
CRAY Y -MP C90 TM System Programmer
Reference Manual

CSM-0500-000

Cray Research Proprietary

Cray Research, Inc.

-- - --- - ---------~~~-

Any shipment to a country outside of the United States requires a
Jetter of assurance from Cray Research, Inc.

This document is the property of Cray Research, Inc. The use of this
document is subject to specific license rights extended by Cray Research,
Inc. to the owner or lessee of a Cray Research, Inc. computer system or
other licensed party according to the terms and conditions of the license
and for no other purpose.

Cray Research, Inc. Unpublished Proprietary Information - All Rights
Reserved.

Autotasking, CRAY, Cray Ada, CRAY Y-MP, CRAY-l, HSX, MPGS,
SSD, UniChem, UNICOS, and X-MP EA are federally registered
trademarks and CCI, CF77, CFT, CFT2, CFT77, COS, CRAYS-MP,
CRAY X-MP, CRAY XMS, CRAY-2, Cray C++, Cray/REELlibrarian,
CRInform, CRI/TurboKiva, CSIM, CVT, Delivering the power. _ .,
Docview, lOS, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER,
SUPERLINK, and Trusted UNICOS are trademarks of
Cray Research, Inc.

Requests for copies of Cray Research, Inc. publications should be
directed to:

CRAY RESEARCH, INC.
Logistics
6251 South Prairie View Road
Chippewa Falls, WI 54729

Comments about this publication should be directed to:

CRAY RESEARCH, INC.
Hardware Publications and Training
770 Industrial Blvd.
Chippewa Falls, WI 54729

Record of Revision
Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new
version, and the new version is assigned an alphabetic level which is indicated in the publication number on each page of the
manual.

Changes to part of a page are indicated by a change bar in the margin directly opposite the change. A change bar in the footer
indicates that most, if not all, of the page is new. If the manual is rewritten, the revision level changes but the manual does not
contain change bars.

REVISION DESCRIPTION

February 1992. Original printing.

CSM-0500-000 Cray Research Proprietary iii

PREFACE

CSM-0500-000

The CRAY Y -MP C90 System Programmer Reference Manual describes
the hardware architecture and functions of the CRAY Y -MP C90
computer system manufactured by Cray Research, Inc. (CRI). This
manual is written primarily for system analysts and system programmers.
The primary goal of this manual is to explain and define the special
hardware features of the system in enough detail to help programmers
write and optimize program code.

This manual is divided into the following tabbed sections.

Section 1, "Computer System Overview," introduces and describes the
CRAY Y-MP C90 system components and support equipment.

Section 2, "CPU Shared Resources," describes the hardware shared by
all central processing units (CPUs). Its primary emphasis is to define the
functions, organization, and special hardware features of central memory,
the I/O section, the interprocessor communication section, and the
real-time clock. It also explains the shared paths access priority.

Section 3, "CPU Control," describes the basic CPU operations. The
section explains the exchange mechanism in detail and defines and
explains the deadstart, instruction fetch, and instruction issue sequences.
The operations of the programmable clock, the status registers, and the
performance monitor are also described.

Section 4, "CPU Computation Section," describes the CPU registers,
functional units, and functional unit operations. Logical operations and
integer and floating-point arithmetic are defined and explained in detail.

Section 5, "Parallel Processing Features," describes the parallel
processing features most closely related to the hardware. This includes
information and examples of pipelining and segmentaion, functional unit
independence, and mUltiprocessing and multitasking.

Section 6, "Maintenance Channel," explains the operation of the
maintenance channel used to troubleshoot system problems.

Cray Research Proprietary v

Preface

vi

CRAY Y-MP C90 System Programmer Reference Manual

Section 7, "CPU Instructions," contains detailed descriptions of all
instructions executed by the CRA Y Y -MP C90 CPU. The instructions
are listed by octal code starting with instruction 000000 and ending with
instruction 177ijk. Special cases, hold issue conditions, and execution
times are explained for each instruction or group of instructions.

The following conventions are used throughout this manual.

Convention

Lowercase italic

x

n

(value)

Register bit
designators

Number base

Description

Variable information.

An unused value.

A specified value.

The contents of the register or memory location
designated by value.

Register bits are numbered from right to left as
powers of 2. Bit 2° corresponds to the least
significant bit of the register. One exception is the
vector mask register. The vector mask register bits
correspond to a word element in a vector register;
bit 263 corresponds to element 0 and bit 2°
corresponds to element 63. Another exception is
when the state of the 32 I-bit semaphore registers is
loaded into an S register. SMO goes into S register
bit position 263, SMI goes into S register bit
position 262, and so on.

All numbers used in this manual are decimal, unless
otherwise indicated. Octal numbers are indicated
with an 8 subscript. Exceptions are register
numbers, the instruction parcel in instruction
buffers, and instruction forms, which are given in
octal without the subscript.

The following list provides examples of the preceding conventions.

Example

Transmit (Ak) to
Si

167ixk

Read n words
from memory

Bit 263

10008

Description

Transmit the contents of the A register specified by the
k field to the S register specified by the i field.

Machine instruction 167. The x indicates that the j
field is not used.

Read a specified number of words from memory.

The value represents the most significant bit of an S
register or element of a V register.

The number base is octal.

Cray Research Proprietary CSM-0500-000

CONTENTS

1 COMPUTER SYSTEM OVERVIEW

Mainframe .. .

I/O Subsystem

SSD-E Solid-state Storage Device

Disk Storage Units

Network Interfaces

Operator and Maintenance Workstations

1-2

1-4

1-4

1-6

1-6

1-6

2 CPU SHARED RESOURCES

Central Memory 2-1

Memory Instructions 2-1

Logical Organization 2-4

Memory Paths . 2-4

Memory Ports 2-5

Conflict Resolution 2-8

Memory Addressing . 2-12

Absolute Memory Address Calculating. 2-12

Address Range Checking . 2-13

DBA Register 2-13

DLA Register 2-13

IBA Register 2-14

lLA Register 2-14

Error Detection and Correction 2-14

Central Memory Performance Summary. 2-18

I/O Section . 2-19

LOSP Channels 2-20

Channel Programming 2-21

Channel Errors 2-24

HISP Channels. 2-26

CSM-0500-000 Cray Research Proprietary vii

2 CPU SHARED RESOURCES (continued)

VHISP Channels 2-26

Channel Programming 2-27

I/O Interrupts 2-29

Interprocessor Communication Section 2-29

Clusters . 2-30

Shared Registers. 2-31

Semaphore Registers 2-32

Deadlock. 2-35

Interprocessor Interrupts 2-35

Real-time Clock. 2-36

Shared Paths Access Priority. 2-37

Shared Register and Real-time Clock Troubleshooting. . 2-39

3 CPU CONTROL

Exchange Mechanism 3-1

Exchange Package 3-2

Program Address Register Field. 3-2

Instruction Base Address Register Field. 3-2

Instruction Limit Address Register Field 3-4

Data Base Address Register Field 3-4

Data Limit Address Register Field 3-4

Interrupt Modes Field 3-5

Interrupt Flags Field 3-6

Status Field 3-9

Modes Field . 3-9

Processor Number Field 3-9

Cluster Number Field 3-10

Exchange Address Register Field 3-10

Vector Length Register Field. 3-10

A Register Fields. 3-11

S Register Fields 3-11

Exchange Sequence 3-11

Exchange Sequence Timing 3-11

Initiating an Exchange Sequence 3-12

viii Cray Research Proprietary CSM-0500-000

3 CPU CONTROL (continued)

Exchange Package Management 3-14

Instruction Fetch Sequence. 3-15

Instruction Fetch Hardware 3-16

Instruction Buffers . 3-16

Program Address Register 3-17

Instruction Fetch Operation 3-17

Instruction Fetch Timing. 3-19

Instruction Issue 3-19

Instruction Issue Hardware. 3-19

Instruction Buffers. 3-20

Program Address Register. 3-20

Next Instruction Parcel Register. 3-21

Current Instruction Parcel Register 3-21

Lower Instruction Parcel and Lower Instruction
Parcell Registers 3-21

Instruction Issue Operation 3-21

Reservations and Hold Issue Conditions 3-29

Programmable Clock. 3-30

Interrupt Interval Register 3-31

Operation 3-31

Status Registers 3-32

Performance Monitor 3-37

Selecting and Reading Performance Events. 3-38

Testing Performance Counters. 3-39

4 CPU COMPUTATION SECTION

Operating Registers. 4-2

Address (A) Registers 4-3

A Register Functions . 4-3

Special A Register Values. 4-5

Bypass Path . 4-5

A Register Instructions 4-6

Intermediate Address (B) Registers. 4-10

A and B Register Troubleshooting 4-12

CSM-0500-000 Cray Research Proprietary ix

4 CPU COMPUTATION SECTION (continued)

Scalar (S) Registers 4-14

S Register Functions 4-14

Special S Register Values 4-15

S Register Instructions 4-16

Intermediate Scalar (T) Registers. 4-22

Sand T Register Troubleshooting 4-23

Vector (V) Registers . 4-25

Vector Processing 4-25

Advantages of Vector Processing 4-27

V Register Functions. 4-27

Vector Instructions 4-28

Vector Chaining. 4-32

Vector Control Registers 4-33

Vector Length Register 4-33

Vector Mask Register 4-34

V Register Troubleshooting . 4-35

Functional Units 4-39

Address Functional Units. 4-40

Address Add Functional Unit. 4-40

Address Multiply Functional Unit 4-40

Scalar Functional Units 4-40

Scalar Add Functional Unit 4-41

Scalar Shift Functional Unit 4-41

Scalar Logical Functional Unit 4-41

Scalar Population/Parity !Leading Zero
Functional Unit 4-42

Vector Functional Units 4-42

Vector Add Functional Unit 4-43

Vector Shift Functional Unit 4-43

Full Vector Logical Functional Unit 4-43

Second Vector Logical Functional Unit 4-44

Vector Population/Parity !Leading Zero
Functional Unit 4-44

Floating-point Functional Units . 4-45

Floating-point Add Functional Unit 4-45

Floating-point Multiply Functional Unit 4-46

x Cray Research Proprietary CSM-0500-000

4 CPU COMPUTATION SECTION (continued)

Reciprocal Approximation Functional Unit 4-46

Functional Unit Operations . 4-47

Logical Operations . 4-47

Integer Arithmetic 4-48

Floating-point Arithmetic. 4-51

Floating-point Data Format. 4-51

Exponent Ranges. 4-52

Normalized Floating-point Numbers 4-53

Floating-point Range Errors 4-54

5 PARALLEL PROCESSING FEATURES

Pipelining and Segmentation. 5-2

Functional Unit Independence 5-5

Multiprocessing and Multitasking. 5-5

Autotasking . 5-6

6 MAINTENANCE CHANNEL

Theory of Operation 6-1

Individual CPU Commands. 6-2

Broadcast Commands. 6-2

System Commands. 6-2

Loopback 6-3

Write Hang. 6-3

Maintenance Channel Functions .. 6-3

Data Formats .. 6-8

MWS Write Data 6-8

Status Read Data 6-9

Diagnostic Monitor . 6-11

7 CPU INSTRUCTIONS

Notational Conventions. 7-1

Instruction Formats. 7-2

CSM-0500-000 Cray Research Proprietary xi

7 CPU INSTRUCTIONS (continued)

1-parcelInstruction Format with Discrete j and k
Fields 000000.0.0.0. 0 •• 0 • 0 • 00 •• '0' 0 0 .0.00. 0 0 • 0 • 7-2

1-parcel Instruction Format with Combined j and k
Fields 0 • • • 7-3

2-parcel Instruction Format with Combined
i, j, k, and m Fields 0 7-4

3-parcel Instruction Format with Combined
m and n Fields 7-4

Y-MP Mode and C90 Mode Instruction Differences 7-6

Special Register Values 0 • • • • • • • • • 7-9

Monitor Mode Instructions 7 -10

Special CAL Syntax Forms. 7-10

CPU Instruction Descriptions 7 -10

Functional Units Instruction Summary 7-12

Instruction 000000 0 •••• 0 ••••• 0 7-13

Instructions 0010 through 0012 0 • • • 7-14

Instruction 0013 0 • • • • • • • • • • • • • • 7 -17

Instruction 0014 0 • • • • • • • • • • • • • • • • • 7-19

Instruction 0015 0 • • • • 7-22

Instruction 0016 0 • • • • • • • • 7 -23

Instruction 0017 7-24

Instruction 0020 0 ••••••••• 0 • 7-25

Instructions 0021 through 0026 . 0 • 0 •• 0 •• 0 • 0 ••• 0 •• 0 • 7 -27

Instruction 0027 0 • 0 0 0 • 0 •••••• 0 ••• 0 0 0 •••• 0 • 0 0 7-29

Instruction 0030 ... 0 •• 0 0 •• 0 • 0 0 •••• 0 0 •• 0 ••••• 0 • • • 7-31

Instructions 0034, 0036, and 0037 . 0 ••• 0 • 0 • • • • • • • • • • 7 -33

Instruction 0040 0 • 0 • 0 ••••••• 0 •••• 0 0 • • • • • • • • • 7-35

Instructions 0050 and 0051 7-36

Instruction 006 0 7-38

Instruction 007 7 -40

Instructions 010 through 013 7-42

Instructions 014 through 017 7-45

Instructions 020 through 022 0 0 • • • • • • 7 -48

Instruction 023 0 ••• 0 0 0 • • • • • 7 -50

xii Cray Research Proprietary CSM-0500-000

7 CPU INSTRUCTIONS (continued)

CSM-0500-000

Instructions 024 and 025

Instruction 026

Instruction 027

Instructions 030 and 031

Instruction 032

Instruction 033

Instructions 034 through 037

Instructions 040 and 041

Instructions 042 and 043

Instructions 044 through 051

Instructions 052 through 055

Instructions 056 and 057

Instructions 060 and 061

Instructions 062 and 063

Instructions 064 through 067

Instruction 070

Instruction 071

Instruction 072

Instruction 073

Instructions 074 and 075

7-52

7-53

7-55

7-57

7-59

7-60

7-63

7-67

7-69

7-71

7-76

7-78

7-80

7-82

7-84

7-86

7-88

7-91

7-93

7-98

Instructions 076 and 077 7-99

Instructions 10h through 13h .. 7-101

Instructions 140 through 147 7-104

Instructions 150 and 151 7-109

Instructions 152 and 153 7-111

Instructions 154 through 157 7-118

Instructions 160 through 167 7-120

Instructions 170 through 173 7 -123

Instruction 17.4ijO .. 7 -126

Instructions 174ij1 through 174ij3 7-128

Instruction 175 7 -130

Instructions 176 and 177 7-134

Cray Research Proprietary xiii

BIBLIOGRAPHY

INDEX

FIGURES

xiv

Bibliography ... Bib-1

Index ... Ind-1

Figure 1-l.

Figure 1-2.

Figure 1-3.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 3-9.

CRAY Y-MP C90 Computer System 1-2

CRAY Y-MP C90 CPU Block Diagram 1-3

Minimum CRAY Y -MP C90 Configuration with
Two I/O Clusters 1-5

Central Memory Architecture 2-5

Memory Addressing 2-12

Shared Registers 2-31

Relation between SM Registers and S Register Bits 2-33

Shared Registers Block Diagram 2-41

CRAY Y-MP C90 Exchange Package.... 3-3

Instruction Fetch Block Diagram. 3-16

P Register and IBAR Register Address Formats . . 3-17

Instruction Issue Block Diagram. 3-20

Instruction Flow through Issue Registers (CPn) .. 3-23

Instruction Flow through Issue Registers (CPn + 1) 3-23

Instruction Flow through Issue Registers (CPn + 2) 3-24

1-parcel Instruction Holding 1 CP for Conflict
(CPn + 3) 3-24

Instruction Flow through Issue Registers (CPn + 4) 3-25

Figure 3-10. 2-parcel Instruction Holding 1 CP for Conflict
(CPn + 5) 3-25

Figure 3-11. Instruction Flow through Issue Registers (CPn + 6) 3-26

Figure 3-12. Instruction Flow through Issue Registers (CPn + 7) 3-26

Figure 3-13. 3-parcel Instruction Holding 1 CP for Conflict
(CPn + 8) 3-27

Figure 3-14. Instruction Flow through Issue Registers (CPn + 9) 3-28

Figure 3-15. Status Registers 3-33

Cray Research Proprietary CSM-0500-000

FIGURES (continued)

CSM-0500-000

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 4-9.

Figure 4-10.

Figure 4-11.

A Register Block Diagram

Instruction Timing for a Bypass Operation

A and B Registers Troubleshooting Block Diagram .. .

Scalar Register Block Diagram

S and T Registers Troubleshooting Block Diagram .. .

V Register Block Diagram

Vector Chaining Example

Vector Registers Troubleshooting Block Diagram

Integer Data Formats

24-bit Integer Multiply Performed in a
Floating-point Multiply Functional Unit

32-bit Integer Multiply Performed in a
Floating-point Multiply Functional Unit

4-3

4-6

4-13

4-14

4-24

4-26

4-33

4-37

4-49

4-50

4-50

Figure 4-12. Floating-point Data Format. 4-51

Figure 4-13. Internal Representation of a Floating-point Number 4-52

Figure 4-14. Biased and Unbiased Exponent Ranges. 4-53

Figure 4-15. Floating-point Add and Floating-point Multiply
Range Errors 4-55

Figure 4-16. Exponent Matrix for a Floating-point Multiply
Functional Unit 4-56

Figure 4-17. Floating-point Reciprocal Approximation
Range Errors 4-58

Figure 4-18. Floating-point Multiply Partial-product Sums
Pyramid 4-60

Figure 4-19. Newton's Method for Approximating Roots. 4-62

Figure 5-1. Scalar Segmentation and Pipelining Example. . . . 5-2

Figure 5-2. Vector Segmentation and Pipe lining Example. . . . 5-4

Figure 6-1. MWS Write Data Format . 6-8

Figure 6-2. System Status Read Format (parcel 0) 6-9

Figure 6-3. System and Individual CPU Status Read Formats
(parcels 1 through 3) 6-11

Figure 7-1. Vector Mask Bits 7-1

Figure 7-2. General Instruction Format 7-2

Cray Research Proprietary

FIGURES (continued)

TABLES

xvi

Figure 7-3. I-parcel Instruction Format with Discrete
j and k Fields 7-3

Figure 7-4. I-parcel Instruction Format with Combined
j and k Fields 7-4

Figure 7-5. 2-parcel Instruction Format with Combined
i, j, k, and m Fields. 7-4

Figure 7-6. 3-parcel Instruction Format with Combined
m and n Fields 7-5

Figure 7-7. Status Registers 7-97

Figure 7-8. Vector Left Double Shift, First Element,
(VL»1 .. 7-113

Figure 7-9. Vector Left Double Shift, Second Element,
(VL»2 .. 7-113

Figure 7-10. Vector Left Double Shift, Last Element. 7-114

Figure 7-11. Vector Right Double Shift, First Element 7-115

Figure 7-12. Vector Right Double Shift, Second Element,
(VL»1 .. 7-115

Figure 7-13. Vector Right Double Shift, Last Operation 7-116

Figure 7-14. Vector Word Shift 7-117

Figure 7-15. Compressed Index Example for
Instruction 175ij4 .. 7-133

Figure 7-16. Gather Instruction Example. 7-137

Figure 7-17. Scatter Instruction Example. 7-138

Table 2-1. Memory Instructions 2-2

Table 2-2. Allocation of Memory References to Ports
and Pipes 2-6

Table 2-3. CPU Priority Matrix. 2-10

Table 2-4. Memory Conflicts 2-11

Table 2-5. Check Bit Generation 2-16

Table 2-6. CPU I/O Channel Assignments , 2-19

Table 2-7. LOSP Channel Instructions. 2-22

Table 2-8. LOSP Channel Error Flag Settings 2-25

Cray Research Proprietary CSM-0500-000

TABLES (continued)

CSM-0500-000

Table 2-9.

Table 2-10.

Table 2-11.

Table 2-12.

Table 2-13.

Table 2-14.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 3-6.

Table 3-7.

Table 3-8.

Table 3-9.

Table 3-10.

Table 3-11.

Table 3-12.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 4-8.

Table 6-1.

Table 6-2.

Table 6-3.

Table 7-1.

Table 7-2.

VHISP Channel Instructions

VHISP Channel Status Word

Shared Register Instructions

SM Register Instructions

Interprocessor Interrupt Instructions

RTC Instructions

CRAY Y-MP C90 Interrupt Modes

CRAY Y-MP C90 Interrupt Flags

CRAY Y -MP e90 Status Field Bit Assignments ..

CRAY Y-MP C90 Operating Modes

Instruction Issue Sequence

Programmable Clock Instructions

SRO Data Fields

Read Mode Bits

Port Designator Bits

Memory Error Address Bits

Register Parity Error Bits .

Performance Monitor

Special AO Register Values

A Register Instructions

B Register Instructions .

Special SO Register Values

S Register Instructions

T Register Instructions

V Register Instructions

Vector Mask Instructions

Maintenance Channel Functions

Maintenance Channel Functions in Detail

Individual CPU Status Read Format (Parcel 0) ...

CRAY Y-MP C90 and CRAY Y-MP Instruction
Comparison

Special Register Values

Cray Research Proprietary

2-27

2-28

2-32

2-33

2-35

2-36

3-5

3-7

3-9

3-10

3-28

3-31

3-32

3-34

3-34

3-35

3-36

3-37

4-5

4-6

4-11

4-16

4-17

4-23

4-29

4-34

6-4

6-5

6-10

7-6

7-9

xvii

TABLES (continued)

xviii

Table 7-3.

Table 7-4.

Channel Status Word. 7-61

Maintenance Modes Register Bits 7 -96

Cray Research Proprietary CSM-0500-OOO

1 COMPUTER SYSTEM OVERVIEW

CSM-0500-000

The Cray Research, Inc. (CRI) CRAY Y-MP C90 computer system is a
powerful, general-purpose supercomputer. The large memory, dual
vector functional units, and fast clock speed of the CRAY Y-MP C90
computer system provide fast throughput, allowing for more effective
use of computing power. The CRAY Y-MP C90 computer system is able
to achieve extremely high multiprocessing rates by efficient use of the
scalar and vector processing capabilities of the multiple central
processing units (CPUs), and by use of the system's solid-state,
random-access memory (RAM), and shared registers.

The CRAY Y-MP C90 computer system is carefully designed to deliver
optimum overall performance. The unique architecture of the
CRAY Y-MP C90 computer system enhances the scalar and vector
processing capabilities inherent in all CRI computer systems.

Scalar processing is a sequential operation in which one instruction
produces one result. Vector processing, on the other hand, uses a single
instruction to perform the same operation sequentially on a whole set of
operands to produce a set of results. When two or more vector
operations are chained together, two or more different operations are
performed simultaneously. Therefore, the computational rate for vector
processing greatly exceeds that for conventional scalar processing.
Scalar operations complement the vector capability by providing
solutions to problems not readily adaptable to vector techniques.

The start-up time for vector operations on the CRAY Y-MP C90
computer system is short enough so that vector processing is more
efficient than scalar processing for vectors containing as few as two
elements. This feature allows for rapid long and short vector processing
to be balanced with high-speed scalar processing while both vector and
scalar processing are supported by powerful input/output capabilities.

The multiprocessor environment of the CRAY Y-MP C90 computer
system allows the use of multiprocessing or multitasking techniques.
Multiprocessing allows several programs to run concurrently on multiple
CPUs of a single mainframe. Multitasking allows two or more parts of a
single program to run in parallel and share a common memory space.

The CRAY Y-MP C90 computer system is composed of a mainframe; up
to two input/output subsystems, model E (10S-Es); and an optional SSD
solid-state storage device, model E (SSD-E). The 10S-E and SSD-E may
be housed in a single cabinet. Support equipment for the mainframe

Cray Research Proprietary 1-1

Cpmputer System Overview

Mainframe

1-2

CRAYY-MP C90 System Programmer Reference Manual

includes a heat exchanger unit (BEV) and a refrigeration condensing unit
(RCU). Power distribution occurs inside the mainframe; 4OO-Hz power
is supplied by the mainframe's motor-generator set (MGS). Support
equipment for the IOS-E and SSD-E includes RCUs, a power distribution
unit (PDU), and an MGS. Figure 1-1 shows a CRAY Y-MP C90
mainframe with an attached IOS-E/SSD-E and two HEUs (one for the
mainframe and one for the combined IOS-E/SSD-E). For more
information on support equipment for your CRAY Y-MP C90 computer
system, refer to the appropriate site planning reference manual.

A·10504

Figure 1-1. CRAY Y-MP C90 Computer System

Mass storage devices, such as disk drives, tape drives, and front-end
interfaces (FEls) are configured with the system through the lOS-E. A
typical configuration is described in the "I/O Subsystem" subsection in
this section.

The CRAY Y-MP C90 mainframe contains the CPUs, an I/O section, an
interprocessor communication section, a real-time clock, and central
memory. Figure 1-2 is a block diagram of a CRAY Y-MP COO
mainframe showing one CPU with the maximum I/O configuration.
Each CPU has a computation section consisting of operating registers,
functional units, and a control section.

The control section determines instruction issue and coordinates the three
types of processing (vector, scalar, and address). The I/O section,
interprocessor communication section, real-time clock, and central
memory are shared by the CPUs and are called shared resources.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual

((AO) + (Ak)) • ((AO) + (Vk))
((AO) + (Ak)) , ((AO) + (Vk))

((AO) + (Ak» , ((AO) + (Vk))

TOO

((Ah) + (nm))

(AO)

((Ah) + (nm))

o

37

SI *Si

I/O
LDSP-6
LDSP-20
HISP-200

VHISP-1800

SI *SI

Vector Con1rol

Si

Exchange
Control

Computer System Overview

Ai

Floating-point
Functional

Units
Pipe 0

Floating-point
Functional

Units
Pipe 1

Add
Scalar

Functional
Units

Ak

Ak

NOTE: *Con1rol and/or data from other CPUs.

A-10505

Figure 1-2. CRAY Y -MP C90 CPU Block Diagram

CSM-0500-000 Cray Research Proprietary 1-3

Cpmputer System Overview

I/O Subsystem

CRAYY-MP C90 System Programmer Reference Manual

All CRAY Y-MP coo computer systems include an IOS-E; a second
10S-E is optional. The IOS-E is designed for rapid data transfer between
the 10S-E's buffer memory and front-end computers, peripheral devices,
and storage devices. The IOS-E also transfers data between its buffer
memory and the mainframe's central memory.

Each IOS-E contains up to eight I/O clusters depending on the site
specifications. An I/O cluster comprises four I/O processors (EIOPs),
each with four independent I/O buffers and four channel adapters. Each
channel adapter is dedicated to a specific peripheral device. Each I/O
cluster also includes a dedicated low-speed (LOSP) channel and two
dedicated high-speed (HlSP) channels.

Each EIOP controls different portions of the system. Each EIOP has a
memory section, a control section, a computation section, and an I/O
section. I/O sections are independent and control some portion of the
total I/O data stream for the lOS-E. 10S-E hardware allows
simultaneous data transfers between the EIOPs and the mainframe's
central memory over HISP channels.

The 10S-E also provides connections to the High Performance Parallel
Interface (HIPPI) channel. The HIPPI channel connects external
peripheral equipment, such as high-speed graphic devices, to the
mainframe. CRI does not provide external peripheral equipment but
does provide the hardware connections and software drivers for the
HIPPI channel.

Figure 1-3 shows the minimum configuration for a CRAY Y-MP C90
computer system with two I/O clusters. For more information on the
10S-E, refer to the lOS Model E System Programmer Reference Manual,
publication number CSM-1010-000.

SSD-E Solid-state Storage Device

1-4

The SSD-E is an optional high-performance device used for temporary
data storage. The SSD-E transfers data between the mainframe's central
memory and the SSD-E through special very high-speed (VHISP)
channels. The actual speed of these transfers depends on the SSD-E and
CRAY Y-MP C90 system configuration. The SSD-E can also be
connected directly to an lOP through a HISP channel pair.

For more information on the SSD-E, refer to the SSD Solid-state Storage
Device System Programmer Reference Manual, publication number
CSM-1116-000.

Cray Research Proprietary CSM-0500-000

o
(J)

3:
I
o
01
o
o

I
o
o
o

I
I Ports

I
I

I
I

I CPU
I 0

I
I ~

I
I

I
I

N

f\ 010
OlCD

CRAY Y-MP C90 Ports Qa

~ '--./. ~~
"'3:
3: CD
~3
00
a-< ----- CPU ~

\ 1
\
\
\
\
\ ~ \

\
\ · \

\ · \
\ ·

KEY

"-LOSP - Low-speed channel (6 Mbytes,ls)

HISP - High-speed channel (200 Mbytes,ls)

VHISP - Very high-speed channel (1.800 Mbytes,ls)

MOt all1 enance Ch eI ann r---

Error Logger Channel MWS Maintenance Channel
(To SSO)

G1il--~ I J cB Control Subsystem NetY.Qrk

IOPMUX
~ OWS

CCA-1

EIOP CCA-1 • CRIFEI-1 (Front-end Computer)

0 CCA-1 NSC N130 I (Front-end Computer)

CCA-1

OCA-2 I---
EIOP DCA-2 I--- 1 Each t--

1 Each

:I: 00-60 00-60

en (§ 1 DCA-2 I--- 16GB I-- 16GB

""0 OCA-2
OJ 0 ~

DCA-2 I---
0 EIOP 1 Each 1 Each
:::l CD DCA-2 I---

00-60
t-- 00-60 q (i1

Q. 2 OCA-2 I--- 16GB t-- 16GB
OCA-2 10- ~

OCA-2 t---

EIOP DCA-2 I---
1 Each

10- 1 Each
00-60

3 00-60
DCA-2 I--- 16GB Io- 16GB
DCA-2 10- ---

--- SSO-E I Maintenance Channel
(To MWS)

(Optional) J
• DCA-2 I---

EIOP DCA-2 I--- 8 Each I-- 8 Each

0
00-60 00-60

DCA-2 I--- 16GB I-- 16GB
OCA-2 ~

DCA-2 t---
EIOP DCA-2 8 Each 8 Each I---

00-61
I--

00-61 :I:
(§ 1 DCA-2 I--- 17GB I-- 17GB en

DCA-2 ~
""0

OJ 0 ~
TCA-1 I---

0 EIOP TCA-1 I--- IBM t-- IBM
~ CD

(i1 Controller Controller
Q. 2 TCA-1 f-- t--

TCA-1 ~

HCA-3 r-----t Input I
EIOP HCA-4 f---I Output I UltraNet

3 HCA-3

HCA-4

• IOPMUX

1 Each
00-60

t-- 16GB
~ ~

1 Each
00-60

t-- 16GB
~ ~

1 Each
00-60

t-- 16GB -

8 Each
00-60

t-- 16GB
~ ~

8 Each
00-61

I-- 17GB
~

IBM

~ Controller -
• Input I

Output I

1 Each
00-60
16GB

1 Each
00-60
16GB

1 Each
00-60
16GB

8 Each
00-60
16GB

SEach
00-61
17GB

IBM
Controller

HIPPI

NSC EN641 J (Local Area Network)
...

~

...

}
}

High-perf ormance
Disks

Economical
Disk Fann

Magnetlcli apes
400ACS andiorSTK4

High Perfonnance Parallel
ytes,ls Interface - 800 Mb

A-9696

Figure 1-3. Minimum CRA Y Y -MP C90 Configuration with Two I/O Clusters

o

~
-<
~
""0
o
<0 o
en
'< en
r+
<D
3
""0
a

(Q
-,
w
3
3
~
:D

~ -,
<D
::J
o
CD

~
W
::J
C
Q!.

o
o
3

"'C
C
r+
<D -,

(J)
'< en
r+
<D
3
o
<
<D

< <DO
:E

Computer System Overview

Disk Storage Units

Network Interfaces

CRAYY-MP C90 System Programmer Reference Manual

The CRAY Y-MP C90 computer system uses CRI disk storage units
(DSUs) for mass data storage. A disk controller unit (DCU) serves as the
interface between the DSUs and an EIOP. The EIOP and the DCU can
transfer data between the EIOP and multiple DSUs without missing data
or skipping revolutions. For more information on the DSUs, refer to the
60 Series Disk Systems Guide, CRI publication number COM-1124-000.

The CRAY Y-MP C90 mainframe is designed to communicate easily
with front-end computer systems and computer networks.

Standard front-end interfaces (PEls) connect either the I/O channels of
the CRAY Y-MP COO mainframe or the 10S-E to front-end computer
channels. These connections provide input data to the system and
receive output from the system for distribution to peripheral equipment.
An PEl compensates for differences in channel widths, machine word
size, electrical logic levels, and control signals.

Some PEls are housed in a stand-alone cabinet located near the host
computer, and others are installed directly into the front-end computer
system. Operation of the PEl is transparent to both the front-end
computer and CRI system users.

As an option, a fiber-optic link (F0L-3) is available for some PEls to
provide front-end connections of up to 6,560 ft (2,000 m) and complete
electrical separation from the CRAY Y-MP C90 computer system.

The CRAY Y-MP C90 mainframe can be connected to computer
networks directly or through a front-end computer system.

Operator and Maintenance Workstations

1-6

The operator workstation (OWS-E) and the maintenance workstation
(MWS-E) are based on a Sun 4/370 SPARCstation, 12-s10t chassis. The
SPARCstation is a Sun version of the reduced instruction set computer
(RISC) architecture. A VMEbus is provided in slots 4 through 12 of the
workstations.

Both workstations run the SunOS 4.1.1 operating system and
Open Windows 2.0 software; the MWS-E also runs the ME maintenance
diagnostic software release, and the OWS-E runs the OWS-E software
release. The Sun operating system is an enhanced version of UNIX; it
combines features of UNIX System Laboratories, Inc.'s System V UNIX
and Berkeley Software Distribution's version 4.3 UNIX.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Computer System Overview

CSM-0500-000

The OWS-E is part of the CRAY Y -MP C90 computer system. The
MWS-E is owned by CRI and is supplied as part of the maintenance
contract; it enables CRI engineers to perform system maintenance
independent of any customer activity on the system.

The OWS-E and MWS-E communicate through the Control Subsystem
Network, which is a dedicated, modified, Ethernet cable link used only
for maintenance and control-related functions.

The OWS-E provides a dedicated workstation that Cray Research
analysts and customer operators use to operate, administrate, and monitor
a Cray Research computer system. The OWS-E is also used for system
boot, dump, and clear operations and for software and upgrade support.

The OWS-E communicates with the CRAY Y-MP C90 computer system
through a LOSP channel from EIOP 0 in the lOS-E. The LOSP channel
allows the mainframe to use the tape drives, disk drives, printer, and
time-of-day clock. The OWS-E also provides an Ethernet interface to
network workstations in a multiple-system site or for multiple-system
operators.

The MWS-E provides multiple connections for hardware maintenance
and monitoring of t1::: CRAY Y-MP C90 computer system. The MWS-E
supports CRI diagnostics, enhanced diagnostic displays, code simulation,
and maintenance and error channels. It monitors environmental
conditions and can shut down the system if severe variances occur. The
MWS-E also serves as a platform for remote support, with customer
approval. The MWS-E communicates with the CRAY Y-MP C90
computer system through a LOSP maintenance channel from the I~S-E.

Refer to the following publications for additional information on the
OWS-E and MWS-E:

•

•

•

MWS-E User Guide, CRI publication number CDM-1123-0AO.

Operator Workstation (OWS) Guide, CRI publication number
SN-3030.

MWS-E and OWS-E Hardware Maintenance Manual, CRI
publication number CMM-1122-0AO.

Cray Research Proprietary 1-7

2 CPu SHARED RESOURCES

Central Memory

Memory Instructions

CSM-0500-000

All central processing units (CPUs) in the CRAY Y-MP C90 mainframe
share the following resources:

• Central memory
• I/O section
• Interprocessor communication section
• Real-time clock

Central memory consists of solid-state, random-access memory (RAM)
that is shared by all the CPUs and the I/O section. Each memory word
consists of 80 bits: 64 data bits and 16 error-correction bits (check bits).
Storage for data and check bits is provided by 256 Kbyte x 4 bit bipolar
complementary metal oxide semiconductor (BiCMOS) chips with a
15-ns access time. In order to improve memory access speed, central
memory is divided into multiple banks that can be active simultaneously.
The banks have a 6-clock period (CP) cycle time; each bank can be
accessed once every 6 CPs.

In each CPU, the operating registers, instruction buffers, and exchange
package have access to central memory through memory ports. Each
CPU has four ports. Each of these ports is 2 words wide, allowing up to
eight simultaneous memory references from each CPU. The I/O section
shares one port in each CPU.

Table 2-1 shows all the CPU machine instructions that transfer data
between CPU registers and central memory, or that affect memory
operation. The contents of the data base address (DBA) register are
added to instruction-generated memory addresses to form absolute
memory addresses. Refer to "Absolute Memory Address Calculating"
later in this section.

Cray Research Proprietary 2-1

CPU Shared Resources CRAY Y-MP C90 System Programmer Reference Manual

Table 2-1. Memory Instructions

Machine CAL Type of
Instruction Syntax Description Memory Reference

10hiOO nm Ai exp,Ah Read from ((Ah) + exp + (DBA» to Ai. Scalar

11hiOO nm exp,Ah Ai Write (AI) to ((Ah) + exp + (DBA).

12hiOO nm Si exp,Ah Read from ((Ah) + exp + (DBA» to Si.

13hiOO nm exp,AA Si Write (Sz) to ((All) + exp + (DBA).

034ijk Bjk,Ai ,AO Read (AI) words starting at address (AO) + Block Transfer
(DBA) to B registers starting at register jk.

035ijk ,AO Bjk,Ai Write (AI) words from B registers starting at
register jk to memory starting at (AO) + (DBA).

036ijk Tjk,Ai ,AO Read (AI) words starting at address (AO) +
(DBA) to T registers starting at register jk.

037ijk ,AO Tjk,Ai Write (AI) words from T registers starting at
register jk to memory starting at (AO) + (DBA).

176iOk Vi ,AO,Ak Read (VL) words to Vi starting at address Stride
(AO) + (DBA), incrementing by (Ak).

1770jk ,AO,Ak Vj Write (VL) words from (VJ) to memory starting
at address (AO) + (DBA), incrementing by
(Ak).

176i1k Vi ,AO,Vk Read (VL) words to Vi using memory Gather
addresses ((AO) + (Vk) + (DBA».

1771jk ,AO,Vk Vj Write (VL) words from (VJ) to memory using Scatter
memory addresses ((AO) + (Vk) + (DBA».

002300 ERI Enable interrupt on operand range error. None

002301 EBP Enable interrupt on breakpoint.

002400 DRI Disable interrupt on operand range error.

002401 DBP Disable interrupt on breakpoint.

002500 DBM Disable bidirectional memory transfers.

002600 EBM Enable bidirectional memory transfers.

002700 CMR Complete memory references.

002704 CPA Complete port reads and·writes.

2-2 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Machine CAL
Instruction Syntax

002705 CPR

002706 CPW

CSM-0500-000

Table 2-1. Memory Instructions (continued)

Type of
Description Memory Reference

Complete port reads. None

Complete port writes.

Instructions 10h through 13h perform scalar references; each instruction
causes only 1 word to be transferred to or from memory. Instructions
034ijk through 037ijk perform block transfers. Each instruction transfers
a block of from 1 to 127 words to or from consecutive locations in
memory. Instructions 176iOk and 1770jk perform stride references. A
block of from 1 to 128 words are transferred to or from memory
locations separated by a constant increment (stride). Instructions 176ilk
and 1771jk perform gather and scatter references. These instructions
transfer from 1 to 128 words to or from randomly programmable
locations in memory.

Instructions 002300 through 002706 affect memory operation.
Instructions 002300 and 002400 set and clear the interrupt-on-operand
range error (lOR) interrupt mode. When this interrupt mode is set and".
enabled, it allows interrupts on operand range errors. Refer to "Address
Range Checking" in this section for a more complete explanation.

Instructions 002301 and 002401 set and clear the interrupt-on-breakpoint
(IBP) interrupt mode. When this interrupt mode is set and enabled, it
allows interrupts on write references within the breakpoint range, which
should be set previously by instruction 0017jk.

Instructions 002500 and 002600 disable and enable the bidirectional
memory mode. When this mode is enabled, block read and write
operations can operate concurrently. When this mode is disabled, only
block read operations can operate concurrently.

Instruction 002700 ensures completion of all memory references within
the particular CPU issuing the instruction. Instruction 002700 does not
issue until all previous memory references can complete in a fixed
number of CPs. For example, a CPU is assured of receiving updated data
when it issues a memory read instruction after instruction 002700. Used
in conjunction with semaphore instructions, this instruction synchronizes
memory references between processors.

Instructions 002704 through 002706 can be used to ensure sequential
memory referencing within a CPU. These instructions do not issue until
all previous memory references are at a stage of execution such that they

Cray Research Proprietary 2-3

CPU Shared Resources

Logical Organization

Memory Paths

2-4

CRAY Y-MP C90 System Programmer Reference Manual

can run to completion before any subsequent memory references.
Instruction 002704 ensures that all read and write references are at this
stage. Instruction 002705 ensures that all read references are at this
stage, and instruction 002706 ensures that all write references are at this
stage.

In addition to direct memory references generated by CPU machine
instructions, there are three ways that memory references are generated
indirectly. First, a no-coincidence condition in a CPU causes an
instruction fetch sequence to begin, during which 32 consecutive words
are read from central memory to an instruction buffer. Second, an
exchange sequence in a CPU causes 16 words to be read from and 16
words to be written into central memory. (For details on the fetch and
exchange sequences, refer to "Exchange Mechanism" and "Instruction
Fetch Sequence" in Section 3 of this manual.) The third type of indirect
memory reference occurs when an I/O transfer to or from an external
device causes a block of words to be read from or written to central
memory. For details on I/O transfers, refer to "I/O Section" in this
section.

Figure 2-1 shows a CPU's memory ports and paths to central memory.
Refer to this figure while reading the following paragraphs. Central
memory is divided into 8 sections. Each section is divided into 8
subsections, and each subsection contains two 8-bank groups. This
makes a total of 1,024 banks. This arrangement permits simultaneous
memory references (two or more memory references that begin in the
same CP) and overlapping memory references (one or more memory
references that begin while another reference is in progress).

Each CPU has an independent path into each memory section. (The I/O
section does not have its own paths, but shares the paths of each CPU.)
Independent paths allow each CPU to make up to eight simultaneous
memory references, one reference to each section. Each CPU can have
overlapping references in different sections without restrictions or within
a section as long as each reference uses a different subsection.
Simultaneous references to the same section are not permitted because
each CPU has only one memory path into each memory section.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

1/0
Section

Memory Ports

CSM-0500-000

CPU 0 Central Memory

Section H PortA r-- r---'" 0
CPU

Registers H PortS r-- Memory

I I
Path I r---'" Section

Selection 1 H PortC ~ Ii
~ -

Instruction if=l Port 0 I-- ~- llr--" Section
Suffers 2

Iii
Section Ill r --..

III 3

III I
I " I Section
Illlr-" CPU n III 4

I " 'I +-t PortA ~ IIIII Section
CPU - .. _____ ...J !! II r'" 5

Registers __ --1 I II!

~ PortS J.- Memory _____ .J III
Path --

Selection
______ .J II

Section -H Port C 1--- ... r- -
________ ...J ! r'" 6 ... ~---------~I

Instruction if=l Port 0 I-- ... !-------------I Section Suffers ... ------------.. 7

A-9640

Figure 2-1. Central Memory Architecture

Simultaneous and overlapping memory references involving two or more
CPU s have fewer restrictions than those involving a single CPU.
Simultaneous and overlapping memory references from different CPU s
can occur within a section and a subsection; however, each reference
must use a different bank.

Each CPU has four memory ports through which the CPU accesses its
paths to central memory. Each port contains two pipes, allowing up to
eight simultaneous memory references per CPU. Table 2-2 lists the
specific read and write references allocated to each of the ports and
pipes.

Cray Research Proprietary 2-5

CPU Shared Resources

2-6

CRAY Y -MP COO System Programmer Reference Manual

Table 2-2. Allocation of Memory References to Ports and Pipes

Port Pipe Reference Type User

A 0 Read A registers (10h instruction)
B registers (034 instruction)
S registers (12h instruction)
V registers (176 instructions)
Exchange data

A 1 Read B registers (034 instruction)
V registers (176 instructions)

B 0 Read T registers (036 instruction)
V registers (176 instructions)

B 1 Read T registers (036 instruction)
V registers (176 instructions)

C 0 Write A registers (11 h instruction)
B registers (035 instruction)
S registers (13h instruction)
T registers (037 instruction)
V registers (177 instructions)
Exchange data

C 1 Write B registers (035 instruction)
T registers (037 instruction)
V registers (177 instructions)

D 0 Read and Write I nstruction buffers
I/O section

D 1 Read and Write Instruction buffers
I/O section

Ports A, B, and C are used by memory reference instructions and by the
exchange sequence. Port D is used by the instruction buffers and the I/O
section. With the exception of memory reads to vector (V) registers
(instructions 176iOk and 176i1k), each type of memory reference uses
one specific port. On a read to a V register, port B is used if available. If
port B is reserved, port A is used if available. If both ports are reserved,
the instruction holds issue until one of the ports is available. If both ports
become available at the same time, port B is used.

The usage of either pipe 0 or pipe 1 depends on the type of reference to
the port. For vector references, the even elements use pipe 0 and the odd
elements use pipe 1. For fetch references, the even-address memory
words use pipe 0 and the odd-address memory words use pipe 1. For B

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Ports A, 8, and C

CSM-0500-000

and T register block transfers, the first word transferred always uses pipe
0, and the next word uses pipe 1; subsequent words alternate between the
two pipes until the transfer is complete.

Ports A, B, and C operate differently for block and vector transfers than
for scalar transfers. A memory reference instruction that transfers data to
or from B, T, or V registers holds issue if the associated port is in use by
another memory operation. When the port becomes available, the
instruction issues and reserves the port. The port remains reserved until
the instruction completes all its memory references. The port reservation
is then cleared, making the port available for other memory operations.
A block or vector transfer normally reads or writes 2 words of data each
clock period (CP). However, if the instruction encounters a memory
conflict during its execution, it temporarily suspends operation until the
conflict is resolved. Therefore, the number of CPs the instruction runs
and the number of CPs the port is reserved are unpredictable. Refer to
"Conflict Resolution" in this section for additional information on port
conflicts.

Block and vector transfer instructions that use different ports normally
operate simultaneously. Under some circumstances, this mode of
operation can cause memory references to occur in an unwanted
sequence. For example, if instruction 035ijk (write to memory from a
block ofB registers) precedes instruction 176iOk (read from memory to a
V register) and both instructions reference one or more of the same
memory addresses, data from some memory addresses may be read
before the new data is written to them. Both of these instructions can
operate simultaneously, and the read instruction may reference an
address before the write instruction.

There are several ways to prevent out-of-sequence references.
Instruction 002700 (complete memory references), instruction 002704
(complete port reads and writes), or instruction 002706 (complete port
writes) can be inserted between the write and read instructions. Although
these instructions do not perform any operation, they prevent the read
instruction from issuing until the write instruction completes all its
memory references and clears the port C reservation. Usually,
instructions 002704 and 002706 are used to insure sequential memory
referencing within a CPU, and instruction 002700 is used to synchronize
memory references between CPUs.

Clearing the bidirectional memory (BDM) mode in the exchange
package also prevents out-of-sequence memory references. In this case,
instructions that use port A or B also require port C to be available, and
instructions that use port C require ports A and B to be available. The
memory read instruction holds issue until the write instruction completes
all its memory references.

Cray Research Proprietary 2-7

CPU Shared Resources

Port D

Conflict Resolution

Section Conflict

2-8

CRAYY-MP C90 System Programmer Reference Manual

Before it can issue, a scalar transfer instruction requires that ports A, B,
and C be available to ensure sequential operation between block transfers
and scalar references within a CPU. A scalar reference conflict is
detected in CP 4 of execution. If a conflict occurs, up to two additional
scalar references are still allowed to issue. A fourth scalar reference
holds issue if the first reference still has a conflict. Scalar references
always execute in the order they are issued within a CPU.

An instruction fetch sequence has priority over an I/O transfer in port D.
That is, if a fetch request occurs while an I/O transfer is in progress, the
I/O transfer is suspended and the fetch begins. When the fetch
completes, the I/O transfer continues.

A memory conflict occurs whenever a memory port tries to access a
shared part of memory in use, or whenever two or more ports try to
access a shared part of memory at the same time. Intra-CPU conflicts
involve ports in the same CPU. Inter-CPU conflicts involve ports in
different CPUs. In both cases, conflict resolution logic uses predefined
priority schemes to sequence the conflicting memory references and to
maximize overall machine throughput.

There are five types of memory conflicts: section, subsection,
simultaneous subsection access, bank busy, and write bank busy. The
following paragraphs explain each type of conflict and how the conflict
is resolved.

A section conflict occurs when two or more ports in the same CPU
simultaneously attempt to access the same memory section. A section
conflict occurs because there is only one path from each CPU to each
memory section. The port with the highest priority level and no
subsection conflict is allowed to begin its reference. All other conflicting
ports hold reference for 1 CPo The following rules determine priorities
between conflicting ports:

• Port D has priority over ports A, B, and C when it is used for an
instruction fetch sequence.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Subsection Conflict

CSM-0500-000

•

•

•

Port D normally has a lower priority than ports A, B, and C when it
is used for an I/O transfer. However, if a port D I/O memory
reference is forced to hold for 32 CPs, port D is temporarily given
top priority so that one memory reference can proceed. Port D
returns to a low-priority status after the reference begins.

Among ports A, B, and C, any port that has an odd memory
address increment has priority over ports that have an even
increment. The following rules determine the type of increment
(even or odd) for each port:

•

•

•

A port used by a block reference instruction has an address
increment of 1, which is odd.

A port used by a stride reference instruction can have any
constant increment (even or odd).

A port used by a gather or scatter instruction can have an
increment that changes after each reference. For the purpose
of conflict resolution, a gather or scatter instruction is always
considered to have an odd increment.

Among ports A, B, and C with the same type of memory
increment, priority is determined by the relative time of instruction
issue. The port used by the instruction first issued has the highest
priority.

Subsection conflicts occur because each memory reference by a CPU
makes an entire memory subsection unavailable to all ports in the same
CPU for 7 CPs. A subsection conflict occurs if any port in the same CPU
attempts to make a reference to the same subsection during this interval.
The new reference holds for 1 to 6 CPs until the old reference no longer
needs the subsection. Subsection conflicts usually involve two or more
ports, but may involve two references from the same port.

If two or more references are holding issue because of the same
subsection conflict, a section conflict occurs immediately following the
resolution of the subsection conflict. Another subsection conflict occurs
1 CP after the section conflict. For example, if port A is using a
subsection and ports Band C attempt to use the same subsection while it
is busy, ports Band C hold issue because of the subsection conflict.
When the reference from port A no longer needs the subsection, the
subsection conflicts disappear. Ports B and C are involved in a section
conflict, which is resolved according to the priority rules previously
described. The port with the higher priority makes its reference, and the
port with the lower priority encounters a subsection conflict.

Cray Research Proprietary 2-9

CPU Shared Resources CRAYY-MP COO System Programmer Reference Manual

Simultaneous Subsection Access Conflict

Priority
Count

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

2-10

Simultaneous subsection access conflicts occur when two or more ports
in different CPUs attempt to access the same memory bank group at the
same time. The CPU with the highest priority is allowed to make its
reference. All other CPUs attempting to access the same bank group
hold their references for 1 CPo Relative priorities between CPUs are
determined by the value stored in a priority counter. This value
increments by 1 each CPo For a given value of the priority counter, each
of the CPUs is assigned the priority shown in Table 2-3. For example, if
the priority count is 5, then CPU 5 has the highest priority and CPU 12
has the lowest priority. Following a simultaneous subsection access
conflict, each CPU port forced to hold a reference encounters a
bank-busy conflict.

Table 2-3. CPU Priority Matrix

Highest Priority 4 • Lowest Priority

0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

1 0 3 2 5 4 7 6 11 10 13 12 15 14 17 16

2 3 0 1 6 7 4 5 12 13 10 11 16 12 14 15

3 2 1 0 7 6 5 4 13 12 11 10 17 16 15 14

4 5 6 7 0 1 2 3 14 15 16 17 10 11 12 13

5 4 7 6 1 0 3 2 15 14 17 16 11 10 13 12

6 7 4 5 2 3 0 1 16 17 14 15 12 13 10 11

7 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10

10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7

11 10 13 12 15 14 17 16 1 0 3 2 5 4 7 6

12 13 10 11 16 17 14 15 2 3 0 1 6 7 4 5

13 12 11 10 17 16 15 14 3 2 1 0 7 6 5 4

14 15 16 17 10 11 12 13 4 5 6 7 0 1 2 3

15 14 17 16 11 10 13 12 5 4 7 6 1 0 3 2

16 17 14 15 12 13 10 11 6 7 4 5 2 3 0 1

17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Shared Resources

Bank-busy Conflict

Write Bank-busy Conflict

Conflict Type

Section Intra-
CPU

Subsection Intra-
CPU

Simultaneous Inter-
Subsection CPU
Access

Bank-busy Inter-
CPU

Write Inter-
Bank-busy CPU

CSM-0500-000

Bank-busy conflicts occur because each memory reference by a CPU
makes the referenced memory bank unavailable to all ports in all other
CPUs for 6 CPs. A bank-busy conflict occurs if any port in a different
CPU attempts to make a reference to the same bank during this interval.
The new reference holds from 1 to 5 CPs until the old reference no
longer needs the bank. If two or more CPUs are holding because of the
same bank-busy conflict, a simultaneous subsection access conflict
occurs immediately following resolution of the bank-busy conflict.

Write bank-busy conflicts occur because within a subsection each write
data path is shared between two memory banks. Banks 0 and 4, 1 and 5,
2 and 6, and 3 and 7 share write data paths. When a write reference is
made by a CPU to a memory bank, both memory banks in the pair are
unavailable to all ports in all other CPUs for 6 CPs. A write bank-busy
conflict occurs if any port in a different CPU attempts to make a
reference to either bank during this interval. The new reference holds
from 1 to 5 CPs until the old write reference no longer needs the bank. ·'If
two or more CPUs are holding because of the same write bank-busy
conflict, a simultaneous subsection access conflict occurs immediately
following resolution of the write bank-busy conflict. Table 2-4
summarizes the five types of memory conflicts.

Table 2-4. Memory Conflicts

Duration Resolution Comment

1 CP The highest-priority port with Followed by a subsection
no subsection conflict makes conflict if references are made
reference. Other ports hold to the same subsection.
reference.

1 to 6 Memory references for the Followed by a section conflict
CPs port hold until the reference in if two or more references are

progress is complete. forced to hold.

1CP The highest-priority CPU Followed by a bank-busy
makes reference. Other conflict in each CPU that was
CPUs hold reference. forced to hold.

1 to 5 Memory references for the Followed by a simultaneous
CPs port hold until the reference in subsection access conflict if

progress is complete. two or more references are
forced to hold.

1 to 5 Memory references for the Followed by a simultaneous
CPs port hold until the write subsection access conflict if

reference in progress is two or more references are
complete. forced to hold.

Cray Research Proprietary 2-11

CPU Shared Resources

Memory Addressing

CRAYY-MP C90 System Programmer Reference Manual

Memory addresses are 29 bits long, allowing up to 512 Mwords of
storage to be referenced. Figure 2-2 shows the function of each address
bit. In each of the section, subsection, and bank-select fields, the
highest-numbered bit is most significant. With this arrangement, if the
memory address advances sequentially, all memory sections are stepped
through in tum. Next, all subsections are stepped through, then each
bank group, and finally all banks are stepped through.

Bank Group

228 227 226 225 224 223 222 ~1 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200

Internal Chip Address 1 Internal Chip Address Bank 1 Subsection Section
Select Select Select

Chip Select

Figure 2-2. Memory Addressing

Group
Select A·9637

Address bits 26 through 23 collectively make up the bank group number.
Thus, subsection 5 (1012) in group 1 has a bank group number of 15.
The bank group numbers run from 00 through 178.

The chip select bit is used to select one of two physical groups of chips
on the memory module. The internal chip address selects a group of four
bits on a 256 Kbyte X 4 bit memory chip.

Absolute Memory Address Calculating

2-12

Memory reference instructions listed in Table 2-1 calculate absolute
memory addresses by adding combinations of the following values.

•
•
•
•

A register contents
V register contents
DBA register contents
Three-parcel instruction nm field contents

Each time an instruction makes a memory reference, the memory address
generated by the instruction is added to the contents of the DBA register
to form the absolute memory address. The use of the DBA register is
further explained in the following subsection.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Address Range Checking

DBA Register

DLA Register

CSM-0500-000

Four registers in the exchange package place program data and
instruction areas in specific locations in memory and allocate specific
amounts of memory to the areas. These registers allow all programs to
be relocated. When a program is written, the programmer does not need
to know where the instruction and data areas are located in memory.
These registers also enable the programmer to restrict certain parts of
memory from any program. A program can be halted if it tries to
perform an instruction outside of its allowed instruction area or if it tries
to read or write data outside of its allowed data area. When more than
one program occupies memory at the same time, programs can be
prevented from performing instructions or operating on data that belongs
to other programs.

The data base address (DBA) register determines where the data area of a
program begins in memory. Data addresses generated by memory
reference instructions are relative to the DBA. The absolute address of
any memory location is determined by adding the DBA to the address~.
generated by the memory reference instruction. Refer again to Table 2-1
for a list of memory reference instructions.

The data limit address (DLA) register determines the highest absolute
memory address the program can use for reading or writing data. Each
time an instruction makes a memory reference, the absolute memory
address generated is compared to the values stored in the DBA and DLA
registers. If the absolute memory address is between the DBA and DLA,
the reference is allowed to proceed. Otherwise, an out-of-range
condition exists and the memory reference is aborted by disabling all
chip selects and write enables in the referenced memory bank. For a
memory write reference, no write operation is performed. For a memory
read reference, all bits are set to O.

If the interrupt-on-operand range (lOR) interrupt mode is set in the
exchange package, an out-of-range condition sets the operand range error
(ORE) interrupt flag and causes an exchange sequence to begin. If the
lOR interrupt mode is not set, the program continues to run.

Cray Research Proprietary 2-13

CPU Shared Resources

IBA Register

ILA Register

CRAYY-MP C90 System Programmer Reference Manual

The instruction base address (IBA) register functions similarly to the
DBA register, except that it operates on the instruction area of a program.
Each time an instruction fetch sequence takes place, absolute memory
addresses are formed by adding the relative addresses generated by the
fetch control logic to the contents of the IBA register.

The instruction limit address (ILA) register functions similarly to the
DLA register, except that it operates on the instruction area of a program
and does not provide for continuing program execution when an
out-of-range condition occurs. If an absolute memory address generated
by an instruction fetch sequence is between the IBA and ILA, the fetch
sequence is allowed to proceed. Otherwise, an out-of-range condition
exists. An out-of-range condition sets the program range error (PRE)
interrupt flag in the exchange package and causes an exchange sequence
to begin.

The DBA, DLA, IBA, and ILA registers contain only address bits 210

and above. Bits 2° through 29 are always 0; therefore, the content of
these registers is always a multiple of 20008 (1,02410). Adding the
contents of the DBA or IBA register to a relative memory address does
not change the section, subsection, or bank number. Therefore, memory
conflicts can be determined from the relative addresses generated by
instructions and the fetch control logic. It is not necessary to use
absolute memory addresses to determine whether conflicts exist.

Address range checking is not performed during exchange sequences and
I/O transfers. Memory addresses generated by these operations are
absolute memory addresses.

Error Detection and Correction

2-14

Single-byte correctiOn/double-byte detection (SBCDBD) monitors
central memory for data errors. Memory errors involving only one 4-bit
byte in each data word (single-byte errors) can be detected and corrected
by the hardware. Double-byte errors can be detected but cannot be
corrected. Errors involving more than 2 bytes cannot be reliably
detected.

When a 64-bit word (bits 20 through 263) is written to memory, a 16-bit
checkbyte is generated and stored in memory with the data word. (The
check bits are numbered 0 through 15 and are stored as data bits 264

through 279.) When the word is read from memory, a checkbyte is again
generated and compared with the original checkbyte, using an exclusive

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

CSM-0500-000

OR (XOR) operation. The resulting comparison is called a syndrome
code. If all the bits in the syndrome code are 0, the 2 checkbytes are
identical and no memory error occurred.

If there are one or more 1 bits in the syndrome code, some type of
memory error occurred. The type of memory error (single-byte or
double-byte) can be determined by interpreting the syndrome code. If a
single-byte error occurs, the syndrome indicates the bit or bits within that
byte that are in error. The SBCDBD logic toggles the incorrect bit or bits
to the correct value. If a double-byte error occurs, the syndrome code
indicates that there is an error, but it cannot pinpoint the incorrect bits.
Errors involving more than 2 bytes produce unpredictable results. In
some cases, errors produce unique syndrome codes that can be detected
by the SBCDBD logic. In other cases, the syndrome code appears to be a
no-error condition or a single- or double-byte error.

Table 2-5 shows the data bits used to generate each bit in the checkbyte.
All data bits marked with an X in a row contribute to the corresponding
check bit. The parity of all data bits marked with an X determines the
state of the check bit. If the parity is even, the check bit is set to O. If it
is odd, the check bit is set to 1. For example, the data bits used to
generate check bit 3 are bits 23, 27,211,215,233,238,243, 244, 248, 255, 208,
and 261. If an even number of these bits is 1, check bit 3 is set to logic b;
otherwise, it is set to logic 1.

If a syndrome code other than all O's is generated, memory error
information is sent to the error ch.annel to help pinpoint the hardware
failure. A nonzero syndrome code may also initiate an exchange
sequence, depending on the state of two of the interrupt modes in the
exchange package. If the interrupt-on-correctable memory error (ICM)
interrupt mode is set, a single-byte (correctable) memory error sets the
memory error - correctable (ME C) interrupt flag in the exchange
package and starts an exchange sequence. If the interrupt-on­
uncorrectable memory error (IUM) interrupt mode is set, a double-byte
or detectable multiple-byte (uncorrectable) error sets the memory error -
uncorrectable (MEU) interrupt flag and starts an exchange sequence. If
either the ICM or the IUM interrupt mode is not set, the corresponding
memory error does not start an exchange sequence and does not set an
interrupt flag.

Cray Research Proprietary 2-15

N
I

...&.

en

(')
en
3: • o
01
o
o

I

o
o
o

Check
Bit 63

0

1 x

2 x

3

4

5

6 x
7

8

9

10

11

12

13

14

15 x

Byte 15 Byte 14

62 61 60 59 58 57

X X

x x

x x

x x

x x

x x

x

X X

X

x x

X x

X

Table 2-5. Check Bit Generation

Data Bits

Byte 13 Byte 12 Byte 11

56 55 54 53 52 51 50 49 48 47 46 45

X X X X

x x x x

x x x

x x

x x x

x x x x

x x X

X x

x

x
x

X x x x
x x x x

X x x

x x x

Byte 10 Byte 9

44 43 42 41 40 39 38 37

X X X

x x
x x

x x x

x x
x x

x x
x x
x
x x x

x x x
x x

Byte 8

36 35 34 33

x
x x x

x

x

x
x

x

x

x x

x
X

32

x

x

x

x

(')
-u
c
en
'::T
Q) ..,
(I)
a.
:D
(I)

~
c

~
en

()

~
-<
~
-u
()
<0
o
en
'< en m
3
-u ..,
o

(Q

su
3
3
(I) ...,

(')
en
s:

I

o
01
o
o

I

o
o
o

Check

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Byte 7

31 30 29

x

x

x
x

x x

x

x
x

x

x

Byte 6

28 27 26 25 24

X x

x

x

x

x

x x

x x

x

x x
x

x

x x

Table 2-5. Check Bit Generation (continued)

Data Bits

Byte 5 Byte 4 Byte 3

23 22 21 20 19 18 17 16 15 14 13 12

x

x

x

x

x x x

x x x x

x x x x

x x x

x x x x x

x x x

x x x

x x x

x x

x x x x

x x x

x x

Byte 2 Byte 1

11 10 9 8 7 6 5 4

x x

x x

x x

x x

x x

x x x

x x

x x
x x

x x x

x x

x x

Byte 0

3 2 1 0

x

X

x

X

x x

x

x

x
x

x x

x x

x

(')

~
-<
~
'"'0
(')
co
o
en
'< en
CD
3
'"'0 ..,
o

(Cl ..,
I»
3
3
9?
:D
;. ..,
(1)
::J
o
(1)

s:
I»
::J
C
~

(')
'"'0
C
(J)
::r
I» ..,
co
0.

:D
co en
o
c ..,
o co en

CPU Shared Resources CRAYY-MP C90 System Programmer Reference Manual

Central Memory Performance Summary

2-18

Central memory has an intra-CPU subsection cycle time of 7 CPs and an
inter-CPU bank cycle time of 6 CPs. That is, when a port in a CPU
makes a memory reference, it reserves a subsection and a bank within the
subsection. The reserved subsection is unavailable to all ports in that
CPU for 7 CPs. The reserved bank is unavailable to all ports in all CPUs
for 6 CPs.

Access time is the time required for an instruction to transfer one or more
operands from central memory to an operating register. Access time
depends on the type of register receiving the operand(s) and the number
of operands being transferred. If no memory conflicts are encountered,
the following access times apply for each register type:

•
•
•
•
•

24 CPs for A registers.
23 CPs for S registers.
26 plus (block length/2) CPs for B and T registers.
26 plus (vector length/2) CPs for V register stride references.
30 plus (vector length/2) CPs for V register gather references.

The maximum central memory data transfer rate equals the number of
CPUs x 4 ports per CPU x 2 words per port per CPo The following are
maximum data transfer rates within a CPU:

•

•

•

•

1 word (read or write) per 2 CPs for A and S registers.

