ELXSI SYSTEM 6400

SYSTEM ARCHITECTURE

ORDER NO. 9550

ELXSI
2334 Lundy Place, San Jose, California 95131
Telephone: (408) 942-0900 Telex: 172-320

In Asia and Australia:
TATA-ELXSI Pte., Ltd.
37, Joo Koon Circle, Jalan Ahmad Ibrahim, Singapore 2262
Telephone: 261-6727 Telex: RS 34413 Tesing

NOTICE

The information contained in this document is subject to change without
notice.

ELXSI makes no warranty of any kind with regard to this material,

including, but not 1limited to, the implied warranties of
merchantability and fitness for a particular purpose. ELXSI shall not
be liable for errors contained herein or for incidental or

consequential damages in connection with the furnishing, performance,
or use of this material.

ELXSI assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by ELXSI.

Copyright 1983 by ELXSI. All rights reserved.

This document contains proprietary information which is protected by
copyright. No part of this document may be photocopied, reproduced, or
translated to another 1language without the prior written consent of
ELXSI.

SECOND EDITION
October 1983

The documentation in this manual includes certain features not fully
implemented with the current software release. These features are
identified on the following pagé as temporary restrictions. Use only
those functions available with the current release. Manual updates
will be supplied as new releases implement the features not currently
available.

ELXSI, EMBOS, GIGABUS, and SYSTEM 6400 are trademarks of ELXSI.

LIST OF EFFECTIVE PAGES

The information on this page identifies the current status of this
document with its revisions.

SYSTEM ARCHITECTURE
October 1983

Each new edition represents a total revision of the document. Interim
changes are issued as updates to be merged into the manual by the user.
All previous changes are incorporated into a new edition. Within the
text, changes made since the last edition are marked by revision bars
alongside the left margin.

Editions are listed below with corresponding dates:

EDITION DATE
First Edition May 1983
Second Edition October 1983

- iii

SUMMARY OF AMENDMENTS

The following is a summary of revisions effective for this document.

SYSTEM ARCHITECTURE
October 1983

! TOPIC ! DOCUMENTATION CHANGE ! PAGE

| Status Codes , Status codes currently implemented | v
, Instructions , Opcodes not implemented L ovi
, Opcode change | Compare inst. opcodes corrected 110-5,6

iv

TEMPORARY RESTRICTIONS

Features not available with the current release but documented or
referred to in this manual are as follows:

© Message system status return codes. The following status codes
are a subset of those listed in the manual and are the status
codes currently in use.

o The instructions following the 1list of status codes are
currently unimplemented.

MESSAGE SYSTEM STATUS RETURN CODES

MSYS funnel Does Not Exist

MSYS illegal Channel ID = 2;

MSYS funnel Not Disabled = 3;

MSYS notification Not Sent = 5;

MSYS message Too Long = 6;

MSYS vector Cannot Be Modified = 7;

MSYS link Table Is Full = 11;
MSYS link Already Created = 12;
MSYS no Message In Funnel = 14;
MSYS illegal To Disable Funnel 1D = 17;
MSYS specified Funnel Already Dis = 18;
MSYS specified Funnel Already En = 21;
MSYS message Contains Link = 28;
MSYS no Messages On Channels = 29;
MSYS message Does Not Contain Link = 30;
MSYS link Does Not Have HAwr Right = 31;
MSYS illegal Preferred Link ID = 32;
MSYS illegal To Move Funnel = 34;
MSYS link 1 RProcess Dead = 36;
MSYS no Msg Buffer Available = 37;
MSYS too Many Bfrs In Transit = 38;
MSYS attached Buffer Count Overflow = 39;
MSYS link Not Def = 40;
MSYS unallocated Page = 41;
MSYS unallocatable Page = 42;
MSYS bad Hi Link Id4 = 43;
MSYS zero Link Id = 45;
MSYS neg Data Block Length = 46;
MSYS funnel Not Enabled = 47;
MSYS bad Receive Process Slot No = 48;
MSYS bad Pointer in Free Link = 49;
MSYS access Unalloc Page Of Funnel Table = 50;
MSYS 1link Cannot Be Sent = Bl;
MSYS link 1 Target Unit Busy = b2;
MSYS link 2 Target Unit Busy = 53y

MSYS
MSYS
MSYS
MSYIS
MSYS
MSYS
MSYS
MSYS
MSYS
MSYS
MSYS
MSYs

Opcod

603
700

TEMPORARY RESTRICTIONS

message Not Sent
Transport Hdw Error

link
link
link
link
link
link
link
link
link
link

e

701 -

809
80A
80E

Fault

Link not defined
Unallocated Page
Unallocatable Page

Zero Link ID
Funnel Not Enabled
Target Unit Busy

NNNNNNMNNNN

Receiving Process Dead
Too Many Attached Buffers

Exceeds number of link levels

UNIMPLEMENTED INSTRUCTIONS

Instruction

READ.MACH.ID
MEMORY . MAN
MODIFY.PME
EXCH.LINK.FORWARD
FORWARD.MSG
SEND.SMALL.MSG

vi

PREFACE

MANUAL OBJECTIVES

This reference manual provides a description of the instruction set as
well as a general background on the ELXSI SYSTEM 6400 Architecture.

INTENDED AUDIENCE

This manual is intended for wusers who desire to write low level
software for the ELXSI. Readers are encouraged to use the higher level
ELXSI supplied 1languages whenever possible for the following reasons:

1. Many of the instructions do not provide data checking for speed
and performance advantages. The user may be required to provide
specially emitted code for this purpose.

2. The instruction set is designed specifically for compilers
rather than for the writer in assembly language.

3. The message system instructions have powerful analogues in the
higher level intrinsics that are more convenient.

DOCUMENT STRUCTURE

Chapter 1, "System Overview", provides a general introduction to the
ELXSI 6400 features and design.

Chapter 2, "Architecture", characterizes the CPU, memory management,
and various- internal registers and mechanisms. The chapter provides
sufficient context for the user who intends to stay within a process
space.

Chapter 3, "Data Representations", describes the ELXSI data types.
Included is a brief discussion on the proposed IEEE Floating Point
Standard and how it is implemented on the ELXSI.

Chapter 4, "Instruction Set Composition", describes the format and
implementation of standard ELXSI primitives.

Chapter 5, "Data Transfer Instructions", describes those instructions
that primarily move data. Included are loads and stores, bit field,
string, and mutual exclusion.

Chapter 6, "Integer Arithmetic Instructions", describes the integer and

arithmetic shift instructions. A general discussion on implementing
multiple precision arithmetic with the "carry" mechanism is included.

vii

PREFACE

Chapter 7, "Floating Point Instructions", describes the floating point
arithmetic instructions. This chapter assumes in-depth familiarity
with chapters 2 and 3.

Chapter 8, "ASCII Arithmetic Instructions", covers the ASCII encoded
decimal arithmetic operations.

Chapter 9, "Logical Instructions", describes a wide ranging group of
logical instructions.

Chapter 10, "Relational Test Instructions", describes those
instructions that perform a specified action based on the outcome of a
relational test.

Chapter 11, "Data Conversion Instructions", describes the group of
instructions used to convert to different data types.

Chapter 12, "Flow of Control Instructions", includes simple branching,
procedure calls, breakpoints and exceptions.

Chapter 13, "Inter-Process Communications", is a general discussion on
the message system and process communication structures.

Chapter 14, "Message System Instructions", describes the instructions
used for communication between processes.

Chapter 15, "General Instructions”, includes instructions for accessing
certain internal registers used in the process management, and
‘miscellaneous instructions.

Appendix A, "Alphabetical List of Opcodes", is provided to supplement
the index for fast look—-ups of instruction descriptions.

Appendix B, "Data Types", illustrates the storage formats for each of
the ELXSI data types. This may be considered as a quick reference
summary of much of the information in Chapter 3.

Appendix C, "Generalized Addressing Instruction Formats", describes the
generalized instruction storage format for each generalized addressing
mode.

Appendix D} "Non~-generalized Addressing Instruction Formats", describes
the storage formats of the non-generalized instructions.

Appendix E, "ELXSI Machine Instruction Descriptors"™, is a glossary of
the symbol notation used in describing how the instructions work.

viii

|..J

N N
SO0 W

.

N

NNNNNNDNNNNNNN
.
oo oToT D WN K
L]

w

LR S N I R T)
e e o o o+ o

.
.

¢ 0 .
* ¢ [
OO WNNNDNE

WWWWLWWwWwWwwwwWwWwwwwwwww
.

NNNNHFHRFEHRHEREREMRBERRERREHRF
L]

L]
o

¢ e

¢ o s »
;M wn -

°
N =

CONTENTS

SYSTEM OVERVIEW.:eeceeecesecccosaccccnaseccsscssssssossssnocnsssal=l

PROCESS ORIENTED ENVIRONMENT...ccceceeeccccccsccscsssssnsasal=l
THE OPERATING SYSTEM:4eesvecvecrcecccccscccsccsoccsecscensoaal=l
INTER-PROCESS COMMUNICATIONS.:.ceccevecocccccesccsccssosnsssal=2
THE VIRTUAL MACHINE.....eecceeceonccccccccssccascscassossscaal=2
THE MESSAGE SYSTEM...cvceveccecccocscsasccessosncccsoscnssoesl=2
THE INSTRUCTION SET:ctecevoccocccecccccscosacscascascannssoasl=3
ELXSI SYSTEM 6400 SPECIFICATIONS..eecvescecssccscccocsacasasasl=3

ARCHITECTURE . .eecececnoscosscensoncososssscancssocssossssacsasall

GENERAL PURPOSE REGISTERS .. ccccscreccsscscscssascsscsassesascsal—l
Implicit Register USAgC..ececsscscecssscssssssccssscccces el
PROCESS STATUS WORD. . ccceccecacsocosscsascnsssnsscsansscssncasel=l
PROCEDURE CALLS.cescecssscsossasassssasascsssscscssssassscscncscssl—4d
INTERRUPTS AND BREAKPOINTS. cccceccaccascossccsccscccsccccccese2—8
EXCEPTIONS . ceeceecccocsonssocacsssncsscasassasssascsnsccssceeesl—l?
User Interceptable EXCepPLtiONnS.cecccccecrvcrsecscscccccscac=l2
ExXception MeChanisSM.eeececececcecasosccsosscascssscnsanaseesld—l3
Exception Message DeSCripPliONeeccccsccscsscescsscscccsssec2—1ld
MEMORY ORGANIZATION. .ccecocecessccscsssscssssssssccnsacsccssedll
Virtual MemOYY SPaCEeccccccsccscsscscsscsscssssssccccccaese2—1O
PAge MaPScceececcerocccssnscsasscsssssssnsoscscsssscsoscscocnccesldm22
Page Map ENtry (PME) .cceeecceccccccocccccoccsccccncscseasl=23

...... B I |

DATA REPRESENTATIONS.....ccececeenes

FLOATING POINT..ceceecocoseososssesnseasncascsnssccsnccnceecoesd—l
PerMiNOlOTY e ceeeesoososccscscsocosasssssssssssessnsascncacascseed—2
DAta Ty POS.ceceecsocsccscsnscansasssosscsacceas
Single PreCiSiONeeccecscssssesscsccsssscscsccccccaceneceed—3
Double PreCisSiON.e.cecacescs
Extended DOUDlE.ceccececcccscosccaccsscssacsnsssasnnasssnsescaeald=h
Operand ClaSSeS.ceececcescccsnsas cecccsesscccsssesssas 36
ROUNAING MOA@S.eceeeecescccncssscncasccsnssssssssncsccssccased=T
Predicates and RelatiONS.c.cccceccescsnccecoccansocsocnsceaesld=T
EXCEPLiONSeceoeessccseosccscccsescsssssocssnancsssscssscascss3—8
Floating Point OverfloW...seese. B
Floating Point UnderfloW..cececcesecsscscsnsnsnancsascsesesd=9
Floating Point Divide DY ZerO..ccceccscecccccccccccneesld=10
Floating Point Invalid OperatiON..ccceeccscccccecceesesa3d—10
Floating Point InexXact ReSUlt..ecceeecccicncccsneneeseesld—10
INTEGERcececececooscssocsonssosssssessassasssasasscsscscnconecoces3—10
EXCeptionS.ceeeeceecececscocacsocanssns ceceecccesss3—ll
Integer OVerflOW.eeoeeeeseccessosssssessesasncancncnoeseeld—12
Integer Divide DY Ze€rO..cecscccecsccsccscsannse ceees3-12

wN =

.....

ix

W

CONTENTS

LOGICAL . eceeceececosasssossccceacacssscssossscssssssssnscsese3—ll
CHARACTER. .. cceeeccenccnccccccscsccsscsscsscssssssssscssssscesed—l3
STRING. ccveeeeecesacasccccsnoccsccssssccscssacsescssscscscscecssd—ld
NUMERIC STRING. cceecevcccccsccccsancccsccsccsscccssassscssscsssssed—ld

INSTRUCTION SET COMPOSITION..ccceececsccscccocscscscscansossssd=l

* @& & 8 & ¢ & @& & & 2 o
(€ S S S S A i i e al i L L S

HFHEFRHFKFFKFWODOJOOODDWNH

F N S S ST R T S S R S S

o1

LI R T I
¢ e e

BB B WWWWNNNNHEREFEFERER

¢ o o e
. « o e
O OT i WN

. e e
. .
w N =

)
.
wN =

OO OO0t 01Ol

.
.
N =

INSTRUCTION TYPES.cecccecccccnccovecscccacascsssscoscnsssssscad—l
ADDRESSING MODES.cccccceccsoccccccsccsscscsacscssssssscnssesasd—l
REGISTER SPECIFIERS.cecccctccccccstsactsecsscscsscoscscsssesead=d
DESCRIPTION AND USE OF ADDRESSING MODES..:ccceccecscssccscesd=b

Mode O: 1 Register, Register (ShOrt)..ccececeicecceccscecsad=6
Mode 1: 1 Register, Register (ShOrt).cecceeccecccccccsecsed=6
Mode 3: 2 Register, Registereccccceccscocsccscscsnccssecsscd=b
Mode 4: 1 Register, Absolute Memory AdAreSS..ccsceccososeed=7
Mode 5: 2 Register, Immediat@.c.ecceccesccsesccosccscscesad=T
Mode 6: 2 Register, Long Absolute Memory AddresS...... -l
Mode 7: 2 Register, Long Immediate...eccececrecccccccncead=7
Mode 8: Stack Pointer Relative (ShOrt)..eccicececececeses 4-8

Mode 9: Stack Pointer Relative (ShOrt)..cecececceccecessad=8

Mode A: 1 Register, Base + Zero Displacement (Short).....4-8
Mode B: 2 Register, Base + Zero DisplacemenNt...cccececeecec..4-8
Mode C: 1 Register, Base + Index + Zero Displacement.....4-9
Mode D: 1 Register, Base + 12-bit Displacement.cccecccess..4-9
Mode E: 1 Register, Base + Index + 32-bit Displacement...4-9
Mode F: 2 Register, Base + 32-bit Displacement...........4-9
IMPLEMENTATION EXAMPLES.c.cccsccccecccscs ceesecses ceseesessd=10

DATA TRANSFER INSTRUCTIONS...eceeeeccocaaaannssoccaasannnennaab=l

MONADIC TRANSFER INSTRUCTIONS.:ccceoceascsscscscscoossassssssssd=2
LD Load Register Sign Extended....cccceccsccoccscscsssseeabd=2
LDZ Load Register Zero Extended..cccecececceccsccccsocansead=2
ST Store RegisSter..ccececccecocssccccccnnsosssosnnsnsce eeeesb-3
STV Store Register with Overflow CheCK.eeecereeesccecceessb=3
STI Store ImMediat€eecececesccccconccsncsecscsacnses eeessab=d
STIN Store Immediate Negated..eeesecccssscoscrscccccsssseab=d

INSERT AND EXTRACT BIT FIELD OPERATIONS...cccecceccaannes «s.5=5
EXTRACT Extract Bit Field, Sign Extended....cecceeceeeese5-5
EXTRACTZ Extract Bit Field, Zero ExXtended......cceceees..5-5
INSERT Insert Bit Field OperatiONeccccccceccsecsccccscecssdB

MUTUAL EXCLUSION INSTRUCTIONS.:.cccceccccscscccscsscccossssssassed=?
EXCH Exchange Register and MemMOIY.cccceecescscccccssseeab—B
EXCH.AND. u.veceteeoaaasanccoscncocsonosasssscsnsssccsonsacscssesbB
EXCHeOR:eeceasacecasccascsasscseasesossascsscssnsssssssssncesed8

BYTE STRING COPY INSTRUCTIONS...ccecocsacscsaacsssscsscssccccssd=9
COPYB Copy Byte StriNng.cccecececccccccccccessccccncccescsad9
COPYB.CONST Copy Constant Byte String....cccceecececeeec..5-10

[9)]

" o+ e
« .
w N -

¢« ¢ @
VOO INIIININNO00OUdbdbdPWWWNNNNDNDE
[\S I

* o e
.
w N -

.
.

« e s
« e .
N =

. e
.
o dH W H

[OO RO NONONoONoORONO NG RoNO RO RO R RO R RO RO R R R o)

.
.
N -

~J

. L]

OO0, WNNMNE

.
.

¢ e s s e
.
N -

L)
.

NN NN NN9N9a99
.

L]

N -

[o4]

L I]
WWWNNNH

e 0

N

)
)
N -

0 0O 00 G 0 O

CONTENTS
INTEGER INSTRUCTIONS...ccecccossoncassacooscsnsacsccsccsocscnsssab=l

MULTIPLE PRECISION INTEGER ARITHMETIC...ccccececccecccccosssb6=2
INTEGER ADDITION.cccecessoccscccsccscscscccscacssccsassaacncsssb—d

ADD Integer AGditiON..cccecececsensceasscsscscssaccncns .e.b—4
ADDUC Unsigned Integer Addition Generat@...ccccecececes.6-4
ADDI Integer Addition with Immediate Operand............ 6-4

INTEGER DIVISION.:ceceeccoscscsscscssasosssonsssascssssssscancesasb=b
DIV Integer DivisSiON..cceccecceecccecsccsccccsascsscnssansaseb=b
DIVR Reverse Integer DiviSiON.cecesceccscccsccscccsccnsasab=b

INTEGER MULTIPLY OPERATIONS.ccceccescescecssesscscsscacccsanesasb=6
MUL Integer MUltipPlYeeeccecoeccosscsssssonsscsasscscsnsansesab="
MUL.128 128-Bit Integer MultipPly.ceecccecescccnccssacesab=7
MULU.128 128-Bit Unsigned Integer MultiplVe.eececcecoaceeseb=7

NEG INTEGER NEGATE. . ceceececescccsccscsscsossscssassscncnsccseseb=8

REMAINDER OF INTEGER DIVIDE OPERATIONS..ccccccscsccecccsascesesb=9

REM Remainder of Integer Divide....... .
REMR Remainder of Reverse Integer DivVid€..esececcesosssab=9
INTEGER SUBTRACT OPERATIONS...:.cc.. sececssssasssssssssscceesb—1l0
SUB Integer SubtraCt.ececcececececsacocccsacccescccncnsesssd~10
SUBR Reverse Integer Subtract..c.ecccecececcriescscncccccscs 6-10

SUBUC Unsigned Integer Subtract Gen Carrye.ceeccescsesess.6-11
SUBUCR Reverse Unsigned Integer Subtract Gen...........6-11
SUBI Integer Subtraction with Immediate Operand........6-12
ARITHMETIC SHIFT INSTRUCTIONS.eecececsscsscsccsscsscccssnnssb=12
SLA Shift Left ArithmetiC.cceececccccceccscccccacosaseab—=l3
SRA Shift Right ArithmetiC...c.eeeceecncescocccaveaceeasb—=1l3

FLOATING POINT INSTRUCTIONS..cccecteceocanncncnncacsassocassssl—l

FADD FLOATING POINT ADDITION.. cccecceccecccsoccnsscnnsessl—l
FLOATING POINT DIVISION:.:ceeeccococcccoocscaaccsccanns B 3
FDIV Floating Point DivisSiON.eceiceccececcnsccccccacccceael=d
FDIVR Floating Point Division Reversed...ccecceccececceces7-4
FMUL FLOATING POINT MULTIPLYecceececccacscsccccccscasonosaasl=h
FREM FLOATING POINT REMAINDER:.ccccccccccccsoccccnscccsasal=T
FSOR FLOATING POINT SQUARE ROOT...cceccccscsoccscnsecccosel=9
FLOATING POINT SUBTRACTION....cceccee essceccscsscsccsoccoseasl—1l0
FSUB Floating Point SubtractioN...cccceccececececccaesss7-10
FSUBR Floating Point Subtraction ReverseQ......cecee...7-10

ASCII ARITHMETIC INSTRUCTIONS.ceetceccccccccccccsoasansnsncssal=l

MULTIPLE PRECISION ASCII SUBTRACTION.:coccecccccasascncsssss8=1
ASCII ADDITION.eceeecccocecsocecsscscnsocnscncssocnsossosnsnscessB=4d
ASCII.ADD ASCII AdAitiON.ccececcecceccecccacnccncnsoscnscaB4d
ASCII.ADDC ASCII Addition Generate Carry...cececeececeecsss.8=4
ASCII SUBTRACTION.cececeovecascccscscesaoccanssscnnnasoesnsansesB=b
ASCII.SUB ASCII SubtraCt.cececeeerecccecsccccscnesecesaB=b
ASCII.SUBC ASCII Subtract Generate Carrye.cceceecececsecss.8=5

Xi

9. LOGICAL INSTRUCTIONS.cecceesocccscscscscescssnscscsscsscscsosssssssnesd—l
9.1 FULLWORD LOGICAL OPERATIONS..ceeosccvessscccenscscsssccosssssesI—l
9.1.1 AND LOgiCal ANDeeceeecsscooosccosncsscscsconcsosocnossssecsd—2
9.1.2 OR LOGiCAl OReceeesecssssssosssssssssssassncsncscoscssnsseed—2
9.1.3 NOT LOGicaAl NOTeeceoeecacccosscscsscsscsccccsscscnonsesessd—2
9.1.4 XOR Logical EXClUSiVe ORececcececccssrsccooscscscscsssseeed=2
9.2 BIT-WISE LOGICAL OPERATIONS.eeecceccscssccscccscssccsssssssseId—2
9.2.1 SET eBITeececescccasasnsssnsaccssasssssssnsssscsnassssscnsssed—2
9.2.2 CLEAR.BIT.eccecencscoscscscscsssccssnssoscnonnssssssnssssssonsesId—2
9.2.3 TOGGLE.BIT.veeeeecacssoscssnsccssssssoncssnssscncnsnssccosnnaesed—2
S5.2.4 FIND.FIRST Find First Logical One........ cecocsscsceasesd=3
9.3 LOGICAL ROTATE OPERATIONS.ccccucsencscccncccsccccnsncsssssessI—d
9.3.1 ROL Logical Rotate Left...ccc.cc... eressccessncnsns P -]
9.3.2 ROR Logical Rotate Right.seereccecsscncccccscsccsosssscsssd—d
9.4 LOGICAL SHIFT OPERATIONS....c... secssssee cececscssessccssnes .9-4
9.4.1 SLL Shift Left LOgiCal.ciceeceecceccssscscscsssosscscncessId—d
9.4.2 SLR Shift Right LOGiCAl.ccsetocvscscccccssscssccsssssscsasd—d
9.5 LEFT SHIFT OPERATIONS FOR FAST ARRAY INDEXING..c.cceceecscees9-5
9.5.1 SLL1 Shift Left Logical DY liceecececcerscccrascscccoanncesd=h.
9.5.2 SLL2 Shift Left Logical DY 2eccececccccccscccccscscnsnseedmh
89.5.3 SLL3 Shift Left Logical DY 3.cececccaccassccssscccscsnsssI—b
10 RELATIONAL TEST INSTRUCTIONS...ececcesscsccscccscsnccsssssesesll—l
10.1 INTEGER COMPARE. ccccecescscosscsessssassosncsccsccsssccsssssell—d
10.1.1 Compare Integer - Branch Program Counter Relative.......1l0-4
10.1.1.1 CMP.BRececocescssssocnssscosossassessscsscsscsosncsscsosnssssssell=D
10.1.1.2 CMPU.BReccesocvoosososscssscessoscsosoncsososssssssssssssssssesslO—D
10.1.2 Compare Integers - Set Register or Generate Exception...l0-5
10.1.2.1 CMP.veeeoaann cecccsons cecssecrecssssasnsnces cesane eseseesll=6
10.1.2.2 (03,424 | N o)
10.2 FLOATING POINT COMPARE. . cccesvceoscacaascs cvecscsnes ceesesall—6
10.2.1 Compare Floating Point and Branch PC Relative...........10-8
10.2.1.1 FCMP.BR Compare Floating Point and Branch........... 10-8
10.2.1.2 FCMPX.BR Compare Floating Point and BranChe....c¢.....10-8
10.2.2 Compare Floating Point and either Set Register or.......10-9
10.2.2.1 FCMP Compare Floating Point and either Set.........10-10
10.2.2.2 FCMPX Compare Floating Point and either Set........10-10
10.3 BYTE STRING COMPARE..ccccccececscccssccsccsccccccncscsssesesll-1ll
10.3.1 CMPB.BR Compare Byte Strings and BranCh.....eeeeec....10-11
10.3.2 CMPB.BR.CONST Compare Byte String Against Constant...l1l0-12
10.3.3 CMPB.TEST Compare Byte Strings and Generate Test.....1l0-13

