies (150 #7 ns) followed by as many groups of four Readies (200 +9
ns) as required to complete the block transfer.

Resume - Resume is sent from the external device to the CPU in response
to the first Ready signal. The Resume pulse is 50 *10 nanoseconds wide

(at the 50% voltage points).

Part 2
HR-0808 5-17 B

Table 5-7. 16-bit synchronous output channel signal exchange

CpPU EXTERNAL

1. Activate channel (set CL and CA).

2. Read word from memory and advance
current address.

3. Data 203-248 witnh Ready ———»
(With Disconnect if last word)

4. -4—————Resume

5. Data 247-232 yith Ready———>»

6. Data 231-216 yith Ready— > 150 ns
Ready
7. Data 215-20 yith Ready———» pulse

8. If (CA) = (CL), go to 15.

9. Read word from memory and advance
current address.

10. Data 263-248 yith Ready— >
(with Disconnect if (CA) = (CL))

11. Data 247-232 ——— » 200 ns
Ready
12. Data 231-216 —» pulse

13. Data 215-20
14. If (CA) # (CL), go to 9.

15. Set interrupt and deactivate channel.

Disconnect - Disconnect is a signal sent from the CPU to the external
device indicating that the transmission from the CPU is complete. It is

sent with parcel 0 of the last 64-bit data word. Disconnect is a pulse
50 #3 nanoseconds wide (at the 50% voltage points).

Block length restrictions - The output channel has no restrictions on
block length. The disk controller, which is the only device connected to
this type of channel, has rigid restrictions on its block lengths.

Output transmissions are limited to 1 or 512 64-hit words.

Part 2
HR-0808 5-18 B

Clock - A Clock signal is supplied over a separate cable (one per DCU
Cabinet) to the external device from the CPU. This Clock signal

synchronizes signals at the external device interface connector.

Cabling restrictions - The 16-bit synchronous channels use a fixed length
cable providing a constant propagation time for the signals. This cable
delay is designed into the control logic; therefore, the cable length and
propagation speed cannot be changed. The total cable length between the
CPU and the external device is 17 feet (518 cm). The cable run for a
synchronous channel uses one 10-foot (305 cm) drop cable at the CPU and
one 7-foot (213 cm) length of data cable at the external device.

PROGRAMMED MASTER CLEAR TO EXTERNAL DEVICE

The CPU contains a mechanism for sending a Master Clear signal to an
external device. The Master Clear is sent by either the input channel or
the output channel as follows:

- Asynchronous channels - Master Clear sent on input channel

- High-speed asynchronous channels - Master Clear sent on output
channel

- Synchronous channels - Master Clear sent on output channel

Sequence for asynchronous channels

The external Master Clear sequence for 16-bit normal-speed asynchronous
channels is as follows:

1. 00123k Clear output channel to ensure that CPU activity on the
channel pair has stopped.

2. 0012jk Clear input channel to ensure that external activity on the
channel pair has stopped.

3. 0011jk Set the input channel limit to an arbitrary value.

4. 0010jk Set the input channel current address equal to the same
value. This initiates the Master Clear signal.

5. 0012jk Clear the input channel. This stops the input channel
activity just initiated.

6. Delay 1 Device dependent. This determines the duration of the
Master Clear signal.

Part 2
HR-0808 5-19 B

7. 0011jk

8. Delay 2

Set the input channel limit. This value may be the same
value as used in steps 3 and 4. This turns off the Master

Clear signal.

Device dependent. This allows time for initialization
activities in the attached device to complete.

For Cray Research front-end interfaces, delays 1 and 2 should both be a
minimum of 80 CPs.

Sequence for high-speed asynchronous and synchronous channels

The external Master Clear sequence for high-speed asynchronous and
synchronous channels is as follows:

1. 0012jk

2. 0012jk

3. 0011ljk

4. 0010jk

5. 0012jk

6. Delay 1
7. 0011jk

8. Delay 2
9.

Clear output channel interrupt to ensure that CPU activity
on the channel pair has stopped.

Clear input channel interrupt to ensure that external
activity on the channel pair has stopped.

Set the output channel limit to an arbitrary value.

Set the output channel current address equal to the same
value. This initiates the Master Clear signal.

Clear the output channel. This stops the output channel
activity just initiated.

Device dependent. This determines the duration of the
Master Clear signal.

Set the output channel limit. This value may be the same
value as used in steps 3 and 4. This turns off the Master
Clear signal.

Device dependent. This allows time for initialization
activities in the attached device to complete.

Read disk subsystem status (high-speed synchronous channel

only). A subsystem status should be taken and discarded to
remove any false status left by the Master Clear sequence.

For the synchronous channel, delay 1 should be a minimum of 1 CP and
delay 2, a minimum of 20 CPs.

HR-0808

Part 2
5-20 B

INPUT ASSEMBLY REG.

16 BITS CH. 2
DATA IN — 4] | 1/0 DATA MEMORY MEMORY
| FAN IN DATA MERGE
12 CHANNELS
OUTPUT DISASSEMBLY REG.
16 BITS CH. 3
DATA OUT — 5| I/0 DATA MEMORY MEMORY
] FAN OUT DATA DISTR.
12 CHANNELS
INPUT
e CHANNEL CONTROL
INPUT — NO SCALAR REF.
RESUME ADV. ADDR. }:f::m(:}:l l— NO BLOCK MODE
ggng . L NO EXCH. SEQ.
E
— NO FETCH
OUTPUT L NO MEMORY CONFLICT
READY PRIORITY
INPUT NET GR.2
READY MEMORY | o EMORY
INPUT REQUEST = | ACCESS CONTR|
REQUME - REFERENCE
u PRIORITY
ADV. ADDR. —
OUTPUT,] [NET GRS
RESUME
OUTPUT, -
READY PRIORITY |
] NET GR. 4
INPUT ADDRESS REG.
CH. 2
ADV. ADDR: E
1
I/0 ADDR. MEMORY MEMORY
FAN IN ADDR. REG.
OUTPUT ADDRESS REG.
ADV. ADDR:
Figure 5-2. Channel I/O control
Part 2
HR-0808 5-21 B

MEMORY ACCESS

Each of the four channel groups is assigned a time slot (figure 5-2),
which is scanned once every 4 CPs for a memory request. The
lowest-numbered channel in the group has the highest priority. A memory
request, whether accepted or rejected, causes the requesting channel to
miss the next time slot. Therefore, any given channel can request a
memory reference only once every 8 CPs. However, another channel in the
same group as a channel that has just made a memory request can cause a
memory request 4 CPs later. During the next 3 CPs, the scanner allows
requests from the other three channel groups. Therefore, it is possible
to have an I/0 memory request every clock period.

I/0 LOCKOUT

An I/0 memory request can be locked out by a transfer using the B, T, or
V registers. Multiple transfers of these types cannot issue without

allowing one waiting I/O reference to complete. The maximum duration of
a lockout caused by these types of transfers is one block length.

Exchange sequences and instruction fetch sequences can also cause
lockouts.

MEMORY BANK CONFLICTS

Memory bank conflicts are tested for CPU scalar references and I/0 memory
references. All other memory references (block transfers, exchange
sequences, instruction fetch sequences) delay issue until all memory
banks are quiet. When a block transfer, exchange sequence, or
instruction fetch sequence has issued, all other memory references are
locked out.

Each memory bank can accept a new request every 4 CPs. To test for a
memory bank conflict, the 4 low-order bitsS of the memory address move
through three registers staying 1 CP in each register. The first
register is rank A, the second is rank B, and the third is rank C. 1In
the fourth clock period, the address is placed in the memory address

register.

Part 2
HR-0808 5-22 B

I/0 MEMORY CONFLICTS

Before testing for a memory bank conflict, a check is made to ensure that
no block transfer, exchange sequence, or instruction fetch sequence is in
progress, and that no address or scalar instruction requiring a memory
reference is in its second clock period of execution. If any of these
conditions exist, the I/0 request is blocked and must be resubmitted 8

CPs later. The 4 low-order address bitsS of an I/0 reference are
tested against address bits in ranks A, B, and C. Coincidence with rank

A, B, or C disallows the I/0 request. These ranks may be holding
previous scalar or I/0 memory requests. An I/O request that is
disallowed must wait 8 CPs before it can request again.

1/0 MEMORY REQUEST CONDITIONS

The following conditions must be present for an I/0 Memory request to be
processed:

1. I/0 request
2. No coincidence in rank A, B, or C

3. No address or scalar instruction requiring a memory reference in
CP 2 of execution

4., No fetch request
5. No 176, 177 or 034 through 037 in process
6. No exchange sequence

7. No 033 regquest

I/0 MEMORY ADDRESSING

All I/0 memory references are absolute. The current address and limit
address registers are 22 bits, allowing I/O access to all of memory.

Setting of the current address and limit address registers is limited to
monitor mode. I/0 Memory reference addresses are not checked for range

errors.

§ Three bits for 8-bank phasing; refer to part 2, section 2 of this
manual.

Part 2
HR-0808 5-23 B

CPU INSTRUCTIONS

INSTRUCTION FORMAT

Each instruction is either a l-parcel (16-bit) instruction or a 2-parcel
(32-bit) instruction. Instructions are packed four parcels per word.
Parcels in a word are numbered from left to right as 0 through 3 and can
be addressed in branch instructions. A 2-parcel instruction may begin in
any parcel of a word and may span a word boundary. A 2-parcel
instruction that begins in the fourth parcel of a word ends in the first
parcel of the next word. No padding to word boundaries is required.

Figure 6-1 illustrates the general form of instructions:

| 4 ,3,3,3,3] 16 |

g h i 3J k m

I* First parcel—>+<"Second parcel ‘>{

Figure 6-1. General form for instructions

Five variants of this general format use the fields in different ways.
Two of these variant forms are 2-parcel formats, two are l-parcel

formats, and one is either a l-parcel or a 2-parcel format.

ARITHMETIC, LOGICAL FORMAT

For arithmetic and logical instructions, a 7-bit operation code (gh) is
followed by three 3-bit address fields. The first field, i, designates
the result register. The j and k fields designate the two operand
registers or are combined to designate a 6-bit B or T register address.
This format is shown in figure 6-2.

Part 2
HR-0808 6-1 B

4 3 3 3 3
L I I l I J i6 BIT INSTRUCTION
— ARITHMETIC, LOGICAL
OPERATION
CODE
RESULT
REG.
OPERAND
REG.
OPERAND
REG.

Figure 6-2. Format for arithmetic and logical instructions

SHIFT, MASK FORMAT

The shift and mask instructions consist of a 7-bit operation code (gh)

followed by a 3-bit field and a 6-bit field. The 3-bit i field
designates the result and operand registers. The 6-bit combined jk field

specifies a shift or mask count. This format is shown in figure 6-3.

g h i jk
L «+ | s | 3 1 &] 16 BIT INSTRUCTION
—_— SHIFT, MASK
OPERATION
CODE

OPERAND AND
RESULT REG. A-00ES

SHIFT, MASK COUNT

Figure 6~3. Format for shift and mask instructions

IMMEDIATE CONSTANT FORMAT

The instructions that enter immediate constants into A registers have
st

Onlv +he 2-=narcel form owi a
Ona e <& Sxy e

a1l Aar o Demaree
y ti rarcel ferm

: - 1 £
either a l-parcel cor o 2-parcel form.

Part 2
HR-0808 6-2 B

for entering immediate constants into S registers. For the l-parcel
form, the j and k fields are combined to give a 6-bit quantity. For the
2-parcel form, the j, k, and m fields are combined to give a 22-bit
guantity. In either form, a 7-bit operation code (gh) and a 3-bit result
field designating a result register precede the immediate constant. The
instruction format for immediate constant instructions is shown in figure
6-4.

a | 3 | 3 6 16 BIT INSTRUCTION
6-BIT CONSTANT —$ A
OPERATION
CODE

RESULT CONSTANT

REG.
h i j k m
1 I
4 | 3 | 3 | 22 32 BIT INSTRUCTION
~———— 22-BIT CONSTANT —» A
OPERATION 22-BIT CONSTANT —$ S
CODE
A-0066
RESULT CONSTANT
REG.

Figure 6-4. Format for immediate constant instructions

MEMORY TRANSFER FORMAT

Instructions that transfer data between the A or S registers and memory
require a 32-bit format. For these instructions, a 4-bit operation code
(g) is followed by two 3-bit fields and a 22-bit address field. The first
3-bit field (h) designates an index register (Ah).

When the h field is 0, the special value of 0 is considered to be the
address index. Contents of Ah are not affected. The second 3-bit field

(i) designates a result or source register. The 22-bit field formed by
j, k, and m, specifies a memory address displacement value. Figure 6-5

illustrates the format of memory transfer instructions.

Part 2
HR-0808 6-3 B

h i j k m

L2 1 3 |3 | ' ' 22 J

-
OPERATION
32 B
CODE IT INSTRUCTION
A 4> MEMORY
ADDRESS S 4P MEMORY
INDEX REG.
RESULT (OR SOURCE) ADDRESS
REG. DISPLACEMENT

Figure 6-5. Format for memory transfer instructions

BRANCH FORMAT

In general, the branch instructions are 2-parcel instructions. A 7-bit
operation code (gh) is followed by a 24-bit field formed by combining i,
j+» k, and m. The high-order bit of the i field is unused. The 24-bit
field contains a parcel address and allows branching to a parcel.

Figure 6-6 illustrates the 2-parcel format for branch instructions.

s h i i k m ‘
T ¥ 1]
L | 3 22 L2] 3287 insTRUCTION
BRANCH
w
OPERATION
CODE ~
ONE UNUSED ADDRESS PARCEL
BIT SELECT
A4A-0065

Figure 6-6. Two-parcel format for branch instructions

The unconditional branch to (Bjk) instruction uses only the upper
parcel. For this instruction, there is a 7-bit operation code (gh)

followed by a null i field and a combined jk field which specifies a B
register that contains a parcel address. The m field is ignored.

2L

Part 2
HR-0808 6-4 B-01

SPECIAL REGISTER VALUES

The 53 and Ag registers provide special values if referenced in the j

or k fields of an instruction. 1In these cases, the special value is used
as the operand and the actual value of the Sy or Ag register is

ignored. The special value is available regardless of existing Ajy or

Sy reservations. This use does not alter the actual value of the Sg

or Ag register. If Sy or Ag is used in the i field, as the

operand, the actual value of the register is provided.

Field Operand value
Ai, i =0 (AO)
Aj, J =0 0
Ak, k =0 1
Si, i =0 (SO)
Ssji, 3 =0 0
Sk, k =0 263
Ah, h =0 0

INSTRUCTION ISSUE

Instructions are read a parcel at a time from the instruction buffers and
delivered to the Next Instruction Parcel (NIP) register. The instruction
is passed to the Current Instruction Parcel (CIP) register when the
previous instruction issues. An instruction in CIP issues when the
conditions in the functional units and registers are such that the
functions required for execution may be performed without conflicting
with a previously issued instruction. Instruction parcels may issue out
of the CIP register at a maximum rate of one per clock period. Once an
instruction has been delivered to the CIP, it must be completed in a
fixed time frame following its final clock period in the CIP register.

No delays are allowed from issue to delivery of data to the destination
operating registers, except for scalar memory access instructions (10h
and 12h).

Entry to the NIP is blocked for the second half of a 2-parcel
instruction. The parcel is delivered to the Last Intruction Parcel (LIP)
register, instead. The blank NIP for the second parcel is issued as a
do-nothing instruction when it reaches the CIP.

When special register values (Aj or Sg) are selected by an
instruction for Ah, Aj, Ak, Sj or Sk, the normal "hold issue until
operand ready" conditions do not apply. These values are always
immediately available.

Part 2
HR~-0808 6-5 B-01

INSTRUCTION DESCRIPTIONS

This section contains detailed information about individual instructions
or groups of related instructions. Descriptions are presented with the
CRAY-1 Assembler Language (CAL) syntax and in the octal code sequence
defined by the gh fields. Each subsection begins with boxed information
consisting of the format and a brief summary of each instruction
described in the subsection. The appearance of an m in a format
designates that the instruction consists of two parcels. An x in the
format signifies that the field containing the x is ignored during
instruction execution.

Following the header information is a more detailed description of the
instruction or instructions, including a list of hold issue conditions,
execution time, and special cases. Hold issue conditions refer to those
conditions that delay issue of an instruction until the conditions are
met.

Instruction issue time assumes that if an instruction issues at CPn, the
next instruction may issue at CPn + issue time if its own issue
conditions have been met.

Part 2
HR~0808 6-6 B

CAL Syntax Description Octal Code

ERR Error exit 000000

ERR exp§ Programmer coded error exit 000ijk

A 000 instruction is treated as an error condition and an exchange
sequence occurs. The content of the instruction buffers is voided by
the exchange sequence. If monitor mode is not in effect, the error exit
flag in the F register is set. All instructions issued prior to this
instruction are run to completion. When the results of previously
issued instructions have arrived at the operating registers, an exchange
occurs to the exchange package designated by the contents of the XA
register. The program address stored in the exchange on the terminating
exchange sequence is advanced by one count from the address of the error
exit instruction. The error exit instruction is not generally used in
program code. Its purpose is to halt execution of an incorrectly coded
program that branches into an unused area of memory or into a data area.

Hold issue conditions

034 - 037 in process

Exchange in process

Execution time

Instruction issue 50 CPs; this time includes an exchange
sequence (36 CPs) and an instruction fetch operation (14 CPs).

Special cases

Inhibit instruction issue

Begin exchange seguence

§ Special CAL syntax form

Part 2
HR-0808 6-7 B

CAL Syntax Description Octal Code

CA,Aj Ak Set the current address (CA) register for the 00103k
channel indicated by (Aj) to (Ak) and activate
the channel

CL,A] Rk Set the limit address (CL) register for the 00113jk
channel indicated by (Aj) to (Ak)

CI,Aj Clear the interrupt flag and error flag for 0012jx
the channel indicated by (A3j)

XA Aj Enter the XA register with (Aj) 0013jk

These instructions are privileged to monitor mode and provide operations
useful to the operating system. Functions are selected through the i
designator. The instructions are treated as pass instructions if the
monitor mode bit is not set.

When the i designator is 0, 1, or 2, the instruction controls the
operation of the I/0 channels. Each channel has two registers that

direct the channel activity. The CA register for a channel contains the
address of the current channel word. The CL register specifies the
limit address. In programming the channel, the CL register is
initialized first and then setting CA activates the channel. As the
transfer continues, CA is incremented toward CL. When (CA) equal (CL),
the transfer is complete for words at initial (CA) through (CL)-1. When
the j designator is 0 or when the content of Aj is less than 2 or
greater than 25, the functions are executed as pass instructions. When
the k designator is 0, CA or CL is set to 1.

When the i designator is 3, the instruction transmits bits 211

24 of (Aj) to the exchange address (XA) register. When the j
designator is 0, the XA register is cleared.

through

Hold issue conditions

034 - 037 in process

Exchange in process

For 0010 and 0011, Aj or Ak reserved
For 0012 or 0013, Aj reserved

Execution time

Instruction issue, 1 CP

Part 2
HR-0808 6-8 B

0010-0013

Special cases

If the program is not in monitor mode, the instruction becomes a
no-op although all hold issue conditions remain effective.

For 0010, 0011, and 0012:
If j = 0, instruction is a no-op even in monitor mode
If (Aj) is less than 2 or (Aj) is greater than or equal to
31lg, the instruction is a no-op
If k = 0, CAor CL is set to 1

For 0013:
If j = 0, XA register is cleared

Correct priority interrupting channel number can be read (via 033
instruction) 2 CPs after issue of 0012 instruction.

HR-0808

Part 2

CAL Syntax Description Octal Code

RT Sj Enter the real-time clock register with (Sj) 0014j0
PCI Sj Enter interrupt interval (II) register with (Sj) 0014j4
CCI Clear the programmable clock interrupt request 0014j5
ECI Enable programmable clock interrupt request 0014j6
DCI Disable programmable clock interrupt requests 001437

These instructions perform specialized functions for managing the
real-time and programmable clocks. They are privileged to monitor
mode. The instructions are treated as pass instructions if the monitor
mode bit is not set.

When the k designator is 0, the instruction loads the contents of the Sj
register into the real-time clock (RTC) register. When the j designator
is 0, the real-time clock register is cleared.

When the k designator is 4, this instruction loads the low-order 32 bits
from the Sj register into both the Interrupt Interval (II) register and
the Interrupt Countdown (ICD) counter. When the j designator is 0, II

and ICD are cleared.

When the k designator is 5, this instruction clears the programmable
clock interrupt request if the request was previously set by an
interrupt countdown to 0.

When the k designator is 6, this instruction enables repeated
programmable clock interrupt requests at a repetition rate determined by

the value stored in the Interrupt Interval (II) register.
When the k designator is 7, this instruction disables repeated

pProgrammable clock interrupt requests until a 0014j6 instruction is
executed to enable the requests.

Hold issue conditions

034 - 037 in process
Exchange in process

Sj reserved

Part 2
HR-0808 6-10 B

Execution time

Instruction issue, 1 CP

Special cases

If the program is not in monitor mode, these instructions
become no-ops but all hold issue conditions remain effective.

For 00143j0 and 001434, if j=0, (Sj)=0.

The instruction forms 0015, 0016, 0017 are not implementable in
the CRAY-1/S hardware but they act as no-op instructions.
There is no CAL syntax for them.

Part 2
HR-0808 6-11

CAL Syntax Description Octal Code

VL Ak Transmit (Ak) to VL register 0020xk

vL 1S Transmit 1 to VL register 0020x0

This instruction enters the vector length (VL) register with a value
determined by the contents of Ak. The low-order 7 bits of (Ak) are

entered into the VL register. The number of operations performed in a
‘vector instruction is determined by first subtracting 1 from the
contents of VL and then adding 1 to the low-order 6 bits of the result.

For example:

if (VL)=1004 then 100g-1 = 77g
and 77g+1 = 100g

if (VL)=0 then 0-1 = 177¢g
and 77g + 1 = 100g

Thus, the number of vector operations is 64 when the content of VL is 0
or 64.

Hold issue conditions

034 - 037 in process
Exchange in process

Ak reserved

Execution time

Instruction issue 1 CP

VL register ready 1 CP

Special cases

Maximum vector length is 64
(k) =1 if k =0
(VL) = g if k = 0 and (Ak) =0

§ Special CAL syntax torm

Part 2
HR-0808 6-12 B

CAL Syntax Description Octal Code

EFI Enable interrupt on floating-point error 0021xx

DFI Disable interrupt on floating-point error 0022xx

These instructions set (0021xx) or clear (0022xx) the floating-point
mode flag in the M register. They do not check the previous state of
the flag (there is no way of testing the flag).

When set, the floating-point mode flag enables interrupts on
floating-point range errors as described in section 4.

Hold issue conditions

034 - 037 in process
Exchange in process

Ak reserved

Execution time

Instruction issue 1 CP

Special cases

The 0023, 0024, 0025, 0026 and 0027 instructions are not
implemented but act as no-ops. There is no CAL Syntax for them.

CAUTION

The operating system may have status bits that reflect
whether interrupts on floating-point range errors are

enabled or disabled. If so, those software status
bits need to be modified to agree with the
floating-point mode flag.

Part 2
HR-0808 6-13 B

ICAL Syntax Description Octal Code

VM Sj Transmit (Sj) to VM register 003xjx

M 0S Clear VM register 003x0x

This instruction enters the vector mask (VM) register with the contents
of Sj. The VM register is cleared if the j designator is 0. This
instruction is used in conjunction with the vector merge instructions
(146 and 147) in which an operation is performed depending on the
contents of VM.

Hold issue conditions

034 - 037 in process

Exchange in process

Sj reserved

003 in process - unit busy 3 CPs

14x in process - unit busy (VL) + 4 CPs
175 in process - unit busy (VL) + 4 CPs

Execution time

Instruction issue 1 CP

VM ready in 3 CPs except for use in 073 instruction

VM ready in 6 CPs for 073 instruétion

Special cases

(Sj) = 0 if j = 0

§ Special CAL syntax torm

Part 2
HR-0808 6-14 B

CAL Syntax Description Octal Code

EX Normal exit 004xxx

EX exp§ Normal exit, programmer encoded 0041ijk

This instruction causes an exchange sequence. The contents of the
instruction buffers are voided by the exchange sequence. If monitor
mode is not in effect, the normal exit flag in the F register is set.
All instructions issued prior to this instruction are run to

completion. When all results have arrived at the operating registers as
a result of previously issued instructions, an exchange sequence occurs
to the exchange package designated by the contents of the XA register.
The program address stored in the exchange package is advanced one count
from the address of the normal exit instruction. This instruction is
used to issue a monitor request from a user program.

Hold issue conditions

034 - 037 in process

Exchange in process

Execution time

Instruction issue 50 CPs; this time includes an exchange
sequence (36 CPs) and an instruction fetch operation (14 CPs)

Special cases

Inhibit instruction issue

Begin exchange sequence

§ Special CAL syntax form

Part 2
HR-0808 6-15 B

CAL Syntax Description Octal Code

J Bijk Branch to (Bjk) 005x3k

This instruction sets the P register to the 24-bit parcel address
specified by the contents of Bjk causing execution to continue at that

address. The instruction is used to return from a subroutine.

Hold issue conditions

034 - 037 in process

Exchange in process

Execution time

Instruction issue:

Instruction parcel and following parcel both in a buffer and
branch address in a buffer, 7 CPs

Instruction parcel and following parcel both in a buffer and
branch address not in a buffer, 16 CPs

Parcel following instruction parcel not in a buffer and branch
address in a buffer, 16 CPs

Parcel following instruction parcel not in a buffer and branch
address not in buffer, 25 CPs

Special cases

The parcel following an 005 instruction is not used for
branching; however, it can cause a delay of the 005 instruction

if it is out of buffer. See execution times.

Part 2
HR-0808 6-16 B

ICAL Syntax Descriptio

n Octal Code

J exp Branch to ijkm

006ijkm

This 2-parcel instruction sets the P register to the parcel address
specified by the low-order 24 bits of the ijkm field. Execution

continues at that address. The high-or
ignored.

Hold issue conditions

034 - 037 in process

Exchange in process

Execution time

Instruction issue:
Both parcels of instruction
address in a buffer, 5 CPs

Both parcels of instruction
address not in a buffer, 14

Both parcels of instruction
address in a buffer, 7 CPs

Both parcels of instruction
address not in a buffer, 16

Second parcel of instruction
address in a buffer, 16 CPs

der bit of the ijkm field is

in the same buffer and branch

in the same buffer and branch
CPs

in different bufferé and branch

in different buffers and branch
CPs

not in a buffer and branch

Second parcel of instruction not in a buffer and branch
address not in a buffer, 25 CPs

Special cases

None

Part 2
HR-0808 6-17

CAL Syntax Description Octal Code

R exp Return jump to ijkm; set Bgyg to (P) 007ijkm

This 2-parcel instruction sets register Bgg to the address of the
following parcel. The P register is then set to the parcel address
specified by the low-order 24 bits of the ijkm field. Execution
continues at that address. The high-order bit of the ijkm field is
ignored. The purpose of this instruction is to provide a return linkage
for subroutine calls. The subroutine is entered via a return jump. The
subroutine returns to the caller at the instruction following the call
by executing a branch to the contents of the B00 register.

Hold issue conditions

034 - 037 in process

Exchange in process

Execution time

Instruction issue:

Both parcels of instruction in the same buffer and branch
address in a buffer, 5 CPs

Both parcels of instruction in the same buffer and branch
address not in a buffer, 14 CPs

Both parcels of instruction in different buffers and branch
address in a buffer, 7 CPs

Both parcels of instruction in different buffers and branch
address not in a buffer, 16 CPs

Second parcel of instruction not in a buffer and branch
address in a buffer, 16 CPs

Second parcel of instruction not in a buffer and branch
address not in a buffer, 25 CPs

Special cases

None

Part 2
HR-0808 6-18 B

CAL Syntax Description Octal Code

JAZ exp Branch to ijkm if (Ag) = 0 010ijkm
JAN exp Branch to ijkm if (AO} #0 011lijkm
JAP exp Branch to ijkm if (Ag;) positive 012ijkm
JAM exp Branch to ijkm if (Ap) negative 013ijkm

These 2-parcel instructions test the contents of Ay for the condition

specified by the h field. If the condition is satisfied, the P register
is set to the parcel address specified by the low-order 24 bits of the
ijkm field and execution continues at that address. The high-order bit
of the ijkm field is ignored. If the condition is not satisfied,
execution continues with the instruction following the branch
instruction. :

Hold issue conditions

034 - 037 in process
Exchange in process

AO busy in previous 2 CPs

Execution time’

Instruction issue:

Both parcels of instruction in the same buffer and branch
address in a buffer, 5 CPs

Both parcels of instruction in the same buffer and branch
address not in a buffer, 14 CPs

Both parcels of instruction in different buffers and branch
address in a buffer, 7 CPs

Both parcels of instruction in different buffers and branch
address not in a buffer, 16 CPs

Second parcel of instruction not in a buffer and branch
address in a buffer, 16 CPs

Part 2
HR-0808 6-19 B

010-013

Second parcel of instruction not in a buffer and branch
address not in buffer, 25 CPs

Both parcels of instruction in the same buffer and branch not
taken, 2 CPs

Both parcels of instruction in different buffers and branch
not taken, 4 CPs

Second parcel of instruction not in a buffer and branch not
taken, 13 CPs

Special case

HR-0808

(AO) = 0 is considered a positive condition.

Part 2
6-20 B

CAL Syntax Description Octal Code

JSZ exp Branch to ijkm if (Sg) = 0 014ijkm
JSN exp Branch to ijkm if (Sg) # O 015ijkm
JSP exp Branch to ijkm if (Sp) positive 016ijkm
JSM exp Branch to ijkm if (Sp) negative 017ijkm

These 2-parcel instructions test the contents of So for the condition

specified by the h field. If the condition is satisfied, the P register
is set to the parcel address specified by the low-order 24 bits of the

ijkm field and execution continues at that address. The high-order bit
of the ijkm field is ignored. If the condition is not satisfied,

execution continues with the instruction following the branch
instruction.

Hold issue conditions

034 - 037 in process
Exchange in process
S0 busy in previous 2 CPs

Execution time

Instruction issue:
Both parcels of instruction in the same buffer and branch
address in a buffer, 5 CPs

Both parcels of instruction in the same buffer and branch
address not in a buffer, 14 CPs

Both parcels of instruction in different buffers and branch
address in a buffer, 7 CPs

Both parcels of instruction in different buffers and branch
address not in a buffer, 16 CPs

Second parcel of instruction not in a buffer and branch address
in a buffer, 16 CPs

Part 2
HR-0808 6-21 B

014-017

Second parcel of instruction not in a buffer and branch
address in a buffer, 25 CPs

Both parcels of instruction in the same buffer and branch not
taken, 2 CPs

Both parcels of instruction in different buffers and branch
not taken, 4 CPs

Second parcel of instruction not in a buffer and branch not
taken, 13 CPs

Special case

BR-0808

(SO) = 0 is considered a positive condition.

Part 2
6-22 B

CAL Syntax Description Octal Code

Ai exp Transmit jkm to Ai 020ijkm

Ai exp Transmit ones complement of jkm to Ai 021ijkm

The 020 instruction enters into Ai a 24-bit value that is composed of
the 22-bit jkm field and 2 high-order bits of 0.

The 021 instruction enters into Ai a 24-bit value that is the complement
of a value formed by the 22-bit jkm field and 2 high-order bits of 0.

The complement is formed by changing all 1 bits to 0 and all 0 bits to
1. Thus, for the 021 instruction, the high-order 2 bits of Ai are set

to 1 and the instruction provides a means of entering a negative value
into Ai. The instructions are both 2-parcel instructions.

Hold issue conditions

034 - 037 in process
Exchange in process
A register access conflict

Ai reserved

Execution time

Instruction issue:
Both parcels in same buffer, 2 CPs
Both parcel in different buffers, 4 CPs
Second parcel not in a buffer, 13 CPs

Ai ready, 1 CP

Special cases

None

Part 2
HR-0808 6-23 B

CAL Syntax Description Octal Code

Al exp Transmit jk to Ai 022ijk

This l-parcel instruction enters the 6-bit quantity from the jk field
into the low-order 6 bits of Ai. The high-~order 18 bits of Ai are
zeroed. No sign extension occurs.

Hold issue conditions

034 - 037 in process
Exchange in process
A register access conflict

Ai reserved

Execution time

Instruction issue, 1 CP

Ai ready, 1 CP

Special cases

None

Part 2
HR-0808 6-24 B

CAL Syntax Description Octal Code

Ai Sj Transmit (Sj) to Ai 023ijx

This instruction enters the low-order 24 bits of (Sj) into Ai. The
high-order bits of (Sj) are ignored.

Hold issue conditions

" 034 - 037 in process
Exchange in process
A register access conflict
Aji reserved

Sj reserved

Execution time

Instruction issue, 1 CP

Aji ready, 1 CP

Special case
(Sj) =0 if § =20

Part 2
HR~-0808 6-25

CAL Syntax Description Octal Code

Ai Bjk 024ijk Transmit (Bjk) to Ai 0241ijk

Bik Ai 025ijk Transmit (Ai) to Bjk 025ijk

The 024 instruction enters the contents of Bjk into Ai.

The 025 instruction enters the contents of Ai into Bjk.

Hold issue conditions

034 - 037 in process
Exchange in process
A register access conflict (024 only)

Ai reserved

Execution time

For 024, Ai ready, 1 CP

Instruction issue for 024 or 025, 1 CP

Special cases

None

Part 2
HR-0808 6-26 B

ICAL Syntax Description Octal Code

Ai PSj Population count of (Sj) to Ai 026130

A1 QS Population count parity of (Sj) to Ai 026ijl

The 026ij0 instruction counts the number of bits set to 1 in (Sj) and
enters the result into the low-order 7 bits of Ai. The high-order 17

bits of Ai are zeroed.

The 026ijl instruction counts the number of bits set to 1 in (Sj).
Then, the low-order bit, which shows the odd/even state of the result is

transferred to the low-order bit position of the Ai register. The
high-order 23 bits are cleared. The actual population count is not
transferred.

The instructions are executed in the population/leading zero count unit.

Hold issue conditions

034 - 037 in process
Exchange in process

A register access conflict
Ai reserved

Sj reserved

Execution time

Instruction issue, 1 CP

Ai ready, 4 CPs

Special case
(A1) =0 if j =0

Part 2
HR-0808 6-27 B

CAL Syntax Description Octal Code

Ai 2Sj] Leading zero count of (Sj) to Ai 027ijx

This instruction counts the number of leading zeros in Sj and enters the
result into the low-order 7 bits of Ai. The high-order 17 bits of Ai
are zeroed.

The instruction is executed in the population/leading zero count unit.

Hold issue conditions

034 - 037 in process
Exchange in process

A register access conflict
Ai reserved

Sj reserved

Execution time

Instruction issue, 1 CP

Ai ready, 3 CPs

Special cases

(Ai)

64 if § = 0

(Ai) 0 if (Sj) is negative

Part 2
HR-0808 6-28 B

CAL Syntax Description Octal Code
Al Aj+Ak Integer sum of (Aj) and (Ak) to Ai 030ijk
Ai AkS Transmit (Ak) to Ai 030i0k
Ai Aj+1S Integer sum of (Aj) and 1 to Ai 030130
Ai Aj-Ak Integer difference (Aj) less (Ak) to Ai 031ijk
ai -18 Transmit -1 to Ai 031i00
Ai -akS Transmit the negative of (Ak) to Ai 031i0k
Al Aj—l§ Integer difference (Aj) less 1 to Ai 031ij0

These instructions are executed in the address add unit.

The 030 instruction forms the integer sum of (Aj) and (Ak) and enters
the result into Ai. No overflow is detected.

The 031 instruction forms the integer difference of (Aj) and (Ak) and
enters the result into Ai. No overflow is detected.

Hold issue conditions

034 - 037 in process

Exchange in process

A register access conflict

Ai, Aj, or Ak reserved

Execution time

Instruction issue, 1 CP

Ai ready, 2 CPs

§ Special CAL syntax form

HR-0808

Part 2
6-29

030-031

Special cases

For 030:
(Ai)= (Ak) if j = 0 and
(Al)=1 if § = 0 and
(Ai)= (Aj)+1 if j # 0 and
For 031:
(Ai)= -(Ak) if 3 = 0 and |
(Al)= -1 if j = 0 and
(Ai)= (Aj)-1 if j # 0 and

Part 2
HR-0808 6-30

ICAL Syntax Description Octal Code

Ai Aj*Ak Integer product of (Aj) and (Ak) to Ai 032ijk

This instruction forms the integer product of (Aj) and (Ak) and enters
the low-order 24 bits of the result into Ai. No overflow is detected.

This instruction is executed in the address multiply unit.

Hold issue conditions

034 - 037 in process
Exchange in process
A register access conflict

Ai, Aj, or Ak reserved

Execution time

Instruction issue, 1 CP

Ai ready, 6 CPs

Special cases

(Ai) = 0 if 3 =0

(Ak) = 1 if k = 0

Thus

(Ai) = (Aj) if j#0 and k = 0

Part 2
HR-0808 6-31 B

CAL Syntax Description Octal Code

Ai CI Channel number of highest priority interrupt

request to Ai 033i0x
Ai CA,Aj Current address of channel (Aj) to Ai 033ij0
Ai CE,Aj Error flag of channel (Aj) to Ai 033ij1

This instruction enters channel status information into Ai. The j and k
designators and the contents of Aj define the desired information.

The channel number of the highest priority interrupt request is entered
into Ai when the j designator is 0. The contents of Aj specifies a

channel number when the j designator is nonzero. The value of the
current address (CA) register for the channel is entered into Ai when

the k designator is 0. The error flag for the channel is entered into
the low-order bit of Ai when the k designator is 1. The high-order bits

of Ai are cleared. The error flag can be cleared only in monitor mode
using the 0012 instruction.

The 033 instruction does not interfere with channel operation.

Hold issue conditions

034 - 037 in process
Exchange in process

A register access conflict
Ai reserved

Aj reserved

Execution time

Instruction issue, 1 CP

Ai ready, 4 CPs

Part 2
HR-0808 6-32 B

Special cases

(A1) = highest priority channel causing interrupt if (Aj) =0
(A1) = current address of channel (Aj) if
(Aj) #0 and k = 0
(Ai) = I/0 error flag of channel (Aj) if
(Aj) # 0 and k = 1
(Ai) = 0 if (Aj) =1

2 CPs must elapse after an 0012jx instruction issue before
issuing an 033i0x instruction.

Part 2
HR-0808 6-33 B

ICAL Syntax Description Octal Code

Bjk,Ai ,A0 Block transfer (Ai) words from memory 034ijk
starting at address (AO) to B registers

starting at register jk

) : §
Bjk,Ai 0,A0 Block transfer (Ai) words from memory 034ijk
starting at address (Ao) to B registers

starting at register jk

+A0 Bjk,Ai Block transfer (Ai) words from B registers 035ijk
starting at register jk to memory starting

at address (&)

. .§
0,A0 Bjk,Ai Block transfer (Ai) words from B registers 035ijk
starting at register jk to memory starting

at address (Ag)

Tjk,Ai ,A0 Block transfer (Ai) words from memory 036ijk
starting at address (AO) to T registers

starting at register jk

§
Tjk,Ai 0,A0 Block transfer (Ai) words from memory 036ijk
starting at address (AO) to T registers

starting at register jk

+A0 Tjk,Ai Block transfer (Ai) words from T registers 037ijk
starting at register jk to memory starting

at address (Ag)

§
0,A0 Tjk,Ai Block transfer (Ai) words from T registers 037ijk
starting at register jk to memory starting

at address (Ag)

These instructions perform block transfers between memory and B or T
registers.

In all of the instructions, the amount of data transferred is specified
by the low-order 7 bits of (Ai). See special cases for details.

The first register involved in the transfer is specified by jk.

Successive transfers involve successive B or T registers until B77 or
T79 is reached. Since processing of the registers is circular, Byg
will be processed after By7 and Ty will be processed after Tomn if

the count in (Ai) is not exhausted.

§ Special CAL syntax form

Part 2
HR-0808 6-34 B

034-037

The first memory location referenced by the transfer instruction is
specified by (Ag). The Ag register contents are not altered by

execution of the instruction. Memory references are incremented by 1
for successive transfers.

For transfers of B registers to memory, each 24-bit value is right
adjusted in the word, the high-order 40 bits are zeroed. When
transferring from memory to B registers, only the low-order 24 bits are
transmitted; the high-order 40 bits are ignored.

Hold issue conditions

A0 through A7 reserved (034, 036)

A0 Ai, or S0 through S7 reserved (035, 037)
Block sequence flag set (034 - 037, 176, 177)
034 - 037 in process

Exchange in process

Scalar reference in CP 2

Rank B data valid

Fetch request in previous clock period

I/0 memory request

Execution time

For 034, 036:

Instruction issue 14 CPs + (Ai) if (Ai) # 0; 5 CpPs if (Ai) =0
For 035, 037:
Instruction issue 6 CPs + (Ai) if (Ai) # 0; 7 CPs if (Ai) = 0

Special cases

1. Block all issues when in process.

2. Block all I/0 references.

Part 2
HR-0808 6-35 B

034-037

HR-0808

3.

4.

(Ai) = 0 causes a zero-block transfer.

(Ai) in the range greater than 100g and less than 200g
causes a wrap-around condition.

If (Ai) is greater than 177g, bits 27 through 223 are
truncated. The block length is equal to the value of 20
through 26.

(Ag) is used as the block length if i = 0.

Part 2
6-36 B

CAL Syntax Description Octal Code

Si exp Transmit jkm to Si 040ijkm

Si exp Transmit complement of jkm to Si 041lijkm

These 2-parcel instructions provide for entering immediate values into
an S register.

The 040 instruction enters into Si a 64-bit value that is composed of
the 22-bit jkm field and 42 high-order bits of 0.

The 041 instruction enters into Si a 64-bit value that is the complement
of a value formed by the 22-bit jkm field and 42 high-order bits of 0.
The complement is formed by changing all 1 bits to 0 and all 0 bits to
1. Thus, for the 041 instruction, the high-order 42 bits of Si are set
to 1 and the instruction provides for entering a negative wvalue into Si.

Hold issue conditions

034 - 037 in process
Exchange in process
S register access conflict

Si reserved

Execution time

Instruction issue:
Both parcels in same buffer, 2 CPs
Both parcels in different buffers, 4 CPs
Second parcel not in a buffer, 13 CPs

Si ready, 1 CP

Special cases

None

Part 2
HR-0808 6-37 B

CAL Syntax Description Octal Code

Si <exp Form exp = 64-jk bits of ones mask in Si from 042ijk
right

Si # >exp§ Form exp = jk bits of zeros mask in Si from 042ijk
left

si 18 Enter 1 into Si 042177

si -1§ Enter -1 into Si 042100

Si “2exp Form exp = jk bits of ones mask in Si from 043ijk
left

Si <exp§ Form exp
left

64-jk bits of zeros mask in Si from 043ijk

Si oS Clear Si 043i00

The 042 instruction generates a mask of 64-jk ones from right to left in
Si. For example, if jk = 0, Si contains all 1 bits and if jk = 17g+

Si contains zeros in all but the low-order bit.

The 043 instruction generates a mask of jk ones from left to right in
Si. For example, if jk = 0, Si contains all 0 bits and if jk = 778,
Si contains ones in all but the low-order bit.

These instructions are executed in the scalar logical unit.

Hold issue conditions

034 - 037 in process
Exchange in process

S register access conflict
Si reserved

Execution time

Instruction issue, 1 CP
Si ready, 1 CP

Special cases

None

§ Special CAL syntax [orm

Part 2
HR-0808 6-38 B

ICAL Syntax Description Octal Code

Si Sj&Sk Logical product of (Sj) and (Sk) to Si 044ijk
Si sjssB® Sign bit of (Sj) to Si 044i30
Si sB&sjS Sign bit of (Sj) to Si (j # 0) 044150
Si #Sk&Sj Logical product of (Sj) and complement of 045ijk
(Sk) to Si
Si #SB&SjS (Sj) with sign bit cleared to Si 045150
Si Sj Sk Logical difference of (Sj) and (Sk) to Si 046ijk
Si sj sBS Toggle sign bit of (Sj), then enter into Si 046130
Si sB sj8 Toggle sign bit of (Sj); then enter into Si 046ij0
(J #0)
Si #S3j Sk Logical equivalence of (Sk) and (Sj) to Si 047ijk
Si #Sk§ Transmit ones complement of (Sk) to Si 04710k

Si #55\SBS Logical equivalence of (Sj) and sign bit to Si 047ij0

Si #SB\Sj¥ Logical equivalence of (Sj) and sign bit to Si 047ij0

(3 # 0)
Si #SBS Enter ones complement of sign bit into Si 047i00
Si Sj!Si&Sk Scalar merge 050ijk

Si Sjlsi&SB§ Scalar merge of (Si) and sign bit of (Sj) to Si 050ij0

Si SjiSk Logical sum of (Sj) and (Sk) to Si 051ijk

Si skS Transmit (Sk) to Si 051i0k

Si Sj:SB§ Logical sum of (Sj) and sign bit to Si 051ij0

Si SB!sjS Logical sum of (Sj) and sign bit to Si 051i30
(# 0)

Si sBS Enter sign bit into Si 051100

§ Special CAL syntax

Part 2
HR-0808 6-39 B

044-051
These instructions are executed in the scalar logical unit.
The 044 instruction forms the logical product (AND) of (Sj) and (Sk) and

enters the result into Si. Bits of Si are set to 1 when the
corresponding bits of (5j) and (Sk) are 1 as in the following example:

(sj) =1100
(sk) = 1010
(i) =100 0

{Sj) is transmitted to Si if the j and k designators have the same
non-zero value. Si is cleared if the j designator is 0. The sign bit of
(Sj) is extracted into Si if the j designator is non-zero and the k
designator is 0.

The 045 instruction forms the logical product (AND) of (Sj) and the
complement of (Sk) and enters the result into Si. Bits of Si are set to

1 when the corresponding bits of (Sj) and the complement of (Sk) are 1 as
in the following example:

(s3)
(Sk)
(Sk')
(51)

mon

i}
OO
Il O
ol o
O+ OO

where (Sk') = complement of (Sk)

Si is cleared if the j and k designators have the same value or if the j
designator is 0. (Sj) with the sign bit cleared is transmitted to Si if

the j designator is non-zero and the k designator is 0.

The 046 instruction forms the logical difference (exclusive OR) of (Sj)
and (Sk) and enters the result into Si. Bits of Si are set to 1 when the

corresponding bits of (Sj) and (Sk) are different as in the following
example:

(sj) =1100
(sk) =1 010
{si) = 0110

Si is cleared if the j and k designators have the same non-zero value.
(Sk) is transmitted to Si if the j designator is 0 and the k designator
is non-zero. The sign bit of (Sj) is complemented and the result is
transmitted to Si if the j designator is non-zero and the k designator is

0.

Part 2
HR-0808 6-40 B

044-051

The 047 instruction forms the logical equivalence of (Sj) and (Sk), and
enters the result into Si. Bits of Si are set to 1 when the
corresponding bits of (Sj) and (Sk) are the same as in the following

example:

(sj) =1100
(sk) =1 01090
(si) =100 1

Si ig set to all ones if the j and k designators have the same non-zero
value. The complement of (Sk) is transmitted to Si if the j designator
is 0 and the k designator is non-zero. All bits except the sign bit of
(Sj) are complemented and the result is transmitted to Si if the j
designator is non-zero and the k designator is 0. The result is the
complement of that produced by the 046 instruction.

