Information Manual microelectronics group
January 1998

Lucent Technologies

Bell Labs Innovations

DSP1611/17/18/27/28/29
Digital Signal Processor

For additional information, contact your Microelectronics Group Account Manager or the following:

INTERNET:
E-MAIL:

N. AMERICA:
ASIA PACIFIC:
CHINA:
JAPAN:

EUROPE:

http://www.lucent.com/micro

docmaster@micro.lucent.com

Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103

1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)

Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech IIl, Singapore 118256

Tel. (65) 778 8833, FAX (65) 777 7495

Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,

Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652

Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan

Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148

Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Bracknell),
FRANCE: (33) 1 41 45 77 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 2 6601 1800 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.

Copyright © 1998 Lucent Technologies Inc.

All Rights Reserved
MN97-030WDSP

A Word About Trademarks . . .

The following Lucent Technologies Inc. trademarks are used in this manual:

Tapdance® FlashDSP®

The following trademarks, owned by entities other than Lucent Technologies Inc., are used in this manual:

IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Intel is a registered trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

Tlis a registered trademark of Texas Instruments, Inc.

UNIX is a registered trademark licensed exclusively through X/Open Company Ltd.
X-Windows is a trademark of Massachusetts Institute of Technology.

Lucent Technologies Inc.

Foreword

This manual contains detailed information on the design and application of the DSP1611/17/18/27/28/29 Digital
Signal Processor family, which includes the FlashDSP®1618, FlashDSP 1627, FlashDSP 1628, and

FlashDSP 1629 development devices. The DSP1611-ST, DSP1618-ST, DSP1617-ST, DSP1627-ST,
DSP1628-ST, and DSP1629-ST support software libraries, the FlashDSP1600-HDS Development System, and
numerous DSP1611/17/18/27/28/29-specific hardware support tools are also available to aid in developing soft-
ware and integrating the devices into systems.

Additional information on the digital signal processor product line is available in the form of manuals, data sheets,
and application notes.

Conventions Used in this Manual

In general, all registers writable or readable by DSP instructions are lower case. Device flags, 1/0 pins, and nonpro-
gram-accessible registers are generally upper case. For clarity, register names and DSP instructions are printed in
boldface when used in written descriptions. Variable names that are to be replaced by specific names are itali-
cized, such as filename. Instruction set notation conventions are defined in Chapter 4.

Lucent Technologies Inc. iii

I

1

N

w

DSP1611/17/18/27/28/29 Digital Signal Processor

INFORMATION MANUAL

CONTENTS
[geTo [0 ox 1o] o IR OO P P PPPPPOPPPR 1-1
R 1= 1= o= B LT Yol 1o] o [PPSO PRRRRNE 1-2
O O Y (o] 1 (=Tt (D = PP PP PP PP P PPPPPPP 1-2
L1.1.2 INSEIUCTION SO ..ottt ettt et e s e st et e s as e e e s nb e e e e s annes 1-3
2 1Y/ o1 Tor= U AN o] o] [Tor= 1 o] o - OO PRRTRNE 1-3
G I AN oo [ToF=Lu o] IS 0T o] o o] o PO PRRTRNt 1-4
1.3.1 SUPPOrt SOFIWAIE LIDIAIY ...ocoiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e s 1-4
1.3.2 Hardware DevelopmeENt SYSEMuiiiiiiiiiiiiiiiee e ettt ee e e st e e e st e e ae e s s snnsbbeeeeaeessannes 1-4
1.4 ManUAl OrQaniZALtIONccuvvvieiiie e sttt e e e et e e e e e st e e e e e e s tbe et eeeeeaaassbeaeesaastbeaeeeaeeaaseeeeeeesannnne 1-6
1.4.1 Applicable DOCUMENTALIONccociiiiiiiiiie ettt e et e e e s e e e e e s s s reeeee e s s nnnnees 1-7
HAIAWEAIE ATCRITECIUIE ...ttt a et e ettt a bt e e et e bt e e s bt e e e anneeeas 2-1
2.1 DeVice ArChItECIUIE OVEIVIEWcciiiiieiiiiiee ittt ettt ettt ettt ettt e s bbbt e e s b e e s nsbb e e e eeennneas 2-1
2.1.1 Harvard ArChILECIUIEooiiiiiieiiiiee ettt rr ekt e s e s e e e e e e 2-1
2.1.2 CONCUITENT OPEIALIONS ...uvvviiiiiieesiiititiiteeeesssittbeeeeeeesssabbreeeeeesssssaataesassstsseeaeeessanssnnneeaaessres 2-2
2.1.3 DEVICE AICHITECIUIE ..iiiiiiiieiitie ettt ettt e et e e abre e s e e e e 2-4
2.1.4 Memory Space and Bank SWItChINGccooiiiiiiiiiiiiiiiiiiiiee e 2-12
2.1.5 Internal INStruction PIPEIINEcoiiiiiiiiiiiiiie et a e 2-13
2.2 COre ArChitECIUIE OVEIVIEWeiiiiiiiie ettt ettt et e et et e st s b e e s sb e e e s nab e hee e e e 2-16
221 Data Arithmetic UNItoooiiiiieiiiee et 2-16
2.2.2 Y Space Address Arithmetic UNit (YAAU)oouiiiiieiiiiiiiiiice et sinraaee e e e 2-17
2.2.3 X Space Address Arithmetic UNit (XAAU)ouiiiiiiieiiiiiiiiee e eeiiee st ae e siianeeeeae s 2-18
2.2, 8 CACKNE it 2-18
2,25 CONMIOI ottt ettt 2-18
2.3 INEINAI MEIMOIIES ...ttt ettt e e bt e e s bt e ek e e s bt e e s sbe e e s eeenanneeeenan 2-19
2.4 External Memory INterface (EMI)coiiuuiiiiiie ettt et e e e st e e e e e e s e e e e 2-19
2.5 Bit Manipulation UNit (BIMU)......cccueiiiiiiiiiiiie ettt ettt e e e e e st ea e e e s ssieaa e s s ssnstbneaaaees s eeeeaaeens 2-20
2.6 Serial INpUt/OULPUL (STO) UNILS ..eiieiiiiiiiiiiiiee ettt e et e e e e e s e e e e e s e ntareeaeeeeea seeaaeeens 2-20
2.7 Parallel Input/Output (P1O) (DSPLEL7 ONIY)..cccueiiiiiiieeeeiiiiiiiiiiee ettt e et e e e e e e e s saabbreeeaaee s 2-21
2.8 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 ONIY) ..ccciiiiiiiiiiiiiee et 2-21
2.9 Bit INPUL/OULPUL (BIO) ..eiiiieiiiiiiiiiiee e ettt e e e s ettt e e e e s ettt e e e e e s s ettt e et e e e e s anteeeeeeessnbbbaee sabbaeeeeeeenas 2-22
2,00 JTAG ettt h e a e h e e e h bt e e e b et et e e e a et et e e b e e e e n e e e e e 2-22
2 R 11 0= PP PP PP PR TP PPPPPPPTN 2-22
2.12 Hardware Development System (HDS) MOGUIEccoiiiiiiiiiiiiiiiiee e 2-23
2.13 Clock Synthesis (DSP1627/28/29 ONIY) ...ccciiiiiiiiiiiiiiiiee ettt a e e s e s snebaneeee s 2-23
2.1 POWET MABNAGEMIENT ...uttttttttttuttttntneneeaeessessessasessssesssssssssssssssssssssssessesssseeeeeseeeseeaeeaeesasseeeeeeees nnnnnnnnnnnns 2-23
SOfWAIE AFCHIEECIUIE ...ttt ettt e e et e ettt e et e e e b e e s b e e e s s 3-1
3.1 Register View of the DSPL6LL/17/18/27I28129.......ccuueiiiiiiiiiiiiiiie et raeee e 3-1
3. 1.1 TYPES OF REGISIEIS oiiiiiiiiiiiiiiiiie ettt e e e e e s st ae e e e s bbb e eeeeesennsannee sennnees 3-1
3.1.2 Register Length Definitionooiiiiiiiiiiiieiiiiiiiii e e e e s eee e e e eanes 3-5
3.1.3 REQISIEr RESEI VAIUESviiiiiiiiee ittt e e e e e et e e e e e e s snbareees aees 3-6
0 I - Vo 1P PRRTN 3-7
3.2 Memory SPAce and AGArESSINGcceeiiiuuiiiiiiiee sttt e e e e e st e e e e e s s s s bre e e e e s s bb b eeeeaeessaanteeeenas 3-8
T2 R 0V =10 o] Y] o= Lo = PP PPPPPPPPPRN 3-8

Lucent Technologies Inc.

N e e e A

<

3.2.2 X-MEBMOTY SPACE ...uuuiuiiiiiiitiii ettt ettt et ettt ettt ettt et e e e eeee s 3-10

3.3 ArthmetiC @nd PrECISIONcoiiiiiiiiiii ettt e s e e e e e e e e 3-21
G 1 01 (=1 (1] 0] £ PPN 3-27
It R [011 (o Yo [U T o 1o H U PP PP PP PR PPP 3-27

R N | 01 (=1 ¢ B] o AT 10 o] PP PP PPPPPPPRN 3-29

3.4.3 OULPULS OF INEEITUPLS oiiiiiiiiiiiie e e ettt e et e e e e e s s bbb ee e s s e e e e e e e s snnbeeees nane 3-31

I A [01 (=T (] o1 @ o =T = 110 [P PRPP S PSPPPPPR 3-32

I N 1= o J D 1 T=T ol o] 1o o PP PP PPUPR 3-38

3.4.6 Powerdown with the AWAIT SEALEccoiiiiiiiiiiiie it 3-40

3.4.7 Interrupts in DSP16A-Compatible Mode (DSP1617 ONlY) ...cccoovvvvieeeiiiiiiiiiiiiieee e e e 3-42

3.4.8 Timing Examples, DSP16A-Compatible Mode (DSP1617 Only)cccccvvveeiieeeeenniiiiiinnnn. 3-44

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 ONly).......cccuuvviiiieiiiiiiiiie e iiiiiieniee e e 3-47
3.5.1 PLL CONLIOl SIGNAIS ..oiiiiiiiiiiieeei ittt e e e e e e e e st e e e e e s e b raeeaae e ae 3-48

3.5.2 PLL Programming EXamPIESccciiiiiiiiiiiieeie ittt s s e ee e s e e e annteneeeaa e 3-50

TR T I (=1 o TP PP P PP PPPPR 3-50

3.6 POWET MABNAGEMIENT L.ttttttttitiiittitietteaeeeeeeeeeeseeeseeeeeseeeeseeeeee e e e e e e e e e ettt ettt ettt eeeeeeeeeaaaaeaeaeaaaaaeeeees nnnnnnnaanan 3-52
3.6.1 powerc Control REGISEr BIScoicuviiiiiieiiiiiiiiiee ettt e e e e siieeee st e e e e e s snnbraeeaaeeeas 3-52

3.8.2 STOP PN ettt e et s 3-56

3.6.3 The plic Register Bits (DSP1627/28/29 ONIY) ...ovviiieiiiiiiiiiiiiiie et 3-56

3.6.4 AWAIT Bit Of the alf REQISIET ...iiiiiiiiiiiiiiie e eee s 3-56

3.6.5 Power Management SEQUENCINGueeiiieeuiiiiirirreeereeeesinitireeetaeessaanereeeeesssmnsssreeesaesssannes 3-57

3.6.6 Power Management EXAMPIESccuuviiiiiiiiiiiiiiiiiiiee et e e e e s e e e e e 3-58

O | 151 (U Tt 1o o BT =) A T PP PP PSP PPPPRPPI 4-1
o N o) 11T o PP PP PP PUPRTPPPPRN 4-2
o (0153 B o3 T g @3 Yol [T o] o P TSPTO 4-2
T 1Yo [o | (=TT g o I 1Y Lo T = PSP SRTS 4-3
4.3.1 Register INAIreCt AAArESSINGveiiieiiiiiiiiiiiiie ettt e e e s e e e e e e s s sabbrreeeaaee e 4-3

V0 T2] 1 a1 o To 101 o I 2Yo [0 | {11 [oo [PRRPPOPPPRRIN 4-5

4.3.3 DireCt Data AQAreSSINGcccuvviiiieeeeiiiiiiie e e e e ettt e e e e s s sttt e e e s s astreaessaasbbaeeeeeessannnraeeesees 4-7

N o (oo TS o] gl =T 1 OO RPT O 4-9
A5 INSITUCTION SEL...itiiieiitie ettt e et e e bbbt e e ettt e e e et et e e sb et e e et e e e e s e e e n bt e e e e nanreeens 4-11
451 CONrol INSIIUCHIONS ...ooiiiiiiiiiiiiei ettt e e sanes 4-12

4.5.2 CaChe INSIIUCHIONScoiiiiiiiiiiiii ettt et e e e e e s 4-14

4.5.3 Data MOVE INSIIUCHONSooiiiiiiiiiiiiiie ettt e 4-15

4.5.4 Special FUNCLON GIOUD ..iiiiiiiiiiiiee e esiiitiie et e e e s sttt e e e e e e s s sttt e e s s sttt e e e aaeeeeessnnnbsreeees 4-19

455 MURIPIY/ALU GIOUP eeviiiiiiiiiiiiiitie e st eet e e e ettt e e e e e e st ee e e e s s anstaaeeeaantbneeaeaeesaanstnnee sean 4-22

45,6 F3 ALU INSITUCHIONS ..eiiiiiiiiiiiiiee ettt bbbt e e b e s s 4-29

457 BMU INSITUCHIONS ..ttt e st e e b e s e s 4-30

4.5.8 Assembler AMDIGQUITIESicciiiiiiiie i e e 4-35

I 0o = Y ol 1 (=101 (D O P PSR OU PP PUPPRRPPPPN 5-1
5.1 Data ArithMetic UNIt......oooiiiiiiiiiieii ettt e e e e e e e e s 5-1
L0 I A [o o 1U c=3= U (o B @ Wi o] U £ P PPUPPUUPPPN 5-2

5.1.2 MUIIPIIEr FUNCLONS ..iiiiiiiiiiiiieiet ettt ettt e e e s e e s bbb e e e e e e s s annsbbreensnnnnes 5-2

B.L.3 AU et eh e e e e e e teen e e e aan 5-2

B5.1.4 ACCUMUIALOIS ...iiiitiiieiiitiee ettt ettt ettt et e e e st e e eh et e e an bt e e s bbe e e e anbre e eeeenans 5-3

LT IR S T O 11] 1 (=T = SO P PP PUTT R PRPTRI 5-4

5.1.6 DAU Pseudorandom Sequence Generator (PSG)cccuuveveveeeiiiiiiiineesiiniiiinieeeeeesessnnnseeees 5-7

L A @70 1 (o B =T 1] (=] PP PPN 5-9

5.2 X Address Arithmetic Unit (XAAU)ooiiiiiiiee ettt e et et e e e e s st bae e e e e e e s s e e e s 5-11
L R [o o 10 £=3R= 1 (o B @ Ui o] U] £ PP RPPR P OPPPPPR 5-11

Lucent Technologies Inc.

I [A

(o2}

~

5.2.2 X-Memory Space Segment SEIECLONcooiiiiiiiiiiieei et 5-11
5.2.3 REQISIEr DESCIIPLONS ...uuiitiiiiieeesiiitiiiit e e e e e ittt e e e e e e ettt e e e e e s st bbe e ea s s tbaeeeaaessaansbtaneeaaesees 5-12
5.3 Y Address Arithmetic Unit (YAAU) ...ttt e e rree e e e e e e e e e s ann e e e s 5-13
LR 0 A [o1 o 1U £=3R= 1 (o B @ Ui o] U £ PP RPPR R PSOPPPPPR 5-13
5.3.2 Y-MEIMOIY SPACE ...uuuuuuiuiiiuuiiiititieittiat bbbt e bbbttt e bbbt ettt et e e et e e e et e e e e aeeeeeeeeenann 5-14
5.3.3 REQISIEr DESCIIPLONS ...uuivviiiiieeeiiiitiiiet e e e e ettt e e e e e e st e e e e e s s sbbe et aa s s bbbeeeaaeesaaberaneeaaes bes 5-14
5.3.4 AJAresSiNg MOUEScccuviiiiiieeiiiiiiiiie e e sttt e e e e s s e e e e e e s bbb ee s s bbb e aaeeeaanstbareeaaaesbes 5-14
5.4 CAChe @nd CONIOL.......ooiiiiiii ittt et e e et e e e eeen e e e 5-17
B.A1 CACKNE it 5-17
B.4.2 CONIOI ottt b e s 5-19
[=] T UMY =T o] VA [0 (=T = To PO PPRRTNt 6-1
L R Y | B U g Tox 1o o OO PP OUPPPP 6-1
6.2 Programmable FEALUINES.c.uuiiiiiie e e i iitiiieee e e e e ettt ee e e e e et e e e e e e e st bb et eaeesaateeeaaeesaasbbaeeeaee eeeaaaeens 6-13
SR B ¥ aTox 1o o F= LN N 0 411 o OO PPPPT 6-14
6.3.1 Timing Action With Walit-StateSceeiiiieiiiiiiiiiiiee e eee s 6-15
6.4 TIMING EXAMPIESoeeiiiiiieeiiee ettt et e e e s st e e e e s s st e e e e e e s s nb b e e narrreeaeeenan 6-17
L A @1 (@ B 12111 o RO PRPP PR 6-17
6.4.2 WIite, Read, REAA, W = 0 .ouoiiiiiiiiiie ettt e e e ettt e e e e s e et e e e e ateeesabeeeseraaees 6-18
6.4.3 REA, WHIItE, WILE, W = 0 ooriiiiiiiiiiiee ettt ettt e et e e et e e e ee e et e e s et e e seaaeeeeabaaeaees 6-19
6.4.4 Read, Write, W = 0, COMPOUNd AJAIESS ...cuviviiiiieieeeiiiiiiieir e e et e e e e e sibbaeee e e e e e anee 6-20
6.4.5 REAA W =1, REAU W = 2 ittt e et e et e e e et r e st e e s et e e e eateeeeaes 6-21
B.4.6 WIIEE W = L oottt bttt e s b e b et e e n e e 6-22
6.4.7 Read, Read with Delayed ENADIEcoooiiiiiiiiiiiiie e 6-23
6.4.8 Write, Read, with Delayed ENaAbDIEcoooiiiiiiiiiiie e 6-24
6.5 BOoOt-Up from EXIEINAl ROMuiiiiiiiiiiiiiiiieee ettt ee et e e e e s ettt e e e e s s ntee e e e e e s s bt raeeeaaeesnaaeeeens 6-25
(SR ST \V (=10 (o] AR ST To [[T o [o =1 PP PP PP PPPP N 6-26
6.7 Downloading Code into External Program MEMOIYccuuuiiiiiieesiiiiiiiieee e e sitteeee e e e e s sseiinneeeeeeeeenns 6-28
LT AT L)@ U PP O PP PUPPRPP 7-1
% T S (@ @] o 1T - U1 T o ISR 7-2
7.1.1 ACHVE CIOCK GENEIALOT ...ciiiiiieiiiiiee ittt ettt et e e e e eeee e 7-2
4% N [o1 o 11 | AR Y= Tod 1o [PP RUT PR 7-4
4% TG B @ 1o U ST =Tox 1T o PSPPI 7-6
7.2 USEr-CONrOled FEALUINES ..ottt ettt e e e b e e s aneas 7-9
7.2 1 ThE SIOC REQISTEI ..iiiiiiiiiiiiiiiiiiiee ettt et e e e e e s e e e e e e s s tbe e e e e e s stbaaeeeeeessnssbnaeaaaeeas 7-9
A W To] o] o - Yot . @'o] o1 (o] PP PPPPSOPPRPRN 7-11
7.2.3 POWET MANAGEIMENT ...eeeiiiietiieittitteeeteeaeeeeeeeeeeeeeeeaeeeeseeeeseeeeeeeeeeeeeeeetteeaaeaaaaaaaaaaaaaeaaaaaaeeaaaaes 7-11
7.3 Serial 1/O Pin DESCHPLIONS . .uviiiiiie ittt ettt e e st e e e e e s s bbbt e e e e s s str e e e e e sassbbaeeaeees breeeeaeenas 7-12
A O To [T ol 41 (=] = (o] =SSO O PP PP OPPPPTOPPRN 7-13
7.5 Serial I/O Programming EXAMPIEccuiiiiiiiiii ittt e e e e e e e e e e e 7-14
T R o (oo | =10 (IS T=To 1 1= AP P PP PPPPPPPPPPRN 7-14
7.6 MultiprocessSOr MOUE DESCIIPLIONciiettiieiteee et eeiiitit e e e e e e s st ee e e e e e s s st ee e e e s bbb e eeeeaeeesannteeeeess 7-15
7.6.1 MUltiproCeSSOr MOOE OVEIVIEWueviiiiiiiieeeieiiiiitieeeeeeesssssbbaeeeeaeestbbaeeeeeeeesssnnsrbaeeeeaeeens 7-15
7.6.2 Detailed Multiprocessor Mode DESCHPLIONeeiiieeiiiiiiiiiiiieeeeeesiere e e e s s ssiiieereeeeesassneenes 7-17
7.6.3 Suggested Multiprocessor Configurationccccccooiiiuiiiiiiiees it 7-24
7.6.4 Multiprocessor Mode INItIaliZationooiiiiiiiiieeii e 7-25
T.7 SEHAl INTEITACE H2ottt et e et b e e e n e 7-26
T.7. 1 SIOZ FEAIUIESeeiiiiiiie ettt e e et ettt e e s s e ee e s s e et et e e e s s annnee naanne 7-26
7.7.2 Programmable FEALUIESciiiiiiiiiiiiiiee ettt e e e st ee s e e e e e s snabbeeeeeeenas 7-27
7.7.3 INStructions USIiNG the STO2cciiiiiiiiiiiie et e e e e e baa e aae s 7-27

Lucent Technologies Inc.

N e e e A

oo

10

11

Parallel 1/O (DSPLEL7 ONIY)..ccciiiiiiiiiiiiiie ettt e e e et et e e e e e e s s aab b e ee s s snb bbb e e eannsbbeeeeeeeensnnnnes 8-1
S0 R = (@ @] o 1T - U1 T o IR 8-2
8.1.1 ACHVE MOOE ..ottt ettt h e e e bt e e et e s b e e b e e e e aan 8-2
8.1.2 PIlO INtEracCeSS TIMING ..ooiuvviiiieeeeiiiiiiiieeeeessstitteeeeeessasttereetaeesaaatiraeessansbreeeeaesssansrreeesres 8-5
8.1.3 PASSIVE IMOUE ..otttk h et a e e bt e e 8-6
8.1.4 Peripheral Mode (HOSE INtEIMACE)eiiiiiiiiiiiiiiiiiiee et e e e e 8-9
8.2 Programmer INTEITACEceei ittt e e e e e ettt e e e e etbb e e e e e e e s s tber e e abreeneeeenas 8-14
S N o] (o Toal =T £ (=] ST 11 oo [P PPPRRR 8-16
8.2.2 LAENEREAUS ...eeiiiiiiiiitiie ettt 8-17
8.2.3 POWET MANAGEIMENT ...eeeiiiiieiieiieittteeteeaeeeeaeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeteeaeeeaaaaaaeaaaaaaaeaaaaaaaaeaaaaes 8-19
8.3 INtErrupts @nd the PO ...t e et e e e e e e e e e e e e a e b reeaaeenan 8-19
S (@ ST [F= | PSP PPPPT 8-21
8.4.1 PIO Pin MURIPIEXING oeiiiiiiiiiiiie e ettt ettt e e e e e s ee e s nbbb e e e e e e e s snsanneees nane 8-22
LTI =] (@ WoTo o] o F- 1o [q =1 411, [Lo [T OO RO PP 8-22
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 ONIY)..uuutiiiiiiiiiiiiiiiieiee e sesieee e eesiiveee e e e e sniieeens 9-1
L N R = o 11 @ o 1= = U1 1o [P PRR 9-2
9.11 INtEI MO, 16-Bit REAMouviiiieie ittt et e et e e et e e e e et et e e e e et s e e rebereserneerees 9-3
9.1.2 INEEI MO, 16-Bit WIILE .eeveiiiiieieeiie ettt e ettt e ettt e e et e e e e et et e e e ea s eesebneesernrerees 9-4
9.1.3 Motorola Mode, 16-Bit REAAcooivviiiiiiie ettt e e e e e et e e st e e s e e eees 9-5
9.14 Motorola Mode, 16-Bit WILEuuiiieee ettt e e e e e e e e e e s e e s et e e s e e eeens 9-6
9.1.5 B-BIt TrANSTEIS .ottt sb et e 9-7
9.1.6 AcCCESSING the PSTAT REGISIET .cciiiiiiiiiiie ettt ettt ee e e e e s snbbreee e e e e s 9-7
9.2 ProgrammeEr INTEITACEiiiei ittt s b e e e e e s et e e s essbb e e e e e e aasbbaenbbreeeeeeenan 9-8
LS 07 A o] o1 (o3 = (=T o 5 (=T g Y=] o PRSP PPRPR 9-8
9.2.2 POWET MANAGEIMENT ...ettiieieeiittttittetateeaaeeeeeeseseeeeeaeeesseeeeseeeaeeseeseeaeeeeaeeaaeaaaaeeaaaaaaseaaaaaaeaaeaaes 9-10
9.3 INtErruPtS @nd the PHIF ... e e e e e e e e e e e e st bbe e e e e e e abreeeeeeenas 9-10
9.4 PHIF Pin MURIPIEXING ..teeeteeeiiiiiie ettt e ettt e e e e s ettt e e e e e e s ante e e e e e e s snbbbaee nnbaeeeeeeenan 9-11
9.5 Overall FUNCHONAL TIMING c.oiiiiiiiiiiie ettt e e e s s s ee e e e e s s b e e e e s s snsbbreeeeaeesbbeeeeaeeess 9-12
2 1L I O o | O PP PO T PSP PUPPPP 10-1
10.1 BIO HaArdWare FUNCHON.ccoitiiiiiiiiee ittt ettt e bttt e e e s sn e nne e e s e 10-1
10.1.1 BIO CoNfIgured as INPULScccoiiiiiiiiiiiiiee sttt e e e e e a e e e s e e e e e e e e s nnnees 10-2
10.1.2 BIO Configured as OULPULScc.vviiiiiieiiiiiiiiiieeeeessiiiieeee e e s s siberereaeesstbreeeaaessannstsaeeaaesssannnes 10-2
10.1.3 PiN DESCIIPLONS .iieeiiiiiiiiiiiieee s i ettt e e e sttt et e e e et st e e e e e e s sab b b e e e e e esabbeeaeeeesassbaseaeaes breeeas 10-3
0 0 A = @ I o Y [0 1] o] 1=] o ST PPPPRP 10-4
10.2 SOFWAIE VIBW ...ttt ettt ettt ekt ekttt e e ekttt e ekt et et b e e e s aab e e e eeeennnbeeennnees 10-4
02 R o T= T |11 1= = PRSP 10-5
OB A = Vo PP 10-6
10.2.3 INSIIUCTIONS ..eeieiitiee ettt a ettt aa bt e e e bt e e aa e e s bt e e aabb e e e s aan snbeeeeanns 10-6
OB A e T 4 o] PRSP 10-6
THE JTAG TESE ACCESS POtttt ettt e et ehn e e s bt e e e e e e ab e e e nanreee s 11-1
11.1 Overview Of the JTAG AIrChILECIUIEc.uiiiiiiiie e s 11-1
11.2 Overview Of the JTAG INSIUCHIONScicuuiieiiiiie ettt e e 11-3
11.3 Elements Of the JTAG TEST LOGIC ..uuuuuiiiiiiie ittt e e sttt e e e e st e e e ettt aeeeeeeesssnnnbbeeessnnnnes 11-4
11.3.1 The TeSt ACCESS POIt (TAP) oottt e e e e s snbbaeee e e e e as 11-4
11.3.2 The TAP CONIOIETeeiiiiiii ittt e et e 11-5
11.3.3 The INStruction REGISIEI—JIRuuiiiiiiiiiiiiiiiie et te e e e e st e e et eeee e s s ssntbaeeaaaeesannnes 11-7
11.3.4 The Boundary-Scan RegiSter—JIBSRcuiiiiiiiiiiiiiiiiiin e 11-8
11.3.5 The Bypass ReQISIEI—JIBPRcciiiiiiiiiiiiiiiiee ettt ee e e e e e e s sabaaeeeaeeennn 11-16
11.3.6 The Device Identification RegIStEr—JIDRccccoiiiiiiiiiiiiiiiee e siiirreree e e e 11-16
11.3.7 The JTAG Data REQISIEI—JtA0 ...ccoiiiurrriiiiieeiiiiiiiiie e e ettt e e e e s e e steree e e e e s s neeeeees 11-19

Lucent Technologies Inc.

N e e e A

viii

11.3.8 The JTAG Control ReGISTEr—JCONccoiiiiiiiiiiiiiee ettt e e e e e e sbrree e e e e e e s enaee 11-19
11.3.9 The JTAG OUtPUL STAGE—JOUT ...oiiiiiiieiiiiiiiiiiiiie et e e e e e e e e e s reee e e e e e s snne 11-19

11.4 The JTAG INSIIUCHON SEL...cciiiiiiiiiiii ettt e et e e e st sebee e e e 11-19
11.4.1 The EXTEST INSIUCHONeiiiiiiiiiieiiiiie ittt et 11-19
11.4.2 The INTEST INSIFUCHION ...eiiiiiiiiieiiiie ettt ettt 11-19
11.4.3 The SAMPLE INSIFUCHIONeciiiiiiiiiiieiee ittt ettt e et e e eineeas 11-20
11.4.4 The BYPASS INSIIUCHION ...eoiiiiiiiiiiiiiiee ittt ettt et e e e e 11-20
11.4.5 The IDCODE INSIUCHONoiiiiiiiiiiiiiiie ittt e s 11-20

D2 01 1= O PP PP UUPPUPPPPPPPI 12-1
T12.1 HAPOWAIE VIBW ...eeiiitiiieiitie ettt ettt e ettt ookt e e ea b et e sk b et ettt e s abb e e e e e e nnbbeeennnees 12-1
12.2 Programmable Features and OPEratioN.........c...eeiiieeiiiiiiiiiiiiee ettt e e e s et e e e e e e s sbbreeeeaaeesannnes 12-2
12.2.1 timerc RegiSter ENCOING ...ocooiiiiiiiiiiiie e iiiiiiit ettt e e et e e e e e e s snnbbaeeeeeeenan 12-2
12.2.2 tIMEI0 REQISIET ..uitiiiiiiiiiiiiiiii ettt e e e s e e e e e s st e e e e e s s s bt be e e e s snsbbbeeeeeeeesnsbbreeaeeas 12-3
12.2.3 THE INC REQISTEI eiiiiiiiiiiiiiiiiiie ettt e e e e e e e s e e e e e e s st ae e e s s sbba e aeeeeeannttbeeeaaeeas 12-3
12.2.4 Initialization CONGItIONSoiiiiiiiiiieiiiiie et e st e e 12-3

12.3 Program EXAMPIE ...uueei ittt et e e e e et e e e e e e sttt e e e e e e a e e e e e et aa e et e e e teeeaeenannnre 12-4
2 S 1411 Vo OO PPRPTN 12-5
13 Bit Manipulation UNIt (BIMUD)uuiiiiieiiiiiiiet e sttt ee e e sttt e e e e e e s st eee e e e s s sabseeeaasssbbseeee sabbaeeeeeesssnsnnes 13-1
L1301 HAPOWANE VIBW ...eeiiitiiieiitiee ettt ettt ekttt e ekttt e 4kt e 4 e ettt e e b et ettt e s abb e e e e e e nnbbe e e s nnees 13-1
13,2 SOFWAIE VIBW ...ttt ettt ettt e ekttt ekttt e e ettt e ek bt et b et e s aab e e e e e e e nnbee e e s e 13-2
13.2.1 INSEIUCHION SEL ..ottt ekt e e et e s bt e e sbbe e e s sabeereeeeaaes 13-2
13.2.2 Shifting OPEIAtIONSevvvieiieeiiiiiiiiie ettt e e e e e st e e e e e s st e e e e e e s stteetaaeesassbbreeeaeee s baeeeas 13-2
13.2.3 NOIMANZALION ..ueiiiiiiiiei ettt ettt e e sttt e e st e e eee e e 13-4

R T A 1 = Tox 1 o] o P TP PP PPPP I PPPPRN 13-5

R JZ S I [4 T=1=T o i [o] o E TP OPPPP T PPPPRN 13-6
13.2.6 Shuffle ACCUMUIBLOIScc.uiiiiiiiiiie it e 13-8
13.2.7 INSIrUCHION ENCOUING .uttiiiiiieiiiiiiiiiie ettt et e e e e st e e e e srab e e e e e e s ssbbaeaaaeeeean seeas 13-9
13.2.8 SOftWAre EXAMPIEco.iiiiiiiiiee it e e e 13-10

14 Error Correction Coprocessor (DSPLE18/28 ONIY) ...uuuuiiieeiiiiiiiiiiiiieeee ettt aae e s s arieeeae e e e e s ssnbbaeeeeaeeesannnes 14-1
14,1 SYSTEM DESCIPLION .ueettieetiiittiiie et e e sttt e e e e e sttt e e e e e st bt e e eeeeeaastbaseeaaesaaassbaeeesaanstbeneeaas aeeeeeennnnnnes 14-1
14.2 Hardware AFCIILECIUIEcooiiiiieiiii ettt sttt b et bt e e s b e e e aane b e e e s 14-3
14.2.1 Branch MetriC UNILoooiiiiiieiiiie ittt e e e 14-3
A U] o o - T U o PSPPI 14-4
14.2.3 Traceback UNItcooiiiiiiiiiie et 14-4
i A [01 (=1 0] o) SS3= g Lo N = o OO RSP 14-5
14.2.5 TracebhaCK RAM ..ottt ettt b et e e e s e e e e e 14-5

14.3 DSP Decoding Operation SEOUENCEoiiuriiiiiieeeeeaiiitiieeeeeesssasitbeaereeeeesastseeeeseesssansrbseeeaaeessnnnes 14-6
14.4 Operation Of tNE ECCPuuiiiiiiiiiiiiiiie ettt e et e e e e e s s ee e s bbbeeeaeeeaaans seeeennnnnnes 14-7
14.5 SOfWAIE AFCHIEECIUME ... eeeieietie ettt e sttt e st e e e e e e snnne e e s annees 14-8
14.5.1 R-FIeld REQISIEIS .oiiiiiiiiiiiie ittt et e e e e et e e e e sttb e e e e e e snsbbbaeaaaeeesreeeas 14-8
14.5.2 ECCP Internal Memory-Mapped REQISIETSc.cceiiiiiiiiiiiiiieiee it e e siiiereree e e e sianes 14-10
14.5.3 ECCP INterrupts and FIAgSccocuvviiiiiieiiiiiiiiiiiiee ettt a e e e s aee e e e e e s nnee 14-17
14.5.4 TraCeDACK RAMooiiiiiii ettt e e e e 14-17

14.6 ECCP INSIIUCION TiMING . c.tiiiiiiieeeiiiiiiiiiiee et ee e e e e s st e e e e e e s s b ee e e e e s s sssbbeeeeesssnbbeeeeeeesseeeeaensns 14-19
14.6.1 RESEECCP INSITUCLION ..oiiiiiiiiiiiieiiie ettt e n e e 14-19
14.6.2 UpdateMLSE Instruction with SOft DECISIONcooviiiiiiiiiiiiie e 14-19
14.6.3 UpdateMLSE Instruction with Hard DECISIONccoouviiiiiiieeisiiiiiee e 14-21
14.6.4 UpdateConv Instruction with SOft DECISIONScccceiviiiiiiiiiiiie e 14-22
14.6.5 UpdateConv Instruction with Hard DECISIONccoviiiiuiiiiiiieeisiiiiiie e 14-23
14.6.6 TraceBaCK INSIIUCIONuuiiiiiiiiiie ittt e 14-23

Lucent Technologies Inc.

L] 15 INEEITACE GUILE ...t e ettt et et e e et e e et e et e et e et e et e et e e eeteeeeeeeeraeeerereeraeene sareeenaeeerereereneeseneens 15-1

I [

>

[os]

T 1o o] (o T4 1 4 F=Xi[o] o HR O TSP U PP PP PPP PP 15-1
15.2 SigNAI DESCIPLIONS ..iieiiiiiiiieiiie e e s ettt e e e e s sttt e e e e e s s beee e e e e s s stbaeeeaeeeeansstsseeeaassbbbeeaaaeesbneeeeeessnnnnes 15-5

15.2.1 SYSteM INTEITACE ..ooiiiiiiiiiiiiee et e e s e e et e e e e e s s eb b ee e e reeeas 15-5

15.2.2 External Memory INTEITACEc.vuiiiiiieiiiiiiiit ettt e e e e e e e e e e enneee s 15-6

15.2.3 Serial INtErface #1ooiiiiiiieiiii e e 15-7

15.2.4 PIO/PHIF or Serial Interface #2 and Control /O Interfaceccccooveeiiiiiiiiiiecenen, 15-9

15.2.5 CONtrol /O INTEITACEiciiiiiieiiiie et e e s 15-11

15.2.6 JTAG TS INTEITACEviiiiiiiiieei et 15-11
15.3 Resetting DSP161X and DSPLE2X DEVICES......uuuuiiiieeeiiiiiiiiiettaeesianiiineeteesesinnneeeseesssssnssssseeeeeess 15-12

15.3.1 POWEIUP RESEL ..ottt ettt ettt ettt e et e aeees 15-12

15.3.2 Using the TAP to Reset the TAP CONIOIIErcciviiiiiiiiiiiiiiiiee e 15-12

15.3.3 RSTB PN RESEL ...eiiiiiiiiieiitit ittt ettt et e et e et e et e e e ee s 15-13
15.4 Mask-Programmable OPLIONScooiiiiiiiiiiiee et e e ee e e e e e e e e s snnarrae s 15-14

15.4.1 INPUL ClOCK OPLIONS ...uiiiiiiiiiieeiiiiiit ittt e st e e e e e e s e e e s bbb e eaeeeeannstbneeaaes ee 15-14

15.4.2 ROM Security Options (DSP1617/18/27/28/29 ONIY)coccvviiiiiiieeiiiiiiiee e 15-14
15.5 Additional Electrical Characteristics and Requirements for Crystal...........cccoceeeiiiiiiiiiiiiniieeeeenn, 15-15
Ta1S U Toda[o] o I =3 oo o L1 o P RRPTOP A-1
A1l INStruction ENCOAING FOMMALSuuiiiiiiieiiiiiiiiiii e ettt s s ee e e e e e st e e s e b eaeeeeesstbeeees srnnbeeeeas A-1
F N S 1= (o Il BT Yol ¢ o) o] <SSP RPT O A-4
INSTFUCLION SET SUMMAIY ..eiiiiiiiiiiiiiit ettt et e e e e e e sttt e e e e e s sttt e et aeeesaas s bbeeeeaasbbbeeeae eeeeeeeessnsnseeeeas B-1
[0 o] (o N TP PPPPPPPPPTTR B-1
[0 0 (o = PR B-2
(1 OL@] N Tol (o (or= 111 =] (U] o o [P PPPRRN B-3
(o= 1| I L T PP PP PP OPPPPN B-4
[oF= 1 O P TSP P P OUPPPPPI B-5
Lo (o TN S (P TP PUP R OPPPPPRR B-6
=T [0 I ST P TP PPPPPPI B-7
LR |V G TP PP T UPPPPP B-8
TR R 11 L T OO PP P R PPUPPTPPPPIN B-10
R]| IR TSP TP R PP PPPPRN B-11
L2 L O OO P TP PU PP PTPPPUOPPR B-12
LR O TSSO PP PP PPPPTON B-13
D I = OO P TP PPPU PP PTPPPRPPPR B-14
A ST PO P PT PP PPPPPRPPPP B-15
[5OSR O PPPT PP PPURTPPPRN B-16
(O] ST =) T B TP P TP OPPPOPPPN B-17
OO\ N OO P PP PPPPRTPPPPIN B-18
1 (ol 1@ AV OO P PP PPPRRTPUPPIN B-19
L OO PP PP PPUPTPPPPN B-20
e A 10 L O PO PP PP PPPRTPPPPN B-22
e A N A L PO PP PP PP PPPPPTPPPRN B-22
L G O PP PP PPPPTPPPPN B-24
L Y 1| I O VPP P PP PPURPTPPPPN B-26
[R VA A e o) 5] TSP P P PPRP B-28
[R VA O B G o | i o | PP RSP PPRPP B-30
L R A A] o | i o | PP RSP PRP B-30
L= || OO PSP PP PPUPTPUPRN B-32
L L OO O PP PP PPURTPPPPN B-34
L A /|| PP PPPRPN B-36

Lucent Technologies Inc.

Information Manual

April 1998 DSP160X DIGITAL SIGNAL PROCESSOR
0 (A N I || RO B-38
0 L A A G o] [] PO USROS B-40
0 AD T 8BS OP AT e.tiiteieieieeie ettt ettt ettt ettt ettt et e et e te et ettt ete et e eteate e teeteete et etenteas B-42
0 AD T 8BS OP P areieiceeeeeeeee ettt ettt ettt et et ettt et e ettt e teeteete et eteeteas B-43
O AD = AS<, > OP IMLB ... B-44
LI @D =S SHIFT @S .ttt bbbttt bbbttt st B-46
0 AD = AS SHIFT GIM . .oiiiieecee ettt e e ettt et et e et et et eeteete et e et e et eat et e et e eaeens et e eteereeneeseireas B-47
O AD = AS SHIFT IIMLB .. .ot e e e e e et e e e e e e e e e et e s s e s e e e eeaeeeastn e eeeesbaaaaaeaees B-48
0 AD = EXP (BS) cuviveiteeeieeee ettt ettt e et et e ettt et et e te et et et et et et e ete e eaeteeteeteereetenteas B-49
0 AD = NOTM (BS, BIM) ...eiiiecee ettt ettt ettt et et e et e et et e et e eteeae e st et easess e st eeaeeteare e eteereereeeenreas B-50
0 AD = EXITACES (AS, AIM) ...veiviieieieete ettt ettt e et e ettt e e et e e teeae et e et e eteeae et e et e et et e et et eeaeent et e eteereentetentea B-51
0 AD = EXITACIZ (AS, AIM) ...veeiieieee ettt ettt e et e ettt e et e et e e e et e et e et e eae et e et e et et e et et e e aeent et e eteere et etenteas B-51
0 AD = EXITACES (AS, IMLB) ..e.veveeeieiteite ettt ettt et e et et e ettt e et e e te et et e e e e eteete et et easeseenteeaeatearaeseteereeneesenreas B-52
0 AD = EXITACLZ (AS, IMLB) ..e.veveeeieeeete ettt ettt et ettt et e et e et et et eeteete et et easens et e eaeatearaeseteereeneenseireas B-52
0 AD S NSEIT (AS, AIM)...eiiiiiiee ettt ettt ettt et e et et e et e et e e st et et eeaeeteert et et eat et et e e aeeraeeteeteereerteteeteas B-53
0 AD S NSEIT (AS, IMLB) ..cuviviieeeeieteete ettt ettt ettt et et ete et et e e teete e et et e eteeteeee et eteeaeesseeseste et etesteereeneenseeens B-54
0 AD T AS 1 BAT cueieiiteeie ettt ettt te ettt et ettt et eeteateere et eteeae et ete e eraeteeteeteereetetens B-55

Lucent Technologies Inc. X

I e e e e A Ay

DSP1611/17/18/27/28/29 Digital Signal Processor

INFORMATION MANUAL

FIGURES
Figure 1-1.In-Circuit Emulation with the FIashDSPL1600—JCS.........ccciiiiiiiiiiiiiiie e irirre e irrreeee s 1-5
FIgure 2-1.HArvard ArCRILECIUIEuuiiiiie ittt e e et e e e e e e s bbbt e e st e et e aeeeeeeeesannbreeeeas 2-1
Figure 2-2.Concurrent Operations in the DSPL1611/17/18/27/28/29ccuveiiiiiiiiiiiiiiiiiiiiiiieee e siireeeeaae s 2-2
Figure 2-3.DSP1611 BIOCK DIBQIaM.....cccciiiiiiiiiiiiieeesieiiiiiieee e e e e s sttt e aaae e s s s ssbba e eeeeesssbbseeaaaeessassteesssnnnnaneeeas 2-4
Figure 2-4.DSP1617 BIOCK DIBQIaMcccciiiiiiiiiiiiiee s ieiitiiieee e e e e s s sttt et e e e e s e s aba e eeeeessabbaeeaaaeesaassteeessnnnnrseeeas 2-5
Figure 2-5.DSP1618 BIOCK DIBQIaM.......ccciiiiiiiiiiiiee et ieiiiiiieee e e e e s sttt e e e e e e s s s bbeeeeeeeessabbaeeaaaesssassteeessnnnnsseeess 2-6
Figure 2-6.DSP1627 BIOCK DIBQIaM........coiiiiiiiiiiiiae e s ieiiiiiiieee e e e e s sttt e e e e e e e s s s bbr e eeeeesssbbaeeaaaeessassteeessnnnnrseeess 2-7
Figure 2-7.DSP1628 BIOCK DIBQIaM.......ccoiiiiiiiiiiiiae e s ieiiiiiiiee e e e e s sttt e e ae e e s s s bbb e eeeeeessstbaeeaaeeesaassieesssnnnnsseeess 2-8
Figure 2-8.DSP1629 BIOCK DIBQIaMccciiiiiiiiiiiiae et ittt e e e e s s sttt e e e e e s s s s bbaeeeeeeesssbbaeeaaaeessassteeessnnnnsseeeas 2-9
Figure 2-9.Hardware Block Diagram for Internal PipeliNgccuviiiiiiiiiiiiiiiiiiiicee e 2-13
Figure 2-10.DSP1600 COre FUNCHONS.cciititiiieteeeesieittitettaeeessasiatbeeeeeeessssattbaeeeeaeeastrseeeeeeessssansteseesssnnnes 2-16
Figure 3-1.Program-Accessible Registers, DSPL611/17/18/27/28/29.......cc.ccciiiiiiiiiiiiiiiiiiiiiiiiie e ssiiieeeeaaens 3-4
Figure 3-2.Data (Y) MEMOIY SPACEuuuiiieeiiiiiiieetiae et ettt e e e s s astbteeeeeeesssbbbeeeeeeessssabbeee s s s ssbbeeeaeeaseeeessssrsseenss 3-8
Figure 3-3.Instruction/Coefficient (X) MEMOIY SPACEuiiiiiiiiiiiiiiiiee sttt e e e s ee s e e e e e e s senbree sennee 3-10
Figure 3-4.p Register to Accumulator Bit Alignment, auC[L1:0] = 00cccuuriiiieeeeeiiiiiee e ee e e 3-23
Figure 3-5.p Register to Accumulator Bit Alignment, auc[L:0] = 01cooiiiiiiiiiereeeiiiiiee e 3-24
Figure 3-6.p Register to Accumulator Bit Alignment, auC[L:0] = 10ccciiiiriiiieieeeiiiiie e 3-25
Figure 3-7.Register to Accumulator Bit Alignment, aUC[L1:0] = 11cciiiiiiiiiiiiiiieniee e 3-26
FIQure 3-8.INtEITUPE OPEIALIONiiiiiiiie ettt e e e st et e e e st e e e e e e s s bbb e e e e e s s ssbbbeeeessebbseee sanbbaeeeeeeessnnnne 3-28
Figure 3-9.DSP16A-Compatible INterrupts (DSPL6L17 ONIY) ...uuuiiiiiieeiiiiiiiiiiiiie et e e sirreer e e e e s s enneeaees 3-30
Figure 3-10.Timing Diagram of @ Simple INtEITUPLeviiiiiiie e e e e e s enee 3-33
Figure 3-11.Interrupt DiSADIE LAENCY ...cccooiiiiiiiiiiiiie ettt e e et e e e e e e e e e e sreeeeeeesennnes 3-35
Figure 3-12.Interrupt ReqUESt CIrCUIT DIAQIaMiiiuviiiiiiiee ettt e s ssiae e e e e e e e st ee e s e e s s s snnstbeeeeeeessanne 3-36
Figure 3-13.Timing Diagram of CONCUITENt INTEITUPLSvviiiieiiiiiiiiiiiiiee et e e e e e s s s e eee e nnnnes 3-37
Figure 3-14.Timing Diagram Of USEI TIAPuuuuiiieeiiiiiiiiieteeeesiiitiiieeeeessstteeeeeeeesssssseeeesssstseeaaaeesaanses seeessnnnnes 3-39
Figure 3-15.Timing Diagram of Entering and Exiting Powerdown MOc.couvviiiieeee i iiiiiiiiiieneee e 3-40

Figure 3-16.Timing Sequence of Concurrent Internal and External Interrupts, DSP16A-Compatible Mode . 3-44
Figure 3-17.Timing Sequences of Concurrent Internal and External Interrupts, DSP16A Compatible Mode 3-45
Figure 3-18.Timing Sequence of Concurrent External Interrupts, DSP16A Compatible Mode...................... 3-46
Figure 3-19.CI0CK SOUrCe BIOCK DIAQIam........uuviiieeiiiiiiiiiiieeesasiiiieeteeessssiibtaeeeaesssansateeeessannsbbeeeeeessanseeessnnnnes 3-47
Figure 3-20.Power Management Using the powerc Register (DSP1611/17/18 ONlY)cccovvvvivviiieniieeeennnnn 3-54
Figure 3-21.Power Management Using the powerc Register (DSP1627/28/29 ONlY)ccoovvvvivieviieneennnn. 3-55
Figure 4-1.COmMPOUNT AGAIESSINGeviieeeiiiiitiiiittee e s ittt e ae e e e e s ee et aeessaatbbareeaeeeeessbeeeeeeeessaansteeeesssnnreeenss 4-6
Figure 4-2.DireCt Dat@ AQUIESSINGveeiieeiiiiiiiiiiee e e ettt ee e e e e st e e e e e s s st eae et aee s s s s bt ae et e s asbbaeeeaaeeseeeeessansnnreeeess 4-8
Figure 4-3.Compound Addressing with Accumulators or Y ReQISTErcccuviiiiieeiiiiiiee e 4-28
Figure 4-4.BMU Shifting OPEIatiONSiiiuuiiiiiiie ittt ettt e e e e st ee e e e e e s stbb e e e s s sebaeaeaeeeaseeeaeeesannnnes 4-31
[1o [LR R i = Tod 1T o SO OO P PPPT 4-32
Figure 4-6.Case 1. Source aS and Destination Accumulators Different...........ccccccevevviiiiiiiee e 4-33
Figure 4-7.Case 2. Source aS and aD Destination Accumulators the Same...........ccccccviiiiiiiiiiii s 4-33
Figure 4-8.ShUffle INSIIUCTION..........uiiiiiie e e e e e e st e e st baee s ennbbreeeeeeenannnnes 4-34
Figure 5-1.DAU—Data ArithmMetic UMtc..uviiiiiieiiiiiiir ettt e et e e e e e s s ann e e s s snnnbeeeeas 5-1
Figure 5-2.Conditional Instructions Using Counter ConditioNalScovvieiiiiiiiiiiiiiee e 5-4
Figure 5-3.The ifc CON F2 INSITUCLIONc.uuiiiiiie ettt e e e et e e et r e e e e e st seeeessnnabaeeeeas 5-6

Lucent Technologies Inc.

N e

Figure 5-4.DAU Pseudorandom SeqUENCE GENEIALONcc.uuuuiiieiieeesieiiiieeeteeeeeassiibreee s s s sibbbreeeaeessssnseeneeeens 5-8
Figure 5-5.XAAU—X Address ArthmMetic UNt..........cooiiuuiiiiiieiiiiiiiiiee e e e e s s st eeae e s s sneee s ennnne 5-11
Figure 5-6.YAAU—Y Address ArthmMetic UNt...........ooiiuuiiiiiieiiiiiiiiiee et e e s s et eae e s s snnee s ennnne 5-13
Figure 5-7.DIireCt Data AQUIESSING ...vvveeeiieiiiiiiiiiee e e ettt e e e e e s e e e e e e s s st br e et eeeasaasbbbaeessanssbbeeeeee baeeeaeesssnnnnes 5-15
Figure 5-8.Use 0Of the b and 1@ REQISIEISuuiiiiiiiiiii ittt e e e e e e e s s e e e e e e s snnnes 5-16
Figure 6-1.EXternal MemOry INTEIACEoiuuiiiiiie ettt e e e s e e st e e e e e s e e e e e s s nnabbeeeeas 6-1
FIQUIE B-2. EMI EXAIMPIE . .etiiiiiie ittt e e e e e ettt e e e e e sttt et e e e e e e aansbbaee e s e nsbbe snnbbaeeeeeeennnnnnes 6-14
[(e [0 ST N @3 1@ 2 I 1 11 o PP OTPPRRIN 6-17
Figure 6-4.Write, Read, REAU, W = 0 ...ccoiiiiiiiiiie oottt e e e e e sttt e e e e e sttt e e e e st ne e e e e e e s aan seeeeeesnnnnes 6-18
Figure 6-5.Read, WL, WITE, W = D.ciiiiiiiiiiiiiie sttt ettt e e sttt e e e s s ettt e e e e esb bt e e e e e e s e baeeeeeeenannnes 6-19
FIgure 6-6.Read, WL, W = 0 ...iiiiiiiiee ittt ettt ettt e e e e e e ettt e e e e e s s bt e b et e s assbbbeaees sabbaeeeeeeessnnnne 6-20
[[[0 I SR =T To I = T= TV OO OUPPRTIN 6-21
FIQUIE B-8.WVHEE W = L .iiiiiiiie e ettt oottt e e ettt e e e e e ettt e e e e e e e s sttt e e e e e e e e aan s bbeee e s annet s e snabbneeeeeeennnnnne 6-22
Figure 6-9.Read, Read, with Delayed ENAbDIEc.uuiiiiiiiiiii e 6-23
Figure 6-10.Write, Read, with Delayed Enable, NO HOId TiMe.......ccoooiiiiiiiiiiiiiieeeeeccie e 6-24
Figure 6-11.EXternal ROM BoOOt-Upuiiiiiiiiiiiiiiiee ettt e sttt e e e st st e e e e e s s antbbaee s s ssbbbeeeeeeeseeeeeeesannnnes 6-25
Figure 7-1.Serial I/O Internal Data Pathcoiiiiiiiiiiiii et e e e e e st s e e e e e anaeeee s 7-1
L 1o [I] [@ I T Yo ¢ PP PRR 7-2
Figure 7-3.SI10 ACtiVe MO CIOCK TIMING . .uuuiiiiieiiiiiiiiiiee st e e et re e e e e s s eeeesebaeereeessannseaae sessnnnrseenss 7-3
Figure 7-4.S10 Passive Mode Input Timing, 16-bit WOrdsuueiiiiiiiiiiiiiiiiiie e 7-4
Figure 7-5.S10 Active Mode Input Timing, 16-bit WOrdScccuuiiiiiiiiiiiiiiieee e 7-5
Figure 7-6.S10 Passive Mode Output Timing, 16-Dit WOrds...........coeiiiiiiiiiiiiiiiee s 7-6
Figure 7-7.S10 Active Mode Output Timing, 16-bit WOrdscuuviiiiiiiiiiiiiiiiicee e 7-7
Figure 7-8.SI10 Passive Mode Output Timing, 8-Dit WOTAS..........uuuiiiiiiiiiiiiiiiiiiice e 7-8
Figure 7-9.DSP1611/17/18/27/28/29 to Lucent Technologies CSP1027 Codec Interface.............ccccvvvvveeen. 7-13
Figure 7-10.DSP1611/17/18/27/28/29 to Lucent Technologies T7525 Codec Interfacecccccceeeevviivvvnnnn. 7-13
Figure 7-11.MUltiproCeSSOr CONNECLIONSuuuiiiiiiteeees ittt e ee e e s e st e e e e e e e s s st baeeeeaesstttseeeaeeeeessansbeeeeessnnnnes 7-15
Figure 7-12.Destination Address COMMUNICALIONuvuiiieriee ettt e e e e s e ee e e e e s steeeeeaeesssanntenreeeeeennnes 7-16
Figure 7-13.Protocol Channel ComMMUNICALIONccuuiiiiiiiee et e e e e et e e s e e e s s st e e e e e s nnnne 7-16
Figure 7-14.DSP1611/17/18/27/28/29 Multiprocessor CONNECLIONS.........ciieiviiiiiiiiiiiieeeiiiiriree e e e e s ssiirieeeeaaee s 7-17
Figure 7-15.MultiproCcessSor MOE tiME SIOLSuuiiiiiiiiiiiiiiiiie e e e e e e e e s s sarbe e e e s ennnes 7-18
Figure 7-16.Multiprocessor Mode OULPUL TIMING ...ccooieeviiiierieeesiiiiiiiieee e e e s s siirireee e e e s s steeeeeaaessssnssenreeeessnnnes 7-19
Figure 7-17.DSP1611/17/18/27/28/29 Multiprocessor COMMUNICALIONSueeiieeriiiiieiieeeeeaiiiiiiieeeeeeesnnnees 7-23
Figure 7-18.SI02—PIO/PHIF MUIIPIEXING ...uevtiiietieieiiiiiiee ettt e e e e e s bbae s s s st eeeeaessanns e e e s nnnne 7-26
FIQUIE 8-1.PArallel 1/0 UNItcoii ittt e e e st e e e e e e s e bbb e ee s s nnsas s e s snbbbaeeeeeeennnsneees 8-1
Figure 8-2.Active Mode Input Timing (Minimum Width PIDS)cccoiiiiiiiiiiiiie i 8-3
Figure 8-3.Active Mode Output Timing (Minimum Width PODS).........cooiiiiiiiiiiieesiiiie e 8-4
FIQure 8-4.P1O INtEraCCESS TIMING .ututriiieetiiiiiiietee e sttt et e e e e s sttt e e e e e e s s sebaeeeeeeeassbbaeeeaaa s bbbeeeaaeseeeeeessnnnsrseenss 8-5
Figure 8-5.Passive MOde INPUL TIMING ...cooiiiiiiiiiiiieee st e e e e s e s e e e e e s sabbae e e e e e s s sastbeeessnnnbbeeeeas 8-7
Figure 8-6.Passive Mode OULPUL TIMING ...oouuviiiiiiieeii ittt ie e e e e e st e e e e e s s s e e e e e e s stareeeeeeeessansbbsaessnnnnaneeeas 8-8
Figure 8-7.The DSP as a Microprocessor PeriPheralc.ooiiiuiiiiiiiie i 8-9
Figure 8-8.Peripheral Mode INPUL TIMINGuuveiiiieeiiiiiiiiiee et ee e e s s ee e e e e s s sbeeeesaessssnnsteeeeeeeessnnnnes 8-11
Figure 8-9.Peripheral OUtpUt MOAE TIMINGvviiiiiiiiiiiiiiiie et e s e e e e e e st e e e e e s s s sansteeneeeeessannes 8-12
Figure 8-10.POIlING PSTAT TIMING ...vettieeiiiiiiiiiiiee e s aaeiiteteae e s s asttteeetaeessssbbeeeeseesssassbseeessassbbaeeeeeeseeeeeesssnnses 8-13
Figure 8-11.PIO Latent REAUS HAIIWAIEueiiiiieeiiiiiiiiiiiee e e e e e sttt e e e e s sttt eeeeeestabraeeeeeeesssnabteeesnannne 8-18
Figure 8-12.PIO Latent REAUS TiMING . ..cceeiiiiiiiiiiitieeesiaiiiittitee e e e e s s siibbeeeeaeesssssnsbbeeeeeeesarsnbrseeeeeesssaneeseesssnnnnes 8-18
Figure 9-1.Parallel HOSE INTEITACEuiiiiiiiiiiiiiie et e et e e et e e e e s beeeeeeesasnbaeeeeas 9-1
Figure 9-2./ntel MO, 16-Bit REAM.ccciiiiiiiiiiie et e ettt e e s et e e e s s st e e e s bbb e e e e e e s s asbbbeeeeee e senas 9-3
Figure 9-3./ntel MOUE, LB-Bit WIILEciiiiiiiiiiiiieee e eeeiiieit e e e ettt e e e s et e e e e e s s as b e e e s nnsb b e e e e e e e s s anbbbeeeee e eeees 9-4
Figure 9-4.Motorola Mode, 16-Bit REAMuuiiiiiiiiiiiiiiiiee ettt e e s s s s e e e e e s s sabbaeeeeeeenan 9-5

Lucent Technologies Inc.

I e e e I A

Xiii

Figure 9-5.M0t0rola MO, L6-Bit WITLEccuuuiiiiiie ettt e ettt e e e ettt e e e e s e st ae e s s st b e e e e e e s s snnnbaaeeeaaeeas 9-6
Figure 9-6.0Verall PHIF REAM CYCIEcuiiiiiiiiiiiiee ettt e e e e s ettt ee s s sttt e e e e e e s eeeeeeennnnnes 9-12
[(e [0 IO =] @ 2 2] (oYt Q=T | = o PP PPPRRN 10-1
Figure 10-2.BIO CoNnfIgured @S INPULSccciiiiiiiieie ettt s st e e e e e e sttt et e e e e stbee et eaeeeeessneeeeeeesannnnes 10-2
Figure 10-3.BIO CoNfigured @S OULPULSoiiuiiiiiiiie ettt ee e e e e s sttt e e e e e e e e s sabb e e e s asssbbeeeeaeeesasseeeeessnnnnes 10-3
Figure 10-4.Logic Flow Diagram for BIO Configuration.............uuvveiiieoiiiiiiiiiiiiie e e e e s 10-4
Figure 11-1.The JTAG BIOCK DIiAQIam.......cc.uuiiiiiieei ittt ie ettt e e st aee e e e e s s nab e ee s bbb e e e e e e esnn aeeeesannees 11-1
Figure 11-2.The TAP Controller State DIAgIaM...........cocuuuuiiiiieeeeesiiitiiieeeee e s s s eeesenarbreereaeessassreeeessnnnne 11-2
Figure 11-3.Timing Diagram EXAMIPIEoc.uuiiiiiie ittt e e et e e e e e e st e e et be et e e e e s annnt seeeesnnnnnes 11-6
Figure 11-4.The JTAG Instruction Register/DeCOder STUCIUIEooiivriiiiiiie et 11-7
Figure 11-5.The Simplest Boundary-Scan Register Cell ...t 11-11
Figure 11-6.Cell Interconnections fOr @ 3-State PiN..........couiiiiiiiiiiiiee it e e e e e e e anes 11-13
Figure 11-7.BidireCtionNal Cell...........uuuiiiiiiiiiiiiiiiiii ettt e e e e e e s e e e e e sabb e e e e assbbreeeeeeesennees 11-14
Figure 11-8.Cell Interconnections for a BidireCtional Pin............ccccoeiiiiiiiiiiieiee i e 11-15
Figure 11-9.The Device Identification RegiSter, JIDR...........ooiiuiiiiiiiiee ittt eeee e e e e nnnes 11-16
Figure 12-1.Timer BIOCK DIAGIaMuuuiiiiiiiiiiiiiiiie e s ettt e e e s s sttt et e e e s s st e e s e e e s s sbbbbeee s s sabbbeeeees aeeeaeeessnnne 12-1
Figure 12-2.TiMING EXAMPIES........uuiiiiiiiiiiiiiiie et e e e e et e e e e e sttt e e e e sttt aeeteee s bbaeeeeeeesannnes 12-5
Figure 13-1.BMU BIOCK DIGQIAMuutiiieiieiiiiiiiiiie e e e eseite it ee e e s e sttt e e e e s asstbeaeeeaaeasasssbbaeessanbbbeeeeaeseeeeeeessnnnnes 13-1
Figure 13-2.L0gical RIGNt Shiftuiiiiiiiiii e e e e e e e e bbb ee e e e e s snnnees 13-2
[1o [I e T B = S 1111 OO PRTT 13-3
Figure 13-4.Arithmetic RIGNE SHift.........ooiiii e e s ebbreee e e e e s snnees 13-3
[1o [I e T ST b 1 = o] 1T PO PPPRRIN 13-5
Figure 13-6.Insertion, Case 1. Source and Destination Accumulators Different.........ccccoccvvvviiiinieenniiiiiinnns 13-6
Figure 13-7.Insertion, Case 2. Source and Destination Accumulators Are the Samecccccceevvviiiviineeen. 13-7
Figure 13-8.Shuffle ACCUMUIALOTSuiiiiiiiiiiiii et e e s e e s bb e e e e e s aeeeeeeesnnnees 13-8
Figure 14-1.Error Correction Coprocessor Block Diagram/Programming Model..........cccoocvviiiiiiinieenriiniinnnns 14-2
Figure 14-2.DSP COre OPeration SEOUENCEceiiiiuiiiriiieeeeeesiiititeeteaesssaasienrereeeeessssaeeesaesssannsssseeeeeesnnnnnes 14-6
Figure 14-3.ECCP OPEration SEOUEINCEuuuiiiiieeiiiiiiiiiiiitteeaesiatttteettaeessaasssnseeeeseeessstseeetaessssnnsssssseesssnnnnes 14-7
Figure 14-4.Register BIOCK DIAQIaM.........ocuuuiiiiie ettt e e e ettt e e e e s sttt e e e e e s s stbs e e e ssntbbaeaeaeeeaseenaeeesannnnes 14-8

Lucent Technologies Inc.

I

Xiv

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.
Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.

DSP1611/17/18/27/28/29 Digital Signal Processor

INFORMATION MANUAL

TABLES

Pipeline Flow for CoNCUrrent OPEIatiONSc.uuvuiiiieeeiiiiiiiiiiee e e e e s s ssitbeee e s s ssebbarereeeeee e s nnnneeeees 2-3
Symbols Used in the BIOCK DIagramscooviiiiiiiiiiiiiiiee ettt e e e e siinneeeeeeeeennes 2-10
[T g T AT o 1= T = PP 2-12
Single-Cycle Instruction Internal PIiPeliNe...........ocuviiiiiiiii i 2-14
Two-Cycle Fetch Internal PIPEIINEoooiiiiiiiiiiie e 2-15
Program-Accessible Registers by FUNCHONuuviiiiieiiiiiiiiiiiiee e 3-1
Program-Accessible Registers by Type, Listed Alphabeticallyccccccoviiiiiiiiiiniiniiiiiiiiennnnn. 3-2
Registers Nonaccessible by Program, Accessible Through PinScccccccvviiiiiieiiiiiiiiiiiieecenn. 3-5
Register Length DefiNItiONcooiiiiiiiiiiiiee e r e e eeabeeee s 3-5
REQISIEr RESEL VAIUES ...ttt e e ettt e e e e e e s ntbee e e s snnabeeeeas 3-6
[F= o I D 1= 101 o] o PO PRPR 3-7
Data Memory Map (Y-MEMOIY SPACE)cueeeiiiiiuiiiiiieeesiaiiiiiettaeesaansttreeeeassrrreeesaesssassssreeesessssnnes 3-9
DSP1611 Instruction/Coefficient Memory Map (X-Memory SPace)cccccevveeeeeeeiiiiivivnenneenns 3-11
DSP1617 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvveeeeeeeiiicvvnnnnnennns 3-12
DSP1618 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvveeeeeeeiiiivvvnnneeenns 3-12
DSP1618x24 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccevvvvcvvvvvvveeneeennns 3-13
DSP1627 Instruction/Coefficient Memory Map (X-Memory SPace)cccccevveeeeeeeiiinvivneneennn 3-14
DSP1627x32 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvvvvcvvvvvrveeneeennn 3-15
DSP1628x08 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccevvvvcvvvvvrveeneeennns 3-16
DSP1628x16 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvvvvcvvvvvveeneeennn 3-17
DSP1629x10 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvvvvcvvvvvrveeneeennns 3-18
DSP1629x16 Instruction/Coefficient Memory Map (X-Memory SPace)ccccccvvvvcvvvvvvveeneeennn 3-19
INtErruPtS iN X-MEMOTY SPACE ...ccciiiiiiiiiiiee e i ittt e e e e s ettt e e e e e s st e e e e sab b e e e e e e s asabbeeees breeeeas 3-20
Arithmetic Unit Control (AUC) REQISTENc.iiiiiiiiiiie et e e e 3-22
VECTON TADIE .ttt et e e b e st e e 3-31
Interrupt Control (inc) Register (All EXCept DSP1618/28)ccvvvvieeiiiiiiiiiieeeiiiiiieiieae e e e 3-34

Interrupt Status (ins) Register (All EXCept DSP1618/28)......ccccceiiiiiiiiiiiniiiiiiiiiiiee e eesiivieeens 3-34
Interrupt Control (inC) Register (DSPLE18/28)c..cceiiiiuiiiiiiieeee ettt e e sianeeeee s 3-34
Interrupt Status (inS) Register (DSPLE18/28).......ccuuieiiiiiiiiiiiieeee e 3-35
Latency Times for Switching Between CKI and PLL-Based CIOCKS..........c.ccccccveeeeiiiiiiiiiinennnnn. 3-50
Phase-Locked Loop Control (PIIC) REGISIET.......uuuiiiiiiiiiiiiiiee et 3-51
PLL Electrical Specifications and plic Register SEettingscccccevviiiviiieiniiiiiiiiiie e 3-51
POWETC FIEIAS (DSPLELT) ...ueeiiiiiiieeeiieiiieiitee e e e e e sttt et e e e s s st eeeeeeeessbaeeeeaeessasnsbanneaeeensanee 3-53
powerc Fields (DSP1611, DSP1627, and DSP1629)cccccuviiiiiieeiiiiiiienie e esiiiieeeeaee e e 3-53
powerc Fields (DSP1618 and DSPL628)cc.cuueiiiieeeiiiiiiiiiiieteeesssniiiaeeessssienereeeeeesesssnsesseees 3-53
powerc Control Register Fields DEeSCIPLIONc.uvviiiiiieei i 3-53
Compound ADdressing INSITUCHIONSuviiiiieeiiiiiiiiiiie e et e s e e s e s e e e e e e s s snnraeees 4-5
DiIreCt DAta ACQAIESSING ..oiieiiiieiiie e e ittt e e et e e e e e e s bbbt e e e e e s s s bbbt e e e estbbreeeeeeasanes aeesannrreeeeas 4-7
Flags (Conditional MNEMONICS).......uuuiiiiiiieeii ittt e e e e e e e e e s s enbaeeees 4-10
CONLFOI INSTFUCTIONSeeeieee ettt b et e et e e e st e e rr e e e snb e e e e annees 4-12
Replacement Table for Control FUNCtion INStrUCHIONScooeiiiiiiiiiiiieee e 4-12
Example of Execution of Cache INSIIUCLIONooiiiiiiiiiiiiiiiiie e 4-14
Replacement Table for Cache INStIUCLIONScoviiiiiiiiiiiiiiie e 4-14

Lucent Technologies Inc.

N e

Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 4-16.
Table 4-17.
Table 4-18.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 5-10.
Table 5-11.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.
Table 6-10.
Table 6-11.
Table 6-12.
Table 6-13.
Table 6-14.
Table 6-15.
Table 6-16.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.
Table 8-1.
Table 8-2.
Table 8-3.

Data MOVE INSIIUCLION SUMIMAIYiiiiiiiiiiiiiiiiie e s ieiiiieie e e e e st e e e e e s s eessaabeeeeeesessssannee sennes 4-15
Replacement Table for Data MoVe INSITUCHIONSciiiiiiiiiiiiiiiiiiee e e e 4-16
Special FUNCHON STAtEMENTS ...t e e e e e e e s e s abeeeeaeee s 4-20
Replacement Table for Special FUNCtion INSIrUCLIONS...........uuviiiiiiiiiiiiie e 4-20
MUIEIPIY/ALU INSIFUCHIONS .eviiiiiiiiiiiiieiiiee e ettt e e st e e e e e e s st e e e s st b e e e e e e s asseeeeeennnnnnes 4-23
Replacement Table for Multiply/ALU INStIUCHIONSciiieeiiiiiiiiiiiee e e e 4-24
Instruction for Loading the x and y Registers into the Squaring Modeccccvvvveiieeeniiiiiinnns 4-25
F3 ALU INSEIUCTIONS ...ttt ettt e ettt e e et e s e e e s anbeeeennes 4-29
Replacement Table for ALU INSIIUCLIONScoiiiiiiiiiiiiiiiiee et e e e e enes 4-29
Replacement Table for BMU INSIIUCLIONScviiiiiiiiiiiiiiiieeeee sttt invvee e e e e e e ennes 4-30
Summary of Ambiguous DSP1600 Commands Requiring @ MNEMONIC..........ccvvvvviveereeeeniinnns 4-36
CoUNLEr CONAILIONAUS ...eeeiiiiei ettt ettt et e et e e e e s e 5-4
CO—C2 REQISTEN FUNCLIONS ...eiiiiiiiiiiiiiiie ettt ettt e e st e e e s s e e e e e s s sab e e e e e e s s nnnbbeeeeas 5-6
Arithmetic Unit Control (AUC) REGISTETuuiiiiieiiiiiiiiiiee et e s bree e e e 5-9
Processor Status Word (PSW) REGISLETuuuuiiieiiiiiiiiiiiiee ettt e e e s sibie e sirbre e e e e e s sanareeeee s 5-10
Replacement Table for Cache Instruction ENCOING..........cocvvviiiiiiieeiiiiiieiee e 5-18
Control and Status DESCIIPLIONSuuuiiiieeiiiiiiiiiiieee e e e ettt e e e e s s as b e e e sabbrerraaeessaanrbrereaeeeas 5-19
Interrupt Control (inc) Register (DSPL61L/17/27/29)cccoviiiiiiiiiiiiee et 5-19
Interrupt Status (ins) Register (DSPL6L1L/17/27129)......cccuuiiiiuiiiiiiiee it 5-19
Interrupt Control (inc) Register (DSPL6L8/28)uuuiiiieeiiiiiiiiiiieeee et e e ssiieeee e e e e e e eenes 5-19
Interrupt Status (ins) Register (DSPL6L8/28)..........uuuiiiiieiiiiiiiiiiiieee e e e e e senes 5-19
oY =T | (=] PSP S P PPU PR 5-20
DSP1611 Instruction/Coefficient Memory Map (X-Memory SPace)cccvvecvrrrrieeereeeessiniiinnnns 6-3
DSP1617 Instruction/Coefficient Memory Map (X-Memory SPace)cccovvevrrrreeeereeeessiniiinnnns 6-4
DSP1618 Instruction/Coefficient Memory Map (X-Memory SPace)ccccoveevrvrrireereeensssniiinnnns 6-4
DSP1618x24 Instruction/Coefficient Memory Map (X-Memory SPace)ccccceeeeveeeeiiiiinvvnnnnnn 6-5
DSP1627 Instruction/Coefficient Memory Map (X-Memory SPace)ccccvvvevrvrrreeereeeessiniiinnnns 6-6
DSP1627x32 Instruction/Coefficient Memory Map (X-Memory SPace)cccccvevveeeeiiiiinvvvennnn 6-7
DSP1628x08 Instruction/Coefficient Memory Map (X-Memory SPace)ccccceveveeeeeiiiiinvvnnnnnn 6-8
DSP1628x16 Instruction/Coefficient Memory Map (X-Memory SPace)cccccveveeeeeiiiiinvvnnnnnn 6-9
DSP1629x10 Instruction/Coefficient Memory Map (X-Memory SPace)cccccvveeveeeeeeeniiiinnns 6-10
DSP1629x16 Instruction/Coefficient Memory Map (X-Memory SPace)cccccvvveerveeeeeeniiinnns 6-11
Data Memory Map (Y-MEMOTY SPACE)cccuuviiiiieeeiiiiiiiiieeeesssiiiieeeeeeessseeeeeesssssiaaeeeaeesasnnsennees 6-12
MWAIE REGISTET ..eeiiiiiei it e e e e e st e e e e e e s sbae e e e e s stbbeeeaeesasanssnneeenes 6-13
ool = LT o 1S3 (=] OO PPPPR 6-13
(01 (@ @] o] i o] o = OO U PP 6-14
INdex Of TIMING EXAMIPIES ... ittt s e e e e e s st b e e e e e s s s asabaaeeeeensnnnnes 6-17
Data Memory Map (DSPLE17 ONIY) ..ccooiiiiiiiiiieie ettt e et e e e e e e s s sniaraereaeeeeennes 6-28
Serial /0 Control (sioc) Register (DSP1611, DSP1617, and DSP1618 Only)cccvvvvveeeeniinnnns 7-9
Serial 1/0 Control (sioc) Register (DSP1627/28/29 ONIY)cccvviiiiiieieeii e 7-9
sioc Register Field DefiNItiONSuuuiiiiiiiiiiiiiiiee e e e e e e e e e e ebareeaeeeas 7-9
DSP1611/17/18/27/28/29 Serial /O PiNSoviiiiiiiieiiit et 7-12
Time-Division Multiplex SIot (tdmMS) REGISIETuuviiiiieiiiiiiiiiee e 7-20
Serial Receive/Transmit ADdress (Srta) REQISTENcoiiiiiiiiiiie it 7-21
Description of the Multiprocessor Mode Operation Shown in Figure 7-17.........cccccvvveveeeiiinnnnen. 7-22
sioc2 Register (DSP1611, DSP1617, and DSP1618 ONlY)ccoovvcivviiiiiiiniiiiiiiniieeeeee e e e 7-27
sioc2 Register (DSPL627/28/29 ONIY) ..uuuiiiiiiieiiiiiiiiiiiiiie et e e e e e e e s sneeeeeees 7-27
PIO Strobe WILNS ...ttt e 8-2
FUNCLION Of tNE PSEL PINS ...coiiiiiiiiiiiite ettt 8-6
The PIO Status RegiSter, PSTAT ..ottt e e e e st e s sab e e e e e e s snsnseeee snnes 8-10

Lucent Technologies Inc. XV

N e

Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 12-1.
Table 13-1.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.

Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.

RN LCI (O 2101 (=T ol i F= Vo L PP POPR RPN 8-10
[Tl =t g TotoTo [TaTo o Lo D 0 Ty P PRPR P 8-14
PIO CONtrol (PIOC) REGISIENuiiiiiiiiiee e iittieie et e e e e e e e e e s bbb e e e s sebb e e e e e e s ssbbneaeeeens 8-15
PIO SIGNAIS ... ettt e e e e e e e et e e e e e e e e e a e e e e reaaeeaaan 8-21
[@ I o I8 i] o] [t T TP PSSR 8-22
The PHIF Status RegiSter, PSTAT ..ottt e s et e e e e e e s snntbaeeeee e reeeas 9-7
Parallel Host Interface Control (PhifC) REGISTEI........uuuiiiiiiiiiiiiiiiee e 9-8
phifc Register PHIF Function (8-bit and 16-bit MOdES)c..veeviiiiiiiiiiiiee e 9-9
PHIF Pin Multiplexing of ACHIVE SIgN@IScuiiieiiiiiiiiiiiiee et e e 9-11
BIO Pin MUIIDIEXING ... tteeeet ettt ettt e e e s et e e e e e e e e s sb bt e e e e s ansbbbeeeaeeebbaeeeeeeenannnnes 10-4
] o[d=To 1S (=] g = g oo T LoV PSPPSR 10-5
(o] o1 Sd=To 1S (=] g =l g Teto T LoV P RPPSRTRN 10-5
oL =T £ OO PRPPPPUTPPERR 10-6
DSP1611/17/18/27/28/29 JTAG INSIUCIONScciiiiiieiiiiiee ettt 11-3
Boundary-Scan Register Cell Type DefinitioNScooviiiiiiiiiieeiisiiiieee s 11-8
JTAG Scan Register (DSP1611, 1617 and 1618 ONIY)cccuvviiiiiieiieeeiiiiiiieee e seeiiiiieeee e 11-9
JTAG Scan Register (DSPL627/28/29 ONIY) c...uuiiiiiiiieiiiiiiiiit e 11-10
JIDR Field Descriptions DSPL1617/18/27/28129ccoccuuiiiiiiiee i 11-17
JIDR Field DeSCrptions DSPLBLLc..uuuiiiiieeiiiiiiiiiiiiee e e e s s it eeeae e s s ssiieeeeeessssabbbeeeeaeeesannes 11-18
L1001 (o =T L] (=] PP RPN 12-2
Format 3b: BMU OPEIatiONSuuuiiiiiieiiiiiiiiiieiiee e e sttt e e e e e s s st e e e e e sstaesreeeeeessssnnnraeessnnnnes 13-9
Incremental BranCh MELIICSuiiiiiiiiiei et 14-4
ST @01 = 1 Y ¥ [ox 1 o] o I =1 g Too Lo 1 oo [P ERPR USSR 14-9
Reset State 0f ECCP REQISIEISuuuiiiiiiiiiiiiiiei ettt e s st a e e e s ann eeeeeenas 14-9
MeMOry-MappPed REGISLEISuuiiiiiiieeeiiiiiiiiiiee e e e sttt e e e e e s s bbb e e e e et b e e e e eeeesaannnnrareaeenas 14-10
Control Fields of the Control REQISTENc.uuuiiiiiie e 14-12
Representative UpdateMLSE Instruction Cycles (SH = 0)....uuuiiiiiieeiiiiiiienieee e 14-20
Representative UpdateMLSE Instruction Cycles (SH = 1) 14-21
Representative UpdateConv Instruction Cycles (SH = 0) ...ccccvviiiiiiiieiiiiiiieecieee i 14-22
Representative UpdateConv Instruction Cycles (SH = 1) ..o 14-23
DSP1611/17/18 Pin Descriptions (See footnotes for any DSP1611/18 differences.) 15-1
DSP1627/28/29 Pin DESCIIPLONS .eieeeiiiiiiiiiiiieeeseeiiiiiiee e e e e e s s sitbbeeeaaeessasnteeeaeeessssnbbreeeeaaessannes 15-3
DSP1617/18/27/28/29 ROM OPLONSuueieiiieitie sttt aiee ettt e atee ettt ettt e st e et e e snneeennee s 15-14
DSP1611 INPUL ClOCK OPLIONS ...vvviiiiiieiiiiiiiiiiitee ettt e et e e e e e s s e nnbaaaeeaeenas 15-14
(€2 2 5LL= Lo OO PPURTIN A-4
3 1] (o U UTRTTR A-4
BMU ENCOOINGS ©1eetiieiiiiiiiiiitt e e sttt e e e sttt e e e e e sttt e e e e e e e s s bbbt e eaeeeaanntbeeeesaassbbeeaaae aeeeeeeesannnnes A-4
CON FHEIG ..ttt ettt et e et e ettt ebe e m bt e e bt e e e e sabeesnbeennbeesnnes A-5
[1= o B PR TRTTP A-5
(D] 1= (o PP OU RPN A-5
L 1] [« ORI A-6
F2 FHEIA ettt e b ettt e nab e e b e nee s A-6
[1] [« OO PR U OPROPR A-7
[1= Lo TSR OURUPRPPRTIN A-7
L 1= (o I (0T gl DS i K- 3 PP A-8
R Field for DSPLEL1/18I27/28/29cooiiiiiiieeiiei ettt A-8
ST T Lo ORI A-9
S I 1] Lo SO RTPR A-9
IS O = o PRSPPI A-9
T Lo PSP A-9

Lucent Technologies Inc. XVi

[TADIE A-L17. X FIBIA ... eiui ettt sttt ettt ettt s et ettt e e et e e e st s e et et e e e se s e es s et esereneene e eeene e A-10

L] TABIE A-L18. Y FEIU .c.viieuictiitiiteeeete ettt sttt ettt et sttt sttt et e st et e se et e st et esaebeteebe s sbe st e s esesbesaesaneas A-10
L] TABIE A-19. Z FIIU c.eviuieviitiitiieeeet ettt ettt ettt ettt e st et e et e s b et et e e b e sb e b esessebeebe s sbe st e b eseabesaesareas A-10
[l Table B-1. CON Field ENCOGINGcoviveiuiieeeeeeieete ettt ettt et ettt teeteete e teaeeneeseestesteens e ereenseeee e B-3
[l Table B-2. R Field ReplacemMent VAIUES............cccoeeieiuiieeeeee ettt e ettt te ettt te e te e B-8

Lucent Technologies Inc. Xvil

Chapter 1

Introduction

U1
0
0
0
0
0
0
0
0
0

CHAPTER 1. INTRODUCTION

CONTENTS
T geTo [BTox 1T] o EE O ST P PP PO PPPPPP 1-1
R 1= T 1= = L DT Yol]) o] o [OOSR 1-2
O O N o] 71 (=) (0 = OO PP PP PU PPN 1-2
1.1.2 INSTFUCTION S ..eiiiiiiiieiit ettt e s bt e bt ea bt e e sb e e e s aan s anbeeeennes 1-3
2 1Y/ o TTot= LA o] o] [T 1 o 1 PSPPSR 1-3
I I AN o o] [ToF= 1 o] d TS U] o] oo AP S R TPPSRR 1-4
1.3.1 SUPPOrt SOFWAIE LIDIAIYeeeviiiiiieii ittt e e e e e et e e e e e e s s ssbbbaeeeeeennes 1-4
1.3.2 Hardware DeVvelOPMENt SYSIEMccuviiiiiiieiiiiiiiiiiee ettt e e st e e e e e e e s s snnbbaeeeeeenas 1-4
A VT a T F= L @ o F= T a1 4= o] IR PPST 1-6

1.4.1 Applicable DOCUMENTALIONiiiiiiiiiiiiiiiiieiee e et e e e e e e s re e e e e e s s st e e eee e e e e s snebbreeeeaeeaaes 1-7

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

1 Introduction

Designed specifically for applications requiring low-power dissipation in digital cellular systems, the DSP1611,
DSP1617, DSP1618, DSP1618x241, DSP1627, DSP1627x322, DSP1628x08%, DSP1628x16°%, DSP1629x104, and
DSP1629x164 are signal coding devices that can be programmed to perform a wide variety of fixed-point signal
processing functions. The devices are based on the DSP1600 core with a bit manipulation unit for enhanced signal
coding efficiency. The DSP1611/17/18/27/28/29 include a mix of peripherals specifically intended to support pro-
cessing-intensive, but cost-sensitive, applications in the area of digital mobile communications. The features of the
DSP1611/17/18/27/28/29 are as follows:

= Optimized for digital cellular applications with a bit manipulation unit for higher signal coding efficiency
= Multiple speed and operating voltage options
m Low power consumption

m Flexible power management modes
— Standard sleep
— Sleep with slow internal clock
— Hardware STOP pin halts DSP

= Multiple packaging options available including low-profile TQFP and BQFP packaging

= Multiple mask-programmable clock options

m Single-cycle squaring

m 16 x 16-bit multiplication and 36-bit accumulation in one instruction cycle

m Instruction cache for high-speed, program-efficient, zero-overhead looping

m Memory sequencer for single-instruction access to both X and Y external memory space
= Two external vectored interrupts and trap

m Flexible internal ROM and internal dual-port RAM configurations

m Dual serial I/O ports with multiprocessor capability—16-bit data channel, 8-bit protocol channel
m 8-bit parallel interface

m 8-bit control 1/O interface

m 256 memory-mapped /O ports, one internally decoded for glueless device interfacing

m Interrupt timer

m CMOS I/O levels

m /EEE 5 P1149.1 test port (JTAG with boundary-scan)

m Full-speed in-circuit emulation hardware development system on-chip

m Supported by DSP1611/17/18/27/28/29 software and hardware development tools

m Each device also includes specific features for specialized applications
— Error correction coprocessor (ECCP) in DSP1618/28
— On-chip phase-lock loop (PLL) in DSP1627/28/29
— Bootstrap ROM in DSP1611

This manual is a user's reference guide for the DSP1611/17/18/27/28/29.

1.The DSP1618x24 is basically the same as the DSP1618. They differ in the amount of internal ROM memory and X-memory mapping (see
Table 3-11, Section 3.2.2, X-Memory Space). Discussion of the DSP1618 also refers to the DSP1618x24 except if noted otherwise.

2.The DSP1627x32 is basically the same as the DSP1627. They differ in the amount of internal ROM memory and X-memory mapping (see
Table 3-12, Section 3.2.2, X-Memory Space). Discussion of the DSP1627 also refers to the DSP1627x32 except if noted otherwise.

3.The DSP1628x08 and DSP1628x16 differ only in the size of internal dual-port RAM. Discussion of the DSP1628 refers to both the
DSP1628x08 and DSP1628x16 except if noted otherwise.

4.The DSP1629x10 and DSP1629x16 differ only in the size of internal dual-port RAM. Discussion of the DSP1629 refers to both the
DSP1629x10 and DSP1629x16 except if noted otherwise.

5. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

Lucent Technologies Inc. DRAFTCOPY 1-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Introduction April 1998

1.1 General Description
1.1.1 Architecture

The DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629 are made up of the DSP1600 core pro-
cessor, a dual-port RAM, ROM, and several peripheral blocks. The core contains the data arithmetic unit, the
memory addressing units, the cache, and the control section.

The data arithmetic unit (DAU) is the main computational execution unit of the processor. It supports a 16-bit x
16-bit multiply, a 36-bit ALU operation, and two 16-bit data fetches from memory in a single instruction cycle. The
DAU is made up of two input data registers, the multiplier, two accumulators, the ALU, and various control registers.
The product from the multiplier can be accumulated in one of the two 36-bit accumulators. The data in these accu-
mulators can be directly loaded from or stored to memory in 16-bit words. The ALU supports a full set of arithmetic
and logic operations on either 16- or 32-bit data. Because a standard set of ALU conditions can be tested to per-
form conditional branches and subroutine calls, the processor functions as a powerful 16-bit or 32-bit microproces-
sor for logical and control applications.

A bit manipulation unit (BMU) is provided to accelerate signal coding algorithms. It performs full 36-bit barrel shift-
ing, normalization, and bit field extraction or insertion of data in the accumulators. Two alternate accumulators pro-
vide storage for 36-bit data.

An on-chip cache memory can selectively store repetitive operations like those found in an FIR or IIR filter section.
The code in the cache can repeat up to 127 times with no looping overhead. In addition, operations in the cache
that require an X-memory data access (for example, reading fixed coefficients) execute at twice the normal rate.
The cache greatly reduces the need for writing in-line repetitive code and, therefore, reduces program memory size
requirements. In addition, power consumption is reduced because use of the cache eliminates a memory access
for instruction fetches.

Two addressing units support high-speed, register-indirect memory addressing with postincrementing of the regis-
ter. Four address pointer registers can be used for either read or write addresses to the RAM. One address regis-
ter is dedicated to the instruction/coefficient memory space for table look-up. Direct data addressing is supported
for 16 key registers. A uniqgue compound addressing mode that swaps data between a register and memory in only
two instruction cycles is available. Immediate addressing can be done by using a 9-bit address in a one-cycle
instruction or a 16-bit address in a two-cycle instruction.

The DSP1611/17/18/27/28/29 on-chip memory includes both ROM and dual-port RAM. The RAM has separate
ports to the instruction/coefficient bus and the data bus, and it can write either bus. A program can be downloaded
from slow off-chip memory into the RAM and then executed at full-speed without wait-states. The RAM can also be
downloaded through the JTAG interface for full-speed, remote, in-circuit emulation or for self-test.

The external memory interface (EMI) connects either the instruction/coefficient buses or the data buses to the
external memory buses. The bit input/output (BIO) unit has eight pins that can be individually selected as inputs or
outputs. The timer provides programmable periodic interrupts. The JTAG interface is a four-wire standard test port
defined by /IEEE P1149.1. On-chip hardware development system (HDS) circuitry performs instruction break-
pointing and branch tracing in support of full-speed, in-circuit emulation with only the low-speed serial JTAG inter-
face required off-chip.

The DSP1611/17/18/27/28/29 have both a parallel I/O port (P10 or PHIF) and two serial /0 ports (S10). The serial
I/0O units are double-buffered and easily interface to other DSP1600 family devices, commercially available codecs,
and time-division multiplexed (TDM) channels with few, if any, additional components. Both ports connect as many
as eight DSPs in multiprocessor operation. The parallel /O unit is capable of interfacing to an 8-bit bus containing
other DSP 1600 family devices, microprocessors, microprocessor peripherals, or other I/O devices.

1-2 DRAFTCOPY Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Introduction

1.1 General Description (continued)
1.1.1 Architecture (continued)

Many applications, such as portable cellular terminals, require programmable sleep modes for power management.
There are three different control mechanisms for achieving low-power operation: the powerc control register, the
STOP pin, and the AWAIT bit in the alf register. The powerc register configures various power-saving modes by
controlling internal clocks and peripheral 1/0 units. The STOP pin controls the internal processor clock. The
AWAIT bit in the alf register allows the processor to go into a power-saving standby mode until an interrupt occurs.
The external interrupts asynchronously restart the processor from a deep sleep power-saving mode, and program
execution continues without any loss of state. The various power management options are chosen based on
power consumption, wake-up latency, or both requirements.

The DSP1611/17/18/27/28/29 are implemented in low-power CMOS technology and are offered in a variety of
packaging options. For optimal matching to system requirements, several options for low-voltage power supply and
clock speeds are available. See the latest data sheet for the current offerings.

1.1.2 Instruction Set

The DSP1611/17/18/27/28/29 instructions fall into seven categories: multiply/ALU, special function, control, data
move, F3 ALU, BMU, and cache. Allinstructions are 16 bits wide and have a C-like assembler syntax. Instructions
typically execute in one or sometimes two cycles, and data-path latency effects have been eliminated. Very high
performance is achieved by the use of concurrent instructions in the DAU.

1.2 Typical Applications
The devices in the DSP16XX! family of digital signal processors are used in many different application areas
including telecommunications, speech processing, image processing, graphics, array processors, robotics, studio

electronics, instrumentation, and military applications. Some of the possible applications follow:

TELECOMMUNICATIONS

m Mobile Communications Speech coding, modulation/demodulation, channel coding/decoding
s Modems Echo cancellation, filtering, error correction and detection

m PBX Tone detection, tone generation, MF, DTMF

m Switches Tone detection, tone generation, line testing

m Transmission Multipulse LPC, ADPCM, transmultiplexing, encryption, DS0, DS1

1.XX denotes the last two digits of the device name, e.g., XX = 11 for the DSP1611.

Lucent Technologies Inc. DRAFTCOPY 1-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Introduction April 1998

1.2 Typical Applications (continued)

SPEECH

m Recognition Feature extraction, spectrum analysis, pattern matching

m Synthesis LPC, format synthesis

m Coding CELP, VSELP, ADPCM, LPC, multipulse LPC, vector quantization
CONSUMER

m Studio Electronics Digital audio

m Answering Machines Speech coding/decoding, system control

m Entertainment Speech coding/decoding

m Educational —

Many of these applications can use standard algorithms that have been designed to reduce computational and
data transfer requirements for these DSPs. These algorithms have been coded in DSP1600 assembly language
and are available to registered users via Lucent’s DSP tech support web page at
http://www.lucent.com/micro/wami/tse.

1.3 Application Support

The use of the DSP1611/17/18/27/28/29-ST Support Tools and the DSP1600-HDS Hardware Development Sys-
tem aids application development.

1.3.1 Support Software Library

Software development tools to help create, test, and debug DSP1611/17/18/27/28/29 application programs are
available from the Lucent Technologies’ appropriate support software library for the particular device. Each sup-
port software library consists of an assembler, linker, and software simulator that run on Sun-41, UNIX2, or MS-
DOSS operating systems. The software includes a menu driven, Windows® based, graphical user interface.

The assembler transforms DSP1611/17/18/27/28/29 source code into object code in a standard format (COFF)
that is then processed by the linker. The assembler contains a preprocessor similar to the C preprocessor and pro-
vides the features of a full macro assembler. The linker creates load modules for the simulator by combining object
files, performing relocation, resolving external references, and supporting symbol table information for symbolic
testing. The DSP1611/17/18/27/28/29 software simulator provides access to all registers and memory and allows
program breakpointing. The simulator also provides the user interface to the DSP1600 Hardware Development
System.

1.3.2 Hardware Development System

The DSP1600 JTAG communication system (JCS) supports application system hardware development and soft-
ware testing.

1.Sun, Sun Microsystems, the Sun logo, SunOS, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

2.UNIX is a registered trademark licensed exclusively through X/Open Company Ltd.

3.MS-DOS and Windows are registered trademarks of the Microsoft Corporation.

1-4 DRAFTCOPY Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Introduction

1.3 Application Support (continued)
1.3.2 Hardware Development System (continued)

Figure 1-1 shows the components of the DSP1600 hardware development system for in-circuit emulation. The PC
is an MS-DOS 386, 486-based, or better machine. The enhanced system controller card (ESCC) plugs into an
8-bit slot on the PC ISA 1/O bus and connects to the enhanced target interface box (ETIB). The ETIB provides a
JTAG interface to the target DSP1611/17/18/27/28/29 device using a 9-pin connector cable. With this configura-
tion, a program can be downloaded into the DSP on the user's board and executed at full speed. The emulation is
performed with the actual DSP located on the user's board, and not one separated from it by a performance-
limiting cable. Program development with breakpointing, single-stepping, and branch tracing is available with the
simulator; it is aided by the hardware development system module on the DSP1611/17/18/27/28/29.

37-PIN CABLE f@
POWER | _|

SUPPLY ac SUPPLY
ETIB
TARGET BOARD
9-PIN CABLE POWER CABLE
S i{ (JTAG INTERFACE) (12.0 vV—15.0 V)
11111 -
TN
gz g
Inlninintninnleinletaiel
f o e 5L T oo

TARGET BOARD

ESCC — ENHANCED SYSTEM CONTROLLER CARD
ETIB - ENHANCED TARGET INTERFACE BOX

Figure 1-1. In-Circuit Emulation with the FlashDSP 1600—JCS

Another development tool available is the demonstration board (DSP1611/17/18/27/28/29-DEMO). The demon-
stration board replaces the customer board in Figure 1-1 and provides a development platform with external mem-
ory (static RAM or PROM), a DSP1611/17/18/27/28/29 device, and access many DSP signals.

Lucent Technologies Inc. DRAFTCOPY 1-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Introduction April 1998

1.4 Manual Organization

This document is a reference guide for the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629. It
describes the architecture, instruction set, and interfacing requirements of the device. The remaining chapters of
this manual are outlined below:

Chapter 2. Hardware Architecture : An overall description of the device including separate sections describ-
ing the major elements of the architecture and how they function.

Chapter 3. Software Architecture : A description of the topics associated with the software of the device.
Included are a register view of the chip, arithmetic and precision of data, memory space descrip-
tion, and the interrupt structure.

Chapter 4. Instruction Set : This section describes the general characteristics of the groups of instructions.
Notation and addressing modes are also discussed in detail. Appendix B lists the complete
instruction set and provides a description of each instruction including restrictions and normal

uses.

Chapter 5. Core Architecture : A detailed description of the DSP1600 core architecture.

Chapter 6. External Memory Interface : A description of the EMI port including functional timing.

Chapter 7. Serial /0 : A detailed analysis of the operation of the serial I/O ports including active and passive
clocking, interrupts, and multiprocessor operation.

Chapter 8. Parallel I/0O (DSP1617 Only) : A detailed analysis of the operation of this parallel I/O port including
interrupt information.

Chapter 9. Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) : A functional description of the oper-

ation of this port, including interrupt information.
Chapter 10. Bit 1/0 Unit : A functional description of the operation and programming of this port.
Chapter 11. JTAG Test Access Port : Functional description of the JTAG port.
Chapter 12. Timer: Operation and programming.
Chapter 13. Bit Manipulation Unit : A detailed description of the bit manipulation unit.
Chapter 14. Error Correction Coprocessor (DSP1618/28 Only) : A detailed description of this coprocessor.

Chapter 15. Interface Guide : A functional description of each category of pins with tables describing pins.
Appendix A. Instruction Encoding : Lists the hardware-level encoding of the instruction set.
Appendix B. Instruction Set Summary : Each instruction is described in detail.

1-6 DRAFTCOPY Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Introduction

1.4 Manual Organization (continued)
1.4.1 Applicable Documentation

A variety of documents exists to provide specific information on various members of the DSP1600 product family.
Contact your Lucent Technologies Account Manager for the latest issue of any of the following documents. The
back cover lists contact numbers for customer assistance.

DSP1611/17/18/27/28/29 Digital Signal Processor Information Manual (this manual) is a reference guide for the
DSP1611/17/18/27/28/29. It describes the architecture, instruction set, and interfacing requirements.

DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629 Digital Signal Processor data sheets provide
up-to-date timing requirements and specifications, electrical characteristics, and a summary of the instruction set
and device architecture for each device.

DSP1600 Support Tools Manual is an online document shipped with DSP1611/17/18/27/28/29 software tools. It
includes the appropriate DSP1611/17/18/27/28/29 supplement that provides the information necessary to install
and use the DSP1611/17/18/27/28/29 support software. The support tools manual is also required if working with
the DSP1600 Hardware Development System because the support software provides an interface between the
host computer and the development system. Each hardware development tool is packed with a user manual and
schematics.

Lucent Technologies Inc. DRAFTCOPY 1-7

Chapter 2

Hardware Architecture

I [e e e

CHAPTER 2. HARDWARE ARCHITECTURE

CONTENTS

2 HArAWArE ATCIITECIUIEoiiiiiiei ittt ettt e et e e st e e et bt e e e st e e bt sab e e e s bt e e s annneeeas 2-1
2.1 DeViCe ArChItECIUIE OVEIVIEWviiiiiiiiee ettt ettt ettt e bt e e st et ea bt e e abb e e s aas saabeeeenans 2-1
2.1.1 HArvard AFCIItECIUIEeviiiiiiee ettt e s e e b e ns 2-1

b B 1o o (o [=] | @ o =] =11 o) o 1S OO PEPPR P 2-2

2.1.3 DeVICE AICRIECIUIEoiiiiiiii ittt et e 2-4

2.1.4 Memory Space and Bank SWItChiNgc..ccoviiiiiiiiiiiiii e 2-12

2.1.5 Internal INStrucCtion PIPEIINEciiiiiiiiiiiiiiiiiee et eea e 2-13

2.2 COre ArChItECIUIE OVEIVIEWeiiiiiiieiietiee ettt ettt e et e et e e aa ettt e e et e e e e e e e snneeens 2-16
2.2.1 Data Arthmetic UNILcouiiiiiiiiieii e s 2-16

2.2.2 Y Space Address Arithmetic UNit (YAAU)oeiiiieiiiiiiiiiiiee et e e ee e e e e s nsnaneee s 2-17

2.2.3 X Space Address Arithmetic UNit (XAAU)oiiiiiiiiiiiiiee et iriree e 2-18

2.2, 8 CACKNE it 2-18

2,25 CONMIOI it b e 2-18

2.3 INEINAI MEIMOFIESee ettt ekt e e s e e e s bt e e s b e e eab et e e nne snb e e e e nnnneeens 2-19
2.4 External Memory INtErface (EMI).......couii ittt e e ree e e e e s s b beee e raeees 2-19
2.5 Bit Manipulation UNit (BIMIU)uueeiiieiiiiiiiiieee e eeiiieiee e e e e st eeae e e s s s beaeeaaeessastbteessssnnsbneeeas snnrssees 2-20
2.6 Serial INpUt/OULPUL (STO) UNIES ...uuiiiiiieeeiiiiiiiiii e e sttt ee e e et e e e e e s st e e e e e e s ssbe e e e e e sssbbeeee snnreeees 2-20
2.7 Parallel Input/Output (PIO) (DSPL6L7 ONIY) .eviieeiiiiiiiiiiiiieee ettt e e e e e s st ee e seabreee e e e e e s s nneeeeees 2-21
2.8 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 ONIY) ...uuuiiiiiiieiiiiiiiiiiiiee ettt 2-21
b B =11 [l o101 @ TN o]0 A =1 [) PR 2-22
2,00 JTAG ittt h b o oh e e E e e e bt e e e bt e e e e et e e n b e e es 2-22
b2 R 11 0= TP PP TR TPPPPP 2-22
2.12 Hardware Development System (HDS) MOUIE...........uuiiiiiiiieiiiiiiiiiicce e e e e 2-23
2.13 Clock Synthesis (DSP1627/28/29 ONIY)uuuiiiiiieiiiiiiiiiiit ettt e e e e e e e e s nnenae s 2-23
214 POWET MABNAGEMIENT ...ttt ettt e e e eaeaeeeeas 2-23

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

2 Hardware Architecture

This chapter presents an overview of the hardware in the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628,
and DSP1629. First, an overall view of the architecture is discussed; then, each major functional block is
described. The following chapters give full details on each block.