CONTENTS

xXii

11

11.1

11.1.1
11.1.2
11.2

11.2.1
11.2.2
11.2.3
11.3

11.3.1
11.3.2
11.3.3
11.4

11.4.1
11.4.2
11.4.3
11.5

11.5.1
11.5.2
11.5.3
11.6

12

12.1

12.1.1
12.1.2
12.1.3
12.1.4
12.2

12.2.1
12.2.2
12.3

12.3.1
12.3.2
12.4

12.4.1
12.4.2
12.4.3
12.4.4
12.5

12.5.1
12.5.2
12.5.3
12.5.4

CONTENTS

DATA CONVERSION INSTRUCTIONS...cccecesseccsccsscnssssscssessll=l

ASCII CONVERSION INSTRUCTIONS:. e esceoscsccsassassscasssscsssesll=3
CVT.IA Convert from Integer to ASCIl..cccccecccccesesasll—3
CVT.AI Convert from ASCII to Integer..c.cceeececscesssall—3

CONVERT FROM DOUBLE TO EXTENDED, INTEGER, OR SINGLE.......l1l-4
CVT.DE Convert from Double to Extended...c.ccceeeeceses.ll-4
CVT.DI Convert from Double tO Integer.cccececccccscsssasll—d
CVT.DS Convert from Double tO Single...ceecsscccscesssll—4d

CONVERT FROM EXTENDED TO DOUBLE, INTEGER, OR SINGLE.......1l1-5
CVT.ED Convert from Extended to Doubl€....cececececessdl-5
CVT.EI Convert from Extended to Integer.....cececeee..11-5
CVT.ES Convert from Extended tO Single.cecccecececcscsees.l11l1-5H

CONVERT FROM INTEGER TO DOUBLE, SINGLE, OR EXTENDED.......11-7
CVT.ID Convert from Integer to Double..ccececcececcecessll—T
CVT.IS Convert from Integer to Single..ccececcecccceeesll=7
CVT.IE Convert from Integer to Extended..ccececcececes.11-7

CONVERT FROM SINGLE TO DOUBLE, INTEGER, OR EXTENDED.......11l-8
CVT.SD Convert from Single tO DOUDlEiceceesccecsceesssll—8
CVT.SI Convert from Single t0 Integer.cceccccescssecesall—8
CVT.SE Convert from Single to Extended...c.eececeescs..11-8

FINP FLOATING POINT INTEGER PART..csceccorssscssssassssall=9

FLOW OF CONTROL INSTRUCTIONS....cceeeccsevenncces S VA

UNCONDITIONAL BRANCHES.:.:esesccccsocccsassscscoccecccsonsessll—]
BR.ABS Branch ADPSOlUtE..cceccccscscoccssssacsnosnscsscsesll2=2
BR.REL Branch RelatiVe.ceeccesecsceoccsssccccccssocnssesll2=2
BR.BACKWARD Branch Backward Short Relative............12-2
BR.FORWARD Branch Forward Short Relative..eceeceeceecess12-2

BRANCH REGISTER CONDITIONAL LONG INSTRUCTIONS..cecceceeess.12-3
BR.<cond).ABS Branch Register Conditional Absolute....12-3
BR.<cond)>.REL Branch Register Conditional Relative....12-3

BRANCH REGISTER CONDITIONAL SHORT RELATIVE INSTRUCTIONS...12-4
BR.B.{cond)>.SH.REL Branch Backward Register...........1l2-4
BR.F.{cond>.SH.REL Branch Forward Register............12-4

PROCEDURAL CONTROL TRANSFER INSTRUCTIONS..c.ccceccccecsessl2=5
BR.REG Branch through RegisSter...cccececccscscsccssscsessll2—H
CALL Procedure Call Through StaCK..eccecesccscsscccesssl2—6
CALL.REG Procedure Call Through Register.c.ccececceceesl2=7
EXITeeecoosesnsocacssacscsssanssessccsssscsscsscssscscssencscsssll=B

CONTROL TRANSFERS REQUIRING SPECIAL HANDLING...e.coceeeee..12-8
BREAKPOINT et cevesvocnscsscscsccscsossocscscssscssnssscsessll—8
EXCEPTION. ccceacscoscescsscssansscssocsscssossscssosessocscessll2=9
IXIT Exit from Interruptecccecccecsccecosccccssoassssal2—l0
BXIT EXit from BreaK.ccecescsecescsccsesacssscscnssascssssal2=10

Xiii

CONTENTS

13 INTER-PROCESS COMMUNICATIONS.cceteecoseccscsccscssscscsasaselld=l

13.5
13.5.1
13.5.2

MESSAGE SYSTEM OVERVIEW .. ecsecsooscccsscscscsnssssscoscoseccsall—l
Communication StruUCtUreS..cecececcecscccccscccccscnseaecsalld—=2
LiNKSeeeerteeeeeccocccoosccsosssscsnsossssscsscssscssscsssesssel3—3
FUNNElS . ceiaceencrosecsascsccsssoscconcssscsssnsssccccsseslld—d
ChaANNelS.eeeeeececcccconsoncsscssssssssssscsssasssssscscssslld—d
Message COMPOSitiONececcecccosoacccsossscsssnsssossssanaesal3d=5
MESSAGE SYSTEM OPERATIONS . .cccteeccsccasccscscnssscccccesssld=5
Establishing a Communication Path.cecceccesccecosccscecasal3=5
Sending MeSSaAgEeS.ceeecesssacacserscsscssscsssssssscsssscsesessl3d=D
Receiving MeSSageS.ccecccrecsossccssssssssssssssssscosocseal3d=7
DATA STRUCTURES .ccceeesccssscscsssssssscsssscssscscscssoncssesesl3—90
MeSSa0@e e ceeecececsccccesencsssacsascssssssscsscsssscsecesal3d=0
MeSSaAge TYPESeccececcscccsccsassscscsnsssscssssssconsseeesl3=0
Parameter BlOCKS..eecoeseavesscscsssscscscsenssscssssscceccsl3—9
Receive Control InformatiON.ececeecsceesececescecsensasl3—13
NOotifiCatioNeseeeeeeeessecevessecesccscoscssscccccceeslli—14d
LiNKSeeeooocooosscsososscssscossasssssncscses cecsscrscsasssl3-16
Link Table ENtri@Seececesccsecsccccccsccsscscsssssscceesl3~1l6
Link Table HEAA@r . eeceeesorsccssscsssscscssssssccccssssld—21
FUNNELlS.ecceecacrnconcsccssscncsascsosnsccscsosssssssssscocseeelld~2]
Funnel Table ENtrie@Seccecccsccsccccssscocsscsscsscseslld=2]
Funnel Table HeAG@r cceeseetevocesconscscscssssssccseeeel3—25
CHANNElS. ceceeccesssrsscscsscossascssscscscscssssssssssscsseesld—25
PRIORITY STRUCTURE OF MESSAGE SYSTEM.:eescccscsccscsceseal3—26
LOCal PriOrit¥ececescecscecocscsccoccssnsssnsscnsnsnsesesl3=27
GlObal PriOrityVececececcescoccscscscescsccccscccasccccsnscssl3—28
STANDARD COMMUNICATION PATHS . et ceececccsccscccscccscseeesl3—28
Standard LinkS.eececeecceses esessvsecessensssssssanssssese .13-29
Standard FUNNElS..ceeccssasersoscessasscscscccssacssassesesl3—29

14 MESSAGE SYSTEM INSTRUCTIONS......... cesscae ceccsscccccsescseld=]1

14.1

14.1.1
14.1.2
14.1.3
14.2

14.2.1
14.2.2
14.3

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.4

14.4.1
14.4.2
14.4.3

CREATE A COMMUNICATION PATH. .2eceacceceaes cesenscsece esecessld=3
CREATE.LINK Create Link tO FUNNEl..cceeeecccconcsccesold—4
CREATE.FUN Create FUNNEl..ceeceeeeveacnccoanese ceenca eseld-5
ATT.FUN.TO.CHAN Attach Funnel to Channel.c.cceececesecesal4=—6

DESTROY A COMMUNICATION PATH..:ceecceccocccccocconcocnsne eeseld=7
DEL.LINK Delete LiNKeecoesceeonoseocosncsoscccsssscccsaceseld=T7
DEL.FUN Delete Funnel..... svesscscsecssssrsseenssssnne s 14-9

SEND MESSAGES...... T I
SEND Send Messagd€...ee.. eesecensas cececscsssssvscnesesld=10
SEND.SMALL.MSG Send Small MeSSAJC:.ceeccoccossccccsssesld=12
SEND.TO.HARDWARE Send Message to Hardware€....ceeee...14-12
COPY.LINK COPY LiNKeecsoeoococacensasscsscscscsscsssaseeesld=13
PASS.LINK Pass LiNKeseeeoacoonoons ceevecsscescsesessssald=16

RECEIVE MESSAGES ...t cecesacscscscsrsscscsccsscssssccssscsecesld—=18
RCV Receive Message...... ccecsecen ceccccsesscccssesesld=18
RCV.CHAN Receive Message oOn ChanNel..cceeccceesceccseeesld=20
RCV.LINK Receive Message With LiNK..cceeeosoccccceeae.14=-22

Xiv

14.4.4 RCV.LINK.ON.CHAN Receive Message with Link on Channel..14-24
14.5 FORWARD MESSAGES .. ccecssstsscncsancscossscscsascccoccesessasld—=25
14.5.1 FORWARD .MSG Forward MeSSag€.ceesccccesoscsccccsncanassld=25
14.5.2 EXCH.LINK.FORWARD Exch Message Link Forward Message..l4-26
14.6 DELETE MESSAGES:.ccccectccsecssssososscsscsscsscsccscnscasassassld—28
14.6.1 DEL.MSG Delete Message from Funnel....cecececosoeoes.14-28
14.7 ENABLE AND DISABLE FUNNEL. . cceescccccenssccacccssacnaneaenasld=28
14.7.1 ENABLE.FUN Enable FUNNEl..cccceecccncsscsccsscccoeesssld—29
14.7.2 DISABLE.FUN Disable FUNNEl..coecsasccscscsscsacssesssld—29
14.8 INTERRUPT AND LOCAL PRIORITY.ccsceoccecscsccsccscccccnscssssesld—30
14.8.1 DISABLE.CHAN.INT Disable Interrupts on Channel.......14-30
14.8.2 ENABLE.CHAN.INT Enable Interrupts on Channel.........14-31
14.8.3 SET.FUN.INT.VECTOR Set Funnel Interrupt Vector.......14-32
14.8.4 SET.LOCAL.PRI Set LoCal PrioritVecececcecceccccccaceeasald=33
14.9 PROCESS INQUIRY.ceececeeecssasncconnsssssssascocsssscocescnsdld=34
14.9.1 READ.FTE Read Funnel Table ENtrV.ececescccccccccocceseel14—34
14.9.2 READ.LTE Read Link Table ENtrY.ccececcesccccceccccccsesld=35
15 GENERAL INSTRUCTIONS.:ccceceoascesccsscsccccsssascccssoccccessslB=1
15.1 MEMORY .MAN MEMORY MANAGEMENT ¢ .ecccceccnsccoosssncocsoecoeald—~1
15.2 MODIFY.PME MODIFY PAGE MAP ENTRY . civeeecccconccccncnnoeslB—2
15.3 NOP NO OPERATION .. ccsescsoscessscssocsassscsccsaccncceeselb=3
15.4 READ . CPU.TIMER e cceacsescsasnsassososssocscsccsscscscscccsacesslb=d
15.5 READ.MACH T Decccecesoccscccasassnsasssssnssosscsscnsccocaceeeseld=d
15.6 READ.PME REBD PAGE MAP ENTRY.c.ccetevscsesccscasccaceessalB=5
15.7 READ . REAL.TIMER:cccseccocsoscsosassnssossssscsssscosscssscscsecseeeld=b
15.8 READ.STAT READ PROCESS STATUS WORD:.2eseecscscesoccccoceelB=—6
15.9 WRITE.STAT WRITE PROCESS STATUS WORD::esocoocecocnoccoeeal’=6-
APPENDIX A: ALPHABETICAL LIST OF OPCODES:ccccccccccaocccsocnosossssA=l
APPENDIX B: DATA TYPES..cccesccecasoscscsonsscscscseassoosoccsscsnscnesassB=l
APPENDIX C: GENERALIZED ADDRESSING INSTRUCTION FORMATS..eecovoeecoessC=1
APPENDIX D: NON-GENERALIZED ADDRESSING INSTRUCTION FORMATS...ee....D-1
APPENDIX E: ELXSI MACHINE INSTRUCTION DESCRIPTORS..ccccecocessecsessE-1

CONTENTS

INDEX ccooeeocosncasasoscovcosconosoosoneasesccasosssnsscacsasnnsessslndex-1

Xv

CONTENTS

LIST OF ILLUSTRATIONS

Instruction FOrMat.ceeceecccesascesosccsscnssssessssd—6
Instruction FOrMaAt.ececesseccsscssossccssnsascssscssd=6
Instruction FOrMat.cccecececccceccscassosscsscsccsccesd—B
Instruction FOrmMaAt.ececesesossceccssosscsccscsncsasoessasd=T
Instruction FOrmat...ceeeeecseccsscscscscsanssosesd=T7
Instruction FOIrMAt.cececeescecscecccscsccscscnnsocosssd=T
Instruction Format...cceececeeesoocscscocccccnncccsesd=T
InsStruction FOIMAt.ceeceesesosocessssscrsscsnsssscesesssd—8
Instruction FOIrMaAt.ececeeeececsocssesscssscscscsesessd—8
Instruction FOrmat..cececeeessccasosscscssccscscssessd—8
Instruction FOIMAteeceecccosseesscscsssccssasssssed=8
Instruction FOIMAteeccecscescscscsessccscssssscccassessasd=9
Instruction FOrmat.eeceeecsecseccosescssesccccaasecssesd=9
Addressing Mode Instruction FOIMAteeeceesescesssesersssssssscssssssssd=9
Addressing Mode Instruction FOrMAteceeeceesvorssersssrsscscnssscssscssssd—9
Chained SUDLIraCtiONecceeccescccccssvscsscssscsseancncssscsnscscsscasessesb—3
Compare and Branch Appendage FOrmat..ccececeecececceeccecesceasscascscseesall3
Compare and Generate Exception Appendage Format...cccececececcecscesel0-4
Compare and Set Register Appendage FOrmat.ccecccececccccscsccccceessl0=3
Compare Condition Field FOIrMate.ccccececcccccccocsccocsscscccsossesseall=2
Floating Point Double Precision Storage FOrmat.cceeececcesscconscsecscesd—4d
Floating Point Extended Double Storage Format..ccceececececececscccecceeees3—b
Floating Point Single Precision Storage FOrmat.cceceeccececscsccencssses3—3
General Appendage FOrMaAt.cececeececcccccccccccccnsocscscccccacnnocons .esl10-2
Integer Storage FOrmMat.cceceeceeesceocccscccecnceccassscncscocssassessd—ll
ISF for Generalized AdAressSing FOIMSe.ccececcccncccccscocssascsccsnosecse 4-3
ISF for Non-Generalized INstruCtiONS..cecececcececcccccccccccccnes eesd~3
ISF for Short Opcode AdAressSing FOrMS...ccecececececonse cessescscceseeed=3
Logical Storage FOIMAt.ecccecsoecssocccscsscconseascscsscscssssosnsonsesed—l?
Multiple Precision ArithmetiC..cccceeececcecceccccrccecssscsaosncncssb=3
NumericC String in RegisSter.c.ceccceccccccescscccsoccsccscssccssssesnesld—lh
Receive Control Information, Message FOrMat.eeccecesecescecacscscessl3-13
Receiving & MeSSAgEB ..t seccccscssssccsscscsssssccsnossscscssssssasesssl3—8
Register Specifiers for Generalized Addressing ModeS.....cecceecee .eosd=4
Register Specifiers for Non-Generalized InstructionsS.....cecceeeee...4-5
Register Specifiers for Short-Op Addressing ModeS....ccceec.. cessscse 4-4
Sending a MeSSa0EB.eccceccccoscscssscsscsscscscssoscsscsscnsoccnscceseld—’
Stack Frame AllocCatiONe.ccececccccccsacscs cececcccsscsavecsnsescssonsl=h
Typical Form of Instruction Using Generalized AdAresSiNgececcecceecess.4~-2

Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode
Addressing Mode

HEHOQWPPOOI0O0UdWHO

xXvi

CONTENTS

LIST OF TABLES

TITLE

ELXSI SYSTEM 6400 SpPeCifiCatiONSecccccccecccceccconcooasoeasssasl=3
Process Status WOIrde..eeeeeerencoceescesocccccescocnconccnnnssld=3
EXception Message FOIMAt...c.cseccsosscescccecssccccsccnancoeses2=ld
ExXception Message COGeS.cceescescsccssscsccsacsccsocccancnsseselml’
Virtual Memory AllOoCatiON.e.eseececcccsccscscssccnccaccanenness2—19
Private Space AllOoCAtiON.cessecccscscccsaseccocsccccccsonaensed=2]l
Page Map ENtry.cecceeancenecreccconcsssococcsscsccascnnnsonsees2=24
OpPerand ClaSSeS.eeceecccesecsscccsssscsssssccssssoscscccccsccccess3—B
Predicates and RelatiONS.cceceescssacscscscscsosscccscccnsccnsss3—8
Floating Point Overflow ResSuUlt MAtriX.e.eccececececsoveccnsosesal3=0
ASCII EQUIiVAlENCe.eeeeececcecscascccncssasessoscasssaccnocnees3—ld
Result Matrix for FADD, FSUB and FSUBR.:ccecccccescvccaccncassT=3
Result Matrix for FDIV and FDIVR...eeeececececoccccosonscsnansesl=H
Result Matrix fOr MULTIPLY cs.eeetecceccacecncennconcosonnsnsnesl=T
Result MatrixX fOr FREM..ceeetecscecoccecasaccocsccscansssnsees =8
Result MatrixX fOr FOOR:.ccesesssecsccscacscscsoacscnosseacosseassl~1l0
Table of Compare Condition Field RelatiONS..ceececsceccecsecsesl0=3
Result Matrix for FCMP, FCMPX, FCMP.BR, FCMPX.BR:.:eceeeeeos..10-9
Data Conversion Result Matrix for Operand Stat@S...c.ceesese.l1l-2
Link Table Entryeccececceecascsccacccsasccsccsscccscsscccnancsasel3d=20
Funnel Table ENtIYeecccctcesccacccscsccscsceccsoccacnconsnsssel3d=24
Status RetUrn COGeSeeceeeececsceassensacsnccososccencnnsnsssesld=2

Xvii

SYSTEM OVERVIEW

1 SYSTEM OVERVIEW

The ELXSI SYSTEM 6400 is designed for applications that require very
high performance, efficient concurrent processing, and system
flexibility. The ELXSI solution lies in a highly effective
multiprocessor utilization through a process oriented and message based
architecture. The message system allows processes to simply "plug in"
without concern by the user of machine dependent operations, resulting
in a system adaptable to a wide range of applications, capable of
evolving in any dimension the user may find necessary, and having an
inherently high level of security.

1.1 PROCESS ORIENTED ENVIRONMENT

The ELXSI 6400 features a novel architecture to optimize the concurrent
execution of processes. The problem of concurrent execution is related
to the management of critical sections and of efficient utilization of
system resources. Procedure based systems tend to be 1limited by the
necessity of synchronous job execution, resulting in the wasteful
suspension of CPUs in cases where serialized access becomes necessary.
This problem is compounded with the addition of more CPUs to the point
where the performance rolloff effectively 1limits the size of the
system.

The ELXSI 6400 is a process based system. User tasks and the operating
system are hierarchically organized but distributed throughout the
machine, executing asynchronously. Rather than using privileged modes
as in a procedure based system, resource management and inter-process
communication are performed entirely through messages. The program (or
user) may be split up among processes that communicate with each other
through a message system, each with its own 32-bit address space. As
such, a failure in +the code of one process cannot destroy other
processes, providing firewall protection and information hiding
attributes.

1.2 THE OPERATING SYSTEM

The operating system, itself a collection of processes, plugs into the
message system and allows the utilization of system resources by the
user. Synchronization and allocation of these resources is
accomplished through messages, with context associated with a process
or a set of processes. This is in contrast with a procedure based
system, where synchronization and resource management are performed via
shared memory locks handled by privileged procedures. Context in this
case is associated with procedures, and a process calls different
procedures to accomplish a task.

SYSTEM OVERVIEW

1.3 INTER-PROCESS COMMUNICATIONS

The communication structure belonging to a process is a defining
attribute. This includes the communication paths and the priority of
the process relative to other processes. Whether a resource such as
the CPU is given over to a process is determined by the message traffic
for higher priority processes, if any, relative to the availability of
the resources. When a higher priority process has completed execution
of all of its messages, the resource is released for the next higher
priority process. The effect is better 1load balancing and system
utilization.

1.4 THE VIRTUAL MACHINE

Processes are the smallest eXxXecutable entities that may be allocated
resources. A user may be a process or a collection of processes that
communicate with each other through the message system. The ELXSI
appears to a process as a virtual machine having 16 64-bit general
purpose registers, with other internal registers for control and
management of process states. The process may have a total of 4
gigabytes of wvirtual memory, of which 2 gigabytes are private
addressable space for the process. The only communication between
processes is through the message system.

Procedures may be invoked within the process space through mechanisms
that are both efficient and simple to implement.

1.5 THE MESSAGE SYSTEM

The message system is the means by which processes communicate and is
highly amenable to the design of modular programs having processes that
easily connect to each other. The communication mechanism is
completely transparent to sending processes, allowing process
substitution or I/0 redirection by the operating system.

Unlike traditional architectures, a message system allows a high degree
of security between processes through hardware enforced protection.
Specifically, communication between processes may be only by mutual
consent, with messages encoded through firmware with the ID of the
sending process. Furthermore, since memory is not implicitly shared, a
failure of one process, malevolent or otherwise, cannot affect other
processes. The high security of this system obviates the need for
privileged and user modes with the associated special instructions.

SYSTEM OVERVIEW

1.6 THE INSTRUCTION SET

The ELXSI instruction set is designed specifically for the emission of
very fast code by a compiler. A complete set of primitives, variable
length instruction formats, and a wide range of addressing modes
optimize flexibility and code compaction. Instructions exist for
operations internal to a process and for operations to communicate
between processes. The latter, known as message system instructions,
have functionally equivalent intrinsics in the high 1level ELXSI
supplied languages.

The instruction set supports several data types including Integer,
Numeric string (ASCII), String, Logical, Character, and Floating Point.
The Floating Point is based on the proposed IEEE Standard for Binary
Floating Point Arithmetic and supports 32-, 64-, and 80-bit floating
point operands.