6 words (4 read and 2 write) per CP for B, T, and V registers.

2 words (read or write) per CP for an instruction fetch or an I/O
transfer.

1 word (read or write) per CP for an exchange sequence.

If memory conflicts occur, access times increase and data transfer rates
decrease, causing program performance to degrade. The amount of
performance degradation that a program encounters depends on many
factors and is difficult to predict. However, performance degradation can
be analyzed for vector stride instructions.

Normally, a vector stride instruction makes two memory references each
CP until the instruction completes. However, if the stride is a multiple of
64 (that is, stride mod 64 = 0), the instruction attempts to access the same
subsection each CP. Because a reference reserves the subsection for 1
CPs, the next reference encounters a subsection busy conflict and is
forced to delay 6 CPs. Therefore, only one memory reference for each
7 -CP interval is completed, compared to the twelve references that occur

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

I/O Section

CPU

a
1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

CSM-0500-000

in the absence of the subsection conflicts, making the relative
performance equal to 1/12. In general, performance degradation results
whenever the stride is a multiple of 16.

The I/O section of the mainframe is shared by all CPUs. The mainframe
supports three channel types identified by their maximum transfer rates:

•
•
•

Low-speed (LOSP) channels - 6 Mbytes/s or 20 Mbytes/s
High-speed (HISP) channels - 200 Mbytes/s
Very high-speed (VHISP) channels -1,800 Mbytes/s

The I/O section uses ports D and D' (also referred to as pipes 0 and 1 of
port D) in each CPU to transfer data between central memory and the I/O
channels. Table 2-6 shows the assignment of I/O channels to each CPU.
All numbers used in the table are octal.

Table 2-6. CPU I/O Channel Assignments

LOSP HISP VHISP
Channel Channel Channel

Input Output (Input and Output) (Input and Output)

40 41 0, 1

42 43 3

44 45 2,3

46 47 7

50 51 4,5

52 53 13

54 55 6, 7

56 57 17

60 61 10, 11

62 63 23

64 65 12,13

66 67 27

70 71 14,15

72 73 33

74 75 16,17

76 77 37

Cray Research Proprietary

CPU Shared Resources

LOSP Channels

2-20

CRAYY-MP C90 System Programmer Reference Manual

Each CPU provides access to central memory for one LOSP channel pair
(one input and one output) and either two msp channels or one
bidirectional vmsp channel. The LOSP channels are normally used to
transfer control information between the mainframe and I/O subsystem
(lOS). Each of these channels can be programmed from any CPU in the
mainframe. The msp channels are used to transmit data between the
mainframe and an lOS and are programmed from the lOS. The VHISP
channels transfer data between the mainframe and a solid-state storage
device (SSD). Like the LOSP channels, the vmsp channels can be
programmed from any CPU in the mainframe.

The following subsections describe each of the I/O channels and provide
.programming information for the LOSP and vmsp channels. For
information on programming the msp channels, refer to the lOS Model
E System Programmer Reference Manual, publication number
CSM-IOIO-OOO.

One LOSP (6 Mbytes/s) channel pair or one enhanced LOSP (20
Mbytes/s) channel pair is provided for each CPU; the user-selectable
option is installed with the machine. Unless specifically stated
otherwise, the term LOSP channel used in this subsection refers to both
types of LOSP channel. These channel pairs transmit data between
central memory and an external16-bit asynchronous device, normally an
lOS. Each channel pair consists qf an input and an output channel. Each
channel in the pair sends data in 16-bit parcels. An input channel
assembles 4 parcels to make a 64-bit word. An output channel
disassembles a 64-bit word into 4 parcels. Each channel provides
data-error detection (but not correction) by sending 4 parity bits with
each parcel.

Control for each channel is provided by three signals: Ready, Resume,
and Disconnect. On an input channel, the external device transmits
Ready and Disconnect signals to the mainframe, and the mainframe
transmits a Resume signal to the external device.

The following steps show the normal control sequence for a LOSP input
channel:

1. The external device places a parcel of data and 4 parity bits on the
channel.

2. The external device then activates a Ready signal to inform the
mainframe that data is waiting on the channel.

3. The mainframe reads the data and parity bits from the channel and
checks for parity errors.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Channel Programming

CSM-0500-000

4. The mainframe then activates a Resume signal to indicate that it has
received the data.

5. Steps 1 through 4 are repeated until all data is transferred.

6. The external device activates a Disconnect signal to indicate that
the transfer is complete.

7. The mainframe activates a Disconnecting Resume signal, which
acts as a Master Clear signal to both the mainframe and external
device.

The normal control sequence for an enhanced LOSP input channel is
similar to the above sequence. The only difference is that the Resume
signal mentioned in Step 4 is activated only once for every four Ready
signals. After receipt of parcel 0 of each word, the mainframe activates a
Resume signal to indicate that it is ready for the next 4 parcels of data
together with their Ready signals. The final Resume signal, however, is
sent in response to a Disconnect signal, and it can be sent only after the
final word transferred is stored.

An output channel uses the same control signals, but the signal directions
are reversed. That is, the mainframe transmits Ready and Disconnect
signals to the external device, and the external device transmits Resume
signals to the mainframe. Each output channel also sends a Master Clear
signal to the external device. The Master Clear signal can be set or .
cleared under program control from any CPU.

Each LOSP channel has two registers that can be loaded from any CPU.
The channel address (CA) register contains the address of the next word
in central memory to be transferred. When an I/O transfer begins, the
CA register contains the address of the first word to be transferred. After
the first word is transferred, the CA register increments. The next word
is transferred and the CA register again increments. This process
continues until all words are transferred.

The contents of the channel limit (CL) register determine the address of
the last word in central memory to be transferred. An I/O transfer
completes when the address contained in the CA register equals the
address stored in the CL register. All words between (CA) and (CL) - 1
are transferred; that is, all words starting at the initial address stored in
the CA register through 1 less than the address stored in the CL register.

Data transfers through a LOSP channel can be initiated by any CPU in
monitor mode. The CPU does not need to take any further action after
the transfer is initiated. The transfer operates as a background activity
and the CPU may resume other processing. When the transfer

Cray Research Proprietary 2-21

CPU Shared Resources

Machine
Instruction

0010jk

0011jk

0012jO

0012j1

0012j2

0012j3

033ijO

033iOO

033ij1

2-22

CRAYY-MP COO System Programmer Reference Manual

completes, the channel sets an I/O interrupt (101) flag in a CPU if the
system I/O interrupts enabled (SIE) flag is set. The CPU that receives
the interrupt request is not necessarily the CPU that initiated the transfer.
Refer to "I/O Interrupts" later in this section for additional information.

Table 2-7 lists all instructions applicable to LOSP channels. Instructions
OOlOjk through OO12j3 perform channel control and can be executed only
by a CPU in monitor mode. There is no hardware interlock between
CPUs; the programmer must ensure that two CPUs do not try to control
the same channel at the same time. Instructions 033ijO through 033ijl
transmit I/O status information to register Ai. These instructions are not
limited to monitor mode and can be simultaneously executed by any
number of CPUs.

Table 2-7. LOSP Channel Instructions

CAL
Syntax Description

CA,Aj Ak Set the CA register for channel (Ai) to (Ak) and begin I/O
sequence.

CL,Aj Ak Set the CL register for channel (Ai) to (Ak).

CL,Aj Clear the interrupt and error flags for channel (AJ); clear
device master-clear (output channels only); enable channel
interrupt.

MC,Aj Clear the interrupt and error flags for channel (AJ); set device
master-clear (output channels only); clear device ready-held
(input channels only).

DI,Aj Disable channel (Al) interrupts.

EI,Aj Enable channel (Al) interrupts.

Ai CA,Aj Transmit the current address of channel (Al) to Ai U ~ 0).

Ai CI Transmit to Ai the channel number of the highest priority
channel requesting an interrupt.

Ai CE,Aj Transmit channel status word for channel (Al) to Ai U ~ 0).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

CSM-0500-000

The following sequence of instructions initiates a data transfer across the
LOSP channel specified by register Aj.

Machine
Step Instruction

1 00 lljk

2 0010jk

CAL

CL,Aj Ak

C~Ak

Comment

Sets the CL register to (Ak),
where Ak contains 1 + the
address of the last word to be
transferred.

Sets the CA register to (Ak),
where Ak contains the address
of the first word to be transferred.

This sequence starts the I/O transfer and increments the CA register after
each data word is transferred to or from the mainframe. On an output
channel, the transfer stops when (CA) = (CL). On an input channel, the
transfer stops when (CA) = (CL) or when the mainframe receives a
Disconnect signal, whichever comes first.

1\vo important characteristics of LOSP channels must be kept in mind
when programming an I/O transfer. First, load the CL register before the
CA register; the transfer begins when the CA register is loaded,
regardless of the contents of the CL register. Second, load the CA
register with a value less than the contents of the CL register.
Unpredictable results occur if the CA register is loaded with a value
equal to or greater than the CL register.

Two auxiliary operations can also be programmed to a LOSP channel.
These operations are usually used to initialize a channel after a deadstart
or to resynchronize a channel after an error. The first operation involves
a Ready signal received by an input channel.

When the Ready signal is received, it is held (latched) until the channel is
ready to receive the data. It is sometimes useful to clear the ready-held
condition because a Ready signal can be received when the channel is
not active. Instruction 0012jl performs this function.

The second auxiliary operation performs a master clear sequence on an
external device through an output channel.

Cray Research Proprietary 2-23

CPU Shared Resources

Channel Errors

2-24

CRAYY-MP C90 System Programmer Reference Manual

The following instructions perform the external master clear sequence:

Machine
Step Instruction

1 00 12jO

2 0012jl

3 00 12jO

CAL

CL,Aj

MC,Aj

MC,Aj

Comment

Oears the input channel to
ensure any external activity on
the channel pair has stopped.

Oears the output channel to
ensure any external activity on
the channel pair has stopped. Sets
the device Master Qear signal.

Delay. The required delay time is
determined by the external
device.

Oears the output channel. Clears
the device Master Qear signal.

Delay. The required delay time is
determined by the external
device.

The 0012jO and 0012jl instructions used in the auxiliary functions also
clear the channel interrupt and error flags. Refer to "I/O Interrupts" later
in this section for more information on clearing the channel interrupt and
error flags.

LOSP channels detect two specific errors. Input channels detect parity
errors and output channels (on enhanced LOSP channels only) detect
Disconnecting Resume signals received from external devices. Either
type of channel error sets the parity/disconnecting resume error flag (bit
229) and the channel error flag (bit 23<» in the channel status word.
Several other errors also set the channel error flag, as shown in Table 2-8.
Bit 231 of the channel status word is a done flag, indicating that the data
transmission is complete. These are the only three bits of the channel
status word used for LOSP error reporting. Instruction 033ijl transfers
the 32 bits of the channel status word to register Ai and clears all other
bits of the register.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP e90 System Programmer Reference Manual CPU Shared Resources

Table 2-8. LOSP Channel Error Flag Settings

Channel Status Word Bits

Input Errors 231 230 229

Parity error 0 1 1

Transmission terminated on nonword boundary 1 1 0

Aborted reference 0 1 t 0

Sequence error (Ready signal at wrong time) 0 1 0

Sequence error (Disconnect signal at wrong time) 1 1 0

Output Errors

MISP Disconnecting Resume signal detected 1 1 1

Transmission terminated on nonword boundary 1 1 0

Aborted reference 0 1 t 0

Sequence error (Resume signal when channel active) 0 1 0

Sequence error (Resume signal at wrong time) 0 1 0

t This bit is set only until the reference is completed.

CSM-0500-000

When an input channel detects a parity error, it sets the parity error flag
but does not interrupt the data transfer. The word in error is written into
central memory. All data received after the parity error is cleared before
being written into central memory. It is not possible to determine which
parcel of the word caused the parity error. When the transfer is
completed, the parity error flag sets the channel error flag. There is no
way to inform the external device of a parity error.

Instruction 0012jl issued to an enhanced LOSP input channel generates a
Disconnecting Resume signal to the complementary output channel.
This signal is used to request that the output channel restart or
resynchronize with the input channel. When the signal is detected by the
enhanced LOSP output channel, it sets the disconnecting resume error
flag as well as the channel error flag.

The LOSP input channels accept full-word (4-parcel) transfers only. A
channel error is reported if the data transmission terminates on a
nonword boundary. The last full word of a transfer is always written to
memory, whether or not all of the parcels contain valid data.

An aborted reference ·error occurs when a clear channel command is
issued to any active channel. The channel error flag sets and holds as
long as any memory references are pending. When all memory

Cray Research Proprietary 2-25

CPU Shared Resources

HISP Channels

VHISP Channels

2-26

CRAY Y-MP C90 System Programmer Reference Manual

references are completed, the channel error flag clears. The done flag
remains clear. The program should issue another clear channel command
after the aborted reference error clears and before restarting the channel.

When either an input or output channel receives a control signal (Ready,
Resume, or Disconnect) when it is not expected, the channel error flag is
set. Refer to "I/O Interrupts" in this section for more information on the
channel error flags and interrupts.

Two msp channels are provided for each even-numbered CPU; these
channels transfer data between central memory and an external device,
normally an lOS. Each channel uses 64-bit data words with 8 check bits
for error detection and correction using a single-error
correction/double-error detection (SECDED t) scheme. Data is
transmitted in 16-word blocks.

The msp channels are under control of the external devices; their
operation is transparent to the CPUs in the mainframe. There are no
CPU instructions to control or monitor channel operations, and no CPU
interrupt requests are generated. Channel errors can be detected at either
end of the channel but are reported to the external device.

One vmsp channel is provided for each odd-numbered CPU for a
maximum of eight vmsp channels per mainframe. The VHISP
channels transfer data between central memory and an SSD.

Each vmsp channel is 128 bits wide. Two parallel 64-bit channels are
used; each channel has 8 check bits for SECDED. Data is transmitted in
blocks with each block containing sixty-four 64-bit words. Unlike the
LOSP channels, the vmsp channels are bidirectional. One channel
number applies to both an input and an output channel; the channel can
be active in only one direction at a time.

Two registers for each channel can be loaded from any CPU. The
channel address (CA) register contains the address of the next word in
central memory to be transferred. When an I/O transfer begins, the CA
register contains the address of the first word. As each word is written to
or read from central memory the CA register increments. The next block
of words is transferred and the CA register again increments. This
process continues until all words are transferred.

t Hamming, R. W. "Error Detection and Correcting Codes." Bell System Technical
Journal. 29.2 (1950): 147-160

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Channel Programming

Machine
Instruction

0010jk

0011jk

0012jO

0012j2

0012j3

033iOO

033ij1

CSM-0500-000

The block length (BL) register determines the number of 64-word blocks
to be transferred. The BL register decrements after each block is
transferred. An I/O transfer is complete when the content of the BL
register is equal to O.

Programming a vmsp channel is similar to programming a LOSP
channel. Most of the same instructions (privileged to monitor mode) are
used, but instructions 0010jk, 00lljk, and 0012jO operate differently than
they do for the LOSP channels. These differences are explained in the
following paragraphs. Table 2-9 lists the instructions applicable to the
vmsp channel.

Instruction 0010jk performs two functions. The first time it executes, it
determines the starting block address in the SSD. The second time it
executes, it loads the channel's CA register, which determines the starting
address in central memory.

Instruction 0011jk loads the channel's BL register and determines
whether to do an input or an output transfer. The Ak register bits 2°
through 217 are loaded into the BL register. The Ak register bit 223

determines the transfer direction. If this bit equals 0, data is transferred
from the SSD to the mainframe. If this bit equals 1, data is transferred
from the mainframe to the SSD. Instruction 0011jk also initiates the
vmsp I/O sequence.

Table 2-9. vmsP Channel Instructions

CAL
Syntax Description

CA,Aj Ak First occurrence: set SSD starting block address for channel
(AJ) to (Ak).
Second occurrence: set CA register for channel (Aj) to (Ak).

CL,Aj Ak Set the BL register for channel (AJ) to (Ak), select input or
output transfer, and begin I/O sequence.

CL,Aj Clear the interrupt and error flags for channel (Aj).

DI,Aj Disable channel (Al) interrupts.

EI,Aj. Enable channel (AD interrupts.

Ai CI Transmit to Ai the channel number of the highest priority
channel requesting an interrupt.

Ai CE,Aj Transmit channel status word for channel (Aj) to Ai U ~ 0).

Cray Research Proprietary 2-27

CPU Shared Resources

2-28

CRAY Y-MP C90 System Programmer Reference Manual

Instruction 0012jO clears the channel interrupt flag and the channel status
word. It does not perform additional functions when used for a vmsp
channel.

Instruction 033ij1 transmits the channel status word to register Ai.
Table 2-10 lists the bits of the vmsp channel status word.

Table 2-10. vmsP Channel Status Word

Bit Position Description

20 - 223 Block length (BL) register bits 20 - 217.

224 _ 2 25 Not used (forced to 0).

226 Channel transfer in progress.

227 Block length error.

228 Uncorrectable (double-bit) error in SSD.

229 Uncorrectable (double-bit) error in mainframe.

230 Fatal error.

231 Complement of done flag.

The following sequence of instructions initiates a transfer across a
vmsp channel.

Machine
Step Instruction CAL Comment

1 00 12jO CL,Aj Clears channel (Aj).

2 0010jk CA,Aj Ak Sets the SSD starting block
address for channel (Aj) to (Ak).

3 0010jk CA,Aj Ak Sets the CA register for channel
(Aj) to (Ak).

4 0010jk CL,Aj Ak Sets the BL register for channel
(Aj) to (Ak), selects the transfer
direction, and begins the I/O
sequence.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

I/O Interrupts

I/O interrupts are generated by the LOSP and VHISP channels to indicate
a completed data transfer or unexpected error. Parity errors (LOSP input
channels) and correctable data errors (VHISP channels) do not cause
interrupts.

The system I/O interrupts enabled (SIB) flag determines whether or not
an I/O interrupt request is allowed to interrupt a CPU. If the SIE flag is
clear, no CPU can receive an I/O interrupt request. If the SIB flag is set,
all I/O interrupts are directed to the lowest-numbered CPU that has both
the interrupt on I/O (110) interrupt mode and the enable interrupt modes
(ElM) flag set. The SIB flag is cleared automatically when an I/O
interrupt request is sent to a CPU. The flag should be reset only by
instruction 001600 issued by the CPU that received the I/O interrupt.

The 101 interrupt flag sets in the CPU that receives the I/O interrupt,
initiating an exchange sequence. The following steps should be
performed by the CPU after the exchange sequence is finished:

1. Issue instruction 033iOO to determine which channel generated the
interrupt.

2. Issue instruction 033ij1 to read the channel status word.

3. Issue instruction 0012jO to clear the interrupt and error flags or the
status word.

4. Retransmit the data if necessary.

5. Issue instruction 001600 to reset the SIE flag.

If two or more I/O channels generate interrupt requests to the same CPU,
instruction 033iOO returns the lowest-numbered I/O channel requesting
service. The instruction returns the next-lowest I/O channel number
when that channel's interrupt flag is cleared. Instruction 033iOO returns a
value of 0 after all interrupt flags are cleared.

Interprocessor Communication Section

CSM-0500-000

The interprocessor communication section of the mainframe has three
features that pass data and control information between CPUs:

• Shared registers to pass data between CPUs.

• Semaphore registers to allow synchronization of programs
operating in different CPUs.

Cray Research Proprietary 2-29

CPU Shared Resources

Clusters

2-30

•

CRAY Y-MP C90 System Programmer Reference Manual

Interprocessor interrupts to allow one CPU to initiate an exchange
sequence in other CPUs.

These features are especi8.lly useful in multitasking environments.

The following paragraphs explain clusters, shared and semaphore
registers, deadlock conditions, and interprocessor interrupts.

The shared and semaphore registers are divided into 17 identical groups
called clusters, as shown in Figure 2-3. However, only n+l clusters are
supported for an n-processor mainframe. Thus, a four-processor
mainframe can support five clusters, and an eight-processor system can
support nine clusters, etc. Each cluster contains eight 32-bit shared
address (SB) registers, eight 64-bit shared scalar (S1) registers, and
thirty-two I-bit semaphore (SM) registers. These registers are described
in the next two subsections.

Each CPU can be assigned to only one cluster at a time, giving it ~ccess
to the registers in that cluster. The cluster number (CLN) field in the
exchange package determines the cluster to which a CPU is assigned for
a particular program. CPUs with the same cluster number share a
common set of shared and semaphore registers.

Acceptable values for the 5-bit CLN field are 0 through n+ 1 for an
n-processor mainframe. Thus, the CLN field in a 16-CPU system may be
set to any value from 0 through 17 (0 through 218)' Setting the CLN
field to values outside its acceptable range causes unpredictable results.
A CLN value of 0 prevents a CPU from accessing any shared or
semaphore registers and causes the shared register instructions to
perform no operation or to return a value of 0 to the destination register.

There are two ways to enter data into the CLN field: automatically during
an exchange sequence or by issuing instruction 0014j3 with the CPU in
monitor mode.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Shared Registers

CSM-0500-000

SM37
...L

SMO
SMO

SM - Semaphore Register (1 Bit)

'"-______ 2-"'° S9 - Shared 9 Register (32 Bits)

'"-______ 2-"'° ST - Shared T Register (64 Bits)

Cluster 18

Cluster 28

Cluster 38

Cluster 48

Cluster 218

A·9667

Figure 2-3. Shared Registers

There are two types of shared registers: shared address (SB) and shared
scalar (ST) registers. These registers function as intermediate storage
between CPUs and provide a way to transfer data between operating
registers in different CPUs. One CPU loads a shared register from its A
or S registers; other CPUs assigned to the same cluster can then transfer
the data from the shared register to their own A or S registers. Within a
CPU, data is transmitted between the SB and A registers and between the
ST and S registers. For data transfer between CPUs, the shared registers
use the shared paths. Refer to "Shared Paths Access Priority" in this
section for more information.

Cray Research Proprietary 2-31

CPU Shared Resources

Machine
Instruction

026ij4

026ij5

026ij6

026i)7

027ij6

027i)7

072ij3

072ij6

073ij3

073ij6

CRAYY-MP C90 System Programmer Reference Manual

The SB and ST registers report parity errors to status register 7 (SR7).
Refer to "Status Registers" in Section 3 of this manual for more
information.

Table 2-11 lists all instructions that transmit data to or from the shared
registers. In a CPU where the contents of the ClN register equal 0, the
listed variations of instructions 026ijk and 072ijk return a value of 0, and
the variations of instructions 027ijk and 073ijk perform no operation.

Table 2-11. Shared Register Instructions

CAL
Syntax Description

Ai S8,Aj,+1 Transmit (S8) deSignated by (A)} to Ai, and increment
(SB,Aj} by 1.

Ai S8j,+1 Transmit (S8)} to Ai, and increment (SB)} by 1 .

Ai S8,Aj Transmit (SB) deSignated by (Ai) to Ai.

Ai SBj Transmit (S8)} to Ai.

S8,Aj Ai Transmit (AL) to S8 designated by (A)}.

S8j Ai Transmit (AL) to SBj.

Si STj Transmit (ST)} to Si.

Si ST,Aj Transmit (S1') deSignated by (A)} to Si.

STj Si Transmit (Si) to STj.

ST,Aj Si Transmit (Sz) to ST designated by (A)).

Semaphore Registers

2-32

Semaphore (SM) registers allow a CPU to temporarily suspend program
operation in order to synchronize operation with other CPU s. Each CPU
assigned to a particular cluster can set or clear each SM register in the
cluster and can perform a test and set instruction, as explained in the next
paragraph. Each CPU in the cluster can also transmit all 32 SM registers
to or from an S register. CPUs use the shared paths to set and clear
semaphore registers. Refer to "Shared Paths Access Priority" in this
section for more information.

Table 2-12 lists all instructions that use the SM registers. The 0034jk test
and set instruction tests the state of the SMjk or SM,Ak register. If the
content of the designated SM register is 0, the 0034jk instruction

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Machine
Instruction

0034jk

0034jk

0036jk

0036jk

0037jk

0037jk

072i02

073i02

0064jknm

0064jknm

S Register
Bits

CSM-0500-000

executes immediately. If the content of the designated SM register is 1,
the 0034jk instruction holds issue until another CPU assigned to the same
cluster clears the SM register. When the instruction issues, it sets the
designated SM register. Instructions 0036jk and 0037jk clear and set the
SMjk or SM,Ak register.

Table 2-12. SM Register Instructions

CAL
Syntax Description

SMjk f,TS Test and set semaphore jk, a < jk < 3110 (j2 = 0).

SM,Ak 1,TS Test and set semaphore (Ak), 0 < (Ak) < 3110 (j2 = 1).

SMjk 0 Clear semaphore jk, 0 <jk < 3110 (j2 = 0).

SM,Ak 0 Clear semaphore (Ak) , 0 < (Ak) < 3110 (j2 = 1).

SMjk 1 Set semaphore jk, 0 < jk < 3110 (j2 = 0).

SM,Ak 1 Set semaphore (Ak), 0 < (Ak) < 3110 (j2 = 1).

Si SM Transmit (SM) to Si.

SM Si Transmit (Si) to SM.

JTSjk exp Branch to exp if (SMjk) =" 1 ; else set SMjk (j2 = 0).

JTS,Ak exp Branch to exp if (SM,(Ak)) = 1; else set SM,(Ak) (j2 = 1).

Instructions 072i02 and 073i02 transmit the SM register contents to or
from the upper half of the S register (the lower half of the S register is
not used). Figure 2-4 shows the relation between the SM registers and
the bits of an S register.

072i02 sets these bits to O.
073i02 does not use these bits.

__ --------~A,----------_ '\

A·9668

Figure 2-4. Relation between SM Registers and S Register Bits

Cray Research Proprietary 2-33

CPU Shared Resources

2-34

CRAY Y-MP C90 System Programmer Reference Manual

If a CPU is not assigned to any cluster (CLN = 0), instructions 0034jk,
0036jk, 0037jk, and 073i02 perform no operation. Instruction 072i02
sets register Si to O.

The following example shows how an SM register is used to synchronize
the operation of two CPUs in a multitasking program. Both CPUs must
be assigned to the same cluster number. In this example, CPU 0
computes a partial result needed by CPU 1, while CPU 1 computes a
second partial result. CPU 1 then uses the two partial results as operands
for further processing.

CPU 0 CPU 1

1. SMO 1 (003700)

2. Compute partial result 3. Compute partial result
• •
• •
• Place partial result in S 1
•
• 4. SMO 1,TS (003400)
•

Place partial result in S1

5. STO S1 (073103)

6. SMO 0 (003600)

7. Continue processing 8. S2 STO (072203)
•
• 9. Continue processing
• •
• •

In Step 1, CPU 0 begins processing by setting register SMO, which
indicates that it has not yet computed its partial result. In Steps 2 and 3,
CPUs 0 and 1 begin computing the partial results. At the end of Step 3,
CPU 1 places its partial result in register S1. CPU 1 now needs CPU O's
partial result before it can proceed. CPU 1 performs a test and set
instruction (Step 4) on register SMO. Because register SMO is already
set, CPU 1 holds issue.

CPU 0 continues its computations and transfers its partial result to the S 1
register. CPU 0 then transfers the partial result from S1 to register STO
(Step 5). In Step 6, CPU 0 clears register SMO, which indicates that the
partial result is ready in register STO. CPU 0 can now continue with
other processing (Step 7). SMO is now cleared and the test and set
instruction in CPU 1 issues, setting register SMO. CPU 1 then transfers
CPU O's partial result from register STO to register S2 (Step 8). CPU 1
now has its own partial result in register S1 and CPU O's partial result in
register S2 and can continue processing (Step 9).

Cray Research Proprietary CSM-0500-000

CRAY Y·MP C90 System Programmer Reference Manual CPU Shared Resources

Deadlock

A deadlock condition occurs when all CPUs assigned to a cluster are
holding issue on a test and set (OO34jk) instruction; that is, each CPU
within the cluster is waiting for another CPU to clear an SM register.
When this condition occurs, no instructions can execute in any of the
CPUs assigned to the cluster.

There are two situations in which a deadlock occurs:

• All CPUs in the same cluster are holding issue on a test and set
instruction.

• A single CPU is holding issue on a test and set instruction and there
are no other CPU s in the same cluster. This situation can occur in
one of two ways:

•

•

There is only one CPU assigned to a particular cluster, and
that CPU issues a test and set instruction for an SM register
currently set.

There are initially several CPUs assigned to the same cluster,
one of which is holding issue on a test and set instruction.
Then, all the other CPUs exchange to new programs with
different cluster numbers.

In order to resolve the deadlock condition, a deadlock interrupt occurs.
This interrupt sets the deadlock (DL) flag in the current exchange
package of each CPU assigned to the cluster in which the deadlock
occurred, which causes each affected CPU not in monitor mode to
perform an exchange sequence.

Interprocessor Interrupts

Machine
Instruction

0014j1

001402

CSM-0500-000

Interprocessor interrupts allow a CPU to interrupt program execution in
other CPU s. Table 2-13 shows the two instructions that involve
interprocessor interrupts. These instructions can be executed only by a
CPU in monitor mode.

Table 2-13. Interprocessor Interrupt Instructions

CAL
Syntax Description

SIPI Aj Send an interprocessor interrupt request to CPU (AJ1.

CIPI Clear the interprocessor interrupt request.

Cray Research Proprietary 2-35

CPU Shared Resources

Real-time Clock

Machine
Instruction

0014jO

072iOO

2-36

CRAY Y-MP C90 System Programmer Reference Manual

When a CPU executes a 0014jl instruction, the interprocessor interrupt
(lCP) flag is set in the CPU designated by the contents of register Aj,
provided the designated CPU has its interrupt-on-interprocessor (lIP)
interrupt mode set and enabled. If this CPU does not have UP interrupt
mode set and enabled, the interrupt request is held, and the flag is not set.

When the ICP flag sets, it initiates an exchange sequence. The program
that begins running as the result of the exchange sequence should be in
monitor mode and should execute instruction 001402 to clear the ICP
flag. If this instruction is not executed, the ICP flag initiates another
exchange sequence when the monitor mode program exits to a
nonmonitor mode program.

If instruction 0014j1 is executed with the contents of register Aj equal to
the number of the CPU executing the instruction (if a CPU tries to
interrupt itself), the instruction performs no operation.

The CRAY Y -MP C90 mainframe has a real-time clock (RTC) that
increments synchronously with program execution and may be used to
time the number of CPs for a program. The RTC consists of local clocks:
one clock on each CPU. All local clocks run synchronously and appear
to the programmer as a single clock. The RTC is a 64-bit counter that
increments each CP except when being written to or read from.
Table 2-14 shows the two instructions that write data to and read data
from the RTC.

Table 2-14. RTC Instructions

CAL
Syntax Description

RT Sj

Si RT

Transmit (Sj) to the RTC register.

Transmit (RTC) to Si.

The 0014jO instruction can be issued only by a CPU in monitor mode;
the CPU issuing this instruction updates the count of the local clocks on
all other CPUs. Two or more CPUs should not issue this instruction
simultaneously because there is no hardware to detect this condition and
unpredictable results occur. It is the programmer's responsibility to
avoid this situation. The 072iOO instruction may be simultaneously
issued by any number of CPUs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

The RTC is normally used to determine the running time of a program or
a segment of program code. The following sample instruction sequence
can be used to determine the running time of a program.

Machine
Step Instruction

1 072100

2 072200

3 061121

CAL

Sl RT

S2 RT

Sl S2-S1

Comment

Load S 1 with starting time.

Insert code to be timed here.
Code must not use S 1.

Load S2 with ending time.

Load S 1 with the difference
between the starting and
ending times.

At the end of this sequence, assuming no interrupts occur, register Sl
equals 1 plus the number of CPs required to execute the code inserted
between Steps 1 and 2.

Shared Paths Access Priority

CSM-0500-000

Shared paths are used to pass data and control information between
CPUs. Data contained in the SB, ST, and SM registers is transferred
between CPUs along these paths. The shared paths are also used to
transfer data from the S registers to the real-time clock and to transmit
interprocessor interrupt signals and I/O instructions.

Only one CPU at a time can access the shared paths. An access conflict
occurs when two or more CPUs attempt to use the shared paths
simultaneously. These conflicts are resolved according to a two-level
priority arbitration scheme, which is explained in the following
paragraphs. Before an instruction using the shared paths issues, the CPU
se~ds a Shared Register (SR) Request signal to check whether other
CPUs are using the shared paths. This process takes 1 CPo The SR
Request signal must then gain first arbitration level priority before it is
latched. The CPU's latched SR Request signal must then gain second
arbitration level priority before the CPU can latch an SR In Progress
signal and issue the instruction. The SR In Progress signal is cleared
when the CPU finishes executing the instruction. Shared and semaphore
instructions require a minimum of 3 CPs to issue.

Cray Research Proprietary 2-37

CPU Shared Resources CRAY Y-MP C90 System Programmer Reference Manual

2-38

The shared paths access priority arbitration scheme is described in the
following diagram and text.

Highest Priority CPU Lowest Priority CPU

First Arbitration Level 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second Arbitration Level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

•

•

First Level- Assuming no requests already exist in the first level,
simultaneous SR Request signals from all CPUs are latched. The
CPU with the highest physical processor number (PPNO) has the
highest priority and latches an SR In Progress signal at the second
level. Subsequent SR Request signals from CPUs with lower
PPNOs than those already latched will hold issue until the CPUs
with higher PPNOs complete their instructions (clear their SR In
Progress signals).

Second Level - All shared and semaphore instructions are issued
while the CPU is in the second arbitration level. CPUs with the
lowest PPNO have the highest priority in this level. While the
second arbitration level is handling requests from the first level,
any CPU with a higher PPNO can latch an SR Request in the first
level.

This two-level arbitration enables all CPUs to have equal access to the
shared paths. The following examples explain how the shared paths
access priority arbitration scheme resolves access conflicts.

•

•

If CPU 12 makes and latches an SR Request signal in the first
level, CPUs 0 through 11 can send SR Request signals, but the
requests are held in the CIP registers and do not latch. However,
CPUs 13 through 15 can latch an SR Request signal while CPU 12
has an SR Request signal latched in the first level. CPU s 13
through 15 must wait for CPU 12 to clear its SR In Progress signal
before one of them can issue its instruction. CPU 13 then has the
highest priority and is processed next.

If CPU 4 has an SR In Progress signal latched and CPU s 2 and 5
have SR Request signals latched, CPU 2 will issue before CPU 5
because CPU 2 has a higher priority than CPU 5 in the second
level. (CPU 4 must clear its SR In Progress signal before CPU 2
can latch an SR In Progress signal and issue its instruction.)

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

Shared Register and Real-time Clock Troubleshooting

CSM-0500-000

To assist in troubleshooting problems with the shared registers and
real-time clock, Figure 2-5 is a block diagram of these registers showing
the options involved and the signals that pass between them. For a more
detailed description of this diagram, refer to the CRAY Y-MP C90
Computer System Hardware Maintenance Manual, publication number
CMM -0502-000.

Cray Research Proprietary 2-39

CRAY Y-MP C90 System Programmer Reference Manual CPU Shared Resources

CPU 0

Select 112. 4. 6. 16 JRO
OL Chain/SRPG • JOO I.

(Forced)
I • CPU 17

I L
FINe Enables

• (EXT) I Number

• ~
ofCPUs

I
RAM

(JQ)
Enable Parity I.JU

• ~ ClN STO SBO .,SMO
SRPG 0

JOO CPU 0 ~ (JQ) FINC Enables

OLChain Current CLN 0 - 4 CP S ~
DL Chain I

1~1
Deadlock Chain 21 ST7 SB7 SM31

SRPG Read SM. Read SM 001413

1 J SRPG

(Forced) Slot Number. Select CPU Go Write UU

$ Deadlock Interrupt
SR Address Select

(HC)
Go FINC Data

(Forced)

(EXT) (JR)

(-) VO Master Clear rl~SMI
Enable Parity I.JU PC Interrupt

(-)
CPU Master Clear SMO- 3l l--

Ai. Si Data/SCRB PC Interrupt ~ Parity Error
Monitor Mode Sat/Clear AI<, VOMUX JS3 (z4S - 2B3) I (2<' - 23) Check

(HC)
I Current. Local 11 te';+l I CPU 0

Alternate SRCB (23) (H • CLN. Exchange L.ocaI Semaphores Broadside Load Ak.I/OMUX JS2 (~ - 24'1) I (2'>- 23) ~ (HC) CLN1-37 L
CPU 0

(-)

(JQO)

~ CPU Encode SRPG
SRCB(~ Shared Register

jkIAjk (JS.JR)
(~.AR) 10 Enable Parity UU Ak.I/OMUX JS1 (216 - 231) I (~ - 23) -

\~
(JR) CPU 0 Enable Test and Set Load SRCB CPS

SRCB(21)
SRPG CP2 Disable SR. Read LSM CPU 0 CLN JSO (20 _215) I (2'l-~

SRCB CPO SRCB CP2 Ak.VOMUX CPU 0

Select CPU L. CPU U ----s ATC.PC
Test and Set Idle

CPU 15 CLN GoSMO-3 SRCB Hold Test and Set
GoSMBranch SRPG

Interrupt Channel
(EXT)

(D-)
VOData 4~VCO-17 VA. VB I

Disable SR. flO. Reed to LSM 1 J Delay S Register

r-~

Control Byte -- VO M JAO M M Ai ARO. AR1 I Hold Test and Set Sal CPU I.JU. SMO/Zero L. SM1/Zerol1. SM2 U U
U GoSM Branch X X A Register

WCO-17 Sj/Alk Data
X

Test and Set Idle 5/1 Data T
SRCB (2<') CPS

ryA. VB) - I I Alk Data I DelaY,: ~(EXT)(JS)
SR-CPU Data

SRCB CPO (AR) -
(EXT) (JS)

CPU-SR Data

Nu!!!!'r!!-CPUs 1 SRPG CP2 SRPG ~ ~
(JSO-3)

CPU-SR Data SR Data. VO Data
Enable Test and Set

(EXT) (JS)

J
(D-)

~
SR-CPU Data Shared Register Data

NIP HciPl Issue
- (EXT)(JS) --

(HB) (JA. JB. HA. HB) CPU Selects 1.2.4.8.18 1.2.4. B. 16 FINC

Interrupt Test and Set Exchange
I

Shared Register Data (HC) (JB.HB) (Forced)
ATC. PC Slot 0

I Conflict I
.1 JSO I SBIST/SM/FINC .IJRO CPU 1 1 FINC Enables I SR Hold Issue I 3 CPU1 Slot 1 (EXT) •

(EXT) • t I L .- I ;SRREQJSRPG }
SRREO

(EXT)- • I

-JAO CPU 0 , 1 L J L
I .I, • I • •
I .Fi J L .1 I .. • -.
I .11.

IJAO CPU 17 (EXT) (JS) CPU - SR Data I JSO _ 3 CPU 17 Slot 17 ~ -~ JRO CPU17 L • • A-10507

Figure 2-5. Shared Registers Block Diagram

CSM-0500-000 Cray Research Proprietary 2-41

3 CPu CONTROL

Each central processing unit (CPU) is assigned tasks and is controlled in
the execution of those tasks through exchange sequences, fetch
sequences, and issue sequences. These three sequences are closely
related. For an initial deadstart program or a new program to run, an
exchange sequence must occur. This sequence of steps sets several
important parameters of the program in the CPU and may initialize some
of the CPU's operating registers. A fetch sequence begins immediately
after the exchange sequence and transfers a block of instructions from
memory to an instruction buffer. The issue sequence then selects the
instruction indicated by the program address (P) register, decodes it,
determines whether the required registers or functional units are
available, and if so, allows the instruction to be executed.

As the instruction executes, the P register increments, causing new
instructions to be selected from an instruction buffer and to move
through the issue sequence. When a desired instruction is not in an
instruction buffer, another fetch sequence occurs, retrieving another
block of instructions from memory. This overall process continues until
either the program terminates or is interrupted, at which time another
exchange sequence occurs and the whole process starts over.

This section describes the exchange mechanism, the instruction fetch
sequence, and the instruction issue sequence unique to each CPU. The
programmable clock, the status registers, and the performance monitor
are also briefly described.

Exchange Mechanism

CSM-0500-000

Each CPU uses an exchange mechanism for switching instruction
execution from program to program. This exchange mechanism transfers
blocks of program parameters known as exchange packages during a
CPU operation referred to as an exchange sequence.

The following subsections describe the contents of the exchange package
and explain the exchange sequence in more detail.

Cray Research Proprietary 3-1

CPU Control

Exchange Package

CRAYY-MP C90 System Programmer Reference Manual

An exchange package is a 16-word block of data stored in a reserved area
of memory that contains the initial parameters for a particular computer
program. In addition to initializing the program, these parameters are
also used to provide continuity if a program stops and restarts from one
section of the program to the next.

The exchange package includes the contents of the address (A) and scalar
(S) registers. The contents of the intermediate address (B), intermediate
scalar (T), vector (V), vector mask (VM), shared B (SB), shared T (ST),
and semaphore (SM) registers are not saved in the exchange package.
Data in these registers must be stored and replaced as required by the
program supervising the object program or by any program that needs
this data.

Figure 3-1 shows the format of a portion of the exchange package. The
32 bits of words 0 through 7 that are not shown hold the contents of the
A registers, and words 108 through 178 hold the contents of the S
registers. The following subsections define and explain the fields of the
exchange package.

NOTE: The exchange package bits are numbered from left to right with
bit 0 assigned to bit position 263•

Program Address Register Field

The program address (P) register contents are stored in the program
address register field of the exchange package. There are 32 bits in the P
register, the lower 2 of which are used to select a particular 16-bit parcel
of a memory word. The P register is wide enough to address 1 gigaword
of memory.

The address stored in the P register field is that of the first instruction that
issues when the program corresponding to this exchange package begins
execution.

Instruction Base Address Register Field

3-2

The instruction base address (IBA) register holds the base address of the
user's instruction area (the location in memory where a program's
instruction area begins). The absolute memory address for an instruction
fetch sequence is formed by adding the contents of the rnA register to
the 30 high-order bits of the contents of the P register.

The IBA register field stores bits 210 through 231 of the rnA; bits 20

through 29 are always O. Therefore, the IBA is always a multiple of
20008 (1,02410)'

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31

Program Address Register
o 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00-1 -2 0

2

3

4

5

6

Instruction Base Address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

Instruction Umlt Address
31 30 29 28 27 26 25 2423 22 21 20 19 18 17 16 15 14 13 12 11 10 2

Data Base Address
31 30 29 28 27 26 25 2423 22 21 20 19 18 17 16 15 14 13 12 11 10 3

Data Umit Address
31302928272625242322212019181716151413121110 4

Interrupt Modes
I I I I I F I I I I I I I I I F
RUFOPEBCMR II PDMN
PMPRRXPMCTPOCLI X

Interrupt Flags
RMFOPEBMMR II PDMN
PEP R REP E·C T C 0 C LIE
EUEEEX I CUI PI I I X

5

e

7 Processor Number Cluster Number
X X X X 03 02 01 00 X X X 04 03 02 01 00

7

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

Interrupt Modes (Enabled by ElM Flag) Interrupt Flags

IRP Interrupt on Register Parity Error RPE Register Parity Error
IUM Interrupt on Uncorrectable Memory Error MEU Memory Error - Uncorrectable
IFP Interrupt on Floating-point Error (0021 00, 002200) FPE Floating-point Error
lOR Interrupt on Operand Range Error (002300. 002400) ORE Operand Range Error
IPR Interrupt on Program Range Error (Does not disable exchange) PRE Program Range Error
FEX Enable Flag on Error Exit (Does not disable exchange) EEX Error Exit (000 Issued)
IBP Interrupt on Breakpoint (002340, 002440) BPI Breakpoint Interrupt
ICM Interrupt on Correctable Memory Error MEC Memory Error - Correctable
IMC Interrupt on MCU Interrupt MCU MCU Interrupt
IRT Interrupt on Real-time Interrupt RTI Real-time Interrupt
liP Interrupt on Inter-processor Interrupt ICP Interrupt from Internal CPU
110 Interrupt on I/O 101 VO Interrupt (If 110 and SIE)
IPC Interrupt on Programmable Clock (001406, 001407) PCI Programmable Clock Interrupt
IDL Interrupt on Deadlock DL Deadlock (If IDL and Not MM)
IMI Interrupt on 001 ijlcj..o Mil oo1ijlc'j..o (If IMI and Not MM)
FNX Enable Flag on Normal Exit (Does not disable exchange) NEX Normal Exit (004 Issued)

Status Modes

PS Program State MM Monitor Mode
WS Waiting on Semaphore BOM Enable Bidirectional Memory (002500, 002600)
FPS Floating-point Status (Cleared by 002100, 002200) ESL Enable Second Vector Logical
VNU Vectors Not Used 090 C90 Mode

IPC must be set In the user exchange package. (Instructions 001406, 001407 only affect monitor mode IPC.)
SIE = System I/O Interrupts Enabled (Cleared on I/O Interrupt. set by 001600.)
ElM. Enable Interrupt Modes.

An exchange to nonmonltor mode sets the ElM flag. An exchange to monitor mode clears the ElM flag.
While In MM, 001302 sets ElM, and 001303 clears ElM. After 001303,13 CPs must elapse to take effect.
The following Interrupt modes are not affected by ElM: FNX, FEX, IPR.
The following Interrupts are held If ElM is clear: PCI, ICP, Rn, MCU, MEC, BPI, ORE, FPE, MEU, RPE.
PCI and ICP are held pending until cleared by instructions 001405 and 001402, respectively.
If ElM Is set, Interrupts or held Interrupts corresponding to set Interrupt modes are allowed; held interrupts,
except PCI and ICP, are cleared on any exchange. A-8849

Figure 3-1. CRAY Y-MP C90 Exchange Package

CSM-QSOP-OOO Cray Research Proprietary 3-3

CPU Control CRAYY-MP C90 System Programmer Reference Manual

Instruction Limit Address Register Field

The instruction limit address (lLA) register holds the limit address of the
user's instruction area, which is used to determine the highest absolute
memory address that can be accessed during an instruction fetch
sequence.

The absolute memory address used in an instruction fetch sequence must
be an address between the rnA and ILA specified for the program being
executed, or a program range error occurs. If the interrupt-on­
program-range-error (lPR) mode is set in the exchange package, this
error sets the program-range-error (PRE) interrupt flag, causing a CPU
interrupt.

The lLA register field stores bits 210 through 231 of the !LA; bits 20

through 29 are always O. Therefore, the !LA is always a multiple of
20008 (1,02410). The highest absolute instruction address of a program is
defined by [(!LA) X 21<>] -1.

Data Base Address Register Field

The data base address (DBA) register holds the base address of the user's
data area (the location in memory where a program's data area begins).
Each time an instruction in the program makes a memory reference, the
memory address generated by the instruction is added to the DBA to
form the absolute memory address.

The DBA register field stores bits 210 through 231 of the DBA; bits 20

through 29 are always O. Therefore, the DBA is always a multiple of
20008 (1,02410)'

Data Limit Address Register Field

3-4

The data limit address (DLA) register holds the limit address of the
user's data area, which is used to determine the highest absolute memory
address the program can use for reading or writing data.

Each time an instruction makes a memory reference, the absolute
memory address generated is compared to the DBA and the DLA. The
absolute memory address must be between the DBA and the DlA, or an
operand range error occurs. If the interrupt-on-operand-range-error
(lOR) mode is set in the exchange package, this error sets the
operand-range-error (ORE) interrupt flag, causing a CPU interrupt.

An instruction that attempts to read from a memory address beyond the
DLA still issues and completes, but a zero value is transferred from
memory. An instruction that attempts to write to a memory address
beyond the DLA issues, but no write operation occurs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Interrupt Modes Field

Bit Position

20

21

22

23

24

25

CSM-0500-000

The DLA register field stores bits 210 through 231 of the DLA; bits 20

through 29 are always 0. Therefore, the DLA is always a multiple of
20008 (1,02410), The highest absolute memory address that can be
referenced for data by a program is defmed by [(OLA) X 210] - 1.

There are 16 user-selectable interrupt modes, which allow the
programmer to select the conditions under which the active program can
be interrupted. These modes are usually selected in the exchange
package, and except for IPR, FEX, and FNX, they must be enabled by
setting the ElM (enable interrupt modes) flag. The ElM flag sets
automatically on an exchange to nonmonitor mode and clears on an
exchange back to monitor mode. While in monitor mode, the ElM flag
can be set or cleared by instructions 001302 or 001303, respectively.

The interrupt modes are listed in concise form in Figure 3-1 and are
explained briefly in Table 3-1 below.

Table 3-1. CRAY Y-MP C90 Interrupt Modes

Mode Description

IRP Allows an interrupt if a register parity error is detected while
data is being read from a register.

IUM Allows an interrupt if an uncorrectable memory error is
detected while data is being read from memory.

IFP Allows an interrupt if a floating-point error occurs. This
mode can also be set by instruction 002100 or 073i05 (with
Si bit 250 = 1); it can be cleared by instruction 002200 or
073i05 (with Si bit 250 = 0).

lOR Allows an interrupt if an operand range error occurs. This
mode can also be set by instructions 002300 or 073i05 (with
Si bit 249 = 1); it can be cleared by instructions 002400 or
073i05 (with Si bit 249 = 0).

IPR Allows the PRE interrupt flag to set if a program range error
occurs. A program range error always causes an exchange,

..

regardless of the IPR state. This mode is not affected by the
ElM flag.

FEX Allows the EEX interrupt flag to set if an error exit instruction
(000000) issues. Issuing an error exit instruction always
causes an exchange, regardless of the FEX state. This
mode is not affected by the ElM flag.

Cray Research Proprietary 3-5

CPU Control

Bit Position

26

27

28

29

210

211

212

213

214

215

Interrupt Flags Field

3-6

CRAY Y-MP C90 System Programmer Reference Manual

Table 3-1. CRAY Y-MP C90 Interrupt Modes (continued)

Mode Description

IBP Allows an interrupt if a breakpoint occurs. This mode can
also be set by instruction 002301 or 073i05 (with Si bit 252 =
1); it can be cleared by instruction 002401 or 073i05 (with Si
bit 252 = 0).

ICM Allows an interrupt if a correctable memory error is detected
while data is being read from memory.

IMC Allows an interrupt if one is requested by the MCU.

IRT Allows an interrupt if one is requested by the real-time clock.

liP Allows an interprocessor interrupt if one is requested by
another CPU.

110 Allows an I/O interrupt if SIE is set and this CPU is the
lowest-numbered CPU with 110=1 and EIM=1.

IPC Allows an interrupt if one is requested by the programmable
clock. While in monitor mode, this interrupt mode can be set
by instruction 001406 or cleared by instruction 001407.
Setting or clearing IPC by these instructions is only valid
while the program remains in monitor mode. To set IPC in
user mode, it must be set in the exchange package.

IDL Allows an interrupt if a deadlock occurs while the program is
not in monitor mode. I DL has no effect in monitor mode.

IMI Allows an interrupt if a monitor mode instruction (001 ijk; j~O)
issues while the program is not in monitor mode. IMI has no
effect in monitor mode.

FNX Allows the NEX interrupt flag to set if a normal exit
instruction (004) issues. Issuing a normal exit instruction
always causes an exchange, regardless of the FNX state.
This mode is not affected by the ElM flag.

There are 16 interrupt flags, with one flag corresponding to each of the
16 user-selectable interrupt modes. If a particular interrupt mode (except
IPR, FEX, or FNX) is set and enabled and the specified error occurs, the
corresponding interrupt flag is set, forcing an exchange. If the error
occurs while the appropriate interrupt mode is set but not enabled, the
interrupt is held. This condition can occur only while the program is in
monitor mode. Enabling the interrupt modes, either by exchanging to

. user mode or by issuing instruction 001302, allows the held interrupt to
be processed, at which time it sets the corresponding interrupt flag and
force an exchange.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Bit Position

2°

21

22

23

CSM-0500-000

All interrupts or held interrupts except PC! and rcp are cleared on any
exchange. PC! and rcp interrupts are held until they are cleared by
instruction 001405 or 001402, respectively.

Two interrupt flags, deadlock (DL) and monitor instruction interrupt
(MIT), set only if the corresponding interrupt modes are set and if the
program is in nonmonitor mode when the error occurs.

The I/O interrupt (IOI) flag sets only if the system I/O interrupts enabled
(SIB) flag is set and if the CPU to be interrupted is the lowest-numbered
CPU with no interrupt mode set and enabled. The SIE flag can be set
by any CPU issuing instruction 001600. After any CPU is interrupted by
an I/O interrupt, this flag is cleared, disabling all I/O interrupts. The
interrupted CPU should reset the SIB flag by issuing instruction 001600
after it has serviced the I/O interrupt.

There are three errors that always cause an exchange, regardless of the
status of the ElM flag: a program range error, issuing instruction 000000,
or issuing instruction 004000. The interrupt modes specifying these
errors (IPR, FEX, and FNX) are used solely to enable the corresponding
interrupt flags (PRE, EEX, and NEX, respectively) to set should t~e
appropriate error occur. Setting an interrupt flag in these cases makes it
easier to track down the source of the error.

The errors causing interrupt flags to set are explained briefly in
Table 3-2.

Table 3-2. CRAY Y-MP C90 Interrupt Flags

Flag Description

RPE The register parity error flag sets if IRP interrupt mode is set
and enabled and if a parity error occurs during a read
operation from a B, T, V, SB, or ST register or from an
instruction buffer.

MEU The memory error - uncorrectable flag sets if IUM interrupt
mode is set and enabled and if an uncorrectable memory
error occurs while data is being read from memory.

FPE The floating-point error flag sets if IFP interrupt mode is set
and enabled and if a floating-point range error occurs in any
of the floating-point functional units.

ORE The operand range error flag sets if lOR interrupt mode is
set and enabled and if a data reference is made outside the
address boundaries specified in the DBA and DLA registers.

Cray Research Proprietary 3-7

CPU Control CRAYY-MP C90 System Programmer Reference Manual

Table 3-2. CRAY Y-MP e90 Interrupt Flags (continued)

Bit Position Flag Description

24 PRE The program range error flag sets if IPR interrupt mode is
set and enabled and if an instruction fetch is made outside
the address boundaries specified in the IBA and ILA
registers. A program range error always causes an
exchange, regardless of the IPR state.

2 5 EEX The error exit flag sets if FEX interrupt mode is set and
enabled and if an error exit instruction (000000) issues.
Issuing an error exit instruction always causes an exchange,
regardless of the FEX state.

2 6 BPI The breakpoint interrupt flag sets if IBP interrupt mode is set
and enabled and if a write reference is made to an address
within the breakpoint range.

27 MEC The memory error - correctable flag sets if ICM interrupt
mode is set and enabled and if a correctable memory error
occurs while data is being read from memory.

28 MCU The MCU interrupt flag sets if IMC interrupt mode is set and
enabled and if the MCU interrupt signal becomes active on
I/O channel 40.

29 RTI The real-time interrupt flag sets if IRT interrupt mode is set
and enabled and if a real-time interrupt request is received.

2 10 ICP The interrupt from internal CPU flag sets if liP interrupt
mode is set and enabled and if another CPU requests an
interrupt of this CPU by issuing instruction 0014j1.

211 101 The I/O interrupt flag sets if SIE is set and this CPU is the
lowest-numbered CPU with 110 interrupt mode set and
enabled when a LOSP or VHISP channel completes a
transfer.

212 PCI The programmable clock interrupt flag sets if IPC interrupt
mode is set and enabled and if the counter in the
programmable clock equals O.

2 13 DL The deadlock interrupt flag sets if IDL interrupt mode is set,
if the program is not in monitor mode, and if a deadlock
occurs because all CPUs in a cluster are holding issue on a
test and set instruction.

214 Mil The monitor instruction interrupt flag sets if IMI interrupt
mode is set and if a monitor mode instruction (001 ijk; j pi! 0)
issues while the program is not in monitor mode.

2 15 NEX The normal exit flag sets if FNX interrupt mode is set and
enabled and if a normal exit instruction (004000) issues.
Issuing a normal exit instruction always causes an
exchange, regardless of the FNX state.

3-8 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Status Field

Bit Position

224

225

226

227

Modes Field

Processor Number Field

CSM-0500-000

The status field contains 4 bits used to indicate the state of the CPU at the
time an exchange occurs. These status bits are set during program
execution and therefore are not user-selectable. Table 3-3 briefly
describes each of the status bits used.

Table 3-3. CRAY Y-MP C90 Status Field Bit Assignments

Status Description

VNU The vectors not used bit sets if no vector instructions (077 ijk
or 140ijkthrough 177ijl<) were issued during the execution
interval.

FPS The floating-point status bit sets if a floating-point error
occurred during the execution interval. This bit can also be
set by instruction 073i05 (with Si bit 251 = 1); it can be
cleared by instruction 002100, 002200, or 073i05 (with Si bit
251 = 0). It can also be read to an S register by instruction
073i01.

WS The waiting on semaphore bit sets if a test and set
instruction (0034jl<) is holding issue in the CIP register.

PS The program state bit is set by the operating system to
denote whether a CPU concurrently processing a program
with another CPU is the master or slave in a multitasking
situation.

There are four user-selectable operating modes. These modes are
described briefly in Table 3-4.

The contents of the 4-bit processor number field indicate the logical
number of the CPU that performed the exchange sequence. This value is
not initially stored in the exchange package before the program starts; it
is a constant value inserted into the exchange package after the program
runs and exchanges out.

Cray Research Proprietary 3-9

CPU Control

Bit Position

228

229

~o

231

Cluster Number Field

CRAY Y-MP C90 System Programmer Reference Manual

Table 3-4. CRAY Y -MP C90 Operating Modes

Mode Description

C90 If C90 mode is set, the program can use the full CRAY Y-MP
C90 instruction set; otherwise, only CRAY Y-MP instructions
can be executed.

ESL If enable second vector logical mode is set, the second vector
logical functional unit is enabled, and if it is not busy, it has first
priority to execute instructions 140ijk through 145ijk.

BDM If bidirectional memory mode is set, block read and write
operations can operate concurrently. BDM mode can also be
set by instruction 002500 or 073i05 (with Si bit 248 = 1); it
can be cleared by instruction 002600 or 073i05 (with Si bit
248 = 0). This bit can also be read to an S register by
instruction 073i01.

MM If monitor mode is set, the program can execute instructions
privileged to monitor mode.

The 5-bit cluster number (CLN) field contains the number to be loaded
into the CLN register. This number selects one of 1710 available clusters
of shared registers the CPU can aCcess. If the contents of the CLN
register are 0, the CPU does not have access to any shared registers. The
contents of the CLN registers in all CPUs are also used to determine a
deadlock interrupt condition.

Exchange Address Register Field

Vector Length Register Field

3-10

The 8-bit exchange address (XA) register field specifies the address of
the first word of a 16-word exchange package loaded by an exchange
sequence. The XA register contains only the 8 high-order bits of a 12-bit
absolute memory address. The low-order bits of the address are always
0, since an exchange package must begin on a 16-word boundary. The
12-bit limit on the absolute memory address means that all exchange
packages are located in the lower 4,096 (100008) words of memory.

The 8-bit vector length (VL) register field specifies the length of all
vector operations performed by vector instructions and the number of
elements held in the V registers. The value in the VL register can be
changed during program execution by using instruction 00200k.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

A Register Fields

S Register Fields

Exchange Sequence

Exchange Sequence Timing

Hold Conditions

CSM-0500-000

The contents of all A registers are stored in bit positions 232 through 263

of words 0 through 7 during an exchange sequence.

The contents of all S registers are stored in bit positions 2° through 263 of
words 8 through 15 during an exchange sequence.

The exchange sequence moves the contents of an inactive exchange
package from memory into the operating registers. Simultaneously, the
exchange sequence retrieves data from the operating registers, uses it to
construct the active exchange package, and then moves this exchange
package back into memory. This swapping operation occurs in a fixed
sequence when all computational activity associated with the active
exchange package stops.

The exchange sequence involves 16 memory read references and 16
memory write references. A single 16-word block of memory is used as
the source of the inactive exchange package and the destination of the
active exchange package. Word 0 of the active exchange package is
swapped with word 0 of the inactive exchange package. The location of
this block of data is specified by the contents of the XA register and is a
part of the active exchange package.

The following subsections defme the hold conditions, execution time,
and special case conditions for an exchange sequence.

The following conditions can delay the start of an exchange sequence:

• Incomplete memory references .
• Any active ~ S, or V registers within the CPU .

Cray Research Proprietary 3-11

CPU Control

Execution Time

Special Case Conditions

CRAY Y-MP C90 System Programmer Reference Manual

An exchange takes a minimum total of 62 CPs: 35 CPs for the exchange
sequence and 27 CPs for a fetch operation. This time applies if there are
no memory conflicts. Memory conflicts are possible during both the
exchange sequence and the fetch operation.

If a test and set instruction is holding in the CIP register, both the CIP
register and the next instruction parcel (NIP) register are cleared. The
exchange occurs with the waiting on semaphore (WS) status bit set and
the P register pointing to the address of the test and set instruction.

Initiating an Exchange Sequence

Deadstart Sequence

3-12

An exchange sequence can be initiated by a deadstart sequence, a
program exit, or an interrupt. The following subsections describe the
conditions that cause an exchange sequence.

The deadstart sequence starts a program running in the mainframe after a
power-off!power-on operation or whenever the operating system is
reinitialized in the mainframe. Consider all control latches, words in
memory, and the contents of all registers invalid after a
power-off!power-on operation.

There are two ways to deadstart the mainframe: through an external
device connected to I/O channel 40 or through the maintenance channel.
With the first method, the external device used is usually an lOS or the
maintenance workstation (MWS). The external device deadstarts one
CPU in the mainframe with the following sequence:

1. Activates the CPU Master Clear signal.

2. Activates the I/O Master Clear signal.

3. Deactivates the I/O Master Clear signal.

4. Loads 200008 words of data into memory through I/O channel 40.

5. Deactivates the CPU Master Clear signal.

The CPU Master Clear signal halts all internal computation and forces
critical control latches to predetermined states. The I/O Master Clear
signal clears the input channel address (CA) register of I/O channel 40
and activates the channel; all other I/O channels remain inactive. The
external device then loads a deadstart exchange package and monitor

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

CSM-0500-000

program. Because the CPU Master Clear signal forces the contents of
the XA register to 0, the deadstart exchange package must be located at
memory address O.

Deactivating the Master Clear signal initiates the exchange sequence and
starts the monitor program running in logical processor 0 (LPN 0). A
switch on the mainframe control panel determines which CPU is
assigned as LPN O.

Because the mainframe's operating registers at the time of the deadstart
sequence contain indeterminate data, the initial exchange sequence
causes indeterminate data to be written into the exchange package at
memory address O. The monitor program must rebuild this exchange
package with accurate data in preparation for deadstarting subsequent
CPUs with an interprocessor interrupt. LPN 0 can then issue instruction
0014j1, which causes an interrupt and subsequent deadstart exchange in
another CPU (LPN 1). LPN O's monitor program again rebuilds the
deadstart exchange package and issues an interrupt to LPN 2. This
sequence continues until all CPUs are deadstarted.

The maintenance channel can also be used to deadstart one CPU in the
mainframe by transmitting data over the channel in the following
sequence:

1. Sends function code 004500.

2. Sends the deadstart exchange package and the monitor program ..

3. Sends function code 005000.

Function code 004500 activates the Master Clear signal, halting all
internal computation and clearing key registers. The deadstart exchange
package is then written to memory address 0, and the monitor program is
loaded elsewhere in memory. Function code 005000 then deadstarts the
CPU specified in its accompanying ID code.

For one CPU to deadstart the other CPUs through the maintenance
channel, the previous sequence must be modified as follows:

1. Sends function code 004500.

2. Sends the deadstart exchange package and the monitor program.

3. Sends function code 004000.

4. Sends function code 005000.

Function code 004000 deactivates the Master Clear signal. Then, after
the first CPU is deadstarted, its monitor program can rebuild the
deadstart exchange package and issue instruction 0014j1 to deadstart the
other CPUs in the same manner as explained above.

Cray Research Proprietary 3-13

CPU Control

Program Exit Instructions

Interrupts

CRAYY-MP C90 System Programmer Reference Manual

The exchange package for each program resides in an area defined
during system deadstart. The defined area must be located in the lower
4,096 (100008) words of memory. The exchange package at memory
address 0 is the deadstart monitor's exchange package. Only the monitor
program has a data area defined so that it can access all of memory,
including exchange package areas. This capability allows the monitor
program to define or alter all exchange packages other than its own when
it is active. Other exchange packages provide for object programs and
other monitor tasks and are located outside of the program's instruction
and data areas.

There are two program exit instructions that initiate an exchange
sequence: the error exit (000000) and the normal exit (004000). These
two instructions enable a program to request its own termination. A
program usually uses the normal exit instruction to exchange back to the
monitor program after it has finished its programmed task. The error exit
instruction allows for termination of an object program if an error
condition occurs; the exchange address selected is the same as for a
normal exit instruction.

Issuing either of these two instructions may also cause an interrupt flag to
set, depending on whether the appropriate interrupt mode is set and
'enabled. These interrupt modes and flags were explained earlier in this
section.

An exchange sequence can also be initiated by setting any of the
interrupt flags described earlier in this section or by a program range
error.

Exchange Package Management

3-14

Exchange package management dictates that a user program should
always exchange back to the monitor that caused the user program to
start executing. This exchange back to the monitor ensures that the
program information is always exchanged into its proper exchange
package. The following paragraphs illustrate the dynamics of exchange
package management.

A monitor begins an execution interval following a deadstart sequence.
Assuming the interrupt modes are not enabled, no interrupts (except a
program range error or instructions 000000 or (04000) can terminate its
execution interval because it is in monitor mode. Before the monitor
program exits, the monitor sets the contents of the XA register to point to

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

a user program's exchange package so that a user program runs next.
The monitor then voluntarily exits by issuing a normal exit instruction
(004000).