2.1 Device Architecture Overview
2.1.1 Harvard Architecture

Figure 2-1 shows a view of a simple operation in the DSP1611/17/18/27/28/29 architecture to demonstrate funda-
mentally how an instruction is processed. The architecture is a Harvard architecture defined as having two sepa-
rate memory spaces. The first is the instruction/coefficient space or program space that is referred to in this
manual as the X-memory space. The second is the data memory space that is referred to as the Y-memory
space. Each memory space has a corresponding address arithmetic unit. In the instruction/coefficient memory
space, the program addressing unit (XAAU) places addresses on the program address bus (XAB). In this example,
these addresses go to the internal ROM that, then, places instructions on the program data bus (XDB). The
instructions are decoded in the control block that, in turn, provides control signals to all of the processor sections.
The control signals respond to instructions that, in this example, call for arithmetic operations on data residing in
the RAM. The data addressing unit (YAAU) addresses the RAM over the data address bus (YAB), and data is
transferred between the RAM and data arithmetic unit (DAU) over the data bus (YDB). The power of the architec-
ture lies in the parallel operations that are possible. In this case, instruction processing, data transfer, and arith-
metic operations can all be done simultaneously.

ROM XAB PROG. COUNTER
INSTRUCTIONS 1 DATA
16 PROGRAM ARITHMETIC

ADDRESS UNIT

UNIT
XDB | 16 YDB @

— DATA YAB
CONTROL —

e ADDRESS 16 RAM

UNIT

5-4140

Figure 2-1. Harvard Architecture

Lucent Technologies Inc. 2-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.1 Device Architecture Overview (continued)
2.1.2 Concurrent Operations

Figure 2-2 shows the hardware view of an example of concurrent operations in the device. It also demonstrates the
flexibility of the memory spaces. In this example, the program is executing from the instruction cache. Instructions
are fed directly to the control section freeing the XAB. The program addressing unit (XAAU) is now addressing one
bank of the dual-port RAM (Bank 1) to transfer variable coefficients between the RAM and the DAU. It could alter-
natively have been addressing the ROM to transfer fixed coefficients to the DAU. The data addressing unit (YAAU)
is addressing another bank of the dual-port RAM (Bank 4) to transfer data between the RAM and the DAU. Thus,
in one instruction cycle, two words of data can be transferred to the DAU simultaneously during internal calcula-
tions in the DAU. In the DAU, a multiplication can occur at the same time as an accumulation of a previous
product. In fact, a multiplication can occur in parallel with a variety of ALU operations.

CACHE INTERNAL
————| sus
— ~| CONTROL
1 -
INSTRUCTIONS e

RN

YAB DUAL-PORT DUAL-PORT XAB

YAAU RAM RAM < XAAU
— BANK 1 BANK 4

DATA 08 xom VARIABLE
COEFFICIENTS
Y Y
\ YREGISTER | |\ x REGISTER \
DAU ~
- MULTIPLIER
ACCUMULATOR

5-4141.a

Figure 2-2. Concurrent Operations in the DSP1611/17/18/27/28/29

2-2 Lucent Technologies Inc.

Information Manual

April 1998

2.1 Device Architecture Overview

2.1.2 Concurrent Operations

(continued)

(continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Hardware Architecture

Table 2-1 shows the sequence of instructions whose operations are described in the previous example. The pipe-
lining of functional operations and data transfers is illustrated. The interpretation of the instructions is as follows:

y =Y means place the contents of memory space Y in register y. In the actual instruction, Y could be replaced by
*rM++. *rM++ denotes the memory location pointed to by the address in register rM (M = <0—3>) and postincre-

ment the address. Similarly, x = X means place the contents of memory space X in register x. In the actual

instruction, X could be replaced by *pt++. *pt++ denotes the memory location pointed to by the address in the pt
register and postincrement the address. p = xxy means multiply the data in registers x and y and put the result in

register p. a0 = a0 + p means add the value in p to the previous value in accumulator a0. The subscripts are

attached to indicate the order of the operation and to demonstrate the flow of the results of operations on y and x.
In this example, an accumulation takes place during every instruction cycle but there is a delay of three instructions

from the data into the x and y registers to the final accumulation.

Table 2-1. Pipeline Flow for Concurrent Operations

Instruction # Accumulator Multiplier Registers
(1) a0o=a0-1 + po P1=X1,4Y1 y2=Y2, X2 = X2
(2) a01 = alo + p1 P2 = X2 4 Y2 y3=1Y3, X3 = X3
3) a02 = al1 + p2 P3 = X3 4 Y3 ya=Ya, X4 = X4

The most efficient programs use the parallelism as described above to the fullest extent. The instructions that

allow concurrent operations are the multiply/ALU instructions with their associated data transfers and are described
in detail in Chapter 4, Instruction Set.

Lucent Technologies Inc.

2-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Hardware Architecture

2.1 Device Architecture Overview

2.1.3 Device Architecture

(continued)

Information Manual
April 1998

Figures 2-3, 2-4, 2-5, 2-6, 2-7, and 2-8 show the block diagrams for DSP1611, DSP1617, DSP1618, DSP1627,
DSP1628, and DSP1629 processors. The major blocks are the DSP1600 processor core, the memories, the bit
manipulation unit, the external memory interface, the serial input(s)/output(s), the parallel input/output, the bit 1/O,

the JTAG, and the timer.

DB[15:0] AB[15:0]
A

A

A A A A

A

A

RWN EXM DSEL /O EROM ERAMHI ERAMLO

A

ioc

EXTERNAL MEMORY INTERFACE & EMUX

A A A

JTAG

jtag
JCON'

D
BYPASS'

BREAKPOINT'

@©
o
[
5
SIEIE 3
(] - <
(%]
0
>
z

TRACE'

» TDO

TDI

TCK

T™S

TIMER

timerc

timer0

SIo1
sdx(OUT)

srta

DUAL-PORT > ROM
RAM
12Kx16 | . 1Kx1s
CK > YAB YDB XDB XAB BMU
-
CKO —e
RSTB > aal
sToP > DSP1600 CORE
TRAP - > arl <
INT[L:0] >
IACK ¢
e« IDB ar3
VEC[3:0] OR I0BIT[7:4] <¢—| t -
DO2 OR PSEL1 <« PHIF g
OLD2 OR PODS <} » =
OCKZ O PSEL? = | o
OBE2 OR POBE ¢ «—»|[pstat || [powerc | S102
SYNC2 OR PSELO ¢ M sdx2(OUT)
v
ICK2 OR PBO e dxO(IN
< pdxO(IN) BIO | srta2 |

ILD2 OR PIDS -

DI2 OR PB1 =

Yvyyvy

IBF2 OR PIBF =
DOEN2 OR PB2 =

SADD2 OR PB3 =

IOBIT[3:0] OR PB[7:4] <

Yvy

pdx0(OUT)

shit

tdms2

chit

}

sdx2(IN)

sioc2

e

Di1

ICK1

ILD1

IBF1

Yyvyy

tdms

sdx(IN)

sioc

saddx

LA

DO1

OCK1
OLD1

\J

\J

OBE1
SYNC1

A A

SADD1

Yyvyvyy

T These registers are accessible through external pins only.

2-4

Figure 2-3. DSP1611 Block Diagram

DOEN1

5-4142.a

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.1 Device Architecture Overview (continued)
2.1.3 Device Architecture (continued)

DB[15:0] AB[15:0] RWN EXM DSEL 1/O EROM ERAMHI ERAMLO
A A A A A A A A i

Y JTAG
BOUNDARY-SCAN
loc EXTERNAL MEMORY INTERFACE & EMUX » TDO
I i) JCONT o
| <=
ounpor - i e
RAM
Kxis | - 24K x 16 BYPASST < ™S
HDS
kI _ BREAKPOINT?
- YAB YDB XDB XAB BMU
CKO -
RSTB > aal
?;C/ii > DSP1600 CORE aro TIMER
o — - fimerc
INT[L:0] >
- ar2 -
<> IDB ar3
VEC[3:0] OR I0BIT[7:4] <¢—}| t | ——p] sio1 DI1
DO2 OR PSEL1 <—|» IO |- sdx(OUT) » ICK1
OLD2 OR PODS <} » i » ILD1
OCK2 OR PSEL2 <} » srta » IBF1
OBE2 OR POBE - I PSTAT! | [powerc | SI02 —— » DO1
SYNC2 OR PSELO <—{» , sdx2(0UT) [wms | » OCK1
ICK2 OR PBO < U dx<0—7>(IN
P (N) BIO sta2 SaxIN) » OLD1
ILD2 OR PIDS <} »| X - » OBEL
DI2 OR PB1 «—}» pdx<0—7>(0UT) tdms2 g SYNC1
sloc -
IBF2 OR PIBF chit sdx2(IN)
DOEN2 OR PB2 <« - [sadix | > SADDL
SADD2 ORPB3 <—{»| |_ f [socz | » DOEN1
IOBIT[3:0] OR PB[7:4] <} » D saddx2
T These registers are accessible through external pins only.
5-4142.b

Figure 2-4. DSP1617 Block Diagram

Lucent Technologies Inc. 2-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.1 Device Architecture Overview (continued)
2.1.3 Device Architecture (continued)

DB[15:0] AB[15:0] RWN EXM DSEL I/O EROM ERAMHI ERAMLO
A A A A A A A A A

A
ioc EXTERNAL MEMORY INTERFACE & EMUX
A A A
> RAM4
- »| 1Kx16
ROM?: [- JTAG
16K x 16 BOUNDARY-SCAN
> A A
- 00
JCON' < DI
DUAL-PORT || o7 - TCK
RAM[3:1] |
3Kx16 [o BYPASS' N ™S
edr HDS
LA | BREAKPOINT!
CKI >
> YAB YDB XDB XAB BMU
s - TRACE
CKO -
-
sSTOP >
> DSP1600 CORE ar0
TRAP - > - = TIMER
e . 0
IACK ¢
<> DB ar3
VEC[3:0] OR I0BIT[7:4] <¢—— t pra—— sio1 DIl
DO2 OR PSEL1 <& PHIF | sdx(OUT) » ICK1
OLD2 OR PODS < » . » ILD1
OCK2 OR PSEL2 <} » » IBF1
OBE2 OR POBE & - I PSTAT! | I powerc | sl02 — » DO1
SYNC2 OR PSELO <—| sdx2(0UT) [tams | <l » OCK1
U pdx0(IN) BIO srtaz sax(N) » OLD1
ILD2 OR PIDS «—|—»| X i o OBEL
DI2 OR PB1 < » pdx0(OUT) sbit tdms2 i >
IBF2 OR PIBF bit <|—» SYNC1
-€ col
[it | Sdx2(IN) <« | » sADDL
DOEN2 OR PB2 <} — [sadax |
slioc. [
SADD2 OR PB3 < - * ;1 > DOENt
IOBIT[3:0] OR PB[7:4] < < saddx2

T These registers are accessible through external pins only.
$ DSP1618x24 contains 24K x 16 ROM.
5-4142.c

Figure 2-5. DSP1618 Block Diagram

2-6 Lucent Technologies Inc.

Information Manual
April 1998

2.1 Device Architecture Overview (continued)
2.1.3 Device Architecture (continued)

DB[15:0] AB[15:0]
A A

RWN
A

EXM
A

10
A

EROM ERAMHI ERAMLO
A A i

JTAG

jtag
JCON'

D
BYPASS?

@
o
c
b
o
S >
= o
=
0
(e
>
Z
A

HDS
BREAKPOINT'

TRACE'

>
|

A

TIMER

timerc

timer0

SIo1

sdx(OUT)

srta

tdms

Yyvyy

A
ioc EXTERNAL MEMORY INTERFACE & EMUX
A A A
DUAL-PORT [> ROM: i
RAM
6K x 16 - > o 36K x 16
Y
CK > YAB YDB XDB XAB BMU
e
CKO -
RSTB > aal
STOP > DSP1600 CORE ar0
TRAP - > S <P
INTLL:0] -
IACK =
<« > DB ar3
VEC[3:0] OR I0BIT[7:4] <¢——» PHIF t —
DO2 OR PSELL <} » -
OLD2 OR PODS <«—|—»
OCK2 OR PSEL2 < »
PSTAT
OBE2 OR POBE - powerc cLock
SYNC2 OR PSELO <——»-| M pdx0(IN) SYNTHESIZER Slo2
U
ICK2 OR PBO <—}—» sdx2(0UT)
~ 17 x plic
ILD2 OR PIDS <« —» pdx0(OUT) BIO
DI2 OR PBl | -n
IBF2 OR PIBF &
DOEN2 OR PB2 <} » sdx2(IN)
SADD2 OR PB3 <« »
i
IOBIT[3:0] OR PB[7:4] <« »| |«
>

sdx(IN)

sioc

saddx

A A

YYYVYYY

T These registers are accessible through external pins only.
$ DSP1627x32 contains 32K x 16 internal ROM.

Figure 2-6. DSP1627 Block Diagram

Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Hardware Architecture

TDO
TDI

TCK
T™S

Di1
ICK1
ILD1
IBF1
DO1
OCK1
OLD1
OBE1
SYNC1
SADD1
DOEN1

5-4142.d

2-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.1 Device Architecture Overview (continued)
2.1.3 Device Architecture (continued)

DB[15:0] AB[15:0] RWN EXM DSEL I/0 EROM ERAMHI ERAMLO
A A A A A A A A A

A
ioc EXTERNAL MEMORY INTERFACE & EMUX
A A A A
> RAM4*
- 1K x 16
ROM [+ - ITAG
48K x 16 _ e BOUNDARY-SCAN
- 0
.- ECCP JCONT B DI
DUAL-PORT o | - o" < TCK
RAM < o
157K x16 [BYPASST = ™S
edr HDS - TRST
Kl _ y y BREAKPOINT'
XAB XDB YAB YDB BMU
o - TRACE!
CKO -
-
STOP >
DSP1600 CORE ar0 TIMER
TRAP - > .
Wi :
- ar2 -
IACK - [a2]
<> IDB ar3
VEC[3:0] OR IOBIT[7:4] <a—|—» i Siol bi1
DO2 OR PSTAT <> PHIF | sdx(OUT) » ICK1
OLD2 OR PODS -} » » ILD1
OCK2 OR PCSN | » [st | > IBF1
osezorpove <t || o] | [pover] | [—eroeR oo
SYNC2 OR PBSEL <-|»{ SYNTHESIZER S162 » OCK1
ICK2 OR PBO < | U pdx0(IN) M sdx2(0UT) S » OLD1
ILD2 OR PIDS @} | X n BIO » OBEL
DI2 OR PB1 | » pdx0(OUT _ >
- . sioc » SYNC1
: » SADD1
DOEN2 OR PB2 | sdx2(IN) [saddx ooent
SADD2 OR PB3 @ » f
IOBIT[3:0] OR PB[7:4] <t} —» <
:

T These registers are accessible through external pins only.
F DSP1628x16 contains a total of 16K x 16 internal RAM, and DSP1628x08 contains a total of 8K x 16 internal RAM.

Figure 2-7. DSP1628 Block Diagram

2-8 Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Hardware Architecture

2.1 Device Architecture Overview

(continued)

2.1.3 Device Architecture (continued)

DB[15:0] AB[15:0] RWN EXM /0 EROM ERAMHI ERAMLO
A A A A A A A A
Y JTAG
BOUNDARY-SCAN
ioc EXTERNAL MEMORY INTERFACE & EMUX = _
- 100
A A A JCONT TDI
DUAL-PORT < - > [Tk
RAM? ROM
16K/10K x 16 [> _ 48K x 16 BYPASST T™MS
HDS <|— TRST
K -~ BREAKPOINTT
YAB YDB XDB XAB BMU
CKO -
RSTB - aal
-
DSP1600 CORE
TRAP - > = TIMER
INTLL] -
- 2 .
A f—
<> IDB ar3
. . SIo1 DI1
VEC[3:0] OR I0BIT[7:4] <t—}—» PHIE <
DO2 OR PSTAT <« | » s sdx(OUT) » ICK1
OLD2 OR PODS <«—}» » ILD1
OCK2 OR PCSN <«—}—» >
PSTATT » IBF1
OBE2 OR POBE - powerc CLOCK 07 | td | » DO1
< »| M ms
SYNC2 OR PBSEL <«—|—» N pdx0(IN) SYNTHESIZER 52007 » OCK1
ICK2 OR PBO <} sax
ILD2 OR PIDS <—|—» pdx0(OUT) BIO - SdIN)
sra2 » OBE1
sloc -
IBF2 OR PIBF ¢ SYNC1
- » SADD1
DOEN2 OR PB2 = - sdx2(IN)
SADD2 OR PB3 <« » > » DOEN1
IOBIT[3:0] OR PB[7:4] <a—|—» -
>
T These registers are accessible through external pins only.
$ DSP1629x16 contains 16K x 16 internal RAM, and DSP1629x10 contains 16K x 10 internal RAM.
Figure 2-8. DSP1629 Block Diagram
Lucent Technologies Inc. 2-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Hardware Architecture

2.1 Device Architecture Overview

(continued)

2.1.3 Device Architecture (continued)

Table 2-2. Symbols Used in the Block Diagrams

Symbol Name/Description
aa0—aal Alternate Accumulators
ar0—ar3 Auxiliary BMU Registers
BIO Bit Input/Output Unit
BMU Bit Manipulation Unit
BREAKPOINT | Four Instruction Breakpoint Registers
BYPASS JTAG Bypass Register
chit Control Register for BIO
ECCP Error Correction Coprocessor (DSP1618 and DSP1628 only)
ear ECCP Address Register (DSP1618 and DSP1628 only)
edr ECCP Data Register (DSP1618 and DSP1628 only)
eir ECCP Instruction Register (DSP1618 and DSP1628 only)
EMUX External Memory Multiplexor
HDS Hardware Development System
ID JTAG Device Identification Register
IDB Internal Data Bus
ioc I/O Configuration Register
JCON JTAG Configuration Register
JTAG Standardized Test Port Defined in IEEE P1149.1
jtag 16-bit Serial/Parallel Register

pdx0—pdx7(IN)

Parallel I/O Data Transmit Input Registers <0—7>

pdx0—pdx7(OUT)

Parallel I/O Data Transmit Output Registers <0—7>

PHIF Parallel Host Interface (DSP1611/18/27/28/29 only)
phifc Parallel Host Interface Control Register (DSP1611/18/27/28/29 only)
plic Phase-lock Loop Control Register (DSP1627/28/29 only)
P1O Parallel Input/Output Unit (DSP1617 only)
pioc Parallel I/O Control Register (DSP1617 only)
powerc Power Control Register
PSTAT Parallel I/O Status Register
ROM Internal ROM (1 Kword for DSP1611, 24 Kwords for DSP1617, 16 Kwords
for DSP1618, 24 Kwords for DSP1618x24, 36 Kwords for DSP1627,
32 Kwords for DSP1627x32, 48 Kwords for DSP1628 and DSP1629)
saddx Multiprocessor Protocol Register
shit Status Register for BIO
sdx(IN) Serial Data Transmit Input Register
sdx2(IN) Serial Data Transmit Input Register for SIO2
sdx(OUT) Serial Data Transmit Output Register
sdx2(0OUT) Serial Data Transmit Output Register for SI02
SIo1 Serial Input/Output Unit #1
SI02 Serial Input/Output Unit #2

2-10

Lucent Technologies Inc.

Information Manual

April 1998

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Hardware Architecture

2.1 Device Architecture Overview (continued)

2.1.3 Device Architecture (continued)

Table 2-2. Symbols Used in the Block Diagrams (continued)

Symbol Name/Description
sioc Serial I/0 Control Register
sioc2 Serial I1/0 Control Register for SIO2
srta<l, 2> Serial Receive/Transmit Address Registers
tdms<1, 2> Serial I/0 Time-division Multiplex Signal Control Registers
TIMER Programmable Timer
timer0 Time Running Count Register
timerc Timer Control Register
TRACE Program Discontinuity
XAB Program Space Address Bus
XDB Program Space Data Bus
YAB Data Space Address Bus
YDB Data Space Data Bus

DUAL-PORT RAM

Internal dual-port RAM (12 Kwords for DSP1611, 4 Kwords for DSP1617
and DSP1618, 6 Kwords for DSP1627, 8 Kwords for DSP1628x08,

16 Kwords for DSP1628x16, 10 Kwords for DSP1629x10, and 16 Kwords for
DSP1629x16)

Lucent Technologies Inc.

2-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Information Manual

Hardware Architecture April 1998
2.1 Device Architecture Overview (continued)
2.1.4 Memory Space and Bank Switching
Table 2-3 describes the two memory spaces.
Table 2-3. Memory Space
Terminology Address Address Memory Segments Data Bus
Source Bus Accessed
Data (Y) memory space (see Section YAAU YAB RAM[1:x]" YDB
3.2.1). 10
ERAMLO
ERAMHI
Program or instruction/coefficient (X) XAAU XAB [RAML:x]T XDB
memory space (see Section 3.2.2). IROM
EROM

tx=4for DSP1617 and DSP1618.
x = 6 for DSP1627.
x = 8 for DSP1628x08.
x = 10 for DSP1629x10.
x = 12 for DSP1611.
x = 16 for DSP1628x16 and DSP1629x16.

There are two memory spaces with separate addressing units, address buses, and data buses. The actual memo-
ries associated with the spaces are enabled automatically based on the address. For the data memory space,
either internal dual-port RAM or external memory is used. The external memory is divided into three segments.
The internal dual-port RAM is divided into multiple 1K word banks for DSP1611/17/18/27/28/29. For the program
ni%mory space, either internal ROM, internal dual-port RAM, or external ROM can be addressed. There are

= 65,536 addresses in each of the two memory spaces; the total address space for each is divided into seg-
ments and each segment is associated with a physical memory. The arrangement of the segments is called the
memory map. There is one map for the data memory space, and there are four possible memory maps for the pro-
gram space. Memory maps are discussed in Section 3.2, Memory Space and Addressing and Section 6.1, EMI

Function.

2-12

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.1 Device Architecture Overview (continued)
2.1.4 Memory Space and Bank Switching (continued)

The internal dual-port RAM can be accessed in both the Y space and the X space. This RAM is arranged in multi-
ple 1 Kword banks; and as long as the banks accessed are different, simultaneous data and instruction accesses
can be made. If the same bank is accessed from both memory spaces simultaneously, an extra instruction cycle
(one wait-state) is automatically initiated to carry out the transfer. The data transfer is performed first.

It is important to note that the selection of physical memory within a memory space is automatic because it only
depends on choice of address, and no extra time is involved to switch banks except in the case of accessing the
same bank of internal RAM just described.

2.1.5 Internal Instruction Pipeline
The internal pipeline of fetch, decode, and execute is hidden from the user. The latencies involved are automati-

cally controlled without external intervention. The following is provided for information only. The relevant hardware
is shown in Figure 2-9.

X SPACE MEM. XAB PC

INSTRUCTIONS | [
L 1 16 DAU
I] XAAU
—

—

XDB | 16 YDB |16

AAU YAB

CONTROL >
DECODE YAAU 16 D RAM

DAU
DECODE

5-4143

Figure 2-9. Hardware Block Diagram for Internal Pipeline

Lucent Technologies Inc. 2-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Hardware Architecture

2.1 Device Architecture Overview

2.1.5 Internal Instruction Pipeline

Information Manual
April 1998

(continued)

(continued)

Table 2-4 illustrates the internal pipeline for single-cycle instructions such as a multiply-ALU instruction involving a
read from RAM to the DAU. Each instruction cycle corresponds to one cycle of the non-wait-stated CKO. The
instructions shown on the XAB bus will appear one phase (1/2 an instruction cycle) later on the external memory

address bus.

Table 2-4. Single-Cycle Instruction Internal Pipeline

Instruction CKO XAB XDB AAU DAU YAB YDB
Cycle Level DECODE DECODE
1 1 xaddr 1 instro — instr-1 yaddr-1 —
1 0 — — instro instr-1 — data-2
2 1 xaddrz2 instr 1 — instro yaddro —
2 0 — — instr 1 instro — data-1
3 1 xaddrs instrz — instr 1 yaddr 1 —
3 0 — — instrz instr 1 — datao
4 1 xaddra instrs — instr2 yaddrz2 —
4 0 — — instra instr2 — data1

The following describes the actions associated with each of the steps shown in bold in Table 2-4.

Instruction CKO Process Description
Cycle Level

1 1 The program counter (PC) places xaddr 1 on the address bus XAB to program memory
(X space memory).

1 0 The program memory is accessed.

2 1 The program memory responds by placing instr 1 on the instruction data bus (XDB).

2 0 The AAU decoder decodes the instruction and sets up the YAAU to address the RAM.

3 1 The YAAU places yaddr 1 on the address bus YAB to the RAM. Also, the DAU decoder
decodes instr 1.

3 0 The decoders direct a RAM read of data1 to the DAU.

4 1 The RAM is being accessed.

4 0 The RAM places the data on the YDB, and it is loaded into the DAU.

2-14 Lucent Technologies Inc.

Information Manual

April 1998

2.1 Device Architecture Overview

2.1.5 Internal Instruction Pipeline

(continued)

(continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Hardware Architecture

Table 2-5 illustrates the internal pipeline for a two-cycle fetch from X-memory space by using the pt register and a
concurrent compound read/write of the Y-memory space by using the multiply/ALU instruction: Z:y X =*pt++.

Table 2-5. Two-Cycle Fetch Internal Pipeline

Instruction CKO XAB XDB AAU DAU YAB YDB
Cycle Level DECODE DECODE
1 1 xaddr 1 instro — instr-1 yaddr-1 —
1 0 — — instro instr-1 — data-2
2 1 xaddrz2 instr 1 — instro yaddro —
2 0 — — instr 1 instro — data-1
3 1 ptaddr instr2 — instr 1 yaddr 1r —
3 0 — — instr 1 instr 1 — data0
4 1 xaddrs coeff — instr 1 yaddr 1w dataiw
4 0 — — instrz instr 1 — datair
5 1 xaddra instra — instrz yaddrz2 —

The following describes th

e actions associated with each of the steps shown in bold in Table 2-5.

dataw.

Instruction CKO Process Description
Cycle Level

1 1 The program counter (PC) places xaddr 1 on the address bus XAB to program memory
(X space memory).

1 0 The program memory is accessed.

2 1 The program memory responds by placing instr 1 on the instruction data bus (XDB).

2 0 The AAU decoder decodes the instruction, and sets up the YAAU to address the RAM
and the XAAU to place the contents of the pt register on the XAB. The control section
recognizes a two-cycle instruction.

3 1 The YAAU places yaddr 1r on the address bus YAB to the RAM. Also, the DAU decoder
decodes instr 1. The contents of the pt register (ptaddr) are placed on the XAB.

3 0 The decoder directs a RAM read of datair to the DAU. The RAM is accessed.

4 1 The data, coeff, from the X memory is transferred to the x register. The dataiw is
transferred to the RAM from the y register.

4 0 The datair is transferred from the RAM to the y register. The RAM is written with

Lucent Technologies Inc.

2-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.2 Core Architecture Overview
2.2.1 Data Arithmetic Unit

The data arithmetic unit (DAU) is the main execution unit for signal processing algorithms. The DAU consists of a

16-bit by 16-bit multiplier, a 36-bit ALU, and two 36-bit accumulators: a0 and al. The DAU performs two's comple-
ment, fixed-point arithmetic and is usable as a multiply/accumulate or ALU structure. The DAU multiplier and adder
operate in parallel requiring, together, one instruction cycle for their execution. Microprocessor-like instructions are
executed by the ALU.

XDB
i [xany |
'
ADDER
CONTROL [«—| CACHE ; o :XAB
pr
cloop (7) pc(1e) [FT——
< - pi (16)
- ’ pt (16)
ins (16) alf (16)
inc (16) mwait (16)
I \
IDB
[—
] y BRIDGE YDB
A ——
\J \J Y
DAU YAAU
| x@e) | [yhae) | yiae | 1 (16)
-1,0,1,2
k (16)
\ \
16 x 16 MPY Y
32
p (32) MUX
SHIFT (-2, 0,1, 2) Y #
" ==
MUX ADDER YAB
—
\d 36 c0 (8) /
ALUISHIFT cl(®) MUX
‘ c2 (8)
16
20 36) auc (16) 10 (16)
psw (16)
al (36) rl (16)
L] 16 r2 (16)
A ybase (16) r3 (16)

EXTRACT/SAT

5-1741.a

Figure 2-10. DSP1600 Core Functions

2-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.2 Core Architecture Overview (continued)
2.2.1 Data Arithmetic Unit (continued)

The multiplier executes a 16-bit by 16-bit multiply and stores the 32-bit product in the product register (p) in one
instruction cycle. Data for the multiplier's inputs comes from the 16-bit x register and the upper 16 bits (high half) of
the 32-bit y register.

For multiply/ALU instructions, the x register can be loaded with coefficients from X-memory space or data from Y-
memory space. The high half of the y register can be loaded from Y-memory space or the high or low half of an
accumulator. If the single-cycle square mode is set in the auc register, an instruction that loads the y register also
loads the x register with the same data. A multiply instruction then performs a squaring function.

X, ¥, yl, p, pl, a0, a0l, a1, and all are also included in the general set of registers used for data move instructions.
If the 32-bit registers are used in 16-bit instructions, the | suffix identifies the low half of the register and no suffix
identifies the upper half. For example, a0 means bits 31—16 of a0 and a0l means bits 15—0.

In addition to being used as an adder in the multiply/accumulate instructions, the 36-bit ALU provides the capability
to implement functions and algorithms in the DSP1611/17/18/27/28/29 device that conventionally are executed in a
microcomputer or a microprocessor. Operands to the ALU can be data iny, p, a0, or al, or they can be immedi-
ates. The ALU sign-extends 32-bit operands from y or p to 36 bits, and it produces a 36-bit output (32 data bits
and 4 guard bits) in one instruction cycle. Either accumulator can receive the 36-bit result. The ALU supports
dyadic (two-operand) functions including addition, subtraction, and logical AND, OR, and XOR. It also supports
monadic (single-operand) functions including rounding, two's complement negation, incrementing, and left and
right shifts of 1, 4, 8, or 16 bits. More general shifting is available with the bit manipulation unit (see Section 2.5, Bit
Manipulation Unit (BMU)).

The auc (arithmetic unit control) register has five functions. It selects or deselects clearing of the lower 16-bit word
of the y register and accumulators when the upper word is written. It selects or deselects saturation on overflow for
the accumulators. It selects one of four alignments of data in the p register. It controls whether the pseudorandom
sequence generator is reset if the pi register is written (see Section 5.1.6, DAU Pseudorandom Sequence Genera-
tor (PSG)). It selects the single-cycle squaring mode (See Section 5.1.2, Multiplier Functions). The auc register is
reset to all zeros at chip reset. The psw (processor status word) register contains flags from ALU operations and
provides access to the guard bits in the accumulators. The c<0—2> counters are 8 (signed) bits wide and can be
used to count events such as the number of times the program has executed a sequence of code. They are con-
trolled by the conditional instructions and provide a convenient method of program looping.

2.2.2 Y Space Address Arithmetic Unit (YAAU)

The YAAU supports high-speed, register-indirect data memory addressing with postmodification of the address
register. Four general-purpose 16-bit registers r<0—3> store read or write addresses for on-chip or off-chip RAM.
Two 16-bit registers rb and re allow zero-overhead modulo addressing of data for efficient filter implementations.
Two signed registers j and k are used to hold user-defined postincrements. Fixed increments of +1, —1, and +2 are
also available, but the +2 increment is only available with compound addressing. Four compound-addressing
modes are provided to make read/write operations more efficient.

The YAAU allows direct addressing of data memory. During direct addressing, the base register (ybase) stores the
11 most significant bits of the address. The direct address instruction contains 5 bits that are concatenated with
the 11 bits in ybase to form a complete 16-bit address. The instruction also specifies one register (DR) of 16 pos-
sible registers. A data move then takes place between the memory location specified by the 16-bit address and the
register selected by the DR field.

The YAAU decodes the 16-bit data memory address and provides individual enables for each 1 Kword bank of on-
chip dual-port RAM and three external data memory segments (ERAMHI, ERAMLO, and 10). One individual
address in the 10 memory segment also has an individually decoded output DSEL! facilitating glueless memory-
mapped I/0.

1.Not available in the DSP1627/28/29.

Lucent Technologies Inc. 2-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.2 Core Architecture Overview (continued)
2.2.3 X Space Address Arithmetic Unit (XAAU)

The XAAU contains registers and an adder that control the sequencing of instructions in the processor. The pro-
gram counter (PC) automatically increments through the instruction space and specifies addresses for instruction
fetches. The interrupt return register (pi) and the subroutine return register (pr) are automatically loaded with
return addresses that direct the return to main program execution from interrupt service routines and subroutines.
High-speed, register-indirect instruction/coefficient memory addressing with postincrementing is done by using the
pt register. The signed register i is used to hold a user-defined postincrement, or a fixed postincrement of +1 is
available.

The XAAU of the DSP1600 decodes the 16-bit instruction/coefficient address and produces enable signals for the
appropriate X-memory segment. The possible X segments are internal ROM, each 1 Kword bank of dual-port
RAM, and external ROM. The locations of these memory segments depend on which of the four memory maps is
selected (see Section 3.2, Memory Space and Addressing).

A core security mode can be selected by mask option®. This prevents reading out the contents of on-chip memo-
ries from off-chip.

2.2.4 Cache

Under user control, the on-chip cache memory can store instructions for repetitive operations to increase the
throughput and the coding efficiency of the device. The cache can store up to 15 instructions at a time and can
repeatedly cycle through those instructions up to 127 times without using user defined loop, test, and conditional
branch instructions. The set of instructions is executed as it is loaded into the cache, so zero-overhead looping is
achieved. The cache iterative count can be specified either as an immediate value at assembly time or can be
determined by the use of the cloop register. Instructions previously stored in the cache can be re-executed without
reloading the cache.

Note: Instructions in a cache loop are noninterruptible.

Cache instructions eliminate the overhead if repeating a block of instructions. Therefore, the cache reduces the
need to implement in-line coding in order to maximize the throughput. A routine using the cache uses fewer ROM
locations than an in-line coding of the same routine.

For two-operand multiply/arithmetic logic unit (ALU) instructions that do not require a write to memory, executing
from the cache decreases the execution time from two instruction cycles to one instruction cycle resulting in an
increase in throughput.

2.2.5 Control

The control block provides overall DSP1611/17/18/27/28/29 system coordination. Inputs are provided to the con-
trol block over the program data bus (XDB). The instructions are decoded by hardware in the control block. The
execution of the phases of an instruction is controlled by hardware throughout the DSP1611/17/18/27/28/29
device. The hardware sequences instructions through the pipeline and controls the 1/O, the processing, the mem-
ory accesses, and the timing necessary to perform each operation.

1.The internal ROM memory of the DSP1611 is only available with a standard boot routine. DSP1611 devices do not offer the secure mask
option.

2-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.3 Internal Memories

All memory (internal and external) is 16 bits wide. The DSP1611 ROM contains 1K words and is preprogrammed
with a variety of boot routines that make it easy for systems to download programs and data to the DSP1611’s
large internal RAM space. The DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629 all feature large, mask-
programmable internal ROM memories that can be encoded with programs, fixed data, or both. The DSP1617
ROM contains 24 Kwords, the DSP1618 ROM contains 16 Kwords, the DSP1618x24 ROM contains 24 Kwords,
the DSP1627 ROM contains 36 Kwords, the DSP1627x32 ROM contains 32 Kwords, the DSP1628 contains

48 Kwords, and the DSP1629 contains 48 Kwords. The internal ROM of the code to support the hardware devel-
opment system is included in ROMless devices supplied by Lucent Technologies and should be included in cus-
tomer-created ROM programs.

The internal dual-port RAM contains multiple banks of zero-wait-state memory. Each bank consists of 1K of 16-bit
words and has separate ports to the instruction/coefficient buses and data buses. A program can reference the
memory from either port at any time transparently and without restriction. The DSP1600 core automatically per-
forms the multiplexing. In the event that references to both ports of a single bank are made simultaneously, the
DSP1600 core automatically performs the data port access and then inserts a wait-state followed by the instruc-
tion/coefficient port access.

A program can be downloaded from slow off-chip memory into the dual-port RAM and then executed with-

out wait-states . Dual-port RAM is also useful for improving the performance of convolution in cases where the
coefficients are adaptive. Full-speed, remote, in-circuit emulation is possible because the dual-port RAM can be
downloaded through the JTAG port. This download capability is also useful for self-test.

2.4 External Memory Interface (EMI)

The DSP1611/17/18/27/28/29 provides a 16-bit external address bus (AB[15:0]) and a 16-bit, external, bidirectional
data bus (DB[15:0]). These buses are multiplexed between the internal instruction/coefficient memory buses (X
space) and the data memory buses (Y space). The multiplexing is automatically controlled by the core that deter-
mines the memory space to be accessed from the instruction, the memory map, and the address.

Because only Y space or X space can be accessed at one time through the EMI, a sequencer automatically han-
dles the case when a program calls for simultaneous access of X space and Y space. For example, if a program is
being executed from external ROM and an instruction calls for a read from external RAM, the sequencer first
accesses the X space external ROM and then reads the data from external RAM. One extra instruction cycle is
required, in addition to any external wait-states that are present if external memory is used, compared to internal
operation.

Four external memory enables (ERAMLO, 10, ERAMHI, and EROM) are outputs that control the selection of exter-
nal memory segments. One of the 10 addresses is individually decoded to provide an enable (DSEL?) for memory-
mapped I/O peripherals.

Each of the five enables can be programmed individually to delay their assertion one-half of a free-running CKO
period from the beginning of the external cycle. This allows a mix of high- and low-speed devices without bus con-
flicts or expensive glue logic. The DSEL! enable is normally active-low, but it can be programmed to be active-
high. The ERAMLO, ERAMHI, EROM, and 10 signals are active-low.

Each of the memory segments can have a different number of wait-states associated with it where a wait-state is
an extra instruction cycle inserted in the read or write cycle to allow for slower memories. The number of wait-
states is programmable from 0 to 15 by setting bits in the mwait register.

1.Not available in the DSP1627/28/29.

Lucent Technologies Inc. 2-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.4 External Memory Interface (EMI) (continued)

The DSP1611/17/18/27/28/29 allows writing to external program (X) memory. Bit 11 (WEROM) and bit 14
(EXTROM) of the ioc register enable the DSP to write the external X-memory space, which is normally read-only.
If WEROM is set high, a write to or read from ERAMLO, |10, or ERAMHI memory space asserts the EROM strobe
instead of the ERAM or 10 strobes, thereby allowing access to X memory. If the EXTROM bit is set in conjunction
with the WEROM bit, an entire 64K of EROM can be accessed. This feature is used by the hardware development
software, and it can be used in system applications to download a program into the external program memory
space.

If external data (Y) memory is written, the RWN signal goes low for an external cycle. The CKO output pin can pro-
vide a reference for external I/O timing. Either a free-running CKO or a wait-stated CKO can be selected. The flex-
ibility provided by the programmable options of the external memory interface allows the DSP1611/17/18/27/28/29
to interface gluelessly with a variety of commercial memory chips. A full description of the EMI is found in Chapter
6, External Memory Interface.

2.5 Bit Manipulation Unit (BMU)

The BMU adds extensions to the DSP1600 core instruction set that execute in one or two cycles for more efficient
bit operations on accumulators. The BMU contains logic for barrel shifting, normalization, and bit-field insertion or
extraction. The unit also contains a set of 36-bit alternate accumulators that can be shuffled with the working set.
Flags returned by the BMU mesh seamlessly with the conditional instructions. The BMU contains four 16-bit auxil-
iary registers ar<0—3> that contain input or output operands. The BMU is fully described in Chapter 13, Bit Manip-
ulation Unit.

The following barrel shift operations are available: arithmetic or logical shifts and left or right shifts. The shift
amount is from immediate data in the second word of the instruction, from data in ar<0—3>, or from data in an
accumulator. The normalization function is done on the accumulators by finding the exponent that is the number
of redundant sign bits of a two's complement number. The calculated exponent is placed in one of the ar
registers. The original accumulator value is shifted or normalized with respect to bit 31. In bit extraction, a contigu-
ous field of bits is moved from the source accumulator to the lowest-order bits of the destination accumulator. In bit
insertion, a contiguous field of bits in the lowest-order position of the source accumulator replaces bits at an offset
position in the destination accumulator. The other bits in the destination accumulator are filled from the corre-
sponding bits in the second source accumulator. The two alternate accumulators are used to shuffle data with one
or two working accumulators. With the shuffle instruction, data is moved from a source accumulator to an alternate
accumulator and the old data in the alternate accumulator is moved to a destination accumulator. Only one instruc-
tion cycle is required for swapping all 36 bits.

2.6 Serial Input/Output (SIO) Units

S101 and SI102 are asynchronous, full-duplex, double-buffered channels that easily interface with other DSP16XX1
devices in a multiple-processor environment. Commercially available codecs and time-division multiplex (TDM)
channels can be interfaced to the SIO with few, if any, additional components. The SIO units are fully described in
Chapter 7, Serial I/O.

An 8-bit serial protocol channel is also available in the multiprocessor mode. This feature uses the SADD pin and
saddx register to transmit an 8-bit software-definable field in addition to the address of the called processor. This
feature is useful for transmitting the source address of the data, high-level framing information, or bits for error
detection and correction.

1.XX denotes the last two digits of the device name, e.g., XX = 11 for the DSP1611.

2-20 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.6 Serial Input/Output (SIO) Units (continued)

The following are some of the features of the SIO units:

m Strobes and clocks are either active or passive (driven by the DSP or from off-chip) to provide interface flexibility.
m Four selectable active clock speeds allow a variety of throughput rates.

m 8- or 16-bit data is supported.

= Input and output can be independently chosen to shift either MSB or LSB first.

= Input and output are independently configured.

2.7 Parallel Input/Output (PIO) (DSP1617 Only)

The DSP1617 has an 8-bit parallel I/O interface for rapid transfer of data with external devices such as other DSPs,
microprocessors, or peripheral 1/0 devices. Minimal or no additional logic is required to interface with peripheral
devices, and data rates of up to 20 Mbytes/s are obtained at an instruction cycle of 25 ns. Two maskable interrupts
are associated with the P10 unit. Although there is only one physical PIO port, there are eight logical P1O ports
pdx<0—7>. One of the eight logical ports is signaled by the state of the peripheral select pins (PSEL[2:0]). The
PIO is fully described in Chapter 8, Parallel /0 (DSP1617 Only).

The data path of the PIO contains the 8-bit input buffer pdxin and the 8-bit output buffer pdxout . In passive mode,
there are two pins that indicate the state of these buffers: the parallel input buffer full (PIBF) and the parallel output
buffer empty (POBE). The pdxin register is shadowed in some modes to allow the PIO to accept data on an inter-
rupt without disrupting its normal operation. In addition, there are two registers used to control and monitor the
P1O's operation: the parallel I/O control (pioc) register and the PIO status (PSTAT) register. The PSTAT register
can only be read by an external device, and it reflects the condition of the PIO. The pioc contains information
about interrupts and can be used to set the PIO in a variety of modes. Strobe widths are programmable through
the strobe field in the pioc. The PIO is accessed in two basic modes, active or passive. Input or output can be
configured in either of these modes independently. In active mode, the DSP is in control and provides the strobes.
In passive mode, the external device provides the strobes.

2.8 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

The PHIF is a passive 8-bit parallel port that can interface to an 8-bit bus containing other Lucent DSPs, micropro-
cessors, or peripheral I/0O devices. The PHIF port supports Motorola! or Intel? protocols and 8- or 16-bit transfers
configured in software. The port data rate depends on the instruction cycle rate. A 25 ns instruction cycle allows
the PHIF to support data rates up to 16 Mbytes/s assuming the external host device can transfer 1 byte of data in
25ns.

The PHIF is accessed in two basic modes, 8- and 16-bit modes. In 16-bit mode, the host determines an access of
the high or low byte. In 8-bit mode, only the low byte is accessed. Software-programmable features provide a
glueless host interface to microprocessors. The PHIF is fully described in Chapter 9, Parallel Host Interface (PHIF)
(DSP1611/18/27/28/29 Only).

1.MC68000is a trademark and Motorola is a registered trademark of Motorola, Inc.
2.Intel and Intellec are registered trademarks of Intel Corporation.

Lucent Technologies Inc. 2-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Hardware Architecture April 1998

2.9 Bit Input/Output (BIO)

The BIO provides convenient and efficient monitor and control of eight individually configurable pins. A control reg-
ister individually controls the directions of eight bidirectional control I/O pins (IOBIT[7:0]). If a pin is configured as
an output, it can be individually set, cleared, or toggled. If a pin is configured as an input, it can be read, tested, or
both. Flags returned by the BIO mesh seamlessly with the DSP1600 conditional instructions. The sbit and cbit
registers are used to configure the BIO and transfer data to or from the DSP. The BIO pins are multiplexed with
other device pins and are selected in the ioc register. The BIO is fully described in Chapter 10, Bit /O Unit.

2.10 JTAG

The DSP1611/17/18/27/28/29 incorporates extensive logic for a standard 4-pin test access port defined by the
IEEE P1149.1 standard known as JTAG. The test port fully conforms to the standard's requirements and is further
augmented by a number of custom features for self-test and on-chip emulation. The JTAG block contains instruc-
tion registers, data registers, and control logic and has its own set of instructions. It is controlled externally by a
JTAG bus master. The 4-pin port is designed to provide board-level test capability in which all of the chips on a
board would be connected in a serial path with test access to each chip. The following capabilities are provided by
the JTAG block:

1. A set of instructions can be downloaded through the JTAG port into the DSP dual-port RAM and executed pro-
viding self-test capability. The results of a block of tests can be read out by scanning one of the data registers in
the JTAG.

2. Boundary-scan can be done. All of the chip pins can be configured into a serial shift register that can be read or
written serially through the JTAG. If data is serially shifted into the JTAG scan register, it can be used to replace
the real chip inputs and outputs. Alternatively, the real chip data on the pins can be parallel-loaded into the scan
register and shifted out.

3. The JTAG can be used to access and control the on-chip hardware development system.

The JTAG block is fully described in Chapter 11, JTAG Test Access Port.

2.11 Timer

The timer can interrupt after a programmed interval or can provide repetitive interrupts at a programmed interval. It
provides more than nine orders of magnitude in the range interval selection.

The interrupt timer is composed of these blocks: the prescaler, the timer itself, the timer control register, the timer0
register, and the period holding register.

The prescaler divides the free-running CKO clock by one of 16 possible divisors from 2 to 65,536. This will provide
a wide range of interrupt delay periods depending on the device instruction cycle and clock divisor chosen.

The timer is a 16-bit down counter that can be loaded with an arbitrary number from software. It then counts down
to 0 at the clock rate provided by the prescaler. Upon reaching O count, an interrupt is issued to the DSP through a
vectored interrupt (bit 8 of inc and ins registers). At the discretion of the user, the timer will then either wait in a
quiescent state for another command from software or will automatically repeat the last interrupting period.

The timer control register (timerc) contains three fields affecting the timer. The RELOAD bit determines if the inter-
rupt cycle will be repeated or if it is just a one-time event. The TOEN bit enables the clock to the timer so that it
either counts or holds the old value. The PRESCALE field holds the value for the prescaler.

The timer0 register provides the interface for reading or writing the timer. A write to timer0 is used to set an initial
value in the timer and in the period holding register. The value in the timer can be read on-the-fly by a data move
from timer0 . The value written to timerO is also stored in the period register and held as the count that the timer

will return to if in the repeating mode.

2-22 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Hardware Architecture

2.11 Timer (continued)

The timer interrupt can be individually enabled or disabled through the inc register. The timer can be stopped and
started by software and can be reloaded with a new delay at any time. The timer is fully described in Chapter 12,
Timer.

2.12 Hardware Development System (HDS) Module

The on-chip HDS performs instruction breakpointing and branch tracing at full speed. Through the JTAG port,
breakpointing is set up and the trace history is read back remotely. The JTAG port works in conjunction with HDS
code in the on-chip ROM and software in a remote computer.

Four hardware breakpoints can be set on instruction addresses. A counter can be preset with the number of
breakpoints to be received before trapping the core. Breakpoints can be set in interrupt service routines. Alter-
nately, the counter can be preset with the number of cache instructions to execute before trapping the core.

Every time the program branches instead of executing the next sequential instruction, the pair of addresses from
before and after the branch are caught in circular memory. The memory contains the last four pairs of program dis-
continuities for hardware tracing.

A multiprocessor feature can be configured, so all processors are trapped if one processor gets a breakpoint.

The Hardware Development System (HDS) is described in the DSP1600 Support Tools Manual and
DSP1611/17/18/27/28/29 supplements.

2.13 Clock Synthesis (DSP1627/28/29 Only)

The DSP1627/28/29 includes an on-chip clock synthesizer that can be used to generate the system clock for the
DSP. The clock will run at a programmable frequency multiple of the input clock (CKI). The 1X CKI input clock, the
output of the synthesizer, or a slow internal ring oscillator can be used as the source for the internal DSP clock.

On powerup, CKI is selected as the clock source for the DSP. Setting the appropriate bits in the plic control regis-
ter will enable the clock synthesizer to become the clock source. The powerc register can override the selection to
stop clocks or force the use of the slow ring oscillator clock for low-power operation.

If not being used, the clock synthesizer can be powered down by clearing the PLLEN bit of the plic register. Clock
synthesis is fully described in Section 3.5, Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only)

2.14 Power Management

Many applications, such as portable cellular terminals, require programmable sleep modes for power management.
There are three different control mechanisms for achieving low-power operation: the powerc control register, the
STOP pin, and the AWAIT bit in the alf register. The AWAIT bit in the alf register allows the processor to go into a
power-saving standby mode until an interrupt occurs. The powerc register configures various power-saving
modes by controlling internal clocks and peripheral I/O units. The STOP pin controls the internal processor clock.
The various power management options can be chosen based on power consumption, wake-up latency require-
ments, or both. Power management is fully described in Section 3.6, Power Management.

Lucent Technologies Inc. 2-23

Chapter 3

Software Architecture

CHAPTER 3. SOFTWARE ARCHITECTURE

CONTENTS
[] 3 SOMWAIE AICHILECIUIEcveiviiiei ettt ettt ettt ettt ettt e et st e b e s e ebe st e b eseebe st be s et e s eseebesbe b eneere s 3-1
0 3.1 Register View of the DSPL61L/17/18I27/28I29uuvueiiiiieiiiiiiiiiiiee ettt 3-1
0 311 TYPES OF REUISIEIS ..oviiviiiecee ettt ettt ettt ettt et et eae et e et e eteeneese s eaeeaeas 3-1
0 3.1.2 Register Length DEfinitionccccoviiiiiiiieeiiie it eeee et ete et ete e eeete e ete e eteereeneeaeas 3-5
0 3.1.3 REQISIEr RESEE VAIUESoovviviieieiicee ettt ettt ettt te et e et eeteeae e e e eae s e 3-6
0 T S = - Vo TSR RSO 3-7
0 3.2 Memory SPace and AGAIESSINGuuuutieeeeiiiiittiiitieee et aaiitrrrteeee e s s sbbreretaeessasatbraeeeesssnarbreeeeaessrrseens 3-8
0 32,1 Y-MEIMOTY SPACE ..cuviiviiteieieeee e et et et ete et ete et et eeteete et et e et e ere e e et e eteeteereeseareetsensesteareareesareas 3-8
0 I 2 D V1= Yo V] o= ol =S RPR 3-10
O 3.3 AnthMEtic @aNd PIECISIONoviviiviitiicticte ettt ettt ettt ettt sttt se e be st st beseebe s ere b e b e 3-21
0 B 10114 (U] o RO 3-27
O 341 INEOUUCTION .viiviieitcte ettt ettt ettt ettt sttt e bbb eae et e st e s ese et e sbe b e sseresbe s ess e sbesaens 3-27
0 3.4.2 INEEITUPE SOUICES ...ovivivieeeeeee e ete et et te ettt et te et et e eteete et et e eteeaeeseeteeteereentesteetee e ere e 3-29
0 3.4.3 OULPULS OF INTEITUPLS ..ovviveieeieeeeeeete ettt ettt ettt te ettt e e et e et et eeteeteeae et e eae s sae s 3-31
0 3.4.4 INEEITUPL OPEIALIONvecviieeiveieeeeeete e ete ettt e te et e ettt et e ete e e et et e eteereess e e eaeerseaeeaeareereen sere e 3-32
0 R 1 7= o D= Y=Tot 4T 1110 o RSO TRTR R 3-38
O 3.4.6 Powerdown with the AWAIT STALEcc.cceiiriiiiieriiieieteete sttt e et sve e sre e 3-40
0 3.4.7 Interrupts in DSP16A-Compatible Mode (DSP1617 ONlY) ..cccceevviiiiviiieiniiiiiiiieeieeeeeesiienns 3-42
0 3.4.8 Timing Examples, DSP16A-Compatible Mode (DSP1617 ONly)cccevviviiiiiiiieneeenniinnns 3-44
0 3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 ONIY)ccvviiiiiiiiiiiiiiiinieeesiiiieneee e eeevvveeeens 3-47
0 3.5.1 PLL CONIOl SIGNAIS ...cveevviviteieeeee ettt ettt ettt e e e te e eaeara e eaesreereenee e 3-48
0 3.5.2 PLL Programming EXAmMPIESceeiiiiiiiiiiiiiiiiiieiee sttt ee e e e e s itbeeee s snabeaeeeaae e e e e nnnnnnes 3-50
0 IR T B IF- =Y o3 OSSR 3-50
0 3.6 POWET MANAGEMENTcuiiuiiieiteeteeeieete ettt ettt et e te et e et e et e ete et e et e e teeae et e et e eteese et e etessessesteeaeas sreeneeseenns 3-52
0 3.6.1 POWErC CONLrol REGISIET BILScceccveiiiieieiieieieeteete et et et e e ee e ettt eete e e eeaeereaneas 3-52
0 G T S O] = = o TSP PPRP 3-56
0 3.6.3 The plic Register Bits (DSP1627/28/29 ONlY)ccuvviiiiiieeiiiiiiiiiiiee e 3-56
0 3.6.4 AWAIT Bit Of the @lf REGISIENcvvivieeieiiieeceeeeeete ettt ettt 3-56
0 3.6.5 Power Management SEQUENCINGcocuuruuriiieeeeaiiiiiiieeeeeessssastrtreeeeaesssssseeessesssssnsseseeeeeees 3-57
0 3.6.6 Power Management EXAMPIEScooiiiiiiiiiiiiiiiie ettt 3-58

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

3 Software Architecture

This chapter contains a variety of topics on the software and programming of the device. First, the registers and
their properties are listed in Section 3.1, Register View of the DSP1611/17/18/27/28/29. Next, the memory space
and addressing modes are described Section 3.2, Memory Space and Addressing. Then, the arithmetic and preci-
sion for calculations in the DAU are described in Section 3.3, Arithmetic and Precision. Section 3.4, Interrupts, dis-
cusses both the vectored interrupts and the DSP16A compatible interrupts. (The DSP16A compatible interrupts
are available on the DSP1617 only.) Section 3.5, Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only),
describes the DSP1627/28/29's phase-lock loop based clock synthesizer. And finally, the flexible power manage-
ment features are discussed in Section 3.6, Power Management.

3.1 Register View of the DSP1611/17/18/27/28/29
3.1.1 Types of Registers

Registers are either accessible by the program or through the DSP1611/17/18/27/28/29 pins. Accessible by pro-
gram means they can be selected in data move instructions. The program-accessible registers are denoted by
lower-case names; the pin-accessible registers are denoted by upper-case names. The registers are generally of
three types:

Data—used for storing data that, in turn, become operands for the functional operators.

Control and status —used for setting different configurations of the machine (control) or indicating the configura-
tion of the machine (status).

Addressing —used for storing information that points to a memory location. In some cases, addressing registers
can be used as general-purpose data registers accessible by data move instructions.

A very important register not directly accessible to the programmer or through external pins is the PC (program
counter register). The machine automatically controls the PC to properly sequence the instructions.

Table 3-1 lists the general set of program-accessible registers sorted by function. Table 3-2 sorts them alphabeti-
cally and includes their type and location. Table 3-3 lists the pin-accessible registers. Figure 3-1 depicts the pro-
gram-accessible registers in a block diagram of the whole chip.

Table 3-1. Program-Accessible Registers by Function

Register Name Function
ro, r1, r2, 13, j, k, rb, re, ybase YAAU addressing
pt, pr, pi, i XAAU addressing
p, pl, X, ¥, yl, a0, a0l, a1, all, aa0, aal DAU data
auc, psw DAU control
c0, cl1, c2 Counters
sdx, sdx2 SIO data

srta, srta2, tdms, tdms2, saddx, saddx2, sioc, sioc2 | SIO control
pdx<0—7> (pdx0 only for DSP1611/18/27/28/29) PIO or PHIF data

phifc (DSP1611/18/27/28/29 only) PHIF control

pioc (DSP1617 only) PIO control

eir, ear, edr (DSP1618/28 only) ECCP instruction, address, and data registers
plic (DSP1627/28/29 only) Control register for clock synthesizer

chit, sbit BIO data and control

Note: Registers sioc, sioc2, srta, srta2, tdms, and tdms2 are not readable. Alternate accumulators aa0 and aal are only acces-
sible with the BMU swap instruction.

Lucent Technologies Inc. 3-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Software Architecture

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)

3.1.1 Types of Registers (continued)

Table 3-1. Program-Accessible Registers by Function

(continued)

Information Manual

April 1998

Register Name

Function

ioc

SIO, CKO, PIO, EMI control

timerc, timerO

Timer control and data

ar0, arl, ar2, ar3

BMU data

inc, ins Interrupt control and status

cloop Cache control

mwait Wait-states control

jtag Test interface data (reserved)

powerc Power control

alf Standby mode, memory map, flag status

Note: Registers sioc, sioc2, srta, srta2, tdms, and tdms2 are not readable. Alternate accumulators aa0 and aal are only acces-

sible with the BMU swap instruction.

Notation for 32-bit registers: No suffix denotes the upper 16 bits; the | suffix denotes the lower 16 bits, e.g., a0, a0l
(see Section 3.1.2, Register Length Definition for more details).

Table 3-2. Program-Accessible Registers by Type, Listed Alphabetically

Register Name Description Type Section
aa0, aal Alternate accumulators, 36-bit data BMU
ao, aol, al, all Accumulators 0 and 1, 36-bit data DAU
alf Await, lowpr, flags c&s Control
aro, arl, ar2, ar3 Auxiliary BMU registers data BMU
auc Arithmetic unit control c&s DAU
c0, cl, c2 Counters data DAU
chit Control register for BIO ¢ & s/data BIO
cloop Cache loop count data Cache
i Pointer postincrement address XAAU
inc Interrupt control control Control
ins Interrupt status status Control
ioc I/O configuration register c&s EMI, SIO, PIO
j Pointer postincrement address YAAU
jtag 16-bit parallel/serial register data JTAG
k Pointer postincrement address YAAU
mwait Wait-states for EMI control EMI
p, pl 32-bit product, p is bits [31:16], pl is bits [15:0] data DAU
pdx<0—7> PIO/PHIF 1/O registers (pdx0 only for data PIO/PHIF
DSP1611/18/27/28/29)
phifc PHIF control register (DSP1611/18/27/28/29) c&s PHIF
pi Program interrupt return address XAAU

Note: Registers sioc, sioc2, srta, srta2, tdms, and tdms2 are not readable. Alternate accumulators aa0 and aal are only accessible with the

BMU swap instruction.

3-2

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)

3.1.1 Types of Registers (continued)

Table 3-2. Program-Accessible Registers by Type, Listed Alphabetically

(continued)

Register Name Description Type Section
pioc P10 control register (DSP1617 only) c&s PIO
plic Control registers for clock synthesizer control Clock

(DSP1627/28/29 only) Synthesizer
powerc Power control control Chip
pr Program return address XAAU
psw Program status word c & s, data DAU
pt X address space table pointer address XAAU
ro, r1, r2, r3 Y address space pointers address YAAU
rb Modulo addressing, begin address address YAAU
re Modulo addressing, end address address YAAU
saddx<1, 2> Multiprocessor protocol register address/data SIO
shit Status register for BIO ¢ & s/data BIO
sdx<1, 2> SIO 16-bit I/O registers data SIO
sioc<1, 2> SIO control registers c&s SIO
srta<l, 2> Multiprocessing serial receive/transmit address regis- address SIO
ters
tdms<1, 2> Time-division multiplex signal control registers c&s SIO
timer0 Timer running count register data Timer
timerc Timer control register c&s Timer
X Multiplier input data DAU
v, yl Multiplier input, 32-bit, y is bits [31:16], yl is bits [15:0] data DAU
ybase Direct addressing address YAAU

Note: Registers sioc, sioc2 , srta, srta2, tdms, and tdms2 are not readable. Alternate accumulators aa0 and aal are only accessible with the

BMU swap instruction.

Lucent Technologies Inc.

3-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Software Architecture

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)

3.1.1 Types of Registers (continued)

Information Manual
April 1998

EMI

JTAG

CACHE &
CONTROL

7 pdx0(0UT)

%)

(DSP1611/18/27/28/29 ONLY)

PIO
~_ pdx<0—7>(IN)]

7
DAU ?

A
)
777777777,

V7 77
/// 0777

V7 Vi
7 cl Vi

V7 7
/// c277)

NN
N

.,

\

N
NN NN

ar2

NN

N
SN

CLOCK SYNTHESIZER

CONTROL & ADDRESS
STATUS

5-4145.c

Figure 3-1. Program-Accessible Registers, DSP1611/17/18/27/28/29

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)
3.1.1 Types of Registers (continued)

Registers not directly observable by the programmer (denoted by upper case), listed alphabetically:

Table 3-3. Registers Nonaccessible by Program, Accessible Through Pins

Name Description Type Section
BREAKPOINT Four instruction breakpoint registers address HDS
BYPASS Bypass the boundary-scan register, 1 bit data JTAG
ID Identification register, 32 bits data JTAG
ISR Input shift register data SIO
JCON JTAG configuration register, 17 bits c&s JTAG
OSR Output shift register data SIO
PSTAT PHIF/PIO status register c&s PHIF/PIO
TRACE Program discontinuity trace buffer address HDS

Note: The program counter register (PC) is not directly accessible to be read or written by instruction or external pins.
3.1.2 Register Length Definition

The accumulators are 36 bits long, and the y and p registers are 32 bits long. The letter name y (or p) can mean
either the upper 16 bits of y (or p) or all 32 bits of y (or p) depending on the instruction. The table below defines
when the upper 16 bits are meant and when the full 32 bits are meant.

Table 3-4. Register Length Definition

Register When Used in Transfers In Functional Operators
a0, al, |16-bit, except 36-bit between accumulators and in aD =y 36-bit, except 16-bit in aDh = aSh+1
aa0, aal and aD = aS<h, I> OP IM16
p 16-bit, except 32-bit to accumulators in multiply/ALU instruction | 32-bit
y 16-bit, except 32-bit to accumulators in special function instruction| 32-bit, except 16-bitinp =x*y

Note: The user must specify h or | in the ALU immediate, e.g., aD = aS<h,I> OP IM16. p ory is sign-extended to 36 bits for operations with
accumulators.

Lucent Technologies Inc. 3-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)

3.1.3 Register Reset Values

Information Manual

April 1998

Table 3-5 lists the values of the general set of registers after reset. A ¢ indicates unknown on powerup reset and
unaffected on subsequent reset. An S means the register shadows the PC. P indicates the value of the bit on the
corresponding input pin.

Table 3-5. Register Reset Values

T DSP1617 only.

+ DSP1617 value is 0111010011000010.
§ If EXMis high and INT1 is low and RSTB goes high, mwait will contain all ones instead of all zeros.
Tt DSP1627/28/29 only.

11 DSP1618/28 only.

§8 DSP1611/18/27/28/29 only.

3-6

Register Bits [15:0] Register Bits [15:0]
a0 I pioct 0000000000001000
aol 0000000000000000 pl 0000000000000000
al eesscccscsccccee powerc 0000000000000000
all 0000000000000000 pr 0000000000000000
alf OOOOOOOO........ pSWOO..........
aro 0000000000000000 pt 0000000000000000
arl 0000000000000000 ro 0000000000000000
ar2 0000000000000000 rl 0000000000000000
ar3 0000000000000000 r2 0000000000000000
auc 0000000000000000 r3 ssesssecessecces
cO) rb 0000000000000000
cl seesscecescecces re 0000000000000000
C2 0000000000000000 Saddx 0000000000000000
Cb't 0000000000000000 Saddxz 0000000000000000
cloop 00000000Qseseeee shit 00000000PPPPPPPP
i 0000000000000000 de 0000000000000000
inc 0000000000000000 sdx2 sscsscecescecces
ins* 0000010000000110 sioc ee2¢¢0000000000
ioc 0000000000000000 sioc2 ee2¢¢0000000000
j 0000000000000000 Srta 0000000000000000
Jtag 0000000000000000 Srtaz 0000000000000000
k 0000000000000000 tdms0000000000
mwait$ 0000000000000000 tdms2 ee2¢¢0000000000
p T timerO 0000000000000000
pdx0 0000000Q¢ssseeee timerc eeeeeees)0000000
pdxlT OOOOOOOO........ X 0000000000000000
deZT OOOOOOOO........ y 0000000000000000
deBT OOOOOOOO........ ybase 0000000000000000
de4T OOOOOOOO........ yl 0000000000000000
pdx5t 0000000Q¢ssseeee plict® 0000000000000000
pdx6t 0000000Q¢ssseeee ear+ 0000000000000000
pdx7t 0000000Q¢ssseeee eir 0000000000001111
phifc88 0000000000000000 edr# ssesccecessecces
pi SSSSSSSSSSSSSSSS

Lucent Technologies Inc.

Informatio
April 1998

n Manual

3.1 Register View of the DSP1611/17/18/27/28/29 (continued)

3.1.4 Flags

For reference purposes, the definitions of the flags are included in Table 3-6 and Chapter 4, Instruction Set.

Table 3-6. Flag Definitions
Test Meaning Test Meaning
pl Result is nonnegative (not LMI) (= 0). mi Result is negative (LMI) (< 0).
eq Result is equal to 0 (LEQ) (= 0). ne Result is not equal to 0 (not LEQ) (# 0).
gt Result is greater than 0 (not LMI and le Result is less than or equal to 0 (LMI or
not LEQ) (> 0). LEQ) (< 0).
Ivs Logical overflow set (LLV). Ivc Logical overflow clear (not LLV).
mvs Mathematical overflow set (LMV). mvc Mathematical overflow clear (not LMV).
cOget | Counter 0 greater than or equal to 0. coltt Counter 0 less than 0.
clge' | Counter 1 greater than or equal to 0. clltt Counter 1 less than 0.
heads* | Pseudorandom sequence bit set. tails¥ Pseudorandom sequence bit clear.
true The condition is always satisfied in an false The condition is never satisfied in an if
if instruction. instruction.
allts All true—all BIO input bits tested com- allfé All false—no BIO input bits tested com-
pared successfully. pared successfully.
somet® | Some true—some BIO input bits somefs | Some false—some BIO input bits
tested compared successfully. tested did not compare successfully.
oddp Odd parity from BMU operation. evenp | Even parity from BMU operation.
mnsl | Minus 1 result of BMU operation. nmnsl | Not minus 1 result of BMU operation.
npint Not PINT used by Hardware Develop- njint Not JINT used by Hardware Develop-
ment System. ment System.
lock The PLL has achieved lock and is sta- | ebusy | ECCP busy indicates error correction
ble (DSP1627/28/29 only). coprocessor activity (DSP1618/28
only).

T Testing each of these conditions increments the respective counter being tested.

¥ The heads or tails condition is determined by a randomly set or a cleared bit. The bit is randomly set with probability of 0.5.
The random bit is generated by a 10-stage pseudorandom sequence generator (PSG) that is updated after either a heads or
tails test. (See Section 5.1.6, DAU Pseudorandom Sequence Generator (PSG) for more details.)

8§ These flags are only set after an appropriate write to the BIO port (cbit register).

Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.2 Memory Space and Addressing

The DSP1611/17/18/27/28/29 has two memory spaces: the X-memory space and the Y-memory space. They are
differentiated by which addressing unit they use and not by the physical memory they use. The dual-port RAM is in
the Y space and the X space, but it can be at different addresses. The Y addressing arithmetic unit (YAAU), unique
to the Y-memory space, is particularly suited for addressing memory that contains data or operands for the pro-
cessing units. The X addressing arithmetic unit (XAAU), unique to the X-memory space, is particularly suited for
program control and addressing memory that contains the instructions and coefficients as operands.

The internal dual-port RAM can be accessed in both the Y space and the X space. This RAM has multiple 1 Kword
banks, and, as long as the banks accessed are different, simultaneous data and instruction accesses can be
made. If the same bank is accessed from both memory spaces simultaneously, an extra instruction cycle (one
wait-state) is added to carry out the transfer and the Y space transfer is performed before the X space transfer.

3.2.1 Y-Memory Space

The Y-memory space is shown in Figure 3-2. Associated with the Y space are the Y addressing arithmetic unit
(YAAU), the Y address bus (YAB), the Y data bus (YDB), and the external memory interface (EMI). The 64K mem-
ory space is divided into four segments (RAM, 10, ERAMLO, and ERAMHI), as shown in Table 3-7. The selection
of a segment is automatic corresponding to the address in the YAAU. The segment for the internal RAM is further
divided into multiple 1K banks. The addresses are decoded in the YAAU, and an enable wire is provided for each
of the three external segments and for each of the internal RAM banks.

OFF-CHIP
YAB EXTERNAL MEMORY ADDRESS BUS
YAAU
n
L
-
[an]
<
E
l Y y
INTERNAL EXTERNAL EXTERNAL EXTERNAL
DUAL-PORT ERAMHI ERAMLO 10
RAM
<: YDB DATA BUS EXTERNAL MEMORY DATA BUS

5-4110

Figure 3-2. Data (Y) Memory Space

3-8 Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2 Memory Space and Addressing

3.2.1 Y-Memory Space (continued)

(continued)

Table 3-7. Data Memory Map (Y-Memory Space)

Decimal | Hexadecimal Address |[DSP1611|DSP1617/1618|DSP1627|DSP1628|DSP1628 |DSP1629 [DSP1629
IAddress inro0, r1,r2, r3 x08 x16 x10 x16
0 0x0000 RAM1 RAM1 RAM1 RAM1 RAM1 RAM1 RAM1
Ox03FF
1024 0x0400 RAM2 RAM2 RAM2 RAM2 RAM2 RAM2 RAM2
OX07FF
2048 0x0800 RAM3 RAM3 RAM3 RAM3 RAM3 RAM3 RAM3
OxOBFF
3072 0x0CO00 RAM4 RAM4 RAM4 RAM4 RAM4 RAM4 RAM4
OXOFFF
4096 0x1000 RAM5 Reserved RAM5 RAM5 RAM5 RAM5 RAM5
Ox13FF
5120 0x1400 RAMG6 RAMG6 RAMG6 RAM6 RAMG6 RAMG6
Ox17FF
6144 0x1800 RAM7 Reserved| RAM7 RAM7 RAM7 RAM7
Ox1BFF
7168 0x1CO00 RAMS8 RAMS8 RAMS8 RAMS8 RAMS8
Ox1FFF
8192 0x2000 RAM9 Reserved| RAM9 RAM9 RAM9
Ox23FF
9216 0x2400 RAM10 RAM10 | RAM10 | RAM10
Ox27FF
10240 0x2800 RAM11 RAM11 |Reserved| RAM11
Ox2BFF
11264 0x2C00 RAM12 RAM12 RAM12
Ox2FFF
12288 0x3000 Reserved RAM13 RAM13
Ox33FF
13312 0x3400 RAM14 RAM14
Ox37FF
14336 0x3800 RAM15 RAM15
Ox3BFF
15360 0x3C00 RAM16 RAM16
Ox3FFF
16384 0x4000 10 10 10 10 [0] 10 10
Ox40FF
16640 0x4100 ERAMLO| ERAMLO |ERAMLO|ERAMLO [ERAMLO [ERAMLO [ERAMLO
OX7FFF
32768 0x8000 ERAMHI ERAMHI ERAMHI |ERAMHI | ERAMHI | ERAMHI | ERAMHI
65535 OxXFFFF
Lucent Technologies Inc. 3-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.2 Memory Space and Addressing (continued)
3.2.2 X-Memory Space

X-memory space (Figure 3-3) is instruction/coefficient or program memory. Associated with the X space are the X
addressing arithmetic unit (XAAU), the X address bus (XAB), the X data bus (XDB), and three possible physical
memories. The selection of the three memories is automatic corresponding to the address in the XAAU and the
memory map selected. Each physical memory device has a corresponding address space, but, unlike the YAAU,
the relationship between the memories and their corresponding address space can be changed. As shown in
Tables 3-8 through 3-12, there are four different arrangements of the memories in the memory map. The selection
of MAP 1—4 corresponds to the value of EXM and LOWPR.

OFF-CHIP

XAB ADDRESS BUS

XAAU

w EXTERNAL MEMORY
5(3 ADDRESS BUS
Z
i1}

INTERNAL

INTERNAL EXTERNAL
DUAL-PORT
ROM EROM
RAM

‘ ‘ ‘ ‘ EXTERNAL MEMORY

DATA BUS
< XDB DATA BUS

5-4111

Figure 3-3. Instruction/Coefficient (X) Memory Space

3-10 Lucent Technologies Inc.

Information Manual

April 1998

3.2 Memory Space and Addressing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2.2 X-Memory Space (continued)

(continued)

Table 3-8. DSP1611 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 | MAP3 (EXM =0 | MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—12> RAM<1—12>
Ox03FF (1K) (48K) (12K) (12K)
1024 0x0400 Reserved
Ox2FFF (15K)
12288 0x3000 Reserved Reserved
Ox3FFF (4K) (4K)
16384 0x4000 EROM IROM EROM
0x43FF (32K) (1K) (48K)
17408 0x4400 Reserved
OX7FFF (15K)
32768 0x8000 EROM
OxBFFF (32K)
49152 0xCO000 RAM<1—12> RAM<1—12>
OxDFFF (12K) (12K)
61439 0xF000 Reserved Reserved
65535 OxFFFF (4K) (4K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.

Lucent Technologies Inc.

3-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2 Memory Space and Addressing

3.2.2 X-Memory Space (continued)

(continued)

Table 3-9. DSP1617 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAP1T (EXM =0 | MAP2 (EXM = 1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (24K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox3FFF (12K) (12K)
16384 0x4000 IROM EROM
OxX5FFF (24K) (48K)
24576 0x6000 Reserved
OX7FFF (8K)
32768 0x8000 EROM
OX9FFF (16K)
40960 0xA000 Reserved
OxBFFF (8K)
49152 0xC000 RAM<1—4> RAM<1—4> EROM
OXCFFF (4K) (4K) (16K)
53248 0xD000 Reserved Reserved
65535 OxXFFFF (12K) (12K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

Table 3-10. DSP1618 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (16K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox3FFF (12K) (12K)
16384 0x4000 EROM IROM EROM
OX7FFF (32K) (16K) (48K)
32768 0x8000 EROM
OxBFFF (32K)
49152 0xC000 RAM<1—4> RAM<1—4>
OXCFFF (4K) (4K)
53248 0xD000 Reserved Reserved
65535 OxXFFFF (12K) (12K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

3-12

Lucent Technologies Inc.

Information Manual

April 1998

3.2 Memory Space and Addressing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2.2 X-Memory Space (continued)

(continued)

Table 3-11. DSP1618x24 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM = 1 |MAP38 (EXM = 0| MAP4 (EXM = 1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (24K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox1FFF (12K) (12K)
8192 0x2000
Ox3FFF
16384 0x4000 IROM EROM
OxX5FFF (24K) (48K)
24576 0x6000 Reserved
OX7FFF (8K)
32768 0x8000 EROM
Oxofff (16K)
40960 0xA000 Reserved
OxBFFF (8K)
49152 0xC000 RAM<1—4> RAM<1—4> EROM
OxCFFF (4K) (4K) (16K)
53248 0xDO000 Reserved Reserved
OxDFFF (12K) (12K)
57344 OxE000
65535 OxXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

Lucent Technologies Inc.

3-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

Information Manual
April 1998

3.2 Memory Space and Addressing (continued)

3.2.2 X-Memory Space (continued)

Table 3-12. DSP1627 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—6> RAM<1—6>
OXOFFF (36K) (48K) (6K) (6K)
4096 0x1000
Ox17FF
6144 0x1800 Reserved Reserved
Ox1FFF (10K) (10K)
8192 0x2000
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (36K) (48K)
20480 0x5000
Ox5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000 Reserved
OX9FFF (12K)
40960 0xA000
OXAFFF
45056 0xB000
OxBFFF
49152 0xC000 RAM<1—6> RAM<1—6>
OXCFFF (6K) (6K)
53248 0xD000 Reserved
OxD7FF (12K)
55296 0xD800 Reserved Reserved
OxXxDFFF (10K) (10K)
57344 OxE000
OXEFFF
61440 0xF000
65535 OxFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

3-14

Lucent Technologies Inc.

Information Manual

April 1998

3.2 Memory Space and Addressing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2.2 X-Memory Space (continued)

(continued)

Table 3-13. DSP1627x32 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM = 1 |MAP38 (EXM = 0| MAP4 (EXM = 1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—6> RAM<1—6>
OXOFFF (32K) (48K) (6K) (6K)
4096 0x1000
Ox17FF
6144 0x1800 Reserved Reserved
Ox2FFF (10K) (10K)
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (32K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000 EROM
Ox8FFF (16K)
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OxBFFF
49152 0xC000 RAM<1—6> RAM<1—6> EROM
OxCFFF (6K) (6K) (16K)
53248 0xDO000
OxD7FF
55296 0xD800 Reserved Reserved
OxDFFF (10K) (10K)
57344 OxE000
OXEFFF
61440 0xF000
65535 OxFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

3-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2 Memory Space and Addressing

3.2.2 X-Memory Space (continued)

(continued)

Table 3-14. DSP1628x08 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (8K) (8K)
4096 0x1000
Ox17FF
6144 0x1800
Ox1FFF
8192 0x2000 Reserved Reserved
Ox3FFF (8K) (8K)
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OxXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (8K) (8K)
53248 0xD000
OxDFFF
57344 OxE000 Reserved Reserved
OXEFFF (8K) (8K)
61440 0xF000
65535 OxXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

3-16

Lucent Technologies Inc.

Information Manual

April 1998

3.2 Memory Space and Addressing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2.2 X-Memory Space (continued)

(continued)

Table 3-15. DSP1628x16 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAP1T (EXM =0 | MAP2 (EXM =1 |[MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (16K) (16K)
4096 0x1000
Ox17FF
6144 0x1800
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
Ox5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
OX8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (16K) (16K)
53248 0xD000
OXDFFF
57344 0xE000
OXEFFF
61440 0xF000
65535 OXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

3-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2 Memory Space and Addressing

3.2.2 X-Memory Space (continued)

(continued)

Table 3-16. DSP1629x10 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (10K) (10K)
4096 0x1000
Ox27FF
10240 0x2800 Reserved Reserved
Ox2FFF (6K) (6K)
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OxXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (10K) (10K)
53248 0xD000
OxXxDFFF
57344 OxE000
OXE7FF
59392 OxE800 Reserved Reserved
OXEFFF (6K) (6K)
61440 0xF000
65535 OxXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

3-18

Lucent Technologies Inc.

Information Manual

April 1998

3.2 Memory Space and Addressing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

3.2.2 X-Memory Space (continued)

(continued)

Table 3-17. DSP1629x16 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAP1T (EXM =0 | MAP2 (EXM =1 |[MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (16K) (16K)
4096 0x1000
Ox17FF
6144 0x1800
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
Ox5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
OX8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (16K) (16K)
53248 0xD000
OXDFFF
57344 0xE000
OXEFFF
61440 0xF000
65535 OXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

3-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Software Architecture

3.2 Memory Space and Addressing
3.2.2 X-Memory Space (continued)

Interrupt Vectors in X Space

(continued)

Information Manual
April 1998

If interrupts are being used, the lower addresses of the X-memory space must be reserved for the interrupt vectors.
These addresses can be in IROM, EROM, or RAM depending on the memory map in force. Table 3-18 shows the
vectors assigned to interrupts in the X-memory space.

Table 3-18. Interrupts in X-Memory Space

Vector Description

Vector Address

Reset vector 0x0
IBF, OBE, PIDS, or PODS enabled from pioct; 0Ox1
INTO

Software interrupt, from instruction icall ¥ 0x2
TRAP from HDS 0x3
INT1 0x4
TIMEOUT 0x10
IBF2 0x14
OBE2 0x18
Reserved Ox1c
EREADYS 0x20
EOVF$ 0x24
Reserved 0x28
IBF Ox2c
OBE 0x30
PIBF/PIDS 0x34
POBE/PODS 0x38
JINT 0x42
TRAP from user 0x46

T DSP1617 only.

F Theicall instruction is reserved for use by the hardware development system.

§ DSP1618/28 only.

3-20

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.3 Arithmetic and Precision

Fixed-point, two's complement arithmetic is used throughout the DSP1611/17/18/27/28/29 device. In the DAU,
16-bit data in the x register and in the high half of the y register can be multiplied together and the 32-bit result is
stored in the p register. The data in the y or p registers or both accumulators can be operated on by the ALU; the
result is stored in either of the 36-bit accumulators. The 32-bit data from the y or p register is sign-extended to
36 bits if operated on by the ALU. The four guard bits in the accumulators reduce the need for scaling data.

Sometimes the 36-bit accumulators can be thought of as having an implied binary point to the right of bit 16, for
example, if multiplying a fraction with 16 bits to the right of the decimal (Q16 format) times an integer. Bits

15—0 are then the fractional part (which is referred to as aMI, where aM = a0 or al), and bits 35—16 are the inte-
ger part. The ALU operates on all 36 bits of the accumulators. The CLR field of the auc register (see Table 3-10)
controls automatic clearing of the low half while loading a0, a1, or y registers. This makes it easy to perform 16-bit
integer operations in the ALU by automatically clearing the low half of the register when the high half is loaded.

The operands for the DAU can have many different formats. To make it easier to handle these different formats, the
DSP has four options for scaling data as it is transferred from the p register to the accumulators: no shift, a 2-bit left
shift, 1-bit left shift, or a 2-bit right shift. Table 3-10 illustrates how 2 bits in the auc register (auc[1, 0]) determine
the bit alignment of the data in p with respect to the data in the accumulators. The connection of the data bus to
the p register, the RAM, the accumulators, and the remaining registers in the DSP device is fixed, i.e., no other
automatic shifts of data occur with data move or multiply/ALU instructions (although effectively a 16-bit right shift
occurs in transferring the high half of a 32-bit register to a 16-bit register).

The SAT field of the auc register (bits 3, 2) selects or deselects saturation mode. This is the manner in which data
is transferred from the accumulators after an overflow has been detected. Overflow occurs whenever bit 31 of an
accumulator is different from any of its guard bits.

If saturation is enabled, the data transferred out of the accumulator is the largest positive or negative number (as
defined by bit 35 of the accumulator) that can be represented with 32 bits.

Note: The data in the accumulator does not change, only the value that is transferred changes.
231 — 1 = OX7FFFFFFF largest positive number
—231 = 0x80000000 largest negative number

In nonsaturation mode, the actual value in the accumulator will be written.

For further information about overflow, refer to the psw register in Section 5.1.7, Control Registers.

The X=Y= field of the auc register (bit 7) controls the loading of the x register. If this bit is set to zero, there is no
change in the loading of the x register; i.e., instructions that load the x register operate as expected, and instruc-
tions that do not load the x register do not affect the contents of the x register. If this bit is set to one, all instruc-
tions that load the high half of the y register cause the same data that is loaded into y to be loaded into x. The
purpose of this bit is to allow a single-cycle squaring operation. For example:

a0=0
auc=0x80 1* enable X=Y= */
ri=table
y=*rl++ [* square, and load both y and x */
do 100 {

a0=a0+p

p=x*y

y=*rl++ [* accumulate, square, and load both y *

* and x */

auc=0 I* disable X=Y= */

Lucent Technologies Inc. 3-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.3 Arithmetic and Precision (continued)

The RAND field of the auc register (bit 8) selects or deselects inhibiting the on-chip pseudorandom sequence gen-
erator (PSG) whenever the pi register is written. If RAND is set to zero, the PSG is reset whenever the pi register
is written with any value except during execution of an interrupt service routine (ISR). If RAND is set to one, reset-
ting of the PSG is inhibited. For more details on the PSG, see Section 5.1.6, DAU Pseudorandom Sequence Gen-

erator (PSG).

Table 3-19. Arithmetic Unit Control (auc) Register 1

Bit 8 7 6—4 3—2 1-0
Field RAND X=Y= CLR SAT ALIGN
Field Value Description
RAND 0 Pseudorandom sequence generator (PSG) is reset by writing the pi register only
outside an interrupt service routine.
1 PSG never reset by writing the pi register.
X=Y= 0 Normal operation.
1 y = Y transfer statements load both the x and the y registers allowing single-
cycle squaring with p = x , v.
CLR 1xx Clearing yl is disabled (enabled if 0).
X1x Clearing all is disabled (enabled if 0).
xx1 Clearing a0l is disabled (enabled if 0).
SAT 1x al saturation on overflow is disabled (enabled if 0).
x1 a0 saturation on overflow is disabled (enabled if 0).
ALIGN 00 a0,al — p.
01 a0, al ~ p/a.
10 a0, al — p x4 (and zeros written to the two LSBs).
11 a0, al — p x 2 (and zeros written to the LSB).

T The auc is a 16-bit register of which 9 bits [8:0] are used for control. The unused upper 7 bits [15:9] are always zero when read and should
always be written with zeros to make the program compatible with future chip versions. The auc register is cleared at reset.

3-22 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.3 Arithmetic and Precision (continued)
No Shift (Figure 3-4)

If the auc[1:0] bits are 00, the data in the p register is not shifted with respect to the bits in the accumulator before
product bits 31—0 are transferred into bits 31—0 of the accumulator. In the accumulator, the sign bit from the p
register is extended into the guard bits 35—32. This mode is most often used if both x and y operands are 16-bit
integers.

15 0
x(16)
| I
y3l 16 yli -
¥(32)
31 T |
- = — - 0 \{
P2
I I
35 32 v 31 O"
I
| a0, al(36)

5-4112

Figure 3-4. p Register to Accumulator Bit Alignment, auc[1:0] = 00

Lucent Technologies Inc. 3-23

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.3 Arithmetic and Precision (continued)
Shift Right 2 Bits (Figure 3-5)

If the auc[1:0] bits are 01, the data in the p register is shifted 2 bits to the right with respect to the bits in the accu-
mulator as product bits 31—2 are transferred into bits 29—0 of the accumulator. Bits p[1:0] are lost. The sign of
p (bit 31) is extended by 6 bits into bits 35—30 of the accumulator. This setting is most useful if avoiding overflow
is a primary consideration and the loss of the two LSBs of the product can be tolerated.

15 0
x(16)
[[
| 31 16 Y 15
¥(32)
e - o
88 _--- 21y 0
I
p(32) I
. —
\ \
35 X 0
[
30 | 29 a0, al(36)

5-4113

Figure 3-5. p Register to Accumulator Bit Alignment, auc[1:0] = 01

3-24 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.3 Arithmetic and Precision (continued)
Shift Left 2 Bits (Figure 3-6)

If the auc[1:0] bits are 10, the data in the p register is shifted 2 bits to the left with respect to the bits in the accumu-
lator as product bits 31—0 are transferred into bits 33—2 of the accumulator. Bits 1 and 0 of the accumulator are
cleared by the load of the accumulator with the data in p. The sign of p is extended by 2 bits into bits 35 and 34 of
the accumulator. This mode is often used in filtering applications where coefficients in the x register are in Q14 for-
mat (2 magnitude bits, 14 fractional bits), and state variables in the y register are 16-bit integers. If the p register is
not shifted prior to accumulation, the accumulated result would have 4 guard bits, 18 magnitude bits, and 14 frac-
tional bits. Because it is often desirable to have the implied binary point to the right of bit 16 (16 fractional bits), the
setting auc[1:0] = 10 automatically shifts the result 2 bit locations to the left generating an accumulated result with
4 guard bits, 16 magnitude bits, and 16 fractional bits.

Note: The top 2 magnitude bits are shifted into overflow bits 33 and 32 that can only be read via the psw register,
and saturation can be detected if enabled in the auc register.

15 0
x(16)
! |
31 16 y15
y(32)
-
31 -
- 0y
p(32)
/ /
/ /
3B, »
| b
| 33 a0, al(36) 21,0

5-4114

Figure 3-6. p Register to Accumulator Bit Alignment, auc[1:0] = 10

Lucent Technologies Inc. 3-25

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.3 Arithmetic and Precision (continued)
Shift Left 1 Bit (Figure 3-7)

If the auc[1:0] bits are 11, the data in the p register is shifted 1 bit to the left with respect to the bits in the accumu-
lator as product bits 31—0 are transferred into bits 32—1 of the accumulator. Bit O of the accumulator is cleared by
the load of the accumulator with the data in p. The sign of p is extended by 3 bits into bits 35 through 33 of the
accumulator. This mode is often used in filtering applications where coefficients in the x register are in Q15 format
(2 magnitude bit, 15 fractional bits), and state variables in the y register are 16-bit integers. If the p register is not
shifted prior to accumulation, the accumulated result would have 4 guard bits, 17 magnitude bits, and 15 fractional
bits. Because it is often desirable to have the implied binary point to the right of bit 16 (16 fractional bits), the set-
ting auc[1:0] = 11 automatically shifts the result 1 bit location to the left generating an accumulated result with

4 guard bits, 16 magnitude bits, and 16 fractional bits.

Note: The top magnitude bit is shifted into overflow bit 32 that can only be read via the psw register, and saturation
can be detected if enabled in the auc register.

15 0

x(16)

31 16 y15

y(32)

p(32)

32 a0, a1(36) 1,0

5-4114.a

Figure 3-7. Register to Accumulator Bit Alignment, auc[1:0] = 11

3-26 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts
3.4.1 Introduction

If an interrupt condition arises (e.g., an I/O request like assertion of PIDS), a sequence of actions is taken by the
interrupt control logic to suspend normal program execution and branch to the interrupt service routine. The inter-
rupt service routine is executed before returning to the normal instruction.

Vectored interrupts allow multiple interrupt sources to be differentiated by assigning each to a unique interrupt
branching location. If more than one interrupt is asserted at the same time, they will be serviced sequentially
according to their assigned priorities. If an interrupt is being serviced and the same interrupt is requested again
before service of the first is completed, the interrupt must remain asserted until the next rising edge of IACK. The
interrupt structure of the DSP1611/17/27/29 provides a total of 11 interrupts and two traps, and the interrupt struc-
ture of the DSP1618/28 provides a total of 13 interrupts and two traps (see Table 3-20).

Interrupt service routines cannot be interrupted. Branch instructions, conditional branch instructions, postdecre-
ments of Y address registers, and cache loops are also not interruptible. A vectored interrupt that occurs during a
noninterruptible instruction is not serviced until after the next interruptible instruction has been executed.

A trap is similar to an interrupt except it gains control of the processor by branching to the trap service routine even
if the current instruction is noninterruptible. However, it might not be possible to return to the normal instruction
from the trap service routine because the state of the machine might not have been saved. The trap mechanism is
intended for two purposes. It can be used by an application to gain control of the processor rapidly for asynchro-
nous time-critical event handling (typically for catastrophic error recovery). It is also used by the hardware develop-
ment system (HDS) to gain control of the processor.

In the DSP1617, a set of interrupts have been retained to maintain compatibility with the DSP16A. Four I/O inter-
rupts and the hardware interrupt pin (INTO) from DSP16A can be used in a DSP16A-compatible mode (see Section
3.4.7, Interrupts in DSP16A-Compatible Mode (DSP1617 Only)).

Lucent Technologies Inc. 3-27

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Software Architecture

3.4 Interrupts (continued)

3.4.1 Introduction (continued)

Figure 3-8 is a functional block diagram of the interrupt hardware.

3-28

7
7

NN

13

L
NiIHNN i T h i s
L MM I A NN Nlinneg

\ NN INS REGISTER 2w

NN CLEARS AN

AN RARR

DN NN

Information Manual
April 1998

<

IDB

INT[1:0] OFF-CHIP
PIDS/PIBF
PODS/POBE

i i
nkhhnnni

7
%

7
%

i
AT i
A T T T H R

N
AR

7
%

7
%

7
%

CLEAR BITS
4—8,11
ONLY

NN

\\ INC REGISTER\\\\\\\\

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ A MASKS 2
@@ @@ @ i T it \\\QQE\\\\

AR

i T T

RLBT_ .

i I I
nmlinng
s
s
nmhhnnnt

AT

13

Nl e
i it
i
Nl
nnmn
\\E\\\\\\\\\\\\\\\\\

7

7/
0

7/
.

%

INTERRUPT

icall ——— PROCESSING

HDStrap — g

N
Nk
Nk

N
x\\s\\\\

Figure 3-8. Interrupt Operation

TRAP

IACK

VEC[3:0]

OFF-CHIP

5-4115b

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)
3.4.2 Interrupt Sources

There are 11 sources! of interrupts and two sources of traps. The interrupt sources are described in the following
list; Table 3-20 has more detail for each interrupt vector’s source, its vector address, its priority, its output encoding,
and its cause.

m Software interrupt —An interrupt request issued by the instruction icall . The priority is 1 (lowest), and it is
nonmaskable. The icall instruction is reserved for use by the hardware development system.

m IBF[2] 2—Input buffer full indicates that an external device has written data into the S10<1, 2> (serial input buffer).
IBF can be enabled from either pioc 2 or inc (IBF2 can only be enabled from inc). Interrupts enabled from pioc 3
are compatible with DSP16A, and their priority is lower than the vectored interrupts enabled from inc.

m OBE[2] —Output buffer empty indicates that an external device has read data from the SIO<1, 2> (serial output
buffer). OBE can be enabled from either pioc 3 or inc (OBE2 can only be enabled from inc).

m PIDS—Parallel input data strobe indicates that an external device has written data into the parallel input
register. PIDS can be enabled from either pioc 2 or inc.

m PODS—Parallel output data strobe indicates that an external device has read the data from the parallel output
register. PODS can be enabled from either pioc 3 or inc.

m PIBF—Parallel input buffer full flag indicates that data has been written to the parallel input data register. PIBF
can be enabled from inc.

m POBE—Parallel output buffer empty flag indicates that the parallel output data register has been read by an
external device. POBE can be enabled from inc.

= INT[1:0] —Interrupt by an external device indicates an external device has requested service by asserting the
INT[1:0] pin. INTO can be enabled from either pioc 3 or inc.

m JINT—JTAG interrupt request indicates that the jtag register has been written. JINT is reserved for the hardware
development system.

m TIMEOUT—Interrupt request by timer indicates that the timer has reached zero count.
m EREADY“—lInterrupt indicates ECCP is ready.
m EOVF*—lInterrupt indicates an ECCP overflow condition.

The interrupt sources can be classified in several different ways:

m On- or off-chip : The INT[1:0], PIDS (passive), PODS (passive), and trap signals are externally generated; the
other interrupts are internally generated.

m Hardware or software : The icall instruction generates a software interrupt; the rest are generated by hardware.

m DSP16A—Compatible (DSP1617 only) or not : Four of the interrupt sources (PIDS, PODS, OBE, and IBF) have
a different effect depending on whether they are enabled from the pioc 3 (DSP16A compatibility mode) or
enabled from the inc register. If they are enabled from the pioc 3 register, program control will jump to location
0x1. If they are enabled from the inc register, program control jumps to a different vector location for each. If
they are enabled from both the inc and the pioc 3 registers, they are serviced as if enabled from the inc. Also,
the INTO is compatible with the INT of DSP16A because it vectors to location Ox1. Figure 3-9 shows the logical
function of the DSP16A-compatible interrupts, and Table 3-20 describes them.

1.13 for DSP1618/28.

2.The label in [] is optional; IBF[2] means IBF or IBF2.
3.DSP1617 only.

4.DSP1618/28 only.

Lucent Technologies Inc. 3-29

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)

3.4.2 Interrupt Sources (continued)

w 7] 8 o
16 L m O =
5 8=z 2 = FROM CHIP PIN
v Y
pioc 9 INTERRUPTS 2R 4 0
ENABLED
MASKS
5 5
N
\ /
icall > INTERRUPT » |IACK
PROCESSING TO CHIP PIN

5-4146

Figure 3-9. DSP16A-Compatible Interrupts (DSP1617 Only)

3-30 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)

3.4.2 Interrupt Sources (continued)

Table 3-20. Vector Table

Source Vector Priority VEC[3:0] T Issued by Cleared By
No interrupt — — 0x0 — —
Software interrupt 0x2 1 lowest 0x1 icall ¥ ireturn
IBF enabled by pioc8 0x1 1 0x1 SIO in read of sdx
OBE enabled by pioc® 0x1 1 0x1 SIO out write to sdx
PIDS enabled by pioc8 0x1 1 0x1 PIO in read of pdx<0—7>
PODS enabled by pioc? 0x1 1 0x1 PIO out write to pdx<0—7>
INTO 0x1 2 0x2 pin ireturn or write to ins
JINT 0x42 3 0x8 jtag in read of jtag
INT1 0x4 4 0x9 pin ireturn or write to ins
TIMEOUT 0x10 7 Oxc timer ireturn or write to ins
IBF2 0x14 8 Oxd SI02in read of sdx2
OBE2 0x18 9 Oxe SI02 out write to sdx2
Reserved Oxlc 10 — — —
EREADY'! 0x20 11 0x1 ECCP ready ireturn or write to ins
EOVFTT 0x24 12 0x2 ECCP overflow ireturn or write to ins
Reserved 0x28 13 — — —
IBF enabled by inc 0x2c 14 0x3 SIO in read of sdx
OBE enabled by inc 0x30 15 0x4 SIO out write to sdx
PIDS/PIBF enabled by 0x34 16 0x5 PHIF/PIO in read of pdx0
inc
PODS/POBE enabled by | 0x38 17 0x6 PHIF/PIO out write to pdx0
inc
TRAP from HDS 0x3 18 — breakpoint, jtag, or pin ireturn
TRAP from user 0x46 19 highest 0x7 pin ireturn

Tt Pins VECI[3:0] are multiplexed with pins IOBIT[7:4]. Bit 12 of the ioc register must be cleared to enable VEC[3:0].
¥ The icall instruction is reserved for use by the hardware development system.

§ Available on DSP1617 only.

11 DSP1618/28 only.

3.4.3 Outputs of Interrupts

The status bits in the ins register show if an interrupt has been recognized (defined as when the interrupt is latched
into the register). An interrupt, however, might be recognized but not serviced (acted on by executing the associ-
ated service routine) depending on the state of the machine (i.e., other interrupt in progress, uninterruptible instruc-
tion, etc.). An interrupt will not be serviced if not enabled. The VEC[3:0] outputs show the interrupt being serviced
(see the encoding in Table 3-20). If no interrupt or trap is being serviced, the VEC[3:0] output pins are all zero.
Another output (IACK) goes high if any interrupt or trap is being serviced and goes low when the service routine
ends (see the functional timing diagrams for IACK timing).

Lucent Technologies Inc. 3-31

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.4 Interrupt Operation

Figure 3-10, on page 3-33 shows the timing of a simple interrupt. Also shown is the code segment that is being
executed along with the interrupt service routine. In the timing diagram prior to time frame A, an external interrupt
occurs on INT1. The DSP at this time is executing a sequence of single cycle interruptible instructions (nops). In
time frame A, the interrupt is synchronized and latched in an interrupt-pending latch during the current instruction
cycle (A). During time frame B, the interrupt decoder decodes the vector address of the pending interrupt. In the
following cycle during time frame C, the interrupt is acknowledged on the VEC and IACK pins. The PC register is
loaded with the next instruction address of the INT1 interrupt service routine. The return address of the interrupted
instruction is saved in the pi register. At time frame D, the first instruction of the interrupt service routine (a0 = *r0)
is executed causing the ERAMHI strobe to go low immediately. Three cycles later (E), the ireturn instruction exe-
cutes, signaling the end of the interrupt service routine. The IACK and VEC pins are cleared and the contents of
the pi register is loaded into the PC register. At time frame F, the next instruction begins.

Code Fragment INT1 Interrupt Service Routine
. intl_isr:
a0=0x0 a0=*r0 //rO points to ERAMHI
mwait=0x0 2*nop
rO=ERAM_HI ireturn
inc=0x20
nop

} Single cycle interruptible instructions

nop

3-32 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)

3.4.4 Interrupt Operation (continued)

IACK

VEC[3:0]

ERAMHI

T CKO is a zero-wait-stated clock.

Notes:
A. INT1 pin is synchronized and latched in interrupt pending latch.