1.7 ELXSI SYSTEM 6400 SPECIFICATIONS

Table 1-1. ELXSI SYSTEM 6400 Specifications
GENERAL

Multiple CPU 1-10 CPUs, 1-4 IOPs
Bus Oriented
Message Based

SYSTEM BUS (GIGABUS)

Cycle Time 25 nanoseconds

Width 64-bit (110 bits total)

Transfer Rate 160-213 Megabytes/second (usable data)
Error Checks Full internal parity

CENTRAL PROCESSING UNIT

'Type Microprogrammed general purpose

Logic LSI/ECL

Word length 64 bits

Cycle time 50 nanoseconds

Registers 16 sets of general purpose & internal registers
Cache 16-Kbyte, 2-way set associative, 32-byte blocks

100 nanosecond access

16 sets of translation look-aside buffers (TLB)
Address space 4 gigabytes
Floating point IEEE proposed standard, 32-, 64—, 80-bit

MEMORY SYSTEM

Type

Minimum size
Maximum size
Cycle time

1/0 PROCESSOR

Type

Logic

Word Length
Cycle Time
I/0 Rate

SERVICE PROCESSOR

Type
PERIPHERALS
Disk

Mag Tape

Printers

SOFTWARE

Operating System

Languages
DBMS

SYSTEM OVERVIEW

64-Kbit MOS with error detection/correction
4 Mbytes

192 Mbytes

400 nanoseconds (128-bit read, 64-bit write)

Microprogrammed digital computer
LSI/ECL

64 bits

50 nanoseconds

Two 8 Mbyte/second sub-busses

M68000 based with 256 Kbytes memory

300 and 474 Mbyte SMD drives
6250/1600 and 1600/800 bpi at 125 ips
1200 and 1800 lines per minute

EMBOS -~ ELXSI Message Based Operating System
Pascal, FORTRAN 77, C, COBOL-74, BASIC
Relational model

ENVIRONMENTAL SPECIFICATIONS (4-processor configuration)

Power

Temperature

Relative Humidity

Cooling
Dimensions
Weight

208V, 3 phase, 47-63 Hz, 60 amps operating
(450 amps startup)

4-27 degrees Centigrade

40-80% non-condensing

74,000 BTU/hr.

59"w, 32"D, 70"H

2500 1lbs. (approximate)

ARCHITECTURE

2 ARCHITECTURE

This chapter covers those architectural features and mechanisms that
are within the user environment of the ELXSI instruction set. Topics
in all chapters up to Chapter 13, "Inter-Process Communications",
assume a virtual machine as viewed by a single process.

Data is 64 bits in length when in registers, and is of variable length
in byte addressable memory. The ELXSI conventions have data fields
from left to right, high order to low order, with the most significant
bit (or byte) as bit 2ero (or byte zero). A complete discussion of
data representations may be found in Chapter 3, "Data Representations".

2.1 GENERAL PURPOSE REGISTERS

A process has 16 64-bit general purpose registers (GPRs). These
registers are used in support of normal ALU operations and for register
direct and register indirect addressing. The GPRs in this text are
referred to as RO through R15.

2.1.1 Implicit Register Usage

Certain general purpose registers may be used for parameter passing
during a procedure CALL and EXIT, during an interrupt, and when using
the IXIT, BXIT and BREAKPOINT instructions. In these cases, R1l5 is
used as a stack pointer or, with the branch through register
instructions, as a location for the the return address. Additionally,
addressing modes 8 and 9 implicitly use R15 as a base address register.

Operations that place a result into two registers (such as MUL.128 and
double extended floating point) must not use R15 as the register
containing the low order result, as such operations are illegal. Aside
from these restrictions, the reader should use caution so as not to
inadvertently destroy the stack pointer.

The implicit usage of registers RO through R4 is described in Section
2.4, "Interrupts and Breakpoints”.

2.2 PROCESS STATUS WORD

The Process Status Word is a 64-bit internal register maintained for
each process. Its purpose is to record or modify certain events
occurring within a process, such as arithmetic exceptions or the
determination of rounding modes. Paired exception bits are provided to
allow the user the option of entering special routines on the event of
unusual occurrences.

The PSW may be accessed and modified by the instructions READ.STAT and
WRITE.STAT. The bits are numbered O through 63, with O being the high
order {(leftmost) bit. The table below contains a description of each
of these bits.

ARCHITECTURE

Bits 1 through 12 simply record or activate some process states. The
default values in the table indicate the bit state on process start-up.

Bits 16 through 63 are paired eXxception bits. An exception is a
procedure call through an interrupt, invoked when a system or user
defined condition occurs during the execution of an instruction. An
access violation is an example of a system defined condition. A
relation that is tested by the user through the test and generate
exception instructions may be defined such that an exception is
generated when the relation is true. This is a user defined condition.

The odd numbered bits in the bit pair are the exception occurred bits.
These bits are unconditionally set on the occurrence of the associated
exception. For example, an attempted Integer divide by =zero will
always set Dbit 19. The exception occurred bits are cleared on process
startup; thereafter, the bits are only cleared explicitly by the user
through the WRITE.STAT instruction or through the invocation of a
system supplied exception handler.

ARCHITECTURE

Table 2-1. Process Status Word (Page 1 of 2)

Bit Field |, Description
t
1
00-01 : Floating Point Rounding Mode (RMODE)
X 00 - Round nearest (RN) - DEFAULT
' 01 - Round to zero (RZ)
X 10 - Round to plus infinity (RP)
\ 11 - Round to minus infinity (RM)
i
i
02-08 |, Reserved
I
]
09 i Integer carry bit
" 0 - Carry cleared (for ADD) - DEFAULT
\ Carry set (for SUB)
\ 1 - Carry set (for ADD)
' Carry cleared (for SUB)
1
1
10 . Decimal carry bit
: 0 - Carry cleared (for ADD) - DEFAULT
: Carry set (for SUB)
{ 1 - carry set (for ADD)
: Carry cleared (for SUB)
!
|
11 . Flush Underflows to Zero
\ 0 - Use denormalized numbers - DEFAULT
: 1 - Flush underflows to zero
I .
1
12 , Single Step Pending
: 0 - No single step pending - DEFAULT
\ 1 - Single step pending
I
]
13-15 | Reserved
1
|

ARCHITECTURE

Table 2-1. Process Status Word (Page 2 of 2)

| Bit Pair |, Exception Description | Exception Enable Default

i I] 1
1 I | |
, 16=17 |, Integer Overflow L1 '
, 18-19 , Integer Divide by Zero L1 X
, 20-21 , Floating Point Overflow L0 X
, 22-23 | Floating Point Underflow .0 '
\ 24-25 | Floating Point Divide by Zero .0 '
, 26-27 , Floating Point Invalid Operation ., 0 X
, 28-29 | Floating Point Inexact Result .0 '
I | 1 I
i] | i
, 30-55 | Reserved .0 \
i I 1 i
! | | 1
, 56-57 |, Software generated exception 1 X
, 58-59 | Access violation y 1 X
, 60-61 |, Illegal or Unimplemented instruction . | \
I 1 1 I
]]] 1
, 62-63 |, Reserved y 0 \
[} I t t
| | !]

The even numbered bits in the bit pairs are the exception handler
enable bits. These bits, when enabled, allow the program to vector to
either a system supplied exception handling procedure or to a user
supplied procedure on the occurrence of the associated exception. If
the exception handler enable bit is disabled, the instruction that
generated the exception delivers a default result to the destination
operand. The details of this mechanism are discussed in Section 2.5,
"Exceptions". The "ExXception Enable Default" column in the table
specifies the state of the exception handler enable bits on process
startup.

2.3 PROCEDURE CALLS

ELXSI procedure calls reference and deallocate stack frames in a manner
that is simpler, faster, and with less overhead than traditional
approaches. Basically, a procedure explicitly allocates its own stack
space before making any procedure calls, and places, rather than
pushes, any data items it needs to save onto the stack. When the
procedure calls a nested procedure, the CALL instruction places the
return PC into the first 32-bit word of the allocated stack space and
branches to the nested procedure. The nested procedure likewise
allocates its own stack space. On exiting, the nested procedure
deallocates its 1local stack frame (with the EXIT instruction) and the
return address in the caller's stack frame is automatically placed into
the PC. Control then resumes with the calling procedure.
Alternatively, the "branch through register"™ instructions may be used,
but stack frame allocation and deallocation support must be provided by
the user.

ARCHITECTURE

This section discusses the general case of procedure calls and exits.
Chapter 12, "Flow of Control Instructions"™, describes the instructions
in detail. The special cases of interrupts and breakpoints may be
found in Section 2.4, "Interrupts and Breakpoints".

On process creation, a space in virtual memory is allocated as the
stack area that starts at a base address and grows towards low memory.
This is illustrated in the below diagram. The Stack Pointer (SP),
register 15, points to both the top of the stack and the stack frame
base address. When a procedure is entered, it explicitly allocates a
stack frame Dby subtracting from the SP the required stack frame space.
The new low address of the stack frame is the stack frame base address,
the top of stack, and the contents of SP. (The stack pointer is
initialized to the stack space base address on process startup.)

N S -
| => current Stack Frame -)» | :
N bemn) [
" A
1 . \
’ |
SP ! stack space
base address
(== lower memory addresses
(=== stack grows in this direction

An example of the call/exit protocol is shown below. It has a main
procedure with 64 Dbytes of local storage, calling a nested procedure
with 24 bytes of local storage. Upon entry to the main procedure, it
is assumed that the stack is empty so that SP points to the stack base.

ARCHITECTURE

The outline for the code is

MAIN_PROC:

subtract 64 from SP (explicitly allocate stack frame)
|
1
!

call NESTED_PROC
'

NESTED_PROC:

I
subtract 24 from SP (explicitly allocate stack frame)
1

EXIT 24 (deallocate stack frame)

First, the MAIN PROC code allocates its local stack frame. Since the
stack grows towards low memory, this is accomplished by subtracting 64
from SP. SP now points to the beginning of the current local stack
frame and to the top of stack, which is now STACK BASE-64. The stack
now looks like:

beginning of current lOC?.l
stack frame

I

\4

<=+ H

| MAIN Stack Frame

==+ *

A A

1 I

| |

I sp i____STACK_BASE
G lower memory addresses

{===-=--- gtack grows in this direction

The first 32 bits of the allocated local stack frame hold the space for
the return Program Counter (PC) value. As this location is the current
top of stack, it is pointed to by SP. When MAIN PROC does call
NESTED_PROC, the CALL instruction places the return PC in this location
and replaces the contents of the Program Counter with the address of
the first instruction in NESTED PROC. The "return PC" is the address

ARCHITECTURE

of the instruction following the CALL instruction, that is, the

location for resuming execution after the return from +the called
procedure.

NESTED_PROC allocates its stack frame in a similar fashion. By

subtracting 24 from SP, the SP now equals STACK_BASE - (644+24), and the
stack looks like:

beginning of current local stack frame

I
v
(==t + +
| NESTED SF |, MAIN Stack Frame |
==+ + +
A A A
] I 1
| | 1
\ 8P | return PC | Stack space base
stored here
{====== lower memory addresses
(=== stack grows in this direction

The last instruction in NESTED PROC is an EXIT 24 instruction. This
instruction first adds 24 to SP, thus deallocating its local stack
frame. The SP now points to the top of stack for MAIN PROC. The
32-bit return PC pointed to by SP is then placed into the program
counter, and control is returned to MAIN PROC.

Note that since the SP always points to the first data item in the
current stack frame, other data items may be simply addressed by the
base register + displacement addressing modes, which include addressing
modes 8 and 9 that are designed for this purpose.

It can be seen that the ELXSI architecture varies from the traditional
approach in two respects. First, the local stack frame is assumed to
run from low towards high memory addresses, thus allowing SP to serve
as both top of stack pointer and current stack frame pointer. The
second difference is when and where the 1local stack frame size is
stored.

In summary, data items are addressed by the lowest byte address they
occupy in virtual memory, the stack grows toward low memory, and the
beginning of a local stack frame is the address of the lowest byte in
the frame. The calling procedure must explicitly allocate stack space
for itself, otherwise the return address will be destroyed by any
nested procedures that are called.

ARCHITECTURE

It is good practice to never store data in a space where stack growth
may occur, as interrupts use this area to store part of the process
state. The data and stack spaces are described in more detail under
Memory Organization.

2.4 INTERRUPTS AND BREAKPOINTS

This section presents an overview of the environment in which an
interrupt occurs. A more complete description may be found in the
discussion on the message system in Chapter 13, "Inter-Process
Communications".

Information from sources external to the process may only enter the
process through the message system. A process will trap to an
interrupt handler if the process is in a state that allows interrupts
to occur and if the message is received on a designated interrupt
channel. On an interrupt, the execution of the BREAKPOINT instruction,
or after the execution of an instruction following the BXIT instruction
with single stepping enabled, these events will:

1. Allocate a stack frame to save the process data. For
BREAKPOINT/SINGLE STEP, subtract 136 from the SP. For
interrupts, subtract 144 from the SP.

2. Place the PC of the next instruction onto the stack. The PC
resides in the lower 32 bits of the 64-bit word placed onto the
stack.

3. For interrupts only, place the current local priority onto the
stack (64 bits - the priority occupies the low order 4 bits).

4. Place Registers RF down to RO on the stack.
5. Set RO to the memory address of the saved PC in the stack.
6. Set R1 to the memory address of the saved RO in the stack.

7. For all interrupts, branch to execute the interrupt handler (and
ignore the remaining steps).

If a BREAKPOINT or the result of BXIT with single stepping enabled
(Debugger entry) then set R2 to the following entry reason code

Code Reason

0 BREAKPOINT

1 BXIT with single stepping enabled
2 Execute address break

3 Read data break

4 Write data break

ARCHITECTURE

8. Set R3 to the memory address of the instruction just executed
(old PC) or to zero if single step.

9. Set R4 to the memory address of the data causing the data break.
Set to zero if not a data break.

10. Branch to enter the Debugger.
After the breakpoint/single step save is complete, the stack appears as

follows:

Stack after BREAKPOINT/SINGLE STEP save of process data

Definitions:

SPb stack pointer before break occurred
PCb = program counter before break occurred

Register contents:

RF = SPb - 128 - 8 (or current SP)
RO = SPb - 8 (or current SP+128)

Rl = SPb - 128 - 8 (or current SP)
R2 = reason code
R3 = address of instruction just executed

(zero for single step)
R4 = memory address of data causing break

Stack contents:

SP + 128 : saved PC

SP + 120 :+ saved RF (SP)
etc.

SP + 8 : saved Rl

SP + 0 : saved RO

R1 RO holds address of return PC

i |

4 v

, saved |, ... , saved , return , Stack frame | ... |, Base of !
, RO , RF | PC | interrupted | , stack
+ + + + + .
,___Current SP __SP before break

{---- Stack grows Higher memory addresses —--—->

ARCHITECTURE

The invoked Debugger procedure can receive the saved PC and GPRs as
parameters and may modify the saved state before exiting. After the
Debugger has built its stack frame, the stack looks like:

Stack with DEBUGGER Stack Frame added

Rl RO

i :

v v
| Handler's | 16 regs , Return , Stack frame , ... , Base of
| stackframe , saved , PC |, interrupted , , stack
+ ' | + . . +
___SP __SPb
{---- Stack grows Higher memory addresses —-—-—)

On exiting from the handler, the BXIT instruction deallocates the
handler's stack frame, restores and deallocates the 16 registers and
the PC, and returns to the interrupted process.

Following are the stack and registers after the interrupt save is
complete:

Stack after INTERRUPT save

Definitions:
SPb = stack pointer before interrupt occurred
PCb = program counter before interrupt occurred
OLP = 0l1ld local priority

Register contents: .

RF = SPb - 128 - 16 (or current SP)
RO = SPb - 8 (or current SP+128+8)
Rl = SPb - 128 - 16 (or current SP)
R2 = receiving funnel ID (on an interrupting channel)

Stack contents:

SP + 136 : saved PC
SP + 128 : saved old local priority
SP + 120 ¢+ saved RF (SP)
etc.
SP + 8 : saved Rl
SP + 0 : saved RO

ARCHITECTURE

The stack after the interrupt save is

R1 RO holds address of return PC

i l

v v

, saved , .. , saved , saved , return , Stack frame , .. , Base of |,
., RO , RF | OLP , PC , interrupted , , stack
* + ' . " . 4 4
| Current SP \ SP before interrupt

{=--- Stack grows Higher memory addresses —---)

The invoked interrupt procedure can receive the saved PC, o01d 1local
priority, and GPRs as parameters, but it is not recommended that
interrupt handlers modify the saved state before returning. After the
handler has built its stack frame, the stack looks like:

Stack with Handler Stack Frame added

R1 RO

]

: |

\ v
, Handler's , 16 regs , saved , Return , Stack frame , .. , Base of |,
, stackframe , saved , OLP , PC |, interrupted , , stack
; L] Ll T ; T B L
, 8P ,___8SPD
{---- Stack grows Higher memory addresses —-——-—)

On exiting from the interrupt routine, the IXIT instruction deallocates
the handler's stack frame, restores and deallocates the 16 registers,
old local priority, and the PC, performs the activities that are
required for exiting from an interrupt (such as executing the
SET.LOCAL.PRIORITY function), and returns to the interrupted process.

This is note for those readers who may write code which modifies data
structures that are shared with an interrupt handler. Compilers
written for the ELXSI will in general perform register tracking. This
may result in references to a datum shared with an interrupt handler
not actually loading that datum from memory, because it already resides
in a register. If an interrupt handler is invoked between two such
references and modifies the datum, the value in the register may not be
current. This is, of course,

ARCHITECTURE

.

Refer to the appropriate ELXSI Language User's Guide for information on
how to maintain the integrity of such shared data items.

2.5 EXCEPTIONS

Exceptions provide a convenient mechanism to call a special procedure
in the event of some defined condition or relation. These exceptions
fall into two general classes: user-interceptable exceptions and
non-interceptable exceptions (faults). Non-interceptable exceptions
are used by the system for such conditions as page faults. Typically
these exceptions are corrected by the system and are transparent to the
faulting process.

This section covers the class of user interceptable exceptions. The
Program Status Word always records the occurrence of such exceptions.
The user may establish several courses of action that include the
following:

1. Default. The system will generate a fabricated result for the
instruction that generated +the eXxXception if the user has
disabled the exception handler enable bit associated with the
exception.

2. Call the system exception handler. If the user has enabled the
exception handler enable bit, a system supplied eXception
handler is invoked which will enter the Debugger if selected or
cause the process to terminate.

3. Call a user supplied exception handler. The user may write an
exception handler to replace the system exception handler.
Intrinsics are provided for this purpose.

Unless otherwise specified, program control resumes at the instruction
following the instruction that generated the exception.

2.5.1 User Interceptable Exceptions
User interceptable exceptions may be classified as follows:

1. Architectural Exceptions. Exceptions of this type are detected
by the system hardware and invoke the system exception handler
as well as, optionally, a user supplied exception handler.
These include all bit pair entries in the PSW listed in Table
2-1.

2. Software Exceptions. Software exceptions are generated by the
"generate exception" instructions described in Chapter 10,
"Relational Test Instructions", and by the EXCEPTION
instruction. The generate exception instructions test a user
defined relation and cause an exception if the relation is true.

ARCHITECTURE

Additionally, the user may specify exception subclasses within
these instructions that will interrupt to user supplied subclass
exception handlers.

The difference between these and the architectural exceptions
lies in the user requirement to supply the exception handler and
to keep track of unique exception types. The general status of
this type of exception is maintained in the PSW as bit pair
56-57.

2.5.2 Exception Mechanism

An instruction that causes an exception with the associated exception
handler enabled will cause the system to generate a message. This
message, directed into a standard funnel of the process, contains the
instruction that generated the exception and other information some of
which may be defined by the user. Arrival of the message on the funnel
causes an interrupt that invokes the system exception dispatcher. The
dispatcher may then pass the message, after some modification, to the
correct system exception handler or +to -a user supplied exception
handler, which resolves the problem and returns control to the
interrupted procedure. The exception software resides in the code
space of the process.

The standard exception funnel is essentially an input port that is
attached to channel 1 of the same process that generated the exception.
Its purpose is to receive incoming exception messages generated by the
system. The channel to which the funnel is attached is enabled for
interrupts, such that the arrival of a message will interrupt the
faulting process and invoke the system exception dispatcher specified
by the funnel's interrupt vector.

The system exception dispatcher is the procedure pointed to by the
interrupt vector associated with the standard exception funnel. This
procedure brings the exception message into the process space,
determines the type of exception generated, and either calls the
appropriate system supplied exception handler or a user supplied
exception handler, if provided. The exXception message also contains
information on other exceptions that may have occurred for the
instruction, and calls these additional procedures based on the
priorities of the incoming exceptions.

The called procedure handling the exception may manipulate the data
that has been placed on the stack by the exception dispatcher. When
the procedure exits, eventually to the interrupted code, the stack
containing the corrected information will be deallocated and restored
to the appropriate registers. (Target operands in memory are corrected
in the exception handling procedures.)

ARCHITECTURE

2.5.3 Exception Message Description

The message data block has the following format upon arrival into the
standard exception funnel:

Table 2-2. Exception Message Format

0] 1 2 3 4 5 6 7
0 : Instruction (72) -> X
1 == unused (48) \res (8),exc (8),
2 \ Program Counter (32) . unused (32) .
3 ' unused (64) / X
4 : unused (64) |
5 \ Value of source operand 1 (low) (64) X
6 | unused (64) :
7 ' Value of source operand 2 (low) (64) :
8 X Actual result (high) (64) \
9 \ Actual result (low) (64) |
0 | unused (64) \ X
i1 unused (64) :
12 ' Variant Part (64) X

The fields in the message area have the following meanings:

Instruction: This field contains the entire instruction that caused
the exception. The instruction is left justified.

Exception Code: This field has a value from O to 255 and uniquely
identifies the type of exception to be processed. Refer to Table 2-3
for the exception codes.

ARCHITECTURE

Table 2-3. Exception Message Codes

Code , Interceptable Exceptions :
\ 0 , Integer overflow :
' 1 i Integer Divide by Zero :
' 2 , Floating Point Overflow |
' 3 . Floating Point Underflow "
X 4 , Floating Point Divide by Zero :
\ 5 , Floating Point Invalid Operation K
\ 6 , Floating Point Inexact Result '
1] 1
I] i
. 7-19 . Reserved \
t 1 1
[} 1 |
X 20 , Software generated exception \
X 21 . Access violation \
" 22 , Illegal or Unimplemented instruction \

The system exception dispatcher extracts this field and adds 256 to the
code to pass to the exception handlers. This allows the 1lower 256
values to be used for subclass exception codes specified in the
appendages of the generate software exception instructions.

Program Counter: The Program Counter is the 32-bit virtual address of
the instruction that raised the exception.

Variant Part: Several of the exceptions, including the software
generated exceptions, provide specific values relevant to the
instruction and the exception type.

The parts of the exception message which are valid for each exception
are defined below.