The exchange sequence moves the inactive exchange package (in this
case, the user program's) from memory into the operating registers. At
the same time, the exchange sequence retrieves data from the operating
registers, uses it to construct the active exchange package (in this case,
the monitor's), and then moves this exchange package back into memory
at the location previously occupied by the user program's exchange
package. The XA register in the user program's exchange package
contains its previous storage address, which is now the address of the
monitor's exchange package. When the exchange is complete, the user
program begins to run.

If an interrupt occurs while the user program is running, an exchange
sequence is initiated. Because the contents of the XA register in the
user's program exchange package is pointing to the monitor, the
exchange is back to the monitor. (Note that a user program cannot alter
the contents of the XA register.)

When the exchange back to the monitor is complete, the monitor
determines which interrupt caused the exchange and sets the contents of
the XA register to call the proper interrupt-processing program to run. -
To do this, the monitor sets the XA register to point to the exchange
package for the relevant interrupt processing program. The monitor then
clears the interrupt and executes a ,normal exit (004000) instruction
causing the interrupt-processing program to run. Depending on the
operating task, the interrupt-processing program can run in monitor mode
or user mode.

NOTE: There is no interlock between an exchange sequence in a CPU
and memory transfers in another CPU; therefore, avoid
modifying exchange packages used by other CPU s except under
software-controlled situations.

Instruction Fetch Sequence

CSM-0500-000

An instruction fetch sequence retrieves program code from memory and
places it in an instruction buffer. The program code is held in the
instruction buffer before being delivered to the instruction issue registers.
The following subsections describe the hardware associated with the
instruction fetch sequence and define the fetch operation.

Cray Research Proprietary 3-15

CPU Control CRAY Y-MP C90 System Programmer Reference Manual

Instruction Fetch Hardware

Instruction Buffers

3-16

Central
Memory

The CRAY Y-MP e90 computer system uses the P register to initiate an
instruction fetch sequence and uses eight instruction buffers to store the
instructions retrieved from central memory. Figure 3-2 shows the P
register and instruction buffers.

Instruction
Buffers

;1
IB7

IB6

I IB5

I 164

IB1

IBO

I R';ster I
L + 1/+ 2 -

~7 .--...... :....... To Issue Registers

t----

6
----e II 1~B3

.V
t-t-t~-

Words { I 11:-
A-9512

Figure 3-2. Instruction Fetch Block Diagram

Each of the eight instruction buffers (IBO through IB7) holds 32 (408)
words, numbered 008 through 378. Each word contains four 16-bit
instruction parcels; therefore, each buffer holds 128 parcels. Instruction
parcels are held in the buffers before being delivered to the issue
registers.

The first instruction parcel in a buffer always has a memory word address
that is a multiple of 408. This word address allows the entire area of
addresses for instructions in a buffer to be defined by the 25 high-order
bits of the P register.

Each instruction buffer has an associated instruction buffer address
register (IBAR). The mAR contains the upper 25 bits of the P register
and an IBAR valid bit. When set, the IBAR valid bit indicates that the
buffer contains valid data. During an exchange sequence, all the IBAR
valid bits are cleared to invalidate the previous program's instructions
and to force the CPU to fetch new instructions. Once the fetch operation
begins, the appropriate IBAR is loaded with the upper 25 bits of the P
register, and its valid bit is set. Figure 3-3 shows the mAR register.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Program Address Register

P Register

229

Upper 25 Bits of Instruction Word Address

tBAR Register

Upper 25 Bits of Instruction Word Address

Selects Word
within Buffer

A-9500

Figure 3-3. P Register and mAR Register Address Formats

The instruction buffers are protected with parity bits. When a word is
written into an instruction buffer, a set of parity bits is generated and
stored with the data bits. This set of parity bits is compared to another
set that is generated when the word is read out of the instruction buffer.
A parity error is indicated when the two sets do not match and is reported
to status register 7 (SR7). The status registers are described later in this
section.

The 32-bit P register indicates the next parcel of program code to enter
the NIP register. As shown in Figure 3-3, the 25 high-order bits of the P
register indicate the word address of the program code in memory
relative to the base address. The 2 low-order bits indicate the parcel
within the word. Because only 25 bits specify the word address, the
maximum program length is 32 Mwords.

Under normal circumstances, the P register increments sequentially as
instructions issue. For 1- and 2-parcel instructions, the P register
increments by one; for 3-parcel instructions, the P register increments by
two. These increments allow both 2- and 3-parcel instructions to issue in
2 clock periods (CPs). Branch instructions can load the P register with
any value. When the program exchanges out, the saved P register
contains the address of the instruction immediately following the last
instruction that executed.

Instruction Fetch Operation

CSM-0500-000

An instruction fetch operation refers to the series of steps performed to
retrieve program code from memory to an instruction buffer.

Cray Research Proprietary 3-17

CPU Control

3-18

CRAY Y-MP C90 System Programmer Reference Manual

The fetch operation is initiated after a comparison check of the P register
against the values held in the eight IBAR registers; this comparison is
made each CPo The P register always contains the parcel address of the
next instruction to be decoded. If the contents of one of the IBAR
registers is equal to the upper 25 bits in the P register, and the IBAR valid
bit is set, an in-buffer (or coincidence) condition exists. In this case, the
next instruction to be decoded is already contained in an instruction
buffer, and no fetch sequence is needed. If the 25 high-order bits of the P
register do not match the contents of any IBAR, or the valid bit is not set,
an out-of-buffer (or no-coincidence) condition exists, and the instruction
fetch sequence starts.

The instruction buffers are filled circularly, one at a time. Each buffer
stores 128 parcels of instruction code. Each time a no-coincidence
condition occurs, a fetch sequence is initiated and another instruction
buffer is filled. This process continues until all eight buffers are filled. If
the program code exceeds 1,024 parcels, the ninth fetch reloads the first
instruction buffer.

The instruction fetch sequence uses memory ports D and D' to transfer
32 words (128 parcels) from memory into the instruction buffer (refer to
"Logical Organization" in Section 2 for more information on memory
ports). Two words are transferred each CPo

One of the fIrst two words delivered to the instruction buffer always
contains the next instruction required for execution. For example, if the
P register contains the address 124-2 (parcel 2 of word 124) when the
fetch operation begins, the fIrst two words delivered to the instruction
buffer are from memory addresses 124 and 125. During each succeeding
CP, two additional words arrive at the instruction buffer, filling the buffer
in order with words 124 through 137 and then words 100 through 123.

Once the instruction buffers are loaded, or if the comparison between the
P and IBAR registers produced a coincidence condition, the proper
instruction parcel is selected from the instruction buffer. The instruction
parcel is sent to the NIP register and then to the CIP register, from which
the instruction issues. Instruction issue is explained later in this section.

Although optimizing code segment lengths for instruction buffers is not a
prime consideration when programming a CPU, the number and size of
the buffers and the capability for forward and backward branching can be
used to minimize fetches. Large loops containing up to 1,024
consecutive instruction parcels can be maintained in the eight buffers.
An alternative way to handle a large loop is for a main program sequence
in one or two of the buffers to make repeated calls to short subroutines
maintained in the other buffers. The program and subroutines remain
undisturbed in the buffers as long as no out-of-buffer condition or
exchange causes reloading of a buffer.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Instruction Fetch Timing

Instruction Issue

Forward and backward branching is possible within buffers. Branching
does not cause an instruction buffer to reload if the address of the
instruction being branched to is within one of the buffers. Multiple
copies of instruction parcels cannot occur in the instruction buffers.

Because instructions are held in instruction buffers before issue and until
the buffer is reloaded, self-modifying code should not be used. Also,
because of independent data and instruction memory protection,
self-modifying code may be impossible. As long as the address of the
unmodified instruction is in an instruction buffer, the modified
instruction in memory is not loaded into an instruction buffer.

During an instruction fetch sequence, instructions are retrieved from
memory to an instruction buffer at the rate of 2 words per CPo It takes 25
CPs for the first word to arrive at the instruction buffer and an additional
3 CPs for the first instruction to get to the CIP register. Instruction issue
can run concurrently with the fetch operation as long as the required
instruction parcel is in the instruction buffer. If no memory conflicts are
encountered, the instruction buffer is filled in 40 CPs (25 CPs for the first
two words and 15 CPs for the remaining 30 words). Memory conflicts
can lengthen the fetch sequence timing.

An instruction issue sequence is the series of steps performed to get an
instruction from an instruction buffer through the issue registers and into
execution.

Instruction Issue Hardware

CSM-0500-000

The CRAY Y-MP C90 computer systems use four different registers to
issue instructions. Figure 3-4 shows the registers and buffers and the
general flow of the instruction parcels through them. CPU instructions
are 1-, 2-, or 3-parcel instructions; refer to "Instruction Formats" in
Section 7 for information on instruction parcels.

Cray Research Proprietary 3-19

CPU Control

Instruction
Buffers

Instruction Buffers

Program Address Register

3-20

CRAYY-MP C90 System Programmer Reference Manual

IB7

IB6

IB5

IB4

Read-out t----~t--.._.t
Registers

Issue

A·9513

Figure 3-4. Instruction Issue Block Diagram

The instruction buffers hold the program code after it is retrieved from
memory and before it is passed on to the issue registers. The instruction
buffers have two associated read-out registers to streamline the flow of
instructions from the buffers to the NIP register. Even-numbered words
are loaded into the even read-out register, while odd-numbered words are
loaded into the odd read-out register. Bit 2° of the P register determines
which read-out register is used, and bits 2-1 and 2-2 of the P register
select the parcel to be sent to the NIP register.

The 32-bit P register indicates the next parcel of program code to enter
the NIP register. The 25 high-order bits of the P register indicate the
word address for the program code in memory relative to the base
address. The 2 low-order bits indicate the parcel within the word. Under
normal circumstances, the P register increments sequentially as
instructions issue. For 1- and 2-'parcel instructions, the P register
increments by one; for 3-parcel instructions, it increments by two. This
allows both 2- and 3-parcel instructions to issue in 2 CPs. Branch
instructions and exchange sequences can load the P register with any
value.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Next Instruction Parcel Register

The 16-bit NIP register receives an instruction parcel from one of the
instruction buffer read-out registers. While the parcel of program code is
held in the NIP register, it is decoded to deterinine whether the
instruction is a 1-, 2-, or 3-parcel instruction. The parcel is then passed
on to the CIP register.

The NIP register cannot be master cleared. An undetermined instruction
can issue during the master clear sequence before an interrupt condition
blocks data entry into the NIP register.

Current Instruction Parcel Register

The 16-bit CIP register receives the parcel of program code from the NIP
register and holds the instruction until it issues. Issue of an instruction
held in the CIP register can be delayed until conflicting operations are
completed (refer to "Reservations and Hold Issue Conditions" later in
this section).

The issue control associated with the CIP register can be master cleared;
the register itself cannot. An undetermined instruction can issue during
the master clear sequence.

Lower Instruction Parcel and Lower Instruction Parcel 1 Registers

The 16-bit lower instruction parcel (LIP) register holds the second parcel
of a 2-parcel instruction (the fust parcel of this instruction is always held
in the CIP register). The 16-bit LIP1 register holds the third parcel of a
3-parcel instruction (again, the first parcel is held in the CIP register,
while the second parcel of this instruction is held in the LIP register).

Instruction Issue Operation

CSM-0500-000

Control logic associated with the NIP register determines whether the
instruction is a 1-, 2-, or 3-parcel instruction and steers subsequent
parcels to the correct register. The general sequences for the three types
of instructions are described in the following paragraphs; specific
examples of 1-, 2-, and 3-parcel instructions are given on the following
pages.

For 1-parcel instructions, the P register sends the instruction parcel to the
NIP register. From the NIP register, the instruction moves to the CIP
register. If there are no conflicts, the instruction executes.

Cray Research Proprietary 3-21

CPU Control

3-22

CRAY Y-MP C90 System Programmer Reference Manual

For a 2-parcel instruction, the P register sends the first parcel to the NIP
register. Then the first parcel is sent to the CIP register, while the second
parcel goes directly to the LIP register. When the two registers are
properly loaded with the correct parcels, and there are no conflicts, the
first parcel issues from the CIP register and the second parcel issues from
the LIP. register at the same time. When the parcels of the 2-parcel
instruction move from the CIP and LIP registers to execution, the NIP
register sends a blank parcel to the CIP register. The control logic
decodes this blank as a no operation instruction when it issues from the
CIP register. While this blank parcel is loaded into the CIP register, a
new parcel is loaded into the NIP register and the control logic
determines if the instruction is a multi-parcel instruction. During this
sequence, a delay can occur if the new instruction is in a different buffer
than the previous instruction or if a fetch operation is required.

For a 3-parcel instruction, the P register sends the first parcel to the NIP
register. Then the first parcel is sent to the CIP register, while the second
parcel goes directly to the LIP register and the third parcel goes directly
to the LIP1 register. When the three registers are loaded with the correct
parcels, and there are no conflicts, the flrst parcel issues from the CIP
register, the second parcel issues from the UP register, and the third
parcel issues from the LIP1 register, all at the same time. When the
parcels of the 3-parcel instrUction move from the CIP and LIP registers
to execution, the NIP register sends a blank parcel to the CIP register.
The control logic decodes this blank as a no operation instruction when it
issues from the CIP register. While this blank parcel is loaded into the
CIP register, a new parcel is loaded into the NIP register and the control
logic determines if it is a multi-parcel instruction. Delays can occur if
the new instruction is in a different buffer than the previous instruction or
if a fetch operation is required.

Figure 3-5 through Figure 3-14 and the following paragraphs show the
steps that occur as 1-, 2-, and 3-parcel instructions are steered in
sequence through the issue registers. The sequence assumes a 1-CP
delay for all conflicts and is numbered CPn through CPn+9. An
instruction buffer with its two read-out registers, the P register, and the
relevant issue registers are shown for each CPo

Figure 3-5 shows parcels 20-0 through 21-3 being held in an instruction
buffer and read-out registers. The P register is pointing to parcel 20-0 as
the next parcel to be read into the NIP register.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

00 ·
17
20

Words
21
22 ·
37

00

17
20

Words
21
22 ·
37

CSM-0500-000

Instruction Buffer

20-0 20-1 20-2 20-3
~

21-0 21-1 21-2 21-3

l

Read-out
Registers

Even Odd

20-0 21-0
20-1 21-1
20-2 21-2
20-3 21-3

t t

P Register

~
~

NIP CIP
______ 1 1 ______

A-9501

Figure 3-5. Instruction Flow through Issue Registers (CPn)

20-0

21-0

. Figure 3-6 shows parcel 20-0 in the NIP register. The P register
incremented by 1 and is pointing to parcel 20-1 to read out as the next
parcel. While parcel 20-0 is in the NIP register, hardware determines
whether it is a 1-, 2-, or 3-parcel instruction.

Instruction Buffer

20-1 20-2 20-3

21-1 21-2 21-3

Read-out
Registers

Even Odd

20-0 - 21-0
20-1 21-1
20-2 21-2
20-3 21-3

P Register

20-1

~
NIP CIP

I 20-0 I

A-9502

Figure 3-6. Instruction Flow through Issue Registers (CPn + 1)

Since parcel 20-0 is a i-parcel instruction, the logic steers this parcel into
the CIP register and parcel 20-1 into the NIP register. The P register
increments by 1 (refer to Figure 3-7).

Cray Research Proprietary 3-23

CPU Control

00

17
20

Words
21
22 ·
37

00 · ·
17
20

Words
21
22 ·
37

3-24

Instruction Buffer

20-0 20-1 20-2

21-0 21-1 21-2

CRAY Y-MP C90 System Programmer Reference Manual

20-3

21-3

Read-out
Registers

Even

20-0
20-1 ~
20-2
20-3

Odd

21-0
21-1
21-2
21-3

P Register

~
20-2

+1

NIP CIP
-, 20-1 20-0 I I

A-9503

Figure 3-7. Instruction Flow through Issue Registers (CPn + 2)

20-0

21-0

While the parcel in the NIP register is decoded to determine whether it is
a 1-, 2-, or 3-parcel instruction, the issue hardware checks for any
conflicts that might prevent the instruction in the OP register from
issuing. If there are conflicts, both the CIP and NIP registers hold their
parcels, and the P register does not increment (refer to Figure 3-8).

Instruction Buffer

20-1 20-2 20-3

21-1 21-2 21-3

Read-out
Registers

Even Odd

20-0 21-0
20-1 21-1
20-2 - 21-2
20-3 21-3

NIP

I 20-1

t

P Register

2

~
CIP

~ ~
A-9504

Figure 3-8. 1-parcel Instruction Holding 1 CP for Conflict (CPn + 3)

This holding state is maintained until the conflict is resolved. When the
conflict is resolved, or if there are no conflicts, parcel 20-0 issues from
the CIP register (refer to Figure 3-9).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

00 .
17
20

Words
21
22

37

00

17
20

Words
21
22 .
37

CSM-0500-000

Read-out
Registers

Instruction Buffer
Even Odd

P Register

20-0 21-0
20-1 21-1

20-0 20-1 20-2 20-3
20-2 - 21-2
20-3 21-3

21-0 21-1 21-2 21-3
NIP

I Blank

~
20-3

+1

CIP

~ 20-1

LIP
J 20-2 I

Issue
J-,. (20-0)

I A-9505

Figure 3-9. Instruction Flow through Issue Registers (CPn + 4)

20-0

21-0

Because parcel 20-1 is the fust parcel of a 2-parcel instruction, the logic
steers parcel 20-2 into the LIP register and parcel 20-1 into the CIP
register. Also, a blank parcel is generated in the NIP register. The P
register increments by 1 to point to the next parcel (in this case, parcel
20-3). Issue hardware checks for conflicts. If any conflicts are found,
the CIP, LIP, and NIP registers hold their parcels and the P register does
not increment (refer to Figure 3-10).

Instruction Buffer

20-1 20-2 20-3

21-1 21-2 21-3

Read-out
Registers

Even Odd

20-0 21-0
20-1 21-1
20-2 21-2
20-3 ~ 21-3

_1
I

P Register

~

NIP CIP

Blt"k 1 ~
LIP

~ A-9506

Figure 3-10. 2-parcellnstruction Holding 1 CP for Conflict (CPn + 5)

Cray Research Proprietary 3-25

CPU Control

00 .
17
20

Words
21
22

37

00 · ·
17
20

Words
21
22 ·
37

3-26

20-0

21-0

CRAY Y-MP C90 System Programmer Reference Manual

This holding state is maintained until the conflict is resolved. When the
conflict is resolved, or if there are no conflicts, parcels 20-1 and 20-2
issue together in the next CP (refer to Figure 3-11).

Read-out
Registers

Instruction Buffer
Even

20-0
20-1

Odd

21-0
21-1

P Register

20-1 20-2 20-3

21-1 21-2 21-3

20-2 21-2
20-3 21-3

~
~

r--_L1_P......,~

Issue
(20-1,
20-2)

A-9507

Figure 3-11. Instruction Flow through Issue Registers (CPn + 6)

20-0

21-0

22-0

As the 2 parcels move from the CIP and UP registers to issue, parcel
20-3 is loaded into the NIP register and a blank parcel is loaded into the
CIP register. The P register increments by 1 and points to the next parcel
(in this case, parcel 21-0). Since the P register no longer points to a
parcel in word 20, a new word is loaded into the even read-out register
during the next CPo The blank parcel in the elP register is decoded as a
no operation instruction when it issues during CPn+ 7 (refer to
Figure 3-12).

I nstruction Buffer

Read-out
Registers

P Register
E Odd ven

22-0 21-0 -
22-1 21-1

20-1 20-2 20-3 22-2 21-2

21-1 21-2 21-3 22-3 21-3

22-1 22-2 22-3 ---' I

~
21-2

+2

NIP CIP
Blank H 20-3

LIP
.J 21-0 1

L1P1
_I 21-1 1

J-.
No

Opera­
tion

A-9508

Figure 3-12. Instruction Flow through Issue Registers (CPn + 7)

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

qo
• •
17
20

Words
21
22
• • •

37

CSM-0500-000

20-0

21-0

22-0

Because parcel 20-3 is the fIrst parcel of a 3-parcel instruction, the logic
steers parcel 21-1 into the LIP1 register, parcel 21-0 into the UP register,
and parcel 20-3 into the CIP register. A blank parcel is generated in the
NIP register. The P register increments by 2 and points to the next parcel
(in this case, Parcel 21-2). Issue hardware checks for conflicts. If any
conflicts are found, and resolved, the issue registers hold their parcels,
and the P register does not increment (refer to Figure 3-13).

Instruction Buffer

20-1 20-2 20-3

21-1 21-2 21-3

22-1 22-2 22-3

Read-out
Registers

Even Odd

22-0
22-1
22-2
22-3

-

21-0
21-1
21-2
21-3

P Register

~

CIP

"""'---~
LIP

~
LlP1

~
A-9509

Figure 3-13. 3-parcel Instruction Holding 1 CP for Conflict (CPn + 8)

This holding state is maintained until the conflict is resolved. If there are
no conflicts, parcels 20-3, 21-0, and 21-1 issue together in the next CP
(refer to Figure 3-14).

Cray Research Proprietary 3-27

CPU Control

00

17

Words
20

21
22 · · · 37

Registers

P

NIP

CIP

LIP

LlP1

3-28

Instruction Buffer

20-0 20-1 20-2 20-3

21-0 21-1 21-2 21-3

CRAY Y-MP C90 System Programmer Reference Manual

Read-out
Registers

Even
22-0
22-1
22-2
22-3

Odd
21-0
21-1
21-2
21-3

P Register

~
~

NIP CIP

Issue
(20-3,
21-0,
21-1)

A·951 0

Figure 3-14. Instruction Flow through Issue Registers (CPn + 9)

CPn- n+1

20-0 20-1

20-0

As the 3 parcels move from the CIP, LIP, and LIP1 registers to execution,
parcel 21-2 enters the NIP register, and a blank parcel enters the CIP
register. The P register increments by 1 to point to the next parcel (in this
case, parcel 21-3).

Instructions continue to flow through the issue registers until the program
code exits normally or is interrupted. In either case, an exchange and
fetch operation bring new code into the instruction buffers and a new
value into the P register, and the issue sequence starts over again.

The issue sequence explained and illustrated in the previous paragraphs
is summarized in Table 3-5. This chart shows the movement of the
instruction parcels at each CP as they pass through the issue registers.

Table 3-5. Instruction Issue Sequence

n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

20-2 20-2 20-3 20-3 21-0 21-2 21·2 21-3

20-1 20-1 Blank Blank 30-3 Blank Blank 21-2

20-0 20-0 20-1 20-1 Blank 20-3 20-3 Blank

20-2 20-2 21-0 21-0

21-1 21·1

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Reservations and Hold Issue Conditions

CSM-0500-000

When the first parcel of an instruction is in the CIP register, hardware is
used to determine if there are any conflicts preventing the instruction
from executing. These conflicts are referred to as hold issue conditions
and cause the instruction to be held in the issue registers until the conflict
is resolved. Once the instruction issues, reservations are immediately
placed on the appropriate registers, paths, ports, or functional units as
needed. These reservations are usually held until a few CPs before the
instruction finishes execution; the exact timing depends on the type of
instruction.

Register reservations are placed in the following cases:

•

•

•

•

When A and S registers are reserved as result registers but not as
operand registers.

When access to the B or T registers is reserved during block
transfers.

When individual V registers are reserved specifically as either
operand or result registers.

When input paths are reserved for the CP during which the data is
expected to enter the A or S registers.

Port reservations are placed when the following conditions occur:

•

•

•

•

Port A is reserved for memory reads to the B registers.

Port B is reserved for memory reads to the T registers.

Port A or port B is reserved for memory reads to the V registers.

Port C is reserved for B register, T register, or V register writes to
memory.

Functional unit reservations are placed on functional units processing
vector operands.

Conflicts also occur when more than one CPU tries to access the shared
path at the same time. The shared path is used by all shared and
semaphore registers, and by I/O instructions, interprocessor interrupt
signals, and the real-time and programmable clocks. Refer to "Shared
Paths Access Priority" in Section 2 for more information on the shared
path.

Cray Research Proprietary 3-29

CPU Control

Programmable Clock

3-30

CRAYY-MP C90 System Programmer Reference Manual

For a detailed description of the hold issue conditions for each
instruction, refer to "CPU Instruction Descriptions" in Section 7. In
several cases, these conditions are limited to a specific instruction or
instruction sequence. The following conditions are a few generalized
hold issue conditions.

Scalar instructions hold issue if the following conditions occur:

•

•

•

•

The A or S register needed for a result is reserved.

The input path is reserved for the CP during which incoming data
enters the register.

The instruction calls for a floating-point operation, and the
floating-point functional unit is reserved.

The instruction references memory, and port A, B, or C is reserved.

Vector instructions hold issue if the following conditions occur:

•

•

•

•

The V register needed for an operand is reserved as an operand.

The V register needed for a result is reserved as either an operand
or a result.

The functional unit needed is reserved.

The instruction references memory and the needed port is reserved.

For B and T register block transfers, a hold issue condition exists if the
needed port is reserved. For multi-parcel instructions, a hold issue
condition exists if the second or third parcel of the instruction is in a
different buffer (3-CP delay) or not in any buffer.

Each CPU has a programmable clock that generates interrupts at
user-specified intervals. Available intervals range from 9 to 232 -1 CPs.
Intervals shorter than 100 J.AS are not practical because of the time
required by the monitor to process the interrupt. The instructions listed
in Table 3-6 are used to enable and disable the programmable clock.
These instructions are privileged to monitor mode.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Machine
Instruction

0014j4

001405

001406

001407

Table 3-6. Programmable Clock Instructions

CAL
Syntax Description

PCI Sj Transmit (S}) to the II register.

CCI Clear the programmable clock interrupt request.

ECI Enable the programmable clock interrupt request.

DCI Disable the programmable clock interrupt request.

The interrupt interval (IT) register supports the programmable clock and
is explained in the following subsection.

Interrupt Interval Register

Operation

CSM-0500-000

The 32-bit II register is loaded with the number of CPs desired between
programmable clock interrupt requests. Instruction 0014j4 transmits the
32 low-order bits of the Sj register to the II register, with bit 23 always
forced to a logical 1. The interval used is actually one CP more than the
value stored in the II register. For example, if Sj equals 0, the II register
contains the value 8 (because bit 23 is always set), and the interval equals
9 CPs.

This value is held in the IT register and is transferred to the
programmable clock each time the counter reaches 0 and generates an
interrupt request. The contents of the II register are changed only by
another 0014j4 instruction.

The 32-bit programmable clock is preset to the value contained in the II
register when instruction 0014j4 executes. This clock runs continuously
and decrements by 1 each CP until the contents of the clock is O. The
programmable clock then sets the programmable clock interrupt (PCI)
request and reads the interval value held in the II register. The
programmable clock repeats the countdown cycle and sets the PCI
request at the intervals determined by the contents of the II register.

A PCI request can set the PCI interrupt flag only if IPC interrupt mode is
set and enabled. If this mode is set, but not enabled, the PCI request is
held. When the mode is enabled, the PCI request sets the PCI interrupt
flag and causes an exchange. A held interrupt request or a set interrupt
flag remains set until instruction 001405 executes and clears the request
or flag.

Cray Research Proprietary 3-31

CPU Control

Status Registers

Bit Position

63

57

52

51

50

49

48

47

43-40

36-32

3-32

CRAYY-MP C90 System Programmer Reference Manual

Normally, IPC interrupt mode is not enabled while the program is in
monitor mode. However, instruction 001302 can enable lPC interrupt
mode if it is already set. If IPC interrupt mode is not set, it can be set
while in monitor mode by instruction 001406. It can also be cleared
while in monitor mode by instruction 001407 or disabled by instruction
001303.

Following a deadstart sequence, the monitor program ensures the state of
the PCl request by issuing instructions 001405 and 001407 to clear and
disable the PCI request.

There are eight status registers, numbered SRO through SR 7, in the
CRAY Y -MP C90 mainframe. The organization of these registers is
shown in Figure 3-15. Instruction 073ij1 transmits the contents of status
register SRj to Si. Instruction 073ij5 transmits the contents of the Si
register to SRj. Bits 248 through 252 of SRO are the only bits that can be
written to while in user mode, which is done with instruction 073i05.

SRO contains information on the status of several bits in the active
exchange package. The data fields of SRO are described in Table 3-7.

Table 3-7. SRO Data Fields

Status Bit Description

CLN .. 0 Cluster number .. o.
PS Program state.

IBP IBP interrupt mode.

FPS Floating-point status (Sets if a floating-point error
occurs).

IFP I FP interrupt mode.

lOR lOR interrupt mode.

BDM Bidirectional memory mode.

PMBY Performance monitor is busy.

Processor CPU number.

Cluster Cluster number.
Number

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

SRO

SR1

SR2

SR3

SR4

SR5

SR6

SR7

Read / Write Monitor Mode Read Only

63 62 61 605958 57565554 53 52 51 50494847464544434241 40393837363534 33 32
I

C P I F I I B P Processor Cluster Number
L S B P F 0 0 M
N P S P R M B 03 02 01 00 04030201 00

;oeO * * * * * y

Undefined Undefined

Performance Monitor Counters 00 - 17

Undefined
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
474645.44434241 403938373635 34 33 32

Performance Monitor Counters 20 - 37

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
U~defined 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

U C Error Type Read

Undefined M M Port Mode
E E 02 01 00 02 01 00

Error Syndrome
Undefined

15 1413 12 11 10090807060504 03 02 01 00

Error Address
Undefined

CS09 08 07 06 05 04 03 02 01 00

R S RPE Chip Number
Undefined P R

E R 05 04 03 02 01 00
I I I I I I I I I I I I I I I I E I I I I I I I I I I I I I I

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

* Written by instruction 073i05 A·941 0

Figure 3-15. Status Registers

SR2 and SR3 contain the performance monitor counters. The operation
of the performance monitor is explained in the next section.

SR4 through SR6 contain memory error information. Bits 247 and 246 of
SR4 identify the error as either an uncorrectable or a correctable memory
error, respectively. The read mode bits (234 through 232) specify the type
of read operation, and the port designator bits (237 through 235) specify
the port associated with the memory read error. Table 3-8 and Table 3-9
show these bits decoded.

CSM-0500-000 Cray Research Proprietary 3-33

CPU Control

22 21 2° PortAO

0 0 0 Vector

0 0 1 B register

0 1 0 -

0 1 1 S register

1 1 1 A register

3-34

CRAY Y-MP C90 System Programmer Reference Manual

Table 3-8. Read Mode Bits

Port A1 Port BO Port B1 Port DO Port 01

Vector Vector Vector VHISP/HISP 0 VHISP/HISP 1

B register T register T register LOSP Maintenance

- - - Fetch Fetch

- - - Fetch Fetch

- - - - -

Table 3-9. Port Designator Bits

22 21 2° Port

0 0 0 Not valid

0 0 1 AO

0 1 0 A1

0 1 1 BO

1 0 0 B1

1 0 1 DO

1 1 0 01

1 1 1 Not valid

SRS contains the 16-bit error syndrome code of SBCDBD. This error
correction and detection scheme is explained fully in Section 2.

SR6 contains bits 2° through 29 and bit 220 of the memory error address.
These bits can be decoded more specifically as shown in Table 3-10.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

CSM-0500-000

Table 3-10. Memory Error Address Bits

Bits Memory Location

22 21 20 Section 0-7

25 24 23 Subsection 0 - 7

26 Bank group 0/1

29 28 27 Bank 0-7

220 Chip select

SR 7 contains register parity error information. Bit 247 indicates that a
register parity error (RPE) has occurred. Bits 237 through 232 can be
decoded as shown in Table 3-11 to determine exactly where the error
occurred.

Cray Research Proprietary 3-35

CPU Control CRAY Y-MP C90 System Programmer Reference Manual

Table 3-11. Register Parity Error Bits

Octal Description

00 Vector register VO - V3, bits 2° - 215, pipe O.

01 Vector register V4 - V7, bits 2° - 215, pipe O.

02 Vector register VO - V3, bits 216 - ~1, pipe O.

03 Vector register V4 - V7, bits 216 - ~1, pipe O.

04 Vector register VO - V3, bits 232 - 2"7, pipe O.

05 Vector register V4 - V7, bits 232 - 2"7, pipe O.

06 Vector register VO - V3, bits ~ -~, pipe O.

07 Vector register V4 - V7, bits 248 -~, pipe O.

10 Vector register VO - V3, bits 2° - 215, pipe 1.

11 Vector register V4 - V7, bits 2° - 215, pipe 1.

12 Vector register VO - V3, bits 216 - ~1, pipe 1.

13 Vector register V4 - V7, bits 216 - ~1, pipe 1.

14 Vector register VO - V3, bits 232 - 2"7, pipe 1.

15 Vector register V4 - V7, bits 232 - 2"7, pipe 1.

16 Vector register VO - V3, bits 248 - 263, pipe 1.

17 Vector register V4 - V7, bits ~ - 263 , pipe 1.

20 T register, bits 2° - 215, pipe O/pipe 1.

21 T register, bits 216 - 231 , pipe O/pipe 1.

22 T register, bits ~2 - 247, pipe O/pipe 1.

23 T register, bits 2"9 - 263, pipe O/pipe 1 .

24 8 register, bits 2° - 215, pipe O/pipe 1.

25 8 register, bits 216 - 231 , pipe O/pipe 1.

26 Instruction buffers, bits ~ - 215, pipe 0/pipe1.

27 Instruction buffers, bits 216 - 231 , pipe O/pipe 1.

30 Instruction buffers, bits ~ - 215, pipe O/pipe 1.

31 Instruction buffers, bits 216 - 231 , pipe O/pipe 1.

32 Shared registers S8/ST/SM.

33 Port A, A' read address, modes delay.

34 Port 8, 8' read address, modes delay.

35 Port 0,0' read address, modes delay.

36 Performance monitor counter 0 - 37.

37 Multiple errors.

3-36 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

Performance Monitor

The performance monitor tracks groups of hardware-related events. The
results can be used to indicate the relative performance of a program.
The performance monitor contains thirty-two 48-bit performance
counters, which monitor the events shown in Table 3-12.

Table 3-12. Performance Monitor

Max. Increment
Counter Event Monitored Instructions perCP

Numberot

0 Clock periods monitored +1
1 Instruction issued +1

2 Clock periods holding issue +1

3 Instruction fetches +1
4 CPU memory references +6

5 CPU memory conflicts +6
6 I/O memory references +2

7 I/O memory conflicts +2

Holding issue on:

10 A registers and access conflicts +1
11 S registers and access conflicts +1

12 V registers +1

13 Brr registers +1
14 Functional units +1

15 Shared registers +1
16 Memory ports +1

17 Miscellaneous +1

Numberot

20 Instructions 000 through 004 000- 004 +1

21 Branches 005 - 017 +1

22 Address instructions 02x, 030 - 033 +1

23 Brr memory instructions 034- 037 +1

24 Scalar instructions 040 - 043, 071 - on +1

25 ~calar integer instructions 044- 061 +1

26 Scalar floating-point instructions 062- 070 +1

27 S/A memory instructions 10x-13x +1

Number of:

30 Vector logicals 14x, 175 +VL

31 Vector shifts, pop., leading zero 150 - 153, 174xx (1 - 7) +VL

32 Vector integer adds 154-157 +VL

33 Vector floating-point multiplies 160 -167 +VL

34 Vector floating-point adds 170 -173 +VL

35 Vector floating-point reciprocals 174xxO +VL

36 Vector memory reads 176 +VL

37 Vector memory writes 177 +VL

CSM-0500-000 Cray Research Proprietary 3-37

CPU Control CRAY Y-MP C90 System Programmer Reference Manual

Performance events are monitored only when the system is operating in
nonmonitor mode. Entering monitor mode disables the performance
counters.

There are two types of instructions used with the performance monitor:
user instructions and maintenance instructions. The user instructions
allow the user to select and read the performance monitor. The
maintenance instructions test the logic of the performance monitor. The
following subsections explain how these instructions are used with the
performance monitor.

Selecting and Reading Performance Events

3-38

The performance counters can continuously monitor events for
approximately 156 hours before they must be reset. Fifty CPs must
elapse before you can issue another performance monitor instruction.

Instruction 073i21 reads consecutive 16-bit segments of performance
monitor (PM) counters 0 through 178 into bits 232 through 247 of the Si
register. Instruction 073i31 reads consecutive 16-bit segments of PM
counters 208 through 378 into bits 232 through 247 of the Si register.
Neither of these instructions should be issued if the PM is busy (bit 247 of
status register 0 set).

Each PM counter is 48 bits wide and is divided into three 16-bit
segments. A performance counter pointer selects the 16-bit segment to
be read into the S register. This pointer is cleared on entry to or exit from
monitor mode or by instruction 001500. Each successive execution of
instruction 073i21 or 073i31 advances the pointer, enabling the next
instruction of the same type to read the next 16-bit segment of the
appropriate PM counter. A 3-CP delay must occur between successive
PM reads for the data to be valid. The read sequences for the PM
counters are shown below.

Instruction 073i21 reads PM counters 0 through 178:

• First read returns counter 00 (bits 2° - 215) to Si (bits 232 - 247).

• Second read returns counter 00 (bits 216 - 231) to Si (bits 232 - 247).

• Third read returns counter 00 (bits 232 - 247) to Si (bits 232 - 247).

• Fourth read returns counter 01 (bits 2° - 215) to Si (bits 232 - 247)
(48 reads returns the pointer to counter 00).

Instruction 073i31 reads PM counters 208 through 378:

• First read returns counter 20 (bits 2° - 215) to Si (bits 232 - 247).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Control

• Second read returns counter 20 (bits 216 - 231) to Si (bits 232 - 247).

• Third read returns counter 20 (bits 232 - 247) to Si (bits 232 - 247).

• Fourth read returns counter 21 (bits 2° - 215) to Si (bits 232 - 247)
(48 reads returns the pointer to counter 20).

Testing Performance Counters

CSM-0500-000

Instructions 073i75 and 073i25 are used to test the operation of the
performance counters. This testing can be performed only when the
system is in performance monitor (PM) maintenance mode. The
procedure for performing this test is explained fully in the CRAY Y-MP
C90 Computer System Hardware Maintenance Manual, publication
number CMM-0502-000.

Cray Research Proprietary 3-39

4 CPU COMPUTATION SECTION

CSM-0500-000

Each central processing unit (CPU) is an identical, independent
computation section consisting of operating registers, functional units,
and an instruction control network (refer again to Figure 1-2). The
operating registers and functional units store and process three types of
data: address, scalar, and vector.

Address data is used to control internal operations and consists of
information such as memory addresses, register designators, and indexes.
Address data is stored in the address (A) registers and intermediate
address (B) registers, and is processed in two dedicated functional units.

Scalar data is any discrete numerical quantity that can be processed in
functional units either singly or in operand pairs to produce a single
scalar result. Scalar data is stored in the scalar (S) registers and the
intermediate scalar (1) registers, and is processed in four dedicated
functional units. Scalar floating-point data is processed in one of three
floating-point functional units; these functional units are also used to
process vector floating-point data.

Vector data refers to a set (or vector) of discrete numerical quantities that
can be referenced by a single name. Vector data can be processed either
singly or in operand pairs in special functional units to produce a vector
result. Practically speaking, this means that a single instruction can
result in the same operation being performed sequentially on a whole set
of operands to produce a set of results. Vector data is stored in the vector
(V) registers and is processed in five dedicated functional units. Vector
floating-point data is processed in one of three floating-point functional
units; these functional units are also used to process scalar floating-point
data.

Data flow in a computation section is from central memory to registers
and from registers to functional units. Results flow from functional units
to registers and from registers to central memory or back to functional
units. Depending on the instruction sequence, data flows along either the
scalar or vector path with two exceptions. In some cases, the scalar
registers may provide one of the required operands for some vector
operations performed in the vector functional units. Also, some scalar
functional units return their results to an address register.

The computation section performs integer or floating-point arithmetic
operations. Integer arithmetic is performed in two's complement mode;
floating-point quantities have signed magnitude representation.

Cray Research Proprietary 4-1

CPU Computation Section

Operating Registers

4-2

CRAYY-MP C90 System Programmer Reference Manual

Integer (or fixed-point) operations are integer addition, integer
subtraction, and integer multiplication. No integer division instruction is
provided; the operation is accomplished through a software algorithm
using floating-point hardware.

Floating-point instructions allow addition, subtraction, multiplication,
and reciprocal approximation operations. The reciprocal approximation
instructions used in conjunction with other instructions allow for a
floating-point division operation.

The instruction set includes logical operations for AND, inclusive OR,
exclusive OR, exclusive NOR, and mask-controlled merge operations.
Shift operations allow the manipulation of either 64-bit or 128-bit
operands to produce 64-bit results. With the exception of 32-bit integer
arithmetic performed in the A register functional units, most operations
are used in vector or scalar instructions.

The 32-bit integer product is a vector instruction designed for index
calculation. A full indexing capability is possible throughout central
memory in either scalar or vector modes. The index can be positive or
negative in either mode. Indexing allows matrix operations in vector
mode to be performed on rows or on the diagonal as well as allowing
conventional column-oriented operations.

The following subsections describe each of the operating registers and
their associated functional units.

Each CPU has three primary and two intermediate sets of operating
registers. The primary sets of operating registers are the A, S, and V
registers. These registers are considered primary because functional
units and central memory can access them directly.

For the A and S registers, an intermediate level of registers exists; they
ar~ not accessible to the functional units and serve mainly as a memory
buffer for the primary registers. To reduce the number of memory
reference instructions for scalar and address operations, block transfers
are possible between these intermediate registers and central memory.
The A registers are supported by the B registers, while the S registers are
supported by the T registers. The V registers do not have associated
intermediate registers.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Address (A) Registers

CentraJ
Memory

Ai Ai

*

(AO)

A Register Functions

CSM-0500-000

Figure 4-1 shows the eight A registers and their associated CPU
hardware. The A registers are designated AO through A 7. The following
subsections explain A register functions, special uses, and instructions.

Ai AI

*

Scalar Registers

Ak Ai Ak

Vector
Control

NOTE: * Control and/or data from other CPUs.

Figure 4-1. A Register Block Diagram

Ak

Ai

Ak AI

Vector
Shift

Functional
Unit

PoplParity/
Leading laroes

Shift

Scalar
Functional

Units

Multiply

Ak

A·9312

The A registers are used primarily as address registers for memory
references and as index registers. They are also used to transfer data to
and from various internal registers. Each A register can store up to 32
bits of data. While all 32 bits enter or leave the memory modules, the
upper five bits, 227 through 231, are not used in memory referencing
instructions on the 128-Mword CRAY Y-MP e90 system. Refer to
"Absolute Memory Address Calculating" in Section 2 for additional
information.

Cray Research Proprietary 4-3

CPU Computation Section

4-4

CRAY Y-MP C90 System Programmer Reference Manual

The A registers index the base address for scalar memory references and
provide both a base address and an address increment or block count for
block memory references. The A registers also provide values for shift
counts and I/O channel operations and serve as result registers for the
scalar population/parity /leading zero functional unit.

The A registers are connected to the vector length (VL) and exchange
address (XA) registers. The VL register is loaded by the 00200k
instruction. The XA register is loaded by the 0013jO instruction only
while the system is operating in monitor mode. Refer to "Vector Length
Register" later in this section for more information on the VL register,
and refer to "Exchange Address Register Field" in Section 3 for more
information on the XA register.

Data either moves directly between central memory and the A registers
or it is placed in the B registers. Placing data in the B registers allows
buffering of the data between A registers and central memory. Data can
also be transferred between A and S registers and between A and shared
address (SB) registers.

The following list summarizes the functions of the A registers:

•

•

•

•

•

•

•

•

•

•

Generate addresses for memory references.

Serve as index registers or store address increments or block counts
for memory references.

Set the CA and CL registers and enable and disable channel
interrupts (110 control).

Provide values for shift counts and loop controls.

Serve as result registers for the scalar population/parity /leading
zero functional unit.

Set the XA register (exchange control).

Set and read the VL register (vector control).

Transfer data between the A and S registers.

Transfer data between the A and SB registers.

Provide indirect addresses for referencing semaphore registers and
for data transfers between A and SB registers, between S and ST
registers, and between S and V registers.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Special A Register Values

Bypass Path

CSM-0500-000

The address functional units support address and index generation by
performing 32-bit integer arithmetic on operands obtained from A
registers and by delivering the results to A registers. Refer to "Address
Functional Units" in this section for more information on the address
functional units.

If register AO is referenced in the h, j, or k fields of an instruction, the
contents of the register are not used; instead, a special operand is
generated. This special value is available immediately regardless of
existing AD register reservations (they are not checked in this instance),
and this value does not alter the data stored in the AO register. Table 4-1
shows the special AO register values.

Table 4-1. Special AO Register Values

Field Operand Value

Ah,h=O 0

Aj,j=O 0

Ale, k=O 1

If the i field equals 0, then the contents of register AO are used. The i
field is not used as a special case.

In addition to being routed to the A registers, write data can
simultaneously be routed along a bypass path. This bypass path is used
when a read operation follows a write operation to the same A register.
This path makes read data available 1 clock period (CP) sooner than
would otherwise be possible. Figure 4-2 shows the timing of two
instructions that cause data to use the bypass path. A bypass occurs
because instruction 030415 is trying to read data from A1 before the data
in A1 is valid. The bypass operation saves 1 CP by allowing result data
to go directly into a read-out register without having to travel first
through the A1 register.

Cray Research Proprietary 4-5

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

CIP CP1 CP2 CP3 CP4 CP5 CPS CP7

032123 Reserve A2.,A3 Address Functional Functional Functional Result
A1 A2*A3 A1, in Multiply Unit Unit, Unit inA1

Address Read-out Functional Release and
A2,A3 Registers Unit A1, Read-out

Bypass Register
A10k

CIP CIP CP 1 CP2 CP3 CP4

030415 Hold Hold Hold Hold Go AS in Address Result
A4 A1 +A5 Issue Issue Issue Issue Bypass Read-out Add inA4

due to A1, Register Functional
A1 Reserve Unit

A4,
Address

AS A·9313

Figure 4-2. Instruction TlIlling for a Bypass Operation

A Register Instructions

Machine CAL
Instruction Syntax

10hiOO nm Ai exp,Ah

100iOO nm Ai exp,O

10hiOO 00 Ai ,AA

11hiOO nm exp,Ah Ai

110iOO nm exp,O Ai

4-6

Only one result per CP can be transferred to an A register. When an
instruction delivering new data to an A register issues, a reservation is set
for that register. The reservation prevents issue of instructions that use
the specified register until the new data is on the input path to the
register. Instructions reference A registers by specifying the register
number as the h, i, j, or k designator (refer to "Instruction Formats" in
Section 7 for more information on instruction fields). AO is the only A
register that can be referenced when it is not specified in one of the
instruction fields.

Table 4-2 lists the A register instructions and provides octal and CAL
codes. Refer to "CPU Instruction Descriptions" in Section 7 for
complete information on these instructions.

Table 4-2. A Register Instructions

Type of
Description Instruction

Read from ((All) + exp + (DBA») to Ai. Memory Transfer

Read from (exp + (DBA» to Ai.

Read from ((All) + (DBA» to Ai.

Write (At) to ((Ah) + exp + (DBA).

Write (AI) to (exp + (DBA).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-2. A Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

11hiOO 00 ,M Ai Write (Az1 to «M) + (DBA). Memory Transfer

12hiOO nm Si exp,M Read from «M) + exp + (DBA)) to Si. Index for
Memory Transfer

13hiOO nm exp,Ah Si Write (Si) to «M) + exp + (DBA).

034ijk Bjk,Ai ,AO Read (Az1 words starting at address (AO) + Memory Block
(DBA) to B registers starting at register jk. Transfer

035ijk ,AO Bjk,Ai Write (Az1 words from B registers starting at
register jkto memory starting at (AO) + (DBA).

036ijk Tjk,Ai ,AO Read (Az1 words starting at address (AO) +
(DBA) to T registers starting at register jk.

037ijk ,AO Tjk,Ai Write (Az1 words from T registers starting at
register jk to memory starting at (AO) + (DBA).

176iOk Vi ,AO,Ak Read (VL) words to Vi starting at address
(AD) + (DBA), incrementing by (Ak).

176i1k Vi ,AO,Vk Read (VL) words to Vi using memory
addresses «AO) + (Vk) + (DBA)).

1770jk ,AO,Ak Vj Write (VL) words from (VJ1 to memory starting
at (AO) + (DBA), incrementing by (Ak).

1771jk ,AO,Vk Vj Write (VL) words from (V11 to memory using
memory addresses «AO) + Nk) + (DBA)).

0013jO XA Aj Transmit (A11 to the XA register. I nterregister
Transfer

0014j3 CLN Ai .Transmit (AJ1 to the CLN register.

0017jk BP,k Ai Transmit (AJ1 to breakpoint address k.

00200k VL Ak Transmit (Ak) to the VL register.

023ijO Ai Sj Transmit (S11 to Ai.

023i01 Ai VL Transmit (VL) to Ai.

024ijk Ai Bjk Transmit (Bjk) to Ai.

025ijk Bjk Ai Transmit (Ai) to Bjk.

CSM-0500-000 Cray Research Proprietary 4-7

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

Table 4-2. A Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

026ij4 Ai S8,Aj,+1 Transmit (S8) designated by (Aj) to Ai, and Interregister
increment (S8,A}) by 1. Transfer

026ij5 Ai S8j,+1 Transmit (S8j) to Ai, and increment (S8]) by 1 .

026ij6 Ai SB,Aj Transmit (S8) designated by (Al) to Ai.

026i]7 Ai SBj Transmit (S8j) to Ai.

027ij6 S8,Aj Ai Transmit (Ai) to SB designated by (Aj).

027i]7 S8j Ai Transmit (Al) to SBj.

030iOk AiAk Transmit (Ak) to Ai.

031iOk Ai-Ak Transmit the negative of (Ak) to Ai.

071iOk Si Ak Transmit (Ak) to Si with no sign extension.

071 i1k Si +Ak Transmit (Ak) to Si with sign extension.

071i2k Si + FAk Transmit (Ak) to Si as an unnormalized
floating-point number.

020iOO nm Aiexp Transmit exp (nm) to Ai. Constant Entry

021iOO nm Aiexp Transmit one's complement of exp (nm) to Ai.

022ijk Aiexp Transmit exp Uk) to Ai.

031iOO Ai -1 Transmit -1 to Ai.

0010jk CA,Aj Ale Set the CA register for channel (Aj) to (Ak) 1/0 Channels
and begin I/O sequence.

0011jk CL,Aj Ak Set the CL register for channel (Aj) to (Ak).

0012jO CL,Aj Clear the interrupt and error flags for channel
(Aj); clear device master clear (output
channels only); enable channel interrupt.

0012j1 MC,Aj Clear the interrupt and error flags for channel
(Aj); set device master clear (output channels
only); clear device ready held (input channels
only).

0012j2 DI,Aj Disable channel (Aj) interrupts.

0012j3 EI,Aj Enable channel (Aj) interrupts.

4-8 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-2. A Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

033iOO Ai CI Transmit to Ai the channel number of the I/O Channels
highest priority channel requesting an
interrupt.

033ijO Ai CA,Aj Transmit the current address of channel (Aj)
to Ai U", 0).

033ij1 Ai CE,Aj Transmit channel status word for channel (Aj)
to Ai U;III 0).

030ijk Ai Aj+Ak Transmit the integer sum of (AJ) and (Ak) to Ai. Integer
Operation

030ijO Ai Aj + 1 Transmit the integer sum of (AJ) and 1 to Ai.

031 ijk Ai Aj-Ak Transmit the integer difference of (AJ) and
(Ak) to Ai.

031ijO AiAj-1 Transmit the integer difference of (AJ) and 1 <'

toAi.

032ijk AiAj*Ak Transmit the integer product of (AJ) and (Ak)
to Ai.

010000 nm JAZ exp Jump to exp if (AO) = O. Conditional
Jump

011000 nm JAN exp Jump to exp if (AO) - O.

012000 nm JAP exp Jump to exp if (AO) is positive; (AO) 2: O.

013000 nm JAM exp Jump to exp if (AO) is negative.

026ijO Ai PSj Transmit the population count of (SJ) to Ai. Bit Count

026ij1 Ai aSj Transmit the population count parity of (SJ) to
Ai.

027ijO Ai ZSj Transmit leading zero count of (SJ) to Ai.

0014j1 SIPI Aj Send an interprocessor interrupt request to Interrupt
CPU (AJ).

0034jk SM,Ak 1,TS Test and set semaphore Ak U2 = 1). Indirect Address
for Semaphore

0036jk SM,Ak 0 Clear semaphore Ak U2 = 1).

0037jk SM,Ak 1 Set semaphore Ak U2 = 1).

CSM-0500-000 Cray Research Proprietary 4-9

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

Table 4-2. A Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

0064jknm JTS,Ale exp Branch to exp if SM,Ale = 1; else set SM,Ak Indirect Address
(;2 = 1). for Semaphore

o 76ijk Si Vj,Ak Transmit (Vj element (Ak» to Si. Indirect Address
for Vector

o 77ijk Vi,Ak Sj Transmit (Slj to Vi element (Ak).

056ijk Si Si,Sj < Ak Shift (S,j and (Slj left (Ak) places to Si. Indirect Address
for Shift Count

057ijk Si Sj,Si > Ale Shift (Sl) and (Si) right (Ak) places to Si.

150ijk Vi Vj < Ak Shift (Vj elements) left (Ak) places to Vi
elements.

151 ijk Vi Vj> Ak Shift (Vj elements) right (Alc) places to Vi
elements.

152ijk Vi Vj,Vj < Ak Double shift (Vj elements) left (Ak) places to
Vi elements.

005400 Vi Vj,Ak Transfer (Vj elements) to Vi elements starting
152ijk at element (Ak).

153ijk Vi Vj,Vj> Ak Double shift (Vj elements) right (Ak) places to
Vi elements.

Intermediate Address (8) Registers

4-10

Sixty-four 32-bit B registers are designated BOOs through B77s. The B
registers are used as intermediate storage registers for the A registers.
Typically, B registers contain data to be referenced repeatedly over a long
time period, making it inefficient to retain the data in either A registers or
in central memory. Data transfers between an A and B register take 1 CPo
Examples of data stored in B registers are loop counts, variable array
base addresses, and array dimensions.

Instructions reference B registers by specifying the B register number in
the jk field. Refer to "Instruction Formats" in Section 7 for more
information on instruction fields.

B register data transfers to or from central memory at a maximum rate of
two words per CPo The 7 low-order bits of the contents of register Ai
specify the number of words to be transmitted. The first register

Cray Research Proprietary CSM a 0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Machine CAL
Instruction Syntax

024ijk Ai Bjk

025ijk Bjk Ai

034ijk Bjk,Ai ,AO

035ijk ,AO Bjk,Ai

0050jk J Bjk

0051jk J Bjk

007ijkm Rexp

007000nm Rexp

CSM-0500-000

involved in a block transfer is specified by the jk fields of the instruction;
successive data words transferred involve successive B registers until
B77 is reached. Register BOO is processed after register B77 if the count
in register Ai is not exhausted. During these block transfers, a
reservation is placed on all B registers. Other instructions can issue
while B register data is being transferred to or from central memory.

The B registers are protected with parity bits. When a word is written
into a B register, a set of parity bits is generated and stored with the data
bits. This set of parity bits is compared to another set that is generated
when the word is read out of the B register. An error is indicated when
the two sets do not match. Parity errors are reported to the register parity
error (RPE) field of the exchange package. Refer to "Status Registers" in
Section 3 for additional information on parity errors.

BOO is the only B register that can be referenced when it is not specified
in one of the instruction fields. Instruction 007ijlan or 007000 nm
automatically stores the return address for a subroutine jump in register
BOO. Table 4-3 lists the B register instructions.

Table 4-3. B Register Instructions
~. ~.

Type of
Description Instruction

Transmit (8jk) to Ai. I nterregister
Transfer

Transmit (Ai) to Bjk.

Read (ALl words starting at address (AO) + Block Transfer
(DBA) to B registers starting at register jk.

Write (ALl words from B registers starting at
register jk to memory starting at (AO) + (DBA).

Jump to (Bjk). Jump

Jump to (Bjk). (Maintenance only: invalidates
instruction buffers.)

Return jump to exp and set register BOO to (P)
+ 2.

Return jump to exp and set register BOO to (P)
+ 3.

Cray Research Proprietary 4-11

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

A and B Register Troubleshooting

4-12

For assistance in troubleshooting problems with the A and B registers,
refer to Figure 4-3, a block diagram of these registers showing the
options involved and the signals that pass between them. For a more
detailed description of this diagram, refer to the CRAY Y-MP C90
Computer System Hardware Maintenance Manual, publication number
CMM-0502-000.

Cray Research Proprietary CSM-0500-000

o en s:: . o
(J1
o
o • o
o
o

0 ...,
OJ
'<
JJ
<D en
CD
OJ ...,
0
::s-
'"'0 ..,
0

'"0 ...,
ar
r+
OJ
-<

(AA) Add CarrylhO Carry·-i AR1 (218 _ ~1)

I hO(CP2) -A-R..IOL--(2"-_-2t-II)~_-+-_Add_C_arry ____ ~ (AR1)

kil Designators 17 Akji = 0 (YEO)

AkIi Upper = 0

J
fI-~=:"";"'='--" (VO)

AO = 0, AO Sign.

JA,JB

kihO Designators

Select kJn
Select k (MO)

-I (HAD)

Address, Select kihlO AkAi
FU Issue
Control I Designator JQO CPU 15 -- A Registers

AFU Select · · · · --- · ·

1---:'-~~---1-...... -tJ 1-CP Delay I (AR1)
I I

-....;...;....---..... ~~n---: }~~~El-~~ (ARO)

I Ai rl AS11 (218 - ~1) II 8jk~ YDOM~

B Registers I-

Ak

Hold Ah

Ai Required

Enter Ai

Delay hO (ARO)

Delay hO (AR1)
(MO)

Multiply
(AA. AB)

Memory PortA
(Ya)

Sj
(VC)

Bjk
(AS)

SBI,IJO
(JS)

JQO CPU 0 i-

I--Shared Register
Control

~,Ak --- AlQhO Operand

I AlQhO Operand

~
ABO (22O_~I) ~,Ak

....: AAO (2'-2'~ to I-'-- ____

Address Multiply

~,Ak

-2'1)
SACB

VR2, 3,5,13

VRO-17

vector Registers

JRO CPU 15

I AJ ~RO: ""'.: _

~ ~hared Registers

VD1
Ak

1 VDO
t-. Vector Shift

-...::.----... u> AI Data r--1-t-+r;-]_B-..lk ... L... ~ AS1 0 (2"- 215) ~ Port C

Ak VE1 (Odd BIts) ~ VB rzaz -~

I Add~SS II-- H--~=====~--:~~=====:;--I, VEO (Even BIts) Ak VA (2"_~I)
hO(CP 11___ .. tt-r----;;::=====::::;-~---' Ak-.. HCO '-+ Scalar Shift, t....:====:...J Exchange POP Count! S Registers

PopILZ, VI.., jk, nm

I

nmData AAO
(HB, AB) ----.....
JB, AS 1) Jk Data

VL Data
(HC)

PopILZ
(VE)

-

I--Ak...;..' _Al--t~ YEO (20
- 2'1) Parameters Leading Zero

VQO-3
Memory
PortA

Memory Reference (VI.... XA, CLN)
t-_A_O_, Ah_ ... Address Generation

Ports A, B, C

AO, Ah, Ak~.J-------
1 VF2 C (2"_~1)

AO, Ah, Ak ---I
-. VF1 B (2"_Z")

VFO A (2"_~1) r-
AO, Ah, Ak Memory Reference

Address Generation I­
PortA

Ak

Figure 4-3. A and B Registers Troubleshooting Block Diagram

VNO

Breakpoint.
Error Handling

A-8967

o
'"'0
C
o
o
3

"'0
c:
fit
c:t.
o
:J

en
CD
!l o·
:J

o

~
-<
~
""U
o
<0
o
en
'<
!e-m
3
""U a

co ...,
Pl
3
3
m ..,

CPU Computation Section

Scalar (S) Registers

* Control ertd/Ol data from other CPUs.

CRAY Y-MP C90 System Programmer Reference Manual

Figure 4-4 shows the eight S registers and their associated hardware.
The S registers are designated S08 through S78, and each one can store
up to 64 bits of data. The following subsections explain S register
functions, special uses, and instructions.

logical 2 t

vector Control Pop/ParIty :j:

Shift

t The second vectOlloglcal functional unit shares
hardware with the ftoatIng-point multiply functional unit. Shift

Vector
Functional

Units
:;: The reciprocal approximation floating-poInt functional

unH shares hardware with the vector pop/parlty/leading
zero functional unit.

Central
Memory

51 51

*

(AO)

«(Ah) + nm)

51 SI

*

*
SJ

Status

Programmable Clock

Sj

51

51

51 SI

*

Figure 4-4. Scalar Register Block Diagram

S Register Functions

Sj

51

Sj

Sk

Reciprocal
Approximation

Multiply 2

Add
Floating-point

Functional
Units

PopIParttyl
Leading Zeroes

Shift

Add
Scalar

Functional
Units

51 SI

*
A-9314

The S registers are the principal scalar registers for a CPU, serving as the
source and destination for operands performing scalar arithmetic and
logical operations. The scalar functional units support the S registers by

4-14 Cray Research Proprietary CSM-QSOO-OOO

CRAYY-MP C90 System Programmer Reference Manual CPU Computation Section

Special S Register Values

CSM-0500-000

performing both integer and floating-point arithmetic operations. Refer
to "Scalar Functional Units" in this section for more information on the
scalar functional units.

Data moves directly between central memory and S registers or is placed
in the T registers. Placing data in T registers allows buffering of scalar
operands between S registers and central memory. Data can also be
transferred between S and A registers, between S registers and elements
of V registers, between S and shared scalar (ST) registers, and between S
and semaphore (SM) registers.

Data from the status registers (SRO through SR 7) can be transferred to
the S registers. The SR registers include the performance monitor (PM)
counters and the maintenance modes (MM) register. S register data can
be written to SRO and to the MM register.

The contents of the vector mask (VM) register or real-time clock (RTC)
register can be transferred to an S register. Data from an S registers can
be transferred to either of these two registers, as well as to the interrupt
interval (II) register in the programmable clock.

Instructions 071i30 through 07h70 generate frequently used
floating-point constants and store them in an S register. These constants
are used for special floating-point operations, such as conversions of
numbers from integer to floating-point format.

The following list summarizes the functions of the S registers:

• Perform scalar arithmetic and logical operations.

• Transfer data between S registers and A, V, ST, or SM registers.

• Read the contents of the status registers or write data to SRO or the
MM register.

• Set/read the RTC and VM registers.

• Set the II register.

• Provide constant values for vector floating-point operations.

If register SO is referenced in the j or k fields of an instruction, the
contents of the register are not used; instead, a special operand is
generated. This special value is available immediately regardless of

Cray Research Proprietary 4-15

CPU Computation Section

S Register Instructions

4-16

CRAY Y-MP C90 System Programmer Reference Manual

existing SO register reservations (they ~e not checked in this instance).
This usage does not alter the data stored in the SO register. Table 4-4
shows the special SO register values.

Table 4-4. Special SO Register Values

Field Operand Value

Sj, j = 0 0

Sk, k= 0 263

If the i field equals 0, then the contents of the SO register are used. The i
field is not used as a special case.

Only one result per CP can be transferred to the S registers. When an
instruction delivering new data to an S register issues, the register is
reserved. This prevents subsequent instructions from reading data from
the register until the new data is delivered. Instructions reference S
registers by specifying the register number as the i,j, or k designator.
Refer to "Instruction Formats" in Section 7 for more information on
instruction fields. SO is the only S register that can be referenced when it
is not specified in one of the instruction fields.

Table 4-5 lists S register instructions and provides the octal and CAL
codes. Refer to "CPU Instruction Descriptions" in Section 7 for
complete information on these instructions. The contents of the DBA
register are added to instruction-generated memory addresses to form
physical memory addresses. Refer to "Address Range Checking" in
Section 2.

There is only one input path to the S registers; therefore, all instructions
that write data into the S registers must reserve the path for the CP when
the data is expected. Because each instruction takes a predetermined
amount of time to complete, the decode of the instruction in the issue
hardware automatically selects the proper CP at which to reserve the
input path. If the path is already reserved for that CP, the instruction
holds issue. The instruction continues to hold issue until the S register
input path is available at the necessary CPo The instruction then issues
and reserves the path for that CPo

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-5. S Register Instructions

Machine CAL Type of
Instruction Syntax Description Instruction

040iOO ron Si exp Transmit nm to Si, bits 20 - 231 (bits 232 - 263 Register Entry
are set to 0).

040i20 ron Si Si:exp Transmit nm to Si, bits 20 - 231 (bits 232 - 263

unchanged) .

040i40 ron Si exp:Si Transmit nm to Si, bits 232 - 263 (bits 20 - 231

unchanged) .

041iOO ron Si exp Transmit one's complement of ron to Si.

042ijk Si < exp Form ones mask in Si exp bits from the right;
the jk field contains the value 100e - expo

042ijk Si #> exp Form zeroes mask in Si exp bits from the left;
the jk field contains the value expo

042z77 Si 1 Transmit 1 to the Si register.

042iOO Si -1 Transmit -1 to the Si register.

043ijk Si #< exp Form zeroes mask in Si exp bits from the right;
the jk field contains the value 1 OOe - expo

043iOO Si 0 Clear the Si register.

047iOO Si #SB Transmit the one's complement of the sign bit
to the Si register.

071i30 Si O.S Transmit 0.75 x 248 to Si as a normalized
floating-point constant.

071i40 Si 0.4 Transmit 0.4 to Si as a normalized
floating-point constant.

071i50 Si 1.0 Transmit 1 .0 to Si as a normalized
floating-point constant.

071 iSO Si 2.0 Transmit 2.0 to Si as a normalized
floating-point constant.

071,70 Si 4.0 Transmit 4.0 to Si as a normalized
floating-point constant.