B. Executing an interruptible instruction.

C. Branch to interrupt routine.

D. Start executing instructions in interrupt service routine.

E. ireturn instruction is executed; end of interrupt service routine.

F. Next instruction.

Figure 3-10. Timing Diagram of a Simple Interrupt (Asserted During an Interruptible Instruction and No
Other Pending Interrupts)

Lucent Technologies Inc. 3-33

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.4 Interrupt Operation (continued)

In the following cases, extra delays (excluding wait-states) are required to service the interrupt:

1. The interrupt is always taken on instruction boundaries. If the instruction is a two-cycle instruction, the interrupt
will allow it to complete execution.

2. The higher-priority interrupts are serviced before the lower-priority interrupts. Therefore, extra delay is more
likely to occur to interrupts with low priority.

3. Interrupt service routines and trap service routines cannot be interrupted.
4. Branch instructions, conditional branch instructions and cache loops are not interruptible.

5. Postdecrement of the RAM address register (*rM--, M = one of 0, 1, 2, or 3) is not interruptible. (This is used by
the pop instruction for control of stacks.)

ins and inc Registers

All of the vectored interrupts are maskable through the inc register. A one in any bit of inc enables the associated
interrupt. If the bit is zero, the interrupt is masked. An interrupt that comes in while masked is latched (or recog-
nized) and will cause an interrupt after being enabled. The status of the interrupt sources that have been recog-
nized are readable in the ins register. Any of these interrupts that have been enabled in the inc register will cause
a vectored interrupt, possibly with some delay, as described previously. Table 3-22 through Table 3-24 show the
inc and ins registers.

Clearing of Interrupts

The PIO/PHIF and SIO<1, 2>interrupts are cleared by reading or writing pdx and sdx. Reading pdx clears
PIDS/PIBF; writing to pdx clears PODS/POBE. Reading sdx clears IBF; writing to sdx clears OBE (see Section
8.3, Interrupts and the PIO, for more detail). The JTAG interrupt is cleared by reading the jtag register. If the vec-
tored interrupts TIME and INT[1:0] are being serviced, they will be cleared when the ireturn instruction is issued.
These vectored interrupts can also be cleared by writing to the ins register. If bits 8—4 in the ins register are writ-
ten to with a one, the corresponding interrupt condition is cleared and the bit becomes a zero. Writing a zero to the
ins register does nothing.

Table 3-21. Interrupt Control (inc) Register (All Except DSP1618/28)

Bit 15 | 14—11 10 9 8 7—6 5—4 3 2 1 0
Field | JINT* | Rsvd |OBE2 |IBF2 | TIMEOUT |Rsvd | INT[1:0] | PIDS/PIBF | PODS/POBE |OBE |IBF

T A zero in any bit of the inc register disables the corresponding interrupt, and a one in any bit enables the corresponding interrupt.
F JINT is a JTAG interrupt and is controlled by the HDS. It can be made unmaskable by the Lucent Technologies development system tools.

Table 3-22. Interrupt Status (ins 1) Register (All Except DSP1618/28)

Bit 15 | 14—11 10 9 8 7—6 5—4 3 2 1 0

Field | JINT* | Rsvd |OBE2 |IBF2 | TIMEOUT |Rsvd | INT[1:0] | PIDS/PIBF | PODS/POBE |OBE |IBF

T A zero in any bit of the ins register disables the corresponding interrupt, and a one in any bit enables the corresponding interrupt.
F JINT is a JTAG interrupt and is controlled by the HDS. It can be made unmaskable by the Lucent Technologies development system tools.

Table 3-23. Interrupt Control (inc) Register (DSP1618/28)

Bit 15 14 13 12 11 10 9 8 7—6 | 5—4 3 2 1 0

Field |JINT* |Rsvd |[EOVF | EREADY |Rsvd |OBE2 |IBF2 | TIMEOUT |Rsvd |INT[1:0] |PIBF |POBE |OBE |IBF

T A zero in any bit of the inc register disables the corresponding interrupt, and a one in any bit enables the corresponding interrupt.
F JINT is a JTAG interrupt and is controlled by the HDS. It can be made unmaskable by the Lucent Technologies development system tools.

3-34 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)

3.4.4 Interrupt Operation (continued)

Table 3-24. Interrupt Status (ins 1) Register (DSP1618/28)

Bit 15 14 13 12 11 10 9 8 7—6 | 5—4 3 2 1 0
Field [JINT* |Rsvd |EOVF | EREADY |Rsvd |OBE2 |IBF2 | TIMEOUT |Rsvd |INT[1:0] |[PIBF |[POBE |OBE |IBF

T A zero in any bit of the ins register disables the corresponding interrupt, and a one in any bit enables the corresponding interrupt.
F JINT is a JTAG interrupt and is controlled by the HDS. It can be made unmaskable by the Lucent Technologies development system tools.

Interrupt Disable Latency

Interrupts are latched on the falling edge of CKO and are taken at the end of the next interruptible instruction. Inter-
rupts are enabled or disabled with a write to the inc register. The enabled/disabled condition becomes effective
just prior to the fetch of the instruction following the write of the inc register. To illustrate this, the following code
fragment demonstrates the interrupt disable latency. Interrupt disable latency is the delay from writing to the inc
register for disabling certain interrupts to the time the interrupt is actually disabled. The number of nop instructions
is not important; six nop s were used in this example.

inc=0x10 [* enable the INTO interrupt pin *
6*nop [* 6 nops *
inc=0 I* disable the INTO interrupt pin */
6*nop [* 6 nops *

Figure 3-11 shows the functional timing for this example with the INTO interrupt applied at varying times to deter-
mine if the interrupt is taken or not taken. The reference is the time at which instruction words are fetched on the
XDB (program data bus).

CKO
|

| | | | | |
XDB >< nop ><inc =0 ><imm(0) >< nop ><g0to 1 >< ><:

| |

\

/\ \ \\
INTERRUPT INTERRUPT IS
IS TAKEN NOT TAKEN

INTO

5-4117

Figure 3-11. Interrupt Disable Latency

The interrupt pins are latched on the falling edge of CKO. The transition region from accepting the interrupt to not
accepting it occurs at the falling edge of CKO during the fetch of the immediate word for the inc = 0 instruction. If
the interrupt is taken, the program will branch to location 1 at time slot 6. If the interrupt is not taken, a nop occurs
at time slot 6. One additional instruction, in this case a nop, will be executed before the interrupt service routine
begins to be executed.

If the user wishes to include a block of code that cannot be interrupted, the block of code could follow the nop after
the imm(0) (immediate equal to zero) in Figure 3-11.

Lucent Technologies Inc. 3-35

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.4 Interrupt Operation (continued)
Concurrent Interrupts

If using DSP16A-compatible interrupts in the DSP1617 device, concurrent interrupts must be handled with extra
care in order to guarantee that all interrupts will be serviced (details are described in Section 4.2.6 of the DSP16A
Information Manual). It is much simpler to handle concurrent interrupts if they are enabled from the inc register in
DSP1611/17/18/27/28/29. Interrupts are serviced according to the following rules:

If interrupt requests (internal or external) occur at the same time or pending interrupts are enabled at the same time
and the device is not servicing any of the pending requests, all the interrupts will be serviced sequentially according
to their priority. The corresponding interrupt status bit is cleared after that interrupt is serviced and ireturn is
issued. The interrupt service status pins (VEC[3:0]) and IACK pin indicate which interrupt is currently being ser-
viced. Figure 3-12 shows a typical circuit that is used to assert an interrupt by an external device . This circuit
removes the interrupt request signal when it begins to service that interrupt.

DSP1611/17/18/27/28/29

VECO »| AO Qo0 >

VEC1 > A1

VEC2 > A2 LOF-16

»| A3 -OF-
VEC3 DECODER (g -
Q9 INT1ACK
INT1
—® INTO IACK »| ENABLE Q15 >

VbD

DQ

cK INT1 INTERRUPT REQUEST
le—————

CL

5-4147

Figure 3-12. Interrupt Request Circuit Diagram

3-36 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)
3.4.4 Interrupt Operation (continued)

If the device is servicing a particular interrupt or that interrupt is already pending and it is desired to have the same
interrupt requested again, the interrupt must remain asserted until the next rising edge of IACK. Figure 3-13 is the
timing diagram of the concurrent interrupt in which the same interrupt is asserted again while the first interrupt
request is being serviced.

Jn
po2y

U
o

IACK —

VEC[3:0]

U da
ENRVEN

5-4118

T CKO is a zero-wait-stated clock.
Notes:
A. INT1 pin is synchronized and latched in interrupt pending latch.

. Executing an interruptible instruction.

. Branch to interrupt routine.

. Start executing instructions in interrupt service routine.

. ireturn instruction is executed; end of interrupt service routine.
Next interruptible instruction.

. Branch to interrupt service routine caused by second INT1.

I @ m m O O W

. Start executing instructions in interrupt service routine.

Figure 3-13. Timing Diagram of Concurrent Interrupts (Interrupt Is Asserted During the Service of the
Samelnterrupt.)

Lucent Technologies Inc. 3-37

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.4 Interrupt Operation (continued)
Polling for Interrupt

The interrupts that are masked will not be serviced by an interrupt service routine. However, the interrupt condi-
tions can be determined by polling the ins register. If the interrupt source is examined in a polling routine, certain
action is taken to clear that status bit in the ins register. The SIO[2] and PIO/PHIF interrupt conditions can be
cleared by reading or writing the 1/0 registers. JINT can be cleared by reading the jtag register. The interrupts
TIME and INT[1:0] are cleared by an ireturn instruction or by writing the corresponding bits of the ins register with
ones. Interrupts that can be cleared by an ireturn instruction are latched on the rising edge of the IACK signal. For
this reason, these interrupts cannot be polled while programs are executing from the interrupt level

In the following example, the code continuously polls the ins register to determine if the condition TIMEOUT is true.
When the timer reaches zero count, the serial input data is read into RAM and the TIMEOUT status of the ins reg-
ister is cleared.

sioc=0x0 /* passive SIO */

inc=0x0 /* mask vectored interrupts */
wait: a0=ins /* check ins register for TIMEOUT */

a0h&0x0100 /* look only at bit 8 */

if eq goto wait /* if no TIMEOUT, wait. */

ins=0x0100 [* if TIMEOUT, clear interrupt by setting bit8to 1 */

rO=sdx / move serial input data into RAM */

Note: pioc bits 9, 8 = 0 to disable ibf and obe interrupts in DSP16A-compatible mode (DSP1617 only).
3.4.5 Trap Description

The maximum interrupt latency in a program can be as long as thousands of cycles if a cache loop uses a large
repeat count. For some time-critical events, the long interrupt response time is too slow to gain control of the pro-
cessor and remove the exception condition. Therefore, programming techniques such as breaking long cache
loops into several short ones, using short interrupt service routines, etc. are often used to improve the response
time. Alternatively, the trap mechanism causes the processor to branch to a trap service routine with less than four
cycles of latency without restrictions from the current instruction. If in a trap service routine, another trap will be
ignored. Also, the trap feature is used by the hardware development system for breakpointing and gaining control
of the processor. Table 3-20 shows the vector address, priority, and trap status encoding (VEC][3:0]) of the user
trap and HDS trap.

The user trap (vector 0x46) is caused by asserting the TRAP pin of the DSP. Because a trap is not maskable and
the user trap has the highest priority, at most two instructions (four cycles maximum) will execute from the time the
trap is received at the pin to when it gains control (see Figure 3-14). An instruction that is executing when the trap
occurs will be allowed to complete before the trap is taken (note that the instruction could be lengthened by wait-

states). If the instruction is a two-cycle instruction (not counting wait-states), the pi register contains the address of
the next instruction. If the instruction was a one-cycle instruction, the pi register will contain the address after the

next instruction. If the program is in an interrupt service routine at the time the trap was taken, the return address
in the pi register is overwritten if a user trap is taken. It is not possible to return to an interrupt service routine from
a user trap service routine. Continuing program execution if a trap occurs during a cache loop is also not possible.

A trap by the hardware development system does not affect the IACK or VEC[3:0] pins. Instead, they show the
interrupt state or interrupt source of the DSP when the TRAP occurs.

3-38 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)

3.4.5 Trap Description (continued)

| | | | | |
cKot LSSJ

USER TRAP I

A
N

N
o

IACK N
$5
VEC[3:0] g \

5-4119.a

T CKO is a zero-wait-stated clock.
Notes:
A. TRAP pin is synchronized and latched in interrupt pending latch.

. A constant two-cycle delay to allow a two-cycle instruction to complete before entering into the trap service routine.
. Branch to trap service routine.
. Start executing instructions in trap service routine.

. ireturn instruction is executed; end of trap service routine.

mm O O W

Next interruptible instruction.

Figure 3-14. Timing Diagram of User Trap

Lucent Technologies Inc. 3-39

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.6 Powerdown with the AWAIT State

These DSPs have a power-saving standby mode in which the internal clock is stretched indefinitely until an inter-
rupt/trap request is received. A minimum amount of circuitry on the chip, including the PIO/PHIF and SIO, will con-
tinue to run in order to process the incoming interrupt. The processor enters the powerdown mode by the user
setting the AWAIT bit (bit 15) of the alf register. After the AWAIT bit is set, one more instruction cycle is executed
before entering the standby powerdown mode. After an interrupt request wakes up the processor, one more
instruction cycle is executed before being interrupted. The timing of entering and exiting the sleep mode is illus-
trated in Figure 3-15.

CKOf UU‘U‘L"L’L’L’[—IUU‘ I—"I—IU‘LIL

N
o~

ccor L L) LI L I A O A

INT1

I
PR

IACK

oy
on

VEC[3:0]

N
PN

5-4120

T CKO is a free-running clock (ioc = 0x0000).
F CKO is a wait-stated clock (ioc = 0x0080).
Notes:

A. Setting AWAIT bit of the alf register.

. Executing one more instruction (nop) after AWAIT is set.
. Stretching the clock for powerdown mode.
. Executing one more instruction (nop) after coming out of sleep mode.

. Branching to interrupt service routine.

m m O O W

Start executing instructions in interrupt service routine.

Figure 3-15. Timing Diagram of Entering and Exiting Powerdown Mode

3-40 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)
3.4.6 Powerdown with the AWAIT State (continued)

Code Example for Sleep Mode (assuming execution from internal RAM)

sleep:
alf=0x8000 [* set bit 15 of alf register */
nop [* one more instruction executed *
* sleep here */
1* external interrupt occurs */
nop [* one more instruction executed *
* branch here */
* return here */
main code:

Lucent Technologies Inc. 3-41

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.7 Interrupts in DSP16A-Compatible Mode (DSP1617 Only)

One external interrupt (INTO) and four internal interrupts (IBF, OBE, PIDS, and PODS) can be compatible with the
corresponding DSP16A interrupts in the DSP1617. If these interrupts are enabled in the pioc register, program
control jumps to address 0x0001 upon receiving an interrupt just as in the DSP16A. If operating in DSP16A-com-
patible mode, no vectored interrupts should be enabled?, i.e., inc = 0x0 for software compatibility with the DSP16A
source code. However, detailed timing specifications and interrupt latency differ between the DSP16A and the
DSP1617. The most important distinction is that, in DSP16A-compatible mode, ireturn does not clear the pending
external interrupt if the interrupt is actually caused by an internal interrupt. The pending INTO can be cleared by
writing 0x10 to the ins register before issuing ireturn . One notable timing difference is the IACK signal that is
asserted at the rising edge of the CKO clock in the DSP1617 instead of the falling edge of CKO as in DSP16A.
However, ORing VECO and VECL1 in the DSP16A-compatible mode generates a signal equivalent to the DSP16A
IACK signal.

The software interrupt (icall , branching to location 0x2) in DSP1611/17/18/27/28/29 works the same way as in
DSP16A. The icall instruction is reserved for use by the hardware development system.

Concurrent Interrupts in DSP16A-Compatible Mode (DSP1617 Only)

The complexity of servicing concurrent interrupts in the DSP16A-compatible interrupt mode is described below.
The following discussion uses an example to illustrate the problem. For concurrent internal and external interrupts,
any interrupts recognized more than one clock cycle before IACK are displayed by the status bits of the pioc
register. They can be serviced in an interrupt handler as demonstrated in the example.

EXAMPLE

/**/

* Interrupts in DSP16A compatible mode (DSP1617). *
1* Concurrent internal (IBF) and external (INTO) interrupt *
* enabled from the pioc register. *
/**/
goto start
intrpt: [* interrupt service routine */
a0=pioc [* move pioc register to a0 */
y=0x1 I* load mask Ox1 to y */
a0&y I* examine bit 0 (INTO) of pioc */
if eq goto sioint I* if no INTO, then service IBF *
* service external interrupt */
r0=0x11 I* DUMMY CODE *
al=r0 I* DUMMY CODE */
pdxl=al I* DUMMY CODE */
ins=0x10 I* clear INTO before ireturn */
ireturn

1.1f interrupts are enabled in the inc and pioc registers, the vectored interrupts are serviced.

3-42 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)

3.4.7 Interrupts in DSP16A-Compatible Mode (DSP1617 Only) (continued)

sioint: * service internal (IBF) interrupt *
al=sdx [* reading sdx clears IBF *
pdx0=al 1* DUMMY CODE */
ireturn

start:
pioc=0x1a20 [* enable IBF and INTO interrupts */

* active pio */
sioc=0x0 [* passive sio port */
srta=0x0
auc=0x0
40*nop

stop: goto stop

If the external interrupt is recognized while servicing an internal interrupt (less than one cycle between IACK and

INTO being latched), the INTO interrupt is pending and is serviced at the next interruptible instruction after the cur-
rent interrupt service routine has finished. In this case, unlike the DSP16A, there is no need to hold the INTO signal
until the next rising edge of IACK. If the IBF interrupt is recognized while servicing the external interrupt, it is ser-
viced at the next interruptible instruction as in the previous case.

Therefore, given the interrupt service routine in the EXAMPLE, asserting INTO with a pulse width of two clock peri-
ods guarantees the service of the concurrent internal and external interrupts under all conditions.

For concurrent external interrupts and if the external interrupt is being serviced as indicated by IACK and VEC1
high and if another external interrupt is requested again, the INTO signal must be asserted until the next rising edge
of IACK (or VEC1).

For applications that need both concurrent internal and external interrupts, the INTO pin can be asserted by a pulse
of two CKO periods if no other INTO is pending or in progress; otherwise, INTO must remain asserted in order to be
serviced again.

Lucent Technologies Inc. 3-43

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.8 Timing Examples, DSP16A-Compatible Mode (DSP1617 Only)

Concurrent Internal and External Interrupts ~ —Figure 3-16 shows the timing sequence of concurrent IBF and
INTO interrupts with both interrupt signals synchronized to the falling edge of the CKO clock. Four cases are given
for different INTO signals asserted at the same time as, or after, the IBF signal.

m Case 1—INTO is asserted the same time as IBF. They are latched internally at point A, and an interrupt is
caused by INTO with both status bits in pioc set. INTO in the pioc register is cleared when IACK goes low. IBF is
cleared upon reading of sdx.

m Case 2—INTO is asserted one clock cycle after IBF and latched internally at point B. Interrupt is caused by IBF
with both status bits in pioc set. ireturn does not clear INTO. In DSP16A, ireturn does clear INTO in this case.

m Case 3—INTO is asserted two clock cycles after IBF and latched internally at point C. Interrupt is caused by IBF
with only IBF status bit set in the pioc register. INTO is pending and is taken at the next interruptible instruction
after ireturn .

m Case 4—INTO asserted three clock cycles after IBF. This case is identical to case 3.

\ \ \ \ Sj
]

(C
2J

IBF /

N
pvRy

IACK /

INTO CASE 1 I

N
o~

INTO CASE 2 / \

AN
o

INTO CASE 3

N
N

INTO CASE 4

AN
o

‘A‘B cC |D

5-4121

T CKO is a zero-wait-stated clock.

Figure 3-16. Timing Sequence of Concurrent Internal and External Interrupts, DSP16A-Compatible Mode

3-44 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.4 Interrupts (continued)
3.4.8 Timing Examples, DSP16A-Compatible Mode (DSP1617 Only) (continued)

Concurrent Internal and External Interrupts —Figure 3-17 also shows the timing sequence of concurrent IBF
and INTO interrupts with three cases of IBF asserted after the INTO signal.

m Case 1—IBF is asserted one clock cycle after INTO. INTO is latched at point A and IBF at point B. Interrupt is
caused by INTO with both status bits in pioc set. INTO latch is negated when IACK goes high.

m Case 2—IBF is asserted two clock cycles after INTO and latched internally at point C. Interrupt is caused by
INTO, and only the INTO status bit in pioc is set. INTO latch is negated when IACK goes high. IBF interrupt is
serviced at the next interruptible instruction after ireturn .

m Case 3—IBF is asserted three clock cycles after INTO. The result is identical to case 2.

INTO / <
‘ JJ
S5
IACK /
LC
IBF CASE 1 >?
LC
IBF CASE 2 >?
CC
IBF CASE 3 >’

‘ A ‘ B C D
5-4122

T CKO is a zero-wait-stated clock.

Figure 3-17. Timing Sequences of Concurrent Internal and External Interrupts, DSP16A Compatible Mode

Lucent Technologies Inc. 3-45

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.4 Interrupts (continued)
3.4.8 Timing Examples, DSP16A-Compatible Mode (DSP1617 Only) (continued)

Concurrent External Interrupts —Figure 3-18 shows the timing sequence of concurrent INTO interrupts.

m Case 1—INTO signal is negated at point B and asserted again at point C. Because the previous INTO is still
pending, the new INTO must be asserted until the second rising edge of IACK.

m Case 2—INTO signal is negated at point B and asserted again at point D. In this case, INTO is asserted if servic-
ing of the previous INTO is in progress; it must remain asserted until the next rising edge of IACK.

IACK /

dn
o

VEC1

I~
“

INTO CASE 1 / \

oy
o

INTO CASE 2 /

A B ‘ C D

5-4123

T CKO is a zero-wait-stated clock.

Figure 3-18. Timing Sequence of Concurrent External Interrupts, DSP16A Compatible Mode

3-46 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only)

The DSP1627/28/29 provides an on-chip programmable clock synthesizer that can be driven by an external clock
at a fraction of the desired instruction rate. Figure 3-19 is the clock source diagram. The 1X CKI input clock, the
output of the synthesizer, or a slow internal ring oscillator can be used as the source for the internal DSP clock.
The clock synthesizer is based on a phase-lock loop (PLL). The terms clock synthesizer and PLL are used inter-
changeably.

On powerup, CKI is used as the clock source for the DSP. This clock is used to generate the internal processor
clocks and CKO. Setting the appropriate bits in the plic control register (see Table 3-26) will enable the clock syn-
thesizer to become the clock source. The powerc register, which is discussed in Section 3.6.1, powerc Control
Register Bits, can be programmed to override the clock selection, to stop clocks, or to force the use of the slow ring
oscillator clock for low-power operation.

@ SLOWCKI

RING fsLowcrock | INTERNAL
OSCILLATOR = PROCESSOR
CKIINPUT CLOCK fex M CLOCK
fcki v fINTERNAL cLOCK
VCO CLOCK
> -2 —
fvco

LOCK
—

(FLAG TO INDICATE LOCK
CONDITION OF PLL)

=N - PHASE CHARGE
' DETECTOR PUMP
T LOOP

Nbits[2:0] FILTER
A

PLLSEL

=M ¢

T

Mbits[4:0] LF[3:0]

PLL/SYNTHESIZER

Notes:
Signals shown in bold are control bits from the plic register or the powerc register.

If PLLSEL = 0, DSP runs from the 1X version of CKI input clock.

Other signals from the powerc register also control the clock source.

Figure 3-19. Clock Source Block Diagram

Lucent Technologies Inc. 3-47

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only) (continued)
3.5.1 PLL Control Signals

The input to the PLL comes from the input clock CKI. The PLL cannot operate without this external input clock.

To use the PLL, the PLL must first be allowed to stabilize and lock to the programmed frequency. After the PLL has
locked, the LOCK flag is set and the lock detect circuitry is disabled. The synthesizer can then be selected and
used as the clock source. Setting the PLLSEL bit in the plic register will switch sources from fcki to fvco/2 without
glitching. It is important to note that the setting of the plic register must be maintained and should not be changed
unless the PLL is deselected as the clock source. Every time the plic register is written, the LOCK flag is reset.
The LOCK flag is not accessible through any register; its status is tested by the conditional control instruction

if LOCK. (See Section 4.5.1, Control Instructions.)

The frequency of the PLL output clock (fvco) is determined by the values loaded into the 3-bit N divider and the
5-bit M divider. If the PLL is selected and locked, the frequency of the initial processor clock is related to the fre-
qguency of CKI by the following equations:

fvco = fcki * M/N

fINTERNAL cLock = fcko = fvco /2
The frequency of the VCO (fvco) must fall within the range defined in the data sheet.
Note: fvco must be at least twice fcki.

The coding of the Mbits and Nbits is described as follows:

Mbits=M-2
if (N==1)
Nbits=0x7
else
Nbits=N-2

where N ranges from 1 to 8 and M ranges from 2 to 20.
Program the loop filter bits (LF[3:0]) according to Table 3-27.

Two other bits in the pllc register (PLLEN and PLLSEL) provide control functions of the PLL. Clearing the PLLEN
bit powers down the PLL. Setting the PLLEN bit powers up the PLL. Clearing the PLLSEL bit deselects the PLL
causing the DSP to be clocked by the 1X CKI input. The PLL can be deselected and powered down in the same
instruction by clearing bits PLLEN and PLLSEL of the plic register; all remaining plic bits must remain unchanged.
Setting the PLLSEL bit selects the PLL-generated clock for the source of the DSP internal processor clock. The
plic register is cleared on reset and powerup; therefore, the DSP comes out of reset with the PLL deselected and
powered down. M and N should be changed only if the PLL is deselected.

The PLL provides a user flag (LOCK) to indicate if the loop has locked. If this flag is not asserted, the PLL output is
unstable. The DSP should not be switched to the PLL-based clock without first checking that the LOCK flag is set.
The LOCK flag is cleared by writing to the plic register. If the PLL is deselected, it is necessary to wait for the PLL
to relock before the DSP can be switched to the PLL-based clock. Before the input clock (CKI) is stopped, the PLL
should be powered down. Otherwise, the LOCK flag is not reset, and there might be no way to determine if the
PLL is stable when the input clock is applied again.

The lock-in time depends on the operating frequency and the values programmed for M and N (see Table 3-27).

3-48 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only) (continued)

3.5.1 PLL Control Signals (continued)

The following rules govern proper programming and use of the PLL:

Choose the M and N counter values in the plic register by selecting the lowest value for N and the appropriate
value of M required to obtain the desired frequency of the internal clock. The values for M are in Table 3-27.

The frequency of the PLL output clock (VCO) must fall within the range defined in the data sheet. The VCO fre-
guency must also be at least 2x fcki.

Change the bits in the plic register only if the PLL is not providing the internal clock source.
To select the PLL as the internal clock:

1. Program all bits in the plic register to the desired setting except for PLLSEL, which should be cleared. Setting
the pllc register should be performed if the PLL is deselected.

2. Wait for the LOCK flag to be set.
3. Select the PLL by setting the PLLSEL bit.
To deselect the PLL, clear only the PLLSEL without changing any other bits in the pllc register.

The PLL is powered down by clearing the PLLEN bit in the pllc register. The PLL should not be powered down if
it is selected. The PLL can be deselected and powered down in the same instruction by clearing bits PLLEN and
PLLSEL of the plic register; all remaining pllc bits must remain unchanged.

Do not remove the input clock (CKI) before the PLL is powered down.

Lucent Technologies Inc. 3-49

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only) (continued)

3.5.2 PLL Programming Examples

The following section of code illustrates how the PLL is initialized on powerup assuming the following operating
conditions:

= VoD=3V

CKl input frequency = 10 MHz

Internal clock and CKO frequency = 50 MHz

VCO frequency = 100 MHz

Input divide down count N = 2 (Set Nbits [2:0] = 000 to get N = 2, as Table 3-26 describes.)

m Feedback down count M = 20 (Set Mbits [4:0] = 10010 to get M = 18 + 2 = 20, as Table 3-26 describes.)

The device comes out of reset with the PLL powered down and deselected.

pllinit: pllc=0xA912 [* Running CKlinputclock at 10 MHz, setup counters
*
/
I* in PLL, Power on PLL, but PLL remains deselected
*
/
call pllwait I* Loop to check for LOCK flag assertion */
pllc=0xE912 I* Select high-speed, PLL clock *
2*nop [* Switch to PLL latency */
goto start [* User’s code, now running at 50 MHz */
pliwait; if lock return
goto pliwait

Section 3.6.6, Power Management Examples lists programming examples that illustrate how to use the PLL with
the various power management modes.

3.5.3 Latency

The switch between the CKI-based clock and the PLL-based clock is synchronous. This method results in the
actual switch taking place several cycles after the PLLSEL bit is changed. During this time, actual code can be
executed at the precedent clock rate. Table 3-25 shows the latency times for switching between CKI-based and
PLL-based clocks. The PLL cannot be disabled until the switch back to CKI has been completed. In the example
given, the delay to switch to the PLL source is 1—4 CKO cycles and to switch back is 11—31 CKO cycles.

Table 3-25. Latency Times for Switching Between CKI and PLL-Based Clocks

Minimum Maximum
Latency (cycles) Latency (cycles)
Switch to PLL-based clock 1 N+2
Switch from PLL-based clock M/N + 1 M+ M/N+1

3-50 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.5 Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only) (continued)

3.5.3 Latency (continued)

Table 3-26. Phase-Locked Loop Control (pllc) Register

Bit 15 14 13 12 11—8 7—5 4—0
Field |PLLEN [PLLSEL| ICP |SEL5VT LF[3:0] Nbits[2:0] Mbits[4:0]
Field Value Description
PLLEN 0 PLL powered down.
1 PLL powered up.
PLLSEL 0 DSP internal clock taken directly from CKI.
1 DSP internal clock taken from PLL.
ICP — Charge Pump Current Selection (see Table 3-27 for proper value).
SEL5VT 0 3 V operation (see Table 3-27 for proper value).
1 5 V operation (see Table 3-27 for proper value).
LF[3:0] — Loop filter setting (see Table 3-27 for proper value).
Nbits[2:0] — Encodes N, 1 <N < 8; where N = Nbits[2:0] + 2, unless Nbits[2:0] = 111 then N = 1.
Mbits[4:0] — Encodes M, 2 £ M < 24; where M = Mbits[4:0] + 2 & fINTERNAL cLock = fcki X (M/(2N)).

T Not available on the DSP1628 or DSP1629.

Table 3-27. PLL Electrical Specifications and plic Register Settings

M Vbbp plicl3 plic12 plic[11:8] | Typical Lock-in Time (ps)
(ICP) (SEL5V) | (LF[3:0]) (See Note 2)

23—24 |2.7V—3.6V 1 0 1011 30
21—22 |2.7V—36V 1 0 1010 30
19—20 (2.7V—3.6V 1 0 1001 30
16—18 (2.7V—3.6V 1 0 1000 30
12—15 (2.7V—3.6V 1 0 0111 30
8—11 |2.7V—3.6V 1 0 0110 30
2—7 |27V—3.6V 1 0 0100 30
19—20 5V +5% 1 1 1110 30
17—18 5V +5% 1 1 1101 30
16 5V +5% 1 1 1100 30
14—15 5V +5% 1 1 1011 30
12—13 5V +5% 1 1 1010 30
10—11 5V +5% 1 1 1001 30
8—9 5V +5% 1 1 1000 30
7 5V +5% 1 1 0111 30
5—6 5V +5% 1 1 0110 30
2—4 5V +5% 1 1 0101 30

Notes:

The M and N counter values in the plic register must be set so that the VCO operates in the appropriate range
(see the data sheet). Choose the lowest value of N and then the appropriate value of M for

fINTERNAL cLock = feki X (M/(2N)) = fvco/2.

Lock-in time represents the time following assertion of the PLLEN bit of the plic register during which the PLL out-
put clock is unstable. The DSP must operate from the 1X CKI input clock or from the slow ring oscillator while the
PLL is locking. Completion of the lock-in interval is indicated by assertion of the LOCK flag.

Lucent Technologies Inc. 3-51

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.6 Power Management

There are three different control mechanisms for putting the DSP1611/17/18/27/28/29 into low-power modes: the
powerc control register, the STOP pin, and the AWAIT bit in the alf register. See the appropriate device’s data
sheet for the typical power consumption in each mode.

3.6.1 powerc Control Register Bits

The powerc register has 9 bits that power down various portions of the chip and select the clock source. The
encoding for the powerc register is in Tables 3-28, 3-29, 3-30, and 3-31. The bits are described as follows:

XTLOFF: Assertion of the XTLOFF bit powers down the crystal oscillator or the small-signal input circuit disabling
the internal processor clock. Assertion of the XTLOFF bit also disables the crystal oscillator if it is used as a nonin-
verting input buffer. Because the oscillator and the small-signal input circuits take many cycles to stabilize, care
must be taken with the turn-on sequence as described in Section 3.6.5, Power Management Sequencing.

SLOWCKI: Assertion of the SLOWCKI bit selects the ring oscillator as the clock source for the internal clock
instead of CKI (or the clock synthesizer on the DSP1627/28/29). If CKI (or the clock synthesizer) is selected, the
ring oscillator is powered down. Switching of the clocks is synchronized so that no partial or short clock pulses
occur. Two nops should follow the instruction that sets or clears SLOWCKI.

NOCK: Assertion of the NOCK bit synchronously turns off the internal processor clock whether its source is pro-
vided by CKI, the clock synthesizer, or the ring oscillator. The NOCK bit can be cleared by either resetting the chip
with the RSTB pin or by asserting the INTO or INT1 pins. Two nops should follow the instruction that sets NOCK.

INTOEN: This bit allows the INTO pin to asynchronously clear the NOCK bit, thereby, allowing the device to con-
tinue program execution from where it left off without any loss of state. No chip reset is required. It is recom-
mended that, if INTOEN is to be used, the INTO interrupt be disabled in the inc register so that an unintended
interrupt does not occur. After the program resumes, the INTO interrupt in the ins register should be cleared.

INT1EN: This bit enables the INT1 pin to be used as the NOCK clear exactly like INTOEN previously described.

The following control bits power down the peripheral 1/0 units of the DSP and can be used to further reduce the
power consumption during standard sleep mode.

SIO1DIS: This is a powerdown signal to the SIO1 I/O unit. It disables the clock input to the unit, thus eliminating
any sleep power associated with the SIO1. Because the gating of the clocks might result in incomplete transac-
tions, it is recommended that this option be used in applications where the SIO1 is not used or if reset might be
used to reenable the SIO1 unit. Otherwise, the first transaction after reenabling the unit might be corrupted.

SIO2DIS: This bit powers down the SIO2 in the same way SIO1DIS powers down the SIO1.

PIODIS (DSP1617 only) : This is a powerdown signal to the PIO 1/O unit. It disables the clock input to the unit
eliminating any sleep power associated with the PIO. Because the gating of the clocks can result in incomplete
transactions, it is recommended that this option be used in applications where the P1O is not used or if reset can be
used to reenable the PI1O unit. Otherwise, the first transaction after reenabling the unit might be corrupted. If the
DSP16A-compatible interrupts are being used, the PIO must remain powered up because the pioc register is
needed.

PHIFDIS (DSP1611/18/27/28/29 only) : This is a powerdown signal to the PHIF I/O unit. It disables the clock input
to the unit eliminating any sleep power associated with the PIO. Because the gating of the clocks can result in
incomplete transactions, it is recommended that this option be used in applications where the PHIF is not used or if
reset might be used to reenable the PHIF unit. Otherwise, the first transaction after reenabling the unit might be
corrupted.

TIMERDIS: This is a timer disable signal that disables the clock input to the timer unit. Its function is identical to
the DISABLE field of the timerc control register. Writing a O to the TIMERDIS field continues the timer operation.

3-52 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.6 Power Management (continued)
3.6.1 powerc Control Register Bits (continued)

ECCPDIS (DSP1618/28 only) : This is a powerdown signal to the error correction coprocessor. It disables the
clock input to the ECCP eliminating any sleep power associated with the coprocessor. Because the gating of the
clocks can result in incomplete transactions, it is recommended that this option be used in applications where the
ECCP is not used or if reset might be used to reenable the ECCP. Otherwise, the first transaction after reenabling
the unit can be corrupted.

Table 3-28. powerc Fields (DSP1617)

Bit 15 14 13 12 11 10 |9—8 7 6 5 4 3—0
Field XTLOFF |[SLOWCKI [NOCK |INTOEN (rsvd |INT1EN |rsvd |SIO1DIS |SIO2DIS |PIODIS |TIMERDIS | rsvd

Table 3-29. powerc Fields (DSP1611, DSP1627, and DSP1629)

Bit 15 14 13 12 11 10 |98 7 6 5 4 3—0
Field XTLOFF|SLOWCKI [NOCK |INTOEN |rsvd [INT1EN [rsvd |SIO1DIS |SIO2DIS [PHIFDIS [TIMERDIS | rsvd

Table 3-30. powerc Fields (DSP1618 and DSP1628)

Bit 15 14 13 12 11 10 |98 7 6 5 4 3—1 0

Field XTLOFF|SLOWCKINOCK/|INTOEN [rsvd|INT1EN rsvd [SIO1DIS [SIO2DIS |PHIFDIS [TIMERDIS |rsvd ECCPDIS

Table 3-31. powerc Control Register Fields Description

Field Description
XTLOFF 1 = power down crystal oscillator or small-signal clock input.
SLOWCKI 1 = select ring oscillator clock.
NOCK 1 = disable internal processor clock.
INTOEN 1 = INTO clears NOCK field.
INT1EN 1 =INT1 clears NOCK field.
SIO1DIS 1 = disable SIO1.
SI02DIS 1 = disable SIO2.
PIODIS 1 = disable P1O (DSP1617 only).
PHIFDIS 1 = disable PHIF (DSP1611/18/27/28/29 only)
TIMERDIS 1 = disable timer.
ECCPDIS 1 = disable ECCP (DSP1618/28 only)

Note: The reserved (rsrvd) bits should always be written with zeros to make the program compatible with
future chip versions

Figures 3-20 and 3-21 demonstrate a functional view of the effect of the bits of the powerc register on the clock cir-
cuitry. They illustrate only the high-level operation of each bit. Not shown are the bits that power down the periph-
eral units.

Lucent Technologies Inc. 3-53

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.6 Power Management (continued)

3.6.1 powerc Control Register Bits (continued)

@ OFF

CRYSTAL
CKI2 OSCILLATOR, RING ON O
. OR oo OSCILLATOR I
SMALL SIGNAL |
CLOCK
|
CKI S —
. |
TTL |
» INPUT | —
OPTION |
SELECTION | v '
|
SYNC.
CMOS | MUX SLOWCKI
INPUT | — — _ 1
CLOCK

STOP

Y

SW STOP s
DISABLE | ©
RSTB
INTERNAL
. © PROCESSOR

CLEAR cLocK
H) j -

5-4124

Notes:
The functions in the shaded ovals are bits in the powerc control register.

Bits used to power down the peripheral units and the ECCP (DSP1618 only) are not shown.
Deep sleep is the state arrived at by a hardware or software stop of the internal processor clock.
The switching of the multiplexers and the synchronous gate is designed to be clean in the sense that no partial clocks occur.

If the deep sleep state is entered with the ring oscillator selected, the internal processor clock is turned off before the ring oscillator is powered
down.

Figure 3-20. Power Management Using the powerc Register (DSP1611/17/18 Only)

3-54 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.6 Power Management (continued)

3.6.1 powerc Control Register Bits (continued)

CRYSTAL
CKI2 OSCILLATOR, RING ON o

. > OR Q7 OSCILLATOR
SMALL SIGNAL

CLOCK |
$_> fvcol2
|
|

fslow clock

PLL

MASK-PROGRAMMABLE
OPTION

CKiI
. fcki

CMOS |
» INPUT | — — —

CLOCK
y Y

SYNC.

MUX

STOP

Y

L ,ISYNC.

DISABLE GATE

SW STOP

CLEAR NOCK

. finternal clock

INTO INTERNAL

.7 PROCESSOR
CLOCK

INT1

5-4124.a

Notes:

The functions in the shaded ovals are bits in the powerc control register. The functions in the nonshaded ovals are bits in the plic control regis-
ter. Bits used to power down peripheral units and the ECCP (DSP1628) are not shown.

Deep sleep is the state arrived at by a hardware or software stop of the internal processor clock.

The switching of the multiplexers and the synchronous gate is designed to be clean in the sense that no partial clocks occur.

If the deep sleep state is entered with the ring oscillator selected, the internal processor clock is turned off before the ring oscillator is powered
down.

PLL select is the PLLSEL bit of plic ; PLL powerdown is the PLLEN bit of plic.

Figure 3-21. Power Management Using the powerc Register (DSP1627/28/29 Only)

Lucent Technologies Inc. 3-55

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.6 Power Management (continued)
3.6.2 STOP Pin

Assertion (active-low) of the STOP pin has the same effect as setting the NOCK bit in the powerc register. The
internal processor clock is synchronously disabled until the STOP pin is returned high. If the STOP pin is returned
high, program execution continues from where it left off without any loss of state. No chip reset is required. For the
DSP1627/28/29, the PLL remains running, if enabled, during STOP assertion.

3.6.3 The pllc Register Bits (DSP1627/28/29 Only)

The PLLEN bit of the plic register can be used to power down the clock synthesizer circuitry. Before shutting down
the clock synthesizer circuitry, the system clock should be switched to either CKI by using the PLLSEL bit of plic or
to the ring oscillator by using the SLOWCKI bit of powerc .

3.6.4 AWAIT Bit of the alf Register

Setting the AWAIT bit of the alf register causes the processor to go into the standard sleep state or power-saving
standby mode. Operation of the AWAIT bit is unchanged from the DSP1610. In this mode, only the minimum cir-
cuitry required to process an incoming interrupt remains active. An interrupt returns the processor to the previous
state, and program execution continues. The action resulting from setting the AWAIT bit and the action resulting
from setting bits in the powerc register are mostly independent. As long as the processor is receiving a clock,
whether slow or fast, the DSP can be put into standard sleep mode with the AWAIT bit. If the AWAIT bit is set, the
STOP pin can be used to stop and later restart the processor clock returning to the standard sleep state. If the pro-
cessor clock is not running, however, the AWAIT bit cannot be set. If executing code with two or more wait-states,
it is recommended that the alf register be set from within the cache to prevent any pending interrupt from being ser-
viced until after the DSP enters the AWAIT state.

3-56 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.6 Power Management (continued)
3.6.5 Power Management Sequencing

There are important considerations for sequencing the power management modes. Both the crystal oscillator and
the small-signal clock input circuits have start-up delays that must be taken into account. Also, the chip might or
might not need to be reset following a return from a low-power state.

Devices with the crystal oscillator or small-signal input clocking option can use the XTLOFF bit in the powerc reg-
ister to power down the on-chip oscillator or the small-signal circuitry, thereby, reducing the power dissipation.
When reenabling the oscillator or the small-signal circuitry, it is important to bear in mind that a start-up interval
exists during which time the clocks are not stable. Two scenarios exist here:

1. Immediate Turn-Off—Turn-On with RSTB: This scenario applies to situations where the target device is not
required to execute any code while the crystal oscillator or small-signal input circuit is powered down and where
restart from a reset state can be tolerated. In this case, the processor clock derived from either the oscillator or
the small-signal input is running if XTLOFF is asserted. This effectively stops the internal processor clock. If the
system chooses to reenable the oscillator or small-signal input, a reset of the device is required. The reset pulse
must be of sufficient duration for the oscillator start-up interval to be satisfied. A similar interval is required for
the small-signal input circuit to reach its dc operating point. A minimum reset pulse of 20 ms is adequate. The
falling edge of the reset signal (RSTB) asynchronously clears the XTLOFF field, thus, reenabling the power to
the oscillator or small-signal circuitry. The target DSP then starts execution from a reset state following the rising
edge of RSTB.

2. Running from Slow Clock While XTLOFF Active: This second scenario applies to situations where the device
needs to continue execution of its target code if the crystal oscillator or small-signal input is powered down. In
this case, the device switches to the slow ring oscillator clock first by enabling the SLOWCKI field before writing
a 1 to the XTLOFF field. Two nops are needed in between the two write operations to the powerc register. The
target device then continues execution of its code at slow speed while the crystal oscillator or small-signal input
clock is turned off. Switching from the slow clock back to the high-speed crystal oscillator clock is then accom-
plished in three user steps. First, XTLOFF is cleared. Then, a user-programmed routine sets the internal timer
to a delay to wait for the crystal's oscillations to become stable. When the timer counts down to zero, the high-
speed clock is selected by clearing the SLOWCKI field either in the timer's interrupt service routine or following a
timer polling loop.

For devices with the PLL and slow clock ring oscillator option, the use of the internal ring oscillator (slow clock) is
required if entering the low-power state. For reliable operation in all environments, the ring oscillator must be
selected as the clock source before the PLL is turned off.

Lucent Technologies Inc. 3-57

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998
3.6 Power Management (continued)

3.6.6 Power Management Examples

The following examples illustrate the more significant options for reducing the power dissipation.

Standard Sleep Mode. This is the standard sleep mode. The alf register's AWAIT bit is set while the processor is
clocked with a high-speed clock (CKIl). Peripheral units can be turned off to further reduce the sleep power.

powerc=0x00F0 I* Turn off all peripheral units, core running with CKI*/
sleep:a0=0x8000 * Preload a0 with alf setting */

do 1{ [* Use cache to make instructions noninterruptible */

alf=a0 * Stop internal DSP clock. Interrupt circuits active*/

nop 1* Needed for bedtime execution */

}

nop * Only sleep power consumed here until */

* interrupt wakes up the device */

next: . . . I* User code executes here */

powerc=0x0 I* Turn peripheral units back on *

Sleep with Slow Internal Clock 1. In this case, the ring oscillator is selected to clock the processor before the
device is put to sleep. This will reduce the power dissipation while waiting for an interrupt to continue program
execution.

powerc=0x40F0 I* Turn off all peripheral units and select slow clock*/

2*nop * Wait for it to take effect */
sleep:a0=0x8000 * Preload a0 with alf setting */

do 1{ I* Use cache to make instructions noninterruptible */

alf=a0 I* Stop internal DSP clock. Interrupt circuits active*/

nop [* Needed for bed-time execution *

}

nop I* Only sleep power consumed here until *

1* interrupt wakes up the device */

next: . . . I* User code executes here */

powerc=0x00F0 I* Select high-speed clock */

2*nop 1* Wait for it to take effect */

powerc=0x0000 I* Turn peripheral units back on *

1.In this case, the wake-up latency is determined by the period of the ring oscillator clock.

3-58 Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Software Architecture

Information Manual
April 1998

3.6 Power Management (continued)
3.6.6 Power Management Examples (continued)
Sleep with Slow Internal Clock and Crystal Oscillator/Small-Signal Disabled 1. If the target device contains

the crystal oscillator or the small-signal clock option, the clock input circuitry can be powered down to further
reduce power. In this case, the slow clock must be selected first.

powerc=0x40F0 I* Turn off all peripheral units and select slow clock*/
2*nop [* Wait for it to take effect */
powerc=0xCOFO [* Turn off the crystal oscillator */
sleep:a0=0x8000 * Preload a0 with alf setting */
do1{ I* active */
alf=a0 I* Stop internal DSP clock. Interrupt circuits active*/
nop [* Needed for bedtime execution */
}
nop * Only sleep power consumed here until */
1* interrupt wakes up the device */
powerc=0x40F0 I* Clear XTLOFF, reenable oscillator/small-signal */
call xtlwait [* Wait until oscillator/small-signal is stable *
next: powerc=0x00FO0 [* Select high-speed clock */
2*nop [* Wait for it to take effect */
powerc=0x0000 I* Turn peripheral units back on *

Software Stop. In this case, all internal clocking is disabled. INTO, INT1, or RSTB can be used to reenable the
clocks. If the device uses the crystal oscillator or small-signal clock option, the power management must be done
in correct sequence.

powerc=0x4000 I* SLOWCKI asserted */
2*nop [* Wait for it to take effect */
powerc=0xD000 [* XTLOFF asserted if applicable and INTOEN asserted*/
inc=NOINTO [* Disable the INTO interrupt */
sopor:powerc=0xF000 I* NOCK asserted, all clocks stop *

* Minimum switching power consumed here */
3*nop I* Some nops will be needed *

* INTO pin clears the NOCK field, clocking resumes*/

next: powerc=0x4000 [* INTOEN cleared and XTLOFF cleared, if applicable*/
call xtlwait I* Wait for the crystal oscillator/small-signal to */

1* stabilize, if applicable */
powerc=0x0 I* Clear SLOWCKI field, back to high speed */
2*nop I* Wait for it to take effect */
ins=0x0010 I* Clear the INTO status bit */

1.1n this case, the wake-up latency is dominated by the crystal oscillator or small-signal start-up period. xltwait is a called subroutine that waits
for stabilization.

Lucent Technologies Inc. 3-59

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Software Architecture April 1998

3.6 Power Management (continued)
3.6.6 Power Management Examples (continued)

In this case also, the wake-up latency is dominated by the crystal oscillator or small-signal start-up period. The
previous examples do not provide an exhaustive list of options available to the user. These options depend on:

1. The clock source to the processor.

2. Whether the user chooses to power down the peripheral units.

3. The operational state of the crystal oscillator/small-signal clock input either powered or unpowered.
4. Whether the internal processor clock is disabled through hardware or software.

5. The combination of power management modes the user chooses.

6. Whether or not the PLL is enabled.

Power Management Examples with the PLL (DSP1627/28/29 Only)
The following examples show the more significant options for reducing power dissipation if operation with the PLL

clock synthesizer is desired.

Standard Sleep Mode, PLL Running. This mode is entered in the same manner as without the PLL. While the
input to the clock synthesizer (CKI) remains running, the alf register's AWAIT bit is set. The PLL continues to run
and dissipate power. Peripheral units can be turned off to further reduce the sleep power.

powerc=0x00F0 I* Turn off peripherals, core running with PLL */
sleep:a0=0x8000 * Set alf register in cache loop if running from */

do 1{ [* external memory with >1 wait-state */

alf=a0 [* Stop internal processor clock, interrupt circuits*/

nop I* active *

}

nop I* Needed for bedtime execution. Only sleep power plus PLL
*/

nop [* power consumed here... Interrupt wakes up the device.
*/
next: . . . I* User code executes here */

powerc=0x0000 I* Turn peripheral units back on *

3-60 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Software Architecture

3.6 Power Management (continued)
3.6.6 Power Management Examples (continued)
Sleep with Slow Internal Clock, PLL Running. In this case, the ring oscillator is selected to clock the processor

before the device is put to sleep. This reduces power dissipation while waiting for an interrupt to continue program
execution.

powerc=0x40F0 I* Turn off peripherals and select slow clock *
2*nop I* Wait for slow clock to take effect */
sleep:a0=0x8000 * Set alf register in cache loop if running from */
do1{ I* external memory with >1 wait-state */
alf=a0 I* Stop internal processor clock, interrupt circuits*/
nop [* active *
}
Y nop * Needed for bedtime execution. Only sleep power plus PLL
) nop [* power consumed here... Interrupt wakes up the device.
next: . .. I* User code executes here */
powerc=0x00F0 I* Select high-speed PLL based clock */
2*nop [* Wait for it to take effect */
powerc=0x0000 I* Turn the peripheral units back on */
Sleep with Slow Internal Clock and Crystal Oscillator/Small-Signal Disabled, PLL Disabled. If the target

device contains the crystal oscillator or the small-signal clock option, the clock input circuitry can be powered down
to further reduce power. In this case, the slow clock must be selected first and then the PLL must be disabled
because the PLL cannot run without the clock input circuitry being active.

powerc=0x40F0 I* Turn off peripherals and select slow clock *

2*nop [* Wait for slow clock to take effect */

pllc=0x29F2 [* Disable PLL (assume N=1, M=20, LF=1001) */

powerc=0xCOFO [* Disable crystal oscillator *
sleep:a0=0x8000 * Set alf register in cache loop if running from */

do1{ I* external memory with >1 wait-state */

alf=a0 [* Stop internal processor clock, interrupt circuits*/

nop [* active *

}

nop I* Needed for bedtime execution. Only sleep power plus PLL
*/

nop [* power consumed here... Interrupt wakes up the device.
*/

powerc=0X40F0 /* Clear XTLOFF, leave PLL disabled */

call xtlwait I* Wait until crystal oscillator/small-signal is stable*/

pllc=0xE9F2 /* Enable PLL, continue to run off slow clock */

call pllwait [* Loop to check for LOCK flag assertion */
next: powerc=0x00FO0 [* Select high-speed PLL based clock *

2*nop [* Wait for it to take effect */

powerc=0x0000 I* Turn the peripheral units back on */

Lucent Technologies Inc. 3-61

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Software Architecture

3.6 Power Management (continued)

3.6.6 Power Management Examples (continued)

Information Manual
April 1998

Software Stop, PLL Disabled. In this case, all internal clocking is disabled. INTO, INT1, or RSTB can be used to
reenable the clocks. If the device uses the crystal oscillator or small-signal clock option, the power management
must be done in the correct sequence with the PLL being disabled before shutting down the clock input buffer.

powerc=0x40F0 I* Turn off peripherals and select slow clock*/
2*nop [* Wait for slow clock to take effect */
pllc=0x29F2 1* Disable PLL (assume N=1, M=20, LF=1001) */
, powerc=0xD000 [* XTLOFFasserted,ifapplicableand INTOEN asserted
sopor:powerc=0xF000 I* NOCK asserted, all clocks stop *
* Minimum switching power consumed here */
3*nop I* Some nops will be needed *
* INTO pin clears NOCK field, clocking resumes*/
c/ont: powerc=0x4000 I* INTOEN cleared and XTLOFF cleared, if applicable
call xtlwait I* Wait until crystal oscillator/small-signal is*/
* stable if applicable */
pllc=0XE9F2 /* Enable PLL, continue to run off slow clock*/
call pllwait [* Loop to check for LOCK flag assertion */
powerc=0x0000 I* Select high-speed PLL based clock */
2*nop [* Wait for it to take effect */
ins=0x0010 [* Clear the INTO status bit */
An example subroutine for xtlwait follows:
xtlwait:
timer0=0x2710 /* Load a count of 10,000 into the timer */
timerc=0x0010 I* Start the timer with a PRESCALE of two */
inc=0x0000 [* Disable the interrupts */
loopl:a0=ins [* Poll the ins register *
a0=a0 & 0x0100 [* Check bit 8 (TIME) of the ins register */
if eq goto loopl I* Loop if the bit is not set */
ins=0x0100 [* Clear the TIME interrupt bit *
return [* Return to the main program */

An example subroutine for pllwait follows:

pliwait; if lock return [* wait for lock flag to be set

goto pliwait

3-62

*/

Lucent Technologies Inc.

Chapter 4

Instruction Set

CHAPTER 4. INSTRUCTION SET

CONTENTS
R [1=y ¥ Tox o) o T T=Y A EOURU R TRRSOURSRTRRO 4-1
0 s R o} v=Y 1o o OO RPRS 4-2
0 A [1S3 (¥ Tod 1T o I @A Yo L= o] o PP PRRPRN 4-2
0 4.3 AAAreSSING MOUESc.ooiuiivieeieeie ettt ettt ettt ettt e et e et et e et et eete et et e eteeae e st e teteentete et sreeteenseseees 4-3
0 4.3.1 Register INAIreCt AAAreSSINGuvvviiiieeiiiiiiiiiie e e e e e e e e e s s e e e e e e e s anee s 4-3
0 4.3.2 ComMPOUNT AUIESSING ...ccviivieeiiiteite ettt eee ettt ete e e et e e et e et e e et e et e e etesteeneeeteereenseere s 4-5
0 4.3.3 Direct Data AQAIrESSINGcccvevieieiteeeieieete ettt teete ettt e ete et e et e e e eteeteeteereereeeaesreareeeeres 4-7
0 O S (o Tot =Y =To gl = = Yo L= 4-9
0 R (011 ¥ Tox o) o JE Y=Y OO 4-11
0 4.5.1 CONOl INSIIUCHONSvviviiieitecee e eete ettt ettt ettt e e ettt e st e eaeeetesteste st e st e eaeensesesee reaaea 4-12
0 4.5.2 CACNE INSITUCIONScvviviiiiiee ettt ettt ettt et et e et et e eteste et eeaeenseseeteesareas 4-14
0 453 Data MOVE INSIIUCLIONSiiiiiiieeee it e e sttt e e e s s sttt e e e e s st e e e e e sssbbeeeeeeessannbaeeeesse 4-15
0 4.5.4 Special FUNCHON GIOUD ..iiiiiiiiiiiiiiiiieie e e sttt e e e e e s st e e e e e e s s st e e e s s nnnbaaneeeeeeeesnnnnnees 4-19
0 4.5.5 MUIIPIY/ALU GIOUP ..ooveiveeeieete ettt te et te et eteeteete et e eaeetess et e eaeeaeensese s saeas 4-22
0 4.5.6 F3 ALU INSITUCHONS ..cvviuiiiiitiitieieete ettt ettt ettt te ettt ete e etestesteetestesaeenseeaeste s saea 4-29
0 4.5.7 BMU INSITUCHONS ..ocveiviieiiteeeiete e et eee e eteete et eete et e ete e e et e eteeteeseeteeteaseeeeevesresreesesreateesareas 4-30
0 4.5.8 ASSEMDIEr AMDIQUITIESc.cceiveieiiieiee et eee ettt te ettt e st e ete et e et e e e e eteeaeeneeeesteereen 4-35

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

4 |Instruction Set

AllDSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629 instructions are 16 bits wide and resemble
C code. The instructions are grouped into seven categories:

Control instructions direct program flow and can be conditionally executed on the basis of the state of internal
flags.

Cache instructions implement low-overhead loops by loading a set of instructions into a cache memory and
repetitively executing them (up to 127 times).

Data move instructions transfer data between registers, memory, and accumulators. Immediate loads of regis-
ters and accumulators are also possible.

Special function instructions perform accumulator operations such as incrementing, rounding, negation, logical
left shifts, and arithmetic right shifts. Special function instructions also permit a single-cycle 32-bit load of an
accumulator from either the p ory register. These special function instructions can be conditionally executed on
the basis of the state of internal flags.

Multiply/ALU instructions are the primary instructions for signal-processing programs that perform multiply/accu-
mulate, logical, and other ALU functions. They also transfer data between memory and registers in the data arith-
metic unit. Flags are set based on accumulator results.

ALU instructions perform operations between two accumulators, between an accumulator and the product regis-
ter, or between an accumulator and an immediate data word. The operations are add, subtract, AND, OR, and
exclusive OR. Flags are set based on accumulator results.

BMU instructions perform full barrel shifting, extraction of an exponent, normalization, and extraction or insertion
of an arbitrary field of bits on the accumulators. An instruction shuffles data between the accumulators and one
of the alternate accumulators. Flags are set based on results.

Note: The only instruction groups that set flags are the multiply/ALU, special function, ALU, and BMU groups.

Also, certain flags are set by the BIO.

The following sections describe the notation, the instruction cycle timing, the addressing modes, the internal flags
used by conditional instructions, and the seven groups of instructions. Appendix B describes each instruction indi-
vidually.

Lucent Technologies Inc. 4-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.1 Notation

These operators are used to describe the instruction set:

Operator Meaning
* 16 x 16 32-bit multiplication
(Denotes register-indirect addressing if used as a prefix to an address register.)
+ 36-bit addition”
- 36-bit subtraction®
++ Register postincrement
— Register postdecrement
>> Arithmetic right shift
Arithmetic left shift
Logical right shift
Logical left shift
36-bit bitwise AND*
36-bit bitwise ORT
36-bit bitwise EXCLUSIVE ORT
: Compound addressing
~ One's complement

AV oA
>—@ AV A
AV

T The ALU performs 36-bit operations, but the operands can be 16, 32, or 36 bits.

For all instructions listed in this chapter, the following are true:

m Brackets, [], are not part of the instruction syntax but indicate that the enclosed item is optional.

m Parentheses, (), and braces, {}, are part of the instruction syntax and must appear where shown in the instruc-
tion.

m Arrow brackets, < >, are not part of the instruction syntax but indicate that one of the enclosed items or a proper
statement must be included to form a valid instruction.

m Upper-case characters in instructions denote a replacement character that is to be replaced by a specific value.
For example, consider the pointer register rM, where M is replaced by 0, 1, 2, or 3.

F Titles

F1, F2, F3, and F4 are terms used to differentiate classes of instructions or statements.
They are defined as follows:

F1: Multiply/ALU operator statements

F2: Operator statements for special function instructions (if CON F2)

F3: ALU instructions

F4: BMU instructions

The valid instruction groups for the DSP device are represented in Tables 4-1 to 4-17. The items in these tables
that are written in lower-case letters are proper statements and must appear where shown in the instruction. The
items with capital letters are not proper statements and are replaced with immediate data, a register name, or a
condition. For example, aD would be either a0 or al. The valid replacement values for upper-case items are listed
in the replacement tables.

4.2 Instruction Cycle Timing

For the DSP1611/17/18/27/28/29, the instruction cycle is defined as the execution time of a single-cycle instruction
in the absence of wait-states. For a 60 MHz 2x CKI or a 30 MHz 1x CKI, the instruction cycle is 33 ns. For the

4-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

DSP1627/28/29, an instruction cycle is based on the frequency of the clock source that is selected (ring oscillator,
CKiI, or clock synthesizer). Instructions are all one or two 16-bit words and, typically, execute in one or two instruc-
tion cycles.

4.3 Addressing Modes

There are three different locations for data in the DSP: in a register, in memory, or in an instruction. In this section,
addressing refers to the way the location of the data is specified in an instruction. The DSP1611/17/18/27/28/29
instructions use the following modes of addressing:

1. Register-direct: Data is already in a register and can be used directly in a command (e.g., p=x*y). The reg-
ister is specified in the instruction.

2. Register-indirect: Data is located in memory and is pointed to by an addressing register defined in the instruc-
tion.

3. Immediate: Data is located in part of a single-word instruction (short-immediate) or is the second word of a two-
word instruction (long-immediate). For a short immediate instruction, 9 bits of data can only be transferred to
one of the registers in the YAAU (except for ybase) and no other action occurs. For a long immediate instruc-
tion, two locations of program space are required so that 16 bits of data from the second word of the instruction
can be transferred to one of the general set of registers.

4. Compound addressing: A combination of the above cases 1 and 2 in which the data is in both a register and in
memory. A single instruction can call for a swap of the data. This is compound addressing; one addressing reg-
ister points to a memory location (or locations) for a read followed by a write. The instruction also specifies a
register for the swap, and the addressing register can be postmodified.

5. Direct-data addressing: A combination of case 1, 2, and 3 in which 5 bits from the instruction are concatenated
with 11 bits previously stored in the ybase register to form an address to Y-memory space. The instruction also
selects one of 16 registers to be the source or destination of data exchange with the Y memory.

6. Virtual-shift (modulo) addressing: A special case of register-indirect addressing in which an implicit circular
shift register is established for zero-overhead virtual-shift addressing. This mode enables the creation of an arbi-
trarily sized portion of contiguous RAM locations to behave as if it were a physical delay or shift register without
actually moving data within RAM. The virtual-shift buffer is implemented in memory by storing the data at fixed
locations and incrementing the memory pointer in a modular fashion. Virtual-shift addressing is described in
detail in Section 5.3.4, Addressing Modes.

4.3.1 Register Indirect Addressing

Indirect addressing allows a register to be used as a pointer to a memory location. The following instructions are
examples of register indirect addressing.

X=*pt++
*ro=y

The first instruction says to perform a memory read from the memory location pointed to by the pt register, put that
data in the x register, and increment the address in pt by one. The second instruction says to look at the address
in the rO register and write the data from the y register (upper half) to the memory location in r0. In both cases, the
register rO or pt is said to point to the data in memory because the register contains a 16-bit address for a memory
read or write.

Lucent Technologies Inc. 4-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.3 Addressing Modes (continued)
4.3.1 Register Indirect Addressing (continued)

Mnemonics have been defined for indirect addressing. X represents data in the X-memory space, and Y repre-
sents data in the Y-memory space. They can have the following replacement values:

X =*pt++ or *pt++i
Y =one of *rM, *rM++, *rM——, or *rM++j

Note: M=one of 0, 1, 2, 3
i = postincrement or postdecrement register
j = postincrement or postdecrement register

The asterisk preceding the Y or X address register stands for the data pointed to by the address in the register.
The mnemonics have the following meaning:

m *rM. This statement means the data pointed to by the address in the register rM. The contents of the register
are not altered by the operation.

= *rM++, *pt++. The ++ following the address register indicates a postincrement of the address register. This
example means the data pointed to by the address in the register; add 1 to the contents of the register after the
operation is complete.

m *rM——. The —— following the address register indicates a postdecrement of the address register. This example
means the data pointed to by the address of the register: subtract 1 from the contents of the register after the
operation is complete.

= *rM++j. The ++j following the address register indicates a postincrement of the address register. This example
means the data pointed to by the address in the register and add the value of register j to the contents of the
address register after the operation is complete. Negative values of j yield a postdecrement.

m *pt++i. The ++i following the address register indicates a postincrement of the address register. This example
means the data pointed to by the address in the register and add the value of register i to the contents of the
address register after the operation is complete. Negative values of i yield a postdecrement.

Modulo (virtual shift) addressing uses indirect addressing to form the equivalent of a cyclic shift register within the
RAM. Addresses loaded into registers rb and re define the first and last physical addresses of the cyclic shift reg-
ister respectively. If a register is used as a memory pointer, its value is compared with re. If its value is equal to the
contents of re and the postincrement is +1, the value in rb is copied into the register after the memory access is
complete.

Note: Whenever re contains a value not equal to zero, modulo addressing is active. On reset, the value of re is
zero. Whenever modulo addressing is not used, this register should contain zero and should not be used to
store any number other than the address of the end of a modulo. Modulo addressing works only with *rM++,
*fMpz, and *rMzp. Section 5.3, Y Address Arithmetic Unit (YAAU) has more detail on modulo addressing.

4-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.3 Addressing Modes (continued)
4.3.2 Compound Addressing

Compound addressing is a memory read/write operation using only one pointer register. The term Z specifies a
source and a destination for a compound RAM read followed by a write sequence. The mnemonics for Z are a
shorthand notation for the compound addressing functions explained below and shown in Table 4-1. The term
temp used in the descriptions is a hypothetical register used for illustration only. Note that postincrementation can
occur after either Step 2 or Step 3 in Table 4-1.

Table 4-1. Compound Addressing Instructions

Instruction Operations
Z:R Step 1 Step 2 Step 3
*Mzp : R TEMP =R |R=*M *IM++ = TEMP
*Mpz : R TEMP =R | R =*M++ *M = TEMP
*Mm2 : R TEMP =R |R =*M-—— *M++2 = TEMP
*rMjk : R TEMP =R | R = *rM++] *IM++k = TEMP

Note: M can be 0, 1, 2, or 3. R can be one of the general set of registers in Table 4-9. R and rM must not be the
same register (e.g., rlpz : rl). The two alphanumerics in mnemonics zp, pz, m2, and jk stand for the postin-
crements after Step 2 and Step 3. zis zero, pis plus 1, m is minus 1, 2 is plus 2, and j and k are increments
from the j and k registers.

Lucent Technologies Inc. 4-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

4.3 Addressing Modes (continued)
4.3.2 Compound Addressing (continued)

Figure 4-1 shows the four compound address instructions pictorially.

Y MEMORY
*rMzp : R
/@— *rM -
x P e[} | ey |~
®
*rMpz : R
@ *™ B —
R TR ey |~
® ®
*rMm2 : R
M -1)
R *™
@ *
(rM-1) +2) - — — -
*™
*Mjk : R @ .
it
R 4> *(rM + j) -
® ®
Kkt

T j or k can be positive or negative.

Figure 4-1. Compound Addressing

4-6

Information Manual
April 1998

Y ADDRESSING
REGISTER

INITIAL ADDRESS IN rM

FINAL ADDRESS IN rM

INITIAL ADDRESS IN rM

FINAL ADDRESS IN rM

NEXT ADDRESS IN rM

INITIAL ADDRESS INrM

FINAL ADDRESS IN rM

INITIAL ADDRESS IN M

— — NEXT ADDRESS IN rM

*(TM + j) + K) < — — — FINAL ADDRESS IN M

5-4148

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.3 Addressing Modes (continued)
4.3.2 Compound Addressing (continued)

As with other instructions that use the y, a0, and al registers, the following rules apply if using the compound
addressing mode:

m If clearing of the low half of the register is enabled (according to the CLR field of the auc register), the low half of
the register is cleared when the high half is loaded.

m If saturation on overflow is enabled (according to the SAT field of the auc register), the value of data transferred
from the accumulator is limited. (See Section 5.1, Data Arithmetic Unit.)

Virtual-shift addressing can be used with compound addressing. The contents of the address register are com-
pared with the contents of register re during both the read and write cycles. If the contents of the address register
are equal to the contents of re during the read cycle and the *rMpz mode is specified, rM is loaded with the con-
tents of rb. If the contents of the address register are equal to the contents of re during the write cycle and the
*rMzp mode is specified, rM is loaded with the contents of rb. Two of the compound addressing formats (*rMm2
and *rMjk) do not work with modulo addressing.

4.3.3 Direct Data Addressing

Figure 4-2 shows the operation of direct data addressing used in two instructions: DR = *(OFFSET) and
*(OFFSET) = DR. The contents of register DR are read from or written to the RAM memory location at the direct
address. The ybase register holds the base address used for the direct address. It can be loaded with any 16-bit
value, but only the upper 11 bits are used for the address. The ybase register can be thought of as specifying one
of 2048 32-word pages. The OFFSET is a 5-bit address (OFFSET from the ybase register) and is specified in the
opcode. The upper 11 bits of ybase are concatenated with the OFFSET to form the direct address.

The register DR, specified in the opcode by bits 6—9, can be one of a set of 16. They are listed as follows.

Table 4-2. Direct Data Addressing

Register DR Field Register DR Field
ro 0000 y 1000
rl 0001 yl 1001
r2 0010 p 1010
r3 0011 pl 1011
a0 0100 X 1100
aol 0101 pt 1101
al 0110 pr 1110
all 0111 psw 1111

Lucent Technologies Inc. 4-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set

4.3 Addressing Modes

(continued)

4.3.3 Direct Data Addressing (continued)

INSTRUCTION
IN X-MEMORY
SPACE

ybase
REGISTER
IN YAAU

Example of *(OFFSET) = DR

a0=0xface /* Initialize value in accumulator.
/* Store the upper 11 bits of 0x1232 into ybase as follows: */

ybase=0x1232

4-8

Information Manual

April 1998

15 1]10] 9 6 4
T-FIELD R/W| DR SPECIFIED OFFSET
16 .
DB DR = *(OFFSET)
16 or
*(OFFSET) = DR
CONTROL 5 |OFFSET
15 4 0
BASE
11
5
YAB |16
YDB
16 REGISTER DR
RAM

Figure 4-2. Direct Data Addressing

*/

/* Place (0001 0010 001) into the upper 11 bits of ybase */
(0x15)=a0 / Offset=0x15; Store (1 0101) into lower 5 bits of ybase */
Address in ybase is 0x1215, demonstrated below: */

/*
/*
/*
/*
/*

0001 0010 001

10101

0001 0010 0011 0101
Store Oxface (contents of a0) into location 0x1235. *

= upper 11 bits */
= lower 5 bits */
= address=0x1235 */

5-4149

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.4 Processor Flags

Control and special function instructions can be conditionally executed on the basis of internal flags set by the fol-
lowing conditions:

A previous ALU operation

A previous BMU operation

A previous special function instruction
The condition of one of the counters

The value of a randomly set bit
A test by the BIO port
= An interrupt from the JTAG port

Functional operations on the accumulators set the flags as described above. Loading the accumulators with data
move instructions or multiply/ALU transfer statements does not set flags.

Four of the basic processor flags are defined below. They can be set by either ALU or BMU operations. These
flags and their meanings are given below:

LMI Logical Minus —A logical minus is determined by the state of bit 35 of the accumulator after the last DAU or
BMU operation result. If bit 35 = 1, the result is a negative number and LMI is true.

LEQ Logical Equal —A logical equal is determined by testing bits 35—0 of the last DAU or BMU operation
result. If these bits are all zero, the result is zero and LEQ is true.

LLV Logical Overflow (36-bit Overflow) —LLV is true if the sign of the result of an operation cannot be repre-
sented in a 36-bit accumulator.

LMV Mathematical Overflow (32-bit Overflow) —LMV is true if bit 31 of the accumulator differs from any of the
guard bits (32—35) after the last DAU or BMU operation. This indicates a number not representable in
32 bits.

Lucent Technologies Inc. 4-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.4 Processor Flags (continued)

Table 4-3 shows the complete set of flags that can be used in conditional instructions and their meanings. The
state of the four internal flags (defined above) that causes the condition to be true is enclosed in parentheses after
the description. For example, if testing the condition le, the result is true if either the logical minus (LMI) or logical
equal (LEQ) flags are true.

Availability of flags: The BIO and four of the BMU flags (oddp, evenp, nmns1, and mnsl) can be read from the alf
register. The LMI, LEQ, LLV, and LMV can be read from the psw register.

Table 4-3. Flags (Conditional Mnemonics)

Test Meaning Test Meaning
pl Result is nonnegative (not LMI) (= 0). mi Result is negative (LMI) (< 0).
eq Result is equal to 0 (LEQ) (= 0). ne Result is not equal to 0 (not LEQ) (# 0).
gt Result is greater than O (not LMI and le Result is less than or equal to 0 (LMI or
not LEQ) (> 0). LEQ) (= 0).
Ivs Logical overflow set (LLV). Ivc Logical overflow clear (not LLV).
mvs Mathematical overflow set (LMV). mvc Mathematical overflow clear (not LMV).
cOge’ Counter 0 greater than or equal to 0. coltt Counter 0 less than 0.
clge’ Counter 1 greater than or equal to 0. clitt Counter 1 less than 0.
heads* | Pseudorandom sequence bit set. tails* Pseudorandom sequence bit clear.
true The condition is always satisfied in an if false The condition is never satisfied in an if
instruction. instruction.
allts All true—all BIO input bits tested com- allfé All false—no BIO input bits tested com-
pared successfully. pared successfully.
somet® | Some true—some BIO input bits tested || somef® | Some false—some BIO input bits tested
compared successfully. did not compare successfully.
oddp Odd parity from BMU operation. evenp Even parity from BMU operation.
mnsl Minus 1 result of BMU operation. nmnsl | Not minus 1 result of BMU operation.
npint Not PINT used by hardware develop- njint Not JINT used by hardware develop-
ment system. ment system.
lock™™ | The PLL has achieved lock and is sta- || ebusy* | ECCP busy indicates error correction
ble. coprocessor activity.

T Testing each of these conditions increments the respective counter being tested.

¥ The heads or tails condition is determined by a randomly set or cleared bit respectively. The bit is randomly set with probability of
0.5. The random bit is generated by a 10-stage pseudorandom sequence generator (PSG) that is updated after either a heads or
tails test. The pseudorandom sequence can be reset by writing any value to the pi register except during an interrupt service rou-
tine. While in an interrupt service routine, writing to the pi register will update the register and not reset the PSG. If not in an inter-
rupt service routine, writing to the pi register will reset the PSG. (The pi register will be updated but will be written with the
contents of the PC on the next instruction.) Interrupts must be disabled when writing to the pi register. If an interrupt is taken
after the pi write—before pi is updated with the PC value, the ireturn instruction will not return to the correct location. If the RAND
bit in the auc register is set, however, writing the pi register will never reset the PSG. A random rounding function can be imple-
mented with either heads or tails. (For further information, see Section 5.1.6, DAU Pseudorandom Sequence Generator (PSG).)

8§ These flags are only set after an appropriate write to the BIO port (cbit register).

Tt DSP1627/28/29 only.

1 DSP1618/28 only.

4-10 Lucent Technologies Inc.

Information Manual
April 1998

4.5 Instruction Set
Control

goto JA

goto B

if CON
goto/call/return
call JA

icall

Cache

do K {
instrl

instrN

}
redo K

Data Move

R =1M16

SR =IM9

R = aS][l]
aTll]=R

R=Y

Y=R

Z: R

DR = *(OFFSET)
*(OFFSET) = DR
push(*rM) = R

R = pop(*rM)

Special Function

if CON F2
ifc CON F2

Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

Multiply/ALU

F1 Y

F1 Y = ao[l]
F1 Y = alfl]
F1 x=Y
F1 yill=Y
F1 y=Y
F1 y = a0
F1 y=al
F1 aTlll=Y
F1 Y = y[l]
F1 Z:yll
F1 Z:aT[l]
F1 Z:y

F3 ALU

aD=aS OP aT
aD=aS OPp

aD = aS<h, |> OP IM16
aS—aT

aS—-p

as <h, I>-1M16

aS —-&aT

aS &p
aS<h,I>&IM16

BMU

aD = aT SHIFT aS

aD = aS SHIFT arM

aD = aS SHIFT IM16
aD = exp (aS)

aD = norm (as, arM)

aD = extracts (aS, arM)
aD = extractz (aS, arM)
aD = extracts (aS, IM16)
aD = extractz (aS, IM16)
aD =insert (aS, arM)
aD =insert (aS, IM16)
aD=aS:aaT

X = *pt+-+[i]
X = *pt+-+[i]
X = *pt+-+[i]

X = *pt+-+[i]

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

Information Manual
April 1998

4.5 Instruction Set (continued)
4.5.1 Control Instructions

Control instructions implement goto, call, and return commands. There is no latency when branching, i.e., the
instruction executed following the control instruction has the address specified in the PC after execution of the con-
trol instruction. Control instructions are executed either conditionally or unconditionally. Both the condition and its
complement are available for use in control instructions. Control instructions can not be executed in the cache.

Control instructions can be conditioned on the basis of the DSP flags defined in Table 4-3. The result of the most
recent accumulator operation prior to the control instruction establishes the state of the flags for the conditions
associated with logical or mathematical functions. Table 4-4 lists the control instructions along with a description of
how each instruction is encoded, the number of instruction cycles required to execute each instruction, and the
number of memory locations (in words) required for the encoding of each instruction. Table 4-5 describes the
replacements for the upper-case fields shown in Table 4-4.

Table 4-4. Control Instructions T

Control Instruction Equivalent Instruction Encoded As Number of Number of
(if applicable) Cycles Words
goto JA¥ goto pr goto JA 2 1
goto pté goto B
call JA* call JA
call pt8 goto B
return$ goto B
if CON goto JA* if CON goto pr if CON goto JA 3 2
if CON goto pt8 if CON goto B
if CON call JA% if CON call JA
if CON call pt8 if CON goto B
if CON return$ if CON goto B
ireturn goto pi goto B 2 1
icallt™ icall 3 1

T Control instructions cannot be used in the cache. Table 4-5 lists replacements for the upper-case fields shown in this table.

¥ The goto JA and call JA instructions should not be placed in the last or next-to-last instruction before the boundary of a 4 Kword
page. If the goto or call is placed there, the program counter increments to the next page and the jump is to the next page rather than
the desired current page.

§ If PC, pt, or pr point to external memory, add programmed wait-states to the number of cycles.

11 The icall instruction is reserved for use by the hardware development system.

Table 4-5. Replacement Table for Control Function Instructions

Replace Value Meaning
CON mi, pl, eq, ne, gt, le, lvs, mvs, mvc, cOge, cOlt, See Table 4-3 for definitions of processor flags.
clge, cllt, heads, tails, true, false, npint, njint,
lock™, ebusy#
JA 12-bit value Least significant 12 bits of an absolute address
within the same 4 Kword memory section.
B 3-bit value in B-field instruction B selects one of
return (same as goto pr)
ireturn (same as goto pi)
goto pt
call pt

T DSP1627/28/29 only.
$ DSP1618/28 only.

4-12 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.1 Control Instructions (continued)
Control Statements

m goto JA. The goto JA instruction moves the immediate value JA into the lower 12 bits of the program counter
(PC). The upper 4 bits of PC remain unchanged. The instruction at address JA is the next instruction executed.
The goto JA instruction does not affect the program return (pr) register and can be used in a subroutine without
losing the return address of the subroutine. The goto JA instruction should not be placed in the last or next-to-
last instruction before the boundary of a 4 Kword page. If the goto is placed there, the program counter will have
incremented to the next page and the jump will be to the next page rather than to the desired current page.

m call JA. The call JA instruction moves the contents of the PC into the pr register and the immediate data JA into
the lower 12 bits of the PC. The upper 4 bits of PC remain unchanged. The pr register holds the return address
of the subroutine, i.e., the address of the instruction following call JA ; for example, if call JA is located at
address N, the pr register is loaded with address N + 1. The instruction at address JA is the next instruction
executed. The call JA instruction should not be placed in the last or next-to-last instruction before the boundary
of a 4 Kword page. If the call is placed there, the program counter will have incremented to the next page and
the jump will be to the next page rather than to the desired current page.

m goto pt. The goto pt instruction moves the contents of pt into the PC. The instruction with address equal to the
contents of pt is the next instruction executed. Because pt is a 16-bit register, goto pt allows branches to any
location in the 64 Kword program space. The goto pt instruction does not affect the program return register.

m call pt. The call pt instruction moves the contents of the PC into the pr register and the contents in pt into the
PC. The pr register holds the return address of the subroutine, i.e., the address of the instruction following call
pt; for example, if the call pt is located at address N, the pr register is loaded with the value N + 1. The instruc-
tion with address equal to the contents of pt is the next instruction executed.

m icall. Thecall instruction moves the contents of the PC into the program interrupt (pi) register and interrupt vec-
tor address 0x0002 into the PC. The pi register holds the return address of the interrupt routine, i.e., the address
following the icall instruction; for example, if the icall instruction is located at address N, the pi register is loaded
with the value N + 1. The icall instruction is reserved for use by the hardware development system.

m return/goto pr. The return instruction moves the contents of the pr register into the PC. The pr register holds
the return address of the subroutine. Execution of the instruction with address equal to the contents of pr follows
the execution of the return instruction. The goto pr instruction works identically to the return instruction.

m ireturn/goto pi. The ireturn instruction moves the contents of the pi register into the PC. The pi register holds
the interrupt return address. Outside of an interrupt service routine, the value of the PC is regularly written into
the pi register. Execution of the instruction with address equal to the contents of pi follows the execution of the
ireturn instruction. The goto pi instruction works identically to the ireturn instruction. If the goto pi or ireturn
instructions are executed outside of an interrupt service routine, the instruction that immediately precedes the
goto pi (or ireturn) must be a load of the pi register; otherwise, the goto pi (or ireturn) instruction will not exe-
cute properly.

Lucent Technologies Inc. 4-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.2 Cache Instructions

Cache instructions implement low-overhead loops. The use of cache loops conserves program memory, speeds
execution time, and reduces power dissipation. The do instruction treats the specified N instructions as a loop to
be executed K times. The redo instruction treats the previous N instructions as another loop to be executed K
times. Both cache instructions use one program memory location. The do instruction executes in one instruction
cycle, but the redo instruction executes in two instruction cycles.

The value of K can also be written to the cloop register to specify the number of iterations at run time. The value in
cloop is used if K is specified as zero in the instruction encoding. The value in cloop decrements every cache loop
and is decremented to zero at the end of the do or redo instruction. (The cloop register will also contain the cache
count from a do K or redo K instruction, K = 1 to 127).

For multiply/ALU instructions that require two reads of dual-port RAM, executing from the cache decreases the
execution time from two instruction cycles to one instruction cycle resulting in an additional increase in throughput.

Table 4-6. Example of Execution of Cache Instruction

Cache Instructions
doK { redo K
instruction1

instruction2

instructionN

}

Table 4-7. Replacement Table for Cache Instructions

Replace Value Meaning

K cloop® Take the number of times the instructions are to be executed from
bits 0 through 6 of the cloop register.

1to 127 Number of times the instructions are to be executed, encoded in
instruction.

N 1to 15 1 to 15 instructions can be included.

T The assembly-language statements (do cloop and redo cloop) are used to specify that the number of iterations is to be
taken from the cloop register. K is set to 0 in the instruction encoding to select cloop .

4-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.2 Cache Instructions (continued)
Cache Statements

When the cache is used to repeat a block of N instructions, the cycle timing of the instructions are as follows:

1. The first pass does not affect cycle timing except for the last instruction in the block of N instructions. This
instruction always executes in two cycles, whether it is a one- or a two-cycle instruction.

2. During pass 2 through pass K — 1, each instruction is executed in the cache.

3. During the last (Kth) pass, the block of instructions executes inside the cache except for the last instruction that
executes outside the cache.

The instructions remain in the cache memory and can be reexecuted by using the redo command without the need
to reload the cache.

m redo K. When the redo K instruction is used, the DSP executes the N instructions currently in the cache's mem-
ory K times. On the last iteration, the last instruction is executed outside the cache.

Control group instructions and instructions with 16-bit immediates cannot be executed from within the cache.
16-bit immediates can be found in data move, F3, and F4 instruction groups. The instruction set summary
(Appendix B) tells whether each instruction is cachable.

Note: Instructions in a cache loop are noninterruptible.
4.5.3 Data Move Instructions

Data move instructions perform three basic operations: moving immediate data to a register, moving data between
a register and an accumulator, and moving data between a register and Y-memory space. All data move instruc-
tions use one program location except for the long immediate instructions that use a second program memory word
for their immediate data. All execute in two instruction cycles except for the short immediate that executes in one
instruction cycle.

Table 4-8. Data Move Instruction Summary

Statement Description Instruction Program
Cycles Locations
R =1IM16 Loads 16-bit immediate data (IM16) into a register (R). 2 2
SR = IM9 Loads 9-bit immediate data (IM9) into a YAAU register (SR). 1 2
R =aS[l] Loads contents of half of accumulator (aS[l] into a register (R). 2 1
aTlll]=R Loads contents of register (R) into half of accumulator (aS[l]). 2 1
R=Y Loads contents of memory location (Y) into a register (R). 2 1
Y=R Stores contents of register (R) into a memory location (Y). 2 1
Z:R Loads contents of memory location (Z) into a register (R), and 2 1
stores old contents of register (R) into memory location (Z).
DR = *(OFFSET) | Loads contents of memory location (*(OFFSET)) into a register 2 1
(DR).
*(OFFSET) = DR | Stores contents of a register (DR) into a memory location 2 1
(*(OFFSET)).

Note: If reading signed registers less than 16 bits wide, their contents are sign-extended to 16 bits. If reading
unsigned registers less then 16 bits wide, their contents are zero-extended to 16 bits. If short immediate
addressing is used to write to YAAU registers in the DSP, unsigned registers are zero-extended from 9 bits to
16 bits. Signed registers j and k are sign-extended from 9 bits to 16 bits.

Lucent Technologies Inc. 4-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set
4.5 Instruction Set (continued)

4.5.3 Data Move Instructions (continued)

Table 4-9. Replacement Table for Data Move Instructions
(Registers are 16 bits unless otherwise stated.)

Information Manual
April 1998

Replace Value Meaning
R X DAU register—signed.
y DAU register—signed?.
yl DAU register—unsigned.
p DAU product register—signed.
pl DAU product register, lower half—unsigned.
auc DAU control register—unsigned, 7 bits.
c0 DAU counter 0—signed, 8 bits.
cl DAU counter 1—signed, 8 bits.
c2 DAU counter 2—signed, 8 bits.
ro YAAU pointer register—unsigned.
rl YAAU pointer register—unsigned.
r2 YAAU pointer register—unsigned.
r3 YAAU pointer register—unsigned.
rb YAAU modulo address register—unsigned.
re YAAU modulo address register—unsigned.
j YAAU incrementing register—signed.
k YAAU incrementing register—signed.
ybase YAAU direct data register—unsigned.
pt XAAU pointer register—unsigned.
pr XAAU program return register—unsigned.
pi XAAU program interrupt register—unsigned+.
i XAAU increment register—signed.
psw Processor status word.
sioc Serial I1/0 control registers.
sdx Serial I/0 data register.
tdms Serial /O tdms control registers.
srta Serial receive/transmit addresss.
saddx Serial protocol register.
sioc2 Serial /0 control register, port 28.
sdx2 Serial I/0 control register, port 2.
tdms2 Serial 1/0 tdms control register, port 28,
srta2 Serial receive/transmit address, port 28,
saddx2 Serial protocol register, port 2.
pioc Parallel I/O control register (DSP1617 only).

pdx<0—7> Parallel I/O data registers (pdx0 only in DSP1611/18/27/28/29).

T Data moves to y, a0, or al load the high half (bits 31—16) of the register. If clearing of the destination is enabled according to the CLR field

of the auc register, the low half of the destination register is cleared (0) when the high half is loaded.

I The pi register acts as a shadow of the PC. Each time the PC changes, its new value is loaded into pi. Shadowing is disabled when execut-
ing an interrupt service routine, and pi saves the contents of PC prior to the interrupt. Writes to pi do not alter its contents for less than one

instruction cycle after shadowing resumes except during interrupt service routines.
§ sioc, sioc2, tdms, tdms2 , srta, and srta2 registers are not readable.

4-16

Lucent Technologies Inc.

Information Manual

April 1998

4.5 Instruction Set (continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

4.5.3 Data Move Instructions (continued)

Table 4-9. Replacement Table for Data Move Instructions

(continued)

(Registers are 16 bits unless otherwise stated.)

Replace Value Meaning
R inc Interrupt control register.
ins Interrupt status register.
cloop Cache loop count register.
chit BIO control register.
shit BIO status register.
ioc 10 control register—EMI, CKO, PIO, and SIO control.
mwait wait-state control register.
jtag JTAG data register—unsigned.
a0, al, a0l, a1l | High and low halves of accumulators.
ar<0—3> Auxiliary BMU registers.
alf Await, lowpr, flags status & control.
timerO Timer initial count.
timerc Timer control register.
powerc Power control register.
eir ECCP instruction register (DSP1618/28 only).
ear ECCP address register (DSP1618/28 only).
edr ECCP data register (DSP1618/28 only).
plic Clock SYNTHESIZER control register (DSP1627/28/29 only).
phifc PHIF control register (DSP1611/18/27/28/29 only).
DR rM, aOo[l], al1[l], y[l], | Subset of registers accessible with direct addressing.
p, pl, X, pt, pr, psw
SR r<0—3>, rb, re, j, k| Subset of registers for short immediate.
as, aT a0, al High half of accumulator® (bits 31—16).
asl, aTl a0l all Low half of accumulator (bits 15—0).
Y M fM++, Same as in multiply/ALU instructions.
*M-=- (M ++]
z Mz, «rMpz, Same as in multiply/ALU instructions.
*Mm2,.rMjk
IM16 16-bit value Immediate data.
IM9 9-bit value Immediate data for YAAU registers.
*(OFFSET) 5-bit value Immediate address for direct data addressing.

T Data moves to y, a0, or al load the high half (bits 31—16) of the register. If clearing of the destination is enabled according to the CLR field
of the auc register, the low half of the destination register is cleared (0) when the high half is loaded.

F The pi register acts as a shadow of the PC. Each time the PC changes, its new value is loaded into pi. Shadowing is disabled when execut-
ing an interrupt service routine, and pi saves the contents of PC prior to the interrupt. Writes to pi do not alter its contents for less than one
instruction cycle after shadowing resumes except during interrupt service routines.

§sioc, sioc2, tdms, tdms2 , srta, and srta2 registers are not readable.

Lucent Technologies Inc. 4-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.3 Data Move Instructions (continued)
Data Move Instruction Examples

Data move instructions must be written in the exact format shown. If the instructions are written in any other way
(for example, R : Z instead of Z : R), the assembler produces an error message. All data move instructions can
execute in the cache except for the long immediate (R = IM16).

m R =1M16 loads the 16-bit immediate data value (IM16) into the specified destination register (R). This data move
instruction cannot be executed in the cache.

m SR =IM9 loads a 9-bit immediate data value (IM9) into one of the YAAU registers (j, k, rb, re, r0, r1, r2, or r3).
The 9 bits are loaded into the LSBs of the register. All registers are then zero-extended except for j and k which
are sign-extended. This special-case immediate instruction is often referred to as a short immediate or register
set instruction. Short immediate instructions require one word of program memory, execute in one cycle, and
can be executed inside the cache. The DSP1600 Assembler defaults to the long immediate if the value IM9 is
greater than 9 bits or if a label is used. The short immediate can be forced with the set mnemonic (if the value
IM9 is greater than 9 bits, it is truncated to 9 bits). For example, set rO = 0xf00d will load rO with 0x00d.

m R =Y loads the data contained in the specified Y source into the specified destination register (R).

m R = aSJl] loads the data contained in bits 31—16 (or 15—0 if aSl is specified) of the specified accumulator (aS)
into the specified destination register (R). If saturation on overflow is enabled (according to the SAT field of the
auc register), the transferred accumulator value is limited (see Section 5.1, Data Arithmetic Unit).

m Y = R loads the data contained in the specified source register (R) into the specified Y destination.

m aT[l] = R loads the data contained in the specified source register (R) into bits 31—16 (or 15—0 if aTl is speci-
fied) of the specified accumulator. If clearing of aTl is enabled (according to the CLR field of the auc register),
then aTl is cleared (0) when the high half is loaded. The guard bits are loaded with the value of bit 31.

m Z: R loads contents of memory location (Z) into a register (R), and stores old contents of register (R) into mem-
ory location (Z). (See Section 4.3.2, Compound Addressing for an explanation of this data transfer mode).

m DR = *(OFFSET) loads from a direct address. Five bits in the instruction are concatenated with 11 bits in the
ybase register to form a 16-bit address to Y memory. Data at that address is written to register DR.

m *(OFFSET) = DR stores to a direct address. Data from register DR is written to the Y memory location specified
by the direct address.

= push(*rM) = R is an optional assembly-language form of the statement *rM++ = R and is used for stack
operations. Data is written from register R to the memory location pointed to by the address in rM, and the
address is incremented.

m R = pop(*rM) is an optional assembly-language statement that creates two DSP instructions: *rM-- followed by
R =*rM. This combination is used for stack operations. The pointer register rM is decremented, and data is writ-
ten from the new memory location to the register R. The decrement instruction is not interruptible, so interrupts
cannot corrupt the two-instruction pop sequence.

4-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.4 Special Function Group

Instructions from the special function group are always executed in one instruction cycle. They require one word of
program memory. The special function instructions are used to implement a number of algorithms that include the
following nonlinear functions: absolute value, signum, minimum and maximum value finder, A-law and p-law con-
versions, division, half-wave and full-wave rectification, and rounding. Special function instructions are executed
either conditionally or unconditionally. Both the condition and its complement are available for use in special func-
tion instructions. Instructions from this group can be used in the cache.

The special function instructions can be conditioned on the basis of the flags defined in Table 4-3. The result of the
most recent accumulator or BMU operation prior to the special function instruction establishes the state of the flags
for the conditions associated with logical or mathematical functions.

To write a special function instruction unconditionally, write F2 by itself (see Table 4-10). To write the special func-
tion instructions conditionally, write the full form—if CON F2. To use the event counter, write ifc CON F2—mean-

ing:

if CON is true then {
cl=cl+1l

F2 instruction
c2=cl

}

else {

cl=cl+1l

}

Note: If using the event counter (ifc instruction) and if the condition field CON is cOlt or cOge, cO is not incre-
mented. Otherwise, if using the event counter (ifc instruction) and if CON is cllt or clge, cl is incremented
once after the test. For example, ifc cOlt a0 = al first tests to see if cO is less than zero, then increments
cl. If cO is less than zero, a0 = al is executed and c2 is set to the new value of c1. If cO is =0, no further
action occurs. Normally, a test of c0, such as if cOlt goto 0x400 , increments c0. In the case of the ifc cOlt
F2 instruction, c0 is not incremented.

Special Function Instructions
if CON F2
ifc CON F2
F2

Lucent Technologies Inc. 4-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set

4.5 Instruction Set (continued)

4.5.4 Special Function Group (continued)

Table 4-10. Special Function Statements

Information Manual
April 1998

Statement F2 Description
aD=aS>>1 Arithmetic right shift (sign preserved) of 36-bit accumulators.
aDb=aS>>4
aDb=aS>>8
aD =aS>>16
aD =aS 36-bit transfer.
aD =-aS Two's complement.
aD = ~aS One's complement.
aD = rnd(aS) Round upper 20 bits of accumulator.
aDh=aSh+1 Increment high half of accumulator (lower half cleared).
ab=aS+1 Increment accumulator.
aD=y 32-bit transfer, sign extend into guard bits 35—32.
aD=p
aD=aS<<1 Arithmetic left shift (sign-extended from new bit 31) of the least significant.
aD=aS<<4 32 bits of the 36-bit accumulators.
aD=aS<<8
aD =aS << 16
Table 4-11. Replacement Table for Special Function Instructions
Replace Value Meaning
aD, aS a0, al One of two DAU accumulators.
CON mi, pl, eq, ne, gt, le, Ivc, Ivs, mvs, mvc, cOge, cOlt, | See Table 4-3 for definitions of pro-
clge, cllt, heads, tails, true, false, allt, allf, somet, | cessor flags.
somef, oddp, evenp, mnsl, nmnsl, npint, njint,
lock®, ebusy*

T DSP1627/28/29 only.

$ DSP1618/28 only.

4-20

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

4.5 Instruction Set (continued)

4.5.4 Special Function Group (continued)

Special Function Statements

The statements must be written in the exact format shown. If the statements are written in any other way (for
example, aD = 1 + aS instead of aD = aS + 1), the assembler produces an error message.

aD=aS>>1
aD=aS>>4
aD=aS >>8
aD=aS >>16
aD=aS<<1
aD=aS<<4
aD=aS<<8
aD=aS << 16
aD =aS

aD =-aS

aD = rnd(aS)
aDh=aSh + 1
aD=aS+1
aD=y
aD=p

aD =~aS

The contents of the source accumulator (aS) are divided by 2, and the result is placed in the
destination accumulator (aD). The sign bit is preserved.

The contents of the source accumulator (aS) are divided by 24, and the result is placed in
the destination accumulator (aD). The sign bit is preserved.

8
The contents of the source accumulator (aS) are divided by 2 , and the result is placed in
the destination accumulator (aD). The sign bit is preserved.

16
The contents of the source accumulator (aS) are divided by 2 , and the result is placed in
the destination accumulator (aD). The sign bit is preserved.

The contents of the source accumulator (aS) are shifted 1 bit left, and the result is placed in
the destination accumulator (aD). The sign bit is extended from the new bit 31. The least
significant bit of aD is cleared to zero.

The contents of the source accumulator (aS) are shifted 4 bits left, and the result is placed
in the destination accumulator (aD). The sign bit is extended from the new bit 31. The least
significant 4 bits of aD are cleared to zero.

The contents of the source accumulator (aS) are shifted 8 bits left, and the result is placed
in the destination accumulator (aD). The sign bit is extended from the new bit 31. The least
significant 8 bits of aD are cleared to zero.

The contents of the source accumulator (aS) are shifted 16 bits left, and the result is placed
in the destination accumulator (aD). The sign bit is extended from the new bit 31. The least
significant 16 bits of aD are cleared to zero.

The contents of the source accumulator (aS) are placed in the destination accumulator
(aD).

The two's complement (or negative of the value) of the contents of the source accumulator
(aS) are placed in the destination accumulator (aD).

The 36-bit contents of the source accumulator (aS) are rounded to 20 bits, and the result is
placed in aD[35—16] with zeros in aD[15—0].

The value 0x00010000 is added to the contents of the source accumulator (aS), and the
result is placed in the destination accumulator (aD). This statement increments the data in
the high half of the source accumulator by one. The low half of aD is cleared.

The value 0x00000001 is added to the contents of the source accumulator (aS), and the
result is placed in the destination accumulator (aD). This statement increments the data in
the source accumulator by one.

The contents of the y register are written to the destination accumulator (aD).

The contents of the p register are written to the destination accumulator (aD). The bit align-
ment of the p register is a function of the ALIGN field of the auc register.

The contents of the source accumulator (aS) are inverted and placed in the destination
accumulator—aD (one's complement).

Lucent Technologies Inc. 4-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.5 Multiply/ALU Group

The multiply/ALU instructions are the primary instructions used to implement signal-processing algorithms. State-
ments from this group can be combined to generate multiply/accumulate, logical, and other ALU functions and to
simultaneously transfer data between memory and registers in the data arithmetic unit. In the examples presented,
the statements should be read from right to left and top to bottom. Statements within a multiply/ALU instruction are
executed essentially in parallel. The multiply/ALU instructions usually consist of more than one part. Each part of
an instruction is called a statement. The general rule is that valid instructions can be formed by choosing one
statement from each statement column in Table 4-12. If either statement is not required, a single statement from
either column also constitutes a valid instruction. Conversely, valid instructions can be decomposed into separate
statements with each coming from a different column in Table 4-12.

The multiply/ALU instructions consist of two types of statements: a function and a transfer (see Table 4-12). The
statements in the function column can be separated into two more types: those involving the multiplier and those
involving only the ALU in the data arithmetic unit. The multiply/accumulate instructions typically used in signal-pro-
cessing applications are assembled by using statements from the function column that include the multiplication of
the data in x and y bits 31—16. In a full multiply/accumulate instruction, the x and y registers are loaded with the
operands, the product of the previous operands is generated, and the previous product is accumulated in a0 or al.

The following example shows how a typical multiply/accumulate sequence is implemented.

Example:

Instruction #
1) y=Y x=X
) P=XyY
3) aD=aS+p

In the example presented, the data in the X source is copied into the x register and the data in the Y source into
bits 31—16 of the y register in line 1. In line 2, the product of the data in x and y[31—16] is generated and stored
in p. Inline 3, the data in the source accumulator (aS) and the data in p are added and the result is loaded into the
destination accumulator. Note that lines 2 and 3 could also have specified memory transfer operations for later
instructions. Section 2.1.2, Concurrent Operations has more detail on the above pipeline.

The ALU statements perform one of the following:
m The logical operations of AND, OR, or XOR between an accumulator and the data in the y register.

m The addition or subtraction of data in the y register or p register with accumulator data.
m The load of an accumulator with the data in the y register or p register.

The y register or p register must be loaded prior to the ALU operation.

The following example shows how a typical logical operation is implemented.

(1) y=Y
(2 aD=aS &y

In this example, the data in the Y source is copied into the y register in line 1. In line 2, the logical AND of the data

in the source accumulator (aS) and the data in y as a result of line 1 are calculated. The result is loaded into the
destination accumulator.

4-22 Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

Information Manual
April 1998

4.5 Instruction Set (continued)
4.5.5 Multiply/ALU Group (continued)

All multiply/ALU instructions require one word of memory. The number of instruction cycles required to execute an
instruction in the multiply/ALU group is a function of the statement selected from the transfer column in Table 4-12.