The 050 instruction merges the contents of (Sj) with (Si) depending on
the ones mask in Sk. The result is defined by the following Boolean

equation:
(Si) = (Sj) (Sk) + (Si)(sk")

where Sk' is the complement of Sk as illustrated:

(Skz =11110000
(Sk) =00001111
(si) =11001100
(sj) =10101010
(si) =10101100

The 050 instruction is intended for merging portions of 64-bit words into
a composite word. Bits of Si are cleared when the corresponding bits of

Sk are 1 if the j designator is 0 and the k designator is non-zero. The
sign bit of (Sj) replaces the sign bit of Si if the j designator is
non-zero and the k designator is 0. The sign bit of Si is cleared if the
j and k designators are both 0.

The 051 instruction forms the logical sum (inclusive OR) of (Sj) and (Sk)
and enters the result into Si. Bits of Si are set when 1 of the

corresponding bits of (Sj) and (Sk) is set as in the following example:

(53) 1100
(sk) =1010
(8i) = 1110

Part 2
HR-0808 6-41 B

044-051

(Sj) is transmitted to Si if the j and k designators have the same
non-zero value. (Sk) is transmitted to Si if the j designator is 0 and

the k designator is non-zero. (Sj) with the sign bit set to 1 is
transmitted to Si if the j designator is non-zero and the k designator is
0. A ones mask consisting of only the sign bit is entered intc Si if the
j and k designators are both O.

Hold issue conditions

034 - 037 in process

Exchange in process
S register access conflict

Si, Sj, and Sk reserved

Execution time

Instruction issue, 1 CP

Si ready, 1 CP

Special cases

(83)

0 if § =0

63
2 if k =0

(Sk)

Part 2
HR-0808 6-42 B

CAL Syntax Description

Octal Code

S0 Si <exp Shift (Si) left exp = jk places to Sy 052ijk
S0 Si 2exp Shift (Si) right exp = 64-jk places to Sp 053ijk
Si Si <exp Shift (Si) left exp = jk places to Si 054ijk
Si Si 2exp Shift (Si) right exp = 64-jk places to Si 055ijk
These instructions are executed in the scalar shift unit. They shift

values in an S register by an amount specified by jk. All shifts are

end-off with zero fill.

The 052 instruction shifts (Si) left jk places and enters the result

into S5g.

The 053 instruction shifts (Si) right by 64-jk places and enters the

result into Sgj.

The 054 instruction shifts (Si) left jk places and enters the result

into Si.

The 055 instruction shifts (Si) right by 64-jk places and enters the

result into Si.

Hold issue conditions

034 - 037 in process

Exchange in process

S register access conflict

Si reserved

S0 reserved (052 and 053 only)

Execution time

Instruction issue, 1 CP
For 052, 053, S0 ready, 2 CPs
For 054, 055, Si ready, 2 CPs

Special cases

None

Part 2
HR-0808 6-43

CAL Syntax Description Octal Code

Si Si,Sj<Ak Shift (Si) and (Sj) left by (BAk) places to Si 056ijk
Si Si,8j<1S Shift (Si) and (Sj) left one place to Si 056ij0
Si Si<AkS Shift (Si) left (Ak) places to Si 05610k
Si Sj,Si” Ak Shift (Sj) and (Si) right by (Ak) places to Si 057ijk
Si Sj,Si->l§ Shift (Sj);and (Si) right one place to Si 057130

Si Si>AkS Shift (Si) right (Ak) places to Si 057i0k

These instructions are executed in the scalar shift unit. They shift
128-bit values formed by logically joining two S registers. Shift counts
are obtained from register Ak. A shift of one place occurs if the k
designator is 0.

All shifts are end-off with zero fill if i # j. The shift is circular
if the shift count does not exceed 64 and the i and j designators are

equal and nonzero. For both the 056 and 057 instructions, (Sj) are
unchanged, provided i # J.

The 056 instruction performs left shifts of (Si) and (Sj) with (Si)
initially the most significant bits of the double register. The
high-order 64 bits of the result are transmitted to Si. Si is cleared
if the shift count exceeds 127. The 056 instruction produces the same
result as the 054 instruction if the shift count does not exceed 63 and
the j designator is 0.

The 057 instruction performs right shifts of (Sj) and (Si) with (Sj)
initially the most significant bits of the double register. The
low-order 64 bits of the result are transmitted to Si. Si is cleared if
the shift count exceeds 127. The 057 instruction produces the same
result as the 055 instruction if the shift count does not exceed 63 and

the j designator is 0.

A1l shifts counts, (Bk), are considered positive. All 24 bits of (Ak)
are used for the shift count.

§ Special CAL syntax form

Part 2
HR-0808 6-44 B

056-057

Hold issue conditions

034 - 037 in process
Exchange in process
S register access conflict

Si, Sj, or Ak reserved

Execution time

Instruction issue, 1 CP

Si ready, 3 CPs

Special cases
(53)
(ak) = 1 if k
Circular shift if i = j # 0 and (&k) less than 64.

0
0

0 if j

Part 2
HR-0808 6-45 B

CAL Syntax Description Octal Code
Si Sj+Sk Integer sum of (Sj) and (Sk) to Si 060ijk
Si Sj-Sk Integer difference of (Sj) and (Sk) to Si 061ijk
Si -skS Transmit negative of (Sk) to Si 06110k

These instructions are executed in the scalar add unit.

The 060 instruction forms the integer sums of (Sj) and (Sk) and enters
the result into Si. No overflow is detected.

The 061 instruction forms the integer difference of (Sj) and (Sk) and
enters the result into Si. No overflow is detected.

Hold issue conditions

034 - 037 in process

Exchange in process

S register access conflict

Si, Sj, or Sk reserved

Execution time

Si ready, 3 CPs

Instruction issue, 1 CP

Special cases
63

(8i) = 2 if j =
For 060:

(si) = (sk) if j =

(8i) = (s3) with
For 061:

(si) = -(Sk) if j

(si) = (83) with

§ Special CAL syntax form

HR-0808

and k = 0

and k # 0

complemented if j = 0 and k

and k # 0
complemented if j # 0 and k

Part 2
6-46

#£0

=0

CAL Syntax Description Octal Code

Si Sj+FSk Floating sum of (Sj) and (Sk) to Si 062ijk
si +FskS Normalize (Sk) to Si 06210k
Si S5j-FSk Floating difference of (Sj) and (Sk) to Si 063ijk
Si -Fsk$ Transmit normalized negative of (Sk) to Si 063i0k

These instructions are performed by the floating-point add unit.
Operands are assumed to be in floating-point format. The result is

normalized even if the operands are not. Underflow and overflow
conditions are described in section 4.

The 062 instruction forms the sum of the floating-point quantities in Sj
and Sk and enters the normalized result into Si.

The 063 instruction forms the difference of the floating-point
quantities in Sj and Sk and enters the normalized result into Si.

Hold issue conditions

034 - 037 in process
Exchange in process

Si register access conflict
Si, Sj, or Sk reserved

170 - 173 in process; unit busy (VL) + 4 CPs

Execution time

Instruction issue, 1 CP

Si ready, 6 CPs

§ Special CAL syntax form

Part 2
HR-0808 6-47 B

062-063

Special cases

For 062:
(si)
(si) =

For 063:

(51) =

(51)

HR-0808

(Sk)
(s3)

- (Sk)

(s3)

0 and k

.
"

normalized if (Sk) exponent is valid,

normalized if (Sj) exponent is valid, j # 0 and k

0 and k
Sign of (Si) is opposite that of (Sk) if (Sk) # O.

normalized if (Sk) exponent is wvalid, j

normalized if (Sj) exponent is valid, j # 0 and k

Part 2
6-48

#0
0

L}
o

CAL Syntax Description Octal Code

Si Sj*FsSk Floating-point product of (Sj) and (Sk) to Si 064ijk

Si Sj*HSk Half-precision rounded floating-point 065ijk
product of (Sj) and (Sk) to Si

Si Sj*RSk Rounded floating-point product of (Sj) and 066ijk
(Sk) to Si
Si Sj*ISK Reciprocal iteration; 2-(Sj)*(Sk) to Si 067ijk

These instructions are executed by the floating-point multiply unit.
Operands are assumed to be in floating-point format. The result is not

guaranteed to be normalized if the operands are not.

The 064 instruction forms the product of the floating-point quantities
in Sj and Sk and enters the result into Si.

The 065 instruction forms the half-precision rounded product of the
floating-point quantities in Sj and Sk and enters the result into Si.

The low-order 19 bits of the result are cleared.

The 066 instruction forms the rounded product of the floating-point
quantities in Sj and Sk and enters the result into Si.

The 067 instruction forms two minus the product of the floating-point
quantities in Sj and Sk and enters the result into Si. This instruction

is used in the divide sequence as described in section 4 under
Floating—-Point Arithmetic.

In the evaluation C = 2-B * A, B must be a reciprocal of A of less than
47 significant bits. Otherwise C will be in error. The reciprocal
produced by the reciprocal approximation instruction meets this
criterion.

Hold issue conditions

034 - 037 in process
Exchange in process

S register access conflict
Si, Sj, or Sk reserved

160 - 167 in process; unit busy (VL) + 4 CPs

Part 2
HR-0808 6-49 B

064-067

Execution time

Instruction issue, 1 CP

Si ready, 7 CPs

Special cases

(Sj) =0 if 3 =0
63
2

(sk) if k =0

If both exponent fields are 0, an integer multiply is
performed. Correct integer multiply results and produced if the

following conditions are met:

1. Both operand sign bits are 0.

2. The sum of the zero bits to the right of the least
significant one bit in the two operands is greater than

or equal to 48.

In this case the integer result obtained is the high-order 48
bits of the 96-bit product of the two operands.

Part 2
HR-0808 6-50 B

CAL Syntax Description Octal Code

Si /HSJ Floating-point reciprocal approximation 070ijx
of (5j) to Si

This instruction is executed in the reciprocal approximation unit.

The instruction forms an approximation to the reciprocal of the
normalized floating-point quantity in Sj and enters the result into Si.
This instruction occurs in the divide sequence to compute the quotient
of two floating-point quantities as described in part 2, section 4 under
Floating-Point Arithmetic.

The reciprocal approximation instruction produces a result that is

accurate to 30 bits. A second approximation may be generated to extend
the accuracy to 48 bits using the reciprocal iteration instruction.

Hold issue conditions

034 - 037 in process
Exchange in process
Si or Sj reserved

174 in process; unit busy (VL) + 4 CPs

Execution time

Si ready, 14 CPs

Instruction issue, 1 CP

Special cases

(Si) is meaningless if (Sj) is not normalized; the unit assumes
that bit 2 of (Sj) = 1; no test is made of this bit.
(8j) = 0 produces a range error; the result is meaningless.

(sj) =0 if j =0

Part 2
HR-0808 6-51 B

CAL Syntax Description Octal Code

Si Ak Transmit (Ak) to Si with no sign extension 07110k
Si +Ak Transmit (Ak) to Si with sign extension 071ilk
Si +FAk Transmit (Ak) to Si as unnormalized 071i2k

floating-point number

Si 0.6 Transmit constant 0.75 x 248 to si 071i3k
Si 0.4 Transmit constant 0.5 to Si 071i4k
si 1. Transmit constant 1.0 to Si 071i5k
si 2. Transmit constant 2.0 to Si 071i6k
Si 4. Transmit constant 4.0 to Si 071i7k

These instructions perform functions that depend on the value of the j
designator. The functions are concerned with transmitting information

from an A register to an S register and with generating frequently used
floating-point constants.

When the j designator is 0, the 24-bit value in Ak is transmitted to
Si. The value is treated as an unsigned integer. The high-order bits

of Si are cleared.

When the j designator is 1, the 24~bit value in Ak is transmitted to
Si. The value is treated as a signed integer. The sign bit of Ak is
extended to the high-order bit of Si.

When the j designator is 2, the 24-bit value in Ak is transmitted to Si
as an unnormalized floating-point quantity. The result can then be

added to 0 to normalize. For this instruction, the exponent in bits

262 through 248 jis set to 40060g. The sign of the coefficient is

set according to the sign of Ak. If the sign bit of Ak is set, the twos
complement of Ak is entered into Si as the magnitude of the coefficient

and bit 263 of Si is set for the sign of the coefficient.

A sequence of instructions which would be used to convert to
floating-point format, an integer whose absolute value is less than 24

bits is:

{CAL) Al Si
S1 +FAl
) +FS1 9 CPs required.

Part 2
HR-0808 6-52 B

071
When the j designator is 3, the floating-point constant of 0.75 x 248

is entered into Si (4006060000000000000008). This constant is used to
create floating-point numbers from integer numbers (positive and

negative) whose absolute value is less than 47 bits. A seguence of
instructions which would be used for conversion of an integer in S1 is:

(CAL) 82 0.6
S1 S2-51
S1 S2-FS1 11 CPs required.

When the j designator is 4, the floating-point constant 0.5 (= 0 40000
4000 0000 0000 0000g) is entered into Si.

When the j designator is 5, the floating-point constant 1.0 (= 0 40001
4000 0000 0000 0000g) is entered into Si.

When the j designator is 6, the floating-point constant 2.0 (= 0 40002
4000 0000 0000 00008) is entered into Si.

When the j designator is 7, the floating-point constant 4.0 (= 0 40003
4000 0000 0000 00008) is entered into Si.

Hold issue conditions

034 - 037 in process
Exchange in process

Si register access conflict
Si reserved

Ak reserved (all instructions)

Execution time

Instruction issue, 1 CP

Si ready, 2 CPs

Part 2
HR-0808 6-53 B

071

Special cases

HR-0808

(Ak)
(5i)
(51)
(S1i)
(S1i)
(Si)
(si)
(s1)
(81)

1 if k
(Ak) if j

0
=0

(Ak) sign extended if j

(Ak) unnormalized if j =

X

X

X

*

2
2
2
2
2

0
1
2
3

(octal)
(octal)
(octal)
(octal)

0
(octal) if j =

if § =
if § =

if 5

if 5

Part 2
6-54

CAL Syntax Description Octal Code

Si RT Transmit (RTC) to Si 072ixx
sSi VM Transmit (VM) to Si 073ixx
Si Tjk Transmit (Tjk) to Si 074ijk
Tjk Si Transmit (Si) to Tik 075ijk

These instructions transmit register values to Si except for instruction
075 which transmits (Si) to Tjk.

The 072 instruction enters the 64-bit value of the real-time clock into

Si. The clock is incremented by 1 each clock period. The real-time
clock can be set only by the monitor through use of the 0014 instruction.

The 073 instruction enters the 64-bit value of the vector mask (VM)

register into Si. The VM register is usually read after having been set
by the 175 instruction.

The 074 instruction enters the contents of Tjk into Si.

The 075 instruction enters the contents of Si into Tjk.

Hold issue conditions

034 - 037 in process
Exchange in process
Si register access conflict (072, 073, and 074 only)
Si reserved
For 073 only:
175 in process, VM busy (VL) + 6 CPs

003 in process, VM not available until 6 CPs after 003 issue

Execution time

Instruction issue, 1 CP
For 072 through 074, Si ready, 1 CP
For 075, Tjk ready, 1 CP

Special cases

None

Part 2
HR-0808 6-55 B

CAL Syntax Description Octal Code

Si Vj,Ak Transmit (Vj element (Ak)) to Si 076ijk
Vi,Ak Sj Transmit (Sj) to Vi element (Ak) 077ijk
vi,ak 05 Clear Vi element (Ak) 07710k

These instructions transmit a 64-bit quantity between a V register
element and an S register.

The 076 instruction transmits the contents of an element of register Vj
to Si.

The 077 instruction transmits the contents of register Sj to an element
of register Vi.

The low-order 6 bits of (Ak) determine the vector element for either
instruction.

Hold issue conditions

034 - 037 in process

Exchange in process

Ak reserved

Si register access conflict (076 only)
For 076, Si and Vj reserved

For 077, Vi and Sj reserved

Execution time

Instruction issue, 1 CP
For 076, Si ready, 5 CPs
For 077, Vi ready, 1 CP

Special cases
(Sj) =0 if j =0
(Ak) = 1 if k

[}
(]

Part 2
HR-0808 6-56 B

CAL Syntax Description Octal Code

Ai exp,Ah Read from ((Ah) + jkm) to Ai 10hijkm
Ai exp,05 Read from (jkm) to Ai 100ijkm
Ai exp,S Read from (jkm) to Ai 100ijkm
Ai ,AnS Read from (Ah) to Ai 10hi000
exp,Ah Ai Store (Ai) to (Ah) + jkm 1lhijkm
exp,0 aiS Store (Ai) to jkm 110ijkm
exp, AiS Store (Ai) to exp 110ijkm
,Ah aiS Store (Ai) to (Ah) 11hi000
Si exp,Ah Read from ((2h) + jkm) to Si 12hijkm
Si exp,05 Read from (exp) to Si 120ijkm
Si exp,§ Read from (exp) to Si 120ijkm
si ,an$ Read from (Ah) to Si 12hi000
exp,Ah Si Store (Si) to (Ah) + jkm 13hijkm
exp,0 siS Store (Si) to exp 130ijkm
exp, SiS Store (Si) to exp 130ijkm
,Ah siS Store (Si) to (Ah) 13hi000

These 2-parcel instructions transmit data between memory and an A
register or an S register. The content of Ah (treated as a 22-bit signed

integer) is added to the signed 22-bit integer in the jkm field to
determine the memory address. If h is 0, (Ah) is 0 and only the jkm
field is used for the address. The address arithmetic is performed by an
address adder similar to but separate from the address add unit.

The 10h and 1lh instructions transmit 24-bit quantities to or from A
registers. When transmitting data from memory to an A register, the

high-order 40 bits of the memory word are ignored. On a store from Ai
into memory, the high-order 40 bits of the memory word are zeroed.

§ Special CAL syntax form

Part 2
HR~-0808 6-57 B

10h-13h

The 12h and 13h instructions transmit 64-bit quantities to or from
register Si.

Hold issue conditions

034 - 037 in process

Exchange in process

Rank A bank conflict and unit busy 3 CPs
Rank B bank conflict and unit busy 2 CPs
Rank C bank conflict and unit busy 1 CP
Storage hold continuation

Ah reserved

For 10h only, Ai register access conflict
For 10h and 1lh only, Ai reserved

For 12h and 13h only, Si reserved

For 12h only, Si register access conflict
Fetch request in previous clock period
176 in process unit busy (VL) + 4 CPs

177 in process unit busy (VL) + 5 CPs

Execution time

Instruction issue:
Both parcels in same buffer, 2 CPs
Parcels in different buffers, 4 CPs
Second parcel not in a buffer, 13 CPs
10h only, Ai ready, 11 CPs
12h only, Si ready, 11 CPs
Memory ready for next scalar read or store, 4 CPs
Special cases
For 10h, 12h only:

Rank A conflict, 3 CPs delay before Ai or Si ready
Rank B conflict, 2 CPs delay before Ai or Si ready
Rank C conflict, 1 CP delay before Ai or Si ready
For 12h only:

Hold storage, 1 CP delay if 070 register access conflict
occurs (when the result entering coincides with a reciprocal

approximation result entering Si).

Part 2
HR-0808 6-58 B

ICAL Syntax Description Octal Code

Vi Sj&Vk Logical products of (Sj) and (Vk elements) 140ijk
to Vi elements

Vi VisVk Logical products of (Vj elements) and (Vk 141ijk
elements) to Vi elements

Vi S3jlvk Logical sums of (Sj) and (Vk elements) 142ijk
to Vi elements

vi vkS Transmit (Vk) elements to Vi elements 14210k

Vi Vjlvk Logical sums of (Vj elements) and 143ijk
(Vk elements) to Vi elements

Vi Sj/Vk Logical differences of (Sj) and 144ijk
(Vk elements) to Vi elements

Vi Vj/Vk Logical differences of (Vj elements) and 145ijk
(Vk elements to Vi elements

vi oS Clear Vi elements 145iii

Vi Sj!Vk&VvM If VM bit = 1, transmit (Sj) to Vi elements 146ijk
If VM bit = 0, transmit (Vk elements) to Vi
elements

Vi #VM&Vk§ Vector merge of (Vk) elements and 0 to Vi 146i0k
elements

Vi Vj!Vk&VM If VM bit = 1, transmit (Vj elements) to Vi 147ijk
elements
If VM bit = 0, transmit (Vk elements) to Vi
elements

These instructions are executed by the vector logical unit.
of operations performed is determined by the
All operations start with element

register.

register and increment the element number by
All results are delivered to Vi.

performed.

§ Special CAL syntax form

HR-0808

Part 2
6-59

The number

contents of the VL
0 of the Vi, Vj, or Vk
1 for each operation

140-147

For instructions 140, 142, 144, and 146, a copy of the content of Sj is

delivered to the functional unit where it is held as one of the operands
until the completion of the operation. For instructions 141, 143, 145,

and 147, all operands are obtained from V registers.

Instructions 140 and 141 form the logical products (AND) of pairs of
operands and enter the result into Vi. Bits of an element of Vi are set

to 1 when the corresponding bits of (Sj) or (Vj element) and (Vk element)
are 1 as in the following:

(Sj) or (Vj element) =110 0
(Vk element) =1010
(Vi element) =1000

The 142 and 143 instructions form the logical sums (inclusive OR) of
pairs of operands and deliver the results to Vi. Bits of an element of
Vi are set to 1 when one of the corresponding bits of (Sj) or (Vj
element) and (Vk element) is 1 as in the following:

(Sj) or (Vj element) =110 0
(Vk element) =1010
(Vi element) =1110

The 144 and 145 instructions form the logical differences (exclusive OR)
of pairs of operands and deliver the results of Vi. Bits of an element
are set to 1 when the corresponding bit of (Sj) or (Vj element) are
different from (Vk element) as in the following:

(Sj) or (Vj element) =11 00
(Vk element) =1010
(Vi element) =0110

The 146 and 147 instructions transmit operands to Vi depending on the

contents of the vector mask register (VM). Bit 263 of the mask

corresponds to element 0 of a V register. Bit 20 corresponds to
element 63. Operand pairs used for the selection depend on the

instruction. For the 146 instructions, the first operand is always (Sj),
the second operand is (Vk element). For the 147 instruction, the first
operand is (Vj element) and the second operand is (Vk element). If bit n
of the vector mask is 1, the first operand is transmitted; if bit n of
the mask is 0, the second operand, (Vk element), is selected.

Part 2
HR-0808 6-60 B

140-147

Examples

1. Suppose that a 146 instruction is to be executed and the following
register conditions exist:

(VL) 4

(VM) G 60000 0000 0000 0000 0000
(s2) =-1

(V600)
(vé601)
(Vve02)
{V603)

nouwon
W N

Instruction 146726 is executed. Following execution, the first four
elements of V7 contain the following values:

(V700) =1
(v701) = -1
(v702) = -1
(V703) = 4

The remaining elements of V7 are unaltered.

2. Suppose that a 147 instruction is to be executed and the following
register conditions exist:

(VL) = 4

(VM) = 0 600000 0000 0000 0000 0000
(v200) = 1 (V300) = -1

(v201) = 2 (v301) = =2

(v202) = 3 (v302) = -3

(v203) = 4 (v303) = -4

Instruction 147123 is executed. Following execution, the first four
elements of V1 contain the following values:

(viog) = -1
(Vi0l) = 2
(vi02) = 3
(v1i03) = -4

The remaining elements of V1 are unaltered.

Part 2
HR-0808 6-61 B

140-147

Hold issue conditions

034 - 037 in process

Exchange in process

Vi or Vk reserved

14x in process, unit busy (VL) + 4 CPs
175 in process, unit busy (VL) + 4 CPs
003 in process, unit busy 3 CPs

For 140, 142, 144, 146 only, Sj reserved
For 141, 143, 145, 147 only, Vj reserved

Execution time

Instruction issue, 1 CP

Vi ready, 9 CPs if (VL) is less than or equal to 5

Vi ready, (VL) + 4 Cps if (VL) greater than 5

Vj or Vk ready, 5 CPs if (VL) is less than or equal to 5
Vj or Vk ready, (VL) CPs if (VL) greater than 5

Unit ready, (VL) + 4 CPs

Chain slct ready, 4 CPs

Special cases

(8j) = 0 if j =0

ke, (Vi) = 0.

For 145 only, if i = j

Part 2
HR-0808 6-62

CAL Syntax Description Octal Code

Vi Vj <Ak Shift (Vj) elements left by (Ak) 150ijk
places to Vi elements

vi Vj <18 Shift (Vj) elements left one place to Vi 150130
elements

Vi Vj >Ak Shift of (Vj) elements right by (Ak) 151ijk

places to Vi elements

vi vj >15 shift (Vj) elements right one place to Vi 151ij0
elements

These instructions are executed in the vector shift unit. The number of
operations performed is determined by the contents of the VL register.

Operations start with element O of the Vi and Vj registers and end with
elements specified by (VL) - 1.

A1l shifts are end-off with zero fill. The shift count is obtained from
(Ak) and elements of Vi are cleared if the shift count exceeds 63. All

shift counts (Ak) are considered positive. All 24 bits of Ak are used
for the shift count.

Unlike the 052-055 shift instructions, these jnstructions get the shift
count from Ak, rather than the jk fields.

Hold issue conditions

034 - 037 in process
Exchange in process
Vi or Vj reserved

Ak reserved

150 - 153 in process, unit busy (VL) + 4 CPs

§ Special CAL syntax form

Part 2
HR-0808 6-63 B

150-151

Execution time

Instruction issue, 1 CP

Vi ready, 11 CPs if (VL) is less than or equal tc 5
Vi ready, (VL) + 6 CPs if (VL) greater than 5

Vj ready, 5 CPs if (VL) is less than or equal to 5
Vj ready, (VL) CPs if (VL) greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 6 CPs

Special case

(Bk) = 1 if k

L}
o

Part 2
HR-0808 6-64

CAL Syntax Description Octal Code

Vi Vj,Vi<Ak Double shifts of (Vj elements) left (Bk) 152ijk
places to Vi elements

Vi Vj,Vj<l§ Double shifts of (Vj elements) left one place 152ij0
to Vi elements

Vi Vj,Vi*Ak Double shifts of (Vj elements) right (Ak) 153ijk
places to Vi elements

Vi Vj,Vj->l§ Double shifts of (Vj elements) right one place 153ij0
to Vi elements

These instructions are executed in the vector shift unit. They shift
128-bit values formed by logically joining the contents of two elements

of the Vj register. The direction of the shift determines whether the
high-order bits or the low-order bits of the result are sent to Vi.
Shift counts are obtained from register Ak.

All shifts are end-off with zero fill.

The number of operations is determined by the contents of the VL
register.

The 152 instruction performs left shifts. The operation starts with
element 0 of Vi being joined with element 1 and the resulting 128-bit
quantity is then shifted left by the amount specified by (Ak). The 64

high-order bits remaining are transmitted to element 0 of Vi. Figure
6-7 illustrates this operation.

If (VL) is 1, element 0 is joined with 64 bits of 0 and only the one
operation is performed. If (VL) is greater than 2, the operation

continues by joining element 1 with element 2 and transmitting the
64-bit result to element 1 of Vi. This is illustrated in figure 6-8.

1f (VL) is 2, however, element 1 is joined with 64 bits of 0 and only
two operations are performed. In general, the last element of Vj as

determined by (VL) is joined with 64 bits of zeros. Figure 6-9
illustrates this operation.

§ Special CAL syntax form

Part 2
HR-0808 6-65 B

152-153

263 20 263 20
(ELEMENT O) OF Vj (ELEMENT t) OF v
263—(Ak) 20 583 264~ (Ak) Vj
(ELEMENT O) OF# ¥f 4— (Ak)
2%° 2° Vi
END OFF 64—BIT RESULT TO ELEMENT O OF Vi
Figure 6-7. Vector left double shift, first element,
VL greater than 1
(ELEMENT) OF Vj (ELEMENT 2) OF Vj
(ELEMENT 1) -— (Ak)
A-0073
END OFF 64—BIT RESULT TO ELEMENT | OF Vi
Figure 6-8. Vector left double shift, second element,
VL greater than 2
(ELEMENT (VL)-1) OF Vj 000.........0
(ELEMEN .0 -t—(Ak)
A4-0075
END OFF 64-BIT RESULT TO ELEMENT (VL)—1! OF Vj
Figure 6-%. Vector left double shifi, lasl element
Part 2
HR-0808 6-66 B

152-153

If (Ak) is greater than 128, the result is all zeros. If (Ak) is
greater than 64, the result register contains at least (Ak) - 64 zeros.

Example

Suppose that a 152 instruction is to be executed and the following
register conditions exist:

(VL) = 4
(Al) =3
(V400) = 0 00000 0000 0000 0000 0007
(V401) = 0 60000 0000 0000 0000 0005
(V402) = 1 00000 0000 0000 0000 0006
(V403) = 1 60000 0000 0000 0000 0007

Instruction 152541 is executed and following execution, the first four
elements of Vg contain the following values:

(Vv500) = 0 00000 0000 0000 0000 0073
(V501) = 0 00000 0000 0000 0000 0054
(V502) = 0 00000 0000 0000 0000 0067
(Vv503) = 0 00000 0000 0000 0000 0070

The 153 instruction performs right shifts. Element 0 of Vj is Jjoined
with 64 high-order bits of 0 and the 128 bit quantity is shifted right

by the amount specified by (Ak). The 64 low-order bits of the result
are transmitted to element 0 of Vi. Figure 6-10 illustrates this

operation.
263 20
000.........0 (ELEMENT O) OF Vj
263 2(Ak) VJ
(AK) —»

263 2(Ak)'| 20 Vi
P
64-BIT RESULT TO END OFF

ELEMENT O OF Vi

Figure 6-10. Vector right double shift, first element

1f (VL) = 1, only the one operation is performed. In the general case,
however, instruction execution continues by joining element 0 with
element 1, shifting the 128-bit quantity by the amount specified by
(Ak), and transmitting the result to element 1 of Vi. This operation is

shown in figure 6-1l.

Part 2
HR-0808 6-67 B

152-153

263 20 263 20

(ELEMENT O) OF Vj (ELEMENT 1) OF Vj

Z(Ak)—l 2° 283 2(Ak)

(Ak) ——p (ELEMENT

263 263-(Ak) 20

64-(Ak) BITS 64—-BIT RESULT TO END OFF
ELEMENT | OF Vj

Figure 6-11. Vector right double shift, second element,
VL greater than 1

The last operation performed by the instruction joins the last element of
Vj as determined by (VL) with the preceding element. Figure 6-12

illustrates this operation.

A-C074
(ELEMENT (VL)}-2) OF Vj (ELEMENT (VL)-1) OF Vj

(AK)——3» (ELEMENT

‘VL)-1) OF Vj

64-BIT RESULT TO END OFF
ELEMENT (VL)-I OF Vj

Figure 6-12. Vector right double shift, last operation

Example

Suppose that a 153 instruction is to be executed and the following
register conditions exist:

(VL) = 4

(A6) = 3

(V200) = 0 00000 0000 0000 0000 0017
(V201) = 0 60000 G000 0000 0000 0006
(V202) = 1 00000 0000 0000 0000 0006
(V203) 1 60000 0000 0000 0000 0007

Part 2
HR-0808 6-68 B

152-153

Instruction 153026 is executed and following execution, register VO
contains the following values: .

(vo0o0) = 0 00000 0000 0000 0000 00Ol
(v001l) = 1 66000 0000 0000 0000 0000
(v002) = 1 50000 0000 0000 0000 0000
(v003) = 1 56000 0000 0000 0000 0000

The remaining elements of VO are unaltered.

Hold issue conditions

034 - 037 in process
Exchange in process
Vi or Vj reserved

Ak reserved

150 - 153 in process, unit busy (VL) + 4 CPs

Execution time

Instruction issue, 1 CP

Vi ready, 11 CPs if (VL) is less than or equal to 5
Vi ready, (VL) + 6 CPs if (VL) is greater than 5

Vj ready, 5 CPs if (VL) is less than or equal to 5
Vj ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 6 CPs

Special case

(Ak) =1 if k

[}
o

Part 2
HR-0808 6-69 B

CAL Syntax Description Octal Code

Vi Sj+vk Integer sums of (Sj) and (Vk elements) to 154ijk
Vi elements

Vi Vj+Vk Integer sums of (Vj elements) and (Vk 155ijk
elements) to Vi elements

Vi Sj-Vk Integer differences of (Sj) and (Vk elements) 156ijk
to Vi elements

Vi —Vk§ Transmit negative of (Vk elements) to Vi 15610k
elements

Vi Vj-Vk Integer differences of (Vj elements) and (Vk 157ijk
elements) to Vi elements

These instructions are executed by the vector add unit.

Instructions 154 and 155 perform integer addition. Instructions 156 and
157 perform integer subtraction. The number of additions or subractions
performed is determined by the contents of the VL register. All
operations start with element 0 of the V registers and increment the
element number by 1 for each operation performed. All results are
delivered to elements of Vi. No overflow is detected.

Instructions 154 and 156 deliver a copy of (Sj) to the functional unit
where the copy is retained as one of the operands until the vector

operation completes. The other operand is an element of Vk. For
instructions 155 and 157, both operands are obtained from V registers.

Hold issue conditions

034 - 037 in process

Exchange in process

Vi or Vk reserved

154 - 157 in process, unit busy (VL) + 4 CPs
For 154 and 156 only, Sj reserved

For 156 and 157 only, Vj reserved

§ Special CAL syntax form

Part 2
HR-0808 6-70 B

154-157

Execution time

Instruction issue, 1 CP

Vi ready, 10 CPs if (VL) is less than or equal to 5

Vi ready, (VL) + 5 CPs if (VL) is greater than 5

Vj or Vk ready, 5 CPs if (VL) is less than or equal to 5
Vj or Vk ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 5 CPs

Special cases

(Vk element)

0, then (S3J) 0 and (Vi element)

0, then (Sj)

For 154, if j

- (Vk element)

0 and (Vi element)

For 156, if j

Part 2
HR-0808 6-71 B

CAL Syntax Description Octal Code

Vi Sj*FVk Floating-point products of (Sj) and 160ijk
(Vk elements) to Vi elements

Vi VJj*FVk Floating-point products of (Vj elements) 161lijk
and (Vk elements) to Vi elements

Vi Sj*HVk Half-precision rounded floating-point products 162ijk
of (Sj) and (Vk elements) to Vi elements

Vi VJj*HVK Half-precision rounded floating-point products 163ijk
of (Vj elements) and (Vk elements) to Vi elements

Vi Sj*RVk Rounded floating-point products of (Sj) 164ijk
and (Vk elements) to Vi elements

Vi Vj*RVk Rounded floating-point products of 165ijk
(V) elements) and (VK elements) to Vi elements

Vi Sj*IVk Reciprocal iterations; 2 - (Sj) * (Vk 166ijk
elements) to Vi elements

Vi Vj*IVk Reciprocal iterations; 2 - (Vj elements) * 167ijk
(Vk elements) to Vi elements

These instructions are executed in the floating-point multiply unit.
The number of operations performed by an instruction is determined by

the contents of the VL register. All operations start with element 0 of
the V registers and increment the element number by 1 for each

successive operation.

Operands are assumed to be in floating-point format. Even-numbered
instructions in the group deliver a copy of (Sj) to the functional unit

where the copy is retained as one of the operands until the completion
of the operation. The other operand is an element of Vk. For
odd-numbered instructions in the group, both operands are obtained from

V registers.

All results are delivered to elements of Vi. 1If either operand is not
normalized, there is no guarantee that the products will be normalized.

Out-of-range conditions are described in section 4.

The 160 instruction forms the products of the floating-point guantity in
Sj and the floating-point quantities in elements of Vk and enters the

result into Vi.

Part 2
HR-0808 6-72 B

160-167

The 161 instruction forms the products of the floating-point quantities
in elements of Vj and Vk and enters the results into Vi.

The 162 instruction forms the half-precision rounded products of the
floating-point quantity in Sj and the floating-point quantities in
elements of Vk and enters the results into Vi. The low-order 19 bits of
the result elements are zeroed.

The 163 instruction forms the half-precision rounded products of the
floating-point quantities in elements of Vj and Vk and enters the
results into Vi. The low-order 19 bits of the result elements are

zeroed.

The 164 instruction forms the rounded products of the floating-point
quantity in Sj and the floating-point quantities in elements of Vk and

enters the results into Vi.

The 165 instruction forms the rounded products of the floating-point
quantities in elements of Vj and Vk and enters the results into Vi.

The 166 instruction forms for each element, two minus the product of the
floating-point quantity in Sj and the floating-point quantity in
elements of Vk. It then enters the results into Vi. See the
description of the 067 instruction for more details.

The 167 instruction forms for each element pair, two minus the product
of the floating-point gquantities in elements of Vj and Vk and enters the

results into Vi. See the description of the 067 instruction for more
details.

Hold issue conditions

034 - 037 in process

Exchange in process

Vi or Vk reserved

16x in process, unit busy (VL) + 4 CPs
For 160, 162, 164, and 166, Sj reserved
For 161, 163, 165, and 167, Vj reserved

Part 2
HR-0808 6-73 B

160-167

Execution time

Instruction issue, 1 CP

Vi ready, 14 CPs if (VL) is less than or equal to 5

Vi ready, (VL) + 9 CPS if (VL) is greater than 5

Vj or Vk ready, 5 CPS if (VL) is less than or equal to 5
Vj or Vk ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 9 CPs

Special case

(S§) = 0 if j

[}
o

Part 2
HR-0808 6-74

CAL Syntax Description Octal Code

Vi Sj+FVk Floating-point sums of (Sj) and 170i3jk
(Vk elements) to Vi element

Vi +FvkS Transmit normalized (Vk elements) to Vi 170i0k
elements

Vi Vi+FVk Floating-point sums of (Vj elements) and (Vk 171ijk
elements) to Vi elements

Vi Sj-FVk Floating-point differences of (Sj) and (Vk 172ijk
elements) to Vi elements

vi -FvkS Transmit normalized negatives of (Vk 172i0k
elements) to Vi elements

Vi Vj-FVk Floating-point differences of (V] elements) 173ijk
and (Vk elements) to Vi elements

These instructions are executed by the floating-point add unit.
Instructions 170 and 171 perform floating-point addition; instructions

172 and 173 perform floating-point subtraction. The number of additions
or subtractions performed by an instruction is determined by the
contents of the VL register. All operations start with element 0 of the
V registers and increment the element number by 1 for each operation
performed. All results are delivered to Vi. The results are normalized

even if the operands are not.
Instructions 170 and 172 deliver a copy of (Sj) to the functional unit
where it is retained as one of the operands until the completion of the

operation. The other operand is an element of Vk. For instructions 171
and 173, both operands are obtained from V registers.

Out-of-range conditions are described in section 4.

Hold issue conditions

034 - 037 in process

Exchange in process

Vi or Vk reserved

170 - 173 in process, unit busy (VL) + 4 CPs
For 170, 172, Sj reserved

For 171, 173, Vj reserved

§ Special CAL syntax form

Part 2
HR-0808 6-75 B

170-173

Execution time

Instruction issue, 1 CP

Vi ready, 13 CPs if (VL) is less than or equal to 5

Vi ready, (VL) + 8 CPs if (VL) is greater than 5

Vj and Vk ready, 5 CPs if (VL) is less than or equal to 5
Vj and Vk ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 8 CPs

Special case

(Sj) =0 if j = 0

Part 2
HR-0808 6-76

CAL Syntax Description Octal Code

Vi /HVjJ Floating—-point reciprocal approximation of 174130
(Vj elements) to Vi elements

This instruction is executed in the reciprocal approximation unit.

The instruction forms an approximate value of the reciprocal of the
normalized floating-point quantity in each element of Vj and enters the
result into elements of Vi. The number of elements for which
approximations are found is determined by the contents of the VL

register.

The 174 instruction occurs in the divide sequence to compute the
quotients of floating-point quantities as described in section 4 under

Floating-Point Arithmetic.
The reciprocal approximation instruction produces results that are
accurate to 30 bits. A second approximation may be generated to extend

the accuracy to 48 bits using the reciprocal iteration instruction.

Hold issue conditions

034 - 037 in process
Exchange in process
Vi or Vk reserved

174 in process, unit busy for (VL) + 4 CPs

Execution time

Instruction issue, 1 CP

Vi ready, 21 CPs if (VL) is less than or equal to 5
Vi ready, (VL) + 16 CPs if (VL) is greater than 5
'Vj ready, 5 CPs if (VL) is less than or equal to 5
Vj ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 16 CPs

Special case

(Vi element) is meaningless if (V] element) is not normalized;
the unit assumes that bit 247 of (Vj element) is 1; no test of
this bit is made.

Part 2
HR-0808 6-77 B

CAL Syntax Description Octal Code

Vi PVj Population count of (Vj elements) to Vi 174i31
elements
Vi Qvj Population count parity of (Vj elements) to 174ij2

Vi elements

The 174ijl instruction counts the number of bits set to 1 in each
element of Vj and enters the results into corresponding elements of Vi.

The results are entered into the low-order 7 bits of each Vi element;
the remaining high-order bits of each Vi element are zeroed.

The 174ij2 instruction counts the number of bits set to 1 in each
element of Vj. The least significant bit of each element result shows

whether the result is an odd or an even number. Only the least
significant bit of each element is transferred to the least significant
bit position of the corresponding element of register Vi. The remainder
of the element is set to zeros. The actual population count results are
not transferred.

These instructions use the vector population count unit, which shares
some logic with the reciprocal approximation functional unit.

Hold issue conditions

034-037 in process
Exchange in process
Vi reserved
VK reserved

174 in process; unit busy for (VL) + 4 CPs

Execution time

Instruction issue, 1 CP

Vi ready, 13 CPs if (VL) is less than or equal to 5
Vi ready, (VL) + 8 CPs if (VL) is greater than 5

Vj ready, 5 CPs if (VL) is less than or equal to 5
Vj ready, (VL) CPs if (VL) is greater than 5

Unit ready, (VL) + 4 CPs

Chain slot ready, 8 CPs

Part 2
HR-0808 6-78 B

CAL Syntax Description Octal Code

VM Vj,2 VM = 1 where (Vj element) = 0 175x30

vM Vj,N VM = 1 where (Vj element) # O 175x31

VM Vj,P VM = 1 where (V] element) positive, 175x32
(bit 263 = 0)

vM Vi,M VM = 1 where (Vj element) negative, 175x33

(bit 263 = 1)

The 175xjk instruction creates a vector mask in VM based on the results
of testing the contents of the elements of register Vj. Each bit of VM

corresponds to an element of Vj. Bit 263 corresponds to element 0;
pit 20 corresponds to element 63.

The type of test made by the instruction depends on the low-order 2 bits

of the k designator. The high-order bit of the k designator is not
interpreted.

If the k designator is 0, the VM bit is set to 1 when (Vj element) is
and is set to 0 when (Vj element) is nonzero.

If the k designator is 1, the VM bit is set to 1 when (Vj element) is
nonzero and is set to 0 when (Vj element) is zero.

If the k designator is 2, the VM bit is set to 1 when (Vj element) is
positive and is set to 0 when (Vj element) is negative. A zero value

considered positive.

If the k designator is 3, the VM bit is set to 1 when (V] element) is
negative and is set to 0 when (Vj element) is positive. A zero value
considered positive.

The number of elements tested is determined by the contents of the VL

is

is

register. VM bits corresponding to untested elements of Vj are zeroed.

The 175 vector mask instruction provides a vector counterpart to the
scalar conditional branch instructions.

The 175 vector mask instruction uses the vector logical unit.

Part 2
HR-0808 6-79

75

Hold issue conditions

034 - 037 in process

Exchange in process

Vi reserved

l4x in process, unit busy (VL) +
003 in process, VM busy 3 CPs

175 in process, unit busy (VL) +

Execution time

Instruction issue, 1 CP

4 CPs

4 CPs

Vj ready, 5 CPs if (VL) is less than or equal to 5

Vj ready, (VL) CPs if (VL) is greater than 5

VM ready except for 073 instruction, (VL) + 4 CPs

VM ready for 073 instruction, (VL) + 6 CPs

Special cases

HR-0808

k = 0 or 4, VM bit xx = 1 if (V]
k =1or 5, VM bit xx =1 if (V]
kK =2 or 6, VM bit xx = 1 if (Vj
k =3 or 7, VM bit xx = 1 if (V]
Part 2
6-80

element xx) = 0
element xx) # 0
element xx) is positive

element xx) is negative

CAL Syntax Description Octal Code

vi ,A0,Ak Transmit (VL) words from memory to Vi elements 176ixk
starting at memory address (AO) and

incrementing by (Ak) for successive addresses

Vi ,AO,l§ Transmit (VL) words from memory to Vi elements 176ix0
starting at memory address (Agy) and

incrementing by 1 for successive addresses

(A0, Bk V) Transmit (VL) words from Vj elements to memory 177xjk
starting at memory address (AO) and

incrementing by (Ak) for successive addresses

+A0,1 Vj§ Transmit (VL) words from Vj elements to memory 177x3j0
starting at memory address (AO) and

incrementing by 1 for successive addresses

These instructions transfer blocks of data between V registers and
memory.

The 176 instruction transfers data from memory to elements of register
Vi.

The 177 instruction transfers data from elements of register Vj to
memory.

Register elements begin with 0 and are incremented by 1 for each
transfer. Memory addresses begin with (AO) and are incremented by the

contents of Ak. Ak contains a signed 22-bit integer which is added to
the address of the current word to obtain the address of the next word.

Ak may specify either a positive or negative increment allowing both
forward and backward streams of reference. The two high-order bits of

(Ak) are ignored.

The number of words transferred is determined by the contents of the VL
register.

§ Special CAL syntax form

Part 2
HR-0808 6-81 B

176-177

Hold issue conditions

034 - 037 in process

Exchange in process

AO reserved

Ak reserved where k = 1 through 7

Block sequence flag set (034 - 037, 176, 177)
Scalar reference (3 CPs maximum)

Rank B data wvalid

Fetch request in last clock period

For 176, vector register i reserved

For 177, vector register j reserved

I/0 memory request

Execution time

For 176 (assuming no bank conflicts):
Instruction issue except for 034-037, 100-137, 176, 177, 1 CP
Instruction issue for above exceptions, (VL) + 4 CPs
Vi ready, 14 CPs if (VL) is less than or equal to 5
Vi ready, (VL) + 9 CPs if (VL) is greater than 5
For 177 (assuming no bank conflicts):
Instruction issue except for 034-037, 100-137, 176, 177, 1 CP
Instruction issue for above exceptions, (VL) + 5 CPs
Vj ready, 5 CPs if (VL) is less than or equal to 5
Vj ready, (VL) CPs if (VL) is greater than 5

Special cases
The increment, (BAk), =1 if k = 0
Chain slot issue is 9 CPs if full speed for 176, blocked for 177

Inhibit I/0 references

Inhibit 034 - 037, 100 - 137, 176, 177

Part 2
HR~-0808 6-82 B

176-177

Special cases (continued)

(Ak) determines speed control. Successive addresses are
located in successive banks. References to the same bank can
be made every 4 CPs or more. Incrementing (Ak) by 16 (l6-bank
memory) or 8 (8-bank memory) places successive memory
references in the same bank, so a word is transferred every 4
CPs. 1If the address is incremented by 8 (l6-bank memory) or 4
(8-bank memory), every other reference is to the same bank and
words can transfer every 2 CPs. With any address incrementing
that allows 4 CPs before addressing the same bank, one word can

transfer each CP.

Part 2
HR-0808 6-83 B

CPU INTERFACES 7

INTRODUCTION

The CRAY-1 Computer is designed for use with front-end computers in a
network of computers. Front—end interfaces connect the CRAY-1 I/0
channels to channels of other computers. In S Series systems that do not
have an I/0 Subsystem, the interfaces are connected to CPU I/0 channels.
The interfaces adapt the CPU I/0 channels to handle differences in
voltage levels, grounding requirements, word sizes, data rates, and
protocols. Each interface is designed to accommodate a specific type of
computer, interfacing it to one CPU low-speed asynchronous I/0 channel
pair.

Standard interface hardware exists for the Maintenance Control Unit
(MCU) . Cray Research also offers standard interfaces for a variety of
computers produced by other manufacturers and is continually expanding
the list of front-end intefaces that it offers.

This section describes the physical construction, cabling limitations,

and operation common to the interfaces. Specific information for each
interface is contained in separate documentation.