INTEGER OVERFLOW

| Message Field , Contents of Message Field \

exception code
instruction
program counter

0
instruction causing exception
instruction causing exception

source operand 1 none
source operand 2 none
actual result - high none

mul may provide high word of result
mod 2*x64 of result
none

actual result - low
variant part

ARCHITECTURE

INTEGER DIVIDE BY ZERO

Message Field

Contents of Message Field

exception code
instruction

program counter
source operand 1
source operand 2
actual result - high
actual result - low
variant part

1

instruction causing exception
instruction causing exception
none '

none

none

none

none

FLOATING POINT OVERFLOW

Message Field

Contents of Message Field

exception code
instruction

program counter
source operand 1
source operand 2
actual result - high
actual result - low
variant part
comments

2

instruction causing exception
instruction causing exception
none

none

valid if extended precision
scaled result

none

results depend on precision

FLOATING POINT UNDERFLOW

Message Field

Contents of Message Field

exception code
instruction

program counter
source operand 1
source operand 2
actual result - high
actual result - low
variant part
comments

3

instruction causing exception
instruction causing exception
none

none

valid if extended precision
scaled result

none

results depend on precision

ARCHITECTURE

FLOATING POINT DIVIDE BY ZERO

Message Field , Contents of Message Field

4
instruction causing exception
instruction causing exception

exception code
instruction
program counter

source operand 1 none
source operand 2 none
actual result - high none
actual result - low none
variant part none

FLOATING POINT INVALID OPERATION

Message Field ; Contents of Message Field

exception code
instruction
program counter
source operand 1
source operand 2

5

instruction causing exception
instruction causing exception
system handler may provide
system handler may provide

actual result - high none
actual result - low none
variant part none

FLOATING POINT INEXACT RESULT

Message Field : Contents of Message Field

exception code
instruction

program counter
source operand 1
source operand 2
actual result - high
actual result - low
variant part
comments

6

instruction causing exception
instruction causing exception
none

none

valid if extended precision
scaled result

none

results depend on precision

ARCHITECTURE

SOFTWARE EXCEPTION (includes compare and generate exception)

Message Field

Contents of Message Field

exception code
instruction
program counter
source operand 1

source operand 2
actual result - high

actual result - low
variant part

20

instruction causing exception
instruction causing exception
sub-code rx for EXCEPTION instr
sub—-code from appendage for CMP instr
exception data rz for EXCEPTION instr
0 for CMP instr

none

none

none

ACCESS VIOLATION - data, instruction

Message Field

Contents of Message Field

exception code
instruction
program counter

source operand 1
source operand 2
actual result - high
actual result - low
variant part
comments

21

o

data - instruction causing exception
instr - last instruction to execute
none

none

none

none

none

cannot sypply instruction because of
execute only access rights.

ILLEGAL/UNIMPLEMENTED INSTRUCTION

Message Field

Contents of Message Field

exception code
instruction

program counter
source operand 1
source operand 2
actual result - high
actual result - low
variant part

22

instruction causing exception
instruction causing exception
none

none

none

none

none

ARCHITECTURE

2.6 MEMORY ORGANIZATION

This section describes the virtual addressing space available to a
process and its allocation.

2.6.1 Virtual Memory Space

A general virtual address is 32 bits in size. The addressing space (4
gigabytes) is considered by the memory manager to have four subspaces
of one gigabyte each. These subspaces are Private (2), Public, and
Reserved. The two most significant bits of the address are used to
identify the address space:

Table 2-4. Virtual Memory Allocation

, MSB |, Virtual Memory allocation
| o0 |
i ; Private Space i
1 01 [} 1
X 0 Public Space :
| 11 X Reserved :

Private space, of up to two gigabytes for each process, is managed as
two separate and independent subspaces but appears to a process as a
single, contiguous space. The first subspace, known as PO (MSB 00),
grows towards higher memory, while the second subspace, known as Pl
(MSB 0l1), grows towards lower memory. The memory mapping scheme splits
up a process between these two subspaces to allow the code/stack area
and the data area to grow towards each other.

The actual use of this private space includes the following types of
addressable objects:

o0 Code. This includes all the private instructions which are to
be executed by the process. Private code usually consists of a
program together with any unshared libraries. Code is normally
marked with exXecute-only access and, therefore, may not be
modified. This provides the advantages of re-entrancy and
maintainability.

o0 Static data. Static data has a lifetime equal to that of the
program and does not change in size during execution. This
corresponds to the global data declarations of most languages.
The actual size of static data will vary depending on the
program being executed.

ARCHITECTURE

o Dynamic Data. Dynamic data changes in size and application
during the 1life of the program. The major uses of dynamic data
are for the Pascal heap area, control Dblocks for the file
system, and other run-time Jlibrary procedures. Management of
dynamic data space is the responsibility of the software. For
example, the Pascal compiler is responsible for any garbage
collection that may be necessary in its heap area.

o Stack Data. Stack data has a lifetime equal to the life of the
procedure which defines it. This data inc¢ludes all variables
that are declared locally within a procedure or subroutine.
Stack data is added to the stack as a procedure is called, and
is deleted from the stack when the procedure terminates.

Stack data and Dynamic data both change in size during the execution of
a program. The ultimate size of each of these classes of data is not
known before the program is actually executed. For this reason,
separate these two classes of data as far as possible and let them grow
towards each other; this leaves the largest possible open growth space
between them. The standard organization of private space is
illustrated below.

ARCHITECTURE

Table 2-5. Private Space Allocation

Private Space allocation

Page O X not allocated
A few pages ' Special common data "
(fixed) ' (for run-time libraries)
] 1
1]
Many pages . Static Data '
t]
[} i

) 1
3 i
I I
] 1
t 1
1]
1 I
1 t
i I
| [}
[}]
1 [
] I
[}]
1 I
| I
I]
] 1
I i
| 1
1 1
| 1
I] 1 [}
I 1 | |
; Many pages i Dynamic Data i i
t I | !
1 1
1 1
]] } 1
| ! : |
" v Dynamic Growth v |
1
| |
I]
1 [}
\ A Stack Growth A :
| l :)
[} 1
| 1
] i 1 [}
! i 1 |
\ Many pages | Stack Data ' N
| I | |
1]
| t
I 1] '
| i | |
! Many pages ! Code = !
] 1] I
1 1
] B]
\ ' Constants X '
1 I
| i]
: Debug Records \ \
<
1] I
i 1 |
X MSB 10 H Public Space '
1
. I :
i]
i i
X MSB 11 X Reserved
i I
| I

Page zero cannot be allocated. This is to catch common programming
bugs that reference address zero.

ARCHITECTURE

The special common data area contains pointers for the run time
libraries. These pointers are used to 1locate the so-called "own"
variables that actually reside in the dynamic data area. An example of
these own variables is the file control blocks used by the in-process
part of the file system.

The public subspace, called PUB, (addresses with MSB = 10) is shared
with all processes and is used primarily for system library code. The
public subspace grows towards higher memory. The last subspace is
reserved for future expansion.

2.6.2 Page Maps

For each subspace (such as those described above) there is a map which
is used by the hardware to translate a virtual address to a physical
address. The Page Map contains Page Map Entries (PMEs) which describe
the attributes of a page.

Virtual space is logically broken up into pages of 2 Kbytes (2048
bytes) each. For every virtual page there may be a physical page
allocated on disk by the memory manager that holds the data. A page
"in memory" is a copy of this data in physical memory, a necessary
condition for utilization by the instruction set. A page that is
referenced but not "in memory" will generate a page fault, causing the
memory manager to bring the page in off the disk so that the CPU can
continue executing for the faulting process.

The page map will Dbe 1large if the space it describes is large.
Therefore, it 1is necessary to break the page map itself into pages to
allow effective management of main memory. This 1is achieved by a
hierarchy of page maps. A single level page map is capable of handling
small subspaces up to 512 KBytes. When space requirements increase, a
second level is created with its first descriptor pointing to the first
level page. The other PMEs on this second 1level define other first
level pages as the need for their existence becomes apparent, to a
maximum of 128 Mbytes. The third level is created in a similar fashion
for subspaces larger than 128 Mbytes. The conceptual similarity of the
various sizes of subspace makes it easy to expand a subspace even as it
crosses one of the boundaries separating the three levels. For
example, if a process needs to get another page added to a 512 Kbyte
subspace, it will first be checked to see that no administrative size
limits have been exceeded and then the memory manager will create a
second-level page map.

ARCHITECTURE

2.6.3 Page Map Entry (PME)

The page map entry is a generalized descriptor of a page in its current
state. Refer to Table 2-4 on the following page.

There are essentially two forms of the PME depending on whether the
page is in memory or not. This is specified by the "inPhysicalMemory"
bit. 1If the page is in memory, the PME specifies the physical address
of the page image. If the page is absent from memory, then the memory
manager checks bit 11. If bit 11 = 0, then the PME specifies the disk
address of the page. A disk address consists of a disk identifier and
a sector address.

~The PME may be read with the READ.PME instruction. The following bits
may be modified with the MODIFY.PME instruction:

maintenanceBit
readTraceBit
writeTraceBit
executeTraceBit

ARCHITECTURE

Table 2-6. Page Map Entry

e e TR

00

0l
02
03

04
05
06
Q7
08
09
10
11
12
13
14

15

16
17

35
36

37
38

62
63

inResidentSet boolean "present" bit N

1

]

! readAllowed L

accessRights \ writeAllowed \ K

: executeAllowed L

|

|

-- Page Map Level 1 ——==—-- -- Page Map Levels 2,3 -- :

' copyOonWrite i inMemoryPMEs \ |
: cacheable o (use 9) | |
! referenced Ll Lo
: maintenanceBit N : |
! readTraceBit i | :
! writeTraceBit i | :
\ executeTraceBit i1 L
: {reserved for MM)>) 1 b
! origCacheable e b
\ {unused) n expandCacheable \ X
\ {unused) H {unused) \ ,
- !

1

|

inPhysicalMemory |
case inPhysicalMemory of :

————————— TRUE FALSE ==—=====—en \

' pageFrameNumber ' fileAddress (use 48) , \
| (use 20) n {pit 11 = o} : !
/ // / /
/ // /7
] 1t] !
i 114] |
1 (] [} 1
1 (]] |
[} [} 1

I | I

! grandPageAddress i L
: (use 27) ¥ o
/ // /7
/ // /7
I 11 I]
] [] t
i 11 I]
1 11 i i
1

i

DATA REPRESENTATIONS

3 DATA REPRESENTATIONS

The ELXSI architecture supports six classes of data representations, as
listed below:

INTEGER
LOGICAL
FLOATING POINT
CHARACTER
STRING

NUMERIC STRING

Oo0O0OO0OO0OO0

For the illustrations in this chapter, the most significant bit is
bit 0, shown as the leftmost bit. Bytes are represented in a similar
fashion in both registers and memory. Data resides in memory from 1low
address to high address, with the low address as byte zero. Register
data is always a 64-bit quantity, which means that memory operands are
sign or 2zero extended and right justified when loaded into a register.
Addressing formats are discussed in Chapter 4, "Instruction Set
Composition".

3.1 FLOATING POINT

ELXSI Floating Point representations conform to the proposed IEEE
Standard for Binary Floating-Point Arithmetic. Three floating point
number representations are provided: single (32 bits), double
(64 bits) and double extended (80 bits). All three forms may exist in
either a register or in memory.

A floating point operand is composed of a sign bit, a significand and
an exponent. The significand 4is an unsigned number with a value
greater than or equal to zero, and less than two.

The integer bit of the significand is physically present in the
extended double -precision storage formats, but the bit is not present
in the single and double precision forms. The implied state and
location of the integer bit in these cases is referred to as the
"hidden bit™.

The exponent range for single and double precision starts at 1 to
enable the encoding of the hidden bit. If the exponent is zero, the
hidden bit is inferred to be zero, and the number is denormalized (or
zero if the number is equal to zero). The range for Double Extended
starts at zero.

DATA REPRESENTATIONS

3.1.1 Terminology

The following are terms used in this section:

o

Biased exponent: The sum of an exponent and a constant (bias)
chosen to make the biased exponent's range non-negative.

Denormalized number: A non-zero floating point number whose
exponent is the minimum value for the format, and whose leading
significand bit is zero.

Exponent: The component of a binary floating point number that
normally signifies the integer power to which two is raised in
determining the value of the number. It is represented by an
Ile" .

Fraction: The field of the significand that lies to the right
of its implied binary point. It is represented by an "f".

Infinity: The ELXSI uses the affine closure form of infinity.
It may be illustrated by a straight number line with a positive
infinity at one end and a negative infinity at the other end.

NaN: Not a number. There are two types of NaN's, signaling and
quiet. These symbolic entities are used to check for invalid
data or certain arithmetic enhancements.

Quiet NaN: Quiet NaNs are propagated through all arithmetic
operations to allow the retrospective diagnosis of invalid
results. These are represented with the first bit to the right
of the binary point equal to zero.

Signaling NaN: Signaling NaNs signal +the INVALID OPERATION
exception whenever they appear as operands. These allow values
for uninitialized variables or arithmetic enhancements, and are
represented with the first bit to the right of the binary point
equal to one.

Significand: The component of a binary floating-point number
that consists of an explicit or implied leading integer bit to
the left of the implied binary point, and a fraction field to
the right.

Sign bit: The most significant bit of an integer or floating
point representation that determines the sign of the operand.
Otherwise, this bit is the most significant bit of any datum,
and is represented by "s".

DATA REPRESENTATIONS

3.1.2 Data Types

The three floating point types, Single, Double, and Double Extended,
are illustrated below in both register and memory form. Single or
Double precision operands require one register. Double Extended
operands require two registers, R and R+1, with bit O of a memory
operand aligning with bit O of R and bit 127 aligning with bit 63 of
R+1.

3.1.2.1 Single Precision

The Single Precision floating point number is represented in a 32-bit
field with 1 sign bit, 8 exponent bits, 23 significand bits and 1
hidden bit.

The exponent may range from -126 to 127. The actual exponent is biased
by 127 so that it is always positive. As such, the smallest exponent
value (-126) is represented by an actual exponent of 1 (or zero if
denormalized). An actual exponent of 255 is used for representing
infinities and NaN's.

The hidden bit is assumed to be immediately to the left of bit 9. The
binary point lies between the hidden bit and bit 9.

Single Precision in Memory

| Seeceeeeee ffffffffffffffffffffff,

>

AAA A

Significand, fractional part:
Bits 9 to 31

A
I
}
I
I
i
i
t
I
I
|
3
1

Hidden bit (not physically present)

Exponent: Range -126 to 127. Bits 1 to 8

- —— ———————————————— >

Sign bit: 0 if positive, 1 if negative. Bit O

DAT2A REPRESENTATIONS

Single Precision in Register

| <{unused) seeeceeee fIffffffffffffffffffff),

0 32 394 63

3.1.2.2 Double Precision

The double precision floating point number is represented in a 64-bit
field with 1 sign bit, 11 exponent bits, 52 significand bits and 1
hidden bit.

The exponent may range from -1022 to 1023. The actual exponent is
biased by 1023 so that it is always positive. As such, the smallest
exponent value (-1022) is represented by an actual exponent of 1 (or
zero if denormalized). An actual exponent of 2047 is used to represent
infinities and NaN's.

The hidden bit is assumed to precede bit 12. The binary point 1lies
between the hidden bit and bit 12.

Double Precision in Memory and Register

| Sececeeeeceee fIfffes,

A AAA A

A
1
]
[}
|
: Significand, fractional part:
' Bits 12 to 63

|

]

1

Hidden bit (not physically present)

Exponent: Range -1022 to 1023. Bits 1 to 11

A
1
I
|
|
i
i
i
|
I
|
|
I
i
I
'
i
1
1
1
I

Sign bit: 0 if positive, 1 if negative. Bit O

DATA REPRESENTATIONS

3.1.2.3 Extended Double

The extended double floating point number (80-bit) is represented in a
128~bit field with 1 sign bit, 15 exponent bits, 64 significand bits
and 48 unused bits. There is no hidden bit.

The exXponent may range from -16383 to 16383. The actual exponent is
biased by 16383 so that it is always positive. As such, the smallest
exponent (-16383) is represented by an actual exponent of zero. An
actual exponent of 32767 is used to represent infinity and NaN's.

There is no hidden bit. The binary point lies between bit 64 and 65.
If bit 64 =1, the the number is Normal. If the exponent = 0 and bit
64 = 0, then the number is Denormalized. If the exponent is not equal
to 0 or 32767, and bit 64 = 0, then the number and all operations on it
are undefined.

Double Extended in Memory and Register, High Order Word.

| seeeeeeceeeceeecee {unused)> \

>

AA A

I
|
1
|
: Unused. Bits 16 to 63
I
|
1
I

Exponent: Range -16383 to 16383. Bits 1 to 15

- = ————— ——— - >

Sign bit: O if positive, 1 if negative. Bit O

Double Extended in Register and Memory, Low Order Word.

VI EFfffffff i ffEfffffEffffffffffffEfEFfef

A A

Fractional part of Significand. Bits 65 to 127

A
|
1
|
|
1
i
1
I
§
]

Binary integer part of Significand. Bit 64

DATA REPRESENTATIONS

3.1.3 Operand Classes

The five operand classes characterize an operand through values in the
exponent and significand fields. This information is summarized in the
following table. The "i" and "f" table headers in the Significand
field specify the integer and fractional parts respectively. Note that
normalized numbers use a biased exponent such that the exponent will
always be positive.

Table 3-1. Operand Classes

' Significand \
| Operand Class , Data Type , Exponent | i , £ , Value
, zero , Single Precision , 0, X, \ zero '
\ ., Double Precision , 0, X, | zero '
\ Extended Double 0,0, , zero "
, denormalized | Single Precision 0, x | nonzero
, number . Double Precision , 0, x, | nonzero
' . Extended Double 0,0, , nonzero
, normal (ized) | Single Precision ; 1 .. 254 |, X | , any |
| nonzero , Double Precision ; 1 .. 2046 , X , | any \
| number , Extended Double , 0 .. 32766 ; 1 , , any :
| infinity , Single Precision , 255 | X , \ zero \
\ , Double Precision , 2047 | X , | zero X
\ , Extended Double 32767 , 0 | zero \
| quiet , Single Precision , 255 , X , 0 , nonzero ,
, not-a-number , Double Precision , 2047 |, X , 0 , nonzero ,
. (NaN) , Extended Double 32767 , 0 , O |, nonzero ,
| symbol , Extended Double 32767 , 1 , 0 , any X
, signaling | Single Precision |, 255 , x , 1, any X
| not-a-number |, Double Precision , 2047 | X , 1 , any \
, (NaN) , Extended Double 32767 , 0 , 1 , any '
{ symbol i Extended Double 32767 , 1 , 1 |, any '

DATA REPRESENTATIONS

3.1.4 Rounding Modes

There are four rounding modes that may be selected. The rounding modes
are determined by the rounding mode bits set in the Process Status
Word.

1l. Round to nearest even. In the halfway case, round so that the
low order bit of the result is zero. Over a large number of
roundings the direction will be unbiased. This is the default
rounding mode. :

2. Round to zero. Truncate magnitude.
3. Round toward positive infinity.

4., Round toward minus infinity.

The two infinities (positive and negative) are considered to be at the
opposite ends of a number line. (Positive and negative zero have the
same value).

3.1.5 Predicates and Relations

It is possible to compare all floating point numbers in all formats.
Comparisons are exXact and never overflow or underflow. The four
mutually exclusive relations are:

UNORDERED
LESS THAN
EQUAL
GREATER THAN

QECa
VAN

An unordered relation occurs when one or more of the operands is a NaN.
(A NaN is unordered to everything, including itself.) The relational
test instructions use a 4-bit compare condition field (ccf) with the
values indicated in the table to test for the corresponding relation.

DATA REPRESENTATIONS

Table 3-2. Predicates and Relations

' PREDICATES ' RELATIONS '
, adhoc , symbol , ¢ccf , U , L , E , 6
| > \ G : 1 y F 4 F , F , T
L= | E , 2 | F , F , T I F |
| = , EG : 3 y F , F , T , T
| < i L : 4 , F , T | F , F |
; O LG | 5 y F , T , F , T |
| = | LE y, 6 F , T , T , F
| =» , L , 7 , F , T , T | T
y 2 y U , 8 , T F F , F
| 7> UG : 9 T, F | F , T |
! 7= , UE .10 , T , F , T | F |
X 7>= \ UEG ' 11 , T , F ,oT o, T
| ¢ UL P12 T, T F , F
: 72> i ULG p 13 T o, T 4 F | T
' 7<= .\ ULE P 14 y, T 4+ T , T , F
X 7{= , ULEG , 15 , T , T , T , T

Refer to Chapter 10, "Relational Test Instructions", for a discussion
on the Relational Test instructions.

3.1.6 Exceptions

This section describes the conditions under which the user
interceptable architectural exceptions are generated. Also provided
are the default results if the exception handler is not enabled, and
the results supplied by the system exception handlers.

The following exceptions are mutually exclusive:

Floating Point Invalid Operation
Floating Point Divide by Zero
Floating Point Underflow
Floating Point Overflow

0Oo0oo0O0

The Floating Point Inexact Result exception may coincide with either
Underflow or Overflow. In this case, the Underflow or Overflow has
precedence. If both exceptions occur and only one exception handler is
enabled, then the message appropriate to the enabled exception is sent
to the exception handler along with the information that both
exceptions occurred. If both or neither of the exception handlers are
enabled, the action appropriate to the exception with priority is
carried out.

DATA REPRESENTATIONS

3.1.6.1 Floating Point Overflow

If the exXception handler is disabled, the result depends on the
rounding mode as shown in the following table:

Table 3-3. Floating Point Overflow Result Matrix
with Disabled Exception Handler

, Rounding Mode Sign of Result Returned Value :

Round to Nearest Even
Round to Zero

Round to Plus Infinity
Round to Minus Infinity
Round to Plus Infinity
Round to Minus Infinity

infinity with sign
largest normalized with sign
largest normalized with sign
largest normalized with sign
infinity with sign
infinity with sign

HOOMMM

- If the system exception handler is enabled, the system will calculate
the infinitely precise result and round it to the precision of the
destination. This result is then scaled and is passed to the exception
handler, as follows:

Single Precision Actual result of exponent minus 192
Double Precision Actual result of exponent minus 1536
Extended Precision Actual result of exponent minus 24576

3.1.6.2 Floating Point Underflow

Exponent underflow is detected before rounding. If the exception
handler is enabled, then the system will calculate the infinitely
precise result rounded to the precision of the destination. The result
is then augmented and passed to the exception handler as follows:

Single Precision Actual result of exponent plus 192
Double Precision Actual result of exponent plus 1536
Extended Precision Actual result of exponent plus 24576

If the exception handler is disabled in Flush to Zero mode, then the
system will set the Underflow exception and deliver zero as the result.
If not in Flush to Zero mode, then the system delivers a denormalized
number as the default result. In this case, the Underflow exception is
set only 4if the result is not exact (which will also set the Inexact
Result exception).

DATA REPRESENTATIONS

3.1.6.3 Floating Point Divide by Zero

If the exception handler is disabled, then the result is infinity with
appropriate sign (XOR the signs of the operands). The system exception
handler will terminate the process or enter the Debugger if enabled.

3.1.6.4 Floating Point Invalid Operation

An Invalid Operation exception occurs if an operation is attempted on
an operand for which the operation is not defined, such as a floating
point multiply with an unordered operand. If the exception handler is
disabled, the default result for an Invalid operation is a Quiet NaN
(Not a Number) whose significand is not necessarily related to the
significand of either of the operands, even if one of them 1is a
Signaling NaN.

The canonical Quiet NaN is as follows:

Single Precision 7F80 0001
Double Precision 7FF0 0000 2000 0000
Extended Double 7FFF 0000 0000 0000, 8000 0100 0000 0000

The system exception handler will terminate the process or enter the
Debugger if enabled.

3.1.6.5 Floating Point Inexact Result

An inexact exception occurs if information is lost by rounding, or if
infinity is delivered as the result of operations on finite operands.
If the exception handler is disabled, the computed result is delivered.
The system exception handler will terminate the process or enter the
Debugger if enabled.

3.2 INTEGER

The ELXSI architecture provides for 8-, 16-, 32-, and 64-bit integers.
Integers may be either signed or unsigned. If signed, the integer is
represented in two's complement form, and the sign Dbit is bit O.
Integers are low-order adjusted when in registers. Memory operands
loaded into registers are sign or zero extended to 64-bits as specified
by the operation.

DATA REPRESENTATIONS

8-bit Signed Integer

1 8iiiiiii;

16-bit Signed Integer

\Siiiiiiiiiiiiiii,

0 15

32-bit Signed Integer

ySiiiiiiiiiidididdiiiiidiidddiiiidig,

0 31

64-bit Signed Integer

:Siii:

0] 63

Not all types of integer operations are supported for all types of
integers. Please see Section 6.1, "Multiple Precision Integer
Arithmetic", for specific usage.

3.2.1 Exceptions

This section describes the conditions under which the user
~interceptable hardware exceptions are generated. Also provided are the
default results if the exception handler is not enabled, and the
results supplied by the system exception executioners.