12hiOO nm Si exp,Ah Read from ((Ah) + exp + (DBA)) to Si. Memory Transfer

120iOO ron Si exp,O Read from (exp + (DBA)) to Si.

12hiOO 00 Si ,Ah Read from ((Ah) + (DBA)) to Si.

CSM-0500-000 Cray Research Proprietary 4-17

CPU Computation Section CRAY Y-MP COO System Programmer Reference Manual

Table 4-5. S Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

13hiOO nm exp,Ah Si Write (Sz) to «Aft) + exp + (DBA). Memory Transfer

130iOO nm exp,O Si Write (Sz) to (exp + (DBA).

13hiOO 00 ,Ah Si Write (Sz) to «Aft) + (DBA).

0030jO VM Sj Transmit (S,) to VM lower register. I nterregister
Transfer

0030j1 VM1 Sj Transmit (Sj) to VM upper register.

023ijO Ai Sj Transmit (Sj) to Ai.

047iOk Si #Sk Transmit the one's complement of (Sk) to Si.

051iOk Si Sk Transmit (Sk) to Si.

072iOO Si RT Transmit (RTC) to Si.

072i02 Si STj Transmit (ST,) to Si.

072ij3 Si STj Transmit (ST,) to Si.

o 72ij6 Si ST,Aj Transmit (ST) designated by (AJ) to Si.

073iOO Si VM Transmit (VM) to Si.

·073i02 SM Si Transmit (Sz) to SM.

073i10 Si VM1 Transmit (VM1) to Si.

073i21 Si SR2 Read PM counters 00 - 17 and increment
pointer.

073i25 SR2 Si Issue PM maintenance advance.

073i31 Si SR3 Read PM counters 20 - 37 and increment
pOinter.

073i75 SR7 Si Transmit (Si) to maintenance mode register.

073ij1 Si SRj Transmit (SR)) to Si.

073ij3 STj Si Transmit (Si) to STj.

073ij5 SRj Si Transmit (Sz) to SRj.

073ij6 ST,Aj Si Transmit (Si) to ST designated by (A)).

4-18 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-5. S Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Descri ption Instruction

o 74ijk Si Tjk Transmit [fjk) to Si. Interregister
Transfer

075ijk Tjk Si Transmit (Sl) to Tjk.

076ijk Si Vj,Ak Transmit (Vj element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak).

146ijk Vi SjIVk&VM Transmit (S)) if VM bit = 1, or (Vk element) if
VM bit = 0, to Vi elements.

060ijk Si Sj + Sk Transmit the integer sum of (S}) and (Sk) to Si. Integer Operation

061 ijk Si Sj- Sk Transmit the integer difference of (S}) and (Sk)
to Si.

061 iOk Si -Sk Transmit the negative of (Sk) to Si.

154ijk Vi Sj + Vk Transmit the integer sums of (S}) and (Vk
elements) to Vi elements.

156ijk Vi Sj-Vk Transmit the integer differences of (S}) and
(Vk elements) to Vi elements.

166ijk Vi Sj*Vk Transmit the 32-bit integer products of (S11
and (Vk elements) to Vi elements.

062ijk Si Sj + FSk Transmit the floating-point sum of (S}) and Floating-point
(Sk) to Si. Operation

062iOk Si + FSk Transmit the normalized (Sk) to Si.

063ijk Si Sj- FSk Transmit the floating-point difference of (S})
and (Sk) to Si.

063iOk Si - FSk Transmit the normalized negative of (Sk) to Si.

064ijk Si Sj* FSk Transmit the floating-point product of (S}) and
(Sk) to Si.

065ijk Si Sj* HSk Transmit the half-precision rounded
floating-point product of (S}) and (Sk) to Si.

066ijk Si Sj* RSk Transmit the rounded floating-point product of
(Sj) and (Sk) to Si.

067ijk Si Sj* ISk Transmit the reciprocal iteration 2 - (S11 * (Sk)
to Si.

CSM-0500-000 Cray Research Proprietary 4-19

CPU Computation Section CRAY Y-MP e90 System Programmer Reference Manual

Table 4-5. S Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

070ijO Si /HSj Transmit the floating-point reciprocal Floating-point
approximation of (S1) to Si. Operation

071iOk Si Ak Transmit (Ak) to Si with no sign extension.

071 i1k Si + Ak Transmit (Ak) to Si with sign extension.

071i2k Si + FAA Transmit (Ak) to Si as an un normalized
floating-point number.

160ijk Vi Sj*FVk Transmit the floating-point products of (S1)
and (Vk elements) to Vi elements.

162ijk Vi Sj*HVk Transmit the half-precision rounded
floating-point products of (S}) and (Vk
elements) to Vi elements.

170ijk Vi Sj + FVk Transmit the floating-point sums of (S1) and
(Vk elements) to Vi elements.

172ijk Vi Sj-FVk Transmit the floating-point differences of (S1)
and (Vk elements) to Vi elements.

044ijk Si Sj&Sk Transmit the logical product of (S}) and (Sk) to Logical Operation
Si.

044ijO Si Sj&SB Transmit the sign bit (bit 263) of (S1) to Si.

045ijk Si #Sk&Sj Transmit the logical product of (S1) and the
complement of (Sk) to Si.

045ijO Si #SB&Sj Transmit (S}) with sign bit cleared to Si.

046ijk Si Sj\Sk Transmit the exclusive OR of (S}) and (Sk) to
Si.

046ijO Si Sj\SB Toggle the sign bit of (Sj) I and transmit the
result to Si.

047ijk Si #Sj\Sk Transmit the logical equivalence of (S}) and
(Sk) to Si.

047ijO Si #Sj\SB Transmit the logical equivalence of (S}) and
the sign bit to Si.

050ijk Si SjlSi&Sk Transmit the logical product of (Sz) and (Sk)
complement ORed with the logical product of
(Sj) and (Sk) to Si; merge (Sz) and (S}) into Si
using (Sk) as the mask.

4-20 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-5. S Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Descri ption Instruction

050ijO Si SjISi&SB Transmit the scalar merge of (Si) and the sign Logical Operation
bit of (Sj) to Si.

051 ijk Si Sj!Sk Transmit the logical sum of (S}) and (Sk) to Si.

051 ijO Si Sj IS8 Transmit the logical sum of (S}) and the sign
bit to Si.

140ijk Vi Sj&Vk Transmit the logical products of (S}) and (Vk
elements) to Vi elements.

142ijk Vi SjlVk Transmit the logical sums of (S}) and (Vk
elements) to Vi elements.

144ijk Vi Sj\Vk Transmit the exclusive ORs of (Sj) and (Vk
elements) to Vi elements.

..'
052ijk SO Si < exp Shift (Sz) left exp places to SO; exp = jk. Register Shift

053ijk SO Si> exp Shift (Sz) right exp places to SO; exp = 1 OOs - jk.

054ijk Si Si < exp Shift (Sz) left exp places to Si; exp = jk.

055ijk Si Si> exp Shift (Sz) right exp places to Si; exp = 1 OOs - jk.

056ijk Si Si,Sj < Ale Shift (8z) and (S}) left (Ale) places to Si.

056ijO Si Si,Sj < 1 Shift (Sz) and (Sj) left one place to Si.

056iOk Si Si < Ale Shift (Sz) left (Ale) places to Si.

057ijk Si Sj,Si> Ale Shift (S}) and (Sz) right (Ale) places to Si.

057ijO Si Sj,Si> 1 Shift (S}) and (Si) right one place to Si.

057iOk Si Si> Ale Shift (Sz) right (Ale) places to Si.

014ijkm JSZ exp Jump to exp if (SO) = 0 (i2 = 0). (Y-MP mode) Conditional Jump

014000 nm JSZ exp Jump to exp if (SO) = O. (C90 mode)

015ijkm JSN exp Jump to exp if (SO) pi! 0 (i2 = 0). (Y-MP mode)

015000 nm JSN exp Jump to exp if (SO) pi! O. (COO mode)

016ijkm JSP exp Jump to exp if (SO) is positive; (SO) O!: 0 (i2 = 0).
(Y-MP mode)

CSM-0500-000 Cray Research Proprietary 4-21

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

Table 4-5. S Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

016000 nm JSP exp Jump to exp if (SO) is positive; (SO) ~ O. (COO Conditional Jump
mode)

017ijkm JSM exp Jump to exp if (SO) is negative (i2 = 0).
cY-MP mode)

017000 nm JSM exp Jump to exp if (SO) is negative. (COO mode)

Intermediate Scalar (T) Registers

4-22

Sixty-four 64-bit T registers are designated 1'08 through T778. The T
registers are used as intermediate storage registers for the S registers.
Typically, T registers contain data to be referenced repeatedly over a long
time period, making it inefficient to retain the data in either S registers or
in central memory. Data transfers between a T register and an S register
take 1 CPo

T register data transfers to or from central memory at a maximum rate of
two words per CPo The 7 low-order bits of the contents of register Ai
specify the number of words to be transmitted. The first T register
involved in the block transfer is specified by the jk fields of the
instruction; successive data words transferred are to or from successive T
registers until T77 is reached. Register TOO is processed after register
T77 if more words need to be transferred. During these block transfers, a
reservation is made on all T registers used in the block transfer. Other
instructions can issue while T register data is being transferred to or from
central memory.

T register data is protected with parity bits. When a word is written into
a T register, a set of parity bits is generated and stored with the data bits.
This set of parity bits is compared to another set generated when the
word is read out of the T register. An error is indicated when the two sets
do not match. Parity errors set the register parity error (RPE) flag in the
exchange package. Refer to "Status Registers" in Section 3 for
additional information on parity errors.

Instructions reference T registers by specifying the T register number in
the jk designator. Refer to "Instruction Formats" in Section 7 for more
information on instruction fields. Table 4-6 summarizes the T register
instructions.

Cray Research Proprietary CS M-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-6. T Register Instructions

Machine CAL Type of
Instruction Syntax Description Instruction

074ijk Si Tjk Transmit (fjk) to Si. I nterregister
Transfer

075ijk Tjk Si Transmit (Sl) to Tjk.

036ijk Tjk,Ai .,AO Read (Al) words from memory starting at Block Transfer
address (AO) + (DBA) to T registers starting at
register jk.

037ijk ,AO Tjk,Ai Write (Al) words from T registers starting at
register jk to memory starting at address (AO)
+ (DBA).

Sand T Register Troubleshooting

CSM-0500-000

To assist in troubleshooting problems with the S and T registers,
Figure 4-5 provides a block diagram of these registers showing the
options involved and the signals that pass between them. For a more
detailed description of this diagram, refer to the CRAY Y-MP C90
Computer System Hardware Maintenance Manual, publication number
CMM-0502-000.

Cray Research Proprietary 4-23

()
CJ)

:s:
I

o
01
o
o

I

o
o
o

JA

Scalar Issue
Control

JB

FU Issue
Control

(VR10-17) VJ

(J5O-3)
STj,RTC,SM

A) Ak (A

(HB,AB

CHC,H

nm
)

SAJPM
E)

I VB7 (2«1-281)

I VBS (258-~
I VBS ~ - 2'fi)

I VB4 (~_2'i')

I VB3 ~-~ YDO-7
VB2 (~-~ Si

MemoryWrHe

r VB1 (~-~
Data

(VBO (~-~)
lVA7 (2""-2'") SJ

A-

I VAS (224 - 227)
Aoating-point

Reciprocal
HE r VAS (~-~

(~_~1)

Maintenance
50=0

I VA4 (218 _2' '')
51 Advance

F- ..
SI,SIt

I VA3
Aoating-point

(2'2 _2 '5) Add

I VA2
He (2"1'-2'i2)

(~_2") 51

I VA1
Status Registers

(~-21)
VAs

M-
51, Sk

Fanout Enter 50-7
VAO (2"-~) Aoatlng-polnt

---- - Muhlply
HF

kjih 50=0 ~-~)

-- - - - 51
Maintenance

FU Select Memory Port C Mode Register -- -- - ~ VE1 (Odd Bits) 51 Required FR Data - - - - - M - Select Si Operand YEO (Even Bits) -- - -- FA Data Shift, Add, PopIlZ, ~JSO_3 CPU" Go Selection - · .
FM Data

VM, Scalar Mask · . · .
(yO)

Memory Port A

""'"
I JSO - 3 CPU 1 I---'

Aoating-point Reciprocall Scalar Add Enable, Carry Ve10~ 17 ~

(RE, RF)
Vector Pop

Sli Data 51, SJ
(~-2"") JSO-3 CPUO

51, 51 Shared Registers, Floating-point Add

l. VeO-7 ~
(FA, FB) (2"_~1) I- 51,51 ATC,PC

1 Floating-point Muhiply
(MF, MG) Vector Pipe 1

VeO-17 r)k -
(A5O-3) Si Data

(HA)

Vector (VRO-7)
VJ AA1 (2UI_~I)

~A~ Pipet VJ, STj, ATC, SM (2"1'-~ SJ
51 I AS2 (~-~1) l. AAO (2"_215)

A Registers YQO-7
Tjk I AS1 (218_~I) - ~ "'" VEO-1 Shift, Ak, etc. Memory

"'" ASO (2"-2 '5) ~ / Shift, Add, Ak, Shift Overlap

I I
PortB

SR/PM, Scalar
T Registers j TJk

VA, VB, ve ..!1!., YDO-7
Constant, Add Gany/Shift 1 logical - --- Vector Memory
nm, Scalar
Mask, VM

Pipes 0-1 PortC

A-9tB7

Figure 4-5. Sand T Registers Troubleshooting Block Diagram

o
'"U
C
o
o
3

"'0
C
r+

f! o·
::J

en
<D
n­cr
::J

o

~
-<
~
'"U
o
<.0 o
en
'<
!!!.
<D
3
""0 ..,
o

(Q ..,
Q)

3
3
<D ..,
JJ
<D
CD' ..,
<D
::J
o
<D

s:
Q)
::J
C
~

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Vector (V) Registers

Vector Processing

CSM-0500-000

Figure 4-6 shows the eight V registers and their associated hardware.
The V registers are designated VO through V7. Each V register contains
12810 elements; each element can store 64 bits of data. The 128 elements
are divided into two groups, called pipes, with one pipe processing the
even-numbered elements and the other pipe processing the
odd-numbered elements. Each pipe is supported by an identical set of
functional units.

V register data is protected with parity bits. When a word is written into
a V register, a set of parity bits is generated and stored with the data bits.
This set of parity bits is compared to another set generated when the
word is read out of the V register. An error is indicated when the two
sets do not match. Parity errors set the register parity error (RPE) flag in
the exchange package. Refer to "Status Registers" in Section 3 for
additional information on parity errors.

The V registers are used for vector processing. The following subsections
explain vector processing, the V register functions, the V register
instructions, and vector chaining.

Vector processing increases processing speed and efficiency by allowing
an operation to be performed sequentially on a set (or vector) of operands
through the execution of a single instruction.

A vector is an ordered set of elements; each element is represented as a
64-bit word. A vector is distinguished from a scalar, which is a single
64-bit word. Examples of structures in Fortran that can be represented as
vectors are one-dimensional arrays and rows, columns, and diagonals of
multidimensional arrays. Vector processing occurs when arithmetic or
logical operations are applied to vectors; it is distinguished from scalar
processing in that it operates on many elements rather than on one.

In vector processing, two successive pairs of elements are processed each
CPo The dual vector pipes and the dual sets of vector functional units
allow a pair of even-numbered elements and a pair of odd-numbered
elements to be processed during the same CPo As each pair of operations
is completed, the results are delivered to successive even- or
odd-numbered elements of the result register. The vector operation
continues until the number of elements processed by the instruction
equals the count specified by the vector length (VL) register.

Cray Research Proprietary 4-25

CPU Computation Section CRAY Y-MP C90 System Programmer Reference Manual

! I Vector Length

+
Vector Control Vector Mask I

I
Central I + Vector Registers
Memory

((AD) + (Ak», ((AO) + (Vk» (Even Elements)
/7

((AD) + (Ak», ((AO) + (Vk)) 7h
((AD) + (Ak», ((AO) + (Vk» / .r-

zF ... VO-7 ... =7Z.V1
00 -~
I ~? VI<

~L Vi

177 ~U

Scalar Registers -
/'~ / ' .r::l.

/ "1 Sj

/? /' Sk

L ' ~ Si
SO-7 ----""-,, ,... Address Registers

' lJ '/ "l
/i

I? SI +

/? 'l
1 AD-7 ± -

Figure 4-6. V Register Block Diagram

4-26 Cray Research Proprietary

1 Loglcal2 T

1 PoplParityllZ ±

1 Shift

I -Logical

VI .. AI<

VI<
Add

Vector I-
Vi Functional ---Units Sj

(pIpe 1)

I Reciprocal
Approximation

I Multiply

Vi
Add -VI<

Floating-point
VI Functional -
Sj

Units
(Pipe 1)

I Logical2 +

I Pop/ParitylLZ ±

1 Shift

""' Logical
Sj I ~ AI<

VI
Add

Vector ""' VI< Functional -Vi Units
(Pipe 0)

I Reciprocal
Approximation

I Multiply
Vi

~
Add ~

Vi

SI
Floating-point

Functional -SI Units
Sk (Pipe 0)

The second vector logical functional unit
shares hardware with the floating-point
multiply functional unit.

The reciprocal approximation floating-point
functional unit shares hardware with the
vector pop/parlty/leadlng zero functional
unit.

A-9315

CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Parallel vector operations allow the generation of more than two results
per CPo Parallel vector operations occur automatically in the following
situations:

• When successive vector instructions use different functional units
and different V registers.

• When successive vector instructions use the result stream from one
vector register as the operand of another operation using a different
functional unit. This process is known as chaining and is explained
later in this subsection.

Advantages of Vector Processing

V Register Functions

CSM-0500-000

In general, vector processing is faster and more efficient than scalar
processing. Vector processing reduces the extra time and storage space
associated with maintenance of the loop-control variable (for example,
incrementing and checking the count). In many cases, loops processed as
vectors are reduced to a simple sequence of instructions without
branching backwards. Central memory access conflicts are reduced, and
finally, functional unit segmentation is exploited through vector
processing because results from the units can then be obtained at the rate
of two results per CP.

Vectorization typically speeds up a code segment by an approximate
factor of ten. If a segment of code that previously accounted for 50% of
a program's running time is vectorized, the overall running time is 55%
of the original running time (50% for the unvectorized portion plus 0.1 x
50% for the vectorized portion). Vectorizing 90% of a program causes
running time to drop to 19% of the original execution time.

The V registers are used solely for vector processing, unlike the A and S
registers, which are used for many secondary functions. Vector
processing allows a single instruction to perform a specified operation
sequentially on a set (vector) of operands, to produce a vector of results.
Examples of these sets or vectors may be rows or columns of a matrix or
elements of a table.

The contents of a V register are transferred to or from central memory
through a block transfer. A vector block transfer is accomplished by
specifying a first word address in central memory, an increment or
decrement value for the central memory address, and a vector length.
The transfer begins with the first element of the V register and proceeds
at a maximum rate of two words per clock period (CP); this rate can be
affected by central memory conflicts. Central memory conflicts interrupt

Cray Research Proprietary 4-27

CPU Computation Section

Vector Instructions

4-28

CRAY Y-MP C90 System Programmer Reference Manual

the vector data stream and can occur in chained operations (although they
do not inhibit chaining). Any interruption in the vector data stream adds
proportionally to the total execution time of vector operations.

Single-word data transfers can also be made between an S register and an
element of a V register.

Vector instructions reference V registers by specifying the register
number in the i, j, or k field of the instruction. Refer to "Instruction
Formats" in Section 7 for information on instruction fields. Operations
on vector registers always start with element O. Individual elements of a
V register are designated by octal numbers ranging from 00 through 177.
These numbers appear as subscripts to vector register references. For
example, Vfn7 refers to element 27 of V register 6.

Vector instructions reserve V registers as either operands or results. If
the register is reserved as an operand, it cannot be used as an operand or
result until the operand reservation clears. A vector register can be used
as both an operand and result register for the same vector instruction. If
a register is reserved as a result, it can be used as an operand through a
process called chaining. Refer to "Vector Chaining" in this section for
more information on chaining.

No reservation is placed on the VL register during vector processing. If
a vector instruction uses an S register as an operand, no reservation is
placed on the S register. Conflicts can occur between vector and scalar
operations involving floating-point operations and memory access. With
the exception of these operations, the floating-point functional units are
always available for scalar operations. The Sand VL registers can be
modified after the vector instruction issues without affecting the vector
operation. The AD and Ale registers in a vector memory reference can
also be modified after the instruction issues.

Because most transfers to or from registers are done in blocks of data,
instructions that transfer data between V registers and central memory
reserve a port, and functional unit instructions reserve the appropriate
functional unit.

Table 4-7 summarizes the types of V register instructions and shows the
machine instruction, the CAL code, a description of the instruction, and
the type of instruction. Refer to "CPU Instruction Descriptions" in
Section 7 for a detailed description of these instructions.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-7. V Register Instructions

Machine CAL Type of
Instruction Syntax Description Instruction

076ijk 8i Vj,Ak Transmit (Yj element (Ak)) to Si. Register Entry

077ijk Vi,Ak Sj Transmit (SJ) to Vi element (Ak).

077iOk Vi,Ak 0 Clear element (Ak) of register Vi.

176iOk Vi ,AO,Ak Read (VL) words to Vi starting at address Memory Transfer
(AD) + (DBA), incrementing by (Ak).

176iDO Vi ,AO,1 Read (VL) words to Vi starting at address
(AD) + (DBA), incrementing by 1.

176i1k Vi ,AO,Vk Read (VL) words to Vi using memory
addresses ((AO) + (Vk) + (DBA)).

1770jk ,AO,Ale Vj Write (VL) words from (v11 to memory starting
at (AO) + (DBA), incrementing by (Ak).

1770jO ,AO,1 Vj Write (VL) words from 0111 to memory starting
at address (AO) + (DBA), incrementing by 1.

1771jk ,AO,Vk Vj Write (VL) words from (VJ) to memory using
memory addresses ((AO) + (Vk) + (DBA)).

154ijk Vi Sj + Vk Transmit the integer sums of (SJ) and (Yk Integer Operation
elements) to Vi elements.

155ijk Vi Vj + Vk Transmit the integer sums of (Vj elements)
and (Vk elements) to Vi elements.

156ijk Vi Sj-Vk Transmit the integer differences of (SJ) and
(Yk elements) to Vi elements.

157ijk Vi Vj- Vk Transmit the integer differences of (Vj
elements) and (Vk elements) to Vi elements.

174ij3 Vi ZVj Transmit the leading zero count of (Yj
elements) to Vi elements.

160ijk Vi Sj*FVk Transmit the floating-point products of (8J) Floating-point
and (Vk elements) to Vi elements. Operation

161 ijk Vi Vj*FVk Transmit the floating-point products of (Yj
elements) and (Vk elements) to Vi elements.

162ijk Vi Sj*HVk Transmit the half-precision rounded
floating-point products of (5,) and (Vk
elements) to Vi elements.

CSM-0500-000 Cray Research Proprietary 4-29

CPU Computation Section CRAY Y-MP C90 System Programmer Reference Manual

Table 4-7. V Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

163ijk Vi Vj*HVk Transmit the half-precision rounded Floating-point
floating-point products of ryj elements) and Operation
ryk elements) to Vi elements.

164ijk Vi Sj*RVk Transmit the rounded floating-point products
of (S}1 and ryk elements) to Vi elements.

165ijk Vi Vj*RVk Transmit the rounded floating-point products
of (Vj elements) and ryk elements) to Vi
elements.

166ijk Vi Sj*Vk Transmit the 32-bit integer products of (S}1
and ryk elements) to Vi elements.

167ijk Vi Vj*Vk Transmit the reciprocal iterations 2 - ryj
elements) * ryk elements) to Vi elements.

170ijk Vi Sj + FVk Transmit the floating-point sums of (S}1 and
(Vk elements) to Vi elements.

170iOk Vi + FVk Transmit the normalized ryk elements) to Vi
elements.

171 ijk Vi Vj + FVk Transmit the floating-point sums of ryj
elements) and 01k elements) to Vi elements.

172ijk Vi Sj- FVk Transmit the floating-point differences of (S}1
and (Vk elements) to Vi elements.

172iOk Vi - FVk Transmit the normalized negatives of (Vk
elements) to Vi elements.

173ijk Vi Vj -FVk Transmit the floating-point differences of ryj
elements) and (Vk elements) to Vi elements.

174ijO Vi /HVj Transmit the floating-point reciprocal
approximation of ryj elements) to Vi
elements.

140ijk Vi Sj&Vk Transmit the logical products of (Sj) and ryk Logical Operation
elements) to Vi elements.

141 ijk Vi Vj&Vk Transmit the logical products of ryj elements)
and ryk elements) .to Vi elements.

142ijk Vi SjlVk Transmit the logical sums of (Sj) and (Vk
elements) to Vi elements.

142iOk Vi Vk Transmit ryk elements) to Vi elements.

4-30 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Table 4-7. V Register Instructions (continued)

Machine CAL Type of
Instruction Syntax Description Instruction

143ijk Vi VjlVk Transmit the logical sums of 01j elements) Logical Operation
and 01k elements) to Vi elements.

144ijk Vi Sj\Vk Transmit the exclusive DRs of (Sj) and 01k
elements) to Vi elements.

145ijk Vi Vj\Vk. Transmit the exclusive DRs of 01j elements)
and 01k elements) to Vi elements.

146ijk Vi SjIVk&VM Transmit (S1) if VM bit = 1, or 01k element) if
VM bit = 0, to Vi elements.

146iOk Vi #VM&Vk Transmit the vector merge of 01k elements)
and 0 to Vi elements.

147ijk Vi VjIVk&VM Transmit (Vj elements) if VM bit = 1, or 01k
elements) if VM bit = 0, to Vi elements.

150ijk Vi Vj < Ak Shift 01j elements) left (Ak) places to Vi Register Shift
elements.

150ijO Vi Vj < 1 Shift 01j elements) left one place to Vi
elements.

005400 Vi Vj < VO Shift 01j elements) left 010) places to Vi
150ijO elements.

151 ijk Vi Vj> Ak Shift 01j elements) right (Ak) places to Vi
elements.

005400 Vi Vj> VO Shift 01j elements) right (VO) places to Vi
151 ijO elements.

151 ijO Vi Vj> 1 Shift 01j elements) right one place to Vi
elements.

152ijk Vi Vj,Vj < Ak Double shift (Vj elements) left (Ak) places to
Vi elements.

152ijO Vi Vj,Vj < 1 Double shift \Vj elements) left one place to Vi
elements.

005400 Vi Vj,Ak Transfer \Vj elements) to Vi elements starting
152ijk at element (Ak).

CSM-0500-000 Cray Research Proprietary 4-31

CPU Computation Section CRAYY-MP egO System Programmer Reference Manual

Table 4-7. V Register Instructions (continued)

Machine CAL
Instruction Syntax

153ijk Vi Vj,Vj > Ak

153ijO Vi Vj,Vj> 1

Vector Chaining

4-32

Type of
Description Instruction

Double shift 0/j elements) right (Ak) places to Register Shift
Vi elements.

Double shift 0/j elements) right one place to
Vi elements.

The CRAY Y -MP C90 computer system allows a vector register reserved
for results to become the operand register of a succeeding instruction.
This process, called chaining, allows a continuous stream of operands to
flow through the vector registers and functional units. Even when a
vector load operation pauses because of memory conflicts, chained
operations may proceed as soon as data is available.

This chaining mechanism allows chaining to begin at any point in the
result vector data stream. The amount of concurrency in a chained
operation depends on the relation between the issue time of the chaining
instruction and the arrival time of the result data stream. For full
chaining to occur, the chaining instruction must issue and be ready to use
element 0 of the result at the same time element 0 arrives at the V
register. Partial chaining occurs if the chaining instruction issues after
the arrival of element 0 of the result vector data stream.

Figure 4-7 shows how the results of four instructions are chained
together. The instruction chaining sequence comprises the following
operations:

1. . Reads a vector of integers from central memory to register YO.

2: Adds the contents of register VO to the contents of register Vl and
sends the results to register V2.

3. Shifts the results obtained in Step 2 and sends them to register V3.

4. Forms the logical product of the shifted sum obtained in Step 3
with the contents of register V4 and sends the results to register VS.

As soon as the first two elements from central memory arrive at register
YO, they are added to the first two elements of vector register VI.
Subsequent pairs of elements are pipelined through the segmented
functional unit, so a continuous stream of results is sent to the destination
register, which is register V2. As soon as the first two elements arrive at

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

register V2, they are used as operands for the shift operation. The results
are sent to register V3, which immediately becomes the source of one of
the operands necessary for the logical operation between registers V3
and V 4. The results of the logical operation are then sent to register VS.

Memory
V1 Register V4 Register

VO Reglster~===::;-1 V2 Register V5 Register

Memory Path

Vector Control Registers

Vector Length Register

Vector Mask Register

CSM-D500-OOO

Vector Add
Functional Unit

Vector Shift
Functional Unit

Figure 4-7. Vector Chaining Example

Vector Logical
Functional Unit A·9316

The vector length (VL) register and vector mask (VM) register provide
control information needed in the performance of vector operations and
are described in the following subsections.

The 8-bit VL register can be set to any value from 18 through 2008 (a
value of 0 results in VL = 2008). The value stored in this register
specifies the number of vector operations performed by the vector
instructions, 140ijk through 177ijk. The VL register is loaded and saved
during an exchange sequence. The VL register can also be loaded by
instruction 00200k or read by instruction 023iOl.

The VM register can store 128 bits; each bit corresponds to an element of
a vector register. Bit 2127 corresponds to element 0, bit 2° to element
127. The mask is used to allow operations to be performed on selected

Cray Research Proprietary 4-33

CPU Computation Section

Machine CAL
Instruction Syntax

0030jO VM Sj

0030j1 VM1 Sj

003000 VM 0

073iOO Si VM

146ijk Vi SjIVk&VM

146iOk Vi #VM&Vk

147ijk Vi VjIVk&VM

1750jO VM Vj,Z

1750j1 VM Vj,N

1750j2 VM Vj,P

1750j3 VM Vj,M

175ij4 Vi,VM Vj,Z

175ij5 Vi,VM Vj,N

175ij6 Vi,VM Vj,P

175i}7 Vi,VM Vj,M

4-34

CRAYY-MP C90 System Programmer Reference Manual

vector elements in a vector merge and to store the results of vector test
instructions. Table 4-8 lists the VM register instructions and shows octal
and CAL codes. Refer to "CPU Instruction Summary" in Section 7 for
complete information on these instructions.

Table 4-8. Vector Mask Instructions

Type of
Description Instruction

Transmit (S}1 to VM lower register. Register Entry

Transmit (S}1 to VM upper register.

Clear VM register.

Transmit (VM) to Si.

Transmit (S}1 if VM bit = 1, or (Vk element) if Logical Operation
VM bit = 0, to Vi elements.

Transmit the vector merge of (Vk elements)
and 0 to Vi elements.

Transmit (Vj elements) if VM bit = 1, or (Vk
elements) if VM bit = 0, to Vi elements.

Set VM bit if (Vj element) = O.

Set VM bit if (Vj element) p! O.

Set VM bit if (Vj element) ~ O.

Set VM bit if (Vj element) < O.

Set VM bit if (Vj element) = 0; also, store the
compressed indices of the Vj elements = 0 in
the Vi elements.

Set VM bit if (Vj element) p! 0; also, store the
compressed indices of the Vj elements P! 0 in
the Vi elements.

Set VM bit if (Vj element) ~ 0; also, store the
compressed indices of the Vj elements ~ 0 in
the Vi elements.

Set VM bit if (Vj element) < 0; also, store the
compressed indices of the Vj elements < 0 in
the Vi elements.

The contents of the VM register can be set from an S register through
instructions 0030jO and 0030jl, or they can be created by testing the
elements of a vector register for a specified condition using instruction

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

175ijk. The mask controls element selection in the vector merge
instructions (146ijk and 147ijk). Instruction 073iOO reads the contents of
the VM register to an S register.

V Register Troubleshooting

CSM-0500-000

To aSsist in troubleshooting problems with the V registers, Figure 4-8
provides a block diagram of these registers showing the options involved
and the signals that pass between them. For a more detailed description
of this diagram, refer to the CRAY Y-MP C90 Computer System
Hardware Maintenance Manual, publication number CMM-0502-000.

Cray Research Proprietary 4-35

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

(YJ)

HB I NIP 11---..
...... _---
_

P~ort~A~,~B~,C~Co_n_fli~~~~~

-,--Po~rt~A_,~B~, C.;...;...Re;.;.le~a;.;;.se~s~ ...
(YE)-

-,--R~ele~~~e;.;.VI~J~k ____________ ~~
(Va)-

-,--P~ort~A~,~B~,C~Em~p~~~ ____ ~
(YI, YM)-

=B~DM~,E~S~VL~ ______ ~
(HC)-

JBO

Vector,
Memory,

FU
Issue

Control

Data Ready

Data Ready VR17 V4-7
(~_263) L..r Va1 V4-7

Vi, Si Required } vao VO - 3
VFU Select (VR - VA, ..

VB, VC)
Go Selection

IVR15 V4-7
(232 _2"7)

-- IVR13 V4-7
- Vector Result Data (216 _ ~1)

] Read Sequence J I (VA, VB, VC)

VL (~-26)
(HC)

PO, P1 Memory Conflict

GOVk, Vj, Vi

x76, x77

a..;k~jih~---t"" VR
Fanout

Go FR, FA, FM, VA

GaVS, VL
~;"";"';;':"";"~""(VD, VE) ...----1"-

Vector
Register
Control

f
VR11 V4-7

J-l.-..;,.G_o _Re_a_d ________ -+-____ .. (~ - 215)

Write Sequence J I..",IVL..:R-1-6--V-0---3~
1 Go Write J (2"8 - ~)

IJ IVR12 VO-3
if (216 _~1)

/(
JA, VR) Select Akji~ VC17 (~-~)

7 • •, Vector
Vector Read Datal : : i J Result Data

II 7 I VC10 (232_~) I

Vector Add
VCO (20 - ~) Enable, Carry

J 6 I ~21~~7) VO-3

VR10 VO-3 I v~~ I ~~ (20-2'')
Vector

~
.. l {l7 Vf7 (22

8 ~ ~1) I ~ FU Operands

Vector Vj Test (for 175)
Pipe 1 I-'~

~ Registers
(Odd Elements) -

Pipe 1

k'ih
(JB, VR) ~FU Select
(JB, VR)

Vector
Logical

FU

VO
,...Vi",-J ---4-.1 Memory

Vk

Port C

va
Memory ~ "'"

Ports A, B

VI
GIS

R-
..,Vi.-J_-..I FR, V Pop, ~

-- VLZ ----

FA,FB
FA ~ Sj,Vjk --

Sj, Vjk M-__ FM

Vi
VO

Vector
Shift

Vector

> Result
Data

(Through
VCtoVR)

va
Vector Add Carry (VC) - Add

t-----IVM Bit,
VE Adv. Index

Vj Tests (VC) -
Pipe 1

L Release FR, FA,
r-J-CO

----. FM, VA, VS, VL

I PO Go Data VO - 7 (JC)

Go Memory Data POIP1 (YE)

Go GIS Address POIP1
'-----....;.....----~-. (YI)

..;.Vi;:.;i/S;;.;.i .;..R.;..eq;:,;;;u;;;,;ire:.:d:...-..........
(JB, VR)

Go Selection
(JB) ---~----..

VR7 V4-7

Vj VO
Memory
Port C

PO Go Data VO-7
(Va)

Rele~e Vjk VO - 7
(VQ)

PO, P1 Go Write Index Vector,
(VE)

Aki (~-26)
FU

(AR)
liming

PortAO/A1 VI, Release
(VR20)

(VR20)
PortAO/A1 Read Mode VIa
PortAO/A1 Go Read

(YQO - 1, AS2)
Port BO/B1 VI, Release

(VR21)
Port BO/B1 Read Mode vrr

(VR21)
Port B0/81 Go Read

(YQ2 - 3, AS3)

CSM-0500-000

Release Vi VO - 7

POIP1 Go Write VO - 7 ~ __ ;..;.Re;;.;.lea;.;;;.;.se.;..VI.;JJ:;.;.k ..;.,VO;,..-_7,;...--. (JB, JC)
(~_263)

IVR5 V4-7 Memory ~"'"
Ports A, B I

va

FR Go Data PO/P1
~.;....;...;~.;.;....;..~~. (VQ1, RF)

1-F.;.;.A.;..G.;..o.;..D.;..a;.;.;.ta.;..P;..;O;.:.;/P....;1_ .. (VQ1, FA)

FM Go Data POIP1
~~;....;;;..;.;.;.;;;.;..~~. (VQ1, MG)

I-VL~G.;..o.;..D.;..a;.;.;.ta;;..;P;..;O;.:.;IP....;1_ .. (VE)

... V.;..S.;..C.;..o;;.;.n;.;;.tro,;.;I.;..S ----. (VO)

FA RkMode
~.;..;..;;..;..;.;.;.;~----.. (Vao, FA)

(~2 _2"7)

~_--.1 IVR1 V4-7
~ __ -fJ (~_215)

'--__ --.' IVR6 VO - 3
;..;;Ak;..J(,;:..:20_-..::2~6) ___ ---41 (~- ~)

(AR, VR) Vector Result Data' 6 I '(;24_ ~7~O - 3

IVR2 VO-3
(216_ ~1)

Vector
Registers

(Even Elements) -
Pipe 0

VI
VB7 (~-: 263) ~ GIS

11l...r: · I7Si,Data R- Vi

Vk

11 L::::J 'J VB1 (~-~ I f ... VI~-l __ '" FR'JJOP, ~
'I 7. I VBO (232

- 235
) ~

I 1 FU 01.... d S~;, VJ"k FA, FB \ r. I VA7 (228_~1) 1;...;~'''';.;·e.;.;ra~n.;..s~;;;>J~I...... FA ..!!..
I :: Vector Add

"" lVector Read Data I VA ~ (~_ ;7) ~_E_nab_le_, C_a_rry...;.-.-.

~ L J Vi Test (for 175
.. VAO (20-~) f

Vector
Vector ~ Result Data
Pipe 0

Sj, Vjk

Vj --

M-
FM

VD
Vector
Shift

Vector
Result

> Data
(Through
VA,VB
toVR)

Vector
Logical FU

Scalar
Registers

va
Vector
Add

VE

Add Carry, (VA, VB)

VMBit,

L.-__ Vj Tests Adv.lndex
(VA, VB)

Pipe 0 A·9188

Figure 4-8. Vector Registers Troubleshooting Block Diagram

Cray Research Proprietary 4-37

CRAY Y-MP COO System Programmer Reference Manual CPU Computation Section

Functional Units

CSM-0500-000

Functional units perform instructions other than simple transfers or
control operations. Functional units have independent logic except for
the reciprocal approximation, vector population count, and vector leading
zero units, and the floating-point multiply and second vector logical
units, which share some logic (described later in this section). All
functional units can operate simultaneously. For more information, refer
to "Functional Unit Independence" in Section 5.

A functional unit receives operands from registers, performs a specific
operation on them, and delivers the result to a register when the operation
is completed. Functional units operate generally in three-address mode
with source and destination addressing limited to register designators.

All functional units perform their specific operations in a fixed amount of
time; delays are impossible once the operands are delivered to a unit.
The time required from delivery of the operands to the functional unit
until completion of the calculation is called the functional unit time and
is measured in CPs.

Functional units are fully segmented, which means a new set of operands
for unrelated computation can enter a functional unit each CP, even
though the functional unit time is more than 1 CPo Refer to "Pipelining
and Segmentation" in Section 5 for more information on segmentation.

There are four groups of functional units: address, scalar, vector, and
floating-point. The address, scalar, and vector functional units operate
with one of the primary register types (A, S, and V) to support address,
scalar, and vector processing. The floating-point functional units support
either scalar or vector operations and accept operands from or deliver
results to S or V registers. For timing purposes, central memory can also
act as a functional unit for vector operations.

The following subsections define the functions, the functional unit times,
and the instructions executed by each functional unit. Refer to the
following headings for additional information on functional units:

•

•

•

"Pipelining and Segmentation" and "Functional Unit
Independence" in Section 5 contain detailed information on
functional unit segmentation and independence.

"Functional Unit Operations" in this section contains detailed
information on integer arithmetic, floating-point arithmetic,
normalized floating-point numbers, floating-point range errors,
addition algorithm, multiply algorithm, and the division algorithm.

"CPU Instruction Descriptions" in Section 7 contains detailed
information on the instructions and instruction formats.

Cray Research Proprietary 4-39

CPU Computation Section CRAYY-MP COO System Programmer Reference Manual

Address Functional Units

Address Add Functional Unit

Address functional units perform integer arithmetic on operands obtained
from A registers and deliver the results to an A register.

The address add functional unit performs 32-bit integer addition and
subtraction. The unit executes instructions 030ijk (addition) and 031ijk
(subtraction). The subtraction operation uses two's complement
arithmetic. The Ak operand is complemented then added to the Aj
operand. A 1 is added to the low-order bit position of the result. The
address add functional unit does not detect overflow.

The address add functional unit time is 1 CP. 1\vo CPs elapse from
instruction issue to the time the result register can be referenced again.

Address Multiply Functional Unit

Scalar Functional Units

4-40

The address multiply functional unit performs 32-bit integer
multiplication. The unit executes instruction 032ijk forming a 32-bit
integer product from two operands. No rounding is performed. The
result consists of the least significant 32 bits of the product. The address
multiply functional unit does not detect overflow.

The address multiply functional unit time is 3 CPs. Four CPs elapse
from instruction issue to the time the result register can be referenced
again.

Scalar functional units perform operations on 64-bit operands obtained
from S registers and usually deliver the 64-bit results to an S register.
The exception is the population/parity/leading zero count functional units
that deliver a 7 -bit result to an A register.

Four functional units are exclusively associated with scalar operations
and are described below. Three floating-point functional units are used
for both scalar and vector operations. When a scalar instruction uses a
floating-point functional unit, it must determine whether that functional
unit is reserved by a vector operation. If the functional unit is reserved,
the scalar instruction holds issue until the functional unit reservation is
cleared. Refer to "Floating-point Functional Units" in this section for
more information on these functional units.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Scalar Add Functional Unit

Scalar Shift Functional Unit

Scalar Logical Functional Unit

CSM-0500-000

The scalar add functional unit performs 64-bit integer addition and
subtraction. It executes instructions 060ijk (addition) and 061ijk
(subtraction). The subtraction operation uses two's complement
arithmetic. The Sk operand is complemented and added to the Sj
operand, and a 1 is added to the low-order bit position of the result. The
scalar add functional unit does not detect overflow.

The scalar add functional unit time is 2 CPs. Three CPs elapse from
instruction issue to the time the result register can be referenced again.

The scalar shift functional unit shifts the entire 64-bit contents of an S
register (single shift) or shifts the 128-bit contents of two concatenated S
registers (double shift). For a single shift (instructions 052ijk through
055ijk), the shift count is specified by the jk field. For a double shift
(instructions 056ijk and 057ijk), the Ak register must contain a valid shift
count in the 7 lower bit positions. Any bits set in the upper 25 positions
cause the result register Si to be zeroed out.

All single and double shifts are end-off with zero fill. A circular shift is
performed by the double shift instructions if the shift count does not
exceed 64 and if the i and j designators are equal and nonzero.

Single-shift instructions have a functional unit time of 2 CPs, and the
result register is available in 3 CPs. Double-shift instructions have a
functional unit time of 3 CPs, and the result register is available in 4 CPs.

The scalar logical functional unit performs bit-by-bit manipulation of
64-bit quantities obtained from S registers. It executes instructions
042ijk through 043ijk (mask) and 044ijk through 051ijk (logical
operations).

The scalar logical functional unit time is less than 1 CPo One CP elapses
from instruction issue to the time the result register can be referenced
again.

Cray Research Proprietary 4-41

CPU Computation Section CRAYY-MP COO System Programmer Reference Manual

Scalar Population/Parity/Leading Zero Functional Unit

Vector Functional Units

4-42

This functional unit performs instructions 026ijO and 026ij1 (population
count and population count parity) and 027ijO (leading zero count).
Instruction 026ijO counts the number of bits in the Sj register having a
value of 1 and returns the 7 -bit result to the Ai register; the maximum
count is 1008 (6410), while the minimum count is O.

Instruction 026ijl counts the number of bits in the Sj operand having a
value of 1, but returns only a I-bit parity count to the Ai register. If the
Sj operand has an even number of bits set, a 0 is returned to the Ai
register. If the Sj operand has an odd number of bits set, a 1 is returned
to the Ai register.

The functional unit time for the population count and population count
parity operations is 4 CPs. Six CPs elapse from instruction issue to the
time the result register can be referenced again.

Instruction 027ijO counts the number of 0 bits preceding the first 1 bit in
the operand. For these instructions, the 64-bit operand is obtained from
an S register and the 7 -bit result is delivered to an A register.

The functional unit time for the leading zero count operation is 4 CPs.
Six CPs elapse from instruction issue to the time the result register can be
referenced again.

There are two parallel sets of vector functional units referred to as pipe 0
and pipe 1. Pipe 0 processes the even-numbered elements of a vector,
while pipe 1 processes the odd-numbered elements. This duplication of
functional units allows two pairs of elements to be processed at the same
time and increases the efficiency of the vector processing operations.

Most vector functional units perform operations on operands obtained
from two vector registers or from a vector and an S register. The shift,
population/parity, and leading zero functional units, which require only
one operand, are exceptions. Results from a vector functional unit are
delivered to a vector register.

Successive even- and odd-numbered operand pairs are transmitted each
CP to a functional unit. The corresponding result emerges from the
functional unit n CPs later, where n is the fIxed functional unit time. The
VL register determines the number of operand pairs to be processed by a
functional unit.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Vector Add Functional Unit

Vector Shift Functional Unit

The functional units described in this section are exclusively associated
with vector operations. Three functional units are associated with both
vector operations and scalar operations. Refer to "Floating-point
Functional Units" later in this section for more information.

The vector add functional unit performs 64-bit integer addition and
subtraction for a vector operation and delivers the results to elements of a
V register. The unit executes instructions 154ijk and 155ijk (addition)
and 156ijk and 157ijk (subtraction). Instructions 154ijk and 156ijk use
scalar register operands. The subtraction operation uses two's
complement arithmetic. The Vk operand is complemented and added to
the Vj operand, and a 1 is added to the low-order bit position of the
result. The vector add functional unit does not detect overflow.

The vector add functional unit time is 4 CPs. If no conflicts cause a
delay in the operation, the result register can be referenced as an operand
in 6 CPs and as a result register in (VL)/2 + 7 CPs.

The vector shift functional unit shifts the entire 64-bit contents of a
vector register element (single-shift) or the 128-bit value formed from
two consecutive elements of a V register (double shift). Shift counts are
obtained from an A register and are end-off with zero fill. All shift
counts are considered positive unsigned integers. If any bit of the A
register higher than bit 26 is set, the shifted result is all a's.

The vector shift functional unit executes instructions 150ijk and 151ijk
(single shift) and instructions 152ijk and 153ijk (double shift). The
functional unit time is 4 CPs for instructions 150ijk, 151ijk, and 153ijk,
and it is 5 CPs for instruction 152ijk. For instructions 150ijk, 151ijk, and
153ijk, if no conflicts cause a delay in the operation, the result register
can be referenced as an operand in 6 CPs and as a result register in
(VL)/2 + 7 CPs. For instruction 152ijk, if no conflicts cause a delay in
the operation, the result register can be referenced as an operand in 7 CPs
and as a result register in (VL)/2 + 8 CPs.

Full Vector Logical Functional Unit

CSM-0500-000

The full vector logical functional unit performs a bit-by-bitmanipulation
of the 64-bit quantities for instructions 140ijk through 145ijk. The full
vector logical functional unit also performs the logical operations
associated with the vector mask instructions 146ijk, 147ijk, and 175ijk.

Cray Research Proprietary 4-43

CPU Computation Section CRAYY-MP C9Q System Programmer Reference Manual

The full vector logical functional unit time is 2 CPs for instructions
140ijk through 147ijk and 5 CPs for instruction 175ijk. For instructions
140ijk through 147ijk, if no conflicts cause a delay in the operation, the
result register can be referenced as an operand in 4 CPs and as a result
register in (VL)/2 + 5 CPs. For instruction 175ijk, if no conflicts cause a
delay in the operation, the result register can be referenced as an operand
in 8 CPs and as a result register in (VL)/2 + 9 CPs.

Second Vector Logical Functional Unit

The second vector logical functional unit, when enabled, performs the
same bit-by-bit manipulations as the full vector logical functional unit for
instructions 140ijk through 145ijk. However, instructions 146ijk, 147ijk,
and 175ijk cannot execute in this functional unit. This functional unit
can be enabled by setting the enable second vector logical (ESL) bit in
the modes section of the exchange package. When the second vector
logical functional unit is enabled, it has priority for the processing of
instructions 140ijk through 145ijk. When the second vector logical
functional unit is busy or is disabled, instructions 140ijk through 145ijk
are processed in the full vector logical functional unit.

The second vector logical and floating-point multiply functional units
cannot be used simultaneously because they share input and output data
paths. Also, because these two units share paths, some codes that rely on
floating-point products may run slower if the second vector logical
functional unit is enabled. If the floating-point multiply unit is busy, and
the full vector logical unit is not busy, a vector logical instruction uses
the full vector logical functional unit.

The second vector logical functional unit time is 2 CPs. If no conflicts
cause a delay in the operation, the result register can be referenced as an
operand in 4 CPs and as a result register in (VL)/2 + 5 CPs.

Vector Population/Parity/Leading Zero Functional Unit

4-44

The vector population/parity /leading zero functional unit performs
population counts, parity checks, and leading zero counts for vector
operations. It executes instructions 174ijl (vector population count),
174ij2 (vector population count parity), and 174ij3 (vector leading zero
count). This functional unit shares some logic with the reciprocal
approximation functional unit. Therefore, the k field must be nonzero for
the instructions to be recognized as population/parity/leading zero
instructions.

Instruction 174ijl counts the 1 bits in each element of the Vj register and
returns this number to the respective elements of the Vi register; the total
number of 1 bits is the population count. This population count can be
an odd or an even number, as indicated by its low-order bit.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP ceo System Programmer Reference Manual CPU Computation Section

Instruction 174ij2 counts the number of 1 bits in each element of the Vj
register and returns a 1-bit parity result to the respective elements of the
Vi register. Parity can be odd (signified by a 1) or even (signified by a
0).

Instruction 174ij3 counts the number of 0 bits preceding the first 1 bit in
each element of the Vj register and returns this number to the respective
elements of the Vi register.

The vector population/parity /leading zero functional unit time is 5 CPs.
If no conflicts cause a delay in the operation, the result register can be
referenced as an operand in 7 CPs and as a result register in (VL)/2 + 8
CPs.

Floating-point Functional Units

There are two parallel sets of floating-point functional units, with each
set containing three functional units. These floating-point functional
units perform floating-point arithmetic for both scalar and vector
operations. The vector registers use both sets of functional units, with
one set processing the even-numbered elements while the other set
processes the odd-numbered elements. For an operation involving only
scalar operands, only one set of floating-point functional units is used.

When executing vector instructions, operands are obtained from V
registers, or from an S register and a V register, and results are delivered
to a vector register. When a floating-point functional unit is used for a
vector operation, the general description of vector functional units
applies. When executing a scalar instruction, operands are obtained from
S registers, and results are delivered to an S register.

Floating-point Add Functional Unit

CSM-0500-000

The floating-point add functional unit performs addition and subtraction
of 64-bit operands in floating-point format. It executes instructions
062ijk (scalar add), 063ijk (scalar subtract), and 170ijk through 173ijk
(vector add and subtract). The result is normalized even when operands
are not normalized. The floating-point add functional unit detects
overflow and underflow conditions; only overflow conditions are
flagged.

The floating-point add functional unit time is 6 CPs. For the scalar
instructions (062ijk and 063ijk), 6 CPs elapse from instruction issue to
the time the result register can be referenced again. For the vector
instructions (170ijk through 173ijk), if no conflicts cause a delay in the
operation, the result register can be referenced as an operand in 9 CPs
and as a result register in (VL)/2 + 10 CPs.

Cray Research Proprietary 4-45

CPU Computation Section CRAYY-MP C90 System Programmer Reference Manual

Floating-point Multiply Functional Unit

The floating-point multiply functional unit performs full- and
half-precision multiplication of 64-bit operands in floating-point format.
It executes instructions 064ijk through 067ijk (scalar multiplication) and
instructions 160ijk through 167ijk (vector multiplication). The
half-precision product is rounded; the full-precision product can be
rounded or not.

Instruction 166ijk computes the 32-bit integer product of the contents of
the Sj register and the elements of the Vk register and transmits the
results to the elements of the Vi register.

The floating-point multiply and second vector logical functional units
cannot be used simultaneously because they share control hardware. If
one of these functional units is reserved, the other functional unit is also
reserved.

Input operands must be normalized; the floating-point multiply
functional unit only delivers a normalized result if both input operands
are normalized. The floating-point multiply functional unit detects
overflow and underflow conditions; only overflow conditions are
flagged.

The floating-point multiply functional unit time is 6 CPs. For the scalar
instructions (064ijk through 067ijk), six CPs elapse from instruction issue
to the time the result register can be referenced again. For the vector
instructions (160ijk through 167ijk), if no conflicts cause a delay in the
operation, the result register can be referenced as an operand in 9 CPs
and as a result register in (VL)/2 + 10 CPs.

The floating-point multiply functional unit recognizes both operands
having zero exponents as a special case, and performs an integer multiply
operation. The result is considered as an integer product, is not
normalized, and is not considered out of range. This case illustrates a
fast method of computing a 48-bit integer product, although the operands
in this case must be shifted before the multiply operation. Refer to
"Integer Arithmetic" in this section for more information on integer
multiplication.

Reciprocal Approximation Functional Unit

4-46

The reciprocal approximation functional unit finds the approximate
reciprocal of a 64-bit operand in floating-point format. The unit executes
instructions 070ijO and 174ijO. Because the vector population!
parity/leading zero functional unit shares some logic with this unit, the k
field must be 0 for the instruction to be recognized as a reciprocal
approximation instruction.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

The input operand must be normalized; the floating-point reciprocal
approximation functional unit delivers a correct result only if the input
operand is normalized. The high-order bit of the coefficient is not tested
but is assumed to be a 1. The floating-point reciprocal approximation
functional unit detects overflow and underflow conditions; both
conditions are flagged.

The reciprocal approximation functional unit time is 10 CPs. For the
scalar instruction (070ijO), 10 CPs elapse from instruction issue to the
time the result register can be referenced again. For the vector
instruction (174ijO), if no conflicts cause a delay in the operation, the
result register can be referenced as an operand in 13 CPs and as a result
register in (VL)/2 + 14 CPs.

Functional Unit Operations

Logical Operations

CSM-0500-000

Functional units in a CPU perform logical operations, integer arithmetic,
and floating-point arithmetic. Integer and floating-point arithmetic are
performed in two's complement. The following subsections explain the
logical operations, the integer arithmetic, and the floating-point
arithmetic used by the CRAY Y -MP C90 computer system.

Scalar and vector logical functional units perform bit-by-bit manipulation
of 64-bit quantities. Instructions are provided for forming logical
products, sums, exclusive ORs, equivalences, and merges.

A logical product is the AND function, which is shown in the following
example:

Operand 1: 1 0 1 0
Operand 2: 1 1 0 0
Result: 1 0 0 0

A logical sum is the inclusive OR function, which is shown in the
following example:

Operand 1: 1010
Operand 2: 1 1 0 0
Result : 1 1 1 0

A logical exclusive OR function is shown in the following example:

Operand 1: 1010
Operand 2: 1 1 0 0
Result: 0 1 1 0

Cray Research Proprietary 4-47

CPU Computation Section

Integer Arithmetic

4-48

CRAYY-MP COO System Programmer Reference Manual

A logical equivalence is the exclusive NOR function, which is shown in
the following example:

Operand 1: 1010
Operand 2: 11 0 0
Result: 1 0 0 1

The scalar merge operation uses two scalar operands and a mask to
produce results. The bits of operand 1 are transmitted when the mask bit
is a 1. The bits of operand 2 are transmitted when the mask bit is a O.
The following example shows a scalar merge operation:

Operand 1: 1 0 1 0 1 0 1 0
Operand 2: 1 1 0 0 1 1 0 0
Mask: 1 1 1 1 0 0 0 0
Result: 1 0 1 0 1 1 0 0

The vector merge operation uses two vector operands and a mask to
produce results. The operation is similar to the scalar merge except that
the elements of vector operands replace the bits of the scalar operands.
The following example shows a vector merge operation:

Elements of
Operand 1:

Mask: 0110

(00) = 1
(01) = 2
(02) = 3
(03) = 4

Elements of result operand:

Elements of
Operand 2:

(00) =-1
(01) = 2
(02) = 3
(03) =-4

(00) =-1
(01) =-2
(02) =-3
(03) =-4

All integers, whether 32 or 64 bits long, are represented in the registers
as shown in Figure 4-9. The address add and address multiply functional
units perform 32-bit arithmetic. The scalar add and vector add functional
units perform 64-bit arithmetic.

'!\vo scalar (64-bit) integer operands are multiplied using the
floating-point multiply instruction and one of two methods. The method
used depends on the magnitude of the operands and the number of bits
available to contain the product. The following paragraphs explain the
24-bit integer multiplication operation and the method used for operands
greater than 24 bits.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP COO System Programmer Reference Manual CPU Computation Section

CSM-QSOO-OOO

Two's Complement Integer (32 Bits)

Two's Complement Integer (64 Bits)

A-9317

Figure 4-9. Integer Data Formats

The floating-point multiply functional unit detects a condition in which
. both operands have zero exponents as a special case; this condition is
treated as an integer multiplication operation, and a complete
multiplication operation is performed with no truncation as long as the
total number of bits in the two operands does not exceed 48 bit positions.
To multiply two integer numbers together, set each operand's exponent
(bits 262 through 24~ equal to 0 and place each 24-bit integer value in bit
positions 247 through 224 of the operand's coefficient field. To ensure
accuracy, the 24 least significant bits must be O.

When the floating-point multiply functional unit performs the operation,
it returns the 48 high-order bits of the product as the result coefficient
and leaves the exponent field as O. The result is a 48-bit quantity in bit
positions 247 through 20; no normalization shift of the result is
performed. If the 24 least significant bits of the operand coefficients
were nonzero, the 48 low-order bits of the product could be nonzero and
could generate a carry into the least significant of the 48 high-order bits
returned, causing the result to be one larger than expected.

As shown in Figure 4-10, if operand 1 is 48 and operand 2 is 68, a 48-bit
result of 308 is produced. Bit 263 follows the rules for multiplying signs
and the result is a signed-magnitude integer. Bits 263 of operands 1 and 2
are XORed to derive the sign of the result. The format of integers
expected by both the hardware and software is two's complement, not
signed-magnitude; therefore, negative products must be converted to
two's complement form.

Cray Research Proprietary 4-49

CPU Computation Section CRAYY-MP csa System Programmer Reference Manual

2 63 ~ 2"8 z47 224 2 23 ~

Operand 1 I
1
0 + 04

1
Must be 0 to Ensure Correct Product 1

2 83 ~ 2"8 ~7 224 2 23 ~

Operand 21
1
0 + 06 Must be 0 to Ensure Correct Product 1

283 ~ ~ ~7 ~

Resutt 1
1
0 + 030

1
A·9318

Figure 4-10. 24-bit Integer Multiply Performed in a Floating-point Multiply Functional Unit

4-50

283 ZJ2

(S)) I I-
~~

C'Jk) 0

283

Resutt I 0

The second multiplication method is used when the operands are greater
than 24 bits in length; multiplication is done by software, which forms
multiple partial products and then shifts and adds the partial products.

A second integer multiplication operation performs a 32-bit
multiplication operation on the Sj operand and the Vk operand and puts
the result in the Vi register. The operands must be shifted left before the
operation begins. The Sj operand must be shifted left 3110 places,
leaving the operand in bit positions 262 through 231; bit positions 230
through 2° must be equal to 0 to ensure accuracy (refer to Figure 4-11).
The Vk operand must be shifted left 1610 places, leaving the operand in
bit positions 247 through 216; bit positions 215 through 2° must be equal to
o to ensure accuracy. Bits 263 through 248 are zero filled. The result of
the multiply is right justified into positions 231 through 2°, while
positions 263 through 232 are zero filled.

23' ~ 2°

Operand ·1 Must be 0 to Ensure Correct Product

2"8 z47 218 215 2°

0 Operand
Must be 0 to Ensure

Correct Product

232 231 2°

+ Result ·1
A·9319

Figure 4-11. 32-bit Integer Multiply Performed in a Floating-point Multiply Functional Unit

Cray Research Proprietary CSM-0500-000

CRAY Y-MP COO System Programmer Reference Manual CPU Computation Section

Although no integer division operation is provided, integer division can
be carried out by converting the numbers to the floating-point format and
then using the floating-point functional units. For more information on
integer division, refer to "Floating-point Division Algorithm" later in this
section.

Floating-point Arithmetic

Floating-point Data Format

262

Coefficient
Sign

CSM-OSOO-OOO

Floating-point arithmetic is used by the scalar and vector instructions.
Information under the following headings explains floating-point
arithmetic:

•
•
•
•
•
•
•

Floating-point data format
Exponent ranges
Normalized floating-point numbers
Floating-point range errors
Floating-point addition
Multiplication and division algorithms
Double-precision numbers

Floating-point numbers are represented in a standard format throughout
the CPU; this format is shown in Figure 4-12. The format has three
fields: coefficient sign, exponent, and coefficient.

Binary Point

~j~7

Exponent Coefficient
A·9320

Figure 4-12. Floating-point Data Format

This format is a packed representation of a binary coefficient and an
exponent (power of two). The coefficient sign is located in bit position
263 and is separated from the rest of the coefficient. If this bit is equal to
0, the coefficient is positive; if this bit is equal to 1, the coefficient is

. negative. The exponent is represented as a biased integer number in bit
positions 262 through 248; each exponent is biased by 400008. Bit 261 is
the sign of the exponent; a 0 indicates a positive exponent, and a 1
indicates a negative exponent. Bit 262 is the bias of the exponent.

Cray Research Proprietary 4-S1

CPU Computation Section

~ ~

I 0 I
Coefficient

Sign

CRAYY-MP COO System Programmer Reference Manual

The coefficient is a 48-bit signed fraction; the sign of the coefficient is
located in bit position 263. Because the coefficient is in
signed-magnitude format, it is not complemented for negative values. A
normalized floating-point number has a 1 in the 247 bit position, and an
unnormalized floating-point number has a 0 in this bit position
(normalized numbers are discussed in more detail later in this section).

Figure 4-13 and the following steps show the relation between the biased
exponent and the coefficient. The following steps convert a
floating-point number to its decimal equivalent.

Binary Point

~1~7 2°

400118 5634000000000000a

Exponent Normalized Coefficient
A·9321

Figure 4-13. Internal Representation of a Floating-point Number

Exponent Ranges

4-S2

1. Subtract the bias from the exponent to get the integer value of the
exponent:

400118
--400008

118 = 910

2. Multiply the normalized coefficient by the power of 2 indicated in
the exponent to get the result:

0.56348 X 29 = 563.408 = 371.510

A zero value or an underflow result is not biased and is represented as a
word of all O's. A negative 0 is not generated by any floating-point
functional unit except when a negative 0 is one operand going into the
floating-point multiply or floating-point add functional unit.

The exponent portion of the floating-point format is represented as a
biased integer in bits 262 through 248• The bias added to the exponents is
400008, which represents an exponent of O. Figure 4-14 shows the
biased and unbiased exponent ranges.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Biased Exponent Range

200008 ;--- Negative Range ----.~ 400008 ~-- Positive Range ---...oj •• 577778

-200008 ---- Negative Range ----........ 0 ... 1----- Positive Range ---...oj.~ 177778

Unbiased Exponent Range
A·9322

Figure 4-14. Biased and Unbiased Exponent Ranges

In terms of decimal values, the floating-point format of the system allows
the accurate expression of numbers to about 15 digits in the approximate
decimal range of 10-2466 through 10+2466•

Normalized Floating-point Numbers

CSM-0500-000

A nonzero floating-point number is normalized if the most significant bit
of the coefficient (bit 247) is nonzero. This condition implies that the
coefficient is shifted as far left as possible and that the exponent is.
adjusted accordingly; therefore, a normalized floating-point number has
no leading O's in its coefficient. The exception is a normalized
floating-point 0, which is all O's.

When a floating-point number is created by inserting 400608 into the
exponent and a 48-bit integer into the coefficient, normalize the result
before using it in a floating-point operation; you can do so by adding the
unnormalized floating-point operand to O. Because SO provides a 64-bit
zero when used in the Sj field of an instruction, an operand in Sk is
normalized with the 062iOk instruction. Si, which can be the same
register as Sk, contains the normalized result.

The reciprocal approximation functional unit must have normalized
numbers to produce correct results; using unnormalized numbers
produces inaccurate results. The floating-point multiply functional unit
does not require normalized numbers to get correct results; however,
more accurate results occur when normalized numbers are used.

The floating-point add functional unit does not require normalized
numbers to get correct results. The floating-point add functional unit
does, however, automatically normalize all its results; unnormalized
floating-point numbers may be routed through this functional unit to take
advantage of this process.

Cray Research Proprietary 4-53

CPU Computation Section

Floating-point Range Errors

CRAYY-MP C90 System Programmer Reference Manual

To ensure that the limits of the functional units are not exceeded, a range
check is made on the exponent of each floating-point number coming
into the functional unit for overflow and underflow conditions. In the
floating-point add and floating-point multiply functional units, bits 261

and 262 are checked. If both are equal to 1, the exponent is equal to or
greater than 600008, and an overflow condition is detected. If both are
equal to 0, the exponent is less than or equal to 177778, and an underflow
condition is detected.