PHYSICAL DESCRIPTION

Each interface is housed in a stand-alone cabinet (figure 7-1) located
near the host computer. The cabinet is air-cooled, and operates directly
from the 60 Hz AC power mains. The power consumption and therefore the
heat generated by the interface cabinet varies with the complexity of the
interface. The cabinet contains two or more logic modules and
appropriate cabling connector panels. Internal power supplies provide
the required logic and communication voltages. Cabinet grounding is
flexible and can be configured to specific site requirements.

Part 2
HR-0808 7-1 B

Figure 7-1. Typical interface cabinet

The MCU interface is built on a circuit board that is installed in the
MCU computer chassis.

CABLING LIMITATIONS

An interface can be located as far as 320 cable feet from the CRAY-1
CPU. This generally allows enough distance to locate the interface

cabinet near the front-end computer, easily meeting the cable length
requirements of the front-end machine.

Connectors and cabling are supplied with the interface, so that it is
ready to connect to host and CRAY-1 cabling.

The MCU interface has special cabling considerations.

OPERATION

The interface uses hardware logic to perform all command translation and
protocol conversion needed to transfer data. Thus, its operation is
invisible to the front-end user and the CRAY-1 user. The CRAY-1 is often
treated simply as another peripheral device of the front-end system.

Part 2
HR-0808 7-2 B

PART 3

I/O SUBSYSTEM

GENERAL INFORMATION

INTRODUCTION

The I/0 Subsystem provides high-capacity data communications between the
Central Processing Unit and peripheral devices, storage devices, and
front-end computers. The I/O Subsystem is composed of two to four 1/0
Processors, a group of interfaces, and a Buffer Memory. This part of the
manual describes these components.

The I/0 Processor is a fast, multipurpose computer capable of extremely
high data transfer rates. A 16-bit processor and a fast bipolar memory
combine to support high-speed I/O operations. The input and output
capabilities make the I/O Processor useful for network control, mass
storage access, and computer interfacing.

Figure 1-1 shows the basic organization of an I/0 Processor. The 1/0
Memory stores 65K parcels of 16 bits each. The control section has
instruction stack, program exit stack, and control logic. The
computation section consists of registers and functional units having
interconnected data paths. The I/O section is based in six direct memory
access (DMA) ports, and each port can handle data at approximately 850
Mbits per second. These DMA ports are expandable into multiple I/0
channels for specialized interfacing needs.

MEMORY SECTION

The memory of an I/0 Processor consists of four sections of four banks
each of bipolar LSI (large scale integration) memory. All memory
sections are independent of each other. The memory cycle time is 4 CPs
meaning a section is ready for use again 4 CPs after the preceding memory
reference. An exception to this is the I/O write operation which
requires 6 CPs. The access time is the time required to bring an operand
from memory to the accumulator, which is 7 CPs. Memory capacity is fixed
at 65,536 parcels of 16 bits of data plus 2 odd parity bits for each
parcel.

HR-0808 1-1 B

HR-0808

COMPUTATION SECTION

e 512 l6-bit Operand Registers
® Functional Units

® Accumulator

CONTROL SECTION
® Instruction Stack

® Program Exit Stack
MEMORY SECTION

e 65,536 parcels of 16-bits each

® Bipolar Random Access Memory
INPUT/OUTPUT SECTION

® 6 Direct Memory Access ports
e 16-bit port width

e Approximately 2.56 gigabits/s
peak rate

Functionally
Dependent
Interfaces

Other I/0

Processors
Buffer

Memory

A-0/37

Figure 1-1. Basic organization of an 1/0 Processor

Part 3
1-2

CONTROL SECTION

The 1/0 Processor executes 128 instruction codes as either 1l6-bit
(1-parcel) or 32-bit (2-parcel) instructions. A wide assortment of
branching and I/O instructions are included in the set. Instructions are
stored in memory, and transferred into the instruction stack, under the
control of a program address counter. Instructions issue from the
instruction stack and are decoded into the control signals that enable
the functions of the instruction.

The instruction stack provides fast access to a moving window of program
instructions. The instruction stack holds 32 instruction parcels (16
bits each). The program is free to branch quickly about inside the
stack, only slowing when more instructions must be read from memory. The
instruction stack is actually a 32-parcel circular buffer: the parcels
held for the longest time are overwritten by newly transferred
instructions. Details are given in the control section discussion in
this part of the manual.

The program exit stack is a last-in-first-out set of 16 registers that
stores return addresses for program subroutine calls. The 16 registers
provide for 14 nested levels of subroutines in the program; a pointer
keeps track of the levels involved. An interrupt is generated when the
stack is emptied or filled. The stack may be loaded or unloaded by the
program. Therefore, the processor is not limited to the 14 nested
levels, and it is possible to nest an unlimited number of subroutines by
means of the software.

COMPUTATION SECTION

The computation section contains operating registers, functional units
and an accumulator which operate together to execute a program of
instructions stored in memory. All arithmetic (addition and subtraction)
is in twos complement mode in a single adder. Floating-point arithmetic
is not incorporated. A shift unit provides left or right shifts of up to
31 bit positions, either circular or end-off shifting. A logical product
operation is provided.

Any of the 512 operand registers are used for temporary data storage or
for indirect addressing to the memory. All operand registers are 16 bits
wide.

The accumulator is a l16-bit signed register for temporary storage of
operands or results. All movement of data within this single—address
machine uses the accumulator either as the source of data or as the
destination for results. The instruction code specifies the register or
memory address from which data is brought to the accumulator or the
register or memory address to which data is sent from the accumulator.

Part 3
HR-0808 1-3 B

All transfers between memory and operand registers take place via the
accumulator, and accumulator data can also be sent to or received from
specialized I/0 channels. A seventeenth accumulator bit occupies the
216 pit position as the carry flag. When operations in the adder or

shifter yield a carry, the accumulator 216 bit is toggled. The carry
flag is available for conditional testing.

INPUT/OUTPUT SECTION

Communication with the I/0 Processor is through six direct memory access
(DMA) ports. Each port is bidirectional and can transfer four 16-bit
data words every 6 CPs. Input and output channels may be active at the
same time, as long as they use different ports and are referencing
different memory sections. The ports are assigned to channels with the
possibility of several channels sharing one port. The slower the
required data rate on the channels, the more channels may be multiplexed
into one DMA port. The I/O Processor has a total of 40 channels.

Channels use Busy and Done flags for signalling the I/O Processor, and
can communicate directly with the I/O Processor accumulator for control
information. The use of the flags and the accumulator varies with the
specific design of the channel interface logic. All channels communicate
status and functions through the accumulator. Some low-speed devices may
transfer data directly to and from the accumulator, using one of the
channel registers.

I/0 SUBSYSTEM CLOCK

The clock controlling the entire I/O Subsystem is a crystal-controlled
oscillator running at 80 MHz. This gives a clock period of 12.5
nanoseconds. The speed can be adjusted slightly higher or lower, for
maintenance purposes. When doing operations that require exact timing
information, such as interval timing with the real-time clock, contact
maintenance personnel to verify the clock period.

Part 3
HR-0808 1-4 B

I/O MEMORY SECTION

INTRODUCTION

The I/0 Processor memory, called the I/O Memory, consists of 16 banks of
bipolar LSI (large scale integration) storage circuits. Each 4-bank
section is independent of the other sections. The following paragraphs
describe the memory speeds, memory organization, memory access, memory
addressing, and memory parity protection.

Table 2-1. I/0 Processor memory characteristics

- 65,536 parcels of 16 bits

- 16 banks of 4,096 parcels each

- 4 CP bank cycle time

- Read to accumulator in 7 CPs

- 1 instruction fetched/CP

- 1 data parcel/CP on sequential addressing
- Dual odd parity protection

- 6 full-duplex direct-memory-access ports

MEMORY SPEEDS

The memory cycle time is 4 CPs. The access time, that is, the time
required to fetch an operand from memory to the accumulator, is 7 CPs.
Instructions are fetched from memory at a rate of one parcel per clock
period, in 4-parcel bursts. I/0 operations transfer data in bursts of
four parcels, one parcel each clock period. Due to the memory
organization, explained later in this section, it is possible to
reference sequential addresses every clock period, regardless of whether
the operation is a read or a write. However, the same section can only
be referenced once every 6 CPs. The data transferred in the operation
may be one parcel of operand data or four parcels of I/0 data.

Part 3
HR-0808 2-1 B

MEMORY ORGANIZATION

The 16 banks of 4096 parcels each are divided into four sections of four
banks each. Each section has separate access paths and sequence
controls, as well as write data registers and read data registers. The
four banks within a section share a common sequence control. A reference
to any one bank of the section also references the other three banks in
the section, but only the addressed bank transfers data.

A read reference to a memory section causes all four banks in that
section to read out parcels to their read registers. The addressed
parcel or parcels are then gated to the destination. 1In the case of an
operand reference, a single parcel goes to the accumulator. In an I/0
reference each of the four parcels is gated to the output channel in
sequence. The read reference and transmission sequence are fixed with
reference to timing of the initiation and moving of data. Once the
reference has been started, it continues automatically. After 4 CPs, the
section is then free to begin another overlapping reference.

A write sequence from the I/O section can be assembling data for a memory
section in the bank write data registers at the same time that an I/0

read reference is reading data from that same memory secton. The actual
data moved per reference may vary from one operand parcel to a four
parcel burst for 1I/0 operation.

MEMORY ACCESS

Each memory section has three 16-bit data paths for reading and two
16-bit data paths for writing. One read path and one write path go to

the accumulator. One read path and one write path go to the I/0 section
as Direct Memory Access (DMA) ports. The last read path goes to the

instruction stack and carries instruction parcels. The DMA ports are
explained in greater detail in the description of the I/0O section later

in this manual.

MEMORY ADDRESSING

A parcel in the 16-bank I/0 Memory is addressed in 16 bits as shown in
figure 2-1.

The low-order 4 bits s speci ify one of the 16 banks. The next higher field
specifies an address within the storage chip. The high—crder bits select
the storage chip.

Part 3

HR-0808 2-2 B

chip address section bank
and/or chip selects select select

Figure 2-1. I/0 Memory address format

Three address paths go to each of the four memory sections: one from the
I1/0, one from the accumulator, and one for instruction fetch references.

MEMORY PARITY PROTECTION

Data stored in memory is protected by an odd parity scheme. When a
16-bit word is stored in memory, 2 additional parity bits are generated
and stored at the same address. One parity bit is assigned to the
high-order 8 bits of the data word, and the other is assigned to the
low-order 8 bits. Each parity bit is set or cleared to make the sum of 1
bit in the byte and parity bit an odd number. When the data is read from
memory, it is checked for odd parity. If parity is even, an error has
occurred in storage and an interrupt is generated.

The error handling routine may use the I/0 Processor I/0 Memory error
channel to determine the location of the failing hardware and issue this
information for maintenance people. Normally, no further I/O Processor
operation would be attempted until the memory fault is corrected. The
I/0 Memory error channel is described with the Input/Output section in
section 5.

Part 3
HR-0808 2-3 B

IOP CONTROL SECTION 3

INTRODUCTION
The control section of an 1/0 Processor consists of an instruction

control network, an instruction stack, and a program exit stack.
Characteristics are summarized in table 3-1.

Table 3-1. Characteristics of IOP control section

- Single addressing mode
- 128 operation codes
- Instruction stack

- Program exit stack, 16 primary levels

Instructions can move data from a source to the accumulator or from the
accumulator to a destination. Operand registers serve as temporary
storage for operands and results. The functional units receive operand
pairs and produce single results. In this single-address machine, one
operand address is designated by the instruction and the other operand is
contained in the accumulator. A typical data flow is: from memory to
accumulator; from accumulator with an operand to functional unit and
result back to accumulator; and from accumulator to memory. Figure 3-1

shows the organization of an I/0 Processor and following paragraphs
describe the elements of the control section.

INSTRUCTION CONTROL NETWORK

Figure 3-1 shows the general organization of the instruction control
network for an I/O Processor. Important features are the instruction
stack, 1I register, B register, RP and DP registers, exit stack, and P
register. The decoding of operation codes into data path enablings,
register reservations, and functional unit requirements are some of the
activities of the instruction control network that are beyond the scope
of this manual.

HR-0808 3-1 B

II

RP

bP

OPERAND
REGISTERS
(512)

INSTRUCT!ON
STACK

EXIT

STACK

V

ACCUMULATOR

=y

ADDEND

ADDER

SHIFTER

170

CARRY

MA

MEMORY

65K X 16

HR-0808

Figure 3-1.

Part 3
3-2

I/0 Processor block diagram

INSTRUCTION STACK

Instructions occupy one or two parcels and consist of two designators and
a constant field as shown in figure 3-2.

f FIELD d FIELD PARCEL 1
7 BITS 9 BITS
k FIELD PARCEL 2
(ONLY WITH
16 BITS 2-PARCEL
INSTRUCTIONS)

Figure 3-2. Instruction format

The 7-bit f designator is the operation code that specifies which
instruction is to be executed, and also designates where and how the
execution occurs. The 9-bit d field can contain data, address, oOr shift
count. The 16-bit k field is a constant field that occupies the program
parcel immediately following the 4 and £ field parcel. A more detailed
explanation of the instruction formats is given at the beginning of the
Instructions section.

Program instructions are fetched from memory and stored in a 32-position,
16-bit instruction stack. Instructions are one parcel (16 bits) or two

parcels (32 bits). The stack capacity for 32 instruction parcels allows
short program loops to execute in the stack without reference to memory.

The instruction stack consists of two banks of registers with 16 parcels
of program code in each pank (figure 3-3). The addresses alternate
between the two banks so that the loading of data from storage can
interleave with the readout of instructions for execution. Instructions
are fetched from the memory in bursts of four parcels. Each burst
references a storage address that is a multiple of four. The issue
control selects which parcel of the four is received first. Loading is
then continued sequentially. Memory supplies one parcel each CP if there
are no memory conflicts.

The instruction passes directly into execution if the instruction
sequence can issue in that clock period. The instruction is stored in
the instruction stack regardless of whether it issues immediately or
waits for issue. When an issue delay occurs, arriving parcels are stored
in the instruction stack.

HR-0808 3-3 B

FROM

MEMORY
3
2 =BURST
oo24__|. 0O
3
2
' }BURST
coz20__| O
3
2 }BURST
oole | _©
15 2 3 15
(o] |
2 3
[¢] 2 3 1
2 Q ! 3
[¢] !
2 3
0]
2 3
[s] |
2 3
(o] 2 3 |
2 [¢) | 3
0 |
2 3
[o] [o) | 0
BUFFER . BUFFER
A 3 B
2
|
(o]
3
2
1
o]
A-ooosC
TO IT REG

Figure 3-3. Instruction stack operation

HR-0808 3-4

The instruction stack is implemented as a circular buffer sc that when
the stack has been filled and new program code is required, the new code
is stored in the beginning address of the stack. Loading continues
circularly with the issue control circuits keeping a record of the
current section of memory that is represented in the instruction stack.
In an attempt to keep the next instructions to be executed in the stack,
internal (background) fetches are performed as instructions execute
sequentially.

In the following discussion, all numbers are octal.

Normally, two internal fetches are performed to keep the load point of
the stack minimally 10g locations ahead of the next instruction to

issue (stack point). Since fetches are performed on a 4-parcel boundary,
the load pointer (L) can actually be 17g parcels ahead of the stack
pointer (S) if S is at parcel ¢ of a 4-parcel group. Once the condition
L-5 2104 is satisfied, internal fetches are stopped. When S increments
to the point that L-S <10g, then internal fetches resume. For

sequential instructions, when the stack fills up, loading will begin
again at location 0. Out-of-stack branch conditions will also cause a
fetch beginning at stack location 0. Once this fetch is accomplished,
barring other branches, the internal fetch mechanism will take over. All
absolute branches (074-077, 120-137) are considered to be out-of-stack.
Relative jumps (070-073, 100-117) may be in- or out-of-stack depending on
the offset, d, and the location of the stack pointer..

Forward relative branch

Forward relative branches into the area of the stack which has been or
will be satisfied by predetermined internal fetches will be in-stack,
that is, a forward branch of 10g to 174 parcels. Normally, 1l3g is

the maximum; but under certain conditions, a forward branch of up to

174 parcels is considered in-stack. 1In this case, an extra internal
fetch is generated to retrieve the desired instructions. It is, however,
impossible to predict when this will happen. Thus 104 parcels should

be considered the upper limit for in-stack forward branches.

Backward relative branch

When the stack is filling for the first time after an out-of-stack
condition, backward relative branches to stack location 0 are valid.
After the stack is filling for succeeding times, backward branches into
the area being loaded by internal fetches necessitates an out-of-stack
condition. However, since the load pointer can only get a maximum of
17g parcels ahead of the stack pointer, a reverse jump of 238 parcels

is guaranteed. If the stack pointer is at parcel 3 of a 4-parcel group,
a reverse jump of 275 may be achieved. However, the maximum loop size
guaranteed to be in-stack is 23g parcels.

Part 3
HR-0808 3-5 B

II REGISTER

The II (Instruction Issue) register is a 16-bit register that receives
the instruction parcel from the instruction stack. The instruction
parcel may stay in the II register for more than 1 CP and leaves the II
register when a new instruction is needed. The f field of the
instruction parcel (29~215) is the operation code and is translated

by logic associated with the II register to determine the particular
sequence of operations required. Bits 20 - 28 of the instruction
parcel are the d field, sent to the RP, DP or addend register, or to the
accumulator. If the f field translation shows this parcel is the first
of a 2-parcel instruction, the second parcel is sent from the instruction
stack to the addend register or accumulator and is not interpreted as an
instruction.

B REGISTER

The B register is a 9-bit address register used to designate one of the
512 operand registers. The B register is loaded from the accumulator,
taking the low-order (20 - 28) bits. Accumulator bit 20 goes into

B register 20 1ocation. The contents of B may also address the I/0
channel for an I/O instruction or may be used as an operand. In I/0
instructions, the B register is an alternate for the instruction d field

low-order bits 29 - 28 and can be altered by the program, in contrast
to the d field which is part of the program.

RP REGISTER

The RP (Register Pointer) register is a 9-bit register that directly
addresses one of the 512 operand registers for reading or writing. The
RP register receives the d field from the II register on issue of each
instruction using operand registers.

The operand registers are built to automatically read out data as
addressed by the RP register, unless an instruction specifically demands
a write into an operand register. The automatic read occurs each clock
period, and if the read data is not needed, it is ignored.

DP REGISTER

The DP (Destination Pointer) register contains a 9-bit pointer that
selects one of the B12 coperand registers to receive the contents of the
accumulator. The DP register receives the pointer from the D or B
register bits 20-28, The pointer is sent when the instruction

HR-0808 3-6 B

issues. In a write operation from the accumulator to an operand
register, there is usually a delay between the time the instruction

issues and the time the register pointer is required. The DP register
stores the pointer during the delay period.

A disadvantage exists if the next instruction calls for reading an
operand register. Because the transfer of a pointer from the DP register
to the RP register uses the same path into RP as is used by the pointer
coming from II, instruction issue may be blocked until the path into RP

is again free.

P REGISTER

The 16-bit P (Program address) register holds the memory address of the
instruction currently awaiting issue. The P register contents are

automatically incremented as each instruction is executed in program
sequence. A delay between reading from the instruction stack and issue

keeps the address in P two program steps behind the instruction stack
readout address. This delay is invisible to the programmer.

Branch instructions alter the P register content by either adding a
positive or negative displacement value, or by entering an entirely new

value.

PROGRAM EXIT STACK

The I/0 Processor has a special hardware mechanism for storing the
program return addresses when subroutines are called, and for storing the

return addresses when the program is suspended to handle interrupts.
This mechanism is the program exit stack, which consists of sixteen
16-bit registers. The program exit stack is addressed by a 4-bit
pointer, the E register. The program can access and modify the contents
of the program exit stack and the E register through I/0 channel
functions. The program exit stack is shown in figure 3-4.

The zero position in the stack is reserved for the interrupt handler
starting address. This address is entered in the stack by the deadstart

program and generally remains unaltered for the remainder of system
execution. Interrupts cause the hardware to reference the stack zero

position without reference to the E register.

Part 3
HR-0808 3-7 B

ACCUMULATOR

H 1

I/0
[

L | POINTER EXIT STACK
E i o} ISA — BOUNDARY FLAG

I SRA

SRA

SRA

SRA

SRA

SRA

SRA

SRA

Qlo|~N|lo|o|s]jwlN

SRA

10 SRA

H SRA
12 SRA

13 SRA

EXIT STACK
14 SRA = BOUNDARY FLAG

INTERRUPT
I P l°M1 15 ISRA

A-~0005A

ISA = Interrupt Start Address
SRA Subroutine Return Address

ISRA Interrupted Subroutine Return Jump Destination Address

Figure 3-4. Program exit stack

Positions 1 through 14 in the program exit stack are used for subroutine
return addresses. A subroutine call from a routine advances the E

pointer by 1 and then stores in the stack the return address at which the
routine will continue when the called subroutine finishes. An exit from
the subroutine to the routine reads the currently-pointed location in the
stack for the return address. Then the E pointer decrements by one count
to point to the higher level stack location. As a program goes into
deeper levels of subroutines; the E count increases and more subroutine
return addresses are stored. As the program exits out of subroutines,
the E count drops back toward 0.

Part 3
HR-0808 3-8 B

When the E pointer approaches the full limit of the stack, an exit stack
interrupt is generated to allow the software to reconfigure the stack.

The sequence is as follows:

1. E reaches 13

2. Subroutine call

3. E goes to 14

4. New return address loads to stack position 14
5. Interrupt sets
6

. Return jump to new subroutine enters new value to P, but does
not jump

7. Interrupt blocks further instruction issue (if system and
channel interrupts are enabled)

8. Stack loads the address that was interrupted to position 15

9. Interrupt handler begins executing

When the E pointer reaches 0 and an exit instruction issues, an interrupt
sets and the program jumps to the interrupt handler routine.

The sequence is as follows:

1. E reaches 0
2. Exit instruction occurs (normal or error)
3. Interrupt sets

4. Interrupt blocks further instruction issue (if system and
channel interrupts are enabled)

5. Interrupt handler begins executing

If return jumps are used in an interrupt handler, it should be verified
that there are enough levels left available in the stack. An interrupt

with the exit stack pointer at 13lo will cause the pointer to go to

14)9 and leave only one location open. A worse case exists if a return
jump which causes a program fetch request (PFR) interrupt is issued with
the stack pointer at 1310. The return address will go in 1410 and

the interrupt address with go into 1510. This will now leave two
interrupts present--both the exit stack boundary and PFR, with the PFR
being the highest priority and no stack locations available. If the
stack pointer is allowed to increment from 1510, it will clear to 0,

and incorrect return addresses will be used.

A suggested way of reconfiguring the program exit stack is to keep the
stack half full. This gives wide freedom to call deeper levels or exit
to higher levels. The deepest level interrupt is characterized by E =
15. When handling it, save the higher half (1-7) of the stack in memory,

Part 3
HR-0808 3-9 B

move the lower half (8-15) to the higher part of the stack (1-8). This
is the old 15 location that holds the interrupted subroutine return
address. Exit back to the interrupted subroutine, and operation

continues.

When a reconfigured stack exits to the E = 0 level, it exits directly to
the interrupt handler routine. This highest level interrupt is
characterized by E = 0 with the exit stack interrupt present. The
handling routine can then rebuild the original higher half of the stack,
reading it from memory. Set E to 7, and exit to that subroutine return
aadress.

Program Exit Stack and I/0 Interrupts

An I/0 interrupt is treated much like a subroutine call. The interrupted
program address is stored in the program exit stack at the next stack

position and the entrance address for the interrupt routine is read from
the zero position of the stack. On servicing the interrupt, the hardware

clears the system interrupt enable flag to prevent other interrupts from
interrupting the handling routine..

If return jumps are used in the interrupt handling routine, enough
locations must be left in the exit stack to handle the maximum number of

levels encountered in the interrupt handling routine. Then, when the
interrupt handling routine is finished, it sets the system interrupt

enable flag. The exit at the end of the handling routine reads from the
exit stack the return address for the interrupted program.

Program Exit Stack Timing Note

After any modification to the stack locations or to the E pointer, at
least 4 CPs must elapse before a program exit, return jump, or enabling
system interrupts. A simple way to achieve the required delay is to read
the modified contents back to the accumulator before exiting the

routine. Modifying stack locations or the E pointer should only be done
when system interrupts are disabled.

PROGRAM FETCH REQUEST FLAG

The program fetch request (PFR) flag is set during execution of jump
instructions 074 - 077 and 120 - 137 when the instruction sequence finds
a zero value in operand register d. This condition requires the monitor
program to locate and fetch a segment of program code and to find a
location in the I/0 Memory for execution.

Part 3
HR-0808 3-10 B

The setting of the program fetch request flag suspends execution of the
current program sequence with an interrupt request at the completion of

the interrupted instruction. The monitor program then reads the channel
number through the channel 1 interface input register and interprets that

number as the operand register requiring service.

MA REGISTER

The MA (Memory Address) register holds the address for an I/0 Memory
reference. The MA register contains 16 bits. It receives address
information from an operating register, and holds it for I/0 Memory use.
This register is used for both read and write memory references.

Part 3
HR-0808 3-11 B

IOP COMPUTATION SECTION 4

INTRODUCTION

The I/0 Processor adds, subtracts, left shifts, and right shifts, using
the adder, shifter and logical functional units. Temporary data storage
is provided by a block of operand registers. All transfers to operand
registers and all results from the functional units pass through the
accumulator. These parts of the computation section are described in
this section. Characteristics are summarized in table 4-1. Refer to the
I/0 Processor block diagram in the preceding section, which shows the
organization the computation section in the 1/0 Processor.

Table 4-1. Characteristics of the I/O computation section

- 16-bit architecture

- Twos complement arithmetic

- Integer addition/subtraction unit
- Shift unit

- Logical operations

- 512 operand registers, 16 bits wide

QOPERAND REGISTERS

Computation in the I/O Processor is supported by 512 operand registers.
Each operand register contains 16 bits of data and has a 1 CP access
time. The registers are addressed by the Register Pointer (RP)

register. The only data path into the operand registers is from the
accumulator. Operand register output data can go to either the
accumulator or the addend register as operand data, or it can go to the
Memory Address (MA) register as memory address data. The operand
registers act as temporary locations for data, as index registers, and as
indirect address registers for memory.

Part 3
HR-0808 4-1 B

FUNCTIONAL UNITS

The computation section consists of an adder functional unit and a
shifter functional unit. The computation section performs all the

arithmetic required by the instruction set.

ADDER

The arithmetic logic of the I/0 Processor is a twos complement adder that
can also be used for subtraction. Adder operands come from the
accumulator, instruction fields, B register, P register, operand
registers, and memory. Except for the accumulator contents, operands
come to the adder through the addend register. Adder results go to the
accumulator for distribution, as needed and to the P register. The
17-bit operands are received from the accumulator and returned to the
accumulator; the seventeenth bit corresponds to the carry bit of the
accumulator. Operands from the addend register have 16 bits. The adder
is also used by the branch instructions for P address calculations.

This adder can also be used for subtraction. In twos complement
arithmetic, subtraction takes place by adding the ones complement of the

subtrahend (the number subtracted from the minuend) to the minuend and
then adding 1. When subtracting, the contents of the addend register are
inverted and passed to the adder. The subtraction control signal is a 1,
which is added to the intermediate result to give the final difference.
Either an add or subtract occupies 1 CP; another clock period is required
to put the results into the accumulator and carry bit register.

SHIFTER

The shifter implements the shifting instructions of the 1/0 Processor.

It shifts up to 31 places left or right, either circularly or end-off
with zero fill. The shifter receives the 17-bit accumulator data
(including carry bit) to be shifted and the 5-bit addend register shift
count. The shifted results, 17 bits, are returned to the accumulator and
carry bit register. One CP is required for the shift; this is
independent of the shift count and type of shift. Any shift instruction
occupies a total of 2 CPs.

The maximum number of places an operand can be shifted is 31. If the
shift count is 0 for a left or right shift, no shift occurs. With an

end-off shift, if the count is greater than 16, the zero filling clears
the result. In all shifts, the carry bit is treated as the highest order

bit (216) of the operand and the result.

Part 3
HR-0808 4-2 B

ACCUMULATOR

The accumulator is a 16-bit register that temporarily stores operands and
results. Data from a wide variety of sources can be routed to the
accumulator; many destinations for accumulator contents are available.
Sources and destinations are listed in the table 4-2.

The accumulator is used to perform the logical product function. Logic
at the input of the accumulator is enabled by the logical product
instructions and creates the logical product of two operands. The result
goes directly to the accumulator, with no extra time taken for the

logical product function

Table 4~2. Accumulator sources and destinations

Sources Destinations
B register Operand registers
II register d field Adder/Shifter
IT register k field B register
Operand registers Memory
Adder/Shifter I/0 channels
Memory
I/0 channels

Program branch instructions require arithmetic to form the destination
address from two operands. These 070-137 instructions do not alter

the content of the accumulator. Execution of these sequences is
performed with a separate background accumulator not visible to the

programmer .

CARRY-BIT REGISTER

The carry bit register is a 1l-bit register that holds the carry
generated in the adder or shifter. The carry bit is treated as if it
were bit 216 of the accumulator operand and is included in all adds,
subtracts, and shifts.

The carry bit can be set by several conditional instructions that test
I/0 channel flags. The carry bit is also used as a criterion for many
conditional jump and return jump instructions.

Part 3
HR-0808 4-3 B

ADDEND REGISTERS

The addend register supplies operands to the adder and shifter. Whenever

two operands are required, the accumulator supplies one operand and the
addend register supplies the other. The 16-bit addend register receives

data from either the B register, the instruction stack, the operating
registers, or memory. Its only destinations are the adder and the

shifter.

Part 3
HR~-0808 4-4

INPUT/OUTPUT SECTION 5

INTRODUCTION

The I/0 Processor supports up to 40 channels for input or output use.
There are six Direct Memory Access (DMA) ports to I/0 memory, which can
be used by these 40 channels. Some of the channels and one of the ports
are assigned standard purposes for the system, but the remainder are free
for peripheral device or Central Processing Unit support. This section
describes I/0 configuration, speeds, and channel characteristics as well
as the interrupt scheme used. The standard channels are also covered in
this section. Table 5-1 summarizes characteristics of the IOP
input/output section.

Table 5-1. Characteristics of the IOP input/output section

- Supported by 6 full-duplex direct-memory-access ports

- Approximately 850 megabits/s per DMA port (maximum speed)

- 16 data bits, 2 status bits (Busy and Done)

- Channel number selected by instruction or register contents

- Simultaneous input and output via separate ports

I/0 CONFIGURATION

The I/0O channels are numbered octally; in general, an input channel of a
channel pair is given an even number. The 12 standard channels (numbers
0-138) are the same among all of the I/O Processors of the computer
system. Channels 01l4g through 017g may be channel options or may be

an optional group of channels. The 020g through 047g channels are
implemented as optional groups of four channels. Channels 0l4g through
047g are variable among the I/O Processors, depending on the overall
system configuration. Five DMA ports to the I/0 memory are available to
the interfaces associated with channels 0148 through 0478.

Part 3
HR-0808 5-1 B

(The sixth DMA port connects to the Buffer Memory.) Faster devices
connect to an I/0 Processor via the DMA ports, which allow block

transfers. The slower devices can be supported via the accumulator
channels. Several devices may be interfaced to share a single DMA port
among the devices while each device has a unique channel number. This
method is used in supporting groups of four disk storage units and Block
Mux Channels.

1/0 SPEEDS

The DMA ports are each capable of transferring a block of data at the
approximate rate of 850 Mbits per second. Only 3 DMA ports can be active
at once. DMA ports may be transferring data into I/O Memory, while other
DMA ports simultaneously are transferring data from I/0 Memory. This
gives a maximum memory data rate of approximately 2.56 billion bits a
second.

The maximum speed of accumulator channels depends on the speed of the
interrupt service routine.

CHANNEL CHARACTERISTICS

The operating characteristics for the accumulator channels and the
channels using DMA ports are similar in many respects. The following
descriptions outline the control and data signals that are used and give

the requirements for each signal. The channels are described
independently of the interfaces that may be connected to them.

ACCUMULATOR CHANNELS
Each accumulator channel uses the following signals:

Function designators
Function strobe

Accumulator data
Busy/done flag to carry bit

Read done
Read busy

Master clear
Clock

Interrupt

Part 3
HR-0808 5-2 B

Within each interface are two l-bit registers comprising the done and
busy flags for the channel. The interface is able to set or clear these

flags, and the 1/0 Processor can sample them by means of the read done
and read busy control signals.

Function Designators

Bits 20 - 23 of the £ field of I/0 instructions are used as a
function code (0 - 178) to an interface (see the Instructions section

in this part of the manual). This function is interpreted by the
interface in a manner unique to the interface. The same function code

can mean entirely different operations to different interfaces. The
function code is 4 bits sent on lines from the I/0 Processor instruction

logic to the interface, prior to any other channel action. The function
code may be stable on the lines for only 1 CP.

Function Strobe

The function strobe signal accompanies the function code bits. This
signal alerts the interface to the presence of the function code.

Accumulator Data

The use of the accumulator data depends on the function code and the
particular interface. For example, it may be treated as a parameter for
a Buffer Memory transfer, or as a character for a display. The outgoing
data from the accumulator is reliable only for the clock period
containing the function strobe signal. Data coming from the interface to
the accumulator also depends on the function code and interface.

Read Done

When the read done signal is sent to the interface, the interface done
flag is sent back to the accumulator carry bit. The done flag is carried
on the busy/done signal line described below.

Read Busy

When the read busy signal is sent to the interface, the interface busy

flag is sent back to the accumulator carry bit. The busy flag is carried
on the busy/done signal line described below.

Part 3
HR-0808 5-3 B

Busy/Done

The busy signal is a response to the read busy or read done signals to
the interface. If the read busy signal has been received, the interface
busy flag is copied to the busy/done line. 1If the done flag has been
requested, the interface done flag is sent on the busy/done line. The
busy/done flag simply carries the set or cleared state of the requested

flag. The signal arrives back at the I/O Processor to enter the carry
bit position. It becomes the new carry bit in the same clock period that

the read busy/done instruction issues.

Master Clear

A master clear signal is sent to each interface when the I/0 Processor is
deadstarted. After that, the only master clear function would have to be
an interface interpretation of one of the function codes as a master

clear command.

Clock

The I/O Processor clock signal is sent to each interface to synchronize
the logical operations. The clock signal is a pulse approximately 12.5
nanoseconds wide. The clock speed can be varied for maintenance, in
which case the pulse width stays constant. This clock is similar to the
clock used in the Central Processor; however, the two clock generators
are independent. -

Interrupt

The interrupt signal from an interface to the I/0 Processor causes an
interrupt request in the I/0 Processor for the channel. An interrupt
occurs if all of the following are true: (1) the interrupt condition
remains present, (2) the interrupt enable flag is set for the interface
channel, and (3) the system interrupt enable is set.

CHANNELS USING A DMA PORT

A channel using a DMA port is an accumulator channel with connections to
the I/O Memory. In addition to the accumulator channel signals already
described, the DMA channel also uses the following signals which are

described next:

I/0 Memory data
I/0 Memory address
Request read
Request write
Acknowledge write

Part 3
HR-0808 5-4 B

I1/0 Memory Data

A group of 16 lines carries data from I/0 Memory to the interface. A
second group of 16 lines carries interface data to the I/0 Memory. Data
is transferred in groups of four 16-bit parcels, one parcel per clock
period in sequential clock periods. When writing data into I/0 Memory.,
the first parcel must be sent in the clock period after the acknowledge
write is received from the I/0 Processor. When reading data from I1/0
Memory, the data is received 7 CPs after the acknowledge read signal. In
either case, the data is reliable for only 1 CP.

I/0 Memory Address

The I/0 Memory address comes from the interface to the I/O Processor on
14 lines. The interface receives the address from the accumulator under
a specific function code, or the interface may be intelligent enough to
create its own address. Any transfer of four parcels must have an
address, which is the I/0 Memory address for the first parcel of the

4-parcel group. The I/0 Processor logic then takes care of incrementing
the address for the later three parcels of the group. The I/O Memory
address must be stable during the clock period of the request read or the

request write signals.

Request Read

The request read signal is sent from the interface to the I/0 Processor
to take data from I/O Memory. This signal accompanies the I/O Memory
address bits to the I/0 Processor.

Request Write

The request write signal is sent from the interface to the I/0 Processor
when data is to be sent to I/O Memory. This signal accompanies the I/0
Memory address bits to the I/0 Processor.

Acknowledge Read

The acknowledge read signal is sent from the I/O Processor when the read
requested by the interface can be performed. It has a minimum delay
after the request read of 1 CP, but the delay may be stretched by memory
conflicts. It occurs 7 CPs before the first parcel of data of the
4-parcel group and lasts 1 CP.

Part 3
HR-0808 5-5 B

Acknowledge Write

The acknowledge write signal is sent from the I/O Processor when the
requested write can be performed. It has a minimum delay after the
request write signal of 1 CP, but memory conflicts may increase the
delay. The interface must place the first parcel of data on the lines to
the I/0 Processor in the clock period after the acknowledge write signal
is received at the interface.

READ SEQUENCE

The interface begins the read from I/0 Memory after being issued an I/0
instruction that commands the interface to start a transfer from I/0
Memory to a peripheral. An address may be in the accumulator when the
instruction issues and the interface may take that address as the
starting address. Then, the interface sends a request read signal and
the address bits to the I/0 Processor. After a minimum delay of 1 CP,
the acknowledge read signal is received at the interface. After 7 CPs,
the interface takes the first parcel. It then takes the three following
parcels in 3 CPs. To read another four parcels from I/0 Memory to the
interface, another request read and address must be sent from the
interface.

WRITE SEQUENCE

The interface begins the write into I/0O Memory after being issued an I1/0
instruction that commands the interface to start a transfer from a

peripheral to I/O Memory. The address for the transfer may be contained
in the accumulator at the time of instruction issue, or other means may
be used to generate the address. Then, the interface sends a request
write signal and the address bits to the I/0 Processor. After a minimum
delay of 1 CP, the acknowledge write signal is received from the I/0
Processor. The interface must send the first parcel of data to the I/0
Processor in the clock period after the acknowledge write signal was
received. Each of the next 3 CPs transfers another parcel into the I/0
Memory.

If another group of four parcels is to be written into I/0 Memory,
another request write and address must be sent from the interface.

Part 3
HR-0808 5-6 B

STANDARD CHANNELS

Standard functions are assigned to 12 of the 40 available channels, which
are the same for all I/0O Processors. The interface logic has been built
into each 1I/0 Processor to handle each standard channel. The functions,

channel numbers, and A Programming Machine Language (APML) mnemonics are
listed in table 5-2. Another six standard channels interconnect the

system I/0 Processors as shown in the table. The standard channels are
all accumulator channels except for the one DMA port used by the Buffer

Memory.

Table 5-2. 1I/0 Processor standard channel assignments

Channel
Number Mnemonic Function
000 IOR Interrupt request
001 PFR Program fetch request
002 PXS Program exit stack
All IOP
S 003 LME I/0 Memory error
004 RTC Real-time clock
005 MOS Buffer Memory interface
006 AIA} I/0 Processor input
BIOP
007 AOA I/0 Processor output
010 AIB I/0 Processor input
MIOP O l DIOP
011 AOB I/0 Processor output
2 ATl OP i t
01 C XIOP or I/ rocessor inpu
. 2nd DIOP
' 013 AOC I/C Processor cutput

Table 5-3 lists the functions for each of the standard channels. These
functions are explained in subsequent paragraphs.

Part 3
HR-0808 5-7 B

Table 5-3.

Standard channel functions

Device Mnemonic Function
I/0 REQUEST CH. 0]TIOR : 10 |Read interrupt channel number
PROGRAM FETCH PFR : 0 |Clear the program fetch request flag
REQUEST CH. 1 PFR : 6 |Clear the channel interrupt enable flag
PFR : 7 |Set the channel interrupt enable flag
PFR : 10|Read the operand register number
PROGRAM EXIT PXS : 0 [Clear the exit stack boundary flag
STACK CH. 2 PXS : 6 |Clear the channel interrupt enable flag
PXS : 7 |Set the channel interrupt enable flag
PX5 : 10(Read exit stack pointer, E
PXS : 11|Read exit stack address, (E)
PXS : 14|Enter exit stack pointer, E
PXS : 15|Enter exit stack address, (E)
I/0 MEMORY LME : 0 |Clear the I/O Memory parity error flag
ERROR CH. 3 LME : 6 (Clear the channel interrupt enable flag
LME : 7 |Set the channel interrupt enable flag
LME : 10|Read error information
REAL-TIME CLOCK RTC : 0 |Clear the channel done flag
CH. 4 RTC : 6 |Clear the channel interrupt enable flag
RTC : 7 |Set the channel interrupt enable flag
RTC : 10|Read real-time clock
BUFFER MEMORY MOS : 0 |Clear the channel busy and done flags
CH. 5 MOS : 1 |Enter the I/O Memory address for next transfer
MOS : 2 |Enter upper portion of Buffer Memory address
MOS : 3 |Enter lower portion of Buffer Memory address
MOS : 4 |Read Buffer Memory to I/0 Memory
MOS : 5 |Write Buffer Memory to I/O Memory
MOS : 6 |Clear the channel interrupt enable flag
MOS : 7 |Set the channel enable interrupt flag
MOS : 14[Set the control flags
I/0 PROCESSOR AIA : 0 [Clear the channel done flag
INPUT AIA : 6 |Clear the channel interrupt enable flag
(AIA-AIC) AIA : 7 |Set the channel interrupt enable flag
CH. 6, 10, 12 AIA : 10|{Read input to accumulator and resume channel
I/0 PROCESSOR AOA : 0 |Clear the channel busy and done flags
OUTPUT AOA : 1 |Enter control bits from accumulator
(AQCA-AQC) AOA : 6 [Clear the channel interrupt enable flag
CH 7, 11, 13 AOA : 7 |Set the channel interrupt enable flag
AOA : 14|Set the channel busy flag and output
accumulator data
Part 3
HR-0808 5-8 B

CHANNEL FOR I/0 REQUESTS (CH. 0)

The I/0 Processor has the 0 channel number reserved for reading the
interrupt requests. The only function implemented is the following.

IOR: 10 Read interrupt channel number

This function replaces the accumulator content with the highest priority
channel number currently requesting an interrupt. The channel number is
loaded into the low-order 9 bits of the accumulator content. The
high-order bits are forced to 0. Only the four least significant bits

are used for the channel number. A zero value means there are no
unhandled channel interrupts.

The interface register used by this channel contains the number of the
highest priority channel on which an interrupt is present. The value is
changed either by clearing the interrupt enable flag for the appropriate
channel or by clearing the done flag for that channel.

For this channel the done flag is always set and the busy flag is always
cleared. This channel can be used with the 040-043 instructions to set
or clear the carry flag.

CHANNEL FOR PROGRAM FETCH REQUEST (CH. 1)

The I/0 Processor has an I/0 channel that responds to the program fetch
request flag when that flag is set. (The program fetch request flag is
explained in the IOP control section of this manual.) This channel
provides a mechanism for calling the I/O Processor monitor program when a
new section of program code is required.

A 9-bit interface register holds the operand register number associated
with the interrupt request. This register is cleared and a new number

entered at the time the program fetch request flag is set.

PFR : 0S Clear the program fetch request flag. This flag is
treated as the channel done flag. There is no busy
flag for this channel.

PFR : 655 Clear the channel interrupt enable flag. The program
fetch request flag is not altered in this process.

PFR : 758 Set the channel interrupt enable flag. The program
fetch request flag is not altered in this process.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR:10).

Part 3
HR-0808 5-9 B

PFR

10

Replace the content of the accumulator with the
content of the interface register. The interface
register content is loaded into the low-order 9-bit
positions in the accumulator. The high-order bits
are forced to 0. The content of the interface
register remains unchanged until a new PFR occurs.
The done flag is cleared.

CHANNEL TO PROGRAM EXIT STACK (CH. 2)

The I/0 Processor has an I/0 channel connected to the program exit stack

hardware. This channel provides the monitor program with the information
needed to reorganize the content of the program exit stack when the stack
overflows.

PXS oS Clear the exit stack boundary flag. This flag is
treated as the channel done flag. There is no busy
flag for this channel.

PXS : 65§ Clear the channel interrupt enable flag. The exit
stack boundary flag is not altered in this process.

PXs : 75§ Set the channel interrupt enable flag. The exit
stack boundary flag is not altered in this process.

PXS : 10 Load the E designator into the low-order 4 bits of
the accumulator. The high-order bits of the
accumulator are forced to 0.

PXS : 11 Replace the accumulator content with the content of
the program exit stack address currently pointed by
the E designator.

PXS : 14 Replace the E designator with the low-order 4 bits of
the accumulator content.

PXS : 15 Enter the program exit stack with the accumulator
contents at the address currently pointed by the E
designator.

§ Allow 1 CP hefore checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR:10).

HR-0808

Part 3
5-10 B

CAUTION

The exit stack is both an I/O device and an integral
part of the processor. Return and exit instructions
and interrupts use the exit stack values immediately.
The I/0 channel access to the exit stack takes 4 CPs to
complete. Time must be allowed for the I1/0 channel to
complete the transfer before using the exit stack value
by a return, exit or interrupt.

Any attempt to use a value changed in the stack within
5 CPs after it was changed has potentially disastrous

effects on the program execution sequence.

A simple way to provide delay is to change the exit
stack, then read the value back from the exit stack to
the accumulator. Then do the exit or return.

A A A A A A A A A AP I I I I I IS

For example:

NOT RECOMMENDED RECOMMENDED

(E) = AAAB (E) = ARAB

uXIT A = (E} (delay)
EXIT

or: A = AAAB A = AAAB

PXS : 15 PXS 15

EXIT PXS 11
EXIT

Deadstart Sequence

On master clear, stack location 0 is cleared to a zero value. On the
deadstart interrupt, P is therefore set to 0 and program execution begins
at memory location 0. The exit stack pointer, E, is set to the current
value plus 1 (wrapping around to 0 if the current value is 15.

Part 3

HR-0808 5-11 B

CHANNEL FOR I/0O MEMORY ERROR (CH. 3)

The I/O Processor has an 1/0 channel connected to the error detection
circuits in the I/O Memory. This channel provides the error indication
in the event of memory malfunction and provides maintenance information.
The intent of this channel is to provide information helpful to the
maintenance function as quickly as possible. No attempt at continued
operation is expected beyond system shutdown.

LME : 0 Clear the I/O Memory parity error flag.

LME : 65 Clear the channel interrupt enable flag.

LME : 75 Clear the channel interrupt enable flag.

LME : 10 Read error information into the five lowest-order

positions of the accumulator as follows.

Bit Meaning

0
Bank number 2

0
2
1
2 Bank number 2l
2 . 0
2 Section number 2
3 . 1
2 Section number 2
4
2 Error bit:
. (VI
0 = Error in 2 -2 byte

1 = Error in 28-215 pyte

CHANNEL TO REAL-TIME CLOCK (CH. 4)

The I/0 Processor real-time clock (RTC) is a 17~bit counter/timer which
interrupts the I/0 Processor at l-millisecond intervals. The real-time
clock increments every clock period. Upon reaching a count of 2341778,
it sets the RTC channel done flag, clears to 0, and continues
incrementing. There is no busy flag for this channel. Since the
accumulator only holds 16 bits, the low-order bit of the counter is
ignored, giving a timing accuracy of 2 CPs, and a count of 116077g.

§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 5-12

There is no capability to set the real-time clock. To time an interval,
the RTC must be read at the beginning and end of an interval. Thus to

time an interval, the program must:

- Read the clock at the beginning of the interval,
- Store the value in a register and
- Read the clock at the end of the interval.