Instructions with statements in the transfer column involving a write to RAM are executed in two instruction cycles
whether the instruction is in or out of the cache. Instructions with statements in the transfer column involving a read
from the X space and the Y space simultaneously are executed in two instruction cycles if not in the cache and one
instruction cycle if in the cache. An instruction with no transfer statement executes in one instruction cycle either in
or out of the cache. The remaining instructions are executed in one instruction cycle either in or out of the cache.

Table 4-12 gives the number of instruction cycles for each case.

The no operation (nop) instruction is a special-case encoding of a multiply/ALU instruction and is executed in one
instruction cycle. The assembly-language notation representation of a no operation instruction is either nop or a
single semicolon (;) and is assembled as *r0.

Note that the function statements and transfer statements in Table 4-12 are chosen independently. Any function
statement can be combined with any transfer statement to form a valid multiply/ALU instruction. F1 function state-
ments and transfer statements can also be used alone to form valid instructions.

Table 4-12. Multiply/ALU Instructions

F1 Function Statements Transfer Statements Cycles (Out/In Cache) T
p=x,y y=Y X=X 2/1*
aD=p p=x.,Y y=aT x =X 2/1
aD=aS+p pP=X,Y y[I] = Y8 11
aD=aS-p p=Xx,Y aT[l] = Y8 11
aD=p x=Y 1/1
aD=aS+p Y 1/1
aD=aS-p Y =yl 2/2
aD=y Y = aT][l]8 2/2
aD=aS+y Z:y X=X 2/2*
aD=aS-y Z:y[lg 2/2
aD=aS &y Z:aT[l? 2/2
aD=aS|y
aD=aS"y
aS-y
aS &y

T With a 2X clock selection, an instruction cycle is 2 times the period of the input clock (CKI). With a 1X clock selection, an
instruction cycle is 1 times the period of the input clock (CKI); or for the DSP1627/28/29, the instruction cycle is the fre-
guency of the clock source that is selected. If an external memory access is made in X or Y space and wait-states are
programmed, add the number of wait-states.

F Add one cycle if an X space access and a Y space access are made to the same bank of DPRAM in one instruction.

8§ The lin [] is an optional argument that specifies the low 16 bits of aT or y.

Note: For transfer statements when loading the upper half of an accumulator, the lower half is cleared if the corresponding
CLR bit in the auc register is zero. auc is cleared by reset.

Lucent Technologies Inc. 4-23

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)

4.5.5 Multiply/ALU Group (continued)

Table 4-13. Replacement Table for Multiply/ALU Instructions

Replace Value Meaning
aD, aS, aT a0, al One of two DAU accumulators.
X *pt++ X-space location pointed to by pt. pt is postmodified by +1 and i, respectively.
*pt++i
Y *r™M Y-space location pointed to by rM (M =0, 1, 2, 3). rM is postmodified by 0, +1,
*M++ -1, and j, respectively.
*M——
*rM++j
z *rMzp, *rMpz, | Read/write compound addressing in Y space. rM (M =0, 1, 2, 3) is used
*rMm2, *rMjk | twice. First, postmodified by 0, +1, —1, and j, respectively; and second, post-
modified by +1, 0, + 2, and Kk, respectively.

m Loads of a0, al, and y clear the lower half of the selected register if the appropriate CLR field bits in the auc reg-
ister are zeroed.

m Loads of a0l, all, and yl do not change the data in the high half of the selected register.
m The y and p operands are sign-extended through the guard bits[35:32] for operations with the accumulators.

Single-Cycle Square

By setting the X=Y= hit in the auc register, any instruction that loads the upper word of the y register also loads the
X register with the same value. A subsequent instruction to multiply the x register and y register results in the
square of the value being placed in the p register. The instruction a0 =a0+p p=x,y VY =*1l++ is executed
from the cache with the X=Y= bit set. It will read the value pointed to by r1, load it to both x and y, square the pre-
viously fetched value, and transfer the previous square to a0. A table of values pointed to by rl1 can, thus, be
squared in a pipeline with one instruction cycle per each value. The following sample program demonstrates the
use of the single-cycle square.

a0=a0”a0 /* clear accumulator */
auc=0x80 /* enable X=Y= */
rl=table /* initialize pointer*/

y=*rl++/* load both x and y with first value*/
p=X,Y y=*rl++/* square, and load x and y with second*/

/* value */
do 100 { /* set up cache loop of 100 repeats*/
a0=a0+pp=x , yy=*rl++/* accumulate, square, and load both x*/
/* and y *
} /* end of cache loop */
auc=0x0 /* turn off single-cycle square mode*/

If the X=Y= bit is set and the hardware development system is used, breakpoints or single-stepping will corrupt the
X register. Itis best to set the X=Y= bit just before the single-cycle routine is used and clear it just after.

4-24 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)

4.5.5 Multiply/ALU Group (continued)

Table 4-14. Instruction for Loading the x and y Registers into the Squaring Mode

y =IM16 Long immediate data move.

y =aS[l] Data move from an accumulator [low word].

y =*rM Multiply/ALU transfer from Y memory. M =0, 1, 2, or 3.

y = *rM++

y =*rM——

y = TM+4j

Fly = Yx = *pt++]i] In these, x is loaded with the same data as y but a dummy x access is also
Fly = aT[l]x = *pt++[i] made. The use of these instructions for squaring is not recommended.
F1Z : yx = *pt++

Z:y Data move with compound addressing.

T pt will be incremented, and the value pointed to by pt will be fetched but not loaded into x. Also, any restrictions from reading the same
bank of internal memory or reading from external memory apply as if the x = *pt++[i] was actually implemented.

Function Statements

In the execution of these statements, the width of the operand is extended to 36 bits as appropriate. This is accom-
plished by sign-extending bit 31 in the p or y register to retain the correct two's complement value. The multiplier
performs a two's complement multiply by using x and the high half of y (bits 31—16).

The statements must be written in the exact format shown. If the statements are written in any other way (for
example, aD = p + aS instead of aD = aS + p), the assembler produces an error message.

m p =X,y The contents of the x and the y (bits 31—16) registers are multiplied, and the result is placed in the
p register.

m aD=p p=x,y The contents of the p register are copied into the destination accumulator (aD), then the con-
tents of the x and the y (bits 31—16) registers are multiplied, and the result is placed in the p register. The bit
alignment between p and aD is a function of the ALIGN field of the auc register.

maD=aS+p p=x,y The contents of the source accumulator (aS) are added to the contents of the p register,
and the result is placed in the destination accumulator (aD). The bit alignment between p and aS is a function of
the ALIGN field of the auc register. The contents of the x and the y (bits 31—16) registers are multiplied, and the
result is placed in the p register.

m aD=aS-p p=x,y The contents of the p register are subtracted from the contents of the source accumulator
(aS), and the result is placed in the destination accumulator (aD). The bit alignment between p and aS is a func-
tion of the ALIGN field of the auc register. The contents of the x and the y (bits 31—16) registers are multiplied,
and the result is placed in the p register.

m aD = p The contents of the p register are copied into the destination accumulator (aD). The bit alignment
between p and aD is a function of the ALIGN field of the auc register.

m aD = aS + p The contents of the source accumulator (aS) are added to the contents of the p register, and the
result is placed in the destination accumulator (aD). The bit alignment between p and aS is a function of the
ALIGN field of the auc register.

m aD =aS - p The contents of the p register are subtracted from the contents of the source accumulator (aS), and
the result is placed in the destination accumulator (aD). The bit alignment between p and aS is a function of the
ALIGN field of the auc register.

m aD =y The contents of the y register are copied into the destination accumulator (aD).

Lucent Technologies Inc. 4-25

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.5 Multiply/ALU Group (continued)

m aD =aS +y The contents of the source accumulator (aS) are added to the contents of the y register, and the
result is placed in the destination accumulator (aD).

m aD =aS -y The contents of the y register are subtracted from the contents of the source accumulator (aS), and
the result is placed in the destination accumulator (aD).

m aD =aS &y The contents of the source accumulator (aS) are ANDed with the contents of the y register, and the
result is placed in the destination accumulator (aD).

m aD =aS |y The contents of the source accumulator (aS) are ORed with the contents of the y register, and the
result is placed in the destination accumulator (aD).

m aD=aS”y The contents of the source accumulator (aS) are XORed with the contents of the y register, and the
result is placed in the destination accumulator (aD).

m aS—y The contents of the y register are subtracted from the contents of the source accumulator (aS). No result
is saved, but the ALU flags are affected by the results of the subtraction.

m aS &y The contents of the source accumulator (aS) are ANDed to the contents of the y register. No result is
saved, but the ALU flags are affected by the results of the AND function.

Transfer Statements

The transfer statements allow the user to transfer data from memory to the x and y registers and the accumulators,
or from the y register and the accumulators to memory.

m y=Y x=X The data from the specified Y source is loaded into the high half (bits 31—16) of the y register.
The data from the specified X source is loaded into the x register. If clearing of yl is enabled by using the CLR
field of the auc register, yl is cleared (0) when the high half is loaded.

m y=aT x=X The data in the high half (bits 31—16) of the specified accumulator is loaded into the high half
(bits 31—16) of the y register. The data from the specified X source is loaded into the x register. If clearing of yl
is enabled by using the CLR field of the auc register, yl is cleared (0) when the high half is loaded.

m y =Y The data from the specified Y source is loaded into the high half of the y register (bits 31—16). If clearing
of yl is enabled by using the CLR field of the auc register, yl is cleared (0) when the high half is loaded.

m yl=Y The data from the specified Y source is loaded into the low half of the y register (bits 15—0). The data in
the high half of y is not altered.

m aT =Y The data from the specified Y source is loaded into the high half (bits 31—16) of the specified
accumulator. The guard bits (35—32) are loaded with the value of bit 31. If clearing of aTl is enabled by using
the CLR field of the auc register, the low half of the accumulator is cleared (0) when the high half is loaded.

m aTl =Y The data from the specified Y source is loaded into the low half (bits 15—0) of the specified
accumulator. The data in the high half of the accumulator is not altered.

m X =Y The data from the specified Y source is loaded into the x register.

m Y No data is transferred. This transfer statement is used to modify the address register specified. If used with-
out postmodification (i.e., *r0), this statement implements a nop.

m Y =y The data in the high half of the y register (bits 31—16) is loaded into the specified Y destination.
m Y =yl The data in the low half of the y register (bits 15—0) is loaded into the specified Y destination.

m Y =aT The data in the high half (bits 31—16) of the specified accumulator is written into the specified Y destina-
tion. If saturation on overflow is selected by using the SAT field of the auc register, the transferred accumulator
value is limited. (See Section 5.1, Data Arithmetic Unit.)

m Y = aTl The data in the low half (bits 15—0) of the specified accumulator is written into the specified Y destina-
tion. If saturation on overflow is selected by using the SAT field of the auc register, the transferred accumulator
value is limited. (See Section 5.1, Data Arithmetic Unit.)

4-26 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.5 Multiply/ALU Group (continued)

m Z:y x=X The data from the specified X source is loaded into the x register. The data from the specified
Z source is loaded into the high half (bits 31—16) of the y register, and the old data from the high half of the
y register is loaded into the Z destination. If clearing of yl is enabled by using the CLR field of the auc register, yI
is cleared (0) when the high half is loaded.

m Z:y The data from the specified Z source is loaded into the high half (bits 31—16) of the y register, and the old
data from the high half of the y register is loaded into the Z destination. If clearing of yl is enabled by using the
CLR field of the auc register, yl is cleared (0) when the high half is loaded. (See Figure 4-3, on page 4-28.)

m Z:yl The data from the specified Z source is loaded into the low half (bits 15—0) of the y register, and the old
data of the low half of the y register is loaded into the Z destination. Data in the high half of the y register is not
altered. (See Figure 4-3.)

m Z:aT The data from the specified Z source is loaded into the high half (bits 31—16) of the specified accumula-
tor. If clearing of aTl is enabled by using the CLR field of the auc register, the low half of the accumulator is
cleared (0) when the high half is loaded. The guard bits (35—32) are loaded with the value of bit 31. The old
data from the high half of the accumulator is loaded into the Z destination. If saturation on overflow is enabled by
using the SAT field of the auc register, the transferred accumulator value is limited. (See Section 5.1, Data Arith-
metic Unit and Figure 4-3, on page 4-28.)

m Z:aTl The data from the specified Z source is loaded into the low half (bits 15—0) of the specified accumulator
and the old data from the low half of the accumulator is loaded into the Z destination. The data in the high half of
the accumulator is not altered. (See Figure 4-3, on page 4-28.)

Lucent Technologies Inc. 4-27

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)

4.5.5 Multiply/ALU Group (continued)

Z:aTl — *rMpz:aTl ©) Y MEMORY
S Y ADDRESSING REGISTER
M INITIAL ADDRESS IN rM
aT(h) aT(l) N
(M + 1) - - - FINAL ADDRESS IN rM
@ TEMP | (3)

@

Z:alT —» *rMpz:aT
0
; (IF auc[CLR] = 0)
*M INITIAL ADDRESS IN rM

aT(h) aT())

E-TEMP /
® ®

(M + 1) < _ _ | FINAL ADDRESS INM

@

Z:y —» *rMpz:y
0
; (IF auc[CLR] = 0)
*™ INITIAL ADDRESS IN rM

y(h) y()
*(rM + 1) - _| FINAL ADDRESS IN ™
RN
Z:yl —» *rMpz:yl @
£ *™M INITIAL ADDRESS IN M
y(h) y()
(M + 1) | FINAL ADDRESSIN M
© ®

5-4150

Figure 4-3. Compound Addressing with Accumulators or y Register

Figure 4-3 shows pictorially the transfers associated with compound addressing with an accumulator or the y regis-
ter. Only one of the four possible postmodification conditions is shown: *rMpz. The others are the same as in Sec-
tion 4.3.2, Compound Addressing.

4-28 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.6 F3 ALU Instructions

The F3 ALU instructions perform accumulator two-operand operations with either another accumulator, the p regis-
ter, or a 16-bit immediate operand. The result is placed in a destination accumulator that can be specified indepen-
dently. Instructions that do not include a destination accumulator are used to set flags for conditional tests. The
immediates can operate on either the low (aSl) or high (aSh) half of a source accumulator.

When performing operations with 16-bit immediates, there is a question as to what to do with the other 16 bits.
They are padded with zeros in all cases except the AND (&) function in which case they are padded with ones. In
all cases, the sign bits are extended through the guard bits. This allows the user to program two consecutive
immediate ALU instructions to perform a 32-bit immediate ALU operation.

The accumulator and p instructions are cachable and execute in one-cycle. The immediate instructions are not
cachable and are two-cycle. (If PC points to external memory, add programmed wait-states.)

Table 4-15. F3 ALU Instructions

Instruction Description

aD =aS OP aT Perform an operation between two accumulators and place the result in the
destination accumulator. D, S, and T can be specified independently in this
instruction; they can all be the same or different.

aD=aSOPp Perform an operation between a source accumulator aS and the p register
and place the result in the destination accumulator (aD). p is sign-extended
into bits 35—32 before the operation.

aD = aS<h, I> OP IM16 Perform an operation between a source accumulator aS and a 16-bit imme-
diate data and place the result in the destination register (aD). The h is not
optional for specifying that IM16 be aligned with the high half of the accumu-

lator.
aS —aT These instructions are used to set flags. The operation is performed, but the
aS-p result is not stored in an accumulator. Operations with immediate operands
aS<h. I>— IM16 must specify the high (h) and low (I) half of the source
accumulator.
aS &aT
aS &p

aS<h, I> & IM16

Table 4-16. Replacement Table for ALU Instructions

Replace Value Meaning
as, aT, ab a0 oral one of the two accumulators.
OP + 36-bit addition.

- 36-bit subtract.

& 36-bit bitwise AND.
| 36-bit bitwise OR.
A 36-bit bitwise exclusive OR.
IM16 immediate 16-bit data, sign-, zero-, or one-extended as appropriate.

Lucent Technologies Inc. 4-29

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set

4.5 Instruction Set (continued)
4.5.7 BMU Instructions

The bit manipulation unit (BMU) adds extensions that execute in one or two cycles and provide efficient bit opera-
tions on accumulators to the DSP1600 core instruction set. Instructions are provided for barrel shifting, normaliza-
tion, and bit-field insertion/extraction. The unit also contains a set of alternate accumulators that can be shuffled
with the working set. Flags returned by the BMU mesh seamlessly with the conditional instructions. The BMU con-
tains four 16-bit auxiliary registers ar<0—3> that contain input or output operands. The BMU is fully described in
Chapter 13, Bit Manipulation Unit.

BMU Instructions

aD = extracts (aS, arM)
aS = extractz (aS, arM)

aD = aS SHIFT aS
aD = aS SHIFT arM
aD = aS SHIFT IM16

aD = extracts (aS, IM16)
aD = exp (aS) aD = extractz (aS, IM16)
aD = norm (aS, arM)
aD = insert (aS, arM)
aD = insert (aS, IM16)

aD =aS:aaT

Table 4-17. Replacement Table for BMU Instructions

Replace Value Meaning

aD, aS, aS | a0, a1 One of the two accumulators. (aS is the other accumulator, with respect to aS.)

SHIFT >> Arithmetic right shift (36-bit shift, sign filled in).
<< Arithmetic left shift (36-bit shift, Os filled in).
>>> Logical right shift (32-bit shift, Os filled in).
<<< Logical left shift (36-bit shift, Os filled in).

arM ar<0—3> One of the four auxiliary BMU registers.

IM16 16-bit value | Immediate data.

aaT aa0, aal One of the alternate accumulators.

4-30 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.7 BMU Instructions (continued)
The BMU instructions follow:

Barrel Shifter

aD = aS SHIFT aS The 36-bit value of aS is shifted by the number of bits specified in the high half of aS
(bits 31—16), and the 36-bit result is written to aD. The values in aSl (low) and the aS
guard bits are ignored. If the shift value is negative, the direction of the shift is reversed.

aD = aS SHIFT arM The 36-bit value in aS is shifted by the shift value stored in arM, and the 36-bit result is
written to aD. If the shift value is negative, the direction of the shift is reversed.

aD = aS SHIFT IM16 The 36-bit value in aS is shifted by the shift value specified by the immediate number
IM16, and the 36-bit result is written to aD. If the shift value is negative, the direction of
the shift is reversed.

For these instructions, flags are set based on the value written to aD. For left shifts, the LLV flag is set if any signif-
icant bits are lost from the value written to aD. For right shifts, the LLV flag is set if the shift amount is greater than
35 bits.

Figure 4-4 defines the four types of shifts. In the logical right shift, bits 31—O0 of the source are shifted to the right,
and the empty upper bits are filled with zeros. In both types of left shift, bits 35—0 are shifted to the left, and the
empty lower bits are filled with zeros. In the arithmetic right shift, bits 35—0 of the source accumulator are shifted
to the right and the empty upper bits are sign-extended from the sign bit of the destination that came from bit 35 of
the source.

35 3231 16 15 0
BEFORE | | | |
LOGICAL RIGHT SHIFT

35 3231 16 15 0

AFTER lo ________ } _____ 0 | |

35 3231 16 15 0

BEFORE | | | | | ‘
LOGICAL LEFT SHIFT AND
ARITHMETIC LEFT SHIFT

35 32 31 16 15 0

AFTER | | | |o _________ 0
35 32 31 16 15 0

BEFORE |S| | |

\ ARITHMETIC RIGHT SHIFT
35 3231 16 15 0

AFTERI - ‘ """" 1'5 | |

5-4151

Figure 4-4. BMU Shifting Operations

Lucent Technologies Inc. 4-31

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.7 BMU Instructions (continued)

Note that the arithmetic left shift << for the BMU is defined differently than the arithmetic left shift for the special
function instruction (see Table 4-10). In the case of the special function left shift, the guard bits (35—32) are sign-
extended from the new bit 31 to be compatible with DSP16A.

Normalization and Exponent Computation

aD = exp (aS) The number of redundant sign bits present in the 36-bit value of aS is computed and
placed in abDh (bits 35—16). The low half of aD (bits 15—0) is cleared. This exponent
is generated with respect to bit 31 of aS. Flags are set based on the value written to
aD.

aD = norm (aS, arM) The exponent of aS is computed and placed in arM. The 36-bit value in aS is then
normalized based on this exponent and placed in aD. Flags are set based on the
value written to aD.

Bit Field Extraction and Insertion

aD = extracts (aS, arM)

aD = extractz (aS, arM) An arbitrary selected sequence of contiguous bits in the 36-bit aS register is placed in
the low-order bits of aD and either sign- or zero-extended. (Sign for extracts, zero for
extractz.) This bit field is defined by the 16-bit value in arM. The upper 8 bits of arM
hold the width of the field (in bits), and the lower 8 bits of arM hold the OFFSET from
bit 0 of aS (in bits). Flags are set based on the value written to aD.

aD = extracts (aS, IM16)

aD = extractz (aS, IM16) An arbitrary selected sequence of contiguous bits in the 36-bit aS register is placed in
the low-order bits of aD and either sign- or zero-extended. This bit field is defined by
the 16-bit immediate value IM16. The upper 8 bits of IM16 hold the width of the field
(in bits), and the lower 8 bits of IM16 hold the OFFSET from bit O of aS (in bits). Flags
are set based on the value written to aD.

WIDTH OFFSET SPECIFIED IN
B B S B—

IMMEDIATE
SOURCE OR arM
ACCUMULATOR
DESTINATION ZERO EXTENDED OR
ACCUMULATOR SIGN EXTENDED

LSB
5-4152

Figure 4-5. Extraction

4-32 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.7 BMU Instructions (continued)

aD = insert (aS, IM16)

aD = insert (aS, arM) Case 1—source and destination are different: The low-order bit field of width W from
the source accumulator is placed at a location in the destination accumulator deter-
mined by the OFFSET. The unaffected bits in the destination accumulator are
unchanged. Flags are set based on the value written to aD.

Case 2—the source and destination accumulators are the same: The insert field is
moved from its original location to a new location determined by the OFFSET. The
remaining bits are filled with the corresponding bits from the other accumulator. For
example, the instruction a0 = insert(a0, arl) moves a bit field in a0 to a new location
in a0. The bits outside of the bit field are filled with the corresponding bits from al.
Flags are set based on the value written to aD, a0 in this case.

The width and OFFSET are defined as in the extract instruction: either in an immedi-
ate IM16 or in an arM register.

SOURCE
ACCUMULATOR

asS

WIDTH
SPECIFIED IN IMMEDIATE

OR arM
OFFSET

SOURCE 2 & 7
as, aD DESTINATION -
ACCUMULATOR Z

Figure 4-6. Case 1. Source aS and Destination Accumulators Different

5-4153

BEFORE
aS =aD
SOURCE &
DESTINATION
ACCUMULATOR OFFSET
AFTER
SOURCE 2 aS

5-4154

Figure 4-7. Case 2. Source aS and aD Destination Accumulators the Same

Lucent Technologies Inc. 4-33

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set April 1998

4.5 Instruction Set (continued)
4.5.7 BMU Instructions (continued)

An alternate description of insertion covering both case 1 and 2 is the following: The bit field of width W comes
from the source aS, the other bits come from the other accumulator, and the result is placed in the destination
which is either of the accumulators.

Alternate Accumulator Set

aD =aS:aaT The contents of alternate accumulator aaT are replaced with the value in aS. The
contents of aD are replaced with the (old) value in aaT. A temp register is used for the
exchange to provide a true swap. All transfers are a full 36 bits. Flags are set based
on the value written to aD. This is the only instruction that can access the alternate
accumulators.

as ‘ 36
SOURCE ACCUMULATOR
I aaT
ALTERNATE
aD ‘ 36 ACCUMULATOR

DESTINATION ACCUMULATOR

5-4155

Figure 4-8. Shuffle Instruction

Flags:

These flags are produced by the last operation in the BMU and can be used by the conditional instructions just like
DAU flags.

LMI Logical Minus—RBit 35 of the destination accumulator after the shift. If bit 35 = 1, sign is negative and LMI
is true.

LEQ Logical Equal—If all bits (35—0) of the destination accumulator after the shift are zero, LEQ is true.

LLV Logical Overflow—For left shifts, LLV is true if any significant bits are lost after the shift into the destina-

tion accumulator. For right shifts, LLV is true if the shift amount is greater than 35 bits. (Note that a logi-
cal right shift of 32 bits or greater fills the destination accumulator with zeros.)

LMV Mathematical Overflow—LMYV is true if any of the bits 35—31 are different after the shift operation.
Four BMU flags are also set from the last operation:

evenp Even Parity—True if bits 35—0 have an even number of ones (zeros).

oddp Odd Parity—True if bits 35—0 have an odd number of ones (zeros).

mns1 Minus 1—True if all bits 35—0 are ones (minus 1 in two's complement).

nmnsl Not Minus 1—True for all other patterns than all ones.

4-34 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set

4.5 Instruction Set (continued)
4.5.8 Assembler Ambiguities

There are several cases in the DSP16XX instruction set that present ambiguities to the assembler. The interpreta-
tion determines the number of words used to store the instruction, the number of cycles used to execute the
instruction, and whether or not the flags are affected by the instruction. For example, the instruction

a0=y

can be a multiply/ALU, a special function, or a data move instruction. If the instruction is interpreted as a multiply/
ALU or a special function instruction, it is a one-word instruction, executes in one cycle, and moves all 32 bits of y
into a0. If it is interpreted as a data move instruction, it is a one-word instruction, executes in two cycles, and loads
only the upper 16 bits of y into the upper half of a0 (the lower half of a0 is either cleared or remains unchanged
based on the CLR field in the auc register). The type of instruction is critical if conditional testing based on the
results of the instruction execution is performed. The DSP1600 flags are affected by multiply/ALU instructions and
special functions but not by data moves.

To allow the user to explicitly specify which type of instruction is to be used, several optional mnemonics are part of
the DSP16XX instruction set. The table shows the mnemonics that can be used to specify the type of instruction.
For example, the instruction

move a0 =y

forces the assembler to interpret a0 = y as a data move instruction.

Prefix Word Type of Instruction Priority
if true Special function 1
au Multiply/ALU 2
set Short immediate 3t
move Data move 4
f3 f3 arithmetic 5
bmu Bit manipulation unit 6

T The short immediate encoding is an assembler default only if an imme-
diate value of 9 bits or less is specified. Using a memory label as an
immediate argument results in a move encoding because the assem-
bler does not have a priori knowledge of any label’s physical address.

If the user does not provide one of these key words for an instruction that is open to more than one interpretation,
the assembler chooses the encoding based on the above priority.

Lucent Technologies Inc. 4-35

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Information Manual

Instruction Set April 1998
4.5 Instruction Set (continued)
4.5.8 Assembler Ambiguities (continued)
Table 4-18 is a summary of DSP1600 ambiguous instructions that might need a mnemonic.
Table 4-18. Summary of Ambiguous DSP1600 Commands Requiring a Mnemonic
j = LABEL1 k = LABEL1 rb = LABEL1 re = LABEL1 rM = LABEL1
al=a0 a0=al a0 =*rM aol = *rMm al =*rM
all=*rM y =*M X =*rM yl=*rM *M = aT
M=y *M =yl Z:aT Z:y Z:yl
al=p a0=p al=y a0=y aD=aS<<1
aD =aS<<4 aD=aS<<8 aD =aS << 16 aD=aS+p aD=aS-p
Notes:

LABEL1 = any valid DSP1600 label.

ab, aS = a0 or al.

aT = a0, al, a0l, or all.

Z = *rMzp, *rMpz, *rMm2, or *rM++j (M =0, 1, 2, or 3).

rM =10, r1, r2, or r3.

4-36

Lucent Technologies Inc.

Chapter 5

Core Architecture

CHAPTER 5. CORE ARCHITECTURE

CONTENTS
L] 5 COME AICNITECIUIEvivveviivectiicee ettt ettt ettt sttt et st s et et e b et ebe et et e b eseebe b e b ese et sbe st e b eseebestesbeneere s 5-1
O 5.1 Data ArtNMEIC UNQt.......ciiviiiiiieiiticiiiett ettt sttt e sttt e st e st e b etesbesesbesbe s sbesesaesaesseneas 5-1
0 5.1.1 INPULS @GN0 OULPULS ...veviieiiieeieeieeeeeete et et et e eteete et e et e eteeteesteetesteeseessesereansesseeteareaaeenee eevea 5-2
0 5.1.2 MUIPHET FUNCHONSiiviieiiieitiiteeeeeeeeete ettt ettt ettt ete ettt e eteeteeeeetesteaveetesteeaeen sreaaeas 5-2
O 5.1.3 I PPN 5-2
O 5.1.4 ACCUMUIALOIS ...viviiviitiieiiite ittt ettt ettt et et se et et et ebe st e b e s e se et e ss e st e seseebesa e s essebe et veseess e 5-3
O 5,15 COUNLEIS uivviuiiuiititisiettete et et ete st et eseete st et esseteeb e st essebeeb e st e ssebeebe st et eseebesbabe st e s esesbessbesbe e ess e 5-4
0 5.1.6 DAU Pseudorandom Sequence Generator (PSG)ccooviuiiiiiiieeeiiiiiiiine e essiiiieeee e e e e s 5-7
0 5.1.7 CONTOI REQISIEISocviieiieiieieite ettt ettt ettt te et e et et e et e e teeae et et eae et et e eteereeneen ereaaeas 5-9
0 5.2 X Address Arithmetic UNit (XAAU)cooe oottt ettt ettt ae et teae et ete e enae e ere s 5-11
0 5.2.1 INPUES N0 OULPULS ...veiviieiiiiiieeceieie e et eteeteete ettt e ete et e eaeeae e e e s e e easasseeesaeereansenes e 5-11
0 5.2.2 X-Memory Space Segment SEIECLONeuviiiiiiiiiiiiiiiiee e 5-11
0 5.2.3 REQISEr DESCIIPLIONS ..uiiiiiiiiiiiiiiiiie e e ettt e e et e e e e s b e e e e e s s sab b e ee s s abbrreeeeeessnnen eeeas 5-12
0 5.3 Y Address Arithmetic UNit (YAAU)covoiiieeeiee ettt ettt ettt eteete e e eve s 5-13
0 5.3.1 INPULS N0 OULPULS ...veiveieiiitiiieceieeeeteete et eteeteete et et eete et et e eteeae e e e s e e easassetesaeereeraees reans 5-13
0 5.3.2 Y-MEIMOIY SPACE ..cuviiviiviieieeeete e et ete e ettt e et et e et e ete e et e et e steeasenteseereenseeaesteareanee e 5-14
0 LR G B = (= To 153 (=T g B LT Yot] o o] P PPPRR 5-14
0 5.3.4 AJUreSSING MOUEScuviviiviieeetiecie ettt ettt ettt et e et eae et e eaeereeneeeae e 5-14
O 5.4 CaCNE AN CONMION.....iiviitiiiei ittt sttt ettt ettt s et et et e e be b et e s b ebe s b et e e b esaebe et e ebesbe b enens 5-17
O B.A. L CACNE .uiiiitiiee ettt e a et b ettt b e bt teere b b stens 5-17
O 54,2 CONMIOI oiitiiiieeiete ettt ettt ettt s et et e b2 s et e e b et e st et e e b e e b et be et e et b e b e e te b s ere et et ens 5-19

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

5 Core Architecture

The DSP1600 core processor contains the data arithmetic unit, the memory addressing units, the instruction
cache, and the control section. The core is a building block for new DSP devices.

5.1 Data Arithmetic Unit

The data arithmetic unit (DAU) is the main execution unit for signal processing algorithms. It consists of a 16-bit x
16-bit multiplier, 36-bit ALU, and two 36-bit accumulators—a0 and al. The DAU performs two's complement, fixed-
point arithmetic and has a complete set of multiply/accumulate and ALU instructions. The DAU multiplier and
adder operate in parallel requiring only one instruction cycle for their combined execution. Operations are pipe-
lined so that an accumulation of a current product is done, a new product is formed, and new data is loaded into the
x and y registers all in one instruction cycle. Figure 5-1 is the block view of the DAU.

X DATA BUS >
IDB

|
Y Y A Y

X (16) | yhas) 1 (16)
16 x 16 MULTIPLY }4—‘

1

| p(32) -

'

SHIFT (=2, 0, 1, 2)

Y

‘ A Y ‘
MUX
- ALU/SHIFT
FLAGS
‘ c0 (8)
a0 (36)
- cl(8)
al (36)
c2 (8) - >
\i auc (16)
FLAGS 4—‘ PSG ‘ | EXTRACT/SAT. psw (16)
A \A

5-4156.a

Figure 5-1. DAU—Data Arithmetic Unit

Lucent Technologies Inc. 5-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.1 Data Arithmetic Unit (continued)
5.1.1 Inputs and Outputs

The XDB (instruction/coefficient data bus) provides coefficients to the x register and immediate data to the ALU.
The IDB (internal data bus) provides access to all of the other registers in the DAU. Flags are important DAU out-
puts to the control section.

5.1.2 Multiplier Functions

The multiplier executes a 16-bit x 16-bit multiply and stores the 32-bit result in the product register (p) in one
instruction cycle. Data for the multiplier's inputs is stored in the 16-bit x register and the upper 16 bits (high half) of
the 32-bit y register. A single-cycle squaring function is achieved by setting the X=Y= bit in the auc register. In this
mode, any instruction that loads high half of the y register loads the x register with the same value. A subsequent
multiply then results in a squaring operation. (See Section 4.5.5, Multiply/ALU Group for more details.)

The x register can be directly loaded in one instruction cycle from X-memory space or Y-memory space with multi-
ply/ALU instructions.

The high half of the y register can be directly loaded from Y-memory space or the high or low half of an accumula-
tor in one instruction cycle. The y register also provides 32-bit data for the dyadic (two-operand) ALU functions
with an accumulator as the other input. For these, the y data is sign-extended to 36 bits.

Use of the 32-bit Y register:

= y means high half, yl means low half, and y[l] means either.

m If auc bit 6 = 0, yl is cleared with a write to y.

m If auc bit 6 = 1, yl is not cleared with a write to y.

m Writing yl does not affect y.

The 32-bit p register provides a 36-bit input for ALU functions by sign-extending bit 31. Unlike the a0, al, ory reg-

isters, writing the high half of p does not change the data in the low half p regardless of the setting in the auc reg-
ister.

Registers x, y, yl, a0, a0l, a1, all, p, and pl are included in the general set of registers (see Table 4-9) available for
use with the data move group of instructions.

5.1.3ALU

In addition to being used as an adder in the multiply/accumulate instructions, the 36-bit ALU implements functions
and algorithms in the DSP1611/17/18/27/28/29 device that conventionally are executed in a microcomputer or a
microprocessor. Operands to the ALU can be data in y, p, a0, al, or immediates. The ALU sign-extends 32-bit
operands from y or p to 36 bits and produces a 36-bit output (32 data bits and four guard bits) in one instruction
cycle. Either accumulator can receive the 36-bit result. The ALU supports dyadic (two-operand) functions (addi-
tion, subtraction, logical AND, OR, and XOR) between an accumulator and another accumulator, y, p, or an
immediate. The immediate is sign-extended up or zero-extended down depending on whether the low or high half
of the accumulator is specified. Monadic functions of an accumulator include rounding, negation, incrementation,
one's complement, and left and right shifts of 1, 4, 8, or 16 bits. The bit manipulation unit (BMU) (see Chapter 13,
Bit Manipulation Unit) provides more complex accumulator functions.

The instruction groups using the ALU are as follows:

m Special function instructions (F2); see Table 4-11.
= Multiply/ALU instructions; see Table 4-12.
m ALU instructions (F3); see Table 4-15.

5-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.1 Data Arithmetic Unit (continued)
5.1.4 Accumulators

The accumulators a0 and al are 36 bits wide. The contents of either the high half of the accumulator (bits 31—16)
or the low half of the accumulator (bits 15—0) can be transferred to the 16-bit data bus.

Use of the 36-bit accumulators:

m aS means high half; aSI means low half (aS[l] means either aS or aSI can be selected; S is replaced by 0 or 1).

m For all types of instructions, writing aSI| does not affect aS (high). For data move instructions only, writing
aS (high) either does not affect aSl or clears aSl corresponding to the state of auc[5:4] as follows:

—If auc[5] = 0, all is cleared with a write to al
—If auc[5] = 1, all is not cleared with a write to al
—If auc[4] = 0, a0l is cleared with a write to a0
—If auc[4] = 1, a0l is not cleared with a write to a0
m For all types of instructions if aS is written (bits 31—16), bit 31 is sign-extended to bits 35—32.

m Bits 35—32 are calculated for addition and subtraction operations to the accumulators (including the special
function operations: incrementing, two’s complement, and rounding), thereby indicating overflows.

m Access to the guard bits (35—32) for reading and writing is provided by the psw register.

m For data move instructions and for the transfer field of multiply ALU instructions (see Section 4.5, Instruction Set),
the 36-bit value in an accumulator can be transferred to another register or to a memory location. In these
cases, saturation on overflow can be enabled or disabled as follows:

—If auc[3] = 0, saturation is enabled for al
—If auc[3] = 1, saturation is disabled for al
—If auc[2] = 0, saturation is enabled for a0
—If auc[2] = 1, saturation is disabled for a0

m The overflow condition exists if the value in the 36-bit accumulator is too large to be represented as a 32-bit num-
ber, i.e., if bits 35—31 are not all zeros or all ones. If saturation is enabled and overflow occurs, the value that is
transferred is the most positive or most negative number described below. The value in the accumulator remains
unchanged.

31
Most Positive Number: 2 5 1 = OX7FFF FFFF
Most Negative Number: =2 = 0x8000 0000

Transfers of data from the p register to the accumulators have four options for scaling that are selected by encoding
the ALIGN field of the auc register (see Section 3.3, Arithmetic and Precision).

To write the contents of a 32-bit register (y, a0, or al) to RAM requires two instructions: write the data in the high
half of the register to RAM and write the data in the low half of the register to RAM. The order of the two writes to
memory is left to the programmer. To read the contents of RAM to a 32-bit register also requires two instructions.
If clearing the low half of the destination's 32-bit register is enabled by using the CLR field in the auc register, the
read data in RAM to a 32-bit register must be done in the following order: load data to the high half of the register
and then load data to the low half of the register. This order is necessary because a load to the low half of a regis-
ter does not change the data in the high half, but a load to the high half of a register clears the data in the low half.
If clearing of the low half of the register is disabled, the two register loads can be performed in either order.

A write to the high half of the p register has no effect on the low half, there is no option that allows clearing the low
half when the high half is written.

Lucent Technologies Inc. 5-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.1 Data Arithmetic Unit (continued)
5.1.5 Counters

The signed c0 and c1 counter registers are 8 bits wide and under program control can count events such as the
number of times the program executes a sequence of code. The c2 register is a holding register for counter c1.

c0 and c1 conditional bits are based on the sign bits of each counter. If the counter value is negative, its associ-
ated conditional bit is set. Conditional instructions can test the state of the counter conditional bits (see also Sec-
tion 3.1.4, Section 4.4, and Section 4.5.1) by referencing the conditional mnemonics described in Table 5-1:

Table 5-1. Counter Conditionals

Counter Conditional Description
Register (CON)
cO cOge Counter 0 greater than or equal to 0
cOlt Counter 0 less than 0
cl clge Counter 1 greater than or equal to 0
cllt Counter 1 less than 0

The DAU interprets 8-bit numbers stored in c0—c2 as two’s complement numbers. The most negative number
(maximum count) stored is —27, —128, or 0x80. The most positive number stored is 27 — 1, 127 or OX7F.

Each time a conditional instruction tests one of these flags (if CON Instruction), the counter increments following
the test. See Figure 5-2.

(cN<0)

0)
Execute Execute
Instruction Instruction
A A
cN «cN+1 cN -« cN+1 cN -« cN+1 cN -« cN+1

if cNge Instruction if cNIt Instruction
N=0or1l N=0or1l

Figure 5-2. Conditional Instructions Using Counter Conditionals

5-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture
5.1 Data Arithmetic Unit (continued)
5.1.5 Counters (continued)
The following code segment example illustrates the use of c1 as a loop counter:

cl=14 /* Initialize counter to 1-4 = -3 */

loop: instruction

instruction
if c1lt goto loop /* If c1 < 0, condition It (less than 0) is met..., */
/* c1 increments and control goes to loop. If c1 =0, */
/* condition not met, and control goes on to next. */
/* The loop is executed four times. */

next:

This following code example demonstrates nested loops that loop through the outer loop eight times and through
the inner loop four times for each outer loop.

c0=1-8 /* initialize cO to 1-8 = -7 */
outerloop: instruction /* do operations in outerloop */

cl=1-4 /* initialize c1 to 1-4 = -3 */
innerloop: instruction /* do operations in innerloop */

if c1lt goto innerloop /* repeat innerloop, for c1; if c1 =0, */
instruction /* go on more outerloop ops *

if cOlt goto outerloop /* repeat outerloop, for cO; if cO = 0, *
next: /* go to next *

Another way to use the counters is with the ifc CON F21 special function group instruction. This instruction auto-
matically generates the following sequence:

1. Tests the condition CON2. Increments counter c1.

2. If true, performs operation F2 and loads c2 with the number in c1.

3. If false, goes onto next instruction.

Figure 5-3, on page 5-6 illustrates using the counter with special function instructions. c2 is a holding register for
cl. cl continues to increment and c2 receives the count in c1 if a true condition occurs. No instructions increment
€2 because its only use is as a holding register for c1.

1.See Section 4.5.4 for a description of the special function instruction group.
2.CON is any conditional (see Section 4.5.1).

Lucent Technologies Inc. 5-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.1 Data Arithmetic Unit (continued)

5.1.5 Counters (continued)

false

true

Execute
F2/F2E_function

cl «cl+1 cl-cl+1

c2 —cl

A

ifc CON F2_function

Figure 5-3. The ifc CON F2 Instruction

Note: The ifc CON F2 operates as described above even if the CON condition is a counter conditional. For exam-
ple, the instruction ifc cOlt F2 does not increment counter cO.

Table 5-2 summarizes the functions of c0, c1, and c2.

Table 5-2. c0—c2 Register Functions

Register Function Value Affected By

cO General-purpose Increments by one whenever an instruction of the form
incrementing counter | if cOge Instruction or if cOlt Instruction executes.

cl General-purpose Increments by one whenever an instruction of the form
incrementing counter | if clge Instruction or if cllt Instruction executes.
Special function Increments by one whenever an instruction of the form
incrementing counter | ifc CON F2_Instruction executes’.

c2 Holding register for Copies the value of c1 into c2 whenever an instruction of the form
cl ifc CON F2_Instruction executes and the condition CON is truef.

T CON is any conditional (see Section 4.5.1). See Section 4.5.4 for a description of the special function (F2) instruction group.

5-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.1 Data Arithmetic Unit (continued)
5.1.6 DAU Pseudorandom Sequence Generator (PSG)

The DAU includes a pseudorandom sequence generator (PSG) that can be used if a controlled amount of variabil-
ity is desired while performing a calculation such as for random rounding. The PSG consists of a 9-bit linear feed-
back register and a 1-bit linear output stage (see Figure 5-4). The 1-bit output is randomly set or cleared with a
probability of 0.5 whenever the heads or tails flag is tested. If the output is set, the heads flag is set; and if the out-
put is clear, the tails flag is set (see Section 3.1.4, Flags). Control or special function instructions can be condition-
ally executed based on the state of the heads or tails flags.

Prior to testing the heads or tails flags, the PSG must be reset once; otherwise, the states of these flags cannot be
random. The PSG is reset by writing any value to the pi register outside of an interrupt service routine as long as
the RAND bit of the auc register (see Section 3.3, Arithmetic and Precision) is cleared. If the RAND bit is set,
resetting the PSG is inhibited. This is useful for software nested interrupts where the user wishes to vector by writ-
ing the pi register without the unwanted side effect of resetting the PSG. If the heads or tails flags are tested within
a subroutine and different arrays of random sequences are desired each time the subroutine is called, the PSG
should be reset only once in the main program.

Although writing to the pi register can be used to reset the PSG, the main function of the pi register is as a PC
shadow register for interrupt returns. Therefore, the user must take care when writing the pi register with a value if
interrupts are enabled. If an interrupt is taken after the pi register is written with an arbitrary value and before pi is
updated with the PC value, the ireturn instruction in the ISR will not return to the correct location. Consequently, if
the pi register is written and any interrupts are enabled, precautions are necessary to ensure that an interrupt ser-
vice routine is not executed with the incorrect return value in the pi register. This can be accomplished in one of
two ways: either all interrupts must be disabled prior to writing the pi register (the interrupts can be subsequently
reenabled following the pi write), or the pi register can be written with the address of the following instruction. The
following example illustrates a case in which reset of the PSG is normally disabled (as is desired for software
nested interrupts) but is enabled temporarily in order to reset the PSG:

auc=0x100 /* normally disable reset of PSG */

/* need to reset PSG here (not in ISR) *
auc=0 /* enable reset of PSG */
pi=label [* reset PSG, write pi register with address of *

/* next instruction in case interrupt occurs here *

label:nop /* nop is needed here */
auc=0x100 /* disable reset of PSG */

Lucent Technologies Inc. 5-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Core Architecture

5.1 Data Arithmetic Unit (continued)

5.1.6 DAU Pseudorandom Sequence Generator (PSG) (continued)

Information Manual
April 1998

D o Q1D 1 QD , Q—b 3 Q D 4 Q

> sET > seT

D SET

ib—‘
Y%

ll—‘

GI—‘

T> SET

+

<

F> SET — SET

|

CLOCK' SET*

T The PSG clock is pulsed whenever a heads or tails condition exists.

(-

5-4157

F The PSG is set to all ones whenever the pi register is written outside of an interrupt service routine unless the RAND bit of the auc register is

set.

Figure 5-4. DAU Pseudorandom Sequence Generator

5-8

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.1 Data Arithmetic Unit (continued)
5.1.7 Control Registers

In addition to the registers already mentioned, the user has access to the arithmetic unit control register (auc) and
the processor status word register (psw). The auc register configures some features of the data arithmetic unit as
described in Table 5-3. The auc register is cleared to all zeros at reset. Bits 11 and 10 of the psw are cleared at

reset.

Table 5-3. Arithmetic Unit Control (auc) Register

Bit 15—9 8 7 6—4 3—2 1—-0
Field reserved RAND | X=Y= CLR SAT ALIGN
Field Value Description
reserved — Reserved’
RAND 0 Pseudorandom sequence generator (PSG) reset by writing the pi register only
outside an interrupt service routine.
1 PSG never reset by writing the pi register.
X=Y= 0 Normal operation.
1 y =Y transfer statements load both the x and the y registers, allowing single
cycle squaring with p = x *y.
CLR Ixx Clearing yl is disabled (enabled if 0).
x1x Clearing all is disabled (enabled if 0).
xx1 Clearing a0l is disabled (enabled if 0).
SAT 1x al saturation on overflow is disabled (enabled if 0).
x1 a0 saturation on overflow is disabled (enabled if 0).
ALIGN 00 a0, al — p.
01 a0, al ~ p/4.
10 a0, al — p x4 (and zeros written to the two LSBs).
11 a0, al — p x 2 (and zeros written to the two LSBs).

T The auc is a 16 bit register of which 9 bits [8:0] are used for control. The unused upper 7 bits [15:9] are always zero if read and should always
be written with zeros to make the program compatible with future chip versions. The auc register is cleared at reset.

The psw register contains status information from the data arithmetic unit as shown in Table 5-4. The psw register
is normally read to get status information. However, if it is overwritten, the new information will be considered valid.

Note: There is no capability to write just one or a few bits; all 16 bits have to be written.

psw bits 9 and 4 are ones if a 32-bit overflow occurs from an accumulator calculation for a0 and al, respectively.
A 32-bit overflow or mathematical overflow occurs if the result of a DAU add/subtract or BMU shift operation cannot
be properly expressed in 32 bits (the sign bit rolls over into bit 33). The accumulator guard bits will then differ from
the sign bit (bit 31). Also, a logical overflow can be detected in the psw register on bit 13 (LLV). A logical overflow
occurs if a number cannot be expressed in 36 bits (36-bit overflow). This can happen if any significant bits are lost
after adding, subtracting, or shifting overflow numbers.

The psw register contains the status of two additional DAU flags: LEQ and LMI. The LEQ (psw [14]) bit is set if the
last DAU/BMU operation produces a result of zero (all 36 bits in the accumulator can be zero). The LMI (psw [15])
bit is set if the last DAU/BMU operation produces a negative number as determined by accumulator bit 35. If bit 35
equals one, the result is negative; but if bit 35 equals zero, the result is positive.

Lucent Technologies Inc. 5-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.1 Data Arithmetic Unit (continued)
5.1.7 Control Registers (continued)
The accumulator guard bits are sign extended from bit 31 during data move instructions and, therefore, do not

affect the DAU flags. Writing the accumulator guard bits in the psw register will also change the corresponding bits
in the accumulator.

Table 5-4. Processor Status Word (psw) Register

Bit 15—12 11—10 9 8—5 4 3—0
Field DAU Flags X ai[v] al[35—32] ao[V] a0[35—32]
Bit(s) Field Value * Result/Description
15—12 DAU Flags# WXxXX LMI logical minus if set.
XWXX LEQ logical equal if set.
XXWX LLV logical overflow if set.
XXXW LMV mathematical overflow if set.
11—10 X — Reserved.
9 al[V] w Accumulator 1 (al) overflow if set.
8—5 al[35—32] WXxX Accumulator 1 (al) bit 35.
XWXX Accumulator 1 (al) bit 34.
XXWX Accumulator 1 (al) bit 33.
XXXW Accumulator 1 (al) bit 32.
4 ao[V] w Accumulator 0 (a0) overflow if set.
3—0 a0[35—32] WXxX Accumulator 0 (a0) bit 35.
XWXX Accumulator 0 (a0) bit 34.
XXWX Accumulator 0 (a0) bit 33.
XXXW Accumulator 0 (a0) bit 32.

T W indicates that the bit can be read or written.
T All DAU flags can be read from the psw register. The DAU flags are defined in section 3.1.4 , on page 3-7.

5-10 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.2 X Address Arithmetic Unit (XAAU)

The X address arithmetic unit (XAAU) is shown in Figure 5-5. It consists of a 16-bit adder; an offset register (i); and
four pointer registers: the program counter (PC1), the program return (pr), the program interrupt (pi), and the table
pointer (pt). These registers are used to address the X space memory or instruction/coefficient memory. The i
register is used to postmodify the pt register. The pt, pr, pi, and i registers are user-accessible and can be modi-
fied under program control. All of the registers are 16 bits wide. All contain unsigned data except for i which con-
tains signed data. The X-memory space contains internal ROM, the internal dual-port RAM, and external
memory. The X-memory space is described in Section 3.2, Memory Space and Addressing.

ﬂAU

i (16)

MEMORY
SEGMENT

ENABLES

ADDRESS - ADDER
4 BUS

XAB PC (16)

pt (16)

5-4158

Figure 5-5. XAAU—X Address Arithmetic Unit

5.2.1 Inputs and Outputs

The outputs of the XAAU are the instruction/coefficient address bus XAB and the memory segment enables (see
Section 5.2.2, X-Memory Space Segment Selection). The internal data bus IDB provides access to all of the regis-
ters except PC.

5.2.2 X-Memory Space Segment Selection

The 64K addresses in the X-memory space are divided into three segments: ROM, RAM, and EROM (see Section
3.2, Memory Space and Addressing). These three segments can be arranged four different ways (four different
memory maps) in the space. The XAAU provides enable lines for the three segments. Additionally, the RAM seg-

ment is divided into multiple banks of 1 Kwords each. Each bank has an enable line from the XAAU. The enable
lines are enabled one at a time depending on the address and the memory map.

1.The upper case denotes that this register is not accessible by instructions.

Lucent Technologies Inc. 5-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.2 X Address Arithmetic Unit (XAAU) (continued)
5.2.3 Register Descriptions

The PC register is the program counter containing the address that points to the location of the current instruction
in X-memory space. The PC can be loaded with an immediate address of a subroutine or a branch. The program
return address from a subroutine invoked by using the call instruction is saved in the pr register. The program
return address from an interrupt is saved in the pi register. The PC is loaded with the address in pr when returning
from a subroutine or the address in pi when returning from an interrupt. The PC can also be loaded from the pt
register with the goto pt instruction.

The pt register is normally used to point to tables of data in X-memory space. The contents of the pt register can
be postmodified by one or the value stored in the i register. The i register contains a 16-bit, two's complement
signed number with a range of —-32,768 to +32,767. The adder in the XAAU is used to postmodify the contents of
the pt register. Because pt is a 16-bit unsigned register, it can be loaded with values to 64K.

The pi register is a 16-bit shadow register. Each time the PC is modified, its new value is also loaded into the pi
register. While in an interrupt service routine (ISR), this shadowing is disabled and pi holds the last value of PC
(actually the address after the address of the last instruction executed) before the interrupt was taken. The return
from interrupt instruction (ireturn) is simply a goto pi instruction.

If not in an ISR, writing to pi generally has no permanent effect on the contents of pi because when the following
instruction is fetched, pi is overwritten with the updated value of the PC. This holds true except if the write to pi is
immediately followed by a goto pi instruction. Under this condition, the program will jump to the location identified
in pi. Writing pi also resets the pseudorandom sequence generator (PSG) unless the RAND bit in the auc register
is set. Itis important to note that if an interrupt is taken after writing pi and before the next instruction executes, the
ireturn in the ISR will not return to the correct location (See Section 5.1.6, DAU Pseudorandom Sequence Gener-
ator (PSG) for details on avoiding this problem.) Inside the ISR, the pi register can be read or written but writing
affects the return address

A shadow register for the pi register allows traps generated by the hardware development system to be taken from
inside an ISR. This allows hardware breakpoints to be set and single stepping to be performed inside an ISR. One
restriction exists in the use of the pi register and its shadow register if using breakpoints. For the shadow register
to be modified by a data move write to the pi register, the data move must occur prior to one instruction before the
first breakpoint address in an ISR.

5-12 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.3 Y Address Arithmetic Unit (YAAU)

The Y address arithmetic unit (YAAU) is shown in Figure 5-6. It consists of nine 16-bit registers and a 16-bit adder.
The Y space, or data memory, is addressed by the rO—r3 pointer registers. The j and k offset registers can be
used to postmodify registers rO—r3. The rb and re registers are used if a register addressing the RAM is applied
in a cyclical (modulo) fashion. The ybase register stores a base address for Y space direct addressing. The nine
YAAU registers are accessible to the user and can be read or written under program control.

YAAU

MEMORY
SEGMENT

ENABLES

Z %

%
/777747

7777

ADDRESS ADDER (16)

r0 (16)

rl (16)

T

r2 (16)

k ybase (16) 3 (16) J

Figure 5-6. YAAU—Y Address Arithmetic Unit

5-4159

5.3.1 Inputs and Outputs

The major output of the YAAU is the YAB that provides addresses from the YAAU to internal and external memo-
ries. Address segments are also decoded to provide separate enables to the multiple banks of on-chip, dual-port
RAM and the enables to external memory. One individual address in the 10 external memory segment is also
decoded to provide an enable—DSEL!. All of the registers are read or written through the bidirectional data bus
IDB. IDB also provides the interface for loading immediate addresses into the registers.

1.DSEL not available in the DSP1627/28/29.

Lucent Technologies Inc. 5-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.3 Y Address Arithmetic Unit (YAAU) (continued)

5.3.2 Y-Memory Space

The 64K memory space is divided into four segments: RAM, ERAMLO, ERAMHI, and 10 as shown in Table 3-7 on
page 9. The selection of a segment is automatic depending on the Y address in the YAAU. Unlike the X-memory
space, there is only one memory map for the four segments. The segment for the internal RAM is further divided
into multiple 1K banks. The addresses are decoded in the YAAU and an enable is provided for each of the external
segments and each of the RAM banks.

5.3.3 Register Descriptions

Registers rO—r3 provide register-indirect addressing. They are 16-bit unsigned registers that contain addresses
pointing to RAM locations for reading or writing. Pointers rO—r3 can be automatically postmodified by 0, +1, -1,
+2, the contents of the j register, or the contents of the k register. The j and k registers contain 16-bit, two's com-
plement signed numbers with a range of —32,768 to +32,767. The k register and the +2 increment are only used by
the compound addressing instructions. The adder in the YAAU postmodifies the contents of the rO—r3 registers.

The registers, except for ybase, in the YAAU are the only ones that can be loaded with the short immediate instruc-
tion SR = IM9. Nine bits of data from the instruction are loaded into the lowest 9 bits of one of the YAAU registers
as specified in the instruction. The upper 7 bits are filled with zeros except for the j and k registers that are sign-
extended.

The ybase register provides direct addressing of data memory (see Figure 5-7, on page 5-15). The upper 11 bits
of the address are held in the upper portion of the ybase register (labelled BASE in Figure 5-7, on page 5-15). Ifa
data move instruction using direct data addressing is executed, the instruction contains 4 bits selecting one of 16
registers (e.g., r0 or a0) as the source or destination for the data move and 5 bits that form the offset part of the
address (see Section 4.3.2, Compound Addressing and Section 4.5.3, Data Move Instructions). The five offset bits
are concatenated to the 11 base bits to form an address. The corresponding location becomes a source or desti-
nation for the data move.

5.3.4 Addressing Modes

Four modes of addressing are supported by the YAAU (see also Section 4.3, Addressing Modes):

1. Register-indirect: The most frequently used mode in which one of the rO—r3 registers contains an address that
points to a location in data memory. The address can be postmodified (see Section 5.3.3, Register Descrip-
tions).

2. Direct data addressing: The lower 5 bits in the direct data instruction (see Section 4.5.3, Data Move Instruc-
tions) are concatenated with the upper 11 bits previously stored in the ybase register to form the address.

3. Compound addressing: Data contained in a memory location pointed to by one of the rO—r3 registers is
swapped with the contents of a register specified directly in the compound addressing instruction (see Section
4.5.5, Multiply/ALU Group). Four choices of postmodification are available (see Section 4.3.2, Compound
Addressing).

4. Virtual-shift (modulo) addressing: A special case of register-indirect addressing in which an implicit circular
shift register is established for zero-overhead virtual-shift addressing. This mode enables the creation of an arbi-
trarily-sized portion of contiguous RAM locations to behave as if it were a physical delay or shift register without
actually moving data within RAM. The virtual-shift buffer is implemented in memory by storing the data at fixed
locations and incrementing the memory pointer in a modular fashion. The YAAU registers rb and re contain
addresses that establish the lower and upper boundaries of the virtual-shift buffer. Virtual-shift addressing is nor-
mally disabled and is enabled by writing a nonzero value to re. re is cleared on reset.

The following sections describe direct data addressing and virtual-shift addressing in further detail.

5-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.3 Y Address Arithmetic Unit (YAAU) (continued)
5.3.4 Addressing Modes (continued)
Direct Data Addressing

Figure 5-7 describes direct data addressing. The upper 11 bits of the address are held in the upper portion of the
ybase register (labelled BASE in Figure 5-7). If a data move instruction using direct data addressing is executed
(see Section 4.3.3, Direct Data Addressing), the instruction contains 4 bits selecting one of 16 registers (e.g., rO or
a0) as the source or destination for the data move and 5 bits that form the offset part of the address. The five offset
bits are concatenated to the 11 base bits to form an address. The corresponding location becomes a source or
destination for the data move.

I'NSTRUCTION 15 111101 9 615 |a
iN X-MEMORY T-FIELD R/W| DR SPECIFIED | 4 OFFSET
SPACE
XDB DR = *(OFFSET)
or
*(OFFSET) = DR
CONTROL OFFSET
ybase |15 0
REGISTER
IN YAAU
YAB
YDB
REGISTER DR
RAM

5-4160

Figure 5-7. Direct Data Addressing

Lucent Technologies Inc. 5-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.3 Y Address Arithmetic Unit (YAAU) (continued)
5.3.4 Addressing Modes (continued)
Virtual-Shift Addressing Mode (Modulo Addressing)

Figure 5-8 illustrates the use of the rb and re registers to establish an implicit delay line or circular shift register. A
program stores one word (Xn) at a time in memory, and Xn — k through Xn can be read out. Then, a new value
(Xn + 1) is stored, the oldest data (Xn — k) is lost, and the new sequence is read out. In a typical delay line or shift
register, all of the bits are shifted physically in each clock cycle. But, in this implementation, the data remains
stored at fixed memory locations and one pointer or addressing register is moved to generate the desired
sequence of writing and reading. Two concepts are applied in this technique: the first describes how the circular
register in memory is established, and the second describes the sequence of reading and writing data into and out
of memory.

1. The rb and re registers contain addresses that define the boundaries of the cyclical (or circular) register. The
rb register contains the address for the beginning data word in the figure, and the re register contains the
address for the end data word. A single pointer register, such as rl, contains an address that increments as
the pointer advances through the memory. If the pointer register address equals the address in re! and the
current instruction calls for a postincrement, the address in rb is placed in the pointer register instead of the
next count increment. The pointer, thus, moves from the bottom location to the top and then continues on
down. This forms a closed loop that will continually cycle. Program control of the pointer can generate differ-
ent sequences from this closed loop as described in the second concept.

2. In sequence 1, the pointer starts at address 5 and new data (Xn + 1) is written over old data. The pointer
increments and Xn — 5 is read out followed by sequential reads until Xn + 1 is read out. Sequence 2 then
starts with the pointer moving to address 6, and new data (Xn + 2) is written over Xn — 5. The pointer incre-
ments, and data is read from locations 7, 1, . . ., 6. The sequences can continue indefinitely.

Note: There are eight counts in a sequence and seven memory locations so the starting location is incre-
mented each sequence.

RAM RAM
address address
data N data N
T T
‘ read Xn-3 |1 | read > Xn-3 |1 <«—T'b
2 Yread o2 2 Yread Jyn_2 |2
[@
| = Voread _Iy,_1 |3 | = Voread Iy, 1|3
a | a i
‘ Y read _ <n 4 4 Y read - xn 4
‘ write Xn+1 5 d > Xn+1 |5
en read
‘ | read > Xn—5 6 ‘ write _ Xn+2 |6
start =
read
| I read | w4 |7 | > Xn-4 |7 «— '€
L [
— SEQUENCE 1 — SEQUENCE 2 —
Xn—-5,Xn-4,Xn-3,..., Xn+1 Xn—-4,Xn-3,..., Xn+ 2

5-4125

Figure 5-8. Use of the rb and re Registers

1.Modulo addressing works only with *rM++, *rMpz, or *rMzp.

5-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Core Architecture

5.3 Y Address Arithmetic Unit (YAAU) (continued)
5.3.4 Addressing Modes (continued)

A code segment for controlling the previous sequence follows. It is assumed that new data is arriving in the SIO
sdx input register at the proper time.

ro=1 /* Initialize register. */
rb=1 /* Address 1 for beginning. *
re=7 /* Address 7 for end of shift register. */
loop: [* */
rO++=sdx / Write to memory, increment address by 1. */
/* */
do 7 { /* Initialize cache, 7 iterations. */
y=*r0++ /* Do 7 reads from memory to y and increment address by */
/* 1 each time. */
} * */
goto loop /*Repeat, but now pointer has advanced one position */
[*past previous start. *

Other patterns are possible by changing the read/write patterns within the loop. For example, some other patterns
are: write newer data word—read older data word (simple serial delay line) and write newer data word—read older
data words from newest to oldest. The length of the virtual-shift register is limited only by the size of the selected
memory up to the 64K addressing capability of the registers. Any nonzero value written to re will enable the virtual-
shift register mode for all of the pointer registers rO0—r3. Register re is cleared on reset.

5.4 Cache and Control

This portion of the core controls the instruction sequencing. It handles vectored interrupts and traps, contains a
15-word instruction cache memory, and provides decoding for registers outside of the DSP1600 core. It stretches
the processor cycle if wait-states are required (wait-states can be programmed for external memory access via the
mwait register). It also sequences downloading of self-test programs via JTAG to on-chip dual-port RAM.

5.4.1 Cache

Under user control, the on-chip cache memory stores repetitive operations to increase the throughput and the cod-
ing efficiency of the device. Use of the cache also reduces power dissipation by eliminating program memory
accesses. The cache can store up to 15 instructions at a time and then repeatedly cycle through those instructions
up to 127 times without having to use loop, test, and conditional branch instructions. The set of instructions is exe-
cuted as each instruction is loaded into the cache to achieve low overhead looping. The cache iterative count can
be specified either as an immediate value at assembly time or can be set by writing the cloop register during pro-
gram execution. Instructions previously stored in the cache can be re-executed without reloading the cache by
using the redo instruction.

Cache instructions eliminate the overhead when repeating a block of instructions. Therefore, the cache reduces
the need to implement in-line coding in order to maximize the throughput. A routine utilizing the cache uses less
ROM locations than in-line coding of the same routine.

For multiply/ALU instructions that require two reads to dual-port RAM, executing from the cache decreases the
execution time from two instruction cycles to one instruction cycle resulting in an increase in throughput.

Lucent Technologies Inc. 5-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.4 Cache and Control (continued)
5.4.1 Cache (continued)

The instructions controlling the cache are given below:

do K {
instruction 1
instruction 2
I
I
instruction N
}
redo K

Table 5-5. Replacement Table for Cache Instruction Encoding

Bit 15—11 10—7 6—0
Field T N K
Replace Value Meaning
K cloop? Take the number of times the instructions are to be executed from

bits 0 through 6 of the cloop register.

1to 127 Number of times the instructions are to be executed, encoded in
instruction.

N 1to 15 1 to 15 instructions can be included.
T 01110 —

T The assembly-language statements do cloop and redo cloop are used to specify that the number of iterations is to be
taken from the cloop register. K is 0 in the instruction encoding to select cloop .

If the cache is used to execute a block of instructions, the cycle timing of the instructions is as follows:

m In the first pass, the instructions are fetched from program memory and the cycle times are the normal out of
cache values except the last instruction in the block of N instructions. This instruction executes in two cycles.

m During pass 2 through pass K — 1, each instruction is fetched from cache and the in-cache timing applies.

m During the last (Kth) pass, the block of instructions is fetched from cache and the in-cache timing applies except
the timing of the last instruction is the same as if it were out of cache.

m If any of the instructions access external memory, programmed wait-states must be added to the cycle counts.

The number of iterations (K) for a do or redo can be set at run time by first moving the number of iterations into the
cloop register (7 bits unsigned) and then issuing the do cloop or redo cloop instruction. The cloop register will

also store the K value if initiated from a do K (K = 1 to 127) instruction and will decrement at each cache loop. At
the completion of the loops, the value of cloop is decremented to 0; hence, cloop needs to be written before each
do cloop or redo cloop .

Cache loops cannot be interrupted. Instructions that cannot be used in the cache are the control group instructions
and any instructions that contain an immediate value as the second word of a two-word instruction.

5-18 Lucent Technologies Inc.

Information Manual

April 1998

5.4 Cache and Control

5.4.2 Control

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Core Architecture

(continued)

The control block provides overall DSP1611/17/18/27/28/29 system coordination and is mostly invisible to the
user. Inputs (instructions) are provided to the control block over the program data bus (XDB). The instructions are

decoded by hardware in the control block. Execution of the phases of an instruction is controlled by hardware

throughout the device. The hardware sequences instructions through the pipeline and controls the I/O, the pro-
cessing, the memory accesses, and the timing necessary to perform each operation. A three-level pipeline (fetch
an instruction, decode the instruction, and execute the instruction) is hidden from the user.

Control and status registers in the control section are the inc, ins, alf, and mwait registers (inc, ins, and alf are
described in Tables 5-9 through 5-11). For further information, refer to the sections listed in Table 5-6.

Table 5-6. Control and Status Descriptions

Register Section Subject
ins, inc 3.4 Interrupts
alf 4.4 Processor Flags
3.2 Memory Space and Addressing
3.4.6 Powerdown with the AWAIT State
mwait 6.2 Programmable Features

Table 5-7. Interrupt Control (inc) Register (DSP1611/17/27/29)

Bit 15 14—11 10 9 8 7—6 5—4 3 2 1 0

Field |JINT | Reserved |OBE2 |IBF2 | TIMEOUT | Reserved |INT[1:0] | PIDS/PIBF | PODS/POBE |OBE |IBF
Table 5-8. Interrupt Status (ins) Register (DSP1611/17/27/29)

Bit 15 14—11 10 9 8 7—6 5—4 3 2 1 0

Field |JINT | Reserved |OBE2 |IBF2 | TIMEOUT | Reserved |INT[1:0] | PIDS/PIBF | PODS/POBE |OBE |IBF
Table 5-9. Interrupt Control (inc) Register (DSP1618/28)

Bit 15 | 14 13 12 11 10 9 8 7—6 | 5—4 3 2 1 0

Field |JINT |rsrvd |EOVF | EREADY |rsrvd [OBE2 |IBF2 | TIMEOUT |rsrvd | INT[1:0] |PIBF |POBE |OBE |IBF
Table 5-10. Interrupt Status (ins) Register (DSP1618/28)

Bit 15 | 14 13 12 11 10 9 8 7—6 | 5—4 3 2 1 0

Field |JINT |rsrvd |EOVF | EREADY |rsrvd [OBE2 |IBF2 | TIMEOUT |rsrvd | INT[1:0] |PIBF |POBE |OBE |IBF
Lucent Technologies Inc. 5-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Core Architecture April 1998

5.4 Cache and Control (continued)

5.4.2 Control (continued)

Table 5-11. alf Register

Bit 15 14 13—9 8 7 6 5 4 3 2 1 0
Field |AWAIT |LOWPR Reserved ebusy nmnslimnsl |evenp [oddp [somefjsomet| allf | allt
Bit Flag Use
15 AWAIT Set to enter power-saving standby
mode or standard sleep mode.
14 LOWPR Memory map selection.
13—9 Reserved —
8 ebusy ECCP busy for DSP1618/28 (Reserved

for DSP1611/17/27/29).

7 nmnsl NOT-MINUS-ONE from BMU.
6 mnsl MINUS-ONE from BMU.

5 evenp EVEN PARITY from BMU.

4 oddp ODD PARITY from BMU.

3 somef SOME FALSE from BIO.

2 somet SOME TRUE from BIO.

1 allf ALL FALSE from BIO.

0 allt ALL TRUE from BIO.

5-20 Lucent Technologies Inc.

Chapter 6

External Memory Interface

OoOoooooooooooooogogd

CHAPTER 6. EXTERNAL MEMORY INTERFACE

CONTENTS

6 EXterNal MEMOTY INTEITACEuuiiiiiieeiiiitt ettt e e e e ettt e e e e s s bbb e e e e e e s s bt be e e e saeeeessnnsbbeeeeeeeanas 6-1

LI 0T T (o o PSP PRPTN: 6-1

Programmable FEALUIESuiiiiiiiiiiiiiiee ettt e e e sttt e e e s s st e e e e sasbb e e e e e e e e s an eeeenannes 6-13

FUNCLONAI TIMING ©ttttiieiiiiitiiiie et e et e e e e e s bt eee e e e et tbeeetaeeeaabeeeaaeeasbeeeaeesnannnnes 6-14

6.3.1 Timing Action With Wat-STAteSoiiiuiiiiiiieiiiiiiiiiee e e e 6-15

TIMING EXAMPIES ..ottt e et e e e e e s st e e e e e e s s bbb e e e e e e e s snsbeeeeeaases aeesannbrneeeas 6-17

L R @1 ® T {0111 o PO SPPPPPPP PR 6-17

6.4.2 WIrite, REAM, REA, W = 0 oiiiuiiiiiiii ittt e e e et e e et e e e e aa e e eeaaeeeeatseeeanne s 6-18

6.4.3 ReEad, WL, WIEE, W = 0 ittt ettt e et e et e e e et e e e teeateeetaaeeaeabeeasenon 6-19

6.4.4 Read, Write, W = 0, COMPOUNd AJAIESSccuvviiiiiieeeieiiiiiiiiiee e e e e s ssiiinnee s s s sienreeeeeeesssnnnes 6-20

6.4.5 REAA W = 1, REAA W = 2 oottt ettt e et e ettt e et e e e te e e s et e e e eabeeeeaanss 6-21

B.4.6 WIILE W = L Looiiiiiiiiiiiiiiiiie ettt e e sttt e e e e ettt et e e e s e e bbb ettt e e e s e nb b b e ee s s s nbb b e e e e e e e teeaaaeean 6-22

6.4.7 Read, Read with Delayed ENabIEcoooiiiiiiiiiiiiii e 6-23

6.4.8 Write, Read, with Delayed ENabIec.c..ovviiiiiiiiiiii e 6-24

6.5 BoOt-Up from EXIErNal ROMcuiiiiiiiiiiiiiiiiie ettt e e e et e e e e e s s e e e e e e s s sabaeeees hbreeeas 6-25

6.6 MEIMOIY SEUUENCET ...ttt ettt eeeeeeeeeeeas 6-26
6.7

Downloading Code into External Program MEMOTY............ueiiieiiiiiiiiiiiiieeeesaeiiiiiieeessssnsirneeeaeesssnnnes 6-28

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

6 External Memory Interface

The external memory interface (EMI) is used to connect the DSP1611/17/18/27/28/29 to external memory and 1/O
devices. It supports read operations from instruction/coefficient memory (also called program memory or X-
memory space) and read/write operations with data memory (Y-memory space) or memory-mapped /O devices.
Either the internal data bus or the internal instruction/coefficient bus is connected to the external data bus. Exter-
nal data memory is called ERAM, and external instruction/coefficient memory is called EROM. However, the actual
memory devices can be ROMs, RAMs, PROMs, EPROMSs, etc. The EMI supports four external memory segments
each with a different software-programmable wait-state of value 0 to 15 cycles. One individual hardware address is
decoded to drive DSEL! for glueless 1/O interfacing.

Two features provide lower power dissipation. The external address bus is quiescent to eliminate switching cur-
rents when external memories are not accessed, and wait-states allow the use of slow, low-power memories.

6.1 EMI Function

DSP1611/17/18/27/28/29

YDB XDB YAB XAB DB

EREE :

— —qu / | CONTROL LOGIC “&‘
MUX

16 16 4
y y \ Y
DBJ[15:0] ABJ[15:0] \j DSELT ¥ EXM RWN
MEMORY CKO
SEGMENT
ENABLES

T DSEL not available in the DSP1627/28/29.
5-4126.b

Figure 6-1. External Memory Interface

Figure 6-1 shows the block diagram of the EMI function. Two multiplexers select either the internal instruction/coef-
ficient (X) or data (Y) buses to be connected to the external interface. If the program references an external
address, the appropriate internal bus is automatically connected to the external memory bus.

Some instructions simultaneously access both external X and Y space. To avoid collisions, the DSP has a
sequencer (see Section 6.6, Memory Sequencer) that accesses the X space first and then the Y space transpar-
ently to the user.

The DSP allows writing into external instruction/coefficient memory. By setting bit 11 (WEROM) of the ioc register,
writing to (or reading from) data memory or memory-mapped I/O asserts the EROM strobe instead of ERAMLO,
10, or ERAMHI strobes. Therefore, with WEROM set, EROM appears in both Y space (replacing ERAM) and X
space (in its X address range). If WEROM is active, DSEL! will not be asserted.

1.DSEL not available in the DSP1627/28/29.

Lucent Technologies Inc. 6-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.1 EMI Function (continued)

Bit 14 of the ioc register (EXTROM) can be used with WEROM to download a full 64K of memory (see Section 6.7,
Downloading Code into External Program Memory). If WEROM and EXTROM are both asserted, address bit 15
(AB15) is held low aliasing the upper 32K of external memory in the lower 32K. The WEROM and EXTROM bits
are used by the hardware development system to download a program to EROM space transparently to the user.

The description of the function of each pin follows:

AB[15:0]: This 16-bit external address bus outputs to external memory. The last valid external address is held on
this bus, except if the JTAG has control of the pins or the pins are 3-stated during reset.

DB[15:0]: The 16-bit bidirectional data bus to external data, external instruction/coefficient memory, or memory-
mapped I/O devices used alone or in any combination.

RWN: Read/Write Not; it is an output from the DSP. It indicates a read if logic one and a write if logic zero. In this
manual, the terms read and write are referenced to the DSP; i.e., it is the DSP doing the reading or writing.

EXM: Selects internal or external instruction/coefficient memory space (see Tables 6-1 through 6-5). This input is
latched into the DSP on the rising edge of RSTB. If EXM is latched in low, internal ROM is selected for a portion of
the instruction/coefficient memory space as defined by the MAP selection. If EXM is latched in high, external
memory called EROM is selected for that same portion of instruction/coefficient space.

Memory Segment Enables: Outputs from the DSP. The four leads (EROM, ERAMHI, 10, and ERAMLO) are
used to select one of the four external memory segments. If an enable is low, the segment associated with that
enable is selected. Addresses corresponding to the segments are shown in Tables 6-1 through 6-11. The leading
edge of each can be delayed one half a CKO period by programming the ioc register. This avoids bus contention
and allows the mix of fast and slow external memory, 1/0 devices, or both.

DSEL!®: This output is used to select external 1/O devices. Itis predecoded from memory address 0x4000 in the 10
external memory segment. By default, it is active if low but can be made active-high by programming the ioc regis-
ter.

CKO: This is the clock-out pin. Based on programming of the ioc register (see Table 6-13), CKO is one of the fol-
lowing (the term CKO by itself will refer to the free-running CKO):

1. The frequency of the 2x input clock CKI divided by two (called the free-running CKO) or the frequency of the
1x input clock CKI depending on the clock option of the DSP. Or, for the DSP1627/28/29 only, the frequency
of the internal processor clock.

2. The frequency of the 2x input clock CKI divided by two times one plus the number (w) of wait-states (called
the wait-stated CKO)—fcki/(2(1 + w)); w is encoded in the control register mwait. Or, the frequency of the 1x
input clock CKI divided by one plus the number (w) of wait-states—fcki/(1 + w). It depends on the clock
option of the DSP. For the DSP1627/28/29, the frequency of the internal processor clock selected divided by
one plus the number of wait states.

3. Held high.
4. Held low.

5. CKO = CKI for crystal and small-signal options only. For the DSP1627/28/29, CKO = CKIl even if PLL is
selected as the internal clock source.

6. Sequenced wait-stated clock that completes two cycles during a sequenced external memory access.

1.DSEL not available in the DSP1627/28/29.

6-2 Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.1 EMI Function (continued)

The external instruction/coefficient memory space has one segment (EROM) with four possible memory maps for

the internal instruction/coefficient segments. The memory maps for instruction/coefficient and data space are

shown in Tables 6-1 through 6-10. Section 3.2, Memory Space and Addressing describes how to select MAP1, 2,

3,0r4.

Table 6-1. DSP1611 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 | MAP3 (EXM =0 | MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR#* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—12> RAM<1—12>
Ox03FF (1K) (48K) (12K) (12K)
1024 0x0400 Reserved
Ox2FFF (15K)
12288 0x3000 Reserved Reserved
Ox3FFF (4K) (4K)
16384 0x4000 EROM IROM EROM
O0x43FF (32K) (1K) (48K)
17408 0x4400 Reserved
OX7FFF (15K)
32768 0x8000 EROM
OxBFFF (32K)
49152 0xCO000 RAM<1—12> RAM<1—12>
OxDFFF (12K) (12K)
61439 0xF000 Reserved Reserved
65535 OxXFFFF (4K) (4K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.

Lucent Technologies Inc.

6-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

External Memory Interface

6.1 EMI Function (continued)

Table 6-2. DSP1617 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (24K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox3FFF (12K) (12K)
16384 0x4000 IROM EROM
OxX5FFF (24K) (48K)
24576 0x6000 Reserved
OX7FFF (8K)
32768 0x8000 EROM
OX9FFF (16K)
40960 0xA000 Reserved
OxBFFF (8K)
49152 0xC000 RAM<1—4> RAM<1—4> EROM
OXCFFF (4K) (4K) (16K)
53248 0xD000 Reserved Reserved
65535 OXFFFF (12K) (12K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

Table 6-3. DSP1618 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (16K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox3FFF (12K) (12K)
16384 0x4000 EROM IROM EROM
OX7FFF (32K) (16K) (48K)
32768 0x8000 EROM
OxBFFF (32K)
49152 0xC000 RAM<1—4> RAM<1—4>
OXCFFF (4K) (4K)
53248 0xD000 Reserved Reserved
65535 OxFFFF (12K) (12K)

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

6-4

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.1 EMI Function (continued)

Table 6-4. DSP1618x24 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM = 1 |MAP38 (EXM = 0| MAP4 (EXM = 1
Address pc, pt, pi, pr LOWPR#* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—4> RAM<1—4>
OXOFFF (24K) (48K) (4K) (4K)
4096 0x1000 Reserved Reserved
Ox1FFF (12K) (12K)
8192 0x2000
Ox3FFF
16384 0x4000 IROM EROM
OxX5FFF (24K) (48K)
24576 0x6000 Reserved
OX7FFF (8K)
32768 0x8000 EROM
Oxofff (16K)
40960 0xA000 Reserved
OxBFFF (8K)
49152 0xC000 RAM<1—4> RAM<1—4> EROM
OxCFFF (4K) (4K) (16K)
53248 0xDO000 Reserved Reserved
OxDFFF (12K) (12K)
57344 OxE000
65535 OxFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if the secure mask-programmable option is selected.

Lucent Technologies Inc.

6-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

External Memory Interface

6.1 EMI Function (continued)

Table 6-5. DSP1627 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—6> RAM<1—6>
OXOFFF (36K) (48K) (6K) (6K)
4096 0x1000
Ox17FF
6144 0x1800 Reserved Reserved
Ox1FFF (10K) (10K)
8192 0x2000
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (36K) (48K)
20480 0x5000
OX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000 Reserved
OX9FFF (12K)
40960 0xA000
OXAFFF
45056 0xB000
OxBFFF
49152 0xC000 RAM<1—6> RAM<1—6>
OXCFFF (6K) (6K)
53248 0xD000 Reserved
OxD7FF (12K)
55296 0xD800 Reserved Reserved
OxXDFFF (10K) (10K)
57344 OxE000
OXEFFF
61440 0xF000
65535 OxXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

6-6

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.1 EMI Function (continued)

Table 6-6. DSP1627x32 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM = 1 |MAP38 (EXM = 0| MAP4 (EXM = 1
Address pc, pt, pi, pr LOWPR#* = 0) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM RAM<1—6> RAM<1—6>
OXOFFF (32K) (48K) (6K) (6K)
4096 0x1000
Ox17FF
6144 0x1800 Reserved Reserved
Ox2FFF (10K) (10K)
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (32K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000 EROM
Ox8FFF (16K)
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OxBFFF
49152 0xC000 RAM<1—6> RAM<1—6> EROM
OxCFFF (6K) (6K) (16K)
53248 0xDO000
OxD7FF
55296 0xD800 Reserved Reserved
OxDFFF (10K) (10K)
57344 OxE000
OXEFFF
61440 0xF000
65535 OxFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

6-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

External Memory Interface

6.1 EMI Function (continued)

Table 6-7. DSP1628x08 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (8K) (8K)
4096 0x1000
Ox17FF
6144 0x1800
Ox1FFF
8192 0x2000 Reserved Reserved
Ox3FFF (8K) (8K)
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (8K) (8K)
53248 0xD000
OXDFFF
57344 OxE000 Reserved Reserved
OXEFFF (8K) (8K)
61440 0xF000
65535 OxXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

6-8

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.1 EMI Function (continued)

Table 6-8. DSP1628x16 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAP1T (EXM =0 | MAP2 (EXM =1 |[MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = Q) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (16K) (16K)
4096 0x1000
Ox17FF
6144 0x1800
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
Ox5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
OX8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (16K) (16K)
53248 0xD000
OXDFFF
57344 0xE000
OXEFFF
61440 0xF000
65535 OXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

6-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

External Memory Interface

6.1 EMI Function (continued)

Table 6-9. DSP1629x10 Instruction/Coefficient Memory Map (X-Memory Space)

Information Manual
April 1998

Decimal Address in MAPL1T (EXM = 0| MAP2 (EXM =1 |MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = 0) LOWPR =0) LOWPR = 1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (10K) (10K)
4096 0x1000
Ox27FF
10240 0x2800 Reserved Reserved
Ox2FFF (6K) (6K)
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
OxX5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
Ox8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (10K) (10K)
53248 0xD000
OXDFFF
57344 OxE000
OXE7FF
59392 OxE800 Reserved Reserved
OXEFFF (6K) (6K)
61440 0xF000
65535 OxFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

6-10

Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.1 EMI Function (continued)

Table 6-10. DSP1629x16 Instruction/Coefficient Memory Map (X-Memory Space)

Decimal Address in MAP1T (EXM =0 | MAP2 (EXM =1 |[MAP38 (EXM = 0| MAP4 (EXM =1
Address pc, pt, pi, pr LOWPR* = Q) LOWPR = 0) LOWPR =1) LOWPR =1)
0 0x0000 IROM EROM DPRAM DPRAM
OXOFFF (48K) (48K) (16K) (16K)
4096 0x1000
Ox17FF
6144 0x1800
Ox2FFF
12288 0x3000
Ox3FFF
16384 0x4000 IROM EROM
Ox4FFF (48K) (48K)
20480 0x5000
Ox5FFF
24576 0x6000
Ox6FFF
28672 0x7000
OX7FFF
32768 0x8000
OX8FFF
36864 0x9000
OX9FFF
40960 0xA000
OXAFFF
45056 0xB000
OXBFFF
49152 0xC000 DPRAM DPRAM
OXCFFF (16K) (16K)
53248 0xD000
OXDFFF
57344 0xE000
OXEFFF
61440 0xF000
65535 OXFFFF

T MAP1 is set automatically during an HDS trap. The user-selected map is restored at the end of the HDS trap service routine.
F LOWPR is an alf register bit. The Lucent Technologies development system tools can independently set the memory map.
8§ MAP3 is not available if secure mask-programmable option is selected.

Lucent Technologies Inc.

6-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.1 EMI Function (continued)

The 16-bit address bus allows 65,536 words to be addressed in each of the two address spaces. The external data
address space is divided into three segments: ERAMHI, ERAMLO, and IO. There is one memory map for the three
segments and internal RAM. Table 6-11 shows the memory maps of the data address space for each device.

Table 6-11. Data Memory Map (Y-Memory Space)

Decimal | Hexadecimal Address DSP1628 |DSP1628 [DSP1629 |DSP1629
Address inro, r1, r2, r3 DSP1611DSP1617/1618 DSP1627 x08 x16 x10 x16
0 0x0000 RAM1 RAM1 RAM1 RAM1 RAM1 RAM1 RAM1
Ox03FF
1024 0x0400 RAM2 RAM2 RAM2 RAM2 RAM2 RAM2 RAM2
OX07FF
2048 0x0800 RAM3 RAM3 RAM3 RAM3 RAM3 RAM3 RAM3
OxOBFF
3072 0x0CO00 RAM4 RAM4 RAM4 RAM4 RAM4 RAM4 RAM4
OXOFFF
4096 0x1000 RAM5 Reserved RAM5 RAM5 RAM5 RAM5 RAM5
Ox13FF
5120 0x1400 RAMG6 RAMG6 RAMG6 RAMG6 RAMG6 RAMG6
Ox17FF
6144 0x1800 RAM7 Reserved| RAM7 RAM7 RAM7 RAM7
Ox1BFF
7168 0x1CO00 RAMS8 RAMS8 RAMS8 RAMS8 RAMS8
Ox1FFF
8192 0x2000 RAM9 Reserved| RAM9 RAM9 RAM9
Ox23FF
9216 0x2400 RAM10 RAM10 | RAM10 | RAM10
Ox27FF
10240 0x2800 RAM11 RAM11 |Reserved| RAM11
Ox2BFF
11264 0x2C00 RAM12 RAM12 RAM12
Ox2FFF
12288 0x3000 Reserved RAM13 RAM13
Ox33FF
13312 0x3400 RAM14 RAM14
Ox37FF
14336 0x3800 RAM15 RAM15
Ox3BFF
15360 0x3C00 RAM16 RAM16
Ox3FFF
16384 0x4000 10 10 10 10 [] [] 10
Ox40FF
16640 0x4100 ERAMLO| ERAMLO |ERAMLO|ERAMLO [ERAMLO [ERAMLO [ERAMLO
OX7FFF
32768 0x8000 ERAMHI ERAMHI ERAMHI | ERAMHI |ERAMHI |ERAMHI | ERAMHI
65535 OxFFFF

Each of the four external segments has a corresponding enable line that is an output from the DSP. In addition, the
lowest address in the 10 segment is individually decoded and provided as an output for selecting external 10
devices. This is the DSEL output (not available in the DSP1627/28/29).

6-12 Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

External Memory Interface

6.2 Programmable Features

Two control registers are encoded by the user to change the operation of the EMI. All 16 bits of the mwait register
and bits 14, 11, 8—6, and 4—O0 of the ioc register apply to the EMI.

Wait-states : For each of the four external memory segments, the number of wait-states from 0 to 15 can be
selected in the mwait register. Table 6-12 shows the encoding. The duration of the external memory cycle is

(1 + w) times the period of the CKO where w is the number of wait-states. If the EXM and INT1 pins are high at
reset, the mwait register is initialized to all zeros (0 wait-states). If the EXM pin is high and INT1 is low at reset, the
mwait register is initialized to all ones (15 wait-states).

Table 6-12. mwait Register

Bit

15—12 11—8 7—A4

3—0

Field

EROM[3:0] ERAMHI[3:0] 10[3:0]

ERAMLOI[3:0]

Enable delays : Any one of the memory segment enables or the DSEL! can be delayed by approximately one-half
a CKO period by programming the ioc register as shown in Table 6-13. The leading edge of the enable can be
delayed to avoid a situation in which two devices can drive the data bus simultaneously.

Table 6-13. ioc Register

Bit 15 14 13 12 11 10 9 8—7 6 5 4 3—0
Field |Rsrvd |[EXTROM|CKO2 |[EBIOH [WEROM |ESIO2 |SIOLBC [CKO[1:0] DSELH [PIOLBC [DDSELO |DENBJ[3:0]
ioc Field Description
EXTROM |If 1 and if bit 11 is 1, pulls AB15 low to download to lower 32K of EROM.
CKO2 CKO configuration—see below
EBIOH If 1, enables high half of BIO, IOBIT[7:4], and disables VEC[3:0] from pins.
WEROM | If 1, allows writing into external program (X) memory.
ESIO2 If 1, enables SI02 and low half of BIO, and disables P10 from pins.
SIOLBC If 1, DO1 and DOZ2 looped back to DI1 and DI2.
CKOJ[1:0] | CKO configuration—see below.
DSELH If 1, DSEL' active high.
PIOLBC* |If 1, PB[7:0] and PODS to PIDS internally looped back.
DDSELO |If1, delay DSELT.
DENB3 If 1, delay EROM.
DENB2 If 1, delay ERAMHI.
DENB1 If 1, delay IO.
DENBO If 1, delay ERAMLO.

T DSEL not available in the DSP1627/28/29.
I Not available in the DSP1627/28/29.

Logic sense of DSEL : Bit 6 in the ioc register selects the logic sense of the DSEL! output. If one, it is active-high;
if zero, it is active-low.

1.DSEL not available in the DSP1627/28/29.

Lucent Technologies Inc.

6-13

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

6.2 Programmable Features (continued)

Selection of CKO: Bits 13, 8, and 7 in the ioc register are CKO2, CKO1, and CKOO. Table 6-14 shows the options
for CKO.

Table 6-14. CKO Options

CKO2 |[CKO1 [CKOO0 CKO Output Description
1X CKI 2X CKI PLL
0 0 0 CKI CKl/2 CKI x M/(2N) Free-running internal chip
clock.
0 0 1 CKI/(1+Wx+WyY) | CKI/2(1+Wx+WYv) | CKI x (M/(2N))/[1+WY] Wait-stated internal clock.
Wx = X wait-states.
Wy =Y wait-states.
0 1 0 1 1 1 Held high.
0 1 1 0 0 0 Held low.
1 0 0 |CKI CKI CKIt Output of CKI buffer*.
1 0 1 X access: X access: X access: Wait-stated internal clock.
CKI/(1+Wx) CKI/2(1+Wx) CKI x (M/(2N))/[1+WXx] Wx = X wait-states.
Y access: Y access: Y access: Wy =Y wait-states.
CKI/(1+WY) CKI/2(1+Wy) CKI x (M/(2N))/[1+Wv]
1 1 0 Undefined Undefined Undefined Reserved
1 1 1 Undefined Undefined Undefined Reserved

T CKO = CKIl even if the PLL is selected as the internal clock source.
I For crystal and small-signal clock options only; otherwise, CKO is held low.

Note: The phase of CKIl is synchronized by the rising edge of RSTB.

6.3 Functional Timing

Figure 6-2 is a typical application of the DSP1611/17/18/27/28/29 connected to an external instruction/coefficient
memory and an external data memory. The two external memories share the address bus and data bus. The
instruction/coefficient memory is a read-only memory for the DSP and is enabled by the EROM enable pin. The
data memory is a read/write memory controlled by the ERAMLO enable and the RWN pin. The flexibility of the
wait-states in the DSP allows a wide range of memory speeds to be used.

6-14

DB[15:0] 16 \
AB[15:0] 16
\ \ ¢ A
EROM » CS » CS
PROGRAM
DSP1611/17/18/27/28/29 — DATA
MEMORY 7? MEMORY
L 7|k 5
e > W
ERAMLO
RWN ‘

Figure 6-2. EMI Example

5-4161

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.3 Functional Timing (continued)
6.3.1 Timing Action with Wait-States

The timing of the EMI can be described by listing the actions that occur at the beginning, middle, and end of each
memory cycle. Each memory cycle is defined by (w + 1) times one CKO period where w is the number of wait-
states from 0 to 15. The following definitions apply throughout:

Low—an electrical level near ground corresponding to logic zero.
High —an electrical level near VDD corresponding to logic one.
Assertion —the changing of a signal to its active value.

Negation —the changing of a signal to its inactive value.

CKO period —the time from negative edge to negative edge of the free-running CKO clock; the duration of one sin-
gle instruction cycle. All EMI events occur on the falling edge of CKO.

Read cycle, write cycle —the time when the external memory enable remains asserted (low). This definition is
from the viewpoint of the external memory interface. From the viewpoint of the sequence of instructions in a pro-
gram, a read and a write cycle definition can be different. For example, all write instructions take two instruction
cycles but the corresponding enable low time is one instruction cycle. Each external memory write cycle is pre-
ceded by a one-instruction dead zone. Reads can be one or two instruction cycles depending on whether one or
two operands are read. The dead zone for a two-cycle read can be before or after the external read cycle depend-
ing on whether the external read is from Y space or X space. An exception to the previous rules is the compound
address instruction in which both a memory read and a memory write are done in a total of two instruction cycles.

For a Read cycle:

Beginning of memory cycle:

m CKO goes low.

m Data bus is 3-stated by the DSP.

m Either one of the external memory enables goes low, or the leading edge can be delayed one-half a CKO period
by programming a bit in the ioc.

m Address bus becomes valid.
» RWN becomes valid (stays high for a read).

End of cycle: occurring at (w + 1) times the CKO period.
m CKO goes low, latching data into the DSP.
m The selected enable goes high, but it can stay low if enabled on the next external memory cycle.

m The address bus changes if another external memory cycle starts next. Otherwise, the last valid external
address is held.

Lucent Technologies Inc. 6-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.3 Functional Timing (continued)
6.3.1 Timing Action with Wait-States (continued)

For a Write cycle:

A one instruction cycle dead zone always precedes the write cycle because all write instructions take a minimum of
two instruction cycles.

Beginning of memory cycle:
m CKO goes low.
m The data bus is 3-stated.

m Either one of the external memory enables goes low, or the leading edge can be delayed one-half a CKO period
by programming a bit in the ioc.

Address bus becomes valid.

= RWN goes low.

Midcycle:
m CKO goes low for an odd number of wait-states, i.e., high for an even number of wait-states.
m The DSP places valid data on the data bus.

End of cycle:

m CKO goes low.

= RWN goes high.

m The selected enable goes high, but can stay low if enabled for the next external memory cycle.

m The address bus changes if another external memory cycle starts next. Otherwise, the last valid external
address is held.

m The data bus is held valid for one more CKO period unless an external read immediately follows in which case
the bus will be 3-stated.

6-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.4 Timing Examples

Table 6-15 lists the different cases shown in the functional timing diagrams. These diagrams are intended to show
function and not timing requirements to nanosecond accuracy. For timing requirements, see the appropriate DSP
data sheet. Cause and effect arrows are shown for the interactions between the DSP and the external memory.
Timing edges not labeled with cause and effect arrows can be assumed to be driven by the DSP and are coincident
with CKO.

Table 6-15. Index of Timing Examples

Figure Condition Shown
6-3 CKO Timing, Free-Running and Wait-Stated
6-4 Write, Read, Read, (w = 0)
6-5 Read, Write, Write, (w = 0)
6-6 Read (w = 0), Write (w = 0) Compound Address
6-7 Read (w = 1), Read (w = 2)
6-8 Write (w = 1)
6-9 Read Followed Immediately by a Read, Delayed Enable
6-10 Write Followed Immediately by a Read, Delayed Enable, and no Write Hold Time

6.4.1 CKO Timing

Figure 6-3 shows two of the six options available for the output clock (CKO). Either option appears on the output
pin depending on the programming of 3 bits in the ioc register (see Section 6.2, Programmable Features). The
free-running CKO is the frequency of CKI divided by two (2x input clock option). It will have a 50% duty cycle within
the accuracy of the rise and fall times. If wait-states occur , the wait-stated CKO period is (w + 1) times the period
of the free-running CKO. Wait-states occur during external memory cycles and when there is a simultaneous
access to X space and Y space in the same bank of RAM. The duty cycle will also be 50%. The CKO continues to
follow the options in Table 6-14 during the sleep state induced by setting the AWAIT bit in the alf register.

Kl N S A N N N

CKO Y s
(FREE-RUNNING)

CKO
(WAIT-STATED) f
l«—— EXTERNAL MEMORY CYCLE

5-4162

Figure 6-3. CKO Timing

Lucent Technologies Inc. 6-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.4 Timing Examples (continued)
6.4.2 Write, Read, Read, W =0

Figure 6-4 illustrates a typical use of the EMI. The sequence shown is a write, read, read of the ERAMHI memory
segment. The wait-state is set to 0. The ERAMHI enable goes low at the beginning of the write cycle and stays
low throughout the read cycles. The address bus (AB) has a valid address placed on it for one period of CKO in
each cycle. Atthe beginning of the write cycle, the data bus (DB) is 3-stated by the DSP. Halfway through the write
cycle, DB is driven with data by the DSP. At the end of the write cycle, the DSP 3-states DB because a read cycle
follows immediately. The external memory responds to the request for a read by placing data on the DB sometime
before the end of the read cycle, and the data is latched into the DSP at the falling edge of CKO. In response to a
new address, the external memory places new data on DB in the next read cycle. Because read instructions can
be carried out in one instruction cycle, these cycles are back-to-back. If the external memory needs a clock edge
from ERAMHI to initiate each cycle, the delay feature is used to delay the leading edge one half of a CKO period.

WRITE CYCLE READ CYCLE READ CYCLE
W=0 W=0 W=0

o VA WA VA

ERAMHI

WRITE READ READ
ADDR VALID ADDR VALID ADDR VALID

DB WRITE READ) READ ’/
DATA DATA DATA

-

Figure 6-4. Write, Read, Read, W =0

AB

5-4163

Sample Instructions for the Above Sequence:

r0++=a0 I Two-cycle write, rO points to ERAMHI */
y=*rl++ [* One-cycle read, rl points to ERAMHI */
X=*rl++ [* One-cycle read, rl points to ERAMHI */

6-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.4 Timing Examples (continued)
6.4.3 Read, Write, Write, W =0

Figure 6-5 illustrates read, write, write with zero wait-states. This example shows that the instructions causing
memory writes are two-cycle instructions (except if compound addressing is used). From the viewpoint of the EMI,
one-cycle dead zones appear before each write cycle. The ERAMHI enable goes low for each cycle and goes high
between cycles. The address bus is valid during each cycle and remains valid until the next cycle starts. The data
bus (DB) is driven by data from the external memory during the read cycle. During the first half of the write cycle,
the DSP 3-states the DB and writes the DB during the second half of the write cycle. Valid data is held on DB for
one more CKO period to ensure hold time for the external memory. RWN is low during the write cycles.

READ CYCLE DEAD WRITE CYCLE ~ DEAD WRITE CYCLE
w=0 ZONE W=0 ZONE W=0

x0 N/ N/ /S /S

ERAMHI

AB READ ADDRESS \ WRITE ADDRESS \ WRITE ADDRESS

B —(X e (__ WRITE DATA WRITE DATA _}——

‘ READ

DATA

RWN

5-4164

Figure 6-5. Read, Write, Write, W =0

Sample Instructions for the Above Sequence:

y=*r0++ [* One-cycle read, rO points to ERAMHI */
r1++=a0 I Two-cycle write, rl points to ERAMHI */
r1++=a0l [Two-cycle write, rl points to ERAMHI */

Lucent Technologies Inc. 6-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.4 Timing Examples (continued)
6.4.4 Read, Write, W = 0, Compound Address

Figure 6-6 illustrates a read followed by a write with zero wait-states. This example is generated by a compound
address instruction. Because only one external memory segment (ERAMLO) is being addressed, the ERAMLO
enable goes low at the beginning of the read cycle and stays low for the write cycle. The address bus (AB)
becomes valid with the read address at the beginning of the read cycle and changes to the write address at the
beginning of the write cycle. At some time in the read cycle, the data bus (DB) is driven by the external memory to
valid data that is latched into the DSP at the end of the read cycle. The data bus is 3-stated by the DSP at the
beginning of the write cycle and the external memory also 3-states. At the midpoint of the write cycle, the DSP
places data on the data bus and holds it for one period of CKO after the end of the write cycle to guarantee hold
time for the external memory unless immediately followed by a read cycle. The RWN signal is low for the duration
of the write cycle.

READ CYCLE WRITE CYCLE
W=0 W=0

S WV A NV N N

ERAMLO

AB &\ READ WRITE ADDRESS

DB > ><><><>< READ 4< WRITE DATA

RWN ;

5-4165

Figure 6-6. Read, Write, W =0

Sample Instruction:

rOpz:y [Compound read/write, rO points to ERAMLO */

6-20 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.4 Timing Examples (continued)
6.45Read W =1, Read W =2

Figure 6-7 illustrates a read cycle of EROM with a wait-state of one followed one cycle later by an ERAMLO read
cycle with a wait-state of two. All timing events are coincident with the falling edge of CKO. At the beginning,
EROM goes low enabling the external instruction/coefficient memory. The address is placed on the address bus by
the DSP, and the external memory can now come out of 3-state and later place data on the data bus. Atthe end of
the first read cycle, EROM goes high and the external memory will respond by 3-stating the data bus. The EROM
address remains valid until the next valid address is required. Sometime later, one CKO period in this example, the
next read cycle starts. ERAMLO goes low selecting the external data memory that responds by starting its cycle.
The ERAMLO address is placed on the address bus by the DSP. Later in the cycle, the external memory writes
valid data to the data bus. The cycle ends three CKO periods (w = 2) later with ERAMLO going high, and the exter-
nal memory responds by 3-stating the data bus.