In the reciprocal approximation functional unit, the exponent is
complemented and the value of 2 is added before the operation proceeds.
When the check is made in a reciprocal approximation operation, an
incoming operand with an exponent less than or equal to 200018, or
greater than or equal to 600008, causes a floating-point range error.

When an overflow condition is detected in the floating-point add or
multiply functional unit, or a floating-point range error is detected in the
reciprocal approximation functional unit, an interrupt may occur. An
interrupt occurs only if the interrupt-on-floating-point error (IFP) mode
is set and enabled and the system is not in monitor mode. The IFP bit
can be set or cleared by a user mode program.

When an underflow condition is detected in the floating-point add or
multiply functional unit, no flag is set, but the exponent and coefficient
are both set to O. When an underflow condition is detected in the
reciprocal approximation functional unit, the coefficient is set to 0, the
exponent is set to 600008, and the floating-point error (FPE) flag is set if
the IFP mode is set and enabled.

Floating-point Add Functional Unit Range Errors

4-54

A floating-point add range error condition occurs when the exponent of
either of the incoming operands is greater than or equal to 600008. This
condition is referred to as overflow. It sets the FPE interrupt flag (if the
IFP interrupt mode is set and enabled), and sends an exponent of 600008,
together with the computed coefficient, to the result register (refer to
Figure 4-15).

If a floating-point addition or floating-point subtraction operation
generates an unnormalized result with an exponent of less than 200008 or
a coefficient of 0, a condition referred to as underflow results. N'o fault is
generated, and the word returned from the functional unit is all 0 bits
(refer to Figure 4-15).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

263 ~2

Overflowl 0 I
Sign

263 262

Underflow I 0
1
0

Sign

Because the underflow condition of the result is tested before the result is
normalized, the normalized result can have a valid exponent as low as
177218. This would occur if the unnormalized result had an exponent of
200008 and a coefficient of 1. In this case, no underflow is detected, and
the calculated result is sent to the result register.

~ 247 2°

60000 Calculated

Exponent Coefficient, Flag Set

~ 247 2°

01 0 01
Exponent Coefficient, No Flag Set A-9323

Figure 4-15. Floating-point Add and Floating-point Multiply Range Errors

Floating-point Multiply Functional Unit Range Errors

CSM-0500-000

The floating-point mUltiply functional unit has the same range error
conditions as the floating-point add functional unit (refer to Figure 4-16).
The only exception is when both exponents are equal to 0; the operation
is allowed to proceed as an integer multiply, leaving the exponent and
sign bits equal to O.

Cray Research Proprietary 4-55

CPU Computation Section CRAYY-MP COO System Programmer Reference Manual

Exponent
of

Exponent of Operand 1

__ --A,----------------------------~ (\

00001

1nn
20000

20001

20000 40000
1 nn 20001 • • •• 3nn 40001 • • •• 57777 60001 • • •• nn7

Operand 2 3nn

4-56

40000

40001

5nn
60000

Q o

nn7~~ ___ ~

A·9324

Figure 4-16. Exponent Matrix for a Floating-point Multiply Functional Unit

Out-of-range conditions are tested before the operands are normalized in
the floating-point multiply functional unit. The way the out-of-range
conditions are handled can be determined by using the exponent matrix
shown in Figure 4-16. The exponent of the result, for any set of
exponents, falls into one of the following seven zones. Only zones 6 and
7 generate floating-point errors.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP ceo System Programmer Reference Manual cPU Computation Section

Zone Description

1 Zone 1 indicates a simple integer multiply; no fault is
possible.

2 Exponents in zone 2 result in an underflow condition; the
result is set to +0. (Multiplication by 0 is in this group.)

3 An underflow condition may occur on this boundary in
zone 3. When a normalized shift is required, the
underflow is not detected, and the coefficient and the
exponent are not zeroed out. The exponent used before
the shift is 200008; the exponent used after the shift is
177778. An underflow condition is only detected on the
exponent used for an unshifted product coefficient.

4 The use of an operand with an underflow exponent in zone
4 is allowed if the final result ranges from 200008 to
577778.

5 Zone 5 is the normal operand range; normal results are
produced.

6 An overflow condition is flagged on this boundary in zone
6. If a normalized shift is required, the value should be
within bounds if the exponent is 577778. Because
overflow is detected, 600008 is inserted in the product as
the final exponent when the exponent for the
unnormalized shift condition is used.

7 Within zone 7 an overflow fault is flagged and the
product exponent is set to 600008.

Floating-point Reciprocal Approximation Functional Unit Range Errors

CSM-0500-000

For the floating-point reciprocal approximation functional unit, an
incoming operand with an exponent less than or equal to 200018, or
greater than or equal to 600008, causes a floating-point range error. If the
IFP interrupt mode is set and enabled, the FPE interrupt flag is set, and
the following value is returned to the result register (refer to
Figure 4-17):

• An exponent of 600008 .

• The computed coefficient with bit 247 set to O .

Cray Research Proprietary 4-57

CPU Computation Section CRAYY-MP COO System Programmer Reference Manual

263 ~ 248 247 2°

Overflow I 0
1

60000 Calculated

Sign Exponent Coefficient, z47 = 0, Flag Set

263 262 ~ z47 2°

Underflow 1 0 60000 10 01
Sign Exponent Coefficient, 247 = 0, Flag Set A·9325

Figure 4-17. Floating-point Reciprocal Approximation Range Errors

Floating-point Addition Algorithm

4-58

Floating-point addition or subtraction is performed in a 49-bit register to
allow for a sum that might carry into an additional bit position. The
algorithm performs three operations: equalizing exponents, adding
coefficients, and normalizing results.

To equalize the exponents, the larger of the two exponents is retained.
The coefficient of the smaller exponent is shifted right by the difference
of the two exponents. Bits shifted out of the register are lost; no roundup
occurs. Because the coefficient is only 48 bits, any shift beyond 48 bits
causes the smaller coefficient to become D's.

After the two coefficients are equalized, they are added together. '!\vo
conditions are analyzed to determine whether an addition or subtraction
operation occurs. The two conditions are the sign bits of the two
coefficients, and the type of instruction (add or subtract) issued. The
following list shows how the operation is determined:

•

•

•

•

If the sign bits are equal and an add instruction is issued, an
addition operation is performed.

If the sign bits are not equal and an add instruction is issued, a
subtraction operation is performed.

If the sign bits are equal and a subtract instruction is issued, a
subtraction operation is performed.

If the sign bits are not equal and a subtract instruction is issued, an
addition operation is performed.

The last operation performed normalizes the results. To normalize the
result, the coefficient is left-shifted by the number of leading D's (the
coefficient is normalized when bit 247 is a 1). The exponent must also be

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

decremented accordingly. If there is a carry across the binary point
during an addition operation, the coefficient is shifted right by 1 and the
exponent increases by 1.

The normalization feature of the floating-point add functional unit is
used to normalize any floating-point number. Simply pair the number
with a zero operand and send them both through the floating-point add
functional unit.

A range check is performed on the result of all additions; refer to
"Floating-point Range Errors" earlier in this section for more information
on how the result is checked.

Floating-point Multiplication Algorithm

CSM-0500-000

The floating-point multiply functional unit receives two 48-bit
floating-point operands from either an S or V register as input into a
multiply pyramid (refer to Figure 4-18). Multiplication is commutative;
that is, A x B = B x A. The signs of the two operands are exclusively
ORed, the exponents are added together, and the two 48-bit coefficients
are multiplied together. If the coefficients are both normalized,
multiplying them together produces a full product of either 95 or 96 bits.
A 96-bit product is normalized as it is generated, while a 95-bit product
requires a left shift of 1 to generate the final coefficient. If the shift is
done, the final exponent is reduced by 1 to reflect the shift.

Because the result register (an S or V register) can hold only 48 bits in
the coefficient, only the upper 48 bits of the 96-bit result are used. The
lower 48 bits are never generated. The following paragraphs describe the
truncation process used to compensate for the loss of bits in the product.
The process assumes no shift was required to generate the final product;
power of two designators are used.

The floating-point multiply functional unit truncates part of the
low-order bits of the 96-bit product. To adjust for this truncation, a
constant is unconditionally added above the truncation. The average
value of this truncation is 9.25 X 2-56• This value was determined by
adding all carries produced by all possible combinations that could be
truncated and dividing the sum by the number of possible combinations.
Nine carries are inserted at the 2-56 position to compensate for the
truncated bits.

Cray Research Proprietary 4-59

CPU Computation Section

Product Bit Designation:

I
If Shift Is needed to I
nonnaJlze coefIIcIent. --. I
If shift Is not needed to I
nonnaJize coefIIcIent. --. Z-1

CRAY Y-MP C90 System Programmer Reference Manual

k Mutiplier-------1 ...

t
i Product

hh = 112 for half-precision round, O~ for full-precision rounded or
full-peclslon unrounded mulUpllcation operation.

tf = 112 for full-preclslon round, ~ for half-precision rounded or full-precision
unrounded mulUplicatlon operation.

Truncation compensation constant; 10012 used for all mulUpllcation operations.

Used only for 32-blt Integer mulUpDcation operation with Instruction 166ijk.
Summations for any other Instructions are blocked.

/
j

Multiplicand

A-9326

Figure 4-18. Floating-point Multiply Partial-product Sums Pyramid

4-60

The effect of the truncation without compensation is at most a result
coefficient 1 smaller than expected in bit position ~. This is because
bit position 2-48 is set to 0 if no compensation is used. With
compensation, the results range from 1 too large to 1 too small in bit
position z-48, reflecting the fact that this bit is set to either 0 or 1. With
compensation, approximately 99% of the values have zero deviation
from what would have been generated had a full 96-bit product been
present. Rounding is optional, but truncation compensation is not. The
rounding method used adds a constant so that it is 50% high (0.25 x 2-48;
high) 38% of the time, and 25% low (0.125 x 2-48; low) 62% of the time,

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Floating-point Division Algorithm

CSM-0500-000

resulting in a near-zero average rounding error. In a full-precision
rounded multiplication operation, 2 round bits are entered into the
summation at bit positions 2-50 and 2-51 and allowed to propagate.

For a half-precision multiplication operation, round bits are entered into
the summation at bit positions 2-32 and 2-31. A carry resulting from this
entry is allowed to propagate upward and the 29 most significant bits of
the normalized result are transmitted to the result register.

The result variations caused by this truncation and rounding are in one of
the following ranges:

-0.23 X 2-48 to +0.57 X 2-48

or

-8.17 X 10-16 to +20.25 X 10-16

With a full 96-bit product and rounding equal to one-half the least
significant bit, the result variations are in the following range:

-0.5 x z-48 to +0.5 X 2-48

The CRAY Y-MP C90 computer system does not have a single
functional unit dedicated to the division operation; rather, the
floating-point multiply and reciprocal approximation functional units
together carry out the algorithm. The following paragraphs explain the
algorithm and how it is used in the functional units.

Finding the quotient of two floating-point numbers involves two steps, as
shown below in the example to find the quotient NB.

Step Operation

1 The B operand is sent through the reciprocal
approximation functional unit to obtain its reciprocal,
lIB.

2 The result from Step 1 along with the A operand is
sent to the floating-point multiply functional unit to
obtain the product A x lIB.

The reciprocal approximation functional unit uses an application of
Newton's method for approximating the real root of an arbitrary
equation, F(x) = 0, to find reciprocals.

Cray Research Proprietary 4-61

CPU Computation Section

4-62

CRAY Y-MP C90 System Programmer Reference Manual

To fmd the reciprocal, the equation F(x) = lIx - B = 0 must be solved.
To do this, A must be found so that F(A) = 1/ A - B = O. That is, the
number A is the root of the equation 1/x - B = O. The method requires
an initial approximation or guess (shown as xa in Figure 4-19),
sufficiently close to the true root (shown as Xt in Figure 4-19). Xo is then
used to obtain a better approximation; this is done by drawing a tangent
line (line 1 in Figure 4-19) to the graph of y = F(x) at the point [xo,
F(xa)]. The x-intercept of this tangent line becomes the second
approximation, Xl. This process is repeated using tangent line 2 to obtain
X2, and so on.

y

J4----+-Tangent Line 1

~--t-Jl------+-Tangent Line 2

Figure 4-19. Newton's Method for Approximating Roots

X
A-9327

The following iteration equation is derived from the above process:

In the equation, X(i+l) is the next iteration, Xi is the current iteration, and
B is the divisor. Each X(i+l) is a better approximation than Xi to the true
value, Xt. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for practical use.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP COO System Programmer Reference Manual CPU Computation Section

CSM-0500-000

The CRAY Y-MP C90 mainframe uses this approximation technique
based on Newton's method. A hardware look-up table provides an initial
guess, XQ, which is accurate to 8 bits. The following iterations are then
calculated.

Iteration Operation

1 Xl = xo(2 - xoB)

Description

The first approximation is done
in the reciprocal approximation
functional unit and is accurate to
16 bits.

The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 30 bits.

The third approximation is done
in the floating-point multiply
functional unit to calculate the
correction term.

The reciprocal approximation functional unit calculates the first two
iterations, while the floating-point multiply functional unit calculates the
third iteration. The third iteration uses a special instruction within the
floating-point multiply functional unit to calculate the correction term.
This iteration is used to increase accuracy of the reciprocal
approximation functional unit's answer to full precision (the
floating-point multiply functional unit can provide both full- and
half-precision results).

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the third iteration (the iteration performed by the
floating-point multiply functional unit) results in an exact reciprocal, or if
an exact reciprocal is generated by some other method, performing
another iteration results in an incorrect final reciprocal. A fourth
iteration should not be done.

The following example shows how the floating-point multiply functional
unit provides a full-precision result, computing the value of S1/S2.

Step Operation Unit

1 S3 = 1/S2 Reciprocal approximation
functional unit

2 84 = [2 - (83 * 82)] Floating-point multiply
functional unit

Cray Research Proprietary 4-63

CPU Computation Section

4-64

CRAYY-MP C90 System Programmer Reference Manual

Step Operation

3 S5 = S4 * S3

4 S6 = S5 * S1

Unit

Floating-point mUltiply
functional unit using
full-precision; S5 now equals
1IS2 to 48-bit accuracy

Floating-point multiply
functional unit using
full-precision rounding

The reciprocal approximation in Step 1 is correct to 30 bits. By Step 3, it
is accurate to 48 bits. This iteration answer is applied as an operand in a
full-precision rounded multiplication operation (Step 4) to obtain a
quotient accurate to 48 bits. Additional iterations may produce erroneous
results.

Where 29 bits of accuracy are sufficient, the reciprocal approximation
instruction is used with the half-precision multiplication operation to
produce a half-precision quotient in only two operations, as shown in the
following example.

Step Operation

1 S3 = 1/S2

2 S6 = S1 * S3

Unit

Reciprocal approximation
functional unit

Floating-point multiply functional
unit in half-precision mode

The 19 low-order bits of the half-precision multiplication results are
returned as O's with a rounding applied to the low-order bit of the 29-bit
result.

The following is another method of computing division:

Step Operation Unit

1 S3 = 1IS2 Reciprocal approximation
functional unit

2 S5 = S1 * S3 Floating-point multiply functional
unit

3 S4 = [2 - (S3 * S2)] Floating-point multiply functional
unit

4 S6 = S4 * S5 Floating-point multiply functional
unit

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Computation Section

Double-precision Numbers

CSM-0500-000

With this method, the correction to reach a full-precision reciprocal is
done after the numerator is multiplied by the half-precision reciprocal
rather than before the multiplication.

The coefficient of the reciprocal produced by this alternative method can
be different by as much as 2 x 2-48 from the first method described for
generating full-precision reciprocals. This difference can occur because
one method can round up as much as twice, while the other method may
not round at all. One round can occur while the correction is generated
and the second round can occur when the final quotient is produced.
Therefore, compare the reciprocals using the same method each time
they are generated. Cray Fortran CFT and CFf77 use a consistent
method to ensure that the reciprocals of numbers are always the same.

The CPU does not provide special hardware for performing double- or
multiple-precision operations. Double-precision computations with
95-bit accuracy are available through software routines provided by Cray
Research, Inc.

Cray Research Proprietary 4-65

5 PARALLEL PROCESSING FEATURES

CSM-0500-000

The CRAY Y-MP C90 computer system has several special features that
enhance the parallel processing capabilities inherent in the system.
Parallel processing can mean different things in different environments;
the following subsections discuss two types of parallel processing found
in the CRAY Y-MP C90 computer system:

•

•

Parallel processing within a single central processing unit (CPU) of
a CRAY Y-MP C90 mainframe.

Parallel processing between two or more CPUs of a CRAYY-MP
C90 mainframe.

Parallel processing features within a single CPU include instruction
pipelining and segmentation, functional unit independence, and vector
processing (vectorization). The first two features are inherent hardware
features of the CRAY Y-MP C90 computer system; a programmer has
little control over these features. Vector processing is the feature that can
be manipulated by the programmer to provide optimum throughput.
Refer to "Vector Processing" in Section 4 for more information on vector
processing.

Parallel processing between two or more CPUs is called multiprocessing:
the ability for several programs to run concurrently on multiple CPUs of
a single mainframe. Included in this category are multitasking and
Autotasking. Multitasking is the ability to run two or more parts (or
tasks) of a single program in parallel on different CPUs within a
mainframe. Autotasking is a feature of the CF77 Fortran compiling
system that allows user programs to be automatically partitioned over
multiple CPUs without a user interface.

Because the intent of this manual is to present programmers with system
hardware information, the following subsections focus on the parallel
processing features most closely related to the hardware (the parallel
processing features that execute within a single CPU of a mainframe). A
basic definition and explanation of multiprocessing, multitasking, and
Autotasking is included. Refer to the bibliography of this manual for a
list of pUblications containing more detailed information on optimizing
code and more of the software features of the CRAY Y-MP C90
computer system.

Cray Research Proprietary 5-1

Parallel Processing Features CRAYY-MP COO System Programmer Reference Manual

Pipelining and Segmentation

5-2

Pipe lining is defined as an operation or instruction beginning before a
previous operation or instruction completes. Pipelining is accomplished
using fully segmented hardware. Segmentation refers to the process
whereby an operation is divided into a discrete number of sequential
steps, or segments. Fully segmented hardware uses this segmentation by
performing one segment of the operation during a single clock period
(CP). At the beginning of the next CP, the partial results obtained are
sent to the next segment of the hardware for processing the next step of
the operation. During this CP, the previous hardware segment processes
,the next operation. If segmented hardware is not used, the entire
operation or instruction must complete before another operation or
instruction starts.

In CRAY Y-MP computer systems, all hardware is fully segmented.
Therefore, pipelining occurs during all hardware operations such as
exchange sequences, memory references, instruction fetch sequences,
instruction issue sequences, and functional unit operations. The
pipelining and segmentation features are critical to the execution of
vector instructions.

Figure 5-1 shows how the execution of the sequence of scalar
instructions indicated results in the pipelining of three sets of operands
through a segmented functional unit.

Instruction Sequence

S1 S1 + S3

S3 S3 + S4

S5 S5 + S6

CP

1

2

3

4

Functional Unit

scalar-.J I I Lscalar Resu~s
Operands ---1 I -

1 2 3
~

Segments

Functional Unit Segment
1 2 3

S1 Partial
Result

S3 Partial- S1 Partial
Result Result

S5 Partial S3 Partial S1 Partial
Result Result Result

S5 Partial S3 Partial
Result Result

A·9444

Figure 5-1. Scalar Segmentation and Pipelining Example

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Parallel Processing Features

CSM-0500-000

In the first CP, the first set of operands enters the first segment of the
functional unit. During the next CP, the partial result is moved to the
second segment of the functional unit, and the second pair of operands
enters the first segment. This process continues each CP until the three
operand pairs are completely processed. After 3 CPs, the first result
leaves the functional unit and enters scalar register S 1; the S3 and S5
results are available in successive CPs.

The CRAY Y-MP C90 computer system contains two sets of vector
functional units, one for processing even-numbered elements and one for
processing odd-numbered elements. This dual set of functional units
allows two pairs of elements to be processed in a single CP, almost
doubling the vector processing rate. Figure 5-2 shows how a set of
vector elements is pipelined through a dual vector functional unit.

In the first CP, element 0 of register VI and element 0 of register V2
enter the first segment of the pipe 0 functional unit, while element 1 of
each register enters the pipe 1 functional unit. During the next CP, the
partial results are moved to the second segments of each functional unit,
while element 2 of both vector registers enters the first segment of the
pipe 0 functional unit, and element 3 of both vector registers enters the
first segment of the pipe 1 functional unit. This process continues each
CP until the number of elements specified by the vector length (VL)
register is processed.

In this example, the functional units are divided into five segments; the
dual functional units can process up to ten different pairs of elements
simultaneously. After 5 CPs, the first results leave the functional units
and enter vector register V3; subsequent results are available at the rate
of two per CPo

Cray Research Proprietary 5-3

Parallel Processing Features

Vector Register V1
(Even Elements)

Element °
Element 2

· · ·
Element N

ector Register V2
(Even Elements)

Element °
Element 2

· ·
Element N

v ector Register V1
(Odd Elements)

Element 1

Element 3

· ·
Element N

ector Register V2
(Odd Elements)

Element 1

Element 3

· · ·
Element N

~

~

r--+

CP

1

2

3

4

5

6

CRAYY-MP C90 System Programmer Reference Manual

Pipe °
Functional Unit

~

,1 2 3 4 5/
V-

Segments

Vector Register V3
-.. Element °
~ Element 1

· · ·
Element N

Pipe 1
Functional Unit

-
,1 2 3 4 ~

V
Segments

Functional Unit Segment
1 2 3 4 5

0,1 "'\

2,3 0, 1

4,5 2,3 0,1 Elements in each
Segment during

6, 7 4,5 2,3 0,1 Successive CPs

8,9 6, 7 4,5 2,3 0, 1

10,11 8,9 6, 7 4,5 2,3
A-9445

Figure 5-2. Vector Segmentation and Pipelining Example

5-4 Cray Research Proprietary CSM-0500-000

CRAY Y-MP ceo System Programmer Reference Manual Parallel Processing Features

Functional Unit Independence

The specialized functional units in the CRAY Y-MP C90 computer
system handle the arithmetic, logical, and shift operations. Most
functional units are fully independent; any number of functional units
can process instructions concurrently. Functional unit independence
allows different operations such as multiplications and additions to
proceed in parallel.

For example, the equation A = (B + C) x D x E could be run as follows.
If operands B, C, D, and E are loaded into the S registers, three
instructions are generated for the equation: one that adds B and C, one
that multiplies D and E, and one that multiplies the results of these two
operations. The multiplication of D and E is issued first, followed by the
addition of B and C. The addition and the multiplication proceed
concurrently; because the addition takes less time to run than the
multiplication, they complete at the same time. The addition operation is
essentially hidden, in that it occurs during the same time interval as the
multiplication operation. The results of these two operations are then
multiplied to obtain the final result.

Multiprocessing and Multitasking

CSM-0500-000

Users of CRAY Y-MP C90 computer systems can take advantage of
parallel processing features known as multiprocessing and multitasking,
including microtasking.

Parallel processing between two or more CPUs is called multiprocessing:
the ability for several programs to be run concurrently on multiple CPUs
of a single mainframe. Up to n programs can run simultaneously on a
machine with n CPUs.

Multitasking is a more recent and complex enhancement than
vectorization. Multitasking is the ability to run two or more parts, or
tasks, of a single program in parallel on different CPUs within a
mainframe. To take advantage of this feature, a program must be
logically or functionally divided to allow two or more tasks to run
simultaneously (that is, in parallel). An example of this is a weather
modeling job in which the northern hemisphere calculation is one part
and the southern hemisphere another part. Distinct code segments are
not needed; the same code could run on multiple processors
simultaneously, with each processor acting on different data.

The theoretical gain that can be achieved from multitasking is that a
program running on a dedicated system in wall clock time, t, could run in
a time as short as tin, if multi tasked, or if modified to use n or more
parallel tasks on a machine with n CPUs.

Cray Research Proprietary 5-5

Parallel Processing Features

Autotasking

5-6

CRAYY-MP C90 System Programmer Reference Manual

In practice, however, a speedup factor of n is not quite attainable because
of the overhead needed to implement multitasking. In some instances,
multitasking can actually increase a program's execution time if the
multitasking overhead decreases performance more than parallel
execution time improves it. Investigate this situation before you invest
too much time and effort. There are some factors that limit the maximum
improvement of a program:

•

•

•

Not all parts of a program can be divided into parallel tasks.

Those parts that can be multitasked may depend on one another
resulting, at running time, in one or more tasks having to wait until
others complete some operation.

Use of the multitasking features incurs a certain amount of
overhead.

The CFT77 compiler on the CRAY Y-MP C90 computer system
automatically uses the vector hardware to perform operations on inner
DO loops that have no data dependencies. Once such optimizing is
complete, a single processor can work no faster, but more than one
processor could operate on separate parts of the data simultaneously to
achieve results faster. Microtasking permits multiple processors to work
on a Fortran program at the DO-loop level. The name microtasking was
chosen because multiprocessing is efficient even at a DO-loop level
where the task size, or granularity, may be small.

Microtasking also works well when the number of processors available is
unknown or may vary during the program's execution, which means that
microtasked jobs do not require a dedicated system, although they
perform best in a dedicated environment with no competing jobs.

As stated before, advanced programming skills and tools are needed to
successfully use multiprocessing, multitasking, and microtasking
concepts in order to promote more efficient programs. These features are
thoroughly discussed and explained in CRI software publications; refer
to the bibliography.

CRAY Y-MP C90 computer system analysts and programmers can use
the Autotasking feature of the CF77 Fortran compiling system to
automatically detect whether portions of their programs can be run in
parallel. Autotasking is an extension of multiprocessing and
micro tasking and is designed to make parallel processing easier to use.
Autotasking alters a Fortran program to allow it to run simultaneously on
multiple CPUs.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual Parallel Processing Features

CSM-0500-000

Autotasking is available on CRAY Y-rdP computer systems beginning
with UNICOS release 4.0 and CF77 release 3.0. Refer to the CF77
Compiling System, Volume 4: Parallel Processing Guide, CRI
publication number SG-3074, for more detailed information on
Autotasking.

Cray Research Proprietary 5-7

6 MAINTENANCE CHANNEL

Theory of Operation

CSM-0500-000

The maintenance channel of the CRA Y Y -MP C90 computer system
provides extensive control over the system and over individual CPUs for
maintenance activities and problem diagnosis. The maintenance channel
supports a concurrent maintenance philosophy if the operating system is
configured appropriately.

The maintenance channel performs basic functions that offer two levels
of control: system level and individual CPU level. The functions
available at each level are listed below:

• System level functions:
• I/O master clear
• CPU master clear
• Set memory priority counter
• Master CPU selection
• External control cable selection
• System-level status reporting

• Individual CPU level functions:
• I/O master clear
• CPU master clear/exchange
• Memory modes (one-half memory and 256K memory)
• Control of CPU soft switches
• Read from and write to memory
• CPU-level status reporting
• Loopback
• Interface to diagnostic monitor (DM)

The maintenance channel is a standard low-speed (LOSP) channel
connecting the mainframe to a maintenance workstation (MWS). One
pair of LOSP channel cables supports the entire system. Refer to
Figure 1-3.

The LOSP channel connecting the MWS to the system communicates
through a 16-bit asynchronous maintenance channel interface located on
the clock module in the mainframe. Each CPU in the system is
connected individually to this interface. This arrangement allows for
data to be broadcast simultaneously to all CPUs and avoids problems
inherent in daisy chain organization, such as missing CPUs.

Cray Research Proprietary 6-1

Maintenance Channel CRAY Y-MP C90 System Programmer Reference Manual

To operate the maintenance channel, transmit a specific function code
from the MWS to the system through the maintenance channel interface.
This function code specifies one of three types of commands: an
individual CPU command, a broadcast command to all CPUs, or a
system command. These three types of commands are described briefly
in the following subsections. A special write/read operation, called
loopback, is also described.

Individual CPU Commands

Broadcast Commands

System Commands

6-2

Commands directed to a specific CPU must include the physical number
of the CPU in the CPU ID field. After the function code is decoded and
checked for errors by the maintenance channel interface, the code is
transmitted to all CPUs in the system. However, only the specified CPU
acts on the command.

The selected CPU must be able to respond to the command. If the
maintenance channel does not receive a response, a Resume signal is not
transmitted after the fourth parcel of the function word, which effectively
deactivates the input channel. This, in tum, forces a write hang on the
MWS LOSP channel. If you attempt to use an unavailable CPU or one
that cannot respond, allow the hang condition to time out on the LOSP
channel connection; clear the channel; select another prospective CPU;
and try again.

A function used as a broadcast command is sent to all CPUs in the
system. Broadcast commands are designated by setting bit 27 iD. parcel 0
of the function word. In addition, the CPU ID field must contain the
number of a valid CPU that can respond to the function. If the
maintenance channel does not receive a response, a Resume signal is not
transmitted after the fourth parcel of the function word, which effectively
deactivates the input channel. This, in tum, forces a write hang on the
MWS LOSP channel. If you attempt to use an unavailable CPU or one
that cannot respond, allow the hang condition to time out on the LOSP
channel connection; clear the channel; select another prospective CPU;
and try again.

System commands are decoded and executed by the maintenance
. channel interface. These commands are designated by setting bit 26 in

parcel 0 of the function word. The other fields in parcel 0 are not used
except for the function code, and for one command, the CPU ID field.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Maintenance Channel

Loopback

Write Hang

Loopback is a special case write and read operation in which a single
word is transferred from the MWS to the system and back again. The
loop-back operation is selected by setting bit 215 in parcel 0 of the
function word. The 7 -bit function code is not decoded, nor are the
broadcast or system bits. The CPU ID field, however, must contain the
number of a valid CPU through which the loop-back data can pass.

The data word returned from the system in the loop-back operation
contains parcel 0 of the transmitted word in the parcel 0 position and
parcell of the transmitted word in parcel locations 1, 2, and 3. The
loop-back operation completes by transmitting a disconnect signal to the
LOSP channel connection.

If a write hang occurs on the MWS LOSP channel, transmit a disconnect
command from the MWS to the system before attempting to transmit
another function code. If the disconnect attempt fails, clear the LOSP
channel. Qearing the channel will also clear the error flags.

Normally, the disconnect is followed by a system status read command to
determine if the cause of the hang is a function error. A function error
results if there is a parcel 0 parity error, or if the upper 8 bits of parcel 1
are not the complement of the upper 8 bits of parcel O.

Maintenance Channel Functions

CSM-0500-000

Table 6-1 contains a summary of all available functions, and Table 6-2
explains the functions in detail. In Table 6-1, the only functions available
in restricted mode of the maintenance channel are identified by an R
designator in the last column. Some functions also require that the CPU
be in 256K memory mode.

Table 6-2 includes the octal coding for the entire first parcel of the
function word in parentheses beneath the binary function code.

Cray Research Proprietary 6-3

Maintenance Channel CRAY Y-MP COO System Programmer Reference Manual

Table 6-1. Maintenance Channel Functions

Function Type

Function Description Broadcast System Individual

0000000 Initialize CPU soft switch to hard switch settings. X X
0000000 Initialize control cable enables to hard switch. X

0000100 Clear control cable 0 enabled soft switch. X

0000 101 Set control cable 0 enabled soft switch. X

0000 110 Clear control cable 1 enabled soft switch. X

0000 111 Set control cable 1 enabled soft switch. X

0001 000 Clear CPU master clear. X

0001 000 Clear CPU master clear/clear idle CPU. X

0001 001 Set CPU master clear. X

0001 001 Set CPU master clear/set idle CPU. X-R

0001 010 Clear CPU master clear/clear idle CPU/exchange. X-R

0010000 Clear I/O master clear. X X
0010001 Set I/O master clear. X X

0010010 Clear I/O master clear, memory priOrity counter = 0 and hold. X

0010011 Set I/O master clear, memory priority counter = 0 and hold. X

0010100 Release memory priority hold (advance each bank busy time). X

0010101 Advance memory priority (hold must be set). X

0010110 Set highest priority CPU = 10 field and hold. X

0011 000 Clear half-memory mode (soft switch). X X
0011 010 Set half-memory size lower, CPU and I/O (soft switch). X X

0011 011 Set half-memory size upper, CPU and I/O (soft switch). X X
0100000 Clear 256K memory mode (online tests). X-R

0100010 Set 256K memory mode CPU and maintenance (online tests). X-R

0100011 Set 256K memory mode CPU, I/O, and maintenance (online tests). X-R

0101 000 Allow full shared register and I/O access. X

0101 001 Cluster number = max, only I/O on this CPU. X

0101 010 Cluster number = max, no I/O. X

0101 011 No shared register or I/O (forced when restricted 2561<). X-R

0110 000 Write memory using CA and CL. X-(R if 2561<)

0110001 Read memory using CA and CL. X-(R if 2561<)

0110 011 Kill read memory (forces disconnect on maintenance channel). X-(R if 2561<)

0111 000 Write block data to diagnostic monitor using CA and CL. X X

0111 001 Read 256 parcels from diagnostic monitor. X

0111 011 Kill read of diagnostic monitor (forces maintenance disconnect). X

1 000000 Select master CPU = 10 field (soft SWitch). X

1 010000 Disable I/O ECC (soft switch). X X

1 010001 Enable I/O ECC (soft switch). X X

1 011 000 CPU test mode off (soft switch control CPU diagnostic modes). X X

1 011 001 CPU test mode on (soft switch control CPU diagnoistic modes). X X

1110001 Read status/soft switches. X-R X-R

1 110 011 Kill read status or loopback. X-R

1 111 000 Reset CPU diagnostic monitor (sets default values). X X

1 111 001 Reset CPU diagnostic monitor time stamp. X X

1 111 010 Stop CPU diagnostic monitor recording. X X

1 111 011 Stop CPU diagnostic monitor recordinglhold issue next CIP. X X

1 111 100 Reset CPU diagnostic monitor trigger/activate/release issue. X X

6-4 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Maintenance Channel

Table 6-2. Maintenance Channel Functions in Detail

Function Description Requirements Type

0000000 Initialize soft switch settings to defaults set by the current hard Maintenance channel Broadcast,
(OOOOid) switch settings. Sets shared register access to full. on, restricted off, Individual CPUs

system bit clear

0000000 Initialize external control cable enables to current switch settings Maintenance channel System
(000100) (soft switch) 1. on, restricted off,

system bit set

0000100 Clear external control cable 0 enable (soft SWitch). Maintenance channel System
(002100) on, restricted off,

system bit set

0000101 Set enable external control cable 0 (soft switch). Maintenance channel System
(002500) on, restricted off,

system bit set

0000110 Clear external control cable 1 enable (soft switch). Maintenance channel System
(003100) on, restricted off,

system bit set

0000111 Set enable external control cable 1 (soft switch). Maintenance channel System
(003500) on, restricted off,

system bit set

0001 000 Clear system CPU master clear (all CPUs). Maintenance channel System
(004100) on, restricted off,

system bit set

0001 000 Clear CPU master clear/clear idle CPU (soft switch). Maintenance channel Individual CPUs
(OO40id) on, restricted off,

system bit clear

0001 001
(004500)

Set system CPU master clear (aU CPUs). Maintenance channel
on, restricted off,

System

system bit set

0001 001 Set CPU master clear/set idle CPU (soft switch). Maintenance channel Individual CPUs
(OO44id) on, system bit set

0001 010 Clear CPU master clear/clear idle CPU (soft switch)/exchange, Maintenance channel Individual CPUs
(0050id) start CPU. on, system bit set

0010000 Clear system I/O master clear (all CPUs). Maintenance channel System 2
(010100) on, restricted off,

system bit set

0010000 Clear I/O master clear. Maintenance channel Individual CPUs
(0100id) on, restricted off,

system bit set

0010001 Set system I/O master clear. Maintenance channel System 3
(010500) on, restricted off,

system bit set

0010001 Set I/O master clear. Maintenance channel Individual CPUs
(0104idJ on, restricted off,

system bit set

0010010 Clear system I/O master clear/set memory priority = 0 and hold. Maintenance channel System 4
(011100) on, restricted off,

system bit set

0010011 Set system I/O master clear/set memory priority = 0 and hold. Maintenance channel System 5
(011500) on, restricted off,

system bit set

0010100 Release memory priority hold (allow advance of priority each bank Maintenance channel System 6
(012100) busy time). on, restricted off,

system bit set

0010101 Advance memory priority (hold must be set; counter advances Maintenance channel System
(012500) once per function). on, restricted off,

system bit set

CSM-0500-000 Cray Research Proprietary 6-5

Maintenance Channel CRAY Y-MP C90 System Programmer Reference Manual

Table 6-2. Maintenance Channel Functions in Detail (continued)

Function Description Requirements Type

0010110 Set h~hest priority CPU = ID field and hold (counter advances until Maintenance channel System
(0131 id) = CP ,then holds). on, restricted off,

system bit set

0011 000 Clear half-memory mode (soft switch). Maintenance channel Broadcast,
(0140id) on, system bit set Individual CPUs

0011 010 Set half-memory mode lower (soft switch) CPU, I/O, maintenance Maintenance channel Broadcast,
(0150id) addresses are affected. on, system bit set Individual CPUs

0011 011 Set half-memory mode upper (soft switch) CPU, I/O, maintenance Maintenance channel Broadcast,
(0154id) addresses are affected. on, system bit set Individual CPUs

0100000 Clear 256K memory mode. Maintenance channel Individual CPUs 7
(0200id) on

0100010 Set 256K memory mode CPU, maintenance addresses are Maintenance channel Individual CPUs 8
(0210id) affected. on

0100011 Set 256K memory mode CPU, I/O, and maintenance addresses Maintenance channel Individual CPUs 9
(0214id) are affected. on

0101 000 Allow full shared register and I/O access. Maintenance channel Individual CPUs
(0240id) on, restricted off

0101 001 Cluster = max, I/O allowed from this CPU. Maintenance channel Individual CPUs
(0244id) on, restricted off

0101 010 Cluster = max, I/O not allowed from this CPU. Maintenance channel Individual CPUs
(0250id) on, restricted off

0101 011 No shared register or I/O allowed from this CPU. Maintenance channel Individual CPUs 10
(0254id) on

0110000 Write memory using CA and CL (12 or more parcels). Maintenance channel Individual CPUs 11
(030pid) on

0110001 Read memory using CA and CL (8 parcels). Maintenance channel Individual CPUs 12
(0304id) on

0110011 Kill read memory. Maintenance channel Individual CPUs 13
(0314id) on

0111 000 Write to diagnostic monitor using CA and CLJstop DM recording Maintenance channel Broadcast,
(0340id) (12+ parcels). on, restricted off Individual CPUs

0111 001 Read 256 parcels from diagnostic monitor/stops DM recording. Maintenance channel Individual CPUs
(0344id) on, restricted off

0111 011 Kill read of diagnostic monitor/stops DM. Maintenance channel Individual CPUs 14
(0354id) on, restricted off

1 000000 Select Master CPU = ID field ~soft switches). Maintenance channel Broadcast
(0402id) on, restricted off,

broadcast set

1 010000 Disable I/O ECC (soft switch). Maintenance channel Broadcast,
(0500id) on, restricted off Individual CPUs

1 010001 Enable I/O ECC (soft switch). Maintenance channel Broadcast,
(0504id) on, restricted off Individual CPUs

1 011 000 CPU test mode off (soft switch control CPU diagnostic modes). Maintenance channel Broadcast,
(0540id) on, restricted off Individual CPUs

1 011 001 CPU test mode on (soft switch control CPU diagnostic modes). Maintenance channel Broadcast,
(0544id) on, restricted off Individual CPUs

1110001 Read status/system soft switch settings. System bit set System,
(070500) no CPUs 15

1110001 Read status/soft switch settings. Maintenance channel Individual CPUs 16
(0704id) on, system bit clear

6-6 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Maintenance Channel

Table 6-2. Maintenance Channel Functions in Detail (continued)

Function Description Requirements Type

1 110011 Kill status/loopback mode. Maintenance channel Individual CPUs 17
(0714id) on

1111 000 Reset CPU diagnostic monitor (sets default values does not Maintenance channel Broadcast,
(0740id) activate DM). on, restricted off Individual CPUs

1 111 001 Reset CPU diagnostic monitor time stamp. Maintenance channel Broadcast,
(0744id) on, restricted off Individual CPUs

1111 010 Stop CPU diagnostic monitor recording. Maintenance channel Broadcast,
(0750id) on, restricted off Individual CPUs

1 111 011 Stop CPU diagnostic monitor recording/hold issue next valid CIP. Maintenance channel Broadcast,
(0754id) on, restricted off Individual CPUs

1 111 100 Reset CPU di~nOstiC monitor trigger/write "ones·/release Maintenance channel Broadcast,
(0760id) issue/activate M. on, restricted off Individual CPUs

NOTES

1. The control cables contain CPU, MC, I/O, deaddump, real-time interrupts, and an MCU interrupt from the external OWS or lOS.
These controls can come from two separate cables.

2. System use also releases memory master clear and releases any hold of memory priority.

3. Individual CPU use does not affect the memory master clear.

4. System use also sets memory master clear, resets the memory priority counter, and releases any hold of memory priority.
Any 256K memory mode is cleared. System I/O master clear will also prevent any maintenance channel functions sent to a
CPU from completing.

5. Individual CPU use does not affect the memory master clear or priority.

6. System I/O master clear also prevents any maintenance channel functions sent to a CPU from completing. Any 256K memory
mode is cleared.

7. If restricted mode is on, share access is set to full.

8. When this mode is set with a restricted bit on a 0 100 010, the function code is forced, limiting this CPU so it cannot issue
shared register or I/O instructions.

9. When this mode is set with a restricted bit on a 0 101 011, the function code is forced, limiting this CPU so it cannot issue
shared register or I/O instructions.

10. Programmable clock interrupt and read of real-time clock is still available to this CPU.

11. If restricted mode is on, 256K mode must be enabled, or the channel hangs and times out.

12. If restricted mode is on, 256K mode must be enabled, or the data and the Disconnect signal is not sent. The channel times out.

13. This function sends a Disconnect signal after any current memory reference is complete.

14. This function sends an Unconditional Disconnect signal.

15. A read of system status contains system status error accumulators for all CPUs. This function clears these errors. A valid CPU
is not required, because this function does not access any CPU. This function is used for obtaining the valid CPUs of this
system, as well as the current system-level soft switches (control cable enables).

16. A read of a CPU status also contains system status and error accumulators for all CPUs. This function clears these errors.
The soft switch status from the CPU indicates that CPU's switch setting. The control cable enables are exceptions. They are
system-level soft switches only. The current valid CPUs are also shown.

17. This function should be used only when the status function or loop-back mode is in a hung condition. Normally status and
loopback finish by transmitting their 4 parcels and sending a Disconnect signal. This function sends an Unconditional
Disconnect signal.

CSM-0500-000 Cray Research Proprietary 6-7

Maintenance Channel CRAY Y-MP ceo System Programmer Reference Manual

Data Formats

MWS Write Data

6-8

Parcel
o

Parcel
1

Parcel
2

Parcel
3

Parcel
4

Parcel
5

Parcel
6

Parcel
7

Parcels
8-

Loop
Back

Data transmitted from the MWS to the system must be arranged in a
specific format if it is to be interpreted properly. Also, status read data
transmitted from the system to the MWS follows a definite format.
These two formats are described in the following subsections.

The format of the data transmitted from the MWS to the system depends
on the function selected. Three different transfer lengths are used. Most
functions require only 4 parcels (one word); however, memory read
functions require 8 parcels (two words), and memory write or diagnostic
monitor parameter write functions use more than 12 parcels. Figure 6-1
shows the content and data format of the parcels used in these operations.

Function Code Broad System Not Not CPU 10 Field
26 125 1 241 ~I 221 21 /20 cast used used 23 1 221 21 1 20

Complement of Upper 8 Bits
of Parcel 0 Not Used

Future Use

Future Use

Current Address (CA) - Upper 16 Bits

Current Address (CA) - Lower 16 Bits

Limit Address (CL) - Upper 16 Bits

Limit Address (CL) - Lower 16 Bits

Memory Write Data or Block Write Data

Figure 6-1. MWS Write Data Format

Cray Research Proprietary CSM-0500-000

CRAY Y-MP COO System Programmer Reference Manual Maintenance Channel

Status Read Data

Parcel 0 of the function word (parcels 0 through 3) includes the function
code and type of command. These codes and commands were explained
in a previous subsection. All references to CPU numbers in the ID field
are based on the physical CPU, not the logical CPU. The upper 8 bits of
parcel 1 of the function word must contain the complement of the upper
8 bits of parcel O. The remaining bits in the function word are not used
and may be set to any value.

A second word (parcels 4 through 7), which contains beginning and
ending channel addresses of the data to be transferred, is required only if
data is to be read or written over the channel. Additional words
containing write data are required only for memory or diagnostic monitor
write functions.

For memory write operations, successful completion of the data transfer
is indicated by the receipt of the Resume signal at the LOSP channel
connection transmitted after the fourth parcel of the last word of the
transfer.

For all read operations, including memory, diagnostic monitor, status,
and loop-back operations, the CPU transmits serial data to the
maintenance channel interface. Here the data is converted to the 16-bit ,
data and 4-bit parity format required by the LOSP channel for
transmission to the MWS. The end of the transfer is indicated by a
Disconnect signal sent to the LOSP channel connection.

Function 1110001 transmits selected status information from the
mainframe to the MWS. This function can be used as either a system
command or as an individual CPU command. Either command returns a
single word of status data from the system. However, the contents and
format of parcel 0 are unique in each case. Figure 6-2 shows the contents
of parcel 0 of the status word for a system read, and Table 6-3 shows the
contents of the same parcel for an individual CPU read.

Parcel 0 I- All Zeroes

Figure 6-2. System Status Read Format (parcel 0)

CS M-0500-000 Cray Research Proprietary 6-9

Maintenance Channel

6-10

CRAY Y-MP ceo System Programmer Reference Manual

Table 6-3. Individual CPU
Status Read Format (parcel 0)

Bit Position Description

215 Always 1

214 Maintenance restrict

213 Diagnostic monitor active

212 Diagnostic monitor parity error

211 256K memory mode (not a soft switch)

210 Shared register select 1

~ Shared register select 0

2B CPU test mode

27 Half-memory mode

26 Half-memory upper select

25 I/O ECC enabled

24 Idle

23 Master CPU select 3

22 Master CPU select 2

21 Master CPU select 1

2° Master CPU select 0

Parcels 1 through 3 of the status word contain the same data and format
for both the system and individual CPU command. This format is shown
in Figure 6-3. Bits 27 through 2° of parcell are explained below:

• Bits 27 and 26, CI'RL1 EN and CTRLO EN, are soft switch values.

• Bit 25, FNCT ERR, sets if there is a mismatch in parcel 0 or parcell of
the maintenance channel (command) header.

• Bit 24, SYS ERR, sets if there is a parcel parity error.

• Bits 23 through 20 specify the current memory priority.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Maintenance Channel

215 214 213 212 211 210 29 28 27 26 25 24 ~ 22 21 20

Parcel 1 I~ All Zeroes -I
c C F S Current Memory
T T N Y Priority
R R C S
L L T
1 0 E

E R
E E R R
N N R

215 214 213 212 211 210 29 28 27 26 25 ~ 23 22 21 20

Parcel 2 I
CPU present: bits 20 through 215 represent the presence of CPUs 0 through
15, respectively, when set.

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 2<'

Parcel 3 I I
Parity error: bits 2<' through 215 represent parity errors in CPUs 0 through 15,
respectively, when set.

Figure 6-3. System and Individual CPU Status Read Formats (parcels 1 through 3)

Diagnostic Monitor

CSM-0500-000

The diagnostic monitor is used to record testpoint and control
information at specified times to indicate the state of the CPU. The
monitor is most useful primarily as a diagnostic tool in system
troubleshooting. For a complete description of the diagnostic monitor
and how it operates, refer to the CRAY Y-MP C90 Computer System
Hardware Maintenance Manual, publication number CMM -0502-000.

Cray Research Proprietary 6-11

7 CPU INSTRUCTIONS

The following subsections explain the instruction formats, special
register values, special CAL syntax forms, and monitor mode
instructions, as well as the instruction differences between Y -MP mode
and C90 mode. The remainder of the section contains a detailed
description of all CRAY Y -MP C90 CPU instructions.

Notational Conventions

CSM-0500-000

The following conventions are used throughout this section:

•

•

•

•

•

•

•

All numbers are decimal numbers unless otherwise indicated.

The letter x represents an unused value.

Register bits are numbered from right to left as powers of 2.

The letter n represents a specified value.

The notation (value) specifies the contents of a register or memory
location as designated by value.

Variable parameters are in italic type.

The vector mask (VM) bits are contained in the VM and VM1
registers. The bits of the VM register correspond to vector
elements 0 through 63, and the bits of the VM1 register correspond
to vector elements 64 through 127, as shown in Figure 7-1.

o ~---- Elements ------·~63

~I
64 1----- Elements ----... 127

VM1 ~12_~ _________________________________ 2_0~1

Figure 7-1. Vector Mask Bits

Cray Research Proprietary 7-1

CPU Instructions

Instruction Formats

First Parcel

r ..A

g h j

4 3 3 3

CRAYY-MP C90 System Programmer Reference Manual

Instructions can be 1 parcel (16 bits), 2 parcels (32 bits), or 3 parcels (48
bits) long. Instructions are packed 4 parcels per word, and parcels are
numbered 0 through 3 from left to right. Any parcel position can be
addressed in branch instructions. A 2- or 3-parcel instruction can begin
in any parcel of a word and can span a word boundary. For example, a
2-parcel instruction beginning in parcel 3 of a word ends in parcel 0 of
the next word. No padding of word boundaries is required. Figure 7-2
shows the general instruction format.

Second Parcel Third Parcel

k" r
~

"r
~

~
m n Fields

3 II 16 II 16 Number of Brts
A·9403

Figure 7-2. General Instruction Format

The first parcel is divided into five fields, and the second and third
parcels each contain a single field. The four variations of this general
format are listed below:

•

•

•

•

i-parcel instruction format with discrete j and k fields.

1-parcel instruction format with combined j and k fields.

2-parcel instruction format with combined i, j, k, and m fields
(Y -MP mode only).

3-parcel instruction format with combined m and n fields.

Each format uses the fields differently and is described in detail in the
following subsections.

1-parcel Instruction Format with Discrete j and k Fields

7-2

The most common of the I-parcel instruction formats uses the i, j, and k
fields as individual designators for operand and result registers (refer to
Figure 7-3). The g and h fields defme the operation code, the i field
-designates a result register, and the j and k fields designate operand
registers. Some instructions ignore one or more of the i, j, and k fields.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

g h j k Fields

4 3 I 3 3 3 I Number of Bits

~\.. J
V

Operation Register
Code Designators A-9405

Figure 7-3. l-parcel Instruction Format with Discrete j and k Fields

The following types of instructions use this format:

•
•
•
•
•

Arithmetic
Logical
Vector shift
Scalar double-shift
Floating-point constant

1-parcel Instruction Format with Combined j and k Fields

CSM-0500-000

Some i-parcel instructions use the j and k fields as a combined 6-bit field
(refer to Figure 7-4). The g and h fields contain the operation code, and'
the i field usually designates a result register. The combined j and k .
fields contain a constant, an intermediate address (B) register designator,
or an intermediate scalar (f) register designator. The 005 branch
instructions and the following types of instructions use the i-parcel
instruction format with combined j and k fields:

•
•
•
•
•

6-bit constant
B or T register block memory transfer
B or T register data transfer with address (A) or scalar (S) register
Scalar single-shift
Scalar mask

Cray Research Proprietary 7-3

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

g h jk Fields

Number of Bits

Constant or
Register

Designators

Result
Register A.9406

Figure 7-4. I-parcellnstruction Format with Combined j and k Fields

2-parcel Instruction Format with Combined i, j, k, and m Fields

The 2-parcel instruction format uses the combined i,j, k, and m fields to
contain a 24-bit address that allows branching to an instruction parcel
(refer to Figure 7-5). A 7-bit operation code (gh) is followed by an ijlan
field. The high-order bit of the i field (i2) is equal to o.

First Parcel Second Parcel

------------~~------------- -------------~-------------rg h j k~r m ~Fields

..... ___ ~ ____y ___ 1_4 __ -
J
...... 2

l
....... 1 Number of Bits

Address
Parcel Select

High-order Bit = 0 A-9407

Figure 7-5. 2-parcel Instruction Format with Combined i,j, k, and m Fields

3-parcel Instruction Format with Combined m and n Fields

7-4

There are three distinct 3-parcel instruction formats using the combined
m and n fields.

The format for a 32-bit immediate constant uses the combined m and n
fields to hold the constant. The 7 -bit g and h fields contain an operation
code, and the 3-bit i field designates a result register. The instructions
using this format transfer the 32-bit mn constant to an A or S register.

NOTE: The m field of the 3-parcel instruction contains bits 2° through
215 of the expression, while the n field contains bits 216 through
231 of the expression. When the instruction is assembled, the
mn field is reversed and actually appears as the nm field when
used as an expression.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

First Parcel

r ~

9 h j

Result
Register

First Parcel

r ~

9 h j

I 41 3 I 3 3

'--v----'
Operation

Code

First Parcel

r A.

9 h J

Operation Source or
Code Result

Register

Address Register
Used as Index

k

The format for a C90-mode branch instruction uses the combined m and
n fields to hold the memory branch address. C90 mode is explained in
the next subsection. The 7 -bit g and h fields (and, in one case, bit 22 of
the i field) contain an operation code.

The format for A or S register memory references uses the combined m
and n fields to hold the memory reference address. This format uses the
4-bit g field for an operation code, the 3-bit h field to designate an
address index register, and the 3-bit i field to designate a source or result
register. Refer to "Absolute Memory Address Calculating" in Section 2
for additional information.

Figure 7-6 shows the three applications for the 3-parcel instruction
format with combined m and n fields. Remember that the m and n fields
are reversed when a 3-parcel instruction is assembled.

Second Parcel Third Parcel

'. r ~ '.r ~
'.

m n Fields

I 16 II 16 I Number of Bits

\ y J

Constant

Second Parcel Third Parcel

'.r ~ '.r ~
'.

Fields k m n

3 II 16 II 16 I Number of Bits

\ ..,. J

Branch Address

Second Parcel Third Parcel

'.r ~ '.r A.
'.

k m n Fields

I 16 II 16 I Number of Bits

\ y I

Memory Address

A-9409

Figure 7-6. 3-parcel Instruction Format with Combined m and n Fields

CSM-0500-000 Cray Research Proprietary 7-5

CPU Instructions CRAY Y-MP C90 System Programmer Reference Manual

Y-MP Mode and egO Mode Instruction Differences

Machine
Instruction

001000

0012j2

0012j3

001302

001303

001406

001407

001600

0017jk

00200k

7-6

The CRAY Y -MP C90 computer system offers two modes of operation: a
Y-MP compatibility mode and C90 mode. These two modes are referred
to as as Y-MP mode and C90 mode, respectively. In Y-MP mode, all
instructions defined within the Y-MP mode of the CRAY Y-MP
computer system function as specified for that mode. In addition, many
new C90 mode instructions are supported in the Y-MP mode. Table 7-1
lists the new instructions for the CRAY Y-MP C90 computer system or
that function differently in the CRAY Y-MP C90 and CRAY Y-MP
computer systems.

Instructions supported only in C90 mode are indicated by the letter A in
the mode column in "CPU Instruction Descriptions" later in this section,
and instructions supported only in Y -MP mode are indicated by the letter
B in the same column.

The program range is 4 Mwords in Y -MP mode and 1 Gword in C90
mode. An instruction outside these ranges produces an undefined result.

Table 7-1. CRAY Y -MP C90 and CRAY Y -MP Instruction Comparison

CAL Syntax CRAYY-MP C90 Function CRAY Y-MP Function

PASS This is a no-operation This is a no-operation
instruction. instruction.

DI,Aj Disable channel (Aj) interrupts. Disable channel (Aj) interrupts.

EI,Aj Enable channel (Aj) interrupts. Enable channel (Aj) interrupts.

EMI Enable monitor mode interrupt Enable monitor mode interrupt
modes. modes.

DMI Disable monitor mode interrupt Disable monitor mode interrupt
modes. modes.

ECI Enable the programmable clock Enable the programmable clock
interrupt request. interrupt request.

DCI Disable the programmable Disable the programmable
clock interrupt request. clock interrupt request.

ESI Enable system I/O interrupts. Enable system I/O interrupts.

BP,k Aj Transmit (Aj) to breakpoint N/A
address k.

VL Ale Transmit (Ale) to VL register. Transmit (Ale) to VL register.
(Maximum VL = 128.) (Maximum VL = 64.)

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Table 7-1. CRAY Y-MP C90 and CRAY Y-MP Instruction Comparison (continued)

Machine
Instruction CAL Syntax CRAY Y-MP C90 Function CRAY Y-MP Function

002301 ESP Enable interrupt on breakpoint. N/A

002401 DBP Disable interrupt on breakpoint. N/A

002704 CPA Complete port reads and writes. N/A

002705 CPR Complete port reads. N/A

002706 CPW Complete port writes. N/A

0030j1 VM1 Sj Transmit (Sj) to VM upper N/A
register.

0034jk SM,Ak 1,TS Test and set semaphore (Ak) N/A
U2 = 1).

0036jk SM,Ak 0 Clear semaphore (Ak) U2 = 1). N/A

0037jk SM,Ak 1 Set semaphore (Ak) U2 = 1). N/A

0051jk J Bjk Jump to (Bjk). (Maintenance N/A
,-

only: invalidates instruction
buffers.)

006000nm Jexp Jump to nm. N/A

0064jknm JTSjk exp Branch to nm if SMjk = 1; else N/A
set SMjk= 1 U2 = 0).

0064jknm JTS,Ak exp Branch to nm if SM,Ak = 1; else N/A
setSM,Ak= 1 U2 = 1).

007000nm Rexp Return jump to nm; set BOO to N/A
(P) + 3.

010000 nm JAZ exp Jump to nm if (AO) = O. N/A

011000 nm JAN exp Jump to nm if (AO) ,t O. N/A

012000 nm JAP exp Jump to nm if (AO) i!: O. N/A

013000 nm JAM exp Jump to nm if (AO) < O. N/A

014000 nm JSZ up Jump to nm if (SO) = O. N/A

015000 nm JSN exp Jump to nm if (SO) ,t O. N/A

016000 nm JSP exp Jump to nm if (SO) i!: O. N/A

CSM-0500-000 Cray Research Proprietary 7-7

CPU Instructions CRAY Y -MP C90 System Programmer Reference Manual

Table 7-1. CRAY Y-MP C90 and CRAY Y-MP Instruction Comparison (continued)

Machine
Instruction CAL Syntax CRAY Y-MP C90 Function CRAYY-MP Function

017000 TIm JSM exp Jump to TIm IT (SO) < O. N/A

023i01 Ai VL Transmit (VL) to Ai. (Maximum Transmit (VL) to Ai. (Maximum
VL = 128.) VL = 64.)

026ij4 Ai SB,Aj,+1 Transmit (SB) designated by N/A
(Aj) to Ai; increment by 1 .

026ij5 Ai SBj,+1 Transmit (SBj) to Ai; increment N/A
by 1.

026ij6 Ai SB,Aj Transmit (SB) designated by N/A
(Aj) to Ai.

027ij6 SB,Aj Ai Transmit (Ai) to SB designated N/A
by (Aj).

033ij1 Ai CE,Aj Transmit error flag of channel Transmit error flag of channel
(Aj) to Ai (j ~ 0); include done (Aj) to Ai (j ~ 0).
flag.

040i20 TIm Si exp Transmit TIm to Si bits 20 - 231. N/A
(Bits 232 - 263 are unchanged.)

040i40 TIm Si exp Transmit TIm to Si bits 232 - 263. N/A
(Bits 20 - 231 are unchanged.)

072ij6 Si ST,Aj Transmit (ST) designated by N/A
(Aj) to Si.

073i10 Si VM1 Transmit VM1 to Si. N/A

073i21 Si SR2 Read PM counters 00 - 17 and Increment performance
increment pOinter. counter.

073i25 SR2 Si Issue PM maintenance N/A
advance.

073i31 Si SR3 Read PM counters 20 - 37 and Clear all maintenance modes.
increment pOinter.

073175 SR7 Si Transmit (SI) to maintenance N/A
mode register.

073ij1 Si SRj Transmit (SRj) to Si. Transmit (SRj) to Si.

073ij6 ST,Aj Si Transmit (Si) to ST designated N/A
by (Aj).

7-8 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Table 7-1. CRAY Y-MP C90 and CRAY Y-MP Instruction Comparison (continued)

Machine
Instruction CAL Syntax CRAYY-MP C90 Function CRAY Y -MP Function

005400 Vi Vj<VO Shift fYj) left (VO) places to Vi. N/A
150ijO

005400 Vi Vj > VO Shift fYj) right (VO) places to Vi. N/A
151ijO

005400 Vi Vj,Ak Transfer fYJ1 to fYi) starting at N/A
152ijk element (Ak).

174ij3 Vi Z)./j Transmit leading zero count of N/A
fYJj to Vi.

073ij5 SRj Si Transmit (Si) to SRj. N/A

Special Register Values

CSM-0500-000

If the so and AO registers are referenced in the h, j, or k fields of certain
instructions, the contents of the respective register are not used; instead, a
special operand is generated. This special operand is always available
regardless of existing AO or SO reservations, because data from these
registers is not used. This special operand does not alter the actual value'
of the SO or AO register. If register SO or AO is referenced in the i field as
an operand, the value stored in the register is used. Cray Assembly
Language (CAL) issues a caution-level error message for AO or SO when
o does not apply to the i field. Table 7-2 lists the special register values.

Table 7-2. Special Register Values

Field Operand Value

AIt, h = 0 0

Aj,j = 0 0

Ak, k= 0 1

Sj,j = 0 0

Sk, k= 0 263 = 1

Cray Research Proprietary 7-9

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

Monitor Mode Instructions

The monitor mode instructions (channel control, set real-time clock,
programmable clock interrupts, and so on) perform specialized functions
useful to the operating system. These instructions run only when the
CPU is operating in monitor mode. If a monitor mode instruction issues
while the CPU is not in monitor mode, it is treated as a no-operation
instruction.

Monitor mode instructions are indicated by the letter C in the mode
column in "CPU Instruction Descriptions" later in this section.

Special CAL Syntax Forms

gertain machine instructions can be generated from two or more
different CAL instructions. Any of the operations performed by special
instructions can be performed by instructions in the basic CAL
instruction set.

For example, the following CAL instructions generate machine
instruction 002000, which enters a 1 into the vector length (VL) register:

VL AO
VL 1

The first instruction is the basic form of the enter VL instruction, which
takes advantage of the special case where (Ak)=1 if k=O; the second
instruction is a special syntax form providing the programmer with a
more convenient notation for the special case.

In several cases, a single CAL instruction can generate several different
machine instructions. These cases provide for entering the value of an
expression into an A register or an S register or for shifting S register
contents. The assembler determines which instruction to generate from
characteristics of the expression.

CAL instructions with a special syntax form are identified by the §
symbol in the following subsection.

CPU Instruction Descriptions

This subsection describes all instructions used by the CRAY Y -MP C90
mainframe. The instruction descriptions use acronyms and
abbreviations that were defined in previous sections.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

The following information is included with each instruction description:

•
•
•
•

Special cases
Hold issue conditions
Execution time
Description

In some instructions, register designators are prefixed by the following
letters, which have special meaning to the assembler. The letters and
their meanings are listed as follows:

Letter

F
H
I
P
Q
R
Z

Description

Floating-point operation
Half-precision floating-point operation
Reciprocal iteration
Population count
Parity count
Rounded floating-point operation
Leading-zero count

Instructions pertaining to functional units use the following characters to
indicate the functional operations:

Character Operation

+

•
I

>
<
&

\

Arithmetic sum of specified registers
Arithmetic difference of specified registers
Arithmetic product of specified registers
Reciprocal approximation
Use one's complement
Shift value or form mask from left to right
Shift value or form mask from right to left
Logical product of specified registers
Logical sum of specified registers
Logical exclusive OR of specified registers

An expression (exp) occupies tbejk, ij/an, or mn field. The h, i,j, and k
designators indicate the field of the machine instruction into which the
register designator constant or symbol value is placed.

CAL instructions with a special syntax form are followed by the §

symbol in the tables listing the instructions.

Cray Research Proprietary 7-11

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

The following letter codes are used in the mode column of the tables
listing the instructions:

Letter Description

A . Instruction supported only in C90 mode
B Instruction supported only in Y-MP mode
C Instruction supported only in monitor mode

Functional Units Instruction Summary

7-12

Instructions other than simple transmit or control operations are
performed by specialized hardware components known as functional
units. Listed below are the machine instructions performed by each of
the functional units.

Functional Unit

Address add (integer)
Address multiply (integer)
Scalar add (integer)
Scalar logical
Scalar shift
Scalar pop/parity/leading zero
Vector add (integer)
Vector logical
Second vector logical
Vector shift
Vector pop/parity
Floating-point add
Floating-point multiply
Floating-point reciprocal
Memory (scalar)
Memory (vector)

Cray Research Proprietary

Instructions

030,031
032
060,061
042 through 051
052 through 057
026,027
154 through 157
140 through 147, 175
140 through 145
150 through 153
174ij1,174ij2
062,063, 170 through 173
064 through 067, 160 through 167
070, 174ijO
10h through 13h
176,177

CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 000000

Machine
Mode Instruction CAL Syntax Description

000000 ERR

Special Cases

Hold Issue Conditions

execution Time

Description

CSM-0500-000

Error exit

If the FEX mode (enable flag on error exit) is not set, instruction 000000
does not perform any operation.

The instruction holds issue if any A, S, or V register is reserved or if an
instruction fetch operation is in progress.