DATA REPRESENTATIONS

3.2.1.1 Integer Overflow

Integer overflow occurs with signed integer operations that generate
results exceeding 64 bits, and with certain operations that attempt a
store with overflow check. Operations generating an integer overflow
will place the result into the target operand before checking the
exception handler enable bit in the PSW. High order bits of the result
that do not fit into the target operand are lost, as the result exceeds
the modulus of the target. The system exception handler will terminate
the process or enter the Debugger if enabled.

3.2.1.2 Integer Divide by Zero

This exception occurs with an attempt to divide by 2zero. If the
exception handler is disabled, then the target operand remains
unchanged without overflow. The system exception handler will
terminate the process or enter the Debugger if enabled.

3.3 LOGICAL

A logical datum is a bit-string (array of bits) with length 8-, 16-,
32-, or 64-bits. Bit-strings loaded from memory are low-order

justified in the register and are unsigned. Immediate operands are
sign extended to 64 bits when in a register.

8-bit Logical

16-bit Logical

! bbbbbbbbbbbbbbbb |

0 15

24-bit Logical

| bbbbbbbbbbbbbbbbbbbbbbbb

0 23

DATA REPRESENTATIONS

32-bit Logical

| bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb !

o} 31

40-bit Logical

| bb !

o 39

48-bit Logical

:bb:

0 47

56-bit Logical

:bb:

0 55

64-bit Logical

:bb:

0 63

Chapter 9, "Logical Instructions", provides additional information on
utilization by the instruction set.

3.4 CHARACTER

Characters on the ELXSI are ASCII encoded bytes. Bits in a character
are numbered from left to right, high order to low order, 0 to 7. For
the ASCII representations, bit 0 of the byte is zero. A '1' in bit 0
is presently undefined for an alternate character set.

DATA REPRESENTATIONS

The ASCII equivalence table may be seen below:

Table 3-4. ASCII Equivalence

\Low Nibble , High Nibble |
 hex | , 00 10 20 30 40 50 60 70

\ , dec , O 16 32 48 64 80 96 112

00, O | NULDLE SP O @ P = p ,
01, 1 ,SOHDCL ! 1 A. Q a 4q |,
Jj 02, 2 ,STXDC2 " 2 B R b r
103, 3 ,ETXDC3 # 3 C S ¢ s
104, 4 ,EOTDC4 $§ 4 D T 4 t ,
105, 5 ,ENQNAK % 5 E U e u ,
06, 6 ,ACKSYN &« 6 F VvV f v
07, 7 BELETB ' 7 G W g w
08, 8 ,BS caN (8 H X n x ,
109, 9 HT EM) 9 I Y i y ,
, 0B, 10 ,LF SUB * : J 2 3 =z
'oB! 11 |vr BSC + ; kK [x { |
roc, 12 , FF PS8 , < L \N 1 ;
'op! 13 !cR 68 - = ¥ 1 m }
OE, 14 ,S8SO RS . > N * n =~ |
,OF , 15 ,8I Us / ? O o DEL ,

3.5 STRING

Type String is an array of ASCII characters. Strings may start on any
byte boundary and have a maximum length of (2**31)-~1 characters. Bytes
in a character string are numbered from left to right, low memory
address to high memory address, starting from O. Refer to the
Character data type for a description of the ASCII character.

3.6 NUMERIC STRING

A numeric string represents an unsigned decimal integer value through a
character string. Each byte in the string must contain the ASCII
representation of a decimal digit (Hex 30 through 39). When in a
register, leading and trailing decimal zeros may be represented by hex
00 or hex 30. However, all ASCII instructions (CVT.IA, ASCII.ADD,
ASCII.ADDC, ASCII.SUB, and ASCII.SUBC) return all digits in ASCII
display format, that is, all byte values within the range hex 30 to hex
39.

DATA REPRESENTATIONS

Numeric String in Register

xiD!xiD!x!Dix!Dix!Dlx|Dix|Dix|D]

0 1 2 3 4 5 6 7

where
hex3 or [= 0 if all bits to left or right = 0]
hex0 through hex9

X
D

INSTRUCTION SET COMPOSITION

4 INSTRUCTION SET COMPOSITION

Instructions on the ELXSI machine operate on a large variety of data
types using standard primitives and microcode optimizations. This
chapter addresses those instructions that execute within a process.
The message system instructions may be found in Chapter 14.

Most instructions within a process are register directed with the
design of minimizing accesses to memory. A fast addressing and
execution schema results from a variable length instruction format and
efficient operand addressing. Basically, the information within the
first 3 nibbles specifies the instruction format, the addressing form,
and the operation. The first pass at the instruction defines all
operands, fetches the memory operand (if any), and hands the operation
over to the appropriate hardware to execute. There are no memory
indirect operations, and in general, no more than one memory reference,
SO only one memory cycle is used.

4.1 INSTRUCTION TYPES

There are two overall types of instructions on the ELXSI, generalized
and non-generalized. Instructions that typically manipulate register
data and require addressing flexibility fall into the generalized
class. These include 1load, store, arithmetic, 1logical, and data
conversion instructions. Instructions that do not need addressing
flexibility or are highly specialized fall into the non-generalized
class and include flow of control instructions, microcode optimized
instructions, and instructions for inter-process communication.
Non-generalized instructions minimize the overall instruction set
complexity by eliminating unneeded addressing forms.

4.2 ADDRESSING MODES

Addressing modes allow the the user (compiler or human) to optimally
address operands for the instruction. Non-memory operands include
registers and immediate data. Memory operands may be addressed through
register indirects (base and index) and immediate data, or various
combinations thereof.

Generalized instructions have 15 addressing modes; 5 of these belong
to a subclass known as short-op addressing. The other ten, referred to
as generalized addressing modes, enable a wide selection of addressing
forms and are characterized by 12-bit opcode fields. A property of the
generalized class of instructions is the singular correspondence
between an addressing mode and the format and length of the
instruction; both are determined from the first byte.

Short-ops have single-byte opcodes and exist as optimizations of
frequently used long-op (generalized) addressing forms. There are 5
addressing modes, and there is usually a corresponding long-op
instruction for each short-op form.

INSTRUCTION SET COMPOSITION

Non-generalized instructions have addressing forms that are unique to
each instruction, and they have no fixed format.

The diagram below shows a typical form of a generalized class
instruction with generalized addressing. The Instruction Specification
Field (ISF) holds the opcode and the addressing mode. The target
register field specifies the register to receive the results of a
computation; this register may concurrently be a source. The
addressing information area is of variable 1length and may contain
register specifier fields for source operands, an address, or immediate
encoded data.

Typical Form of Instruction using Generalized Addressing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 nibble

: ISF VT addressing information ,

,___Target register field

Instruction specification field

The first 2 nibbles of the opcode are sufficient to establish the
addressing class and the addressing mode, if any. This relationship
may be seen below:

Addressing class Nibble 0 is in set AND Nibble 1 is
Generalized = [34567BCDETF] AND [non-zero]
Short-op = [01 89 Aa] AND [non-zero]
Non-generalized = [opcode] AND [zero]

Generalized instructions are always characterized with a non-zero value
in nibble 1. When this is true, nibble 0 establishes the addressing
mode and, with the exception of appendages, the format and the length
of the instruction.

INSTRUCTION SET COMPOSITION

The generalized addressing (long-opcode) form is shown below:

ISF for Generalized Addressing Forms

bit O 3 4 7 8 11
->
: Address mode OP1 X OP2 '
->
A A A A A A
1 i 1
| | |
[34567BCDEF] non-zero opcode opcode

The short-opcode addressing forms, belonging to the class of
generalized instructions, use nibble 1 for the opcode and nibble 0 for
the addressing mode, as seen below:

ISF for Short Opcode Addressing Forms

bit O 3 4 7
-
' Address mode OP1 X
-
A A A A
I 1
] |
[01 89 a] non-zero opcode

The non-generalized class of instructions are characterized by having a
zero value in nibble 1. They do not have addressing modes, rather the
addressing schema is specific to each instruction. Nibble zero is now
part of the opcode. Its usual form may be seen below:

ISF for Non-Generalized Instructions

bit 0 3 4 7 8 11
->
. OPO 1 OP1 ' OP2 X
->
A A A A A A
] 1 I
H i 1
opcode opcode = 0 opcode (optional)

INSTRUCTION SET COMPOSITION

The remainder of these instructions hold register specifier fields,
addressing information, immediate encoded values, and appendages as
appropriate.

4.3 REGISTER SPECIFIERS

Register specifiers either point to register operands or hold immediate
values as an operand. A register operand may be a register whose
contents are to be used 1in, say, an arithmetic operation, or whose
contents may point to a memory address. Register specifiers reside in
one or more 4-bit fields of an instruction and have a numeric range of
(*0' to 'F') hex, representing the general purpose registers RO to R15.

For the generalized instructions, the inclusion of the 4-bit register
specifier fields is specific to each addressing mode rather than to the
instruction. Regardless of whether the register is operative in a
given instruction, the field must be included if it is specified in
that addressing mode. This is because instructions have a fixed length
characteristic of each addressing mode. For example, instructions that
have monadic operations, such as logical NOT, may use only 2 operands,
the target and source operand. Operand Ry, usually another source
operand, is ignored, although its register specifier field is encoded
in the instruction as a requisite of the addressing mode.

Register Specifiers for Generalized Addressing Modes

nibble 0] 1 2 3 4 5 6 7 8 9

, am ,OP1 ,0P2 , RX , Ry , Rz

— —-=>

In Generalized Addressing modes, the nibbles labeled RX, Ry and Rz may
be used for register specifiers. RX is usually the target operand, and
in some cases may be both the source and target.

Register Specifiers for Short-Op Addressing Modes

nibble 0 1 2 3

In Short-Op addressing modes, the nibbles labeled Rw and RX may be used
for register specifiers. RX is usually the target operand, and in some
cases may be both source and target.

INSTRUCTION SET COMPOSITION

Register Specifiers for Non-Generalized Instructions

nibble o 1 2 3 4 5 6 7 8 9

|OPO |OP1 ,0P2 , RXx , Ry ;, Rz |, Rt , Rv | == | == |

For non-generalized instructions, no strict format is followed, and all
labeled nibbles (Rx through Rv) may be used for register fields.

4.4 DESCRIPTION AND USE OF ADDRESSING MODES

This section describes each addressing mode with the memory layout and
the assembler usage. The diagrams show memory 1layouts of the 15
generalized and short opcode addressing modes. The memory layouts of
the non-generalized instructions are instruction-specific and are
described with the instructions. Use of the given assembler syntax
will force the specified addressing mode, rather than allowing the
compiler to make the selection.

The symbols have the following meanings:

o A register specifier surrounded by brackets "[]" indicates that
the contents of the register point to a memory location. If
these symbols are adjacent, then sum the register quantities to
find an effective address.

o A symbol having the form "e{}" indicates a displacement added to
find an effective address. The number within the brackets
indicates the bit length of the displacement quantity encoded in
the instruction.

¢ A symbol having the form v=e {}" indicates that the value encoded
in the instruction is to be used as an immediate operand rather
than for an address.

Further descriptions may be found in Appendix E.

The address space for a process in the ELXSI machine is 32 Dbits. All
effective addresses are 32-bit signed integers, and all address
calculations use signed arithmetic. If an operand or an address
computation exceeds 32 bits in length (such as a base register), the
lower 32 bits are extracted without regard for the value of the unused
high order bits. Overflow is ignored (and will not be detected).

INSTRUCTION SET COMPOSITION

There are no restrictions on register usage for establishing an
effective address. Any register may be used for the base, index or
displacement as the user may find appropriate. To find an effective
address, simply add together the contents of the registers specified
for the address computation along with any immediate values encoded in
the instruction, as applicable to the addressing mode.

Instructions start on any byte boundary and may cross physical memory
boundaries.
4.4.1 Mode 0: 1 Register, Register (Short)

Assembler usage: op RX,Rw

4.4.2 Mode 1: 1 Register, Register (Short)

Assembler usage: op RX,Rw

Modes 0 and 1 are used when both operands reside in registers and the
result may replace one of the operands. In general, Rx is both a
source and a target, and Rw 1is a source. These are short opcode
versions of mode 3.

4.4.3 Mode 3: 2 Register, Register

Assembler usage: op RX,Ry,Rz

y, 3, long | RX, Ry , Rz

Mode 3 is used when the source operands reside in registers and the
target is a register. 1In general, RXx is the target and Ry and Rz are
the sources. For monadic operations Ry is usually ignored.

INSTRUCTION SET COMPOSITION

4.4.4 Mode 4: 1 Register, Absolute Memory Address

Assembler usage: op Rx,ef{16}

. 4, long , RXx , 16-bit vir-abs |

Mode 4 uses an unsigned 16-bit integer as the virtual memory address of
the data item, and is intended to provide access to global scalars
residing in the first 64 Kbytes of the virtual memory space. This mode
is an optimization of mode 6.

4.4.5 Mode 5: 2 Register, Immediate

Assembler usage: op Rx,Ry,=e{12}

., 5, long | RXx , Ry , 12-bit immed ,

Mode 5 1is used when one of the source operands is immediate. The
immediate operand is a 12-bit signed integer. This is an optimization
of mode 7. Since most immediate values are small, this instruction
will suffice in a majority of the cases.

4.4.6 Mode 6: 2 Register, Long Absolute Memory Address

Assembler usage: op RX,Ry,e{32}

, 6, long , RX, Ry, O, 32-bit vir-abs \

Mode 6 uses a signed 32-bit integer as the virtual memory address of
the data item, to provide access to global scalars residing anywhere in
the virtual memory space.

4.4.7 Mode 7: 2 Register, Long Immediate

Assembler usage: op Rx,Ry,=e{32}

7, long RX Ry, 0 , 32-bit immed \

Mode 7 is used in place of the 2 Register, Immediate mode when the
immediate operand cannot be held in a 12-bit signed integer.

INSTRUCTION SET COMPOSITION

4.4.8 Mode 8: Stack Pointer Relative (Short)
Assembler usage: op Rx,[SPle6

where e = 4n, 0{=n<{=15

4.4.9 Mode 9: Stack Pointer Relative (Short)
Assembler usage: op Rx,[SPle6

where e = 4n, 0<{=n{=15

I 9 ,sh, n | Rx

Modes 8 and 9 provide access to local variables. The effective address
([sp] + 4*n) Sjumps in multiples of four bytes relative to the stack
pointer. These modes are an optimization of modes D and F, and one of
them must be used if either the data item does not start on a multiple
of 4 Dbytes from the stack pointer, or the data item is out of range of
these modes.

4.4.10 Mode A: 1 Register, Base + Zero Displacement (Short)

Assembler usage: op Rx,[Rw]

Mode 2 is used to access based scalars (such as in the Pascal heap),
and to reference parameters. This mode is a short opcode optimization
of mode B, and has only two operands. The effective address = [Rw].

4.4.11 Mode B: 2 Register, Base + Zero Displacement

Assembler usage: op Rx,Ry,[Rz]

B, long ,; Rx ; Ry , Rz,

Mode B is the generalized form of mode A, and is used in a similar
fashion. This mode (and mode A) are sometimes referred to as "register
indirect®. The effective address = [Rz].

INSTRUCTION SET COMPOSITION

4.4.12 Mode C: 1 Register, Base + Index + Zero Displacement

Assembler usage: op Rx,[Ry][Rz]

i C, long | Rx , Ry | Rz ,

Mode C is useful for access to elements of arrays passed as parameters
to a subroutine. The effective address of the data item = [Ry][Rz], or
the sum of the contents of Ry and Rz.

4.4.13 Mode D: 1 Register, Base + 12-bit Displacement

Assembler usage: opr Rx, [Ry]e{lz}

., D, long |, RXx , Ry , 12-bit dspl

Mode D is a generalization of modes 8 and 9, and is used to access
local scalars and records, or records in the heap. This mode is an
optimization of mode F. The effective address of the data item = [Ry]
+ the 12-bit signed displacement.

4.4.14 Mode E: 1 Register, Base + Index + 32-bit Displacement

Assembler usage: op Rx,[Ryl[Rzle{32}

\ E| long | Rx | Ry | Rz | ‘ 32-bit dspl !

Mode E is wused for accessing arrays of records passed as parameters.
The displacement is used to give access to the elements of the record.
The effective address = [Ry][Rz] + 32-bit signed displacement.

4.4.15 Mode F: 2 Register, Base + 32-bit Displacement

.

Assembler usage: op Rx,Ry,[Rzle{32}

F, long |, RXx, Ry, Rz , 32-bit dspl '

Mode F provides access to the entire virtual memory, relative to a base
register, and 1is a generalization of modes 8, 9 and D. The 32-bit
displacement is signed. It is used to access global arrays, and may be
useful for access to mapped files. The effective address of the data
item = [Rz] + 32-bit signed displacement.

INSTRUCTION SET COMPOSITION

4.5 IMPLEMENTATION EXAMPLES

The Integer Multiply instructions are wused to illustrate some
addressing forms, register usage, and instruction encoding at the
machine level. Detailed descriptions of each of the addressing modes
are in the previous section. Descriptions for the symbols may be found
in Appendix F.

——————————— Opcode

, MUL.16 MUL.32 MUL.64 Implementation :
: OBx i Rx <~ RXx * Rw (short opcode) \
\ 3B8 i Rx {~ Ry * Rz X
: 498 4a8 4B8 \ Rx {- Rx = ef1e} !
: 5B8 I Rx {- Ry * =ef{12} \
! 698 6A8 6B8 i Rx <{- Ry = e{32} \
: 7B8 . Rx <~ Ry * =e{32} :
: B9S BAS BBS i Rx {~ Ry * [Rz] |
! cos Cas CB8 . Rx <~ Rx = [Ryl[Rz] |
: D98 DAS DB8 . Rx <~ Rx = [Rylef{12} \
: E98 EA8 EBS . Rx <~ Rx = [Ryl[Rzle{32} \
: Fo8 FAS8 FB8 , Rx <~ Ry =» [Rzle{32} \

A A A A A

] Source Operands

A
| i I
! I !
I [I
I t |
I I
| I
| i
I |

Addressing mode Target Operand

The MUL instruction finds the product of the source operands and places
the result into the register specified by RX. The instruction may
specify two operands or three operands. In 2 operand forms, found in
addressing modes [0 4 C D E], RX is both the target and a source
operand, and 'last operand' is the other source operand. In 3 operand
forms, found in addressing modes [3 5 6 7 B F], Ry and 'last operand’
are the source operands, and Rx is the target operand.

Find the code EB8. Observe that this is a MUL.64 instruction of the
generalized addressing type with addressing mode 'E'. The action, from
the 'Implementation' column to the right, reads,

"Multiply the contents of the register specified by RX with the
contents of the effective address, and place the result into the
register specified by Rx".

The effective address is the sum of registers Ry + Rz + the 32-bit
signed integer displacement encoded in the instruction. The contents
of the effective address is a 64-bit Integer (MUL.64).

Find the code EAS. Note that the addressing mode is the sane.
However, the contents of the effective address is now a 32~bit word
(MUL.32). For this instruction, the 32-bit word is sign extended to
64 bits prior to the multiply.

INSTRUCTION SET COMPOSITION

Find the code OBxX. This is a MUL.64 instruction with a short opcode
addressing format. '0' specifies the addressing mode, and 'x'
indicates that the nibble belongs to the register specifier Rw. The
action is

"Multiply the contents of registers RX and Rw, and place the result
into register Rx".

Assume that we have a 16-bit local scalar that we wish to multiply
against the contents of register R11l, with the result placed in R11l.
We find that the MUL.16 instruction using addressing mode 'D', is
appropriate. The opcode becomes 'D98'. Our base register, [Ryl, is
register R9. Assuming some quantities:

base register = 0000000000100020
l6-bit scalar = 8000
12-bit displacement = 032
source/target R1l = 2000000000000000

The effective address of the scalar is '100052' hex, or the sum of the
base register and the 1l2-bit displacement. The instruction now takes
the 16-bit scalar from this 1location and sign—extends it, as all
integer operations are on 64-bit quantities. The 16-bit sign-extended
scalar is now

FFFFFFFFFFFF8000

The sign-extended scalar is then multiplied with Rll. The instruction
generates an INTEGER OVERFLOW exception if a carry is propagated out of
the sign bit. This is the case here. The exception is trapped if the
INTEGER OVERFLOW trap is enabled in the Process Status Word, otherwise
the result is placed into R1l and the integer overflow is ignored.

The MUL.16 instruction used in the previous example would be encoded as
follows:

DS8B9032
where D = addressing mode
98 = opcode for MUL.1l6
B = source/target register
9 = base register
032 = displacement

DATA TRANSFER INSTRUCTIONS

5 DATA TRANSFER INSTRUCTIONS

The instructions described in this chapter are used to move data.
These instructions are generally classified according to the data types
that they operate on, as listed below.

The monadic transfer instructions move data in byte-size quanta between
registers, from a register to memory, or from memory to a register.

Bit field insertion and extraction instructions allow the manipulation
of data fields having variable length and placement within a register.

Mutual exclusion instructions allow uninterruptable swaps between a
register and memory. These are typically used to 'semaphore' between
co-operating processes.

The byte string copy instructions allow the movement of string type
data.

Monadic Transfer Instructions

LD Load Register Sign Extended

LDZ Load Register Zero EXtended

ST Store Register

STI Store Immediate

STIN Store Immediate Negated

STV Store Register with Overflow Check

Bit Field Insertion and Extraction

INSERT Insert Bit Field
EXTRACT Extract Bit Field, Sign Extended
EXTRACTZ Extract Bit Field, Zero Extended

Mutual Exclusion Ihstructions
EXCH Exchange Register and Memory
EXCH.AND
EXCH.OR

Byte String Copy Instructions

COPYB Copy Byte String
COPYB.CONST Copy Constant Byte String

DATA TRANSFER INSTRUCTIONS

5.1 MONADIC TRANSFER INSTRUCTIONS

These instructions copy byte-—oriented data between registers or between
a register and memory. LDx instructions move data into a register
specified by OP1l. STx instructions move data into a memory location
specified by 'Last Operand'. Register to register loads for
non-fullword operands and register to register stores are undefined.

LD Load Register Sign Extended
LDZ Load Register Zero Extended

Copy 'Last Operand' into Operand 1, low order justified. Sign extend
the result in the 64-bit destination operand for LD, and zero extend
the result for LDZ.

——————————— Opcode

, LD.8 LD.16 LD.32 LD.64 , Implementation :
: 01x , Rx {~ Rw '
' 3BO i Rx {~ Rz '
| 480 490 4R0 4BO . Rx <~ efie} \
' 5B0 i Rx <~ =ef{12} '
| 680 690 6R0 6BO i Rx <~ e{32} !
: 81x . Rx <~ [spleie} \
X Alx y Rx <~ [Rw] \
| B8O B90 BAO BBO i Rx <~ [Rz] \
, €80 c90 CRO CBO y Rx <~ [Ryl[Rz] '
1 D80 D90 DAO DBO \ Rx <- [Rylef12} '
! ES0 E90 EAO EBO , Rx <- [Ryl[Rz]e{32} :
| F80 F90_ FAO FBO | Rx <~ [Rzle{32} '

Opcode
\LDZ.8 LDZ.16 LDZ.24 LDZ.32 LDZ.40 LDZ.48 LDZ.56, Implementation X
481 491 4B1 4R1 497 477 4B7 | Rx <~ e{16}
681 691 6B1 6A1 697 6A7 6B7 , Rx <{- e{32}
91x Rx - [sple{e}
B81 B91 BBl BAl B97 BA7 BB7

C81 col CBl Ccal c97 CA7 CB7
D81 D9l DB1 DAl D97 DA7 DB7
E81 E91 EBl EAl E97 EA7 EB7
F81 FO1l FB1 FAl F97 FA7 FB7

Rx <{- [Ry][Rz]

{- [Rylef{12}
[Ry]I[Rz]e {32}
{- [Rz]e{32}

gEg

|
!
Rx <{- [Rz] E
|
l

Instruction Specific Exceptions: none

5.1.3 ST

DATA TRANSFER INSTRUCTIONS

Store Register

Copy the rightmost (low order) bits of Operand 1 into

‘Last Operand'.
Stores into registers are undefined for this instruction.