This instruction timing adds 8 CPs (4 clock counts) to the measured
sequence. The algorithm for determining an interval without RTC
interrupts is:
Time (ns)g = (RTC endingg - RTC beginningg - 4) x 2 (CP ns)
If RTC interrupts do occur during the interval, the algorithm becomes:
Time (ns)g = ((RTC endingg - RIC beginningg - 4) +

(116077g x number of interrupts)) x 2 (CP ns)

For time intervals expected to be less than 1 millisecond, synchronize
their beginnings with the occurrence of an RTC interrupt, thus
eliminating the possibility of an RTC interrupt occurring sometime during
the timing sequence.

The commands for the real-time clock channel are as follows:
RTC : 0§ Clear the channel done flag.
RTC : 6§§ Clear the channel interrupt enable flag.

RTC ; 75§ Set the channel interrupt enable flag.

RTC : 10 Read the real-time clock count into the accumulator.

CHANNEL TO BUFFER MEMORY (CH 5.)

The I/0 Processor has an I/0 channel connected to the Buffer Memory.
This channel allows the I/O processor program to transfer blocks of data
in either direction between its I/0O Memory and the Buffer Memory. The
function requests for this channel are summarized below.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 5-13 B

This channel has three interface registers used to control the block copy
operations. The Buffer Memory address is held in a 24-bit register. The
high-order 15 bits of this address are entered with a function 2

request. The low-order 9 bits are entered with a function 3 request.

The I/0 Memory address is held in a 14-bit register which is entered with
a function 1 request. The block length in Buffer Memory words is held in
a 14-bit register. This register is entered with a function 4 or 5
request.

The I/0 Memory address in the channel register is forced to a value that
is a multiple of four. This is done by forcing the 2 low-order bits of

the register content to zero values. This provision allows the maximum

data rate to the I/0 Processor I/0 Memory.

All three register values are cleared to 0 at the end of a block copy. A
zero value will be used if a register entry is omitted in the next
sequence.

At the end of a read transfer (done flag set), the busy flag is left set
if a multiple bit error occurred in the transfer.

Mos : 0% Clear the channel busy and channel done flags.

MOS : 1 Enter the accumulator content in the channel
interface register for the I1/0 Memory address. The 2
low-order bits are forced to 0.

MOS : 2 Enter the 15 low-order bits of the accumulator
content as the 15 high-order bits of the Buffer
Memory address. See figure 5-1.

MOS : 3 Enter the 9 low-order bits of the accumulator content
as the 9 low-order bits of the Buffer Memory
address. See figure 5-1.

MOS:2 MOS:3 FUNCTION
223 219 29 28 20 ADDRESS BITS
x| xx|x UPPER ADDRESS LOWER ADDRESS
214 29 20 8 20 ACCUMULATOR BITS
A-0O/4 %

Figure 5-1. Buffer Memory address formation

§ Allow 1 CP before checking busy or done.

Part 3
HR-0808 5-14 B

MOS : 45 Initiate the transfer of the block of data from the
Buffer Memory to the 1/0 Processor I/O Memory. The
channel busy flag is set and the channel done flag is
cleared by the function request. The 14 low-order
bits of the accumulator content at the time of the
function request is entered in the channel interface
block length register. The channel done flag is set
and the channel busy flag is cleared when the block
transfer has been completed. If the block length
register contains a zero value, the block length is
set to 65,536 parcels (full I/0 Memory). The busy
flag is left set if a multiple-bit error occurred in
the transfer. Single-bit errors are automatically
corrected.

MOS : 5§ Initjate the transfer of a block of data from the I/0
Processor I/0 Memory to the Buffer Memory. The
channel busy flag is set and channel done flag is
cleared by the function request. The 14 low-order
bits of the accumulator content at the time of the
function request is entered in the channel interface
block length register. The channel done flag is set
and the channel busy flag is cleared when the block
transfer has been completed.

MOS : 6§§ Clear the channel interrupt enable flag.
Mos : 75§ Set the channel interrupt enable flag.

MOS : 14 Enter the 3 low-order bits of the accumulator content
in the control register. This is used for diagnostic

purposes only.

0
2 = Disable error correction
21 = Disable write check bits
2
2 = Disable refresh

Setting a control bit to 0 enables error correction,
write check bits, or refresh.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking tke interrupt channel number (IOR : 10).

Part 3
HR-0808 5-15 B

Error Handling

When an error occurs, the busy and done flags are both set. A MOS : 0 command
must be issued to the channel to clear the busy and done flags before another
read or write is initiated.

Buffer Memory Interface Deadstart

The Buffer Memory interface has provisions for deadstarting the I/O

Processor. If the I/O processor is master cleared with the deadstart signal
set, the I/0 Memory address register, the Buffer Memory address register, and
the block length register are cleared. This sets up a 65K parcel transfer. A
MOS : 4 read Buffer Memory function is initiated when the I/O Processor master
clear signal goes to 0. The interrupt enable flag is set (MOS : 7), and when
the transfer is complete, the I/O Processor interrupts.

Buffer Memory Interface Dead Dump

The Buffer Memory interface also provides for a dead dump of the I/O
Processor. If the I/O Processor is master cleared with the dead dump signal
set, the I/O Memory address, Buffer Memory address and the block length
registers are cleared. A MOS : 5 Buffer Memory function write is initiated
when master clear goes to 0. The interrupt enable flag is cleared (MOS : 6)
and no interrupt occurs when the transfer completes.

CHANNEL FOR I/0O PROCESSOR INPUT (CH. 6, 10, 12)

The I/O Processor has three input channels for connection to other I/0
Processors. These provide a communication link between I/O Processors. These
channels have no busy flags. Each channel uses a single 16-bit register to

hold the data parcel being transferred. The register is cleared as soon as
the data enters the receiving accumulator.

AIA : OS Clear the channel done flag. There is no busy flag for
this channel.

AIA : 6§§ Clear the channel interrupt enable flag.
AIA : 75§ Set the channel interrupt enable flag.
AIA : 10 Read the accumulator data of the other I/0 Processor into

the accumulator of this I/O Processor, and resumes the

channel. The data does not remain in the interface
register after it has been read.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number {IOR : 10).

Part 3
HR-0808 5-16 B

CHANNEL FOR I/O PROCESSOR OUTPUT (CH. 7, 11, 13)

The I/O Processor has three output channels that connect to other I/0
Processors. These provide a communications link between I/O Processors,
and provide the ability to master clear, deadstart, or dead dump another
I1/0 Processor.

A 3-bit control register receives the 3 low-order bits of the sending I/O
Processor accumulator and causes the required action. A 16-bit register
holds transmitted data until it is loaded into the receiving accumulator,
at which time the data register is cleared.

A0A : 0SS Clear the channel busy and done flags.

AQA : 1 Enter the 3 low-order accumulator bits into the
control register. A set bit in the register
positions causes the following actions:

Bit Meaning

20 Master clear
21 Deadstart

22 Dead dump

To perform a deadstart from Buffer Memory, set the
master clear and deadstart control bits simultaneously
and keep them set for at least 200 nanoseconds. Then
clear both bits. The deadstart control bit has no
effect without the master clear control bit. The
deadstart transfer is initiated with a block length of
65K parcels starting at I/0 Memory address 0. 1In
approximately 2 milliseconds the transfer completes and
then interrupts the I/0 Processor.

To perform a dead dump from I/O Memory to Buffer
Memory, set the master clear and dead dump control bits
simultaneously and keep them set for at least 200
nanoseconds. Then clear both bits. The dead dump
control bit has no effect without the master clear
control bit. The dead dump transfer initiates with a
block length of 65K parcels starting with I/0 Memory
address 0 contents going into Buffer Memory address 0.
The dead dump completes in approximately 2
milliseconds, but does not interrupt the I/0 Processor
at completion.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 5-17 B

A0A : 65§ Clear channel interrupt enable flag.

AQA : 7SS Set channel interrupt enable flag.

AOA : 145 Set the channel busy flag and output accumulator
data. When data is accepted by receiving I,/0

Processor the busy flag clears and the done flag
sets.

INTERRUPT SEQUENCE

The I/0 Processor program is interrupted for service by a monitor
pProgram when an interrupt request is present and the system interrupt
enable flag is set. The system interrupt enable flag applies to the
entire I/0 Processor, as contrasted to the channel interrupt enable
flags that only apply to the particular channel. The 003 I =1
instruction sets the system interrupt enable flag. The interruption
occurs upon completion of an instruction in the currently executing

program.

A jump or exit instruction must be completed before interrupts are
actually set. Therefore, interrupts are not actually enabled until
the first non-branching instruction is executed.

The interrupt sequence begins by the hardware clearing of the system
interrupt enable flag to prevent further interrupts. The address for
the next instruction in the interrupted program is stored in the exit
stack. The entry in the exit stack is made by first advancing the E
register by one count, and then entering the exit stack at the newly
pointed position. This is the same sequence which occurs on a return
jump execution. The execution of the interrupted program is then
suspended and a new program sequence initiated. The address for
beginning the monitor program sequence is obtained from the 0 position
in the exit stack, without using the E register.

The monitor program, when finished, restores the system interrupt
enable flag and exits to the interrupted program as if it were a
subprogram call. The last two statements in the monitor program
should be the equivalent of the following:

I =1 I=1 (Set system interrupt enable flag)

EXIT or P

dd. (Exit or jump to interrupted program)

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CF vefore checking the interrupt channel number (iOR : 10).

Part 3
HR~0808 5-18

When issuing an I=1, the system interrupt enable is delayed until the
next non-branch or non-I/0 instruction is issued. The instructions

that do not enable interrupts are the 40-43 and 70-137. This allows
the executive/monitor to get back to the interruptible activity before

an interrupt is accepted.

An I=0 instruction should be used at the interrupt handler entrance.
If a redundant I=1 is executed and an interrupt occurs before a

non-branch or non-I1/0 instruction is encountered, the interrupt
handler will be entered (with interrupts disabled). But interrupts
will be re—enabled when the first non-branch or non-1/0 instruction is
issued within the interrupt handler.

After issuing a command 6 or 7 to any I/O channel, allow 3 clock
periods before seeing its effect on system interrupt. (Assuming

system interrupts are, or will be, enabled.)

Part 3
HR-0808 5-19

IOP INSTRUCTIONS 6

INSTRUCTION FORMAT

Each I/0 Processor instruction occupies one or two 16-bit parcels in the

1/0 Memory. The instruction consists of two designators and a constant
field as illustrated in figure 6-1.

f FIELD d FIELD PARCEL 1
7 BITS 9 BITS
k FIELD PARCEL 2
(ONLY WITH
16 BITS 2-PARCEL
INSTRUCTIONS)

Figure 6-1. Instruction format

The f designator is the instruction function code and specifies which of
the instructions in the machine repertoire is intended for execution.

The d designator has several uses, depending on the instruction function,
but in general specifies where in the machine resources the function of
the f designator is to be performed. The d designator may be thought of
as a displacement specification and is used in several ways:

e To point to a specific operand register where one is required,

e To specify the amount of the displacement of data in a shift
instruction,

e To specify the amount of displacement forward or backward in
program code for a branch instruction,

® As an operand value.

Part 3
HR-0808 6-1 B

The d designator is always treated as a 9-bit positive integer. Small
integers may be entered directly into the computation from instructions

using the d designator as a constant. Separate instructions are provided
to add or subtract this 9-bit constant rather than to consider it as a
sign extended quantity. A branch instruction may designate a forward or
a backward displacement from the current program location. Separate
instructions are provided for the forward and backward jumps using the d
designator as a 9-bit displacement magnitude.

Certain instructions use the program parcel immediately following the
instruction as a constant field, designated k. These instructions may be

considered to be 2-parcel instructions.

INSTRUCTION DESCRIPTIONS

The I/0 Processor instruction repertoire is described on the following
pages. The mnemonics for each instruction are pseudo machine language
statements representing the individual operations performed. Special
symbols used in the descriptions are:

> Shift right

< Shift left

>> Shift right circular
<< Shift left circular
& Logical product

Not equal to

dd Contents of operand register specified by d field

(ad) Contents of memory location specified by dd

iod 3-character channel mnemonic, i.e., IOR, PXS,...
B Contents of register B

(B) Contents of operand register specified by B register

The following descriptions explain the results of each instruction and
show the steps and times involved in executing the instruction.

Part 3
HR-0808 6-2 B

000 Instruction

PASS

This instruction performs no operation. It is used to fill program
fields with null operations where desired.

CP 0O Issue.

Part 3
HR-0808 6-3

001 Instruction

EXIT

The EXIT instruction terminates execution of the current program sequence
and returns to the sequence that was suspended in calling this
subprogram. The current P register value is discarded. The beginning
address for the reinitiated sequence is obtained from the program exit
stack at the location currently pointed by E. The value of E is then
decremented by 1. The decrementing is blocked and the exit stack
boundary flag is set if the value of E was previously 0. The exit stack
boundary flag will cause an interrupt of the program sequence for
restructuring the content of the program exit stack.

If the EXIT instruction follows a modification of the program exit stack
or of the E pointer, at least 4 CPs must elapse between the last

modification and the EXIT instruction. Reading the modified value back
to the accumulator may be used as the necessary delay.

CP O Issue. Transmit exit stack data to P.
Decrement E.

HR-0808 6-4 B

002 Instruction

I =20
This instruction clears the system interrupt enable flag.

CP O Issue. Clear system interrupt enable flag.

Part 3
HR-0808 6-5

003 Instruction

I =1
This instruction sets the system interrupt enable flag.

When issuing an I = 1, the system interrupts enable is delayed until the
next non-branch or non-I/0 instruction is issued. Instructions that do

not enable interrupts after I = 1 issue are the 040-043 and 070-137
instructions. The delay in setting flag for this instruction allows the
interrupt program to re-enable the interrupt mode and then exit to the
interrupted program.

If the instruction following the I = 1 is an I = 0, the I = 0 takes
precedence and system interrupts are disabled.

Cp O Issue. Set delay interrupt enable flag.

Part 3
HR-0808 6-6 B

004 Instruction

This instruction shifts the content of the accumulator and the associated
carry flag to the right by d bit positions. The carry flag may be
regarded as a seventeenth bit to the left of the accumulator content for
this operation. Zero values are entered in the carry flag and propagated
to the right as the shift progresses. No shift is performed if the shift
count is 0. The accumulator and carry flag are cleared if the shift
count is greater than 16 decimal.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

CP 0 Issue. Transmit d to addend register.

Cp 1 Transmit accumulator data and inverted 4 to shifter. Shift mode.
The addend register is free in this CP.

Cp 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-7 B

005 Instruction

This instruction shifts the content of the accumulator and the associated
carry flag to the left by d bit positions. The carry flag may be
regarded as a seventeenth bit to the left of the accumulator content for
this operation. Zero values are entered in the low-order bit positions

of the accumulator and are propagated to the left as the shift
progresses. Bits shifted from the carry flag are discarded. No shift is

performed if the shift count is 0. The accumulator and carry flag are
cleared if the shift count is greater than 1710.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

CP O Issue. Transmit d to addend register.

Cp 1 Transmit accumulator data and d to shifter. Shift mode.
The addend register is free in this CP.

Cp 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-8 B

006 Instruction

A =A>>4d

This instruction shifts the content of the accumulator and the associated
carry flag to the right in a circular mode by d bit positions. The carry
flag may be regarded as a seventeenth bit to the left of the accumulator
content for this operation. No bits are discarded in this shift mode.
Bits shifted from the right end of the accumulator are returned to the
carry flag. No shift is performed if the shift count is 0.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

Cp O Issue. Transmit d to addend register.

CP 1 Transmit accumulator data and inverted d to shifter. Shift mode.
The addend register is free in this CP.

CP 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-9 B

007 Instruction

A =A<< g

This instruction shifts the content of the accumulator and the associated
carry flag to the left in a circular mode by d bit positions. The carry
flag may be regarded as a seventeenth bit to the left of the accumulator
content for this operation. No bits are discarded in this shift mode.

Bits shifted from the carry flag are returned to the low-order bit
position in the accumulator. No shift is performed if the shift count is

0.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

CP 0 Issue. Transmit d to addend register.

Cp 1 Transmit accumulator data and d to shifter. Shift mode.
The addend register is free in this CP.

Cp 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-10 B

010 Instruction

A =4d

This instruction enters the d designator in the accumulator as a 9-bit
positive integer and clears the carry flag. The high-order bits are 0.

CP O Issue. Transmit d to accumulator.

Part 3
HR-0808 6-11

011 Instruction

A=2Ag§d

This instruction forms the bit-by-bit logical product of the previous
accumulator content and the d designator and places the result in the
accumulator. The d designator is treated as a 9-bit positive integer.
It then clears the carry flag.

The logical product of the previous accumulator content and the d operand
from the instruction is formed at the input to the accumulator.

Cp 0O Issue. Transmit d and accumulator to accumulator.

Part 3
HR-0808 6-12 B

012 Instruction

A=A+4d

This instruction adds the d designator to the previous accumulator
content in the 16-bit twos complement mode. The d designator is treated
as a 9-bit positive integer in this addition. The instruction
complements the carry flag if a carry is propagated from the accumulator

in the addition process.
CpP O Issue. Transmit d to addend register.
CpP 1 Transmit data to adder. Add mode.

Cp 2 Transmit adder result to accumulator.

Part 3
HR-0808 6-13

013 Instruction

This instruction subtracts the d designator from the previous accumulator
content in a 16-bit twos complement mode. The d designator is treated as
a 9-bit positive integer in this operation. The subtraction is performed
by complementing the content of the addend register and adding the result
to the previous accumulator content. One is then added to the result.
The instruction complements the carry flag if a carry is propagated from
the accumulator during either addition process.

CP O Issue. Transmit d to addend register.
Cp 1 Transmit data to adder. Subtract mode.

Ccp 2 Transmit adder result to accumulator.

Part 3
HR-0808 6-14 B

014 Instruction

A=k

This instruction enters a 16-bit constant in the accumulator and clears

the carry flag. The constant is obtained from the next sequential parcel
in the program field. The next instruction is obtained from the

following parcel.

Cp O Issue. Read next parcel out of instruction stack.

Cp 1 Transmit k data to accumulator. The function of CP 1 is delayed
if the next parcel of instruction buffer data is not available in

the instruction stack.

Part 3
HR-0808 6-15 B

015 Instruction

A=A &k

This instruction forms the bit-by-bit logical product of the previous
accumulator content and a 16-bit constant and places the result in the
accumulator. It then clears the carry flag. The constant is obtained
from the next sequential parcel in the program field. The next
instruction is obtained from the following parcel.

The logical product of the previous accumulator content and the operand
constant is formed at the input to the accumulator.

CpP 0 Issue. Read the next parcel out of the instruction stack.

CP 1 Transmit k data to accumulator. The function of CP 1 is delayed
if the next parcel of instruction buffer data is not available in

the instruction stack.

Part 3
HR-0808 6-16

016 Instruction

A =A+Kk

This instruction adds a 16-bit constant to the previous accumulator
content in a twos complement mode. The constant is obtained from the
next sequential parcel in the program field. The next instruction is
obtained from the following parcel. The instruction complements the
carry flag if a carry is propagated from the accumulator in the addition
process.

CP O Issue. Read next parcel out of the instruction stack.

Cp 1 Transmit k data to addend register. The function of CP 1 is
delayed if the next parcel of instruction buffer data is not
available in the instruction stack.

Cp 2 Transmit data to adder. Add mode.

Cp 3 Transmit adder result to accumulator.

Part 3
HR-0808 6-17 B

017 Instruction

A =A-k

This instruction subtracts a 16-bit constant from the previous
accumulator content in a twos complement mode. The constant is obtained
from the next sequential parcel in the program field. The next
instruction is obtained from the following parcel. The subtraction is
performed by complementing the constant and adding the result to the
accumulator content. One is then added to the result. The instruction
complements the carry flag if a carry is propagated from the accumulator
in either addition process.

This instruction is redundant in the sense that an equivalent function
can be performed with the 016 instruction using a different constant.

This instruction is included in the list for completeness in the
translational pattern.

CP O Issue. Read next parcel out of the instruction stack.

CP 1 Transmit k data to addend register. The function of CP 1 is
delayed if the next parcel of instruction buffer data is not
available in the instruction stack.

Cp 2 Transmit data to adder. Subtract mode.

Cp 3 Transmit adder result to accumulator.

Part 3
HR-0808 6-18

020 Instruction

A = dd

This instruction enters the content of operand register d in the
accumulator and clears the carry flag.

CP O Issue. Transmit d data to RP.

Cp 1 Transmit operand register data to accumulator.

Part 3
HR-0808 6-19

021 Instruction

A=A g§& dd
This instruction forms the bit-by-bit logical product of the previous

accumulator content and the content of operand register d and places the
result in the accumulator. It then clears the carry flag.

The logical product of the previous accumulator content and the operand
register content is formed at the input to the accumulator. No
additicnal time is required for this function.

Cp O Issue. Transmit d data to RP.

Cp 1 Transmit operand register data to accumulator.

HR-0808 6-20

022 Instruction

A=A+ dd

This instruction adds the content of operand register d to the previous
accumulator content. The addition is performed in the twos complement

mode.

It complements the carry flag if a carry is propagated from the

accumulator in the addition process.

Cp O

Cp 1

Cp 2

Cp 3

Issue. Transmit d data to RP.

Transmit operand register data to addend register.
Transmit data to adder. Add mode. The data in the accumulator
and addend register is transmitted to the adder in this clock

period. The addend register is free in this clock period to
accept another operand.

Transmit adder result to accumulator.

Part 3

HR-0808 6-21

023 Instruction

A=A -dd

This instruction subtracts the content of operand register d from the
previous accumulator content. The subtraction is performed by
complementing the subtrahend and adding the result to the accumulator
content in ones complement mode. One is then added to the result. The

instruction complements the carry flag if a carry is propagated from the
accumulator in the addition process.

Cp 0 Issue. Transmit d data to RP.

Cp 1 Transmit operand register data to addend register.

Cp 2 Transmit data to adder; subtract mode. The data in the
accumulator and addend register is transmitted to the adder in
this clock period. The addend register is free in this clock

period to accept another operand.

CP 3 Transmit adder result to accumulator.

Part 3
HR-0808 6-22

024 Instruction

dd = A
This instruction stores the accumulator content in operand register d.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

CP O Issue. Transmit d data to RP and DP.

Cp 1 Transmit accumulator data to operand register. The function of CP
1l is delayed if the data is not available in the accumulator

during the indicated clock period. 1In this case, the pointer in
RP and DP is held until the accumulator data is available.

Part 3
HR-0808 6-23 B

025 Instruction

dd = A + dd

This instruction adds the content of operand register d to the previous
accumulator content. The addition is performed in a twos complement

mode. The instruction complements the carry flag if a carry is
propagated from the accumulator in the addition process. It then

replaces the content of operand register d with the new accumulator
content.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

CP 0 Issue. Transmit d data to RP and DP.
Cp 1 Transmit operand register data to addend register. The RP pointer
is discarded in CP 1 and reentered with the same pointer from DP

in CP 3. The function at CP 1 is delayed if the data is not
available in the accumulator.

Cp 2 Transmit data to adder. Add mode.
CP 3 Transmit adder result to accumulator. Transmit DP data to RP.

CP 4 Transmit accumulator data to operand register.

Part 3
HR-0808 6-24 B

026 Instruction

dd = dd + 1

This instruction replaces the content of operand register d with the
Previous content increased by 1. The result is left in the accumulator
as well as in the operand register. The carry flag is cleared at the
beginning of this operation. One is entered in the accumulator. The
content of the operand register enters the addend register and is then
added to the accumulator content in a twos complement mode. The carry
flag is set if a carry is propagated from the accumulator in the addition
process. The result is then returned to the operand register.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

CP 0 Issue. Transmit 4 data to RP and DP.

Cp 1 Transmit operand register data to addend register.
Enter a +1 in the accumulator.

The RP pointer is discarded in CP 1 and reentered with the same
pointer from DP in CP 3.

CP 2 Transmit data to adder. Add mode.
Cp 3 Transmit adder result to accumulator. Transmit DP data to RP.

CP 4 Transmit copy of accumulator data to operand register.

Part 3
HR-0808 6-25 B

027 Instruction

dd = dd - 1

This instruction replaces the content of operand register d with the
previous content decreased by 1. The result is left in the accumulator

as well as in the operand register. The carry flag is cleared at the
beginning of this operation. The accumulator bits are forced set. The

content of the operand register is entered in the addend register and
then added to the accumulator content. The carry flag is set if a carry

is propagated from the accumulator in the addition process. The result
is then returned to the operand register.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

Cp O Issue. Transmit 4 data to RP and DP.

Cp 1 Transmit operand register data to addend register.
Enter a -1 in the accumulator.

The RP pointer is discarded in CP 1 and reentered with the same
pointer from DP in CP 3.

Ccp 2 Transmit data to adder. Add mode .
Cp 3 Transmit adder result to accumulator. Transmit DP data to RP.

CP 4 Transmit copy of accumulator data to operand register.

Part 3
HR-0808 6-26

030 Instruction

A = (dd)

This instruction enters the content of an I/0 Memory location in the

accumul
d. It

CP O

CpP 1

Cp 2

Cp 3

Cp 4

CP 5

CP 6

HR-0808

ator. The I/O Memory address is obtained from operand register
then clears the carry flag.

Issue. Transmit 4 data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Transmit operand register data to MA.

Transmit MA data to bank address registers. Send Memory Read
Reference. The function of CP 2 is repeated until the acceptance

signal is received.

Acceptance signal from I/0 Memory. The function of CP 2 is
repeated until the acceptance signal is received.

Transmit memory data to accumulator.

Part 3
6-27 B

031 Instruction

A=A & (dd)

This instruction forms the bit-by-bit logical product of the previous

accumulator content and the content of an I/O Memory location and places
the result if the accumulator. The I/0 Memcry address is obtained from

operand register d. It then clears the carry flag.

Cp

cp

CP

cp

cp

Ccp

Cp

Issue. Transmit d data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Transmit operand register data to MA.

Transmit MA data to bank address registers. Send memory read
reference. The function of CP 2 is repeated until the acceptance

signal is received.

Acceptance signal from I/0O Memory.

Transmit memory data to accumulator. The logical product of
memory data and the accumulator content is done at the input to
the accumulator. No additional time is required for this function.

Part 3

HR-0808 6-28 B

032 Instruction

A=A+ (d4d)
This instruction adds the content of an I/0O Memory location to the
content of the accumulator. The I/0 Memory address is obtained from
operand register d. The instruction complements the carry flag if a
carry is propagated from the accumulator in the addition process.

CP O Issue. Transmit 4 data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Cp 1 Transmit operand register data to MA.

CP 2 Transmit MA data to bank address registers. Send read request to
memory.

CP 3 Acceptance signal from I/O Memory.

CP 4 The function of CP 2 is repeated until the acceptance signal is
received.

CpP 5 -
CP 6 Transmit memory data to addend register.
Cp 7 Transmit data to adder. 2Add mode.
The data from the accumulator and addend register is transmitted

to the adder in CP 7. The addend register is free in this clock
period to accept another operand.

Cp 8 Transmit adder result to accumulator.

Part 3
HR-0808 6-29 B

033 Instruction

A=A - (dd)

This instruction subtracts the content of an I/0 Memory location from the
content of the accumulator. The I/0 Memory address is obtained from
operand register d. The subtraction is performed by complementing the
subtrahend and adding the result to the accumulator content in a ones
complement mode. A 1 is then added to the result. The instruction
complements the carry flag if a carry is propagated from the accumulator

during either addition process.

CP O Issue. Transmit d data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Cp 1 Transmit operand register data to MA.

Cp 2 Transmit MA data to bank address registers. Send read request to
memory .

CP 3 Acceptance signal from I/O Memory.

CP 4 The function of CP 2 will be repeated until the acceptance signal
is received.

cp5 -
CP 6 Transmit memory data to addend register.
Cp 7 Transmit data to adder. Subtract mode.
The data from the accumulator and addend register is transmitted

to the adder in CP 7. The addend register is free in this clock
period to accept another operand.

The complementing of the addend data is accomplished in the
transmission of the data from the addend register to the adder.

The addition of +1 to the result is accomplished in this same
clock period in the adder.

CP 8 Transmit adder result to accumulator.

Part 3
HR-0808 6-30 B

034 Instruction

(dd) = A

This instruction replaces the content of an I/O Memory location with the
current content of the accumulator. The I/O Memory address is obtained
from operand register 4.

Cp 0

Cp 1

Cp 2

Cp 3

Issue. Transmit d data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted or
the accumulator data is not available.

Transmit operand register data to MA.

Transmit MA data to bank address registers. Transmit a copy of
the accumulator data to bank operand registers. Send write

request to memory.

The function of CP 2 is repeated until an acceptance signal is
received.

Acceptance signal from I/O Memory.

Part 3

HR-0808 6-31 B

035 Instruction

(dd) = A + (dd)

This instruction replaces the content of an I/0 Memory location with its
previous content plus the current accumulator content. The I/0 Memory
address is obtained from operand register d. The addition is performed
using the accumulator in a 16-bit twos complement mode. The carry flag
is complemented if a carry is propagated from the accumulator in the
addition process. The result is left in the accumulator as well as
transmitted to the I/0O Memory location.

CP 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted or

the accumulator data is not available.
Cp 1 Transmit operand register data to MA.

Cp 2 Transmit MA data to bank address registers. Send read requet to
memory. The functions of CP 2 is repeated until an acceptance

signal is received.

CP 3 Acceptance signal from I/O Memory. The MA data is held from CP 3.

CP 4 -

CP 5 -

CP 6 Transmit memory data to addend register.
Cp 7 Transmit data to adder. Add mode.

CP 8 Transmit adder result to accumulator.

CP 9 Transmit MA data to bank address registers. Transmit a copy of
the accumulator data to bank operand registers. Send write

request to memory.

The function of CP 9 is repeated until an acceptance signal is
received.

CP 10 Acceptance signal from I/O Memory.

Part 3
HR-0808 6-32 B

036 Instruction

]

(ad) (ag) + 1

This instruction increments the content of an I/0 Memory location by 1.

The I/0 Memory address is obtained from operand register d. This
operation is performed using the accumulator. The accumulator and carry

flag are cleared. A +1 is entered in the accumulator. The content of
the memory location is entered in the addend register and then added to

the accumulator contents. The result is returned to I/O Memory. The
result remains in the accumulator. The carry flag is complemented if a
carry is propagated from the accumulator in the addition process.

Cp 0 Issue. Transmit d data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Cp 1 Transmit operand register data to MA.

Cp 2 Transmit MA data to bank address registers. Send read request to
memory. The function of CP 2 is repeated until an acceptance

signal is received.
CP 3 Acceptance signal from I/0 Memory. The MA data is held from CP 3.
CP 4 -
CP 5 -

CP 6 Transmit memory data to addend register. Clear carry flag and
enter plus one in accumulator.

Ccp 7 Transmit data to adder. Add mode.

CP 8 Transmit adder result to accumulator.

CP 9 Transmit MA data to bank address registers. Transmit copy of
accumulator data to bank operand registers. Send write request to

memory. The function of CP 9 is repeated until the acceptance
signal is received.

CP 10 Acceptance signal from I/0 Memory.

Part 3
HR-0808 6-33 B

037 Instruction

(ad) = (ad) -1

This instruction decrements the content of an I/0 Memory location by 1.
The I/O Memory address is obtained from operand register d. This
operation is performed using the accumulator. The carry flag is
cleared. The accumulator bits are forced set. The content of the I/0
memory location is entered in the addend register and then added to the
accumulator content. The result is returned to the I/0 memory location.
The result also remains in the accumulator. The carry flag is
complemented if a carry is propagated from the accumulator in the
addition process.

CP 0 Issue. Transmit 4 data to RP. The function of CP 0 is delayed if
the MA data from a previous instruction has not been accepted.

Cp 1 Transmit operand register data to MA.

CP 2 Transmit MA data to bank address registers. Send read request to
memory. The functions of CP 2 is repeated until an acceptance

signal is received.

CP 3 Acceptance signal from I/0 Memory. The MA data is held from CP 3.

Cp 4 -
CP 5 -

CP 6 Transmit memory data to addend register. Clear carry flag and
enter all ones in accumulator.

Cp 7 Transmit data to adder. Add mode.

Cp 8 Transmit adder result to accumulator.

CP 9 Transmit MA data to bank address registers. Send write request to
memory. Transmit copy of accumulator data to bank operand

registers.

The function of CP 9 is repeated until the acceptance signal is
received.

CP 10 Acceptance signal from I/0 Memory.

Part 3
HR~0808 6-34 B

040 Instruction

Cc =1, iod = DN

This instruction forces the carry flag to the same state as the channel d
done flag.

Another instruction that would alter the state of the carry flag before

CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if
an I/0 instruction is issued that alters the Busy or Done flags before

the 40 instruction.

Channel 000 is always done. The carry flag can be set by setting
d = 000 in this instruction.

CP 0 Issue. Transmit 4 designator to I/O channels.
Cp 1 -
cp 2 -

Cp 3 Force state of carry flag.

Part 3
HR-0808 6-35 B

041 Instruction

C =1, iod = BZ

This instruction forces the carry flag to the same state as the channel d
busy flag.

Another instruction that would alter the state of the carry flag before
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if

an I/0 instruction is issued that alters the Busy or Done flags before
the 41 instruction.

Channel 000 is never busy. The carry flag can be forced clear by setting
d to 000 in this instruction.

CP O Issue. Transmit 4 designator to I/O channels.
CP 1 -
Cp 2 -

Cp 3 Force state of carry flag.

Part 3
HR-0808 6-36 B

042 Instruction

Cc =1, I0B = DN

This instruction forces the carry flag to the same state as the done flag
of the channel specified by the contents of the B register.

Another instruction that would alter the state of the carry flag before
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if

an I/0 instruction is issued that alters the Busy or Done flags before
the 42 instruction.

This instruction cannot issue if the B register is reserved.

Channel 000 is always done. The carry flag can be forced clear by
setting B to 000 in this instruction.

CP 0 Issue. Transmit B designator to I/O channels.
Cp 1 -
Cp 2 -

Cp 3 Force state of carry flag.

Part 3
HR-0808 6-37 B

043 Instruction

CcC =1, IOB = BZ

This instruction forces the carry flag to the same state as the busy flag
of the channel specified by the contents of the B register.

Another instruction that would alter the state of the carry flag before
CP 4 cannot issue in CP 1 or CP 2. A delay of 1 CP must be inserted if

an I/0 instruction is issued that alters the Busy or Done flags before
the 43 instruction.

This instruction cannot issue if the B register is reserved.

Channel 000 is never busy. The carry flag can be forced clear by setting
B to 000 for use by this instruction.

CP O Issue. Transmit B designator to I/O channels.

Cp 1 -
Cp 2 -

CP 3 Force state of carry flag.

Part 3
HR-0808 6-38 B

044 Instruction

This instruction shifts the content of the accumulator and the associated
carry flag to the right by B bit positions. The carry flag may be
regarded as a seventeenth bit to the left of the accumulator content for
this operation. Zero values are entered in the carry flag and propagated
to the right as the shift progresses. No shift is performed if the shift
count is 0. The accumulator and carry flag are cleared if the shift
count is greater than 17;5.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

CP 0 Issue. Transmit B to addend register.

Cp 1 Transmit data and inverted B to shifter. Shift mode. The addend
register is free in this CP.

CpP 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-39 B

045 Instruction

This instruction shifts the content of the accumulator and the associated
carry flag to the left by B bit positions. The carry flag may be
regarded as a seventeenth bit to the left of the accumulator content for
this operation. Zero values are entered in the low-order bit positions

of the accumulator and are propagated to the left as the shift
progresses. Bits shifted from the carry flag are discarded. No shift is

performed if the shift count is 0. The accumulator and carry flag are
cleared if the shift count is greater than 1710.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

Cp O Issue. Transmit B to addend register.

Cp 1 Transmit data and B to shifter. Shift mode. The addend register
is free in this CP.

Cp 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-40 B

046 Instruction

A =A> B

This instruction shifts the content of the accumulator and the associated
carry flag to the right in a circular mode by B bit positions. The carry
flag may be regarded as a seventeenth bit to the left of the accumulator
content for this operation. No bits are discarded in this shift mode.
Bits shifted from the right end of the accumulator are returned to the
carry flag. No shift is performed if the shift count is 0.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

Cp O Issue. Transmit B to addend register.

CP 1 Transmit data and inverted B to shifter. Shift mode. The addend
register is free in this CP.

CpP 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-41 B

047 Instruction

A =A<<B

This instruction shifts the content of the accumulator and the associated
carry flag to the right in a circular mode by B bit positions. The carry
flag may be regarded as a seventeenth bit to the left of the accumulator
content for this operation. No bits are discarded in this shift mode.
Bits shifted from the right end of the accumulator are returned to the
carry flag. No shift is performed if the shift count is 0.

The low-order 5 bits of the addend register content are interpreted in
determining the shift count. High-order bits are ignored.

CP O Issue. Transmit B to addend register.

CP 1 Transmit data and B to shifter. Shift mode. The addend register
is free in this CP.

Cp 2 Transmit shifter result to accumulator.

Part 3
HR-0808 6-42 B

050 Instruction

A =B

This instruction enters the B register content in the accumulator as a
9-bit positive integer and clears the carry flag. The high-order bits
are 0.

Cp O Issue. Transmit B to accumulator.

Part 3
HR-0808 6-43

051 Instrucion

A =2Ag§B

This instruction forms the bit-by-bit logical product of the previous
accumulator content and the B register content, and places it in the

accumulator. The B register content is treated as a 9-bit positive
integer. The instruction clears the carry flag.

The logical product of the previous accumulator content and the operand
from the instruction is formed at the input to the accumulator.

CP O Issue. Transmit B and accumulator to accumulator.

Part 3
HR-0808 6-44

052 Instruction

A =A+B

This instruction adds the B register content to the previous accumulator

content in the 16-bit twos complement mode. The B register content is
treated as a 9-bit positive integer in this addition. The instruction
complements the carry flag if a carry is propagated from the accumulator

in the addition.
CP O Issue. Transmit B to addend register.
Cp 1 Transmit data to adder. Add mode.

Cp 2 Transmit adder result to accumulator.

Part 3
HR-0808 6-45

053 Instruction

A =A-B

This instruction subtracts the B register content from the previous
accumulator content in a 16-bit twos complement mode. The B register
content is treated as a 9-bit positive integer in this operation. The
subtraction is performed by complementing the content of the addend
register and adding the result to the previous accumulator content. One
is then added to the result. The instruction complements the carry flag
if a carry is propagated from the accumulator during either addition.

CP 0 Issue. Transmit B to addend register.

CP 1 Transmit data to adder. Subtract mode.

Cp 2 Transmit adder result to accumulator.

Part 3
HR-0808 6-46

054 Instruction

B=A

This instruction replaces the B register content with the low-order 9
bits of the accumulator content.

This instruction cannot issue until the accumulator sequence has been
completed for any previous instructions.

CP O Issue. B register is free.
CP 1 Issue + 1 (is accumulator ready).

Cp 2 Issue + 2 (transmit accumulator data to B register).

Part 3
HR-0808 6-47

055 Instruction

B=A+B

This instruction adds the content of the B register to the previous
accumulator content. The B register content is treated as a 9-bit
positive integer in this operation. The addition is performed in a
16-bit twos complement mode. The instruction complements the carry flag
if a carry is propagated from the accumulator in the addition process and
then replaces the B register content with low-order 9 bits of the
accumulator content.

Cp 0 Issue. Transmit B to addend register.

Cp 1 Transmit data to adder. Add mode.

Cp 2 Transmit adder result to accumulator. The addend register is free
in this CP.

Cp 3 Transmit a copy of the accumulator data to B register.

Part 3
HR-0808 6-48 B

056 Instrucion

B=B+1

This instruction replaces the content of the B register with its previous

content increased by 1. The result is left in the accumulator as well as
in the B register. The carry flag is cleared at the beginning of this

operation. One is entered in the accumulator. The content of the B
register is then added to the accumulator content in a 16-bit twos
complement mode. The B register content is treated as a 9-bit positive
integer in this process. The low-order 9 bits of the accumulator content
are then returned to the B register.

CP O Issue. Transmit B to addend register. Enter a +1 in the
accumulator.

Cp 1 Transmit data to adder. Add mode. The addend register is free in
this CP.

Cp 2 Transmit adder result to accumulator.

CPp 3 Transmit a copy of the accumulator data to B register.

Part 3
HR-0808 6~-49 B

057 Instruction

B=B-1

This instruction replaces the content of the B register with its previous
content decreased by 1. The result is left in the accumulator as well as
in the B register. The carry flag is cleared at the beginning of this
operation. The accumulator bits are forced set. The content of the
operand register is entered in the XB register and then added to the
accumulator content. The B register content is treated as a 9-bit
positive integer in this process. The carry flag is complemented if a
carry is propagated from the accumulator in the addition process. The
low-order 9 bits of the accumulator content are then returned to the B

register.

CP O Issue. Transmit B to addend register. Enter a -1 in the
accumulator.

CP 1 Transmit accumulator data to adder. Add mode. The addend
register is free in this CP.

Cp 2 Transmit adder result to accumulator.

CP 3 Transmit a copy of the accumulator data to B register.

Part 3
HR-0808 6-50 B

060 Instruction

A = (B)

This instruction enters the content of operand register B in the
accumulator. It then clears the carry flag.

CpP 0 Issue. Transmit B data to RP.

Cp 1 Transmit operand register data to accumulator.

Part 3
HR-0808 6-51

061 Instruction

A=A § (B)
This instruction forms the bit-by-bit logical product of the previous

accumulator content and the content of operand register B and places the
result in the accumulator. It then clears the carry flag.

The logical product of the previous accumulator content and the operand
register content is formed at the input to the accumulator. No
additional time is required for this function.

CpP O Issue. Transmit B data to RP.

CP 1 Transmit operand register data to accumulator.

Part 3
HR-0808 6-52

062 Instruction

A=A+ (B)
This instruction adds the content of operand register B to the previous

accumulator content. The addition is performed in a twos complement
mode. The instruction complements the carry flag if a carry is

propagated from the accumulator in the addition process.

Cp 0 Issue. Transmit B data to RP.

Cp 1 Transmit operand register data to addend register.

Cp 2 Transmit data to adder; add mode. The data in the accumulator and

addend register is transmitted to the adder in CP 2. The addend
register is free in this clock period to accept another operand.

Cp 3 Transmit adder result to accumulator.

Part 3
HR-0808 6-53 B

063 Instruction

A=A- (B)

This instruction subtracts the content of operand register B from the
previous accumulator content. The subtraction is performed by
complementing the subtrahend and adding the result to the accumulator
content in a twos complement mode. A one is then added to the result.
The instruction complements the carry flag if a carry is propagated from
the accumulator during either addition process.

CP 0O Issue. Transmit B data to RP.

Cp 1 Transmit operand register data to addend register.

Cp 2 Transmit data to adder; subtract mode. The data in the
accumulator and addend register is transmitted to the adder in CP
2. The addend register is free in this clock period to accept

another operand.

Cp 3 Transmit adder result to accumulator.

Part 3
HR-0808 6-54

064 Instruction

(B) = A
This instruction stores the accumulator content in operand register B.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

CP O Issue. Transmit B data to RP and DP.

cp 1 Transmit accumulator data to operand register. The function of CP
1 is delayed if the data is not available in the accumulator

during the indicated clock period. In this case, the pointer in
RP and DP is held until the accumulator data is available.

Part 3
HR-0808 6-55 B

065 Instruction

(B) = A + (B)

This instruction adds the content of operand register B to the previous
accumulator content. The addition is performed in a twos complement
mode. The instruction complements the carry flag if a carry is
propagated from the accumulator in the addition process. It then
replaces the content of operand register B with the new accumulator
content.

This instruction cannot issue if the DP register contains a pointer from
a previous instruction.

Cp O Issue. Transmit B data to RP and DP.

CpP 1 Transmit operand register data to addend register. The RP pointer
is discarded in CP 1 and reentered with the same pointer from DP

in CP 3.

CP 2 Transmit data to adder. Add mode the function at CP 2 is delayed
if the data is not available in the accumulator. The addend
register is free in this CP.

CP 3 Transmit adder result to accumulator. Transmit DP data to RP.

CP 4 Transmit a copy of the accumulator data to operand register.

Part 3
HR~-0808 6-56 B

066 Instruction

(B) = (B) +1

This instruction replaces the content of operand register B with its
previous content increased by 1. The result is left in the accumulator
as well as in the operand register. The carry flag is cleared at the
beginning of this operation. One is entered in the accumulator. The
content of the operand register entered in the addend register and is
then added to the accumulator content in a twos complement mode. The
carry flag is complemented if a carry is propagated from the accumulator
in the addition process. The result is then returned to the operand
register.

This instruction cannot issue if the DP register contains a pointer from
a previous intruction.

CP O Issue. Transmit B data to RP and DP.

CpP 1 Transmit operand register data to addend register. Enter a plus
one in the accumulator.

The RP pointer is discarded in CP 1 and re-entered with the same
pointer from DP in CP 3.

Cp 2 Transmit data to adder. Add mode. The addend register is free in
this CP.

Cp 3 Transmit adder result to accumulator. Transmit DP data to RP.

CP 4 Transmit copy of accumulator data to operand register.

Part 3

HR-0808 6-57 B

067 Instruction

(B) = (B) -1

This instruction replaces the content of operand register B with its

previous content decreased by 1. The result is left in the accumulator
as well as in the operand register. The carry flag is cleared at the

beginning of this operation. The accumulator bits are forced set. The
content of the operand register is entered in the addend register and

then added to the accumulator content. The carry flag is complemented if
a carry is propagated from the accumulator in the addition process. The
result is then returned to the operand register.

This instruction cannot issue if the DP register contains a pointer from
a previous intruction.

CP 0 Issue. Transmit B data to RP and DP.

Cp 1 Transmit operand register data to addend register. Enter an all
ones value in the accumulator.

The RP pointer is discarded in CP 1 and re-entered with the same
pointer from DP in CP 3.

Cp 2 Transmit data to adder. Add mode. The addend register is free in
this CP.

Cp 3 Transmit adder result to accumulator. Transmit DP data to RP.

Cp 4 Transmit copy of accumulator data to operand register.

Part 3
HR-0808 6-58 B

070 Instruction

P=P+d

This instruction terminates the current program sequence and begins a new
sequence. The initial address for the new sequence is obtained by adding
the d designator to the address of the current instruction. The d
designator is treated as a 9-bit positive integer and is added in a
16-bit twos complement mode. The accumulator content and carry flag are
not altered in this process.

The issue of further instruction is blocked until the branch mode is
resolved.

CP O Issue. Transmit P data to accumulator. Transmit d data to addend
register.

Cp 1 Transmit accumulator data to adder. Add mode.
CP 2 Transmit adder result to P register. The first instructon in the

new program sequence is transmitted from the instruction stack to

the II register in CP 2 if the branch is within the range of the
stack. That intruction may issue at CP 4.

Cp 3 If the branch is out of stack, a fetch request at the new P
address will be generated. This action may be delayed m CPs due
to a previous internal fetch request.

CP m+l Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Issue new instruction.

Part 3
HR-0808 6-59 B

071 Instruction

P=P-4d

This instruction terminates the current program sequence and begins a new
sequence. The initial address for the new sequence is obtained by
subtracting the d designator to the address of the current instruction.
The 4 designator is treated as a 9-bit positive integer and is subtracted

in a 16-bit twos complement mode. The accumulator content and carry flag
are not altered in this process.

The issue of further instruction is blocked until the branch mode is
resolved.

CP O

Cp 1

Cp 2

Cp 3

CP m+1

CP n+l

CP n+2

CP n+3

CP n+4

Issue. Transmit P data to accumulator. Transmit d to addend
register.

Transmit accumulator data to adder. Subtract mode.
Transmit adder result to P register. The first instruction in the
new program sequence is transmitted from the instruction stack to

the II register in CP 2 if the branch is within the range of the
stack. This intruction may issue at CP 4.

If the branch is out of stack, a fetch request at the new P
address will be generated. This action may be delayed m CPs due
to previous internal fetch requests.

Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

Acceptance signal from memory.
Transmit memory data to II register.
II data available for decode.

Issue new instruction.

Part 3

HR-0808 6-60 B

072 Instruction

R=P+d

This instruction suspends execution of the current program sequence and
calls a subprogram for execution by the following actions. It advances

the value of E by 1 and stores the address of the next sequential
instruction of this program sequence in the program exit stack. Then, it

begins executing a new program sequence. The initial address for the new
sequence is obtained by adding the d designator to the address of the
current instruction. The d designator is treated as a 9-bit positive
integer and is added in a 16-bit twos complement mode. The accumulator
content and carry flag are not altered in ths process.

Cp O Issue. Transmit P data to accumulator. Transmit d to addend
register.

CP 1 Transmit accumulator data to adder. Add mode. Advance E by 1.

CP 2 Transmit P+l data to program exit stack. Transmit adder result to
P register.

CpP 3 If the branch is out of stack, a fetch regest at the new P address
will be generated. This action may be delayed m CPs due to a

previous internal fetch request.

CP m+l Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Issue new instruction.

Part 3
HR-0808 6-61 B

073 Instruction

R=P-4d

This instruction suspends execution of the current program sequence and
calls a subprogram for execution by the following actions. It advances
the value of E by 1 and stores the address of the next sequential
instruction of this program sequence in the program exit stack. Then, it

begins executing a new program sequence. The initial address for the new
sequence is obtained by subtracting the 4 designator from the address of

the current instruction. The d designator is treated as a 9-bit positive

integer and is subtracted in a 16-bit twos complement mode. The
accumulator content and carry flag are not altered in ths process.

CP 0 Issue. Transmit P data to accumulator. Transmit d to addend
register.

Cp 1 Transmit accumulator data to adder. Subtract mode. Advance E by
1.

Cp 2 Transmit P+1 data to program exit stack. Transmit adder result to
P register.

CP 3 If the branch is out of stack, a fetch request at the new P

address will be generated. This action may be delayed m CPs due
to a previous internal fetch request.

CP m+l Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Issue new instruction.

Part 3
HR-0808 6-62 B

074 Instruction

P = dd

This instruction terminates the current program sequence and begins a new
sequence. The initial address for the new sequence is obtained from
operand register 4.

The program fetch request flag is set if the content of operand register
d is 0. The issue of further instructions is blocked until the first
instruction of the new sequence is in the II register.

CP O Issue. Transmit 4 data to RP.

Cp 1 Transmit operand register data to accumulator. Enter 0 in the
addend register.

Cp 2 Transmit accumulator data to adder. Add mode.
CP 3 Transmit adder result to P register. A fetch request at the new P
address will be generated. This action may be delayed m CPs due

to a previous internal fetch request.

CP m+l Memory request generated by fetch. A delay of n CPs is possible
due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Issue new instruction.

Part 3
HR-0808 6-63 B

075 Instruction

P =4d + k
This instruction terminates the current program sequence and begins a new
sequence. The initial address for the new sequence is obtained by adding
the content of operand register d to the next parcel of the current
program sequence. The addition is performed in a 16-bit twos complement

mode. The content of the accumulator and carry flag are not altered in
this process.

The program fetch request flag is set if the content of operand register
d is 0. The issue of further instructions is blocked until the first
instruction of the new program sequence is not in the II register in CP 1.

Cp O Issue. Transmit d data to RP.

Cp 1 Transmit operand register data to accumulator. Transmit k data to
addend register.

CpP 2 Transmit accumulator data to adder. Add mode.
Cp 3 Transmit adder result to P register. A fetch request at the new P
address will be generated. This action may be delayed m CPs due

to a previous internal fetch request.

CP m+l Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Issue new instruction.

Part 3
HR-0808 6-64 B

076 Instruction

R = d4d

This instruction suspends execution of the current program sequence and

calls a

subprogram for execution by the following actions. It advances

the value of E by 1 and stores the address of the next sequential

instruc
executi
sequenc

tion of this sequence in the program exit stack. It then begins
ng a new program sequence. The initial address for the new
e is obtained from operand register d.

The exit stack boundary flag is set if the advanced E value is 14. The
program fetch request flag is set if the content of operand register d is

0. The issue of further instructions is blocked until the first

instruc

Cp O

Cp 1

CpP 2

Cp 3

CP m+l

CP n+l

CP n+2

CP n+3

CP n+4

HR-0808

tion of the new program sequence is in the II register.
Issue. Transmit d data to RP.

Transmit operand register data to accumulator. Enter a 0 value in
addend register.

Transmit accumulator data to adder. Add mode. Advance E by 1.
Transmit P+1 data to exit stack. Transmit adder result to P
register. A fetch request at the new P address is generated.
This action may be delayed m CPs due to a previous internal fetch

request.

Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

Acceptance signal from memory.
Transmit memory data to II register.
II data available for decode.

Issue new intruction.

Part 3
6-65 B

077 Instruction

R =4dd + k

This instruction suspends execution of the current program sequence and
calls a subprogram for execution by the following actions. It advances

the value of E by 1 and stores the address two greater than the address
of the current instruction in the program exit stack. Then it begins a

new program sequence. The initial address for the new sequence is
obtained from operand register d to the next parcel of the current

program sequence. The addition is performed in a 16-bit twos complement

mode. The content of the accumulator and carry flag are not altered in
this process.

The exit stack boundary flag is set if the advanced E value is 14. The
program fetch request flag is set if the content of operand register 4 is

0. The issue of further instructions is blocked until the first
instruction of the new program sequence is in the II register.

CP O Issue. Transmit d data to RP.

CP 1 Transmit operand register data to accumulator. Transmit k data to
addend register.

The entry of the k data in the addend register is delayed if the
next parcel of the program sequence is not in the II register in
CP 1.

Cp 2 Transmit accumulator data to adder. Add mode. Advance E by 1.

CP 3 Transmit P+1 data to exit stack. Transmit adder result to P
register. A fetch requst at the new P address is generated. This

action may be delayed m CPs due to a previous internal fetch
request.

CP m+l Memory request generated by the fetch. A delay of n CPs is
possible due to memory conflicts.

CP n+l Acceptance signal from memory.
CP n+2 Transmit memory data to II register.
CP n+3 II data available for decode.

CP n+4 Tcecue new instruction.

Part 3
HR-0808 6-66 B

100-137 Conditional Branch Instructions

Instructions 100 through 137 are branch instructions that jump to a new
program sequence only if a branch condition is met. There are eight

branch modes, which are represented in the unconditional form by
instructions 070 through 077. All possibilities of these eight modes are
combined with four branch criteria to form the set of instructions 100
through 137. The branch criteria are as follows:

------ , C=0
—————— ,C=1
______ ,A_O
------ P A% 0

The first of these branch conditions, C = 0, causes the branch to be
taken if the carry flag is 0. If the carry flag is set, the current

program sequence is continued.

The second branch condition, C = 1, is the complement of the first. The
branch is taken if the carry flag is set. The current sequence is

continued if the carry flag is 0.

The third branch condition, A = 0, causes the branch to be taken if the
accumulator content is 0. If the accumulator content is nonzero, the

current sequence is continued.

The final branch condition, A # 0, is the complement of the third. The
branch is taken if the accumulator content is nonzero. The current
sequence is continued if the accumulator content is 0.

The timing of the above sequences is the same as the timing of the
corresponding instruction in the unconditional mode, if the branch is

taken. Formation of the branch condition requires 1 CP after the
accumulator has received the desired data. The issue of the next
instruction is delayed until the branch criterion is available. If the

branch criterios is available in CP 0 and the branch is not taken based
on that criterion, the next instruction in the current program sequence

may issue in the next clock period.

Part 3
HR-0808 6-67 B

140-177 I/0 Channel Instructions

Instructions 140 through 177 allow I/O processor control of the 1/0
channel activity. The d designator in instructions 140 through 157
specifies which I/0 channel is addressed. In the 160 through 177
instructions, the content of the B register specifies the channel.

The low-order 4 bits of the function code for the instruction are sent
to the channel interface control along with a go function signal.

This 4-bit code is then interpreted by the channel interface control
circuits in a manner unique to that channel.

This series of instructions may provide the accumulator data to the
interface and the data coming back from the interface may replace the

present accumulator contents. Instructions 150 through 153 and 170
through 173 read a 16-bit quantity into the accumulator. This
quantity is whatever value the channel interface provides as a result
of its interpretation of the channel function. This data transfer is
defined in the description for each individual channel. Instructions
140 through 177 may transfer data from the accumulator to the channel
interface.

None of the I/O channel instructions involves any significant delay in
the execution of the program sequence. There is no mechanism for the
1/0 channel control to delay execution of further instructions as a
result of interpreting the 4-bit code. Delays in executing program
functions must be programmed through sampling of the channel busy and
done flags or through the equivalent use of the interrupt mechanism.

After issuing any comment to the I/0 channels, allow 1 CP (by issuing
a pass instruction, or other instruction) before checking the channel
busy or done flags. One CP should also be allowed after any : 6 or :
7 I/0 instruction (modifying channel interrupt flag) before checking
for the channel interrupt number (IOR : 10).

Part 3
HR-0808 6-68

INTERFACES 7

INTRODUCTION

Interfaces are required to adapt the I/O0 Processor to peripheral devices
to take advantage of its capabilities. The main purposes of an interface
are buffering data, generating control signals for the peripheral device,
and possibly multiplexing several devices into the same 1/0 Processor
channel. This section describes the characteristics of the interfaces,
gives a table of currently used functions for the interfaces, and
describes operational characteristics of the interfaces.

INTERFACE CHARACTERISTICS

The 1I/0 Processor provides for 40 I1/0 channels. These channels are
addressed by the d designator in the program instruction or by the B
register contents. Data may be transferred from the I/0 Processor
accumulator to an interface register or from an interface register to the
accumulator. 1I/0 Memory ports may be used for block transfers of data
into or out of I/O Memory. Data transfers and channel interface actions
are a function of each interface logic control.

Each interface may interpret up to 16 function signals from the I/0
Processor program. These functions are generated by instructions 140
through 177. Interpretation of each function is specifically designated
by each interface. However, three of the function codes are fairly
common among interfaces and are described below.

iod : 0 or IOB : 0.

This function clears the channel busy and done flags and places the
channel in an idle status.

iod : 6 or I0B : 6.

This function clears the channel interrupt flag for the associated
channel, which blocks any further interrupt requests from that channel.

iod : 7 or IOB : 7.

This function sets the channel interrupt enable flag for the associated
channel and enables the interrupt requests from that channel.

Part 3
HR-0808 7-1 B

Each channel interface pProvides for a busy flag. This flag is
normally set during the active period of the channel and cleared
during an idle period. The setting and clearing of this flag depends
on the channel interface interpretation of the 16 function codes. The

channel busy flag may be sensed by the I/0 Processor program through
execution of the 041 and 043 instructions.

Each channel interface provides for a done flag. This flag is
normally used to signal the I/0 Processor program when some step of
the channel activity has reached a point where program action is
required. Setting and clearing of the flag is normally a function of
the interface hardware, but the program may set or clear the flags for
special purposes. The program may sense the state of this flag
through the 040 and 042 instructions. An interrupt is normally
generated by the interface hardware when the channel done flag is set
and the channel interrupt enable flag is also set. The system must
have interrupts enabled to process the interrupt.

INTERFACE FUNCTION CODES

Table 7-1 lists all the currently supported peripheral devices and
briefly explains each function code interpretation that has been
implemented. The mnemonic shown is for A Programming Machine
Language, APML.

HR-0808 7-2

Table 7-1.

Interface functions

Device Mnemonic Function
DISK STORAGE DKA : 0 Clear the channel control
UNIT DKA : 1 Select mode or request status
(DKA~DKP) DKA : 2 Read data into I/0 Memory
DKA : 3 Write data from I/0 Memory
DKA : 4 Select a new head group
DKA : 5 Select a new cylinder
DKA : 6 Clear the channel interrupt enable flag
DKA : 7 Set the channel interrupt enable flag
DKA : 10 Read I/0 Memory current address
DKA : 11 Read status response
DKA : 14 Enter I/0 Memory beginning address
DKA : 15 Status response register diagnostic
CONSOLE KEYBOARD TIA : O Clear the channel done flag
(TIA,TIB,TIC...) TIA : 6 Clear the channel interrupt enable flag
TIA : 7 Set the channel interrupt enable flag
TIA : 10 Read data into accumulator and clear
done flag
CONSOLE DISPLAY TOA : 0 Clear the channel busy and done flags
(TOA,TOB,TOC...) TOA : 6 Clear the channel interrupt enable flag
TOA : 7 Set the channel interrupt enable flag
TOA : 14 Send accumulator data to display
EXPANDER CHASSIS EXB : 0 Idle the channel
EXB : 1 Data input from A register (DIA)
EXB : 2 Data input from B register (DIB)
EXB : 3 Data input from C register (DIC)
EXB : 4 Read busy/done flag, interrupt number
EXB : 5 Load device address
EXB : 6 Send interface mask (MSKO)
EXB : 7 Set interrupt mode
EXB : 10 Read data bus status
EXB : 11 Read status 1
EXB : 13 Read status 2
EXB : 14 Data output to A register (DOA)
EXB 15 Data output to B register (DOB)
EXB : 16 Data output to C register (DOC)
EXB : 17 Send control

HR-0808

Part 3
7-3 B

Table 7-1.

Interface functions (continued)

Device Mnemonic Function
INPUT FROM Cia : O Clear channel
CPU I/0 CHANNEL CIa : 1 Enter I/0 Memory address, start
(CIA,CIB,CIC...) input
CIA : 2 Enter parcel count
CIA : 3 Clear channel parity error flags
CIA : 4 Clear ready waiting flag
CIA : 6 Clear interrupt enable flag
CIA : 7 Set interrupt enable flag
i Cia : 10 Read I/0 Memory address
cia : 11 Read status (ready waiting, parity
errors)
OUTPUT TO coa : 0 Clear channel
CPU I/0 CHANNEL COA : 1 Enter I/O Memory address
(Coa,CoB,COC...) coAa : 2 Enter parcel count
coa : 3 Clear error flag
coAa : 4 Set/clear external control signals
COA : 6 Clear interrupt enable flag
coa : 7 Set interrupt enable flag
coa : 10 Read I/0 Memory address
coa : 11 Read status (4-bit channel data, error)
INPUT FROM HIA : O Clear channel busy, done flags
CPU MEMORY CHANNEL HIA : 1 Enter I/0 Memory address
(HIA,HIB,HIC...) HIA : 2 Enter upper Central Memory address
HIA : 3 Enter lower Central Memory address
HIA : 4 Read Central Memory, enter block length
HIA : 6 Clear interrupt enable flag
HIA : 7 Set interrupt enable flag
HIA : 14 Enter diagnostic mode
OUTPUT TO HOA : O Clear channel busy, done flags
CPU MEMORY CHANNEL HOA : 1 Enter I/0 Memory address
(HOA ,HOB,HOC...) HOA : 2 Enter upper Central Memory address
HOA : 3 Enter lower Central Memory address
HOA : 5 Write Central Memory, enter block length
HOA : 6 Clear interrupt enable flag
HOA : 7 Set interrupt enable flag
HOA : 14 Enter diagnostic mode

HR-0808

Part 3

Table 7-1.

Interface functions (continued)

Device Mnemonic Function
ERROR LOGGING ERA : O Idle channel
CHANNEL ERA : 6 Clear interrupt enable flag
(ERA,ERB,ERC...) ERA : 7 Set interrupt enable flag
ERA : 10 Read error status
ERA : 11 Read error information (first parameter)
ERA : 12 Read error information (second parameter)
ERA : 13 Read error information (third parameter)
BLOCK BMA : O Clear channel control
MULTIPLEXER BMA : 1 Send reset functions
CHANNEL BMA : 2 Channel command
(BMA,BMB,BMC...) BMA : 3 Read request-in address
BMA : 4 Asynchronous 1/0
BMA : 5 Delay counter diagnostic
BMA : 6 Clear channel interrupt enable flag
BMA : 7 Set channel interrupt enable flag
BMA : 10 Read I/0 Memory address
BMA : 11 Read byte count
BMA : 12 Read status
BMA : 13 Read input tags
BMA : 14 Enter I/0 Memory address
BMA : 15 Enter byte count
BMA : 16 Enter device address
BMA : 17 Enter output tags

HR-0808

Part 3
7-5 B

DISK STORAGE UNIT CHANNEL

Each Buffer I1/0 Processor and Disk 1/0 Processor may have up to 16
channels connected to DD-29 Disk Storage Units. Each unit may operate
independently of the other units and all may be transferring data at the
same time. APML mnemonics DKA through DKP indicate these channels. The
function requests for the first channel are summarized below.

DKA : 0§ Clear the channel control
DKA : 1S Select mode or request status
DKA : 2§ Read data into I/O Memory
DKA : 3§ Write data from I/O Memory
DKA : 4 Select a new head group

DKA : 5 Select a new cylinderS

DKA : 65§ Clear the channel interrupt enable flag
DKA : 7§§ Set the channel interrupt enable flag

DKA : 10 Read I/0 Memory current address

.

DKA : 11 Read status response
DKA : 14 Enter I/O Memory beginning address

DKA : 15 Status response register diagnostic

DISK STORAGE UNIT CHARACTERISTICS

The DD-29 Disk Storage Unit consists of 40 rotating disk surfaces with a
read/record head on each surface. The period of disk rotation is 16.6
milliseconds. The heads are moved simultaneously to one of 823 disk
cylinders by means of a servomechanism. Positioning time from one
cylinder to another varies from 15 milliseconds to 80 milliseconds
depending on the distance the head assembly must travel.

§ Valid channel busy and channel done flags cannot he read until 1 CP
after this function is issued.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 7-6 B

Within each disk cylinder the 40 read/record heads are divided into ten
groups. Each head group then reads or records 4 bits of data in
parallel. The selection of a new head group requires 6 microseconds.
The recording surface available to each head group is called a disk
track. This is the basic storage unit reserved by the operating system.
A flaw on the disk surface requires that a track be removed from the
available resources in the track reservation table for the system.

Within each disk track are 18 sectors in which data may be recorded and
read back. The data in one sector is called a data block and consists of
2048 parcels of I/0 Processor data plus verification and error correction
data. Data may be transferred between the I/0 Memory and the disk
surface only in blocks of this fixed size.

DSU DATA SEQUENCE PATTERN

The data recorded in a sector of a disk track consists of a number of
parts as shown in figure 7-1. The numbers below each segment in the
figure are the total bits of all four heads, for the segment.

GAP | PREAMBLE | SYNC | ID | DELAY | PREAMBLE | SYNC | 512 WORDS | CRC | POSTAMBIE |
720 912 8 24 304 912 8 32,768 128 24 BITS

X MmMoaH

Figure 7-1. DSU data sequence pattern

The total number of bits in the above figure is 35,808. This is the
portion of a disk track assigned to a sector. An additional gap after
the last sector has 576 bits. The total number of bits in a disk track
is 645,120.

The bit positions assigned to the angular locations on the disk surface
are determined by an index mark and a servo clock. The index mark is a
unique mechanical mark on the rotating mechanism which provides a pulse
once per disk revolution. This pulse clears a counter which then counts
servo clock pulses to define the remainder of the disk timing. Servo
pulses are aiso derived mechanically from the rotating mechanism. These
pulses occur every 12 bit positions. The clock used for recording data
on the disk surface is obtained by a frequency multiplier. The index
mark begins the data sequence pattern listed above for sector 0. The

beginning location for the other sectors is determined by the servo
counter. These begin every 746 servo pulses or 8952 bit positions.

Part 3
HR~0808 7-7 B

The data sequence pattern for a sector, as listed above, is recorded in
two separate processes. The sector identification (ID) word, which
appears as 6 bits under each recording head, is recorded on each new set
of disk surfaces and is not modified in normal use of the disk storage
unit. The data block and cyclic checkword are recorded with each disk
write function in a normal operation. Associated with each of these
recordings is a preamble, sync, and postamble which are a necessary part
of the recording and reading process.

The write heads are turned on for a normal disk block write function
during the intersector gap. The writing begins with the second group of
preamble and sync bits which are sequenced by the disk control circuits.
The data from the I/O Memory is then recorded in a block of 32,768 bits.
This is followed by a 128-bit cyclic redundancy checkword which was
generated from the data by a Fire code generator. The write heads are
turned off after the 24-bit postamble.

SECTOR IDENTIFICATION WORD

The sector identification (ID) word for each sector is 24 bits. It is
composed of a cylinder number, a head-group number, a sector number and
four parity bits. The ID format is shown in figure 7-2.

523 522)13 512 29 8 24 53 50

0 CYLINDER HEAD SECTOR PARITY

Cg C8 C7 C6 C5 C4 C3 C, Cl C0 H3 H, Hl HO S4 83 S, Sl SO Py Py Pg Py

Figure 7-2. Sector ID format

The parity bits in the sector identification word each protect a
cross-section of the other 20 bits of the ID. The assignment of parity
bits to groups of ID bits is shown in table 7-2.

I/0 MEMORY ADDRESS REGISTER

The I/0 Memory address register is both an interface input register and
an interface output register for the channel. The beginning address for
a block of disk data is entered in the register by the processor before
issuing a read or write function. This address is restricted to values
which are a multiple of four because of the burst mode used in moving
data into and out of the I/O Memoryv. The low-order 2 bits of the address
are forced to 0 in the register. 1If the processor enters bit values
other than 0 in these positions, these values are discarded.

Part 3
HR-0808 7-8 B

Table 7-2.

Sector ID parity bit assignments

Parity Bits p0/20 pl/zl p2/22 p3/23
C7/220 C8/221 C2/222 0/223
C3/216 C4/217 C5/218 C6/219

Data Bits H3/212 C0/213 Cl/214 C2/215
S4/28 H0/29 H1/210 H2/211
80/24 Sl/25 S2/226 S3/227

C = Cylinder, H = Head, S = Sector, P = Parity

The address in the I/O Memory address register is increased by a count of
four as each burst of four words is transferred to or from the I/0
Memory. This address may be monitored by the I/0 Processor using the DKA

10 function. The address may be used without a new entry from the
processor after completion of a data transfer. 1In this case the
beginning address for the next block of disk data will be the next
sequential storage address. For a disk write the I/0 Memory address will
be left pointing four parcels beyond the last address of the buffer.

STATUS RESPONSE REGISTER

The status response register is used for the specific response requested
by a function 1 request and also for the implied response of function 5.
Details of these functions are listed under the appropriate headings.

DKA : 0 - CLEAR CHANNEL

Clear the channel busy and channel done flags. No parameters are
required for this function. This function is not interlocked with any
disk sequence which may be in process.

DKA : 1 - SELECT MODE

This function request allows the processor to select a mode for the disk
storage unit or to request status information from the interface. The
content of the accumulator at the time of the function request is used as
a selecting parameter. The categories of parameter values are summarized
in table 7-3.

Part 3
HR-0808

Table 7-3. DKA : 1 parameters

Value Meaning
000xxx Release Unit
001xxx Reserve Unit
002xxx Clear fault flags
003xxx Return to zero cylinder
004xxx Select margin conditions
005xxx Read sector number
006xxx Read error flags
007xxx Read disk status

Parameter 000xxx - Release Unit

This function request sets the channel busy flag and clears the channel
done flag. No other flag request can be made on a particular DSU until a
DKA : 1 request has been issued for that unit. After a few microseconds,
the interface clears the channel busy flag and sets the channel done
flag. The disk storage unit is released from the reservation on that
port and is free for reservation on the other port.

Parameter 001xxx - Reserve Unit

This function request sets the channel busy flag and clears the channel
done flag. A few microseconds later, the interface clears the channel
busy flag and sets the channel done flag. The DSU is reserved for the
requesting I/0 Processor if it is not currently reserved by another
device using the DSU access port. The function does not automatically
return a status response. The I/0 Processor must issue a separate
function 1 status request to determine whether the reservation was
accepted. The reserve unit function automatically selects head group O.
The unit must be reserved before it will recognize a read function (DKA :
2), a write function (DKA : 3), or a select cylinder function (DKA : 5).
All other functions may be issued to an unreserved unit, unless the DSU
is reserved on another access port.

Part 3
HR-0808 7-10 B

Parameter 002xxx - Clear Fault Flags

This function 1 request with an 002xxx parameter sets the channel busy
flag and clears the channel done flag. A few microseconds later the
interface clears the channel busy flag and sets the channel done flag.
The fault conditions stored in fault registers in the interface and in
the DSU are all cleared.

Parameter 003xxx - Return to Zero Cylinder

This function request sets the channel busy flag and clears the channel
done flag. The read/write heads are positioned to cylinder 000 as if the
DSU were just powered up. The time for positioning the heads depends
upon the distance to be traveled, and may extend to 500 milliseconds for
an 822-cylinder move. When the positioning is completed, the interface
clears the channel busy flag and sets the channel done flag.

Parameter 004xxx — Select Cylinder Margin

This function request sets the channel busy flag and clears the channel
done flag. A few microseconds later the disk interface clears the
channel busy flag and sets the channel done flag. The read/write heads
are moved slightly away from the normal cylinder center to attempt
reading data which cannot be recovered using normal head positioning.
The amount to be offset is determined by the low-order 5 bits in the
function parameter. Each unit of the 5-bit value offsets the heads 25
microinches (0.64 micrometers). Bit 22 of the parameter defines the
direction of the offset: a 1 indicates an offset toward the center of
the disk and a 0 specifies a move away from the center of the disk. The
nominal cylinder width is 2200 microinches (5600 micrometers), and a
nominal center-to-center cylinder spacing spacing is 2600 microinches
(6600 micrometers). The offset position is maintained until the next
positioning function is received, either another margin select, or a new
cylinder select. A following cylinder select automatically cancels the
margin select and centers the heads over the new cylinder. The direction
and amount of offset active is contained in the DSU offset register, and
can be inspected by a DKA : 1, parameter 007002 command.

Parameter 005xxx - Read Sector Number

This function request sets the channel busy flag and clears the channel
done flag. About 10 I/O Processor CPs later the interface clears the
channel busy flag and sets the channel done flag. At this time the
sector number of the sector currently under the read/write heads is
loaded into the status response register in the interface. A following
function 11 to the interface will read the status response register to
the I/0 Processor accumulator.

Part 3
HR-0808 7-11 B

The sector number is not read from the disk. Instead, an interface
counter operates from the DSU servo clock, tracking the sector number.

The counter is updated at the start of the 180-frame intersector gap, and
it is cleared by the index mark.

Parameter 006xxx — Read Error Flags

Issuing this function request sets the channel busy flag and clears the
channel done flag. A few microseconds later the interface clears the
channel busy flag and sets the channel done flag. At this time the
status response register on the interface receives data from the fault
registers in the DSU and in the interface. This data remains in the
status response register until it is replaced by data from another
function request. Figure 7-3 shows the bit assignments for the error
flags, and table 7-4 explains each error condition.

Part 3
HR-0808 7-12 B

215 21'—!- 213 212 211 2].0 29

28 27 26 25 24 23 32

21 20

STATUS BITS

HR-0808

=~ Lost Function

Figure 7-3.

LAngular Position Counter Error

Status response error flags

Part 3
7-13

1 1 1 1 1 1]1 1 1 1 1 1 1 1 1 1 FLAGS
I—Read/Write
Off' Cylinder
Read and Write
Conflict
~Multiple Head Select
LWrite Fault Channel O
LWrite Fault Channel 1
~Write Fault Channel 2
—Write Fault Channel 3
-Seek Error
-address Error
LData Error Channel O
—Data Error Channel 1
LData Error Channel 2
—Data Error Channel 3
—Lost Data

A-0Ol4/

Table 7-4.

Parameter 006 error flags

Bit Name Meaning
20 Read/write off An attempt was made to read or write
cylinder data when the read/write heads were still in
motion on a change of cylinder.
21 Read and write An attempt was made to strobe data
conflict simultaneously early and late, or an attempt
was made to write data with the cylinder
margin offset, or the unit attempted to read
and write at the same time.
22 Multiple head More than 4 heads were selected
select simultaneously.

23 Write fault A failure occurred associated with the
channel 0 recording head for channel 0.

24 Write fault A failure occurred associated with the
channel 1 recording head for channel 1.

25 Write fault A failure occurred associated with the
channel 2 recording head for channel 2.

26 Write fault A failure occurred associated with the
channel 3 recording head for channel 3.

27 Seek error A failure occurred in moving the read/write
heads to a new cylinder number.

28 Address error The disk storage unit received a head group
select for a group number greater than 118,
or a cylinder select for a cylinder number
greater than 1466 octal, or a margin
selection when the disk was not on cylinder,
or a cylinder select when the disk was not on
cylinder.

29 Data error An error occurred in the channel 0 data

channel O during the last read operation.

210 Data error An error occurred in the channel 1 data

channel 1 during the last read operation.

211 Data error An error occurred in the channel 2 data

channel 2 during the last read operaton.

HR-0808

Part 3
7-14 B

Table 7-4. Parameter 006 error flags (continued)

Bit Name Meaning
212 Data error An error occurred in the channel 3 data during
channel 3 the last read operation.

213 Lost data The data transfer between the I/0 Memory and
the deskewing buffers did not keep up with
the disk read/write transfer in a read or
write operation.

214 Lost function A function was received before a previous
function completed.

215 Angular position The index mark from the disk storage unit

counter error was received in the middle of a sector.

Parameter 007000 - Read Cylinder Register

This function request sets the channel busy flag and clears the channel

done flag.

A few microseconds later the interface clears the channel

busy flag and sets the channel done flag. At this time the interface

status register receives from the DSU the currently selected cylinder

The cylinder number occupies the 10 low-order bits of the status
This data remains in the status register until replaced by

another function request.

number.
register.

Parameter 007001 - Read Head Register

This function request sets the channel busy flag and clears the channel

done flag.

A few microseconds later the interface clears the channel

busy flag and sets the channel done flag. At this time the interface
status register receives from the DSU the currently selected head group
number, if the DSU is reserved to the processor. The head number goes in
the 4 low-order register bits, and bit 2% is a 1 to show reservation to

the requesting processor.
The register value has a range of 408—518 for the 10 head

A zero word returned indicates the DSU is not reserved to the

Mbytes.
groups.

requesting processor.

function

HR-0808

request.

Bit 2% indicates the DSU capacity is 600

Status data remains in the register until another

Part 3
7-15 B

Parameter 007002 - Read Margin/Difference Register

This function request sets the channel busy flag and clears the channel
done flag. A few microseconds later the interface clears the channel
busy flag and sets the channel done flag. At this time the interface
status response register receives from the DSU either the currently
selected offset margin or the difference between the present position of
the heads and the final cylinder position during a seek. If the last
function request was an offset margin selection, the status is the ones
complement of the offset number selected by that function. The 5
low-order bits on the status register hold the offset number, and bit
25 shows the offset direction. Bit 25 is set to 1 if the offset is
toward the center of the disk. See figure 7-4.

215 214 213 212 311 210 29 28 57 26 25 4 23 22 51 20 gprATUS BITS

x §2% 2322121 |2°] MARGIN BITS

OFFSET MAGNITUDE

A-0/43 OFFSET DIRECTION (1 = TOWARD CENTER)

Figure 7-4. Offset margin status word

If the previous function request was a select cylinder, the interface
status register receives the ones complement of the number of cylinder

positions yet to be crossed before reaching the desired cylinder. The
register contains 17778 when the heads are positioned at the desired

cylinder. The difference number goes into the least significant 10 bits
of the status register. See figure 7-5.

215 214 213 512 511 510 29 28 27 26 95 o4 93 22 31 20 graTUS BITS

0 0 1 1 0 1 1 0 0 1 DIFF. BITS

Example: 294 = 0100100110 tracks to go
1011011001 one's complement to register

Part 3
HR-0808 7-16 B

Parameter 007003 - Read Interlock Register

This function request sets the channel busy flag and clears the channel
done flag. A few microseconds later the interface clears the channel
busy flag and sets the channel done flag. At this time the interface
status response register receives from the DSU the contents of the
interlock register. Eight interlock flags are placed in the low-order
bit positions of the status response register. The interlock flags are
shown in figure 7-6. Ones indicate fault conditions. Table 7-5 explains
each flag.

215 214 213 212 511 310 29 28 37 26 55 4% 23 32 51 50 gpPATUS BITS

1 1 0 1 1 1 1 1 FLAGS

[IHigh Temperature
Disk Not Up To Speed
Heads Not Loaded

Brush Cycle In Process

-Start Switch Turned Off

-Zero if operation done correctly

=-Tow Negative Supply Voltage
A-0/42 g pPply g

—Low Positive Supply Voltage

Figure 7-6. Interlock register status bits

Timing Notes

A function 4 select head group request can be followed immediately by
another function to be done as soon as the new head group is active. For
example, a read disk data function may be stacked behind the select head
group function. If a function 1 status request is sent to the interface
before the read disk data function begins, the function 1 command takes
the place of the read disk data function, and the read disk data function
is lost. 1In this case, the Lost Function error flag sets in the
interface and will be available for the Read Error flags status request.

It is possible to issue a function 1 status request after a select
cylinder function and before the select cylinder function has finished.
But the status request should be issued immediately after the select
cylinder function, to give plenty of time separation between the done
flag of the status request and the done flag of the cylinder select. If
the two done flags occur close together, the program may not be able to
distinguish between them and handle the conditions incorrectly. It is
best to avoid status request functions near the end of a head positioning
Sequence.

Part 3
HR-0808 7-17 B

Table 7-5. Interlock status bits

Bit Meaning

20 This bit is set to indicate that the disk drive cabinet is
over the normal temperature range.

21 This bit is set to indicate that the disk surfaces are not
up to speed.

22 This bit is set to indicate that the disk heads are not
loaded on the disk surface.

23 The bit is set to indicate that the disk drive brush cycle
is in process.

24 This bit is set to indicate that the disk drive start
switch is turned off.

25 This bit is always zero.

26 This bit is set to indicate that the negative voltage
supply for the disk drive is below normal voltage.

27 This bit is set to indicate that the positive voltage
supply for the disk drive is below normal voltage.

DKA : 2 - READ DISK DATA

A function 2 request to the disk channel interface begins the process of
reading a block of disk data into the I/0 Memory at the beginning address
specified by the interface A register. The disk sector number is
specified by the accumulator content at the time of the function

request. The head group number and cylinder number are the values which
were last selected by the appropriate functions for that purpose.

The reading process begins by a hardware test for proper angular position
of the disk surface. The sector number requested by the processor is
compared with the sector number currently under the reading heads. If
the disk is not in the proper position, the execution of the read
function is delayed until the disk surface is properly positioned.

The interface anticipates the processor request for reading data when
other function requests have been satisfied. This anticipation takes the
form of reading each sector as the data appears under tne reading heads
with the expectaticn that the read request for that data will be
forthcoming. '

Part 3
HR-0808 7-18 B

Data read from the disk surface is routed to the I/O Memory through two
buffers, labeled A and B. Each buffer holds 512 words of I/0 Processor

data. Buffer A receives the first 512 words of disk data. Buffer B
receives the second 512 words. The use of the two buffers alternates
until the entire block of data has been processed.

The function 2 request clears the channel done flag and sets the channel
busy flag. The sector number is captured from the accumulator and
compared with the sector count. The currently anticipated reading
process will be accepted if buffer A has not yet filled with the first
sector of data from the disk surface. If the read process has proceeded
beyond this point, or if the sector number is wrong, the current read
process is aborted and the function request waits up to one disk
revolution for sector coincidence.

The data in buffer A begins moving to the processor I/0 Memory as the
disk read circuits begin filling buffer B. The data moves to the I/0
Memory in bursts of four words and normally empties buffer A before the
disk read circuits have filled buffer B. The roles of the two buffers

then reverse and data continues moving from the disk surface to the I/0O
Memory until the entire block has been processed.

The eight words of error correction data which follow the data block are
read into a buffer as the last section of the data block is moving from

the other buffer to the I/O Memory. Reading stops at this point for a
check of the Fire code generators which have been summing the data as it
was read from the disk surface. If all four generators are clear, the
data read from the disk is correct. The channel done flag is set and the
channel busy flag is cleared as the last word of data is entered in the
1/0 Memory.

DKA : 2 - Abnormal Conditions

An abnormal condition in the disk storage unit or in the reading or
processing of the data is indicated to the I/O Processor by a terminating
sequence which sets the channel done flag and leaves the channel busy
flag set as well. The processor program can then analyze the error by
appropriate function 1 requests for status information. Three types of
error conditions cause this termination, as described below.

Recorded data error — While the recorded data is transferring from the
DSU to the interface, the Fire code generators operate on the data as
explained in "Fire Code Generator" later in this section. The 32-bit
error correction code from each read head also passes through the Fire
code generator for that head. The four new error correction codes
generated should each be 32 zeros, if the data was stored and read
correctly.

Part 3
HR-0808 7-19 B

If any error correction code is non-zero, the recorded data error flag
for that head is set in the fault register. There are four such flags
for the four read channels. The I/O processor may use a special read
mode to obtain the error correction code necessary to proceed with the
correction software algorithm. The special read mode is described in the
following "DKA : 2 - Special Modes" section.

Lost data error - The lost data flag is set in the fault register if the
transfer of data from the buffers did not keep up with the reading of
data from the disk surface. The processor must reread the sector in this
case.

Lost Function - The lost function flag in the error status response is

set if a function is received at the interface before a previous function
has finished. The new function is lost, and should be requested again.

DKA : 2 - Special Modes

Special modes for the reading of disk data are requested by the processor
through sector numbers larger than 40 octal. The low-order 5 bits of the
requested sector number are translated for sector coincidence. The
high-order bits are interpreted for special mode.

Format mode - Sectors 408 through 618 request that the reading

process begin with the verification word and continue for a total of 1000
octal words. The following eight words are then interpreted as the error
correction code. This read mode is used for maintenance only. In this
case the error correction code was not generated by the Fire code
generators because the data length during the write sequence was much
longer than the requested length for this mode. This combination of long

write and short read allows the maintenance routine to test for various
failure modes in the Fire code generators.

Read correction code - Sectors 100g through 121g request that the
reading process begin with the error correction code and continue for the
eight words of that code. This mode is used when the data in the
associated sector has been read incorrectly and the processor program
wishes to do error correction.

Read early - Sectors 2008 through 2218 cause the reading heads to

sample the data from the disk surface somewhat earlier than normal. This
mode is used to recover data that cannot be read in a normal mode.

Read late - Sectors 400g through 421g cause the reading heads to
sample the data from the disk surface somewhat later than normal. This
mode is used to recover data that cannot be read in a normal code.

Part 3
HR-0808 7-20 B

Mixed modes - The read early and read late selections described above may
be used together with the other special modes by combining the high-order
bit values in a logical sum.

Buffer Echo Mode

A special diagnostic feature allows writing a test data block into the A
and B buffers and then reading out the test data. This can only be done
after a master clear and before a DKA : 1 function. The master clear
could be from a power on sequence or from a deadstart sequence. A DKA

14 function to enter the starting address for the read to I/O Memory must
precede the DMA : 2 read function. Refer to the buffer echo mode
explanation given with the following DKA : 3 write function discussion.

DKA : 3 - WRITE DISK DATA

A function 3 request to the disk channel interface begins the process of
writing a block of data from the I/0O Memory onto the disk surface. The
I/0 Memory address for beginning the block of data is specified by the
content of the interface A register. The disk sector number is specified
by the accumulator content at the time of the function request. The head
group number and cylinder number are the values which were last selected
by the appropriate functions for that purpose. The function request sets
the channel busy flag and clears the channel done flag.

The writing process begins by filling buffer A with data from the I/O
Memory. When this buffer is full, the interface monitors the angular
position of the disk surface for the proper position to begin writing
data. This position is slightly past the prerecorded verification word
for the requested sector. The write circuits are turned on when the disk
is in the proper position and the data in buffer A is transmitted to the
disk surface. At this time the interface begins filling buffer B with
data from the I/0 Memory. Buffer B should be filled before the disk
writing circuits have emptied buffer A. The lost data flag in the fault
register is set if this should not be the case. The disk writing
circuits begin transmitting data from buffer B to the disk surface as
soon as buffer A has been emptied. This process continues with the roles
of buffers A and B alternating until the last of the data in the block
has been loaded into buffer B. No further data is read from the I/0
Memory and the interface waits for completion of the data transfer from
buffer A to the disk surface.

The interface sets the channel done flag as soon as buffer A is emptied
for the last portion of the disk data. The channel busy flag is cleared
if no error has occurred in the writing process. The interface then
continues transmitting data from buffer B to the disk surface. The I/0
Processor is free at this point to issue another write function request
and begin loading buffer A with data for another sector on this track.

Part 3
HR-0808 7-21 B

The disk write circuits follow the last data from buffer B with eight
words of error correction code. This data comes directly from the Fire

code generators. The writing circuits are turned off at this time and
the interface prepares to write data in the following sector if the 1/0
Processor has requested this function.

The busy flag is left set at the time the done flag is cleared if an
error has occurred during the writing process. There are two possible

error conditions, which are described in the following paragraphs.

Fire Code Generation

As data is transferred from the I/0 Processor into the interface buffer,
the interface generates the Fire code, or cyclic redundancy checkword
(CRC). The Fire code generator uses the polynomial x32 4523 4421

+x +x~ + 1 to create one 32-bit checkword for each of the four DSU
write heads. This polynomial allows for the correcting of data in a
single error burst of 11 bits or less; and detects errors if there are
two bursts, or bursts of more than 11 bits in error.

The checkword is generated by a 32-bit shifting register; the register is
cleared before a data transfer is begun. The data bit going to the
buffer is compared to bit 231 of the shifting register. If the two

bits are alike, bit 20 of the register is cleared and the register is
shifted left one position. If the bits are not alike, register bits

21, 210, 220, and 222 are complemented, the register contents are

then shifted left one position, and bit 20 of the register is set to

1. Then, the next data bit is compared with register bit 231 and the
register contents are altered as previously.

Data bit 263 is the first data bit to be used in generating the
checkword for DSU head 3; 22 i5 the first data bit used for DSU head

2, 261 for head 1, and 290 for head 0. Bits 247, 231, and 215

are the other bits used first of their 16-bit channel words destined for
DSU head 3.

The checkword forms continuously while the interface transfers data to
the DSU. The 32-bit error correction code is appended to the data block.

Lost Déta Error

The lost data flag is set if the data transfer from the I/0O Memory has
not kept up with the data transfer to the disk surface.

Lost Function Error

The status response lost function error flag is set if a function is
recelved at the intertace betore the previous tunction is tinished. The

new function is lost. To recover, issue the new function again.

Part 3
HR-0808 7-22 B

Format Mode

A special mode of operation is provided in the disk channel interface to
prerecord the cylinder verification data on the disk surface. This mode
is selected by a function 3 request with a sector number value of 40
through 61 octal. The disk control circuits translate the low-order 4
bits of the sector number in the normal way to select the sector for
recording. The high-order bit causes the writing process to begin
process to begin earlier than normal. This selection records a 4000g
word block of data on the disk surface in an otherwise normal manner in
such a way that the first word of this data block is properly positioned
for the cylinder verification word. The remainder of the recording in
this format mode is used for maintenance functions and is then erased by
the recording of the normal sector data. Figure 7-7 shows the pattern
written in each sector under format mode.

GAP | PREAMBLE | SYNC | ID | ALL|ZEROS | CRC | POSTAMBLE | GAP

XE o2z

720 912 8 24 32,744 128 24 1,248 BITS

Figure 7-7. Format mode sector pattern

Buffer Echo Mode

A special diagnostic feature allows writing a test data block into
buffers A and B and then reading out the test data. This can only be
done after a master clear (from a power on sequence or a deadstart) and
before a DKA : 1 function. The sequence is as follows:

1. Master clear

2. DKA : 14 enter I/O Memory starting address

3. DKA : 3 write data to buffers A and B

4. DKA : 14 enter I/0 Memory starting address

5. DKA : 2 read data from buffers

6. Verify data

7. DKA : 1 function places controller in normal operation mode

Part 3
HR-0808 7-23 B

DKA : 4 - SELECT HEAD GROUP

A function 4 request to the disk channel interface reserves the DSU and
causes the head group selection circuits to select a head group. The new
head group number is specified by the low~order 4 bits of the accumulator
content at the time of the function request. This function may be
requested at any time with respect to the execution of other disk channel
functions. The 4-bit code for selection of the head group is captured in
a special register in the disk channel interface. The action of
switching the head group circuits requires about 5 microseconds and is
delayed until the completion of any other function currently in process.
It is possible, therefore, to select a new head group during a read or
write sequence and continue the reading or writing from the last sector
of one track to the first sector of a different track in the same disk
cylinder, without missing a disk revolution.

If this function is used to reserve the DSU, any one of the DKA : 1
functions must still be issued before this DKA : 4 function.

This function request does not alter the condition of the channel busy or
done flags. There is no channel interface response to this function.

DKA : 5 - SELECT CYLINDER

A function 5 request to the disk channel interface causes the disk
read/record head assembly to move to a cylinder position. The cylinder

number is specified by the 10 low-order bits of the accumulator content
at the time of the function request.

The channel busy flag is set and the channel done flag is cleared by the
function request. The servomechanism for positioning the head assembly
then begins moving to the new cylinder position. This process takes from
15 milliseconds for adjacent cylinders to 80 milliseconds for maximum
travel. A cylinder selection for the current cylinder requires a few
microseconds for the process.

The interface monitors the cylinder positioning and when the read/record
heads are on the newly requested cylinder, the data recorded on the
selected track is read for verification of the cylinder. The data in the
first verification word to pass under the read heads is captured and
entered in the status response register. The channel busy flag is
cleared to indicate completion of the requested function and the channel
done flag is set. If the function cannot be completed because of an
abnormal condition in the disk storage unit the channel done flag is set
and the channel busy flag is left set.

Part 3
HR-0808 7-24 B

It is possible to program the disk channel interface in such a way that
the progress of the cylinder positioning can be monitored. This is done
by aborting the normal sequence described above with a function 1 status
request. This resets the busy flag and clears the done flag and begins
the status response sequence. The cylinder positioning will continue but
the verification process will not occur. The progress of the cylinder
positioning can then be monitored by reading the difference register
content from the disk storage unit. A verification can be programmed by
repeating the cylinder selection.

DKA : 6 - CLEAR INTERRUPT ENABLE

A function 6 request to the disk channel interface clears the channel
interrupt enable flag. This prevents interruption of the I/0 Processor
program and requires program monitoring of the channel done flag for
proper sequencing of disk control functions.

DKA : 7 — SET INTERRUPT ENABLE

A function 7 request to the disk channel interface sets the channel
interrupt enable flag. This causes an I/O interrupt request for this
channel whenever the channel done flag is set. The interrupt enable flag
function for the I/0O Processor system.

DKA : 10 - READ LOCAL MEMORY ADDRESS

This function request reads the current value in the channel interface
1/0 Memory address register and enters this value in the accumulator.

This function may be performed at any time with respect to a disk storage
unit sequence.

DKA : 11 - READ STATUS RESPONSE

This function request reads the current content of the disk storage unit
status response register and enters this value in the accumulator. This
function request may be performed at any time with respect to the disk
storage unit sequence. The value read will be the response from the last
function which entered the status response register.

Part 3
HR-0808 7-25 B

DKA : 14 - ENTER LOCAL MEMORY ADDRESS

This function enters the current accumulator content in the channel
interface I/O Memory address register. The channel busy and channel done
flags are not altered in this process.

DKA : 15 - STATUS RESPONSE REGISTER DIAGNOSTIC

This function can be used to verify the operation of the status response
register. The function transfers a test value from the accumulator to
the status response register, overwriting the current status. A DKA : 11
read status response function immediately following this diagnostic
function will return the test value to the accumulator for verification.
The channel busy and done flags are not affected by the DKA : 15 function.

CONSOLE DISPLAY CHANNEL

The I/0 Processor has provision for a number of I/O channels connecting
to operator display consoles. Each display is assigned to a separate
channel and all may operate independently. Data is transmitted serially
from a channel interface register to the display device.