READ CYCLEW =1 READ CYCLEW =2

S VA WV WA WAV VA W

EROM

ERAMLO \\ \ \

AB] EROM ADDRESS | X

J/ /

0B —— (XXX XXXXX EROM DATA 4‘00<><><><><><><><><><><><><><><><o DATA;—

ERAMLO ADDRESS]

—

RWN- | | | | |

5-4166

Figure 6-7. Read, Read

Sample Instructions:

mwait=0x1002 *EROM W=1, ERAMLO W=2 *
y=al X=*pt++ /*One-cycle read with W=1, pt points to EROM?*/

a0=y /*One-cycle instruction, no action on EMI */

y=*r0++ /*One-cycle read with W=2, r0 points to ERAMLO?*/

Lucent Technologies Inc. 6-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.4 Timing Examples (continued)
6.4.6 Write W = 1

Figure 6-8 illustrates a single write cycle to external data memory with a wait of one. At the beginning of the cycle
(coincident with the falling edge of CKO), ERAMLO goes low enabling the external memory. Then, the address is
placed on the address bus, the data bus is 3-stated by the DSP, and RWN goes low. Halfway through the write
cycle, in this case one CKO period later, the data is placed on the data bus by the DSP. At the end of the write
cycle, ERAMLO goes high allowing the external memory to latch the data. RWN also goes high. The data is left
on the bus for another CKO period to maintain hold time for the external memory.

WRITE CYCLEW =1

CKO I I I I
ERAMLO
AB ERAMLO ADDRESS
DB ERAMLO DATA
RWN

5-4167

Figure 6-8. Write W =1

Sample Instructions:

mwait=0x0001 I* ERAMLO W=1 */
r3++=al I Two-cycle write with W=1, r3 points to ERAMLO */

6-22 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.4 Timing Examples (continued)
6.4.7 Read, Read with Delayed Enable

Figure 6-9 illustrates two back-to-back read cycles and use of delaying the leading edge of one of the enables to
prevent the two external memories from both driving the data bus. The first read cycle is as before with a wait-state
of one, reading the EROM. Two CKO periods after the beginning, the read cycle ends with EROM going high and
the ERAMLO address placed on the address bus. If ERAMLO were to immediately go low selecting the external
data memory and the instruction/coefficient memory had not yet released the bus, a problem could be caused by
both driving the bus. At the least, high currents would result. To avoid this condition, a bit is programmed in the ioc
register to delay the leading edge of ERAMLO by one half a CKO period (see Section 6.2, Programmable
Features). During this period, the instruction/coefficient memory 3-states the data bus; and after ERAMLO goes
low, the data memory can start to drive the data bus. The termination of ERAMLO is not delayed because
ERAMLO goes high at the end of the read cycle.

READ CYCLEW =1 READ CYCLEW =2

o0) 2V
N _

EROM \.
\ '/‘ DELAYED EDGE

ERAMLO \ \
/

AB X] EROM ADDRESS X

A

ERAMLO ADDRESS j

RWN ‘ ‘

5-4168

Figure 6-9. Read, Read, with Delayed Enable

Sample Instructions:

mwait=0x1002 I* EROM W=1, ERAMLO W=2 *
y=al X=*pt++ [* One-cycle read with W=1, pt points to EROM*/
p=x*y y=*r0++ [* Two-cycle read with W=2, r0 points to ERAMLO*/

Lucent Technologies Inc. 6-23

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.4 Timing Examples (continued)
6.4.8 Write, Read, with Delayed Enable

Figure 6-10 illustrates a write followed immediately by a read of the same external memory. This example demon-
strates the use of the delayed enable to prevent bus contention. The leading edge of ERAMLO is delayed one-half
of a CKO period in both cycles to provide 3-state periods for the DSP and the external memory to exchange control
of the data bus. The delay is selected by programming a bit in the ioc register (see Section 6.2, Programmable
Features). Another point of this example is to show that the DSP does not provide extra hold time in the write
cycle. Normally, there is an extra CKO period of hold time after the end of the write cycle; but if the DSP knows that
a read cycle follows immediately, it must 3-state the data bus to allow time for the external memory to start driving
the bus.

WRITE CYCLEW =1 READ CYCLEW =1

CKO TN\ / \

ERAMLO

AB X WRITE ADDRESS X | READ ADDRESS

\
DB K WRITE DATA Y ——X XXX XX READ DATA

RWN

5-4169

Figure 6-10. Write, Read, with Delayed Enable, No Hold Time

Sample Instructions:

mwait=0x0001 I* ERAMLO W=2 */
r0++=a0 I Two-cycle write, rO points to ERAMLO */
y=*rl++ I* One-cycle read, rl points to ERAMLO */

6-24 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.5 Boot-Up from External ROM

After RSTB goes from low to high, the DSP comes out of reset and fetches an instruction from location zero of the
instruction/coefficient space memory map in effect. If the EXM pin is high at the rising edge of RSTB, MAP2 is
selected. If MAP2 is selected, EROM enable goes low because MAP2 has EROM at location zero. If the external
memory device is slow, the mwait register can be initialized with all the external memory segments having 15 wait-
states by setting the INT1 external pin low. As the program executes, it can reset the wait-states to a more appro-
priate value. If both EXM and INT1 are high and RSTB goes high, DSP uses MAP2 with zero wait-states.

When emerging from the reset sequence, the EROM enable goes low to fetch the first instruction at location zero.
The first instruction is actually fetched twice, and only the second value is used. Figure 6-11 shows a flow chart of

the initialization.

RSTB
GOES HIGH

SELECT YES NO SELECT _| INTERNAL
MAP 2 MAP 1 ROM

YES
WAIT-
STATES = 15
FETCH INSTR.
TWICE FROM
EROM, ADDRO
NO WAIT-
STATES = 0

5-4170

Figure 6-11. External ROM Boot-Up

Lucent Technologies Inc. 6-25

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.6 Memory Sequencer

The DSP1611/17/18/27/28/29 pin-multiplexes the external ROM and RAM buses. Because some instructions
simultaneously access external ROM and RAM, a memory sequencer has been provided to eliminate any colli-
sions that might otherwise occur. Upon receiving the instruction, the sequencer will perform the X access first and
then the Y access transparently to the programmer. For example, let two instructions be executed: the first reads a
coefficient from EROM and writes data to ERAM; the second reads a coefficient from EROM and reads data from
ERAM. The sequencer carries out the following steps at the external memory interface: read EROM, write ERAM,
read EROM, and read ERAM. Each step is done in sequential one-instruction cycle steps assuming zero wait-
states are programmed. Note that the number of instruction cycles taken by the two instructions is four. In this
case, the write hold time is zero. If there are programmed wait-states for either the X access external memory seg-
ment or the Y access external memory segment, they must be added to the instruction time. The following formula
can be used to calculate the instruction cycles.

Instruction cycles = number of cycles (normal operation) + Xws + Yws + 1

where: Xws = X programmed wait-states (mwait register)
Yws =Y programmed wait-states (mwait register)

The sample code segment illustrates the problem.

rsect ".erom"
auc=0
a0=0
rO=data /I r0 points to external RAM

loop: *rO++=a0 /I external RAM access
aOh=a0h+1
a0Oh—0xa
if ne goto loop

end: goto end

srsect".eram”
data: 10%int

The instruction at the label "loop" performs an access (write) to external RAM while the instruction itself is fetched
from external ROM.

If the extra cycles associated with the memory sequencer are not tolerated, there are two recommendations:

1. Place all read/write data (or all program and fixed data) in internal DPRAM, or
2. Use cache loops to perform the dual access.

The first simply suggests avoiding a dual access to external memory altogether. The second requires some expla-
nation. If instructions are executed in a cache loop as in the example that follows, the first pass through the loop
loads the cache memory and the instructions are executed as if they were out-of-cache. Every iteration thereafter
executes from within the cache. The first pass through the loop, however, uses the memory sequencer to fetch the
instruction and then performs the ERAM access. Actually, after the instructions are loaded into cache, dual access
disappears and the instruction fetch along with the additional cycles associated with the memory sequencer are
avoided during the second through N iterations.

Note: The reader is reminded that cache loops are noninterruptible.

6-26 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 External Memory Interface

6.6 Memory Sequencer (continued)

.rsect".erom"
auc=0
a0=0
rO=data
do 10 {
*rO++=a0
aOh=a0Oh+1
}
2*nop
end: goto end
.rsect".eram"
data: 10*int

This program writes the values 0 through 9 to ERAM starting at the location called data. The cache memory is
used to perform the dual access only once (*rO++ = a0) minimizing the additional instruction cycles used by the
memory sequencer.

DSP1610/DSP1616 Users

If on the DSP1610 or the DSP1616 an X and Y access to external memory is specified in the same instruction, an
interrupt called EMUXBOTH occurs. During this condition, the X access is performed and the Y access data is
lost. Because, the EMUXBOTH interrupt does not occur on the DSP1611/17/18/27/28/29, the dual external access
cannot be detected in code. A problem can occur if the code that purposely used an EMUXBOTH condition to
cause an EMUXBOTH interrupt is ported from DSP1610/16 to DSP1611/17/18/27/28/29. Also, EMUXBOTH is
missing from the DSP1611/17/18/27/28/29 interrupt vector table at Ox1C.

Lucent Technologies Inc. 6-27

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.7 Downloading Code into External Program Memory

The DSP1611/17/18/27/28/29 has 2 bits in the ioc register that enable writing of EROM. These are ioc bit 11
(WEROM) and ioc bit 14 (EXTROM). Table 6-16 shows the data memory map of the DSP1617 processor.

Note: The data memory map for the DSP1611, DSP1618, DSP1627, DSP1628, and DSP1629 will be similarly
affected. (See Table 6-11 for original Data Memory Maps.)

Under normal conditions if both WEROM and EXTROM are zero and if the address in rO is 16384 to 16639, the 10
strobe is asserted. Similarly, if the address in r0 is 16640 to 32767 or 32768 to 65535, the ERAMLO or ERAMHI
strobes are asserted respectively. Enabling the WEROM bit causes the processor to assert the EROM strobe in
place of the 10, ERAMLO, and ERAMHI strobes for the addresses noted above. If RAM is used in place of ROM/
PROM/EPROM/EEPROM in a user's system, instructions can be written into EROM space by simply setting the
WEROM bit in the ioc. Only locations 16384 to 65535 can be modified in this manner. Locations 0 to 16383 in
EROM space are still inaccessible.

Setting the EXTROM bit in conjunction with the WEROM bit in the ioc causes the processor to force bit 15 of the
address bus to ground. If a user were to set ioc = 0x4800 and rO were to have the address 32768, EROM location
0 will be written.

Table 6-16. Data Memory Map (DSP1617 Only)

Decimal |Addressin WEROM =0 WEROM =1 WEROM =1
Address |rO, r1,r2,r3 EXTROM =0 EXTROM =1 EXTROM =0
0 0x0 DPRAM DPRAM DPRAM

to to
4095 OXOFFF
4096 0x1000 Reserved Reserved Reserved
to to
16383 Ox3FFF
16384 0x4000 10 EROM EROM
to to 0x4000 0x4000
16639 Ox40FF to to
16640 0x4100 ERAMLO OX7FFF OxFFFF
to to
32767 OX7FFF
32768 0x8000 ERAMHI EROM
to to 0x0
65535 OxFFFF to
OX7FFF

CAUTION: The 16K of EROM space is writable by both WEROM alone and the combination of WEROM/
EXTROM (0x4000—O0x7FFF). Care must be taken if these features are used.

Programming Example
The following example assumes the PIO! port of the DSP1617 is used to download code to the processor. The
PIOL is in passive mode and is being driven by a host. Assume the processor is currently executing instructions in

instruction map 4 (see Table 6-2). A minimal PIO! interrupt service routine is required. Assume this is downloaded
into DPRAM by DSP1617 software tools.

1.DSP1617 only.

6-28 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
External Memory Interface

April 1998

6.7 Downloading Code into External Program Memory
/* Use WEROM and EXTROM */

#include "1617.h"
#define ERAMHI 0x8000
.rsect ".ram"
goto start
/* PIDS interrupt vector */
.=0x34
pidsint:
/* Test which byte */
if c1lt goto bytel
byteO:
/* Read in lower byte */
word:
/* Form the word */
a0=a0lal
/* Write out to EROM */
*r0++=a01
/* Reset byte counter */
cl=-1
/* Read the pointer */
al=r0
/* XOR with zero */
al=al’y
/* If zero, goto page 2 */
if eq goto page2
/* If not, return */
ireturn
page2:
/* Read r1 */
al=rl
/* XOR with zero */
al=al’y
/* If zero, code has been downloaded, goto done */
if eq goto done
/*1f not, clear page counter */
r1=0x0
/* Reset memory pointer */
rO=ERAMHI
/* Clear EXTROM bit, leave WEROM intact */
ioc=0x800
/* Return */
ireturn

Lucent Technologies Inc.

(continued)

6-29

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
External Memory Interface April 1998

6.7 Downloading Code into External Program Memory (continued)

done:
/* Clear interrupt control register */
inc=0x0
/* Goto stop */
goto stop
bytel:
/* Read in upper byte */
a0l=pdx0
/* Shift into proper place */
a0=a0<<8
/* Return */
ireturn
start:
/* Toss out the first word */
a0=pdx0
a0=pdx0
/* Clear accumulators & y */
a0=0x0
al=a0
y=a0
/* Set the memory pointer */
rO=ERAMHI
/* Enable PIDS interrupt */
inc=0x8
/* Set WEROM and EXTROM */
ioc=0x4800
/* Set the page counter */
r1=0x1
/* Set the byte counter */
cl=-1
/* Wait for 64 Kwords to be downloaded into EROM space */
wait:
nop
goto wait
/* Stop if done */
stop:
goto stop

The counter cl is used as a byte marker because only the DSP1617 has an 8-bit PIO. The rl register is used as a
marker to test whether 32K of code has been downloaded. The lower 32K of code is considered page 1, and the
upper 32K is considered page 2.

The speed of this code could increase considerably. The pointer register is checked after each word of program is
downloaded. This check is a waste of computation if large blocks of code are being downloaded. An easy method
of speeding it up is to use the cO counter and perform the check every 128 words. Alternative methods can be
used.

6-30 Lucent Technologies Inc.

Chapter 7

Serial I/10

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CHAPTER 7. SERIAL I/O

CONTENTS

A S 1= 1T L 1 R OO TP PP TUPPPTPI 7-1
% T S @ @] o 1= -1 1 o] o PP UPPR 7-2
7.1.1 ACHVE CIOCK GENEIALOTeiiiiiiiiiiiitieie ittt ettt ettt ettt e et e e e e e e eee s 7-2

% T 1 o1 o1 0 A= Tod 1 T o IR PP PPRR 7-4

% TG B © 111 01 ST =T o 1 (o o PR PPPRR 7-6

7.2 USEr-CONrOlle0 FEAUIES.......eiiiiitiie ettt b e e st ea bt e e abb e e s e e s anbeeeenans 7-9
7.2 1 THE SIOC REQISTEN .oiiiiiiiiiiiee e i ittt e e a e e s st e e e e e s st e e e e e s s abbe e e e e s s nnbbeeeeeeeennnneees 7-9

A A W o To] o] o F- Lol Q0] o1 (o] PP PP 7-11

7.2.3 POWET MANAQEMENT ..ottt e e e e e eeeee e 7-11

7.3 Serial I/O Pin DESCIIPLONScciiiiiiiiiiie e e ettt e e sttt e e e e s e e e e e e s bb b eeeeeasssbbeeeeeaansbsee sesnnnnbneeeas 7-12
A Oe o [T ol [] (=T o - Lo = SO OO PUPROPPP 7-13
7.5 Serial I/O Programming EXAmMPIEcoiiiiiiiiiiiieei ittt e e e e e e a e e e e 7-14
7.5.1 Program SEOIMENT ...ccoeiiiiiiiii e 7-14

7.6 MultiprocesSSOr MOUE DESCHPLIONvviieeeiiiiiiiiiiettee e e s ettt ee e e e e e sbb e e e e e s s s abbbeeeeesassebbreeeeeeeessbaeees 7-15
7.6.1 MUIIProCeSSOr MOUE OVEIVIEWeeiiieiiiiiiiiiiiiieeeeeesiiititeeeeaeessasstabseeeesesaabbeeeeseesssannsesseees 7-15

7.6.2 Detailed Multiprocessor Mode DEeSCHPLIONcccvvviiiiiiieeeiiiiiiiiet e e e 7-17

7.6.3 Suggested Multiprocessor CONfIQUIAtIoNcccuuvviiiiieeiiiiiiiiiee e 7-24

7.6.4 Multiprocessor Mode INItANIZAtIONvuvviiiieeeiiiii e 7-25

T.7 SEAl INTEITACE 2.t ettt eab e et e e e n e e e 7-26
T.T7. 1 SIOZ FRAIUIMNES ...oiiiiiiitiiiit ettt ettt e e et e e e e ettt e e e e et ee e s s abb et e e s e e eeeeenas 7-26

7.7.2 Programmable FEAIUIEScciuuiiiiiiiieiiiiiiiee ettt e e e s s st e e e e s s snbbraee e e e e s s nnnes 7-27

7.7.3 INStructions USING the SIO2ueiiiiiiiiiiiiiiie et e s a e e s e s nnsreneee s 7-27

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

7 Serial 110

The two serial 1/0 ports (SIO1 and S102) on the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and
DSP1629 devices provide serial interfaces to multiple codecs and signal processors with little, if any, external
hardware. The high-speed, double-buffered ports support back-to-back transmissions with data rates up to

25 Mbits/s for a 20 ns DSP if not in multiprocessor mode (check current data sheets for exact timing information).
Each SIO has separate control and data registers. The output buffer empty (OBE) and input buffer full (IBF) flags
facilitate the reading, writing, or both of each serial I/O port by program- or interrupt-driven 1/0. There are four
selectable active clock speeds. A bit-reversal mode provides compatibility with either most significant bit (MSB)
first or least significant bit (LSB) first serial I/0 formats. Up to eight DSPs can be connected in a multiprocessor
configuration without any other external devices. The serial I/O control (sioc) register and time-division multiplexed
slot (tdms)) register allow various modes of operation to be selected. The serial data is read and written through
the sdx registers. The serial receive/transmit address (srta) and serial input address or protocol (saddx) registers
facilitate addressing other DSP devices in multiprocessor mode.

The second SIO unit (S102) is functionally identical to SIO1. The SIO2 pins are multiplexed with the P1O pins for
the DSP1617 and with the PHIF pins for the DSP1611/18/27/28/29.

Figure 7-1 shows a simplified block-level representation of the serial I/O data path. The double-buffered inputs
(ISR and sdx[IN]) and outputs (sdx [OUT] and OSR) connect to the internal data bus. Serial I/O uses a register-
based implementation. The input and output buffer registers (sdx[IN] and sdx [OUT], respectively) are used in the
user program to input and output the data through the port. Both registers are referenced in the instruction set by
the name sdx. Unlike other registers in the DSP device, writing and reading of sdx are performed on two distinct
registers. The ICK, OCK, ILD, and OLD interfaces are represented by the clock generator block. The signals con-
nected to this block are bidirectional and can be programmed via the sioc register. The IFSR block provides a flag
signal for the input buffer full signal (IBF). The multiprocessor I/O is not represented in Figure 7-1 but is described
in Section 7.6, Multiprocessor Mode Description. The signals shown on the lower portion of Figure 7-1 are
described in Section 7.3, Serial I/O Pin Descriptions.

INPUT OUTPUT
BUFFER BUFFER -
sdx[IN] sdx[OUT]

INPUT FLAG INPUT DATA OUTPUT DATA OUTPUT FLAG
SHIFT REGISTER SHIFT REGISTER SHIFT REGISTER SHIFT REGISTER
(IFSR) (ISR) (OSR) (OFSR)
A L A
I CLOCK GENERATOR \
\ i i \J \ \
IBF ILD DI ICK ocK DO OBE OLD

5-4171

Figure 7-1. Serial 1/0O Internal Data Path

Lucent Technologies Inc. 7-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.1 S10 Operation

The DSP1611/17/18/27/28/29 devices contain two functionally identical SIO units. Throughout this chapter, the
SIO pin names are referenced without the 1 or 2 designation to indicate that the description applies to either. For
example, ICK refers to either ICK1 or ICK2. The following subsections describe the operation of the SIO active
clock generator and the SIO input and output ports.

7.1.1 Active Clock Generator

Active refers to generation by the DSP; passive refers to generation by external devices. The active clock signals
for the SIO section are derived from CKO (free running non-wait-stated clock) with a maximum bit rate of CKO/2. A
simplified representation of the SI1O active clock and load generator is shown in Figure 7-2. In the figure, the open
switches represent the user-programmable features. An open switch corresponds to the associated bit in the sioc
or tdms register having a value of zero.

Five signals can be individually programmed to be either inputs or outputs (passive or active): ICK, OCK, ILD, OLD,
and SYNC. ICK and OCK are the input and output port bit clocks. ILD and OLD are the input and output port word
strobes (word framing signals). SYNC is a framing signal used in multiprocessor mode (described in Section 7.6,
Multiprocessor Mode Description) or in other applications. If using active clocks, the speed of the bit clocks can be
selected from one of four speeds: CKO (free running) is divided by 2, 6, 8, or 10. This selection determines the
speed of both ICK and OCK. The speed of ILD and OLD can be selected as either the ICK or OCK signals divided
by 16. An active SYNC signal is generated from this same source (ICK or OCK =+ 16) and is further divided by 8 or
16. The resulting SYNC signal is either the signal ICK or OCK divided by 128 or 256. The SYNC signal can be
configured to generate an 8 kHz sampling signal for codec applications.

DIV. BY
2,6,8,10
sioc(7, 8)

v
sioc(3) \ sioc(2)
: £

CKOf

»
»
L 2)

sioc(5) I Y l\sioc(4)
DIV.

< OUTPUT BY 8, 16 <o INPUT

SECTION tdms(9) SECTION

A A A

tdms(0)

A

OCK OLD SYNC ILD ICK
5-4172

T CKO is a free-running non-wait-stated clock.

Figure 7-2. SIO Clocks

7-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O
7.1 SIO Operation (continued)

7.1.1 Active Clock Generator (continued)

Figure 7-3 shows the timing relationships for the various clocks in active mode on a 2X clock option device. The
diagram shows ICK and OCK and assumes that the CKO/2 mode has been selected. All active mode transitions

occur on the rising edge of CKO, and all active mode outputs are square waves (50% duty cycle). SYNC transi-
tions always occur on the falling edge of active mode ILD/OLD transitions.

ICK/OCK -— — - -— — -

ILD/OLD
%7 8 ICK/OCK CYCLES 8 ICK/OCK CYCLES 4’{

ICK/OCK shown with CKO/2 mode selected.

ICK/OCK - _
ILD/OLD ST - T
SYNC |
128/256
N ICK/OCK CYCLES

T For the DSP1627/28/29, this is the internal processor clock not CKI.

i

5-4173

Figure 7-3. SIO Active Mode Clock Timing

Lucent Technologies Inc. 7-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.1 SIO Operation (continued)

7.1.2 Input Section

Figure 7-4 shows the timing relationships for the SIO input port signals in passive mode (passive mode is defined
here as ILD being supplied by an external device). A typically free-running bit clock (ICK) synchronizes all events
occurring within the input section of the SIO. A high-to-low transition of the input load (ILD) signal followed by the
next rising edge of ICK initiates the start of an input transaction. The first serial data bit is read from DI on the next
rising edge of ICK. Eight bits or 16 bits later (depending on the word size selected by the sioc ILEN field) if the
input shift register (isr) fills, this data is transferred to the input buffer register (sdx [IN]). At this time, the input buffer
full (IBF) flag and signal are also asserted indicating that the buffer is full. If enabled, the IBF interrupt will become
pending. The DSP device can read the data at this time. The read command is of the type a0 = sdx, al = sdx,
or Y =sdx (see Section 4.5.3, Data Move Instructions). The IBF flag and signal are negated when the input buffer
is read synchronized with a rising edge of CKO. Another serial input can begin before the input buffer read takes
place because the port is double-buffered. If the new transfer is completed before the previous input is read, the
new data is transferred to the other input buffer overwriting the old data. Figure 7-4 also shows how back-to-back
reads are pipelined.

ILD
ICK
LATCH ‘ ‘ ‘ ‘ ‘
o ——DO0000CO0OC000COCO00CO0C
BOB1B2B3------------------------"- BI5BOBL ---------------
|
IBF |

T
CKO

5-4174

Figure 7-4. SIO Passive Mode Input Timing, 16-bit Words

7-4 Lucent Technologies Inc.

Information Manual
April 1998

7.1 SIO Operation (continued)

7.1.2 Input Section (continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Serial I/0

Figure 7-5 shows the same timing relationships in active mode (active mode is defined here as ILD being supplied
by the DSP). The primary difference is that ICK now drives ILD and ILD is known to be a square wave. The first
serial data bit will be read from DI exactly two ICK cycles after the falling edge of ILD.

The IBF flag can be used as an interrupting condition by setting the IBF interrupt enable bit in the inc register (bit 0)
for vectored interrupts. These bits are cleared when sdx is read. IBF is cleared on reset.

For the DSP1617 only, the status of IBF can be read from either bit 4 or bit 15 of the pioc ! register or from bit 0 of
the ins register (IBF interrupt status bit). The IBF bit is duplicated in bit 15 (the sign bit) of the pioc ! so that it can
be tested without masking:

/*
loop:

DSP1617 only *

a0=pioc [* Put the value of pioc into accum. a0*/
a0=a0 [* Do ALU operation to set flags */
if pl goto loop I* Loop until sign bit is negative (=1)*/

- | | -

arer ||| 1

DI
BOBLB2B3----c-ooomommmm oo BI5BO Bl --------------

IBF
|

CKO

Figure 7-5. SIO Active Mode Input Timing, 16-bit Words

1.DSP1617 only.

Lucent Technologies Inc.

5-4175

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.1 SIO Operation (continued)
7.1.3 Output Section

If the DSP device is reset (powerup or RSTB), the output buffer empty (OBE) status flag and signal are set indicat-
ing the buffer is empty. If data is written to the output buffer by an instruction of the form sdx = a0, sdx = al,

sdx =Y, or sdx = VALUE , OBE is cleared and the serial output section is ready for a serial transmission. The sta-
tus of the OBE flag can be read from either bit 3 of the pioc ! register or bit 1 of the ins register (OBE interrupt sta-
tus bit). The OBE flag can be used as an interrupting condition by setting the OBE interrupt enable bit in either the
inc register (bit 1) or the pioc ! register (bit 8) for vectored interrupts.

Figure 7-6 shows the timing relationships for the SIO output port signals in passive mode (passive mode is defined
here as OLD being supplied by an external device). A typically free-running clock (OCK) synchronizes all events
taking place within the output section. A high-to-low transition of the output load (OLD) signal followed by the next
rising edge of OCK initiates the start of an output transaction. This procedure causes the contents of the output
buffer register (sdx [out]) to be transferred to the output shift (OSR) register, the OBE flag and signal to be set (indi-
cating the need for more data), and the first serial data bit to be placed on the data output (DO) pin. One option
available on the DSP1627/28/29 is to have the data placed on the DO pin on the falling edge of OCK rather than
the rising edge. This is accomplished by setting bit 10 (DODLY) of the sioc (sioc2) register.

Each data bit is then output on successive rising edges of OCK. Eight or 16 bits later (depending on the word size
selected by the sioc OLEN field) when the serial output has been completed, an internal signal indicates that the
last bit of the serial transmission has been sent. If the output buffer has been reloaded, another transfer begins
immediately; otherwise, zeros are sent on the serial output until the buffer is reloaded prior to a high-to-low transi-
tion of OLD to begin another transmission. Double-buffering allows the output buffer to be reloaded while data is
being shifted out of the output shift register.

The OBE flag and signal are negated if the output buffer is reloaded via a write to the sdx register synchronized
with a falling edge of CKO.

OLD _/

OCK
ro —({CO XXX KOO
BO(B1|B2 B3 - --------“--“----"----------~- B15/BOBL - - - --------- -
o0 — (@O0 COCOOCO000—
ADO [~ |- AD7 ASO -------------- AS7|ADO -~ -------- -~ AD7

ose |] ‘
o —

sdx = a0 sdx = a0 ‘

CKO

5-4176

Figure 7-6. SIO Passive Mode Output Timing, 16-bit Words

1.DSP1617 only.

7-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.1 SIO Operation (continued)
7.1.3 Output Section (continued)

A serial address (SADD) transmits simultaneously with DO. The low-order 8 bits of this address are the transmit
address field of the srta register (bits 7—0) (see Table 7-6). The high-order 8 bits of this address are obtained from
the low byte of the saddx register (bits 7—0). The SADD output is primarily intended for use in multiprocessor
mode and Section 7.6, Multiprocessor Mode Description should be consulted for its use in this application. The
SADD output can also be used as a second serial output only port if not in multiprocessor mode because the
SADD signal remains valid. (Do not confuse this with SIO2; SADD is a different port from the SIOs.)

If SADD is to be used as a second data port, the LD bit of the sioc register (bit 9) must be set high to synchronize
SADD with DO and the MODE bit of the tdms register (bit 8) must be set low to turn off multiprocessor mode.
Under these conditions, arbitrary values can safely be written to the srta register (low byte) and saddx register (low
byte) for 16-bit output transmissions. The high bytes of srta and saddx will be ignored in this application.

Note: The SADD output is active-low (inverted data). SADD must be pulled high through a resistor for multiproces-
sor applications.

The DOEN signal asynchronously enables the DO and SADD 3-state output buffers if active. Its operation is inde-
pendent of any other SIO signals.

Figure 7-7 shows the timing relationships for the SIO output port signals in active mode (active mode is defined
here as OLD being supplied by the DSP). The primary difference from passive mode is that OCK now drives OLD
and OLD is known to be a square wave.

oLD | |
oRIvE | 3-STATE
po. —{{{C KO XXX OO
BO| B1
00 00
ADO

OSE —|
OBE
DOEN —l ,7

5-4177

Figure 7-7. SIO Active Mode Output Timing, 16-bit Words

Lucent Technologies Inc. 7-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.1 SIO Operation (continued)
7.1.3 Output Section (continued)

Figure 7-8 shows an example of passive mode output with 8-bit word size selected via the sioc OLEN field (bit 1).
The overall pipelining between successive words is the same as for 16-bit mode. Because the active mode ILD
and OLD generators can only be set to ICK or OCK + 16, active mode input and output in an 8-bit mode will proba-
bly not be used.

o L

OCK
3-STATE
oo OOO0000000-
BO Bl{----=-===--~--- B7|- - - - -
OOO0000000—
AD7|ADO - {- -~~~ AD7|-----
OSE

DOEN —| ,—

5-4178

Figure 7-8. SIO Passive Mode Output Timing, 8-bit Words

7-8 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.2 User-Controlled Features

Programmable modes are controlled by the serial I/O control (sioc) register, the ioc register, and the powerc
register. The tdms and saddx registers are used to control the operation of the multiprocessor mode and are
described in Section 7.6, Multiprocessor Mode Description. Flexibility in programming the functions of the serial
I/0 port allows the port to interface with a variety of devices with little or no glue logic. The SIOs can be powered
down from the powerc register.

7.2.1 The sioc Register

Tables 7-1 through 7-3 show and define the control bits of the sioc register. During device reset, the sioc register
bits are cleared.

Table 7-1. Serial I/O Control (sioc) Register (DSP1611, DSP1617, and DSP1618 Only)

Bit 9 8—7 6 5 4 3 2 1 0

Field LD CLK MSB OLD ILD OCK ICK OLEN ILEN

Table 7-2. Serial I/O Control (sioc) Register (DSP1627/28/29 Only)

Bit 10 9 8—7 6 5 4 3 2 1 0

Field |DODLY LD CLK MSB OLD ILD OCK ICK OLEN ILEN

Table 7-3. sioc Register Field Definitions

DODLY 0 DO changes on the rising edge of OCK.
1 DO changes on the falling edge of OCK. The delay in driving DO increases the hold time on
DO by half a cycle of OCK.
LD 0 In active mode, ILD1 and/or OLD1 = ICK1 + 16, active SYNC1 = ICK1 + [128/256]1.
1 In active mode, ILD1 and/or OLD1 = OCK1 + 16, active SYNC1 = OCK1 + [128/256]".
CLK# 00 Active clock = CKO =+ 2.
01 Active clock = CKO + 6.
10 Active clock = CKO + 8.
11 Active clock = CKO + 10.
MSB 0 LSB first.
1 MSB first.
OLD 0 OLDL1 is an input (passive mode).
1 OLDL1 is an output (active mode).
ILD 0 ILD1 is an input (passive mode).
1 ILD1 is an output (active mode).
OCK 0 OCK1 is an input (passive mode).
1 OCK1 is an output (active mode).
ICK 0 ICK1 is an input (passive mode).
1 ICK1 is an output (active mode).
OLEN 0 16-bit output.
1 8-bit output.
ILEN 0 16-bit input.
1 8-bit input.

T See tdms register, SYNC field in Table 7-5.
F CKO is fiNTERNAL cLOCK.

Lucent Technologies Inc. 7-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.2 User-Controlled Features (continued)
7.2.1 The sioc Register (continued)

The following section describes the sioc bit fields in detail.

DODLY (DSP1627/28/29 only) —The DODLY field (sioc bit 10) allows the data to be placed on the DO pin on the
falling edge of OCK rather than the rising edge. This reduces the time available for DO to drive an external input
but increases the hold time on DO by half an OCK cycle.

LD—The LD field (sioc bit 9) allows the active, internally generated ILD and OLD signals to be derived from either
ICK (LD =0) or OCK (LD = 1). Active ILD and OLD are always derived from the same source.

CLK—The CLK field (sioc bits 8, 7) allows one of four active I/O speeds to be selected: CKO/2, CKO/6, CKO/8,
and CKO/10. Refer to Table 7-1 for the CLK field encoding.

MSB—The MSB field (sioc bit 6) determines the bit order of the serial transmissions on DI and DO: most signifi-
cant bit (MSB) first (MSB = 1) or least significant bit (LSB) first (MSB = 0). This mode switch allows compatibility
with devices that perform either MSB first or LSB first serial transfers. This mode is also useful if performing p-law
or A-law conversions. A minimal amount of software is required to perform these conversions. Because this field
allows the bit order to be switched when an sdx read or write occurs, the MSB field can be switched immediately
before, after, or both before and after an sdx read or write. If this technique is used in other than an interrupt ser-
vice routine, care should be taken to ensure that the proper mode is in effect in the event of an interrupt.

OLD—The OLD field (sioc bit 5) allows OLD to be either an input (OLD = 0, passive mode) or an output (OLD =1,
active mode).

ILD—The ILD field (sioc bit 4) allows ILD to be either an input (ILD = 0, passive mode) or an output (ILD = 1, active
mode).

OCK—The OCK field (sioc bit 3) allows OCK to be either an input (OCK = 0, passive mode) or an output
(OCK =1, active mode).

ICK—The ICK field (sioc bit 2) allows ICK to be either an input (ICK = 0, passive mode) or an output (ICK =1,
active mode).

OLEN—The OLEN field (sioc bit 1) controls the length of the serial output: either 16-bit (OLEN = 0) or 8-bit
(OLEN =1). If the data is sent in the 8-bit mode with the LSB first (MSB = 0), the eight data bits should be placed
in the least significant half of sdx[out]; i.e., 0XO0DD (D = data). If the data is sent in the 8-bit mode with the MSB
first (MSB = 1), the eight data bits should be placed in the most significant half of sdx [out]; i.e., 0OxDDOO

(D = data).

ILEN—The ILEN field (sioc bit 0) controls the length of the serial input: either 16-bit (ILEN = 0) or 8-bit

(ILEN = 1). If the data is sent in the 8-bit mode with the LSB first (MSB = 0), the eight data bits are placed in the
most significant half of sdx[in]; i.e., 0xDDOO (D = data). If the data is sent in the 8-bit mode with the MSB first
(MSB = 1), the eight data bits are placed in the least significant half of sdx[in]; i.e., 0x0O0DD (D = data).

7-10 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.2 User-Controlled Features (continued)
7.2.2 Loopback Control

For testing purposes, the DO output can be looped back to the DI input by encoding the ioc register. Bit 9 of ioc is
the SIOLBC field. If set, the loopback is in effect. To exercise the loopback, the SI1O clocks (ICK and OCK) should
be in the active mode, 16-bit length, or the user should drive ICK and OCK with a clock as in passive mode. Simi-
larly, ILD and OLD can be in active mode or can be tied together and driven from an external frame clock in passive
mode. A typical test program sequence would be to initialize the control registers, write a word to sdx (the output
buffer), poll to see when the output buffer empties, poll to see if the input buffer is full, and read from sdx. The
input buffer full flag or the output buffer empty flag can also be used to check for the data transfer.

Note: sdx has separate input and output buffers.

During loopback in active mode, the output pins for DO, ICK, OCK, OLD, ILD, SYNC, SADD, and DOEN are
3-stated.

7.2.3 Power Management

Bit 7 of the powerc register (SIO1DIS) is a powerdown signal to the SIO1 I/O unit. It disables the clock input to the
unit eliminating any sleep power associated with the SIO1. Because the gating of the clocks can result in incom-
plete transactions, it is recommended that this option be used in applications where the SIO1 is not used or if reset
can be used to re-enable the SIO1 unit. Otherwise, the first transaction after re-enabling the unit might be
corrupted. Bit 6 of the powerc register (SIO2DIS) will power down the SIO2 unit.

Lucent Technologies Inc. 7-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual

Serial 1/10

April 1998

7.3 Serial I/0 Pin Descriptions

The physical serial I/0 port consists of 12 signals: four are used for serial input, five are used for serial output, and
three are used in multiprocessor applications, TDM applications, or both. Table 7-4 lists each signal with its type
and description.

Table 7-4. DSP1611/17/18/27/28/29 Serial I/O Pins

Symbol

Type

Name/Description

DI

Data Input. Serial data latched on the rising edge of ICK, either LSB or MSB first corre-
sponding to the sioc register MSB field.

ICK

llol}

Input Clock. Clock for serial input data. Corresponding to the sioc register ICK field in
active mode, ICK is an output; otherwise in passive mode, ICK is an input.

ILD

llol}

Input Load. Falling edge of ILD indicates the beginning of a serial input word. Correspond-
ing to the sioc register ICK field in active mode, ILD is an output; otherwise in passive mode,
ILD is an input.

IBF

ot

Input Buffer Full. IBF is asserted if the input buffer is filled and negated by a read of the
buffer. IBF is also negated by asserting RSTB.

DO

ot

Data Output. Serial data output from the output shift register (osr), either LSB or MSB first,
corresponding to the sioc register MSB field. DO changes on the rising edges of OCK for
the DSP1611/17/18. For the DSP1627/28/29, DO changes on the rising or falling edge of
OCK corresponding to the DODLY bit in the sioc register. DO is 3-stated if DOEN is high.

DOEN

llol}

Data Output Enable (Active-Low) . An input if not in the multiprocessor mode. DO and
SADD are enabled only if DOEN is low. In the multiprocessor mode (tdms register MODE
field set), DOEN indicates a valid time slot for a serial output and is bidirectional.

OCK

llol}

Output Clock . Clock for serial output data. Corresponding to the sioc register OCK field in
active mode, OCK is an output; otherwise in passive mode, OCK is an input.

OLD

I/ot

Output Load. Clock for loading the output shift register (osr) from the output buffer

(sdx [out]). A falling edge of OLD indicates the beginning of a serial output word. Corre-
sponding to the sioc register OLD field in active mode, OLD is an output; otherwise in pas-
sive, OLD is an input.

OBE

of

Output Buffer Empty . OBE is asserted if the output buffer is emptied (moved to the output
shift register for transmission). It is cleared with a write to the buffer (sdx). OBE is also set
by asserting RSTB.

SADD

llol}

Serial Address (Active-Low) . A 16-bit serial bit stream typically used for addressing during
multiprocessor communication between multiple DSP devices. In multiprocessor mode,
SADD is an output if the tdms time slot dictates a serial transmission; otherwise, it is an
input. Both the source and destination DSP are identified in the transmission. SADD is
always an output when not in multiprocessor mode and can be used as a second 16-bit serial
output. SADD is 3-stated if DOEN is high and must be tied high through a resistor when
used in multiprocessor applications.

SYNC

llol}

Multiprocessor Synchronization . Typically used in the multiprocessor mode. A falling
edge of SYNC indicates the first word of a TDM 1/O stream and causes the synchronization
of the active ILD and OLD generators. SYNC is an output if the tdms register SYNC field is
set; otherwise, it is an input. SYNC must be tied low if it is not used as an output. If used as
an output, SYNC = ILD/OLD =+ 8 or 16 corresponding to the setting of the SYNCSP field of
the tdms register. This procedure can be used to generate a slow clock for SIO operation.

T 3-stated.

7-12

Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Serial I/0

7.4 Codec Interface

Figure 7-9 is the schematic showing the connections required to interface the DSP1611/17/18/27/28/29 device to
an Lucent Technologies CSP1027 linear codec. Figure 7-10 shows the connections necessary to interface the
DSP device to an Lucent Technologies T7525 high-precision codec. In the first example, OCK of the DSP is active
and ICK, ILD, and OLD are passive. The codec is in the nonmultiprocessor mode, although it can be used in the
multiprocessor mode. In the second example, both input and output are passive.

IOCK = OCK
> ICK
> OLD

SYNC > ILD
CSP1027 DI Do
LINEAR DSP1611/17/18/27/28/29
CODEC DO > DI
SADD [= SADD
SMODE2 [«— Vss
SMODE1 [¢—— Vss Vss »| DOEN
SMODEO [«——V/pp

5-4179

Figure 7-9. DSP1611/17/18/27/28/29 to Lucent Technologies CSP1027 Codec Interface

2.048 MHz

'

XFS » ICK

TES | PR | »| ILD
RFS ‘J OoLD

OCK

Y

MCLK |

Y

T7525
PRECISION
CODEC RPCM DO DSP1611/17/18/27/28/29
TPCM > DI

ATFS — VpD Vss ——» DOEN

5-4180

Figure 7-10. DSP1611/17/18/27/28/29 to Lucent Technologies T7525 Codec Interface

Lucent Technologies Inc. 7-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Serial 1/10

7.5 Serial I/O Programming Example

Information Manual

April 1998

The program segment shown in this section demonstrates the use of the serial I/O port's interrupt facility. The

advantage of using the interrupt on input buffer full (IBF) is that the input data is read in immediately making careful
placement of the sdx read commands within the program unnecessary. This program allows 128 inputs to be read
into a buffer while another buffer already loaded with data is used by the program. When the first buffer fills, the two
buffers are switched and the process repeats.

7.5.1 Program Segment

Programming Examples

/*

intrpt

start:

mainprg:

loop:

7-14

Ping pong I/O routine for DSP1617

interrupt on IBF
passive 1/0

initialize flag

temp storage
interrupt pointer
program I/O pointer

address of last sample in
128-point buffer

must take less time than 1/O!
read in data from buffer
rO is address of input ptr.

check for 128 samples in buffer
loop if not full

get alternate buf flag

[* set DAU flags

goto start
.=0x2¢c
*rO++=sdx
ireturn
auc=0x0
pioc=0x200 [*
sioc=0x0 [*
y=0x0
r1=0xfe
rl=y I
r2=0xfd I*
rO=0xff [*
r1=0xff [*
y=0x17f [*
r2=y I
goto loop
* Main program here; prog.
a0=*rl++ I*
a0=r0 I*
y=*r2
a0-y I*
if ne goto loop /*
r1=0xfe
a0=*r1l [*
a0=a0
if eq goto buf [*
y=0x00
rl=y I
rO=0xff [*
r1=0x17f [*
y=0x17f
r2zy I

goto mainprg

alternate between buffers
set flag for bufl
interrupt pointer to bufl

program I/O pointer to buf2

address of last sample in bufl

*/

*

*
*/
*/
*

*/

*/
*/
*/
*/
*/
*/
*/
*
*/
*/
*/
*/
*/
*/

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.5 Serial 1/0O Programming Example (continued)

7.5.1 Program Segment (continued)

buf: y=0x01
ri=y I set flag for buf2 */
rO=0x17f * interrupt pointer to buf2 */
r1=0xff [* program I/O pointer to bufl ~ */
y=0x1ff * address of last sample in buf2*/
*r2=y

goto mainprg

7.6 Multiprocessor Mode Description
7.6.1 Multiprocessor Mode Overview

The SIO multiprocessor mode allows up to eight DSP1611/17/18/27/28/29 devices (or DSP16A or DSP16XX
devices that include multiprocessor capability) to be connected together to provide data transmission between any
of the individual DSPs in the system. The SIO ports (SIO1 and SIO2) can be individually configured for multipro-
cessor mode. Figure 7-11 shows how the DSPs are connected together over a four-wire bus. All of the DSPs have
access to the common data bus and the common address bus. The data rate while in multiprocessor mode is
lower than the maximum nonmultiprocessor rate (refer to SIO multiprocessor timing information in data sheet). For
successful multiprocessor communication with this bus configuration, the following requirements must be met:

m Only one DSP can drive the data and address buses at one time. This is satisfied by programming each DSP to
be assigned its own time slot (or time slots) for its turn to transmit. There are eight serial time slots with 16 bits of
serial data in each time slot.

DSP 0 DSP 1 . . . DSP 7
DATA CK ADD SYN| |DATA CK ADD SYN DATA CK ADD SYN
A A A A A A
\ \ \ y \ y Y \ Yy v
° «
@
@«
«

5-4181

Figure 7-11. Multiprocessor Connections

Lucent Technologies Inc. 7-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.6 Multiprocessor Mode Description (continued)
7.6.1 Multiprocessor Mode Overview (continued)

m The receiving DSP(s) need to know which data is intended for them. This information is contained in a serial
address sent on the ADD line in each time slot. This is called the transmit address because it is stored in the
transmitting DSP's srta register. The same number will be stored in the receiving DSP's srta register and called
the receive address . The address is generally called the destination address. This 8-bit address is transmitted
serially on ADD at the same time as the first 8 bits of the data. Figure 7-12 illustrates this concept.

TRANSMITTING DSP RECEIVING DSP
SRTA REG. SRTA REG
RECEIVE ADDR. | TRANS. ADDR. ‘ | RECEIVE ADDR. | TRANS. ADDR. ‘
\. 0010000 / 0010000
DATA ADD
YES
COMPARE ? | —»| READ DATA ‘
A A
ADD DATA

5-4182

Figure 7-12. Destination Address Communication

m The receiving DSP might need to know which DSP the data came from and possibly other information about the
data. This is contained in the second 8 bits of each time slot on the ADD bus. This information is called the pro-
tocol channel and is stored in the saddx register. The transmitting DSP can send its unique source address and
possibly other information describing the data. Figure 7-13 shows this case.

TRANSMITTING DSP RECEIVING DSP
saddx saddx
PROTOCOL
15 8 |7 INFO. o 15 8|7 0
ADD ADD 4

5-4183

Figure 7-13. Protocol Channel Communication

7-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description

Three registers associated with multiprocessor mode are the time-division multiplexed slot (tdms)) register (see
Table 7-5), the serial receive and transmit address (srta) register (see Table 7-6), and the serial input address
(saddx) register. Multiprocessor mode requires no external logic and uses a TDM interface with eight time slots
per frame. A serial address on the SADD line is sent simultaneously with data on DO from any one device in a pre-
determined time slot, and the data is received only by other device(s) having the address specified. Each device
has both a user-programmable receive address and transmit address associated with it.

In multiprocessor mode, the following pins are connected together to form a four-wire bus as shown in Figure 7-14.
The DI and DO pins form a single-wire data bus referred to as DATA. ICK and OCK form a clock line referred to as
CK. SADD forms a single-wire address bus referred to as ADD. And, SYNC provides a synchronization line
referred to as SYN. Typically, one particular device is specified statically to always drive CK and SYN, although CK
can also be generated by an external clock. The signals are generated by the DSP device having active SYNC and
OCK signals that occur if the tdms register SYNC field is set and the sioc register OCK field is set.

DSP1611/17/18/27/28/29

DI DO ICK OCK ILD OLD IBF OBE SADD SYNC DOEN
T e
DATA CK NC NC NC NC ADD SYN NC

5-4184

Figure 7-14. DSP1611/17/18/27/28/29 Multiprocessor Connections

The other devices use the SYNC and OCK signals in the passive mode to synchronize operations. All DSPs must
have their ILD and OLD signals in active mode. Although these signals are not required externally for the operation
of multiprocessor mode, they are used internally in the SIO and must be active for that reason.

Lucent Technologies Inc. 7-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description (continued)

Figure 7-15 shows the time slot allocation timing used when in multiprocessor mode. A high-to-low transition of
SYNC (SYN) defines the beginning of time slot 0 and resynchronizes any DSP devices that are operating on the
multiprocessor bus with SYN as an input. The DSP device that drives the multiprocessor bus during time slot 0
also drives the SYN line because of the way the tdms register is encoded. For this reason, one DSP device must
always drive during time slot 0 unless SYN is externally generated. Eight words are exchanged within each SYN
frame, so the tdms register should have the SYNCSP field set low if in multiprocessor mode. This provides 128
active ICK and/or OCK (CK) cycles per SYN frame (8 words x 16 bits/word). The DATA and ADD lines allow the
serial transfer of 16 bits of data and 16 bits of address (eight destination and eight source bits) per time slot.
Although the ILD and OLD signals need not be connected to anything while in multiprocessor mode, they must
both be set in active mode and their behavior is shown in Figure 7-15. The ILD output clocks with every time slot to
read in each word of address and data and the OLD output clocks only on those time slots during which the DSP in
question actually drives the multiprocessor bus. In the example in Figure 7-15, OLD is shown assuming that the
DSP drives during time slots 0, 2, and 5. Multiprocessor mode is turned on by setting the tdms MODE field (bit 9)
to one.

TIME
SLOT

CK

" S sy

] —
TE 3 s s Y Y Y s Y I Y o O

| | |
ow || || | |

DATA D[0:15] X D[0:15] D[0:15] X D[0:15] D[0:15] %D[MS] D[0:15] D[0:15] < D[0:15] <

ADD %A[O:lS] A[0:15] X A[0:15] X A[0:15] X A[0:15] > A[0:15] X A[0:15] X A[0:15] X A[0:15] C

5-4185

T OLD shown assuming DSP1611/17/18/27/28/29 drives bus in time slots 0, 2, and 5 (tdms = 0x125).

Figure 7-15. Multiprocessor Mode time slots

In multiprocessor mode, each device can send data in a unique time slot designated by the tdms register transmit
slot field (bits 7—0). The tdms register has fully decoded fields to allow one DSP device to transmit in more than
one time slot. This procedure is useful for multiprocessor systems with less than eight DSP devices if a higher
bandwidth is necessary between certain devices in that system. Each device also has a fully decoded transmitting
address specified by the srta register transmit address field (bits 7—O0, see Table 7-6). This is used to transmit
information regarding the destination(s) of the data. The fully decoded receive address specified by the srta regis-
ter receive address field (bits 15—8) determines which data is received.

7-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description (continued)

Figure 7-16 shows the timing when a DSP drives the multiprocessor bus for any particular time slot. The timing is
similar to active mode 16-bit output. The difference is ADD and DO are driven for only one-half cycle during the
transmission of the first bit to prevent bus conflicts if the bus drive is switched from one DSP to another on time slot
boundaries. The DOEN pin is bidirectional in multiprocessor mode and is driven low during each time slot in which
the particular DSP is an output. This signal is not required externally for multiprocessor mode but is used internally
by the DSP and can also be useful to the hardware designer in some applications.

0CK
| | |
oo | | C

i S e S S e S N N

DO — X X X X X X X X

\
L2 S L N O S T A U

DO| D1 D15 DO D1
’Ar-\r-\r-\ £FN N NN
SADD —— (XXX X X X X X
L2 S A W A L E W A U i e A -
ADO-------------- AD7 ASO ------------- ASTADO -----------------

DOEN I __________

5-4127

Figure 7-16. Multiprocessor Mode Output Timing

Whenever a DSP drives the bus in some time slot, the address of the destination DSP(s) is sent out on the ADD
line concurrent with the transmission of the first 8 bits of the data. The bits of the address are inverted. This desti-
nation address (AD[7:0]) consists of the transmit address field of the srta register (bits 7—0) in the transmitting
device. Following this transmission, protocol information (AS[7:0]) from the transmitting DSP is sent out on the
ADD line concurrent with the transmission of the last 8 bits of the data. This protocol information is obtained from
the low byte of the saddx register (bits 7—0) and can be written with any arbitrary value. The high byte of saddx is
ignored on a write:

Bit 15—8 7—O0
Write to saddx X AS[7—0] (Transmitted AS)

This 8-bit protocol information will be latched into the high byte of saddx by all receiving DSPs with matching
address, and this information is made available to the software by reading the saddx register:

Bit 15—8 7—O0
Read from saddx AS[7—0] 0 (Received AS)

Lucent Technologies Inc. 7-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description (continued)

The protocol information is made available in the high byte of saddx to allow branching on the top bit without
requiring any shift or compare operations. The low byte of saddx is always zero on a read. Two distinct registers
are actually accessed if reading and writing the saddx register; writes go to the register holding the transmitted
value, and reads get the received value from the receiving register. This is similar to the operation of the sdx regis-
ter.

This 8-bit protocol can be any value and constitutes an independent 8-bit serial channel while in multiprocessor
mode. It is targeted to the destination DSP(s) along with the data and can be used for any desired purpose. For
example, the top 3 bits of the saddx value is sufficient to encode a source ID for each source DSP (up to eight
maximum on the TDM bus) leaving the remaining 5 bits free to convey other information about the associated data
such as opcode/data bits, first/last word in transmission, or parity.

Table 7-5. Time-Division Multiplex Slot (tdms) Register

Bit 9 8 7—1 0
Field [SYNCSP | MODE TRANSMIT SLOT SYNC
Field Value Result/Description
SYNCSP 0 SYNC = ICK/OCK' +128.%
1 SYNC = ICK/OCKT + 256.
MODE 0 Multiprocessor mode off. DOEN is an input (passive mode).
1 Multiprocessor mode on. DOEN is an output (active mode).
TRANSMIT SLOT IXXXXXXX Transmit slot 7.
X LXXXXXX Transmit slot 6.
XXLXXXXX Transmit slot 5.
XXX LXXXX Transmit slot 4.
XXXXLXXX Transmit slot 3.
XXXXXLXX Transmit slot 2.
XXXXXX1X Transmit slot 1.
SYNC 1 Transmit slot 0. SYNC is an output (active mode).
0 SYNC is an input (passive mode).

T See sioc register, LD field in Table 7-1.
¥ Select this mode if in multiprocessor mode.

7-20 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description (continued)

If the serial transmit address coming from the bidirectional ADD line of the transmitting device matches the receive
address of one of the other devices, the data input is loaded into that device's input buffer and its IBF flag is set at
the end of the transmission. The source ID or protocol information (AS [7:0]) of the transmitting device is also
loaded into the saddx register as described above. In order to read in the new data and source ID, an interrupt can
take place based on the IBF flag. The transmit address is 8 bits wide with eight DSP devices (maximum) in the
multiprocessor configuration. This means there is one address bit per DSP device. The srta register has one
address bit per device in order to allow transmissions to more than one device at a time. A broadcast mode send-
ing data from one device to all others is accomplished by setting all bits high in the transmission field of srta.

Table 7-6. Serial Receive/Transmit Address (srta) Register

Bit 15—8 7—0
Field RECEIVE ADDRESS TRANSMIT ADDRESS
Field Value Result/Description
RECEIVE ADDRESS IXXXXXXX Receive address 7.
X LXXXXXX Receive address 6.
XXLXXXXX Receive address 5.
XXXLXXXX Receive address 4.
XXXXLXXX Receive address 3.
XXXXX1XX Receive address 2.
XXXXXX1X Receive address 1.
XXXXXXX1 Receive address 0.
TRANSMIT ADDRESS IXXXXXXX Transmit address 7.
X LXXXXXX Transmit address 6.
XXLXXXXX Transmit address 5.
XXXLXXXX Transmit address 4.
XXXXLXXX Transmit address 3.
XXXXXLXX Transmit address 2.
XXXXXX1X Transmit address 1.
XXXXXXX1 Transmit address 0.

Typically, the time-division multiplex slot register (tdms) is set up at the beginning of a program and does not
change for each of the devices in the multiprocessor system. If the time slot needs to be changed, it is imperative
that each processor still have its own unigue time slot. All new time slots are updated at the end of each time
slot O (refer to Figure 7-15).

During reset, the tdms register clears to all zeros disabling multiprocessor mode by default. The srta register is
unaltered by reset.

If a DSP has been set up to transmit in some particular time slot and the software running in that DSP fails to write
the sdx register in preparation for that transmission, that DSP will drive the ADD line to all ones (inactive) for that
entire time slot. This prevents spurious interrupts from occurring in what would have been the destination DSP(s)
for that time slot if data had been available. In this way, the destination DSP(s) need only act on information sent by
the source DSP if it actually has new data available. Once the data becomes available, the transmission will wait
until the next available time slot.

Lucent Technologies Inc. 7-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.6 Multiprocessor Mode Description (continued)
7.6.2 Detailed Multiprocessor Mode Description (continued)

In the following example, the srta register receive address is referred to as the device number.

Note: It is possible to assign more than one receive address or a duplicate receive address to a DSP device, but
the examples given assume a unique receive address which is the usual case.

Figure 7-17 shows the operation of a system using eight DSP devices in a multiprocessor configuration. The set-
tings used for the tdms and srta registers are shown in order to illustrate the current state of these registers during
each 1/0 operation. The following describes the multiprocessor mode operation shown in Figure 7-17.

Table 7-7. Description of the Multiprocessor Mode Operation Shown in Figure 7-17
time slot Actions
0 In preparation for time slot O (left-most column), the tdms register of device number 7 has been

initialized so that it can transmit in time slot 0. Initialization also forces the device to generate the
frame sync of the 1/O stream (SYN). The srta register of device 7 has been set so that it can
transmit to device 3 and receive address 7. The serial data register (sdx) of device 7 contains the
data to be transmitted.

During time slot 0, the data from device 7 is transmitted on the TDM channel. Device 3 recog-
nizes its address on the serial address line (SADD) and accepts the data into its sdx register that
is subsequently read by the command *rO = sdx . All other devices ignore this transaction
because the transmit address was not theirs.

1 No actions in time slot 1.

2 In preparation for time slot 2, the tdms register of device 2 has been initialized so that during time
slot 2 device 2 will transmit to device 5.

During time slot 2, the data from device 2 is transmitted on the TDM channel. Device 5 recog-
nizes its address on the ADD and accepts the data into its sdx register that is then read by the
command *rl++ = sdx.

3 No actions in time slot 3.
4 No actions in time slot 4.
5 In preparation for time slot 5, device 0 has been initialized so it will transmit in this time slot to all

other devices. Devices 1, 4, and 6 (which have not been previously mentioned) are ready to
receive data assigned to their respective addresses. Devices 2, 3, 5, and 7 (which were initialized
earlier) are also ready to receive data.

During time slot 5, the data in device 0 is transmitted on the TDM channel. Every device address
is represented on the ADD line and all devices will accept the data.

6 No actions in time slot 6.

7 No actions in time slot 7.

7-22 Lucent Technologies Inc.

Information Manual

April 1998

7.6 Multiprocessor Mode Description

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

7.6.2 Detailed Multiprocessor Mode Description

DSP1611/17/18/27/28/29 NUMBER ACCORDING TO srta RECEIVE ADDRESS

TIME-SLOT NUMBER

(continued)

(continued)

3

tdms = 0x104
srta = 0x0420
sdx = a0

srta = 0x0800
*r0 = sdx

A

Y

srta = 0x2000
*r1++ = sdx

tdms = 0x101
srta = 0x8008
sdx = *ro++

Figure 7-17. DSP1611/17/18/27/28/29 Multiprocessor Communications

Lucent Technologies Inc.

tdms = 0x120
srta = OXO1FE
sdx = *rl++

srta = 0x0200
a0 = sdx

-

srta = 0x0400
a0 = sdx

srta = 0x0800
a0 = sdx

d

srta = 0x1000
a0 = sdx

srta = 0x2000
a0 = sdx

srta = 0x4000
a0 = sdx

A

srta = 0x8008
a0 = sdx

Serial I/0

5-4128

7-23

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.6 Multiprocessor Mode Description (continued)
7.6.3 Suggested Multiprocessor Configuration

In the suggested configuration, the DSP device supplying the SYN signal also supplies the ICK and OCK signals.
The remaining DSPs are configured for passive SYN, ICK, and OCK signals. All DSPs have active ILD and OLD
signals.

For the DSP device with the given transmit slot, the following parameters should be configured as shown:

Parameter Transmit Slot 0 Transmit Slot 1—7
SYNC Active Passive
ICK Passive Passive
OCK Active Passive
ILD Active Active
OLD Active Active

To achieve the configuration shown above, the following registers in the DSPs should be set as shown:

Register Transmit Slot O Transmit Slot 1—7
sioc 0x238 0x230
tdms 0x101 Ox1XXT
srta OXXXXT OXXXXT

T An X indicates that the number is dependent on the specific application.

The interrupt on IBF must be enabled in the inc or pioc ! register of each device to allow the devices to detect and
process an input.

Note: Exactly one DSP device must normally be set up to drive time slot 0 because this device will also drive
SYN. If SYN is to be externally generated, no DSP device should ever drive time slot 0 because this would
cause a conflict on the SYN line.

In order to prevent multiple bus drivers, any single time slot should not be allocated to more than one DSP. ltis
important that the ADD (device address) line is 3-stated (float) in any time slot that is not being driven by one of the
DSP16XXs on the bus. To prevent spurious inputs, the line should either be pulled up to VDD with a resistor, or the
software should guarantee that some DSP is always driving in every time slot. If SYN is externally generated, a
pull-up resistor will be required.

1.DSP1617 only.

7-24 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.6 Multiprocessor Mode Description (continued)
7.6.4 Multiprocessor Mode Initialization

The tdms register is cleared to 0 on device reset turning off multiprocessor mode. In order to get several DSPs
synchronized and talking to each other on the multiprocessor bus after reset, each DSP device must set its tdms
register to turn on multiprocessor mode and to drive its appropriate time slots. In addition, one DSP must drive
time slot 0 unless SYN is driven from an external source as described in Section 7.6.3, Suggested Multiprocessor
Configuration. The SYN line will not be driven until the DSP that drives time slot O is initialized in the software. The
tdms information for all devices is updated at what each device thinks is the end of time slot 0.

Even after all of the DSP devices have initialized their respective tdms registers, they are not yet synchronized with
each other. In other words, the internal counters in each device that indicate the current time slot do not necessar-
ily contain the same value. The DSPs are not guaranteed to be fully synchronized until the end of the first time slot
following the first falling edge of the SYN signal that they all are certain to have recognized. Only at this point can
reliable transactions begin. The following procedure guarantees reliable initialization of multiprocessor mode if
executed soon after reset by every DSP on the bus:

/* SIO Multiprocessor bus initialization procedure */

tdms=0x101 1* turn on multiprocessor mode; drive time slot O */

* other DSPs will need to drive other time slots */
srta=0 * turn off all transmit and receive addresses *

1* to prevent spurious address matches */
N*nop [* insert N nops to wait until the end of the first */

* time slot O after the first SYN falling edge */
a0=sdx [* read sdx register; clear out any spurious inputs */
inc=0x0003 [* set inc to enable SIO IBF and OBE interrupts */
srta=OXNNNN I* set srta to desired transmit/receive values */

* and continue with program *

Different DSPs need to drive different time slots. Each DSP can drive more than one if desired. The number of
nops that are required depends on the clock period being used for the SYN signal and whether it is internally or
externally generated. It is also assumed that all DSP devices are reset with the same signal. Enough time should
be given to guarantee SYN has fallen and one time slot has subsequently gone by after all of the DSPs in the sys-
tem have executed this code. For a free-running SYN signal, one and one-eighth times the SYN clock period is
enough time to guarantee this. For example, in the case of an internally generated SYN signal running at the max-
imum clock rate allowed by the DSP internal clock generators, the SYN period is 1/256th of the CKO clock period
and each nop requires one CKO clock period. Therefore, at least 256 x (9 / 8) = 288 nops are required to guaran-
tee all of the DSPs are synchronized before the SIO interrupt enables are turned on.

Any other instructions that don't require the use of the SIO can be executed instead of nops, as long as the total of
the instructions (which can include nops) takes at least the same period as calculated to guarantee synchroniza-

tion of all DSPs. Of course, in a real program segment, the nops are executed in a loop to save instruction space.
Users who generate the SYN signal externally or who know more information about the initial state of the clocks in
their system might be able to use a shorter delay in the above program segment.

Before the DSPs are initialized, nothing is driving the DOEN signal that acts as an input before multiprocessor
mode is turned on. For this reason, the DOEN pin should be pulled up to Vop through a resistor to prevent possible
bus conflicts on the multiprocessor bus before the DSP devices have been initialized by their respective software
routines (see Figure 7-12).

Once successful synchronization is achieved, the SYNC pulse is no longer necessary to keep the DSPs in step.
The eight time slots are maintained even if the SYNC pulse ceases or occurs every 16 time slots.

Lucent Technologies Inc. 7-25

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Serial /0 April 1998

7.7 Serial Interface #2

SIO2 is the second serial I/O port on the DSP1611/17/18/27/28/29. It is functionally the same as the first SIO.
Because the SIO2 is multiplexed with the PIO/PHIF, one or the other is typically used at one time although limited
use of the PIO/PHIF is possible with full use of the SIO2. This section will describe the features of the SIO2 that
differentiate it from the SI01 (the user should refer Section 7.1, SIO Operation for the features that are the same).

7.7.1 SIO2 Features
The SIO2 block is identical to SIO1 from a functional standpoint, but the SIO2 1/O signals are multiplexed with the

PIO/PHIF. Figure 7-18 shows the relationship between the pinouts of the PIO/PHIF and the SIO2. The functions of
the SI02 pins are identical to those of SIO1.

S102 PIO/PHIF

SELECTION BY ESIO2
IN ioc REGISTER
% MULTIPLEXER

<
BN

IBF2 ILD2 DI2 ICK2 OCK2 DO2 OLD2 SYNC2 SADD2 OBE2 DOEN2
PIBF PIDS PB1 PBO PCSN PSTAT PODS PBSEL PB3 POBE PB2
PSEL2T PSEL1t PSELOf

T DSP1617 signal name.
5-4186.a

Figure 7-18. SIO2—PIO/PHIF Multiplexing

7-26 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Serial I/O

7.7 Serial Interface #2 (continued)
7.7.2 Programmable Features

Programmable modes of operation for the SIO2 are controlled by the serial I/O control (sioc2) register. This regis-
ter, shown in Table 7-8, is used to set the port into various configurations. Both input and output operation can be
configured as either active or passive. If active, the DSP generates load and clock signals. If passive, load and
clock signals are provided as inputs to the device. Because input and output can be independently configured, the
SI102 has four different modes of operation. The sioc2 register also is used to select the frequency of active clocks
and to configure the serial I/O data formats. The data can be 8 or 16 bits long and can be input/output MSB first or
LSB first. Both input and output data formats can be independently configured.

Table 7-8. sioc2 Register (DSP1611, DSP1617, and DSP1618 Only)

Bit 9 8—7 6 5 4 3 2 1 0

Field LD2 CLK2 MSB2 OLD2 ILD2 OCK2 ICK2 OLEN2 | ILEN2

Table 7-9. sioc2 Register (DSP1627/28/29 Only)

Bit 10 9 8—7 6 5 4 3 2 1 0

Field |DODLY2| LD2 CLK2 MSB2 | OLD2 ILD2 OCK2 ICK2 | OLEN2 | ILEN2

(See Table 7-3 on page 9 for the values that are encoded in each field.)

Additional programmable registers for the SIO2 are srta2, tdms2 , and saddx2 . They have the same bit configura-
tions as SIO registers (srta, tdms, and saddx) discussed earlier in this chapter.

The ESIO2 bit (10) of the ioc register selects the SIO2 pins instead of the PIO/PHIF if it is a one. A one in the
SIOLBC bit (9) of the ioc register puts both SIO(1) and SIO2 into the loopback test mode. A zero is no loop.

7.7.3 Instructions Using the SI02

Any data move or multiply/ALU transfer instructions referring to the sdx2 register will use the SI02. The sioc2 reg-
ister is generally set by immediate data move instructions.

Lucent Technologies Inc. 7-27

Chapter 8

Parallel /O (DSP1617 Only)

0
0
0
0
0
0
0
0
0
0
0
0
0
0

CHAPTER 8. PARALLEL I/O

CONTENTS

8 Parallel 1/O (DSPLELT7 ONIY) .uueiiiieiiiiiiiitiee ettt et e e e s e e e e e e s b b e e e e e s s nbbaseeeeanntn seessnnsbbaeeeeeeanas 8-1
S0 R = (@ @] o 1T -1 1 o] o PP PUPTR 8-2
8.1.1 ACHVE MOOE ...ttt ettt a bbb e e s e 8-2

8.1.2 PlO INtEraCCeSS TIMINQG ..eeeeeeiiiiiiiiiiieeeiaiiiieeetaeessaaittreteaeessasstbrareaaeessaassbaeesssssbbareeeeeessnnseenas 8-5

8.1.3 PASSIVE MOoiiiiiiiiiiiti ettt s 8-6

8.1.4 Peripheral Mode (HOSt INTEITACE)coiiiiiiiiiiiiiie et araeeeee s 8-9

8.2 Programmer INTEITACEuueiiiii ettt e e e et e e e e e st e e e e e e sttt e aee e e et e e e nnbrreeeas 8-14
8.2.1 PIOC REGISIEr SEIINGS ..vviiiiieiiiiiiiiiiiee ettt e et e e e e s e r e e e s s s st br e e e s s annsbbaeeaaeessannnes 8-16

8.2.2 LAENE REAUS ...eeiiiiiiiie ittt ettt s 8-17

8.2.3 POWEI MaANAGEMENT ..ottt n e e e e e eeee e 8-19

R I [(=1 U] o] =T aTo IR 1 g T= = [OSSO 8-19
S = (@ IS o o = OO PTRP 8-21
8.4.1 PlO PiN MUIIPIEXING ©.vvvviiieiiiiiiiiiiiie ettt e ettt e e e st e e e e e s s ssbb b ee s bbb e e e e e e s annnaeeeas 8-22

R I o (@ WoTo] o] o F- Tox [=25 411V [Lo [TS TS USSP POP 8-22

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

8 Parallel /0O (DSP1617 Only)

The DSP1617 Parallel 1/0 (P10) is an 8-bit interface for rapid transfer of data with external devices. Data rates up
to 200 Mbits/s or 25 Mwords/s are supported by an instruction cycle of 20 ns. Minimal or no additional logic is
required to interface with memory or other peripheral devices. Five maskable interrupts are included in the PIO
unit. If not used, the PIO can be powered down via the powerc register. The PIO pins are multiplexed with BIO
and SIO2 pins, and selection is controlled from the ioc register (see Table 8-8).

The PIO can operate in the active mode (data strobes provided by the DSP) or in the passive mode (data strobes
provided by an external device). As a passive port, the PIO acts as a flexible host interface requiring little or no
glue logic to interface to a host microcontroller, microprocessor, or DSP.

Although there is only one physical PIO port, there are eight logical PIO ports: pdx0 through pdx7 . In active mode,
the state of the peripheral select pins PSEL[2:0] shows which logical port is selected.

The data path of the PIO is comprised of an 8-bit input buffer (pdx[IN]) and an 8-bit output buffer (pdx [OUT]).
Zeros are always returned in bits 15—8 from a read of pdx. Two pins, PIBF (parallel input buffer full) and POBE
(parallel output buffer empty), indicate the state of these buffers. The pdx[IN] register is shadowed in some modes
to allow the PIO to accept data on an interrupt without disrupting its normal operation (see Section 8.3, Interrupts
and the P10). In addition, two registers control and monitor the PIO's operation: the PIO control (pioc) register and
the PIO status (PSTAT) register. PSTAT can only be read by an external device and reflects the condition of the
PI1O. The pioc contains information about interrupts and can be used to set the PIO in a variety of modes. Access
times are programmable via the strobe field in the pioc. Figure 8-1 shows the DSP PIO unit at the block level.

g

PIDS +——» PIO
16
PB[7:0] = i L T > pdx[IN] (8) 1 >
SHADOW
| 1 16
I pdx[OUT] (8) [~ IDB
{ pstat (3)
PSEL[2:1] «———— >
2:] ioc (16) | 10 >
PSELO0 - P !
PIBF *—
POBE *+—

5-4187

Figure 8-1. Parallel I/0O Unit

Lucent Technologies Inc. 8-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.1 PIO Operation

The PIO bus is an asynchronous interface. The PIO port characteristics are programmable and are controlled by
the pioc. The PIO can be accessed in two basic modes: active or passive. In active mode, the DSP drives the
data strobes (PIDS and PODS); and in passive mode, the external device drives these strobes. Input or output can
be configured in either of these modes independently.

In active mode, PIDS (parallel input data strobe) is an output that indicates if the PB bus is available during a read.
Likewise, PODS (parallel output data strobe) is an output that indicates if data is available on the bus during a write.
In passive mode, PIDS and PODS are inputs driven by an external device to latch data into and out of the PI1O.

If PODS and PIDS are configured in opposite modes (i.e., the DSP controlling one and the user controlling the
other), the user must ensure that PODS and PIDS do not occur simultaneously.

8.1.1 Active Mode

The PIO is configured for active mode by proper initialization of bits 12 and 11 of the pioc (see Section 8.2.1, pioc
Register Settings). If both input and output are configured for active mode, the three pins PSEL[2:0] are outputs of
the DSP that indicate which of the eight channels are being accessed. If either input or output is passive, some of
these pins become inputs and serve different purposes (see Section 8.1.3, Passive Mode).

The duration of active PIO strobe signals (PIDS and PODS) can be programmed by using bits 14 and 13 of the
pioc register. Table 8-1 shows the possible configurations.

Table 8-1. PIO Strobe Widths

pioc Bits Strobe Width
14 13 PIDST PODST
0 0 T T
0 1 2T 2T
1 0 3T 3T
1 1 4T 4T

T T =1 CKO clock period.

P10 transactions are executed with data move instructions to pdx [IN] or pdx [OUT]. Data move instructions are two
cycles long, and the minimum strobe width is one cycle. Therefore, with consecutive PIO instructions, the strobes
will have a 50% duty cycle.

Note: If the strobe widths are not minimum (pioc [14:13] # 00), consecutive PIO instructions are prohibited. Other
non-PlO instructions must be placed between two PIO instructions.

m If pioc [14:13] = 01, an instruction or group of instructions taking one or more cycles must be placed between PIO
instructions.

m If pioc [14:13] = 10, an instruction or group of instructions taking two or more cycles must be placed between PIO
instructions.

m If pioc [14:13] = 11, a group of instructions taking three or more cycles must be placed between PIO instructions.

Any interrupt service routine must guarantee these conditions are met. As a simple rule if pioc [14:13] = 11, the
first instruction in an interrupt service routine cannot be a PIO instruction.

8-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.1 PIO Operation (continued)
8.1.1 Active Mode (continued)
Active Mode Input

The DSP drives PIDS, and the external device drives the PB.

The active mode input transaction (see Figure 8-2) is initiated by the DSP if it executes a data move from one of the
pdx channels (e.g., *r2 = pdx0). If an active mode input occurs, PSEL[2:0] are asserted indicating which of eight
external sources for the data has been selected. One-half a CKO cycle later, PIDS is pulled low signaling that an
external device can place data on the parallel data bus (PB). The duration of PIDS is configurable in the pioc reg-
ister, see Table 8-1. The diagram below is using minimum strobe widths, so PIDS is held low for one full CKO
cycle. (For longer strobe widths, PIDS is held low for the corresponding number of CKO cycles.) The external
device must place valid data on the PB before PIDS goes high. It can remove data from the PB after PIDS goes
high. The value on the three PSEL pins is maintained one-half of a CKO cycle after PIDS is released.

CKO

T X
-

PIDS

PB —)

5-4188

Figure 8-2. Active Mode Input Timing (Minimum Width PIDS)

Lucent Technologies Inc. 8-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.1 PIO Operation (continued)
8.1.1 Active Mode (continued)
Active Mode Output

The DSP drives PODS and the PB.

The active mode output transaction (see Figure 8-3) is initiated by the DSP if it executes a data move to one of the
pdx channels (e.g., pdx0 = *r2). If an active mode output occurs, PSEL[2:0] are asserted to indicate which of eight
possible external devices will be the destination. One-half a CKO cycle later, the DSP pulls PODS low and places
data onto the PB. The duration of PODS is configurable in the pioc register (see Table 8-1). The diagram below is
using minimum strobe widths, so PODS is held for one full CKO cycle. This data remains valid one-half of a CKO
cycle after PODS goes high.

CKO

D (D

)

\
" <)

Figure 8-3. Active Mode Output Timing (Minimum Width PODS)

5-4189

8-4 Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Parallel /O (DSP1617 Only)

Information Manual
April 1998

8.1 PIO Operation (continued)
8.1.2 PIO Interaccess Timing

The DSP drives PODS and PIDS, and the DSP and external device alternate in driving the PB.

Figure 8-4 shows the timing of mixed active mode inputs and outputs. (See Section 8.1.1, Active Mode, for specific
descriptions of individual input and output transactions.)

CKO

PSEL [2:0]

PODS \ [
FROM DSP

FRE):\??DSP \ / \ /

n

Lucent Technologies Inc.

~ D

ACTIVE
WRITE

ACTIVE

WRITE

ACTIVE
READ

ACTIVE
READ

Figure 8-4. PIO Interaccess Timing

ACTIVE

WRITE

5-4190

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.1 PIO Operation (continued)
8.1.3 Passive Mode

In passive mode, the DSP can be used as a peripheral for other devices such as a microprocessor. Bits 12 and 11
of the pioc register configure the passive mode. If bit 12 of the pioc register is clear (0), the PODS signal becomes
an input and the contents of the DSP's parallel output register (pdx [OUT]) can be read by the external device
asserting PODS. If bit 11 of the pioc register is clear (0), PIDS is an input and the DSP's parallel input register
(pdx[IN]) can be written by the external device asserting PIDS.

Providing their respective interrupt mask bits are set (logic 1) in the pioc (or the inc register, see Section 3.4, Inter-
rupts for more information), the assertion of PIDS (pioc bit 7) and PODS (pioc bit 6) by an external device causes
an interrupt to the DSP to become pending. This achieves functional synchronization between the DSP and an
external device.

The function of the three PSEL pins changes whenever PIO input or output is placed in passive mode. Table 8-2
shows the effects of various modes on the PSEL[2:0] bits.

Table 8-2. Function of the PSEL Pins

PODS PIDS PSEL2 PSEL1 PSELO

Active Active Output (PSEL2) Output (PSEL1) Output (PSELO)
Active Passive Input (enable bar) Output (PSEL1) Output (PSELO)
Passive Active Input (enable bar) Input (status/data) Output (PSELO)
Passive Passive Input (enable bar) Input (status/data) Output (PIBF | POBE)

Table 8-5 shows the complete encoding for PSEL[2:0] as outputs (000 corresponding to port pdx0, etc.).

If passive mode is used for either input or output, PSEL2 becomes an active-low enable or chip select. While
PSEL2 is high, the DSP ignores any activity of a passive strobe. If a DSP using passive strobes is intended to be
continuously enabled, PSEL2 should be grounded.

Whenever PODS is passive, PSEL1 becomes an input that determines whether the PIO will drive PB with the con-
tents of pdx [OUT] (i.e., the data) or the contents of PSTAT (i.e., the PIO status).

If both PIDS and PODS are passive, PSELO takes on a special function. It is still an output, but it is now the logical
OR of the two PIO buffer flags (PIBF and POBE). This feature is useful if the user wishes to have one signal that
will tell an external device when the DSP is ready for a PIO access. (For further explanation, see Section 8.1.4,
Peripheral Mode (Host Interface)).

8-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.1 PIO Operation (continued)
8.1.3 Passive Mode (continued)
Passive Mode Input

The external device drives PIDS and PB.

For any passive mode access to the PIO, an external device must first pull the PSEL2 pin low. Then, the passive
mode input transaction (shown in Figure 8-5) can be initiated by the external device asserting PIDS. It must then
place data onto the PB while PIDS is asserted and can remove the data from the bus after the PIDS goes high. No
clock is shown here because the access is asynchronous and timed by the external device.

PSEL2
(CHIP SELECT)

PIDS FROM
EXTERNAL DEVICE

PB FROM
FXTFRNAI NFVICF

5-4191

Figure 8-5. Passive Mode Input Timing

Lucent Technologies Inc. 8-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998
8.1 PIO Operation (continued)

8.1.3 Passive Mode (continued)

Passive Mode Output

The external device drives PODS, and the DSP drives the PB.

As mentioned above for any passive mode access to the PIO, an external device must first pull the PSEL2 pin low.
PSEL1 should also be asserted at this time. If the PIO's status is sought, the external device should drive this input
high. If the contents of the pdx [OUT] register are sought, PSEL1 should be driven low. Then, the passive mode
output transaction (shown in Figure 8-6) is initiated by an external device asserting PODS. A short period later, the
DSP drives the PB. The data remains valid for a short period after PODS is driven high by the external device. No
clock is shown here because the access is asynchronous and timed by the external device.

PSEL2

(CHIP SELECT)
PSEL1

(DATA MODE)
PODS FROM

EXTERNAL DEVICE

4 M

Figure 8-6. Passive Mode Output Timing

5-4192

8-8 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.1 PIO Operation (continued)
8.1.4 Peripheral Mode (Host Interface)

If both PIDS and PODS are in passive mode, the PIO is operating in peripheral mode. The PIO unit is designed to
allow the user to interface the DSP as a peripheral to another processor. A variety of techniques are available from
using the PIBF and POBE flags as interrupts to an external device to polling the PSTAT register. For most applica-
tions, the P10 can be interfaced with no additional logic. Figure 8-7 is an example of a DSP to microprocessor con-
nection.

EN PSEL2
ool {7 eerra
MICROPROCESSOR 8
SYSTEM DSP1617
READ »| PoDs
WRITE >| PIDS
INTREQ < PSELO

5-4193

Figure 8-7. The DSP as a Microprocessor Peripheral

Note: If PIO is configured in passive/passive (peripheral) mode, PSELO equals PIBF or POBE so that PSELO low
indicates to the microprocessor that the DSP is ready for any access.

The pins PIBF and POBE are flags that indicate parallel input buffer full and parallel output buffer empty. They are
both active-high. The input flag works if PIDS is in passive mode and is cleared otherwise. The output flag works
if PODS is in passive mode and is cleared otherwise. An external device can take PIBF going low as an interrupt
meaning the pdx [IN] register is ready for another PIO input. Likewise, an external device can take POBE going low
to mean the output buffer is loaded with data to be read.

If both PIDS and PODS are passive signals, PSELO no longer selects between PIO channels. PSELO is now the
logical OR of the two flags PIBF and POBE. This provides another way for an external device to determine
whether the PIO is ready for an access. In peripheral mode and if PSELDO is low, the other device is free to either
read or write the PIO. Of course, this condition does not occur until the P1O is ready for either access but it
requires the use of one less pin on the DSP and possibly fewer interrupt pins on the external device.

Lucent Technologies Inc. 8-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.1 PIO Operation (continued)
8.1.4 Peripheral Mode (Host Interface) (continued)

Polling the PSTAT register (performed by holding PSELL1 high during a passive read) provides PIO status externally
without requiring any extra pins. This register cannot be read or written under program control and is read only
over the PB. lIts sole purpose is to be polled by an external device. The DSP itself is completely oblivious to the
fact that PSTAT has been read. The state of pdx[IN], pdx [OUT], and the flags are unaffected and no internal inter-
rupt is generated. Table 8-3 describes the PSTAT register. Figure 8-10 shows the functional timing for polling the
PSTAT register.

Table 8-3. The PIO Status Register, PSTAT

Bit 7—3 2 1 0
Field Reserved LPIDS PIBF POBE

Polling the PSTAT register yields the following information:

m LPIDS: If this bit is set, the PIO is configured for active mode input; otherwise, the input is in passive mode.
(There is no need to present the same information about PODS because PSTAT can only be read during a pas-
sive mode output.)

m PIBF: If set, the parallel input buffer (pdx[IN]) is full. This bit has the same value as the pin by the same name.
m POBE: If set, the parallel output buffer (pdx [OUT]) is empty. This bit has the same value as the pin by the same
name.

Whenever PIDS is passive, PIBF is operative even if PODS is active. Likewise, POBE is operative if PODS is pas-
sive regardless of the mode of PIDS. The PSTAT register can be polled if PODS is passive even if PIDS is active.
PSELO only indicates the state of the PIO buffers in peripheral mode. If either PIDS or PODS is active, PSELO indi-
cates the channel to which a PIO output is directed. Table 8-4 summarizes the behavior of PIBF and POBE.

Table 8-4. The P10 Buffer Flags

PODS PIDS PIBF POBE

Active Active Low Low

Active Passive Operative Low
Passive Active Low Operative
Passive’ Passive’ Operative’ Operative®

T Peripheral mode.

8-10 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.1 PIO Operation (continued)
8.1.4 Peripheral Mode (Host Interface) (continued)
Peripheral Mode Input

The external device drives PIDS, PSEL2, and the PB.

As with all passive accesses, an external device must start off by driving PSEL2 low enabling the PIO. If the flags
are being monitored, this can be in response to PIBF or PSELO going low. The external device then drives PIDS
low. It must then place the data on the PB and leave it there until after PIDS is driven high. After the next full phase
that CKO is high, PIBF and PSELO will be set indicating the input buffer is now full. As with any other passive mode
access, the access is timed by the external device.

CKO I
PSEL2
(CHIP SELECT) FROM /
EXTERNAL DEVICE
OR
PSELO
(PIBF/POBE) /“
FROM DSP
PIBF — \ e
FROM DSP /
PIDS FROM
EXTERNAL DEVICE /
PB FROM —

EXTERNAL DEVICE

5-4129

Figure 8-8. Peripheral Mode Input Timing

Lucent Technologies Inc. 8-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.1 PIO Operation (continued)
8.1.4 Peripheral Mode (Host Interface) (continued)
Peripheral Mode Output

The external device drives PODS, PSEL1, and PSEL2; and the DSP drives the PB.

As with all passive accesses, an external device must start off by driving PSEL2 low enabling the PIO. If the flags
are being monitored, this can be in response to PIBF or PSELO going low. The external device then drives PODS
low. If data is being requested (as is the case below), PSEL1 must be driven low at this time. Shortly after PODS
is asserted, the PIO drives data onto the PB. Shortly after PODS goes high, PB 3-states. After the next full phase
that CKO is high, POBE and PSELO go high indicating that the output buffer is now empty. As with any other pas-
sive mode access, the access is timed by the external device. This timing is shown in Figure 8-9.

CKO /

PSEL2
(CHIP SELECT) FROM
EXTERNAL DEVICE

~

PSEL1
(DATA MODE)

PSELO
(PIBF/POBE)
FROM DSP

:

POBE
FROM DSP

JJéJ
5

PODS FROM
EXTERNAL DEVICE

FROFI:/IBDSP <<< > >

Figure 8-9. Peripheral Output Mode Timing

5-4194

Note: For timing information, refer to the appropriate data sheet.

8-12 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)
8.1 PIO Operation (continued)

8.1.4 Peripheral Mode (Host Interface) (continued)

Polling the PSTAT Register

Polling the PSTAT register (see Figure 8-10) is identical to a passive or peripheral mode output. The main differ-

ence is the PSEL1 pin must be held high while PODS is asserted. No flags are affected; PIBF, POBE, and PSELO
do not change.

PSEL2 FROM /
EXTERNAL DEVICE

PSEL1 FROM ></
EXTERNAL DEVICE

PODS FROM
EXTERNAL DEVICE

FROFI:ABDSP <<< PSTAT STATUS >>>

5-4195

Figure 8-10. Polling PSTAT Timing

Note: For timing information, refer to the appropriate data sheet.

Lucent Technologies Inc. 8-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.2 Programmer Interface

The PIO port can be accessed with the data move group of instructions. The eight logical ports (pdx0—pdx7) cor-
respond to the encoding on the 3-bit field formed by the pins PSEL[2:0]. For example, an access to pdx3 will result
in the 3-bit field 011 appearing on the three pins (PSEL[2:0]) in active-active mode. The complete encoding of the
ports is shown in Table 8-5.

Table 8-5. Port Encoding pdx<0—7>

PODS PIDS PSEL2 PSEL1 PSELO Port pdx<0—7>
Active Active 0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7
Active Passive X 0 0 0,4

X 0 1 1,5

X 1 0 2,6

X 1 1 3,7
Passive Active X X 0 0,2,4,6

X X 1 1,3,57
Passive Passive X X X 0—7

When programming the device, nine PIO registers can be referenced:

m pioc PIO control register.
m pdx0 Logical port 0.
m pdx1l Logical port 1.
m pdx2 Logical port 2.
m pdx3 Logical port 3.
m pdx4 Logical port 4.
m pdx5 Logical port 5.
m pdx6 Logical port 6.
m pdx7 Logical port 7.

Note: pdx0 —pdx7 all reference the same physical registers—pdx [IN] and pdx [OUT]. A read instruction accesses
pdx [IN], and a write instruction accesses pdx [OUT]. For example:

*rO=pdx1 * writes memory from pdx(in) */
pdx3=*r0 * reads memory to pdx(out) */

8-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.2 Programmer Interface (continued)
The PIO control (pioc) register (see Table 8-6) is a 16-bit, user-accessible register used to configure some features
of the PIO:

m External device access time.
m Interrupt masks.
m Active/passive mode.

Table 8-6. PIO Control (pioc) Register

Bit 15 14—13 12 11 10 9—5 4—0
Field | IBF | STROBE |PODS |PIDS |Reserved INTERRUPTS STATUS
Field Value Description
IBF R IBF interrupt status bit (same as bit 4).
STROBE Strobe width of:
PODS PIDS
00 T! T
01 2T 2T
10 3T 3T
11 4T 4T
PODS 0 PODS is an input (passive mode).
1 PODS is an output (active mode).
PIDS 0 PIDS is an input (passive mode).
1 PIDS is an output (active mode).

INTERRUPTS 1xxxx | IBF interrupt enabled (disabled if 0)*.
x1xxx | OBE interrupt enabled (disabled if 0)*.
xx1xx | PIDS interrupt enabled (disabled if 0).
xxx1x | PODS interrupt enabled (disabled if 0).
xxxx1 | INTO interrupt enabled (disabled if 0).
STATUS Rxxxx | IBF status bit*.

XRxxx | OBE status hit¥.

xXRxx | PIDS status bit.

xxXRx | PODS status bit.

xxXXR | INTO status bit.

1T =1 CKO clock period.
F The interrupt enables and the status bits in the pioc affect only SIO1, not SIO2.

Lucent Technologies Inc. 8-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.2 Programmer Interface (continued)
8.2.1 pioc Register Settings

Many of the bit fields in the pioc deal with interrupts. Before going any further the reader should be aware that in
addition to the interrupt control provided by the pioc, interrupts in the DSP1617 can be controlled through the inc
register in the CONTROL block. Because the PIO still supports interrupts to provide upward compatibility with the
DSP16A, the DSP1617 has a super set of interrupt features including vectored interrupts. A new application
should use the vectored interrupt features (see Section 3.4, Interrupts).

pioc Register Bit Descriptions

m Bit 15 is the same as bit 4. See the description of bit 4 below.

m Bits 14 and 13 control the duration of assertion of the PIDS and PODS signals. (This is described in more detail
in Section 8.1.1, Active Mode.)

m Bit 12, if equal to logic 1, makes the PODS pin an output; accordingly, the DSP can perform active mode write
transactions to external devices. If bit 12 of the pioc register is equal to logic 0, the PODS pin is an input used by
external devices to request the DSP to write.

m Bit 11, if equal to logic 1, makes the PIDS pin an output; accordingly, the DSP can perform active mode read
transactions from external devices. If bit 11 of the pioc register is equal to logic 0, the PIDS pin is an input used
by external devices to request the DSP to read the bus.

m Bits 9—5 are used to enable/disable interrupts. These bits will only disable interrupts if they are not enabled in
the inc (see Section 3.4, Interrupts).

m Bits 4—0 indicate the status of the two SIO interrupts (IBF and OBE), the two PIO interrupts (PIDS and PODS),
and the INTO pin. This portion of the pioc register determines which of the interrupts are requesting service.
These bits can be read by an interrupt service routine to determine which interrupt(s) have occurred and, there-
fore, how to proceed to service the interrupt request. These status bits are also used to perform programmed
I/0 by polling some condition if necessary. Section 8.3, Interrupts and the P10, has more detail on PIO inter-
rupts.

Powerup and Reset: The contents of the pioc register are cleared, except bit 3 which is set if the RSTB signal is
asserted. Accordingly, the DSP is in passive mode with all interrupts masked after a device reset.

8-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.2 Programmer Interface (continued)
8.2.2 Latent Reads

While in active mode, reading from a logical PIO port is accomplished by an actual read of the single physical port
on the DSP. If aread of the parallel input register (physical port) is performed, a transaction to the external system
is performed on the logical port. Reads from the logical port imply that:

m All reads take their data from the on-chip parallel input register.
m As data is read from the internal parallel input register, a read transaction to the external system is initiated.

= Upon completion of the external read transaction, data received from the external system (logical ports 0
through 7) is loaded into the parallel input register.

Reads from the external system are latent because data is read from the internal parallel input register and then
new data is accepted into the parallel input register from a logical port. For example, to read a string of four words
of data (d0, d1, d2, d3) from the PIO port, the following actions are required:

1. The first instruction reads meaningless data from the parallel input register and initiates the transaction to bring
the first word (d0) from the external device.

2. The second instruction reads the first word (d0) from the parallel input register and initiates the transaction to
bring the second word (d1) from the external device.

3. The third instruction reads the second word (d1) from the parallel input register and initiates the transaction to
bring the third word (d2) from the external device.

4. The fourth instruction reads the third word (d2) from the parallel input register and initiates the transaction to
bring the fourth word (d3) from the external device.

5. The fifth and final instruction reads the fourth word (d3) from the parallel input register and initiates a transaction
that reads another word of data from the external device and overwrites the last word (d3) in the parallel input
register.

To fetch a vector of data of length N requires N + 1 instructions and generates N + 1 read transactions to the exter-
nal system. In order to fetch a single word that is not already present in the parallel input register, two instructions
are required. Because all logical ports map into the same physical port, a fetch from any logical port takes data
from the parallel input register; subsequently, the external access overwrites the contents of the parallel input reg-
ister with the data from the logical port specified in the instruction. Figure 8-11, on page 8-18 and Figure 8-12, on
page 8-18 show the hardware and functional timing for latent reads respectively.

The parallel output register is distinct from the parallel input register. Writing to pdx0 through pdx7 does not alter
the contents of the parallel input register.

Lucent Technologies Inc. 8-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Parallel I/0O (DSP1617 Only)

8.2 Programmer Interface (continued)

8.2.2 Latent Reads (continued)

. PIDS
STROBES
Y L
EXTERNAL
DEVICE
Y ‘ ‘
IDB
1
6 pdx [IN] PB (8)
y~—
DSP1617

Figure 8-11. PIO Latent Reads Hardware

Information Manual
April 1998

5-4196

cKo _T_/—T_/—T_/—T_/—T\I

PSEL[2:0] >O< VALID

PIDS \—/—\—/7

VALID

PB Wi

VALID ><

*r0 = pdx0 *r0 = pdx0

2-CYCLE DATA MOVE RESULTS NEXT 2-CYCLE DATA MOVE

IN MEANINGLESS DATA TO MEMORY, RESULTS IN TRANSFER OF W2

GENERATES EXTERNAL READ OF W1. TO MEMORY.

Figure 8-12. PIO Latent Reads Timing

8-18

5-4197.a

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel /O (DSP1617 Only)

8.2 Programmer Interface (continued)
8.2.3 Power Management

Bit 5 of the powerc register (PIO1DIS) is a powerdown signal to the PIO 1/O unit. It disables the clock input to the
unit, thus eliminating any sleep power associated with the P1O. Because the gating of the clocks can result in
incomplete transactions, it is recommended that this option be used in applications where the PIO is not used or if
reset can be used to reenable the PIO unit. Otherwise, the first transaction after reenabling the unit might be cor-
rupted.

8.3 Interrupts and the PIO

PIO events can generate two internal interrupts. An internal interrupt is generated (provided it is unmasked) if an
external device performs a passive mode write. If the external device drives PIDS high, an internal interrupt
request is generated. When the DSP accepts this interrupt request, the IACK signal is asserted. When the inter-
rupt routine is completed, IACK is negated (becomes logic 0). Similarly, if an external device performs a passive
read, an internal interrupt request is generated after PODS is driven high. When the DSP accepts this interrupt
request, the IACK signal is asserted. When the interrupt routine has completed, IACK is negated (becomes logic
0). See Section 3.4, Interrupts, for more information on how the DSP reacts to interrupts.

If the DSP is in the passive mode, the interrupt mechanism synchronizes a data source with the program being run
by the DSP. A data source provides data to the DSP via passive writes. During the associated interrupt routine,
the DSP program performs I/O functions. The receipt of data and the conclusion of the interrupt service routine by
the DSP is indicated to the external data source by the falling edge (high-to-low) transition of the IACK signal.

If the PIDS signal is active, the pdx [IN] register is shadowed during interrupts. This allows the parallel input to be
used during interrupts without the possibility of destroying data previously fetched via a latent PIO read. When the
interrupt service routine is exited, pdx[IN] is loaded with its previous value (prior to the interrupt). If the parallel
input is changed from active to passive during the interrupt, the shadowing feature is disabled.

Interrupts Controlled by the pioc : (also controlled by the inc register)
m Interrupts caused by an external device writing to the DSP's serial port. This type of interrupt is masked if bit 9 of
the pioc register is set to logic 0.

m Interrupts caused by an external device reading from the DSP's serial port. This type of interrupt is masked if bit
8 of the pioc register is set to logic 0.

m Interrupts caused by an external device writing to the DSP's parallel porti the DSP is in passive mode. This type
of interrupt is masked if bit 7 of the pioc register is set to logic 0.

m Interrupts caused by an external device reading from the DSP's parallel port if the DSP is in passive mode. This
type of interrupt is masked if bit 6 of the pioc register is set to logic 0.

m Interrupts caused by an external device asserting the INTO pin. This type of interrupt is masked if bit 5 of the
pioc register is set to logic O.

If the five above interrupts are enabled in the pioc and not in the inc register, they will operate in a mode compati-
ble with the DSP16A (i.e., all vectored to location 0x1). If enabled in the inc register, they vector to separate loca-
tions (see Section 3.4, Interrupts).

Lucent Technologies Inc. 8-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.3 Interrupts and the PIO (continued)

Bits 4—0 of the pioc indicate whether an interrupt was generated by IBF, OBE, PIDS, PODS, or INTO. These bits
can be read by an interrupt service routine to determine which interrupt(s) have occurred and, hence, how to pro-
ceed to service the interrupt request. These status bits are also used to perform programmed 1/O by polling some
conditions when necessary. It is important to note that pending interrupt status bits are cleared under the following
conditions:

m IBF (pioc [4]) indicates that the serial /O input buffer is full. It is cleared by reading from the sdx (serial I/O) reg-
ister.

m OBE (pioc [3]) indicates that the serial output buffer is empty. It is cleared when a write to the sdx (serial I1/0) reg-
ister is performed.

m PIDS (pioc [2]) indicates that an external device has written into the DSP's PIO register. Reading from the PIO
register (pdx0 through pdx7), either inside or outside an interrupt routine, clears this bit. This interrupt can occur
only if the DSP is in the passive mode; accordingly, the DSP reading from the PIO registers to clear pioc [2] does
not cause an external read transaction to take place.

m PODS (pioc [1]) indicates that an external device has read from the DSP's PIO register. Writing to the PIO regis-
ter (pdx0 through pdx7), either inside or outside an interrupt routine, clears this bit. This interrupt can occur only
if the DSP is in the passive mode; accordingly, writing to the PIO registers (to clear pioc [1]) does not cause an
external write transaction to take place.

m INTO (pioc [0]) indicates that an external device has asserted the INTO signal. It is cleared when the interrupt
acknowledge (IACK) signal makes a high-to-low transition indicating that the interrupt service routine has
completed. If external interrupts are masked, this bit will not be set if INTO is asserted. This bit can be cleared
only if an ireturn instruction causes the high-to-low transition of IACK.

Note: There is a latency of one instruction cycle if altering the INTERRUPTS field of the pioc register. For exam-
ple, if interrupts are disabled with the command pioc = 0x00 , the DSP still responds to an interrupt during
the next instruction. After this instruction is executed, the interrupts are disabled. Therefore, to protect an
instruction sequence from interrupts, follow the command to mask the INTERRUPTS field of the pioc regis-
ter with one instruction that can be safely interrupted.

8-20 Lucent Technologies Inc.

Information Manual

April 1998

8.4 PIO Signals

Table 8-7. PIO Signals

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Parallel /O (DSP1617 Only)

Symbol

Type T

Name/Description

PB[7:0]

I/O*

P10 Data Bus. This 8-bit bidirectional bus is used to input data to or output data
from the PIO. It is 3-stated by the DSP unless PODS is low.

PSEL[2:0]

I/O*

Peripheral Select 0—2 . When both input and output are in active mode, this 3-bit
field is an output that can be decoded to determine which of the eight logical chan-
nels (pdx<0—7>) data is to be conveyed to or from. If the PIO is set up to have
passive input or output, PSEL2 becomes an input that acts as a chip select. In this
capacity, the chip is selected if PSEL2 is low.

PSEL1

I/O*

When active output mode is used, PSEL1 and PSELO form a 2-bit field selecting
between four channels (pdx<0—3>). When passive output mode is used, PSEL1
becomes an input. If driven high, the PIO will output the contents of the PSTAT reg-
ister; otherwise, it will output the contents of pdx. PSELO is always an output.