Opcode

, ST.8 ST.16 ST.24 ST.32 ST.40 ST.48 ST.56 ST.64, Implementation '
| 460 461 46C 462 46D 46E 46F 463 | ef{1e} {- Rx ,
, 660 661 66C 662 66D 66E 66F 663 | e{32} {- Rx ,
! 87x 86x . [spleie} {- Rx ,
! A7x , [Rw] {- Rx |
, B6BO B6l B6C B62 B6D BGE B6F B63 | [Rz] {- Rx ,
; C60 CB61 C6C C62 C6D CBE C6F €63 | [Ryl[Rz] {- Rx |
, D60 D6l D6C D62 DD DBE D6F D63 , [Ryle{12} {- Rx |
, EBO E61 E6C E62 E6D EGE E6F E63 , [Ryl[Rz]e{32} <~ Rx |
, F6BO F61 F6C F62 F6D F6E F6F F63 | [Rzle{32} {- Rx |,
Instruction Specific Exceptions: none

5.1.4 STV

Copy the

49, or 33 Dbits

Store Register

low order 8, 16,
Operand 1 (Rx) for Integer

are not

handling, refer to Chapter

with Overflow Check

or 32 bits to 'Last Operand', and then check
Overflow occurs if the upper 57,

Overflow.
the

2,

same.

YArchitecture".

For a discussion on exception

——————————— Opcode

: STV.8 STV.16 STV.32 Implementation

: 464 465 466 . efie} {- Rx
: 664 665 666 v ef32} {- Rx
! 96x I [sple{s} {- Rx
: A6x X [Rw] {- Rx
: B64 B65 B66 . [Rz] {- Rx
: C64 C65 C66 . [Ry][Rz] {- Rx
' D64 D65 D66 ' [Rylef12} {- Rx
' E64 E65 E66 ' [Ryl[Rz]e{32} <- Rx
' F64 F65 F66 v [Rzle{32} {- Rx

Instruction Specific Exceptions:

INTEGER OVERFLOW

DATA TRANSFER INSTRUCTIONS

5.1.5 STI Store Immediate

Store the value of the unsigned 4-bit Rx field into the 'Last Operand',
and zero extend to the appropriate size. A STORE IMMEDIATE of O has
the effect of a CLEAR instruction. The range for Operand 1 is (0 to
15).

——————————— Opcode

| STI.8 STI.16 STI.32 STI.64 Implementation :
: 05x | Rw <{- =Rx (0..15) :
! 353 | Rz {- =Rx (0..15) :
| 450 451 452 453 . efie} {- =Rx (0..15) \
I 650 651 652 653 I ef32} {- =Rx (0..15) !
! 85x ' [sple{s} {- =Rx (0..15) !
! B50 B51 B52 B53 i [Rz] <{- =Rx (0..15) \
, C50 c51 c52 C53 . [Ryl[Rz] {- =Rx (0..15) \
, D50 D51 D52 D53 . [Rylef12} {- =Rx (0..15) :
! E50 E51 E52 ES3 ' [RyllRzle{32} <~ =Rx (0..15) \
: ! [Rz]e{32} {- =Rx (0..15) \

F50 F51 F52 F53

Instruction Specific Exceptions: none

5.1.6 STIN Store Immediate Negated

Zero extend and then form the 1l's complement of the unsigned 4-bit RX
field, storing the result into 'Last Operand'. The range for immediate
operands is (-16 to =-1), as the one's complement biases the value of
the 4-bit operand by -1.

——————————— Opcode

| STIN.8 STIN.16 STIN.32 STIN.64, Implementation \
' 15 |, Rw {- 1's cp =Rx

: 357 |, Rz {~- 1's cp =Rx |
| 454 455 456 457 | ef1e} {~ 1's cp = :
| 654 655 656 657 , e{32} {- 1's cp = ;
, B54 B55 B56 B57 [Rz] {(~- 1's cp = :
| C54 C55 C56 c57 , [Ryl[Rz] {(-1's cp = !
| D54 D55 D56 D57 , [Rylef12} {-1's cp = :
! E54 E55 E56 E57 | [Ryl[Rzle{32} <~ 1's cp =Rx |
! F54 F55 F56 F57 | [Rzle{32} {- 1's cp = !

Instruction Specific Exceptions: none

DATA TRANSFER INSTRUCTIONS

5.2 INSERT AND EXTRACT BIT FIELD OPERATIONS

These instructions move bit fields into or out of registers. The
length and starting 1location of the bit fields are specified in the
appendage of the instruction.

5.2.1 EXTRACT Extract Bit Field, Sign Extended
5.2.2 EXTRACTZ Extract Bit Field, Zero Extended

Extract a bit field from register Rz and store right justified into
register RX. SIGN extend the result for EXTRACT and ZERO extend for
EXTRACTZ. The appendage holds a start bit pointer and a length wvalue
for the desired extract. The start bit is the leftmost or sign bit
position of the bit field, and the length value is 64 minus the bit
field length. The range for the start value is 0 to 63. The range for
the length wvalue is 1 to 64. The sum of the start bit and the field
width must be less than or equal to 64; otherwise, results will be
undefined, and implementation dependent side effects will occur.

, Opcode assignment , Code Implementation X
X EXTRACT , Do Rx <- Rz:{st:lend>, sign extended |
) EXTRACTZ \ DO7 Rx {- Rz:{st:len)>, zero extended \

y, D,0, 6, x,0, 2z, appendage , EXTRACT

vy D,0,7,%,0, 2z, appendage | EXTRACTZ

—h A T T T T

\ Source register Rz

Result register Rx

DATA TRANSFER INSTRUCTIONS

The appendage has the following format:

, 0, O, Start bit pos (0~63) , 0 , 0 , 64 - bit field length ,

bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

There is no data checking of appendages or operands with these
instructions. Use with caution.

Instruction Specific Exceptions: None

5.2.3 INSERT Insert Bit Field Operation

INSERT takes a right justified bit field from register Rz, displaces it
leftward, overlays it onto an image of Ry, and places the result into
Rx. The appendage specifies the length of the field and the starting
bit position for the overlay. Values in Ry and Rz are unchanged.

A bit field length of zero is allowed as a NULL case. Use a LD.64
instruction for bit field lengths of 64. High order bits of Rz not in
the bit field to be inserted MUST be zero (observe the effect of signed
integers in this register). The sum of the start bit and the field
width must be less than or equal to 64; otherwise, results will be
undefined, and implementation dependent side effects will occur.

DATA TRANSFER INSTRUCTIONS

, Opcode assignment , Code | Implementation \

X INSERT , DO5 | Rx {- Rz inserted into Ry .

The format of the instruction is

' D,0,5 %,y ,z, appendage '

X Source register

Source register

The appendage has the following format:

e ettt e e T T —

, 0, 0, Start bit pos (0-63) , 0 , O |bit field length 0-63 |

bit - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Typically, these instructions are used to manipulate packed records.
Observe the asymmetry of the INSERT and EXTRACT instructions, as INSERT
does not check overflow. Also observe the differences in the
appendages, keeping in mind that there is no data checking of
appendages or operands with these instructions.

Instruction Specific Exceptions: none

5.3 MUTUAL EXCLUSION INSTRUCTIONS

Mutual Exclusion instructions perform logically selective and
uninterruptable register—-memory swaps. The instructions are valid only
on word-aligned, full 64-bit words, that is, the lower 3 bits of the
target address must be zero. The operations work on both cacheable and
non-cacheable memory operands. In both cases, the execution of the
instruction is ‘'atomic', i.e., the read modify write sequence is
indivisible with respect to any other process. If the target is in
cache, then only the cache (and not memory) is modified.

DATA TRANSFER INSTRUCTIONS

These instructions generally have two types of applications; in the
first case to semaphore between processes using a non-cacheable data
item as a target, and in the second case to enable a process to
coordinate with itself. Using cacheable data items to semaphore
between processes is NOT recommended because of critical section
problems (one process may access the datum in cache while another
process accesses the datum with the same address in memory).

The EXCH operation exchanges RX with the memory operand pointed to by
Rz. For the logical variants, the instruction performs a logical <op)
between RxX and the 64-bit memory operand, places the result in Rx, and
then EXCHanges RX with memory. The memory location is specified by a
base register.

5.3.1 EXCH Exchange Register and Memory
5.3.2 EXCH.AND
5.3.3 EXCH.OR

| Opcode assignment , Code Implementation |
! EXCH \702 [Rz] <{-> Rx |
: EXCH.AND | 703 | [Rz] <> Rx { Rx AND [Rz] D> |
i i I !
] i I]

EXCH.OR 704 [Rz] {-> Rx < Rx OR [Rz] >

The format of these non-generalized instructions is

V7,012, X -, 2z, EXCH instruction
71,0 ,3,%x,~- .2, EXCH.AND instruction
V7,04, %, -z, EXCH.OR instruction
e _An A A

: Base register Rz

Register Rx

Instruction specific exceptions: none

DATA TRANSFER INSTRUCTIONS

5.4 BYTE STRING COPY INSTRUCTIONS

Byte string copy instructions perform memory-to-memory copies of

strings (COPYB), or repeatedly copy fullword constants into a string
(COPYB.CONST) .

5.4.1 COPYB Copy Byte String

Copy the source string into the destination string. RX contains the
address of the destination string, Ry contains the address of the
source string, and Rz contains the length of the source and destination
strings which are of equal length. The instruction appears to move the
string into a temporary location and then to the destination, such that

it cannot be used to propagate a fill character through string
overlapping.

| Opcode assignment , Code Implementation '

| COPYB \ 706 [Rx]:<st> <~ [Ry]:<{st>, Rz:{len)> '

The format of this non-generalized instruction is

V7,0 ,6 ,%X,9Y,2, COPYB instruction

X Rz contains length of strings

Ry contains address of source string
Rx contains address of destination string

Opcode
Instruction Specific Exceptions: none

Special notes:

The contents of RXx, Ry, and Rz are undefined after execution of this
instruction.

Negative string lengths are treated as if the string has zero length
and no data movement takes place. To generate an exception on negative
string lengths, use a compare and generate exception instruction.

DATA TRANSFER INSTRUCTIONS

5.4.2 COPYB.CONST Copy Constant Byte String

RxXx contains the address of the destination string, Ry contains an
8-byte source word, and Rz contains +the 1length of the destination
string. The instruction appears to perform a word-wise copy into
successive destination string words, with the first byte of the source
word overlaying the first byte of the destination, until [Rz] bytes
have been copied. The length of the destination string need not be a
multiple of 8 bytes.

, Opcode assignment , Code Implementation \

, COPYB.CONST , 707 [Rx]:<{st> <{- Ry, Rz:{len) \

The format of this non-generalized instruction is

17,0 ,7 X ,9Y, 2, COPYB.CONST instruction

| Rz contains length of destination

Ry contains word constant
RX contains address of destination string

Opcode

Instruction specific exceptions: none
Special notes:

The contents of RX and Rz are undefined after execution of this
instruction.

INTEGER INSTRUCTIONS

6 INTEGER INSTRUCTIONS

Integer instructions may use 16-bit, 32-bit, or 64-bit source operands
to perform 64-bit register arithmetic. Operands less than 64 bits, as
specified in the instruction, are first sign extended prior to the
operation. The ADD.16 instruction, for example, sign extends the
16-bit source operand to 64 bits and then performs the ADD with 64-bit
precision. As such, INTEGER OVERFLOW exceptions are only generated
from 64-bit overflows. The overflow is checked in Operand 1 after the
result has been placed into the target operand. The MUL.128 and
MULU.128 instructions are special cases, operating on 64-bit quantities
and returning 128-bit results spanning 2 registers.

To check for overflow in operands less than 64 bits, use a STORE WITH
OVERFLOW CHECK instruction with the appropriate modulus. This will
generate the exception if the source operand exceeds the size of the
target operand.

Integer Instructions

ADD Integer Addition

ADDUC Unsigned Integer Addition Generate Carry
ADDI Integer Addition with Immediate Operand
DIV Integer Division

DIVR Reverse Integer Division

MUL . Integer Multiply

MUL 128-Bit Integer Multiply

MULU 128-Bit Unsigned Integer Multiply

NEG Integer Negate

REM Remainder of Integer Divide

REMR Remainder of Reverse Integer Divide

SUB Integer Subtract

SUBR Reverse Integer Subtraction

SUBUC Unsigned Integer Subtract Gen Carry
SUBUCR Reverse Unsigned Int Sub Gen Carry

SUBI Integer Subtraction with Immediate

Arithmetic Shift Instructions

SLA Shift Left Arithmetic
SRA Shift Right Arithmetic

INTEGER INSTRUCTIONS

6.1 MULTIPLE PRECISION INTEGER ARITHMETIC

Normal 64-bit or 1less arithmetic operations on the ELXSI are simply
special cases of multiple precision arithmetic. This is an artifact of
the ELXSI carry mechanism and two generic types of instructions; those
that operate on unsigned integers and allow carry-out, and those that
operate on signed integers and detect overflow. Unsigned integer
addition will set the carry bit in the PSW in the event of a carry-out,
and otherwise will clear it. Signed integer addition will set the
INTEGER OVERFLOW exception in the event of a carry out, and will
unconditionally clear the carry bit.

Subtraction is one's complement addition where the subtrahend is
complemented and added to the minuend along with the complement of the
carry bit. A carry out in unsigned subtraction will clear the carry
bit. In this way, the carry may be propagated as the carry bit will
again be complemented when added into the next stage. With respect to
a carry out, signed subtraction will perform the same action as signed
addition.

The user may check the state of the carry bit by retrieving the Process
Status Word (READ.STAT) or alternatively, by exXecuting the instruction
SUB.64 Rn,Rn. If the carry bit was set, the result is -1, otherwise
the result is 0. This is illustrated below with the carry bit set:

10110011 Rn
+ 01001100 complement of Rn
+ 0] complement of carry bit in PSW

11111111

Use of the SUB.64 instruction will always clear the carry bit. The
above example will also set the INTEGER OVERFLOW exception if the carry
bit tested was clear. If the SUBUC.64 instruction was used instead,
the effect would be to toggle the carry bit in the PSW.

In the context of multiple precision arithmetic, the lower stages of
the problem would first be computed using the unsigned integer
instructions. In this way, a carry may be propagated to the next
stage. When the high order stage is reached, the signed integer
instructions are used to clear the carry bit and to detect overflow.

INTEGER INSTRUCTIONS

An example follows for chained subtraction:

minuend = - 0000112222222222 2222222222222222
subtrahend = 0000000000000000 3222222222222222
RO = low order word of minuend

Rl = high order word of minuend

R2 = low order word of subtrahend

R3 = high order word of subtrahend

Carry bit in PSW = 0

The first step is to use unsigned subtraction on the low order words of
the subtrahend and minuend. The SUBUC.64 instruction using mode 3 is
suitable for this. Making these assignments:

RxX = target = R4
Ry = low order word of minuend = RO
Rz = low order word of subtrahend = R2

The instruction is encoded as 31A402
The result in R4 after execution is FO000000000000000 with no carry.

The absence of a carry out sets the carry bit in the PSW. The next
step is to subtract the high order words as signed integers using the
SUB.64 instruction. This 4is to enable the detection of overflow.
Using addressing mode 3 and making these assignments:

Rx = target = R5
Ry = high order word of minuend = Rl
Rz = high order word of subtrahend = R3

The instruction is encoded as 3BA513

When this instruction is executed, it checks to see if a carry was
generated by the previous stage and performs the following:

0000112222222222 = R1

+ FFFFFFFFFFFFFFFF = R3 complemented
0000112222222221

+ 0 (no carry in)
0000112222222221 = high order result in R5

The final result, concatenating R5 and R4, is

0000112222222221 F000000000000000

INTEGER INSTRUCTIONS

At this point, the carry bit cleared in the PSW, as the SUB.64
instruction clears the carry. Integer overflow is not generated as the
carry did not propagate to the sign bit.

6.2 INTEGER ADDITION

Add the source operands with the carry bit, place the result into
Operand 1, and then check for overflow. In the 2 operand forms,
Operand 1 is replaced by the sum of Operand 1 and Operand 2. In the 3
operand forms, Operand 1 is replaced by the sum of Operand 2 and
Operand 3.

The carry bit is unconditionally cleared for ADD instructions, but set
for ADDUC only if a '1' is carried out of bit '0O'. Operands are
unsigned for ADDUC; signed -‘integer operations may give unexpected
results if the carry bit is set.

6.2.1 ADD Integer Addition

6.2.2 ADDUC Unsigned Integer Addition Generate Carry

——————— Opcode

, ADD.16 ADD.32 ADD.64 ADDUC.64 | Implementation \
' OBx . Rx <{- Rx+Rw + carry
. 3B9 319 . Rx <{- Ry+Rz + carry
' 499 4p9 4B9 419 ! Rx <{~ Rx+e{le} + carry |
: 5B9 519 | Rx <~ Ry+=e{12} + carry |
, 699 6A9 6B9 619 . Rx <{- Ry+e{32} + carry
: 7B9 719 . Rx <{- Ry+=e{32} + carry
: 89x ' Rx {- Rx+[sPle{6} + carry |
' A9x . Rx <{- Rx+[Rw] + carry
, B99 BAO BB9 B19 . Rx <{- Ry+[Rz] + carry
| €99 CA9 CB9 C19 . Rx <~ Rx+[Ryl][Rz] + carry
\ D99 DA9 DB9 D19 , Rx {- Rx+[Ryle{12} + carry
\ E99 EA9 EB9 E19 . Rx <~ Rx+[Ryl[Rz]e{32} + carry |
' F99 FA9 FB9 F19 ! Rx <~ Ry+[Rz]e{32} + carry |
Instruction Specific Exceptions, ADD: INTEGER OVERFLOW

ADDUC: none

6.2.3 ADDI Integer Addition with Immediate Operand

Sum Rw with the immediate value in the four bit Rx specification field,
place the result into Rw, clear the carry bit, and then check for
integer overflow. The range of RX is 0 to 15. :

INTEGER INSTRUCTIONS

ADDI has the effect of an INCREMENT instruction if in the form
ADDI.64 1,Rw. There is no direct analogue for this instruction in
the generalized addressing modes, although an ADD.64 with modes 5 or 7
could be used.

------- Opcode

| ADDI.64 ' Implementation \
: 04x . BRw (- Rw + =Rx \
Instruction Specific Exceptions: INTEGER OVERFLOW

6.3 INTEGER DIVISION

Divide the source operands, place the result into Operand 1, and then
check for integer overflow. DIV and DIVR perform identically with the
exception of the source operand division order. In the 2 operand
forms, Operand 1 is replaced by Operand 1 divided by Operand 2 (Operand
2 divided by Operand 1 for DIVR). In the 3 operand forms, Operand 1 is
replaced by Operand 2 divided by Operand 3 (Operand 3 divided by
Operand 2 for DIVR).

DIV Integer Division

6.3.1
6.3.2 DIVR Reverse Integer Division

——————————— Opcode

. DIV.16 DIV.32 DIV.64 | " Implementation \
" 3BC r Rx (- Ry/Rz '
: 49C 4AC 4BC ! Rx {- Ry/ef{16} :
: 5BC ! Rx (- Ry/=ef{12} \
: 69C 6AC 6BC ! Rx {- Ry/e{32} :
: 7BC ! Rx {- Ry/=e{32} \
\ BCC BAC BBC . Rx {- Ry/[Rz] '
' coc CAC CBC i Rx <~ Rx/[Ry][Rz] '
: D9C DAC DBC i Rx {- Rx/[Rylef{12} \
: E9C EAC EBC . Rx <{- Rx/[Ryl[Rz]e{32} \
: FoC FAC FBC . Rx {~ Ry/[Rz]e{32} \

INTEGER INSTRUCTIONS

——————————— Opcode

, DIVR.16 DIVR.32 DIVR.64 Implementation '
! 49D 42D 4BD i Rx <~ efi6}l /Ry !
! 5BD i Rx <~ =e{12}/Ry :
: 69D 6AD 6BD . Rx <~ ef{32}/Rry :
! 7BD . Rx <~ =e{32}/Ry :
\ B9D BAD BBD i Rx <- [Rzl/Ry '
\ CcoD CAD CBD . Rx <~ [Ryl[Rzl/Rx X
! D9D DAD DBD ' Rx <~ [Rylef12}/mrx !
i ESD EAD EBD ; Rx <- [Ryl[Rzle{32}/Rx '
! F9D FAD FBD ' Rx <~ [Rzle{32}/Ry :
Instruction Specific Exceptions: INTEGER OVERFLOW

INTEGER ZERO DIVIDE

6.4 INTEGER MULTIPLY OPERATIONS

Multiply the source operands, place the result into Operand 1, and then
check for integer overflow. In the 2 operand forms, Operand 1 is
replaced by Operand 1 multiplied by Operand 2. In the 3 operand forms,
Operand 1 is replaced by Operand 2 multiplied by Operand 3.

For MUL.128 and MULU.128, multiply the 64-bit source operands in Ry and
Rz, with the 128-bit result replacing Rx and Rx+1. RX receives the
high order 64 bits of the result, and Rx+1l receives the low order
64 bits. MUL.128 assumes signed integer operands, MULU.128 assumes
unsigned integer operands.

INTEGER INSTRUCTIONS

4.1 MUL Integer Multiply
.4.2 MUL.128 128-Bit Integer Multiply
4.3 MULU.128 128-Bit Unsigned Integer Multiply

——————————— Opcode .
MUL.16 MUL.32 MUL.64 | Implementation
OBx i Rx <{- RX * Rw
3B8 i Rx <~ Ry * Rz
498 418 4B8 ! Rx {- Rx * e{16}
5B8 ' Rx (- Ry * =ef{12}
698 618 6B8 ' Rx (-~ Ry * ef{32}
7B8 ' Rx (- Ry * =e{32}
BO98 BAS BBS8 X Rx {- Ry * [Rz]
cos cas CB8 i Rx {~ Rx * [Ry][Rz]
D98 DAS DBS I Rx {~ Rx * [Rylef{12}
E98 EAS EBS I Rx <{- Rx * [Ryl[Rz]e{32}
Fo8 FA8 FBS , Rx <{- Ry * [Rzle{32}
Opcode assignment , Code Implementation
MUL.128 , BO2 |, Rx,Rx+l {- Ry * Rz
MULU.128 , BO3 | Rx,Rx+l {~ Ry * Rz

INTEGER INSTRUCTIONS

The formats of the non-generalized instructions are

10,04 ,%x,9, 2, MUL.128 instruction
fy 0,05, % ,9, 2, MULU.128 instruction
A A A

: Rz is source operand

- —— >

A
I
|
I
1
i Ry is source operand
]
\ RX,Rx+1 are the target operands
Opcode

Instruction Specific Exceptions, MUL: INTEGER OVERFLOW

MUL.128: none

MULU.128: none
6.5 NEG INTEGER NEGATE
Replace Operand 1 with the two's complement of 'Last Operand', and then

check for integer overflow. The carry bit is unreferenced and
unmodified by this instruction.

——————————— Opcode

| NEG.16 NEG.32 NEG.64 Implementation '
: 3B2 , Rx <~ two's cp of Rz \
: 492 4n2 4B2 ! Rx {- two's cp of e{16} \
\ 692 6A2 ! Rx {- two's cp of e{32} :
X B92 BA2 . Rx <~ two's cp of [Rz] ;
! c92 CA2 CB2 , Rx <~ two's cp of [Ryl[Rz] :
: D92 DA2 DB2 I Rx <~ two's cp of [Ryle{12} \
: E92 EA2 EB2 . Rx <{- two's cp of [Ryl[Rzle{32} |
: F92 FA2 i Rx <~ two's cp of [Rzle{32} \

Instruction Specific Exceptions: INTEGER OVERFLOW

INTEGER INSTRUCTIONS

6.6 REMAINDER OF INTEGER DIVIDE OPERATIONS

Divide the source operands and place the remainder into Operand 1. REM
and REMR perform identically with the exception of the order of source
operand division. In the 2 operand form, Operand 1 is replaced with
the remainder of Operand 1 divided by Operand 2 (Operand 2 divided by
Operand 1 for REMR). 1In the 3 operand form, Operand 1 is replaced with
the remainder of Operand 2 divided by Operand 3 (Operand 3 divided by
Operand 2 for REMR).