This channel has a 7-bit interface register which receives data from the
I/0 Processor accumulator and transmits this data serially to the display
device. Function requests for this channel 1 are described below.

TOA : 0S Clear the channel busy and channel done flags.

TOA : 65§ Clear the channel interrupt enable flag. The channel
busy and channel done flags are not altered in this

process.

TOA ; 75§ Set the channel interrupt enable flag. The channel
busy and channel done flags are not altered in this

process.

TOA : 145 Enter the low-order 7 bits of the accumulator content
in the channel interface register. It sets the
channel busy flag and clear the channel done flag.

It begins the transmission of the data from the
interface register to the display device and clears
the channel busy flag and set the channel done flag
when the transmission has been completed.

§ Vvalid channel busy and channel done flags cannot be read until 1 CP
after this function is issued.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10)

Part 3
HR-0808 7-26 B

CONSOLE KEYBOARD CHANNEL

The I/0 Processor has provision for a number of I/0 channels connecting
to operator console keyboards. Each keyboard is assigned to a separate
channel and all may operate independently. Data is transmitted serially
from the keyboard to a channel interface register. The channel busy flag
is set by the channel hardware at the beginning of the transmission. The
channel busy flag is cleared and the channel done flag is set when the
data has been assembled in the interface register.

This channel has a 7-bit interface register which assembles the data for
a character associated with a key depression. This data may then be read
into the I/0 Processor accumulator.

TIA : 0S Clear the channel done flag.

TIA : 658 Clear the channel interrupt enable flag. The channel
busy and channel done flags are not altered in this
process.

TIA ; 75§ Set the channel interrupt enable flag. The channel
busy and channel done flags are not altered in this

process.

TIA : 10S Read the contents of the channel interface register
into the low-order 7-bit positions in the accumulator
and clear the high-order bits. It sets the channel
busy flag and clears the channel done flag. It
transfers the data to the accumulator, then clears
the channel busy flag and sets the channel done flag.

§ Valid channel busy and channel done flags cannot be read until 1 CP
after this function is issued.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10)

Part 3
HR-0808 7-27 B

PERIPHERAL EXPANDER CHANNEL

Depending on its function, an I/0 Processor may have a channel connected

to a peripheral expander.
controllers for peripheral devices.

The peripheral expander can contain 16

Only one controller can be active at

one time, but that controller may be servicing more than one peripheral

device.
individually selectable.
listed below.

Each peripheral unit is assigned a device address and is
The functions for the peripheral expander are

EXB : 0S Idle channel

EXB : 1§ DIA data input from A register
EXB : 2§ DIB data input from B register
EXB : 35 DIC data input from C register
EXB : 45 Read busy/done, interrupt number
EXB : 5 Load device address

EXB : 655 MSKO mask out

EXB : 755 Set interrupt mode

EXB : 10 Read data bus status

EXB : 11 Read status 1

EXB : 13 Read status 2

EXB : 145 DOA data output to A register
EXB : 155 DOB data output to B register
EXB : 16§ DOC data output to C register
EXB : 175 Send control

INTERFACE REGISTERS

Each peripheral controller has three interface registers:

A, B, and C.

These registers are used for control and data communication between the

peripheral device and the I/O Processor.

The specific uses of the

registers are defined by the peripheral device controller.

§ Allow 1 CP before checking busy or done.

§§ Allow 1 CP before checking the interrupt channel number (IOR :

i0).

Part 3

HR-0808

7-28

CHANNEL ASSIGNMENTS

All peripheral devices handled by the peripheral expander share the same
channel number. Device addresses select among the peripheral units.

EXB : 0 - IDLE CHANNEL

This instruction clears the peripheral expander channel busy and done
flags, clears the peripheral expander interrupt enable flag, and clears
the interface DMA (direct memory access) enable flag. The peripheral
expander channel is then inactive and DMA references via the data channel
will not be allowed.

EXB : 1 - DIA

This instruction requests the A input register contents from the selected
peripheral controller in the peripheral expander. Peripheral expander
channel busy sets and done clears, both in the clock period following

issue. Since this command requires the use of the data bus, it is
delayed by the function delay time (minimum 1 microsecond). When it
completes, the peripheral expander channel done flag sets and the busy
flag clears. At this time, the I/0 Processor may follow this instruction
with an EXB : 10 to load the A input register information into the I/0
Processor accumulator.

EXB : 2 - DIB

This instruction performs exactly as the EXB : 1 instruction, except that
the peripheral controller B input register is sampled.

EXB : 3 - DIC

This instruction performs exactly the same as the EXB : 1 instruction,
except that the peripheral controller C input register is sampled.

EXB : 4 - READ BUSY/DONE, INTERRUPT NUMBER

This instruction serves two purposes. The first purpose is to return the
specified peripheral controller busy and done flags to the interface.

The second is to determine which peripheral controller has the highest
pricrity interrupt, its done flag set, and its interrupts enabled.

Part 3
HR-0808 7-29 B

This is a delayed function because it uses the bus data lines from the
peripheral expander. The peripheral expander channel busy flag sets and
done flag clears 1 CP after instruction issue. Upon completion, the
peripheral expander channel busy flag is cleared and the done flag is
set. At this time, an EXB : 11 instruction may be issued to load the
peripheral controller busy flags, done flags, and the present interrupt
device address.

EXB : 5 - LOAD DEVICE ADDRESS

This instruction loads the bits 20 - 25 of the I/0 Processor
accumulator into the interface device address register. The interface
device address register is used to hold the device address of a
peripheral controller to which a delayed function is being sent. A
delayed function is any function which requires the use of the bus data
lines in the expander, thus requiring time to complete. Functions that
are considered delayed functions are the EXB : 1, 2, 3, 4, 6, 14, 15, 16,
and 17 functions. The address in the interface device address register
must not be changed at any time during the execution of a delayed
function. This instruction does not change the peripheral expander
channel done and busy flags. The device address is loaded into the
interface register in the I/O Processor clock period following

instruction issue.

EXB : 6 MSKO MASK OUT

This instruction sends the present contents of the I/0 Processor
accumulator to the peripheral expander where the 16-bit word acts as a
mask to disable interrupts from specific peripheral controllers. Every
device controller in the peripheral expander has a mask bit. The
specific mask bits for some probable peripheral devices are given in
table 7-6. The mask bits are subject to change, so the latest
documentation for the peripheral interface should be consulted. Three
Cray Research assignments are shown on the table. If the mask bit is
set, interrupts from the corresponding peripheral controller are
disabled. The peripheral expander channel busy flag is set and the done
flag is cleared upon initiation of this instructon. Because the mask
must be sent throughout the peripheral expander via the bus data lines,
this instruction is a delayed instruction. When it does complete, the
peripheral expander channel busy flag clears and the done flag sets.

Issuing this instruction clears the interrupt flag. If an interrupt
condition is still present 400 nanoseconds after completion, the
interrupt flag will set again.

Part 3
HR-0808 7-30 B

Table 7-6. Peripheral device mask bits for interrupt disabling

Octal
Device Code Mask bit Device
11/518 20 Teletype output
11/508 2t Teletype input
30/708 Agynchronous hardware multiplexer
70 Synchronous Line Adapter
14/548 22 Real-time clock option
31,32/71,728 IBM 360/370 interface
06/46§ 23 Multiprocessor adapter transmitter
07/47§ Multiprocessor adapter receiver
15/55§ Incremental plotter
17/575 Card Reader CRO (CRI modification)
44 Modem control for multiline asynchronous
controller

34,35/74,75§ 24 Multiline asynchronous controller
16/565 2° Magnetic tape MTO (CRI)
22/628 Cassette tape
34/748
20/608 26 Fixed head disk
21/618 27 Analog/Digital converter
40 Interprocessor bus full-duplex unit
41 Interprocessor bus full-duplex unit
40SS Synchronous communication receiver
41888 Synchronous communication transmitter
33/73 28 Moving head disk
42) Digital I/0
43 29 Line Printer PRO (CRI modification)
64,65,66/74 210 Floating-point (NOVA only)
76,768

211 Unassigned

212 Unassigned

213 Unassigned

214 Unassigned

215 Data communications multiplexer

§ First device code/second device code
§§ May be set up with any unused even device code greater than 408

§§§ May be set up with any unused odd device code greater than 4lg

Part 3
HR-0808 7-31

EXB : 7 — SET INTERRUPT MODE

This instruction is used to enable or disable interrupts for the
peripheral expander I/O channel and for the peripheral controllers. The
accumulator value present when this instruction issues determines what
types of interrupts are honored. If a bit is set, the interrupts will be
enabled as follows:

Accumulator bit 20 - Enables interrupts from the I/0 channel to
the I/0 Processor
Accumulator bit 21 - Enables interrupts from the I/0 controllers

to the I/0 Processor

The I/0 channel busy and done flags are not affected by this
instruction.

EXB : 10 - READ DATA BUS STATUS

This instruction reads the data on the data bus into the I/O Processor
accumulator. This is normally used to bring back the data received
from the bus by the EXB : 1, 2, or 3 input instructions. The
peripheral expander I/0 channel busy and done flags are not effected
by this instruction. The data will stay valid until another EXB : 1,
2, or 3 function is issued.

EXB : 11 - READ STATUS 1

This instruction returns to the I1/0 Processor the status of the
peripheral expander I/0 channel and of the peripheral controller.
Channel busy and done flags are not affected by this instruction. The
status bits are assigned as shown in table 7-7.

Part 3
HR-0808 7-32 B

Table 7-7. Read status 1 bit assignments

Bit Meaning

20 Interrupting device code bit 20

21 Interrupting device code bit 2%

22 Interrupting device code bit 22

23 Interrupting device code bit 23

24 Interrupting device code bit 24

25 Interrupting device code bit 25

26 Unassigned

27 Direct memory access enabled

28 Expander I/O channel interrupts enabled

29 Controller interrupts enabled

210 Function active - delayed function executing
211 Expander I/0 channel busy flag

212 Expander I/0 channel done flag

213 INTR - interrupt request from peripheral interface
214 SELB - select busy flag of addressed device
215 SELD - select done flag of addressed device

EXB : 13 - READ STATUS 2

This instruction returns to the I/O Processor the status of the
Peripheral expander I/O channel and of the peripheral controller.
Channel busy and done flags are not affected by this instruction. The
instruction is similar to EXB : 11, except that the contents of the
device address register in the interface is returned instead of the
interrupt device code number. Status bit assignments are shown in table
7-8.

Part 3
HR-0808 7-33

Table 7-8. Read status 2 bit assignments

Bit Meaning

20 Device address bit 20

21 Device address bit 21

22 Device address bit 22

23 Device address bit 23

24 Device address bit 24

2° Device address bit 2°

26 Unassigned

27 Direct memory access enabled

28 Expander I/0 channel interrupts enabled

29 Controller interrupts enabled

210 Function active - delayed function executing
2ll Expander I1/0 channel busy flag

212 Expander I/0 channel done flag

213 INTR - interrupt request from peripheral interface
214 SELB - select busy flag of addressed device
215 SELD - select done flag of addressed device

EXB : 14 - DOA (DATA OUT A)

This instruction sends the contents of the I/O Processor accumulator to
the selected peripheral controller in the peripheral expander. The data
goes into the A register of the peripheral controller whose device
address is currently in the device address register. This command causes
the peripheral expander I/0 channel busy flag to set and the done flag to
clear. This command which reguires the use of the data bus in the
peripheral expander and is a delayed function. When it does complete,
the peripheral expander I/0 channel done flag sets and busy clears.

Part 3
HR-0808 7-34 B

EXB : 15 - DOB (DATA OUT B)

This instruction sends the contents of the I/O Processor accumulator to
the selected peripheral controller in the peripheral expander. The data
goes into the B register of the addressed device controller. The

instruction operation is otherwise the same as the EXB : 14 DIA
instruction.

EXB : 16 - DOC (DATA OUT C)

This instruction sends the 1/0 Processor accumulator contents to the C
register of the selected peripheral controller in the peripheral
expander. Otherwise, the operation is the same as the EXB : 14 DOA
instruction operation.

EXB : 17 - SEND CONTROL

The peripheral controllers use four control signals in the peripheral
expander: I/0 Reset, Pulse, Clear, and Start. Each controller may have

different uses for these signals. This instruction sends the control
signal selected by the bits in the accumulator at instruction issue. The
control signals are delayed instructions. The peripheral expander I/0
channel busy flag sets at issue time and the done flag clears. Then when
the command has completed, the channel done flag sets and the busy flag
clears. The accumulator bits set control signals as shown in table 7-9.

Table 7-9. Accumulator bit control signals

Bit Function

20 Start (s)

21 Clear (C)

22 Pulse (P)

23 I/0 reset (IORST)
Part 3

HR-0808 7-35 B

DELAYED FUNCTIONS

Several functions require the data bus in the peripheral expander. These
need extra time to complete, and may have to wait for the data bus to be
free. The completion of a delayed function is shown by setting the
peripheral expander I/0 channel done flag. The done flag for the
preceding delayed function must be received at the I/0 Processor before
sending another delayed function.

Those functions that are considered delayed functions are:

EXB : 1 DIA
EXB : 2 DIB
EXB : 3 DIC
EXB : 4 Read busy/done, interrupt number
EXB : 6 MSKO

EXB : 14 DOA
EXB : 15 DOB
EXB : 16 DOC

EXB : 17 Send control

TRANSFER SPEEDS

The peripheral expander interface is capable of sustaining a transfer
rate of 16 megabits per second from the I/O Processor to the expander
chassis. In the reverse direction, it can sustain a speed of
approximately 14.5 megabits per second. This is achieved by using the
data channel mode which transfers a 16-bit parcel every microsecond. The
programmed I/0 mode can also reach these speeds.

Part 3
HR-0808 7-36 B

CHANNEL FOR INPUT FROM CRAY-]1 CHANNEL

The I/0 Processor may have one or more channels dedicated to receiving
data from a CRAY-1 I/0 channel. Data is transferred in block mode
directly into I/0 Processor I/0 Memory. The functions are listed below.

CIA : 0S Clear channel

CIA : 1S Enter I/O Memory address, start transfer
CIA : 2 Enter parcel count

CIA : 3 Clear channel parity error flags

CIA : 4 Clear ready waiting flag

CIA : 65§ Clear interrupt enable flag

CIA : 75§ Set interrupt enable flag
CIA : 10 Read I/0 Memory address

CIA : 11 Read ready waiting/error flags

I/0 MEMORY ADDRESS REGISTER

The I/O Memory address register contains the I/0 Memory address for the
next I/O Memory reference. It is loaded with the I/0 Memory starting
address at the initiation of the input transfer. The low-order 2 bits of
starting address are forced to 0 when loaded into the register. This is
done because the memory references are done in bursts of four parcels,

and upon completion of a reference, the register address is increased by
4. If, for some reason, the input transfer stops on some boundary other
than four, the final memory reference stores undefined parcels. The
number of defined parcels can be determined by reading the final memory
address, which is equal to the address of the last defined parcel, plus 1.

CIA : 0 - CLEAR CHANNEL

This function clears the interface channel busy and done flags and aborts
any transfer in progress. The new states of busy and done are not valid
until the second clock period following this function. Wait one clock
period after issuing this function before sampling these flags.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 7-37 B

CIA : 1 - ENTER I/O MEMORY ADDRESS

This function enters the accumulator content into the 16-bit I/0 Memory
address register (forcing the 2 low-order bits to 0) and starts an input
transfer from the Central Processing Unit. The busy flag is set and the
done flag is cleared. Upon receipt of four parcels, a memory reference
is made. Then another four parcels are received and stored. This
continues until the parcel count is 0 or until a disconnect is received
from the CRAY-1 I/0O channel. At that time, the done flag is set and the
busy flag is cleared.

CIA : 2 - ENTER PARCEL COUNT

This function stores the accumulator content into the interface parcel
count register. This value is a positive count of the number of parcels
to be transferred. The status of the busy and done flags are not
affected.

CIA : 3 - CLEAR CHANNEL PARITY ERROR FLAGS

Four parity bits protect the 16-bit parcels on the CPU channel. A parity
error in a 4-bit group causes one parity error flag to set. This funtion

clears all four parity error flags. A parity error does not affect the
states of the channel busy and done flags. Similarly, issuing this

function does not affect the states of the channel busy and done flags.

CIA : 4 - CLEAR READY WAITING

If the I/0 Processor input channel is inactive and a ready pulse is
received from the CPU, the channel sets a ready waiting flag. If, in
order to resynchronize the transfer, this ready must be discarded, this
function will clear the ready waiting flag. If the ready signal is not
discarded and the input channel is started, the data on the lines will be
sampled as the first parcel of the transfer. The channel busy and done
flags are not affected.

CIA : 6 - CLEAR INTERRUPT ENABLE FLAG

This function disables the interface from interrupting the I/O

Processor. The channel may still be monitored via the busy and done flag
ctatus. The channel husv and done flags are not affected by this
function.

Part 3
HR-0808 7-38 B

CIA : 7 - SET INTERRUPT ENABLE FLAG

This enables interrupts on the interface. The channel will then
interrupt whenever the done flag sets. The channel busy and done flags
are unaffected by this function.

CIA : 10 - READ MEMORY ADDRESS

This function transfers the content of the interface I/0 Memory address
register into the accumulator. The address is one greater than the
address of the last parcel stored. Since a memory reference is four
parcels of data, there will be undefined parcels of data written into
memory if the transfer length is not a multiple of four. The channel
busy and done flags are unaffected by this function.

CIA : 11 - READ READY WAITING/ERROR FLAGS

This function reads into the accumulator the content of the interface
status register. The status bit assignment is listed in table 7-10.

Table 7-10. Ready waiting/error flags

Bit Meaning

20 Channel parity error flag
for bits 20-23

21 Channel parity error flag
for bits 24-27

22 Channel parity error flag
for bits 28-211

23 Channel parity error flag
for bits 212-215

Ready waiting flag

Part 3
HR-0808 7-39

CHANNEL FOR OUTPUT TO CRAY-1 CHANNEL

The I/0 Processor may have one or more channels for sending data to a
CRAY-1 input channel. Data is transferred in block mode directly from
I/0 Memory. The functions are listed below.

COA : 0S Clear channel

CoA : 1° Enter I/0 Memory address, start transfer
CcoA : 2 Enter parcel count

COA : 3 Clear error flag

COA : 4 Set/clear external control signals

coa 6S$ Clear interrupt enable flag

.

COA : 7§§ Set interrupt enable flag
coa : 10 Read I/O Memory address

CoA : 11 Read error flags

I/0 MEMORY ADDRESS REGISTER

The I/0 Memory address register contains the I/0O Memory address for the
next I/O Memory reference. It is loaded with the I/O Memory starting
address at the initiation of the output transfer. The 2 low-order bits
of the starting address are forced to 0 when entered in the register.
This is done because the memory references are in bursts of four parcels,
and upon completion of a memory reference, the register address is
increased by 4. Upon completion of the output, the I/0 Memory address in
the register is one greater than the address of the first parcel sent.

COA : 0 - CLEAR CHANNEL

This function clears the channel busy and done flags and aborts any
transfer. The busy and done flags are not valid for sampling until the
second clock period following completion of this function.

§ Allow 1 CP before checking busy and done.
§§ Allow 1 CP betore checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 7-40 B

.

COA : 1 - ENTER I/0 MEMORY ADDRESS

This function loads the current contents of the accumulator into the
16-bit I/0 Memory address register (forcing the 2 low-order bits to 0)
and starts the transfer to the CPU. The busy flag sets and the done flag
clears. The interface makes a memory reference starting at the address
contained in the I/0 Memory address register, and outputs four parcels of
data. Then another reference reads out another burst of four parcels.
When the parcel count stored in the interface register has been reached,
the transfer stops. The done flag sets and the busy flag clears.

COA : 2 - ENTER PARCEL COUNT

This enters the accumulator content into the interface parcel count
register. This value is a positive count of the number of parcels to be
transferred. The channel busy and done flags are not affected by this
function.

COA : 3 - CLEAR ERROR FLAG

This command is used to clear the sequence error flag. The sequence
error flag sets when there is a resume signal received from the CPU and
the interface is not busy or there is an I/O Memory reference in
progress. If the interface interrupt enable flag is set, the sequence
error flag will cause an interrupt. The sequence error has no affect on
the channel busy and done flags. The channel busy and done flags are not
affected by this function.

COA : 4 - SET/CLEAR EXTERNAL CONTROL SIGNALS

This function sends control signals to the CPU. The signal selection is
governed by set bits in the accumulator as shown in table 7-11.

Hold disconnect is used to stop the automatic disconnect that is sent at
the end of a transfer.

Write disconnect sends a disconnect to the CPU with no data transferred.

Error channel resume is reserved for maintenance use with configurations
without an error logging channel. RTC interrupt is reserved for use on
systems where a programmable clock is not present.

The accumulator signal select bits are held in an interface register
until they are altered by another COA : 4 function. The channel busy and
done flags are not affected by this command.

Part 3
HR-0808 7-41 B

Table 7-11. External control signal bits

Bit Control Signal
28 Write disconnect
29 Hold disconnect
210 Unused

211 Dead dump

212

RTC interrupt

213 Error channel resume
214 I/0 master clear
215 CPU master clear

COA : 6 - CLEAR INTERRUPT ENABLE FLAG

This function clears the channel interrupt enable flag to prevent the
interface from interrupting the I/O Processor. The channel may be
monitored via the busy and done flags and via the status information
returned by the COA : 11 command.

COA : 7 - SET INTERRUPT ENABLE FLAG

This function sets the interrupt enable flag to allow interrupting the
I/0 Processor. With interrupts enabled, the interface will interrupt
whenever the done flag sets or whenever a sequence error occurs. This
function does not affect the busy and done flags.

COA : 10 - READ I/0 MEMORY ADDRESS

This command enters the content of the I/O Memory address register into
the accumulator. The address entered will be one greater than the
address of the last parcel transferred from I/0 Memory. The channel busy
and done flags are not affected by this command.

Part 3
HR-0808 7-42 B-01

COA : 11 - READ ERROR FLAGS

This function reads into the accumulator the status of the interface.
The bit significances are listed in table 7-12.

Table 7-12. Error flags

Bit Meaning

20 4-bit channel data bit 20
21 4-bit channel data bit 21
22 4-bit channel data bit 22
23 4-bit channel data bit 23
215 Sequence error

The channel busy and done flags are not affected by this command. The
4-bit channel is reserved for maintenance use with configurations without
an error logging channel.

MEMORY CHANNEL

A Memory Channel (1 standard and 1 optional) is used for transferring
data between the CPU Central Memory and an IOP I/O Memory. A Memory
Channel consists of an input channel that carries data from Central
Memory to I/O Memory, and an output channel that passes data from the I/0
Memory to the Central Memory. Each channel carries 64 bits of data in
parallel, along with 8 check bits. A separate 12-bit channel is provided
for both the input channel and the output channel for carrying address
information. A data rate of approximately 800 million bits per second is
possible on either the input channel or the output channel.

The input channel and the output channel are more complex than the normal
CRAY-1 channels. There are more control signals provided, and more data

protection information. The signals and their timing are described in
this section, followed by an explanation of the IOP instructions that
control a Memory Channel.

Part 3
HR-0808 7-43 B

SIGNAL DESCRIPTIONS

Figure 7-8 shows the Memory Channel signals and the directions of the
signals. First the input channel signals are described, then the output

channel signals are described.

pATA 20 - 263

CHECK BYTE 20 - 27

DATA READY

@@

LAST WORD rLAG

UNRECOVERABLE ERROR

ADDRESS ERROR

TRANSMIT ADDRESS

GO 8 BANKS

 ARRRRRR,

TRANSMIT DATA

CLEAR CHANNEL

ADDRESS READY

'RRX!

ADDRESS 20 - 211

ADDRESS PARITY

CPU
paTA 20 - 293

CHECK BYTE 20 - 27

DATA READY

LAST WORD FLAG

CLEAR CHANNEL

ADDRESS READY

ADDRESS 20 - 211

ADDRESS PARITY

DISABLE ERROR CORRECTION

A.wé)“‘Aé)(’@ i

TRANSMIT DATA

UNRECOVERABLE ERROR

ADDRESS ERROR

TRANSMIT ADDRESS

Figure 7-8. Memory Channel signals

Central Processing Unit to I/0O Processor Input Channel

YyYyvYy

INPUT
CHANNEL

I0P

QuTPUT
CHARNNEL

Data (to IOP) - The data is passed in 64-bit words over 64 lines. Data
is valid 2 CPs after the leading edge of Data Ready, and stays valid for

6 CPs.

Part 3
HR-0808 7-44

Check Byte (to IOP) - The Check Byte is the 8 error check bits read out
of the CPU memory. It is passed to the I/O Processor to verify the
accuracy of the received Data. The Check Byte has the same timing and
valid points as the Data Signal.

Data Ready (to IOP) - This signal indicates data is wvalid on the cable.
The leading edge of Data Ready preceded the Data signals by 2 CPs and is
true for 1 CP. The minimum period for Data Ready signals is 6 CPs.

Last Word Flag (to IOP) - This signal indicates the last data word of the
complete transfer is on the Data lines. This also means the CPU word
count is 0. This signal has the same timing and duration as the Data
signals.

Unrecoverable Error (to IOP) - This signal indicates an unrecoverable
error occurred in the transfer at the CPU. The channel will go inactive
and remain so until a Clear Channel signal is sent to the CPU from the
IOP. Unrecoverable error conditions include:

1. Address parity error,

2. Transmit Data signal received at the CPU and less than 3 Address
Ready signals were received,

3. More than 3 Address Ready signals received at the CPU,
4. Uncorrectable data error from Central Memory.

The unrecoverable error signal continues until a Clear Channel is sent.

Address Error (to IOP) - The Address Error signal indicates the
unrecoverable error was an address error, from conditions 1, 2 or 3 of
the error conditions listed previously in "Unrecoverable Error". The
Address Error signal should be sampled when the leading edge of the
Unrecoverable Error Signal appears.

Transmit Address (to IOP) - This signal indicates the CPU side is
inactive and that a transfer can be initiated by sending an address on
the Address line. Transmit Address returns to the cleared state after
three Address Ready signals, and will not set again until after the last
data word has been transferred to the IOP Processor. This signal also
clears if there is an error condition on the CPU side of the channel and
will not set again until a Clear Channel is sent.

Go 8 Banks (to IOP) - This signal indicates the Central Memory is
operating in the 8-bank mode. All transmitted block sizes should be
reduced to eight words.

Part 3
HR-0808 7-45 B

Transmit Data (to CPU) - This signal indicates the I/0O Processor can
accept a block of data from the CPU. This signal remains set until the
first Data Ready signal is received for that data block. Transmit Data
is sampled at the CPU at the beginning of each data block. If Transmit
Data is set, the l6-word data block will be transmitted. If this signal
is cleared at that time, no data will be transmitted until the Transmit
Data signal sets. The Transmit Data signal is clear when the channel is
inactive and will not set until at least 100 nanoseconds after the third
Address Ready signal trailing edge.

NOTE

The number of 64-bit data words sent in the first
block equals 16 minus the number specified by bits

20 and 21 of the cpu starting address. This
adjusts the blocks to 1l6-bank boundaries so that
the next block begins with section 0. If the Go 8
Bank signal is set, the number of data words in the
first block is 8 minus the address 29 value.

Clear Channel (to CPU) - This signal clears all error conditions in the
channel. It remains set a minimum of 100 nanoseconds or until the
Unrecoverable Error signal goes false. An Address Ready signal must lag
the trailing edge of the Clear Channel signal by at least 100 nanoseconds.

Address Ready (to CPU) - This signal indicates the Address lines will
soon have valid address data. The leading edge of this signal leads the
address information by 25 nanoseconds and stays set for 12.5
nanoseconds. The minimum period for Address Ready signals is 75
nanoseconds, leading edge to leading edge. Three Address Ready signals
are used to initiate a transfer. The first accompanies bits 210
through 2 of the beginning central memory address on the Address
lines. The second Address Ready accompanies bits 20 - 29 of the
beginning Central Memory address and bits 2 3 - 212 of the transfer
word count. The third address Ready accompanies bits 20 - 211 6f the
transfer word count. See figure 7-9.

Part 3
HR-(0808 7-46 B

1 221 STARTING ADDRESS 210
)11 2 o0
2 29 STARTING ADDRESS 0 | 213 Ll
[
‘—/
TRANSFER
WORD
COUNT
e 20
3 o1l TRANSFER WORD COUNT 20

Figure 7-9.

Address and word count formats

ADDRESS LINE BITS

ADDRESS LINE BITS

ADDRESS LINE BITS

Address (to CPU) - The 12 Address lines carry the Central Memory starting

address and the transfer word count.

The information carried on the

Address lines for each of the three address transfers is shown in figure

7-9. The information is valid for 75 nanoseconds.

lag the leading edge of Address Ready by 25 nanoseconds.

The Address signals

Address Parity (to CPU) - These signals provide odd parity for each group

of 4 address bits as follows:

Address Parity Bit

Address Information Bits

20_23
24 - 27
28 - 91l

HR-0808

Part 3
7~47

The Address Parity signals have the same timing as Address signals. They
are valid for 75 nanoseconds.

I/0 Processor to Central Processing Unit Output Channel

Data (to CPU) - Data passes in 64-bit words over 64 lines. Data is valid
25 nanoseconds after the Data Ready signal leading edge and Data stays
valid for 75 nanoseconds.

Check Byte (to CPU) - Check Byte is the 8 error check bits generated by
the output side of the channel. The error code generation methods used
are the same on each side of the channel. The Check Byte is passed to
the CPU with the same timing and valid points as the Data signals.

Data Ready (to CPU) - This signal indicates data is valid on the cable.
The leading edge of Data Ready precedes the Data signals by 25
nanoseconds and Data Ready is set for 12.5 nanoseconds. The minimum
period for Data Ready signals is 75 nanoseconds.

Last Word Flag (to CPU) - This signal indicates the last data word of the
complete transfer on the Data lines. This also means the I/0 Processor
word count is 0. This signal has the same timing and duration as the
Data signals.

Clear Channel (to CPU) - This signal clears all error conditions in the

channel. It remains set a minimum of 100 nanoseconds or until the
Unrecoverable Error signal clears. An Address Ready signal must lag the

trailing edge of the Clear Channel signal by at least 100 nanoseconds.

Address Ready (to CPU) - This signal indicates information will soon be
valid on the Address lines. The leading edge of Address Ready leads the
valid address information by 25 nanoseconds and is set for 12.5
nanoseconds. The minimum period for sequential Address Ready signals is
75 nanoseconds. The Address Ready signal is only sent when the Transmit
Address signal is set. Three Address Ready signals are used to initiate
a data block transfer. The first Address Ready signal accompanies
Address information which is bits 210 - 221 of the starting address

in Central Memory. The second Address Ready indicates the Address lines
will soon contain bits 20 - 29 of the Central Memory starting address
and bits 212 - 213 of the transfer word count. The third address
information transmission preceded by an Address Ready, contains the 2

- 211 bits of the transfer word count. See preceding figure 7-9.

Address (to CPU) - The 12 Address lines carry the Central Memory starting
address and the transfer word count. The Address signals lag the leading
edge of Address Ready by 25 nanoseconds, and then stay set for 75
nanoseconds. The formats of the information carried in each of three
address information transfers are shown in the preceding figure 7-9.

Part 3
HR-0808 7-48 B

Address Parity (to CPU) - These signals provide odd parity for each group
of four Address signals as follows:

Address Parity Bit Address Information Bits
20 20 - 23
21 24 - 27
22 28 _ 7ll

The Address Parity signals have the same timing as Address Signals. They
are valid for 75 nanoseconds.

Disable Error Correction (to CPU) - This signal is used for diagnostic
purposes only. It disables the Single Error Correction, Double Error
Detection (SECDED) circuitry used on the data channel.

Transmit Data (to IOP) - This signal indicates the CPU can accept a block
of data from the 1/0 Processor. This signal remains set until the first
data ready signal is received for that data block. Transmit data is
sampled at the beginning of each data block. If Transmit Data is set,
the 16-word data block will be transmitted. If this signal is cleared
when sampled, no data will be sent until Transmit Data does go set.

NOTE

The number of 64-bit words sent in the first block of a
transfer equals the number of banks (16 or 8), minus
the number specified by bits 29 and 21 (16 banks)

or by bit 20 (8 banks) of the Central Memory starting
address. This adjusts the blocks to 1l6-bank or 8-bank
boundaries so that the next block begins with bank 0.

Unrecoverable Error (to IOP) - This signal indicates an
unrecoverable error occurred in the transfer at the CPU side.
The channel will go inactive and remain so until a Clear Channel
is sent to the CP. Unrecoverable Error conditions include:

Part 3
HR-0808 7-49 B

l. Address Parity Error,

2. Data Ready received and less than three Address Ready signals,
3. More than three Address Readies received,

4. Uncorrectable data error on channel,

5. Transfer word count = 0 and no Last Word Flag,

6. Transfer word count # 0 and Last Word Flag.

The Unrecoverable Error signal remains set until a Clear Channel signal
is sent.

Address Error (to IOP) - The Address Error signal indicates the
Unrecoverable Error was an address error, from conditions 1, 2, or 3 of
the preceding Unrecoverable Error list. The Address Error signal should
be sampled when the leading edge of Unrecoverable Error appears.

Transmit Address (to CPU) - This signal indicates the CPU side is
inactive and a transfer can be initiated by sending data over the Address
lines. This signal will clear after three Address Ready signals and will
not set again until the last word of the complete channel transfer has
been stored in Central Memory. Transmit Address will clear if there is
an error condition on the CP side and in that case Transmit Address will
not set again until Clear Channel is sent.

MEMORY CHANNEL FUNCTIONS FOR INPUT FROM CPU

The following describes the input operation functions for the Memory
Channel. The functions are listed below.

I HIA : 0S Clear channel busy, done flags
HIA : 1 Enter I/0 Memory address
HIA : 2 Enter upper Central Memory address
HIA : 3 Enter lower Central Memory address
HIA : 45 Read Central Memory, enter block length

HIA : 65§ Clear interrupt enable flag

HIA

.o

75§ Set interrupt enable flag

HIA : 14 Enter diagnostic mode

§ Allow 1 CP befcore checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10)

Part 3
HR-0808 7-50 B

Interface Registers

Three interface registers are used to control the transfer. The Central
Memory starting address is held in a 22-bit register. Two separate
commands, HIA : 2 and HIA : 3 load the 22-bit address. The I/O Processor
I1/0 Memory starting address is held in a 16-bit register that is loaded
by an HIA : 1 command. The third register holds 14 bits of the transfer
word count, or block length, entered by the HIA : 4 function.

HIA : 0 - Clear Channel Busy, Done Flags

This function clears the channel busy and done flags. It will cause an
error condition if issued while this channel is active. HIA : 0 must be
used to clear an error condition on the channel.

HIA : 1 - Enter I/0 Memory Starting Address

This function enters the content of the I/0 Processor accumulator into
the I/0 Memory address register. The 20, 21 pbits of the address are
forced to 0. This command does not alter the state of the channel busy
or done flags. If this function is given while this channel is active,
an error conditiion occurs.

HIA : 2 - Enter Upper Central Memory Address

This function enters the 20 - 212 bits of the I/0 Processor

accumulator into the 29 - 221 positions of the Central Memory

starting address register. The states of the channel busy and done flags
are unaltered. This command will cause an error condition if issued
while this channel is active.

HIA : 3 - Enter Lower Central Memory Address

This function enters the 20 - 28 pits of the I/0 Processor

accumulator into the 20 - 28 bits of the Central Memory starting

address register. The states of the channel busy and done flags are
unaltered. This command will cause an error condition if issued when the
input channel is active.

Part 3
HR-0808 7-51 B

HIA : 4 - Read Central Memory, Enter Block Length

This command enters the lowest 20 - 213 bits of the I/0 Processor
accumulator into the block length register. (This value is treated as a
count of 64-bit words with a zero value indicating the maximum 16,384
words.) The busy flag is set and the done flag is cleared and the
transfer is initiated. Upon completion, the done flag will set and the
busy flag will clear. If during the transfer an unrecoverable error
occurs, the transfer will terminate and the done flag will set and the
busy flag will remain set. This command will cause an error condition if
issued while the input channel is active.

HIA : 6 - Clear Interrupt Enable

This function clears the interrupt enable flag for the channel. The
states of the busy and done flags remain unaltered.

HIA : 7 - Set Interrupt Enable

This function sets the interrupt enable flag for the channel. The states
of the busy and done flags remain unaltered.

HIA : 14 - Enter Diagnostic Mode

This function enters the 29 - 22 pits of the I/0 Processor

accumulator into the diagnostic mode register. The modes are summarized
in table 7-13. Only one mode is valid at a time. All diagnostic modes
are cleared with a master clear, or alternately, by doing HIA : @,
followed by HIA : 14 with the accumulator = 0. Mode 0 is active until
any other mode is selected. This function is for maintenance purposes
only.

Part 3
HR-0808 7-52 B

Table 7-13. Input channel diagnostic modes

Mode
Designator Function
0 Set Last Word flag (only if channel is active)
1 Disable Last Word flag from CPU
2 Force constant Address Ready
3 Disable third Address Ready
4 Transfer first address with a "0" parity bit, third
address with a "1" parity bit, and disable Data Ready
from CPU
5 Force Clear Channel without inactivating IOP
6 Disable Block Length = 0
7 Disable IOP data error correction and detection

Memory Channel Input Error Processing

If an irrecoverable error occurs in an input transfer from the Central
Memory, the busy and done flags will both set. An error code is
generated and sent to an error log. The error codes are summarized in
table 7-14.

Memory Channel Input Seguence

Figure 7-10 shows the sequence of signals for transferring data from
Central Memory to I/0 Memory.

The only recoverable error is correctable data error. This type of error
is ignored by the channel because the data is corrected automatically;
the syndrome information is sent to an error log.

Part 3
HR-0808 7-53 B

Table 7-14. Input channel error codes

Error Code

Name

Condition

Function Error

Active Error

Transmit Address T

CPU Address Error

CPU IOP Data Error

Block Length Error

Data Ready Timeout

imeout

Indicates a function 0, 1, 2,
3 or 4 was issued while the
channel was active.

Indicates the CPU side went
inactive while the IOP side
was still active.

Indicates an IOP input was
initiated but the CPU did not
send a transmit address within
2 milliseconds.

Indicates the CPU side

received greater or less than
three address readies or there
was a parity error in one of

the address channel transfers.

Indicates the CPU side has a
multiple data error from
memory or the IOP side
received data with a multiple

error.

Indicates the IOP received the
last word and the block length
count was not 0 or the last
word was not received and the
block length count was equal
to 0.

Indicates the IOP did not
receive data within 2
milliseconds.

HR-0808

Part 3
7-54

I0P

CpPU

2.

10.

Activate channel

4—————-Transmit Address

Upper address, Address Ready. ———— P

Lower address, upper block
length, Address Ready.

Lower block length,

Address Ready

Transmit Data

Store words in

I/0 Memory

Transmit Data

6CP
>
6CP
>
Drop Transmit Address,
activate CPU side.
Read first block from
Central Memory to buffer.
—»
<= Data word and Data Ready
‘———
.) Data word and Data Ready
First
4—————Data word and Data Ready
Block .

:

[3

v

Transmit Data

v

Second
Bl%fk

Data word and Data Ready

4——————Data word and Data Ready

e

Done flag sets

Last
Block

I

Data word and Data Ready

Data word and Data Ready

Data word and Data Ready
and Last Word Flag.

Figure 7-10. Memory Channel sequence, input to I/0 Processor

HR-0808

Part 3
7-55

MEMORY CHANNEL FUNCTIONS FOR OUTPUT TO CPU

The I/O Processor may have a channel for sending data to the CPU at over
to 800 megabits per second. Transfers are done in blocks of 64-bit words

under I/0 Processor control. Error detection and correction are used to
protect data quality. The functions are listed below.

HOA : 0S Clear channel busy, done flags

HOA : 1 Enter I/0 Memory address
HOA : 2 Enter upper Central Memory address
HOA : 3 Enter lower Central Memory address

HOA : 5% Write Central Memory, enter block length
HOA : 65§ Clear interrupt enable flag
HoA : 75§ Set interrupt enable flag

HOA : 14 Enter diagnostic mode

Interface Registers

The interface has three registers used to control the output transfers.

One 22-bit register holds the Central Memory starting address. The
22-bit address is loaded by the HOA : 2 and HOA : 3 functions. The I/0

Processor I/0 Memory starting address is held in a 16-bit register which

is entered by the HOA : 1 function. A 1l4-bit register holds the transfer
word count, or block length in 64-bit words, that is loaded by the HOA :

5 command.

HOA : 0 - Clear Channel Busy, Done Flags

This function idles the channel by clearing the busy and done flags.
This function causes an error condition if issued while the output
channel is active. This command must be used to clear an error condition

in the channel.

HOA : 1 - Enter I/0 Memory Address

This function enters the value of the I/0 Processor accumulator into the
I/0 Memory address register. The 20 - 21 pits are forced to a zero
value. The states of the busy and done flags are unaltered. This
command causes an error condition if issued when the ocutput channel is

active.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR~-0808 7-56 B

HOA : 2 - Enter Upper Central Memory Address

This function enters the 20 - 212 pits of the I/0 Processor

accumulator into the 27 - 215 pits of Central Memory starting address
register. The states of the busy and done flag are unaltered. This
function causes an error condition if issued when the output channel is
active.

HOA : 3 - Enter Lower Central Memory Address

This function enters the 20 - 28 of the I/0 Processor accumulator

into the 20 - 28 pits of the Central Memory starting address

register. The states of the busy and done flags are unaltered. This
command causes an error condition if issued when the output channel is
active.

HOA : 5 - Write Central Memory, Enter Block Length

This function enters the 20 - 213 bits of the I/0 Processor
accumulator into the block length register. (This value is treated as a

count of 64-bit words with a zero value indicating the maximum 16,384
words.) The busy flag is set and the done flag is cleared and the
transfer is initiated. Upon completion, the done flag will set and the
busy flag will clear. If during the transfer an irrecoverable error
occurs, the transfer will terminate and the done flag will set and the
busy flag will be left set. This command will cause an error condition
if issued while the output channel is active.

HOA : 6 - Clear Interrupt Enable

This function clears the interrupt enable flag. The states of the busy
and done flags are unaltered.

HOA : 7 - Set Interrupt Enable

This function sets the interrupt enable flag. The states of the busy and
done flags are unaltered.

HOA : 14 - Enter Diagnostic Mode

This function enters the 20 - 27 pits of the I/O Processor
accumulator into the diagnostic mode register. The modes are summarized
in table 7-15. This is only for maintenance purposes.

Part 3
HR-0808 7-57 B

With the exception of mode 6, only one mode is valid at a time. Mode 6
is a special case. It is held if it has been set and cannot be cleared
by entering another mode. All diagnostic modes clear with master clear,
or alternately by doing HOA : 0, followed by HOA : 14 with the
accumulator = 0. Mode 0 is active until any other mode is selected.

Table 7-15. Output channel diagnostic modes

Mode
Designator Function

0 Set Last Word flag (only if channel is active)

1 Disable Last Word flag from CPU

2 Force constant Address Ready

3 Disable third Address Ready

4 Transfer first address with a "0" parity, third
address with a "1" parity bit, and disable Data Ready
to CPU

5 Force Clear Channel without inactivating IOP

6 First word 296 - 263 pits used as second word
check byte, third word 256 _ 264 pits as fourth
word check byte, etc.

7 Disable error correction and detection as CPU

Central Memory Output Error Processing

If an irrecoverable error occurs in an output transfer to the Central
Memory, the busy and done flags both set. An error code is generated and
sent to an error log. The error codes are summarized in table 7-16.

The only recoverable error is a correctable data error. This type of
error is ignored by the channel interface because it is corrected

automatically. The syndrome information is sent to an error log.

Part 3
HR-0808 7-58 B

Table 7-16. Output channel error codes

Error Code

Name

Condition

Function Error

Active Error

Transmit Address Timeout

CPU Address Error

CPU Data Length Error

Last Word Timeout

Transmit Data Timeout

Indicates a function 0, 1, 2,
3 or 5 was issued while the

channel was active.

Indicates the CPU side went
inactive while the IOP side
was still active.

Indicates an IOP input was
initiated but the CPU did not
send a transmit address within
2 milliseconds.

Indicates the CPU side
received greater or less than

three address readies or there
was a parity error in one of

the address channel transfers.

Indicates the CPU received

data with a multiple error or
the last word was received and
the block length count was not
0 or the last word was not
received and the block length

count was equal to O.

Indicates the last word was
sent but the CPU did not go

inactive within 2 milliseconds.

Indicates a transmit data was
not received within 2
milliseconds.

HR-0808

Part 3
7-59

Memory Channel Output Sequence

Figure 7-11 shows the sequence of signals for transferring data from I/O
Memory to Central Memory.

1op CPU

1. <+ Transmit Address

2. Activate channel

Upper address, Address Ready.—p

Lower address, upper block 6cp <« Transmit Data
length, Address Ready.,——m——o-—p Drop Transmit Address
Lower block length, 6CP
Address Ready. »
3. Data word, Data Ready —>
Data word, Data Ready 6CP 'S T Store words in
First
Data word, Data Ready._______lﬁzi_p s buffer
N : Block
Data word, Data Ready > l
4. < Transmit Data

Store first block
in Central Memory

Data word, Data Ready

»
L

. Second
: Block Store words in
buffer
Data word, Data Ready » ‘ €
6. : <+ Transmit Data
Data wérd, Data Ready > T
Last
M Block
Data word, Data Ready, > ‘
Last word Flag.
8. Store last block

in Central Memory

Transmit Address

©
4

10. Done flag sets

Figure 7-11. Memory Channel sequence, output from I/O Processor

Part 3
HR-0808 7-60

ERROR LOGGING CHANNEL

The I/0 Processor may have an error logging channel connected. This
channel reports errors from the 1/0 Memories of three other I/O
Processors, from the Buffer Memory, from the Central Memory, and from the
Memory Channels to the Central Memory. If any error condition occurs in
any of the reporting devices, the channel done flag sets. The functions
are listed below.

ERA : OS Idle channel

ERA : 65§ Clear interrupt enable flag

ERA : 758 Set interrupt enable flag

ERA : 10 Read error status

ERA : 11 Read error information (first parameter)
ERA : 12 Read error information (second parameter)
ERA : 13 Read error information (third parameter)

INTERFACE REGISTERS

The error log interface has four interface registers. The error status
register is a 9-bit register that holds set bits for the device causing
the error. This register is accessed by the ERA : 10 command .

The first parameter word register has 16 bits, and stores I/O Memory
failing locations, or Buffer Memory error data, or Memory Channel error

data.

The second parameter word register has 16 bits, and stores the lower
address for the Buffer Memory or Central Memory failing locations.

The third parameter word register has 8 bits, and stores the upper
address for either the Buffer Memory or the Central Memory.

ERA : 0 - IDLE CHANNEL

This function clears all error flags stored in the interface registers.
The done flag is cleared.

§ Allow 1 CP before checking busy or done.
§§ Allow 1 CP before checking the interrupt channel number (IOR : 10).

Part 3
HR-0808 7-61 B

ERA : 6 - CLEAR INTERRUPT ENABLE FLAG

This function clears the interrupt enable flag for this channel.

ERA : 7 - SET INTERRUPT ENABLE FLAG

This function enables the interface to interrupt the I/O Processor.

ERA : 10 - READ ERROR STATUS
This function returns the contents of the interface error status register

to the accumulator. The interpretation of the set bits is given in table
7-17.

Table 7-17. Error status register bits

Bit Control Signal

20 I1/0 Processor 1 1/0 Memory error
21 I/0 Processor 2 I/0 Memory error
22 1/0 Processor 3 1/0 Memory error
23 Buffer Memory error

24 Central Memory error

2° Memory Channel input A error

26 Memory Channel output B error

27 Memory Channel input C error

28 Memory Channel output D error

The selection of physical devices such as I/O Processors and Memory
Channels as A, B, C, etc. is part of the overall system definition.
Appendix F has a typical system definition.