PSELO

Of

As long as either input or output is configured for active mode, this pin indicates
which channel is being written. When both input and output are in passive mode,
PSELO becomes the logical OR of PIBF and POBE.

PIDS

I/O*

Parallel Input Data Strobe . Negative assertion. In active mode, PIDS is an
output. When PIDS is driven low, data can be placed onto the PB bus. When PIDS
goes high, data should be removed from the PB bus. PIDS is asserted by the DSP
during active mode read transaction. In passive mode, PIDS is an input. When
asserted by an external device, this signal indicates that data is available on the PB
bus. In both passive and active modes, the trailing edge (low-to-high transition) of
PIDS is the sampling point.

PODS

I/O*

Parallel Output Data Strobe . Negative assertion. In active mode, PODS is an
output. When PODS goes low, data is available on the PB bus. PODS is asserted
by the DSP during an active mode write transaction. In passive mode, PODS is an
input. When PODS is driven low by an external device, the DSP places the con-
tents of its parallel output register (pdx<0—7>) onto the PB bus.

PIBF

Of

Parallel Input Buffer Full. Positive assertion. When PIDS is placed in active
mode, this flag is cleared. Itis also cleared after reset. It can only be set when
PIDS is passive. lItis set one cycle after the rising edge of PIDS indicating that data
has been latched into the pdx [IN]. When the DSP reads the contents of this regis-
ter emptying the buffer, the flag is cleared.

POBE

Of

Parallel Output Buffer Empty . Positive assertion. When PODS is placed in active
mode, this flag is cleared. Itis also cleared after reset. It can only be set when
PODS is passive. In this case, it is set one cycle after the rising edge of PODS indi-
cating that the data in pdx [OUT] has been driven onto the PB bus. When the DSP
writes to this register filling the buffer, the flag is cleared.

11 =input; O = output.
1 3-stated.

Lucent Technologies Inc.

8-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel I/0O (DSP1617 Only) April 1998

8.4 PIO Signals (continued)
8.4.1 PIO Pin Multiplexing
The PIO pins are multiplexed with BIO and SIO pins. The PIO functions are selected at the pins by clearing bit 10,

(ESIO2) in the ioc register. Table 8-8 lists the pins and the corresponding functions. (For more details, see Section
15.1, Pin Information.)

Table 8-8. PIO Pin Multiplexing

BQFP Pin | TQFP Pin Symbol

65 52 IOBIT3/PB7
66 53 IOBIT2/PB6
67 54 IOBIT1/PB5
68 55 IOBITO/PB4
70 57 SADD2/PB3
71 58 DOEN2/PB2
72 59 DI2/PB1
73 60 ICK2/PBO
74 61 OBEZ2/POBE
76 63 IBF2/PIBF
77 64 OLD2/PODS
78 65 ILD2/PIDS

8.5 PIO Loopback Test Mode

The DSP provides a number of features that can test the device's operation. The PIO can be self-tested by using a
loopback feature. This mode is selected in one of two ways: by setting the PIOLB bit in the jcon register (see Sec-
tion 11.3.8, The JTAG Control Register—JCON, for information about the jcon register) or setting the PIOLBC bit in
the ioc register. The ioc register can be modified by the user under program control, but jcon can only be written

to through JTAG.

For P10 loopback to operate properly, the user must set PODS in active mode and PIDS in passive mode by setting
bit 12 and clearing bit 11 in the pioc. PIDS could be configured in active mode, but the data looping back would
suffer from the latency inherent in active mode reads (see Section 8.2.2, Latent Reads).

When the PIOLB bit is set—the PIO is configured for loopback, the PB pins are 3-stated, and an internal connec-
tion is made between pdx [OUT] and pdx [IN]. Both PODS and PIDS are 3-stated as well, and PODS now drives
PIDS internally. Therefore, whenever the DSP performs a PIO write, a PIO read is automatically performed. For
example, the following instructions

pdx0=0xA34A
*r1=pdx0

result in these actions: In the first instruction, the immediate hexadecimal value 0xA34A is moved into pdx [OUT]
where it is transferred to pdx [IN]. When the PIO is read in the next instruction, the same data is transferred to the
memory location pointed to by *r1.

If the interrupt on PIDS is enabled and the PIO read is performed in an interrupt service routine, the program
should have several nops between each PIO output to allow enough cycles for the interrupt to be taken. Later,
when the PIO is released from loopback (again by modifying either the jcon orioc register), the data could be ver-
ified by writing to the parallel port again. As an alternative while the PIO is still configured for loopback, the data
could be written to the serial port or written to external RAM.

8-22 Lucent Technologies Inc.

Chapter 9

Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

OOodoooooooogoogno

©

CHAPTER 9. PARALLEL HOST INTERFACE (PHIF) (DSP1611/18/27/28/29 ONLY)

CONTENTS
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 ONIY) ...cccuuiiiiiiiiie ettt a e 9-1
(S5 R = o [o @ o 1= = 1 o o PP PURTR 9-2
9.11 JLa1 =] Y (Yo L ST o T =T T 9-3
9.1.2 JLa1 =] Y [Yo L ST o 1 ALY/ 1 (= 9-4
9.1.3 Motorola Mode, 16-Bit REAAcccvuuiiiiiieiiieee ettt e e e e et e e e e e e e e s e erenans 9-5
9.14 Motorola Mode, 16-Bit WILEiiiereieiee et e et e ettt e e ee e et e e e et e e e eaareeeanaas 9-6
9.1.5 B-BIt TrANSTEIS ...ttt 9-7
9.1.6 ACCESSING the PSTAT REQISIET ...eiiiiiiiiiiiiiiiie ettt e e st e e e e e s ssnbaeees 9-7
9.2 Programmer INTEITACEuuieiiiie ettt e e e e e et e e e e e e st bbb et eeeestba et aaeeeaa e e e s anbarreeeas 9-8
9.2.1 PNIfC REQISIEN SELHNGS ..iiiiiiiiiiiiiiie et e e e ee s s bbb r e e e e s s sabbreeeas 9-8
9.2.2 POWET MANAGEMENT ...ttt e e e e e e e eeee e 9-10
9.3 INterrupts @Nd the PHIF ...t e e e e e e e e e st be e e e e s ntbaee seennnbreeeeas 9-10
9.4 PHIF Pin MURIPIEXING ... ettt ettt et e e e s ettt e e e e s s s bbb e e e e e e s snne et e e e e san e e e s snnnbbneeeas 9-11

9.5 Overall FUNCHONAI TIMING .oiiieiiiiiiiiiiiee et e e e e e e e st e e aeeeeasnbbe e e e e annsbaeee sennnnbneenas 9-12

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

9 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

The PHIF is an 8-bit parallel port that can interface to an 8-bit bus containing other Lucent Technologies DSPs
(e.g., DSP1611, DSP1616, DSP1628, ...), microprocessors, or peripheral /0 devices. The PHIF port supports
either Motorola or Intel protocols as well as 8- or 16-bit transfers configured in software. The port data rate
depends upon the instruction cycle rate. If not used, the PHIF can be powered down via the powerc register. The
PHIF pins are multiplexed with BIO and SIO2 pins, and selection is controlled from the ioc register (see Section
3.1, Register View of the DSP1611/17/18/27/28/29).

The PHIF is accessed in 8- or 16-bit mode. In 16-bit mode, the host determines access of the high or low byte. In
8-bit mode, only the low byte is accessed. In both modes, the host controller provides the strobes to control the
transfer of data; hence, the PHIF is always in a passive mode. Software-programmable features allow for a glue-
less host interface to microprocessors.

Figure 9-1 shows the DSP PHIF unit at the block level. The data path of the PHIF is comprised of a 16-bit input
buffer (pdx0 (IN)) and a 16-bit output buffer (pdx0 (OUT)). Two DSP interrupts indicate the status of the two pdx0
buffers. PIBF (parallel input buffer full) is set when pdx0 (IN) is written by an external device and is cleared when
pdx0 (IN) is read by the DSP. POBE (parallel output buffer empty) is set when the external device reads

pdx0 (OUT) and is cleared when the DSP writes pdx0 (OUT). Two pins, PIBF (parallel input buffer full) and POBE
(parallel output buffer empty), indicate the state of these interrupts; and the PSTAT register allows these interrupts
to be read over the PB bus. The PIDS and PODS input pins are driven by an external controller to latch data into
pdx0 (IN) and pdx0 (OUT) respectively. In Motorola mode, the PIDS pin becomes PRWN selecting read or write for
the interface and PODS becomes PDS latching data for both read and write. The PHIF control register (phifc) is
used to set the PHIF into a variety of modes. Input pin PCSN is a chip select pin, and input PBSEL selects the high
byte or the low byte for 16-bit transfers.

8
PB [7:0] = > i PHIF
8 8
Y Y A AN
pdxO(IN)[15:8] pdx0(IN)[7:0]
PIDS/IPRWN ————»
PODS/PDS ———»
PCSN ———» 8
PSTAT ———
PBSEL ———
PIBF -— pdx0(OUT)[15:8] pdx0(OUT)[7:0]
POBE -——— 8 8 DB
Y
2|, PIBF,
POBE
| PSTAT (8) 16
| phifc (16) v

5-4187.a

Figure 9-1. Parallel Host Interface

Lucent Technologies Inc. 9-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.1 PHIF Operation

The PHIF is an asynchronous interface whose timing is controlled by an external host. The host initiates a read or
write of the port and controls the timing with the PIDS and PODS data strobes. The DSP program reacts to the
ensuing interrupt either by processing an interrupt service routine from an enabled interrupt or by polling the ins
(interrupt status) register to see if an interrupt has occurred.

The PHIF is compatible with two standard interfaces: one defined by Intel and one by Motorola. In the Intel mode,
PIDS is the input data strobe and PODS is the output data strobe with respect to the DSP. In Motorola mode, PIDS
is renamed PRWN (parallel read/write not) and selects between a read and a write. PODS is renamed PDS and
becomes the data strobe for both input and output.

Providing their respective interrupt mask bits are set (logic 1) in the inc register, the assertion of PIDS and PODS
by an external device causes a PIBF or POBE interrupt to the DSP to become pending. (See Section 3.4, Inter-
rupts, for more information.) PIBF and POBE are available at output pins and are used by the external host to
achieve functional synchronization with the DSP.

Pin Functions
This interface pin-multiplexes the parallel host interface with the second serial I/O interface and the 4-bit I/O inter-

face. The interface selection is made by writing the ESIO2 bit in the ioc register (see Section 9.4, PHIF Pin
Multiplexing). A zero value for ESIO2 selects the PHIF pins and is the default setting after device reset.

9-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

9.1 PHIF Operation (continued)
9.1.1 Intel Mode, 16-Bit Read

The external device drives PCSN, PODS, and PBSEL. The DSP places data on PB for the external device to read.
In the Intel mode, PIDS is the input data strobe and PODS is the output data strobe with respect to the DSP.

Initially, PB is 3-stated. Valid data is placed on PB if both PCSN (chip select) and PODS (output data strobe) are
low. The timing of this action is initiated by whichever of the two goes low last. PBSEL (byte-select) is low, so the
low byte from the pdx0 (OUT) register is placed on PB. If PODS is driven high by the external device, the data is
latched externally and the DSP can again 3-state the PB. The timing of this action is controlled by PODS or PCSN,
whichever goes high first. PBSEL can now be driven high to select the high byte of pdx0 (OUT). The sense of
PBSEL can be reversed by programming the phifc register. The default state is shown here. The cycle is com-
pleted by another strobe from PCSN and PODS. After the high byte is latched into the external device on the rising
edge of PODS, the POBE interrupt is generated and the POBE output pin goes high.

PCSN \
(CHIP SELECT) /

PODS, FROM ‘ ‘
EXTERNAL DEVICE ‘
\

PBSELT |

— N

PB, FROM DSP

POBET

LOW BYTE READ HIGH BYTE READ

T The logic levels of these pins can be inverted by programming the phifc register.
5-4495

Figure 9-2. Intel Mode, 16-Bit Read

Lucent Technologies Inc. 9-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.1 PHIF Operation (continued)
9.1.2 Intel Mode, 16-Bit Write

The external device drives PCSN, PIDS, PBSEL, and PB.
In the Intel mode, PIDS is the input data strobe and PODS is the output data strobe with respect to the DSP.

Initially, PB is 3-stated. Data is enabled into the DSP if both PCSN (chip select) and PIDS (input data strobe) are
low. The timing of this action is controlled by whichever of the two goes low last. PBSEL (byte-select) is low, so the
data is transferred to the low byte of the pdx0 (IN) register. If PIDS is driven high by the external device, the data is
latched by the DSP. The timing of this action is controlled by PIDS or PCSN whichever goes high first. PBSEL can
now be driven high to transfer data to the high byte of pdx0 (IN). The sense of PBSEL can be reversed by pro-
gramming the phifc register. The default state is shown here. The cycle is completed by another strobe from
PCSN and PIDS. After the rising edge of PIDS latches the high byte into the DSP, the PIBF interrupt is generated
and the PIBF output pin goes high.

PCSN \
(CHIP SELECT) /

PIDS, FROM
EXTERNAL DEVICE

|
|
|
PBSEL' | /) \ |
\ |
PB, FROM */ 1 1
1 1
| |

EXTERNAL DEVICE

PIBF! S

LOW BYTE WRITE HIGH BYTE WRITE

T The logic levels of these pins can be inverted by programming the phifc register.
5-4496

Figure 9-3. Intel Mode, 16-Bit Write

9-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

9.1 PHIF Operation (continued)
9.1.3 Motorola Mode, 16-Bit Read

The external device drives PCSN, PRWN, PODS/PDS, and PIDS/PBSEL. The DSP drives PB.

In Motorola mode, PIDS is renamed PRWN (parallel read/write not) and selects a read or a write. PODS is
renamed PDS and is the data strobe for both input and output.

Initially, PB is 3-stated. The read operation is selected if PRWN is high during the transaction. Valid data is placed
on PB if both PCSN (chip select) and PDS (input data strobe) are low. The timing of this action is controlled by
whichever of the two goes low last. PBSEL (byte-select) is low, so the low byte from the pdx0 (OUT) register is
placed on PB. If PDS is driven high by the external device, the data is latched externally and the DSP can again 3-
state the PB. The timing of this action is controlled by PDS or PCSN, whichever goes high first. PBSEL can now
be driven high to select the high byte of pdx0 (OUT). The sense of PBSEL and PDS can be reversed by program-
ming the phifc register. The default state is shown here. The cycle is completed by another strobe from PCSN
and PDS. After the rising edge of PDS latches the high byte into the external device, the POBE interrupt is gener-
ated and the POBE output pin goes high.

PCSN \
(CHIP SELECT) \ / /
PIDS/PRWN / \

PODS/PDS', FROM
EXTERNAL DEVICE

i — \

PB, FROM DSP

POBET /4/

LOW BYTE READ HIGH BYTE READ

T The logic levels of these pins can be inverted by programming the phifc register.
5-4497

Figure 9-4. Motorola Mode, 16-Bit Read

Lucent Technologies Inc. 9-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.1 PHIF Operation (continued)
9.1.4 Motorola Mode, 16-Bit Write

The external device drives PCSN, PIDS/PRWN, PODS/PDS, PBSEL, and PB.

In Motorola mode, PIDS is renamed PRWN (parallel read/write not) and selects a read or a write. PODS is
renamed PDS and is the data strobe for both input and output.

Initially, PB is 3-stated. The write mode is selected if PIDS/PRWN is low, and the write is initiated by either PCSN
or PODS/PDS. Data is enabled into the DSP if both PCSN (chip select) and PODS/PDS (input data strobe) are
low. The timing of this action is controlled by whichever of the two goes low last. PBSEL (byte select) is low, so the
data is transferred to the low byte of the pdx0 (IN) register. If PODS/PDS is driven high by the external device, the
data is latched by the DSP. The timing of this action is controlled by PODS/PDS or PCSN, whichever goes high
first. PBSEL can now be driven high to select the high byte of pdx0 (IN). The sense of PBSEL and PODS/PDS can
be reversed by programming the phifc register. The default state is shown here. The cycle is completed by
another strobe from PCSN and PODS/PDS. After the rising edge of PODS/PDS latches the high byte into the DSP,
the PIBF interrupt is generated and the PIBF output pin goes high. The PIBF interrupt is reset when the DSP reads
pdx0 (IN).

PCSN \
(CHIP SELECT) /
PIDS/PRWN \ /

PODS/PDS', FROM
EXTERNAL DEVICE

PBSELT

1
— :

EXTERNAL DEVICE

o
PIBF! /

LOW BYTE WRITE HIGH BYTE WRITE

T The logic levels of these pins can be inverted by programming the phifc register.
5-4498

Figure 9-5. Motorola Mode, 16-Bit Write

9-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

9.1 PHIF Operation (continued)
9.1.5 8-Bit Transfers

Eight-bit transfers are selected by setting the PMODE bit of the phifc . The timing figures for 8-bit mode look like
one-half of the 16-bit timing figures with the exception that the interrupts PIBF and POBE are set after every
instance of PIDS/PRWN or PODS/PDS in 8-bit mode.

9.1.6 Accessing the PSTAT Register

Polling the PSTAT register (performed by holding the PSTAT high during a read) provides PHIF status externally
without requiring any extra pins. This register cannot be read or written under program control and is read only
over the PB. lIts sole purpose is to be polled by an external device. The DSP itself is completely oblivious to the
fact that PSTAT has been read. The state of pdx0 (IN), pdx0 (OUT), and the flags are unaffected, and no internal
interrupt is generated. Table 9-1 describes the PSTAT register. The functional timing sequence for polling the
PSTAT register is the same as for the pdx0 (OUT) register shown previously.

Table 9-1. The PHIF Status Register, PSTAT

Bit 7—2 1 0

Field Zeros PIBF POBE

Polling the PSTAT register yields the following information:

m PIBF: If 1, the parallel input buffer (pdx0 (IN)) is full. This bit has the same value as the pin by the same name.
In Intel mode, this bit is set if PIDS latches data into pdx0 (IN). In Motorola mode, this bit is set if PDS latches
data into pdx0 (IN). In both cases, it is cleared when the DSP reads pdxO0 (IN).

m POBE: If 1, the parallel output buffer (pdx0 (OUT)) is empty. The definition of this pin can be inverted to be
active-low by writing a 1 to the PSOBEF field of the phifc register. This bit has the same value as the pin by the
same name. In Intel mode, this bit is set if PODS latches data into pdx0 (OUT). In Motorola mode, this bit is set
if PDS latches data into pdx0 (OUT). In both cases, it is cleared when the DSP writes pdx0 (OUT).

Lucent Technologies Inc. 9-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.2 Programmer Interface

The PHIF port can be accessed with any DSP instruction that reads or writes to pdx0 in the general group of
registers. The DSP reads the port by transferring data from the pdx0 (IN) register and writes the port by transfer-
ring data to the pdx0 (OUT) register. Although there are two separate physical registers (pdx0 (IN) and

pdx0 (OUT)), DSP instructions use the single syntax (pdx0) for both. The register that is accessed depends on
whether the register is read or written by the instruction:

al=pdx0 [* Transfers data to the accumulator al from pdxO0(in) */
pdx0=al /* Transfers data from accumulator al to pdxO(out) *

9.2.1 phifc Register Settings

The PHIF control register (phifc) is a 16-bit user-accessible register used to configure some features of the PHIF
(see Table 9-2 and Table 9-3 on page 9). On powerup or if the RSTB signal is asserted, the contents of the phifc
register are cleared resulting in the following default configuration: PHIF always enabled (PBSEL internally tied to
zero), Intel protocol, 8-bit transfers, pdx0 low byte selected (or PSTAT selected if PSTAT pin is asserted for a read
operation) if PBSL = 0, and the POBE flag is read through the PSTAT register as active-high.

Table 9-2. Parallel Host Interface Control (phifc) Register

Bit 15—7 6 5 4 3 2 1 0
Field Reserved PSOBEF |PFLAGSEL |PFLAG |PBSELF |PSTRB |PSTROBE [PMODE
Field Value Description
PSOBEF 0 Normal.
1 POBE flag as read through PSTAT register is active-low.
PFLAGSEL| O Normal.
1 PIBF flag ORed with POBE flag and output on PIBF pin; POBE pin unchanged.
PFLAG 0 PIBF and POBE pins active-high.
1 PIBF and POBE pins active-low.
PBSELF 0 If PBSEL pin = 0, pdx0 low byte (or PSTAT register if PSTAT pin is asserted for a read
operation) is selected. (See Table 9-4 on page 11.)
1 If PBSEL pin = 1, pdx0 low byte (or PSTAT register if PSTAT pin is asserted for a read
operation) is selected. (See Table 9-4 on page 11.)
PSTRB 0 If PSTROBE = 1, PODS pin (PDS) active-low.
1 If PSTROBE = 1, PODS pin (PDS) active-high.
PSTROBE 0 Intel protocol: PIDS and PODS data strobes.
1 Motorola protocol: PRWN and PDS data strobes.
PMODE 0 8-bit data transfers.
1 16-bit data transfers.

T See Table 9-3 on page 9 for selecting high byte.

9-8 Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

Information Manual
April 1998

9.2 Programmer Interface (continued)

9.2.1 phifc Register Settings (continued)

Table 9-3. phifc Register PHIF Function (8-bit and 16-bit Modes)

PMODE Field |PSTAT Pin |PBSEL Pin |PBSELF Field=0 * PBSELF Field=1* POBF/PIBF Flag

0 (8-hit) 0 0 pdx0 low byte Reserved set

1 Reserved pdx0 low byte set

1 0 PSTAT register Reserved? —

1 Reserved* PSTAT register —

1 (16-bit) 0 0 pdx0 low byte pdx0 high byte set

1 pdx0 high byte pdx0 low byte set

1 0 PSTAT register Reserved? —

1 Reserved* PSTAT register —

T These columns indicates the conditions under which the POBE or PIBF flag is set following a read or write of the pdx0 register.
F If a reserved condition exists (e.g., PSTAT = PBSEL = 0 and PBSELF = 1) and a read or write operation occurs, no flag is set.

PMODE

PMODE selects 8-bit or 16-bit mode. In 16-bit mode, the DSP generates the PIBF and POBE interrupts after both
bytes have been transferred where the order of the bytes is determined by the PBSELF field and the PBSEL pin.
In 8-bit mode, the DSP generates the interrupts after each byte.

PSTROBE

PSTROBE selects either Intel mode or Motorola mode. In Intel mode, the data is strobed by two pins named PIDS
(parallel input data strobe) and PODS (parallel output data strobe). In Motorola mode, the same two pins function
differently and are named PRWN (parallel read/write not) and PDS (parallel data strobe). PRWN selects either a
read or a write, and PDS strobes both reads and writes.

PSTRB

This field defines PDS (Motorola mode) as active-high or active-low.

PBSELF

PBSELF determines whether a one on the PBSEL byte-select pin corresponds to a high byte or to a low byte.
PFLAG

PFLAG inverts the definition of the PIBF and POBE pins.

PFLAGSEL

PFLAGSEL, if set to a one, causes both the PIBF and the POBE flags to appear on the PIBF pin by ORing PIBF
and POBE together. The POBE pin is unchanged. This allows the single pin (PIBF) to be used to indicate the tim-

ing.

Lucent Technologies Inc. 9-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.2 Programmer Interface (continued)
9.2.1 phifc Register Settings (continued)
PSOBEF

Setting PSOBEF to a one inverts the definition of the POBE flag in the PSTAT register to become active-low.

Powerup and Reset: The contents of the phifc register are cleared if the RSTB signal is asserted. The state of
the PHIF after powerup and reset is presented in Table 9-2 on page 8. Powerup and reset leave all zeros in the
phifc register.

9.2.2 Power Management

Bit 5 of the powerc register (PHIFDIS) is a power-down signal to the PHIF I/O unit. It disables the clock input to the
unit eliminating any sleep power associated with the PHIF. Because gating of the clocks might result in incomplete
transactions, it is recommended that this option be used in applications where the PHIF is not used or if reset can
be used to re-enable the PHIF unit. Otherwise, the first transaction after re-enabling the unit might be corrupted.

9.3 Interrupts and the PHIF

PHIF events can generate two internal interrupts. When PIDS/PRWN or PODS/PDS complete a data write or read,
they generate the PIBF and POBE flags, respectively. Each of these flags is represented in three places in the
DSP: in the ins register, as output pins, and in the PSTAT register. The occurrence of PIBF or POBE in the ins reg-
ister indicates an interrupt pending to the DSP, but it is not acted on unless enabled in the inc (interrupt control)
register. If enabled, the DSP accepts the interrupt request, the IACK (interrupt acknowledge) signal is asserted,
and the interrupt service routine is started. When the interrupt routine is completed by reading or writing pdx0,
IACK is negated (becomes logic 0). (See Section 3.4, Interrupts, for more information on how the DSP reacts to
interrupts.)

The interrupt mechanism synchronizes a data source with the program being run by the DSP. For example, a data
source provides data to the DSP via writes. During the interrupt routine associated with PIBF, the DSP program
performs 1/O functions including reading pdx0. The receipt of data and the conclusion of the interrupt service rou-
tine by the DSP is indicated to the external data source by the falling edge (high-to-low) transition of the IACK sig-
nal. Typically, the end of the interrupt service routine is indicated to the external device directly with the falling edge
of the PIBF flag either on the pin or in the PSTAT register. The external device can then initiate another transfer.

Interrupts in the Status and Control Interrupt Registers

Bit 3 (PIBF) and bit 4 (POBE) in the ins register indicate an interrupt was generated by PIDS/PRWN or PODS/PDS
respectively. These are vectored interrupts: an interrupt generated from PIBF sets the program counter to location
0x34 and from POBE to 0x38. These status bits in ins can also be polled to perform programmed 1/O.

Pending interrupt status bits are cleared under the following conditions:

m PIBF (ins[3]) indicates that an external device has written into the DSP's pdx0 (IN) register. PIBF is cleared
when the DSP program reads pdx0 either inside or outside an interrupt routine.

m POBE (ins[2]) indicates that an external device has read from the DSP's pdx0 (OUT) register. POBE is cleared
when the DSP program writes pdx0 either inside or outside an interrupt routine.

9-10 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)

9.3 Interrupts and the PHIF (continued)

The PHIF interrupts must be enabled in the inc register to be acted on. If set, bit 3 of inc enables PIBF and bit 2
enables POBE. If the interrupts are not enabled in the inc register, they will still appear in the ins register, on the
output pins, and on PSTAT, but the vectored interrupt will not be generated.

Note: There is a one instruction latency if altering the PIBF and POBE fields of the inc register. For example, if
interrupts are disabled with the command inc = 0x0000 , the DSP still responds to an interrupt during the
next instruction. After this instruction has executed, the interrupts are disabled. Therefore, to protect an
instruction sequence from interrupts, follow the command to mask the PIBF and POBE fields of the inc reg-
ister with one instruction that can be safely interrupted.

9.4 PHIF Pin Multiplexing

The PHIF pins are multiplexed with BIO and SIO pins. The PHIF functions are selected at the pins by writing bit 10
(ESIO2) to zero in the ioc register. This is the default value after reset. Table 9-4 lists the pins and the correspond-
ing functions. (For more details, see Section 15.1, Pin Information.)

Table 9-4. PHIF Pin Multiplexing of Active Signals

Signal to Pin Signal to Pin
for (ioc Register bit 10) for (ioc Register bit 10)
ESIO2 =1 ESIO2=0
IOBIT3 PB7
IOBIT2 PB6
IOBIT1 PB5
IOBITO PB4
SADD2 PB3
DOEN2 PB2
DI2 PB1
ICK2 PBO
OBE2 POBE
IBF2 PIBF
OoLD2 PODS
ILD2 PIDS
SYNC2 PBSEL
DO2 PSTAT
OCK2 PCSN

Lucent Technologies Inc. 9-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only) April 1998

9.5 Overall Functional Timing

Figure 9-6 shows the overall timing diagram for an 8-bit read by an external device. Initially, the external device
drives PODS low enabling the data from the DSP onto PB and into the external device (assuming that PCSN is
low). When PODS goes high, the data is latched into the external device and the POBE interrupt goes high as the
pdx0 (OUT) is emptied. It is assumed that POBE is enabled in the inc register, and no other interrupts are
pending. These actions occur during the time intervals labelled on the timing diagram:

A: The POBE interrupt is synchronized and latched in an interrupt pending latch.

B: The DSP is executing an interruptible instruction.

C, D: The DSP branches to the interrupt service routine (ISR) for POBE.

E. The DSP executes the first instruction in the ISR, for example, pdx0 = a0

F: POBE is reset as the output buffer is written by the DSP. The external device can again strobe PODS.

G: The read cycle can then repeat. At least seven instruction cycles are required for the total read cycle.

oo | || | | | | | | | |
POBE —/ 74/7
Pops ___/ NV

5-4499

Figure 9-6. Overall PHIF Read Cycle

9-12 Lucent Technologies Inc.

Chapter 10

Bit I/O Unit

CHAPTER 10. BIT I/O UNIT

CONTENTS
I O T =TT 1L T 1 S TR 10-1
O 10.1 BIO HArdWare FUNCHONcoveieviitiitiieteeteetee ettt sttt sttt te b besbesb et etesbesbbe st e s ebesae s ebesbesens 10-1
0 10.1.1 BIO CONfIGUIEd S INPULScvveviieiiieite et eeee ettt ettt ettt ete et eae et e e eteeveeaeeae s 10-2
0 10.1.2 BIO CONfIGUred 8S OULPULSc.oecviiueireieeeieiteeteeteeteeteeteeeeeteeteeteeteeseeeteesaraeseeaeareaesaneeeaeans 10-2
0 10.1.3 PN DESCIPLONS ...vviviieieiteceecteete ettt ettt te ettt e et et eete et e et e e teeae et e eteste et e etesaeeaeenteee e eaeees 10-3
0 10.1.4 BIO Pint MURIPIEXING ...ovveiviiviieieeecee ettt ettt ettt ete et e et e eae et ete s e nes 10-4
O 10.2 SOMWAIE VIBWcuvciiveitiieie sttt ettt sttt sttt sttt te et et e st ebe s b et essebe et e ssesaebe et be st e s sb e s enesbe e esnens 10-4
0 10.2.1 REUISIEIS ...oouviiieeeeeieete ettt ee e et te et e et e e teete et et e e teeteeaeeeteeteeteeneeteeteeteetestesteenee s aeeneeeaeaees 10-5
0 0T 20 =i = Vo L= ORI 10-6
O 10.2.3 INSITUCHONS ..cvvivivisiitieteitetese ettt et be st et e st et e ete st e e ebesbesbe e etesbesbe s eseebesbebe st esseresae s besbesbeneas 10-6
0 10.2.4 EXAMPIES ..oovviieiieeeeieeee ettt ettt ettt ettt te ettt et et ettt et et et et e e teete et e te e erte et eaes 10-6

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

10 Bit I/0O Unit

The Bit I/0 (BIO) Unit for the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and DSP1629 provides eight
bidirectional pins for monitor or control functions. The pins are multiplexed with the PIOY/PHIF2 and interrupt state
pins. The BIO features include:

m Each pin can be an input or an output independent of the others and can be changed back and forth by the pro-
gram.

m Data on inputs can be read directly into the DSP or can be compared with a stored pattern with or without
masking. Flags are set based on the result.

m Data from the DSP can be placed directly on outputs, or the outputs can be toggled or left unchanged.
The BIO is mainly intended for status and control but is also useful for general data purposes.

This chapter describes the BIO hardware function and the software view including register encodings, sample pro-
grams, and pertinent instructions.

10.1 BIO Hardware Function

Figure 10-1 is the block diagram for the BIO. Eight bidirectional pins (IOBIT[7:0]) go off-chip from the BIO. The
interface to the internal part of the DSP is through the internal data bus (IDB) and the flags. Data move instructions
transfer information to and from the BIO control registers over the IDB. The flags are set based on tests done on
the data on the IOBIT input pins.

ioc (10) ——

\J
PB[7:4]«— »

- > PB[7:4)/I0BIT[3:0]

A
Y

PN
N

|

| .
6 BIO | I0BIT[7:0]

|

A
Y

‘ MUX [» VEC[3:0]/10BIT[7:4]

FLAGS VEC[3:0] —»/‘

ioc (12) —

DSP1611/17/18/27/28/29

5-4198

Figure 10-1. BIO Block Diagram

Two registers (cbit and sbit) are the main components in the BIO. They are used for control of the unit and transfer
of data. The upper byte of the sbit register controls the direction of each pin independently of the others. Section
10.1.1, BIO Configured as Inputs, and Section 10.1.2, BIO Configured as Outputs describe the BIO.

1.DSP1617 only.
2.DSP1611/18/27/28/29 only.

Lucent Technologies Inc. 10-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit 1/0O Unit April 1998

10.1 BIO Hardware Function (continued)
10.1.1 BIO Configured as Inputs

Figure 10-2 is a block diagram for the BIO, and all pins are programmed by the sbit register to be inputs.

Bits [15:8] of the sbit register (DIRection) select input or output for each IOBIT pin. Bits [7:0] of sbit hold the
VALUE from the device pins and hold this VALUE whether the pin is an input or an output. The VALUE field can be
read over IDB but not written. The cbit register in the input mode contains a MASK field and a PATTERN field that
define a comparison with the input data from the pins. The MASK chooses bits to be ignored, and the PATTERN
encoding is actually compared with the unmasked bits in VALUE if a write to cbit occurs. Four flags are set based
on the comparisons. They are somef (some bits false), somet (some bits true), allf (all bits false), and allt (all bits
true).

16 < 8 % 8
|
15 8 (7 0 15 8|7
MASK PATTERN DIR VALUE
chit 8 shit
8 8 8
-
< COMPARE INPUT
- LOGIC BUFFERS
-
FLAGS é é
IOBIT[7:0]

5-4199

Figure 10-2. BIO Configured as Inputs

10.1.2 BIO Configured as Outputs

If the DIR field of shit has selected a pin or pins as outputs, the meaning of the fields in shit stay the same; that is,
they still contain the DIRection and the VALUE found on the device pins. The meaning of the bits in the cbit regis-
ter, however, changes on a bit-by-bit basis. Each bit in the upper byte of cbit affects the meaning of the corre-
sponding bit in the lower byte. The upper byte of cbit contains a MODE field in bits [15:8] and a DATA field in

bits [7:0]. If a bit in the MODE field is a one, it selects the toggle mode for which a one in the DATA field means
toggle the output and a zero in the DATA field means leave the output unchanged. If a bit in the MODE field is a
zero, it selects the data mode for which a one in the DATA field becomes an output one and a zero becomes an
output zero.

10-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Bit I/O Unit

10.1 BIO Hardware Function (continued)
10.1.2 BIO Configured as Outputs (continued)

Figure 10-3 shows the BIO configured as all outputs. The bus from the DIR field of shit controls the OUTPUT
CONTROL logic and enables the output buffers (if not enabled, the output buffers are 3-stated). The input buffers
remain connected to the sbit register and, in this case, store the value that the DSP has placed on the device pins.

If a BIO pin is switched from being an output to being an input and then back to being an output, the pin remembers
the previous output value.

15 8|7 0 15 8 |7
MODE DATA DIR VALUE

chit sbit

OUTPUT 8 INPUT
CONTROL BUFFERS
N\ / A

. ENABLE : >
8 K OUTPUT :
S BUFFERS ‘

0 O
IOBIT[7:0]

5-4203

Figure 10-3. BIO Configured as Outputs

10.1.3 Pin Descriptions
IOBIT[7:0]
Each of these bits can be independently configured as either an output or an input. As outputs, they can be inde-

pendently set, toggled, or cleared under program control. As inputs, they can be tested independently or in combi-
nations for various data patterns.

Symbol Type Name/Function
IOBIT[7:0] 1/0 Status/Control Bits 0—7

Lucent Technologies Inc. 10-3

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Bit 1/0O Unit

10.1 BIO Hardware Function (continued)
10.1.4 BIO Pin Multiplexing

The pins for the BIO are shared with functions of the PIO and the VEC[3:0] functions. Table 10-1 shows the corre-
sponding signal names. The bold font indicates the functions that are the default after RESET. The BIO functions
IOBIT[7:4] are selected if bit 12 (EBIOH) of the ioc register is set. The BIO functions IOBIT[3:0] are selected if bit
10 (ESIO?2) of the ioc register is set.

Note: After reset, VEC[3:0] are the outputs and are driven low; and if IOBIT[7:4] are to be used as inputs, EBIOH
must be set before the inputs are driven high.

Table 10-1. BIO Pin Multiplexing

Symbol Symbol
IOBITO/PB4 IOBIT4/VEC3
IOBIT1/PB5 IOBIT5/VEC2
IOBIT2/PB6 IOBIT6/VEC1
IOBIT3/PB7 IOBIT7/VECO

10.2 Software View

The cbit and sbit registers, the flags, and the pertinent instructions make up the software view. Figure 10-4 is a
flow diagram showing the decisions made for each bit to determine the configuration of the BIO. Each decision is
determined by a bit in the designated fields of the shit or cbit registers. In all cases, the data on the device pins is
stored in the VALUE field of sbit .

(sbitHIGH BYTE

ENABLE
INPUT OUTPUT
INPUT, 0
OR OUTPUT.1 | Girrer
OUTPUT?

chbit HIGH BYTE

chit HIGH BYTE
TOGGLE,1
YES, 0 NO, 1
chit LOW BYTE
(chitLOWBYTE) chit LOW BYTE

1

NO YES
IGNORE F,\’AA/‘\TTTCEFTE'
INPUT :
FLAG SETTING TOGGLE NO CHANGE 170 0TO
LOGIC OUTPUT ON OUTPUT OuUTPUT OUTPUT

5-4204

Figure 10-4. Logic Flow Diagram for BIO Configuration

10-4 Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

10.2 Software View (continued)

10.2.1 Registers

The encodings for the two registers (sbit and cbit) follow:

Table 10-2. sbit Register Encoding

Bit I/O Unit

Bit 15—8 7—0
Field DIR[7:0] VALUE[7:0]
Field Value Description
DIR Ixxxxxxx | IOBIT7 is an output (input if 0).
xIxxxxxx | IOBIT6 is an output (input if 0).
xx1xxxxx | IOBIT5 is an output (input if 0).
xxx1xxxx | IOBIT4 is an output (input if 0).
xxxx1xxx | IOBIT3 is an output (input if 0).
xxxxx1xx | IOBIT2 is an output (input if 0).
xxxxxx1x | IOBIT1 is an output (input if 0).
xxxxxxx1 | IOBITO is an output (input if 0).
VALUE | Rxxxxxxx | Reads the current value of IOBIT7.
XRxxxxxx | Reads the current value of IOBIT6.
xXRxxxxx | Reads the current value of IOBIT5.
xXXRxxxx | Reads the current value of IOBIT4.
xXxXXRxxx | Reads the current value of IOBIT3.
xXxxXRxx | Reads the current value of IOBIT2.
XXXXXXRx | Reads the current value of IOBIT1.
XXxXxxxXR | Reads the current value of IOBITO.
Table 10-3. cbit Register Encoding
Bit 15—8 7—0
Field MODE/MASK]7:0] DATA/PATTERNJ[7:0]
Direction Mode/Mask Data/PAT Action
1 (Output) 0 0 Clear
1 (Output) 0 1 Set
1 (Output) 1 0 No Change
1 (Output) 1 1 Toggle
0 (Input) 0 X No Test
0 (Input) 0 X No Test
0 (Input) 1 0 Test for Zero
0 (Input) 1 1 Test for One

Reset Conditions

The DIR field of shit is set to all zeros on reset to select all pins as inputs. The VALUE field of sbit always reflects
the values on the device pins. For a pin in the output mode, an internal register stores a value for the output from
the most recent write of chit. These internal registers are initialized to zero after reset.

Lucent Technologies Inc.

10-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit 1/0O Unit April 1998

10.2 Software View (continued)
10.2.2 Flags

Those bits that have been configured as inputs can be individually tested for 1 or 0 (compared with PATTERN). For
those inputs that are being tested, there are four flags produced: allt (all true, all the tested bits match PATTERN),
allf (all false, none of the tested bits match the PATTERN), somet (some true, at least one of the tested bits
matches the PATTERN), and somef (some false, at least one of the tested bits fails to match the PATTERN). The
flags are updated each time the cbit register is written and can be tested by the conditional branch or special func-
tion instructions. The state of these flags can be saved and restored by reading and writing bits 0 to 3 of the alf
register.

Table 10-4. alf Flags

Bit Flag Use

3 somef SOME FALSE from BIO
2 somet SOME TRUE from BIO
1 allf ALL FALSE from BIO

0 allt ALL TRUE from BIO

10.2.3 Instructions

The data move group of instructions is used to read and write the shit and cbit registers. These registers can be
written from memory, from an accumulator, or with immediate data. They can be read to memory or to an accumu-
lator.

The flags that are set by the BIO are included in the general set of flags that are tested by the conditional branch
and special function instruction.

10.2.4 Examples

The following sections of code show how the BIO can be used. The first section uses the BIO as all outputs:

sbit=0xff00 /* set all direction bits to 1 (output) */
cbit=0x0000 /* initialize BIO[7—0] to all Os (data mode write) *
cbit=0x00ab /* write Oxab out to BIO[7—0] (data mode write) */
cbit=0xffOf /* toggle bits 3—0 of BIO; leave bits 7—4 unchanged */
cbit=0x0fof [* write 0 to bits 7—4 in data mode; toggle bits 3—0 */

The following code segment uses the BIO as all inputs:

sbit=0 /* set all direction bits to 0 (input) */
a0=sbit /* read current value in sbit register */
a0=a0h&0x00ff /* mask off direction byte (if necessary) */

/* a0 now holds the current value on BIO pins */
cbit=0xffab [* test the entire BIO byte for Oxab */
if allt goto pass /* if (BIO==0xab) branch to label pass */
chit=0x0302 /* test the bottom 2 bits for Ox2 */
if somet aOh=a0h+1/* if either bit matches, increment a0 */

10-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Bit I/O Unit

10.2 Software View (continued)
10.2.4 Examples (continued)

The following code segment uses the top 4 bits of the BIO as outputs and the bottom 4 bits as inputs:

sbit=0xf000 /* bits 7—4 are outputs, bits 3—0 are inputs */
a0=sbit /* read current value in shit register *
a0=a0h&0x000f /* mask off all but the 4 inputs */

/* a0 now holds the current value on BIO[3—0] *
chit=0x0000 /* initialize BIO bits 7—4 to Os */
cbit=0xf0c0 /* toggle bits 7 and 6, leave bits 5 and 4 unchanged*/
chit=0x0fab /* write Oxa to bits 7—4 in data mode: */

/* also test bits 3—O0 for Oxb */
if allt goto pass [* if (BIO[3—0]==0xb) branch */

Note: In the last example, outputs can be set and inputs can be tested at the same time with one single write to the
cbit register.

Lucent Technologies Inc. 10-7

Chapter 11

JTAG Test Access Port

CHAPTER 11. JTAG TEST ACCESS PORT

CONTENTS
L] 11 THE JTAG TEST ACCESS PO ..ottt ettt ettt et et e et et ete et e e ae et e eteseente s eteeteeaeeneeeee s 11-1
0 11.1 Overview Of the JTAG AFCHIECIUEcoiiiiiiiiiiee et e e s e s baeeeas 11-1
0 11.2 Overview Of the JTAG INSITUCHIONScciiiiiiiiiiiiiiie ettt e st e e e e e e e ae e e s s b bbe e e e e e sssbeeeeas 11-3
0 11.3 Elements of the JTAG TEST LOGICc.eiveirieieireeteeeeeeeeteete ettt eteete ettt et eete et eete et et et e eaeeneanee e eaeenas 11-4
0 11.3.1 The TeSt ACCESS POIt (TAP) ..ttt e sttt e e et ee e e e e s st e e s sabb e eeeeeessnsbnneeees 11-4
0 11.3.2 THE TAP COMIOIET ...ooovviieiee ettt ettt ettt et e et eeae et e s eaeeaes 11-5
0 11.3.3 The INStruction REGISIEI—JIRoicuiiiiiieeisiiitiiiee e e e et e e e e e s snbbaaeaaae s 11-7
0 11.3.4 The Boundary-Scan RegiStEr—JIBSRcoiiiiiiiiiiie it e e e 11-8
0 11.3.5 The Bypass ReQIStEr—JIBPRcccciuuiiiiiiiiiiiiiiitie ettt e e et ee e e snbr e e e e e s s snnaaeeeee s 11-16
0 11.3.6 The Device Identification RegiSter—JIDRccuueiiiiieeiiiiiiiiieee e 11-16
O 11.3.7 The JTAG Data REJISIEI—JIAQcceocveiiieeieieeeeeeie ettt ettt ettt eve e eee e 11-19
0 11.3.8 The JTAG Control REGISTEr—JCONc.covviiiiieieeiecee et eee ettt te e 11-19
0 11.3.9 The JTAG Output StAGE—JOUTooiiiiiiiiieite ettt ettt ettt re e eae e 11-19
0 11.4 The JTAG INSIIUCHON SEL....cueiviiieeeeiteieieee e et ettt e e e et ete e ete et e ete et e e testeeae et e stesae et e saeeaeeneen sreesreareas 11-19
0 11.4.1 The EXTEST INSITUCHON iuiiiiiiiieeeiiiiiiiiii e sttt e et e e e e st e e s ennb e ee e e e e s s nnnnaeeeeas 11-19
0 11.4.2 The INTEST INSLIUCLION oiiiiiiiiiiiieeeiiiiiiiicee ettt r e e e e e s s e e e s senb e ee e e e e s snnnrreees 11-19
0 11.4.3 The SAMPLE INSIUCHONooviiuiieieeiecee ettt ettt e ettt ettt ete et eaeere e e 11-20
0 11.4.4 The BYPASS INSITUCHON ...c.ocoviiuiieieeieeeeiteeteeie e ete et eeteeteete et eteeteete e e eaeteeneeeaestesreenee e 11-20
0 11.4.5 The IDCODE INSIIUCHONcviiuiiveieeeeieeteete et et eteeteete et e eteeteeteeae et e eteere et e eaeeae et eeaeeaeeneens 11-20

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

11 The JTAG Test Access Port

The DSP1611, DSP1617, DSP1618, and DSP1627 have a standard four-pin test access port known as JTAG.
The DSP1628, and DSP1629 have a five-pin test access port; the standard four-pin JTAG test access port plus an
additional TRST pin. The test port fully conforms to the standards defined in JEEE P1149.11. In addition to the
mandatory features of the standard, the JTAG block of the DSP has most of the optional and recommended fea-
tures of the standard. The JTAG block also has custom test data registers and instructions that, with other features
of the device, provide powerful added functions. These are downloading of test programs through the JTAG port
(for self-test purposes) and on-chip support of the hardware development system (on-chip emulation). The full
description of the custom features is beyond the scope of this manual.

An overview of the JTAG architecture follows in Section 11.1. Section 11.2 is a brief overview of the JTAG instruc-
tions. A more detailed treatment of the material in Section 11.1 and Section 11.2 is found in Section 11.3, Ele-
ments of the JTAG Test Logic, and Section 11.4, The JTAG Instruction Set, respectively.

11.1 Overview of the JTAG Architecture

_ JAP

r e =
| | TEST DATA
REGISTERS | \
| | —¢—| jtag |—'—>
| TRSTt | ‘ ‘
4| JCON |—>
\ % \ | |
| | TDI | [IBPR JTAG
‘ ™ [] ‘ ; | ‘ ouTpuT | TDO
| | 4‘| JIDR |‘—> STAGE >
(JouT)
‘ T™S ‘ ‘
| | JBSR >
TCK E ‘ \
| | . - - - - _ —_ - _—_———— _ J
| | ki ~
| TDO |—<‘
DR | INSTRUCTION DECODER |
L _ 1 CONTROLS ? ? ? ?
TCK x DI
w ——| JIR I—
™S 3
= 0-8 A A A
TRST? <E IR CONTROLS
Z
o
O

POWERUP RESET }“

—»| JSTATUS

T Only available on the DSP1628/29.

Figure 11-1. The JTAG Block Diagram

1.The JTAG port of the DSP has successfully passed the /IEEE P1149.1 protocol certification test sequence generated by TAPDANCED, which
is a rigorous, implementation independent test package developed and administered by Lucent Technologies.

Lucent Technologies Inc. 11-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.1 Overview of the JTAG Architecture (continued)

The major subcircuits are as follows:

TAP: Forthe DSP1611/17/18/27, a four-pin test access port (consisting of input pins—TCK, TMS, and TDI and the
output pin—TDO) provides the standard interface to the test logic. No separate TRST (test logic reset) input pin
exists, but a powerup reset circuit internal to the device resets the TAP Controller to its inactive state if the device is
powered up.

The DSP1628/29 provides a five-pin test access port consisting of the TCK, TMS, TDI, and TDO pins—as in the
DSP1611/17/18/27—plus a TRST (test logic reset input) pin.

TAP Controller: The TAP Controller implements the finite state machine that controls the operation of the test
logic as defined by the standard. The TMS input value sampled on the rising edge of TCK controls the state transi-
tions. The state diagram underlying the TAP Controller is shown in Figure 11-2.

POWERUP
1 TEST LOGIC Y\ 4
RESET
1

0

0 RUN-TEST/ \ 1
IDLE

A

SELECT-
IR-SCAN

SELECT-
DR-SCAN

UPDATE-IR

5-4130
Note: State transitions are controlled by the value of TMS sampled on the rising edge of TCK.

Figure 11-2. The TAP Controller State Diagram

Instruction Register (JIR): A 4-bit scannable JTAG instruction register with parallel input and parallel output
stages and holds 1 of 16 different instruction codes. The JTAG instructions and their detailed functions are pre-
sented in Section 11.4, The JTAG Instruction Set. The physical structure of the JIR is covered in Section 11.3.3,
The Instruction Register—JIR.

11-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.1 Overview of the JTAG Architecture (continued)

Boundary-Scan Register (JBSR): JBSR is a 106-bit JTAG boundary-scan register containing one scannable reg-
ister cell for every I/O pin and every 3-state enable signal of the device as defined by the standard. JBSR can cap-
ture from parallel inputs or update into parallel outputs for every cell in the scan path. JBSR can be configured into
three standard modes of operation (EXTEST, INTEST, and SAMPLE) by scanning the proper instruction code into
the instruction register (JIR). An in-depth treatment of the boundary-scan register, its physical structure, and its dif-
ferent cell types is given in Section 11.3.4, The Boundary-Scan Register—JBSR.

Bypass Register (JBPR): JBPR is a 1-bit long JTAG bypass register to bypass the boundary-scan path of nontar-
geted devices in board environments as defined by the standard. More detail can be found in Section 11.3.5, The
Bypass Register—JBPR.

Device Identification Register (JIDR): JIDR is a 32-bit JTAG device identification register containing Lucent
Technologies company code, the DSP1611/17/18/27/28/29 part number, and version codes as defined by the stan-
dard. The JIDR captures the identification code from hardwired parallel inputs, but has no parallel outputs. The
identification number is accessed serially. Section 11.3.6, The Device Identification Register—JIDR, expands on
the JIDR structure and function.

jtag Register (jtag): jtag is a 16-bit scannable data register used for communicating data or commands between
the TAP and the DSP during test or HDS operations.

JTAG Control Register (JCON): JCON is a 17-bit scannable JTAG control register that configures various self-
test and hardware development system (HDS) operations.

In addition to the above blocks, the JTAG design consists of a status block (JSTATUS), a clock multiplexer (JCK-
MUX), and an output stage (JOUT).

11.2 Overview of the JTAG Instructions

The JTAG block supports 16 distinct public and private instructions as shown in Table 11-1. These instructions
support various boundary-scan test, self-test, and hardware development system (HDS) interface functions.

Table 11-1. DSP1611/17/18/27/28/29 JTAG Instructions

Instruction Instruction Public/ MODE Description
Mnemonics Codes Private
EXTEST 0 Public 1 Select B-S register in EXTEST mode.
INTEST 1 Public 1 Select B-S register in INTEST mode.
SAMPLE 2 Public 0 Select B-S register in SAMPLE mode.
JCONW1 3 Private 1 Reserved for HDS use.
JSGCN2 4 Private 0 Reserved for HDS use.
JCONW?2 5 Private 0 Reserved for HDS use.
JUSRO 6 Private 0 Reserved for HDS use.
JTGW1 7 Private 1 Reserved for HDS use.
JTGR1 8 Private 1 Reserved for HDS use.
JTGW2 9 Private 0 Reserved for HDS use.
JTGR2 10 Private 0 Reserved for HDS use.
JTGW3 11 Private 0 Reserved for HDS use.
JTGR3 12 Private 0 Reserved for HDS use.
JUSR1 13 Private 0 Reserved for HDS use.
IDCODE 14 Public 0 Select Device ID register.
BYPASS 15 Public 0 Select BYPASS register.

Lucent Technologies Inc. 11-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.2 Overview of the JTAG Architecture (continued)

The MODE column in Table 11-1 on page 3 refers to the value of the MODE control signal. The MODE control sig-
nal is obtained by merging the signals Input Mode Control and Output Mode Control, as defined in the standard,
into one signal. If Mode is 0, input signals into the device are from the input pins of the device and device output
signals are on the output pins. If Mode is 1, the device inputs and outputs are driven by the 1/O scan path (the
JBSR). The Mode signal is further described in Section 11.3.4, The Boundary-Scan Register—JBSR.

All the mandatory instructions (BYPASS, SAMPLE, and EXTEST) and all optional instructions (IDCODE and
INTEST), as described in the standard, are implemented as Table 11-1 on page 3 shows. In addition, various read/
write instructions for accessing custom registers jtag and JCON in different modes of operation are used for self-
test and HDS.

11.3 Elements of the JTAG Test Logic
11.3.1 The Test Access Port (TAP)

The Test Access Port consists of three dedicated input pins (TCK, TMS, and TDI) and one dedicated output pin
(TDO). Additionally, the DSP1628/29 provides a TRST pin that can be used to reset the TAP controller. In a board
environment, TCK and TMS are usually broadcast signals driving all devices with a JTAG port in the same scan
path. TDI and TDO are usually daisy-chained among the devices by connecting the TDO of one device to the TDI
of another. Other configurations are also possible, and examples can be found in the /JEEE document.

A description of the TAP pins follows:

TCK is the common test clock input pin that synchronizes test operations among the devices on a board. Synchro-
nization is essential for board interconnect tests and facilitates other test operations involving scanning various
registers. The TAP Controller as well as all the registers (instruction and test data) are clocked with TCK. Because
TCK is the common test clock in a board environment, the slowest JTAG design determines the common clock
frequency.

TMS is the test mode select input pin. It controls test operations by determining the current state of the TAP Con-
troller, for example, capturing test results or shifting data. All devices in a given scan path receive the same TMS
value and, thus, operate in the same state of the TAP Controller. The TMS value is sampled on the rising edge of
TCK. Normally, TMS changes on the falling edge of TCK providing half a clock cycle of setup time. Otherwise, the
external controller generating the TMS and TCK signals must allow enough setup time with respect to TCK. The
TMS pin has an internal pull-up resistor, as required by the standard, to apply a logic 1 to open TMS inputs.

TDl is the serial test data input pin. It provides the data for the instruction codes or test data register values needed
in the test and, like TMS, is sampled on the rising edge of TCK. Normally, the TDI signal is generated by the TDO
pin of the previous device on the chain (see TDO description below) and changes on the falling edge of TCK pro-
viding half a clock cycle of setup time. Otherwise, the source of TDI must allow enough setup time with respect to
TCK. The TDI pin is also internally pulled up to apply a logic 1 in case of an external open fault.

TDO is the 3-state serial test data output pin. It carries test results and other information out of the test logic while
in the Shift-DR state or Shift-IR state. During all other TAP Controller states, the TDO output is 3-stated. TDO
changes on the falling edge of TCK providing a convenient half clock cycle setup time for the TDI of the following
device. The register driving TDO is determined by the current instruction as well as the current TAP Controller
state. In the Shift-IR state, TDO is driven by the JIR register. During the Shift-DR state, one of the test data regis-
ters specified by the current instruction drives the TDO pin.

TRST1is the test logic reset input pin. If asserted low, TRST asynchronously resets the JTAG TAP controller. In an
application environment, this pin must be asserted prior to or concurrent with RSTB. This pin is internally pulled up
to avoid unwanted resetting of the TAP controller.

1.DSP1628/29 only.

11-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.1 The Test Access Port (TAP) (continued)

The timing diagram of Figure 11-3 illustrates some of the relationships among the TAP pins.

The TAP for the DSP1611/17/18/27 does not include the optional TRST (test reset) input that is used to initialize
the test logic to the inactive state. Instead, a built-in powerup reset circuit resets the test logic asynchronously to
the Test Logic Reset state of the TAP Controller (see Figure 11-1 and Figure 11-2) upon powering the device.

As mentioned before, the pull-up resistor on the TMS input drives a logic 1 to the unconnected TMS pin. The TAP
Controller reaches the test logic reset state (normal device function resumes) after receiving a logic 1 on TMS for
three to five TCK cycles. The pull-up resistor on TDI helps to isolate open-circuit faults of the scan path on a
board. An open TDO-to-TDI connection shifts a 1 into the device selecting the bypass register (instruction code
1111).

11.3.2 The TAP Controller

The TAP controller is a 16-state, finite-state machine implementing the state diagram of Figure 11-2. The value of
TMS (at the rising edge of TCK) controls the state transitions. Various instruction register and data register control
signals (such as shift, capture, and update), as well as boundary-scan control signals, are produced by the TAP
controller. These signals are combined with the instruction decoder outputs to select the active register and to con-
trol the operation of that register synchronously. The instruction register (JIR) is selected solely through the TAP
controller action, whereas test data registers (TDRs) are operated through the TAP controller and the instruction
decoder. A brief description of the TAP controller states follows:

Test Logic Reset: The test logic is disabled while the controller is in this state, so normal operation of the system
logic can proceed. The IDCODE instruction is asynchronously selected in the instruction register (JIR) if this state
is entered.

RUN Test/Idle: Inthe DSP1611/17/18/27/28/29, tests downloaded into the dual-port RAM for the purpose of self-
test should be executed in this state. Otherwise, this is an idle state and no changes in the state of the test logic
occur.

Select DR-Scan: This is a temporary state that is used to initiate the scanning of the test data register selected by
the current instruction.

Select IR-Scan: This is a temporary state that is used to initiate the scanning of the instruction register JIR.

Capture xR: Load from parallel inputs (if any) to the shift register stage of the selected register (JIR or one of the
TDRs). In this state, test results or control information is loaded into the shift register for subsequent scan opera-
tions.

Shift xR: In this state, data is shifted in the selected register one stage towards TDO on every rising edge of TCK.
Serial read and write of a register is performed in this state. Because the TDO output is enabled during the shift
state, a serial write operation (shifting into a register) is always accompanied by a serial read operation (shifting out
of a register) and vice versa.

Exitl xR: This is a temporary state to choose between termination of the scanning operation and the pause state.
Pause xR: In this state, the shift operation is halted temporarily.

Exit2 xR: This is a temporary state to choose between resumption of the shift operation (after pause) and termina-
tion of the scanning operation.

Update xR: In this state, data from the shift register stage of the register is loaded into the latched parallel outputs
(if any) that remain stable during shift operations. This is the terminal state in a scan operation.

Lucent Technologies Inc. 11-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)

11.3.2 The TAP Controller (continued)

It is very important in generating TAP input test signals to note that the actions resulting from a given state (such as
capture or shift) take place one clock cycle after the entry into that state. This requires one TCK cycle delay of the

TDI input bits with respect to the TMS input bits corresponding to the shift state. The timing diagram of Figure 11-3
illustrates this point.

T™MS 0 1 0 0 0 0 0 1 1 0

TAP
DR CAPTURE EXIT UPDATE

IDLE IDLE
Co’\ls-l-—ri?—léLER SCAN DR SHIFT DR DR DR

TDI X X

PARALLEL
OUTPUTS
OF TDR

NEW DATA =
1010

LSB MSB

\/

TDR PARALLEL INPUTS

TDO

5-4131

Figure 11-3. Timing Diagram Example

Timing Description

The external controller drives TCK, TMS, and TDI (possibly through other devices). They all change state on the
falling edge of TCK. TDO is driven from the DSP and also changes on the falling edge of TCK. TMS and TDI are
strobed on the rising edge of TCK in the DSP, and the TAP Controller state changes just after the rising edge of
TCK.

Figure 11-3 shows two independent actions occurring: data parallel loaded into the test data register and shifted
out on TDO, and new data being shifted into the DSP test data register and then enabled to the parallel outputs of
TDR. In this example, the internal test data register is 4 bits long.

The sequence on TMS moves the TAP Controller through the states shown in Figure 11-2. In this case, the
sequence 010 . . . changes the controller from IDLE, to select DR SCAN, to capture DR, etc. Atthe end of the cap-
ture DR state, data is parallel loaded into the test data register. On the next falling edge of TCK now in the Shift-DR
state, the LSB is shifted out of the DSP on TDO. On the next rising edge of TCK, the new data starts to shift into
the DSP from TDI. (TDI changes on the falling edge of TCK and the DSP strobes TDI on the rising edge.) After
four shifts, the new data is lined up in the DSP and is parallel loaded to the TDR output on the falling edge of TCK
in the middle of the UPDATE DR state.

11-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.3 The Instruction Register—JIR

The JTAG instruction register (JIR) is a 4-bit scannable shift register with a parallel output stage. The parallel out-
put stage is loaded from the shift register stage in the Update-IR state of the TAP Controller on the falling edge of
TCK. The parallel outputs of JIR provide the currently active instruction to the decoder block that generates regis-
ter enable signals. The serial input of JIR is tied to the TDI pin. The serial output feeds the JOUT block that
chooses between the JIR and the selected TDR depending on whether the TAP Controller is in an IR-scan cycle or
a DR-scan cycle.

All four cells of JIR have the capability of loading the shift register stage from the parallel inputs. The standard
requires cells 0 and 1 to capture constant logic values 1 and 0O, respectively, as shown in Figure 11-4.

- \ REGISTER
o+ | ENABLE AND
. ICONTROL SIGNALS

INSTRUCTION DECODER

ﬂ

~ UPDATE-IR | PARALLEL OUTPUT STAGE

A A A A

TDI
> CELL 3 CELL 2 CELL1 CELLO >
TO JOUT BLOCK
A A A A A
TCK I T

CAPTURE-IR
SHIFT-IR

PINT JINT 0 1

-—

PARALLEL INPUTS

5-4132
Note: The IEEE standard defines the most significant bit (MSB) of each register to be the one closest to the TDI pin and the least significant
bit (LSB) to be the one closest to the TDO pin. According to this definition, the data should be shifted in LSB first if shifting data into a
register through TDI.

Figure 11-4. The JTAG Instruction Register/Decoder Structure

Lucent Technologies Inc. 11-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)
11.3.4 The Boundary-Scan Register—JBSR

The JTAG boundary-scan register is a 106-bit scannable register containing a register cell for every digital 1/0 pin
as well as for every 3-state enable signal of the device. The four JTAG TAP pins, ground pins, and power pins are
excluded from the boundary-scan register as specified by the standard. All of the cells contain a parallel output
stage that is updated on the falling edge of TCK. New data will appear only in the update DR state under full con-
trol of the test bus controller. Consequently, hazardous conditions, such as reset of the device or contention on
external buses, can be prevented.

Table 11-2 defines the register cell types.

Table 11-2. Boundary-Scan Register Cell Type Definitions

Cell Type Meaning
I Input Cell.
(0] 3-state Output Cell.
B Bidirectional (1/0O) Cell.
OE 3-state Controller Cell.
DC Bidirectional Controller Cell.

Tables 11-3 and 11-4 show the configuration of the boundary-scan register.

11-8 Lucent Technologies Inc.

Information Manual

April 1998

11.3 Elements of the JTAG Test Logic

11.3.4 The Boundary-Scan Register—JBSR

(continued)

(continued)

Table 11-3. JTAG Scan Register (DSP1611, 1617 and 1618 Only)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

JTAG Test Access Port

Note: The direction of shifting is from TDI to cell 105, to cell 104, . . ., to cell 0, and to TDO.

Cell Type Signal Name/Function Cell Type Signal Name/Function
0—15 (0] ABJ[15:0] (cell #0 is ABO, etc.) 69 B OLD2/PODS#
16 | EXM 70 (e} IBF2/PIBF#
17 (@] RWN 71 DC Controls cell 75

18—21 (e} EROM, ERAMLO, ERAMHI, IO 72 DC Controls cell 74
22 (0] DSEL 73 (0] OBE2/POBE*

23—29| B DB[6:0] 74 B ICK2/PBO*
30 DC Controls cells 23—29, 31—39 75 B DI2/PB1*

31—39 B DB[15:7] 76 B DOEN2/PB2*
40 (e} OBE1 7 B SADD2/PB3*
41 (@] IBF1 78 DC Controls cell 77
42 | DI1 79 DC Controls cell 76
43 DC Controls cell 46 80 DC Controls cell 82
44 DC Controls cell 47 81 DC Controls cell 85
45 DC Controls cell 48 82 B IOBITO/PB4+*
46 B ILD1 83 DC Controls cell 87
47 B ICK1 84 DC Controls cell 86
48 B OCK1 85 B IOBIT1/PB5+
49 B OLD1 86 B IOBIT2/PB6+
50 DC Controls cell 49 87 B IOBIT3/PB7#
51 DC Controls cell 53 88 B VEC3/IOBIT4*
52 (e} DO1 89 B VEC2/I0OBIT5*
53 B SYNC1 90 DC Controls cell 88
54 OE Controls cell 52 91 DC Controls cell 89
55 DC Controls cell 58 92 B VEC1/IOBIT6*
56 DC Controls cell 59 93 B VECO/IOBIT7#
57 | STOPT 94 | INT1
58 B SADD1 95 DC Controls cell 92
59 B DOEN1 96 DC Controls cell 93
60 DC Controls cell 63 97 I INTO
61 DC Controls cell 62 98 DC Controls cell 101
62 B OCK2/PSEL2/PCSN#* 99 OE [Controls cells 0—15,40—41,70,73,100
63 B DO2/PSEL1/PSTAT* 100 (e} IACK
64 B SYNC2/PSELO/PBSEL* 101 B TRAP
65 DC Controls cell 64 102 (@] CKO
66 DC Controls cell 69 103 OE Controls cells 17—22,102
67 DC Controls cell 68 104 I RSTB
68 B ILD2/PIDS* 105 I Clock Generator$

T Shifting a zero into this cell in the mode to scan a zero into the device will disable the processor clocks the same as the STOP pin will.

¥ For descriptions of the pin multiplexing, see Section 10.1.4, BIO Pin Multiplexing, Section 9.4, PHIF Pin Multiplexing, Section 8.2.3, Power
Management, and Section 7.7.1, SIO2 Features.

§ Indicates signal is internal and not necessarily observable at pins depending on how the JTAG is set up.

Lucent Technologies Inc.

11-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
JTAG Test Access Port

11.3 Elements of the JTAG Test Logic

11.3.4 The Boundary-Scan Register—JBSR

Table 11-4. JTAG Scan Register (DSP1627/28/29 Only)
Note: The direction of shifting is from TDI to cell 104, to cell 103,

(continued)

(continued)

Information Manual
April 1998

...,tocell 0, and to TDO.

Cell Type Signal Name/Function Cell Type Signal Name/Function
0 OE Controls cells 1, 27—31 69 B OCK2/PCSNT
1 (@] CKO 70 DC Controls cell 71
2 | RSTB 71 B DO2/PSTATT
3 DC Controls cell 4 72 DC Controls cell 73
4 B TRAP 73 B SYNC2/PDSELT
5 I STOP# 74 DC Controls cell 75
6 (e} IACK 75 B ILD2/PIDSt
7 | INTO 76 DC Controls cell 77
8 OE [Controls cells 6, 10—25, 49, 50, 78, 79 77 B OLD2/PODST
9 | INT1 78 (e} IBF2/PIBFT
10—25| O AB[15:0] 79 o OBE2/POBE'
26 | EXM 80 DC Controls cell 81
27 (e} RWN 81 B ICK2/PBO*t
28—31 (0] EROM, ERAMLO, ERAMHI, IO 82 DC Controls cell 83
32—36| B DBI[4:0] 83 B DI2/PB1T
37 DC Controls cells 32—36, 38—48 84 DC Controls cell 85
38—48 B DB[15:5] 85 B DOEN2/PB2*
49 (@] OBE1l 86 DC Controls cell 87
50 (e} IBF1 87 B SADD2/PB3t
51 | DIl 88 DC Controls cell 89
52 DC Controls cell 53 89 B IOBITO/PB4*
53 B ILD1 90 DC Controls cell 91
54 DC Controls cell 55 91 B IOBIT1/PB5t
55 B ICK1 92 DC Controls cell 93
56 DC Controls cell 57 93 B I0BIT2/PB61
57 B OCK1 94 DC Controls cell 95
58 DC Controls cell 59 95 B IOBIT3/PB7t
59 B OoLD1 96 DC Controls cell 97
60 OE Controls cell 61 97 B VEC3/IOBIT4t
61 (@] DO1 98 DC Controls cell 99
62 DC Controls cell 63 99 B VEC2/IOBIT5?
63 B SYNC1 100 DC Controls cell 101
64 DC Controls cell 65 101 B VEC1/I0BIT6"
65 B SADD1 102 DC Controls cell 103
66 DC Controls cell 67 103 B VECO/IOBIT7t
67 B DOEN1 104 | Clock Generator$
68 DC Controls cell 69

T Please refer to pin multiplexing in Section 9.4, PHIF Pin Multiplexing, Section 10.1.4, BIO Pin Multiplexing, and Section 7.7.1, SIO2 Features,
for a description of pin multiplexing of BIO, PHIF, VEC[3:0], and SIO2.

F Shifting a zero into this cell in the mode to scan a zero into the device will disable the processor clocks the same as the STOP pin will.

§ Indicates signal is internal and not necessarily observable at pins depending on how the JTAG is set up. If the JTAG SAMPLE instruction is
used, this cell will have a logic one regardless of the state of the pin.

11-10

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.4 The Boundary-Scan Register—JBSR (continued)

In the preceding tables, the direction of shifting conforms to the definition of the MSB as the bit being closest to TDI
as given in the standard.

Before dealing with the details of the individual cells, attention should be paid to the common features of the differ-
ent types of boundary-scan cells:

m All types of cells load or capture from their parallel inputs in the capture-DR state. In addition, they all contain
parallel output stages into which new data is loaded or updated in the update-DR state.

m The MODE signal replaces both of the standard-defined signals Input Mode Control (which selects the source of
input data into the device) and Output Mode Control (which selects the source of output data from the device).
The MODE signal is derived from the instruction decoder and drives all of the cells in the JBSR register. The
MODE signal is equal to one during EXTEST and INTEST and is equal to zero during SAMPLE and in the test-
logic-reset state (i.e., during normal device functions).

m The CAPTURE, SHIFT, and UPDATE signals are derived from the TAP Controller and are gated with signals
from the instruction decoder. If the current instruction selects the JBSR (i.e., with instructions EXTEST, INTEST,
and SAMPLE being current), these signals are active. Otherwise, they are all inactive.

m Sl and SO are the serial input and output of each register cell. The scan path is formed by tying the SO signal of
one cell to the Sl of the adjacent cell. The standard allows the cells to be assembled in any order with the MSB
cell's Sl tied to the TDI pin and the LSB cell's SO tied to the TDO pin.

m The JBSR cell clock is derived from TCK.

In visualizing the boundary-scan register, it is useful to think of each cell as a four-terminal unit with the serial data
flowing vertically and the parallel data flowing horizontally as shown in Figure 11-5. The JBSR is then formed by
stacking such four-terminal units on top of each other.

SERIAL OUTPUT

CAPTURE-DR ——»
SHIFT-DR
PARALLEL OUTPUT
PARALLEL INPUT —— >
UPDATE-DR
MODE »

SERIAL INPUT

5-4206

Figure 11-5. The Simplest Boundary-Scan Register Cell

Lucent Technologies Inc. 11-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)
11.3.4 The Boundary-Scan Register—JBSR (continued)

With these features in mind, the five different types of cells used in the design of JBSR are described below.

Boundary-Scan Input Cells: The I-type cells of JBSR consist of a shift register stage with the capture (i.e., load)
capability from the parallel input and update (i.e., load) into the parallel output stage.

Data from the parallel input pin is loaded into the shift-register in the capture-DR state and shifted out in the shift-
DR state. The new values shifted in (i.e., the contents of the shift-register at the end of the shift cycle) are loaded
into the parallel output stage during the update-DR state. The MODE signal that is decoded from the current
instruction selects the source of input data into the device. If MODE equals zero, the device is doing its normal
function and the input pin is driving the input signal. If MODE equals one, the scanned signal from the output of the
parallel stage is driven into the device. The capture function takes place independent of the state of the MODE
signal. Whether the device is doing its normal function (MODE = 0) or is in one of the boundary-scan test modes
(MODE = 1), the activity on the input pin is captured during the capture-DR state.

Boundary-Scan Output Cells: The O-type cells of JBSR are very similar to the I-type cells. They consist of a
shift-register stage with parallel input load capability during the capture-DR state and parallel load into the output
stage during the update-DR state. All output pins of the DSP are 3-statable, and the output of the O-type cells is
always fed into a 3-state buffer with control coming from an OE-type cell (see Figure 11-6).

If MODE equals zero, the output pin is selected to come from the corresponding device output signal. On the other
hand, MODE equals one selects the scanned-in output to be applied to the pin. The O-type cell always captures
from the device output signal independent of the value of the MODE signal.

Boundary-Scan Output Enable Cells: (See Figure 11-6.) The OE-type cells of JBSR are similar to the I-type
and O-type cells. The device output enable signal (OElI) is applied to the 3-state output buffer if MODE equals zero,
and the scanned-in value is applied if MODE equals one. The OEI's value is captured into the shift register stage
independent of the value of the MODE signal in the capture-DR state.

An additional feature of the OE-type cells is that they are asynchronously initialized to zero upon entry into the test-
logic-reset state (also on powerup). This ensures on powerup that all OE cells of different ICs have their parallel
outputs initialized to the inactive state. On first entering the boundary-scan instructions EXTEST or INTEST, the 3-
state buses are all in the high-impedance state and no logic contention occurs. A single OE cell can drive multiple
outputs as, for example, in buses. For example, Table 11-3 shows that the register cell number 99 controls the 3-
state buffer of many output cells.

11-12 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)

11.3.4 The Boundary-Scan Register—JBSR (continued)

TO NEXT CELL

O CELL
so
OUTPUT
PIN BUFFER
HIP OUTPUT TPUT
CHIP OUTPU ol po| OUTPU u
OUTPUT PIN
Sl
A
OE CELL
SO
CHIP OUTPUT ENABLE
OEI POE
PIN OUTPUT ENABLE
Sl

FROM PREVIOUS CELL

5-4207

Figure 11-6. Cell Interconnections for a 3-State Pin

Lucent Technologies Inc. 11-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)
11.3.4 The Boundary-Scan Register—JBSR (continued)

Boundary-Scan Bidirectional Cells: The B-type cells of the JBSR (see Figure 11-7) combine the I-type and
O-type cells into one. Every bidirectional cell is associated with a direction control cell (a DC-type cell). This is not
a one-to-one relationship, and, similar to 3-state outputs, a single DC cell can control several B cells. The combina-
tion of the B-cell and the corresponding DC cell fully controls the state of a bidirectional pin. The bidirectional cell
contains one shift-register stage. It can be reconfigured into an output cell or an input cell depending on the value
of the signal HOLI (high out, low in) obtained from the corresponding direction control cell. If HOLI equals one, the
output stage captures the device output signal (DO) and the bidirectional cell acts like an O cell. If HOLI equals
zero, the output stage captures the value of the input pin signal (P1) and the cell is configured as an | cell. The sig-
nal HOLI and its origin are further described in the description of the DC cell.

SO
SERIAL
ouT
FROM CHIP TO PIN
DO O—» PO
HoLl _FROMDC CELL
TO CHIP FROM PIN P

DI <] PI

SERIAL

IN

5-4133

Figure 11-7. Bidirectional Cell

The MODE signal, similar to the cells discussed before, determines whether the bidirectional pin is controlled by
the normal device logic or by the test logic. If MODE equals zero, the bidirectional pin's function is defined by the
device logic and the HOLI signal corresponds to the direction control signal from the device. In this case, the cell's
output to the pin (PO) is tied to the corresponding signal from the device (DO) and the cell's input from the pin (PI)
drives the device logic (DI). In the test mode (i.e., with MODE = 1), the bidirectional pin is under the control of the
boundary-scan register and HOLI corresponds to the value scanned into the DC cell. In this case, both the pin out-
put (PO) and the device logic input (DI) are tied to the scanned-in value of the update register.

Direction Control Cells: The DC-type cells of the JBSR (see Figure 11-8) are similar to the OE-type cells and are
used with the bidirectional cells discussed before. They consist of a shift-register cell with parallel load capability
from input (during capture-DR state) and parallel load capability into the output stage (during update-DR state).
The output stage is cleared when entering the test-logic-reset state that prevents bus contention upon the first
entry into the EXTEST instruction (as discussed before in the description of the OE cells). The signal HOLI selects
the source of captured data in the bidirectional cell. HOLI corresponds to the bidirectional enable signal from the
device logic (OEIl) if MODE equals zero or to the scanned-in signal if MODE equals one. Note that the 3-state
buffer of the bidirectional pin is not driven by HOLI. Instead, it is driven by OE that is the same as HOLI except dur-
ing INTEST when it is a zero. This will put the biputs in the high-impedance state during internal tests and, thus,
prevent them from causing contention on external buses.

11-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.4 The Boundary-Scan Register—JBSR (continued)

With the different boundary-scan register cell types in mind, Figure 11-6 and Figure 11-8 show cell interconnec-
tions for a 3-state output pin and for a bidirectional pin.

Note: In the DSP1611/17/18/27/28/29, all output pins are 3-statable.

TO NEXT CELL

B CELL
PIN
OUTPUT FROM SO OUTPUT
DO PO
CHIP
»| HoLl BIDIRECTIONAL
PIN PIN
INPUT TO INPUT
- DI PI
CHIP
sl
DC CELL
Yo}
HOLI
=~ | OEl POE
BIDIRECTIONAL PIN BIDIRECTIONAL
ENABLE ENABLE
FROM CHIP Sl

FROM PREVIOUS
CELL

5-4208

Figure 11-8. Cell Interconnections for a Bidirectional Pin

Lucent Technologies Inc. 11-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)
11.3.5 The Bypass Register—JIBPR

The bypass register (JBPR) is a single shift register stage that is defined by the standard to bypass the boundary-
scan register of devices not targeted for test in a board environment. This reduces the board serial path and, there-
fore, reduces test time—for example, if testing the targeted device by scanning vectors into its boundary-scan reg-
ister.

The BYPASS instruction selects the JBPR to be active. The BYPASS instruction is selected by default on powerup
if no device ID register is implemented. The standard requires a zero to be loaded into the shift register during the
capture-DR state if the bypass register is selected by the current instruction. This facility is used to distinguish the
ICs on a board that do not implement a device identification register by performing a data register scan cycle after
powerup. Those devices with an ID register will produce a 32-bit pattern starting with a one (see the JIDR descrip-
tion below), and those without an ID register will produce a single zero. The bypass register does not contain a
parallel output stage because it is not required to drive any device or test logic.

11.3.6 The Device Identification Register—JIDR

The JTAG device identification register (JIDR) is a 32-bit register containing the unique hardwired ID code for the
DSP1611/17/18/27/28/29. The ID code is captured in the capture-DR state from hardwired parallel inputs and can
be shifted out during the shift-DR state. Because the JIDR register does not drive any device or test logic in paral-
lel, no parallel output stage exists in its implementation.

31 28 27 32-bit SHIFT REG. 12 11 0
TDI TDO
-~ |
VERSION PART NUMBER MANUEACTURER ™
00 0 11
e HARDWIRED PARALLEL INPUTS
SHIFT-DR
— » Y TOALLCELL
CAPTURE-DR © CELLS
—_— >

5-4209

Figure 11-9. The Device Identification Register, JIDR

The JTAG device identification register can be used to unambiguously determine the manufacturer of a component
and to provide other descriptive information. As shown in Figure 11-9, the 32 bits of the JIDR are arranged into
three fields.

11-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.6 The Device Identification Register—JIDR (continued)

A description of each field for the DSP1617/18/27/28/29 only follows:

The Manufacturer Identity Field: Bits 11—O0 of the JIDR make up the manufacturer identity field containing a
compressed form of the JEDEC standard manufacturer's identification code. The assigned Lucent Technologies
identification code is 0x03B.

Part Number Field: Bits 18—12 contain the DSP1617/18/27/28/29 unique part number. The ROM code is con-
tained in bits 27—19.

The Version Field: Bits 31—28 contain the RESERVED, SECURE, and CLOCK fields as described in Table 11-5.
A DR-scan cycle of the JIDR produces a 32-bit binary pattern with the LSB being shifted out first from the TDO dur-
ing the shift-DR state. The following table summarizes the fields of JIDR for the DSP1617/18/27/28/29 only.

Table 11-5. JIDR Field Descriptions DSP1617/18/27/28/29

Bit 31 30 29—28 27—19 18—12 11—0
Field RESERVED SECURE CLOCK ROMCODE PART ID 0x03B
Field Value Mask-Programmable Features
RESERVED 0
SECURE 0 Nonsecure ROM option.
1 Secure ROM option.
CLOCK 00 TTL level input clock option.

01 Small-signal input clock option.
10 Crystal oscillator input clock option.
11 CMOS level input clock option.

ROMCODE — Users ROMCODE ID:

The ROMCODE ID is the 9-bit binary value of the following expression:

(20 x value for first letter) + (value of second letter), where the values of the letters are in
the following table. For example, ROMCODE GK is

(20 x 6) + (9) = 129 or 0 1000 0001.

ROMCODE| A |B |C |D|E|F|G|H|J|K|L|M|N|P|R|S|T|U|W]|Y
LETTER

VALUE 0|12 |3 |4 |5 |6 |7 |8]9 |10|11 |12 |13 |14 |15 |16 |17 |18 |19
PART ID Part ID (HEX) Part ID (Binary)
DSP1617 0x18 0011000
DSP1618 0x19 0011001
DSP1618x24 0x1D 0011101
DSP1627 0x1C 0011100
DSP1627x32 0x2C 0101100
DSP1628x08 0x2A 0101010
DSP1628x16 0x2A 0101010
DSP1629x10 0x29 0101001
DSP1629x16 0x29 0101001

Lucent Technologies Inc. 11-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.3 Elements of the JTAG Test Logic (continued)
11.3.6 The Device ldentification Register—JIDR (continued)

The IDCODE instruction selects JIDR to be the active register. IDCODE is the default instruction loaded into the
JTAG instruction register (JIR) upon powerup if an ID register is implemented. Because the device identification
register is declared optional by the standard, this feature can be used to identify the devices on a board without a
JTAG device identification register by performing a DR-scan cycle after powering up the board. See the JBPR
description (Section 11.3.5, The Bypass Register—JBPR) for more detail on this item.

Note: The LSB of the JIDR is always a one by the standard.
A description of each field for the DSP1611 only follows:

The Manufacturer Identity Field: Bits 11—0 of the JIDR make up the manufacturer identity field containing a
compressed form of the JEDEC standard manufacturer's identification code. The assigned Lucent Technologies
identification code is Ox03B.

Part Number Field: Bits 18—12 contain the DSP1611 unique part number 0010001. Bits 27—19 are reserved.

The Version Field: Bits 31—28 contain the RESERVED, CLOCK RATE, and CLOCK fields as described in Table
11-5. A DR-scan cycle of the JIDR produces a 32-bit binary pattern with the LSB being shifted out first from the
TDO during the shift-DR state. The following table summarizes the fields of JIDR for the DSP1611 only.

Table 11-6. JIDR Field Descriptions DSP1611

Bit 31 30 29—28 27—19 18—12 110
Field RESERVED CLOCK RATE CLOCK RESERVED 0010001 0x03B
Field Value Mask-Programmable Features

RESERVED 0 —

CLOCK RATE 0 Internal clock at CKI rate.
1 Internal clock at CKI/2 rate.

CLOCK 00 TTL level input clock option.

01 Small signal input clock option.

10 Crystal oscillator input clock option.
11 CMOS level input clock option.

11-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 JTAG Test Access Port

11.3 Elements of the JTAG Test Logic (continued)
11.3.7 The JTAG Data Register—ijtag

The jtag register is a 16-bit test data register that communicates data, test instructions, or both between the JTAG
Controller and the DSP1600 core processor. jtag is serially readable or writable by the external controller through
the TAP pins.

11.3.8 The JTAG Control Register—JCON

JCON is a 17-bit control register that controls various self-test and hardware development system (HDS) functions
of the DSP. Similar to the jtag register, JCON is accessible for serial read/write operations through the TAP pins by
the JTAG Controller.

11.3.9 The JTAG Output Stage—JOUT

JOUT consists of logic to select output of one of the test data registers or the instruction register. The selected out-
put is latched with the falling edge of TCK before driving the TDO pin, as required by the standard. One of the test
data registers is selected based on the current instruction in the JIR. The JIR output or the TDR output is selected
through the TAP Controller action depending on whether an IR-scan cycle or a DR-scan cycle is in progress. In
either case, the output pin TDO is only active during the shift state and is in 3-state otherwise.

11.4 The JTAG Instruction Set

The JTAG instructions are 4-bit codes that select the test register and the test action to be taken when they are
scanned into the instruction register (JIR). Some of these instructions and their functions are defined by the stan-
dard, and the rest are specific to the DSP1611/17/18/27/28/29 design. In this section, a description of the individ-
ual JTAG instructions covered briefly in Section 11.2, Overview of the JTAG Instructions, is presented. Because
the description of a JTAG instruction is intimately tied to the functional details of the register selected by the instruc-
tion, register descriptions in Section 11.3, Elements of the JTAG Test Logic, should be referred to for more details
on the instructions.

11.4.1 The EXTEST Instruction

The EXTEST instruction is required by the standard. It connects the boundary-scan register JBSR between the
TDI and TDO pins of the TAP and puts JBSR into external test mode, for example, to do board interconnect testing.

As mentioned in the description of the JBSR (Section 11.3.4, The Boundary-Scan Register—JBSR), the MODE
control signal is set to one during EXTEST. This allows the output pins to be driven by values scanned into the

O cells of the JBSR. The signals present at the input pins are captured and shifted out for verification. This
arrangement facilitates various kinds of external testing in a board environment. A pattern of 106 zeros can be
scanned into the JBSR to 3-state all the outputs and to configure all bidirectional pins as inputs. Then during exter-
nal tests, the output and biput pins can be driven safely by other devices.

11.4.2 The INTEST Instruction

INTEST is an optional, though strongly recommended, instruction defined in the standard. It connects the bound-
ary-scan register (JBSR) between the TDI and TDO and puts JBSR in the internal test mode. Similar to the
EXTEST mode, the MODE control signal is set to one during INTEST. This allows the output pins to be driven by
the values shifted into the JBSR register, and the inputs to the device are driven by the boundary-scan I-type cells.
With MODE equals one and in the capture-DR state, the state of the outputs from the device logic is captured by
the JBSR and can be shifted out for inspection.

Lucent Technologies Inc. 11-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
JTAG Test Access Port April 1998

11.4 The JTAG Instruction Set (continued)
11.4.2 The INTEST Instruction (continued)

The only feature distinguishing the INTEST instruction from the EXTEST instruction is all bidirectional cells are
configured as inputs during INTEST to prevent any contention on bidirectional buses on the board while individual
components are being tested. Any low-speed testing of the device, done by scanning input vectors through the
JBSR, should be performed during the INTEST instruction. In this case, the test results are captured by the O-type
cells of the JBSR and can be shifted out for verification.

11.4.3 The SAMPLE Instruction

The SAMPLE instruction is required by the standard. It connects the boundary-scan register JBSR between TDI
and TDO and configures it in the sample mode. Unlike the INTEST and EXTEST instructions, the SAMPLE
instruction does not interfere with the normal functioning of the device and provides a passive function monitoring
the activities on the device pins. This is achieved by setting the MODE signal to zero during the SAMPLE instruc-
tion that selects the normal flow of data across the JBSR cells (see Figure 11-5 through Figure 11-8). Because the
capture function of the boundary-scan cells is not affected by the MODE signal whether in a test mode or not, the
values of device signals on the input pins or destined for the output pins are always captured in the corresponding
register cells of the JBSR.

With the SAMPLE instruction present in the JIR, a snapshot of the normal activity of the device on its boundary can
be obtained in the capture-DR state and shifted out for diagnostic purposes. This snapshot can also be updated
into the boundary-scan register cells through the TAP Controller transitions (capture-DR, exitl-DR, and update-DR)
while the SAMPLE instruction loads a safe pattern into the output stage of JBSR. This safe pattern can appear on
the 1/0 pins in a later boundary-scan test instruction such as INTEST or EXTEST where the boundary of the device
needs to be in a known state during the corresponding test operation. System maintenance and support functions,
as well as functional test diagnosis of boards and systems, can also be achieved based on the SAMPLE mode of
the boundary-scan register.

11.4.4 The BYPASS Instruction

The instruction code OxF corresponds to the BYPASS instruction in the DSP1611/17/18/27/28/29 JTAG design.
Instruction code OxF corresponds to the all ones instruction (1111) as required by the standard to select the
BYPASS instruction.

The BYPASS instruction selects the 1-bit long bypass register (JBPR) that is used to bypass the boundary-scan
register if the device does not take part in a board test. As mentioned in Section 11.3.5, The Bypass Regis-
ter—JBPR, JBPR loads a zero into the shift-register stage in the capture-DR state. Because JBPR does not con-
tain an output stage, no value is loaded into the bypass register in the update-DR state.

11.4.5 The IDCODE Instruction

The IDCODE instruction connects the device identification register (JIDR) across the TDI-TDO path. A DR-scan
cycle while the IDCODE instruction is present can be used to shift the 32-bit hardwired device identification code
(see Section 11.3.6, The Device Identification Register—JIDR) out of the TDO pin. This instruction is used to iden-
tify the device by its manufacturer, part number, and version number codes. Similar to the bypass register, JIDR
does not contain a parallel output stage and no value can be loaded in the update-DR state. The instruction regis-
ter is initialized to hold the IDCODE value (i.e., OXE) when entering the test-logic-reset state (e.g., at powerup) as
required by the standard.

11-20 Lucent Technologies Inc.

Chapter 12

Timer

[12 Timer
O 12.1
O 12.2
O

O

O

O

O 12.3
O 12.4

CHAPTER 12. TIMER

CONTENTS
.. 12-1
HAITAWEAIE VIBW ...ttt ettt ettt e bt e e e a ket e ekt e bt e e e e e s bt e e e e nnneeeens 12-1
Programmable Features and OPeration..........c..uuuiiiiieiiiiiiiiiiiii et e e e s saaeeeeeeeeenees 12-2
12.2.1 timerc RegiSter ENCOMINGuvuiiiiiiiiiiiiiiiiiie ettt e e e st e e seb b e e e e e e s snabbeeeees 12-2
12.2.2 MEI0 REGISTEI ..oiiiiiiiiiiiee ettt et e e s e e e e e e s sttt e e e e e s s sstbb e e e e ssbbneeeeeeeeanseeees 12-3
2 T I 1= B [l o =T 11 (=] TP PPPPPPO 12-3
12.2.4 Initialization CONMItIONSoicueiiiiiiiii et e e 12-3
Program EXAMPIEcoeieiiiiiiiiiie ettt e e e ettt e e e e s sttt e e e e s an b be e e aaeesssnabbbeeeeesssbbeeeeeeseeeeeeesannnne 12-4

L1001 o PR 12-5

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

12 Timer

The timer is an internal counter controlled by instructions that write to two control registers. The output of the timer
is an interrupt to the core processor. The timer can be configured to count down once and interrupt or to interrupt
regularly at a programmed interval. With a DSP instruction cycle of 20 ns, the interrupt interval can be set from
40 ns to over 85 seconds.

12.1 Hardware View

timerc
(N
0
PRESCALE , N 4 - SR EEEALE
ﬁ/ TOEN @ - >—’ DIV. BY 2N+1
8 RELOAD 5 2 1o 65536
DISABLE 6
RESERVED 7
TCLK
IDB '
PERIOD
REGISTER [CONTROL
_ INITIAL [i
i timer0 TIMEOUT
COUNT _ -
Lokl INTERRUPT
COUNTER
16 >

5-4210

Figure 12-1. Timer Block Diagram

Figure 12-1 is a block diagram of the timer. The interface to the DSP core is through the internal data bus (IDB)
and through the interrupt (TIMEOUT). There are four main blocks in the timer (the timer control register timerc , the
prescaler, the 16-bit down-counter, and the period register). The timer control register (timerc) is an 8-bit register
written over the IDB. Bits 0—3 are the prescale number (N) that divides the CKO clock by 2N+ 1 before it goes to
the timer0 . Bit 4 (TOEN) enables the CKO to the prescaler. Bit 5 (RELOAD) selects the one-time or the repeated
operation. Bit 6 (DISABLE) powers down the timer for reduced power in sleep mode. Bit 4 in the powerc register
(TIMERDIS) performs the same function, i.e., powering down the timer. Bit 7 can be read and written, but it has no
effect. Bits 8—15 are not implemented in the register but should be written with zeros to make the code compatible
with future device versions. The prescaler divides the CKO frequency by the number 2N *1 where N is a binary
number from 0 to 15. The timer, addressed as timer0 , is a 16-bit down-counter that can be loaded from program
memory over the IDB bus. It then counts down to zero at the clock rate provided by the prescaler. Upon reaching
zero, the TIME interrupt is issued to the DSP core. The timer will then either wait in a quiescent state for another
command or will automatically repeat the last interrupting period corresponding to RELOAD (bit 5 in timerc). The
timerO register can also be read over the IDB bus at any time transferring the current state of the counter. The
period register stores the beginning count for the repeat mode and is loaded by a write to timerO .

Lucent Technologies Inc. 12-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Timer

12.2 Programmable Features and Operation

Information Manual

April 1998

Three control registers are involved in the operation of the timer. They are the timerc register, the timerO register,

and the inc register.

12.2.1 timerc Register Encoding

Table 12-1. timerc Register

T CKO = free-running non-wait-stated clock.
F The DSP1627/28/29 period is based on the internal clock selected (PLL, CKI, or ring oscillator).

12-2

Bit 15—7 6 5 4 3—0
Field Reserved DISABLE RELOAD TOEN PRESCALE
Field and Value Action
DISABLE =0 Clocks enabled
DISABLE =1 Timer clocks of
RELOAD =0 Count down and stop
RELOAD =1 Repeat count cycle
TOEN=0 Hold current count
TOEN=1 Count toward zero
Prescale Frequency of Period at Period at
Field Interrupts 1 CKIl =16.67 ns (60 MHz) | CKI* = 25 ns (40 MHz)
(2x Clock) (1x Clock)
0000 CKO/2 66.7 ns 50 ns
0001 CKO/4 133.3 ns 100 ns
0010 CKO/8 266.7 ns 200 ns
0011 CKO/16 533.3 ns 400 ns
0100 CKO/32 1.067 ps 800 ns
0101 CKO/64 2.133 us 1.6 us
0110 CKO/128 4.267 us 3.2 us
0111 CKO/256 8.533 us 6.4 us
1000 CKO/512 17.07 ps 12.8 us
1001 CKO/1024 34.13 us 25.6 us
1010 CKO/2048 68.27 ps 51.2 us
1011 CKO/4096 136.5 ps 102.4 ps
1100 CKO/8192 273.1 ps 204.8 ps
1101 CKO/16384 546.1 us 409.6 us
1110 CKO/32768 1.092 ms 819.2 ps
1111 CKO/65536 2.185 ms 1.6384 ms

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Timer

12.2 Programmable Features and Operation (continued)
12.2.1 timerc Register Encoding (continued)

When the DSP is reset, the timer is guaranteed to be in a noncounting state with clocks powered up. The RELOAD
bit of the timerc register selects one of two operating modes for the interrupt timer. If RELOAD is zero, the timer
counts down from a specified value to zero, interrupts the DSP, and then stops, awaiting further commands from
the software. If RELOAD is one, the timer counts down from a specified value to zero, interrupts the DSP, automat-
ically reloads the specified value into the timer, and repeats indefinitely. This provides either a single timed inter-
rupt event or a regular interrupt clock of arbitrary period.

The TOEN bit enables the clock to the timer. If TOEN is a one, the timer counts down towards zero. If TOEN is a
zero, the timer holds its current count.

The PRESCALE field selects one of 16 possible clock speeds for the timer input clock.

Setting the DISABLE bit of the timerc register to a logic one shuts down the timer and the prescaler for power sav-
ings. Setting the TIMERDIS (bit 4) in the powerc register has the same effect as shutting down the timer. The
DISABLE bit and the TIMERDIS bit are cleared by writing a zero to their respective registers to restore the normal
operating mode.

12.2.2 timer0 Register

The second register in the interrupt timer block is named timerO . Upon writing to this register, both the timer itself
and the optional reloadable period register are written with the specified 16-bit number. The timer, if enabled with
TOEN, then starts counting down from this number to zero at the clock rate specified by the PRESCALE field.
When the timer reaches zero, the DSP is interrupted vectoring to location 0x10.

Upon reaching a count of zero, the timer either remains quiescent until another value is written to the timerO regis-
ter (RELOAD = 0) or automatically reloads the previous starting value from the period register into the timer regis-
ter and recommences counting down (RELOAD = 1). At any time in the sequence, a new value can be written by
the software into the timer and period registers. The timer then starts counting down from this new value.

The timer0O register can also be read at any time. The timer is read on-the-fly, and its current value is returned to
the software.

12.2.3 The inc Register

The timer interrupt can be individually enabled or disabled through the inc register. A one in bit 8 of the inc register
will enable the interrupt; a zero will disable or mask it.

12.2.4 Initialization Conditions
if the DSP is reset, the bottom 8 bits of the timerc register and the timer itself are initialized to zero. This activity
sets the prescaler to CKO/2, turns off the reload feature, disables timer counting, and initializes the timer value to

its quiescent state. The act of resetting the device does not cause the timer to interrupt the DSP. The period regis-
ter is not initialized on reset.

Lucent Technologies Inc. 12-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Timer April 1998

12.3 Program Example

/*Assumes 2x input clock at 60 MHz*/
[*start at location 0*/
#include "1611.h"

goto start /* goto start of main program *
.=0x10 /* skip past unused interrupt table entries *
goto tmrint /* go to timer interrupt handler at INT5 vector */
start:auc=0
/* perform initializations */
timer0=1250 [* interrupt every 1250 ticks of timer TCLK */
timerc=0x34 /* set input clock to CKO/32 (1.25 MHz) */
/* and enable RELOAD and timer0 counting *
inc=0x100 /* enable TIMEOUT (timer interrupt) */
/* the DSP will now interrupt every 1.00 ms *
timerc=0x24 /* temporarily turn off timer clock to hold count*/
. /* perform nontimed function *
timerc=0x34 /* restore clocking to timer */
[* continue with main routine */
tmrint:. /* Timer interrupt routine here */
timerO=NNNN [* optionally change timer period to new value */
ireturn

12-4 Lucent Technologies Inc.

Information Manual
April 1998

12.4 Timing

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Timer

Figure 12-2 shows the timing sequence for a short interval. The maximum interval for a DSP with a 33 ns instruc-

tions cycle is:

33 ns 65,536 65,536 -1 = 142 seconds
(TCKO, (PRESCALE (Max. count in (Max. delay)
period of CKO) value) timer0)

10|11|12|13|14|15|16|17| |

[
CKO‘ T LU

TCLK

TIMER

INTERRUPT

TIMER COUNT 2 2| 2

xaB, xpB (D))

—/
FETCH FETCH FIRST
TIMERC ON WORD OF
XAB, XDB timer0 = 2 INTERRUPT
HANDLER

inc = 0x100

timerc = 0x30

nops executing

5-4211

Figure 12-2. Timing Examples

The timing example in Figure 12-2 shows nearly the minimum delay possible. A starting count of one instead of
two would give the minimum delay (a starting count of zero would not generate an interrupt). In the example,
timer0 = 2 loads the initial count of two into the counter. The inc register is loaded with a one in bit 8 that enables
the interrupt. Moving 0x30 (00110000) into timerc starts the counting and enables the repeat mode. In the simu-
lation that generated this timing diagram, nops were the other instructions. The use of other instructions will pro-
duce variations in the time delay of one or two instruction cycles because of different instruction timings.

The sequence shows first an instruction that writes a new value to timerc . Time slot 2 is if this instruction appears
on the instruction data bus (XDB).

Five instruction cycles (CKO) later, the first count occurs when the counter decrements to one. At time slot 9, it
decrements to zero and the interrupt is issued. Assuming that an interruptible instruction is currently being exe-
cuted, the interrupt will be serviced with the delay shown (see the interrupt service routine starting in time 13 in Fig-
ure 12-2). Meanwhile, back at the timer, the initial value of two has been transferred from the period register into
the counter and the count resumes. Attime slot 15, another interrupt is issued that will be ignored in this case. The
same interrupt source is already being serviced and the interrupt routine will not have completed. If an interrupt is
being serviced and the same interrupt is pending next, the interrupt must remain asserted into the next rising edge
of IACK. (See Section 3.4.4, Interrupt Operation.)

Lucent Technologies Inc. 12-5

Chapter 13

Bit Manipulation Unit

CHAPTER 13. BIT MANIPULATION UNIT

CONTENTS
[] 13 Bit Manipulation Unit (BIMU)ceiiiieieieeete et eeeeete et ettt ete ettt e e veeveeva e e e testeete et eteeres e eaeeteereeneeeeeans 13-1
O T R o P Yo VT VL= YA 1= T 13-1
O 132 SOWAIE VIBW ...veiiveiieei it ettt ettt ettt ea e et e et e et e e et e e et e e et e e eae e et e e beeeteebeebe et e eteen sebeenteentesnteanes 13-2
O R R [T=1 1 10 o (1) (1= AT ORRTR 13-2
0 13.2.2 ShiIfting OPEIALIONSc.eevvivieeieeeeieieete et ettt e e ete et et e eteete e e e et e steete e e e eesteeaeetestesteens saeees 13-2
O R T e 411 F=1 17221 (1o TP 13-4
O R S e 1 - o1 (o) o TR 13-5
O TR ST [T=1=Y 1 1o o TR 13-6
O 13.2.6 SHUFfIE ACCUMUIBLONSo.viiiiiieie ittt ee sttt ee st e st e st e e st e e steesteesteeteestessaeesaeesreeseebeea 13-8
0 T2 A 1 T=1 ¥ Tox o) o J =1 Yol o o 13 T[RRI 13-9
0 13.2.8 SOMWAIE EXAMPIE ...c.ooiviiviieieeieie ettt ettt et e ettt e st e et e et e e teeneeaesaeene eas 13-10

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

13 Bit Manipulation Unit (BMU)

The BMU has powerful bit manipulation capabilities. A general 36-bit barrel shifter interfaces directly to the main
accumulators in the DAU providing the following features:

m Barrel shifting—Ilogical and arithmetic, left and right shift
= Normalization and extraction of exponent
m Bit-field extraction and insertion

These features increase the efficiency of the DSP in applications such as control or data encoding/decoding. For
example, data packing and unpacking, in which short data words are packed into one 16-bit word for more efficient
memory storage, are very easy.