The quotient is rounded towards zero, and the dividend and remainder
have the same sign if both are non-zero. This is the FORTRAN
remainder.

6.6.1 REM Remainder of Integer Divide
6.6.2 REMR Remainder of Reverse Integer Divide

——————————— Opcode

\ REM.16 REM.32 REM.64 Implementation '
X 3BE , Rx <{- rem of Ry/Rz X
: 49E 4RE 4BE . Rx <~ rem of Rx/ef{1is} \
\ 5BE I Rx {- rem of Ry/=e{12} \
\ 69E 6AE 6BE . Rx <~ rem of Ry/e{32} \
! 7BE I Rx <{- rem of Ry/=e{32} X
\ BOE BAE BBE i Rx <~ rem of Ry/[Rz] K
' C9E CAE CBE i Rx <~ rem of Rx/[Ry][Rz] '
\ D9E DAE DBE , Rx <~ rem of Rx/[Ryle{12} \
: ESE EAE EBE i, Rx <~ rem of Rx/[Ryl[Rz]e{32} \
! FOE FAE FBE \ Rx <~ rem of Ry/[Rz]e{32} \
——————————— Opcode

\ REMR.16 REMR.32 REMR.64 Implementation :
! 49F 4BF 4BF i\ Rx <~ rem of ef16}/Rx :
: 5BF . Rx <~ rem of =ef{12}/Ry \
: 69F 6AF 6BF i Rx <~ rem of e{32}/Ry :
\ 7BF ' Rx <~ rem of =e{32}/Ry !
X BOF BAF BBF \ Rx <~ rem of [Rz]/Ry '
X COF CAF CBF . Rx <~ rem of [Ry][Rz]/Rx '
' DIF DAF DBF \ Rx <- rem of [Ryle{12}/Rrx :
: ESF EAF EBF . Rx <~ rem of [Ryl[Rz]e{32}/Rx \
\ FOF FAF FBF \ Rx <~ rem of [Rzle{32}/Ry :
Instruction Specific Exceptions: INTEGER ZERO DIVIDE

INTEGER INSTRUCTIONS

6.7 INTEGER SUBTRACT OPERATIONS

Replace Operand 1 with the difference of the source operands, and then
check for integer overflow. SUB and SUBR behave identically with
exception of the order of source operand subtraction. In 2 operand
forms, replace Operand 1 with Operand 1 minus Operand 2 (Operand 2
minus Operand 1 for SUBR). In 3 operand forms, replace Operand 1 with
Operand 2 minus Operand 3 (Operand 3 minus Operand 2 for SUBR). The
carry bit is cleared with these instructions.

6.7.1 SUB Integer Subtract
6.7.2 SUBR Reverse Integer Subtract

——————————— Opcode

, SUB.16 SUB.32 SUB.64 Implementation |
\ OAXx . Rx {- RX-Rw - carry
: 3BA | Rx <{- Ry-Rz - carry
! 492 43R 4BA ! Rx <~ Ry-e{16} - carry |
\ 5BA I Rx <{~ Ry-=ef{12} - carry
\ 69A 6AR 6BA . Rx <~ Ry-e{32} - carry |
: 7BA | Rx {- Ry-=e{32} - carry |
\ 8ax i Rx <~ Rx-[sPle{s} - carry |
: ARX ; Rx <{- Rx-[Rw] - carry .
\ BOA BAA BBA . Rx <{- Ry-[Rz] - carry
\ C9A ChA CBA i Rx <~ Rx-[Ry][Rz] - carry
! D9A DAA DBA . Rx <{- Rx-[Ryle{12} - carry |
| 1
: E92 ‘EBA EBA \ Rx <~ Rx-[Ry][Rzle{32} - carry |
' FoA FAA FBA . Rx <{- Ry-[Rzle{32} - carry

INTEGER INSTRUCTIONS

----------- Opcode

, SUBR.16 SUBR.32 SUBR.64 , Implementation "
' OBx i Rx <{- Rw-Rx - carry \
! 49B 4AB 4BB . Rx < efi6}-Rrx - carry |
| 5BB | Rx <~ =ef{12}-Ry - carry |
\ 69B 6AB 6BB i Rx < ef{32}-Rry - carry
! 7BB i Rx <{- =e{32}-Ry - carry |
: 8Bx , Rx <~ [spleis}-Rx - carry |
. ABx , Rx <~ [Rw]-Rx - carry
' BO9B BAB BBB i Rx <~ [Rz]-Ry - carry
: C9B CAB CBB . Rx {- [Ryl[Rz]-Rx - carry
| DSB DAB DBB . Rx <- [Rylef{12}-Rrx - carry
! E9B EAB EBB , Rx <~ [Ryl]I[Rzle{32}-Rx - carry
! F9B FAB FBB \ Rx <~ [Rz]e{32}-Ry - carry |
Instruction Specific Exceptions: INTEGER OVERFLOW

6.7.3 SUBUC Unsigned Integer Subtract Gen Carry
6.7.4 SUBUCR Reverse Unsigned Integer Subtract Gen Carry

Replace Operand 1 with the difference of the unsigned source operands.
SUBUC and SUBUCR behave identically except for the order of source
operand subtraction. In 2 operand forms, replace Operand 1 with
Operand 1 minus Operand 2 (Operand 2 minus Operand 1 for SUBUCR). 1In 3
operand forms, replace Operand 1 with Operand 2 minus Operand 3
(Operand 3 minus Operand 2 for SUBUCR). A carry-out clears the carry
bit, otherwise it is set.

------- Opcode

: SUBUC.64 \ Implementation '
\ 312 . Rx <~ Ry-Rz - carry \
\ 4132 . Rx <{- Rx-ef{le} - carry '
\ 51A I Rx <~ Ry-=ef{12} - carry '
\ 612 \ Rx <~ Ry-e{32} - carry '
! 71R | Rx {- Ry-=e {32} - carry '
' BlA i Rx <~ Ry-[Rz] - carry "
' Cia 1 Rx <~ Rx-[Ryl][Rz] - carry '
' D1A ! Rx <{- Rx-[RyJe{12} - carry '
: E1A i Rx <- Rx-[Ryl[Rzle{32} - carry '
: F1A . Rx <- Ry-[Rzle{32} - carry '

INTEGER INSTRUCTIONS

——————— Opcode

: SUBUCR.64 | Implementation X
: 41B i\ Rx <{- efi6}-Rx - carry

: 51B \ Rx <~ =e{12}-Ry - carry X
\ 61B \ Rx <~ e{32}-Ry - carry :
' 71B I Rx {- =e{32}-Ry - carry :
X B1B . Rx <~ [Rz]-Ry - carry '
X C1B i Rx <~ [Ryl[Rz]-Rx - carry '
' D1B , Rx <~ [Ryle{12}-Rx - carry '
\ E1B . Rx <~ [Ry][Rzle{32}-Rx - carry \
: F1B \ Rx <~ [Rzle{32}-Ry - carry '

Instruction Specific Exceptions: none

6.7.5 SUBI Integer Subtraction with Immediate Operand

Subtract from Rw the immediate value plus one in the four bit Rx
specification field, then place the result in Rw and clear the carry
bit. When this operation is completed, check for integer overflow.
The range of the effective operand is -16 to -1.

SUBI has the effect of a DECREMENT instruction if in the form
SUBI.64 Rw,=1. There is no analogue in the generalized addressing
modes for this instruction.

------- Opcode -
SUBI.64 \ Implementation X
| 14x ' Rw {- Rw - (=Rx+1) v

Instruction Specific Exceptions: INTEGER OVERFLOW

6.8 ARITHMETIC SHIFT INSTRUCTIONS

Arithmetic shift operations operate on 64-bit signed integers. All
shift distances are unsigned integers modulo 64.

In two operand forms, Operand 1 is replaced by the value of Operand 1
shifted by Operand 2. In three operand forms, Operand 1 is replaced by
the value of Operand 2 shifted by Operand 3. The fill bit is Zzero for
SLA, and is the sign bit in the operand to be shifted for SLR.

INTEGER INSTRUCTIONS

6.8.1 SLA Shift Left Arithmetic

6.8.2 SRA Shift Right Arithmetic

—-—— Opcode

\ SLA : Implementation :
| 312 . Rx {~ Ry shifted left by Rz \
\ 512 . Rx {- Ry shifted left by =e{12} \
| 712 . Rx {- Ry shifted left by =e{32} :
---— 0Opcode

\ SRA \ Implementation "
X 313 . Rx <{~ Ry shifted right by Rz |
\ 513 , Rx <{- Ry shifted rignt by =e{12} \
! 713 | Rx {- Ry shifted right by =e{32} \

Special Notes:

Overflow operations may occur with SLA and is equivalent to overflow in
integer multiply. Overflow is checked after the target operand is
written with the result. The overflow exception is generated if the
sign bit changes as a result of a shift. This allows multiplication by
powers of two with the detection of overflow. Note that the Shift Left
Logical instruction does not generate this exceptidn.

A shift right by n with the SRA instruction will perform a division by
2**xn on a positive number. However, a shift right by n on a negative

number will result in a rounding toward negative infinity. Thus it is
) necessary to adjust the number prior to the shift. To correctly
perform a fast division by two on a negative number, precede the shift
by n with an ADD of (2x=xn)-1.

Instruction Specific Exceptions, SLA: INTEGER OVERFLOW
SRA: none

FLOATING POINT INSTRUCTIONS

7 FLOATING POINT INSTRUCTIONS

The floating point operations conform to the proposed IEEE Floating
Point Standard. The three floating point formats provided are: single
(32 bits), double (64 bits), and double extended (80 bits). Refer to
Chapter 3, "Data Representations", for a description of the standard
and the encodings for numbers and symbols. Refer to Section 2.2,
"Process Status Word", for a discussion of exception handling.

FLOATING POINT INSTRUCTIONS

FADD Floating Point Addition

FDIV Floating Point Division

FDIVR Floating Point Division Reversed
FMUL Floating Point Multiply

FREM Floating Point Remainder

FSOR Floating Point Square Root

FSUB Floating Point Subtraction

FSUBR Floating Point Subtraction Reversed

7.1 FADD FLOATING POINT ADDITION

Add the source operands and place into Operand 1. With the two address
forms, operands 1 and 2 are the sources. With the three operand forms,
operands 2 and 3 are the sources. The result matrix is shown on the
following page.

Instruction Specific Exceptions:

FLOATING POINT INSTRUCTIONS

——————————— Opcode -
FADD.32 FADD.64 : Implementation

19x 1Dx i Rx {- RX + Rw

3c9 3D9 i Rx {~ Ry + Rz

4C9 4D9 ' Rx ¢~ Rx + e{16}

6C9 6D9 ! Rx {- Ry + e{32}

7C9 ! Rx {- Ry + =e{32}

99x , Rx {- Rx + [sPle{6}

BCO BD9 , Rx {~ Ry + [Rz]

cco CcD9 \ Rx <{- Rx + [Ry][Rz]

DC9 DD9 ! Rx (- Rx + [RyJef12}

EC9 ED9 ! Rx (- Rx + [Ryl[Rzle{32}

FC9 FD9 ! Rx (- Ry + [Rz]e{32}
Opcode assignment , Code Implementation

FADD.80 , Fo9 | (Rx,Rx+1) <- (Ry,Ry+l) + (Rz,Rz+1)

The format of the non-generalized FADD.80 instruction is

h Rz, Rz+1l is source operand

Ry, Ry+l is source operand

Rx, Rx+1l is result operand

FLOATING POINT INVALID OPERATION

FLOATING POINT INEXACT RESULT
FLOATING POINT UNDERFLOW
FLOATING POINT OVERFLOW

FLOATING POINT INSTRUCTIONS

Table 7-1. Result Matrix for FADD, FSUB and FSUBR

If OP1 is , and OP2 is , then result is

Zero , Zero , Zero with sign (1)
Zero , Denorm, Normal , OP2

Zero . Infinity , OP2

Denorm, Normal | Zero , OP1

Denorm, Normal , Denorm, Normal , computed (1)
Denorm, Normal |, Infinity | op2

Infinity , Zero , OP1

Infinity , Denorm, Normal , OP1

Infinity , Infinity . OP1 or Invalid (2)

Magnitude subtraction occurs if the operands' signs are different in

FADD or the same in FSUB or FSUBR.

(1) If magnitude subtraction produces a zero result, then the

(2)

determined by the rounding mode.

mode is toward minus

infinity,

addition preserves the sign of the operands.

sign 1is
The result is -0 if the rounding
and +0 otherwise. Magnitude

Magnitude subtraction of two Infinities causes an Invalid Operation

exception.

FLOATING POINT INSTRUCTIONS

7.2 FLOATING POINT DIVISION

Divide the source operands and place the result into Operand 1. With
the two operand forms, Operand 1 is replaced by Operand 1 divided by
Operand 2 (Operand 2 divided by Operand 1 for FDIVR). With the three
operand forms, Operand 1 is replaced by Operand 2 divided by Operand 3
(Operand 3 divided by Operand 2 for FDIVR). The result matrix is shown
below.

7.2.1 FDIV Floating Point Division
7.2.2 FDIVR Floating Point Division Reversed
——————————— Opcode

FDIV.32 FDIV.64 X Implementation '
' 3ce 3DC 1 Rx <~ Ry/Rz X
: 4cc 4DC ! Rx <~ Rx/e{16} :
: 6CC 6DC I Rx <~ Ry/e{32} \
| 7CC . Rx <~ Ry/=e{32} :
| BCC BDC 1 Rx <~ Ry/[Rz] \
! cee cDe | Rx <- Rx/[Ryl[Rz] |
| DCce DDC , Rx <~ Rx/[Rylef{12} '
: ECC EDC i Rx <- Rx/[Ryl[Rzle{32} \
: FCC FDC . Rx <- Ry/I[Rzle{32} :
——————————— Opcode
\ FDIVR.32 FDIVR.64 X Implementation |
! 4cD 4DD ! " Rx <~ e{16}/Rx !
: 6CD 6DD ' Rx <~ e{32}/Ry !
! 7CD . Rx <~ =e{32}/Ry !
\ BCD BDD . Rx <~ [Rz]/Ry :
: CCD CDD . Rx <~ [Ryl[Rz]/Rx :
! DCD DDD . Rx <~ [Rylef{12}/mx !
: ECD EDD . Rx <- [Ry][Rzle{32}/Rx :
| FCD FDD . Rx <~ [Rzle{32}/Ry .
\ Opcode assignment |, Code | Implementation .
: FDIV.80 , Foc (Rx,Rx+1) <- (Ry,Ry+1)/(Rz,Rz+1) '

Instruction Specific EXceptions:

FLOATING POINT INSTRUCTIONS

The format of the non-generalized FDIV.80 instruction is

VF,0,C X ,9, 2,
A e e A A A A

| | j | Rz, Rz+l is source operand
] [} 1
[} | 1
i i ! Ry, Ry+l is source operand
1]
" ' Rx, Rx+l is result operand
]
1
\ Opcode

Table 7-2.

FLOATING POINT INVALID OPERATION

FLOATING POINT INEXACT RESULT
FLOATING POINT UNDERFLOW
FLOATING POINT OVERFLOW
FLOATING POINT DIVIDE BY ZERO

Result Matrix for FDIV and FDIVR

' If OPl is ! and OP2 is ! then result is !
\ Zero | Zero , Invalid Operation exc. '
\ Zero . Denorm, Normal |, Zero with xXor signs "
, Zero . Infinity \ Zero with xor signs '
. Denorm, Normal , Zero , Divide by Zero exception |
, Denorm, Normal . Denorm, Normal | computed '
, Denorm, Normal , Infinity \ Zero with Xor signs X
. Infinity \ Zero . Inf with Xor signs :
. Infinity . Denorm, Normal , Inf with Xor signs \
i Infinity , Infinity Invalid Operation exc. X
7.3 FMUL FLOATING POINT MULTIPLY

Multiply the source operands and place into Operand 1.
address forms, operands 1 and 2 are the sources.
operand forms, operands 2 and 3 are the sources.
shown on the following page.

With the two
With the three
The result matrix is

FLOATING POINT INSTRUCTIONS

——————————— Opcode
FMUL. 32 FMUL.64 : Implementation
18x 1Ccx i Rx {~- RX * Rw
3C8 3D8 , Rx {- Ry * Rz
4cs 4p8 . Rx {- Rx * ef16}
6C8 6D8 . Rx {- Ry * ef{32}
7C8 | Rx {- Ry * =e{32}
98x . Rx <{- Rx = [SPle{e}
BC8 BDS , Rx {~ Ry * [Rz]
ccs CD8 . Rx {- Rx * [Ryl[Rz]
DC8 DD8 . Rx <~ Rx * [Ryle{12}
ECS8 EDS . Rx <{~ Rx » [Ryl[Rzle{32}
FC8 FD8 . Rx <~ Ry * [Rzle{32}
Opcode assignment , Code | Implementation
FMUL.80 . FO

8 (Rx,Rx+1) <- (Ry,Ry+l) =* (Rz,Rz+l)

The format of the non-generalized FMUL.80 instruction is

\ F 1019

X

Y

1 I
IZI

A

Opcode

A
i

; Rz, Rz+l is source operand

Ry, Ry+l is source operand

Rx, Rx+1 is result operand

Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION

FLOATING POINT INEXACT RESULT
FLOATING POINT UNDERFLOW
FLOATING POINT OVERFLOW

FLOATING POINT INSTRUCTIONS

Table 7-3. Result Matrix for MULTIPLY

, If OPl is , and OP2 is , then result is \

Zero zZero Zero with Xor signs

1 1

I I

Zero Denorm, Normal |, 2Zero with xXor signs '
Zero Infinity . Invalid Operation X

| Denorm, Normal , Zero , Zero with xor signs \
! Denorm, Normal , Denorm, Normal , computed '
, Denorm, Normal | Infinity . Inf with xXor signs \
. Infinity , Zero Invalid Operation ‘
, Infinity | Denorm, Normal , Inf with Xor signs '
. Infinity Infinity ' Inf with Xor signs \

7.4 FREM FLOATING POINT REMAINDER

Divide Rz by Ry (note +that FREM is defined by FDIVR) to produce the
full-length integer quotient rounded to nearest even. If the rounded
quotient is =zero, the instruction terminates. Otherwise, Rx is
replaced by the low order 64 bits of the rounded two's complement
integer quotient and Rz is replaced by the remainder in floating point
form. The remainder is defined to be Rz - ((Rz/Ry rounded to the
nearest integer) * Ry) so that -0.5 * abs(divisor) <= remainder <{= +0.5
* abs(divisor). The remainder need not be rounded because it is exact.
A zero remainder has the same sign as the dividend.

The contents of Rx, Rz (and Rz+l in extended) are undefined if the
register specifiers Rx and Rz are the same (Rx and Rz+l for Double
Extended). 1Integer overflow is ignored when storing the quotient into
Rx.

| Opcode assignment , Code Implementation ’ X

' FREM. 32 ! BO4 | if Rz/Ry not zero; Rx {- quot, Rz {-rem ,
X FREM. 64 | BO5 , if Rz/Ry not zero; Rx <{- quot, Rz {-rem ,
' FREM.80 | BO6 |, if Rz/Ry not zero; Rx <- quot, Rz {-rem ,

Instruction Specific Exceptions:

The format of the non-generalized FREM.xXX instruction is

FLOATING POINT INSTRUCTIONS

) B | 0 |OP2; X | ¥ | Z,

A A

A A
I

divisor in Ry

| dividend in Rz, remainder to Rz

integer quotient returned in Rx

FLOATING POINT INVALID OPERATION

Table 7-4. Result Matrix for FREM
If OP1 is , and OP2 is , then result is
Zero | Zero , Invalid Operation
Zero , Denorm, Normal , NOP
Zero \ Infinity . NoP
Denorm, Normal , Zero \ Invalid Operation
Denorm, Normal , Denorm, Normal , computed
Denorm, Normal | Infinity | NOP
Infinity | Zero ' Invalid Operation
Infinity , Denorm, Normal . Invalid Operation
Infinity , Infinity , Invalid Operation

FLOATING POINT INSTRUCTIONS

7.5 FSOR FLOATING POINT SQUARE ROOT

Find the square root of the source and place into Operand 1. With the
two address forms, Operand 2 is the source. With the three address
forms, Operand 3 is the source.

——————————— Opcode

FSQOR. 32 FSOR.64 ' Implementation |
' 3CE 3DE i Rx <~ Rzx*1/2 "
! 4CE 4DE I Rx {- efie}x=x1/2 !
' 6CE 6DE ' Rx (- ef{32}x=x1/2 '
\ BCE BDE i Rx (- [Rz]xx1/2 '
' CCE CDE i Rx (- [Ry][Rz]**x1/2 X
: DCE DDE ! Rx <{~ [Rylef12}x=x1/2 \
f ECE EDE ' Rx <~ [Ryl[Rz]e{32}*x1/2 :
\ FCE FDE ! Rx {~ [Rzle{32}xx1/2 :
| Opcode assignment , Code Implementation X
' FSQR.80 \ FOE , (Rx,Rx+1) <{- (Rz,Rz+1l)*=x1/2 \

The format of the non-generalized FSQR.80 instruction is

 F1O0 1 E | x| -2,
A A A A

' Rz, Rz+l is source operand

Rx, Rx+1 is result operand

Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION
FLOATING POINT INEXACT RESULT

FLOATING POINT INSTRUCTIONS

Table 7-5. Result Matrix for FSQR

, If OP1 is | then result is '

Neg. Infinity , Invalid Operation
Neg. (Denorm, Normal) . Invalid Operation

| Zero \ OPl1 (square root of -0 is -0)
, Pos. (Denorm, Normal) , computed :
, Pos. Infinity | OP1 '

7.6 FLOATING POINT SUBTRACTION

Place the difference of the source operands into Operand 1. With the
two operand forms, Operand 1 is replaced by Operand 1 minus Operand 2
(Operand 2 minus Operand 1 for FSUBR). With the three operand forms,
Operand 1 is replaced by Operand 2 minus Operand 3 (Operand 3 minus
Operand 2 for FSUBR). The result matrix is shown on the page following
the FADD instruction.

7.6.1 FSUB Floating Point Subtraction
7.6.2 FSUBR Floating Point Subtraction Reversed

——————————— Opcode -

FSUB.32 FSUB.64 X Implementation X
' 1Ax 1Ex i Rx {~- RX - Rw '
\ 3ca 3DA i, Rx <~ Ry - Rz X
X 4CA 4DA I Rx {- Rx - ef{16} "
' 6CA 6DA ' Rx (-~ Ry - ef{32} \
: 7CA \ Rx {- Ry - =e{32} \
: 9Ax i Rx (- Rx - [splefs} \
\ BCA BDA . Rx <~ Ry - [Rz] |
: CAC CDA .\ Rx <~ [Ry] - [Rz] |
: DAA DDC . Rx <~ [Ry] - ef{12} \
; ECA EDA ' Rx <~ [Ry] - [Rz]e{32} :
: FCA FDA . Rx {~ Ry - [Rzle{32} \

FLOATING POINT INSTRUCTIONS

——————————— Opcode
FSUBR. 32 FSUBR. 64 | Implementation

1Ax 1ExX i Rx {~- Rw - Rx
4CB 4DB . Rx <- efi16} - Rx
6CB 6DB , Rx <- ef{32} - Ry
7CB . Rx <~ =e{32} - Ry
9Ax , Rx <~ [sPle{6} - Rx
BCB BDB . Rx (- [Rz] - Ry
CCB CDB i Rx {~ [Rz] - [Ry]
DCB DDB i Rx <~ ef12} - [Ry]
ECB EDB i Rx <~ [Rzle{32} - [Ry]
FCB FDB . Rx <{- [Rzle{32} - Ry

Opcode assignment , Code | Implementation

FSUB.80 , FOA

(Rx,Rx+1) <~ (Ry,Ry+l) - (Rz,Rz+l)

The format of the non-generalized FSUB.80 instruction is

Opcode

Rz, RZ+1l is source operand

Ry, Ry+l is source operand

Rx, RxX+1 is result operand

Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION

FLOATING POINT INEXACT RESULT
FLOATING POINT UNDERFLOW
FLOATING POINT OVERFLOW

ASCII ARITHMETIC INSTRUCTIONS

8 ASCII ARITHMETIC INSTRUCTIONS

ASCII arithmetic instructions operate on ASCII encoded decimal strings.
Operands are in ASCII format, with the ASCII digits in the set ['00',
'30' to '39'] hex. Source operands not conforming to the ASCII format
will produce undefined results.