Part 3
HR-0808 7-62 B

Errors occurring in the I/0 Processor having the error logging channel
are reported to that I/O Processor via its own I/0 Memory error channel

(LME) .

ERA : 11 - READ ERROR INFORMATION (FIRST PARAMETER)

This function returns an error parameter word to the accumulator,
selected by a bit set in the accumulator when the function issues. Only
one bit among the 20 - 28 positions may be set at one time. The
accumulator bits select parameters as listed in table 7-18.

When an I/0 Processor I/0 Memory address is read, or when a Memory
Channel error data word is read, the device bit is cleared in the status

register.

The address invalid flag (215) in the Buffer Memory error data is set
when the address that will be given in the second and third parameter
words is not the correct address for the error being reported in the
first parameter word. This can happen when a later read reference
follows closely after a read reference that detects an error in its
data. The address for the later read reference is incorrectly reported
in the second and third parameter words, and should be disregarded.

This function must be immediately preceded by a logical product
instruction as follows:

011777 A=As&d d=777

171xxx ERA : 11

or

015xxx A=A&k

xxx777 k=xxx777

171xxx ERA : 11

ERA : 12 - READ ERROR INFORMATION (SECOND PARAMETER)

This function returns the content of the second parameter word register
to the accumulator. The second parameter word is selected by bits 2

or 24 in the accumulator when the function is sent. Only one bit may
be set in the accumulator 23 and 24 pit positions at a time.

Selection is as follows.

23 Buffer Memory lower address (address bits 20 - 215)

24 Central Memory lower address (address bits 20 - 215)

Part 3
HR-0808 7-63

Table

7-18. First error parameter selection

Error Status
Register Bit

First Parameter Information Returned

20

I/0 Processor A I/0 Memory failing address:
20 - 21 Bank number
22 - 23 Section number
24 Byte:
0 Bits 20-27
1 Bits 28-215

I/0 Processor B I/0 Memory failing address, same
format as for 20.

1/0 Processor C I/0 Memory failing address, same
format as for 29.

Buffer Memory error data:
20 _ 27 Syndrome bits
22 Correctable error if 1
210 Noncorrectable error if 1
212 _ ,13 Port number
215 address invalid if 1

Central Memory error data:
20 - 27 Syndrome bits
29 Correctable error
210 Noncorrectable error
212 - 213 Read mode:
0 Scalar
1 1/0
2 Vector
3 Fetch

Input Memory Channel A error data:
20 - 27 Syndrome bits
28 - 210 Error code (refer to Central Memory
input error processing, this section)

Output Memory Channel B error data, same as for

25. Refer to Central Memory output error
processing, this section, for error codes.

InputSMemory Channel C error data, same format as
for 2°.

Output Memory Channel D error data. same format as
for 2. Refer to Central Memory output error
processing, this section, for error codes.

HR-0808

Part 3
7-64

This function must be immediately preceded by a logical product
instruction as follows:

011777 A=A&d d=777
172xxx ERA : 12

or
015xxx A=A&K
xxx777 k=xxx777
172xxx ERA : 12

ERA : 13 - READ ERROR INFORMATION (THIRD PARAMETER)

This function returns the content of the third parameter word register to
the accumulator. The third parameter word is selected by bits 23 or

24 in the accumulator when the function issues. Only one bit may be
set in the field at a time. Selection is as follows.

23 Buffer Memory upper address (address bits 216 _ 22
going into accumulator positions 20 - 26)

24 Central Memory upper address (address bits 216 _ 221
going into accumulator positions 20 — 25

The reading of the third parameter word clears the error bits in the
status register for the Central Memory or for the Buffer Memory.

This function must be immediately preceded by a logical product
instruction as follows:

011777 A=A&d d=777

173xxx ERA : 13

or

015xxx A=Ask

xxx777 k=xxx777

173xxx ERA : 13

Part 3
HR-0808 7-65 B

BLOCK MULTIPLEXER CHANNEL

The I/0 Subsystem communicates with IBM-compatible equipment over the
block multiplexer channels. The following functions are used.

BMA : O Clear channel control

BMA : 1 Send reset function

BMA : 2 Channel command

BMA : 3 Read REQUEST-IN address

BMA : 4 Asynchronous I/0

BMA : 5 Delay counter diagnostic

BMA : 65§ Clear channel interrupt enable flag

BMA : 7S§ set channel interrupt enable flag

BMA 10 Read I/0 Memory address

e

BMA

11 Read byte counter status
BMA : 12 Read status/address

BMA 13 Read input tags

BMA : 14 Enter I/0 Memory address

BMA

15 Enter byte count

BMA : 16 Enter device address/mode

BMA

17 Enter output tags

GENERAL CHARACTERISTICS

Block multiplexer channels are grouped into sets of four channels, which
share one Cray Research BMC-4 Block Multiplexer Controller. The
controller interfaces to the Auxiliary I/0 Processor (XIOP) via one DMA
port. The speed capacity of the DMA port is shared among the four
channels of the controller. The four channels operate asynchronously and
compete only for I/O Memory references.

§§ Allow 1 CP before checking the interrupt channel number {(IOR : 10).

Part 3
HR-0808 7-66 B-01

A block multiplexer channel operates in either selector channel mode,
byte multiplexer mode or block multiplexer mode. All IBM commands are

possible. The channel features command and data chaining, and detection
of RETRY STATUS, as well as the I/O ERROR ALERT and the HIGH SPEED option.

The channel drives one or more IBM-compatible control units, which in
turn drive peripheral devices.

This manual does not explain or document the IBM communications protocol,
the signals used, nor their sequencing. Refer to the appropriate IBM
publications for detailed information and definitions of IBM terminology.

TRANSFER RATES

The block multiplexer channel data rate is determined by cable length and
signal turn-around time within the control unit. For each byte of data
or control information that is sent, an appropriate response signal or
signals must be received. This results in a data rate limit of about 6.4
million bits a second, or 800 kilobytes a second. IBM-compatible
peripheral controllers that use the high speed option (requiring an
additional pair of control lines) may achieve about 12.8 million bits a
second, or 1.6 million bytes a second.

DATA HANDLING

One important feature of the channel is the assembly and disassembly of
data between the 8-bit channel and the 16-bit memory parcels. Figure
7-12 shows the data changes.

The BMC-4 reads four 16-bit parcels from the I/O Memory and sends out
eight 8-bit bytes to the block multiplexer channel. Four more 16-bit

parcels are read into buffers in the controller while the channel is
transmitting the first group.

The BMC-4 reads eight 8-bit bytes from the channel and writes four 16-bit
parcels into I/O Memory. If a read operation from the channel terminates
with a byte length that does not evenly comprise four parcels, the last
1/0 Memory write will include unpredictable data in the last parcels.

RECORD SIZE

Data records may be any non-zero integer number of bytes in length.
However, the data chaining feature must be used for lengths greater than

65,535 bytes.

Part 3
HR-0808 7-67 B

In cases such as IBM tape records, an odd length header field can be read
and stored at one memory area and the following data record can be stored

at a different memory area beginning at a Buffer Memory word boundary.
The data chaining feature permits a single large record to be broken into
any size convenient for storage in Buffer Memory. This is under program
control by means of I/0 functions to the block multiplexer channel.

283 256255 238247 240239 23223| 224223 2I62|5 28 27 20
| | | | | I | | cray 1 & 18Mm
|O 78 15 il6 23 24 3l :32 39 40 47:48 55 56 63’
i ! | ! |
25 20 I ' I
| PARCEL 0O 215 20 : |
f 15 PARCEL | 25 0 |
| f 15 PARCEL 2 215 20
! I f 15 PARCEL 3 | 0P
'27 20 : | Io |5|
| BYTEQ |27 20 | | !
° IR 20 : | !
° 1 BYTE2 |27 20 : :
o | BYTE3 o7 20 | |
o 1 BYTE4 |o7 20 :
° N BYtES o7 20 :
° | BYTE S |27 o0
p-0108 A ° 1 BYTE 7 IBM CHANNEL
[o] 7

Figure 7-12. BMC-4 data assembly/disassembly

PARITY

Odd parity is checked on all address, status, and data inputs to the I/O
Processor. 0Odd parity is generated for all address, control, or data
outputs from the I/0 Processor.

INTERRUPTS

All interrupts can be enabled or disabled for any block multiplexer
channel. If interrupts are enabled, and a function in the range BMA : 1

through BMA : 5 completes, then an interrupt request is set. 1If an
interrupt is selected for an input tag line such as REQUEST-IN, the
interrupt request sets when the REQUEST-IN line goes to a logical 1.

when data chaining is enablied, an interrupt request is set each time the
byte counter decrements to 0 and memory references are complete through
that particular block of data.

Part 3
HR-0808 7-68 B

BMA : 0 - CLEAR CHANNEL BUSY AND DONE FLAGS

This function clears the channel busy and done flags and all output
tags except OP-OUT and SUP-OUT. No parameters are required for this
action. It also clears interrupt conditions, provided interrupts are
disabled by a BMA : 6 function. Since this function cannot be
interlocked using the channel done flag, allow a 12-CP delay before
issuing the next function to that particular channel.

BMA : 1 -~ SEND RESET FUNCTION
Several reset functions (table 7-19) perform various functions required

by the equipment. Bits 21 and 20 of the accumulator content are used
as a parameter that selects the specific function.

Table 7-19. Send reset function parameters

Parameter Function
21 _ 20
0 0 Clear all output tag lines
0 1 INTERFACE DISCONNECT
1 0 SELECTIVE RESET
1 1 SYSTEM RESET

Parameter xxxxx0 - Clear Output Tag Lines

This function clears all output tag lines and clears BUS 0 Out lines.
The channel initially clears the channel done flag and sets the channel
busy flag. Upon completion the channel done flag sets and the channel
busy flag clears.

Parameter xxxxxl - INTERFACE DISCONNECT

This function performs the INTERFACE DISCONNECT function to the currently
selected control unit. The function clears the channel done flag and
sets the channel busy flag. The control unit removes all signals from
the Cray I/O Subsystem channel. When the control unit reaches the normal
ending point in its sequence, it attempts to obtain selection in order to
present any generated status to the Cray channel. The control unit does
not generate any status as a result of the INTERFACE DISCONNECT.

Part 3
HR-0808 7-69 B

The device path for the peripheral remains busy after it receives an
INTERFACE DISCONNECT during an operation until the device-end status is
accepted by the Cray block multiplexer channel.

The function should complete in about 7 microseconds. At that time the
Cray channel done flag sets and the busy flag clears.

If the OPERATIONAL-IN signal from the equipment does not clear within 6
microseconds from the function issue, the Cray channel done flag sets and
the busy flag remains set to indicate the error condition.

Parameter xxXxxx2 - SELECTIVE RESET

This performs the SELECTIVE RESET function. The channel done flag clears
and the channel busy flag sets. The function causes the OPERATIONAL-IN
signal to clear and resets the currently selected peripheral device,
along with its status. The current operation proceeds to a normal
stopping point, and no data is transferred after the stop.

Only the peripheral device currently operating is affected. The
device-end status is retained for transfer to the Cray channel after the

reset.

The ready or not ready state of the control unit is generally not changed
by the SELECTIVE RESET function.

The function should complete in about 7 microseconds, at which time the
Cray channel busy flag clears and the done flag sets.

Parameter xxxxx3 - SYSTEM RESET

The SYSTEM RESET function clears the OPERATIONAL-IN signal and resets all
control units along with their attached peripheral devices. The
peripheral device statuses are also reset. The channel done flag clears
and the channel busy flag sets at the beginning of execution.

The function should complete in about 6 microseconds at which time the
Cray channel done flag sets and the busy flag clears. Input tag lines
that are not reset by the SYSTEM RESET function cause the channel busy
flag to remain set when the channel done flag sets.

Part 3
. HR~0808 7-70 B-01

BMA : 2 - CHANNEL COMMAND

This function sends commands to the control units. The specific command

is selected by the accumulator bits at the time the function issues.
Many of the commands require prior functions to set up inter face
registers, such as the I/0O Memory address register, the byte count
register, and the device address register. The command parameter bits
are shown in table 7-20. The channel done flag clears and the channel
busy flag sets at the beginning of execution. At completion of the
function, the channel busy flag clears and the channel done flag sets.

Table 7-20. Channel command function parameter bits

Parameter

Bit Purpose

20 IBM-type control unit command bit 20
21 IBM-type control unit command bit 21
22 IBM-type control unit command bit 22
23 IBM-type control unit command bit 23
24 IBM-type control unit command bit 24
25 IBM-type control unit command bit 2°
26 IBM-type control unit command bit 26
27 IBM-type control unit command bit 27
28 Unused

29 Unused

210 Unused

211 Unused

212 Unused

213 Unused

214 Unused

215 Unused

Parameter Command Bits

Bits 20 - 27 are the command bits for the BMA : 2 parameter. The

command is for an IBM-type control unit. The parameter bits are shown in

table 7-21.

Part 3
HR-0808 7-71

Table 7-21. Channel command bit assignments

P 27 26 25 24 33 22 31 70

TEST I/0 1 0 0o 0 0 0 0 0 O
SENSE P M M MMO 1 0 O
READ BACKWARD P M MMM1 1 00O
WRITE PMMMMMMDUGOI1
READ P MMMMMMIL1DO0
CONTROL P M MMMMMII

M = Modifier bit
P Parity bit

The specific modifier codes and the particular mode set is dependent on
the particular IBM-type control unit and the peripheral device used. The
command byte is sent only during the initial selection sequence. All
commands except TEST I/0 may require a data transfer to satisfy the
function.

All commands begin with an initial selection sequence which ends with
either an ending status (channel-end or channel-end with device-end), a
zero status, or an error status. To a command calling for transfer of
status, control or data bytes, a zero status signifies that the transfer
may begin.

A data-type transfer ends when the byte count decrements to 0 and no data
chaining condition exists. The data-type transfer also ends when
STATUS-IN is received in response to SERVICE-OUT or DATA-OUT.

The channel done flag is not set until processing of the control sequence
is completed and data is transferred to or from I/0 Memory.

Figure 7-13 shows a typical channel sequence for a read to the I/O
Processor.

Part 3

HR-0808 7-72 B-01

OPERATIONAL OUT

HOLD OUT

SELECT OUT

ADDRESS OUT 4,

—,
r
/
/e
—
-
—
—
ADDRESS COMMAND READ \ /
BUS OUT (9 LINES) —, — -
el
—
erd
f—

OPERATIONAL IN

ADDRESS IN —
CU ADDRESS STATUS

BUS IN (9 LINES)

DATA DATA DATA DATA DATA STATUS ‘
/ DATA BYTE 7‘ 4
COUNT = 0
COMMAND OUT </ — j} l—‘:

STATUS IN /- — 4@&
SERVICE OUT)

i ,

\..‘___

SERVICE IN —, L_./ﬁ
* » 7
DATA OUT -
DATA IN*

7, el
/-
RA-O/974
ENDING
f«———— INITIAL SELECTION DATA TRANSMISSION SEQUENCE]

r('-————_‘ READ OPERATION (SELECTOR CHANNEL INTERFACE SEQUENCES) —_—>]

* HIGH SPEED TRANSFER ONLY

Figure 7-13. Channel read sequence

BMA : 3 - READ REQUEST-IN ADDRESS

This function first clears the channel done flag and sets the channel
busy flag. If REQUEST-IN is detected, the channel accepts the requesting
address. The address is checked for valid parity, the channel done flag
is set, and the channel busy flag is cleared.

If REQUEST-IN is not detected, the channel done flag is set and the
channel busy flag stays set. The address miscompare status is to be
ignored if undetermined addresses are expected.

Figure 7-14 illustrates a typical REQUEST-IN channel sequence.

Part 3
HR-0808 7-73 B-01

BMA : 4 - ASYNCHRONOUS I/0

Issuing the BMA : 4 function clears the channel done flag and sets the
channel busy flag. If STATUS-IN is present, status is saved in the
status register. If the STACK flag has been presented, COMMAND-OUT is
returned in place of SERVICE-OUT to indicate STOP to the channel. When
the sequence completes, the channel done flag sets and the channel busy
flag clears. Refer to figure 7-14 for the typical REQUEST-IN channel
sequence. See figure 7-15 for the asynchronous data and status

processing. See table 7-26 for accumulator parameter bits.

OP-0UT ____J
Y _——Il——’l

[

\
|
SEL-IN |

e

ADDR-0OUT

OP-IN

ADDR -IN

cMD-ouUT _(PROCEED)

1
1
T 1
[
[
STATUS-IN H : !
. i {
! ! /
SERV-IN - -
po ! | |
| : !
SERV-OUT —t ;]
ADDR. STATUS
BUS-IN
BUS-0UT

A-0/29

Figure 7-14. Channel ASYNCHRONOUS I/O sequence

Part 3

HR-0808 7-74 B-0

HR-0808

BMA: |12

INPUT STATUS
or

DATA

START
BMA:3

'REQUEST IN'
PROCESSING

NO
YES BMA:I2

SAMPLE
DEVICE
ADDRESS

[] BMA: 16

SET
MODE BITS

; BMA: 4

FNX SINGLE
BYTE 1/0

Figure 7-15.

Part 3
7-75

A-0083C

Asynchronous data and status processing

B-01

BMA : 5 - DELAY COUNTER DIAGNOSTIC

This function is for maintenance purposes only. It clears the channel
done flag and sets the channel busy flag. Then the channel performs a 10

microsecond delay. After the delay times out, the channel done flag sets
and the channel busy flag clears.

BMA : 6 - CLEAR CHANNEL INTERRUPT ENABLE FLAG

The BMA : 6 function clears the channel interrupt enable flag. This
prevents the channel from interrupting the I/O Processor. The I/O
Processor would in this case monitor the channel done flag to determine

function completion. The channel busy and done flags are not affected by
this function.

BMA : 7 - SET CHANNEL INTERRUPT ENABLE FLAG

This function sets the channel interrupt enable flag. This causes an I/0
Processor interrupt for this channel whenever any of the following
conditions occur:

® The channel done flag sets,

® The interrupt mode select, via a BMA : 16 function, has enabled an
interrupt for an active input tag line, or

® During data chaining the byte counter has decremented to 0 and the
last I/0 Memory reference is complete for that segment of data.

BMA

10 - READ I/O MEMORY ADDRESS

This function reads the current value in the I/O Memory address register
and enters the value in the accumulator. The channel logic includes two
I/0 Memory address registers to support data chaining. The state of
accumulator bit 20 when the function is issued determines which I/0
Memory address register is to be read. Bit 20 of the value returned to

the accumulator identifies from which register the I/0 Memory address
came.

Bit 21 jn the value returned to the accumulator is set if data chaining
is being used. Table 7-22 lists the accumulator content resulting from
this function.

This function may be performed at any time relative to control functions.

Part 3
HR-0808 7-76 _ B-01

Dur ing data chaining, interrupts occur after each buffer of data is
transferred. This function clears the interrupt after a data transfer.

The BMA : 10 function has a programming restriction due to timing in the
adder and shifter. The restriction applies if the instruction preceding
a BMA : 10 function is any of the following: 4-7, 12, 13, 16, 17, 22, 23,
32, 33, 44-47, 52, 53, 62, or 63. 1In these cases an 011 or 015 logical
product instruction, with the 4 or k fields set to all ones, should be
inser ted between the above instruction and the BMA : 10 function.

Table 7-22. Read I/0 Memory address response bits

Accumulator
Bit Meaning
20 Register select status
21 Data chaining flag status (l=data

chaining)

22 1/0 Memory address 22
23 I/0 Memory address 23
24 1/0 Memory address 24
25 1/0 Memory address 25
26 I/0 Memory address 26
27 1/0 Memory address 27
28 I1/0 Memory address 28
29 I/0 Memory address 29
210 1/0 Memory address 210
211 1/0 Memory address 211
212 I/0 Memory address 212
213 I/0 Memory address 213
214 1/0 Memory address 214
215 1/0 Memory address 215

BMA : 11 - READ BYTE COUNTER

The byte counter records the number of bytes remaining in a data
transfer. This counter is initially loaded with a value by a BMA : 15
load byte counter function. When the counter decrements byte-by-byte to
0, the channel interrupts the IOP and terminates the transfer. A
transfer terminated by the control unit and not by decrementing to zero
may result in a nonzero value in the counter. If data chaining is
requested the byte counter is reloaded after decrementing to zero.

Part 3
HR-0808 7-77 B-01

Due to the fixed timing in the IOP, this function must be executed twice
in immediate succession to get a current value byte counter status to the
I0P accumulator. The first execution moves the current byte counter
status to the block multiplexer controller. The second execution moves
the status to the IOP accumulator.

This function can be used to verify the accumulator fanout, the
intermediate byte count status register in the block multiplexer
controller, and the status path back to the IOP accumulator. Issuing a
BMA : 15 function (explained later) loads the byte count into the byte
counter status register in the block multiplexer controller. The next
BMA : 11 function reads the byte count back from the status register to
the IOP accumulator. The second BMA : 11 function performs as described
above.

The channel busy and done flags are not affected by this function.

BMA : 12 - READ STATUS/ADDRESS

The status register holds the address and status mode bits read from the
block multiplexer channel.

Due to the fixed timing in the IOP, this function must be executed twice
in immediate succession to get valid current status/address information
to the IOP accumulator. The first execution moves the current
status/address to the block multiplexer controller. The second execution
moves the status/address to the IOP accumulator.

This function can be used to verify the accumulator fanout, the
intermediate status register in the block multiplexer controller, and the
status path back to the IOP accumulator. Issuing a BMA : 16 function
(explained later) loads address and mode bits into the block multiplexer
controller status register. The next BMA : 12 function reads the status
back to the IOP accumulator. The second BMA : 12 function performs as
described above.

The channel busy and done flags are not affected by this function.

The status/address returned is the status/address information from the
channel, and is entered in the IOP accumulator as shown in table 7-23.

Part 3
HR-0808 7-78 B-01

Table 7-23. Status register bits

Accumulator

Bits Meaning

20 status 20

21 Status 21
22 Status 22

23 Status 23
24 Status 24
25 Status 23
26 Status 26
27 Status 27
28 Address 20
29 Address 21
210 Address 22
211 Address 23
212 Address 24
213 Address 25
214 Address 26
215 Address 27

BMA : 13 - READ INPUT TAGS

This function reads the input tags from the channel to the I/O Processor
accumulator.

Due to the fixed timing in the IOP, this function must be executed twice
in immediate succession to get valid current input tags to the IOP
accumulator. The first execution moves the current input tags to the
block multiplexer controller. The second execution moves the input tags
to the IOP accumulator.

This function can be used to verify the accumulator fanout, the
intermediate output tags register, and the path back to the accumulator.
Issuing a BMA : 17 function (explained later) loads the output tags into
the output tags register. The next BMA : 13 function reads the stored
output tags back to the IOP accumulator. The second BMA : 13 function
brings the current input tags to the IOP accumulator.

The channel busy and done flags are not affected by this function.

The input tags status bits are shown in table 7-24.

Part 3
HR-0808 7-79 B-01

Table 7-24. 1Input tags status bits

Accumulator
Bits Meaning
20 OPERATIONAL-IN
21 ADDRESS~IN
22 DISCONNECT-IN
23 SELECT-IN
24 REQUEST-IN
25 SERVICE-IN
26 DATA-IN
27 STATUS~IN
28 METERING-IN
29 MARK 0 IN
210 Unused - "Q"
211 Data Buffer Pointer
212 Address Miscompare
213 Byte Count Zero
214 P-ROM Parity Error
215 BUS-IN Parity Error

BMA : 14 - ENTER I/O MEMORY ADDRESS

This function enters the current accumulator content into the I/0 Memory
address (IOMA) register. This address is the starting address in I1/0
Memory for the data transfer. The channel busy and done flags are not
altered in the process. Two I/O Memory address registers are maintained
for data chaining purposes, and are addressed by the 20 bit of the
accumulator content. Data chaining must begin with register 0 and
alternate between the 0 and 1 registers. Bit 21 of the accumulator
content is the data chaining select flag for the chosen register and, if
set, selects data chaining for that register/address.

Table 7-25 lists the accumulator bits for this function.

Part 3
HR-0808 7-80 B~-01

Table 7-25. I/0 Memory address register bits

Accumulator
Bits Meaning
20 I/0 Memory address register file

select

21 Data chaining flag
22 I/0 Memory address 22
23 I/0 Memory address 23
24 1/0 Memory address 24
25 I/0 Memory address 23
26 I/0 Memory address 26
27 I/0 Memory address 27
28 1/0 Memory address 28
29 I/0 Memory address 29
210 1/0 Memory address 210
211 1/0 Memory address 211
212 I/0 Memory address 212
213 1/0 Memory address 213
214 I/0 Memory address 214
215 I/0 Memory address 215

BMA : 15 - ENTER BYTE COUNT

This function enters the accumulator content into the byte counter or
into the next byte count register. The first BMA : 15 function following
a BMA : 14 enters the accumulator content into the byte counter.
Immediately following the first BMA : 15 function with a second BMA : 15
function enters the accumulator data into the next byte counter

register. The transfer from the next byte count register to byte counter
is done automatically between data segments in data chaining. Channel
commands requiring no data, parameters, or status must establish a byte
count of 0. The maximum count is 65,535 bytes. The channel busy and
done flags are not altered in this process.

BMA : 16 - ENTER DEVICE ADDRESS/MODE

This function enters the accumulator content into the device address
register. The device address register contains mode select bits and
device address bits. The device address may be some combination of
controller address bits and peripheral device address bits. The channel
busy and done flags are not altered by this function. Table 7-26 shows
the device address register bits.

Part 3
HR-0808 7-81 B-01

Table 7~26.

Device address register bits

Accumulator
Bits Meaning
20 Address/data out 20
21 Address/data out 21
22 Address/data out 22
23 Address/data out 23
24 Address/data out 24
25 Address/data out 25
26 Address/data out 26
27 Address/data out 27
28 Skip flag
29 Stack status flag
210 Command chaining mode select 20
211 Command chaining mode select 21
212 Interrupt mode select 20
213 Interrupt mode select 21
214 Channel mode select 20
215 Channel mode select 21

Parameter Mode Bits

Bits 28 - 215 of the parameter are called mode bits.
re-established during each BMA : 16 function.

Skip flag - Bit 28 js the mode bit for the Skip flag.

They are

When set, it

prohibits storing data into 1I/0 Memory during read data transfers.

Stack status flag - Bit 29 js the mode bit for the stack status flag.

Command chaining mode select - Bits 210 zng 211 gselect the mode in

which command chaining will be used.

these mode bits.

HR-0808

Part 3
7-82

They operate as follows.

Table 7-27 shows the translation of

B-01

Table 7-27. Command chaining mode selection

Parameter Bits

211_210 Selection

0 0 No chaining

0 1 Chain if channel-end status is
detected

1 0 Chain if device-end status is
detected

1 1 Chain if either channel-end
status or device-end status is
detected

Interrupt mode select - Parameter bits 212 _ 313 gelect the mode in

which interrupts are generated. Table 7-28 shows the translation of the
interrupt mode bits.

i

Table 7-28. Interrupt mode selection

Parameter Bits
213712 Selection

0 0 No interrupt mode selected,
interrupts disabled

0 1 Interrupt on REQUEST-IN
1 0 Interrupt on STATUS-IN
1 1 Interrupt on DISCONNECT-IN

Channel type mode select - Parameter bits 214 - 215 zre the mode bits

that select which type of channel operation is to be used. The selection
is shown in table 7-29,

Table 7-29. Channel type mode selection

Parameter Bits
215514 Selection
0 0 Selector channel
0 1 Byte multiplexer channel
1 o0 Block multiplexer channel
1 1 Reserved for future use

Part 3

HR-0808 7-83 B-01

BMA : 17 - ENTER OUTPUT TAGS

This function enters the accumulator content into the output tags

register, allowing direct program control of the output tags for special

control sequences such as diagnostics.
are not altered by this function.

for each output tag.

Table 7-30.

The channel busy and done flags

Table 7-30 shows the accumulator bits

Output tags register bits

Accumulator

Bits

Meaning

20
21
22
23
24
25
26
27
28
29
210
211
212
~13
214
215

OPERATIONAL-OUT
ADDRESS-QUT
HOLD-OUT

SELECT-0OUT
COMMAND-OUT
SERVICE~OUT
DATA-OUT
SUPPRESS-0OUT
METERING-OUT

MARK 0 OUT

Unused

Unused

CLOCK-0OUT

Inhibit Parity Error
Force BUS-OUT Parity
Unused

PROGRAMMING EXAMPLES

The following examples illustrate two programming sequences for the block

Example 1 shows the function sequence used to read
Example 2 shows how to rewind the tape.

multiplexer channel.

a tape record of unknown length.

HR-0808

Part 3
7-84

B-01

Example 1:

Accumulatorg Function Description
000000 BMA : 14 Set IOMA = 0 (arbitrary)
000000 BMA : 15 Set byte count = 0
000025 BMA : 16 Set device address (0-255)
000323 BMA : 2 Select GCR tape mode
Wait for "Done"
BUFA+2 BMA : 14 Set IOMA, chaining flag
Buffer A
BUFB+3 BMA : 14 Set IOMA, chaining flag
Buffer B
000005 BMA : 15 Set byte count Buffer A
(header)
001000 BMA : 15 Set byte count Buffer B
(1-65535)
000002 BMA : 2 Function read forward command
Wait for interrupt
BUFA+2 BMA : 14 Set IOMA, chaining flag,
Buffer A
001000 BMA : 15 Set byte count Buffer A
(1-65535)
Wait for interrupt Process header
BUFB+3 BMA : 14 Set IOMA, chaining flag
Buffer B
001000 BMA : 15 Set byte count Buffer B
Wait for interrupt Transfer Buffer B to Buffer
Memory
BUFA+2 BMA : 14 Set IOMA, chaining flag
Buffer A
001000 BMA : 15 Set byte count Buffer A
(1-65535)
Wait for interrupt Transfer Buffer A to Buffer
Memory
"Done" set
BMA : 11
1000-X BMA : 11 Read byte counter for residue
transfer X bytes, Buffer B to
Buffer Memory
Part 3
HR-0808 7-85 B-01

Example 1 (continued):

Accumulatorg Function Description
BMA : 12
BMA : 12 Verify device status
BMA : 13
BMA : 13 Check input P.E. etc.
Example 2:
Accumulatorg Function Description
000000 BMA : 14 Set IOMA = 0 (arbitrary)
000000 BMA : 15 Set byte count = 0
000025 BMA : 16 Set device address (0-255)
000007 BMA : 2 REWIND function
Wait for "Done"
Check for "Busy" "Busy" set indicates error
BMA : 12
BMA : 12 Verify device address and
status
BMA : 13
BMA : 13 Check for other errors
Part 3
HR-0808 7-86 B-01

BUFFER MEMORY 8

INTRODUCTION

The Buffer Memory assists data transfer between peripheral devices and
Central Memory. It is implemented as NMOS (negative channel metal oxide
semiconductor) LSI storage circuits. Buffer Memory capacity ranges from
1 million to 8 million words of 64 bits each. The Buffer Memory is
housed in the same chassis as the I/O Processors, in order to keep the
intercabling delays small. Modules are of the same construction as the
1/0 Processor modules —- four printed circuit boards to each module.
This section describes the speeds, organization, access, and addressing

of the Buffer Memory.

MEMORY SPEEDS

The memory is a dynamic random access memory that refreshes its data once
every 2 milliseconds. Refreshing is transparent and does not affect the
random access capability. Access time is 200 nanoseconds. Memory cycle
time is defined as the waiting time required after referencing a storage
location before that location may be referred to again. The Buffer
Memory cycle time is 40 CPs.

MEMORY ORGANIZATION

Two options are available for memory organization. The Buffer Memories
with 1 to 4 million words use an 8-bank organization, and the 8-million
word size uses the l6-bank phasing. The advantages of the 16-bank
organization are that the number of bank conflicts (more than one
reference to the same bank at the same time, causing one reference to
wait) are greatly reduced and the memory bandwidth is doubled.

Each address in Buffer Memory contains 64 data bits and 8 bits of error
correction information. Data is transferred to and from Buffer Memory in
16-bit parcels. Four parcels are stored in one 64-bit word. Parcels are
received and sent in a 0,1,2,3 sequence. The packing arrangement is
shown in figure 8-1.

Part 3
HR-0808 8-1 B

PARCEL BITS

515 ,0 15 0

2 15 0 215 0

2 2

PARCEL 0 PARCEL 1 PARCEL 2 PARCEL 3

263 248 247 232 231 216 215 20

Figure 8-1. Parcel packing in memory word

MEMORY ACCESS

Buffer Memory has four ports, each of which can be connected to an 1/0
Processor, as shown in figure 8-2. An interface adapts one I/0O Processor
I/0 Memory DMA port to one Buffer Memory port. Communication speed
depends upon the number of banks in the Buffer Memory, the activity
competing for the I/O Memory, and the number of other I/0 Processors
attempting to use the Buffer Memory. Each of the four Buffer Memory
ports has access to all banks through a time-sharing scanner. If one
port requests a reference to a bank that is busy, a reservation is made
for the new port to gain access to the bank as soon as the bank becomes
available. A similar scanning arrangement is used at the I/O Memory to
share the six DMA ports.

BUFFER MEMORY

PORT | PORT | PORT | PORT
o | 2 3

A-or07

DIOP/

MIOP BIOP || DiOP XIOP

Figure 8-2. Buffer Memory port assignments

MEMORY ADDRESSING

The Buffer Memory capacity is either 1,048,576 or 4,194,304 or 8,388,608
words, requiring an address width of 23 bits, The 22-bit address is
provided from an I/0 Processor accumulator in two functions to the
interface as shown in figure 8-3. The Buffer Memory does not address to
the parcel level. The address represents a physical location in Buffer
Memory.

Part 3
HR-0808 8-2 B

MOS: 2 MOS:3 FUNCTION

22 29 28 20 ADDRESS BITS

UPPER ADDRESS LOWER ADDRESS

28 20 ACCUMULATOR BITS

Figure 8-3. Buffer Memory address formation

ERROR PROTECTION

The Buffer Memory uses single error correction/double error detection
(SECDED) logic to determine if the data has been altered by the storage

cycle. When the data is written into memory, a checkword is generated
for the word and stored with that word. The checkword is an 8-bit
Hamming code. When the word is read from memory, the checkword and data
word are processed to determine if any bits were altered. If no errors
occurred, the word is passed to the I/0 Processor.

I1f an error did occur, the 8 bits of the checkword are analyzed by the
logic to find out if only 1 bit has been altered, or if more than 1 bit
has changed. If it is only a single-bit error, the correction logic
resets the bit in error to the correct state and passes the corrected
word out to the I/0 Processor.

If more than 1 bit of the stored word has been altered, the logic cannot
correct the word. The interface signals the error condition by leaving

the channel busy signal set after the block transfer. This interrupts
the I/O Processor for an error handling routine. The error handling
routine can include a call to the Master I/0 Processor to have that
processor retrieve the error information. This is explained in more
detail in Channel for Error Logging in the Interfaces section.

The Buffer Memory uses the same SECDED logic design as used in the
Central Memory. Refer to the Central Memory section for more details on

error protection.

Part 3
HR-0808 8-3 B

PART 4

APPENDIX SECTION

SUMMARY OF CPU TIMING INFORMATION A

When issue conditions are satisfied, an instruction completes in a fixed
amount of time (memory references are exceptions). Instruction issue may
cause reservations to be placed on a functional unit or registers.
Knowledge of the issue conditions, instruction execution times and
reservations permit accurate timing of code sequences. Memory bank
conflicts due to I/O activity are the only element of unpredictability.

SCALAR INSTRUCTIONS

Four conditions must be satisfied for issue of a scalar instruction:

1. The functional unit must be free. No conflicts can arise with
other scalar instructions; however, vector floating-point
instructions reserve the floating-point units. Memory
references may be delayed due to conflicts.

2. The result register must be free.
3. The operand register must be free.

4, One input path exists for each group of the four register groups
(A, B, S, and T). The result register group input path must be
free at the time the results would be stored. A previous
instruction with a longer execution time could still be
occupying the input path.

Scalar instructions place reservations only on result registers. A
result register is reserved for the execution time of the instruction.
No reservations are placed on the functional unit or operand registers.

Part 4
HR-0808 A-1 B

Scalar instruction execution times in clock periods are given below.

where: A = A register
B = B register
C = Channel
f = Floating-point
I = Immediate
lzc = Leading zero count
M = Memory
pop = Population count or population count parity
RTC = Real-time clock
ra = Reciprocal approximation
S = S registers
V. =V registers
VM = Vector mask

24-bit results:

A<€—M 11§ A<«—C 4
M<—A 1§ A -<«— A+A 2
A<« B 1 A <€— AxA 6
Be«—A 1 A <«— pop(S) 4
A<«—S 1 A «— 1zc(9) 3
A -1 1 VL <-— A 1
64-bit results:
S<«— M 11§ S<«— S+S 3
Me—S 1§ S<«— S(f.add)s 65
ST 1 S<«— S(f.mult)S 78
T<—S 1 S < S(r.a.) 14§
S<«—1 1 S« V 5
S €«— S(log.)s 1 Ve S 3
S «— S(shift)r 2 S« VM 1
S «— S(shift)A 3 S «— RTC 1
S «— S(mask)I 1 S<«— A 2
1 VM- S 3

RTC -— S

The following is an example of the use of this chart of execution times
to optimize timing.

§ TIssue may be delayed because of a2 functicnal unit t
vector instruction. Memory may be considered a functional uni

timing considerations.

Part 4
HR-0808 A-2

Execution

CAL Code Time Reservations
1 Sl S2+S3 3 S1
2 A2 0 (immed.) 1 S1 A2
3 S5 A2 2 S1 S5
4 S4 S1+S3 3 S5 S4
5 S6 S5&S1 1 S4 S6
6 S4
7

VECTOR INSTRUCTIONS

Four conditions must be satisfied for issue of a vector instruction:

1.

4.

The functional unit must be free. (Conflicts may occur with

vector operations.)

The result register must be free. (Conflicts may occur with

vector operations.)
The operand registers must be free or at chain slot time.

Memory must be quiet if the instruction references memory.

Vector instructions place reservations on functional units and registers

for the

1.

HR-0808

duration of execution.

Functional units are reserved for (VL)+4 CPs. Memory is reserved
for (VL)+5 CPs on a write operation, (VL)+4 CPs on a read
operation.

The result register is reserved for the functional unit time
+(VL) +2 CPs. The result register is reserved for the functional
unit time +7 CPs if the vector length is less than 5. At
functional unit time +2 (chain slot time) a subsequent vector
instruction, which has met all other issue conditions, may

issue. This process is called chaining. Several vector
instructions using different functional units may be chained in
this manner to attain a significant enhancement of processing
speed.

Vector operand registers are reserved for (VL) CPs. Vector
operand registers are reserved for 5 CPs if the vector length is
less than 5. The vector register used in a block store to memory

(177 instruction) is reserved for (VL) clock periods. Scalar
operand registers are not reserved.

Part 4

A-3 B

Vector instructions produce one result per clock period. The functional
unit times are given below. The vector read and write instructions
(176,177) produce results more slowly if bank conflicts arise due to the

increment value (Ak) being a multiple of 8S. Chaining cannot occur for
the vector read operation in this case.

If (Ak) is an odd multiple of 8§, results are produced every 2 CPs.

If (Ak) is an even multiple of 85, results are produced every 4 CPs.

Functional unit Time (CP)

Vector logical

Vector shift

Vector integer add
Floating-point add
Floating-point multiply
Reciprocal approximation
Memory

Vector population count

[
[oA NN I - B NNV I - 3 N)

A transmit vector mask to Si (073) instruction is delayed by (VL) +6 CPs
from the issue of a previous vector mask (175) instruction and is delayed
by 6 CPs from the issue of preceding transmit (Sj) to VM (003)
instruction.

HOLD ISSUE

A delay of issue results if a 100 - 137 instruction is the NIP register
and a hold memory condition exists. The delay depends on the hold memory
delay.

A delay of issue results if a 100 - 137 instruction is the NIP register
and a 100 - 137 instruction in process senses a conflict with rank A, B,
or C.

An additional 1 CP delay is added to a hold memory condition if a 070
instruction destination register conflict is sensed.

5 Multiple of 4 for 8-bank phasing; refer to part 2 section 2.

Part 4
HR-0808 A-4 B

Memory must be quiet before issue of the B and T register block copy
instructions (034-037). The low-order 7 bits (Ai) affect the timing.
Subsequent instructions may not issue for 14+(Ai) CPs if (Ai)#0 and 5

CPs if (Ai)=0 when reading data to the B and T registers (034,036). They
may not issue for 6+(Ai) CPs when storing data (035,037) .

The B and T register block read (034,036) instructions require that there
be no register reservation on the A and S registers, respectively, before
issue.

Conditional branch instructions cannot issue until an A0 or SO operand
register has been free for 2 CPs. Fall-through in buffer requires 2

CPs. Branch-in-buffer requires 5 CPs. When an "out of buffer" condition
occurs the execution time for a branch instruction is 14 cpsS.

A 2-parcel instruction takes 2 CPs to issue.

Instruction issue is delayed 2 CPs when the next instruction parcel is in
a different instruction parcel buffer. Instruction issue is delayed 12
cpPsSS if the next instruction parcel is not in an instruction parcel
buffer.

HOLD MEMORY

A delay of 1, 2, or 3 CPs will be added to an A, B, S or T register
memory read if a bank conflict occurs with rank C, B, or A, respectively,
of the memory access network. A conflict occurs if the address is in the
same bank as the address in rank C, B, or A. Conflicts can occur only
with scalar or I/0 references. The scalar instruction senses the
conflict condition at issue time + 1 CP. The scalar instruction address
enters rank A of the memory access network at issue time + 1 CP. The
scalar instruction address enters rank B at issue + 2 CPs. The scalar
instruction address enters rank C at issue + 3 CPs.

§ 18 CPs for 8-bank phasing
§§ 16 CPs for 8-bank phasing

Part 4
HR-0808 A-5 B

Scalar memory instruction timing (no conflict):

CP n Issue, reserve Ai or Si register
CP n+l Address rank A, sense conflict
CP n+2 Address rank B

CP n+3 Address rank C

CP n+10 Clear register reservation

CP n+l11 Complete

INTERRUPT TIMING

After a sensed interrupt condition, a minimum of 3 CPs + 2 parcel issues
must occur before the interrupt is generated. During the first 3 CPs, if
no hold issue conditions exist, instruction parcels may issue. At the
end of the 3 CPs, the NIP register parcel is examined. If the NIP
instruction is a 2-parcel instruction, 3 parcel issues occur before the
interrupt. If the NIP instruction is a l-parcel instruction, only 2
parcel issues occur before the interrupt.

Part 4
HR-0808 A-6 B

PHYSICAL ORGANIZATION OF CPU

MAINFRAME

The CPU mainframe is one of two sizes as shown in figure B-1. The
logic chassis are arranged two in each column in an arc that is about
2.5 feet in radius. The larger mainframe with 12 columns extends
270° around the arc, while the 8-column version subtends 180° of

the arc. The columns are about 6 1/2 feet tall. At the base of the
columns, 1 1/2 feet high and extending outward about 2 1/2 feet, are
cabinets for power supplies and cooling distribution systems.

Viewing the mainframe from the top, the upper chassis are labeled A
through L (A through H in the 8-column version) proceeding
counterclockwise. In the same manner, the lower chassis are named M
through X (M through T in the 8-column version). The general chassis
layout is shown in figure B-2. In the 8-column version, the
1,J,K,L,U,V,W and X logic chassis are omitted.

MODULES

The CRAY-1 computer system uses a basic module construction throughout
the entire machine. The module consists of two 6 x 8 inch printed
circuit boards mounted on opposite sides of a heavy copper heat
transfer plate. Each printed circuit board has capacity for a maximum
of 144 integrated circuit (IC) packages and approximately 300 resistor
packages.

A 2- to 4-million word CPU has 1684 modules. Modules are arranged 72
per chassis as illustrated in figure B-2. There are over 131 module
types. Usage varies from 1 to 568 modules per type. Each module type
is identified by two letters. The first indicates the module series
(A, D, F, G, H, J, M, R, S, T, V, and 2). The second letter
identifies types of modules within a series.

The computation and I/O modules are on the eight chassis forming the
center four columns. Each of the eight chassis on either side of the
four center columns contains one of the memory banks.

Two supply voltages are used for each module: -5.2 volts for IC
power; -2.0 volts for line termination.

Part 4
HR-0808 B-1

Dimensions
Base - approximately 9 ft diameter by 1 1/2 ft high

Columns - approximately 5 ft diameter by 6 1/2 ft high including
height of base

24 chassis arranged two per column in 12 columns, or 16 chassis in 8
columns

Approximately 1700 modules (12 column), 1100 for 8 column
Approximately 130 standard module types

Up to 288 IC packages per module

Power consumption approximately 118 kW input for maximum memory size
Refrigerant-22 cooled with refrigerant/water heat exchange

Five memory options

Weight 10,500 lbs (maximum memory size)

Figure B-1. Physical organization of CPU

Part 4

HR-0808 B-2

A B CD E F G H I J K L

7 CLK 0SC 7
V POP
CLOCK
FANOUT
FLOATING FLOATING
MULTIPLY ADD
— RECIP.
ADD APPROX.
STORAGE STORAGE
SCALAR
CLOCK AND CLOCK AND
REGISTERS
ADDRESS ADDRESS
FANOUT FANOUT
SECDED aopress| SECOED
REG.
CONTROL
ADDRESS
SCALAR LOGIC
m SR
SHIFTS
S0
ADDERS [z
CHECK BITS VECTOR VECTOR CHECK BITS
LOGICAL
o SHIFT celc o
tonrror] NP | wsTw. SN
CHECK BITS TORTRC] surrers CHECK BITS
secoep | VECTOR SECDED
ADD |Xp DATA
- VECTOR SHIFT
vj TO VECTOR ey
Vj & Vk TO FUNCTIONAL UNITS
STORAGE DATA TO VECTfR REGISTERS STORAGE
VECTOR
CLOCK AND A
ock AN REGISTERS CLOCK AND
ADDRESS ADDRESS o-ore0
L ADDR
FANOUT
FANOUT ADDR FANOU EANOUT FANQUT
1/0
71 71
M N OFP Q R S T UV W X

Figure B-2. General chassis layout

Part 4
HR-0808 B-3

Each module has 96 pin pairs for interconnecting to other modules.
All interconnections are via twisted pair wire. The average

utilization of pins is approximately 60 percent.

Each module has 144 available test points used for trouble shooting.
Test points are driven by circuits that do not drive other loads.

CLOCK

All timing within the CPU is controlled by a single-phase synchronous
clock network. This clock has a period of 12.5 nanoseconds. All of
the lines that carry the clock signal from the central clock source to
the individual modules of the CPU are of uniform length so that the
leading edge of a clock signal arrives at all parts of the CPU cabinet
at the same time. A 3-nanosecond pulse (figure B-3) is formed on each
module.

l¢—————— 12.5 ns ———u P>

: 3 ns A-0/33

Figure B-3. Clock pulse waveform

References to clock periods in this manual are often given in the form
CPn where n indicates the number of the clock period during which an

event occurs. Clock periods are numbered beginning with CP 0. Thus,
the third clock period would be referred to as CP 2.

POWER SUPPLIES

Thirty-six power supplies are used for the 12-column mainframe, or 24
for the 8-column models. There are twenty -5.2 volt supplies and
sixteen -2.0 volt supplies (in the 12 column version). There are 12
of each voltage in the 8-column version. The supplies are divided
into 12 groups (or 8) of 3, each group suppling one column. A logic
column uses one -5.2 volt supply and two -2.0 volt supplies. A memory
column uses two -5.2 volt supplies and cne -2.0 veclt supply. The

= -~ vilial S VN e e “~ril

power supply design assumes a constant load. The power supplies do

HR-0808 B-4

not have internal regulation but depend on the motor-generator to
isolate and regulate incoming power. The power supplies use a
12-phase transformer, silicon diodes, balancing coil, and a filter
choke to supply low ripple DC voltages. The entire supply is mounted
on a refrigerant-22 cooled heat sink. Power is distributed via bus
bars to the load.