Instruction 000000 issues in 1 CPo Following the instruction issue, an
additional 62 CPs are required: 35 CPs for an exchange sequence and 27
CPs for a fetch operation. Memory conflicts during the exchange
sequence cause additional delays.

If the FEX mode is set when instruction 000000 issues, the error exit
(EEX) interrupt flag is set. An exchange sequence is initiated,
invalidating the contents of the instruction buffers. All instructions
issued before the 004000 instruction, however, run to completion.

When the results of previously issued instructions arrive at the operating
registers, an exchange occurs, with control being shifted to the exchange
package located at the address designated by the contents of the XA
register. The program address stored during the final exchange sequence
is obtained by adding 1 to the address contained in the P register. This
derived address is the address of the instruction immediately following
the error exit instruction.

Instruction 000000 is not generally used in program code. This
instruction stops execution of an incorrectly coded program that branches
to an unused area of memory (if memory was backgrounded with O's) or
into a data area (if the data is positive integers, right justified ASCII, or
floating-point O's).

Cray Research Proprietary 7-13

CPU Instructions

Machine
Mode Instruction

C 0010jk

001000

C 0011jk

C 0012jO

C 0012j1

C 0012j2

C 0012j3

Special Cases

7-14

CRAYY-MP C90 System Programmer Reference Manual

Instructions 0010 through 0012

CAL Syntax Description

CA,Aj Ale Set the CA register for channel (Aj) to (Alc) and begin I/O
sequence.

PASS This is a no-operation instruction. It does not cause an Mil
interrupt.

CL,Aj Ale Set the CL register for channel (Aj) to (Alc).

CL,Aj

MC,Aj

DI,Aj

EI,Aj

Clear the interrupt and error flags for channel (Aj); clear
device master clear (output channels only); enable channel
interrupt.

Clear the interrupt and error flags for channel (Aj); set device
master clear (output channels only); clear device ready held
(input channels only).

Disable channel (Aj) interrupts.

Enable channel (Al) interrupts.

If the program is not in monitor mode, and IMI mode (interrupt on
001ijle; /c;.!0) is not set, these instructions become no-operation
instructions with all hold issue conditions remaining effective.

If the program is not in monitor mode, and IMI mode is set, these
instructions, with the exception of instruction 001000, cause an exchange
to occur. Registers are not updated, and the P register contains the
address of the parcel following the instruction.

Special cases for instructions 0010, 0011, and 0012 are as follows:

•

•

•

If j = 0, the instruction performs no operation.

If k = 0, the CA or CL register is set to 1.

Valid channel numbers are 38, 78, 138, 178,238,278,338, and 378
for the VHISP (very high speed) channels and 408 through 778 for
the LOSP (low speed) channels.

When interrupts occur, the channel number of the highest priority
interrupting channel cannot be read by instruction 033 until 1 CP after
issue of a 0012 instruction.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Hold Issue Conditions

Execution Time

Description

CSM-Q500-000

Instructions 0010 through 0012 hold issue for 3 CPs and continue to hold
issue if a shared register access conflict occurs with another CPU. Refer
to "Shared Paths Access Priority" in Section 2 for more information on
shared register access conflicts.

The 0010jk and 0011jk instructions hold issue if the Ai or the Ak register
is reserved (except AO).

Instructions 0010 and 0011 hold issue if a 033 instruction is in CP 1
through 15.

The 0012 instructions hold issue if the Ai register is reserved (except
AO).

The instruction issue time for instructions 0010 through 0012 is 1 CPo

Instructions 0010 through 0012 are privileged to monitor mode and
provide operations useful to the operating system. Functions are selected
through the i designator. Instructions are treated as pass instructions if
the monitor mode bit is not set. A monitor program activates a user job
by initializing the XA register to point to the user job's exchange
package and then by executing a normal exit instruction.

When the j designator is 0, the functions are executed as pass
instructions. When the k designator is 0, the CA register or the CL
register is set to 1. In the CRAY Y-MP C90 computer system, valid
channel numbers are 38, 78, 138, 178,238,278,338, 378 (VHISP, or
1800-Mbyte/s channel), and 408 through 778 (LOSP, or 6- or 20-Mbyte/s
channel).

Instructions 0010, 0011, and 0012 control operation of the I/O channels.
Each LOSP channel has a CA and a CL register to direct channel activity.
The CA register contains the address of the current channel word; the CL
register specifies the limit address. When programming the channel, the
CL register should be initialized first, and then the CA register should be
set. Setting the CA register activates the channel and begins the data
transfer. During the transfer, the CA register increments by 1 after each
word is transferred. When the contents of the CA register are equal to
the contents of the CL register, the transfer is complete. All words

Cray Research Proprietary 7-15

CPU Instructions

7-16

CRAYY-MP C90 System Programmer Reference Manual

between (CA) and (CL) -1 are transferred; that is, all words starting at
the initial address stored in the CA register through 1 less than the
address stored in the CL register are transferred.

The 001000 instruction functions as a pass instruction; it does not
perform any operations. This instruction does not cause an MIT interrupt
because the k field of the instruction is O.

The 0010jk instruction sets the CA register for the channel indicated by
the contents of the Aj register to the address specified in the Ak register.
The 0011jk instruction sets the CL register for the channel indicated by
the contents of the Aj register to the address specified in the Ak register.
The 0011jk instruction is usually issued before the 0010jk instruction is
issued.

Instruction 0012jO clears the interrupt and error flags for the channel
indicated by the contents of the Aj register; if the contents of the Aj
register specify an output channel, the device master clear is cleared.

Instruction 0012j1 also clears the interrupt and error flags for the channel
indicated by the contents of the Aj register; if the contents of the Aj
register specify an output channel, the device master clear is set; if the
contents of the Aj register specify an input channel, the device ready flag
is cleared.

Each LOSP and VHISP channel has a channel interrupt enable· mode bit,
which is toggled with the 0012j2 and 0012j3 instructions.

The 0012j2 instruction disables the interrupts from the channel specified
by the contents of the Aj register.

The 0012j3 instruction enables the interrupts from the channel specified
by the contents of the Aj register.

e'

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

C 0013jO

C 001302

C 001303

Special Cases

Instruction 0013

CAL Syntax Description

XAAj

EMI

DMI

Transmit (Aj) to the XA register.

Enable monitor mode interrupt modes.

Disable monitor mode interrupt modes.

If the program is not in monitor mode, and 1M! mode is not set, these
instructions become no-operation instructions with all hold issue
conditions remaining effective.

If the program is not in monitor mode, and 1M! mode is set, these
instructions cause an exchange to occur. Registers are not updated, and . ,
the P register contains the address of the parcel following the instruction.

For instruction 0013jO, ifj = 0, the XA register is cleared.

Hold Issue Conditions

Execution Time

'Description

CSM-0500-000

There are none.

Instruction 0013 issues in 1 CPo

For instruction 001302, the interrupt modes are enabled in 3 CPs.

For instruction 001303, the interrupt modes are disabled in 13 CPs.

NOTE: In monitor mode, the software must ensure that only one CPU at
a time is servicing an I/O channel.

Instruction 0013jO transmits bits 211 through 24 of the Aj register to the
XA register. The XA register is cleared when the j designator is O.

Cray Research Proprietary 7-17

CPU Instructions

7-18

CRAY Y-MP C90 System Programmer Reference Manual

Each CPU has an EIM (enable interrupt modes) bit. The 001302
instruction sets the ElM flag (EIM = 1), and the 001303 instruction clears
the EIM flag (EIM = 0). An exchange to monitor mode clears the ElM
flag, providing a stable environment within monitor mode immediately
following an exchange. An exchange to nonmonitor mode sets the ElM
flag.

•

•

•

•

If ElM = 0, all interrupt modes except FNX, FEX, and IPR are
disabled in monitor mode.

If EIM = 0, the following interrupts are held in monitor mode: RTI,
MCU, MEC, BPI, ORE, FPE, RPE, and MEU.

If EIM = 1, then all interrupts (or held interrupts) corresponding to
set interrupt modes are allowed.

I/O interrupts are allowed only if ElM is set, no interrupt mode is
set, and the SIB flag is set.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

C 0014jO

C 0014j1

C 001401

C 001402

C 0014j3

C 0014j4

C 001405

C 001406

C 001407

Special Cases

Instruction 0014

CAL Syntax Description

RT Sj Transmit (Sj) to the RTC register.

SIPI Aj Send an interprocessor interrupt request to CPU (Aj).

SIPI Send an interprocessor interrupt request to CPU O.

CIPI Clear the interprocessor interrupt request.

CLN Aj Transmit (Aj) to the CLN register.

PCI Sj Transmit (Sj) to the II register.

CCI

ECI

DCI

Clear the programmable clock interrupt request.

Enable the programmable clock interrupt request.

Disable the programmable clock interrupt request.

If the program is not in monitor mode, and 1M! mode is not set, these
instructions become no-operation instructions with all hold issue
conditions remaining effective.

If the program is not in monitor mode, and 1M! mode is set, these
instructions cause an exchange to occur. Registers are not updated, and
the P register contains the address of the parcel following the instruction.

Hold Issue Conditions

CSM-0500-000

Instructions 0014jO and 0014jl bold issue if the Sj register is reserved
(except SO).

Instructions 0014jO, 0014jl, 0014j3, and 0014j4 hold issue if the Aj
register is reserved (except AO).

Instructions 0014jO through 0014j3 hold issue for 3 CPs and continue to
hold if a shared paths access conflict exists with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Cray Research Proprietary 7-19

CPU Instructions

Execution Time

Description

7-20

CRAYY-MP C90 System Programmer Reference Manual

Instruction 0014 issues in 1 CPo

The RTC register does not contain valid data until 8 CPs after instruction
0014jO has issued.

The 0014 instructions perform specialized functions for managing the
real-time and programmable clocks. These functions process
interprocessor interrupt requests and cluster number operations. The
0014 instructions are privileged to monitor mode and are treated as pass
instructions if the monitor mode bit is not set.

"The 0014jO instruction loads the contents of the Sj register into the RTC
register; the lower 4 bits of the Sj register are forced to 0 when loaded
into the RTC register. The RTC register is set to 0 when the j designator
is O.

The 0014j1 instruction sets the CPU interrupt request in the CPU
specified by the contents of the Aj register. If the CPU named in the
contents of the Aj register is the CPU issuing the instruction (if a CPU
attempts to interrupt itself) the instruction performs no !lperation. If the
named CPU has lIP mode set and enabled, the interrupt-from-internal
CPU (I CP) flag sets in that CPU, causing an interrupt. The request
remains until the receiving CPU issues instruction 001402, which clears
the request. Instruction 001401 performs the same function as
instruction 0014j1, except that it sets the internal CPU interrupt request
in CPU O.

Instruction 001402 clears the internal CPU interrupt request set by
another CPU.

The 0014j3 instruction sets the cluster number to the contents of the Aj
register to make 1 of 18 cluster selections. The cluster number 0 causes
all shared and semaphore register operations to be no-operation
instructions (except SB, ST, or SM register reads, which return a zero
value to the Ai or Si register). A nonzero cluster number allows access
to a separate set of SM, SB, and ST registers. A cluster number larger
than 1810 produces undefined results.

The 0014j4 instruction loads the 32 low-order bits from the Sj register
into the interrupt interval (II) register and programmable clock. The
programmable clock is a 32-bit counter, the contents of which are
decremented by 1 each CP until equal to 0, which sets the programmable
clock interrupt request. The counter is then reset to the interval value
held in the II register, and the counter repeats the countdown to O. When

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

a programmable clock interrupt request is set, it remains set until a
001405 instruction is executed. Refer to "Interrupt Interval Register" in
Section 3 for more information on the IT register.

The 001405 instruction clears the programmable clock interrupt request
if the request is set previously by the programmable clock counting down
to O.

The 001406 instruction enables repeated programmable clock interrupt
(pCI) requests by setting the IPC interrupt mode in the monitor mode
exchange package.

The 001407 instruction disables repeated PCI requests by clearing the
IPC interrupt mode in the monitor mode exchange package.

Cray Research Proprietary 7-21

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

Instruction 0015

Machine
Mode Instruction CAL Syntax Description

C 001500

Special Cases

Hold Issue Conditions

Execution Time

Description

7-22

Clear aI/ performance monitor counters.

If the program is not in monitor mode, and 1M! mode is not set,
instruction 0015 becomes a no-operation instruction with all hold issue
conditions remaining effective.

If the program is not in monitor mode, and IMI mode is set, instruction
0015 causes an exchange to occur. Registers are not updated, and the P
register contains the address of the parcel following the instruction.

Instruction 0015 should not be issued while the performance monitor is
busy. Bit 247 of status register 0 is set when the performance monitor is
busy.

There are no hold issue conditions.

Instruction 0015 issues in 1 CPa

After instruction 0015 issues, the performance monitor is busy for 71
CPs.

Instruction 0015 clears all the performance monitor counters.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 001600

Machine
Mode Instruction CAL Syntax Description

C 001600 ESI

Special Cases

Hold Issue Conditions

Execution Time

Description

CSM-oSOO-OOO

Enable system I/O interrupts (SIE = 1).

If the program is not in monitor mode, and IM! mode is not set, this
instruction becomes a no-operation instruction with all hold issue
conditions remaining effective.

If the program is not in monitor mode, and IMI mode is set, this
instruction causes an exchange to occur. Registers are not updated, and
the P register contains the address of the parcel following the instruction.

Instruction 001600 holds issue for 3 CPs and continues to hold if a
shared paths access conflict exists with another CPU. Refer to "Shared
Paths Access Priority" in Section 2 for more information.

Instruction 001600 issues in 1 CPo

Instruction 001600 is designed to enhance I/O throughput by eliminating
I/O interrupt blocks that arise when monitor mode is used simultaneously
in several CPUs. Once an I/O interrupt occurs, no further I/O interrupts
are allowed in any CPU regardless of the state of any CPU's 110 flag.
The CPU that receives the I/O interrupt can issue instruction 001600 to
re-enable system I/O interrupts. These interrupts are directed to the
lowest-numbered CPU with an no interrupt mode set and enabled,
whether or not the CPU is in monitor mode. Instruction 001600 should
be issued only after the interrupting channel is serviced; otherwise, the
channel interrupts another CPU.

Cray Research Proprietary 7-23

CPU Instructions

Machine
Mode Instruction

C 0017jk

Special Cases

CRAY Y -MP C90 System Programmer Reference Manual

Instruction 0017

CAL Syntax Description

BP,k Aj Transmit (Aj) to breakpoint address k.

If the program is not in monitor mode, and IM! mode is not set, this
instruction becomes a no-operation instruction with all hold issue
conditions remaining effective.

If the program is not in monitor mode, and IMI mode is set, this
instruction causes an exchange to occur. Registers are not updated, and
the P register contains the address of the parcel following the instruction.

If k = 0, the breakpoint base address = (Aj).

If k =·1, the breakpoint limit address = (Aj).

Hold Issue Conditions

Execution Time

Description

7-24

Instruction 0017 holds issue if Aj is reserved (except AD).

Instruction 0017 issues in 1 CPo

This instruction transmits the contents of register Aj to breakpoint
address k. A breakpoint interrupt occurs if the breakpoint interrupt mode
is enabled (IBP = 1) and if a write reference is made within the
breakpoint range.

The breakpoint range is saved and restored by the operating system
during an exchange.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

00200k

002000

Special Cases

Instruction 0020

CAL Syntax Description

VL Ak Transmit (Ak) to the VL register.

VL 1 § Transmit 1 to the VL register.

If k = 0, the instruction transmits a 1 to the VL register.

The following conditions apply in C90 mode:

•

•

The maximum vector length is 128.

If k P! 0 and (Ale) = 0 or a multiple of 2008, the instruction transmits
2008 to the VL register.

The following conditions apply in Y-MP mode:

•

•

The maximum vector length is 64.

If k ... 0 and (Ale) = 0 or a multiple of 1008, the instruction transmits
1008 to the VL register.

Hold Issue Conditions

execution Time

Description

CSM-0500-000

Instruction 0020 holds issue if the Ale register is reserved (except AO).

Instruction 0020 issues in 1 CPo

The VL register is ready 2 CPs after instruction issue.

Instruction 00200k transmits the contents of the 6 or 7 lowest-order bits
of Ak to the VL register.

Cray Research Proprietary 7-25

CPU Instructions

7-26

CRAY Y-MP C90 System Programmer Reference Manual

In C90 mode, the 7 low-order bits of the Ale register are entered into the
VL register; the eighth bit of the VL register is set if the 7 low-order bits
of the Ale register equal 0; if the contents of the Ale register equal 0 or a
multiple of 2008, then VL = 2008. The contents of the VL register are
always between 1 and 2008.

In Y-MP mode, the 6 low-order bits of the Ale register are entered into
the VL register; the seventh bit of the VL register is set if the 6 low-order
bits of the Ale register equal 0; if the contents of the Ale register equal 0 or
a multiple of 1008, then VL = 1008. The contents of the VL register are
always between 1 and 1008.

Instruction 002000 transmits the value of 1 to the VL register.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 0021 through 0026

Machine
Mode Instruction CAL Syntax Description

002100 EFI

002200 DFI

002300 ERI

002301 EBP

002400 DRI

002401 DBP

002500 OBM

002600 EBM

Special Cases

Hold Issue Conditions

execution Time

Description

CSM-0500-000

Enable interrupt on floating-point error.

Disable interrupt on floating-point error.

Enable interrupt on operand range error.

Enable interrupt on breakpoint.

Disable interrupt on operand range error.

Disable interrupt on breakpoint.

Disable bidirectional memory transfers.

Enable bidirectional memory transfers.

There are no special cases.

Instructions 0021 through 0026 hold issue if the status register is busy.

These instructions issue in 1 CPo

The status register remains busy for 5 CPs plus 3 CPs after the following
conditions are satisfied:

•
•
•

There are no scalar memory references in CPs 1 through 3.
Ports A, B, and C are not busy.
No floating-point instructions were issued in the preceding CPo

Instructions 002100 and 002200 set and clear the
interrupt-on-floating-point-error (IFP) interrupt mode. When this
interrupt mode is set and enabled, it allows interrupts on floating-point

Cray Research Proprietary 7-27

CPU Instructions

7-28

CRAYY-MP C90 System Programmer Reference Manual

range errors. These two instructions do not check the previous state of
the IFP interrupt mode. Issuing either of these instructions also clears the
floating-point error status (FPS) bit.

Instructions 002300 and 002400 set and clear the
interrupt-on-operand-range-error (lOR) interrupt mode. When this
interrupt mode is set and enabled, it allows interrupts on operand range
errors. These two instructions do not check the previous state of the lOR
interrupt mode.

Instructions 002301 and 002401 set and clear the interrupt-on-breakpoint
(IBP) interrupt mode. When this interrupt mode is set and enabled, it
allows interrupts on write references within the breakpoint range, which
should be set previously by instruction 0017jk. The enabled mode
becomes effective after previously issued memory or floating-point
operations can no longer cause interrupts.

Instructions 002500 and 002600 disable and enable the bidirectional
memory mode. When this mode is enabled, block read and write
operations can operate concurrently. When disabled, only block read
operations can operate concurrently.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 0027

Machine
Mode Instruction CAL Syntax Description

002700 CMR

002704 CPA

002705 CPR

002706 CPW

Special Cases

Hold Issue Conditions

execution Time

CSM-0500-000

Complete memory references.

Complete port reads and writes.

Complete port reads.

C'omplete port writes.

There are no special cases.

Instruction 002700 holds issue for any of the following conditions:

•
•
•

Ports A, B, and C are busy.
There is a scalar instruction in CPs 1 through 12.
There is a block instruction in CPs 1 through 12.

Instruction 002704 holds issue for any of the following conditions:

• Ports A and B are busy.
• Port C is busy.
• There is a scalar instruction in CPs 1 through 6.

Instruction 002705 holds issue if ports A and B are busy or if there is a
scalar instruction in CPs 1 through 6.

Instruction 002706 holds issue if port C is busy or if there is a scalar
instruction in CPs 1 through 6.

Instruction 027 issues in 1 CPo

Cray Research Proprietary 7-29

CPU Instructions

Description

7-30

CRAYY-MP C90 System Programmer Reference Manual

Instruction 002700 ensures completion of all memory references within
the particular CPU issuing the instruction. Instruction 002700 does not
issue until all previous memory references can complete in a fixed
number of CPs. For example, a CPU is assured of receiving updated data
when it issues a data load instruction after a 002700 instruction. Used in
conjunction with semaphore instructions, this instruction synchronizes
memory references between processors.

Instructions 002704 through 002706 can be used to ensure sequential
memory referencing within a CPU. These instructions do not issue until
all previous memory references are at a stage of execution such that they
can run to completion before any subsequent memory references.
Instruction 002704 ensures that all read and write operations are at this
stage. Instruction 002705 ensures that all read operations are at this
stage, while instruction 002706 ensures that all write operations are at
this stage.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 0030

Machine
Mode Instruction CAL Syntax Description

0030jO VM Sj Transmit (Sj) to VM lower register.

003000 VM 0 § Clear VM register.

A 0030j1 VM1 Sj Transmit (Sj) to VM upper register.

A 003001 VM1 0 § Clear VM1 register.

Special Cases

If j = 0, then (Sj) = O.

Hold Issue Conditions

Execution Time

Description

CSM-0500-000

The 0030 instructions hold issue for any of the following conditions:

•

•

•

The Sj register is reserved (except SO).

Instruction 14x is in progress in the full vector logical functional
unit; the functional unit is busy for (VU2) + 4 CPs.

Instruction 175 is in progress; the functional unit is busy for (VI12)
+4CPs.

Instruction 0030 issues in 1 CPo

The full vector logical functional unit remains busy for 2 CPs when 14x
and 175 instructions attempt to issue, and it remains busy for 3 CPs when
073iOO and 073i10 instructions attempt to issue.

Instruction 0030 assigns values to the vector mask registers. The vector
merge instructions (146 and 147) then use these values to perform vector
and scalar merge operations.

Cray Research Proprietary 7-31

CPU Instructions

7-32

CRAY Y-MP C90 System Programmer Reference Manual

Instruction 0030jO transmits the contents of the S register specified by j
to the VM register. Bits 263 through 2° of the VM register correspond to
elements 0 through 63 of a vector.

Instruction 003000 clears the VM register.

Instruction 0030j1 transmits the contents of the S register specified by j
to the VM1 register. Bits 263 through 2° of the VM1 register correspond
to elements 64 through 127 of a vector.

Instruction 003001 clears the VM1 register.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 0034, 0036, and 0037

Machine
Mode Instruction CAL Syntax Description

0034jk SMjk 1,TS Test and set semaphore jk, 0 < jk < 3110 (j2 = 0).

0034jk SM,Ak 1,TS Test and set semaphore (Alc), 0 < (Alc) < 3110 (j2 = 1).

0036jk SMjk 0 Clear semaphore jk, 0 < jk < 3110 (j2 = 0).

0036jk SM,Ak 0 Clear semaphore (Alc), 0 < (Alc) < 3110 (j2 = 1).

0037jk SMjk 1 Set semaphore jk, 0 < jk < 3110 (j2 = 0).

0037jk SM,Ak 1 Set semaphore (Alc), 0 < (Alc) < 31 10 (j2 = 1).

Special Cases

Instructions 0034jk, 0036jk, and 0037jk perform no operation if CLN = O.

Hold Issue Conditions

CSM-0500-000

Instruction 0034jk has the following hold issue conditions:

• If j2 = 1 and Ak is reserved (except AO), the instruction holds issue.

• If the current cluster number ... 0, and SMjk is set (j2 = 0) or SM,Ak
is set (j2 = 1), the instruction holds issue until a CPU in the same
cluster clears the semaphore register.

• This instruction holds issue for 5 CPs and continues to hold issue if
a shared register access conflict occurs with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Instructions 0036jk and 0037jk have the following hold issue conditions:

• If j2 = 1 and Ak is reserved (except AO), these instructions hold
issue.

• These instructions hold issue for 3 CPs and continue to hold issue
if a shared paths access conflict occurs with another CPU.

Cray Research Proprietary 7-33

CPU Instructions

Execution Time

Description

7-34

CRAY Y-MP C90 System Programmer Reference Manual

Instructions 0034 through 0037 each issue in 1 CPo

There are thirty-two I-bit semaphore (8M) registers, numbered SMO
through SM378; SMO is the most significant semaphore register.
Instructions 0034jk through 0037jk designate a particular SM register
using either the combined jk fields of the instruction or (Ale). If bit 22 of
the j field = 0, then the combined jk fields select the semaphore register;
if bit 22 of the j field = 1, then the contents of the Ale register select the
semaphore register. The highest SM register that can be selected by the
jk fields of the instruction is 378. A number higher than 378 entered into
the jk fields sets bit 22 of the j field, causing (Ale) to select the semaphore
register.

Instruction 0034jk tests and sets the SM register designated either by the
combined jk fields of the instruction or by the contents of Ale. If the
designated SM register is clear, instruction 0034jk issues and sets the SM
register. If the designated SM register is set, the instruction holds issue
until another CPU clears that SM register; the instruction then issues and
sets the SM register. If all CPUs in a given cluster are holding issue on a
test and set instruction, the deadlock (DL) flag is set in the exchange
package (if not in monitor mode), and an exchange occurs.

While a 0034jk instruction is holding in the CIP register, the
waiting-on-semaphore (WS) bit in the status field of the exchange
package is set. If an interrupt occurs, the CIP and NIP registers are
cleared, the P register is set to the address of the 0034jk instruction, and
an exchange occurs.

Instruction 0036jk clears the SM register designated by either the
combined jk fields of the instruction or by the contents of Ale.

Instruction 0037jk sets the SM register designated by either the combined
jk fields of the instruction or by the contents of Ale.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 004000

Machine
Mode Instruction CAL Syntax Description

004000 EX

Special Cases

Hold Issue Conditions

execution Time

Description

CSM-0500-000

Normal exit from the operating system.

There are no special cases.

Instruction 004000 holds issue if any A, S, or V register is reseIVed or if
an instruction fetch is in progress.

Instruction 004000 issues in 1 CPo Following the instruction issue, 62
CPs are required for an exchange sequence (35 CPs) and a fetch
operation (27 CPs). Memory conflicts during the exchange sequence or
fetch operation cause additional delays.

Instruction 004000 is used to call a monitor program from a user
program or to transfer control from a monitor program to another
program. If the FNX mode is set when instruction 004000 issues, the
normal exit (NEX) interrupt flag is set. An exchange sequence begins,
invalidating the contents of the instruction buffers. All instructions
issued before instruction 004000, however, run to completion.

Cray Research Proprietary 7-35

CPU Instructions

Machine
Mode Instruction

0050jk

0051jk

Special Cases

CRA Y Y -M P C90 System Programmer Reference Manual

Instructions 0050 and 0051

CAL Syntax Description

J Bjk Jump to (Bjk).

Jinv Bjk Jump to (Bjk). (Maintenance only: invalidates instruction
buffers.)

Instructions 0050 and 0051 execute as 2-parcel instructions. The parcel
following the single parcel of these instructions is not used; however, a
delay occurs if this second parcel is not in the instruction buffer.

Hold Issue Conditions

Execution Time

7-36

Instruction 0050 and 0051 hold issue for any of the following conditions:

•

•

•

•

Instruction 034 or 035 is in progress.

Instruction 025 was issued in the preceding CPo

The second parcel of the instruction is in another buffer (a 3-CP
delay occurs).

The second parcel of the instruction is not in an instruction buffer
(a 26-CP delay occurs).

Instruction 0051 also holds issue if a fetch is active.

If the instruction parcel and the following parcel are in the same buffer,
and the branch address is in a buffer, the issue time is 8 CPs.

If the instruction parcel and the following parcel are both in a buffer, and
the branch address is not in a buffer, the issue time is 31 CPs. Additional
time is required if a memory conflict exists.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500-000

Instructions 0050 and 0051 set the P register to the 32-bit (24-bit if in
Y-MP mode) parcel address contained in the B register specified by jk,
causing the program to continue at that address. These instructions are
used to exit a subroutine and return to the calling program.

Instruction 0051 also clears the buffer valid bits, invalidating any data
stored in the buffers and forcing a fetch to occur.

Cray Research Proprietary 7-37

CPU Instructions

Machine
Mode Instruction

B 006ijlan

A 006000nm

A 0064jknm

A 0064jknm

Special Cases

CRAYY-MP C90 System Programmer Reference Manual

Instruction 006

CAL Syntax Description

Jexp Jump to expo

Jexp Jump toexp.

JTSjk exp Branch to exp if (SMjk) = 1; else set SMjk (j2 = 0).

JTS,Ak exp Branch to exp if (SM,(Ak)) = 1; else set SM,{Ak) (j2 = 1).

For instruction 006ijkm, the high-order bit of the i-designator (i2) must
beD.

Hold Issue Conditions

Execution Time

7-38

Instruction 006 holds issue for any of the following conditions:

•

•

•

The second parcel of the instruction is in another buffer (a 3-CP
delay occurs).

The third parcel (of instructions 006000 nm through 0064) is in
another buffer (a 4-CP delay occurs).

The second and/or third parcel of the instruction is not in an
instruction buffer (a 26-CP delay occurs).

Instruction 0064 holds issue for 5 CPs and continues to hold if a shared
paths access conflict exists with another CPU. Refer to "Shared Paths
Access Priority" in Section 2 for more information.

Instruction 0064jk 11m with j2 = 1 holds issue if Ak is reserved.

The issue times for instruction 006 are as follows:

• If all parcels of the instruction are in the same buffer, and the
branch address is in a buffer, the issue time is 6 CPs.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500-000

• If all parcels of the instruction are in the same buffer, and the
branch address is not in a buffer, the issue time is 29 CPs.
Additional time is required if a memory conflict exists.

Instruction 006ijlan is a 2-parcel unconditional jump instruction used in
Y -MP mode. It sets the P register to the parcel address specified by the
24 low-order bits of the exp (ijlan) field. Program execution continues at
that address.

Instruction 006000 nm is a 3-parcel unconditional jump instruction used
in C90 mode. It sets the P register to the parcel address specified by the
32 low-order bits of the exp (nm) field. Program execution continues at
that address.

Instruction 0064jk nm is a 3-parcel instruction that causes program
execution to branch to the address specified in parcels 2 and 3 (nm field)
if the semaphore register specified by the jk field is set to 1. If the
selected semaphore register contains a 0, the semaphore register is set to
1, and the next instruction is executed. This instruction performs in this
manner if the contents of its combined jk field range from 0 through 37 g.

If bit 22 of the j field is set (the combined jk fields contain a number
greater than 37g), the 0064jk nm instruction uses the value contained in
the A register specified by k to select a semaphore register.

Cray Research Proprietary 7-39

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

Instruction 007

Machine
Mode Instruction CAL Syntax Description

B 007ijlan Rexp

A 007000nm Rexp

Special Cases

Hold Issue Conditions

execution Time

7-40

Return jump to exp and set register BOO to (P) + 2.

Return jump to exp and set register BOO to (P) + 3.

There are no special cases.

Instruction 007 holds issue for any of the following conditions:

•

•

•

•

Instruction 034 or 035 is in progress.

InstructiQn 025 was issued in the previous 2 CPs.

The second parcel of the instruction is in another buffer (a 3-CP
delay occurs).

The second and/or third parcel of the instruction is not in an
instruction buffer (a 26-CP delay occurs).

The issue times for instruction 007 are as follows:

•

•

If all parcels of the instruction are in the same buffer, and the
branch address is in a buffer, issue time is 6 CPs.

If all parcels of the instruction are in the same buffer, and the
branch address is not in a buffer, issue time is 29 CPs. Additional
time is needed if a memory conflict exists.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500-000

Instruction 007ijlan is a 2-parcel return jump instruction used in Y-MP
mode. It sets register BOO to the address of the parcel following the
second parcel of the instruction, and sets the P register to the parcel
address specified by the 24 low-order bits of the exp (ijlan) field
Program execution continues at that address.

Instruction 007000 nm is a 3-parcel return jump instruction used in C90
mode. It sets register BOO to the address of the parcel following the third
parcel of the instruction and sets the P register to the parcel address
specified by the 32 bits of the exp (nm) field Program. execution
continues at that address.

This instruction provides return links for subroutine calls. The
subroutine is entered through a return jump. The subroutine can return to
the caller at the instruction following the call by executing a jump to the
contents of register BOO (005000).

Cray Research Proprietary 7-41

CPU Instructions

Machine
Mode Instruction

B 010ijlan

A 010000 nm

B 011ijlan

A 011000 nm

B 012ijlan

A 012000 nm

B 013ijlan

A 013000 nm

Special Cases

CRAY Y-MP C90 System Programmer Reference Manual

Instructions 010 through 013

CAL Syntax Description

JAZ exp Jump to exp if (AO) = 0 (i2 = 0).

JAZ exp Jump to exp if (AO) = O.

JAN exp Jump to exp if (AO) pi! 0 (i2 = 0).

JAN exp Jump to exp if (AO) pi! O.

JAP exp Jump to exp if (AO) is positive; (AO) ~ 0 (i2 = 0).

JAP exp Jump to exp if (AO) is positive; (AD) ~ O.

JAM exp Jump to exp if (AO) is negative (i2 = 0).

JAM exp Jump to exp if (AO) is negative.

Special cases for instructions 010 through 013 are as follows:

•
•
•

(AO) = 0 is interpreted as (AO) positive.
The high-order bit of the i designator (i2) must be O.
Register AO is 32 bits wide and 231 is the sign bit.

Hold Issue Conditions

7-42

Instructions 010 through 013 hold issue for any of the following
conditions:

•

•

•

Register AO is busy in anyone of the previous 3 CPs.

The second and/or third parcel of the instruction is in another
buffer (a 3-CP delay occurs).

The second and/or third parcel of the instruction is not in an
instruction buffer (a 26-CP delay occurs).

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

CSM-0500.,.OOO

The following issue times are for instructions 010 through 013 if the
branch is taken (if the jump conditions are satisfied):

•

•

•

•

•

•

If all parcels of the instruction are in the same buffer, if the branch
is taken, and if the branch address is in a buffer, the issue time is 6
CPs.

If all parcels of the instruction are in the same buffer, if the branch
is taken, and if the branch address is not in a buffer, the issue time
is 29 CPs.

If the second or third parcel of the instruction is in another buffer, if
the branch is taken, and if the branch address is in a buffer, the
issue time is 9 CPs.

If the second or third parcel of the instruction is in another buffer, if
the branch is taken, and if the branch address is not in a buffer, the
issue time is 32 CPs.

If the second or third parcel of the instruction is not in a buffer, if
the branch is taken, and if the branch address is in a buffer, the
issue time is 32 CPs.

If the second or third parcel of the instruction is not in a buffer, if
the branch is taken, and if the branch address is not in a buffer, the
issue time is 53 CPs.

The following instruction issue times are for instructions 010 through
013 if the branch is not taken (if the jump conditions are not satisfied):

•

•

•

•

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is in the same buffer, the
issue time is 2 CPs.

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is in another buffer, the
issue time is 5 CPs.

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is not in a buffer, the issue
time is 29 CPs.

If the second or third parcel of the instruction is in another buffer,
and if the branch is not taken, the issue time is 5 CPs.

Cray Research Proprietary 7-43

CPU Instructions CRAYY-MP ceo System Programmer Reference Manual

Description

7-44

• If the second or third parcel of the instruction is not in a buffer, and
if the branch is not taken, the issue time is 27 CPs.

NOTE: Memory conflicts may cause a delay whenever a fetch operation
occurs.

In Y-MP mode, the 2-parcel instructions 010 through 013 test the
contents of the AO register for the condition specified by the h field. If
the condition is satisfied, the P register is set to the parcel address
specified by the 24 low-order bits of the exp (ij/an) field, and execution
continues at that address. The high-order bit (i2) of the ijkm field must
be O. If the condition is not satisfied, execution continues with the
instruction that follows the branch instruction.

In C90 mode, the 3-parcel instructions 010 through 013 test the contents
of the AO register for the condition specified by the h field. If the
condition is satisfied, the P register is set to the parcel address specified
by the 32 bits of the exp (nm) field, and execution continues at that
address. If the condition is not satisfied, execution continues with the
instruction that follows the branch instruction.

Cray Research Proprietary CSM-0500-000.

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 014 through 017

Machine
Mode Instruction CAL Syntax Description

B 014ijkm JSZ exp Jump to exp if (SO) = 0 (i2 = 0).

A 014000 nm JSZ exp Jump to exp if (SO) = O.

B 015ijkm JSN exp Jump to exp if (SO) !II! 0 (i2 = 0).

A 015000 nm JSN exp Jump to exp if (SO) !II! O.

B 016ijkm JSP exp Jump to exp if (SO) is positive; (SO) ~ 0 (i2 = 0).

A 016000 nm JSP exp Jump to exp if (SO) is positive; (SO) ~ O.

B 017ijkm JSM exp Jump to exp if (SO) is negative (i2 = 0).

A 017000 nm JSM exp Jump to exp if (SO) is negative.

Special Cases

Special cases for instructions 014 through 017 are as follows:

• (SO) = 0 is interpreted as (SO) positive.

• The high-order bit of the i designator (i2) must be O.

Hold Issue Conditions

CSM-0500-000

Instructions 014 through 017 hold issue for any of the following
conditions:

•

•

•

Register SO is busy in anyone of the previous 5 CPs.

The second andlor third parcel of the instruction is in another
buffer (a 3-CP delay occurs).

The second andlor third parcel of the instruction is not in an
instruction buffer (a 26-CP delay occurs).

Cray Research Proprietary 7-45

CPU Instructions

Execution Time

7-46

CRAY Y-MP C90 System Programmer Reference Manual

The following issue times are for instructions 014 through 017 if the
branch is taken (if the jump conditions are satisfied):

• If all parcels of the instruction are in the same buffer, if the branch
is taken, and if the branch address is in a buffer, the issue time is 6
CPs.

• If all parcels of the instruction are in the same buffer, if the branch
is taken, and if the branch address is not in a buffer, the issue time
is 29 CPs.

• If the second or third parcel of the instruction is in another buffer, if
the branch is taken, and if the branch address is in a buffer, the
issue time is 9 CPs.

• If the second or third parcel of the instruction is in another buffer, if
the branch is taken, and if the branch address is not in a buffer, the
issue time is 32 CPs.

• If the second or third parcel of the instruction is not in a buffer, if
the branch is taken, and if the branch address is in a buffer, the
issue time is 32 CPs.

• If the second or third parcel of the instruction is not in a buffer, if
the branch is taken, and if the branch address is not in a buffer, the
issue time is 53 CPs.

The following issue times are for instructions 014 through 017 if the
branch is not taken (if the jump conditions are not satisfied):

•

•

•

•

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is in the same buffer, the
issue time is 2 CPs.

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is in another buffer, the
issue time is 5 CPs.

If all parcels of the instruction are in the same buffer, if the branch
is not taken, and if the next instruction is not in a buffer, the issue
time is 29 CPs.

If the second or third parcel of the instruction is in another buffer,
and if the branch is not taken, the issue time is 5 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500~OOO

• If the second or third parcel of the instruction is not in a buffer, and
if the branch is not taken, the issue time is 27 CPs.

NOTE: Memory conflicts may cause a delay whenever a fetch operation
occurs.

In Y -MP mode, the 2-parcel instructions 014 through 017 test the
contents of the SO register for the condition specified by the h field. If
the condition is satisfied, the P register is set to the parcel address
specified by the 24 low-order bits of the exp (iFlan) field, and execution
continues at that address. The high-order bit (i2) of the ijlan field must
be O. If the condition is not satisfied, execution continues with the
instruction that follows the branch instruction.

In C90 mode, the 3-parcel instructions 014 through 017 test the contents
of the SO register for the condition specified by the h field. If the
condition is satisfied, the P register is set to the parcel address specified
by the 32 bits of the exp (nm) field, and execution continues at that
address. If the condition is not satisfied, execution continues with the
instruction that follows the branch instruction.

Cray Research Proprietary 7-47

CPU Instructions CRAY Y -MP C90 System Programmer Reference Manual

Instructions 020 through 022

Machine
Mode Instruction CAL Syntax Description

020iOOnm Aiexp Transmit exp (nm) to Ai.

021iOOnm Aiexp Transmit one's complement of exp (nm) to Ai.

022ijk Aiexp Transmit exp Uk) to Ai.

Special Cases

There are no special cases.

Hold Issue Conditions

Execution Time

7-48

Instructions 020 through 022 hold issue for any of the following
conditions:

•

•

•

The Ai register is reserved.

The second andlor third parcel of the instruction is not in an
instruction buffer (a 26-CP delay occurs).

An A register access conflict exists; therefore, one of the following
is true:

• Instruction 030 or 031 is in CP 1.
• Instruction 026 or 027, with k = 0 or 1, is in CP 5.
• Instruction 026, with k = 4 through 7, is in CP 7.
• Instruction 033 is in CP 18.

The following instruction issue times apply to instructions 020 through
022:

• Register Ai is ready in 1 CP.

• For instructions 020 and 021, issue time is 2 CPs.

• For instruction 022, issue time is 1 CP.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-QSOO-OOO

•

•

If parcel 0 is in a different buffer than parcels 1 and 2, issue time is
5 CPs.

If parcel 2 is in a different buffer than parcels 0 and 1, issue time is
6 CPs.

Instructions 020 through 022 transmit a value determined by exp into the
Ai register. The syntax of these instructions differs from most CAL
symbolic instructions in that the assembler generates one of these three
Cray Research machine instructions depending on the form, value, and
attributes of the expo

The assembler generates instruction 022ijk if all of the following
conditions are true, and if the jk fields contain the 6-bit value of expo

• The value of the expression is positive and less than 1008.
• All symbols (if any) within the expression are previously defined.
• The expression has an absolute relative attribute.

If any of the previous three conditions is not true, the assembler
generates one of the 3-parcel instructions 020iOO nm or 021iOO nm
according to the criteria listed below. The nm fields contain the 32-bit
value of expo

•

•

If the exp value is positive and greater than 778 or has either a
relocatable or external relative attribute, instruction 020iOO nm is
generated.

If the exp value is negative (not explicitly -1) and has an absolute
relative attnbute, instruction 021iOO nm is generated, with the one's
complement of exp entered into the nm field. If the value of exp is
explicitly -1, instruction 031ioo is generated.

Cray Research Proprietary 7-49

CPU Instructions CRAY Y-MP C90 System Programmer Reference Manual

Instruction 023

Machine
Mode Instruction CAL Syntax Description

023ijO Ai Sj

023i01 Ai VL

Special Cases

Hold Issue Conditions

7-50

Transmit (SJ1 to Ai.

Transmit (VL) to Ai.

For instruction 023ijO, if j = 0 then a value of 0 is transmitted to Ai.

For instruction 023i01, two special cases occur:

•

•

In C90 mode, if the 7 low-order bits of the VL register are 0, bit 27
in the VL register is set to 1. If any of the 7 low-order bits of the
VL register are not 0, bit 27 is forced to O.

In Y -MP mode, if the 6 low-order bits of the VL register are 0, bit
26 in the VL register is set to 1. If any of the 6 low-order bits of the
VL register are not 0, bit 26 is forced to O.

The following examples illustrate the special case for C90 mode.

• In C90 mode, if (A1) = 0, the following CAL sequence results in
(A2) = 200s.

VL Al
A2 VL

• In C90 mode, if (Al) = 723s, the above CAL sequence results in
(A2) = 123s.

Instruction 023 holds issue for any of the following conditions:

•

•

The Ai register is reserved.

An A register access conflict exists; therefore, one of the following
is true:

• Instruction 030 or 031 is in CPl.
• Instruction 026 or 027, with k = 0 or 1, is in CP 5.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

execution Time

Description

CSM-0500-000

• Instruction 026, with k = 4 through 7, is in CP 7.
• Instruction 033 is in CP 18.

• Instruction 002Ox.x was issued in the preceding CPo

Instruction 023ijO holds issue if the Sj register is reserved (except SO).

Instruction 023 issues in 1 CP.

For instruction 023ijO, the Ai register is ready in 3 CPs.

For instruction 023iOl, the Ai register is ready in 1 CPo

Instruction 023ijO transmits the 32 low-order bits of the contents of the Sj
register to the Ai register. The high-order bits of the Sj register are
ignored. Register Ai receives the value of 0 if the j designator is O.

Instruction 023iOl transmits the contents of the VL register to the Ai
register.

Cray Research Proprietary 7-51

CPU Instructions CRAVV-MP C90 System Programmer Reference Manual

Instructions 024 and 025

Machine
Mode Instruction CAL Syntax Description

024ijk Ai Bjk Transmit (Bjk) to Ai.

02Sijk Bjk Ai Transmit (Ai) to Bjk.

Special Cases

There are no special cases.

Hold Issue Conditions

Execution Time

Description

7-S2

Instructions 024 and 025 hold issue for any of the following conditions:

• Instruction 034 or 035 is in progress.
• Register Ai is reserved.

Instruction 024 holds issue if instruction 025 was issued in the preceding
CP, or if an A register access conflict exists; therefore, one of the
following is true:

• Instruction 030 or 031 is in CPt.
• Instruction 026 or 027, with k = 0 or 1, is in CP 5.
• Instruction 026, with k = 4 through 7, is in CP 7.
• Instruction 033 is in CP 18.

Instructions 024 and 025 issue in 1 CPo

For instruction 024, the Ai register is ready in 1 CPo

Instruction 024ijk transmits the contents of the B register specified by jk
to the Ai register.

Instruction 025ijk transmits the contents of the Ai register to the B
register specified by jk.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

026ijO

026ij1

026ij4

026ij5

026ij6

026i}7

Special Cases

Instruction 026

CAL Syntax Description

Ai PSj Transmit the population count of (S}) to Ai.

Ai aSj Transmit the population count parity of (S}) to Ai.

Ai SB,Aj,+1 Transmit (S8) designated by (Aj) to Ai, and increment
(S8,An by 1.

Ai SBj,+1 Transmit (S8)) to Ai, and increment (S8}) by 1 .

Ai SB,Aj Transmit (S8) designated by (Aj) to Ai.

Ai S8j Transmit (SB}) to Ai.

For instructions 026ijO and 026ijl, if j = 0, then (AI) = O.

For instructions 026ij4 through 026iJ7, if the CLN = 0, then (AI) = o.

For instructions 026ij4 and 026ij6, if j = 0, then (SBO) is transmitted to
Ai.

Hold Issue Conditions

CSM-0500-000

Instruction 026 holds issue if the Ai register is reserved.

Instructions 026ijO and 026ij1 hold issue if the Sj register is reserved
(except SO) or if there is an A register access conflict; therefore, one of
the following is true:

•
•

One of the instructions from 026ij4 through 026iJ7 is in CP 2 .
Instruction 033 is in CP 13 .

Instructions 026ij4 through 026ij7 hold issue for 3 CPs and continue to
hold if a shared paths access conflict occurs with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Instructions 026ij4 and 026ij6 hold issue if the Aj register is reserved.

Cray Research Proprietary 7-53

CPU Instructions

Execution Time

Description

7-54

CRAYY-MP C90 System Programmer Reference Manual

Instruction 026 issues in 1 CPo

For instructions 026ijO and 026ij1, the Ai register is ready in 6 CPs.

For instructions 026ij4 through 026i}7, the Ai register is ready in 8 CPs.

Instructions 026ijO and 026ij1 are executed in the population/leading
zero count functional unit.

Instruction 026ijO counts the number of 1 bits in the (Sj) register and
enters the result into the 7 low-order bits of the Ai register. The
high-order bits of the Ai register are cleared. If the Sj register equals 0,
then the value in the Ai register is cleared to O.

Instruction 026ij1 enters a 0 into the Ai register if the (S}) register has an
even number of 1 bits. If the (S}) register has an odd number of 1 bits, a
1 is entered into the Ai register. The high-order bits of the Ai register are
cleared. The actual population count is not transferred.

Instruction 026ij4 reads from Aj the address of a specific SB register. It
transmits the contents of that SB register to Ai, and then increments the
contents of that SB register by 1. The Aj register must be set to a value
corresponding to the number of the desired SB register before instruction
026ij4 is issued.

Instruction 026ij5 transmits the contents of the SBj register to Ai, and
then increments the contents of that SB register by 1.

Instruction 026ij6 reads from Aj the address of a specific SB register. It
transmits the contents of that SB register to Ai. No incrementing occurs.
The Aj register must be set to a value corresponding to the number of the
desired SB register before instruction 026ij6 is issued

Instruction 026ij7 transmits the contents of the SBj register to the Ai
register. No incrementing occurs.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

027ijO

027ij6

027i}7

Special Cases

Instruction 027

CAL Syntax Description

Ai ZSj Transmit leading zero count of (Sj) to Ai.

SB,Aj Ai Transmit (Ai) to SB designated by (A}).

SBj Ai Transmit (Ai) to SBj.

For instruction 027ijO, there are two special cases:

• If j = 0, the Ai register receives the value 64.
• If Sj is negative, the Ai register is cleared to O.

For instruction 027ij6, if j = 0, (Al) is transmitted to SBO.

For instructions 027ij6 and 027ij7, if CLN = 0, the instructions perform
no operation.

Hold Issue Conditions

Execution Time

CSM-0500-000

Instruction 027 holds issue if the Ai register is reserved.

Instruction 027ijO holds issue if the Sj register is reserved (except SO) or
if an A register access conflict occurs; therefore, one of the following is
true:

• One of the instructions from 026ij4 through 026iJ7 is in CP 2.
• Instruction 033 is in CP 13.

Instructions 027ij6 and 027ij7 hold issue for 3 CPs and continue to hold
if a shared paths access conflict occurs with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Instruction 027ij6 holds issue if the Aj register is reserved.

Instruction 027 issues in 1 CPo

For instruction 027ijO, the Ai register is ready in 6 CPs.

Cray Research Proprietary 7-55

CPU Instructions

Description

7-56

CRAYY-MP C90 System Programmer Reference Manual

For instructions 027ij6 and 027ij7, the SBj register is ready in 1 CPo

Instruction 027ijO counts the number of leading O's in the Sj register and
enters the result into the 7 low-order bits of the Ai register. All bits
above bit 28 in the Ai register are cleared. The Ai register is set to 64 if
the j designator is 0 or if the contents of the Sj register are O. Instruction
027 ijO executes in the population/leading zero count functional unit.

Instruction 027ij6 transmits the contents of the Ai register to the SB
register designated by the contents of Aj.

Instruction 027ij7 transmits the contents of the Ai register to the SBj
register.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

030ijk

030iOk

030ijO

031ijk

031iOO

031iOk

031ijO

Special Cases

Instructions 030 and 031

CAL Syntax Description

Ai Aj+Ak Transmit the integer sum of (Al) and (Ak) to Ai.

AiAlc § Transmit (Alc) to Ai.

AiAj+1 § Transmit the integer sum of (Al) and 1 to Ai.

Ai Aj-Ak Transmit the integer difference of (Al) and (Alc) to Ai.

Ai -1 § Transmit -1 to Ai.

Ai-Ak § Transmit the negative of (Ak) to Ai.
"

Ai Aj-1 § Transmit the integer difference of (Al) and 1 to Ai.

The special cases for instruction 030 are as follows:

•
•
•

If j = 0 and k pi! 0, then (Al) = (Ale).
Ifj = 0 and k = 0, then (Al) = 1.
If j pi! 0 and k = 0, then (Al) = (AD + 1.

The special cases for instruction 031 are as follows:

•
•
•

If j = 0 and k pi! 0, then (Al) = -(Ale).
Ifj = 0 and k = 0, then (Al) = -1.
If j P! 0 and k = 0, then (Al) = (AD - 1.

Hold Issue Conditions

CSM-0500-000

Instructions 030 and 031 hold issue for any of the following conditions:

•

•

•

The Ai register is reserved.

The Aj or Ale register is reserved (except AO).

An A register access conflict occurs; therefore, one of the
following is true:

• Instruction 026ijO, 026ijl, or 027ijO is in CP 4.
• One of the instructions from 026ij4 through 026ij7 is in CP 6.
• Instruction 033 is in CP 17.

Cray Research Proprietary 7-57

CPU Instructions

Execution Time

Description

7-58

CRAYY-MP COO System Programmer Reference Manual

Instructions 030 and 031 issue in 1 CPo

The Ai register is ready in 2 CPs.

Instructions 030 and 031 execute in the address add functional unit.
Overflow is not detected by either instruction.

Instruction 030 forms the integer sum of the contents of the Ai and Ak
registers and enters the result into the Ai register.

Instruction 031 forms the integer difference of the contents of the Aj and
Ak registers and enters the result into the Ai register. Instruction 03liOO
is generated in place of instruction 020 if the operand is explicitly -1.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instruction 032

Machine
Mode Instruction CAL Syntax Description

032ijk Ai Aj* Ale Transmit the integer product of (Aj) and (Ale) to Ai.

Special Cases

'The two special cases for instruction 032 are as follows:

• Ifj = 0, then (AJ) = O.
• If j pi! 0 and k = 0, then (Az) = (AJ).

Hold Issue Conditions

Execution Time

Description

CSM-Q500-000

Instruction 032 holds issue if the Ai register is reserved or if either the Aj
or the Ale (except AO) register is reserved.

Instruction 032 issues in 1 CPo

The Ai register is ready in 4 CPs.

Instruction 032 forms the integer product of the contents of the Aj and
Ale registers and enters the 32 low-order bits of the result into the Ai
register. Instruction 032 executes in the address multiply functional unit
with no overflow detected.

Cray Research Proprietary 7-59

CPU Instructions

Machine
Mode Instruction

033iOO

, 033ijO

033ij1

Special Cases

CRAYY-MP C90 System Programmer Reference Manual

Instruction 033

CAL Syntax Description

Ai CI Transmit to Ai the channel number of the highest priority
channel requesting an interrupt.

Ai CA,Aj Transmit the current address of channel (AJ) to Ai (j'-! 0).

Ai CE,Aj Transmit channel status word for channel (Al) to Ai (j'-! 0).

The special cases for instruction 033 are as follows:

• If the program is not in monitor mode and IMI mode is set, this
instruction causes an exchange.

• If j = 0, then (AI) = the channel number of the highest priority
channel causing an interrupt.

• Valid LOSP channel numbers for instructions 033ijO and 033ij1 are
38, 78, 138, 178, 238, 278, 338, and 378.

• If j pi! 0 and k = 0, then (AI) = current address of channel (Aj).

• If j pi! 0 and k = 1, then (AI) = I/O error flag of channel (Aj).

• After instruction 0012jO issues, 1 CP must elapse before the correct
channel number of the interrupting channel can be read by
instruction 033iOO.

Hold Issue Conditions

Execution Time

7-60

Instruction 033 holds issue if the Ai or Aj (except AO) register is
reserved.

Instruction 033 holds issue for 3 CPs and continues to hold issue if a
shared register access conflict occurs with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Instruction 033 issues in 1 CP.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500-o00

The Ai register is ready in 19 CPs.

Instruction 033 enters channel status information into the Ai register.
The j and k designators and the contents of register Aj determine the
information transmitted. Instruction 033 does not interfere with normal
channel operation and is not restricted to monitor mode.

Instruction 033iOO enters the channel number of the highest priority
channel causing an interrupt into the Ai register.

Instruction 033ijO reads from Aj the address of a specific channel. It
then transmits the contents of the CA register for that channel to the Ai
register. The Aj register must be set to a value corresponding to the
number of the desired channel before instruction 033ijO is issued.

Instruction 033ij1 reads from Aj the address of a specific channel. It
then transmits a 32-bit channel status word from that channel to the Ai
register. Bit assignments for the status word are listed in Table 7-3. The
Aj register must be set to a value corresponding to the number of the
desired channel before instruction 033ij1 is issued.

Table 7-3. Channel Status Word

Bit Position Description

2°-223 Block length (Bl) register bits 20 - 217.

224 -225 Not used (forced to 0).

226 Channel transfer in progress.

227 Block length error.

228 Uncorrectable (double-bit) error in SSD.

229 Uncorrectable (double-bit) error in mainframe.

230 Fatal error.

231 Complement of done flag.

Bit 231 of the status word is the complement of the done flag.
Incorporating the complement into the hardware allows software to test
for the done condition by using a jump on positive instruction (012).
This test works because 231 = 0 (a positive number) means the data

Cray Research Proprietary 7-61

CPU Instructions

7-62

CRAYY-MP C90 System Programmer Reference Manual

transmission is done, and 231 = 1 (denoting a negative number) means the
data transmission is not done. Software can also test for error conditions
by using a jump on nonzero instruction (011) since all bits of the status
word are 0 if the channel is done and no errors have occurred. Testing
for either condition can be done without manipulating the status word.

Once the internal channel error flag is set, it can only be cleared in
monitor mode by instruction 0012.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

034ijk

034ijk

035ijk

035ijk

036ijk

036ijk

037ijk

037ijk

Special Cases

CSM-0500-o00

Instructions 034 through 037

CAL Syntax Description

Bjk,Ai ,AO Read (Ai) words from memory starting at address (AO) +
(DBA) to B registers starting at register jk.

Bjk,Ai O,AO § Read (Ai) words from memory starting at address (AO) +
(DBA) to B registers starting at register jk.

,AO Bjk,Ai Write (Ai) words from B registers starting at register jk to
memory starting at address (AO) + (DBA).

O,AO Bjk,Ai § Write (AI) words from B registers starting at register jk to
memory starting at address (AO) + (DBA) .

Tjk,Ai ,AO . Read (Ai) words from memory starting at address (AO) +
(DBA) to T registers starting at register jk.

Tjk,Ai O,AO § Read (Ai) words from memory starting at address (AO) +
(DBA) to T registers starting at register jk.

,AO Tjk,Ai Write (Ai) words from T registers starting at register jk to
memory starting at address (AO) + (DBA).

O,AO Tjk,Ai § Write (AI) words from T registers starting at register jk to
memory starting at address (AO) + (DBA).

There are three special cases, which are determined by the value stored in
the Ai register:

•

•

•

If (AI.) register = 0, no words are transferred.

If (AI.) register is greater than 1008 and less than 2008, a
wrap-around condition occurs, in which some B or T registers are
either read out twice or are overwritten with new memory data.

If (AI) register is greater than 1778, bits 27 through 223 are
truncated, and the block length is equal to the value stored in bits
20 through 26•

Only bits 2° through 227 of the AO register are used in memory address
calculations. Refer to "Absolute Memory Address Calculating" in
Section 2 for additional information.

Cray Research Proprietary 7-63

CPU Instructions

Hold Issue Conditions

7-64

CRAYY-MP C90 System Programmer Reference Manual

Instructions 034 through 037 hold issue for any of the following
conditions:

• Either the AO or the Ai register is reserved.
• A scalar reference is in CP 1 through CP 5.
• The status register is busy.

Instruction 034 holds issue for any of the following conditions:

•

•

•

Instruction 035 is in progress.

Port A is busy.

Port C is busy and bidirectional memory (BDM) mode is not
enabled.

Instruction 035 holds issue for any of the following conditions:

•

•

•

Instruction 034 is in progress.

Port C is busy.

Port A or port B is busy and bidirectional memory (BDM) mode is
not enabled.

Instruction 036 holds issue for any of the following conditions:

•

•

•

•

Instruction 075 was issued in the preceding CPo

Instruction 037 is in progress.

Port B is busy.

Port C is busy and bidirectional memory (BDM) mode is not
enabled.

Instruction 037 holds issue for any of the following conditions:

•

•

•

•

Instruction 075 was issued in the preceding CP.

Instruction 036 is in progress.

Port C is busy.

Port A or port B is busy and bidirectional memory (BDM) mode is
not enabled.

Cray Research Proprietary CSM-QSOO-OOO

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500-000

Instructions 034 through 037 each issue in 1 CPo

The following conditions apply to instruction 034 and 036:

• If (Al) pi! 0, the B or T registers are reserved for (Al)/2 +26 CPs.
• If (Al) = 0, the B or T registers are reserved for 9 CPs.
• If (Al) pi! 0, port A or B is busy for (Al)/2 + 6 CPs.
• If (Al) = 0, port A or B is busy for 5 CPs.

The following conditions apply to instruction 035 and 037:

•
•
•
•

If (Ai) pi! 0, the B or T registers are reserved for (Al)/2 +8 CPs.
If (Al) = 0, the B or T registers are reserved for 7 CPs.
If (Al) pi! 0, port C is busy for (Al)/2 + 6 CPs.
If (Al) = 0, port C is busy for 5 CPs.

Instructions 034 through 037 perform block transfers between central
memory and the B or T registers. Instruction 034ijk transfers words from
central memory directly into the B registers. Instruction 035ijk stores
words from B registers directly into central memory. Instruction 036ijk
transfers words from central memory directly into T registers.
Instruction 037ijk stores words from T registers directly into central
memory.

Instructions 034 through 037 process the B and T registers in circular
fashion. The first register involved in the transfer is specified by the jk
fields. The 7 low-order bits of the Ai register specify the number of
words transmitted. Successive word transfers involve successive B or T
registers until B77 or T77 is reached. Register BOO is processed after
B77 and register TOO is processed after T77 if the count in the contents
of the Ai register is not exhausted.

The first memory location referenced by the transfer instruction is
specified by the contents of register AO. The contents of register AO are
not altered by execution of the instruction. The memory address
referenced is incremented by 1 after each word is transferred.

For transfers of B register data to central memory, each 32-bit value is
right justified in the memory location, and the 32 high-order bits are
cleared. In a transfer from memory to the B registers, only the 32
low-order bits are transmitted; the high-order bits are ignored.

Cray Research Proprietary 7-65

CPU Instructions

7-66

CRAYY-MP C90 System Programmer Reference Manual

If the contents of the Ai register equal 0, no words are transferred. If i =
0, the contents of register AO are used for both the block length and the
starting memory address. The CAL assembler issues a warning message
when i = O.

NOTE: Instruction 034 uses port A, instruction 036 uses port B, and
instructions 035 and 037 use port C for block transfers.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 040 and 041

Machine
Mode Instruction CAL Syntax Description

040iOO nm Si exp Transmit nm to Si, bits 20 - 231 (bits 232 - 263 are set to 0).

040i20nm Si Si:exp Transmit nm to Si, bits 20 - 231 (bits 232 - 263 unchanged).

040i40 nm Si exp:Si Transmit nm to Si, bits 232 - 263 (bits 20 - 231 unchanged).

041iOO nm Siexp Transmit one's complement of nm to Si.

Special Cases

There are no special cases.

Hold Issue Conditions

CSM-0500-000

Instructions 040 and 041 hold issue for any of the following conditions:

•

•

•

•

•

The Si register is reserved.

An S register access conflict exists; therefore, one of the following
is true:

• Instruction 071 is in CP 1.

• One of the instructions from 052 through 055 or instruction
060 or 061 is in CP 2.

• Instruction 056 or 057 is in CP 3.

The second and third parcels of the instruction are in another buffer
(a 3-CP delay occurs).

The third parcel of the instruction is in another buffer (a 4-CP delay
occurs).

The second andlor third parcel of the instruction is not in a buffer
(a 26-CP delay occurs).

Cray Research Proprietary 7-67

CPU Instructions

Execution Time

Description

7-68

CRAY Y -MP C90 System Programmer Referen'ce Manual

The issue times for instructions 040 and 041 are as follows:

• If both parcels are in the same buffer, the issue time is 2 CPs.

• If parcel 0 is in a different buffer than parcels 1 and 2, the issue
time is 5 CPs.

• If parcels 0 and 1 are in a different buffer than parcel 2, the issue
time is 6 CPs.

The Si register is ready in 1 CPo

These 3-parcel instructions transmit a value to the Si register. The
assembler generates either an 040iOO nm or an O41iOO nm instruction,
depending on the value and attributes of the exp (nm) field.

If the expression has a positive value or either a relocatable or external
relative attribute, the assembler generates instruction 040iOO nm.

If the expression has a negative value and an absolute relative attribute,
the assembler generates instruction 041iOO nm.

Instruction 040i20 nm transmits the exp contained in the combined nm
fields of the instruction to bit positions 2° through 231 of the Si register.
Bits 232 through 263 of the Si register are unchanged by this instruction.

Instruction 040i40 nm transmits the exp contained in the combined nm
fields of the instruction to bit positions 232 through 263 of the Si register.
Bits 2° through 231 of the Si register are unchanged by this instruction.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 042 and 043

Machine
Mode Instruction CAL Syntax Description

O42ijk Si < exp Form ones mask in Si exp bits from the right; the jk field
contains the value 100a - expo

O42ijk Si #> exp § Form zeroes mask in Si exp bits from the left; the jk field
contains the value expo

042£77 Si 1 § Transmit 1 to the Si register.

042iOO Si -1 § Transmit -1 to the Si register.

043ijk Si > exp Form ones mask in Si exp bits from the left; the jk field
contains the value expo

043ijk Si #< exp § Form zeroes mask in Si exp bits from the right; the jk field
contains the value 100a - expo

043iOO Si 0 § Clear the Si register.

Special Cases

There are no special cases.

Hold Issue Conditions

CSM-0500-000

Instructions 042 and 043 hold issue for any of the following conditions:

•

•

The Si register is reserved .

An S register access conflict exists; therefore, one of the following
is true:

• Instruction 071 is in CP 1.

• One of the instructions from 052 through 055 or instruction
060 or 061 is in CP 2.

• Instruction 056 or 057 is in CP 3.

Cray Research Proprietary 7-69

CPU Instructions

Execution Time

Description

7-70

CRAYY-MP C90 System Programmer Reference Manual

Instructions 042 and 043 issue in 1 CPo

The Si register is ready in 1 CPo

Instructions 042 and 043 execute in the scalar logical functional unit.

Instruction 042 generates a mask of 1008 - jk 1 's from right to left in the
Si register. For example, if jk = 0, the Si register contains all 1 bits
(integer value = -1), and ifjk = 778, the Si register contains O's in all but
the low-order bit (integer value = 1).

Instruction 043 generates a mask of jk 1 's from left to right in the Si
register. For example, if jk = 0, the Si register contains all 0 bits (integer
value = 0) and if jk = 778, the Si register contains 1 's in all bits except
the low-order bit (integer value = -2).