In addition, the BMU provides two auxiliary accumulators. In one instruction cycle, 36-bit data can be shuffled or
swapped between one of the main accumulators and one of the alternate accumulators.

13.1 Hardware View

Figure 13-1 is the block diagram of the BMU. The BMU components are shown shaded with the components in the
DSP core (the main accumulators and the data bus (IDB)) shown to the left. The ar<0—3> registers are 16-bit reg-
isters that control the operations of the BMU. They store a value that determines the amount of shift or the width
and offset fields for bit extraction or insertion. Alternately, an immediate data word transferred over the IDB can
control the above operations. The third input to the MUX, the upper half of one of the main accumulators (bits
31—16), can determine the amount of shift but is not used as a control in the extraction/insertion instructions. The
BMU operational unit performs not only full-barrel shift operations but the related operations of extraction, insertion,
normalization, and extraction of exponent. The operational unit has a full 36-bit bidirectional data bus to the main
accumulators (a0 and al) in the DAU. Certain operations in the operational unit set flags that are returned to the
DSP core. The final block in the BMU contains the 36-bit alternate accumulators aa0 and aal. In one instruction
cycle, data can be shuffled between one of the main accumulators and one of the alternate accumulators.

The arM registers can be used as general-purpose registers that are read and written with data move instructions.

16 ar0, arl,
ar2, ar3
REGISTERS

’ ‘ EXP
aa0, aal

36 ALTERNATE et MUX

ACCUMULATORS
:l 5 CONTROL
a0, al

MAIN ACCUMULATORS BMU SHIFT,
IN DAU 36 EXTRACT, INSERT,

NORMALIZE, FIND
EXPONENT

IDB

16

16

DATA

FLAGS

nmns1, mnsl, oddp, evenp -

LMI, LEQ, LLV, LMV =

5-4212

Figure 13-1. BMU Block Diagram

Lucent Technologies Inc. 13-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit Manipulation Unit April 1998

13.2 Software View

13.2.1 Instruction Set

The following are the instructions for the BMU. Instruction set details are found in Section 4.5.7, BMU Instructions.
BMU

aD = aT SHIFT aS

aD = aS SHIFT arM

aD = aS SHIFT IM16
aD = exp (aS)

aD = norm (aS, arM)

aD = extracts (aS, arM)
aS = extractz (aS, arM)
aD = extracts (aS, IM16)
aD = extractz (aS, IM16)
aD = insert (aS, arM)
aD = insert (aS, IM16)
aD =aS:aaT

13.2.2 Shifting Operations

In all of the shifting operations, the source accumulator and the destination accumulator can be the same or
different. If the source and destination accumulators are different, the source remains the same after the shift. The
amount of shift is defined by a value in one of the ar registers, in the high half of an accumulator, or from an imme-
diate data word. The amount of shift is a signed value. If a negative shift is called for, the direction of shift is auto-
matically reversed. The following describes the four types of shifts.

In the logical right shift (>>>) bits 31—0 of the source accumulator are shifted to the right into the destination
accumulator. The open upper bits after the shift are filled in with zeros.

BEFORE | | | |

LOGICAL RIGHT
SHIFT
35 32 31 16 15 0

AFTER lo -------- 4 ------- 0 | | |

5-4213

Figure 13-2. Logical Right Shift

13-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Bit Manipulation Unit

13.2 Software View (continued)
13.2.2 Shifting Operations (continued)

In the logical left shift (<<<) and the arithmetic left shift (<<), bits 35—0 of the source accumulator are shifted to
the left. The open lower bits are filled in with zeros. The arithmetic left shift (<<) for the BMU is defined differently
from the arithmetic left shift for the special function instruction (see Table 4-10). In the case of special function
shifts, the guard bits (35—32) are sign-extended from the new bit 31 (to be compatible with DSP16A). A common
programming error occurs when attempting to perform a BMU arithmetic shift left by 1, 4, 8, or 16. The shift
instruction (i.e. a0 = a0 << 8) will be encoded by the assembler as a special function instruction unless the shift
instruction is preceded with the BMU mnemonic. For a more detailed discussion on the use of assembler mne-
monics refer to Section 4.5.8, Assembler Ambiguities.

35 32 31 16 15 0
BEFORE | | | | |
LOGICAL LEFT SHIFT AND
/ ARITHMETIC LEFT SHIFT
,4 31 16 15 0
R o — =N

5-4214

Figure 13-3. Left Shifts

In the arithmetic right shift (>>), bits 35—0 in the source accumulator are shifted to the right into the destination
accumulator. The open upper bits are filled in with the sign bit of the source accumulator.

35 32 31 16 15 0
BEFORE | | | | ‘
ARITHMETIC RIGHT
SHIFT
35 3231 16 15 0
werer[s—— T | | |

5-4134

Figure 13-4. Arithmetic Right Shift

Flags in the Shifting Operation
Four flags (see the following) are set as result of barrel shifter operations and can be tested with the conditional or
special function instructions (see Table 4-3, Flags (Conditional Mnemonics), in Section 4.4, Processor Flags).

LMI Logical Minus—bit 35 of the destination accumulator after the shift. If bit 35 = 1, the sign is negative and
LMl is true. Stored in bit 15 of the psw register.

LEQ Logical Equal—If all bits (35—0) of the destination accumulator after the shift are zero, LEQ is true. Stored
in bit 14 of the psw register.

LLV Logical Overflow—For left shifts, LLV is true if any significant bits are lost after the shift into the destination
accumulator. For right shifts, LLV is true if the shift amount is greater than 35 bits.

Note: A logical right shift of 32 bits or greater will fill the destination accumulator with zeros. Stored in bit 13
of the psw register.

Lucent Technologies Inc. 13-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit Manipulation Unit April 1998

13.2 Software View (continued)

13.2.2 Shifting Operations (continued)

LMV Logical Mathematical Overflown—LMYV is true if any of the accumulator bits 35—31 are different after the
shift operation. Stored in bit 12 of the psw register.

Four additional flags are also set from BMU operations:

evenp Even Parity—True if all bits (35—0) have even parity. Stored in bit 5 of the alf register.

oddp Odd Parity—True if all bits (35—0) have odd parity. Stored in bit 4 of the alf register.

mnsl Minus 1—True if all bits (35—0) are 1s (minus one in two's complement). Stored in bit 6 of the alf register.

nmnsl Not Minus 1—True for all other patterns other than all 1s. Stored in bit 7 of the alf register.
13.2.3 Normalization

A two's complement number is normalized by detecting the number (E) of extra (or redundant) sign bits and then
shifting the number to the left E times. For example:

11110011

10011000
There are three extra sign bits, so shift left three times in order that the last sign bit ends up in the MSB position.

For the DSP, the number (E) of redundant sign bits is found with respect to sign bit 31. If an overflow has occurred,
E will be negative and an arithmetic right shift will be done to normalize the number. E = K- 5 where K is the total
number of bits that are the same starting from bit 35 and counting to the right. For example:

Bit Positions 35—32 31—0 Normalization Action
Accumulator Contents 0000 0110001...0 K =5, E = 0, no shifting required.
0000 0001100...0 K =7, E = 2, shift left twice.
0000 1000000...0 K =4, E = -1, shift right once.
0110 1100010...0 K =1, E = -4, shift right four times.
1111 1100101...0 K =6, E =1, shift left once.

The instruction for exponentiation is aD = exp (aS) where the exponent (E) is placed in the high half of the destina-
tion accumulator (aD, bits 31—16). The lower half (bits 15—0) is cleared.

The instruction for normalization is aD = norm (aS, arM) where the exponent (E) is calculated and placed in one of
the arM (M =0, 1, 2, or 3) registers. The number in aS is normalized and placed in aD with the sign bit in bit 31.
aS is left unchanged.

The flags (described Section 13.2.2, Shifting Operations) are set based on the value written into aD.

13-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Bit Manipulation Unit

13.2 Software View (continued)

13.2.4 Extraction

In extraction, a sequence of contiguous bits from the aS accumulator is placed in the low-order bits of aD and then
sign-extended or zero-extended. The bit field in aS is defined by a 16-bit word from an immediate data or from one
of the arM registers. The upper 8 bits define the width of the field in bits, and the lower 8 bits define the location of
the LSB of the field (which is the offset of the field). Pictorially:

WIDTH OFFSET SPECIFIED IN
<-—»<=<+—» |MMEDIATE

SOURCE OR arM
ACCUMULATOR
DESTINATION ZERO-EXTENDED OR
ACCUMULATOR SIGN-EXTENDED
LSB

5-4215

Figure 13-5. Extraction

The instructions are as follows:

aD = extracts (aS, IM16) Get field from immediate IM16 and sign-extend. For example:
a0 = extracts (al, 0x0304).

aD = extractz (aS, IM16) Get field from immediate IM16 and zero-extend.
aD = extracts (aS, arM) Get field from arM register and sign-extend.
aD = extractz (aS, arM) Get field from arM register and zero-extend.

The eight flags (described Section 13.2.2, Shifting Operations) are set based on the value written into aD with their
normal definitions, except LLV is true if WIDTH = 0 or if (WIDTH + OFFSET) > 36.

Lucent Technologies Inc. 13-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit Manipulation Unit April 1998

13.2 Software View (continued)
13.2.5 Insertion

In insertion, both main accumulators can be used as sources. They are written as aS and aS, where aS means
one accumulator and aS means the other accumulator. The term aS does not appear in the instruction; however, it
is implied in Case 2 (see page 7). In both cases, the field width and offset are defined by an immediate data word
or data in one of the arM registers.

Case 1. The source aS and destination aD are different accumulators. The field from the low-order bits of aS is
inserted into aD at a position defined by the offset. The original bits in aD not in the new field are unaffected.

35 0
SOURCE
85 ACCUMULATOR

WIDTH SPECIFIED IN IMMEDIATE
OR arM

OFFSET
SOURCE 2 &
asS, aD DESTINATION
ACCUMULATOR

5-4216

Figure 13-6. Insertion, Case 1. Source and Destination Accumulators Different

13-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Bit Manipulation Unit
13.2 Software View (continued)

13.2.5 Insertion (continued)

Case 2. Case 2 is more complex. If aS is the same as aD in the instruction, aS is an implicit second source. The

field from the aS accumulator is moved over by an amount defined by the offset. The other bits outside of the field
come from the other accumulator aS.

BEFORE
aS =aD
WIDTH
SOURCE &
DESTINATION - — -
ACCUMULATOR OFFSET
AFTER

Figure 13-7. Insertion, Case 2. Source and Destination Accumulators Are the Same

5-4135

The instructions are as follows:

aD = insert (aS, IM16)Get field from immediate IM16 and insert.
aD = insert (aS, arM) Get field from arM register and insert.

For instance, for insertion instruction case 2,

let a0 aS = aD = 0x0000000F
and al = aS = OxOOFAAABB
then the instruction

a0 = insert (a0, 0x0410)
results in

a0 = OxOOFFAABB

The eight flags (described Section 13.2.2, Shifting Operations) are set based on the value written into aD with their
normal definitions, except LLV is true if WIDTH = 0 or if (WIDTH + OFFSET) > 36.

Lucent Technologies Inc. 13-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Bit Manipulation Unit April 1998

13.2 Software View (continued)

13.2.6 Shuffle Accumulators

The shuffle instruction exchanges data between one or both of the main accumulators and one of the two alternate
accumulators. The contents of accumulator aD are replaced with the contents of alternate accumulator aaT, and
the contents of aaT are replaced with the contents of accumulator aS. aD and aS can be the same or different.
Figure 13-8 shows the shuffle instruction. Flags (described Section 13.2.2, Shifting Operations) are set based on
the value written into aD.

aS
36
SOURCE ACCUMULATOR
aaT

ALTERNATE

ACCUMULATOR
aD

36

DESTINATION ACCUMULATOR

5-4217

Figure 13-8. Shuffle Accumulators

13-8 Lucent Technologies Inc.

Information Manual

April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Bit Manipulation Unit

13.2 Software View (continued)

13.2.7 Instruction Encoding

The following tables show the encoding for the BMU instructions.

Table 13-1. Format 3b: BMU Operations

Bit 15 [14 |13 [12 |11 [10 | 9

8 | 7 |6

4

3 |2]1]o

Field

T

D S

F4[3—1]

F4[0]

ar[3—0]

Immediate Operand (IM16)

The T field is 11110; IM16 is made up of the field width in bits 15—8 and the field offset in bits 7—O0.

F4 ar Operation
0000 00xx aD = aS >> arM
0001 00xx aD = aS << arM
0000 10xx aD = aS >>> arM
0001 10xx aD = aS <<< arM
1000 0000 aD =aS >>aS
1001 0000 aD =aS << aS
1000 1000 aD = aS >>> aS
1001 1000 aD = aS <<< aS
1100 0000 aD = aS >>IM16
1101 0000 aD = aS << IM16
1100 1000 aD = aS >>> IM16
1101 1000 aD = aS <<< IM16
0000 1100 aD = exp (aS)
0001 11xx aD = norm (aS, arM)
1110 0000 aD = extracts (aS, IM16)
0010 00xx aD = extracts (aS, arM)
1110 0100 aD = extractz (aS, IM16)
0010 01xx aD = extractz (aS, arM)
1110 1000 aD =insert (aS, IM16)
1010 10xx aD =insert (aS, arM)
0111 0000 aD =aS:aa0
0111 0001 aD=aS:aal

Lucent Technologies Inc.

13-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual

Bit Manipulation Unit

13.2 Software View (continued)

13.2.8 Software Example

April 1998

The following program example demonstrates the use and power of the BMU. It is a routine to convert an 8-bit
p-law number to a 14-bit linear number. The routine calculates the function:

2Y = (=1)Sx (33 + 2M) x 2N — 33

where S is the sign bit, M is the magnitude, and N is the exponent. The 8-bit p-law value is passed to the routine in

the high half of accumulator a0 in the form:

00000000(S (MZ)T)0) (M3) (MZ) (mI) (M0)

A previous routine (_mulin) for the DSP16/16A is found in the application library. The comparison between the two

routines is:

DSP16A DSP1611/17/18/27/28/29 with BMU
ROM Locations 24 17
Instruction Cycles 32 19

Routine Source Code
a0=~a0 I* Inverts all bits in a0 */
al=extractz(a0,0x0314) [* Puts N into al */
arO=all I* Puts N into arO */
al=extractz(a0,0x0410) [* Puts M into all */
al=al<<17 [* Puts 2M into alh */
y=33 * Puts 33 into high y */
al=al+y * Puts 2M+33 into alh */
al=al<<ar0O I Puts (2M+33) 2 N into alh by */

* shifting left N times */

al=al-y I* Puts (2M+33) 2 N_33 into alh */
a0=a0>>23 I* Puts sign bitin bit 0, 1s in 1—35 */
if mnsl al=-al [* If negative, take two's complement */
return

13-10

Lucent Technologies Inc.

Chapter 14

Error Correction Coprocessor (DSP1618/28 Only)

CHAPTER 14. ERROR CORRECTION COPROCESSOR (DSP1618/28 ONLY)

CONTENTS
[1 14 Error Correction Coprocessor (DSPL618/28 ONIY)coueiueeieeeieeeeieee ettt ee ettt 14-1
0 141 SYSIEM DESCIPLONiviiteiee ettt ettt e ettt e et et e et e e teeteere et e eteeteeteeetesteeteetesteateen saesreenseseees 14-1
O 14.2 HArdWare ArCIITECIUIEuiiiiiiiee ettt et ekt e e st e e e s ae e e e sb b e e e s eeenaabeeeeaans 14-3
O 14.2.1 Branch MEtriC UNILccciiviiriiiiiieiteiiee ettt ettt sesteteebe e ssetesbesaes saeneas 14-3
0 14.2.2 UPAALE UNIE c.ooviiiiieiieieeecee ettt ettt te et ettt e st e eae e st et este et e eteeteeaeansen eaeeaeeees 14-4
O 14.2.3 TraCEDACK UNIL ...ocviiiviiiiiiiiits sttt ettt sttt ettt b et sttt e b seebesbe s ens e beneas 14-4
0 14.2.4 INtEITUPLS @NG FIAGS ..ooveevviiiieeeeeeeieeeeee ettt et te et eeete e eteeteeteens e nes 14-5
O 14.2.5 TraCehACK RAMccooiiiiiiiiiiicte ettt ettt ettt sttt sttt sttt se et e st et e st s etesbe st e sen sbeneas 14-5
0 14.3 DSP Decoding OPeration SEOUENCEuuueiiieeeiiiiiiiiiiieteeesssiiitteeeeeeesssaasssssseeesesssrreseeeaesssannssssnes 14-6
0 14.4 Operation Of tNE ECCPccui oottt ettt ettt et e e ettt e et et e e eae s saeeneenaeeees 14-7
O 14.5 SOMWAIE ArCRIECIUIEceiviiviiieicteiti ettt ettt ettt s et et e st se et e st e st eseebe st be st e b eteseresresbesens 14-8
0 14.5.1 R-FIBld REUISIEIS ...ocviiviiiiieiteeeeeete ettt ettt ettt e ettt e et e e et e eteeteateen seaeenes 14-8
0 14.5.2 ECCP Internal Memory-Mapped REQISLEISueiiiieiiiiiiiiiiiiiieeeeesisiiiiee e e s ssiiirneeeeeeeeenns 14-10
0 14.5.3 ECCP INerruptS and FIAUSccveiviiuiiieeieeieete ettt ettt ete et eae e aveeaeere e 14-17
O 14.5.4 TraCehACK RAMcoiviiiiitiiieiete sttt ettt sttt sttt be bbbt sebesbe st e s ene s eaeas 14-17
0 14.6 ECCP INSITUCHON TIMNG c.veoviieiiieete ettt ettt cteeteete et eeaeeteeteereeeteetesteeseestestesaeetestesaeensessseesseareas 14-19
O 14.6.1 RESEIECCP INSITUCHON ..ovvcviiviiiieiicteiteiee ettt ettt ettt be bbb e s sesbesbesaessare e 14-19
0 14.6.2 UpdateMLSE Instruction with Soft DECISIONuuviiiiieiiiiiiiiiieee e 14-19
0 14.6.3 UpdateMLSE Instruction with Hard DECISIONcceviiiiiiiiiiiiiiiiees e 14-21
0 14.6.4 UpdateConv Instruction with SOft DECISIONSuuuiiiiiieiiiiiiiiiiiiie e 14-22
0 14.6.5 UpdateConv Instruction with Hard DECISIONceevvieiiiiiiiiiiiiiiee e siriieee e 14-23
O 14.6.6 TraceBaCK INSLIUCIONcciiiiiiiiiiiie ittt s 14-23

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998

14 Error Correction Coprocessor (DSP1618/28 Only)

The error correction coprocessor (ECCP) performs full Viterbi decoding with single instructions for a wide range of
maximum likelihood sequence estimation (MLSE) equalization and convolutional decoding. The ECCP operates in
parallel with the DSP core increasing the throughput rate, and single-instruction Viterbi decoding provides signifi-
cant code compression required for a single DSP solution for modern digital cellular applications.

14.1 System Description

The ECCP is a loosely coupled, programmable internal coprocessor that operates in parallel with the DSP1600
core. Complete Viterbi decoding for MLSE equalization or convolutional decoding is performed with a single DSP
instruction.

The core communicates with the ECCP module via three interface registers. An address register (ear) is used to
indirectly access the ECCP internal memory-mapped registers. A data register (edr) works in concert with the
address register to indirectly read from or write to an ECCP internal memory-mapped register addressed by the
contents of the address register. After each edr access, the contents of the address register is postincremented by
one. Upon writing an ECCP opcode to instruction register eir, either MLSE equalization, convolutional decoding, a
simple traceback operation, or ECCP reset is invoked.

The mode of operation of the ECCP is set up by writing the appropriate fields of a memory-mapped control register.
In MLSE equalization, the control register can be configured for 2-tap to 6-tap equalization. In convolutional decod-
ing, the control register can be configured for constraint lengths 2 through 7 and code rates 1/1 through

1/6. One of two variants of the soft-decoded output can be programmed, or a hard-decoded output can be
chosen.

Usually, convolutional decoding is performed after MLSE equalization. For a receiver configuration with MLSE
equalization followed by convolutional decoding, a Manhattan branch metric computation for convolutional decod-
ing can be selected by setting a branch metric select bit in the control register.

In wideband low data rate applications, additive white Gaussian noise (AWGN) is the principle channel impairment.
Under these conditions, Euclidean branch metric computation for convolutional decoding is selected by resetting
the branch metric select bit to zero.

A traceback-length register is provided for programming the traceback decode length.

Lucent Technologies Inc. 14-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.1 System Description (continued)

A block diagram of the coprocessor and its interface to the DSP1600 core is shown in Figure 14-1.

ECCP
BRANCH METRIC
UNIT
EOVF SiHi,i=0,..., 5
EREADY ZIG10
-
EBUSY > 2QG32
B B G54
DB ear
<> edr [\d
oir UPDATE UNIT
A NS[63:0]

CONTROLUNIT |
PS[63:0]
ECON
syc

MIDX

v

MACH

MACL

Y
TRACEBACK UNIT

RAM4 TBLR

DSR

Y

TBSR

5-4500

Figure 14-1. Error Correction Coprocessor Block Diagram/Programming Model

The ECCP internal registers are accessed indirectly through the address and data registers (ear and edr). The
control register (ECON) and the traceback length register (TBLR) are used to program the operating mode of the
ECCP. The symbol registers (SOHO—S5HS5, ZIG10, and ZQG32), the generating polynomial registers (ZIG10,
ZQG32, and G54), and the channel impulse registers (SOHO—S5H5) are used as input to the ECCP for MLSE or
convolutional decoding. Following a Viterbi decoding operation, the decoded symbol is read out of the decoded
symbol register (DSR). All internal states of these memory-mapped registers are accessible and controllable by
the DSP program. However, during periods of simultaneous DSP core and ECCP activity, ECCP internal registers
and the shared bank RAM4 are not accessible to the user's DSP code.

14-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.2 Hardware Architecture
14.2.1 Branch Metric Unit

The branch metric unit of the ECCP performs full-precision real and complex arithmetic for computing 16-bit incre-
mental branch metrics required for MLSE equalization and convolutional decoding. The branch metric unit per-
forms either MLSE equalization or convolutional decoding depending on configuration.

MLSE Equalization: To generate the estimated received complex signal at instance n
E(n, k) = EI(n, k) +j EQ(n, k)

at the receiver, all possible states
k=0to2°'-1

taking part in the Viterbi state transition are convolved with the estimated channel impulse response
H(n) = [h(n), h(n=1), h(n=2), ...h(n=C +1)]"

where the constraint length C = {2 to 6}. Each in-phase and quadrature-phase part of the channel tap
h(n) = hi(n) +jhQ(n)

is quantized to an 8-bit two's complement number. The channel estimates are normalized prior to loading into the
ECCP; such that the worst-case summation of the hi(n) or hQ(n) are confined within a 10-bit two's complement
number. The in-phase and quadrature-phase parts of the received complex signal

Z(n) = ZI(n) +j ZQ(n)

are also confined within a 10-bit two's complement number. The Euclidean branch metric associated with each of
the 2C state transitions is calculated as:

BM(n, k) = XI(n, k)® + XQ(n, k)?
where

XI(n, k) = abs{ZI(n)—EI(n, k)}
and

XQ(n, k) = abs{ZQ(n) —EQ(n, k)}

The absolute values of the difference signal are saturated at the level OxFF. The sixteen most significant bits of this
17-bit incremental branch metric are retained for the add-compare-select operation of the Viterbi algorithm.

The in-phase and quadrature-phase parts of the received complex signal are stored in the ZIG10 and ZQG32 reg-
isters respectively. The complex estimated channel taps (H5 through HO) are stored in the S5H5 through SOHO
registers such that the in-phase part of the channel occupies the upper byte, and the quadrature-phase part of the
channel occupies the lower byte.

Convolutional Decoding: Two types of distance computation are implemented for convolutional decoding. Con-
volutional decoding over a Gaussian channel is supported with a Euclidean distance measure for rate 1/1 and

12 convolutional encoding. Convolutional decoding preceded by the MLSE equalization or other linear/nonlinear
equalization is supported with Manhattan distance measure for rate 1/1 through 1/6 convolutional encoding.

Generating polynomials G(0), ..., G(5) (up to six-delays corresponding to a constraint length of seven) can take
part in computing the estimated received signals E(0, k), . .., E(5, k) associated with all possible state transitions
k=0,1,2¢-1.

Lucent Technologies Inc. 14-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998
14.2 Hardware Architecture (continued)

14.2.1 Branch Metric Unit (continued)

Six 8-bit soft symbols S(0), . .., S(5) are loaded into the ECCP. The incremental branch metrics associated with all
2€ state transitions are calculated as indicated in Table 14-1.

Table 14-1. Incremental Branch Metrics

Distance Measure Code Rate 16-bit Incremental Branch Metric
Euclidean 1/1 (S(0) —E(0))*
Euclidean 1/2 [5(S(i)—E())’] >> 1,i= 0,1
Manhattan 1/1 [S(i))—E()] <<8,i=0
Manhattan 1/2 [Z(S()-E(i))] << 7,i=0,1
Manhattan 1/3 or 1/4 [Z(S(i)—E(i))] << 6,i=0,1,2,0r 3
Manhattan 1/50r 1/6 [Z(S(i))—E(i))] << 5,i=10,1,...,4,0r5

The received 8-bit signals S(5), . .., S(0) are stored in the S5H5 through SOHO registers. The generating polyno-
mials G(1) and G(0) are stored in the upper and lower bytes of the ZIG10 register, respectively. The generating
polynomials G(3) and G(2) are stored in the upper and lower bytes of the ZQG32 register, respectively. The gener-
ating polynomials G(5) and G(4) are stored in the upper and lower bytes of the G54 register, respectively.

14.2.2 Update Unit

The add-compare-select operation of the Viterbi algorithm is performed in this unit. At every time instant, there are
2€ state transitions of which 2€ -1 state transitions survive. The update unit selects and updates 2¢-1 surviving
sequences in the traceback RAM that consists of the fourth bank of the internal RAM (RAM4). The accumulated
cost of the path p at the Jth instant (ACC(J, p)) is the sum of the incremental branch metrics belonging to the path
p up to the time instant J:

ACC(J, p) = =BM(j,p), j= 1,d

The update unit computes and stores full-precision 24-bit resolution path metrics of the bit sequence. To assist the
detection of a near overflow in the accumulated path cost, an internal vectored interrupt (EOVF) is provided.

14.2.3 Traceback Unit

The traceback unit selects a path with the smallest path metric among 2€ —1 survivor paths at every instant. The
last signal of the path corresponding to the maximum likelihood sequence is delivered to the decoder output. The
depth of this last signal is programmable at the symbol rate. The traceback decoding starts from the minimum cost
index associated with the state with the minimum cost:

1

min{ ACC(j, pY), ..., ACC(j, p°)}

If the end state is known, the traceback decoding can be forced in the direction of the right path by writing the
desired end state into the minimum cost index register (MIDX).

14-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.2 Hardware Architecture (continued)

14.2.4 Interrupts and Flags

The ECCP generates the EREADY interrupt when the ECCP has completed an instruction, and it generates the
EOVF interrupt if an overflow in the accumulated cost is imminent. The EBUSY flag indicates if the ECCP is in
operation.

14.2.5 Traceback RAM
As noted previously, the fourth 1 Kword bank of dual-port RAM is shared between the DSP1600 core and the
ECCP. RAM4, located in the Y-memory space in the address range 0x0C00 to OXOFFF, is used by the ECCP for

storing traceback information. If the ECCP is active (i.e., the EBUSY flag is asserted), the DSP core cannot access
this traceback RAM.

Lucent Technologies Inc. 14-5

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Error Correction Coprocessor (DSP1618/28 Only)

14.3 DSP Decoding Operation Sequence

The DSP operation sequence for invoking the ECCP for an MLSE equalization or convolutional decoding operation
is explained by using the operation flow diagram in Figure 14-2. Figure 14-2 shows the overall sequence for sev-
eral DSP instructions, and Figure 14-3 shows the internal ECCP operation sequence for one ECCP operation.

In Figure 14-2, the sequence of operations is row by row. In the first row, the ECCP is programmed and initialized.

In the second row, symbol 1 is loaded, the first update MLSE or convolve operation is performed, and an invalid
symbol is available. The subsequent rows follow as shown.

EBUSY = FALSE
ECCP OFF
(LOAD ECCP)

EBUSY = TRUE
ECCP ON
(EXEC ECCP)

EBUSY = FALSE
ECCP OFF
(UNLOAD ECCP)

PROGRAM PROGRAM ECCP
ECCP {ECON = VALUE, TBLR = TL
H, G = CHANNEL, GEN. POLY.}
LOAD SYMBOL 1 UPDATE MLSE/CONV INSTR 1 INVALID DECODED SYMBOL 1 DISCARD TL
INTO ZI:ZQ/S[5:0]
INVALID
Py ° PS DECODED
SYMBOLS
® ° ®
LOAD N SET ° ° °
OF RECEIVED
SYMBOLS LOAD SYMBOL TL UPDATE MLSE/CONV INSTR TL INVALID DECODED SYMBOL TL
INTO ZI:ZQ/S[5:0]
AND
LOAD SYMBOL TL +1 VALID DECODED SYMBOL 1
EXECUTE N INTO ZI-ZQIS[50] UPDATE MLSE/CONV INSTR TL + 1
UPDATE
INSTRUCTIONS ° ° ®
® ° ®
® ° ®
LOAD SYMBOL N ’
INTO ZI-ZQ/S[5:0] UPDATE MLSE/CONV INSTR N VALID DECODED SYMBOL N — TL ACCEPTTL
VALID
DECODED
VALID DECODED SYMBOL N—TL + 1
TRACEBACK INSTR 1 SYMBOLS
EXECUTE
TL TRACEBACK ° °
INSTRUCTIONS
° °
° e
TRACEBACK INSTR TL VALID DECODED SYMBOL N

14-6

Figure 14-2. DSP Core Operation Sequence

5-4501

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.4 Operation of the ECCP

To operate the ECCP, the user first programs its mode of operation by setting the control register (ECON), setting
the traceback length register (TBLR), and appropriately initializing the present state accumulated costs. The com-
plete Viterbi decoding operation is achieved by the following steps: recursively loading the received symbols into
the ECCP; executing the ECCP with an UpdateMLSE, an UpdateConv, or a TraceBack instruction; and, finally,
unloading the decoded symbol from the ECCP. The operation of the ECCP is captured in the signal flow diagram in
Figure 14-3.

| DSP PROGRAMS ECCP ‘

'

YES »| DSP LOADS CHANNEL/GENERATING
POLYNOMIALS INTO THE ECCP

'

NO DSP LOADS RECEIVED
SYMBOLS INTO THE ECCP

T DSP EXECUTES
UPDATE INSTRUCTION
TL=TBLR SETK=0

ADAPTED
CHANNEL

\i

| FETCH MINIMUM COST INDEX | CALCULATE BRANCH METRIC -
FOR BOTH STATE TRANSITIONS TO K
CALCULATE v
REVERSED PATH CALCULATE ACCUMULATED COST

FOR STATE TRANSITIONS TO K
TL=TL-1 !
SELECT MINIMUM ACCUMULATED

COST AS SURVIVOR PATH

NO *
| UPDATE MINIMUM COST INDEX |
| STORE SURVIVOR PATH |
YES IS NO
TRACEBACK VITERBI INCREMENT
INSTR. DECODING K BY ONE
?
DECREMENT ‘ COMPLETE
TBLR BY ONE

OUTPUT

NO YES
DECODED SYMBOL

.

A

SYMBOLS

DECODED
?

5-4502

Figure 14-3. ECCP Operation Sequence

Lucent Technologies Inc. 14-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture
14.5.1 R-Field Registers

The ECCP registers are grouped into two categories: the R-field registers and the internal memory-mapped regis-
ters. Figure 14-4 is a functional block diagram of the R-field registers (edr, eir, and ear) and the internal memory-
mapped registers. The R-field registers are directly accessible from the DSP program. Through these registers,
the memory-mapped registers are indirectly accessed for data transfer and control. As seen in Figure 14-4, the
DSP can write an address to ear. A subsequent DSP write to edr will place data in the internal register addressed
by ear and increment ear by one count. Similarly, a DSP read from edr will fetch data from the internal register
addressed by ear and increment ear by one count. The DSP writes instructions directly to the eir register to start a
particular operation of the ECCP.

DSP CORE ECCP

NS[63:0]
PS[63:0]
syc
ECON
TBLR
S5H5

IDB edr

SOHO
MUX/ DSR
DEMUX ZIG10
— | eir ZQG32
G54
MDX
MACH
MACL
TSBR

ear
»

o ﬂ

\ ADDRESSES 0x0000 TO 0x0410

+1

5-4503

Figure 14-4. Register Block Diagram

The three R-field registers ear, edr, and eir are defined in the core instruction set as programmable registers for
executing the ECCP and establishing the data interface between the ECCP and the core. Reserved bits are
always zero when read and should be written with zeros to make the program compatible with future chip revisions.

Address Register (ear): The address register holds the address of the ECCP internal memory-mapped registers.
Each time the core accesses an internal ECCP register through edr, the content of the ear register is postincre-
mented by one. During a DSP compound addressing instruction, the same edr register is accessed for both the
read and the write operation.

14-8 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.5 Software Architecture (continued)
14.5.1 R-Field Registers (continued)

Data Register (edr): The contents of the ECCP internal memory-mapped registers are indirectly accessed by the
DSP through this register. A write to the data register is directed to the ECCP internal register addressed by the
contents of the ear register. A read from the data register fetches the contents of the ECCP internal register
addressed by the ear register. Every access to the edr increments the ear register.

Instruction Register (eir) : Four instructions are defined for the ECCP operation. These instructions will be exe-
cuted upon writing appropriate values in the eir register. Table 14-2 indicates the instruction encoding and their
mnemonics.

Table 14-2. ECCP Instruction Encoding

eir Value in Hex Instruction
0000 UpdateMLSE
0001 UpdateConv
0002 TraceBack
0003 Reserved
0004 ResetECCP
0005—FFFF Reserved

The UpdateMLSE instruction and the UpdateConv instruction each perform an appropriate branch metric calcula-
tion, a complete Viterbi add-compare-select operation, and a concurrent traceback decoding operation. The Trace-
Back instruction performs the traceback decoding alone. The ResetECCP instruction performs a proper reset
operation to initialize various registers as described in Table 14-3.

Table 14-3. Reset State of ECCP Registers

Register Reset State
eir 0x4
OxF (on pin reset)

ear 0x0

SYC 0x0
ECON 0x0
MIDX 0x0
MACH OXFF
MACL OXFFFF

During periods of ECCP activity, write operations to the eir and edr registers and read operations from the edr reg-
ister by the DSP code will be blocked. The eir register can be read during ECCP activity. The ECCP address reg-
ister, ear, can be read or written during ECCP activity to set up the ECCP address for the next edr access after the
completion of the ECCP instruction.

Lucent Technologies Inc. 14-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers

Internal memory-mapped registers are defined in the ECCP address space for control and status purposes and to
hold data. A summary of the contents of these registers is given in Table 14-4.

Table 14-4. Memory-Mapped Registers

Address

Register

Register Bit Field

0x0000—0x007F

Next State Register
NS[63:0]—24-bit words split across
two address locations

0x0080—O0x01FF

Reserved

Bits 31:16 are addressed by even address.

Bits 31:24 are zero.

Bits 23:16 are most significant byte of path cost.
Bits 15: 0 are addressed by odd address.

Bits 15:0 are lower 2 bytes of path cost.

0x0200—0x027F

Present State Register
PS[63:0]—24-bit words split across
two address locations

0x0280—0x03FF

Reserved

Bits 31:16 are addressed by even address.

Bits 31:24 are zero.

Bits 23:16 are most significant byte of path cost.
Bits 15:0 are addressed by odd address.

Bits 15:0 are lower 2 bytes of path cost.

0x400

Current Symbol Pointer SYC

Bits 5:0 are used.
Bits 15:6 are reserved.

0x401

Control Register ECON

Bit O is soft decision decode select.

Bit 1 is Manhattan/Euclidean branch metric select.
Bit 2 is soft/hard decision select.

Bit 3 is reserved.

Bits 7:4 are reserved.

Bits 10:8 are code rate select.

Bit 11 is reserved.

Bits 14:12 are constraint length select.

Bit 15 is reserved.

0x402

Traceback Length Register TBLR

Bits 5:0 are used.
Bits 15:6 are reserved.

0x403

Received Symbol/
Channel Tap Register
S5H5

Convolutional decoding case:
Bits 7:0 are reserved.

Bits 15:8 are S5.

MLSE equalization case:
Bits 7:0 are HQ5.

Bits 15:8 are HI5.

0x404

Received Symbol/
Channel Tap Register
S4H4

Convolutional decoding case:
Bits 7:0 are reserved.

Bits 15:8 are S4.

MLSE equalization case:
Bits 7:0 are HQ4.

Bits 15:8 are Hi4.

0x405

Received Symbol/
Channel Tap Register
S3H3

Convolutional decoding case:
Bits 7:0 are reserved.

Bits 15:8 are S3.

MLSE equalization case:
Bits 7:0 are HQS3.

Bits 15:8 are HI3.

14-10

Lucent Technologies Inc.

Information Manual

April 1998

14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers

Table 14-4. Memory-Mapped Registers

(continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Error Correction Coprocessor (DSP1618/28 Only)

(continued)

MIDX

Address Register Register Bit Field
0x406 Received Symbol/ Convolutional decoding case:
Channel Tap Register Bits 7:0 are reserved.
S2H2 Bits 15:8 are S2.
MLSE equalization case:
Bits 7:0 are HQ2
Bits 15:8 are HI2.
0x407 Received Symbol/ Convolutional decoding case:
Channel Tap Register Bits 7:0 are reserved.
S1H1 Bits 15:8 are S1.
MLSE equalization case:
Bits 7:0 are HQ1.
Bits 15:8 are HI1.
0x408 Received Symbol/ Convolutional decoding case:
Channel Tap Register Bits 7:0 are reserved.
SOHO Bits 15:8 are SO.
MLSE equalization case:
Bits 7:0 are HQO.
Bits 15:8 are HIO.
0x409 Decoded Symbol Register Bits 7:0 are zero.
DSR Bits 15:8 are decoded symbol.
0x40A Received Real Signal/ Convolutional case:
Generating Polynomial Bits 7:0 are GO.
ZIG10 Bits 15:8 are G1.
MLSE case:
Bits 9:0 are in-phase part of received signal.
Bits 15:10 are reserved.
0x40B Received Imaginary Signal/ Convolutional case:
Generating Polynomial Bits 7:0 are G2.
ZQG32 Bits 15:8 are G3.
MLSE case:
Bits 9:0 are quadrature-phase part of received signal.
Bits 15:10 are reserved.
0x40C Generating Polynomial Convolutional case:
G54 Bits 7:0 are G4.
Bits 15:8 are Gb.
MLSE case:
Bits 15:0 are reserved.
0x40D Minimum Cost Index Register Bits 7:0 are used.

Bits 15:8 are reserved.

Lucent Technologies Inc.

14-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers (continued)

Table 14-4. Memory-Mapped Registers (continued)

Address Register Register Bit Field
Ox40E—F Minimum Accumulated Cost Register | 0x040E
MACH Bits 15:8 are zero.
MACL Bits 7:0 are the upper byte of the minimum
accumulated cost.
0x040F

Bits 15:0 are the lower 2 bytes of the minimum
accumulated cost.

0x410 Traceback Shift Register Traceback shift register (TBSR)
TBSR Bits 7:0 are TBSR.
Bits 15:8 are reserved.
0x411—0x7FF | Reserved Registers Reserved

Control Register (ECON)

The constraint length, code rate, soft/hard decision mode, branch metric select, and soft decision data selection
are set in the control register memory-mapped at address location 0x401. The bit allocation of the control register
is the following.

Table 14-5. Control Fields of the Control Register

ECON Bits 15 14—12 11 10—8 7—3 2 1 0

Function |Reserved |Constraint Length [Reserved| Code Rate Reserved SH |MAN | SD

m Constraint Length: The constraint length (L) sets the number of states in the Viterbi decoding process to
2L-1. The constraint length sets the number of bits in the generating polynomials for convolutional decoding and
the number of complex channel estimate FIR taps for MLSE equalization. The constraint length also determines
the effective length of the traceback shift register and the traceback RAM used to store the survivor paths.

Three bits in the control register set the constraint length for convolutional decoding or MLSE equalization. For
hard decision convolutional decoding, constraint lengths from 2 to 7 are supported. The hard decision MLSE
equalization is possible for constraint lengths from 2 to 6. For soft decision convolutional decoding or MLSE
equalization, constraint lengths from 2 to 6 are supported. This constraint length field is defined in the following
table.

Bits Constraint # of PS/NS
ECON(14—12) Length Registers

000 2 2

001 3 4

010 4 8

011 5 16

100 6 32

101 7 64

110 Reserved

111 Reserved

14-12 Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Error Correction Coprocessor (DSP1618/28 Only)

14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers (continued)
Control Register (ECON) (continued)

m Code Rate: Three bits in the control register set the code rate of the convolutional decoder. The ECCP supports
six different code rates for convolutional decoding. The code rate field is defined in the following table.

Bits Select Generating Symbols

ECON(10—8) Code | Polynomials
Rate

000 1/1 G(0) S(0)

001 1/2 G(0)—G(1) S(0)—S(1)

010 1/3 G(0)—G(2) S(0)—S(2)

011 1/4 G(0)—G(3) S(0)—S(3)

100 1/5 G(0)—G(4) S(0)—S(4)

101 1/6 G(0)—G(5) S(0)—S(5)

110 Reserved

111 Reserved

m Soft/Hard Decision: The SH field of the control register sets the data packing mode in the traceback unit. The
two options are to pack soft decision data in a byte-packed form or hard decision bits in a bit-packed mode.

Bit ECON(2) Function
0 Generate 8-bit soft decision as output
1 Generate hard decision bits as output

m Rate 1/1 & 1/2 Metric Select: For convolutional decoding of rate 171 and 12, the branch metric can be selected
to be either the sum of squares or the Manhattan metric. The selection is set in bit 1 (MAN) of the ECON regis-
ter.

Bit ECON(1) Function
0 Select Euclidean Metric
1 Select Manhattan Metric

m Soft Decode: Soft decode (SD, bit O of the control register) selects one of two possible soft symbol definitions.
The soft decision data can be set to the coded surviving branch metric or to the coded absolute value of the dif-
ference between the surviving and rejected accumulated path cost.

Bit ECON(0) Function
0 Soft symbol is coded accumulated cost
difference; symbol is the traceback bit.
1 Soft symbol is the coded survivor branch
metric; symbol is the MSB of the trace-
back shift register.

Soft Decoded Output Definition: Two types of 8-bit soft-decoded output are implemented. One is the coded sur-
vivor incremental branch metric, and the other is the coded accumulated path cost difference.

Lucent Technologies Inc. 14-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture (continued)
14.5.2 ECCP Internal Memory-Mapped Registers (continued)

Coded Path Cost Difference: An 8-bit quantized soft output is obtained from the accumulated cost difference of
the two paths reaching a certain node in the trellis. The accumulated cost difference is a 24-bit binary number.
The eight least significant bits of the absolute value of the difference (SD) are discarded. If the result is greater
than OX7F, it is saturated to Ox7F. The soft-decoded symbol (SS) is obtained from the hard decision bit (TB)
defined as the LSB of the present state as follows:

SS = (0Ox7F-SD>>8) if TB= 0
else
SS = (27-SD>>8) if TB=1

Coded Survivor Branch Metric: Another 8-bit quantized confidence measure of the soft-decoded output is
obtained from the branch metric (BM) of the survivor transition. The 16-bit branch metric is scaled down with a
9-bit right shift. If the decision bit (the most recent bit) is a zero, the soft-decoded output is
SS = BM>>9
else
SS = OxFF-BM >>9

Current Symbol Register (SYC)

The physical pointer to the traceback memory will be monitored and reported in the current symbol register at
address location 0x400. This is the address pointer used to address a particular symbol section in the traceback
memory that is shared with the fourth bank of the internal RAM (RAM4). This pointer will be incremented after
each UpdateMLSE and UpdateConv instruction. It is a modulo 32 count for soft symbol decision and modulo 64
count pointer for hard symbol count.

SYC Bits 15—6 5—0

Function Reserved Current symbol pointer

Traceback Length Register (TBLR)

The traceback decoding length is stored in the traceback length register at address location 0x402. The traceback
length can be programmed by setting the TBLR field. If an UpdateMLSE or UpdateConv instruction is executed, a
state update will be processed. Also, a parallel traceback will be processed by determining the last written symbol
in the traceback memory addressed by minimum cost index register and going back through a number of symbols
equal to the traceback length field. The user can change the traceback length from symbol to symbol. If a Trace-
Back instruction is executed, a simple traceback will be processed starting at the state pointed to by the minimum
cost index register and going back through a number of symbols equal to the traceback length field. The pro-
grammed traceback length field will be automatically decremented by one. TBLR should not be written with a value
of zero because this will result in incorrect traceback decoding operation. In the soft decision mode (ECON.SH =
0), only values in the range of 1 to 31 are legal. While in the hard decision mode (ECON.SH = 1), only values in the
range of 1 to 63 are legal.

TBLR Bits 15—6 5—0

Function Reserved Traceback length (0-63)

14-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)
14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers (continued)

Minimum Cost State Index Register (MIDX)

The initial state number for traceback is stored in the minimum cost state index register at address location 0x40D.
After an update instruction is completed, this register is automatically loaded with the state index corresponding to

the minimum accumulated cost of the survivor paths determined in the update unit. Prior to a traceback instruction,
the user can change the initial state index by writing to this register.

MIDX Bits 15—8 7—0

Function Reserved Minimum state index

Traceback Shift Register (TBSR)

The Traceback Shift Register is located in the traceback unit and is used to address the traceback memory. Itis
located at address 0x410. The number of significant bits in this register is the constraint length minus one. The
LSB of the traceback shift register is right aligned to bit 0 and contains the latest L — 1 decoded bits.

TBSR Bits 15—8 7—0

Function Reserved Traceback decoded state right-aligned

Update Cost Registers (NS[63:0], PS[63:0])

Two blocks, each having 64 registers, are allocated for storing the accumulated path costs. Each register is 24 bits
wide. Functionally, one block is the next state accumulated cost register bank and the second block is the present
state accumulated cost register bank. Next state registers (NS[63:0]) are located at 0x0O—Ox7F, and present state
registers (PS[63:0]) are located at 0x200—0x27F. Two consecutive addresses are allocated to access each of
these 24-bit registers. The even addresses starting with address zero will access bits 23 to 16 of an update field
padded with eight zeros at the upper byte, and the odd addresses will access bits 15 to 0 of the same update field.

Generating Polynomial Registers (ZIG10, ZQG32, and G54)

For convolutional decoding, up to six generating polynomials are stored in three registers at address locations
0x40A to 0x40C. Odd-numbered generating polynomials are stored in the upper bytes of these three registers and
the even-numbered generating polynomials are stored in the lower bytes of these three registers. (The names of
these registers imply their shared functions for MLSE or convolutional decoding. For example, in ZIG10, the ZI
stands for in-phase received symbol and G10 stands for generating polynomials G(1) and G(0).)

Six generating polynomials will support up to rate 1/6 convolutional decoding. The 6 bits of the generating polyno-
mials (designated D' to D°) will support convolutional decoding up to a constraint length of seven. D, the most
recent delay, is aligned with the MSB of the appropriate generating polynomial registers. D’ is assumed to always
equal one. Depending on the code rate set in the control register, the appropriate number of generating polynomi-
als will be used in the branch metric calculation.

Z1G10 Bits 15 | 14 |13 | 12 | 11 | 10 9—8 7 6 5 4 3 2 1—O0
Function Gl |Gl |Gl |Gl |Gl |Gl |[Reserved | GO | GO | GO | GO | GO | GO | Reserved
(DY) [(D?) | (D3) | (DY) | (D®) | (D®) (DY) [(D?) | (D3) | (D% | (D®) | (D®)

Lucent Technologies Inc. 14-15

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers (continued)

ZQG32Bits | 15 | 14 | 13 | 12 | 11 | 10 9—8 7 6 5 4 3 2 1—0
Function G3 [G3 | G3 | G3 | G3 | G3 |Reserved | G2 | G2 | G2 | G2 | G2 | G2 | Reserved
(DY) | (D?) | (D3) | (D% | (D®) | (D®) (DY) | (D?) | (D3) | (D% | (D®) | (D)

G54 Bits 15 | 14 | 13 | 12 | 11 | 10 9—8 7 6 5 4 3 2 1—0
Function G5 [G5 | G5 | G5 | G5 | G5 |Reserved | G4 | G4 | G4 | G4 | G4 | G4 | Reserved
(DY) [(D?) | (D3) | (DY) | (D®) | (D) (DY) [(D?) | (D3 | (DY) | (D®) | (DO)

Decoded Symbol Register (DSR)

The decoded symbol register at address location 0x409 stores the symbol generated by the ECCP traceback unit.
A decoded symbol is generated and saved in the upper byte of the decoded symbol register at the end of a Trace-
Back, an UpdateConv, or UpdateMLSE instruction. In hard-decoded symbol mode, bit 15 represents the decoded
symbol; and in soft-decoded symbol mode, bits 15—8 represent the soft symbol.

DSR Bits 15—8 7—O0
Function Soft-Decoded Symbol 0
DSR Bits 15 14—0
Function Hard-Decoded Symbol 0
Binary Magnitude Symbol/Channel Model Registers (S H,,i=0,1,...,5)

The symbol registers consist of six words at address locations 0x403 to 0x408, the contents of which are used for
branch metric calculations. For convolutional decoding, the upper bytes of these six words contain received sym-
bols (S(n), i=0, 1, ..., 5)in 8-bit binary magnitude form. For MLSE equalization, the high byte stores in-phase
channel estimate coefficients HI(n) in 8-bit two's complement form and the low byte stores the quadrature compo-
nents HQ(n) in 8-bit two's complement form.

SiHi Bits 15—8 7—0
MLSE Function Hli HQi
Convolve Function Si Reserved

14-16 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)
14.5 Software Architecture (continued)

14.5.2 ECCP Internal Memory-Mapped Registers (continued)

Complex Received Symbol Registers (ZIG10, ZQG32)

The complex received symbol registers are used for MLSE equalization. The complex received symbol is stored in
two registers in 10-bit two's complement form. The in-phase part of the received symbol is stored in the lower

10 bits of address location 0x40a, and the quadrature-phase part of the received symbol is stored in the lower 10
bits of address location 0x40B.

Z1G10 Bits 15—10 9—0
Function Reserved Zl
ZQG32 Bits 15—10 9—0
Function Reserved ZQ

Reserved Registers

Addresses above 0x410 are reserved and should not be accessed by the user code. Specifically, a write to edr
with ear containing addresses higher than 0x410 can result in the incorrect operation of the ECCP.

14.5.3 ECCP Interrupts and Flags

The ECCP interrupts the DSP core with two vectored interrupts, and ECCP status is indicated with a user flag.

The ECCP user flag is named EBUSY and is used in conjunction with the if CON F2 or
if CON goto/call/return instructions to monitor the ECCP status during ECCP operation. The flag is defined as:

m EBUSY: Asserted when the eir is written with an UpdateMLSE, UpdateConv, or TraceBack instruction and
negated when the ECCP instruction is completed. If the EBUSY flag is asserted, read operations of the edr reg-
ister and write operations to the eir and edr registers, including eir = ResetECCP, are ignored. Also, RAM4 can-
not be accessed.

Two vectored interrupts are EREADY and EOVF. These interrupts are maskable through the inc register, and their
status can be read or changed by using the ins register utilizing the DSP1600 interrupt conventions. An ireturn
from the vectored interrupt service routine will clear the interrupt status. (See Section 3.4, Interrupts, for further
discussion.) The interrupts are defined as follows:

m EREADY: Asserted three cycles before the EBUSY flag is negated. Negated upon writing a one in the EREADY
field of the ins register or upon executing an ireturn .

m EOVF: An overflow condition is detected if any one of the next state registers is loaded with OXFF in the eight
MSBs. This EOVF interrupt is then asserted to the DSP only after the current ECCP instruction is completed.
EOVF is negated upon writing a one in the EOVF field of the ins register or upon executing an ireturn instruc-
tion.

14.5.4 Traceback RAM

The fourth 1 Kword bank of dual-port RAM is shared by the ECCP for storing the traceback information. If the
ECCP is active (i.e., the EBUSY flag is asserted), the DSP core cannot access this traceback RAM, DSP write
operations to RAM4 are ignored, and read operations access corrupted data. As a rule, the DSP software must
avoid accessing RAM4 from either the X-memory space or Y-memory space if the eir register is written with one of
the UpdateMLSE, UpdateConv, or Traceback instructions. Following one of these instructions, the software can
determine the end of ECCP activity either by polling the EBUSY flag and waiting for its negation or by waiting for
the EREADY interrupt to be asserted. In the later case, RAM4 can be accessed by the EREADY interrupt service
routine.

Lucent Technologies Inc. 14-17

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.5 Software Architecture (continued)
14.5.4 Traceback RAM (continued)

Programming Limitations: Although in general it is not recommended, user data as well as user code can reside
in RAM4. Also, the user code that programs the ECCP and writes the instruction register (eir) can be executed
from RAM4. However, the following programming restrictions are imposed on such blocks of code and data:

1. The location of the user code must not conflict with the addresses in RAM4 used for the storage of traceback
information. The ECCP uses RAM4's address range 0x0C00 to 0xOCO00 + 2(CL +5) in the soft decision mode
(i.e., if ECON.SH = 0) and the address range 0x0C00 to 0xOCO0O0 + 2(C-+3) in the hard decision mode (i.e., if
ECON.SH = 1) for the storage of traceback data where CL represents the value of the constraint length field
of the ECON register. Any user data or code in RAM4 must reside outside these address ranges.

2. Access to RAM4 data and execution of code from RAM4 can be performed only during periods of ECCP
inactivity. The only exception to this rule is the execution of ECCP instructions from RAM4. In this example,
two instructions (pt=OutofRAM4 and goto pt) are executed from RAM4 after the ECCP is started with the eir
update instruction. These two instructions cause the DSP program control (PC) register to jump outside
RAMA4 for the next program instructions. The jump to memory locations outside RAM4's address range must
occur immediately after the loading of the eir instruction register, and the offset to the address places the
ECCP instructions in RAM4 below the memory segment used by the ECCP itself.

.rsect ".ram" /* ECCP code to reside in RAM */
OutofRAM4: /* This address is outside of RAM4 */
if ebusy goto . /* Wait for ECCP to finish *
/* Now can access ECCP and/or RAM4 */
.=0x0CO00+offset [* Offset to avoid conflict with ECCP */
program_eccp:
/* Load various ECCP registers here *
eir=UpdateMLSE /* Invoke ECCP instruction */
pt=OutofRAM4 /* Address outside RAM4 */
goto pt /* Jump out of RAM4 *

14-18 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.6 ECCP Instruction Timing

ECCP Data Move Timing: Each ECCP data move instruction takes two cycles.

Viterbi Instruction Timing: Following are formulas defining the number of instruction cycles for six different cate-
gories of ECCP processes. The number of instruction cycles is measured from the time when the eir register is
written with the ECCP command to the time when the output data is ready in the edr register.

14.6.1 ResetECCP Instruction
The ResetECCP instruction has no latency.
14.6.2 UpdateMLSE Instruction with Soft Decision

The generic formula for the computation of the UpdateMLSE instruction cycles with soft decision (i.e., SH = 0) is as
follows:

UpdateMLSE(SH = 0)Cycles = 15+ 2/°**? + Max[0, TBLR - 2(° "2 + 2 _ 4]

where CL represents the value of the constraint length field in the ECON register and TBLR is the traceback length
value programmed into the TBLR register.

Lucent Technologies Inc. 14-19

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.6 ECCP Instruction Timing (continued)
14.6.2 UpdateMLSE Instruction with Soft Decision (continued)

Table 14-6 shows some representative values for the UpdateMLSE instruction cycles for different values of CL and
TBLR. For the UpdateMLSE instruction, CL has a maximum value of four corresponding to constraint length 6.

For the UpdateMLSE instruction with soft decision, the traceback length register can be programmed to a maxi-
mum value of 31. TBLR values greater than 31 are illegal and must not be used with the UpdateMLSE instruction
if soft decision mode is selected.

Table 14-6. Representative UpdateMLSE Instruction Cycles (SH = 0)

CL TBLR Cycles
0 1—7 19
0 8 20
0 9 21
0 10 22
0 11 23
1 1—10 23
1 11 24
1 12 25
1 13 26
1 14 27
2 1—16 31
2 17 32
2 18 33
2 19 34
2 20 35
3 1—28 47
3 29 48
3 30 49
3 31 50
4 1—31 79

14-20 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.6 ECCP Instruction Timing (continued)
14.6.3 UpdateMLSE Instruction with Hard Decision
The generic formula for the computation of the UpdateMLSE instruction cycles with hard decision (i.e., SH = 1) is
as follows:
UpdateMLSE(SH = 1)Cycles = 15+ 2(CL+2) + Max[0, (TBLR —2(CL+2) + Max[1, 2(CL-3)] —4)]

where CL represents the value of the constraint length field in the ECON register and TBLR is the traceback length
value programmed into the TBLR register. Table 14-7 shows some representative values for the UpdateMLSE
instruction cycles for different values of CL and TBLR. For the UpdateMLSE instruction, CL has a maximum value
of four corresponding to constraint length 6.

Table 14-7. Representative UpdateMLSE Instruction Cycles (SH = 1)

CL TBLR Cycles
0 1—7 19
0 8 20
0 9 21
0 10 22
0 11 23
1 1—11 23
1 12 24
1 13 25
1 14 26
1 15 27
2 1—19 31
2 20 32
2 21 33
2 22 34
2 23 35
3 1—35 47
3 36 48
3 37 49
3 38 50
4 1—63 79

For the UpdateMLSE instruction with hard decision, the traceback length register can be programmed to a maxi-
mum value of 63.

Lucent Technologies Inc. 14-21

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Error Correction Coprocessor (DSP1618/28 Only) April 1998

14.6 ECCP Instruction Timing (continued)

14.6.4 UpdateConv Instruction with Soft Decisions

With the ECON.SH field set to O (i.e., with soft decision mode selected), the following formula yields the number of
instruction cycles for the UpdateConv instruction:

UpdateConv(SH = 0)Cycles = 14 + 2(CL+2) + Max[0, TBLR — 2(CL+2) + 2CL _ 3]

where CL represents the value of the constraint length field in the ECON register and TBLR is the traceback length
value programmed into the TBLR register. Table 14-8 shows some representative values for the UpdateConv
instruction cycles with the soft decision mode selected for different values of CL and TBLR.

Table 14-8. Representative UpdateConv Instruction Cycles (SH = 0)

CL TBLR Cycles
0 1—6 18
0 7 19
0 8 20
0 9 21
0 10 22
1 1—9 22
1 10 23
1 11 24
1 12 25
1 13 26
2 1—15 30
2 16 31
2 17 32
2 18 33
2 19 34
3 1—27 46
3 28 47
3 29 48
3 30 49
3 31 50
4 1—31 78

Similar to the UpdateMLSE, the traceback length can attain a maximum value of 31 with the soft decision mode
programmed (i.e., with ECON.SH = 0).

14-22 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Error Correction Coprocessor (DSP1618/28 Only)

14.6 ECCP Instruction Timing (continued)
14.6.5 UpdateConv Instruction with Hard Decision
With the ECON.SH field set to 1 (i.e., with hard decision mode selected), the following formula yields the number of
instruction cycles for the UpdateConv instruction:
UpdateConv(SH = 1)Cycles = 14 + 2(CL+2) + Max[O0, (TBLR — 2(CL+2) + Max[1, 2(CL.-3)] —3)]

where CL represents the value of the constraint length field in the ECON register and TBLR is the traceback length
value programmed into the TBLR register. Table 14-9 shows some representative values for the UpdateConv
instruction cycles with hard decision mode selected for different values of CL and TBLR.

Table 14-9. Representative UpdateConv Instruction Cycles (SH = 1)

CL TBLR Cycles
0 1—6 18
0 7 19
0 8 20
0 9 21
0 10 22
1 1—10 22
1 11 23
1 12 24
1 13 25
1 14 26
2 1—18 30
2 19 31
2 20 32
2 21 33
2 22 34
3 1—34 46
3 35 47
3 36 48
3 37 49
3 38 50
4 1—63 78
5 1—63 142

The traceback length register can reach a maximum value of 63 with the hard decision decoding mode selected.
14.6.6 TraceBack Instruction

The length of the TraceBack instruction is only a function of the programmed traceback length and is equal to:
TraceBack Cycles = TBLR + 14

The TBLR can be programmed to a maximum value of 31 if the TraceBack instruction is used after UpdateMLSE
instructions or after UpdateConv instructions with soft decision symbols. A maximum value of 63 can be pro-
grammed for hard decision decoding after UpdateMLSE or UpdateConv instructions. The contents of the TBLR
register are autodecremented after the TraceBack instruction is completed.

Lucent Technologies Inc. 14-23

Chapter 15

Interface Guide

CHAPTER 15. INTERFACE GUIDE

CONTENTS
L] 15 INtEITACE GUITE. .. c.vivveveeviiieietecte ettt ettt ettt et et be e b et et ese et e s b e b eseebesbe st essebesbe b s e sbe b eseenesbe s esseneenas 15-1
O 15,1 PN INFOTMALIONctiitiiiietecteiee ettt ettt ettt a et e et e b e se et et e s b e s b ebe s b e sb e b ebesbesbbe e st e s enesbe e e s ens 15-1
0 15.2 SIGNAl DESCIIPLONSecveieeeveite et et et ete ettt et e et e e te et et e et e eae et et eeteete et e eteeteersess et e eeessenten seteeteenseseees 15-5
0 15.2.1 SYSIEM INTEITACEooiviviieieeieieete ettt ettt et et eeteete e teeteeteeteeteeteeneesteetee e eaeeees 15-5
0 15.2.2 External MemOory INTEITACEccoiiiiiiiiiiie ettt e e e e e e eabreeaee e e 15-6
O 15.2.3 Serial INtEITACE HLcviiviieieicieiteiieeete ettt ettt ettt et e sb st e st et eb e s teebesaessans e sreneas 15-7
O 15.2.4 PIO/PHIF or Serial Interface #2 and Control /O Interfacecccccevevvieiiiiiiic e, 15-9
O 15.2.5 CONtrol O INLEITACEecviivieiiriitiiteiieeete sttt ettt st sa b ssere b e 15-11
O 15.2.6 JTAG TESEINIEITACE ...viviviceiiiiiiietecteie ettt sttt ettt ve b b saene e 15-11
0 15.3 Resetting DSP161X and DSPLE2X DEVICEScccciuurrriiirieeeiiiiiiieeeteeeesasssissiseessssssrsseesaassssnnnsnnes 15-12
0 15.3.1 POWEIUD RESEL ...oouviiiiieiceieie ittt ettt ettt ettt e ettt e et e e teaae et eteeve e e e etesteeaeansaeas 15-12
0 15.3.2 Using the TAP to Reset the TAP CONtrolleruvvviiviieiiiiiiieiiee e 15-12
O 15.3.3 RSTB PN RESEL ..ouvitiitiitiieetcte ettt sttt ettt se et st s e be s bt e st sseseebesaesneeaeas 15-13
0 15.4 Mask-Programmable OPLIONSeeiiiiiiiiiiiiiiee ettt e e e e e e e e s e s e e e e s et bneeeeeseees 15-14
0 15.4.1 INPUL CIOCK OPLIONS ...oovviviieeieeeeie ettt ettt e ettt et et eete e et e etesae et e et e eteereanseeaees saea 15-14
0 15.4.2 ROM Security Options (DSP1617/18/27/28/29 ONIY)uvvieiiieeiiiiiiiiiiieesiiiiieeee e e e e 15-14
0 15.5 Additional Electrical Characteristics and Requirements for Crystal.............cccooeviivieieeiiiinciiniinenn. 15-15

Information Manual
April 1998

15 Interface Guide

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Table 15-1 and Table 15-1 list the pin information including the symbol, the type, and the name or function. Func-
tional descriptions of the pins, grouped by function, are found in Section 15.2, Signal Descriptions. Section 15.3,
Resetting DSP161X and DSP162X Devices, describes the state of the chip at reset. Mask programmable options

are described in Section 15.4. Electrical characteristics are described in the individual data sheets.

15.1 Pin Information

Table 15-1. DSP1611/17/18 Pin Descriptions (See footnotes for any DSP1611/18 differences.)

Symbol Type Name/Function
DB[15:0] I/0" | External Memory Data Bus 15—0.
DSEL of I/O Enable for Data Address 0x4000.
10 of Data Address 0x4000 to 0x40FF 1/O Enable.
ERAMHI of Data Address 0x8000 to OxFFFF External RAM Enable.
ERAMLO of Data Address 0x4100 to 0x7FFF External RAM Enable.
EROM of Program Address External ROM Enable.
RWN of Read/Write Not.
EXM | External ROM Enable.
AB[15:0] o External Memory Address Bus 15—O0.
TCK | JTAG Test Clock.
Mask-Programmable Input Clock Option
TTL CMOS Small Crystal
Signal Oscillator CMOS
CKI¥ I CKI CKI VIN+ XLO, 10 pF capacitor to Vss CKI
VDD/CKI2* Porl VDD open VIN- XHI, 10 pF capacitor to Vss open
RSTB | Reset Bar.
CKO 0% | Processor Clock Output.
TRAP I/0" | Nonmaskable Program Trap/Breakpoint Indication.
IACK o" Interrupt Acknowledge.
INTO | Vectored Interrupt O.
INT1 | Vectored Interrupt 1.
VECO/IOBIT7 I/0" | Vectored Interrupt Indication 0/Status/Control Bit 7.
VEC1/I0BIT6 I/0* | Vectored Interrupt Indication 1/Status/Control Bit 6.
VEC2/I0BIT5S I/0" | Vectored Interrupt Indication 2/Status/Control Bit 5.
VEC3/IOBIT4 I/0* | Vectored Interrupt Indication 3/Status/Control Bit 4.
IOBIT3/PB7 I/0* | Status/Control Bit 3/PIO/PHIF Data Bus Bit 7.
IOBIT2/PB6 I/0* | Status/Control Bit 2/PIO/PHIF Data Bus Bit 6.
IOBIT1/PB5 I/0* | Status/Control Bit 1/PIO/PHIF Data Bus Bit 5.
* 3-stated if RSTB = 0 or by JTAG control.
t 3-stated if RSTB = 0 and INTO = 1. Output = 1 if RSTB =0 and INTO = 0.
1 See Section 15.4, Mask-Programmable Options.
§ Pull-up devices on input.
**3-stated by JTAG control.
T1For SIO multiprocessor applications, add external pull-up resistors to SADD1 and/or SADD2 for proper initialization.
tfFor DSP1611/18: PSELO is PBSEL, PSEL1 is PSTAT, and PSEL2 is PCSN.
§§3-stated if RSTB = 0 and INTO = 1. Output = CKI (1x) or CKI/2 (2x) if RSTB = 0 and INTO = 0.
Lucent Technologies Inc. 15-1

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Interface Guide

15.1 Pin Information (continued)

Information Manual

April 1998

Table 15-1. DSP1611/17/18 Pin Descriptions (See footnotes for any DSP1611/18 differences.) (continued)

Symbol Type Name/Function
IOBITO/PB4 I/0* | Status/Control Bit 0/PIO/PHIF Data Bus Bit 4.
SADD2/PB3"" I/0" | SIO2 Multiprocessor Address/PIO Data Bus Bit 3.
DOEN2/PB2 I/0" | SIO2 Data Output Enable/PIO/PHIF Data Bus Bit 2.
DI2/PB1 I/0* | SIO2 Data Input/PIO/PHIF Data Bus Bit 1.
ICK2/PBO I/0" | SIO2 Input Clock/PIO/PHIF Data Bus Bit O.
OBE2/POBE o SI02 Output Buffer Empty/PIO/PHIF Output Buffer Empty.
IBF2/PIBF o* SI02 Input Buffer Full/PIO/PHIF Input Buffer Full.
OLD2/PODS I/0" | SIO2 Output Load/PIO/PHIF Output Data Strobe.
ILD2/PIDS I/0* | SIO2 Input Load/PIO/PHIF Input Data Strobe.
SYNC2/PSELO# I/0" | SIO2 Multiprocessor Synchronization/Peripheral Select 0.
DO2/PSEL1# I/0* | SIO2 Data Output/Peripheral Select 1.
OCK2/PSEL2# I/0* | SIO2 Output Clock/Peripheral Select 2.
T™MS 18 JTAG Test Mode Select.
TDI 18 JTAG Test Data Input.
TDO O™ | JTAG Test Data Output.
DOEN1 I/0" | SIO1 Data Output Enable.
saDD1'" I/0* | SIO1 Multiprocessor Address.
STOP I STOP Input Clock. (This pin is VDD in the x11.)
SYNC1 I/0* | SIO1 Multiprocessor Synchronization.
DO1 (o} S101 Data Output.
OoLD1 I/0" | SIO1 Output Load.
OCK1 I/0* | SIO1 Output Clock.
ICK1 I/0* | SIO1 Input Clock.
ILD1 I/0* | SIO1 Input Load.
Di1 | SIO1 Data Input.
IBF1 o SI101 Input Buffer Full.
OBE1 o SI101 Output Buffer Empty.
Vss P Ground.
VDD P Voltage Supply.
VPP P Flash device Voltage Supply.

* 3-stated if RSTB = 0 or by JTAG control.

T 3-stated if RSTB = 0 and INTO = 1. Output =1 if RSTB =0 and INTO = 0.

} See Section 15.4, Mask-Programmable Options.

§ Pull-up devices on input.

**3-stated by JTAG control.

T1For SIO multiprocessor applications, add external pull-up resistors to SADD1 and/or SADD2 for proper initialization.
FfFor DSP1611/18: PSELO is PBSEL, PSEL1 is PSTAT, and PSEL2 is PCSN.

§83-stated if RSTB = 0 and INTO = 1. Output = CKI (1x) or CKl/2 (2x) if RSTB = 0 and INTO = 0.

15-2 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.1 Pin Information (continued)

Table 15-2. DSP1627/28/29 Pin Descriptions

Symbol Type Name/Function
DB[15:0] I/0" | External Memory Data Bus 15—0.
10 O' | Data Address 0x4000 to 0x40FF I/O Enable.
ERAMHI O' | Data Address 0x8000 to OXFFFF External RAM Enable.
ERAMLO O' | Data Address 0x4100 to Ox7FFF External RAM Enable.
EROM Ot | Program Address External ROM Enable.
RWN Ot | Read/Write Not.
EXM I External ROM Enable.
ABJ[15:0] O" | External Memory Address Bus 15—0.
INT1 | Vectored Interrupt 1.
INTO | Vectored Interrupt O.
IACK O* | Interrupt Acknowledge.
STOP | STOP Input Clock.
TRAP I/0" | Nonmaskable Program Trap/Breakpoint Indication.
RTSB | Reset Bar.
CKO O¥ | Processor Clock Output.
TCK JTAG Test Clock.
T™MS JTAG Test Mode Select.

|
|

TDO O™ | JTAG Test Data Output.
|

TDI JTAG Test Data Input.
Mask-Programmable Input Clock Option
CMOS Small Crystal
Signal Oscillator CMOS
CKI* I CKI VAC XLO, 10 pF capacitor to Vss CKI
CKI2# I VSSA VCM XHI, 10 pF capacitor to Vss open

VECO/IOBIT7 I/0" | Vectored Interrupt Indication 0/Status/Control Bit 7.
VECO/IOBIT7 I/0* | Vectored Interrupt Indication 1/Status/Control Bit 6.
VEC2/I0BIT5 I/0" | Vectored Interrupt Indication 2/Status/Control Bit 5.
VEC3/IOBIT4 I/0" | Vectored Interrupt Indication 3/Status/Control Bit 4.

IOBIT3/PB7 I/0* | Status/Control Bit 3/PHIF Data Bus Bit 7.
IOBIT2/PB6 I/0* | Status/Control Bit 2/PHIF Data Bus Bit 6.
IOBIT1/PB5 I/O* | Status/Control Bit 1/PHIF Data Bus Bit 5.
IOBITO/PB4 I/0* | Status/Control Bit 0/PHIF Data Bus Bit 4.

SADD2/P83TT I/0" | SIO2 Multiprocessor Address/PHIF Data Bus Bit 3.
DOEN2/PB2 I/0" | SIO2 Data Output Enable/PHIF Data Bus Bit 2.
DI2/PB1 I/0" | SIO2 Data Input/PHIF Data Bus Bit 1.
ICK2/PBO I/0* | SIO2 Input Clock/PHIF Data Bus Bit 0.

* 3-stated if RSTB = 0, or by JTAG control.

T 3-stated if RSTB = 0 and INTO = 1. Output=1if RSTB =0 and INTO = 0.

1 See Section 15.4, Mask-Programmable Options.

§ Pull-up devices on input.

**3-stated by JTAG control.

Tt1For SIO multiprocessor applications, add external pull-up resistors to SADD1 and/or SADD2 for proper initialization.
F13-stated if RSTB = 0 and INTO = 1. Output = CKI (1x) or CKI/2 (2x) if RSTB = 0 and INTO = 0.

§8DSP1628/29 only.

Lucent Technologies Inc. 15-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Interface Guide April 1998

15.1 Pin Information (continued)

Table 15-2. DSP1627/28/29 Pin Descriptions (continued)

Symbol Type Name/Function
OBE2/POBE O" | SIO2 Output Buffer Empty/PHIF Output Buffer Empty.
IBF2/PIBF O" | SIO2 Input Buffer Full/PHIF Input Buffer Full.
OLD2/PODS I/0" | SIO2 Output Load/PHIF Output Data Strobe.
ILD2/PIDS I/0" | SIO2 Input Load/PHIF Input Data Strobe.

SYNC2/PBSEL I/0" | SIO2 Multiprocessor Synchronization/PHIF Byte Select.
DO2/PSTAT I/0" | SIO2 Data Output/PHIF Status Register Select.
OCK2/PCSN I/0" | SIO2 Output Clock/PHIF Chip Select Not.

DOEN1 I/0" | SIO1 Data Output Enable.
SADD1' I/0" | SIO1 Multiprocessor Address.
SYNC1 I/0" | SIO1 Multiprocessor Synchronization.
DO1 O" | SIO1 Data Output.
OoLD1 I/0" | SIO1 Output Load.
OCK1 I/0" | SIO1 Output Clock.
ICK1 I/0" | SIO1 Input Clock.
ILD1 I/0" | SIO1 Input Load.
DIl SIO1 Data Input.

|
IBF1 O" | SIO1 Input Buffer Full.
OBE1 O" | SIO1 Output Buffer Empty.
TRSTSS I JTAG reset.
Vss P Ground.
VDD P Voltage Supply.
Vpp P Flash device Voltage Supply.

* 3-stated if RSTB = 0, or by JTAG control.

T 3-stated if RSTB = 0 and INTO = 1. Output =1 if RSTB =0 and INTO = 0.

1 See Section 15.4, Mask-Programmable Options.

§ Pull-up devices on input.

**3-stated by JTAG control.

T1For SIO multiprocessor applications, add external pull-up resistors to SADD1 and/or SADD2 for proper initialization.
F13-stated if RSTB = 0 and INTO = 1. Output = CKI (1x) or CKl/2 (2x) if RSTB = 0 and INTO = 0.

8§8DSP1628/29 only.

15-4 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.2 Signal Descriptions

15.2.1 System Interface

The system interface consists of the clock, interrupt, and reset signals for the processor.
RSTB

Reset: Negative assertion. A high-to-low transition causes the processor to enter the reset state. The auc, pow-
erc, sioc, sioc2, pioc (except OBE status bit set), pdx<0—7> (upper byte), tdms , tdms2 , timerc , timer0 , sbhit
(upper byte), inc, ins (except OBE and OBE2 status bits set), alf (upper 2 bits, AWAIT and LOWPR), ioc, rb, phifc,
plic, and re registers are cleared. The mwait register is initialized to all zeros (zero wait-states) unless the EXM
pin is high and the INT1 pin is low. In that case, the mwait register is initialized to all ones (15 wait-states). Reset
clears IACK, IBF, and IBF2. The DAU condition flags are not affected by reset. I0BIT[7:0] are initialized as inputs.
If any of the IOBIT pins are switched to outputs (by writing sbit), their initial value will be logic zero (see Table 3-5).
Upon negation of the signal, the processor begins execution at location 0x0000 in the active memory map (see
Table 3-5).

CKil

Input Clock: A mask-programmable option selects the input clock to processor clock ratio (1X or 2X). For a 2X
clock selection, the input clock (CKI) runs at twice the frequency of internal operation (see Section 15.4, Mask-Pro-
grammable Options, Tables 15-3, and 15-4).

CKI2

Input Clock 2: Used with mask-programmable input clock options that require an external crystal or small signal
differential across CKI and CKI2 (see Table 15-1 and Table 15-1 for Pin Descriptions).

STOP

Stop Input Clock: Negative assertion. A high-to-low transition synchronously stops all of the internal processor
clocks leaving the processor in a defined state. Returning the pin high will synchronously restart the processor
clocks to continue program execution from where it left off without any loss of state. This hardware feature has the
same effect as setting the NOCK bit in the powerc register (see Table 3-5).

CKO

Clock Out: Buffered output clock with options programmable via the ioc register (see Table 6-13). The selectable
CKO options (see Table 6-14) are as follows:

m A free-running output clock at the frequency of the internal processor clock; runs at the internal ring oscillator fre-
quency if SLOWCKI is enabled.

m A wait-stated clock based on the internal instruction cycle; runs at the internal ring oscillator frequency if
SLOWCKI is enabled.

m A sequenced, wait-stated clock based on the EMI sequencer cycle; runs at the internal ring oscillator frequency
if SLOWCKI is enabled.

= A free running output clock that runs at the CKI rate independent of the powerc register setting. This option is
only available with crystal and small-signal clock options. If the PLL is selected on the DSP1627/28/29, the CKO
frequency equals the input CKI frequency regardless of how the PLL is programmed.

= Alogic 0.
= Alogic 1.

Lucent Technologies Inc. 15-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Interface Guide April 1998

15.2 Signal Descriptions (continued)
15.2.1 System Interface (continued)
INT[1:0]

Processor Interrupts O and 1: Positive assertion. Hardware interrupt inputs to the DSP1611/17/18/27/28/29.
Each is enabled via the inc register. If enabled and asserted, each causes the processor to vector to the memory
location described in Table 3-20. INTO can be enabled in the pioc for DSP16A compatibility!. INT1 is used in con-
junction with EXM to select the desired reset initialization of the mwait register (see Section 6.5). If INTO is high
and RSTB is low, all output and bidirectional pins are put in a 3-state condition except for TDO which

3-states by JTAG control.

VECI[3:0]

Interrupt Output Vector: These four pins indicate the interrupt currently being serviced by the device. Table 3-18
shows the code associated with each interrupt condition. Pins VEC[3:0] are multiplexed with pins IOBIT[7:4].

IACK

Interrupt Acknowledge: Positive assertion. IACK signals if an interrupt is being serviced by the
DSP1611/17/18/27/28/29. 1ACK remains asserted while in an interrupt service routine and is cleared when the ire-
turn instruction is executed.

TRAP

Trap Signal: Positive assertion. If asserted, the processor is put into the trap condition that normally causes a
branch to the location 0x0046. The hardware development system (HDS) can configure the trap pin to cause an
HDS trap that causes a branch to location 0x0003. Although normally an input, the pin can be configured as an
output by the HDS. As an output, the pin can be used to signal a HDS breakpoint in a multiple processor environ-
ment.

15.2.2 External Memory Interface

The external memory interface is used to interface the DSP1611/17/18/27/28/29 to external memory and 1/O
devices. It supports read/write operations from/to program and data memory spaces. The interface supports four
external memory segments. Each external memory segment can have an independent number of software-pro-
grammable wait-states. One hardware address is decoded and an enable line is provided to allow glueless I/0
interfacing. Because some instructions access X and Y memory simultaneously, a memory sequencer does the
simultaneous access to both X- and Y-memory space to avoid collisions (see Section 6.6, Memory Sequencer).

AB[15:0]

External Memory Address Bus: Output only. This 16-bit bus supplies the address for read or write operations to
the external memory or 1/O.

DB[15:0]

External Memory Data Bus: This 16-bit bidirectional data bus is used for read or write operations to the external
memory or I/O.

1.DSP1617 only.

15-6 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.2 Signal Descriptions (continued)
15.2.2 External Memory Interface (continued)
RWN

Read/Write Not: If a logic one, the pin indicates that the memory access is a read operation. If a logic zero, the
memory access is a write operation.

EXM

External Memory Select: Input only. This signal is latched into the device on the rising edge of RSTB. The value
of EXM latched-in determines if the internal ROM is addressable in the instruction/coefficient memory map. If EXM
is low, internal ROM is addressable. If EXM is high, only external ROM is addressable in the instruction/coefficient
memory map (see Section 3.2, Memory Space and Addressing). EXM chooses between MAP1, MAP2, MAP3,
and MAP4.

EROM

External ROM Enable Signal: Negative assertion. If asserted, the signal indicates an access to external program
memory (see Section 3.2, Memory Space and Addressing). This signal's leading edge can be delayed via the ioc
register (see Table 6-13).

ERAMHI

External RAM High Enable Signal: Negative assertion. If asserted, the signal indicates an access to external
data memory addresses 0x8000 through OxFFFF (see Table 3-7). This signal's leading edge can be delayed via
the ioc register (see Table 6-13).

ERAMLO

External RAM Low Enable Signal: Negative assertion. If asserted, the signal indicates an access to external
data memory addresses 0x4100 through Ox7FFF (see Table 3-7). This signal's leading edge can be delayed via
the ioc register (see Table 6-13).

10

External I/O Enable Signal: Negative assertion. If asserted, the signal indicates an access to external data mem-
ory addresses 0x4000 through Ox40FF (see Table 3-7). This memory segment is intended for memory-mapped
I/0. This signal's leading edge can be delayed via the ioc register (see Table 6-13).

DSEL!

Device Select Line: Default negative assertion (positive assertion is selectable via the ioc register, see Table
6-13). This signal predecodes a specific memory address in the I/O external memory segment. Access to location
0x4000 asserts DSEL! as well as the external I/O enable.

15.2.3 Serial Interface #1

The serial interface pins implement a full-featured synchronous/asynchronous serial 1/O channel. In addition, sev-
eral pins offer a glueless TDM interface for multiprocessing communication applications (see Figure 7-11).

1.DSEL not available in the DSP1627/28/29.

Lucent Technologies Inc. 15-7

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Interface Guide April 1998

15.2 Signal Descriptions (continued)
15.2.3 Serial Interface #1 (continued)
DI1

Data Input: Serial data is latched on the riing edge of ICK1 either LSB or MSB first according to the sioc register
MSB field (see Table 7-1).

ICK1

Input Clock: The clock for serial input data. In active mode, ICK1 is an output according to the sioc register ICK
field (see Table 7-1). In passive mode, ICK1 is an input according to the sioc register ICK field (see Table 7-1).

ILD1

Input Load: The clock for loading the input buffer sdx (IN) from the input shift register (isr). A falling edge of ILD1
indicates the beginning of a serial input word. In active mode, ILD1 is an output according to the sioc register ILD
field (see Table 7-1). In passive mode, ILD1 is an input according to the sioc register ILD field (see Table 7-1).

IBF1

Input Buffer Full: Positive assertion. IBF1 is asserted when the input buffer sdx (IN) is filled. IBF1 is negated by a
read of the buffer, e.g., a0 = sdx. IBF1 is also negated by asserting RSTB.

DO1

Data Output: The serial data output from the output shift register (or) is either LSB or MSB first according to the
sioc register MSB field. DO1 changes on the rising edges of OCK1. For the DSP1627/28/29, DO1 changes on
the rising or falling edge of OCK1 corresponding to the DODLY bit in the sioc register. DO1 is 3-stated if DOENL is
high.

DOEN1

Data Output Enable: Negative assertion. An input if not in the multiprocessor mode. DO1 and SADD1 are
enabled only if DOENL1 is low. DOENL1 is bidirectional if in the multiprocessor mode (tdms register MODE field
set). In the multiprocessor mode, DOENL indicates a valid time slot for a serial output.

OCK1

Output Clock: The clock for serial output data. In active mode, OCK1 is an output according to the sioc register
OCK field (see Table 7-1). In passive mode, OCK1 is an input according to the sioc register OCK field (see Table
7-1).

OoLD1

Output Load : The clock for loading the output shift register (osr) from the output buffer (sdx (OUT)). A falling edge
of OLD1 indicates the beginning of a serial output word. In active mode, OLD1 is an output according to the sioc
register OLD field (see Table 7-1). In passive mode, OLD1 is an input according to the sioc register OLD field (see
Table 7-1).

OBE1

Output Buffer Empty: Positive assertion. OBEL is asserted when the output buffer (sdx (OUT)) is emptied

(moved to the output shift register for transmission). It is cleared with a write to the buffer, e.g., sdx =a0. OBELl is
also set by asserting RSTB.

15-8 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.2 Signal Descriptions (continued)
15.2.3 Serial Interface #1 (continued)
SADD1

Serial Address : Negative assertion. A 16-bit serial bit stream typically used for addressing during multiprocessor
communication between multiple DSP16XX devices. In multiprocessor mode, SADD1 is an output when the tdms
time slot dictates a serial transmission; otherwise, it is an input. Both the source and destination DSP can be iden-
tified in the transmission. SADDL is an output if not in multiprocessor mode and can be used as a second 16-bit
serial output. (See Section 7.1.3, Output Section for additional information.) SADD1 is 3-stated if DOEN1 is high.
If used as a bus, SADD1 should be pulled high through a resistor.

SYNC1

Multiprocessor Synchronization: Typically used in the multiprocessor mode, a falling edge of SYNC1 indicates
the first word of a TDM I/O stream and causes resynchronization of the active ILD1 and OLD1 generators. SYNC1
is an output if the tdms register SYNC field is set (i.e., selects the master DSP and uses time slot zero for transmit).

As an input, SYNC1 must be tied low unless part of a TDM interface. If used as an output, SYNC1 =
[ILD1/OLD1]/ 8 or 16 according to the setting of the SYNCSP field of the tdms register. If configured as described
above, SYNC1 can be used to generate a slow clock for SIO operations.

15.2.4 PIO/PHIF or Serial Interface #2 and Control /O Interface

This interface pin multiplexes a parallel I/O interface with a second serial I/0O interface and a 4-bit I/O interface. The
interface selection is made by writing the ESIO2 bit in the ioc register (see Section 6.2, Programmable Features for
ioc register’s layout). The signals for the second SIO correspond exactly to those in SIO #1. Therefore, the pin
descriptions below discuss only PHIF/PIO and BIO pin functionality.

PB[7:0]

Parallel I/O Data Bus: This 8-bit bidirectional bus is used to input data to or output data from the PHIF/P1O. Note
that PB[3:0] are pin-multiplexed with SIO2 functionality, and PB[7:4] are pin-multiplexed with BIO unit pins
IOBIT[3:0] (see Section 8.4.1).

PSEL[2:0] (DSP1617 Only)

Peripheral Select 2—0 (see Table 8-5): If the PIO configuration for both input and output are in active mode, this
3-bit field is an output. The 3-bit field can be decoded to determine which of the eight logical channels
(pdx7—pdx0) is active.

If the P10 is configured with either PIDS or PODS passive, PSEL2 becomes an input that acts as a chip select. In
this capacity, the chip is selected if PSEL2 is low.

If PODS is configured in active mode and PIDS is configured in passive mode, PSEL1 and PSELO form a 2-bit field
selecting between four channels (pdx7—pdx4 alias into 3—0).

If PODS is passive, PSEL1 becomes an input. If PSEL1 is high, the PIO will output the contents of the PSTAT reg-
ister on PB[7:0]. If PSELL1 is low, PIO will output the contents of pdx (OUT). PSELO is always an output.

As long as either PIDS or PODS is configured for active mode, PSELO indicates if the channel being written is odd
or even (e.g., pdx7, 5, and 3 alias into 1, and pdx6, 4, and 2 alias into 0). If both PIDS and PODS are in passive
mode, PSELO becomes the logical OR of PIBF and POBE.

Lucent Technologies Inc. 15-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Interface Guide April 1998

15.2 Signal Descriptions (continued)
15.2.4 PIO/PHIF or Serial Interface #2 and Control I/O Interface (continued)
PCSN (DSP1611/18/27/28/29)

Peripheral Chip Select Not: Negative assertion. PCSN is an input. While PCSN is low, the data strobes PIDS
and PODS are enabled. While PCSN is high, the DSP1611/18/27/28/29 ignore any activity on PIDS and PODS.

PBSEL (DSP1611/18/27/28/29)

Peripheral Byte Select: An input pin, configurable in software. PBSEL selects the high or low byte of pdx0 avail-
able for host access.

PSTAT (DSP1611/18/27/28/29)

Peripheral Status Select: PSTAT is an input. If a logic zero, the PHIF will output the pdx0 (OUT) register on the
PB bus. If a logic one, the PHIF will output the contents of the PSTAT register on PB[7:0].

PIDS/PRWN

Parallel Input Data Strobe: Negative assertion. PIDS is pulled low by an external device to indicate that data is
available on the PB bus for the DSP to read. The DSP latches data from the PB bus on the rising edge (low-to-high
transition) of PIDS.

On the DSP1617 only, the PIO also supports an active mode, where PIDS is an output and is asserted by the
DSP1617. If PIDS is low in active mode, data can be placed on the PB bus by an external device. In both active
and passive modes, the DSP1617 reads the contents of the PB bus on the rising edge (low-to-high transition) of
PIDS.

PODS/PDS

Parallel Output Data Strobe: Negative assertion. If PODS is pulled low by an external device, the DSP places the
contents of the parallel output register onto the PB bus.

On the DSP1617 only, the P10 also supports an active mode where PODS is an output and is asserted by the
DSP1617. In active mode, the falling edge of PODS indicates that data is available on the PB bus.

PIBF

Parallel Input Buffer Full: Positive assertion. When PIDS/PRWN is placed in active mode, this flag is cleared. It
is also cleared after reset.

PIBF can only be set if PIDS is passive (always true in DSP1611/18/27/28/29). In this case, it is set one cycle after
the rising edge of PIDS indicating that data has been latched into the pdx (IN) register. When the
DSP1611/17/18/27/28/29 reads the contents of this register emptying the buffer, the flag is cleared.

POBE

Parallel Output Buffer Empty: Positive assertion. When PODS is placed in active mode, this flag is cleared. Itis
also cleared after reset.

POBE can only be set if PODS is passive (always true in the DSP1611/18/27/28/29). In this case, it is set one
cycle after the rising edge of PODS indicating that data in pdx(OUT) has been driven onto the bus. When the
DSP1611/17/18/27/28/29 writes to pdx (OUT) filling the buffer, this flag is cleared.

15-10 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.2 Signal Descriptions (continued)

15.2.5 Control I/O Interface

This interface is used for status and control operations provided by the bit I/O unit of the DSP1611/17/18/27/28/29.
It is pin-multiplexed with the PIO and VEC[3:0] pins (see Section 8.4.1, PIO Pin Multiplexing). Setting the ESIO2
and EBIOH bits in the ioc register will provide a full 8-bit BIO interface at the pins.

|OBIT[7:0]

I/O Bits [7:0]: Each of these bits can be independently configured as either an input or an output. As outputs, they
can be independently set, toggled, or cleared. As inputs, they can be tested independently or in combinations for
various data patterns.

15.2.6 JTAG Test Interface
The JTAG test interface has features that allow programs to be downloaded into the DSP via four pins. This pro-
vides extensive test and diagnostic capability. In addition, internal circuitry allows the device to be controlled

through the JTAG port to provide on-chip in-circuit emulation. Lucent Technologies provides hardware and soft-
ware tools to interface to the on-chip HDS via the JTAG port.

Note: The DSP1611/17/18/27/28/29 provides all JTAG/IEEE 1149.1 standard test capabilities including boundary-
scan. See Chapter 11, JTAG Test Access Port for additional information on the JTAG test interface.

TDI

Test Data Input: JTAG serial input signal. All serial-scanned data and instructions are input on this pin. This pin
has an internal pull-up resistor.

TDO
Test Data Output: JTAG serial output signal. All serial-scanned data and status bits are output on this pin.
T™S

Test Mode Select: JTAG mode control signal that controls the scan operations when combined with TCK. This pin
has an internal pull-up resistor.

TCK

Test Clock: JTAG serial shift clock. This signal clocks all data into the port through TDI and out of the port through
TDO. It controls the port by latching the TMS signal inside the state-machine controller.

TRST (DSP1628/29 only)

Test Reset: Negative assertion. JTAG test reset. If asserted low, asynchronously resets JTAG TAP controller.

Lucent Technologies Inc. 15-11

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Interface Guide April 1998

15.3 Resetting DSP161X and DSP162X Devices

DSP161X and DSP162X devices have several reset mechanisms. They include powerup reset initiated via an on-
chip powerup reset circuit (PUR), Test Access Port (TAP) Controller reset via the JTAG Test Access Port!, device
reset via the RSTB pin of the device, and TAP reset via the TRST pin for the DSP1628/29 only. The proper use and
operation of these reset mechanisms are discussed below.

The two basic types of reset are the TAP Controller reset and the device reset. The TAP Controller reset is per-
formed automatically by the PUR circuit on powerup or by clocking TCK with TMS held high for at least six cycles.
For the DSP1628/29 only, the TAP controller can be reset by asserting the TRST pin low. Because the TAP Con-
troller reset is necessary to ensure control of the device pins, it must be completed before the device reset
sequence can begin.

The device reset is performed by clocking CKI while asserting the external pin RSTB for at least six cycles (twelve
cycles for devices with a 2X CKl rate). The device reset initializes the state of various user registers, synchronizes
the internal clocks, and initiates code execution at location zero of the active memory map. The states of EXM,
INTO, and INT1 during RSTB assertion are sampled by the DSP to determine the behavior of EMI pins and CKO
during reset and the state of the mwait register following reset deassertion.

The methods of asserting the reset mechanisms and their effect on the device are described in the following sec-
tions.

15.3.1 Powerup Reset

AllDSP161X and DSP162X devices contain an asynchronous powerup reset circuit that is activated if the device
power supply Vop is ramped up according to the device data sheet specification t9. The primary function of the
PUR is to place the device into a state where the DSP can be controlled by external pins. This is achieved by forc-
ing the TAP Controller? into the Test Logic Reset (TLR) state.

In the TLR and device reset states, all bidirectional pins are 3-stated and all boundary-scan cells for unidirectional
outputs are cleared. This ensures that on powerup all output enable cells of IC devices in the same JTAG scan
chain have their parallel outputs initialized to an inactive state so that on first entering the boundary-scan instruc-
tions EXTEST or INTEST, the 3-state buses are in the high-impedance state. This prevents logic contention. To
ensure there is no contention on the external memory bus, the external memory interface enable signals are forced
to their inactive state in the TLR state.

15.3.2 Using the TAP to Reset the TAP Controller

Failure to properly reset the device on powerup can lead to a loss of communication with the DSP pins. Because
the TAP is always accessible regardless of the TAP Controller state, an alternate means for putting the TAP Con-
troller into the TLR state and gaining control of the device pins is possible.

As noted in the device data sheets, a power interruption requires that the TAP Controller be reset by the TAP pins
TCK and TMS. Unless internal device nodes are fully discharged, a powerup reset does not properly initialize the
TAP Controller. By clocking TCK through at least six cycles with TMS held high, the TAP Controller will ensure
entry into the TLR state with all the effects described in Section 15.3.1. Additionally, the DSP1628/29 can reset the
TAP controller by asserting the TRST pin low. Timing diagrams showing the TAP Controller reset using the TAP
are shown in the respective device data sheets.

These methods of resetting the TAP Controller ensure the user control of the device pins, but TAP Controller resets
will not initialize user accessible portions of the device (i.e., data registers, program counters, etc.). This requires a
device reset through the RSTB pin or a reset by using the Hardware Development System.

1.The JTAG Test Access Port fully conforms to the standards defined in IEEE P1149.1.
2.See Section 11.3.2, The TAP Controller for more information.

15-12 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide

15.3 Resetting DSP161X and DSP162X Devices (continued)

15.3.3 RSTB Pin Reset

The user accessible registers of the device are reset via the RSTB pin. Asserting RSTB by holding it low asynchro-
nously while CKI is running asserts the primary chip reset signall. User registers are driven to their reset values?
on assertion of RSTB. The device is properly reset by asserting RSTB for at least six CKI cycles (twelve cycles for
devices with a 2X CKI rate) to synchronize the internal processor clocks.

In addition to resetting registers and synchronizing clocks, asserting INTO while RSTB is asserted will 3-state all
output and bidirectional pins except TDO which is controlled by only by the TAP Controller. If INTO is not asserted
while RSTB is asserted; EROM, ERAMHI, ERAMLO, 10, and RWN outputs are held high and CKO is a free-
running clock.

Holding the EXM pin high and the INTO pin low through the deassertion of RSTB causes the mwait register to be
initialized to all ones for the maximum wait-states. Otherwise, mwait is initialized to all zeros during device reset.

The primary chip reset is released synchronously several CKI cycles after the deassertion of RSTB, thus, causing
the delay in clock synchronization described by the data sheet timing diagram on Reset Synchronization. The tim-
ing of RSTB deassertion is specified by t126 to ensure proper CKI—CKO phase relationship after reset.

1.An internal device signal not directly visible to the user.
2.See Section 3.1.3, Register Reset Values or the data sheet.

Lucent Technologies Inc. 15-13

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Interface Guide

Information Manual
April 1998

15.4 Mask-Programmable Options

The DSP1617/18/27/28/29 contains an internal ROM that is mask-programmable. The selection of several pro-
grammable features is made when a custom ROM is encoded. These features select the input clock options and
hardware emulation or ROM security option as summarized in Table 15-3.

Table 15-3. DSP1617/18/27/28/29 ROM Options

Features Options Comments
Input Clock to Processor Clock Ratio 1X See data sheets for specific maximum

2xTt CKI frequencies.

Input Clock TTL Level* 1X or 2X, 5V only8
CMOS Level 1X or 2X
Small Signal 1X or 2X
Crystal¥ 1X only

ROM Security Nonsecure Specify and link 16XXhds.v#'T,
allows emulation
Secure Specify and link crc16.v#+,
no emulation capability

T 2X clock option not available on the DSP1627/28/29.

F TTL and crystal options are not available on DSP1628/29.

8§ The DSP1628/29 are available at 3 V £+ 10% only.

T1T16XXhds.v# (# indicates the current version number) is the relocatable HDS object code. It must reside in the first 4 Kwords of ROM.
Ffcrcl6.v# is the cyclic redundancy check object code. It must reside in the first 4 Kwords of ROM.

15.4.1 Input Clock Options

Table 15-4. DSP1611 Input Clock Options

Features Options Comments
Input Clock to Processor Clock 1x CKl <40 MHz
Ratio 2x CKI £ 100 MHz
Input Clock TTL Level 5V only
CMOS Level 27V,3V,and5V
Small Signal 27V,3V,and5V
Crystal 27V,3V,and5V

For a 2X clock selection: the input clock CKI runs at twice the frequency of internal operation. If this option is
selected, TTL or CMOS levels can be applied at the CKI pin or a small-signal differential voltage can be applied

between pins CKI and CKI2.

For a 1X clock selection: the TTL, CMOS, or small signal input buffer can be chosen, or the internal oscillator can
be used with an external crystal. If the option for using an external crystal is chosen, the internal oscillator can be
used as a noninverting input buffer simply by supplying a CMOS level input to the CKI pin and leaving the CKI2 pin
open.

15.4.2 ROM Security Options (DSP1617/18/27/28/29 Only)
The DSP1600 Hardware Development System (HDS) provides on-chip in-circuit emulation and requires that the
relocatable HDS monitor routine be linked to the application code. This code's object file is called 1617hds.v#,

1618hds.v#, 1627hds.v#, 1628hds.v#, or 1629hds.v#; they must be contained entirely in the first 4 Kword page. If
on-chip in-circuit emulation is desired, a nonsecure ROM must be chosen.

15-14 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Interface Guide
15.4 Mask-Programmable Options (continued)

15.4.2 ROM Security Options (DSP1617/18/27/28/29 Only) (continued)

If ROM security is desired with the DSP1617/18/27/28/29, the HDS cannot be used. To provide testing of the inter-

nal ROM contents, a cyclic redundancy check (CRC) program is called by and linked to the user's source code.
The CRC code (crcl16.v#) must be entirely contained in the first 4 Kwords of ROM.

Please refer to the DSP1611/17/18/27/28/29 Support Tools Manual for further discussion.

15.5 Additional Electrical Characteristics and Requirements for Crystal

See the appropriate data sheet for application and specification information on the external crystal needed for use
with the on-chip oscillator circuit.

Lucent Technologies Inc. 15-15

Appendix A

Instruction Encoding

APPENDIX A. INSTRUCTION ENCODING

CONTENTS
N [1= ¥ Tox o o =1y Yoo o |14 Yo TSR A-1
0 FAN R [0 1S3 { g od 1o g I =t g ToToTo [T g o [lo] 4 = L (=T PR A-1
0 A2 FIEld DESCIIPHONSeveevieeiete ettt ettt ettt ettt e e et et e et e e teete et e etesteereentesteseesse et e eseseeaeerearas A-4

Information Manual
April 1998

A Instruction Encoding

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

This section defines the hardware-level encoding of the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and

DSP1629 device instructions.