COOLING

Modules in the CPU are cooled by the exchange of heat from the module
heat sink to the refrigerated cold bars. The module heat sink is
wedged along both 8-inch edges to the cold bars. Cold bars are
arranged in vertical columns, with each column having capacity for 144
modules. The cold bar is cast aluminum and contains a stainless steel
refrigerant tube.

Part 4
HR-0808 B-5

SOFTWARE CONSIDERATIONS C

References to software in this publication are limited to those features
of the CPU that provide for software or take it into consideration.

SYSTEM MONITOR

A monitor program is loaded at system deadstart and remains in Central
Memory for as long as the system is used. Only the monitor program
executes in CPU monitor mode and can execute monitor instructions. A
program executing in monitor mode cannot be interrupted. A monitor
program is designed to reference all of memory.

USER PROGRAM

A user program or object program, as referred to in this publication,
means any program other than the monitor program. Generally, the term
describes a job-oriented program but may also describe an operating
system task that does not execute in monitor mode. A user program may be
a machine language program such as a FORTRAN compiler or it may be a
program resulting from compilation of FORTRAN statements by the compiler.

OPERATING SYSTEM

The operating system consists of a monitor program, object programs that
perform system-related functions, compilers, assemblers, and various
utility programs. The operating system is loaded into Central Memory and
possibly onto mass storage during system deadstart. Features of the
operating system and organization of storage, which is a function of the
operating system, is described in CRAY-0S Version 1 Reference Manual, CRI
publication SR-0011.

Part 4
HR-0808 C-1 B

SYSTEM OPERATION

System operation begins at CPU deadstart. Deadstart is that sequence of
operations required to start a program running in the computer after
power has been turned off and then turned on again.

The deadstart sequence is initiated from the I/O Subsystem or the
Maintenance Control Unit (MCU) depending on the model of the CRAY-1l. The
sequence is described in detail in part 2 section 3. During the
deadstart sequence, a program containing an exchange package is loaded at
absolute address 0 in the Central Memory. A signal from the MCU or 1/0
Subsystem causes the CRAY-1 to begin execution of the program pointed to
by the exchange package.

FLOATING~POINT RANGE ERRORS

Detection of the floating-point range error initiates an interrupt if the
floating-point mode flag is set in the mode register and monitor mode is
not in effect. The programmer has the capability via the 0022
instruction to clear the floating-point mode flag so that results going
out of range are prevented from interrupting. This is especially useful
for the vector merge instruction usage in subroutines such as TANGENT,
where some results may be known to go out-of-range. At the end of the
code sequence, the programmer normally resets the floating-point mode via
a 0021 instruction.

Part 4
HR-0808 C-2 B

CPU INSTRUCTION SUMMARY

CRAY-1 CAL PAGE UNIT
000xxx ERR 6-7 -
t0001jk ERR exp 6-7 -
1100105k CALAj Ak 6-8 -
1100115k CL,Aj Ak 6-8 -
t10012jx CI,Aj 6-8 -
400135 x XA Aj 6-8 -
*t001450 RT Sj 6-10 -
115001454 PC1 Sj 6-10 -
t150014)5 CC1I 6-10 -
tt§0014)6 ECI 6-10 -
t1§ 001457 DCI 6-10 -
0020xk VL Ak 6-12 -
t0020x0 VL 1 6-12 -
0021xx EFI 6-13 -
0022 xXx DFI 6-13 -
003xjx M Sj 6-14 -
1003x0x VM 0 6-14 R
004 xxx EX 6-15 -
t004ijk EX exp 6-15 -
005xjk J Bjk 6-16 -
006ijkm J exp 6-17 -
007ijkm R exp 6-18 -
010ijkm JAZ exp 6-19 -
011ijkm JAN exp 6-19 -
012ijkm JAP exp 6-19 -
013ijkm JAM exp 6-19 -
-014ijkm JSZ exp 6-21 -
015ijkm JSN exp 6-21 -
016ijkm JSP exp 6-21 -
017ijkm JSM exp 6-21 -
020ijkm 6-23 -
021ijkm{ Al exp 6-23 -
022ijk 6-24 -
023ijx Ai Sj 6-25 -
0z4ijk Ai Bjk 6-26 -
025ijk Bjk Ai 6-26 -
026ij0 Ai PSj 6-27 Pop/lZ
026ij1 Ai Qs) 6-27 Pop/LZ
027ijx Ai 1Sj 6-28 Pop/LZ
030ijk Ai Aj+Ak 6-29 A Int
03010k Ai Ak 6-29 A Int
+030i1j0 Ai Aj+l 6-29 A Int
031ijk Ai Aj-Ak 6-29 A Int

1 Special syntax form
Priviledged to monitor mode

§ Programmable Clock Option only

HR-0808

Add
Add
Add
Add

Part 4
D-1

DESCRIPTION
Error exit
Error exit

Set the channel (Aj) current address to
(Ak) and begin the 1/ sequence

Set the channel (Aj) limit address to (Ak)
Clear channel (Aj) interrupt flag

Enter XA register with (Aj)

Enter RTC register with (Sj)

Enter interval register with (Sj)

Clear PCI request

Enable PCI request

Disable PCl request

Transmit (Ak) to VL register

Transmit 1 to VL register

Enable interrupt on floating point error
Disable interrupt on floating point error
Transmit (Sj) to VM register

Clear VM register

Normal exit

Normal exit

Jump to (Bjk)

Jump to exp

Return jump to exp; set B0O to P

Branch to exp if (A0) = 0

Branch to exp if (AD0) ¥ O

Branch to exp if (A0) positive

Branch to exp if (A0) negative

Branch to exp if (S0) = 0

Branch to exp if (S0) # 0

Branch to exp if (SO0) positive

Branch to exp if (SO) negative

Transmit exp = jkm to Ai

Transmit exp = 1's complement
of jkm to Ai

Transmit exp = jk to Al
(Sj) to Ai
(Bjk) to Ai
(Ai) to Bjk

Population count of (S)) to A1

Transmit
Transmit

Transmit

Population count parity of (Sj) to Ai
Leading zero count of (Sj) to Ai

Integer sum of (Aj) and (Ak) to Ai
Transmit (Ak) to Ai

Integer sum of (Aj) and 1 to Al

Integer difference of (Aj) less (Ak) to Ai

CRAY-1 CAL
+031i00 A -1
t031i0k Ai -Ak
1031ij0 A Aj-1

032ijk Ai Aj*AK

033i0x Ai c1
033ij0 Ai CA,Aj
033ij1 Aj CE,Aj

034ijk Bjk,Ai ,AD
t034ijk Bjk,Ai 0,A0

035ijk ,AQ Bjk,Ai
+035ijk 0,A0 Bjk,Ai

036ijk Tjk,Ai ,A0
t036ijk Tjk,Ai 0,A0

037ijk ,AD Tjk,Al
1037ijk 0,A0 Tik,Ai
040ijkm }
exp
041ijkm
042ijk Si <exp
Si f>exp
1042177 Si 1
1042100 Si -1
043ijk Si >exp
Si #<exp
1043100 Si 0
044ijk Si Sj&Sk
+044ij0 Si Sj§SB
t044ij0 Si SBES)
045ijk Si #SkES]
1045130 Si ¥SBE&S)
046ijk Si Sj\Sk
t046ij0 Si Sj\SB
t046ij0 Si SB\Sj
0471jk Si #S5j\Sk
104710k Si #Sk
+047ij0 Si #Sj\SB
t047ij0 Si #SB\Sj
1047300 Si #SB
050ijk Si Sj!SigSk
+050ij0 Si Sj:SigSB
051ijk Si Sj Sk
+051i0k Si Sk
+0511j0 Si Sj!SB
+051ij0 Si SB!Sj
+051i00 Si SB
052ijk S0 Si<exp
053ijk SO Si>exp
054ijk Si Sicexp
0551jk Si Si>exp
056ijk Si 51,Sj<Ak
1056ij0 Si Si,Si<l
t056i0k Si Si<Ak

7 Special syntax form

HR-0808

6-29
6-31
6-32
6-32
6-32
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-34
6-37
6-37
6-28
6-38
6-38
6-38
6-38

6-38
6-39
6-39
6-39
6-39

6-39
6-39
6-39
6-39
6-39
6-39
6-39

6-39
6-39
6-39
6-39
6-39
6-43
6-43
6-43
6-43
0-44
6-44
6-44

UNIT DESCRIPTION
A Int Add Transmit -1 to Ai
A Int Add Transmit the negative of (Ak) to Ai
A Int Add Irteger difference of (Aj) less 1 to Ai
A Int Mult Integer product of (Aj) and (Ak) to Ai

- Channel number to Ai (j=0)

- Address of channel (Aj) to Ai (j¥0; k=0)

- Error flag of channel (Aj)) to Ai (j¥0; k=1)
Memory Read (Ai) words to B register jk from (A0)
Memory Read (Ai) words to B register jk from (AD)
Memory Store (Ai) words at B register jk to (AQ)
Memory Store (Ai) words at B register jk to (A0)
Memory Read (Ai) words to T register jk from (AQ)
Memory Read (Ai) words to T register jk from (AOQ)
Memory Store (Ai) words at T register jk to (A0)
Memory Store (Ai) words at T register jk to (A0)

- Transmit jkm to Si

- Transmit exp = 1's complement of jkm to Si
S Logical Form 1's mask exp = 64-jk bits in Si from

the right
S Logical FEnter 1 into Si
S Logical Enter -1 into Si
S Logical Form 1's mask exp = jk bits in Si from
the left
S Logical C(lear Si
S Logical Logical product of (Sj) and (Sk) to Si
S Logical Sign bit of (Sj) to Si
S Logical Sign bit of (Sj) to Si (j#0)
S Logical Logical product of (Sj) and 1's
complement of (Sk) to Si
S Logical (Sj) with sign bit cleared to Si
S Logical Logical difference of (Sj) and (Sk) to Si
S Logical Toggle sign bit of Sj, then enter into Si
S Logical Toggle sign bit of Sj, then enter into Si (j#0)
S Logical Logical equivalence of (Sk) and (Sj) to Si
S Logical Transmit 1's complement of (Sk) to Si
S Logical Logical equivalence of (Sj) and sign
bit to Si
S Logical Logical equivalence of (Sj) and sign
bit to Si (j#0)
S Logical Enter 1's complement of sign bit into Si
S Logical Logical product of (Si) and (Sk) complement
ORed with logical product of (Sj) and (Sk) to Si
S Logical Scalar merge of (Si) and sign bit of (Sj)
to Si
S Logical Logical sum of (Sj) and (Sk) to Si
S Logical Transmit (Sk) to Si
S Logical Logical sum of (Sj) and sign bit to Si
S Logical Llogical sum of (Sj) and sign bit to Si (j#0)
S Logical Enter sigr bit inte Si
S Shift Shift (Si)} left exp = jk places to SO
S Shift Shift (Si) right exp = 64-jk places to S0
S Shift Shift {Si) left exp = jk places
S Shift Shift (Si) right exp = 64-jk places
S Shift Shift (S3 and Sj) left (Ak) places to Si
S Shift Shift (Si and Si) left nne nlace tn Sj
S Shift Shift (Si) left (Ak) places to Si
Part 4
D-2 B

057ijk
+057130
+05710Kk
060ijk
061ijk
106110k
062ijk
106210k
063ijk
106310k
064ijk
065ijk

066ijk

067ijk
070ijx

071i0k
07111k
071i2k

07113x
071i4x
071i5x
071i6x
071i7x
072ixx
0731xx
074ijk
0751jk
0761ijk
07713k
107710k
10hijkm
+100ijkm
+100ijkm
+10hi000
1lhijkm
+110ijkm
+110ijkm
+11hi000
12hijkm
$120ijkm
$120ijkm
+12hi000
13hijkm
+130ijkm
1t130ijkm
t13hi000
140ijk
141ijk
142ijk
+142i0k

CAL

Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si

Si

Si
Si

Si
Si
Si

exp,Ah
exp,0
€Xp,
,Ah

Vi
Vi
Vi

t Special syntax form

HR-0808

Sj,Si-Ak
$j,Si>1
Si>Ak
$j+Sk
$j-Sk
-5k
Sj+ESk
+ESk
Sj-FSk
-FSk
Sj*FSk
Sj*HSKk

Sj*RSk

Sj*ISk
JHSj

Ak
+Ak
+FAk

Sj&Vk
VjEVk
Sj!Vk
vk

PAGE
6-44
6-44
6-44
6-46
6-46
6-46
6-47
6-47
6-47
6-47
6-49
6-49

6-49
6-51

6-52
6-52
6-52

6-52
6-52
6-52
6-52
6-52
6-55
6-55
6-55
6-55
6-56
6-56
6-56
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-57
6-59
6-59
6-59
6-59

UNTT DESCRIPTION
S Shift Shift (Sj and Si) right (Ak) places to i
S Shift Shift (Sj and Si) right one place to Si
S Shift Shift (Si) right (Ak) places to Si
S Int Add Integer sum of (Sj) and (Sk) to Si
S Int Add Integer difference of (Sj) and (Sk) to Si
S Int Add Transmit negative of (Sk) to Si
F.P. Add Floating sum of (Sj) and (Sk) to Si
F.P. Add Normalize (Sk) to Si
F.P. Add Floating difference of (Sj) and (Sk) to Si
F.P. Add Transmit normalized negative of (Sk) to Si
F.P. Mult Floating product of (Sj) and (Sk) to Si
F.P. Mult Half precision rounded floating product
of (Sj) and (Sk) to Si
F.P. Mult Full precision rounded floating product
of (Sj) and (Sk) to Si
F.P. Mult 2 - Floating product of (Sj) and (Sk) to Si
.P. Rcpl Floating reciprocal approximation of
(Sj) to Si
= Transmit (Ak) to Si with no sign extension
- Transmit (Ak) to Si with sign extension
- Transmit (Ak) to Si as unnormalized
floating point number
- Transmit constant 0.75%*2**48 to Si
- Transmit constant 0.5 to Si
- Transmit constant 1.0 to Si
- Transmit constant 2.0 to Si
- Transmit constant 4.0 to Si
- Transmit (RTC) to Si
- Transmit (VM) to Si
- Transmit (Tjk) to Si
- Transmit (Si) to Tjk
- Transmit (Vj, element (Ak)) to Si
- Transmit (Sj) to Vi element (Ak)
- Clear Vi element (Ak)
Memory Read from ((Ah) + exp) to Ai (A0=0)
Memory Read from (exp) to A1l
Memory Read from (exp) to Ai
Memory Read from (Ah) to Ai
Memory Store (Ai) to (Ah) + exp (A0=0)
Memory Store (Ai) to exp
Memory Store (Ai) to exp
Memory Store (Ai) to (Ah)
Memory Read from ((Ah) + exp) to Si (A0=0)
Memory Read from (exp) to Si
Memory Read from {exp)to Si
Memory Read from (Ah) to Si
Memory Store (Si) to (Ah) + exp (A0=0)
Memory Store (Si) to exp
Memory Store (Si) to exp
Memory Store (Si) to (Ah)
V Logical Logical products of (Sj) and (Vk) to Vi
V Logical Logical products of (Vj) and (Vk) to Vi
V Loglcal Logical sums of (Sj) and (Vk) to Vi
V Logical Transmit (Vk) to Vi
Part 4
D-3 B

CRAY-1] CAL PAGE UNIT DESCRIPTION

143ijk Vi Vj vk 6-59 V Logical Logical sums of (Vj) and (Vk) to Vi
1443k Vi Sj\Vk 6-59 V Logical Logical differences of (Sj) and (Vk) to Vi
145ijk Vi Vji\Vk 6-59 V Logical Logical differences of (Vj) and (Vk) to Vi
t145iii Vi 1] 6-59 V Logical Clear Vi
14615k Vi Sj!VkEWM 6-59 V Logical Transmit (Sj) if VM bit = 1; (Vk) if
VM bit = 0 to Vi
t146i0k Vi PVMEVK 6-5 V Logical Vector merge of (Vk) and 0 to Vi
147ijk Vi Vj!Vk§VM 6-59 V Logical Transmit (Vj) if VM bit = 1; (Vk) if
VM bit = 0 to Vi
150ijk Vi Vj <Ak 6-63 V Shift Shift (Vj) left (Ak) places to Vi
t150ij0 Vi Vi<l 6-63 V Shift Shift (Vj) left one place to Vi
15115k Vi Vj>Ak 6-63 V Shift Shift (Vj) right (Ak) places to Vi
1511350 Vi Vj>1 6-63 V Shift Shift (Vj) right one place to Vi
152ijk Vi Vj,Vj<Ak 6-65 V Shift Double shift (Vj) left (Ak) places to Vi
1152130 Vi Vj,Vj<l 6-65 V Shift Double shift (Vj) left one place to Vi
153ijk Vi Vj,Vj>Ak 6-65 V Shift Double shift (Vj) right (Ak) places to Vi
t153ij0 Vi Vj,Vvj>1 6-65 V Shift Double shift (Vj) right one place to Vi
154ijk Vi Sj+Vk 6-70 V Int Add Integer sums of (Sj) and (Vk) to Vi
155ijk Vi Vj+Vk 6-70 V Int Add Integer sums of (Vj) and (Vk) to Vi
156ijk Vi Sj-Vk 6-70 V Int Add Integer differences of {Sj) and (Vk) to Vi
t156i0k Vi -Vk 6-70 V Int Add Transmit negative of (Vk) to Vi
157ijk Vi Vj-Vvk 6-70 V Int Add Integer differences of (Vj) and (Vk) to Vi
160ijk Vi Sj*FVk 6-72 F.P. Mult Floating products of (Sj) and (Vk) to Vi
161ijk Vi Vj*FVk 6-72 F.P. Mult Floating products of (Vj) and (Vk) to Vi
162ijk Vi Sj*HVK 6-72 F.P. Mult Half precision rounded floating products
of (Sj) and (Vk) to Vi
163ijk Vi Vj*HVk 6-72 F.P. Mult Half precision rounded floating products
of (Vj) and (Vk) to Vi
164ijk Vi Sj*RVk 6-72 F.P. Mult Rounded floating products of (Sj) and
(Vk) to Vi
1651jk Vi Vj*RVk 6-72 F.P. Mult Rounded floating products of (Vj) and
(Vk) to Vi
166ijk Vi Sj*IVk 0-72 F.P. Mult 2 - floating products of (Sj) and
(Vk) to Vi
167ijk Vi Vi*IVk 6-72 F.P. Mult 2 - floating products of (Vj) and
(Vk) to Vi
170ijk Vi Sj+FVk 6-75 F.P. Add Floating sums of (Sj) and (Vk) to Vi
117010k Vi +FVk 6-75 F.P. Add Normalize (Vk) to Vi
171ijk Vi Vj+Fvk 6-75 F.P. Add Floating sums of (Vj) and (Vk) to Vi
172ijk Vi Sj-Fvk 6-75 F.P. Add Floating differences of (Sj) and (Vk) to Vi
+172i0k Vi -FVk 6-75 F.P. Add Transmit rormalized negatives of (Vk) to Vi
173ijk Vi Vj-Fvk 6-75 F.P. Add Floating differences of (Vj) and (Vk) to Vi
174ij0 Vi /HVj 6-77 F.P. Rcpl Floating reciprocal approximations of
(V}) to Vi
174151 Vi PVj 6-78 F.P. Rcpl Population counts of (Vj) to Vi
1743152 Vi QVj 6-78 F.P. Rcpl Population count parities of (Vj) to Vi
175xj0 ™ Vj,2 6-79 V Logical VM=1 where (Vj) = 0
175xj1 VM Vj,N 6-79 V Logical VM=1 where (Vj) 7 0
175xj2 VM vj,P 6-79 V Logical VM=1 where (Vj) positive
175xj3 M Vij,M 6-79 V Logical VM=1 where (Vj) negative
176ixk Vi ,A0, Ak 6-381 Memory Read (VL) words to Vi from (A0)
incremented by (Ak)
+176ix0 Vi ,AO0,1 6-81 Memory Read (VL) words to Vi from (A0)
incremented by 1
177xjk ,A0,Ak Vj 6-81 Memory Store (VL) words from Vj to (A0)
incremented by (Ak)
+177xj0 ,AD,1 \'5] 5-81 Memory Store (VL) words from Vj to {AQ)

incremented by 1

T Special syntax form

Part 4
HR-0808 D-4 B

I/O PROCESSOR INSTRUCTION SUMMARY

I0P APML

000 PASS

001 EXIT

002 I =20

003 I=1

004 A=A>4d
005 A=A<4d
006 A =A>4d
007 A =A<<(g
010 A =4d

011 A =Agd
012 A =A+d
013 A=A-4d
014 A=k

015 A=Ag%&k
016 A=A k
017 A=A-k
020 A = dd

021 A A & d4d
022 A=A + dd
023 A=A -dd
024 dd = A

025 dd = A + dd
026 dd = dd + 1
027 dd = dd -1
030 A = (dd)

031 A=A & (dd)
032 A=A + (d4d)
033 A = A - (dd)
HR-0808

Description

No operation

Exit from subroutine
Disable system interrupts
Enable system interrupts

Right shift C and A by d places, end off
Left shift C and A by d places, end off

Right shift C and A by d places, circular
Left shift C and A by d places, circular

Transmit d to A

Logical product of A and d to A
Add d to A

Subtract 4 from A

Transmit k to A

Logical product of A and k to A
Add k to A

Subtract k from A

Transmit operand register d to A

Logical product of A and operand register d to A
Add operand register d to A

Subtract operand register 4 from A

Transmit A to register d

Add operand register d to A, result to operand
register d

Transmit register d to A, add 1, result to
operand register d

Transmit register d to A, subtract 1, result to
operand register d

Transmit contents of memory addressed by
register d to A

Logical product of A and contents of memory
addressed by register d, result to A

Add contents of memory addressed by register d
to A, result to A

Subtract contents of memory addressed by
register d from A, result to A

Part 4
E-1 B

IOP

034
035

036

037

040
041
042
043

044
045

046
047

050
051
052
053

054
055
056
057

060
061
062
063

064
065

066

067

070
071
072
073

074
075
076
677

APML

(ad)
(dd)

(dd)

(aa)

OO0 00
"

wonon
b i e

b i

B
oo
> > P w
-+
w

wwww
]

w W >
+
w

> B

(B)
(B)

(B)

(B)

v Be B o B]
won
v B e o B v

oIl B B
nu

HR-0808

=1, IOB

A
A + (dd)

]

(dd) + 1

(dd) -1

l, iod = DN
1, iod Bz
1, IOB = DN
BZ

AV
W w

w
+ o~

(B)
(B)
- (B)

>~

nn
>

+ (B)

il

(B) +1

= (B) -1

+

1+
[oTRN e Tl o TR o)

dd + k
dd
dd + k

Description

Transmit A to memory addressed by register d
Add memory addressed by register d to A, result
to same memory location

Transmit memory addressed by register 4 to A,
add 1, result to same memory location

Transmit memory addressed by register 4 to A,
subtract 1, result to same memory location

Set carry equal to channel 4 done
Set carry equal to channel 4 busy
Set carry equal to channel B done
Set carry equal to channel B busy

Right shift C and A by B places, end off
Left shift C and A by B places, end off

Right shift C and A by B places, circular
Left shift C and A by B places, circular

Transmit B to A

Logical product of A and B to A
Add B to A, result to A
Subtract B from A, result to A

Transmit A to B

Add B to A, result to B

Transmit B to A, add 1, result to B
Transmit B to A, subtract 1, result to B

Transmit operand register B to A

Logical product of A and operand register B to A
Add operand register B to A, result to A
Subtract operand register B from A, result to A

Transmit A to operand register B

Add operand register B to A, result to operand
register B

Transmit operand register B to A, add 1, result
to operand register B

Transmit operand register B to A, subtract 1,
result to operand register B

Jump to P + d
Jump to P - 4
Return jump to P + d
Return jump to P - d

Jump to address in operand register d

Jump to sum of k and operand register d

Return jump to address in operand register 4
Return jump to sum of k and operand register d

Part 4
E-2 B

I10P APML Description

100 P=P+d,C=0 Jump to P + d if carry = 0

101 P=P+d, C#%0 Jump to P + 4 if carry # 0

102 P=P+d, =0 Jump to P +d if A =0

103 P=P+d, A% 0 Jump to P + 4 if A # 0

104 P=P-4d4,C=0 Jump to P - d if carry = 0

105 P=P-d, C$ 0 Jump to P -4 if carry # 0

106 P=P-d4, A=0 Jump toP -d if A =0

167 P=P-d, A#0 Jump toP -d if A # 0

110 R=P+d,C=20 Return jump to P + d if carry = 0

111 R=P+4, C#0 Return jump to P + d if carry # 0

112 R=P +d,A =20 Return jump to P + d if A =0

113 R=P+d, A$#0 Return jump to P + d if A # 0

114 R=P-4,C=20 Return jump to P - d if carry = 0

115 R =P -d, C %0 Return jump to P - 4 if carry # 0

116 R=P-d4,A=0 Return jump to P - d if A =0

117 R=P-4d, A %0 Return jump to P - & if A # 0

120 P=4d4, C=0 Jump to address in operand register 4 if carry =
0

121 P=4dd, C # 0 Jump to address in operand register d if carry
0

122 P=dd, A=0 Jump to address in operand register d if A =0

123 P=dd, A% 0 Jump to address in operand register 4 if A #0

124 P=4dd + k, C =0 Jump to address in operand register d + k if
carry = 0

125 P=dd + k, C # 0 Jump to address in operand register d + k if
carry # 0

126 P=4dd + k, A =0 Jump to address in operand register d + k if

A =20

127 P=dd + k, A 4 0 Jump to address in operand register d + k if
A#O0

130 R=4dd, C =0 Return jump to address in operand register 4 if
carry = 0

131 R=4dd, C # 0 Return jump to address in operand register 4 if
carry # 0

132 R=4d, A =0 Return jump to address in operand register 4 if
A=20

133 R =44, 2% 0 Return jump to address in operand register d if
A#0

Part 4
HR-0808 . E-3 B

I0P

134

135

136

137

140
141
142
143

144
145
146
147

150
151
152
153

154
155
156
157

160
161
162
163

164
165

166
167

170
171
172
173

174
175
176
177

APML

R=4dd + k, C =

R =

R =

R =

iod
iod
iod
iod
iod
iod
iod

dd + k, C
dd+klA-

dd + k, A

iod :

iod :

iod
iod
iod

iod
iod
iod
iod

I0B
I0B
IOB
IOB

I0B
I0B
I0B
I0B

I0B
I0B
I0B
IOB

I0B
IOB
IOB

ss 06 s e e se

s se we

se se a0 e

e oo

I0B :

HR-0808

w N =Oo

N b

11
12
13

14
15
16

w N = O

~N O U

11
12
13

14
15

1
L

17

Description

Return jump to address
if carry = 0

Return jump to address
if carry # 0

Return jump to address
ifA =20

Return jump to address
ifa#o0

Channel d function 0
Channel d function 1
Channel d function 2
Channel 4 function 3
Channel 4 function 4
Channel d function 5
Channel d function 6
Channel d function 7
Channel d function 10
Channel d function 11
Channel d function 12
Channel 4 function 13
Channel 4 function 14
Channel d function 15
Channel 4 function 16
Channel d function 17
Channel B function 0
Channel B function 1
Channel B function 2
Channel B function 3
Channel B function 4
Channel B function 5
Channel B function 6
Channel B function 7
Channel B function 10
Channel B function 11
Channel B function 12
Channel B function 13
Channel B function 14
Channel B function 15
Channel B function 16
Channel B function 17
Part 4
E-4

in

in

in

in

operand
operand
operand

operand

register
register
register

register

4 + k

d + k

d + k

d + k

SYSTEM CHANNEL ASSIGNMENTS

The channel assignments for a typical Model 4400 system are shown in

table F-1.
Table F-1. Typical Model 4400 system channel assignments
PROCESSOR | CHANNEL | MNEMONIC FUNCTION
Master 0 IOR Interrupt request
1/0 1 PFR Program fetch request

Processor 2 PXS Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 AIA Input from Buffer I/0O Processor
7 AOA Output to Buffer I/O Processor
10 AIB Input from Disk I/0 Processor
11 AOB Output to Disk I/O Processor
12 AIC Input from Auxiliary I/O Processor
13 AOC Output to Auxiliary I/O Processor
14
15
16 ERA Error log
17 EXB Peripheral Expander (DMA 0)
20 CIAa Input from CRAY-1 channel (DMA 1)
21 COA Output to CRAY-1 channel (DMA 1)
22
23
24 CIB Input from F.-E. Interface (DMA 2)
25 coc Output to F.-E. Interface (DMA 2)
26
27
30 CIC Input from F.-E. Interface (DMA 4)
31 cocC Output to F.-E. Interface (DMA 4)
32
33
34 CiD Input from F.-E. Interface (DMA 5)
35 COD Output to F.-E. Interface (DMA 5)
36
37
40 TIA Console 0 keyboard
41 TOA Console 0 display

HR-0808

Part 4
F-1

Table F-1. Typical Model 4400 system channel assignments (continued)

PROCESSOR | CHANNEL | MNEMONIC FUNCTION
Master 42 TIB Console 1 keyboard
1/0 43 TOB Console 1 display

Processor. 44

(continued) 45
46
47

Buffer 0 IOR Interrupt request

1/0 1 PFR Program fetch request

Processor 2 PXS Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 AIA Input from Master I/0O Processor
7 AOA Output from Master I/0 Processor
10 AIB Input from Disk I/O Processor
11 AOB Output to Disk I/O Processor
12 AIC Input from Auxiliary I/0 Processor
13 AOC Output to Auxiliary I/0 Processor
14 HIA Input from Memory Channel (DMA 4)
15 HOA Output to Memory Channel (DMA 4)
16
17

i 20 DKA Disk Storage Unit 0 (DMA Q)
21 DKB Disk Storage Unit 1 (DMA 0)
22 DKC Disk Storage Unit 2 (DMA 1)
23 DKD Disk Storage Unit 3 (DMA 1)
24 DKE Disk Storage Unit 4 (DMA 2)
25 DKF Disk Storage Unit 5 (DMA 2)
26 DKG Disk Storage Unit 6 (DMA 5)
27 DKH Disk Storage Unit 7 (DMA 5)
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
Part 4

HR-0808 F-2 B

Table F-1.

Typical Model 4400

system channel assignments (continued)

PROCESSOR | CHANNEL | MNEMONIC FUNCTION
Disk 0 IOR Interrupt request
1/0 1 PFR Program fetch request

Processor 2 PXR Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 AIA Input from Master I/O Processor
7 AOA Output to Master I/0 Processor
10 AIB Input from Buffer I/0 Processor
11 AOB Output to Buffer I/O Processor
12 AIC - Input from Auxiliary I/O Processor
13 AOC Output to Auxiliary I/O Processor
14
15
i6
17
20 DKA Disk Storage Unit 0 (DMA Q)
21 DKB Disk Storage Unit 1 (DMA 0)
22 DKC Disk Storage Unit 2 (DMA 0)
23 DKD Disk Storage Unit 3 (DMA 0)
24 DKE Disk Storage Unit 4 (DMA 1)
25 DKF Disk Storage Unit 5 (DMA 1)
26 DKG Disk Storage Unit 6 (DMA 1)
27 DKH Disk Storage Unit 7 (DMA 1)
30 DKI Disk Storage Unit 8 (DMA 2)
31 DKJ Disk Storage Unit 9 (DMA 2)
32 DKK Disk Storage Unit 10 (DMA 2)
33 DKL Disk Storage Unit 11 (DMA 2)
34 DKM Disk Storage Unit 12 (DMA 5)
35 DKN Disk Storage Unit 13 (DMA 5)
36 DKO Disk Storage Unit 14 (DMA 5)
37 DKP Disk Storage Unit 15 (DMA 5)
40
41
42
43
44
45
46
47

HR-0808

Part 4
F-3

Table F-1. Typical Model 4400 system channel assignments (continued)

PROCESSOR | CHANNEL | MNEMONIC FUNCTION
Auxiliary 0 IOR Interrupt request
I/0 1 PFR Program fetch request

Processor 2 PXS Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 AIA Input from Master I/0O Processor
7 AOA Output to Master I/0 Processor
10 AIB Input from Buffer I/0 Processor
11 AOB Output to Buffer I/0 Processor
12 AIC Input from Disk I/O Processor
13 AQC Output to Disk I/O Processor
14
15
16
17
20 BMA Block Multiplexer Channel 0 (DMA 0)
21 BMB Block Multiplexer Channel 1 (DMA 0)
22 BMC Block Multiplexer Channel 2 (DMA 0)
23 BMD Block Multiplexer Channel 3 (DMA 0)
24 BME Block Multiplexer Channel 4 (DMA 1)
25 BMF Block Multiplexer Channel 5 (DMA 1)
26 BMG Block Multiplexer Channel 6 (DMA 1)
27 BMH Block Multiplexer Channel 7 (DMA 1)
30 BMI Block Multiplexer Channel 8 (DMA 2)
31 BMJ Block Multiplexer Channel 9 (DMA 2)
32 BMK Block Multiplexer Channel 10 (DMA 2)
33 BML Block Multiplexer Channel 11 (DMA 2)
34 BMM Block Multiplexer Channel 12 (DMA 5)
35 BMN Block Multiplexer Channel 13 (DMA 5)
36 BMO Block Multiplexer Channel 14 (DMA 5)
37 BMP Block Multiplexer Channel 15 (DMA 5)
40
41
42
43
44
45
46
47

Part 4

HR-0808 F-4

IOP PROGRAMMING CONSIDERATIONS G

Several special cases must be considered when programming the 1/0
Processor. These cases are explained below.

EXIT STACK TIMING

When issuing PXS : 4 or PXS : 15, allow 4 CPsS before enabling system
interrupts, return jumps or exit instructions. PXS : 14 and PXS : 15
instructions should only be used when system interrupts are disabled.

EXIT STACK INTERRUPT HANDLING

If return jumps are used in an interrupt handler, verifiy that enough
levels are left available in the stack. An interrupt with the exit stack
pointer at 1310 causes the pointer to go to 14lO and leave only one
location open. A worse case exists if a return jump which causes a
program fetch request (PFR) interrupt is issued with the stack pointer at
1310. The return address goes in 1410 and the interrupt address goes
into 15;4. This condition now leaves two interrupts present-—-both the
exit stack boundary and PFR, with the PFR being the highest priority and
no stack locations available. If the stack pointer is allowed to
increment from 1510, it clears to 0, and incorrect return addresses are

used.

SYSTEM INTERRUPT ENABLE

When issuing an I=1, the system interrupt enable is delayed until the

next non-branch or non-1/0 instruction is issued. The instructions'that
do not enable interrupts are the 40-43 and 70-137.

§ The term clock periods refers to processor instruction times taken up
by issuing pass instructions, or some other instruction or group of
instructions whose execution time equals or exceeds the delays noted.
Any instruction or group of instructions may be used as long as they
are not included in any of the special cases stated in this list.

Part 4
HR-0808 G-1 B

This allows the executive/monitor to get back to the interruptible
activity before an interrupt is accepted.

Use an I=0 instruction at the interrupt handler entrance. If a redundant
I=1 is executed and an interrupt occurs before a non-branch or non-I/0
instruction is encountered, the interrupt handler is entered (with
interrupts disabled). But interrupts are re-enabled when the first
non-branch or non-I/0 instruction is issued within the interrupt handler.

SYSTEM INTERRUPT DISABLE

The instructions following an I=0 instruction may be skipped if an
interrupt occurs (while I=0 is executing). Hence, a pass instruction

should follow every I=0.

SYSTEM INTERRUPT CLEARED OR SET BY THE ENABLES FOR INDIVIDUAL CHANNELS

After issuing a command 6 or 7 to any I/0 channel, allow 3 CpsS pefore
seeing its effect on system interrupt. (Assuming system interrupts are,

or will be, enabled.)

1/0 CHANNEL TIMING

When issuing any command to the I/O channels, allow 1 CPS before
checking busy or done status.

Also allow 1 CPS after any command 6 or 7 before checking for interrupt
number (IOR : 10).

BUFFER MEMORY ERRORS

If a Buffer Memory multiple bit error has occurred, an MOS : 0
instruction is required prior to the next read or write command. The
interface operation waits indefinitely on the error if it is not cleared
by the MOS : 0.

§ The term clock periods refers to processor instruction times taken up
by issuing pass inetructions; or some other instruction or group of
instructions whose execution time equals or exceeds the delays noted.
Any instruction or group of instructions may be used as long as they

are not included in any of the special cases stated in this list.

Part 4
HR-0808 G-2 B

BUFFER MEMORY DEADSTART TIME

Deadstarting a processor via Buffer Memory requires apporoximately 2
ms to transfer the full 64K into I/O memory. This time assumes no
other Buffer Memory activity other than refresh.

ERROR LOGGING AND BLOCK MULTIPLEXER CHANNELS

The commands : 10-13 to the error logging channel or the block
multiplexer channel decode the present accumulator data on the
interface. If the IOP instruction previous to the commands : 10-13 is
any of the following: 4-7, 12, 13, 16, 17, 22, 23, 32, 33, 44-47, 52,
53, 62, 63; then an 11 or 15 instruction (with the d or k field set to
all ones) should be inserted between the instruction and the interface
command. This avoids a 1-CP timing restriction caused by the adder
and shifter.

1/0 INSTRUCTIONS AFTER DEADSTART

The first instruction executed after a deadstart cannot be an 1/0
instruction. This includes 40-43, 140-147, 154-157, 160-167,

174-177. The accumulator must be loaded before executing any of these
instructions. This avoids a special control sequence condition after

deadstart.

NOTE

150-153, 170-173 instructions may be executed after
deadstart as the instructions do load the accumulator.

PERIPHERAL EXPANDER CHANNEL TRANSFERS

The expander channel supports block transfers to only the first
100,0008 parcels of I/0 memory.

Part 4
HR-0808 G-3

LIST OF ABBREVIATIONS

A, An CPU address register n, n = 0 to 7 (CPU); IOP accumulator
Addr Address
Adv. Advance
Ai,Aj,Ak Address register specified by instruction i,j,k fields
APML A Programming Machine Language
B, Bn CPU intermediate address register n, n = 0 to 77g; IOP B
register
BA Bank address, buffer address
BIOP Buffer I/0 Processor
Bik Buffer register specified by instruction j,k fields
BM Buffer Memory
ca Current address register
CAL Cray Assembly Language
Ch Channel
CL Channel Limit register
CIP Current Instruction Parcel register
CLK Clock
Contr. Control
CP Clock period, central processor
CPU Central processing unit
CRI Cray Research, Incorporated
DCU Disk controller unit
Distr. Distribution
DIOP Disk I/0 Processor
DMA Direct memory access
DP Destination Pointer register
DSU Disk Storage Unit
Exch. Exchange
F Flag register (exchange package); IOP instruction function
field
Part 4

HR-0808 H-1 B

FL.E.
F.P.
F.U.
FwA
gh
GR

LIP
LsI
LWA

MBits
Mbyte
MCU
MG
MHz
MIOP
MMI
MOS
MSEC
MS
MSKC
NIP

HR-0808

Front end

Floating-point

Functional Unit

First word address

g and h fields, CPU instruction operation code
Group

h field, CPU instruction

Hertz, cycles per second

i field of CPU instruction

Interrupt Interval register (CPU); Instruction Issue
register (IOP)

Integrated Circuit

Interrupt Countdown counter
Input/Output

I/0 Processor

I/0 request

Kilo, 1024, k field CPU instruction
j and k fields, CPU instruction
Limit address

Last instruction parcel

Large scale integration

Last word address

Million; mode bit field in exchange package; instruction
field

Megabits or million bits
Megabyte or million bytes
Maintenance Control Unit
Motor-Generator
MegaHertz, or million cycles per second
Master I/O Processor
Monitor Mode Interrupt
Metal oxide semiconductor
Millisecond

Mass storage

Mask out

Next instruction parcel

Part 4
H-2

nmos
ns

oS

OscC

PDU
PFR
POP
PCI

RA
Recip
Reg.
Reqg.
Resp.
Ref.
RP

R'RAB

RTC

S

s

Seq.

Sn

Si, Sj, Sk
SECDED
Stor.

T, Tn

Tjk

V:, Vn

Vi, Vj, Vk
VL

M

XA

XIOoP

HR-0808

Negative channel metal oxide semiconductor
Nanosecond

Operating system

Oscillator

Program address register; Program parcel counter
Power Distribution Unit

Program fetch request

Population count

Programmable clock interrupt

Request; response

Read address

Reciprocal

Register

Request

Response

Reference

Register Pointer register

R' = high-order bits of read address, RA = Read Address,
B = Bank low-order bits of address in exchange package

Real-time clock

Scalar

Second

Sequence

Scalar register, n = 0 to 7

Scalar register specified by instruction i or j or k field
Single error correction/double error detection

Storage

Intermediate scalar register n, n = 0 to 778

Temporary register indicated by instruction j,k fields
Vector register n, n = 0 to 7

Vector register specified by instruction i or j or k field
Vector Length register |
Vector Mask register

Exchange Address register

Auxiliary I/0 Processor

Part 4

READERS COMMENT FORM

CRAY-1 S Series Hardware Reference Manual HR-0808 B

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOBTITLE ==AY
FIRM

ADDRESS
CITY STATE zIp

L e e e L 1
, " " ' NO POSTAGE | l
NECESSARY |
IFMAILED |
IN THE | |
UNITED STATES | |
L 1
L} |
— |
L]
L] '
L "] |
L]
BUSINESS REPLY CARD —
FIRST CLASS PERMITNO 6184 ST PAUL. MN S ——— |
POSTAGE WILL BE PAID BY ADDRESSEE ———————— |
~ L]
=R A Y —
L]
———
Attention: Hwy l7§—_Norfh S l
PUBLICATIONS Chippewa Falls, WI 54729 ——
L]
FOLD _ us f _______________ —
________________ .

STAPLE

INIT SIHL ONOIV LND

Cray Research, Inc.
Publications Department
1440 Northland Drive
Mendota Heights, MN 55120
612-452-6650

TLX 298444

	000
	001
	002
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1_00
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	2_00
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_3-12
	2_3-13
	2_3-14
	2_3-15
	2_3-16
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_4-19
	2_4-20
	2_4-21
	2_4-22
	2_4-23
	2_4-24
	2_4-25
	2_4-26
	2_4-27
	2_4-28
	2_4-29
	2_4-30
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	2_5-11
	2_5-12
	2_5-13
	2_5-14
	2_5-15
	2_5-16
	2_5-17
	2_5-18
	2_5-19
	2_5-20
	2_5-21
	2_5-22
	2_5-23
	2_5-24
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_6-07
	2_6-08
	2_6-09
	2_6-10
	2_6-11
	2_6-12
	2_6-13
	2_6-14
	2_6-15
	2_6-16
	2_6-17
	2_6-18
	2_6-19
	2_6-20
	2_6-21
	2_6-22
	2_6-23
	2_6-24
	2_6-25
	2_6-26
	2_6-27
	2_6-28
	2_6-29
	2_6-30
	2_6-31
	2_6-32
	2_6-33
	2_6-34
	2_6-35
	2_6-36
	2_6-37
	2_6-38
	2_6-39
	2_6-40
	2_6-41
	2_6-42
	2_6-43
	2_6-44
	2_6-45
	2_6-46
	2_6-47
	2_6-48
	2_6-49
	2_6-50
	2_6-51
	2_6-52
	2_6-53
	2_6-54
	2_6-55
	2_6-56
	2_6-57
	2_6-58
	2_6-59
	2_6-60
	2_6-61
	2_6-62
	2_6-63
	2_6-64
	2_6-65
	2_6-66
	2_6-67
	2_6-68
	2_6-69
	2_6-70
	2_6-71
	2_6-72
	2_6-73
	2_6-74
	2_6-75
	2_6-76
	2_6-77
	2_6-78
	2_6-79
	2_6-80
	2_6-81
	2_6-82
	2_6-83
	2_6-84
	2_7-01
	2_7-02
	3_00
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_3-08
	3_3-09
	3_3-10
	3_3-11
	3_3-12
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_5-01
	3_5-02
	3_5-03
	3_5-04
	3_5-05
	3_5-06
	3_5-07
	3_5-08
	3_5-09
	3_5-10
	3_5-11
	3_5-12
	3_5-13
	3_5-14
	3_5-15
	3_5-16
	3_5-17
	3_5-18
	3_5-19
	3_5-20
	3_6-01
	3_6-02
	3_6-03
	3_6-04
	3_6-05
	3_6-06
	3_6-07
	3_6-08
	3_6-09
	3_6-10
	3_6-11
	3_6-12
	3_6-13
	3_6-14
	3_6-15
	3_6-16
	3_6-17
	3_6-18
	3_6-19
	3_6-20
	3_6-21
	3_6-22
	3_6-23
	3_6-24
	3_6-25
	3_6-26
	3_6-27
	3_6-28
	3_6-29
	3_6-30
	3_6-31
	3_6-32
	3_6-33
	3_6-34
	3_6-35
	3_6-36
	3_6-37
	3_6-38
	3_6-39
	3_6-40
	3_6-41
	3_6-42
	3_6-43
	3_6-44
	3_6-45
	3_6-46
	3_6-47
	3_6-48
	3_6-49
	3_6-50
	3_6-51
	3_6-52
	3_6-53
	3_6-54
	3_6-55
	3_6-56
	3_6-57
	3_6-58
	3_6-59
	3_6-60
	3_6-61
	3_6-62
	3_6-63
	3_6-64
	3_6-65
	3_6-66
	3_6-67
	3_6-68
	3_7-01
	3_7-02
	3_7-03
	3_7-04
	3_7-05
	3_7-06
	3_7-07
	3_7-08
	3_7-09
	3_7-10
	3_7-11
	3_7-12
	3_7-13
	3_7-14
	3_7-15
	3_7-16
	3_7-17
	3_7-18
	3_7-19
	3_7-20
	3_7-21
	3_7-22
	3_7-23
	3_7-24
	3_7-25
	3_7-26
	3_7-27
	3_7-28
	3_7-29
	3_7-30
	3_7-31
	3_7-32
	3_7-33
	3_7-34
	3_7-35
	3_7-36
	3_7-37
	3_7-38
	3_7-39
	3_7-40
	3_7-41
	3_7-42
	3_7-43
	3_7-44
	3_7-45
	3_7-46
	3_7-47
	3_7-48
	3_7-49
	3_7-50
	3_7-51
	3_7-52
	3_7-53
	3_7-54
	3_7-55
	3_7-56
	3_7-57
	3_7-58
	3_7-59
	3_7-60
	3_7-61
	3_7-62
	3_7-63
	3_7-64
	3_7-65
	3_7-66
	3_7-67
	3_7-68
	3_7-69
	3_7-70
	3_7-71
	3_7-72
	3_7-73
	3_7-74
	3_7-75
	3_7-76
	3_7-77
	3_7-78
	3_7-79
	3_7-80
	3_7-81
	3_7-82
	3_7-83
	3_7-84
	3_7-85
	3_7-86
	3_8-01
	3_8-02
	3_8-03
	3_8-04
	4_00
	4_A-01
	4_A-02
	4_A-03
	4_A-04
	4_A-05
	4_A-06
	4_B-01
	4_B-02
	4_B-03
	4_B-04
	4_B-05
	4_B-06
	4_C-01
	4_C-02
	4_D-01
	4_D-02
	4_D-03
	4_D-04
	4_E-01
	4_E-02
	4_E-03
	4_E-04
	4_F-01
	4_F-02
	4_F-03
	4_F-04
	4_G-01
	4_G-02
	4_G-03
	4_G-04
	4_H-01
	4_H-02
	4_H-03
	replyA
	replyB
	xBack