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 044 through 051

Machine
Mode Instruction CAL Syntax Description

044ijk Si Sj&Sk Transmit the logical product of (S1) and (Sk) to Si.

044ijO Si Sj&SB § Transmit the sign bit (bit 263) of (S1) to Si.

044ijO Si SB&Sj § Transmit the sign bit (bit 263) of (S1) to Si U pi! 0).

045ijk Si #Sk&Sj Transmit the logical product of (S1) and the complement of
(Sk) to Si.

045ijO Si #SB&Sj § Transmit (S1) with sign bit cleared to Si.

046ijk Si Sj\Sk Transmit the exclusive OR of (S1) and (Sk) to Si.

046ijO Si Sj\SB § Toggle the sign bit of (51), and transmit the result to Si.

046ijO Si SB\Sj § Toggle the sign bit of (51), and transmit the result to Si U pi!

0).

047ijk Si #Sj\Sk Transmit the logical equivalence of (Sj) and (Sk) to Si.

047iOk Si #Sk § Transmit the one's complement of (Sk) to Si.

047ijO Si #Sj\SB § Transmit the logical equivalence of (Sj) and the sign bit to Si.

047ijO Si #SB\Sj § Transmit the logical equivalence of (Sj) and the sign bit to Si
U;04 0).

047iOO Si #SB § Transmit the one's complement of the sign bit to Si.

050ijk Si SjlSi&Sk Transmit the logical product of (S,) and (Sk) complement
ORed with the logical product of (S1) and (Sk) to Si; merge
(Si) and (S1) into Si using (Sk) as the mask.

050ijO Si SjISi&SB § Transmit the scalar merge of (Si) and the sign bit of (Sj) to
Si.

051ijk Si SjlSk Transmit the logical sum of (Sj) and (Sk) to Si.

051iOk Si Sk § Transmit (Sk) to Si.

051ijO Si SjlSB § Transmit the logical sum of (Sj) and the sign bit to Si.

051ijO Si SBISj § Transmit the logical sum of (S1) and the sign bit to Si U pi! 0).

051iOO Si SB § Transmit the sign bit to Si.

CSM-0500~OOO Cray Research Proprietary 7-71

CPU Instructions

Special Cases

Hold Issue Conditions

Execution Time

Description

7-72

CRAY Y-MP C90 System Programmer Reference Manual

The following special cases apply to instructions 044 through 051: '

• Ifj = 0, then (Sj) = O.
• If k = 0, then (Sk) has all bits cleared to 0 except bit 263•

Instructions 044 through 051 hold issue for any of the following
conditions:

• The Si register is reserved.
• The Sj or Sk register is reserved (except SO).

Instructions 044 through 051 issue in 1 CPo

The Si register is ready in 1 CP.

Instructions 044 through 051 execute in the scalar logical functional unit.

Instruction 044 forms the logical product (AND) of the contents of the Sj
and Sk registers and enters the results into the Si register. Bits of the Si
register are set to 1 when corresponding bits of the values stored in the Sj
and Sk registers are 1, as shown in the following example:

If (Sj) = 1 1 0 0
And (Sk) = 1 0 1 0
Then (Si) = 1 0 0 0

The contents of the Sj register are transmitted to the Si register if the j .
and k designators have the same nonzero value. The Si register is cleared '
if the j designator is O. The sign bit of the contents of the Sj register is
transmitted to the Si register if the j designator is nonzero and the k
designator is O. The two special CAL forms of instruction O44ijO
perform the same function. In the second CAL form, however, j must
not equal 0, which causes an assembly error.

Instruction 045 forms the logical product (AND) of the Sj register
contents and the complement of the Sk register contents and enters the
results into the Si register. Bits of the Si register are set to 1 when

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-o00

corresponding bits of the values stored in the Sj register and the
complement of the Sk register are 1, as shown in the following example,
where (Sk)' = complement of the Sk register contents:

If (Sk) = 10 1 0,
And (Sj) = 1 1 0 0

(Sk)' = 0101
Then (Si) = 0 1 0 0

Si is cleared if the j and k designators have the same value or if the j
designator is O. The contents of the Sj register with the sign bit cleared
are transmitted to the Si register if the j designator is nonzero and if the k
designator is O. The special CAL form of instruction 045ijO also
performs this function.

Instruction 046 forms the exclusive OR of the contents of the Sj and Sk
registers and enters the results into the Si register. Bits of the Si register
are set to 1 when corresponding bits of the Sj register and the Sk register
are different, as shown in the following example:

If (S}) = 1 1 0 0
And (Sk) = 1 0 1 0
Then (SI) = 0 1 1 0

Si is cleared if the j and k designators have the same nonzero value. The
Sk register contents are transmitted to the Si register if the j designator is
o and the k designator is nonzero. The sign bit of the Sj register contents
is complemented, and the result is transmitted to the Si register if the j
designator is nonzero and the k designator is O. The two special CAL
forms of instruction 046ijO also perform the same function. In the
second CAL form, however, j must not equal 0, which causes an
assembly error.

-NOTE: Although the \ symbol is used in mathematica1logic to denote
the logical difference, it is used in CAL to denote the exclusive
OR (XOR) operation.

Instruction 047 forms the logical equivalence of the contents of the Sj
and Sk registers and enters the results into the Si register. Bits of the Si
register are set to 1 when corresponding bits of the Sj register and the SIc
register are the same, as shown in the following example:

If (Sj) = 1 1 0 0
And (Sk) = 1 0 1 0
Then (Sz) = 1 0 0 1

Si is set to all 1 's if the j and k designators have the same nonzero value.
The one's complement of the Sk register contents is transmitted to the Si
register if the j designator is 0 and the k designator is nonzero (the same
as instruction 047iOk).

Cray Research Proprietary 7-73

CPU Instructions

7-74

CRAY Y-MP ceo System Programmer Reference Manual

The special CAL form of instruction 04 7iOk performs this same function.
All bits except the sign bit of the Sj register contents are complemented
and the result is transmitted to the Si register if the j designator is
nonzero and the k designator is O. The result is the same as the one's
complement of the result generated by instruction 046ijO. The two
special CAL forms of instruction 04 7ijO also perform the same function.
In the second CAL form, however, j must not equal 0, which causes an
assembly error.

Instruction 050 merges the contents of the Si and Sj registers according
to the bit locations of the ones mask stored in Sk; the result is entered
into the Si register. The bits of the resultant Si register equal the bits of
the initial Si register when the corresponding bits of the Sk mask are 0,
and the bits of the resultant Si register equal the bits of the Sj register
when the corresponding bits of the Sk mask are 1. The operation,
defined by the Boolean equation (SI) = (S])(Sk) + (Si) (Sk)', is shown in
the following example:

If (Sk) = 11 1 1 0 0 0 0,

(Sk)' = 0 0 0 0 1 1 1 1
And (SI) = 1 1 0 0 1 1 0 0
And (Sj) = 1 0 1 0 1 0 1 0
Then (Si) = 1 0 1 0 1 1 0 0

If the j designator is 0 and the k designator is nonzero, bits of the Si
register are cleared when the corresponding bits of the Sk register are 1.
If the j designator is nonzero and the k designator is 0, the sign bit of the
Sj register contents replaces the sign bit of the Si register. The special
CAL form of instruction 050ijO performs this same function. The sign
bit of the Si register is cleared if the j and k designators are both O.

Instruction 051 forms the logical sum (inclusive OR) of the contents of
the Sj and Sk registers and enters the result into the Si register. Bits of
the Si register are set when one of the corresponding bits of either the Sj
or Sk register or both is set, as in the following example:

If (S}) = 1 1 0 0
And (Sk) = 1 0 1 0
Then (SI) = 1 1 1 0

The contents of the Sj register are transmitted to the Si register if the j
and k designators have the same nonzero value. The Sk register contents
are transmitted to the Si register if the j designator is 0 and the k
designator is nonzero. The Sj register contents, with the sign bit set to 1,
are transmitted to the Si register if the j designator is nonzero and the k
designator is O. The two special CAL forms of instruction 051ijO also
perform the same function. In the second CAL form, however, j must
not equal 0, which causes an assembly error.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

CSM-050Q-OOO

A ones mask consisting of only the sign bit is entered into the Si register
if the j and k designators are both O. The special CAL form of instruction
051iOO performs this same function.

NOTE: For instructions 044 through 051, the abbreviation SB
designates the sign bit, not a shared address register.

Cray Research Proprietary 7-75

CPU Instructions CRAY Y -MP C90 System Programmer Reference ¥anual

Instructions 052 through 055

Machine
Mode Instruction CAL Syntax Description

052ijk SO Si < exp Shift {Szj left exp places to SO; exp = jk.

053ijk SO Si> exp Shift {Szj right exp places to SO; exp = 100s - jk.

054ijk Si Si < exp Shift {Szj left exp places to Si; exp = jk.

055ijk Si Si> exp Shift (Szj right exp places to Si; exp = 100s - jk.

Special Cases

There are no special cases.

Hold Issue Conditions

Execution Time

Description

7-76

Instructions 052 through 055 hold issue if the Si register is reserved.

Instructions 052 and 053 also hold issue if the SO register is reserved.

Instructions 052 through 055 issue in 1 CPo

For instructions 052 and 053, the SO register is ready in 3 CPs.

For instructions 054 and 055, the Si register is ready in 3 CPs.

Instructions 052 through 055 execute in the scalar shift functional unit.
The instructions cause values in an S register to be shifted by an amount
specified by exp Uk field). All shifts are end-off with zero fill, meaning
that data that is shifted out of a register, either to the right or the left, is '
lost, and that the trailing edge of the data is replaced in the register with
zeroes.

Instruction 052 shifts the Si register contents left jk places and enters the
result into the SO register; the shift range is 0 through 63, left. If the shift
count is 64, instruction 053000 is generated and the SO register is
cleared.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

Instruction 053 shifts the Si register contents right 1008 - jk places and
enters the result into the SO register; the shift range is 1 through lOOs,
right. If the shift count is 0, instruction 052000 is generated and the
contents of the SO register are not altered.

Instruction 054 shifts the Si register contents left jk places and enters the
result into the Si register; the shift range is 0 through 77 s, left. If the shift
count is 100s, instruction 055iOO is generated and the Si register is
cleared.

Instruction 055 shifts the Si register contents right 1008 - jk places and
enters the result into the Si register; the shift range is 1 through 1 DOs,
right. If the shift count is 0, instruction 054iOO is generated and the
contents of the Si register are not altered.

Cray Research Proprietary 7-77

CPU Instructions

Machine
Mode Instruction

056ijk

056ijO

056iOk

057ijk

057ijO

057iOk

Special Cases

CRAYY-MP COO System Programmer Reference Manual

Instructions 056 and 057

CAL Syntax Description

Si Si,Sj < Ak Shift (Sz) and (SJ11eft (Ak) places to Si.

Si Si,Sj < 1 § Shift (Si) and (SJ11eft one place to Si.

Si Si < Ale § Shift (Si) left (Ak) places to Si.

Si Sj,Si> Ak Shift (S)1 and (Sz1 right (Ale) places to Si.

Si Sj,Si> 1 § Shift (S)1 and (Si) right one place to Si.

Si Si > Ak § Shift (Si) right (Ale) places to Si.

Special cases for instructions 056 and 057 are as follows:

•

•

•

•

If j = 0, then (Sj) = O.

If k = 0, then (Alc) = 1.

Perform a circular shift if i = j .. 0 and (Alc) is between 0 and 64
inclusive.

Hold issue for 1 CP after instruction 056 or 057 is issued.

Hold Issue Conditions

Execution Time

7-78

Instructions 056 and 057 hold issue if the Si register is reserved or if
either the Sj or the Alc register is reserved (except SO and/or AO).

Instructions 056 and 057 issue in 1 CP.

The Si register is ready in 4 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Descri ption

CSM-0500-000

Instructions 056 and 057 execute in the scalar shift functional unit. The
instructions shift 128-bit values formed by logically joining two S
registers. Shift counts are obtained from the Ak register; all shift counts
are considered positive, and all 32 bits of the Ak register contents are
used for the shift count.

In CAL, replacing the Ak register reference with 1 is the same as setting
the k designator to 0 (instruction 056ijO or 057ijO) because a reference to
register AO provides a shift count of 1. Omitting the Sj register reference
in CAL is the same as setting the j designator to 0 (instruction 056iOk or
057iOk). In this case, the Si register contents are concatenated to a word
ofO's.

The shifts are circular if the shift count does not exceed 64 and if the i
and j designators are equal and nonzero. For shifts greater than 64, the
shift is end-off with zero fill, meaning that data that is shifted out of the
combined registers, either to the right or the left, is lost, and that the
trailing edge of the data is replaced in the registers with zeroes.

The Sj register contents are unchanged if i ;pe j. If i = j and the shift count
is greater than 64, the result produced in the Si register is the same as
would be obtained by issuing instruction 054 or 055 with a shift count 64
less than that used for instruction 056 or 057.

Instruction 056 forms a 128-bit value by concatenating the Si and Sj
register contents, by shifting the resulting value to the left by an amount
specified by the 7 low-order bits of the Ak register contents, and by
entering the 64 high-order bits of the result into the Si register. The Si
register is cleared if the shift count exceeds 127. Instruction 056
produces the same result as instruction 054 if the shift count does not
exceed 63 and the j designator is O. This same function is performed by
the special CAL form of the instruction, 056iOk.

Instruction 057 forms a 128-bit value by concatenating the Sj and Si
register contents, by shifting the resulting value to the right by an amount
specified by the 7 low-order bits of the Ak register contents, and by
entering the 64 low-order bits of the result into the Si register. The Si
register is cleared if the shift count exceeds 127. Instruction 057
produces the same result as instruction 055 if the shift count does not
exceed 63 and the j designator is O. This same function is performed by
the special CAL form of the instruction, 057iOk.

Cray Research Proprietary 7-79

CPU Instructions CRAYY-MP egO System Programmer Reference Manual

Instructions 060 and 061

Machine
Mode Instruction CAL Syntax Description

060ijk Si Sj + Sk Transmit the integer sum of (Sj) and (Sk) to Si.

060iOk Si Sk § Transmit (Sk) to Si.

060ijO Si Sj + SO § Transmit the integer sum of (Sj) and 263 to Si.

061ijk Si Sj-Sk Transmit the integer difference of (S1) and (Sk) to Si.

061iOk Si -Sk § Transmit the negative of (Sk) to Si.

061ijO Si Sj-SO § Transmit the integer difference of (S1) and 263 to Si.

Special Cases

Special cases for instructions 060 and 061 are as follows:

• Ifj = 0 and k = 0, then (Si) = 263,

Special cases for instruction 060 are as follows:

• If j = 0 and k ,e 0, then (Sz) = (Sk).
• If j ;.I! 0 and k = 0, then (Sz) = (S}) with bit 263 complemented.

Special cases for instruction 061 are as follows:

• If j = 0 and k ,e 0, then (Sz) = --(Sk).
• If j .. 0 and k = 0, then (Sz) = (Sj) with bit 263 complemented.

Hold Issue Conditions

Execution Time
,~

7-80

Instructions 060 and 061 hold issue if the Si register is reserved or if
either the Sj or Sk register is reserved (except SO),

Instructions 060 and 061 issue in 1 CP.

The Si register is ready in 3 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500-000

Instructions 060 and 061 execute in the scalar add functional unit.

Instruction 060ijk forms the integer sum of the Sj and Sk register
contents and enters the result into the Si register; no overflow is
detected. The high-order bit of the Si register is set, and all other bits of
the Si register are cleared if the j and k designators are both O. The Sk
register contents are transmitted to the Si register if the j designator is 0
and the k designator is nonzero. The Sj register contents with the sign bit
complemented are transmitted to the Si register if the k designator is 0
and the j designator is nonzero.

Instruction 06lijk forms the integer difference of the contents of the Sj
and Sk registers and enters the result into the Si register; no overflow is
detected. The high-order bit of the Si register is set, and all other bits of
the Si register are cleared when the j and k designators are both O. The
negative (two's complement) of the Sk register contents is transmitted to
the Si register if the j designator is 0 and the k designator is nonzero. The
Sj register contents with the sign bit complemented are transmitted to the
Si register if the k designator is 0 and the j designator is nonzero.

Instruction 061iOk is a special CAL form of instruction 061 that transmits
the negative (two's complement) of the Skregister contents to the Si
register. If the k designator is also 0, the high-order bit of the Si register
is set, and all other bits of the Si register are cleared.

Cray Research Proprietary 7-81

CPU Instructions

Machine
Mode Instruction

062ijk

062iOk

063ijk

063iOk

Special Cases

CRAYY-MP C90 System Programmer Reference Manual

Instructions 062 and 063

CAL Syntax Description

Si Sj + FSk Transmit the floating-point sum of (S1) and (Sk) to Si.

Si + FSk § Transmit the normalized (Sk) to Si.

Si Sj- FSk Transmit the floating-point difference of (S1) and (Sk) to Si.

Si -FSk § Transmit the normalized negative of (Sk) to Si.

Special cases for instruction 062 are as follows:

•

•

If the exponent in (Sk) is valid and if j = 0 and k .. 0, then (Sz) =
(Sk) normalized.

If the exponent in (Sj) is valid and if j .. 0 and k = 0, then (Sz) = (Sj)
normalized.

Special cases for instruction 063 are as follows:

•

•

If the exponent in (Sk) is valid and if j = 0 and k pi! 0, then (Sz) =
-(Sk) normalized. The sign of (Sz) is the opposite of the sign of
(Sk) if (Sk) .. O.

If the exponent in (S}) is valid and if j .. 0 and k = 0, then (Si) = (S})
normalized.

Hold Issue Conditions

7-82

Instructions 062 and 063 hold issue for any of the following conditions:

•

•

•

•

The Si register is reserved.

The Sj or Sk register is reserved (except SO).

The status register is busy.

Instructions 170 through 173 are in progress. In this case, the
functional unit stays busy for (VL)12 + 4 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500-000

Instructions 062 and 063 issue in 1 CP.

The Si register is ready in 6 CPs.

Instructions 062 and 063 execute in the floating-point add functional
unit. Operands sent to the functional unit should be in floating-point
format; the result is normalized even if the operands are unnormalized.
If the k designator is 0, the operand sent to the functional unit is 263• In
floating-point format, this operand is a negative number with a
coefficient of 0 and an exponent of 0, and it is regarded by the functional
unit as -0. However, this anomaly is resolved within the circuitry of the
floating-point add functional unit, and any 0 result is entered into the Si
register as O.

Instruction 062ijk forms the floating-point sum of the Sj and Sk register
contents and enters the normalized result into the Si register. The Sk
register contents are normalized and transmitted to the Si register if the j
designator is 0, if the k designator is nonzero, and if the exponent in (Sk)
is valid. The Sj register contents are normalized and transmitted to the Si
register if the j designator is nonzero, if the k designator is 0, and if the
exponent of the Sj register contents is valid.

Instruction 062iOk is a special CAL form of instruction 062 that transmits
the normalized Sk register contents to the Si register.

Instruction 063ijk forms the floating-point difference of the Sj and Sk
register contents and enters the normalized result into the Si register. The
Sk register contents are normalized, and the negative (two's complement)
of this quantity is transmitted to the Si register if the j designator is 0, if
the k designator is nonzero, and if the exponent of the Sk register
contents is valid. The Sj register contents are normalized and transmitted
to the Si register if the j designator is nonzero, if the k designator is 0,
and if the exponent of the Sj register contents is valid.

Instruction 063iOk is a special CAL form of instruction 063 that transmits
the negative (two's complement) of the floating-point quantity in the Sk
register to the Si register as a normalized floating-point number.

Cray Research Proprietary 7-83

CPU Instructions

Machine
Mode Instruction

064ijk

065ijk

066ijk

067ijk

Special Cases

CRAY Y-MP C90 System Programmer Reference Manual

Instructions 064 through 067

CAL Syntax Description

Si Sj* FSk Transmit the floating-point product of (Sj) and (5k) to Si.

Si Sj* H5k Transmit the half-precision rounded floating-point product of
(S1) and (5k) to Si.

Si Sj* RSk Transmit the rounded floating-point product of (Sj) and (5k)
to 5i.

Si 5j* ISk Transmit the reciprocal iteration 2 - (S1) * (Sk) to Si.

Ifj = 0, then (Sj) = O.

If k = 0, then (Sk) = 263•

If both exponent fields are 0, an integer multiplication operation is
performed. Correct integer multiplication results are produced if the
following conditions are satisfied:

•

•

Both operand sign bits are O.

The combined total number of 0 bits to the right of the least
significant 1 bit in the two operands is greater than or equal to 48.
For example, if the j operand has 36 trailing O's and the k operand
has 12 trailing O's, then a correct integer multiplication is
performed.

The integer result obtained is the 48 high-order bits of the 96-bit product
of the two operands.

Hold Issue Conditions

7-84

Instructions 064 through 067 hold issue for any of the following
conditions:

• The Si register is reserved.

• Either the Sj or the Sk register is reserved (except SO).

• The status register is busy.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500-o00

• Instructions 160 through 167 are in progress. In this case, the
functional unit is busy for (VL)/2 + 4 CPs.

• Instructions 140 through 145 are in progress. In this case, the
second vector logical functional unit is busy for (VL)/2 + 4 CPs.

Instructions 064 through 067 issue in 1 CP.

The Si register is ready in 6 CPs.

Instructions 064 through 067 execute in the floating-point multiply
functional unit. Operands sent to the functional unit should be in
floating-point format; the result may not be normalized if the operands
are not normalized.

Instruction 064ijk forms the floating-point product of the Sj and Sk
register contents and enters the result into the Si register.

Instruction 065ijk forms the half-precision rounded floating-point
product of the Sj and Sk register contents and enters the result into the Si
register. The 19 low-order bits of the result are cleared. This instruction
can be used in the division algorithm when only 30 bits of accuracy are
required.

Instruction 066ijk forms the rounded floating-point product of the Sj and
Sk register contents and enters the result into the Si register. This
instruction is used in the reciprocal approximation sequence.

Instruction 067ijk forms the quantity of 2 minus the floating-point
product of the Sj and Sk register contents and enters the result into the Si
register.

Cray Research Proprietary 7-85

CPU Instructions

Machine
Mode Instruction

070ijO

Special Cases

CRAY Y -MP C90 System Programmer Reference Manual

Instruction 070

CAL Syntax Description

Si /HSj Transmit the floating-point reciprocal approximation of (S}) to
Si.

If j = 0, then (S}) = O.

If the Sj register contents are 0, a range error occurs and the result is
invalid.

The Si register contents are invalid if the Sj register contents are not
normalized. A normalized value is indicated when bit 247 of the Sj
register contents equals 1. This bit is not tested to determine its value.

Hold Issue Conditions

Execution Time

7-86

Instruction 070 holds issue for any of the following conditions:

•

•

•

•

The Si register is reserved.

The Sj register is reserved (except SO).

The status register is busy.

Instruction 174 is in progress, making the functional unit busy for
(VL)/2 + 4 CPs.

Instruction 070 issues in 1 CP.

The Si register is ready in 10 CPs.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-QSOO-OOO

Instruction 070 executes in the reciprocal approximation functional unit.
Instruction 070 forms an approximation to the reciprocal of the
normalized floating-point quantity in the Sj register and enters the result
into the Si register. The result is invalid if the contents of the Sj register
are not normalized or are equal to O.

The reciprocal approximation instruction produces a result of 30
significant bits; the 18 low-order bits are D's. The number of significant
bits can be increased to 48 by using the reciprocal iteration instruction
and a multiplication operation.

Cray Research Proprietary 7-87

CPU Instructions

Machine
Mode Instruction

071iOk

071i1k

071i2k

071i30

071i40

071i50

071iSO

071170

Special Cases

CRAY Y -MP C90 System Programmer Reference Manual

Instruction 071

CAL Syntax Description

Si Ale Transmit (Ale) to Si with no sign extension.

Si + Ale Transmit (Ale) to Si with sign extension.

Si + FAk Transmit (Ale) to Si as an unnormalized floating-point number.

Si O.S Transmit 0.75 x 248 to Si as a normalized floating-point
constant.

Si 0.4 Transmit 0.4 to Si as a normalized floating-point constant.

Si 1.0 Transmit 1.0 to Si as a normalized floating-point constant.

Si 2.0 Transmit 2.0 to Si as a normalized floating-point constant.

Si 4.0 "- Transmit 4.0 to Si as a normalized floating-point constant.

Special cases for instruction 071 are as follows:

•
•
•
•
•
•
•
•
•

If k = 0, then CAlc) = 1.
If j = 0, then (Si) = (AIc).
If j = 1, then (Si) = (AIc) with the sign extended.
If j = 2, then (Sl) = (Alc) unnormalized.
If j = 3, then (Si) = 0.6 X 260 (octal).
If j = 4, then (Sl) = 0.4 x 2° (octal).
If j = 5, then (Sl) = 0.4 X 21 (octal).
If j = 6, then (Sl) = 0.4 X 22 (octal).
If j = 7, then (Si) = 0.4 X 23 (octal).

Hold Issue Conditions

Instruction 071 holds issue for any of the following conditions:

• The Si register is reserved.

7-88 Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500~OOO

• An S register access conflict exists; therefore, one of the following
is true:

• One of the instructions from 053 through 055 or instruction
060 or 061 is in CP 1.

• Instruction 056 or 057 is in CP 2.

Instructions 071iOk through 071i2k hold issue if the Ak register is
reserved (except AD).

Instruction 071 issues in 1 CPo

The Si register is ready in 2 CPs.

Instruction 071 transmits either a variation of the Ak register contents or
one of five floating-point constants to the Si register, depending on the
value of the j designator.

Instruction 071iOk transmits the 32-bit value in the Ak register to the
low-order bits of the Si register; the high-order bits of the Si register are
filled with zeroes. The value is treated as an unsigned integer. A value
of 1 is entered into the Si register when the k designator is O.

Instruction 071i1k transmits the 32-bit value in the Ak register to the
low-order bits of the Si register. The sign bit of the Ak register is
extended through the high-order bits of the Si register. The value is
treated as a signed integer. A value of 1 is entered into the Si register
when the k designator is O.

Instruction 071i2k transmits the 32-bit value in the Ak register to Si as an
unnormalized floating-point quantity. The exponent in bits 262 through
248 of Si is set to 400608, and the Ale register contents are entered as the
coefficient of Si in bits 247 through 20• If the sign bit of the Ak register
contents is set, the two's complement of the Ale register contents is
entered into the Si register as the coefficient. The sign of the coefficient
(bit 263) is the same as the sign of the Ak register contents. To normalize
the quantity in Si, use instruction 062iOk to send the quantity as the k
operand through the floating-point add functional unit.

A sequence of instructions is used to convert an integer whose absolute
value is less than 32 bits to floating-point format.

Cray Research Proprietary 7-89

CPU Instructions

7-90

CRAYY-MP C90 System Programmer Reference Manual

The following CAL code is an example of this instruction sequence:

CAL code: Al Sl
Sl +PA1
Sl +PS1 (11 CPs required)

Instructions 07li30 through 071i70 are initially recognized by the
assembler as the symbolic instruction Si expo The assembler then checks
the expression for any of the constant values (explained in following
paragraphs). If it finds one of the instructions in the exact syntax shown,
it generates the corresponding Cray Research machine instruction. If
none of the indicated constant values are found, instruction 040iOO nm or
04liOO nm is generated. These constant values generate more efficient
instructions when commonly used values are entered into Si.

Instruction 07li30 transmits the floating-point constant of 0.75 x 248

decimal or 0.6 x 260 octal (04006060000000000000008) to Si. This
constant is used to convert integers with an absolute value of less than 47
bits to floating-point numbers. A sequence of instructions is used for the
conversion. The following CAL code is an example of this instruction
sequence; it shows the conversion of an integer stored in Sl to a
floating-point number.

CAL code: S2 0.6
Sl S2-S1
Sl S2-PS1 (11 CPs required)

Instruction 071i40 transmits the floating-point constant 0.4
(04000040000000000000008) to the Si register.

Instruction 07li50 transmits the floating-point constant 1.0
(04000140000000000000008) to the Si register.

Instruction 07li60 transmits the floating-point constant 2.0
(04000240000000000000008) to the Si register.

Instruction 071i70 transmits the floating-point constant 4.0
(04000340000000000000008) to the Si register.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

072iOO

072i02

072ij3

072ij6

Special Cases

Instruction 072

CAL Syntax Description

Si RT Transmit (RTC) to Si.

Si SM Transmit (SM) to Si.

Si STj Transmit (STj) to Si.

Si ST,Aj Transmit (ST) designated by (Aj) to Si.

For instruction 072iOO, the RTC register is valid 8 CPs after instruction
0014jO issues.

For instructions 072i02 through 072ij6, if CLN = 0, then (Sl) = O.

Hold Issue Conditions

CSM-0500-000

Instruction 072 holds issue if the Si register is reserved.

Instruction 072iOO holds issue if an S register access conflict exists;
therefore, one of the following is true:

• Instruction 076 is in CP 4.

• An instruction from 026ij4 through 026ij7 or an instruction from
072i02 through 072ij6 is in CP 7.

• Instruction 033 is in CP 18.

• Instruction 073i02 or instruction 0014j3 is in CP 7 of any CPU in
the same cluster.

• LOAD EX CLN is in CP 7 of any CPU in the same cluster.

Instructions 072i02 through 072ij6 hold issue for 3 CPs and continue to
hold if a shared paths access conflict occurs with another CPU. Refer to
"Shared Paths Access Priority" in Section 2 for more information.

Instruction 072ij6 holds issue if the Aj register is reserved.

Cray Research Proprietary 7-91

CPU Instructions

Execution Time

Description

7-92

CRAYY-MP COO System Programmer Reference Manual

Instruction 072 issues in 1 CPo

For instruction 072iOO, the Si register is ready in 1 CP.

For instructions 072i02 through 072ij6, the Si register is ready in 8 CPs.

Instruction 072iOO transmits the 64-bit value of the real-time clock (RTC)
to the Si register. The RTC increments by 1 each CP and can be set only
by the monitor with instruction 0014jO.

Instruction 072i02 transmits the values of all the semaphore registers into
the Si register. The thirty-two l-bit SM registers are left-justified in the
Si register with SMOO occupying the sign bit.

Instruction 072ij3 transmits the STj register contents to the Si register.

Instruction 072ij6 transmits the ST register contents designated by the Aj
register contents to Si.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Machine
Mode Instruction

073iOO

073i02

A 073i10

C 073i21

C 073i25

C 073i31

C 073z75

073ij1

073ij3

073i05

073ij6

Special Cases

Instruction 073

CAL Syntax Description

Si VM Transmit (VM) to Si.

SM Si Transmit (Sz) to SM.

Si VM1 Transmit (VM 1) to Si.

Si SR2 Read PM counters 00 - 17 and increment pOinter.

SR2 Si Issue PM maintenance advance.

Si SR3 Read PM counters 20 - 37 and increment pointer.

SR7 Si Transmit (Sz) to Maintenance Mode register.

Si SRj Transmit (SRj) to Si.

STj Si Transmit (Si) to STj.

SRO Si Transmit (Si) to SRO.

ST,Aj Si Transmit (Sz) to ST designated by (Aj).

Instructions 073i02, 073ij3, and 073ij6 perform no operation if CLN = O.

Instructions 073i21 and 073i31 should not be issued while the
performance monitor is busy. Bit 247 of status register 0 is set when the
performance monitor is busy.

Hold Issue Conditions

CSM-0500-000

Instruction 073 holds issue if the Si register is reserved.

For instructions 073iOO and 073i10, the following apply:

• The instruction holds issue if an S register access conflict exists;
therefore, one of the following is true:

•

•

Instruction 071 is in CP 1 .

An instruction from 052 through 055 or instruction 060 or
061 is in CP 2.

Cray Research Proprietary 7-93

CPU Instructions CRAYY-MP COO System Programmer Reference Manual

Execution Time

Description

7-94

•

•

• Instruction 056 or 057 is in CP 3.

If instruction 14x or 175 is in progress in the full vector logical
functional unit, the VM is busy for (VL)/2 + 5 CPs.

If instruction 003 is in progress, the VM is busy for 3 CPs .

Instructions 073i21, 073i31, and 073ij1 hold issue for 1 CP and continue
to hold if a floating-point instruction was issued during the previous 13
CPs.

Instructions 073i02, 073ij3, and 073ij6 hold issue for 3 CPs and continue
to hold if a shared paths access conflict occurs with another CPU. Refer
to "Shared Paths Access Priority" in Section 2 for more information.

Instructions 073ij1 and 073i05 hold issue if the status register is busy.

Instruction 073ij6 holds issue if the Aj register is reserved.

Instruction 073 issues in 1 CP.

For instructions 073ioo, 073i10, 073i21, 073i31, and 073ij1, the Si
register is ready in 1 CP.

For instruction 073i05, the status register remains busy for 5 CPs plus 2
CPs after the following conditions are satisfied:

•
•
•

No scalar memory references are in CP 1 through CP 5.
Ports A, B, and C are not busy.
No floating-point instructions were issued in the previous CP.

Instruction 073iOO, when executed in Y-MP mode, transmits the 64-bit
contents of the VM register to the Si register. The VM register is usually
read after being set by instruction 175.

Instruction 073iOO, when executed in C90 mode, transmits the 64-bit
contents of VM register 0 (lower) to the Si register. These 64 bits
represent elements 0 through 63.

Instruction 073i02 loads the semaphore registers from the 32 high-order
bits of the Si register. SMOO receives bit 263 of the contents of the Si
register.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-Q500-000

Instruction 073i10 transmits the 64-bit contents of VM register 1 (upper)
into the Si register. These 64 bits represent elements 64 through 127.

Instruction 073i21 reads consecutive 16-bit segments of performance
monitor (PM) counters 0 through 178 into bits 232 through 247 of the Si
register. Instruction 073i31 reads consecutive 16-bit segments of PM
counters 208 through 378 into bits 232 through 247 of the Si register.
Neither of these instructions should be issued if the PM is busy (if bit 247
of status register 0 is set).

Each PM counter is 48 bits wide and is divided into three 16-bit
segments. A performance counter pointer selects the 16-bit segment to
be read into the S register. This pointer is cleared on entry to or exit from
monitor mode or by instruction 001500. Each successive execution of
instruction 073i21 or 073i31 advances the pointer, enabling the next
instruction of the same type to read the next 16-bit segment of the
. appropriate PM counter. A 3-CP delay must occur between successive
PM reads for the data to be valid. The read sequences for the PM
counters are shown below.

Instruction 073i21 reads PM counters 0 through 178:

• First read returns counter 00 (bits 2° - 215) to Si (bits 232 - 247).

• Second read returns counter 00 (bits 216 - 231) to Si (bits 232 - 247).

• Third read returns counter 00 (bits 232 - 247) to Si (bits 232 - 247).

• Fourth read returns counter 01 (bits 2° - 215) to Si (bits 232 - 247)
(48 reads return the pointer to counter 00).

Instruction 073i31 reads PM counters 208 through 378:

• First read returns counter 20 (bits 2° - 215) to Si (bits 232 - 247).

• Second read returns counter 20 (bits 216 - 231) toSi (bits 232 - 247).

• Third read returns counter 20(bits 232 - 247) to Si (bits 232 - 24').

• Fourth read returns counter 21 (bits 2° - 215) to Si (bits 232 - 247)
(48 reads return the pointer to counter 20).

For more information on the performance monitor, including a
description of the hardware events monitored by each counter, refer to
"Performance Monitor" in Section 3.

Instruction 073i25 is used in conjunction with instruction 073i75 to
perform maintenance on the PM counters. Instruction 073i25 causes a
PM maintenance advance if the CPU is in maintenance mode and if the

Cray Research Proprietary 7-95

CPU Instructions

7-96

CRAY Y-MP COO System Programmer Reference Manual

PM maintenance bit (bit 262) is set in the maintenance modes register.
Refer to "Testing Performance Counters" in Section 3 for more
information on PM maintenance.

Instruction 073i75 transmits bits 254 through 263 of the Si register
contents to the maintenance modes register if the CPU is in maintenance
mode. If the CPU is not in maintenance mode, all values in the
maintenance modes register are forced to O. Table 7-4 shows the
functions of the bits in the maintenance modes register.

Table 7-4. Maintenance Modes Register Bits

Bit Position Function

54 Enables instruction buffer parity maintenance.

55 Enables BtTN/PM parity maintenance.

56 Enables shared register parity maintenance
(forced to 0 if no SR or I/O access is allowed).

57 Enables memory / vector register parity
maintenance.

58 Maintenance parity value.

59 Disables error correction (forced to 0 if no SR or
I/O access is allowed).

60 Enables VO to check byte for 1771xO (,AO,1 VJ).

61 Moves read check byte to data field (forced to 0 if
no SR or I/O access is allowed).

62 Enables PM maintenance.

63 Disables PM.

Instruction 073ijl transmits status register SRj contents to Si. Instruction
073ij5 transmits the Si register contents to SRj. The 8 status registers in
the CRAY Y-MP C90 mainframe are organized as shown in Figure 7-7.
For a detailed description of the the status registers, refer to "Status
Registers" in Section 3. Bits 248 through 252 of SRO are the only bits that
can be written to while the system is in user mode; this is done with
instruction 073i05.

Cray Research Proprietary CSM-Q500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

SRO

SR1

SR2

SR3

SR4

SR5

SR6

SR7

Read / Write Monitor Mode Read Only

63 6261 6059585756555453 5251 504948474645 44 43 42 41 403938373635343332
I

C P I F I IB P Processor Cluster Number
L S B P F 00 M
N P S P R M B 030201 00 04 03 02 01 00

,.eO * * * * * y

Undefined Undefined

Performance Monitor Counters 00 - 17

Undefined
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
474645 44 43 42 41 40 39 38 37 36 35 34 33 32

Performance Monitor Counters 20 - 37

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Undefined 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

474645 44 43 4241 4039383736353433 32

U C Error Type Read

Undefined MM Port Mode
E E 02 01 00 02 01 00

Error Syndrome
Undefined

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Error Address
Undefined

CS09 08 07 06 05 04 03 02 01 00

R S RPE Chip Number
Undefined P R

E R 05 04 03 02 01 00
I I I I I I I I I I I I I I I lEI I I I I I I I I I I I I ~

63 62 61 60595857565554 53 52 51 504948474645 44 43 42 41 4039383736353433 32

* Written by instruction 073i05. A-9410

Figure 7-7. Status Registers

Instruction 073ij3 transmits the Si register contents to the STj register.

Instruction 073ij6 transmits the ST register contents designated by the Aj
register contents to Si.

CSM-0500-000 Cray Research Proprietary 7-97

CPU Instructions CRAY Y -MP C90 System Programmer Reference Manual

Instructions 074 and 075

Machine
Mode Instruction CAL Syntax Description

074ijk Si Tjk Transmit erjk) to Si.

07Sijk Tjk Si Transmit (Si) to Tjk.

Special Cases

There are no special cases.

Hold Issue Conditions

Execution Time

Description

7-98

Instructions 074 and 075 hold issue if either instruction 036 or instruction
037 is in progress.

Instruction 074 holds issue if instruction 075 was issued in the preceding
CP.

Instructions 074 and 075 issue in 1 CPo

For instruction 074, the Si register is ready in 1 CP.

Instruction 074 transmits the T register contents specified by jk to the Si
register.

Instruction 075 transmits the Si register contents to the T register
specified by jlc.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 076 and 077

Machine
Mode Instruction CAL Syntax Description

076ijk Si Vj,Ak Transmit C'/j element (Ak)) to Si.

077ijk Vi,Ak Sj Transmit (Sj) to Vi element (Ak).

077iOk Vi,Ak 0 § Clear element (Ak) of register Vi.

Special Cases

Ifj = 0, then (Sz) = o.

If k = 0, then (Ak) = 1.

Hold Issue Conditions

Execution Time

Description

CSM-0500..QOO

Instructions 076 and 077 hold issue if the Ak register is reserved (except
AO).

Instruction 076 holds issue if the Si register is reserved or if the Vj
register is reserved as an operand or a result.

Instruction 077 holds issue if the Sj register is reserved or if the Vi
register is reserved as an operand or a result.

Instructions 076 and 077 issue in 1 CP.

For instruction 076, the Si register is ready in 5 CPs.

For instruction 077, the Vi register is ready in 4 CPs.

Instructions 076 and 077 transmit a 64-bit quantity between a V register
element and an S register.

Instruction 076ijk reads the address of a specific vector element from the
7 low-order bits of Ak (6 bits in Y-MP mode). It then transmits the
contents of that element of register Vj to register Si.

Cray Research Proprietary 7-99

CPU Instructions

7-100

CRAY Y -MP COO System Programmer Reference Manual

Instruction 077ijk transmits the contents of register Sj to the element of
register Vi that is specified by the 7 low-order bits of Ak. Element 1 (the
second element of register Vz) is selected if the k designator is O.

Instruction 077iOk enters zeroes into the element of register Vi that is
specified by the 7 low-order bits (6 bits in Y-MP mode) of Ak. The
second element of register Vi (element 1) is cleared if the k designator
is o. .

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 1 Oh through 13h

Machine
Mode Instruction CAL Syntax Description

10hiOO nm Ai exp,Ah Read from memory address «Ah) + exp + (DBA» to Ai.

100iOO nm Ai exp,O § Read from memory address (exp + (DBA» to Ai.

100iOO nm Ai exp, § Read from memory address (exp + (DBA» to Ai.

10hiOO 00 Ai,Ah § Read from memory address «Ah) + (DBA)) to Ai.

11hiOO nm exp,Ah Ai Write (Ai) to memory address ({Ah) + exp + (DBA».

110iOO nm exp,O Ai § Write (Ai) to memory address {exp + (DBA»).

110iOO nm exp, Ai § Write (AI) to memory address {exp + (DBA».

11hiOO 00 ,Ah Ai § Write (AI) to memory address ({Ah) + (DBA».

12hiOO nm Si exp,Ah Read from memory address ({Ah) + exp + (DBA» to Si.

120iOO nm Si exp,O § Read from memory address {exp + (DBA» to Si.

120iOO nm Si exp, § Read from memory address (exp + (DBA» to Si.

12hiOO 00 Si ,Ah § Read from memory address ({Ah) + (DBA)) to Si.

13hiOO nm exp,Ah Si Write (Si) to memory address ({Ah) + exp + (DBA).

130iOO nm exp,O Si § Write (Sz) to memory address {exp + (DBA».

130iOO nm exp, Si § Write (Si) to memory address {exp + (DBA».

13hiOO 00 ,Ah Si § Write (Si) to memory address {(Ah) + (DBA».

Special Cases

If h = 0, then Ah = O.

Hold Issue Conditions

CSM-0500-000

Instructions 10h through 13h hold issue for any of the following
conditions:

•
•

Port A, B, or C is busy .
Register Ah is reserved, h ,e O .

Cray Research Proprietary 7-101

CPU Instructions

Execution Time

Description

7-102

•

•

•

•

•

CRAYY-MP COO System Programmer Reference Manual

Three instructions between 10h and 13h are in CP 1, CP 3, and CP
4, and there is a memory conflict with the instruction in CP 4.

The status register is busy.

The second and/or third parcel of the instruction is not in a buffer
(a 26-CP delay occurs).

Ai is reserved (Instructions 10h and 11h hold issue).

Si is reserved (Instructions 12h and 13h hold issue).

The issue times for instructions 10h through 13h are as follows:

•

•

•

If all parcels are in the same buffer, the issue time is 2 CPs.

If parcel 0 is in one buffer and parcels 1 and 2 are in another buffer,
the issue time is 5 CPs.

If parcels 0 and 1 are in one buffer and parcel 2 is in another buffer,
the issue time is 6 CPs.

For instruction 10h, the Ai register is ready in 24 CPs.

For instruction 12h, the Si register is ready in 23 CPs.

A subsection is ready for the next scalar read or write operation in 7 CPs
if no conflicts occur.

Mer issuing an instruction between 10h and 13h, an attempt to issue an
instruction between 034 and 037 or instruction 176 or 177 causes ports
A, B, or C to be considered busy for 5 CPs (Plus additional CPs if there
are conflicts).

Instructions 10h through 13h transmit data between memory and an A
register or an S register.

For these instructions, only the value of the expression is used if the h
designator is 0 or if a 0 or blank field is used in place of Ah. Only the
contents of Ah are used if the expression is omitted. An expression with
a parcel-address attribute causes an assembly error.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500~OOO

Instructions 10hiOO nm through 10hiOO 00 read the 32 low-order bits of a
memory word directly into an A register. The memory address is
determined by adding the address in the Ah register to the value of the
expression in the nm field.

Instructions IlhiOO nm through IlhiOO 00 write 32 bits from register Ai
directly into memory. The high-order bits of the memory word are
cleared. The memory address is determined by adding the address in the
Ah register to the value of the expression in the nm field.

Instructions 12hiOO nm through 12hiOO 00 read the contents of a memory
word directly into an S register. The memory address is determined by
adding the address in the Ah register to the value of the expression in the
nm field.

Instructions 13hiOO nm through 13hiOO 00 write the contents of register
Si directly into memory. The memory address is determined by adding
the address in the Ah register to the value of the expression in the nm
field.

Cray Research Proprietary 7-103

CPU Instructions CRAY Y-MP C90 System Programmer Reference Manual

Instructions 140 through 147

Machine
Mode Instruction CAL Syntax Description

140ijk Vi Sj&Vk Transmit the logical products of (S}) and CVk elements) to
Vi elements.

141ijk Vi Vj&Vk Transmit the logical products of CVj elements) and CVk
elements) to Vi elements.

142ijk Vi SjlVk Transmit the logical sums of (S}j and CVk elements) to Vi
elements.

142iOk Vi Vk § Transmit CVk elements) to Vi elements.

143ijk Vi VjlVk Transmit the logical sums of CVj elements) and CVk
elements) to Vi elements.

144ijk Vi Sj\Vk Transmit the exclusive DRs of (S}j and CVk elements) to Vi
elements.

145ijk Vi Vj\Vk Transmit the exclusive DRs of CVj elements) and CVk
elements) to Vi elements.

145iii Vi 0 § Clear the elements of Vi.

146ijk Vi SjIVk&VM Transmit (S}j if VM bit = 1, or CVk element) if VM bit = 0, to
Vi elements.

146iOk Vi #VM&Vk § Transmit the vector merge of CVk elements) and 0 to Vi
elements.

147ijk Vi VjlV k&VM Transmit CVj elements) if VM bit = 1, or CVk elements) if
VM bit = 0, to Vi elements.

Special Cases

If j = 0, then (S)) = O.

Hold Issue Conditions

7-104

Instructions 140 through 147 hold issue for any of the following
conditions:

•
•
•
•

The Vk register is reserved as an operand.
The Vi register is reserved as an operand or as a result.
Instruction 0020xxwas issued in the preceding CP.
Instruction 076 or 077 was issued during the previous 3 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

CSM-0500-000

Instructions 140, 142, 144, and 146 hold issue if the Sj register is
reserved.

Instructions 141, 143, 145, and 147 hold issue if the Vj register is
reserved as an operand.

Instructions 146 and 147 hold issue if instruction 14x or instruction 175
is in progress or if instruction 003 was issued in the preceding CP. For
these conditions, the full vector logical functional unit is busy for (VL)/2
+4CPs.

Instructions 140 and 145 hold issue if the second vector logical
functional unit is disabled and if instruction 14x or instruction 175 is in
progress. In this condition, the full vector logical functional unit is busy
for (VL)/2 + 4 CPs.

Instructions 140 and 145 hold issue for the following conditions if the
second vector logical functional unit is enabled:

• An instruction between 140 and 145 or instruction 16x is in
progress in the second vector logical/floating-point multiply
functional unit. In this condition, the second vector logical
functional unit is busy for (VL)/2 + 4 CPs.

• An instruction between 140 and 147 or instruction 175 is in
progress in the full vector logical functional unit, or instruction 003
was issued in the preceding CPo For these conditions, the full
vector logical functional unit is busy for (VL)/2 + 4 CPs.

Instructions 140 through 147 issue in 1 CPo

If data is available, register Vj or Vk is ready in (VL)/2 + 3 CPs.

If data is available, the functional unit is ready in (VL)/2 + 4 CPs.

If data is available for the full vector logical functional unit or for the
second vector logical functional unit, register Vi is ready in (VL)/2 + 5
CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Cray Research Proprietary 7-105

CPU Instructions

Description

7-106

CRAYY-MP COO System Programmer Reference Manual

The number of operations performed is determined by the contents of the
VL register. All operations start with element 0 of the Vi, Vj, or Vk
registers and increment the element number by 1 for each operation
performed. All results are delivered to register Vi.

Instructions 140 through 145 can be executed in either the full vector
logical or the second vector logical functional units, provided the second
vector logical unit is enabled. If the second vector logical unit is
disabled, instructions 140 through 145 can be executed only in the full
vector logical unit. Instructions 146 and 147 execute in the full vector
logical unit only.

For instructions 140, 142, 144, and 146, a copy of (Sj) is delivered to the
functional unit. The copy is held as one of the operands until the
operation is complete. Therefore, (Sj) can be changed in the next
instruction without affecting the vector operation. For instructions 141,
143, 145, and 147, all operands are obtained from V registers.

Instructions 140 and 141 form the logical products (AND) of operand
pairs and enter the results into Vi. Bits of an element of Vi are set to 1
when the corresponding bits of (Sj) or (Vj element) and (Vk element) are
1, as in the following example:

If (Sj) or (Vj element) = 11 0 0
And (Vk element) = 1 0 1 0
Then (Vi element) = 1000

Instructions 142 and 143 form the logical sums (inclusive OR) of
operand pairs and deliver the results to Vi. Bits of an element of Vi are
set to 1 when at least one of the corresponding bits of (Sj) or (Vj
element) and (Vk element) is 1, as in the following example:

If (Sj) or (Vj element) = 11 0 0
And (Vk element) = 1 0 1 0
Then (Vi element) = 1110

Instructions 144 and 145 form the exclusive ORs of operand pairs and
deliver the results to Vi. Bits of an element of Vi are set to 1 when the
corresponding bits of (Sj) or (Vi element) are different from (Vk
element), as in the following example:

If (Sj) or (Vj element) = 1100
And (Vk element) = 1 0 1 0
Then (Vi element) = 0110

Cray Research Proprietary CSM-QSOO-OOO

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

Instructions 146 and 147 transmit selected bits of each operand to Vi
depending on the contents of the vector mask register. The VM register
stores the vector mask in Y -:MP mode, and the VM and VM1 registers
together store the vector mask in e90 mode. Operand pairs used for the
selection depend on the instruction. For instruction 146, the first operand
is always (S}), and the second operand is (Vk element). For instruction
147, the first operand is (Vj element), and the second operand is (Vk
element). If bit n of the VM register is 1, the corresponding bit of the
first operand is selected; if bit n of the VM register is 0, the
corresponding bit of the second operand, (V k element), is selected. The
following two examples illustrate these points.

Example 1:

The following registers are initialized as shown:

(VL) =4
(VM) = 0600000000000000000000
(S2) =-1
(V6,00) = 1
(V6, 01) = 2
(V6,02) = 3
(V6, 03) = 4

Instruction 146726 is executed. Following execution, the first four
elements of V7 contain the following values:

(V7, 00) = 1
(V7, 01) =-1
(V7, 02) =-1
(V7, 03) = 4

The remaining elements of V7 are not altered.

Example 2:

The following registers are initialized as shown:

(VL) =4
(VM) = 06000000000000000000000
(V2, 00) = 1 (V3, 00) = -1
(V2, 01) = 2 (V3, 01) =-2
(V2, 02) = 3 (V3, 02) = -3
(V2, 03) = 4 (V3, 03) = -4

Cray Research Proprietary 7-107

CPU Instructions

7-108

CRAY Y-MP C90 System Programmer Reference Manual

Instruction 147123 is executed. Following execution, the first four
elements of V1 contain the following values:

(V1,00) =-1
(V1, 01) = 2
(V1, 02) = 3
(V1, 03) =-4

The remaining elements of V1 are not altered.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP ceo System Programmer Reference Manual CPU Instructions

Instructions 150 and 151

Machine
Mode Instruction CAL Syntax Description

150ijk Vi Vj < Ale Shift (Vj elements) left (Ak) places to Vi elements.

15Ou'O Vi Vj < 1 § Shift (Vi elements) left one place to Vi elements.

151ijk Vi Vj> Ale Shift (Vj elements) right (Ak) places to Vi elements.

151ijO Vi Vj> 1 § Shift (Vj elements) right one place to Vi elements.

005400 Vi Vj < VO Shift (Vj elements) left (VO) places to Vi elements.
150ijO

005400 Vi Vj > VO Shift (Vj elements) right (VO) places to Vi elements.
151ijO

Special Cases

If k = 0, then (Ak) = 1.

Hold Issue Conditions

Execution Time

CSM-0500-000

Instructions 150 and 151 hold issue for any of the following conditions:

• The Vj register is reserved as an operand.
• The Vi register is reserved as an operand or as a result.
• The Ak register is reserved (except AO).
• Instruction 0020xx was issued in the preceding CPo
• Instruction 076 or 077 was issued during the previous 3 CPs.

Instructions 005400 150 and 005400 151 hold issue if VO is reserved.

If instructions 150 through 153 are in progress, the vector shift functional
unit is busy for (VL)/2 + 4 CPs.

The following execution times apply if data is available:

• The Vj register is ready in (yL)/2 + 3 CPs.
• The Vi register is ready in (VL)/2 + 7 CPs.
• The functional unit is ready in (yL)/2 + 4 CPs.

Cray Research Proprietary 7-109

CPU Instructions

Description

7-110

CRAYY-MP C90 System Programmer Reference Manual

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 150 and 151 are executed in the vector shift functional unit.
The number of operations performed is determined by the contents of the
VL register. Operations start with element 0 of the Viand Vj registers
and end with the element specified by (VL) -1.

All shifts are end-off with zero fill, meaning that data shifted out of a
register, either to the right or the left, is lost, and that the trailing edge of
the data is replaced in the register with zeroes. Unlike shift instructions
052 through 055, instructions 150 and 151 obtain the shift count from
(Ak), rather than from the jk fields of the instruction, and all 32 bits of
(Ak) are used for the shift count. The elements of Vi are cleared if the
shift count exceeds 63. All shift counts obtained from (Ak) are
considered positive.

Instruction 150ijk shifts the contents of the elements of register Vj to the
left by the amount specified by (Ak) and enters the results into the
elements of Vi. The special CAL form of this instruction shifts the
contents of the elements of Vj one place to the left and enters the results
into Vi.

Instruction 151ijk shifts the contents of the elements of register Vj to the
right by the amount specified by (Ak) and enters the results into the
elements of Vi. The special CAL form of this instruction shifts the
contents of the elements of Vj one place to the right and enters the results
into Vi.

Instruction 005400 150ijO shifts the contents of the elements of register
Vj to the left by the amount specified by (elements of VO) and enters the
results into the elements of Vi. The 6 low-order bits of each element of
the VO register contain the shift counts for the corresponding elements of
Vj. If bits 26 through 263 of an element ofVO are not equal to 0, a 0
result is entered into the corresponding element of Vi.

Instruction 005400 151ijO shifts the contents of the elements of register
Vj to the right by the amount specified by the contents of the elements of
VO and enters the results into the elements of Vi. The 6 low-order bits of
each element of the VO register contain the shift counts for the
corresponding elements of Vj. If bits 26 through 263 of an element of VO
are not equal to 0, a 0 result is entered into the corresponding element of
Vi.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 152 and 153

Machine
Mode Instruction CAL Syntax Description

152ijk Vi Vj,Vj < Ak Double shift rJj elements) left (Ak) places to Vi elements.

152ijO Vi Vj,Vj < 1 § Double shift rJj elements) left one place to Vi elements.

005400 Vi Vj,Ak Transfer VL-(Ak) elements of Vj starting at element (Ak) to
152ijk Vi starting at element O. ((Ak) < VL)

153ijk Vi Vj,Vj > Ak Double shift rJj elements) right (Ak) places to Vi
elements.

153ijO Vi Vj,Vj> 1 § Double shift rJj elements) right one place to Vi elements.

Special Cases

If k = 0, then (Ale) = 1.

Hold Issue Conditions

. Execution Time

CSM-0500-o00

Instructions 152 and 153 hold issue for any of the following conditions:

• The Vj register is reserved as an operand.

• The Vi register is reserved as an operand or a result.

• The Ale register is reserved (except AO).

• Instruction 0020xx was issued in the preceding CPo

• Instruction 076 or instruction 077 was issued during the previous
3 CPs.

If instructions 150 through 153 are in progress, the vector shift functional
unit is busy for (VL)/2 + 4 CPs .

Instructions 152 and 153 issue in 1 CPo

If data is available, the Vj register is ready in (VL)/2 + 3 CPs.

Cray Research Proprietary 7-111

CPU Instructions

Description

7-112

CRAY Y-MP COO System Programmer Reference Manual

If data is available, the functional unit is ready in (VL)/2 + 4 CPs.

For the 152 instruction, if data is available, the Vi register is ready in
(VL)/2 + 8 CPs.

For the 153 instruction, if data is available, the Vi register is ready in
(VL)/2 + 7 CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 152 and 153 execute in the vector shift functional unit. The
instructions shift 128-bit values formed by logically joining the contents
of two elements of the Vi register. The direction of the shift determines
whether the high-order bits or the low-order bits of the result are sent to
Vi. All shifts are end-off with zero fill, meaning that data shifted out of
the combined registers, either to the right or the left, is lost, and that the
trailing edge of the data is replaced in the registers with.zeroes. Shift
counts are obtained from the Ale register. The number of operations is
determined by the VL register contents.

Instruction 152 performs left shifts. The operation starts with element 0
of Vi. If (VL) = 1, 64 bits of O's are concatenated to element 0, and the
resulting 128-bit quantity is then left shifted by the amount specified by
(Ale). The 64 high-order bits remaining in element 0 of Vi after the shift
are transmitted to element 0 of Vi. Only this operation is performed.

If (VL) > 1, the operation begins by concatenating element 1 of Vi to
element 0 of Vi, and by left shifting the resulting 128-bit quantity by the
amount specified by (Ale). The 64 high-order bits remaining after the
shift are transmitted to element 0 of Vi. Figure 7-8 shows this operation.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-QSOO-OOO

I (Element 0) of Vi I (Element 1) of Vj I

54-bit Result Transmitted to Element 0 of Vi A-9412

Figure 7-8. Vector Left Double Shift, First Element, (VL»1

The operation continues by concatenating element 2 (if (VL) > 2) to
"element 1, and by left shifting the resulting 128-bit quantity by the
amount specified by (Alc). The 64 high-order bits remaining after the
shift are transmitted to element 1 of Vi. Figure 7-9 shows this operation.

I (Element 1) of Vi I (Element 2) of Vi I

54-bit Result Transmitted to Element 1 of Vi A-9414

Figure 7-9. Vector Left Double Shift, Second Element, (VL» 2

IT (VL) = 2, 64 bits of D's are concatenated to element 1, and the resulting
128-bit quantity is left shifted by the amount specified by (Alc). The 64
high-order bits remaining in element 1 of Vj after the shift are
transmitted to element 1 of Vi. Only these two operations are performed.
In general, the last element of Vj, as determined by (VL), has 64 bits of
D's concatenated to it before the final shift is performed. Figure 7-10
shows this operation.

Cray Research Proprietary 7-113

CPU Instructions

7-114

CRAYY-MP C90 System Programmer Reference Manual

I (Element (VL) - 1) of Vj I 000 • •. 0 1

64-bit Result Transmitted to Element (VL) - 1 of Vj A-9415

Figure 7-10. Vector Left Double Shift, Last Element

If (Ale) is greater than or equal to 128, the resulting elements of Vi
contain all O's. If (Ak) is greater than 64 but less than 128, each element
of the Vi register contains at least (Ale) - 64 zeroes.

The following example shows a vector left double shift. The registers
are initialized as shown:

(VL) = 4
(Ai) = 3
(V4,00) = o 00000 0000 0000 0000 0007
(V4,01) = o 60000 0000 0000 0000 0005
(V4,02) = 1 00000 0000 0000 0000 0006
(V4,03) = 1 60000 0000 0000 0000 0007

Instruction 152541 is executed. Following execution, the first four
elements of V5 contain the following values:

(V5,00) = 0000000000000000000073
(V5,01) = 000000 0000 0000 0000 0054
(V5, 02) = 0 00000 0000 0000 0000 0067
(V5, 03) = 0 00000 0000 0000 0000 0070

Instruction 153 performs right shifts. The operation starts with element 0
of Vj, which is first concatenated to 64 bits of O's. The resulting 128-bit
quantity is then right shifted by the amount specified by (Ale). The 64
low-order bits remaining in element 0 of Vj after the shift are transmitted
to element 0 of Vi. If (VL) = 1, this is the only operation performed.
Figure 7-11 shows this operation.

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

CSM-Q500-Q00

I 000 0 I (Element 0) of Vj I

54-bit Result Transmitted to Element 0 of Vi A-9440

Figure 7-11. Vector Right Double Shift, First Element

If (VL) > 1, the operation continues by concatenating element 1 of Vi to
element 0 of Vi, and by right shifting the resulting 128-bit quantity by
the amount specified by (Alc). The 64 low-order bits remaining in
element 1 after the shift are transmitted to element 1 of Vi. Figure 7-12
shows this operation.

I (Element 0) of Vj I (Element 1) of Vj I

T

54-bit Result Transmitted to Element 1 of Vi A-9417

Figure 7-12. Vector Right Double Shift, Second Element, (VL»1

The last operation performed by instruction 153 concatenates the last
element of Vi, as determined by the contents of VL, to the preceding
element before performing the right shift. The 64 low-order bits
remaining in the last element after the shift are transmitted to the
corresponding element of Vi. Refer to Figure 7-13.

Cray Research Proprietary 7-115

CPU Instructions

7-116

CRAY Y -MP C90 System Programmer Reference Manual

I [Element (VI..) - 2) of Vj I [Element (VL) - 1) of Vj I

~J
T

64-bit Result Transmitted to Element (VL) - 1 of Vj A-9418

Figure 7-13. Vector Right Double Shift, Last Operation

The following example shows a vector right double shift. The registers
are initialized as shown:

(VL) =4
(A6) = 3
(V2, 00) = 000000000000000000 0017
(V2, 01) = 060000000000000000 0006
(V2, 02) = 1 00000 0000 0000 0000 0006
(V2, 03) = 1 60000 0000 0000 0000 0007

Instruction 153026 is executed. After execution, register VO contains the
following values:

(Vo, 00) = 0 00000 0000 0000 0000 0001
(VO, 01) = 1 66000 0000 0000 0000 0000
(VO, 02) = 1 50000 0000 0000 0000 0000
(VO, 03) = 1 56000 0000 0000 0000 0000

The remaining elements of register VO are no~ altered.

Instruction 005400 152ijk performs a vector word shift. This operation
transfers the contents of elements (Ale) through (VL) - 1 of Vj to
elements 0 through [(VL) - 1- (Ale)] of Vi. (VL)-(Ak) elements are
transferred. If (Ale) it (VL), no elements are transferred. Figure 7-14
shows an example of a vector word shift, in which the registers are
initialized as shown, and instruction 005400 152123 is executed.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual

Element a
1

2

3

4

5

6

CSM-0500~OOO

(A3) = 4
(VL) = 7

V2
Vector Shift

Functional Unit

17 7 - - --
I

17-7 0-0 I - --
I

0- a 17--7 I I ~ -
I I I

0 0 I I
.J

I
0-0 17--7 I I

__ .J I
17-7 0-0 I

52 52
___ ...I

Figure 7-14. Vector Word Shift

Cray Research Proprietary

-- a-a
17-7

52

CPU Instructions

V1

17--7

0-0

52

A-8934

o
1

2

3

4

5

6

7-117

CPU Instructions

Machine
Mode Instruction

154ijk

155ijk

156ijk

156iOk

157ijk

Special Cases

CRAYY-MP C90 System Programmer Reference Manual

Instructions 154 through 157

CAL Syntax Description

Vi Sj+ Vk Transmit the integer sums of (S1) and (Vk elements) to Vi
elements.

Vi Vj+ Vk Transmit the integer sums of (Vj elements) and (Vk
elements) to Vi elements.

Vi Sj-Vk Transmit the integer differences of (S1) and (Vk elements) to
Vi elements.

Vi -Vk § Transmit the two's complement of (Vk elements) to Vi
elements.

Vi Vj-Vk Transmit the integer differences of (Vj elements) and (Vk
elements) to Vi elements.

For instruction 154, iij = 0, then (S}) = 0 and (Vi element) = (Vk
element).

For instruction 156, ifj = 0, then (S1) = 0 and (Vi element) =-(Vk
element).

Hold Issue Conditions

7-118

Instructions 154 through 157 hold issue for any of the following
conditions:

•
•
•
•

The Vk register is reserved as an operand.
The Vi register is reserved as an operand or a result.
Instruction 0020xx was issued in the preceding CP.
Instruction 076 or 077 was issued in the previous 3 CPs.

Instructions 154 and 156 hold issue if the Sj register is reserved (except
SO).

Instructions 155 and 157 hold issue if the Vj register is reserved as an
operand.

If an instruction between 154 and 157 is in progress, the vector shift
functional unit is busy for (VL)/2 + 4 CPs.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500-000

Instructions 154 through 157 issue in 1 CPo

The following execution times apply if data is available:

• The Vj or Vkregister is ready in (VL)/2 + 3 CPs.
• The Vi register is ready in (VL)/2 + 7 CPs.
• The functional unit is ready in (VL)/2 + 4 CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 154 through 157 execute in the vector add functional unit.
Instructions 154 and 155 perform integer addition; instructions 156 and
157 perform integer subtraction. No overflow is detected. The number
of additions or subtractions performed is determined by the contents of
the VL register. All operations start with element 0 of the V registers and
increment the element number by 1 for each operation performed. All
results are delivered to elements of Vi.