A.1 Instruction Encoding Formats
Multiply/ALU Instructions

Format 1: Multiply/ALU Read/Write Group

Bit 15—11 10 9 8—5 4 3—0
Field T D S F1 X Y
Format 1a: Multiply/ALU Read/Write Group

Bit 15—11 10 9 8—5 4 3—0
Field T @n | s F1 X Y
Format 2: Multiply/ALU Read/Write Group

Bit 15—11 10 9 8—5 4 3—0
Field T D S F1 X Y
Format 2a: Multiply/ALU Read/Write Group

Bit 15—11 10 9 8—5 4 3—0
Field T @n | s F1 X Y
Special Function Instructions

Format 3: F2 ALU Special Functions

Bit 15—11 10 9 8—5 4—0
Field T D S F2 CON

Lucent Technologies Inc.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Encoding April 1998
A.1 Instruction Encoding Formats (continued)

F3 ALU Instructions

Format 3a: F3 ALU Operations

Bit 15—11 10 9 8—5 4—3 2 1
Field T D S F3 SRC2 aT 0 1
Immediate Operand (IM16)

BMU Instructions

Format 3b: BMU Operations

Bit 15—11 10 9 8—6 5 4 3—0
Field T D S F4[3—1] 0 |F4[0] AR[3—0]
Immediate Operand (IM16)

Control Instructions

Format 4: Branch Direct Group

Bit 15—12 11—0

Field T JA

Format 5: Branch Indirect Group

Bit 15—11 10—8 7—0

Field T B reserved

Format 6: Conditional Branch Qualifier/Software Interrupt (icall)

Note: A branch instruction immediately follows, except for a software interrupt (icall).

Bit 15—11 10 9—6 5—0

Field T Sl reserved CON

A-2 Lucent Technologies Inc.

Information Manual

April 1998

A.1 Instruction Encoding Formats
Data Move Instructions

Format 7: Data Move Group

(continued)

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Encoding

Immediate Operand (IM16)

Bit 15—11 10 9—14 3—0
Field T (aT) R Y/Z
Format 8: Data Move (immediate operand—2 words)
Bit 15—11 10 9—14 3—0
. T D R reserved
Field

Format 9: Short Immediate Group

Bit 15—11

10—9

8—0

Field T

Short Immediate Operand (IM9)

Format 9a: Direct Addressing

Bit 15—11

10 9—6

4—0

Field T

R/W DR[3:0]

OFFSET

Cache Instructions

Format 10: do—redo

Bit 15—11

10—7

Field T

Lucent Technologies Inc.

A-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Encoding

A.2 Field Descriptions

(aT) Field

(aT) field specifies transfer accumulator.

Table A-1. (aT) Field

Information Manual

(am) Register
Accumulator 1
1 Accumulator O
B Field

B field specifies the type of branch instruction (except

software interrupt).

Table A-2. B Field

B Operation
000 return
001 ireturn
010 goto pt
011 call pt
1xx Reserved

A-4

April 1998
BMU Encodings
Table A-3. BMU Encodings

F4 AR Operation
0000 00nn aD = aS >> arM
0001 00nn aD = aS << arM
0000 10nn aD = aS >>> arM
0001 10nn aD = aS <<< arM
1000 0000 aD = aS >>aS
1001 0000 |aD=aS <<a$S
1000 1000 |aD=aS >>>aS
1001 1000 |aD =aS <<<a$S
1100 0000 aD = aS >>IM16
1101 0000 aD = aS << IM16
1100 1000 aD = aS >>> IM16
1101 1000 aD = aS <<< IM16
0000 1100 aD = exp(aS)
0001 11nn aD = norm(as, arM)
1110 0000 aD = extracts(aS, IM16)
0010 00nn aD = extracts(as, arM)
1110 0100 aD = extractz(as, IM16)
0010 01lnn aD = extractz(as, arM)
1110 1000 aD =insert(as, IM16)
1010 10nn aD =insert(as, arM)
0111 0000 aD =aS:aa0
0111 0001 aD=aS:aal

Note: nn encodes the auxiliary register to be used (00—ar0,
0l—arl, 10—ar2, or 11—ar3).

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Encoding
A.2 Field Descriptions (continued)

CON Field D Field

CON field specifies the condition for special functions D field specifies a destination accumulator.

and conditional control instructions.
Table A-5. D Field

Table A-4. CON Field

D Register
CON Condition CON Condition 0 Accumulator O
00000 mi 10000 gt 1 | Accumulator 1
00001 pl 10001 le
00010 eq 10010 allt DR Field
00011 ne 10011 allf Table A-6. DR Field
00100 Ivs 10100 somet
00101 Ive 10101 somef DR Register
00110 mvs 10110 oddp 0000 r0
00111 mvc 10111 evenp 0001 rl
01000 heads 11000 mns1 0010 r2
01001 tails 11001 nmns1 0011 r3
01010 cOge 11010 npint 0100 a0
01011 colt 11011 njint 0101 a0l
01100 clge 11100 | lock/ebusy® 0110 al
01101 cllt 11101 ebusy* 0111 all
01110 true 11110 Reserved 1000 y
01111 false 11111 | Reserved 1001 yl
T1In DSP1627/28/29 only, lock. In DSP1618 only, ebusy. 1010 P
$ DSP1628 only. 1011 p|
1100 X
1101 pt
1110 pr
1111 psw

Lucent Technologies Inc. A-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Encoding

A.2 Field Descriptions

F1 Field

F1 field specifies the multiply/ALU function.

Table A-7. F1 Field

(continued)

F2 Field

Table A-8. F2 Field

Information Manual

April 1998

F2 field specifies the special function to be performed.

F1 Operation
0000 aD=p p=x0y
0001 aD=aS+p p=x0y
0010 p=x0y
0011 aD=aS-p p=x0y
0100 aD=p
0101 aD=aS+p
0110 nop
0111 aD=aS-p
1000 aD=aS|y
1001 aD=aS"y
1010 aS &y
1011 aS-y
1100 aD=y
1101 aD=aS+y
1110 aD=aS &y
1111 aD=aS-y

A-6

F2 Operation
0000 aD=aS>>1
0001 aD=aS<<1
0010 aD=aS>>4
0011 aD=aS<<4
0100 aD=aS>>8
0101 aD=aS<<8
0110 aD =aS>>16
0111 aD=aS<< 16
1000 aD=p
1001 aDh=aSh+1
1010 aD = ~aS
1011 aD =rnd(aS)
1100 aD =y
1101 aD=aS+1
1110 aD =aS
1111 aD =-aS

Lucent Technologies Inc.

Information Manual

April 1998

A.2 Field Descriptions (continued)

F3 Field

F3 field specifies the operation in an F3 ALU instruc-

tion.

Table A-9. F3 Field

| Field

| field specifies a register for short immediate data

move instructions.

Table A-10. | Field

F3 Operation
1000 aD = aSih, I] | |{aT, IM16, p}
1001 aD = aSih, I] AN | {aT, IM16, p}
1010 aSih, I] & |{aT, IM16, p}
1011 aSih, I] — | {aT, IM16, p}
1101 aD = aSih, I] + |{aT, IM16, p}
1110 aD = aSih, I] & | {aT, IM16, p}
1111 aD = aSih, I] — | {aT, IM16, p}

Note: h and | are not optional if an immediate operand (IM16) is

used.

Lucent Technologies Inc.

| Register
00 ro/j
01 rl/k
10 r2/rb
11 r3/re
JA Field

12-bit jump address.

K Field

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Encoding

Number of times the N instructions in cache are to be
executed. Zero specifies use of value in cloop register.

N Field

Number of instructions to be loaded into the cache.
Zero implies redo operation.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Encoding April 1998
A.2 Field Descriptions (continued)

R Field

R field specifies the register for data move instructions.

Table A-11. R Field for DSP1617 Table A-12. R Field for DSP1611/18/27/28/29
R Register R Register R Register R Register

000000 ro 100000 inc 000000 ro 100000 inc
000001 ri 100001 ins 000001 ri 100001 ins
000010 r2 100010 sdx2 000010 r2 100010 sdx2
000011 r3 100011 saddx 000011 r3 100011 saddx
000100 j 100100 cloop 000100 j 100100 cloop
000101 k 100101 mwait 000101 k 100101 mwait
000110 rb 100110 saddx2 000110 rb 100110 saddx2
000111 re 100111 sioc2t 000111 re 100111 sioc2t
001000 pt 101000 chit 001000 pt 101000 chit
001001 pr 101001 shit 001001 pr 101001 shit
001010 pi 101010 ioc 001010 pi 101010 ioc
001011 i 101011 jtag 001011 i 101011 jtag
001100 p 101100 pdx4 001100 p 101100 Reserved
001101 pl 101101 pdx5 001101 pl 101101 Reserved
001110 pdx2 101110 pdx6 001110 plic¥ 101110 Reserved
001111 pdx3 101111 pdx7 001111 Reserved 101111 eirs
010000 X 110000 a0 010000 X 110000 a0
010001 y 110001 aol 010001 y 110001 aol
010010 yl 110010 al 010010 yl 110010 al
010011 auc 110011 all 010011 auc 110011 all
010100 psw 110100 timerc 010100 psw 110100 timerc
010101 cO 110101 timer0 010101 c0 110101 timer0
010110 cl 110110 tdms2t 010110 cl 110110 tdms27
010111 c2 110111 srta2’ 010111 c2 110111 srta2’
011000 sioct 111000 powerc 011000 sioct 111000 powerc
011001 srtat 111001 Reserved 011001 srtat 111001 edrs
011010 sdx 111010 ar0 011010 sdx 111010 ar0
011011 tdmsT 111011 arl 011011 tdms' 111011 arl
011100 pioc 111100 ar2 011100 phifc 111100 ar2
011101 pdx0 111101 ar3 011101 pdx0 111101 ar3
011110 pdx1 111110 Reserved 011110 Reserved 111110 ears
011111 ybase 111111 alf 011111 ybase 111111 alf

T Registers sioc [1, 2], srta[1, 2], and tdms [1, 2] are not read- T Registers sioc [1, 2], srta[1, 2], and tdms [1, 2] are not read-
able. able.

I Not available in DSP1611 and DSP1618.
8§ Not available in DSP1611, DSP1627, and DSP1629.

A-8 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Encoding

April 1998

A.2 Field Descriptions (continued)
S Field

S field specifies a source accumulator.

Table A-13. S Field

S Register
0 Accumulator 0

1 Accumulator 1

Sl Field

Sl field specifies when the conditional branch qualifier
instruction should be interpreted as a software interrupt
instruction.

Table A-14. Sl Field

Sl Operation
Not a software interrupt
1 | Software interrupt

SRC2 Field

SRC2 field specifies operands in an F3 ALU instruc-
tion.

Table A-15. SRC2 Field

SRC2 Operands
00 asl, IM16
10 ash, IM16
01 as, aT
11 as, p

Lucent Technologies Inc.

T Field

T-field specifies the type of instruction.

Table A-16. T-Field

T Operation Format
0000x |goto JA 4
00010 |shortimm j, k, rb, re 9
00011 |shortimmrO, r1, r2, r3 9
00100 |Y =all] F1 1
00101 |Z:aT[l] F1 2a
00110 |Y F1 1
00111 |aT[]=Y F1 la
01000 |hit0=0,aT =R 7
01000 |hit0 =1, aTl=RT 7
01001 |hit1l0=0,R =a0 7
01001 |bitl0=1, R = a0l 7
01010 |R=1IM16 8
01011 |hitl0=0,R=al 7
01011 |bitl0=1,R =alll 7
01100 |Y =R 7
01101 |Z:R 7
01110 |do, redo 10
01111 |R=Y 7
1000x | call JA 4
10010 |ifc CON F2 3
10011 |if CON F2 3
10100 |Y =y[l] F1 1
10101 | Z:y[l] F1 2
10110 |(x=Y F1 1
10111 |(y[ll=Y F1 1
11000 | bit0 = 0, branch indirect 5
11000 |bit0 =1, F3 ALUT 3a
11001 |y=a0 x=X F1 1
11010 | Conditional branch qualifier 6
11011 |y=al x=X F1 1
11100 |Y =a0[l] F1 1
11101 (Z:y x=X F1 2
11110 | hbit5 =0, F4 ALU (BMU)' 3b
11110 |bit5 =1, direct addressing 9a
11111 |y=Y x=X F1 1

T These instructions are not available in DSP16A.
A-9

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Encoding

A.2 Field Descriptions (continued)

X Field

X field specifies the addressing of ROM data in two-
operand multiply/ALU instructions. Specifies the high
or low half of an accumulator or the y register in one-
operand multiply/ALU instructions.

Table A-17. X Field

X Operation
Two-Operand Multiply/ALU
0 *pt++
1 *pt++i
One-Operand Multiply/ALU
0 aTl, yl
1 aTh, yh
Y Field

Y field specifies the form of register indirect addressing
with postmodification.

Table A-18. Y Field

Y Operation
0000 |*r0
0001 | *ro++
0010 | *ro—
0011 *rO++j
0100 |*r1
0101 *ri++
0110 *rl——
0111 *rl++4
1000 |*r2
1001 | *r2++
1010 | *r2—
1011 *r2++4j
1100 | *r3
1101 *r3++
1110 *r3——
1111 *r3++4j

A-10

Information Manual
April 1998

Z Field

Z field specifies the form of register indirect compound
addressing with postmodification.

Table A-19. Z Field

4 Operation
0000 *rOzp
0001 *rOpz
0010 *rOm2
0011 *rojk
0100 *rlzp
0101 *ripz
0110 *rim2
0111 *rijk
1000 *r2zp
1001 *r2pz
1010 *r2m2
1011 *r2jk
1100 *r3zp
1101 *r3pz
1110 *r3m2
1111 *r3jk

Lucent Technologies Inc.

Appendix B

Instruction Set Summary

[os]

I

APPENDIX B. INSTRUCTION SET SUMMARY

CONTENTS
INSTFUCTION SEE SUMMIAIYiiiiiiiiie ittt e e e st e e e e e s s bt ee e e e e e s bbb et e eeeeaaasstbaeeeaanaeeesanssbbreeeeeeenns B-1
[0 o] (I PSP PP PPT P PURPPPPPON B-1
OO B B-2
(1 OL®] N Io o) (o] Lo=Y 11 (= (U o T PPRR P B-3
(o= 1| I L O PSPPSR TP OTPPTRPPPPPTPPPP B-4
o7 1 P P PO PP PP TPPPPN B-5
Lo (o TN G SRR B-6
=T [0 1N S PP PP PP PP ROPPPPN B-7
R T IIMILG et h e bbbt e e bt e e R bt e ea bt e e e b e e e nnr e e e B-8
ST R e 11 [T O TP PTPPPPP PP B-10
LRI K] | | I T PP PP PT PP OPPRPOPPPP B-11
2] O O PP O T PSP PPPPOPI B-12
LR OO P TT TP PP OPPRPOTPPP B-13
D T = S PP PP PPPPOPI B-14
FA = OO TSP PP PP PPPPTON B-15
(5] S (@1] = I T OO TSP OPPPPTTPPN B-16
(O TR S = I T B = S PO PO UP T PPURTPUPRIN B-17
1 OO\ PP U PR PU PP OPPRPOPPPR B-18
IFC CON F2 ettt e ke oo bt e e a bt e oo b bt e ook b et e e e b bt e e ekt e kb et e e e bt e e e e e e e s B-19
L T PO TP PSP PPPPRPTPP B-20
L A 10 | T OO PPPPPPPRTPP B-22
L A N A 1| TP PSP PPPPPTTPP B-22
L G TP OP PPN B-24
L Y I T TSP PSP PPPPPTTPP B-26
L R VA A G 15 1] PSSP PR B-28
L R V- O B e o] | | OO RSRT TR B-30
L R V- U A G o] o | OO P PRSP B-30
L = I || T PP PPPPTTPPN B-32
L A L [T P TSP PPPPTTPP B-34
[R V| | PP B-36
L - N I || OO U SRR B-38
L A VA G) o | ST PP SPT TR B-40
AD T @S OP AT ittt e e e et e e e et e e e e B-42
D T 8S OP Pt B-43
8D T ASKN,IZ OP IMLBeeiiiiiieee ettt b bbb e e B-44
BD = S SHIFT @S .ttt ettt bbb bbb bbbttt Rttt B-46
AD = @S SHIFT GIM ...t e e e s et e e e e e s e e e e et e e e e e e e e B-47
AD T AS SHIFT IMLB ...ttt ettt e e e e ekt e e e ab et e e e kbt e e e abe e et e e e e e s sabeeeennnees B-48
Lo D o (o I -5) [PSR PPRPPNt B-49
o D e 0o 1 4 (T G IS =T PSPPIt B-50
o D I = To S € S T 1 1Y) OO PPPPNt B-51
o D I - Tt A (= S T 1 1Y) P PRPPNt B-51

Lo D I = o S € S T 1Y) PP PPPRNt B-52

OoOood

L D R - Tt A (= S T 1Y) T PSPPIt B-52
o D R Y= o B = IS T U1V PSS PPPPN B-53
o D | Y= o B = TS T | V) PSPPIt B-54
BD T @S T AT Lottt e e e e e et e e e e e e e e e e e e B-55

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

B Instruction Set Summary

This section explains in detail the instruction set for the DSP1611, DSP1617, DSP1618, DSP1627, DSP1628, and
DSP1629. Refer to Appendix A for instruction set formats and field encodings.

goto JA (branch direct)
(PC) — (PC bits 15—12)(JA)

Program control jumps to location JA (within the same 4 Kword page). The lower 12 bits of the PC are written with
the 12-bit immediate value of JA. The upper 4 bits of the PC remain unchanged (the goto pt instruction is used for
branches outside the current 4 Kword page).

Bit 15 14 | 13 | 12 11—0

Field 0 0 0 0 JA

Note: The goto JA instruction should not be placed in the last or next-to-last instruction before the boundary of a
4 Kword page. If the goto is placed there, the program counter will have incremented to the next page and
the jump will be to the next page, rather than to the desired current page.

Words: 1

Cycles: 2

Group: Control
Addressing: Immediate

Flags affected: None

Interruptible: No
Cacheable: No

Format: 4

B-1 Lucent Technologies Inc.

Information Manual
April 1998

goto B (branch direct)
(PC) ~ (B)

Program control jumps to the location pointed to by the register encoded in the B field. The PC is written with the

16-bit value of the register. The following branch destinations are specified in the B field:

B Field Action
000 return (same as goto pr)
001 ireturn (same as goto pi)
010 goto pt
011 call ptt
Ixx Reserved

T For this instruction, note that the current PC is also saved in the
pr register before the jump.

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

Bit

15

14 13 12 11

10—8

Field

1

1 0 0 0

B

Lucent Technologies Inc.

Words:
Cycles:
Group:
Addressing:
Flags affected:
Interruptible:
Cacheable:
Format:

1

2
Control
Register
None
No

No

5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

if CON goto/call/return

test CONdition;

if true, execute the following control statement

The condition CON is tested (encoded in the CON field). If the condition is true, the next instruction (which must be

(conditional branch qualifier)

a control instruction) is executed. If false, the control instruction is not executed.

Table B-1. CON Field Encoding

CON Flag CON Flag

00000 mi (negative result) 10000 gt (result > 0)

00001 pl (positive result) 10001 le (result < 0)

00010 eq (result = 0) 10010 allt (all BIO bits true)

00011 ne (result # 0) 10011 allf (all BIO bits false)

00100 Ivs (logical overflow set) 10100 somet (some BIO bits true)

00101 Ivc (logical overflow clear) 10101 somef (some BIO bits false)

00110 mvs (math. overflow set) 10110 oddp (BMU odd parity result)

00111 mvc (math. overflow clear) 10111 evenp (BMU even parity result)

01000 heads (random bit set) 11000 mns1 (BMU minus 1 result)

01001 tails (random bit clear)’ 11001 nmns1 (BMU not minus 1 result)

01010 cOge (counter0 > 0)* 11010 npint (JTAG handshake)

01011 cOlt (counter0 < 0)* 11011 njint

01100 clge (counterl > Q)% 11100 lock (DSP1627/28/29 only)
ebusy (DSP1618 only)

01101 cllt (counterl < Q)% 11101 ebusy (DSP1628 only)

01110 true (always) 11110 Reserved

01111 false (never) 11111 Reserved

T The random bit used is updated after each test of heads or tails.

F Using the cOge or cOlt conditions causes the value of the cO counter to be postincremented. Using the clge or cllt condi-

tions also causes the value of the c1 counter to be postincremented.

The ensuing control opcode can be any of the following:

goto JA

goto pt

call JA

call pt

return (goto pr)

Note: ireturn and icall are the only control instructions that cannot be conditionally executed.

Bit 15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4—0
Field |word 1| 1 1 0 1 0 0 0 0 0 0 0 CON
word 2 CONTROL OPCODE
Words: 1 (not including the control statement)
Cycles: 3 (including the branch/call/return)
Group: Control
Addressing: None
Flags affected: None
Interruptible: No
Cacheable: No
Format: 6
B-3 Lucent Technologies Inc.

Information Manual
April 1998

Information Manual

April

call JA (call subroutine direct)

(pr) « (PC+1)
(PC) ~ (PC bits 15—12)(JA)

1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

The subroutine at address JA (within the same 4 Kword page) is called. The subroutine return register (pr) is set to
PC + 1. The lower 12 bits of the PC are written with the 12-bit immediate value of JA. The upper 4 bits of the PC
remain unchanged (the call pt instruction is used for subroutine calls outside the current 4 Kword page).

Bit

15

14

13

12

11—0

Field

1

0

0

0

JA

Note: The call JA instruction should not be placed in the last or next-to-last instruction before the boundary of a
4 Kword page. If the call is placed there, the program counter will have incremented to the next page and
the jump will be to the next page rather than to the desired current page.

Lucent Technologies Inc.

Words:
Cycles:

Group:
Addressing:
Flags affected:
Interruptible:
Cacheable:
Format:

1

2

Control
Immediate
None

No

No

4

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

icall (software interrupt)

(pi) « (PC +1)
(PC) - 2
IACK

The icall instruction is reserved for use by the hardware development system. The interrupt handler is called just
as it would be by an external interrupt. The interrupt return register is set to PC + 1, and the PC is set to two to
start execution at the interrupt handler. Note that icall vectors to memory address two. The interrupt acknowledge
pin (IACK) is set just as it would be by an external interrupt.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0

Words: 1
Cycles: 3
Group: Control
Addressing: None
Flags affected: None
Interruptible: No
Cacheable: No
Format: 6

B-5 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

do K{
instrl

(loop-in cache; cache loaded with new contents)

instrN
}

Execute the next N instructions K times.

The next N instructions are loaded into the cache concurrent with their execution. They are then executed within
the cache K — 1 more times at (potentially) higher speed.

The iteration count K can be between 1 and 127 inclusive, and the number of instructions (N) must be between
1 and 15 inclusive.

If K is equal to 0, the iteration count is taken from the value in the cloop register that must contain a value between
1 and 127 inclusive. The cloop register will be decremented to zero at the end of the do instruction.

Notes on cache performance:

The do instruction executes in one cycle. When the cache is used to repeat a block of N instructions, the cycle
timing of the instructions are as follows:

1. The first pass does not affect cycle timing except for the last instruction in the block of N instructions. This
instruction executes in two cycles.

2. During pass 2 through pass K — 1, each instruction is executed in the cache.

3. During the last (Kth) pass, the block of instructions executes inside the cache except for the last instruction
that executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo instruction without the
need to reload the cache.

Bit 15 14 13 12 11 10—7 6—0
Field 0 1 1 1 0 N K
Words: 1
Cycles: 1

Group: Cache
Addressing: Immediate
Flags affected: None
Interruptible: No
Cacheable: No
Format: 10

Lucent Technologies Inc. B-6

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

redo K (loop in cache; cache contents unaffected)
Execute the current contents of the cache K times.

The current contents of the cache (loaded by a previous do instruction) are executed within the cache K additional
times. The iteration count K can be between 1 and 127 inclusive.

If K is equal to O, the iteration count is taken from the value in the cloop register that must contain a value between
1 and 127 inclusive. The cloop register will be decremented to zero at the end of the redo instruction.

Notes on cache performance:

The redo instruction executes in two cycles. All instructions require the in-cache time to execute, except the last
instruction of the last iteration that requires the out-of-cache time to execute. Thereafter, instructions fetched
from X-space require their normal out-of-cache time to execute.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6—0
Field 0 1 1 1 0 0 0 0 0 K
Words: 1
Cycles: 2

Group: Cache
Addressing: Immediate
Flags affected: None
Interruptible: No
Cacheable: No
Format: 10

B-7 Lucent Technologies Inc.

Informatio
April 1998

n Manual

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

R = IM16 (16-bit [long] immediate load)
(R) — (IM16)

The contents of register R are replaced with the 16-bit immediate value of IM16. The value of R can be any of the

following:

Table B-2. R Field Replacement Values

R Register R Register R Register
000000 ro 010110 clf 101011 jtag
000001 rl 010111 c2t 101100 | Rsrvd/pdx4/Rsrvd/Rsrvd
000010 r2 011000 sioc* 101101 | Rsrvd/pdx5/Rsrvd/Rsrvd
000011 r3 011001 srta¥ 101110 | Rsrvd/pdx6/Rsrvd/Rsrvd
000100 j 011010 sdx 101111 Rsrvd/pdx7/eir/Rsrvd
000101 k 011011 tdms* 110000 a0
000110 rb 011100 phifc/pioc/phifc/phifc 110001 aol
000111 re 011101 pdx0 110010 al
001000 pt 011110 | Rsrvd/pdx1/Rsrvd/Rsrvd | 110011 all
001001 pr 011111 ybase 110100 timerc
001010 pi 100000 inc 110101 timer0
001011 i 100001 ins 110110 tdms2#
001100 p 100010 sdx2 110111 srta2*
001101 pl 100011 saddx 111000 powerc
001110 | Rsrvd/pdx2/Rsrvd/plicd | 100100 cloop 111001 | Rsrvd/Rsrvd/edr/Rsrvd
001111 | Rsrvd/pdx3/Rsrvd/Rsrvd | 100101 mwait 111010 ar0
010000 X 100110 saddx2 111011 arl
010001 y 100111 sioc2* 111100 ar2
010010 yl 101000 chit 111101 ar3
010011 auc 101001 shit 111110 | Rsrvd/Rsrvd/ear/Rsrvd
010100 pswit 101010 ioc 111111 alf
010101 cot

T Registers c0, c1, and c2 are less than 16 bits and are sign-extended when read. Register auc is less than 16 bits and is zero-extended when

read.

F Registers sioc <1—2>, srta<1—2>, and tdms <1—2> are not readable.
8§ R code 001110 is pllc for DSP1628 also.
TTWriting the psw also writes the a0 and al guard bits.

Note: If an R field is defined differently for any one of the devices, the register replacement is shown for all six in the following format:
DSP1611-register/DSP1617-register/DSP1618&28-register/DSP1627&29-register.

Lucent Technologies Inc.

B-8

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

R = IM16 (16-bit [long] immediate load) (continued)

Information Manual
April 1998

Bit

15 | 14 | 13 | 12 |11 | 10

9—4

Field

word1l | O 1 0 1 0 0

R

word 2 Immediate Value (IM16)

Words:
Cycles:

Group:
Addressing:
Flags affected:
Interruptible:
Cacheable:
Format:

2

2

Data Move
Immediate
None

Yes

No

8

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

SR = IM9 (short immediate load)
(SR) « (IM9)

The contents of register SR are replaced with the 9-bit immediate value of IM9. The value of SR can be any of the
following:

Register SR Register SR
j 000 ro 100
k 001 ri 101
rb 010 r2 110
re 011 r3 111

These registers are 16 bits wide, and the j and k registers are sign-extended two's complement. The others are
zero-extended.

Bit 15 14 | 13 12 11—9 8—0

Field 0 0 0 1 SR IM9

Words: 1

Cycles: 1

Group: Data Move
Addressing: Immediate

Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 9

Notes:

1. In Appendix A, page A-3, this instruction is encoded using a 2-bit IM9 field that corresponds to the two LSBs of
the SR field shown above. The most significant bit of SR is the least significant bit of the T field used in the
instruction set encodings in Table A-16, page A-9.

2. When a DSP1611/17/18/27/28/29 program is encoded and if the immediate value IM9 is greater than 9 bits or a
label is used for IM9, the assembler defaults to two-word, two-cycle data move encoding. The short immediate
encoding can be forced by using the optional mnemonic set (if the value of IM9 is greater than 9 bits, it is trun-
cated to 9 bits). For example,

setr3 =varl

forces a short immediate encoding.

Lucent Technologies Inc. B-10

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

R = aS][l] (load register from accumulator)

(R) — (aSI[)

The contents of register R are replaced with the current contents of accumulator aS (bits 31—16) or aSl
(bits 15—0). Registers that are less than 16 bits load from the low-order bits of aS[l].

The value of S can be zero to select accumulator a0 or one to select accumulator al. Register R is one of the gen-
eral sets of registers shown for the long immediate load.

The value of X can be zero to select aS or one to select aSl.

Note: Writing the psw also writes the a0 and al guard bits.

Bit 15 | 14 | 13 | 12 | 11 | 10 9—4 3 2 1 0
Field 0 1 0 S 1 X R 0 0 0 0

Words: 1

Cycles: 2

Group: Data Move
Addressing: Register

Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 7

B-11 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aT[l] = R (load accumulator from register)

@) - (R)

The contents of accumulator aT (bits 31—16) or aTl (bits 15—0) are replaced with the current contents of register
R, which are zero- or sign-extended to 16 bits if necessary. If clearing of aTl is enabled on a write to aT (with the
CLR field of the auc register), bits 15—0 of accumulator aT will be cleared. Bits 35—32 (the guard bits) will be
loaded with copies of bit 31.

The value of X can be zero to select aT or one to select aTl.

The value of aT can be zero to select al or one to select a0. aT is encoded as aT in the instruction encodings in
Appendix A. Register R is one of the general sets of registers shown (in Table B-2 on page B-8) for the long imme-
diate load, except that registers sioc, sioc2, srta, srta2, tdms, and tdms2 are not readable.

Bit 15 | 14 | 13 | 12 | 11 10 9—4 3 2 1 0
Field 0 1 0 0 0 aT R 0 0 0 X

Words: 1

Cycles: 2

Group: Data Move
Addressing: Register

Flags affected: None

Interruptible: Yes
Cacheable: Yes

Format: 7a

Note: Ify or p is used as the register R, the assembler forces a special function encoding. The resulting instruction
moves all 32 bits (sign-extended to 36 bits) of y into aT. All DAU flags are affected, and the execution
requires only one cycle. If a two-cycle data move is desired, the optional mnemonic move may be used.
Only the upper 16 bits of y are transferred and no flags are affected. For example:

move a0 =y

Lucent Technologies Inc. B-12

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

R =Y (load register from Y-space memory)

perform (R) ~ (*rM); then
modify rM

The contents of register R are replaced with the current contents of the Y-space memory location pointed to by rM
where rM is specified by the two most significant bits of the Y field:

00 -r0 01-r1 10-r2 11 -r3

The value of rM is then postmodified where the postmodification is specified by the two least significant bits of the
Y field.

2LSBsofY Action Symbol
00 no action *™M
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Register R is one of the general sets of registers listed under the long immediate load.

Note: Writing the psw also writes the a0 and al guard bits.

Bit 15 | 14 | 13 | 12 | 11 | 10 9—14 3—0
Field 0 1 1 1 1 0 R Y
Words: 1
Cycles: 2

Group: Data Move
Addressing: Register, Register Indirect
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 7

Notes:

1. Ify, yl, or x are the destination registers (R), the assembler assembles this instruction as a single-cycle multiply/
ALU instruction. If a two-cycle move encoding is necessary, the optional mnemonic move may be used. For
example:

move y = *rl forces a move encoding

2. R = pop(*rM) is a different assembly-language form for two statements:
*rM— — followed by R = *rM and is used for stack operations. The pointer register rM is decremented, and data
is written from the new memory location to the register R. The decrement instruction is not interruptible.

B-13 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

Y = R (store register to Y-space memory)

(*rM) « (R); then
modify rM
The contents of the Y-space memory location pointed to by rM are replaced with the current contents of register R,

which are zero- or sign-extended to 16 bits if necessary. rM is specified by the two most significant bits of the Y
field:

00-r0 01-r1 10-r2 11-r3

The value of rM is then postmodified where the postmodification is specified by the two least significant bits of the
Y field.

push(*rM) = R is another assembly-language form for this instruction with a postincrement of one. This imple-
ments a write to a stack in memory.

2 LSBsof Y Action Symbol
00 no action *™M
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *TM++j

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Register R is one of the general set of registers listed (in Table B-2 on page B-8) under the long immediate load
instruction, except that registers sioc, sioc2, srta, srta2, tdms, and tdms2 are not readable.

Register sources c0, c1, and c2 are less than 16 bits and are sign-extended. Register source auc is less than
16 bits and is zero-extended.

Bit 15 14 | 13 | 12 | 11 | 10 9—4 3—0
Field 0 1 1 0 0 0 R Y
Words: 1
Cycles: 2

Group: Data Move
Addressing: Register, Register Indirect
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 7

Lucent Technologies Inc. B-14

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

Z : R (exchange register with Y-space memory)

temp ~ (R); then

(R) « (*rM); then

modify rM (first action); then
(*rM) ~ temp; then

modify rM (second action)

The contents of the Y-space memory location(s) pointed to by rM are exchanged with the current contents of regis-
ter R, which are sign- or zero-extended to 16 bits if necessary. The pointer rM is modified after each of the two
memory accesses according to bits zero and one of the Z field. rM is specified by bits two and three of the Z field:

00 -r0 01-r1 10-r2 11-r3

The available options for the postmodification are specified by the two least significant bits of the Z field as follows:

Symbol 2 LSBs of Z First Action Second Action

*rMzp 00 no action (zero) postincrement (plus)
*rMpz 01 postincrement (plus) no action (zero)

*rMm2 10 postdecrement (minus) postincrement by two (+2)
*rMjk 117 postincrement by (j) postincrement by (k)

T Code 11, in this case, means add the current value of the j register to rM after reading *rM, and then add the
current value of the k register to rM after writing *rM.

Register R is one of the general sets of registers listed under the long immediate load instruction. Register sources
c0, c1, and c2 are less than 16 bits and are sign-extended. Register source auc is less than 16 bits and is zero-
extended.

Note: Writing the psw also writes the a0 and al guard bits.

Bit 15 14 | 13 | 12 | 11 | 10 9—14 3—0
Field 0 1 1 0 1 X R z
Words: 1
Cycles: 2

Group: Data Move
Addressing: Register, Register Indirect
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 7

Note: R and rM must not be the same register (e.g., r2pz : r2). The eight logical PIO registers pdx0 through pdx7
cannot be used in compound data moves.

B-15 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

DR =*(OFFSET) (load register from direct address in Y-space memory)
(DR) « (*(ybase + OFFSET))

The contents of register DR are replaced with the current contents of the Y-space memory location at address
ybase + OFFSET. The ybase register holds the base address used for direct addressing. It can be loaded with
any 16-bit value (see the R = IM16 instruction on page B-8).

The OFFSET is a 5-bit direct address (OFFSET from the ybase register) and is specified in the opcode. The OFF-
SET can have any value from 0 to 31.

Note: The upper 11 bits of ybase are concatenated with the OFFSET to form the direct address. The lower five
bits of ybase are ignored.

For direct addressing, register DR can be any of the following:

Register |DR Field Register DR Field
ro 0000 y 1000
rl 0001 yl 1001
r2 0010 p 1010
r3 0011 pl 1011
a0 0100 X 1100
aol 0101 pt 1101
al 0110 pr 1110
all 0111 psw 1111

Writing the psw also writes the a0 and al guard bits. Writing to a0 or al will cause bits 35—32 (the guard bits) to
be loaded with copies of bit 31. If clearing of a0l, all, or yl is enabled in the auc register, writes to a0, al, ory will
cause bits 15—0 of that register to be cleared.

Bit 15 | 14 | 13 | 12 | 11 | 10 9—6 5 4—0
Field 1 1 1 1 0 1 DR 1 OFFSET
Words: 1
Cycles: 2

Group: Data Move
Addressing: Indirect, Register, Direct
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 9a

Lucent Technologies Inc. B-16

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

*(OFFSET) = DR (store register to direct address in Y-space memory)
(*(ybase + OFFSET)) « (DR)

The contents of the Y-space memory location at address ybase + OFFSET is replaced with the current contents of
register DR. The ybase register holds the base address used for direct addressing in the
DSP1611/17/18/27/28/29. It can be loaded with any 16-bit value (see the R = IM16 instruction on page B-8).

The OFFSET is a 5-bit direct address (OFFSET from the ybase register) and is specified in the opcode. The OFF-
SET can have any value from 0 to 31.

Note: The upper 11 bits of ybase are concatenated with the OFFSET to form the direct address. The lower five
bits of ybase are ignored.

For direct addressing, register DR can be any of the following:

Register |DR Field Register DR Field
ro 0000 y 1000
rl 0001 yl 1001
r2 0010 p 1010
r3 0011 pl 1011
a0 0100 X 1100
aol 0101 pt 1101
al 0110 pr 1110
all 0111 psw 1111
Bit 15 | 14 | 13 | 12 | 11 | 10 9—6 5 4—0
Field 1 1 1 1 0 0 DR 1 OFFSET
Words: 1
Cycles: 2

Group: Data Move
Addressing: Indirect, Register, Direct
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 9a

B-17 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

if CON F2 (if CONdition is true, then perform special function instruction)

test CONdition;
if true, then perform F2

The specified condition is tested. If it is true, the special function operation F2 is performed. (See Table B-1 on
page B-3 for the conditions that can be tested, i.e., encoded in the CON field). The F2 functions can also be per-
formed unconditionally, i.e., written by themselves and encoded as a condition of true.

The F2 functions that can be conditionally performed, i.e., encoded in the F2 field, are as follows:

F2 Operation F2 Operation
0000 aD=aS>>1 1000 aD=p
0001 aD=aS<<1 1001 aDh=asSh+1
0010 aD=aS>>14 1010 aS =-~aS
0011 aD=aS<<4 1011 aD =rnd(aS)
0100 aD=aS>>8 1100 aD=y
0101 aD=aS<<8 1101 aD=aS+1
0110 aD=aS>>16 1110 ab =aS
0111 aD=aS<<16 1111 abD =-aS

Bit 15 14 | 13 12 11 10 9 8—5 4—0

Field 1 0 0 1 1 D S F2 CON

Note: The D and S fields are used to specify aD and aS.

Words: 1

Cycles: 1

Group: Special Function
Addressing: Register

Flags affected: LMI, LEQ, LLV, LMV

Interruptible: Yes
Cacheable: Yes

Format: 3

Lucent Technologies Inc. B-18

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

ifc CON F2 (if CONdition is true, then perform special function instruction)
(modify counter 1,2 accordingly)

test CONdition; counter c1 = c1 + 1; if CON true, then {perform F2; c2 = c1}

First, the specified condition is tested. Next, counter cl is incremented. If the condition is true, the special function
operation F2 is performed and counter c2 is set to the value of c1. The conditions that can be tested are encoded
in the CON field (see Table B-1 on page B-3). The F2 functions can also be performed unconditionally, i.e., written
by themselves and encoded as a condition of true.

The possible F2 special functions that can be conditionally performed are as follows:

F2 Operation F2 Operation
0000 aD=aS>>1 1000 aD=p
0001 aD=aS<<1 1001 aDh=aSh+1
0010 aD=aS>>14 1010 aS =~aS
0011 aD=aS<<4 1011 aD =rnd(aS)
0100 aD=aS>>8 1100 aD =y
0101 aD=aS<<8 1101 aD=aS+1
0110 aD =aS >> 16 1110 aD =aS
0111 aD=aS << 16 1111 aD =-aS

Bit 15 14 | 13 12 11 10 9 8—5 4—0

Field 1 0 0 1 0 D S F2 CON

Note: The D and S fields are used to specify aD and aS.

Words: 1

Cycles: 1

Group: Special Function
Addressing: Register

Flags affected: LMI, LEQ, LLV, LMV

Interruptible: Yes
Cacheable: Yes

Format: 3

B-19 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Y (multiply/ALU operation with postmodification of pointer register)

perform operation F1 and
access *rM; then
postmodify rM (the contents of *rM are not written to a destination)

This instruction performs the following three operations effectively in parallel:

1. The operation F1 is performed. The possible F1 operations are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS -y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation including logical operations. (See Section 3.3, Arithmetic and Precision, for the options of
shifting the output of the p register into aS in the above operations.)

2. Access the Y-space location pointed to by rM where rM is specified by the two most significant bits of the Y
field as follows (the accessed location is not written to a destination):

00-r0 01-r1 10-r2 11-r3

Postmodify the value of rM where the postmodification is specified by the two least significant bits of the Y field.

2 LSBsof Y Action Symbol
00 no action *™
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *TM++j

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Note: When code 10 (postdecrement) is specified, this instruction is noninterruptible. It is used to implement the
pop(*rM) instruction.

Lucent Technologies Inc. B-20

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Information Manual

Instruction Set Summary April 1998
F1 Y (multiply/ALU operation with postmodification of pointer register) (continued)
Bit 15 14 | 13 12 11 10 9 8—5 4 3—0
Field 0 0 1 1 0 D S F1 0 Y

Words: 1

Cycles: 1

Group: Multiply/ALU

Addressing: Register Indirect, Register

Flags affected:
Interruptible:
Cacheable:
Format:

B-21

LMI, LEQ, LLV, LMV

Yes (except for postdecrement)
Yes

1

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Y =a0[l] (multiply/ALU operation with parallel accumulator store)
F1 Y =al]l]

perform operation F1 and
write the value of aT[l] to *rM; then
modify rM

This instruction performs the following three operations effectively in parallel:

1. Write the (old) value of a0, al, a0l, or all to the Y-space location pointed to by rM where rM is specified by the
two most significant bits of the Y field.

00-r0 01-r1 10-r2 11-r3
The X field selects aT or aTl:

X=0 - aTl X=1 5 aT
2. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the Y
field.
2 LSBsof Y Action Symbol
00 no action *™
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *TM++j

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Lucent Technologies Inc. B-22

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Information Manual

Instruction Set Summary April 1998
F1 Y =a0[l] (multiply/ALU operation with parallel accumulator store) (continued)
F1 Y =al]l] (continued)
3. The operation F1 is performed. The possible operations for F1 are as follows:
F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS -y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD =y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

Bit

15 14 | 13

12

11

10

9 8—5

4

Field

a0

1 1

0

0

D

F1

X

al

0 0 1

0

0

D

S F1

X

B-23

Words:
Cycles:
Group:

Addressing:
Flags affected:
Interruptible:

Cac

heable:

Format:

1

2

Multiply/ALU

Register Indirect, Register
LMI, LEQ, LLV, LMV

Yes

Yes

1

Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

F1 x =Y (multiply/ALU operation with parallel load of x register)

perform operation F1 and
copy *rM to x; then

modify rM

This instruction performs the following three operations (effectively in parallel):

1. The multiply/ALU operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to

select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options

available when shifting the output of the p register into aS in the above operations.)

2. Access the Y-space location pointed to by rM, and write this value into the x register. rM is specified by the
most significant bits of the Y field:

00-r0

Lucent Technologies Inc.

01-r1

10-r2

11-r3

B-24

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

F1 x =Y (multiply/ALU operation with parallel load of x register) (continued)

Information Manual
April 1998

3. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the Y

field.
2LSBsofY Action Symbol
00 no action *™M
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 3—0
Field 1 0 1 1 0 D S F1 Y
Words: 1
Cycles: 1
Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 1
B-25

Lucent Technologies Inc.

Information Manual
April 1998

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

F1 y[l] =Y (multiply/ALU operation with parallel load of y register)

perform operation F1 and
copy *rM to y (or yl); then

modify rM
This instruction performs the following three operations effectively in parallel:

1. The multiply/ALU operation F1 is performed. The possible F1 operations are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to

select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options of

shifting the output of the p register into aS in the above operations.)

2. Access the Y-space location pointed to by rM, and write this value into the y (or yl) register. rM is specified by

the two most significant bits of the Y field:

00 -r0

The X field selects y or yl:

X=0 vyl

Lucent Technologies Inc.

01-r1

10-r2

11-r3

B-26

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

F1 y[l] =Y (multiply/ALU operation with parallel load of y register) (continued)

Information Manual
April 1998

3. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the Y

field:
2LSBsofY Action Symbol
00 no action *™M
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Bit

15

14 | 13 12

11

10 9 8—5

N

Field

1

0 1 1

D S F1

B-27

Words: 1
Cycles: 1
Group: Multiply/ALU

Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes

Cacheable: Yes

Format: 1

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 y=Y x=*pt++[i] (multiply/ALU operation with parallel load of x and y registers)

perform operation F1 and in parallel, perform the following data moves:
(Y) < (*rM); then

modify rM; then

(x) — (*pt); then

(pt) = (pt)+ [1 or i]

This instruction performs the following operations effectively in parallel:

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS -y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options of
shifting the output of the p register into aS in the above operations.)

2. Access the Y-space location pointed to by rM, and write this value into the y register. rM is specified by the
two most significant bits of the Y field:

00-r0 01-r1 10-r2 11-r3

Lucent Technologies Inc. B-28

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

F1 y=Y x=*pt++[i] (multiply/ALU operation with parallel load of x and y registers) (continued)

3. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the

Y field:
2LSBsofY Action Symbol
00 no action *™M
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

4. Access the X-space location pointed to by pt, and write this value into the x register. Either internal or exter-
nal X-space may be accessed depending on the address and the state of the EXM pin.

5. Postmodify the value of the pt register by either one or i selected by the X field:

X=0 o *pt++ X=1 - *pt++i
Bit 15 14 | 13 12 11 10 9 8—5 4 3—0
Field 1 1 1 1 1 D S F1 X Y
Words: 1

Cycles: 2 (1 cycle if in cache)
Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 1

B-29 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 y=a0 x=*pt++[i] (multiply/ALU operation with parallel load of x and y registers)
F1 y=al x=*pt++[i]

perform operation F1 and in parallel, perform the following data moves:
(y) < (a0) or (al) and

(x) — (*pt); then

(pt) = (pt)+ [1 or]

This instruction performs the following operations effectively in parallel:

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aDb=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options of
shifting the output of the p register into aS in the above operations.)

2. Copy the value in bits 31—16 of a0 or al to the y register.
Note: Due to pipelining, the value copied from a0 or al is the value before executing the F1 operation.

3. Access the X-space location pointed to by pt, and write this value into the x register. Either internal or exter-
nal X-space may be accessed depending on the address and the state of the EXM pin.

Lucent Technologies Inc. B-30

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

Information Manual
April 1998

F1 y=a0 x=*pt++[i] (multiply/ALU operation with parallel load of x and y registers) (continued)

F1 y=al x=*pt++[i] (continued)

4. Postmodify the value of the pt register by either one or i selected by the X field:

X=0 - *pt++ X=1 - *pti
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 4 3 2 1 0
Field | a0 1 1 0 0 1 D S F1 X 0 0 0
al 0 1 D S F1 X 0 0 0 0
Words: 1
Cycles: 2 (1 cycle if in cache)
Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 1
B-31 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 aT[l]=Y (multiply/ALU operation with parallel load of accumulator register)

perform operation F1 and
copy *rM to aT (or aTl); then
modify rM by M

This instruction performs the following three operations effectively in parallel:

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS -y
0001 aD=aS+pp=x*y 0111 aDb=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S is zero to select a0 or one to select al. The value of D selects aD and aT as follows:
aD and aT are opposites, and flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

2. Access the Y-space location pointed to by rM, and write this value to the aT (or aTl) register. aT is defined as
the opposite of aD for this instruction. rM is specified by the two most significant bits of the Y field:

00-r0 01-r1 10-r2 11-r3
The X field selects aT or aTl:
X=0 - aTl X=1 - aT

Lucent Technologies Inc. B-32

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

F1 aT[l]=Y (multiply/ALU operation with parallel load of accumulator register) (continued)

3. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the

Y field:
2LSBsofY Action Symbol
00 no action *™
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 4 3—0
Field 0 0 1 1 1 D S F1 X Y
Words: 1

Cycles: 1

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 1

B-33 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Y =y[l] (multiply/ALU operation with parallel store of y register)

perform operation F1 and
(*rM) « (y) or (yl); then
modify rM

This instruction performs the following operations (effectively in parallel):

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one
to select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

2. Write the value of y or yl to the Y-space location pointed to by rM where rM is specified by the two most sig-
nificant bits of the Y field:

00-r0 01-r1 10-r2 11-r3
The X field selects y or yl:
X=0 -y X=1 -y

Lucent Technologies Inc. B-34

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
Instruction Set Summary

F1 Y =y[l] (multiply/ALU operation with parallel store of y register) (continued)

Information Manual
April 1998

3. Postmodify the value of rM where the postmodification is specified by the two least significant bits of the

Y field:
2LSBsofY Action Symbol
00 no action *™
01 postincrement *rM++
10 postdecrement *M— —
117 postincrement by (j) *IM++]

T Code 11, in this case, means add the current value of the j regis-
ter to rM after accessing *rM.

Bit 15

14 | 13 | 12

11

10 9

N

Field 1

0 1 0

D S

F1

B-35

Cacheable:

Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing:
Flags affected:
Interruptible:

Format: 1

Yes

Register Indirect, Register
LMI, LEQ, LLV, LMV
Yes

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Z:y[l] (multiply/ALU operation with compound data move)

perform operation F1 and in parallel, perform the following compound data move:
temp « (y) or (yl); then

(y)or (yl) ~ (*rM); then

modify rM (first action); then

(*rM) ~ temp; then

modify rM (second action)

This instruction performs the following operations effectively in parallel:

1. The operation F1 is performed. The possible F1 operations are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

2. Save either the y or yl register into an internal temporary location (temp). The X field selects y or yl:
X=0 vyl X=1 -y

3. Access the Y-space location pointed to by rM, and write this value into the y (or yl) register. rM is specified by
the two most significant bits of the Z field:

00-r0 01-r1 10-r2 11-r3

4. Postmodify the value of rM using the first action described by the two least significant bits of the Z field
described below.

Lucent Technologies Inc. B-36

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

F1 Z:y[l] (multiply/ALU operation with compound data move) (continued)

5. Write the value saved in the temporary register (temp) to the memory location now pointed to by rM.

6. Postmodify the value of rM using the second action described by the two least significant bits of the Z field.
The available options for the postmodification are specified as follows:

Symbol 2LSBsofZz First Action Second Action

*rMzp 00 no action (zero) postincrement (plus)
*rMpz 01 postincrement (plus) no action (zero)

*rMm2 10 postdecrement (minus) postincrement by two (+2)
*rMjk 117 postincrement by (j) postincrement by (k)

T Code 11, in this case, means add the current value of the j or k register to rM after accessing *rM.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 4 3—0
Field 1 0 1 0 1 D S F1 X z
Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 2

B-37 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Z:aT[l] (multiply/ALU operation with parallel compound accumulator move)

perform operation F1 and in parallel, perform the following compound accumulator move:
temp « (aT) or (aTl); then

(@T) or (aTl) « (*rM); then

modify rM (first action);

(*rM) ~ temp;

modify rM (second action)

This instruction performs the following operations (effectively in parallel):

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS -y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S is zero to select a0 or one to select al. The value of D selects aD and aT as follows:

D (bit 10) abD aT
0 a0 al
1 al a0

aD and aT are opposites, and flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

2. Save either the y or yl register into an internal temporary location (temp). aT is defined as the opposite of aD
for this instruction. If aS in the F1 operation is the same as aT, the value used in the F1 operation will be the
old value due to pipelining. The X field selects aT or aTl:

X=0 - aTl X=1 S aT

3. Access the Y-space location pointed to by rM, and write this value to the aT (or aTl) register. rM is specified
by the two most significant bits of the Z field:

00-r0 01-r1 10-r2 11-r3

4. Postmodify the value of rM using the first action described by the two least significant bits of the Z field
described below.

Lucent Technologies Inc. B-38

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

Information Manual

April 1998

F1 Z:aTJ[l] (multiply/ALU operation with parallel compound accumulator move) (continued)

5. Write the value saved in the temporary register (temp) to the memory location now pointed to by rM.

6. Postmodify the value of rM using the second action described by the two least significant bits of the Z field.
The available options for the postmodification are specified as follows:

Symbol 2LSBsofZz First Action Second Action

*rMzp 00 no action (zero) postincrement (plus)
*rMpz 01 postincrement (plus) no action (zero)

*rMm2 10 postdecrement (minus) postincrement by two (+2)
*rMjk 117 postincrement by (j) postincrement by (k)

T Code 11, in this case, means add the current value of the j or k register to rM after accessing *rM.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 4 3—0
Field 0 0 1 0 1 D S F1 X z
Words: 1
Cycles: 2
Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 2a
B-39 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

F1 Z:y Xx=*pt++[i] (multiply/ALU operation with compound data move and parallel load of x register)

perform operation F1 and in parallel, perform both the following compound data move and x register load:
temp < (y); then

(y) < (*rM); then

modify rM (first action); then

(*rM) ~ temp; then

modify rM (second action); then

(x) — (*pt); then

(pt) = (pt) + [1or]

This instruction performs the following operations effectively in parallel:

1. The operation F1 is performed. The possible operations for F1 are as follows:

F1 Operation F1 Operation F1 Operation
0000 aD=pp=x*y 0110 nop 1011 aS-y
0001 aD=aS+pp=x*y 0111 aD=aS-p 1100 aD=y
0010 p=x*y 1000 aD=aS|y 1101 aD=aS+y
0011 aD=aS—-pp=x*y 1001 aD=aS"y 1110 aD=aS &y
0100 aD=p 1010 aS &y 1111 aD=aS-y
0101 aD=aS+p

The value of S can be zero to select a0 or one to select al. The value of D can be zero to select a0 or one to
select al. Flags are modified based on the value computed by the DAU.

Note: For all diadic operations involving the y register, y is sign-extended to 36 bits before performing the
operation (including logical operations). (See Section 3.3, Arithmetic and Precision, for the options
available when shifting the output of the p register into aS in the above operations.)

2. Save the y register into an internal temporary location (temp).

Lucent Technologies Inc. B-40

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

Information Manual
April 1998

F1 Z:y x=*pt++i] (multiply/ALU operation with compound data move and parallel load of the x

register) (continued)

3. Access the Y-space location pointed to by rM, and write this value into the y register. rM is specified by the
two most significant bits of the Z field:

00-r0

01-rl1

10-r2

11-r3

4. Postmodify the value of rM using the first action described by the two least significant bits of the Z field
described below.

5. Write the value saved in the temporary register (temp) to the memory location now pointed to by rM.

6. Postmodify the value of rM by the second action described by the two least significant bits of the Z field. The
available options for the postmodification are specified as follows:

Symbol 2LSBsofZz First Action Second Action

*rMzp 00 no action (zero) postincrement (plus)
*rMpz 01 postincrement (plus) no action (zero)

*rMm2 10 postdecrement (minus) postincrement by two (+2)
*rMjk 11t postincrement by (j) postincrement by (k)

T Code 11, in this case, means add the current value of the j or k register to rM after accessing *rM.

7. Access the X-space location pointed to by pt, and write this value into the x register. Either internal or exter-
nal X-space may be accessed depending on the memory map in effect.

8. Postmodify the value of the pt register by either one or i selected by the X field:

X=0 o *pt++ X=1 - *ptt+i
Bit 15 14 | 13 | 12 | 11 | 10 9 8—5 4 3—0
Field 1 1 1 0 1 D S F1 X z
Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 2a

B-41 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = aS OP aT (diadic accumulator arithmetic)

(aD) ~ (aS) + (aT)
(aD) ~ (aS) - (aT)
(aD) ~ (aS) & (aT)
(@aD) < (as) | (aT)
(@aD) ~ (aS) " (aT)
(as) — (aT)

(aS) & (aT)

The specified arithmetic/logical operation OP is performed on the two source accumulators (aS and aT), and the
result is placed in aD.

aD=aS +aT is a 36-bit add operation writing a 36-bit result.
aD=aS-aT is a 36-bit subtract operation writing a 36-bit result.
aD=aS &aT is 36-bit logical AND operation writing a 36-bit result.
aD=aS|aT is 36-bit logical OR operation writing a 36-bit result.
aD=aS"aT is 36-bit logical XOR operation writing a 36-bit result.

aS —aT sets the flags on a 36-bit subtract. No result is written.

aS & aT sets the flags on a 36-bit logical AND. No result is written.

For these instructions, all three accumulator designators D, S, and T may be specified independently for complete
flexibility.

The F3 field specifies the operation to be performed. The following table provides the encoding for the F3 field:

F3 Field Operation
1000 aD=aS|aT
1001 aD=aS"™aT
1010 asS &aT
1011 aS —aT
1101 aD=aS +aT
1110 aD =aS &aT
1111 aD=aS-aT
others Reserved

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 4 3 2 1 0
Field 1 1 0 0 0 D S F3 0 1 T 0 1
Words: 1
Cycles: 1
Group: ALU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 3a

Lucent Technologies Inc. B-42

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

aD = aS OP p (accumulator arithmetic with p register)

(@ab) ~ (aS) + (p)
(@b) - (@S)-(p)
(@ab) ~ (aS) & (p)
(@b) ~ (@S) | (p)
(@ab) ~ (as)" (p)
(@S) - (p)

(@S) & (p)

The specified arithmetic/logical operation OP is performed on the source accumulator aS and the p register (sign-
extended to 36 bits), and the result is placed in aD.

aD=aS+p is a 36-bit add operation writing a 36-bit result.
aD=aS-p is a 36-bit subtract operation writing a 36-bit result.
aD=aSé&p is a 36-bit logical AND operation writing a 36-bit result.
aD=aS|p is a 36-bit logical OR operation writing a 36-bit result.
aD=aS"p is a 36-bit logical XOR operation writing a 36-bit result.
aS-—p sets the flags on a 36-bit subtract. No result is written.

aS &p sets the flags on a 36-bit logical AND. No result is written.

The F3 field specifies the operation to be performed. The following table provides the encoding for the F3 field:

F3 Field Operation
1000 aD=aS|p
1001 aD=aS"p
1010 aS &p
1011 aS—-p
1101 aD=aS+p
1110 aD=aS&p
1111 aD=aS-p
others Reserved

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 2 1
Field 1 1 0 0 0 D S F3 1 1 0 0 1
Words: 1
Cycles: 1
Group: ALU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV
Interruptible: Yes
Cacheable: Yes
Format: 3a

Note: The instructions aD =aS+p and aD =aS—p are identical in function to the equivalent F1 operations. By

default, the assembler will produce the F1 encodings for these instructions. To force the (F3) encoding, the
optional mnemonic f3 may be used, as in: f3 a0 =al-p

B-43 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = aS<h,|> OP IM16 (accumulator arithmetic with immediate data)

(@aD) < (aS<h,I>) + (IM16)
(aD) < (aS<h,I>) — (IM16)
(aD) «~ (aS<h,I>) & (IM16)
(aD) « (aS<h,l>) | (IM16)
(aD) «~ (aS<h,I>) * (IM16)
(aS<h,I>) — (IM16)

(aS<h,I>) & (IM16)

The specified arithmetic/logical operation OP is performed on the source accumulator aS and a 16-bit immediate
value IM16 extended as appropriate to 36 bits. The result is placed in abD.

Note: These are 36-bit operations. The result and any affected flags depend upon the contents of all 36 accumula-
tor bits.

aD = aSh + IM16 and aD = aSh — IM16: The 16-bit value IM16 is aligned with bits 31—16 of aS. IM16 is sign-
extended into the guard bits, and bits 15—0 are padded with zeros. The resulting 36-bit value is then added to or
subtracted from aS writing a 36-bit result.

aD = aSh & IM16 and aSh & IM16: The 16-bit value IM16 is aligned with bits 31—16 of aS. IM16 is sign-extended
into the guard bits, and bits 15—0 are padded with ones. The resulting 36-bit value is then logically ANDed with
aS. The first case writes a 36-bit result to aD. The second case sets the flags accordingly with no result written.

aD =aSh | IM16 and aD = aSh ~ IM16: The 16-bit value IM16 is aligned with bits 31—16 of aS. IM16 is sign-
extended into the guard bits, and bits 15—0 are padded with zeros. The resulting 36-bit value is then logically
ORed or XORed with aS writing a 36-bit result.

aSh — IM16: The 16-bit value IM16 is aligned with bits 31—16 of aS. IM16 is sign-extended into the guard bits,
and bits 15—0 are padded with zeros. The resulting 36-bit value is then subtracted from aS setting the flags
accordingly. No result is written.

aD = aSl| + IM16 and aD = aSI| — IM16: The 16-bit value IM16 is aligned with bits 15—0 of aS. IM16 is zero-
extended from bits 35—16. The resulting 36-bit value is then added to or subtracted from aS writing a 36-bit result.

aD = aSl & IM16 and aSI| & IM16: The 16-bit value IM16 is aligned with bits 15—0 of aS. IM16 is padded with
ones from bits 35—16. The resulting 36-bit value is then logically ANDed with aS. The first case writes a 36-bit
result to aD. The second case sets the flags accordingly with no result written.

aD = aSl | IM16 and aD = aSl ~ IM16: The 16-bit value IM16 is aligned with bits 15—0 of aS. IM16 is zero-
extended from bits 35—16. The resulting 36-bit value is then logically ORed or XORed with aS writing a 36-bit
result.

aS|l —IM16: The 16-bit value IM16 is aligned with bits 15—0 of aS. IM16 is zero-extended from bits 35—16. The
resulting 36-bit value is then subtracted from aS setting the flags accordingly. No result is written.

The 16-bit immediate value IM16 is zero-, one-, or sign-padded. This allows the user to program two consecutive
immediate instructions to achieve full 32-bit operations. This is why the AND operations are padded with ones.

Note: To avoid confusion in understanding the operation of the instruction, the h is not optional in the <h, I>
encoding.

The X field selects aS or aSl:
X=0 - asl X=1 - aS

Lucent Technologies Inc. B-44

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

Instruction Set Summary

aD = aS<h,|> OP IM16 (accumulator arithmetic with immediate data) (continued)

Information Manual

April 1998

The F3 field specifies the operation to be performed. The following table provides the encoding for the F3 field:

F3 Field Operation
1000 aD = aS<h, I> | IM16
1001 aD = aS<h, I> " IM16
1010 aS<h, I> & IM16
1011 aS<h, I> - 1M16
1101 aD = aS<h, I> + IM16
1110 aD = aS<h, I> & IM16
1111 aD = aS<h,l > - IM16
others Reserved
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8—5 3 2 1
Field |wordl| 1 1 0 0 0 D S F3 0 0 1
word2 Immediate Value (IM16)
Words: 2
Cycles: 2
Group: ALU
Addressing: Immediate, Register

Flags affected:
Interruptible:
Cacheable:
Format:

B-45

LMI, LEQ, LLV, LMV
Yes
No
3a

Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = aS SHIFT aS (shift value in aS by aS bits)

(aD) (aS) >> (aS)

(aD) — (aS) << (aS)

(aD) ~ (aS)>>> (aS)

(aD) « (aS) <<< (aS)

These shift operations use the barrel switch in the BMU to perform shifts by a computed number of bits. The 36-bit
value in aS is shifted by the number of bits specified by the value in the high half of aS (bits 31—16), and the 36-bit
result is written to aD. The values in aSl and the aS guard bits are ignored. If the shift value is negative, the direc-

tion of the shift will automatically be reversed; i.e., a right shift will become a left shift of the same type and vice-
versa.

aD =aS >>aS performs an arithmetic right shift.

aD =aS << aS performs an arithmetic left shift.

aD = aS >>> aS performs a logical right shift. (This instruction clears the guard bits [bits 35—32] before
shifting.)

aD = aS <<< aS performs a logical left shift.

In the encoding, aS and aS must be different accumulators. Flags are set based on the value written into aD. For
left shifts, the LLV flag is set if any significant bits are lost from the value written into aD. For right shifts, the LLV
flag is set if the shift amount is greater than 35 bits. The SHIFT field selects the type of shift to perform:

00->> 01 ->>> 10 - << 11 - <<<
Bit 15 14 13 12 11 10 9 8 7 6 5 4—3 2 1 0
Field 1 1 1 1 0 D S 1 0 0 0 SHIFT 0 0 0
Words: 1
Cycles: 2
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

Lucent Technologies Inc. B-46

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

aD = aS SHIFT arM (shift value in aS by arM bits)

(aD) « (aS) >> (arM)
(aD) « (aS) << (arM)
(aD) ~ (aS)>>> (arM)
(aD) ~ (aS) <<< (arM)

These shift operations use the barrel switch in the BMU to perform shifts by a number in arM. The 36-bit value in
aS is shifted by the number of bits specified by the value in arM, and the 36-bit result is written to aD. If the shift
value is negative, the direction of the shift will automatically be reversed; i.e., a right shift will become a left shift of
the same type and vice versa.

aD =aS >> arM performs an arithmetic right shift.

aD =aS << arM performs an arithmetic left shift.

aD = aS >>> arM performs a logical right shift. (This instruction clears the guard bits [bits 35—32] before
shifting.)

aD = aS <<< arM performs a logical left shift.

Flags are set based on the value written into aD. For left shifts, the LLV flag is set if any significant bits are lost from
the value written into aD. For right shifts, the LLV flag is set if the shift amount is greater than 35 bits. The SHIFT
field selects the type of shift to perform:

00 - >> 01 ->>> 10 - << 11 - <<<
The M field selects one of the four ar registers:
00 - ar0 01-arl 10 - ar2 11 -ar3
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4—3 2 1—0
Field 1 1 1 1 0 D S 0 0 0 0 SHIFT 0 M
Words: 1
Cycles: 1
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

B-47 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = aS SHIFT IM16 (shift value in aS by IM16 bits)

(aD) ~ (aS) >> (IM16)
(aD) ~ (aS) << (IM16)
(aD) ~ (aS) >>> (IM16)
(aD) ~ (aS) <<< (IM16)

These shift operations use the barrel switch in the BMU. The 36-bit value in aS is shifted by the number of bits
specified by the 16-bit immediate value IM16, and the 36-bit result is written to aD. If the shift value is negative, the
direction of the shift will automatically be reversed; i.e., a right shift will become a left shift of the same type and
vice-versa.

aD = aS >> IM16 performs an arithmetic right shift.

aD = aS << IM16 performs an arithmetic left shift.

aD = aS >>> IM16 performs a logical right shift. (This instruction clears the guard bits [bits 35—32] before
shifting.)

aD = aS <<< IM16 performs a logical left shift.

Flags are set based on the value written into aD. For left shifts, the LLV flag is set if any significant bits are lost from
the value written into aD. For right shifts, the LLV flag is set if the shift amount is greater than 35 bits. The
SHIFT field selects the type of shift to perform:

00->> 01 ->>> 10 - << 11 - <<<
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4—3 2 1 0
Field (word 1 | 1 1 1 1 0 D S 1 1 0 0 SHIFT 0 0 0
word 2 Immediate Value (IM16)
Words: 2
Cycles: 2
Group: BMU

Addressing: Immediate, Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: No
Format: 3b

Lucent Technologies Inc. B-48

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

aD = exp (aS) (get exponent of aS)

(aDh) « (# of redundant sign bits in aS)
(@bl) -0

The number of redundant sign bits present in the 36-bit value in aS is computed and placed in the high half of aD
(bits 35—16), and aDlI (bits 15—0) is cleared.

A two's complement number is normalized (see page B-50) by detecting the number (E) of extra (or redundant)
sign bits and then shifting the number to the left E times (see Section 13.2.3, Normalization). For example:

1111001

10011000
There are three extra sign bits, so shift left three times in order that the last sign bit ends up in the MSB position.

The number (E) of redundant sign bits is found with respect to sign bit 31. If an overflow has occurred, E will be
negative and an arithmetic right shift will be done to normalize the number (see page B-50). E = K — 5 where K is
the total number of bits that are the same starting from bit 35 and counting to the right. For example:

Bit Positions 35—32 31—0 Normalization Action
Accumulator Contents 0000 0110001 ... O K =5, E =0, no shifting required.
0000 0001100 ... O K =7, E = 2, shift left twice.
0000 1000000 ... O K =4, E = -1, shift right once.
0110 1100010 ... O K =1, E = -4, shift right four times.
1111 1100101 ... O K =6, E = 1, shift left once.

The instruction for exponentiation is aD = exp (aS) where the exponent (E) is placed in the high half of the destina-
tion accumulator (aD, bits 31—16) and the lower half (bits 15—0) is cleared.

The flags (described in Section 13.2.2, Shifting Operations) are set based on the value written into aD.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Field 1 1 1 1 0 D S 0 0 0 0 0 1 1 0 0
Words: 1
Cycles: 1
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

B-49 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = norm (aS, arM) (normalize aS)

(arM) « (# of redundant sign bits in aS); then

(aD) - (aS) << (arM)

The exponent (E) of aS is computed and placed in arM. The 36-bit value in aS is then normalized based on this
exponent and placed in aD.

More specifically, this instruction performs the following two operations in sequence:

1. The number (E) of redundant sign bits present in the 36-bit value in aS is computed, extended to 16 bits, and
placed in arM. This exponent is generated with respect to bit 31 of aS. If an overflow has occurred, E will be
negative and an arithmetic right shift will be done to normalize the number. E = K -5 where K is the total num-
ber of bits that are the same starting from bit 35 and counting to the right. For example:

Bit Positions 35—32 31—0 Normalization Action
Accumulator Contents 0000 0110001 ... O K =5, E = 0, no shifting required.
0000 0001100 ... O K =7, E = 2, shift left twice.
0000 1000000 ... O K = 4, E = -1, shift right once.
0110 1100010 ... O K =1, E = -4, shift right four times.
1111 1100101 ... O K =6, E = 1, shift left once.

2. The 36-bit value in aS is then arithmetically shifted left by E (the amount of this computed exponent), and the
36-bit shifted value is placed in aD. If aS has overflowed resulting in a negative exponent, the shift will be to the
right producing the correct normalized value in aD for this case.

The flags (described in Section 13.2.2, Shifting Operations) are set based on the value written into aD.

The M field selects one of the four ar registers:

00 - ar0 01l-arl 10-ar2 11 -ar3
Bit 15 14 13 12 11 10 9 8 7 6 5 1—0
Field 1 1 1 1 0 D S 0 0 0 0 1 1 1 M
Words: 1
Cycles: 1
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

Lucent Technologies Inc. B-50

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

aD = extracts (aS, arM) (bit-field extract with control word in arM)

aD = extractz (aS, arM)
(low bits of aD) ~ (bit field in aS selected by arM)

An arbitrarily selected sequence of contiguous bits in the 36-bit aS register is placed in the low-order bits of the
36-bit aD register and either sign- or zero-extended. This bit field in aS is defined by the 16-bit value in arM. The
upper eight bits of arM hold the WIDTH of the field (in bits), and the lower eight bits of arM hold the OFFSET from
bit zero of aS (in bits):

Bit 15—8 7—0

arM WIDTH OFFSET

For example, arM = Oxe06 defines a 14-bit wide field, starting from bit six of aS. This copies bits 19—6 of aS to
low-order aD (bits 13—0) and either sign- or zero-extends it through bit 35.

Flags are set based on the value written into aD. The LLV flag is set if WIDTH = 0 or if (WIDTH + OFFSET) > 36.
The X field selects either sign-extended (extracts) or zero-extended (extractz):
X=0 extracts X=1 extractz

The M field selects one of the four ar registers:

00 - ar0 0l-arl 10 - ar2 11 - ar3
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1—0
Field 1 1 1 1 0 D S 0 0 1 0 0 0 X M
Words: 1
Cycles: 1
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

B-51 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = extracts (aS, IM16) (bit-field extract with immediate control word)
aD = extractz (aS, IM16)

(low bits of aD) « (bit field in aS selected by 16-bit immediate value IM16)

An arbitrarily selected sequence of contiguous bits in the 36-bit aS register is placed in the low-order bits of the

36-bit aD register and either sign- or zero-extended. This bit-field in aS is defined by the 16-bit immediate value
IM16. The upper eight bits of IM16 hold the WIDTH of the field (in bits), and the lower eight bits of IM16 hold the
OFFSET from bit zero of aS (in bits):

Bit 15—8 7—0

IM16 WIDTH OFFSET

For example, IM16 = 0xe06 defines a 14-bit wide field starting from bit six of aS. This copies bits 19—6 of aS to
low-order abD (bits 13—0) and either sign- or zero-extends it through bit 35.

Flags are set based on the value written into aD. The LLV flag is set if WIDTH =0 or if (WIDTH + OFFSET) > 36.

The X field selects either sign-extended (extracts) or zero-extended (extractz):

X=0 extracts X=1 extractz
Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Field (wordl| 1 1 1 1 0 D S 1 1 1 0 0 0 X 0 0
word2 Immediate Value (IM16)
Words: 2
Cycles: 2
Group: BMU

Addressing: Immediate, Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: No
Format: 3b

Lucent Technologies Inc. B-52

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR Information Manual
Instruction Set Summary April 1998

aD = insert (aS, arM) (bit-field insert with control word in arM)

mask « (1sin bits [OFFSET] thru [OFFSET + WIDTH]; other bits 0)
(aD) < (((aS) << OFFSET) & mask) | (@S & MASK

The low-order bits of the 36-bit aS register are inserted in an arbitrarily selected sequence of contiguous bits in aS
(also 36-bit). Nonselected bits in aS are left unchanged. The merged result is then stored in aD.

This bit-field in aS is defined by the 16-bit value in arM. The upper eight bits of arM hold the WIDTH of the field (in
bits), and the lower eight bits of arM hold the OFFSET from bit zero of aS (in bits):

Bit 15—8 7—0

arM WIDTH OFFSET

For example, arM = 0xe06 defines a 14-bit wide field, starting from bit six of aS. This replaces bits 19—6 of aS with
the low-order bits of aS (bits 13—0), and place the merged result into aD.

Flags are set based on the value written into aD. The LLV flag is set if WIDTH = 0 or if (WIDTH + OFFSET) > 36.

The M field selects one of the four ar registers:

00 - ar0 0l1l-arl 10 - ar2 11 - ar3
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1—0
Field 1 1 1 1 0 D S 1 0 1 0 0 1 0 M
Words: 1
Cycles: 2
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

B-53 Lucent Technologies Inc.

Information Manual DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 1998 Instruction Set Summary

aD = insert (aS, IM16) (bit field insert with immediate control word)

mask « (1sin bits [OFFSET] thru [OFFSET + WIDTH]; other bits 0)
(@aD) ~ (((aS) << OFFSET) & mask) | (a9 & MASK)

The low-order bits of the 36-bit aS register are inserted in an arbitrarily selected sequence of contiguous bits in aS
(also 36-bit). Nonselected bits in aS are left unchanged. The merged result is then stored in aD.

This bit-field inaS is defined by the 16-bit immediate value IM16. The upper eight bits of IM16 hold the WIDTH of
the field (in bits), and the lower eight bits of IM16 hold the OFFSET from bit zero of aS (in bits):

Bit 15—8 7—0

IM16 WIDTH OFFSET

For example, IM16 = 0xe06 defines a 14-bit wide field, starting from bit six of aS. This replaces bits 19—6 of aS
with the low-order bits of aS (bits 13—0) and places the merged result into aD.

Flags are set based on the value written into aD. The LLV flag is set if WIDTH =0 or if (WIDTH + OFFSET) > 36.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Field |wordl| 1 1 1 1 0 D S 1 1 1 0 0 1 0 0 0
word2 Immediate Value (IM16)
Words: 2
Cycles: 2
Group: BMU

Addressing: Immediate, Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: No
Format: 3b

Lucent Technologies Inc. B-54

aD = aS : aaT (swap accumulator with alternate accumulator)

temp < (aS); then
(aD) « (aaT); then
(aaT) ~ temp

The contents of alternate accumulator aaT are replaced with the value in aS. The contents of aD are replaced with
the old value in aaT. A temp register is used for the exchange to provide a true swap. All transfers are full 36-bit.
Flags are set based on the value written into aD.

Bit 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
Field 1 1 1 1 0 D S 0 1 1 0 1 0 0 0
Words: 1
Cycles: 1
Group: BMU

Addressing: Register
Flags affected: LMI, LEQ, LLV, LMV,
ODDP, EVENP, MNS1, NMNS1
Interruptible: Yes
Cacheable: Yes
Format: 3b

Index

Preliminary Data Sheet DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR
April 28, 1998 1:03 pm

A data arithmetic unit (see DAU)

data bus (see YDB)

data memory space (see memory, Y space)
data scaling (see register, auc, ALIGN field)

accumulators (see registers, accumulators)
addressing (see memory, addressing)

alternate accumulators (see register, aa0 and register, DAU 2-16—2-17, 5-1—5-10
aal)

ALU 2-16, 2-17, 5-2 E

assembler ambiguities 4-35—4-36
ECCP

B Viterbi decoding 14-1, 14-7
EMI 6-1

BIO 2-22 timing 6-17—6-24

data mode 10-2

toggle mode 10-2
bit field extraction (see instructions, BMU, extraction)
bit field insertion (see instructions, BMU, insertion)

exp (see computation, exponent)
exponent computation (see computation, exponent)
external memory interface (see EMI)

bit input/output (see BIO) F
bit manipulation unit (see BMU)
BMU 2-20 FIR 14-12
flags 13-3 flag
instruction set 13-2 BIO
instructions 13-9 allf 10-6
operations 13-9 allt 10-6
bus somef 10-6
instruction/coefficient address (see XAB) somet 10-6
instruction/coefficient data (see XDB) BMU
internal data (see IDB) evenp 4-34, 13-4
X address (see XAB) LEQ 4-34, 13-3
X data (see XDB) LLV 4-34, 13-3
Y address (see YAB) LMI 4-34, 13-3
Y data (see YDB) LMV 4-34, 13-4
mnsl 4-34, 13-4
C nmnsl 4-34, 13-4
oddp 4-34, 13-4
cache 5-17 DAU
cache instructions (see instructions, cache) LEQ 5-10
cache loop 2-18 LLV 5-10
clock LMV 5-10
CKI 155 ECCP
CKO 6-14, 121 EBUSY 14-5, 14-17
computation EOVF 145, 14-17
exponent 4-32, 13-4 EREADY 14-5, 14-17
normalization 4-32, 13-4 LOCK 3-48
conditional instructions (see instructions, conditional) PIO
control block 5-19 LPIDS 8-10
counter PIBF 8-10
conditional mnemonics 5-4 POBE 8-10
counters (see register, c0; register, c1; and register, c2) processor
LEQ 4-9
D LLV 4-9
data address bus (see YAB) LMI 4-9
data addressing unit (see YAAU) LMV 4-9

SIO

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

IBF 7-1
OBE 7-1
flags 3-7
BMU 4-34
conditional mnemonics 4-10
counter (see flag, COMI; flag, C1MI)
processor 4-9—4-10

G
guard bits 5-3

H

hardware development system (see HDS)
HDS 2-23

IDB 5-2, 12-1
instruction
callpt 4-13
do 4-14, 5-18
doK 4-14
goto JA 4-13
goto pi 4-13
gotopr 4-13
gotopt 4-13
icall 4-13
ireturn 4-13
notation 4-2
redo 4-14, 4-15, 5-17, 5-18
redo K 4-14, 4-15
return 4-13
TraceBack 14-23
instruction cycle timing 4-2
instructions 4-1
ALU
F3 4-11, 4-29
multiply 4-22—4-28
function statements 4-25—4-26
transfer statements 4-26—4-28
BMU 4-11, 4-30—4-34
barrel shifter 4-31
extraction 4-32, 13-5
insertion 4-32, 13-6—13-7
shuffle 13-8
cache 4-11, 4-14—4-15, 5-18
conditional and counters 5-4—5-6
control 4-11, 4-12, 4-13
data move 4-11, 4-15—4-18
multiply/ALU 4-11
special function 4-11, 4-19—4-21
interrupt
EMUXBOTH 6-27
EOVF 3-29

EREADY 3-29

IBF 3-29

INT 3-29

JINT 3-29

OBE 3-29

PIBF 3-29, 9-2, 9-9

PIDS/PIBF 3-29

POBE 3-29, 9-2, 9-9

polling 3-38

software 3-29

TIME 12-1

TIMEOUT 3-29

vector table 3-31
interrupts 3-27—3-46

concurrent 3-36, 3-42, 3-44, 3-46

ECCP 14-17

PHIF 9-11

PIO 8-19

vectored 3-27

J

JTA
BYPASS instruction 11-20
JTAG 2-22
EXTEST instruction 11-19
IDCODE instruction 11-20
INTEST instruction 11-19
mode
EXTEST 11-3
INTEST 11-3
SAMPLE 11-3
SAMPLE instruction 11-20
TAP 11-2, 11-4—11-5
TAP controller 11-5—11-6
TAP pin
TCK 11-4
TDI 11-4
TDO 11-4
T™MS 11-4
TRST 11-4
JTAG instruction set 11-19
JTAG test interface 15-11

L

Logical Mathematical Overflow 13-4
loops

nested 5-5

using counters for 5-5

M

MASK 10-2
memory
addressing 3-8, 4-3

Preliminary Data Sheet
April 28, 1998 1:03 pm

Preliminary Data Sheet
April 28, 1998 1:03 pm

compound 4-3, 4-5—4-7, 4-28, 5-14
direct data 5-14, 5-15
direct-data 4-3, 4-7—4-8
immediate 4-3
long-immediate 4-3
register-direct 4-3
register-indirect 4-3—4-4, 5-14
short-immediate 4-3
virtual-shift (modulo) 4-3, 4-7, 5-14,
5-16—5-17
X space 5-11
Y space 5-14
cache 2-18, 5-17, 5-18
dual-port RAM 2-19
ERAM 6-1
EROM 6-1
external 2-12
internal RAM 2-19
internal ROM 2-19
map 6-3—6-12
space 3-8
X space 2-12, 2-13, 3-10—3-20, 6-1
EROM 5-11
RAM 5-11
ROM 5-11
Y space 2-12, 2-13, 3-8—3-9, 6-1
ERAMHI 5-14, 6-12
ERAMLO 5-14, 6-12
I0 5-14, 6-12
RAM 5-14
mode
Intel 9-3—9-4
Motorola 9-5—9-6
powerdown 3-40
multiplex
time-division (see TDM)
multiplier 2-16, 2-17
mwait 15-12

N

nested loops (see loops, nested)

norm (see computation, normalization)

normalization computation (see computation, normal-
ization)

O

offset 14-18
operation
interrupt 3-32—3-38
single-cycle squaring 3-21, 4-24
operations
concurrent 2-2
overflow 5-3

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

P

phase-lock loop (see PLL)
pin-multiplex 6-26, 9-2, 9-11
pins
IOBIT 10-3
SIO 7-12
PIO 2-21
active mode 8-1, 8-2
input 8-3
output 8-4
host interface mode 8-9—8-13
passive mode 8-1, 8-6
input 8-7
output 8-8
peripheral mode 8-9—8-13
input 8-11
output 8-12
powerup and reset 8-16
pipeline 2-3, 2-14—2-15
PLL 3-47—3-51
PODS/POBE 3-29
program address bus (see XAB)
program addressing unit (see XAAU)
program memory (see memory, X space)
pseudorandom sequence generator (see PSG)
PSG 3-22, 5-7

R

register

a0 5-3

al 5-3

aa0 13-1

aal 13-1

alf 5-19, 5-20
allf field 10-2, 10-6
allt field 10-2, 10-6
AWAIT field 3-40, 3-52, 3-56, 6-17
somef field 10-2, 10-6
somet field 10-2, 10-6

ar0 13-1

arl 13-1

ar2 13-1

ar3 13-1

auc 2-17, 3-22, 5-9
ALIGN field 3-21, 5-3
CLR field 3-21, 5-2, 5-3
RAND field 3-22, 5-7
SAT field 3-21, 5-3
X=Y=field 3-21, 4-24, 5-2

c0 5-4—5-6

cl 5-4—5-6

c2 5-4—5-6

chit 10-1, 10-2, 10-4, 10-5

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

DATA field 10-2
MASK field 10-2
MODE field 10-2
PATTERN field 10-2, 10-6

cloop 2-18, 4-14, 5-17, 5-18

DSR 14-16

ear 14-1, 14-2, 14-8

ECON 14-2, 14-12

edr 14-2, 14-8, 14-9, 14-17

eir 14-8, 14-9, 14-17

i 2-18, 4-4, 5-11, 5-12

inc 3-34, 5-19, 12-3

ins 3-34, 3-35, 5-19

ioc 6-13
CKOO field 6-14
CKO1 field 6-14
CKO2 field 6-14
EBIOH field 10-4
ESIO2 field 8-22, 9-2, 10-4
EXTROM field 2-20, 6-2, 6-28
SIOLBC field 7-11
WEROM field 2-20, 6-2, 6-28

isr 7-4

j 2-17, 4-4, 4-5, 5-13, 5-14

JBPR 11-3, 11-16

JBSR 11-3, 11-8—11-15

JCON 11-3, 11-19

JDR 11-3, 11-16—11-18
CLOCK field 11-17, 11-18
CLOCK RATE field 11-18
PART ID field 11-17
ROMCODE field 11-17
SECURE field 11-17

JR 11-2, 11-7

JOUT 11-19

jtag 11-3, 11-19

k 2-17, 4-5, 5-13, 5-14

mwait 2-19, 5-19, 6-13

p 2-17, 5-2

PC 5-11, 5-12

pdx[IN] 8-1

pdx [OUT] 8-1

pdx0 (IN) 9-1

pdx0 (OUT) 9-1

phifc 9-8—9-10
PBSELF field 9-9
PFLAG field 9-9
PFLAGSEL field 9-9
PMODE field 9-7, 9-9
PSOBEF field 9-10
PSTRB field 9-9
PSTROBE field 9-9

pi 2-18, 5-7, 5-11, 5-12

pioc 8-1, 8-2, 8-15—8-16
IBF field 8-20

INTO field 8-20
OBE field 8-20
PIDS field 8-20
PODS field 8-20

plic 3-47, 3-48, 3-51
PLLEN field 3-48, 3-56
PLLSEL field 3-48, 3-56

powerc 3-47, 3-52—3-55
ECCPDIS field 3-53
INTOEN field 3-52
INT1EN field 3-52
NOCK field 3-52, 3-56
PHIFDIS field 3-52, 9-10
PIO1DIS field 8-19
PIODIS field 3-52
SIO1DIS field 3-52, 7-11
SIO2DIS field 3-52, 7-11
SLOWCKI field 3-52, 3-56, 3-57
TIMERDIS field 3-52
XTLOFF field 3-52, 3-57

pr 2-18, 5-11, 5-12

PSTAT 8-10, 8-13, 9-7
LPIDS field 8-10
PIBF field 8-10, 9-7
POBE field 8-10, 9-7

psw 2-17, 5-9, 5-10

pt 2-18, 5-11, 5-12

ro 2-17, 5-13, 5-14

rit 2-17, 5-13, 5-14

r2 2-17, 5-13, 5-14

r3 2-17, 5-13, 5-14

rb 2-17, 4-4, 5-13, 5-16

re 2-17, 4-4, 5-13, 5-16

saddx 7-1, 7-19

shit 10-1, 10-2, 10-4, 10-5
DIR field 10-2, 10-3, 10-5
VALUE field 10-2, 10-5

sdx (see registers, sdx[IN] and sdx [OUT])

sdx[IN] 7-1
sdx[OUT] 7-1
sioc 7-1, 7-9, 7-10
CLK field 7-10
DODLY field 7-6, 7-10
ICK field 7-10
ILD field 7-10
ILEN field 7-4, 7-10
LD field 7-7, 7-10
MSB field 7-10
OCK field 7-10
OLD field 7-10
OLEN field 7-6, 7-8, 7-10
sioc2 7-27
DODLY field 7-6
srta 7-1, 7-21
SYC 14-14

Preliminary Data Sheet
April 28, 1998 1:03 pm

Preliminary Data Sheet
April 28, 1998 1:03 pm

TBLR 14-7, 14-14, 14-19, 14-20
TBSR 14-15
tdms 7-1, 7-20
MODE field 7-7
timer0 12-3
timerc 12-2—12-3
DISABLE field 3-52, 12-3
PRESCALE field 12-3
RELOAD field 12-3
TOEN field 12-3
X 2-17, 5-2
y 2-17, 5-2
ybase 2-17, 5-13, 5-14
registers
accumulators 2-16, 5-3
addressing 3-1
alternate accumulators 4-34
auxiliary (see registers:ar0, arl, ar2, and ar3)
control 5-19
control and status 3-1
counter 2-17
data 3-1
ECCP 14-8
ECCP internal memory-mapped 14-10
length 3-5
pointer 5-13
program-accessible 3-1
PSTAT 8-1
reset values 3-6
RELOAD 12-1
reset
device 15-12
ECCP 14-1
powerup 7-6
RSTB (signal) 7-6
ResetECCP instruction 14-19
RSTB 15-5

S

saturation (see register, auc, SAT field)
shift
arithmetic left (<<) 13-3
arithmetic right (>>) 13-3
logical left (<<<) 13-3
logical right (>>>) 13-2

signal
AB 6-2, 15-6
CKI2 15-5
CKO 6-2, 15-5
DB 6-2, 15-6
DI 7-12
DI1 15-8
DO 7-12
DO1 15-8

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

DOEN 7-7, 7-12
DOEN1 15-8

DSEL 6-1, 6-2, 6-12, 6-13, 15-7
ERAMHI 2-19, 6-1, 15-7
ERAMLO 2-19, 6-1, 15-7
EROM 2-19, 6-1, 15-7
EXM 6-2, 15-7

IACK 15-6

IBF 7-12

IBF1 15-8

ICK 7-12

ICK1 15-8

ILD 7-12

ILD1 15-8

INT 15-6

INT1 6-25

IO 2-19, 6-1, 15-7
IOBIT 15-11

memory segment enables 6-2
OBE 7-12

OBE1 15-8

OCK 7-12

OCK1 15-8

OLD 7-12

OLD1 15-8

PB 15-9

PBSEL 9-1, 9-9, 15-10
PCSN 9-1, 15-10
PIBF 9-1, 15-10

PIDS 9-1, 9-2
PIDS/PRWN 15-10
POBE 9-1, 15-10
PODS 09-1, 9-2
PODS/PDS 15-10
PRWN 09-1

PSEL 15-9

PSTAT 15-10

RSTB 3-57, 6-25
RWN 6-2, 15-7

SADD 2-20, 7-12
SADD1 15-9

STOP 3-52, 3-56, 15-5
SYNC 7-12

SYNC1 15-9

TCK 15-11

TDI 15-11

TDO 15-11

TMS 15-11

TRAP 15-6

TRST 15-11

VEC 15-6

input section 7-4—7-5
loopback 7-11
multiprocessor mode 7-15—7-25

DSP1611/17/18/27/28/29 DIGITAL SIGNAL PROCESSOR

output section 7-6—7-8
SI01 7-1
S102 7-1, 7-26—7-27

T

TOEN 12-1
TBLR 14-22
test access port (see JTAG, TAP)
timer 2-22, 12-1
prescaler 12-1
timer0 12-1, 12-2, 12-5
timerc 12-1
TIMERDIS 12-1, 12-3
trap 3-29, 3-38—3-39

\Y

vectors
interrupt
X memory space 3-20

W
wait-state 3-8, 6-1, 6-13, 6-17

X

X addressing arithmetic unit (see XAAU)

XAAU 2-1, 2-2, 2-18, 3-8, 3-10, 5-11—5-12
XAB 2-1, 2-2, 3-10, 5-11

XDB 3-10, 5-2

Y

Y addressing arithmetic unit (see YAAU)
YAAU 2-1, 2-2, 2-17, 3-8, 5-13

YAB 2-1, 3-8, 5-13

YDB 2-1, 3-8

Preliminary Data Sheet
April 28, 1998 1:03 pm

	Title Page
	Contents
	Figures
	Tables
	Introduction
	1 Introduction
	1.1� General Description
	1.1.1� Architecture
	1.1.2� Instruction Set

	1.2� Typical Applications
	1.3� Application Support
	1.3.1� Support Software Library
	1.3.2� Hardware Development System

	1.4� Manual Organization
	1.4.1� Applicable Documentation

	Hardware Architecture
	2 Hardware Architecture
	2.1� Device Architecture Overview
	2.1.1� Harvard Architecture
	2.1.2� Concurrent Operations
	2.1.3� Device Architecture
	2.1.4� Memory Space and Bank Switching
	2.1.5� Internal Instruction Pipeline

	2.2� Core Architecture Overview
	2.2.1� Data Arithmetic Unit
	2.2.2� Y Space Address Arithmetic Unit (YAAU)
	2.2.3� X Space Address Arithmetic Unit (XAAU)
	2.2.4� Cache
	2.2.5� Control

	2.3� Internal Memories
	2.4� External Memory Interface (EMI)
	2.5� Bit Manipulation Unit (BMU)
	2.6� Serial Input/Output (SIO) Units
	2.7� Parallel Input/Output (PIO) (DSP1617 Only)
	2.8� Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)
	2.9� Bit Input/Output (BIO)
	2.10� JTAG
	2.11� Timer
	2.12� Hardware Development System (HDS) Module
	2.13� Clock Synthesis (DSP1627/28/29 Only)
	2.14� Power Management

	Software Architecture
	3 Software Architecture
	3.1� Register View of the DSP1611/17/18/27/28/29
	3.1.1� Types of Registers
	3.1.2� Register Length Definition
	3.1.3� Register Reset Values
	3.1.4� Flags

	3.2� Memory Space and Addressing
	3.2.1� Y-Memory Space
	3.2.2� X-Memory Space

	3.3� Arithmetic and Precision
	3.4� Interrupts
	3.4.1� Introduction
	3.4.2� Interrupt Sources
	3.4.3� Outputs of Interrupts
	3.4.4� Interrupt Operation
	3.4.5� Trap Description
	3.4.6� Powerdown with the AWAIT State
	3.4.7� Interrupts in DSP16A-Compatible Mode (DSP1617 Only)
	3.4.8� Timing Examples, DSP16A-Compatible Mode (DSP1617 Only)

	3.5� Clock Synthesis (DSP1627, DSP1628, and DSP1629 Only)
	3.5.1� PLL Control Signals
	3.5.2� PLL Programming Examples
	3.5.3� Latency

	3.6� Power Management
	3.6.1� powerc Control Register Bits
	3.6.2� STOP Pin
	3.6.3� The pllc Register Bits (DSP1627/28/29 Only)
	3.6.4� AWAIT Bit of the alf Register
	3.6.5� Power Management Sequencing
	3.6.6� Power Management Examples

	Instruction Set
	4 Instruction Set
	4.1� Notation
	4.2� Instruction Cycle Timing
	4.3� Addressing Modes
	4.3.1� Register Indirect Addressing
	4.3.2� Compound Addressing
	4.3.3� Direct Data Addressing

	4.4� Processor Flags
	4.5� Instruction Set
	4.5.1� Control Instructions
	4.5.2� Cache Instructions
	4.5.3� Data Move Instructions
	4.5.4� Special Function Group
	4.5.5� Multiply/ALU Group
	4.5.6� F3 ALU Instructions
	4.5.7� BMU Instructions
	4.5.8� Assembler Ambiguities

	Core Architecture
	5 Core Architecture
	5.1� Data Arithmetic Unit
	5.1.1� Inputs and Outputs
	5.1.2� Multiplier Functions
	5.1.3� ALU
	5.1.4� Accumulators
	5.1.5� Counters
	5.1.6� DAU Pseudorandom Sequence Generator (PSG)
	5.1.7� Control Registers

	5.2� X Address Arithmetic Unit (XAAU)
	5.2.1� Inputs and Outputs
	5.2.2� X-Memory Space Segment Selection
	5.2.3� Register Descriptions

	5.3� Y Address Arithmetic Unit (YAAU)
	5.3.1� Inputs and Outputs
	5.3.2� Y-Memory Space
	5.3.3� Register Descriptions
	5.3.4� Addressing Modes

	5.4� Cache and Control
	5.4.1� Cache
	5.4.2� Control

	External Memory Interface
	6 External Memory Interface
	6.1� EMI Function
	6.2� Programmable Features
	6.3� Functional Timing
	6.3.1� Timing Action with Wait-States

	6.4� Timing Examples
	6.4.1� CKO Timing
	6.4.2� Write, Read, Read, W = 0
	6.4.3� Read, Write, Write, W = 0
	6.4.4� Read, Write, W = 0, Compound Address
	6.4.5� Read W = 1, Read W = 2
	6.4.6� Write W = 1
	6.4.7� Read, Read with Delayed Enable
	6.4.8� Write, Read, with Delayed Enable

	6.5� Boot-Up from External ROM
	6.6� Memory Sequencer
	6.7� Downloading Code into External Program Memory

	Serial I/O
	7 Serial I/O
	7.1� SIO Operation
	7.1.1� Active Clock Generator
	7.1.2� Input Section
	7.1.3� Output Section

	7.2� User-Controlled Features
	7.2.1� The sioc Register
	7.2.2� Loopback Control
	7.2.3� Power Management

	7.3� Serial I/O Pin Descriptions
	7.4� Codec Interface
	7.5� Serial I/O Programming Example
	7.5.1� Program Segment

	7.6� Multiprocessor Mode Description
	7.6.1� Multiprocessor Mode Overview
	7.6.2� Detailed Multiprocessor Mode Description
	7.6.3� Suggested Multiprocessor Configuration
	7.6.4� Multiprocessor Mode Initialization

	7.7� Serial Interface #2
	7.7.1� SIO2 Features
	7.7.2� Programmable Features
	7.7.3� Instructions Using the SIO2

	Parallel I/O (DSP1617 Only)
	8 Parallel I/O (DSP1617 Only)
	8.1� PIO Operation
	8.1.1� Active Mode
	8.1.2� PIO Interaccess Timing
	8.1.3� Passive Mode
	8.1.4� Peripheral Mode (Host Interface)

	8.2� Programmer Interface
	8.2.1� pioc Register Settings
	8.2.2� Latent Reads
	8.2.3� Power Management

	8.3� Interrupts and the PIO
	8.4� PIO Signals
	8.4.1� PIO Pin Multiplexing

	8.5� PIO Loopback Test Mode

	Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)
	9 Parallel Host Interface (PHIF) (DSP1611/18/27/28/29 Only)
	9.1� PHIF Operation
	9.1.1� Intel Mode, 16�Bit Read
	9.1.2� Intel Mode, 16�Bit Write
	9.1.3� Motorola Mode, 16�Bit Read
	9.1.4� Motorola Mode, 16�Bit Write
	9.1.5� 8�Bit Transfers
	9.1.6� Accessing the PSTAT Register

	9.2� Programmer Interface
	9.2.1� phifc Register Settings
	9.2.2� Power Management

	9.3� Interrupts and the PHIF
	9.4� PHIF Pin Multiplexing
	9.5� Overall Functional Timing

	Bit I/O Unit
	10 Bit I/O Unit
	10.1� BIO Hardware Function
	10.1.1� BIO Configured as Inputs
	10.1.2� BIO Configured as Outputs
	10.1.3� Pin Descriptions
	10.1.4� BIO Pin Multiplexing

	10.2� Software View
	10.2.1� Registers
	10.2.2� Flags
	10.2.3� Instructions
	10.2.4� Examples

	JTAG Test Access Port
	11 The JTAG Test Access Port
	11.1� Overview of the JTAG Architecture
	11.2� Overview of the JTAG Instructions
	11.3� Elements of the JTAG Test Logic
	11.3.1� The Test Access Port (TAP)
	11.3.2� The TAP Controller
	11.3.3� The Instruction Register—JIR
	11.3.4� The Boundary-Scan Register—JBSR
	11.3.5� The Bypass Register—JBPR
	11.3.6� The Device Identification Register—JIDR
	11.3.7� The JTAG Data Register—jtag
	11.3.8� The JTAG Control Register—JCON
	11.3.9� The JTAG Output Stage—JOUT

	11.4� The JTAG Instruction Set
	11.4.1� The EXTEST Instruction
	11.4.2� The INTEST Instruction
	11.4.3� The SAMPLE Instruction
	11.4.4� The BYPASS Instruction
	11.4.5� The IDCODE Instruction

	Timer
	12 Timer
	12.1� Hardware View
	12.2� Programmable Features and Operation
	12.2.1� timerc Register Encoding
	12.2.2� timer0 Register
	12.2.3� The inc Register
	12.2.4� Initialization Conditions

	12.3� Program Example
	12.4� Timing

	Bit Manipulation Unit
	13 Bit Manipulation Unit (BMU)
	13.1� Hardware View
	13.2� Software View
	13.2.1� Instruction Set
	13.2.2� Shifting Operations
	13.2.3� Normalization
	13.2.4� Extraction
	13.2.5� Insertion
	13.2.6� Shuffle Accumulators
	13.2.7� Instruction Encoding
	13.2.8� Software Example

	Error Correction Coprocessor (DSP1618/28 Only)
	14 Error Correction Coprocessor (DSP1618/28 Only)
	14.1� System Description
	14.2� Hardware Architecture
	14.2.1� Branch Metric Unit
	14.2.2� Update Unit
	14.2.3� Traceback Unit
	14.2.4� Interrupts and Flags
	14.2.5� Traceback RAM

	14.3� DSP Decoding Operation Sequence
	14.4� Operation of the ECCP
	14.5� Software Architecture
	14.5.1� R-Field Registers
	14.5.2� ECCP Internal Memory-Mapped Registers
	14.5.3� ECCP Interrupts and Flags
	14.5.4� Traceback RAM

	14.6� ECCP Instruction Timing
	14.6.1� ResetECCP Instruction
	14.6.2� UpdateMLSE Instruction with Soft Decision
	14.6.3� UpdateMLSE Instruction with Hard Decision
	14.6.4� UpdateConv Instruction with Soft Decisions
	14.6.5� UpdateConv Instruction with Hard Decision
	14.6.6� TraceBack Instruction

	Interface Guide
	15 Interface Guide
	15.1� Pin Information
	15.2� Signal Descriptions
	15.2.1� System Interface
	15.2.2� External Memory Interface
	15.2.3� Serial Interface #1
	15.2.4� PIO/PHIF or Serial Interface #2 and Control I/O Interface
	15.2.5� Control I/O Interface
	15.2.6� JTAG Test Interface

	15.3� Resetting DSP161X and DSP162X Devices
	15.3.1� Powerup Reset
	15.3.2� Using the TAP to Reset the TAP Controller
	15.3.3� RSTB Pin Reset

	15.4� Mask-Programmable Options
	15.4.1� Input Clock Options
	15.4.2� ROM Security Options (DSP1617/18/27/28/29 Only)

	15.5� Additional Electrical Characteristics and Requirements for Crystal

	Instruction Encoding
	A� Instruction Encoding
	A.1� Instruction Encoding Formats
	A.2� Field Descriptions

	Instruction Set Summary
	B� Instruction Set Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X
	Y

	Trademarks
	Contact us