Instructions 154 and 156 transmit a copy of the contents of Sj to the
functional unit, where the copy is retained as one of the operands until
the vector operation is completed. The other operand is an element of
Vk. For instructions 155 and 157, both operands are obtained from V
registers.

Instruction 154ijk adds the contents of the Sj register to the contents of
each element of Vk and enters the results into the elements of Vi. The
elements of Vk are transmitted to Vi if the j designator is o.

Instruction 155ijk adds the contents of the elements of Vj to the contents
of the corresponding elements of Vk and enters the results into the
elements of Vi.

Instruction 156ijk subtracts the contents of each element of Vk from the
contents of the Sj register and enters the results into the elements of Vi.

Instruction 156iOk transmits the negative (two's complement) of each
element of Vk to Vi.

Instruction 157ijk subtracts the contents of the elements of Vk from the
contents of corresponding elements of Vj and enters the results into the
elements of Vi.

Cray Research Proprietary 7-119

CPU Instructions CRAYY-MP C90 System Programmer Reference Manual

Instructions 160 through 167

Machine
Mode Instruction CAL Syntax Description

160ijk Vi Sj*FVk Transmit the floating-point products of (S}) and CVk elements)
to Vi elements.

161ijk Vi Vj*FVk Transmit the floating-point products of CVj elements) and CVk
elements) to Vi elements.

162ijk Vi Sj*HVk Transmit the half-precision rounded floating-point products of
(S}1 and CVk elements) to Vi elements.

163ijk Vi Vj'*HVk Transmit the half-precision rounded floating-point products of
(Vj elements) and (Vk elements) to Vi elements.

164ijk Vi Sj*RVk Transmit the rounded floating-point products of (S}1 and (Vk
elements) to Vi elements.

165ijk Vi Vj*RVk Transmit the rounded floating-point products of (Vj elements)
and (Vk elements) to Vi elements.

166ijk Vi Sj*Vk Transmit the 32-bit integer products of (S}1 and (Vk
elements) to Vi elements.

167ijk Vi Vj"'Vk Transmit the reciprocal iterations 2 - (Vj elements) '* (Vk
elements) to Vi elements.

Special Cases

If j = 0, then (S}) = O.

Hold Issue Conditions

7-120

Instructions 160 through 167 hold issue for any of the following
conditions:

•
•
•
•
•

The Vk register is reserved as an operand.
The Vi register is reserved as an operand or as a result.
Instruction 0020xx was issued in the preceding CP.
Instruction 076 or 077 was issued during the previous 3 CPs.
The status register is busy.

Instructions 160, 162, 164, and 166 hold issue if the Sj register is
reserved (except SO).

Cray Research Proprietary CSM-0500-000

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Execution Time

Description

CSM-0500-OO0

Instructions 161, 163, 165, and 167 hold issue if the Vj register is
reserved as an operand.

If an instruction between 140 and 145 is in progress in the second vector
logical functional unit or if instruction 16x is in progress, the
floating-point multiply functional unit is busy for (VL)/2 + 4 CPs.

Instructions 160 through 167 issue in 1 CP.

The following execution times apply if data is available:

• The Vj and Vk registers are ready in (VL)/2 + 3 CPs
• The Vi register is ready in (VL)/2 + 10 CPs
• The functional unit is ready in (VL)/2 + 4 CPs

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 160 through 167 execute in the floating-point multiply
functional unit. The number of operations performed by an instruction is
determined by the contents of the VL register. All operations start with
element 0 of the V registers and increment the element number by 1 for
each successive operation.

The functional unit assumes that operands are in floating-point format.
Instructions 160, 162, 164, and 166 send a copy of the contents of the Sj
register to the functional unit, where the copy is retained as one of the
operands until the.vector operation is completed. The other operand is an
element of Vk. For instructions 161, 163, 165, and 167, both operands
are obtained from V registers.

All results are transmitted to the elements of Vi. If one of the operands is
not normalized, the products mayor may not be normalized. If neither
operand is normalized, the products are not normalized.

Instruction 160ijk forms the floating-point products of the contents of the
Sj register and of each element of Vk, and it enters the results into the
elements of Vi.

Cray Research Proprietary 7-121

CPU Instructions

7-122

CRAYY-MP ceo System Programmer Reference Manual

Instruction 161ijk forms the floating-point products of the contents of the
elements of Vj and the contents of the corresponding elements of Vk, and
it enters the results into the elements of Vi.

Instruction 162ijk forms the half-precision rounded floating-point
products of the contents of the Sj register and the contents of each
element of the Vk register, and it enters the results into the elements of
Vi. This instruction can be used in a division algorithm when the result
only needs to be accurate to 30 bits.

Instruction 163ijk forms the half-precision rounded floating-point
products of the contents of the elements of Vj and of the corresponding
elements of Vk, and it enters the results into the elements of Vi. This
instruction can be used in a division algorithm when only 30 bits of
accuracy is required.

Instruction 164ijk forms the rounded floating-point products of the
contents of the Sj register and of each element of Vk, and it enters the
results into the elements of Vi.

Instruction 165ijk forms the rounded floating-point products of the
contents of the elements of Vj and of the corresponding elements of Vk,
and it enters the results into the elements of Vi.

Instruction 166ijk forms the 32-bit integer products of the contents of the
Sj register and of each element of Vk, and it enters the results into the
elements of Vi. The Sj operand must be left shifted by 3110 places, and
the Vk operand must be left shifted by 1610 places before instruction 166
is executed.

Instruction 167ijk forms the quantity of 2 minus the floating-point
products of the contents of the elements of Vj and Vk, and it enters the
results into the elements of Vi. This instruction is used in the division
operation sequence of instructions.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Instructions 170 through 173

Machine
Mode Instruction CAL Syntax Description

170ijk Vi Sj+ FVk Transmit the floating-point sums of (SJ) and (Vk elements)
to Vi elements.

170iOk Vi + FVk § Transmit the normalized (Vk elements) to Vi elements.

171ijk Vi Vj+ FVk Transmit the floating-point sums of (Vi elements) and (Vk
elements) to Vi elements.

172ijk Vi Sj-FVk Transmit the floating-point differences of (SJ) and (Vk
elements) to Vi elements.

172iOk Vi - FYk § Transmit the normalized negatives of (Vk elements) to Vi
elements.

173ijk Vi Vj-FVk Transmit the floating-point differences of (Vj elements) and
(Vk elements) to Vi elements.

Special Cases

If j = 0, then (Sj) = O.

Hold Issue Conditions

CSM-0500-000

Instructions 170 through 173 hold issu~ for any of the following
conditions:

• The Vk register is reserved as an operand.
• The Vi register is reserved as an operand or as a result.
• Instruction 0020xx was issued in the preceding CP.
• Instruction 076 or 077 was issued during the previous 3 CPs.
• The status register is busy.

Instructions 170 and 172 hold issue if the Sj register is reserved (except
SO).

Instructions 171 and 173 hold issue if the Vj register is reserved as an
operand.

If instructions 170 through 173 are in progress, the floating-point add
functional unit is busy for (VL)/2 + 4 CPs.

Cray Research Proprietary 7-123

CPU Instructions

Execution Time

Description

7-124

CRAY Y-MP COO System Programmer Reference Manual

Instructions 170 through 173 issue in 1 CPo

The following execution times apply if data is available:

• The Vj and Vkregisters are ready in (VL)/2 + 3 CPs.
• The Vi register is ready in (VL)/2 + 10 CPs.
• The functional unit is ready in (VL)/2 + 4 CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 170 through 173 execute in the floating-point add functional
unit. Instructions 170 and 171 perform floating-point addition;
instructions 172 and 173 perform floating-point subtraction. The number
of additions or subtractions performed by an instruction is determined by
the contents of the VL register. All operations start with element 0 of the
V registers and increment the element number by 1 for each operation
performed. All results are normalized and transmitted to Vi whether or
not the operands are normalized.

Instructions 170 and 172 transmit a copy of the contents of the Sj register
to the functional unit, where the copy is retained as one of the operands
until the vector operation is completed. The other operand is an element
of Vk. For instructions 171 and 173, both operands are obtained from V
registers.

Instruction 170ijk forms the floating-point sums of the contents of the Sj
register and the contents of each element of Vk, and it enters the results
into the elements of Vi.

Instruction 170iOk is a special CAL form of instruction 170; it normalizes
the contents of the elements of Vk and enters the results into the elements
of Vi.

Instruction 171ijk forms the floating-point sums of the contents of the
elements of Vj and the contents of the corresponding elements of Vk, and
it enters the results into the elements of Vi.

Instruction 172ijk forms the floating-point differences of the contents of
the Sj register and the contents of each element of Vk, and it enters the
results into the elements of Vi.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

Instruction 172iOk is a special CAL form of instruction 172; it forms the
normalized negatives (twos complements) of the contents of the elements
ofVk and enters the results into the elements of Vi.

Instruction 173ijk forms the floating-point differences of the contents of
the elements of Vj and the contents of the corresponding elements of Vk,
and it enters the results into the elements of Vi.

Cray Research Proprietary 7-125

CPU Instructions

Machine
Mode Instruction

174ijO

Special Cases

CRAYY-MP COO System Programmer Reference Manual

Instruction 174jp

CAL Syntax Description

Vi IHVj Transmit the floating-point reciprocal approximation of rJj
elements) to Vi elements.

If the contents of a particular element of Vj are not normalized, the
contents of the corresponding element of Vi are invalid. For a
floating-point number to be normalized, bit 247 must be set to 1. This bit
is not tested.

Hold Issue Conditions

Execution Time

7-126

Instruction 174 holds issue for any of the following conditions:

•
•
•
•
•

The Vj register is reserved as an operand.
The Vi register is reserved as an operand or as a result.
Instruction 0020xx was issued in the preceding CPo
Instruction 076 or 077 was issued during the previous 3 CPs.
The status register is busy.

If instruction 174 is in progress, the reciprocal approximation functional
unit is busy for (VL)/2 + 4 CPs.

Instruction 174 issues in 1 CPo

The following execution times apply if data is available:

•
•
•

The Vj register is ready in (VL)/2 + 3 CPs.
The Vi register is ready in (VL)/2 + 14 CPs.
The functional unit is ready in (VL)/2 + 4 CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Cray Research Proprietary CSM-QSOO-OOO

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-0500.-000

Instruction 174ijO executes in the reciprocal approximation functional
unit. The instruction forms an approximate value of the reciprocal of the
normalized floating-point quantity in each element of Vj and enters the
results into the elements of Vi. The number of elements for which
approximations are found is determined by contents of the VL register.

Instruction 174ijO is used in the division sequence to compute the
quotients of floating-point quantities. This instruction produces results
with 30 significant bits. The next 3 low-order bits are not necessarily
accurate, and the remaining 15 low-order bits are O's. The number of
significant bits can be extended to 48 by using the reciprocal iteration
instruction (167ijk) and a multiplication instruction.

Cray Research Proprietary 7-127

CPU Instructions CRAY Y -MP COO System Programmer Reference Manual

Instructions 174i/1 through 174ifJ

Machine
Mode Instruction CAL Syntax Description

174ij1 Vi PVj Transmit the population count of 0/i elements) to Vi elements.

174ij2 Vi aVj Transmit the population count parity of 0/j elements) to Vi
elements.

174iJ3 Vi Z\lj Transmit the leading zero count of 0/j elements) to Vi
elements.

Special Cases

The following special cases apply to instruction 174ij3:

• If (Vj elements) = 0, then (V i elements) = 648_

• If (Vj elements) < 0, then (Vi elements) = O.

Hold Issue Conditions

Execution TIme

7-128

Instructions 174ijl through 174ij3 hold issue for any of the following
conditions:

•
•
•
•

The Vj register is reserved as an operand.
The Vi register is reserved as an operand or as a result.
Instruction 0020xx was issued in the preceding CP.
Instruction 076 or 077 was issued during the previous 3 CPs.

If instruction 174ijO is in progress, the vector population/parity
functional unit is busy for (VL)/2 + 6 CPs.

If instruction 174ijl, 174ij2, or 174ij3 is in progress, the vector
population/parity functional unit is busy for (VL)/2 + 4 CPs.

If instruction 070 is in progress, the vector population/parity functional
unit is busy for 5 CPs.

Instructions 174ijl through 174ij3 issue in 1 CPo

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Description

CSM-QSOO-OOO

The following execution times apply if data is available:

• The Vj register is ready in (VL)/2 + 3 CPs.
• The Vi register is ready in (VL)/2 + 8 CPs.
• The functional unit is ready in (VL)/2 + 4 CPs.

NOTE: Vector instructions mayor may not execute immediately; they
execute as data becomes available. In particular, a memory
conflict that slows execution of some elements of a vector read
from memory can cause delays in all instructions in the
operation chain, starting with that read.

Instructions 174ij1 through 174ij3 execute in the vector
population/parity /leading zero functional unit, which also shares some
logic with the reciprocal approximation functional unit. The number of
operations performed by one of these instructions is determined by the
contents of the VL register. All operations start with element 0 of the V
registers and increment the element number by 1 for each operation
performed.

Instruction 174ij1 counts the number of bits set to 1 in each element of
Vj and enters the results into the corresponding elements of Vi. The
results are entered into 7 the low-order bits of each element of Vi; the
remaining high-order bits of each element of Vi are cleared.

Instruction 174ij2 counts the number of bits set to 1 in each element of
Vj. The least significant bit of each count tells whether an odd or an
even number of 1 bits is set in each element. Only this least significant
bit of each count is transferred to the least significant bit position of the
corresponding element of register Vi. The remaining 63 bits of the
element are set to D's. The actual population count results are not
transferred.

Instruction 174ij3 counts the number of leading D's in each element of Vj
and enters the counts into the 7 low-order bits of the corresponding
elements of Vi. The remaining bits of each element of Vi are set to D's.
If the contents of a particular element of Vj equal 0, then a value of 648 is
transmitted to the corresponding element of Vi. If the contents of a
particular element of Vj are negative, then the corresponding element of
Vi is set to O.

Cray Research Proprietary 7-129

CPU Instructions

Machine
Mode Instruction

17S0jO

17S0j1

17S0j2

17S0j3

17Sij4

17Sij5

17Sij6

17SiJ7

Special Cases

7-130

CRAVV-MP C90 System Programmer Reference Manual

Instruction 175

CAL Syntax Description

VM Vj,Z Set VM bit if rJj element) = O.

VM Vj,N Set VM bit if rJj element) .. O.

VM Vj,P Set VM bit if rJj element) ~ O.

VM Vj,M Set VM bit if rJj element) < O.

Vi,VM Vj,Z Set VM bit if rJj element) = 0; also, store the compressed
indices of the Vj elements = 0 in the Vi elements.

Vi,VM Vj,N Set VM bit if rJj element) .. 0; also, store the compressed
indices of the Vj elements .. 0 in the Vi elements.

Vi,VM Vj,P Set VM bit if rJj element) ~ 0; also, store the compressed
indices of the Vj elements ~ 0 in the Vi elements.

Vi,VM Vj,M Set VM bit If rJj element) < 0; also, store the compressed
indices of the Vj elements < 0 in the Vi elements.

The following special cases apply to instruction 175:

•

•

•

•

•

•

•

•

If Vj element n = 0 and k = 0 or 4, then VM bit n = 1.

If Vj element n JIt 0 and k = 1 or 5, then VM bit n = 1.

If Vj element n :i! 0 and k = 2 or 6, then VM bit n = 1.

If Vj element n < 0 and k = 3 or 7, then VM bit n = 1.

If Vj element n = 0 and k = 4, then the compressed index stored in
Vi=n.

If Vj element n JIt 0 and k = 5, then the compressed index stored in
Vi=n.

If Vj element n :i! 0 and k = 6, then the compressed index stored in
Vi=n.

If Vj element n < 0 and k = 7, then the compressed index stored in
Vi=n.

Cray Research Proprietary CSM-QSOO-OOO

CRAYY-MP C90 System Programmer Reference Manual CPU Instructions

Hold Issue Conditions

Execution Time

Description

CSM-0500~OOO

Instruction 175 holds issue for any of the following conditions:

• The Vj register is reserved as an operand.
• Instruction 003 was issued during the preceding 2 CPs.
• Instruction oo20xx was issued in the preceding CPo
• Instruction 076 or 077 was issued during the previous 3 CPs.

Instructions 175ij4 through 175iJ7 hold issue if the Vi register is reserved
as an operand or as a result.

If instruction 14x or 175 is in progress, the vector logical functional unit
is busy for (VL)/2 + 4 CPs.

Instruction 175 issues in 1 CP.

The following execution times apply if data is available:

• The Vj register is ready in (VL)/2 + 3 CPs.

• The VM register is ready for use by all instructions except
instruction 073 in (VL)/2 + 4 CPs.

• The VM register is ready for use by instruction 073 in (VL)/2 + 5
CPs.

• The Vi register is ready for use by instructions 175ij4 through
175ij7 in (VL)/2 + 9 CPs.

If no test conditions are true for instructions 175ij4 through 175ij7, then
(VM) = 0, no write operations to Vi registers occur, and the elements of
Vi are unchanged by the instruction.

The full vector logical functional unit executes the vector mask and
compressed index instruction 175. Instructions 1750jO through 1750j3
create a mask in the vector mask registers VM and VMl. The 64 bits of
the VM register correspond to elements 0 through 63 of Vj, and the 64
bits of the VM1 register correspond to elements 64 through 127 of Vj.
The elements of Vj are tested for the condition specified by the k field of
the instruction. If the condition is true for an element, the corresponding
bit is set to 1 in the VM register. If the condition is not true, the bit is set
toO.

Cray Research Proprietary 7-131

CPU Instructions

7-132

CRAY Y -MP COO System Programmer Reference Manual

Instructions 175ij4 through 175ij7 create a vector mask identical to that
of instructions 1750jO through 1750j3. However, they also create a
compressed index list in register Vi based on the results of testing the
contents of the elements of register Vj.

The number of elements tested is determined by the contents of the VL
register; however, the VM and VM1 registers are cleared before the
elements of Vj are tested. Element 0 corresponds to bit 0, element 1 to
bit 1, and so on, from left to right in the register.

The type of test made by the instruction depends on the 2 low-order bits
of the k designator. The high-order bit of the k designator is used to
select the compressed index option.

For instruction 1750jO, if the contents of the element of Vj equal 0, the
VM bit is set to 1. If the contents of the element of Vj are not 0, the VM
bit is set to O.

For instruction 1750j1, if the contents of the element of Vj are not 0, the
VM bit is set to 1. If the contents of the element of Vj equal 0, the VM
bit is set to 0.

For instruction 1750j2, if the contents of the element of Vj are ~ 0, the
VM bit is set to 1. If the contents of the element of Vj are negative, the
VM bit is set to 0.

For instruction 1750j3, if the contents of the element of Vj are negative,
the VM bit is set to 1. If the contents of the element of Vj are :i!: 0, the
VM bit is set to O.

Instructions 175ij4 through 175ij7 are compressed index instructions.
These instructions test for zero, nonzero, positive (:i!: 0), and negative
elements, respectively. A vector mask is generated, along with a vector
containing the indices of those elements of the tested vector that satisfied
the tested condition. These stored indices are referred to as compressed
indices, because the element pointer for the Vi register is advanced only
when the tested condition is satisfied and an index needs to be stored,
resulting generally in a Vi register of shorter vector length than that of
the register tested.

For instruction 175ij4, if the contents of the element of Vj equal 0, the
VM bit is set to 1, and the compressed element of Vi is set to the index of
the element ofVj. If the contents of the element ofVj are not 0, the VM
bit is set to 0, the element pointer for the Vi register does not advance,
and nothing is written to Vi. Refer to Figure 7-15 for an example of
instruction 175ij4.

Cray Research Proprietary CSM-QSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

CSM-0500-000

VL Register

I 1481

+
VM 1010110011101 ... I
VM1 I I

VM Registers

VjReglster
(Tested)

-1

0
5

0
0

-15

24

0

0
0

-17

0

u
~ --

~

~

Vj Register
[rested)

01 8
038
048
078
108
118
138

A-9420

Figure 7-15. Compressed Index Example for Instruction 175ij4

For instruction 175ij5, if the contents of the element of Vj are not 0, the
VM bit is set to 1, and the compressed element of Vi is set to the index of
the element ofVj. If the contents of the element ofVj equal 0, the VM
bit is set to 0, the element pointer for the Vi register does not advance,
and nothing is written to Vi.

For instruction 175ij6, if the contents of the element of Vj are ~ 0, the
VM bit is set to 1, and the compressed element of Vi is set to the index of
the element of Vj. If the contents of the element of Vj are negative, the
VM bit is set to 0, the element pointer for the Vi register does not
advance, and nothing is written to Vi.

For instruction 175ij7, if the contents of the element of Vj are negative,
the VM bit is set to 1, and the compressed element of Vi is set to the
index of the element of Vj. If the contents of the element of Vj are ~ 0,
the VM bit is set to 0, the element pointer for the Vi register does not
advance, and nothing is written to Vi.

The number of elements tested is determined by the contents of the VL
register. The VM register bits corresponding to the untested elements of
the Vj register are cleared.

The vector mask instructions, 175ijO through 175ij3, and the compressed
index instructions, 175ij4 through 175ij7, are vector counterparts to the
scalar conditional branch instructions.

Cray Research Proprietary 7-133

CPU Instructions

Machine
Mode Instruction

176iOk

176iOO

176i1k

1770jk

1770P

1771jk

Special Cases

7-134

CRAYY-MP C90 System Programmer Reference Manual

Instructions 176 and 177

CAL Syntax Description

Vi ,AO,AIc Read (VL) words from memory to Vi starting at address (AO)
+ (DBA), incrementing by (AIc).

Vi ,AO,1 § Read (VL) words from memory to Vi starting at address (AO)
+ (DBA), incrementing by 1.

Vi ,AO,Vk Read (VL) words from memory to Vi using memory
addresses «AO) + (Vk) + (DBA}).

,AO,Ak Vj Write (VL) words from (V)) to memory starting at address
(AO) + (DBA), incrementing by (AIc).

,AO,1 Vj § Write (VL) words from (V)) to memory starting at address
(AO) + (DBA), incrementing by 1.

,AO,Vk Vj Write (VL) words from (V)) to memory using memory
addresses «AO) + (Vk) + (DBA».

An instruction in CIP holds issue for 1 CP after instruction 176 or
instruction 177 issues.

Instruction 176 uses port B, if available. If port B is busy at issue time,
instruction 176 uses port A. Instruction 177 uses port C.

For instructions 176iOk and 1770jk, if k=O, the memory increment is 1 .

For instructions 176iOk and 1770jk, (AIc) determines the memory
increment. Successive addresses are located in successive subsections.
References to the same subsection can be made every 7 CPs or more.
Incrementing (AIc) by 64 puts successive memory references in the same
subsection, so a word is transferred at least every 7 CPs. If the address is
incremented by 32, every other reference is to the same subsection, and
words can transfer no faster than two per 7 CPs. If an addressing
increment allows 7 CPs to pass before addressing the same subsection,
two words can transfer each CPo

Memory conflicts slow reading or writing of individual vector elements.
The elements are read or written in order, so a delay for any element
delays all succeeding elements.

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

Hold Issue Conditions

CSM-0500-000

For instruction 176, if there is an instruction using its destination register
as a source of operands, the execution of that instruction is delayed
whenever there is a delay in the result data for instruction 176.

Instructions 176 and 177 hold issue for any of the following conditions:

• The AO register is reserved.
• Instruction 0020xx was issued in the preceding CP.
• Instruction 076 or 077 was issued during the previous 3 CPs.
• A scalar reference occurred in CP 1, CP 2, CP 3, CP 4, or CP 5.
• The status register is busy.

Instruction 176 holds issue for any of the following conditions:

• Ports A and B are busy.

• The Vi register is reserved as an operand or as a result.

• The program is not in bidirectional memory mode and port C is
busy.

Instruction 177 holds issue for any of the following conditions:

• Port C is busy.

• The Vi register is reserved as an operand.

• The program is not in bidirectional memory mode and ports A and
B are busy.

Instructions 176iOk and 1770jk hold issue if Ak is reserved, where k=1
through 7.

Instructions 176i1k and 1771jk hold issue for any of the following
conditions:

• Another instruction 176i1k or 1771jk is in progress.

• The Vk register is reserved as an operand or the Ak register is
reserved, where k equals 1 through 7.

Cray Research Proprietary 7-135

CPU Instructions

Execution Time

Description

7-136

CRAYY-MP COO System Programmer Reference Manual

The following execution times apply to instruction 176iOk:

• The instruction issues in 1 CP.
• The Vi register is ready in (VL)/2 + 26 CPs, if memory is available.
• Port A or port B is busy for (VL)/2 + 6 CPs.

The following execution times apply to instruction 1770jk:

• The instruction issues in 1 CP.
• The Vj register is ready in (VL)/2 + 3 CPs, if data is available.
• Port C is busy for (VL)/2 + 6 CPs.

The following execution times apply to instruction 176i1k:

• The instruction issues in 1 CP.
• The Vi register is ready in (VL)/2 + 30 CPs, if memory is available.
• The Vk register is ready in (VL)/2 + 3 CPs, if data is available.
• Port A or port B is busy for (VL)/2 + 10 CPs.
• Instruction 176i1k is busy (VL)/2 + 11 CPs.

The following execution times apply to instruction 1771jk:

• The instruction issues in 1 CPo

• The Vi and Vk registers are ready in (VL)/2 + 3 CPs, if data is
available.

• Port C is busy for (VL)/2 + 10 CPs.

• InstruCtion 1771jk is busy for (VL)/2 + 11 CPs.

Instructions 176 and 177 transfer blocks of data between V registers and
memory. Instruction 176 reads data from memory to elements of register
Vi. Instruction 177 writes data from elements of register Vj to memory.
The number of elements transferred is determined by the contents of the .
VL register.

Instructions 176iOk and 176iOO read words directly from memory and
enter them into the elements of the Vi register. AO contains the starting
32-bit memory address. This address is incremented by the contents of
the Ak register for each word transmitted. The contents of Ak can be

Cray Research Proprietary CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual CPU Instructions

VL Register

4 I

AO

100 I

CSM-0500-000

positive or negative, allowing both forward and backward streams of
references. If the k designator is 0, or if 1 replaces Ak in the operand
field of the instruction, the address is incremented by 1.

Instruction 176i1k gathers words from nonsequential memory locations
and enters them into sequential elements of the Vi register. The Vk and
AO registers generate the nonsequential memory addresses. The
low-order bits of each element of Vk contain a signed integer, which is
added to the contents of AO to obtain the 32-bit memory address.
Figure 7-16 shows an example of the 176ilk instruction.

In Figure 7-16, the VL register is set to 4, resulting in a transfer of 4
elements. Instruction 176i1k adds the contents of AO to the contents of
each element of register Vk to form a memory address. The contents of
that address are then read and entered into the Vi register. Because (AO)
= 100 and (element 0 of Vk) =4, the contents of address 104 are entered
.into element 0 of Vi. Similarly, (AO) + (element 1 of Vk) = 102, and the
contents of memory location 102 are entered into element 1 of Vi. This
process continues until the number of elements transferred equals the
(VL).

VkRegister Vi Register Memory
(Index) (Result) Contents/Address

4 600 ~ 200 100

2

7

400 300 101
I 250 f4- 400 102

0 200 500 103

600 104

700 105

100 106

250 107

350 108

A·9421

Figure 7-16. Gather Instruction Example

Instructions 1770jk and 1770jO write words from the elements of the Vj
register directly into memory. AO contains the starting memory address.
This address is incremented by the contents of the Ak register for each
word transmitted. The contents of Ak can be positive or negative
allowing both forward and backward streams of references. If the k
designator is 0, or if 1 replaces Ak in the result field of the instruction,
the address is incremented by 1.

Cray Research Proprietary 7-137

CPU Instructions

VL Register

4 I

AO

100 I

7-138

CRAYY-MP ceo System Programmer Reference Manual

Instruction 1771jk writes words from the elements of the Vj register to
nonsequential memory locations. The Vk and AO registers generate the
nonsequential memory addresses. The low-order bits of each element of
Vk contain a signed integer, which is added to the contents of AO to
generate a 32-bit memory address. Figure 7-17 shows an example of the
1771jk instruction.

Vk Register Vj Register Memory
(Index) (Store Data) Contents/Address

4 200 ~ 500 100

2

7

300 x 101
I 400 300 102 ~

0 500 x 103

200 104

x 105

x 106

400 107

x 110

A-9422

Figure 7-17. Scatter Instruction Example

In Figure 7-17, the VL register is set to 4, resulting in a transfer of 4
elements. Instruction 1771jk adds the contents of AO to the contents of
each element of register Vk to generate a memory address. The contents
of an element of Vj are then entered into the resulting memory address.
Because (AO) = 100 and (element 0 ofVk) = 4, the contents of element 0
of Vj are entered into memory address 104. Similarly, (AO) + (element 1
of Vk) = 102, and the contents of element 1 of Vj are entered into
memory location 102. This process continues until the number of
elements transferred equals the (VL).

Cray Research Proprietary CSM-QSOO-OOO

BIBLIOGRAPHY

CSM-0500-000

lOS Model E System Programmer Reference Manual, CRI publication number
CSM-1010-000.

This manual describes the architecture and functions of the Cray
Research input/output subsystem model E (lOS-E). Oetailed information
on the I/O processors, I/O buffers, I/O channels, channel adapters, cluster
and workstation interfaces, and the I/O instruction set is provided.

lOS Model E System Programmer Reference Manual Change Packet, CRI
publication number CSM-1010-001.

This change packet adds information about a function that controls the
Programmed Interrupt signals from the lOS to the mainframe.

SSD Solid-state Storage Device System Programmer Reference Manual, CRI
publication number CSM-1116-000.

This manual provides detailed information on the SSO product line and
its operation with the CRAY Y-MP, CRAY X-MP, and CRAY-1
computer systems.

60 Series Disk Systems Guide, CRI publication number COM-1124-000.

This manual contains information on the 00-60 and 00-61 disk drives,
the OE-60 disk enclosure, and the OCA-2 disk channel adapter.
Information on hardware, basic theory of operations, and flaw
management utilities is also included.

CRAY Y-MP C90 Site Planning Reference Manual, CRI publication number
HR-0402S.

This manual describes the physical requirements for the
CRAYY-MP C90 computer system. It defines customer and Cray
Research, Inc. site planning and preparation responsibilities. This
manual also describes the operational requirements, system
configurations, mainframe and cooling units specifications and

. requirements, and computer room floor specifications.

Cray Research Proprietary Bib-1

Bibliography

Bib-2

CRAYY-MP e90 System Programmer Reference Manual

CAL Assembler Version 2 Reference Manual, CRI publication number SR -2003.

This manual describes the CAL assembler.

Symbolic Machine Instructions Reference Manual, CRI publication number
SR-008S.

This manual describes the machine instructions used on CRAY Y-MP,
CRAY X-MP EA, CRAY X-MP, and CRAY-l systems.

CRAY Y-Mp, CRAY X-MP EA, CRAY X-MP, and CRAY-J CAL Assembler Version
.2 Ready Reference, CRI publication number SO-0083.

This publication is a quick reference booklet that contains both machine
instructions and CAL information.

CRAYY-Mp, CRAY X-MP EA, and CRAY X-MP Multitasking Programmer's
Manual, CRI publication number SR -0222.

This manual describes multitasking features and concepts, including
microtasking. It explains how to partition an executable program among
multiple processors on CRAY Y-MP and CRAY X-MP computer
systems running either COS or UNICOS.

CF77 Compiling System, Volume 4: Parallel Processing Guide, CRI publication
number SO-3074.

This user guide defines and describes the Autotasking feature of the
CF7? compiling system release 5.0. Autotasking is the automatic
distribution of loop iterations to multiple processors. This user guide is
one manual in a set describing the CF7? compiling system.

MWS-E User Guide, CRI publication number CDM-1123-0AO.

This user guide provides procedures and supporting descriptions used in
typical day-to-day operations of the MWS-E. Sections describe system
startup and shutdown, the mws maintenance login environment, the
online diagnostic directory structure, backup and restore procedures,
system security, WACS programs and procedures, the error logging
system, and the system clear utility.

Cray Research Proprietary CSM-0500-000

CRAY Y -MP C90 System Programmer Reference Mnaual Bibliography

CSM-0500-000

OWS-E Operator Workstation Operator ~ Guide, CRI publication number
SG-3078.

This user guide provides an overview of the hardware environment, the
directory structure, and OpenWindows. It tells you how to boot and
dump the IOS-E and the mainframe, how to shut down the OWS-E, how
to perform backups of the OWS-E software system, how to use the CPU
and network monitors, and how to respond to messages. It is to be used
in conjunction with documentation provided by Sun Microsystems, Inc.

MWS-E and OWS-E Hardware Maintenance Manual, CRI publication number
CMM-1122-0AO.

This manual describes Sun-based MWS-E and OWS-E workstations that
are part of CRAY Y-MP systems shipped with an lOS-E. This manual
provides information needed to install, configure, test, maintain, and
repair the MWS-E and OWS-E workstations.

Cray Research Proprietary Bib-3

INDEX

Boldface numbers refer to illustrations and charts. Individual instructions are listed in numeric order in
the table of contents and are not duplicated here.

Absolute memory address calculating, central
memory, 2-12

Access time, register, 2-18
Add functional unit

floating point, 4-45
scalar, 4-41
vector, 4-43

Adding coefficients, 4-58
Addition algorithm, floating point, 4-58--4-59
Address add (integer) functional unit. See also

Integer arithmetic
general, 4-40
instruction summary, 4-40, 7-12.

Address bit
functions, 2-12
memory error, 3-35

Address functional units. See also specific
functional units

A register functions, 4-5
general, 4-40, 4-42

Address multiply functional units. See also
Integer arithmetic

general, 4-41
(integer) instruction summary, 7-12

Address range checking, central memory,
2-13--2-14

Algorithms, floating point
addition, 4-58--4-59
division, 4-61--4-65
multiplication, 4-59--4-61

Approximation iterations, Newton's, 4-63
Approximating roots, Newton's method, 4-62
Architecture, central memory, 2·5
A registers. See also Absolute memory address

calculating, B registers, Instruction
descriptions, and Instruction formats

exchange package, 3-2
fields, 3-3, 3-11
functions, 4-3--4-5

CSM-0500-000

general, 4-1, 4-2, 4-3
instructions, 4-6--4-10
special values, 4·5
troubleshooting, 4-12--4·13

Arithmetic. See Floating-point or Integer
Autotasking, 5-1, 5-6--5-7

Backslash symbol, 7-73
Bank-busy conflict, 2-11
BDMmode

disable and enable instructions, 2.2, 2-3
general, 2-7, 3·3, 3-10

Biased and unbiased exponent ranges,
4-52--4-53

BiCMOS, 2-1
Bidirectional memory mode. See BDM
Bipolar metal oxide semiconductor chips. See

BiCMOS
Block diagrams

A and B register troubleshooting, 4·13
A register, 4·3
CRAYY-MP C90, 1·3
instruction fetch hardware, 3·16
instruction issue, 3-20
shared registers, 2-41
S and T register troubleshooting, 4-24
vector register troubleshooting, 4-37
V register, 4-26

Block
reference instruction port increment rules,

2-9
transfers, 2·2, 2-3

Block length (BL) register vmsp data transfer,
2-27

BPI interrupt flag, 3·3, 3·8
Branching to minimize fetches, 3-18--3-19

Ind-1

Index

B registers. See also Instruction formats and
Status registers

exchange package, 3-2
general, 4-1, 4-2, 4-10--4-11
instructions, 4-11
troubleshooting, 4-12--4-13

Broadcastconnnands, 6-2
Buffers, instruction, 3·16--3-17,3-20
Bypass

instruction timing, 4-6
path, 4-5

Cabinet
FBI, 1-6
IOS/SSD, 1-1

CAL syntax, special forms, 7-10
CA register, 2-21
Calculating

absolute memory address, 2-12
reciprocal approximation, 4-2

Central memory
address range checking, 2-13--2-14
architecture, 2-5
conflicts, and vector chaining, 4-28
as a functional unit, 4-39
index calculation, 4-2
logical organization, 2-4--2-11
mainframe, 1-2, 1-3
maximum data transfer rates, 2-18
memory instructions, 2-1--2-3
performance summary, 2-18

Chaining
general, 1-1,4-27
vector, 4-32--4-33

Channel. See also Maintenance channel
adapters, EIOP, 1-4
address register, 2-21
assignments, CPU 110, 2-19
control, msp, 2-26
control, LOSP, 2-20--2-21
control, vmsp, 2-26--2-27
errors, LOSP, 2-24-2-26
limit register, 2-21
maximum transfer rates, 2-19
programming, LOSP, 2-21--2-24
programming, vmsp, 2-27--2-28
status word (instruction 033) bit

assignments, 7-61
Check-bit generation, 2·16--2-17

Ind-2

CRAY Y-MP C90 System Programmer Reference Manual

Checkbyte, 2-15, 2-16
CIP register. See also Reservations and hold

conditions
instruction issue, 3-21
instruction issue sequence sunnnary, 3-28

CLN field, 2-30, 3-10
CL register, 2-21
Cluster number (CLN) field, 2-30,3-10
Clusters

interprocessor connnunication section,
2-30--2·31

110, 1-4, 1-5
C90 mode, 3·3, 3-10. See also Y-MP and C90

mode differences
Coefficients, adding, 4-58
Connnands

broadcast, 6-2
individual CPU, 6-2
system, 6-2

Compressed index example, instruction 175ij4,
7·133

Computation section
CPU, 1-2, 1·3
EIOP, 1-4

Conditions, exchange special case, 3-11, 3-12.
See also Hold issue conditions

Configuration
CRAY Y-MP C90 minimum, 1-4, 1·5
mainframe, 1-2--1-3

Conflict resolution, 2-8--2·11
Conflicts. See also Hold issue conditions

bank-busy, 2-11
exchange sequence execution, 3-12
instruction fetch timing, 3-19
1-parcel instruction holding 1 CP (CPn + 3),

3·24
2-parcel instruction holding 1 CP (CPn + 5),

3·25
3-parcel instruction holding 1 CP (CPn + 8),

3·27
section, 2-8--2-9, 2·11
shared paths access 2-37--2-38
simultaneous subsection access, 2-10,2·11
subsection, 2-9, 2·11
vector processing, 4-27--4-28
V register, 4-27, 4-28
write bank-busy, 2·11

Control section
CPU, 1-2, 1·3
EIOP, 1-4

CSM-OSOO-OOO

CRAY Y-MP C90 System Programmer Reference Manual Index

Control Subsystem Network, 1-7
Converting floating-point numbers to decimal,

4-52
CPU

block diagram, 1-3
computation section, 4-1--4-65
conflict resolution, 2-8--2-11
deadstart sequence, 3-12--3-14
functional units, 1-2, 1-3
individual commands, 6-2
instruction descriptions, 7-10--7-138
I/O channel assignments, 2-19
makeup, 1-2, 1-3
master clear signal, 3-12--3-13
memory paths, 2-4, 2-5
memory ports, 2-5--2-8, 2-6
memory references, 2-5
ports, 2-1
priority matrix, 2-10
shared resources, 2-1--2-41
S registers, 4-14
status read format (parcel 0),6-10
and system status read formats (parcels 1

through 3), 6-11
CPU instructions

descriptions, 7-10--7-138
formats, 7-2--7-5
monitor mode instructions, 7-10
notational conventions, 7-1
special CAL syntax forms, 7-10
special register values, 7-9
Y-MP and C90 mode differences, 7-6--7-9

CRAY Y-MP C90 overview, 1-1--1-7
Current instruction parcel register. See CIP

Data base address register. See DBA
Data flow, 4-1
Data format

floating-point, 4-51--4-52
integer, 4-49

Data limit address register. See DlA
Data transfer rates, maximum central memory,

2-18
DBA register. See also Absolute memory

address calculating
contents, 2-14
general, 2-13
memory instructions, 2-1

DCU overview, 1-6

CSM-0500-000

Deadlock flag. See DL
Deadstart sequence, 3-12--3-14
Diagrams. See Block diagrams
Disk controller unit. See DCU
Disk drive configuration, 1-2
Disk storage units. See DSUs
Division. See Reciprocal approximation
Division algorithm, floating-point, 4-61--4-65
Division, alternate method, 4-64--4-65
Division operation, integer. See Floating-point

division algorithm
DlA register, 2-13, 2-14
DL interrupt flag, 2-35, 3-3, 3-8
Documentation. See Publications
Double-precision numbers, 4-65
DSUs, 1-6
Dual functional units, 5-3

EEX interrupt flag, 3-3, 3-8
ElM flag, 2-29, 3-5
EIOPs, 1-4
Equalizing exponents, 4-58
Error detection and correction, central memory,

2-14--2-17
Errors, LOSP channel, 2-24--2-26
ESL

bit, 4-44
mode, 3-3, 3-10

Ethernet, 1-7
Exchange

initiation, 3-12
management, 3-14--3-15
package, 3-1--3-11
package format, 3-2, 3-3
sequence, 3-11--3-14
timing, 3-11

Exchange address register field. See XA
Exchange package fields

A register, 3-3, 3-11
cluster number, 3-3, 3-10
DBA register, 3-3, 3-4
DLA register, 3-3, 3-4--3-5
exchange address (XA) register, 3-3, 3-10
rnA register, 3-2,3-3
IlA register, 3-3, 3-4
interrupt flags, 3-3, 3-6--3-8
interrupt modes, 3-3, 3-5--3-6
modes, 3-3, 3-9,3-10
P register, 3-2, 3-3

Ind-3

Index

S register, 3·3, 3-11
status, 3·3, 3-9
vector length (VL) register, 3·3,3-10

Execution time, exchange sequence, 3-12. See
also specific instructions

Exit instructions, exchange sequence initiation
3-14

Exponents
equalizing, 4-58
matrix, 4·56
ranges, 4-52--4·53

Expression (exp), 7-11
External master clear sequence, LOSP channel

2-24

FEIs
configuration, 1-2
overview, 1-6

Fetch
operation, instruction, 3-17--3-19
sequence, instruction, 3-15--3-19
timing, 3-19

FEX interrupt mode, 3·3,3-5
Fiber-optic link, 1-6
Fields. See Exchange package fields
Fixed-point operations. See Integer arithmetic
Floating-point

addition algorithm, 4-58, 4-59
constants, 4-15
instructions, 4-2
multiplication algorithm, 4-59--4-61
numbers converted to decimal, 4-52

Floating-point add functional unit
instruction summary, 7-12
normalized floating-point numbers, 4-53
range errors, 4-54--4-55

Floating-point arithmetic
add functional unit range errors, 4-54--4-55
addition algorithm, 4-58, 4-59
data format, 4-51--4-52
decimal conversion, 4-52
division algorithm, 4-61--4-65
double-precision numbers, 4-65
exponent ranges, 4-52--4-53
multiplication algorithm, 4-59--4-61
multiply functional unit exponent matrix,

4-56

Ind-4

CRAY Y-MP C90 System Programmer Reference Manual

multiply functional unit range errors,
4-55--4-57

multiply partial-product sums pyramid, 4·60
normalized floating-point numbers, 4-53
reciprocal approximation functional unit

range errors, 4-57--4-58
Floating-point functional units

add functional unit, 4-45
general, 4-45
multiply functional unit, 4-46
reciprocal approximation functional unit,

4-46--4-47
vector/scalar operations, 4-28

Floating-point multiply functional unit. See also
Integer Arithmetic

24-bit integer multiply, 4-50
32-bit integer multiply, 4-50
exponent matrix, 4-56
instruction summary 7-12
normalized floating-point number, 4-53
range errors, 4·55 .

Floating-point reciprocal approximation
functional unit range errors, 4-57--4·58

Floating-point reciprocal functional unit
instruction summary, 7-12

FNX interrupt mode, 3-3, 3-6
FOL-3, 1-6
Formats, instruction

1-parcel with combined j and k fields,
7-3--7·4

1-parcel with discrete j and k fields,
7-2--7-3

2-parcel with combined i, j, k, and m fields,
7-4

3-parcel with combined m and n fields,
7-4--7-5

Fortran and vector processing, 4-25
FPE, 3-3, 3-7
FPS status field bit assignments, 3-3, 3-9
Front-end interfaces. See PEls
Full vector logical functional unit, 4-43--4-44
Functional unit. See also specific functional

units
general, 4-39--4-47
independence, 5-1,5-5
instruction characters, 7-11
instruction summary, 7-12
operation, 4-47--4-65
reservations, 3-29
time, 4-39

CSM-0500-o00

CRAY Y-MP C90 System Programmer Reference Manual Index

Functional units. See also specific functional
units

CPU, 1-2, 1·3
dual, 5-3

Gather instruction
example, 7·137
port increment rates, 2-9

Gather memory references, 2·2--2-3

Heat exchange unit (HEV), 1-2
Highest physical processor number. See PPNO
RIPPI channel, 1-4
RISP

central memory access, 2-20
channel control, 2-26
channels, 2-26
CPU I/O channel assignments, 2-19
minimum configuration, 1-5

Hold conditions, exchange sequence, 3-11, 3-12.
See also Hold issue conditions

Hold issue conditions, 3-29--3-30. See also
Instruction descriptions, Shared paths
access priority, and specific instructions

Hardware
instruction fetch, 3·16--3-17
instruction issue, 3-19--3-21

mAregister
contents, 2-14
field, 3-2

mAR
instruction buffers, 3-16--3-17
instruction fetch, 3-18

mp interrupt mode, 2-2, 2-3, 3-3, 3-6
ICM interrupt mode, 2-15, 3-3, 3-6
ICP interrupt flag, 2-36, 3·3, 3-8
IDL interrupt mode, 3-3, 3-6
IFP interrupt mode, 3-3,3-5
IIO interrupt mode, 2-29, 3-3, 3-6
lIP interrupt mode, 2-36, 3-3,3-6
II register, 3-31, 4-15
lLA register

contents, 2-14
field, 3-4

IMC interrupt mode, 3·3, 3-6
1M! interrupt mode, 3-3, 3-6

CSM-0500-000

Index
calculation, 4-2
generation, 4-5
registers, 4-3

Individual
CPU commands, 6-2
CPU status read format (parcel 0),6·10
and system CPU status read formats (parcels

1 through 3), 6-11
Instruction. See also CPU instructions and

Instructions
buffers, 1-3,3-16--3-17,3-20
fetch operation, 3-17--3-19
fetch sequence, 3-15--3-19
fetch timing, 3-19
flow through issue registers (CP), 3·23
flow through issue registers (CPn + 1),3-23
flow through issue registers (CPn + 2), 3·24
flow through issue registers (CPn + 4), 3-25
flow through issue registers (CPn + 6), 3·26
flow through issue registers (CPn + 7),3.26
flow through issue registers (CPn + 9), 3·28
formats, 7-2--7·5
issue, 3-19--3-30
issue sequence summary, 3-28
1-parcel, holding 1 CP for conflict

(CPn + 3), 3-24
1-parcel issue, 3-21
2-parcel issue, 3-22
3-parcel issue, 3-22
2- parcel, holding 1 CP for conflict

(CPn + 5),3-25
3-parcel, holding 1 CP for conflict

(CPn + 8),3-27
reservations and hold issue conditions

3-29--3-30
timing for bypass operation, 4-6

Instruction base address register. See rnA
Instruction limit address. See lLA
Instructions. See also Instruction, CPU

instructions, and Pipelining and
segmentation

floating-point, 4-2
functional unit characters, 7-11
functional unit summary, 7-12
gather example, 7-137
interprocessor interrupt, 2-35
mode letter codes, 7-12
monitor mode, CPU, 7-10
program exit, 3-14

Ind-5

Index

programmable clock, 3·31
reciprocal approximation, 4-2
scatter example, 7·138
set, 4-2
vector mask, 4·34
vmsp channel, 2·27--2-28

Integer arithmetic
address functional units, 4-40
general, 4-1--4-2, 4-48--4-51

Integer data formats, 4·49
Integer division operation. See Floating-point

division algorithm.
Inter-CPU conflicts. See Conflict resolution
Interfaces, network and front-end, 1-6
Intermediate operating registers, 4-2. See also

specific registers
Internal representation of a floating-point

number, 4-52
Interprocessor

communication section, 1-2, 1·3,2-29--2-36
interrupt instructions, 2-35

Interrupt
flags, 3·3, 3-6--3·8
modes, 3·3, 3·5--3·6
modes field, 3-5

Interrupt-on-breakpoint. See mp
Interrupt-on-operand range error. See lOR
Interrupts. See also Programmable clock

exchange sequence initiation, 3-14
interprocessor, 2-35

Intra-CPU conflicts. See Conflict resolution
I/O channel assignments, 2-19
101 interrupt flag, 2-22, 2-29,3·3,3·8
I/O interrupts, 2-29. See also 101
lOR interrupt mode. See also Address range

checking
DIA register, 2-13
exchange package format, 3·3
general, 3-5
set and clear, 2·2, 2-3

lOR mode, 3-4
10S-E, 1-1
I/O section

CPU ports, 2-1
EIOP, 1-4
mainframe, 1-2, 1·3, 2-19--2-29

lOS system configuration, 1-4
I/O subsystem overview, 1-4
IPC interrupt mode, 3·3, 3-6, 3-31--3-32

Ind-6

CRAY Y-MP C90 System Programmer Reference Manual

IPR interrupt mode, 3·3, 3·5
IPR mode, 3-4
IRP interrupt mode, 3·3, 3-5
IRT interrupt mode, 3·3, 3·6
IUM interrupt mode, 2-15, 3·3, 3·5

LIP registers
instruction issue, 3-21
instruction issue sequence summary, 3·28

Logical functional unit, scalar, 4-41
Logical operations, functional unit, 4-47--4-48
Logical organization

conflict resolution, 2-8--2-11
memory paths, 2-4--2·5
memory ports, 2·5--2-8

Logic, functional unit, 4-39
Loopback operation, 6-3
Loop-control variable, 4-27
LOSP

central memory access, 2-20
CPU block diagram, 1·3
CPU I/O channel assignments,· 2·19
initiation sequence, 2-23
minimum configuration, 1-5

LOSP channel. See also I/O interrupts
auxiliary operations, 2-23
control sequence, 2-20--2-21
control signals, 2-20, 2-21
error flag settings, 2·25
errors, 2-24--2-26
external master clear sequence, 2-24
instructions, 2-22
I/O interrupts, 2-29
maintenance channel, 6-1
programming, 2-21--2-24
registers, 2-21

Lower instruction parcel register. See LIP

Mainframe
channel~es,2-19
deadstart sequence, 3-12--3-14
general, 1-1
interprocessor communication section, 2-29

--2-36
I/O section, 2-19--2-29
overview, 1-2--1-3
shared resources, 1-2, 1-3

CSM-0500-000

CRAY Y-MP C90 System Programmer Reference Manual Index

Maintenance channel
CPU deadstart, 3-13
data formats, 6-8--6-11
diagnostic monitor, 6-11
functions, 6-1, 6-3--6·7
individual status read format (parcel 0),

6·10
MWS write data format, 6·8
system and individual status read formats

(parcels 1 through 3), 6·ll
system status read format, 6·9
theory of operation, 6-1--6-3

Maintenance, hardware, using MWS-E, 1-7
Maintenance modes register bits, 7·96
Maintenance workstation. See MWS-E
Mass storage devices. See Disk drives, Tape

drives, and FEIs
Master clear signal, CPU, 3-12--3-13
Maximum data transfer rates, central memory

2-18
MCU interrupt flag, 3·3, 3·8
MEC interrupt flag, 2-15, 3·3, 3·8
ME maintenance diagnostic software release,

1-6
Memory

addressing, central memory, 2-12
error address bits, 3-35
instructions, 2-2--2-3, 2-12
paths, 2-4--2-5

Memory conflicts. See also Conflict
resolution

exchange sequence execution, 3-12
general, 2·ll
instruction fetch timing, 3-19

Memory ports
A, B, and C, 2-7--2-8
allocation of references, 2·6
D,2-8
overview, 2-5--2-7

Memory references. See also Exchange
mechanism, Instruction fetch sequence,
and I/O section

indirect, 2-1
simultaneous, 2-5
out-of-sequence, 2-7
overlapping, 2-5
synchronizing, 2-7

Memory (scalar) functional unit, instruction
summary, 7-12

CSM-QSOO-QOO

Memory (vector) functional unit, instruction
summary, 7-12

Memory section
EIOP, 1-4
paths, 2-4, 2-5

MEU interrupt flag, 2-15,3·3,3-7
MGS, 1-2
Microtasking, 5-5--5-6
MIl interrupt flag, 3-3, 3·8
MM mode, 3·3, 3·10
Mode

field, 3·3, 3-9, 3·10
instruction letter codes, 7-12

Monitor
mode instructions, 7-10
performance, 3·37--3-39

Monitoring using MWS-E, 1-7
Multiplication algorithm, 4-59--4-61
Multiply

24-bit, 4-50
32-bit, 4-50
functional unit, floating-point, 4-46

Multiprocessing, 1-1, 5-1, 5-5--5-6
Multitasking, 1-1,5-1,5-5,5-6
MWS

maintenance channel, 6-1--6-11
write data format, 6·8

MWS-E overview, 1-6--1-7

Network interfaces, overview, 1-6
Newton's method for approximating roots,

4-61--4-63
NEX interrupt flag, 3·3, 3·8
NIP register

instruction issue, 3-21
instruction issue sequence summary, 3·28

Normalized floating-point numbers, 4-53
Normalizing results, 4-58--4-59
Notational conventions for instructions, 7-1

Open~undows, 1-6
Operating modes, 3-3, 3-9, 3·10
Operating registers, 1-2, 1-3, 4-2--4-37
Operator workstation. See OWS
Optional IOS-E, 1-4
ORE interrupt flag, 2-13, 3·3, 3·7
Out-of-sequence memory references, 2-7
Overhead, multitasking, 5-6

Ind-7

Index

OWS-E
overview, 1-6--1-7
software release, 1-6

Parallel
processing features, 5-1--5-7
vector operations, 4-27

Parameters, initial, 3-2
Parity error bits, register, 3-36
Partial-product sums pyramid, 4·60
Path

access priority, 2-37--2-41
bypass, 4-5--4·6
input to S registers, 4-16

PCI
interrupt flag, 3-3, 3-8
request, 3-31--3-32

Performance
central memory, 2-18
degradation, 2-18--2-19
events, selecting and reading, 3-38--

3-39
monitor, 3-37--3-39

Pipelining and segmentation
general, 5-1, 5-2--5-4
scalar example, 5-2
vector example, 5-4

Pipes
allocation of memory references, 2-6
CPU, 2-5, 2-6, 2-7
I/O section, 2-19
vector functional units, 4-42
V register, 4-25

PM counters
reading, 3-38
testing, 3-39

PM maintenance mode, 3-39
Population/parity /leading zero functional unit

scalar, 4-42
vector, 4-44--4-45

Port
designator bits, 3-33--3-34
priority rules, 2-8--2-9
reservations, 3-29

Ports. See also Conflict resolution
~ B, and C, 2-7--2-8
CPU, 2-1
D,2-8
I/O section, 2-19

Ind-8

CRAY Y-MP C90 System Programmer Reference Manual

PPNO, 2-38
P register

exchange sequence, 3-17
field, 3-2
general, 3-1
IBAR address formats, 3·17
instruction issue, 3-20
instruction issue sequence summary, 3·28

PRE interrupt flag, 3·3, 3-4, 3·8
Primary operating registers, 4-2. See also

specific registers
Priority

matrix, CPU, 2·10
rules, port, 2-8--2-9

Processor number field, 3·3
Program code retrieval. See Instruction fetch

operation
Program exit instructions, 3-14
Programmable clock, 3-30--3-32, 4-15
Programming, LOSP channel, 2-21--2-24
PS status field bit assignments, 3-3, 3-9
Publications, MWS-E/OWS-E, 1-7

Quotient of floating-point numbers, 4·61

RAM,2-1
Range errors. See Floating-point arithmetic
RCU, 1-2
Read mode bits, 3-33--3·34
Read operations, 6-9
Read references. See Exchange package
Real-time clock. See RTC
Reciprocal approximation, 4-2
Reciprocal approximation functional unit

floating-point range errors, 4-54
general, 4-46--4-47
normalized floating-point numbers, 4-53

Reduced instruction set computer architecture,
1-6

Registers. See also specific registers and Shared
paths access priority

CPU block diagram, 1·3
CPU operating, 1-2, 1·3
exchange package format, 3·3
interprocessor communication section

cluster, 2-30--2·31
LOSP channel, 2-21
operating, 4-2--4-38

CSM-0500-o00

CRAY Y-MP C90 System Programmer Reference Manual Index

parity error bits, 3-36
reservations, 3-29
semaphore, 2-31, 2-32--2-34
shared, 2-31--2-32
special values, 7-9

Remote support using MWS-E, 1-7
Reservations. See Hold issue conditions
RISC architecture, 1-6
RPE,3-35
RPE interrupt flag, 3-3, 3-7
RTC

determining run time, 2-37
general. 2-36--2-37, 4-15
instructions, 2-36
mainframe, 1-2, 1-3
troubleshooting, 2-39--2-41

RTI interrupt flag, 3-3, 3-8
Run time instruction sequence, 2-37

SB as sign bit, 7-75
SBCDBD, 2-14, 2-15, 3-34
SB registers, 2-30, 2-31--2-32, 3-2
Scalar. See also Integer arithmetic

add functional unit, 4-41
add functional unit instruction summary

7-12
data, 4-1
functional units, general, 4-40
logical functional unit, 4-41
memory references, 2-2, 2-3
merge operation, 4-48
operations, floating-point arithmetic,

4-45
population/parity /leading zero functional

unit, 4-42, 7-12
processing, 1-1
segmentation and pipelining example, 5-2
shift functional unit, 4-41, 7-12

Scalar instructions hold issue conditions, 3-30.
See also Floating-point arithmetic

Scalar logical functional unit instruction
summary, 7-12. See also Logical
operations

Scatter
instruction example, 7-138
instruction port increment rules, 2-9
memory references, 2-2, 2-3

SECDED, 2-26
Second vector logical functional unit, 4-44, 7-12

CSM-QSOO-OOO

Section conflict, 2-8--2-9, 2-11
Segmentation. See also Pipelining and

segmentation
functional unit, 4-39
vector precessing, 4-27

Self-modifying code, 3-19
Semaphore registers, 2-31, 2-32--2-34. See

also SM
Shared path reservations and hold issue

conditions, 3-29
Shared paths access priority. See also hold

issue conditions for specific instructions
arbitration scheme, 2-38
general, 2-37--2-39
shared registers block diagram, 2-41

Shared register request signal. See SR
request signal

Shared registers. See also Shared paths access
priority and Status registers

instructions, 2-32
interprocessor communication section,

2-31--2-32
troubleshooting, 2-39--2-41

Shared resources
CPU, 2-1--2-41
mainframe, 1-2, 1-3

Shift, functional unit
scalar, 4-41
vector, 4-43

SIB flag
general, 2-22
I/O interrupts, 2-29

Signals, LOSP control, 2-20--2-21
Simultaneous subsection access conflict, 2-10,

2-11
SM register

clusters, 2-30, 2-31
CPU synchronization example, 2-34
exchange package, 3-2
general, 4-15
instructions, 2-33
relation to S register bits, 2-33

Special CAL syntax forms, 7-10
Special case conditions, exchange sequence,

3-12. See also specific instructions
Special cases. See specific instructions
Special register values, 7-9
S registers. See also Address range checking,

Instruction descriptions, Instruction
formats, Scalar functional units, and

Ind-9

Index

T registers
block diagram, 4-14
exchange package, 3-2
fields, 3-3, 3-11
functions, 4-14--4-15
general, 4-1, 4-2, 4-14
instructions, 4-16--4-22
special values, 4-15--4-16
troubleshooting, 4-23--4-24

SR request signal, 2-37
SSD-E

general, 1-1
overview, 1-4

Status
bit assignments, 3-3, 3-9
field, 3-9
read data, 6-9

Status registers
data fields, 3-32
organization, 3-33

Status word, vmsp channel, 2-28
Storage. See SSD-E
ST registers

cl~ters, 2-30
exchange package, 3-2
general, 2-31--2-32, 4-15

Stride
memory references, 2-2, 2-3
reference instruction port increment rules,

2-9
Subsection conflict, 2-9, 2-11
SunOS 4.1.1 operating system, 1-6--1-7
Sun 4/370 SPARCstation, 1-6
Support equipment, 1-2
Swapping. See Exchange sequence
Synchronizing memory references, 2-2, 2-3
Syndrome code, 2-15
Syntax. See CAL
System and individual CPU status read formats

(parcels 1 through 3),6-11
System commands, 6-2
System diagram, 1-2
System status read format (parcel 0), 6-9

Tape drives, configuration, 1-2
'. Timing

instruction fetch, 3-19
instruction, for bypass, 4·6

Ind-10

CRAY Y-MP C90 System Programmer Reference Manual

Transfer rates
maximum central memory data, 2-18
maximum channel, 2-19

T registers. See also Instruction formats
exchange package, 3-2
general, 4-1, 4-2, 4-22
instructions, 4·23
troubleshooting, 4-23--4-24

Troubleshooting
A and B register block diagram, 4-13
Diagnostic monitor, 6-11
RTC, 2-39--2·41
shared register, 2-39--2-41
V register, 4-35--4-37

Unbiased exponent ranges, 4-53
UNIX,1-7
Upgrades using the OWS-E, 1-7

Vector. See also Instruction formats,
Instruction descriptions, Pipelining and
segmentation, and V registers

block diagram, 4-37
chaining, 4-32--4·33
control registers, 4-33--4-35
data, 4-1
left double shift, first element, (VL) > 1

7·113
left double shift, last element, 7·114
left double shift, second element, (VL) > 2

7·113
mask bits convention, 7-1
mask instructions, 4-34
merge operation, 4-48
operations, floating-point arithmetic, 4-45
processing, 1-1,4-25--4-27, 5-1
registers troubleshooting, 4-35
right double shift, first element, 7-115
right double shift, second element (VL) > 1

7·115
right double shift, last operation, 7-116
segmentation and pipelining example, 5-4
word shift, 7-117

Vector functional units. See also Integer
arithmetic

add, 4-43
add, instruction summary, 7-12
general, 4-42

CSM-0500-o00

CRAY Y-MP C90 System Programmer Reference Manual Index

full vector logical, 4-43--
4-44

logical instruction summary, 7-12
population/parity instruction summary, 7-12
population/parity /leading zero, 4-44--4-45
second vector logical, 4-44
shift, 4-43
shift instruction summary, 7-12

Vector instructions. See also Floating-point
arithmetic

general, 4-28, 4.29--4.32,4-45, 5-2
hold issue conditions, 3-30

Vector length register. See VL
Vector stride instructions, performance

degradation, 2-18--2-19
vmsp

central memory access, 2-20
CPU block diagram, 1·3
CPU I/O channel assignments, 2·19
data transfer, 2-20
minimum configuration, 1·5

vmsP channel
initiation sequence, 2-28
instructions, 2·27--2-28
I/O interrupts, 2-29
programming, 2-27--2-28
status word, 2·28

VL registers
and A register functions, 4-4
field, 3-10
general, 4-33

VME bus, 1-6
VM registers

exchange package, 3-2
general, 4-15, 4-33--4-34

VNU status field bit assignments, 3·3, 3·9
V registers. See also Vector, Status registers

block diagram, 4·26
exchange package, 3-2
functional unit use, 4-45
functions, 4-27--4-28
general, 4-1,4-2, 4-25
instructions, 4-28, 4·29, 4·32
troubleshooting, 4-35--4-37
vector processing, 4-25--4·27

CSM-oSOO-oOO

Write
bank-busy conflict, 2·11
hang, 6-3
operations, 6-9

Write references. See Exchange sequence
WS status field bit assignments, 3·3, 3·9

XA
register field, 3·3, 3-10
registers and A register functions, 4-4

Y-MP and C90 mode differences, 7·6--7·9. See
also e90 mode

Ind-11

Reader Comment Form

Title: CRAY Y -MP C90 System Programmer
Reference Manual

Number: CSM-OSOO-OOO

Your feedback on this publication will help us provide better documentation in the future. Please take
a moment to answer the few questions below.

For what purpose did you primarily use this manual?

___ Troubleshooting
___ Tutorial or introduction
___ .Reference information

Classroom use ---___ Other - please explain ________________________ _

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria and
explain your ratings:
__ ~A~mcy ____________________________________ _

___ Org~tion ____________________________________ _

__ ~Readabiliry __ __

___ .Physical qualities (binding, printing, page layout) _____________ __

___ ~Amount of diagrams and photos ____________________________ _

____ Quality of diagrams and photos _________________________ _

Completeness (Check one)
___ Too much information ____________________________ _

___ Too little information ____________________________ _

___ .Just the right amount of information

Your comments help Hardware Publications and Training improve the qualiry and usefulness of your
publications. Please use the space provided below to share your comments with us. When possible,
please give specific page and paragraph references. We will respond to your comments in writing
within 48 hours.

NAME ______________________ _

JOB TITLE, ______________ _
FIRM ________________________ _ .4--, L,A:-t'
ADDRESS ___________________ __

~ESEA~CH, INC.
CITY ________ STATE. ____ .ZIP ____ _
DATE~ ______________________ __

[or attach your business card]

,
,(")
,Si
,~
,~
Ie;)

':i!
'en
'r::
'Z ,m

-- ---------------------~

111111

BUSINESS REPLY CARD
FIRST ClASS PERMIT NO 61&4 ST. PAUL, MN

POSTAGE WlU. BE PAID BY ADDRESSEE

.. - _112 .La~J"'''.:-t'
~ESEA~CH, INC.

Attn: Hardware Publications and Training
770 Industrial Boulevard
Chippewa Falls, WI 54729

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

, -----.. ------------. ---. ---------------------------. ------------------------ -.

C!TADII:

Cray Research, Inc.
Hardware Publications and Training
770 Industrial Boulevard
Chippewa Falls, WI 54729

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-41
	2-42
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	B-01
	B-02
	B-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	replyA
	replyB
	xBack