ASCII.ADD ASCII Addition
ASCII.ADDC ASCII Addition Generate Carry
ASCII.SUB ASCII Subtract
ASCII.SUBC ASCII Subtract Generate Carry

8.1 MULTIPLE PRECISION ASCII SUBTRACTION

ASCII subtraction is implemented through two types of instructions on
the ELXSI. The ASCII.SUB instruction returns the magnitude of the
result of the subtraction in RxX, with the sign bit of the result
returned in Rt. The ASCII.SUBC instruction returns the S's complement
of the result if the result is negative, otherwise it returns the true
magnitude of the result.

The ASCII.SUBC instructions would typically be used in a situation
where the numeric string to be operated on exceeds the register length,
or otherwise where multiple precision subtraction is required. 1In the
majority of cases where ASCII.SUBC is used, the returned result will be
positive; if the result is negative, then an additional subtraction is
required in order to determine the true magnitude of the result. (See
Section 6.1 on multiple precision integer arithmetic for ‘a discussion
of the carry mechanism).

ASCII ARITHMETIC INSTRUCTIONS

As an example to illustrate the postive result case for multiple
precision subtraction, 3 is subtracted from 100l1. Assuming that the
register width is 4 characters,

The example is

0001 0001
- 0000 0003

—— e e s s e e g

Doing the low order subtract,

0001 0001
- 0003 becomes + 9996 (9's complement of 0003)
----- + 1 (complement of decimal carry, initially 0)
9998

Since there is no carry, a 1 is placed in the decimal carry bit (no
carry amounts to a borrow from the next segment).

Doing the high order subtract,

0001 0001
0000 becomes 9999
0 (complement of decimal carry)

Since there is a carry, the result jis positive. A Zero goes into the
sign register. Since this is not a generate carry instruction, a zero
is placed in the decimal carry bit. Overflow does not occur since the
true result can be represented in the 4 digits.

ASCII ARITHMETIC INSTRUCTIONS

Another example will illustrate the negative result case for multiple
precision subtraction.

The example is

0001 0001
- 0000 0003

Doing the low order subtract,

1 0001 0001
— 1 0003 Dbecomes 9996

———————— 1 (complement of decimal carry, initially O0)

Since there is no carry, a 1 is placed in the decimal carry bit.
Doing the high order subtract,

0001 0001
0001 becomes 9998
0 (complement of decimal carry)

Since there is no carry, the result is negative. A one goes into the
sign register. Since this is not a generate carry instruction,
(ASCII.ADDC) a zero is placed 4in the decimal carry bit. The target
result register receives the absolute value of 9999 (= 0001) as the
result is negative. So the result that we have now is

negative 0001 9998

This is clearly not the result that is desired, since the actual answer
is -2. There are two ways to correct this answer, both signaled by a
negative result, that is, a 1 in the target sign register. The first
is to simply reperform the subtraction, switching the subtrahend and
minuend.

The second is to form the 9's complement of the low order segments by
subtracting them from O with the ASCII.SUBC instruction, and then
subtracting O from the high order segment, to take into account any
borrow that might have been generated.

ASCII ARITHMETIC INSTRUCTIONS

In the example above, we get

0000 0000
- 9998 Dbecomes 0001

1 (complement of decimal carry)

Since there is no carry, a 1 is placed in the decimal carry.
The high order segment is

0001 oool

= 0000 becomes 9999
0 (complement of decimal carry)

Thus, the actual ASCII answer that is wanted is returned

negative 0000 0002

8.2 ASCII ADDITION

Replace Rx with the ASCII decimal sum of Ry + Rz + decimal carry.
ASCII.ADD clears the decimal carry-out, whereas ASCII.ADDC sets the
carry-out if generated.

8.2.
8.2

ASCII.ADD ASCII Addition

1
2 ASCII.ADDC ASCII Addition Generate Carry

Opcode assignment , Code Implementation
ASCII.ADD , 708 | Rx {- Ry + Rz + carry
ASCII.ADDC , 709 | Rx {- Ry + Rz + carry

ASCII ARITHMETIC INSTRUCTIONS

The formats of these non-generalized instructions are

17,08 X ,Y,2, ASCII.ADD
1 710,92 ,Y 2, ASCII.ADDC
N

X Rz is source operand

I t
|]
] 1
| |
= ' Ry is source operand

]
X RX is destination operand

Opcode
Instruction Specific Exceptions: None

8.3 ASCII SUBTRACTION

Extract the decimal value from Ry and sum with the decimal value 9's
complemented from Rz + the complement of the decimal carry. For
ASCII.SUB, place the ASCII encoded magnitude of the sum into RX, place
the sign of the result into Rt (0 for a positive result, 1 for a
negative result), and clear the decimal carry. For ASCII.SUBC, place
the ASCII encoded sum into RX and set the decimal carry to the
complement of the carryout of the sum.

8.3.1 ASCII.SUB ASCII Subtract
8.3.2 ASCII.SUBC ASCII Subtract Generate Carry

| Opcode assignment , Code Implementation |

ASCII.SUB , 90E , Rx <- mag(Ry - Rz - carry); Rt <{- sign
ASCII.SUBC , 70B , Rx {- Ry - Rz - carry

ASCII ARITHMETIC INSTRUCTIONS

The formats of these non-generalized instructions are

19,0 E | X,y ,2,t)0 BASCII.SUB

' 7,0,9 ., %,y , 2z, ASCII.SUBC

| Rz is source operand
Ry is source operand

Rx is destination operand

It is dimportant to note that the ASCII.SUB instruction behaves
differently than the ASCII.SUBC instruction, in that the MAGNITUDE of
the result 4is returned. There is no difference when the result is
positive, but when it is negative, ASCII.SUBC returns the 9's
complement of the magnitude, while this instruction returns the sign as
negative and the true magnitude of the result. This is most often
exactly what is preferred when ASCII arithmetic is being performed on
ASCII strings of 1length eight or 1less. However, when chained
arithmetic is being performed because (at least one of) the operands
has a length greater than eight digits, special action must be taken if
the result of the high order subtraction using ASCII.SUB is negative.
When this result occurs, one of two actions must be taken. The first
possible action is to perform an ASCII.SUBC on all of the low order
segments of the result, subtracting each segment from O. This will
convert the 9's complement values into true magnitude values. Then in
order to take in account a possible carry out from this conversion, use
ASCII.SUB to subtract O from the high order segment of the result. The
second possible action is to just reperform the subtraction, reversing
the subtrahend and the minuend.

Obviously, the same number of subtractions are performed in both cases,
S0 the choice of method depends on minimizing the number of supporting
operations which are required, such as reloading operands.

Instruction Specific Exceptions: none

LOGICAL INSTRUCTIONS

9 LOGICAL INSTRUCTIONS

All logical operations are performed on 64-bit unsigned quantities.
Immediate operands are SIGN extended, and all shift distances are
unsigned integers modulo 64.

Logical Instructions

AND Boolean AND

OR Logical Or

XOR Logical Exclusive Or
NOT Logical Not

SET.BIT

CLEAR.BIT

TOGGLE.BIT

FIND.FIRST Find First Logical One
ROL Logical Rotate Left
ROR Logical Rotate Right

Logical Shift Instructions

SLL Shift Left Logical
SLL1 Shift Left Logical by 1
SLL2 Shift Left Logical by 2
SLL3 Shift Left Logical by 3
SRL Shift Right Logical

9.1 FULLWORD LOGICAL OPERATIONS

With 2 operand addressing, operand 1 is replaced by operand 1 <op)
'Last Operand’'. With 3 operand addressing, operand 1 is replaced by
operand 2 <{op> 'Last Operand'. The logical NOT operation replaces
operand 1 with the 1l's complement of 'Last Operand'.

LOGICAL INSTRUCTIONS

9.1.1 AND Logical AND
9.1.2 OR Logical OR
9.1.3 NO Logical NOT
9.1.4 X

T
OR Logical Exclusive OR

——————————— Opcode

, AND OR NOT XOR .\ Implementation

: 31C 31D 31E 31F i Rx <~ Ry <op) Rz

| 41C 41D 41E 41F i Rx <- Rx <op) ef{16}

| 51C 51D 51F I Rx {~ Ry <op> =ef{12}

X 61C 61D 61E 61F , Rx <~ Ry <op) e{32}

' T1C 71D 71F ! Rx {- Ry <op) =e{32}

\ BIC B1D B1E B1F . Rx <~ Ry <op> [Rz]

\ c1c C1D ClE C1F . Rx <{- Ry <op) [Ryl[Rz]
| DIC D1D D1E D1F i Rx <~ Ry <op) [Rylef{12}
.\ ElC E1D E1E E1F i Rx <{- Ry <op> [Ryl[Rzle{32}
I FlC F1D F1E F1F i Rx {- Ry <op)> [Rzl]e{32}

Instruction Specific Exceptions: none

9.2 BIT-WISE LOGICAL OPERATIONS

The bit specified in

'Last Operand'

CLEAR.BIT, and complemented for TOGGLE.BIT.
encoded in the instruction,

9.2.1 SET.BIT
9.2.2 CLEAR.BIT
9.2.3 TOGGLE.BIT

is set for SET.BIT,

cleared for

'Last operand', a literal
is used modulo 64.

, Opcode assignment , Code Implementation

' SET.BIT , 305 Rx <{- Rx{SET)bit

X CLEAR.BIT \ 306 | Rx <{- Rx<{CLEARDDit

' TOGGLE.BIT . 307 Rx <{- Rx{COMPLEMENT)bit

LOGICAL INSTRUCTIONS

The formats for the instructions are

e Emeres ememen esames Seeme -

5

——— Ememen e ammem— e ———

6

1310
131 0
13,0,

7

Instruction Specific Exceptions:

9.2.4 FIND.FIRST

Starting at bit O,

occurrence of a

SET.BIT instruction

CLEAR.BIT instruction

TOGGLE.BIT instruction

| Bit position in Rx

| X | bit n |
[} 1 : i
, X, bit n
! 1 . [}
y X ¢y bit n

A A A

i

|

1

1

\ Register Rx

Opcode

none

Find First Logical One

set Dbit.

Operand 1, otherwise a -1 is returned.

scan a 64~bit string of 'Last
If found,

Operand' for the first
the bit position is returned to

—-—- Opcode

| FIND.FIRST \ Implementation

X 317 : Rx {- first set bit position Rz

: 417 ! Rx <~ first set bit position e{16}

! 617 ! Rx (- first set bit position e{32}

' B17 | Rx <~ first set bit position [Rz]

\ Cc17 . Rx <~ first set bit position [Ry][Rz]

' D17 ! Rx {- first set bit position [Ryle{12}

' E17 ! Rx (- first set bit position [Ryl[Rz]e{32}
: F17 ! Rx (- first set bit position [Rz]e {32}

Instruction Specific Exceptions:

none

LOGICAL INSTRUCTIONS

9.3 LOGICAL ROTATE OPERATIONS

Rotate an image of Operand 2 by the value in 'Last Operand’
into operand 1.

and place
The unsigned value of Last Operand is used modulo 64.

9.3.1 ROL Logical Rotate Left

9.3.2 ROR Logical Rotate Right

——————— Opcode

: ROL ROR Implementation

X 314 315 . Rx {~ Ry rotated Rz bits

: 514 515 . Rx {- Ry rotated =e{12}bits
! 714 715 i Rx (- Ry rotated =e{32} bits

Instruction specific exceptions: none

9.4 LOGICAL SHIFT OPERATIONS

Shift an image of Operand 2 by the count in 'Last Operand' and

into operand 1. The unsigned wvalue of ‘'Last Operand'

place

is used modulo

64. The fill bit is zero.

9.4.1 SLL Shift Left Logical

9.4.2 SLR Shift Right Logical

——————— Opcode

: SLL SRL Implementation

\ 310 311 i Rx {~ Ry shifted by Rz

\ 510 511 ! Rx {~ Ry shifted by =e{12}

: 710 711 , Rx <~ Ry shifted by =e{32}

SLL will not cause an overflow eXxception, whereas SLA -Shift Left

Arithmetic- will. The

instruction.

sign Dbit is not maintained in

Instruction Specific Exceptions: none

either

LOGICAL INSTRUCTIONS

9.5 LEFT SHIFT OPERATIONS FOR FAST ARRAY INDEXING

SLL1, SLL2 and SLL3 perform left shifts by 1, 2, or 3 to facilitate
indexing into 1l6-, 32-, and 64-bit word arrays. Operand 1 is replaced
by the value of 'Last Operand' shifted left by 1, 2, or 3. The fill
bit is zero.

9.5.1 SLL1 Shift Left Logical by 1
9.5.2 SLL2 Shift Left Logical by 2
9.5.3 SLL3 Shift Left Logical by 3

——————— Opcode

| SLL1.16 SLL1.32 SLL1.64 , Implementation '
| 394 384 3834 ,; Rx {- Ry shift left by 1 '
' 494 4n4 4B4 | Rx <~ e{16} shift left by 1 :
| 694 6R4 6B4 |, Rx <~ e{32} shift left by 1 '
, B94 BA4 BB4 , Rx <- [Rz] shift left by 1 \
! !

. €94 Ch4 CB4 i Rx <~ [Ryl[Rz] shift left by 1 '
! D94 DA4 DB4 , Rx <- [Ryle{12} shift left by 1 '
| E94 ER4 EB4 |, Rx <~ [Ryl[Rzle{32} shift left by 1 '
| F94 FA4 FB4 , Rx < [Rz]e{32} shift left by 1 '
——————— Opcode

! SLL2.16 SLL2.32 SLL2.64 , Implementation '
\ oDx , Rx (- Rw shift left by 2 '
, 395 3A5 385 , Rx {- Rz shift left by 2 '
| 495 425 4B5 |, Rx <~ ef1ie} shift left by 2 :
, 695 6A5 6B5 | Rx (- e{32} shift left by 2 '
: 8Dx ' Rx <~ [splefs} shift left by 2 :
' B95 BAS BB5 i Rx <~ [Rz] shift left by 2 '
, €95 CA5 cB5 , Rx <~ [Ry][Rz] shift left by 2 :
! D95 DA5 DB5 | Rx <{~ [Ryle{12} shift left by 2 :
! E95 EA5 EB5 |, Rx <~ [Ryl]IRzle{32} shift left by 2 :
| F95 FA5 FB5 | Rx <~ [Rz]e{32} shift left by 2 '

LOGICAL INSTRUCTIONS

------- Opcode

, SLL3.16 SLL3.32 SLL3.64 Implementation

\ OEx , Rx <~ Rw shift left by 3
396 326 386 , Rx <~ Rz shift left by 3
| 496 426 486 , Rx <- ef{1s} shift left by 3
, 696 6A6 6B6 |, Rx <- e{32} shift left by 3
' 8EX . Rx <~ [spleis} shift left by 3
. B9e BA6 BB6 |, Rx <~ [Rz] shift left by 3
, €96 cae6 CB6 |, Rx <- [Ryl[Rz] shift left by 3
, D96 DA6 DB6 |, Rx <- [Rylef12} shift left by 3
\ E96 EA6 EB6 , Rx <{- [Ryl[Rzle{32} shift left by 3
, F96 FA6 FB6 , Rx <~ [Rz]e{32} shift left by 3
Use these instructions on the index of the object to be addressed.

Load another register with the base address of the array, then use the
Note the functional equivalence of using
SLL1.64 to double the index and using ADD.64 to sum

BASE, INDEX addressing mode.

itself.

Instruction Specific Exceptions:

none

the

index to

RELATIONAL TEST INSTRUCTIONS

10 RELATIONAL TEST INSTRUCTIONS
The Relational Test instructions test two operands for a specified

relation. If the relation is true, then the instruction performs the
operation. If the relation is false, then no action is taken.

Integer Compare Instructions

CMP.BR Compare Signed Integer and Branch
Program Counter Relative

CMPU.BR Compare Unsigned Integer and Branch
Program Counter Relative

CMP Compare Signed Integer and either
Set Register or Generate Exception

CMPU Compare Unsigned Integer and either

Set Register or Generate Exception

Floating Point Compare Instructions

FCMP Compare Floating Point and either
Set Register or Generate Exception
FCMPX Compare Floating Point

Unordered Relation excepted
and either Set Register
or Generate Exception

FCMP.BR Compare Floating Point and Branch
Program Counter Relative
FCMPX.BR Compare Floating Point

Unordered Relation excepted
and Branch Program Counter Relative

Byte String Compare Instructions

CMPB.BR Compare Byte Strings and Branch

Program Counter Relative
CMPB.BR.CONST Compare Byte String Against Constant

and Branch Program Counter Relative
CMPB.TEST Compare Byte Strings and

Generate Test Result

The order of comparison is:

Operand 1 <relation) Operand 2

All integer type compares are performed on 64-bit quantities. The
integer compare instructions that wuse signed integer operands first
sign extend all operands to 64 bits before the compare. The unsigned
integer compare instructions 2zero extend all operands Dbefore the

10 - 1

RELATIONAL TEST INSTRUCTIONS

compare. A test performed with the unsigned integer compare will find
a quantity with the sign bit on greater than a quantity with the sign
bit off. Otherwise, these two types of instructions perform
identically.

The instructions in this section use a 16-~bit appendage. The first
four high order bits of the appendage are for the compare condition
field (ccf). The remaining 12 bits are used to specify the appropriate
action for the instruction should the test be successful. The
appendage in its entirety is shown below:

General Appendage Format

bit - © 1 2 3 4 5 6 7 8 =) 10 11 12 13 14 15

X ccf . Supplemental Information for Instruction

The compare condition field uses four bits to specify the relation to
be tested. Refer to Table 10-1. The unordered bit is only used for
the floating point compares to allow the detection of NaN's. A further
discussion on unordered relations may be found in Chapter 3, "Data
Representations®, and within the descriptions of the floating point
compare instructions. For the integer and string compare instructions,
the unordered bit (bit 0) is reserved.

The 4-bit compare condition segment has the following format:

Compare Condition Field Format

bit 0] 1 2 3

A A A A
i ; i |___Greater than
; § E____Equal to

; E____Less than
E____Unordered

10

i
N

Table 10-1.

RELATIONAL TEST INSTRUCTIONS

| Cod

e

Floating Point

Integer or String

WO-JIJ0OO UL b WM

LEG

uG
UE
UEG
UL
ULG
ULE
ULE

G

G

E
EG
L
LG
LE
LEG

LEG

Table of Compare Condition Field Relations

The compare and branch instructions use the remaining 12-bit segment of
the appendage to hold a two's complement PC

branch.

relative

~COMPARE AND BRANCH APPENDAGE FORMAT-

{two's complement PC relative offset)

offset for

bit 4 5

For the compare

6

7

8

9

10

11

12

13

14

15

the

and set register instructions, the 12-bit segment has
the following format.

~COMPARE AND SET REGISTER APPENDAGE FORMAT-

0]

0

0

0

0

0

0

0]

0

7

8

9

10

11

12

Bit 4 differentiates this instruction from the

exception form.

Bits

5 +through 15 are unused and must be
0-62 of Rx are cleared, then the least significant bit of RX is set

13

14

15

compare and dgenerate

the compare is true, and is cleared if the compare is false.

10

'0'.

Bits
if

RELATIONAL TEST INSTRUCTIONS

For the compare and generate exception instructions, the 12-bit segment
has the following format.

—COMPARE AND GENERATE EXCEPTION APPENDAGE FORMAT-

, 1, 0 0 o {exception) \

bit 4 5 6 7 8 9 10 11 12 13 14 15

Bit 4 is '1l*' to identify this format, and bits 5 through 7 are unused
and must be '0'. Bits 8 through 15 contain a value which is included
in the message to the exception handler.

All Branch Relative instructions use the address of the first byte of
the branch instruction as the base for the offset.

10.1 INTEGER COMPARE

The Integer Compare instructions perform a relational test on signed or
unsigned integer operands.

10.1.1 Compare Integer and Branch Program Counter Relative

Compare integer operands. If true, branch program counter relative by

a 12-bit signed integer byte offset specified in the appendage. The
relational test is specified in the compare condition segment.

10 - 4

RELATIONAL TEST INSTRUCTIONS

10.1.1.1 CMP.BR Compare Signed Integers and Branch PC Relative
10.1.1.2 CMPU.BR Compare Unsigned Integers and Branch PC Relative

D30 D31 D32 D33
E30 E31 E32 E33

Rx <rel) [Ryl[Rzle{32} branch
Rx <rel)> [Ryl[Rzle{32} branch

——————————— Opcode

, CMP.BR.8 .16 .32 .64 \ Implementation |
: 033 . Rx <rel) Rw branch
\ 333 . Ry <rel) Rz branch
! 430 431 432 433 . Rx <rel) efie} branch |
\ 533 . Ry <rel) =ef{12} branch
I 630 631 632 633 i Ry <rel) ef{32} branch |
! 733 Ry <rel) =ef{32} branch |
\ A32 \ Rw <{rel) [Ryl[Rz] branch \
. B30 B31 B32 B33 , Ry <rel)> [Rz] branch
' c30 c31 c32 c33 . Rx <rel) [Rylef{12} branch |
| | |
] 1 I
1 | i
[} [}]
[} I i

D34 D35 D36 D37
E34 E35 E36 E37
F34 F35 F36 F37

Rx <{rel) [Ryl[Rzl]e{32} branch
Rx {rel) [Ryl[Rzle{32} branch
Ry <{rel)> [Rzle {32} branch

F30 F31 F32 F33 Ry <rel) [Rz]e{32} branch

——————————— Opcode

| CMPU.BR.8 .16 .32 .64 \ Implementation X
\ 337 . Ry <rel) Rz branch |
. 434 435 436 437 . Rx <{rel) ef{is} branch :
\ 537 | Ry <rel) =ef12} branch
, 634 635 636 637 . Ry <rel) e{32} . branch
! 737 ! Ry <{rel) =e{32} branch
, B34 B35 B36 B37 . Ry <rel) [Rz] branch |
b c34 c35 c36 c37 . Rx <rel) [Rylef{12} pranch !
| | |
1 I 1
]] |
]] 1
| | |

Instruction Specific Exceptions: none

10.1.2 Compare Integers and either Set Register or Generate Exception

Compare integer operands. If true, Set Register or Generate Exception.
The "Set Register" occurs when bit 4 of the appendage is '0'. If the
compare is true, set RX equal to one; if the compare is false, clear
Rx. The "Generate Exception" occurs when bit 4 of the appendage is
'1*. If the compare is true, then generate the exception specified in
the appendage. The relational test considers the operands to be signed
integers for CMP, and unsigned integers for CMPU.

10 - 5 -

10.1.2.1 CMP
10.1.2.2 CMPU

RELATIONAL

TEST INSTRUCTIONS

——————————— Opcode
CMP.8 CMP.16 CMP.32 CMP.64 |, Implementation
323 | Rx, exc; <~ Ry <{rel) Rz
420 421 422 423 ! Rx, exc; <{~ Rx <rel) ef{ie}
523 | Rx, exc; <{- Ry <{rel) =ef{12}
620 621 622 623 | Rx, exc; <{- Ry <{rel) e{32}
723 | Rx, exc; <~ Ry <{reld =e{32}
B20 B21 B22 B23 , Rx, exc; <~ Ry <{rel) [Rz]
c20 c21 c22 c23 | Rx, exc; <{- Rx <{rel) [Ryl[Rz]
D20 D21 D22 D23 I Rx, exc; <{- Rx <{rel)> [Rylef{12}
E20 E21 E22 E23 , Rx, exc; <- Rx <rel) [Ryl[Rzle{32}
F20 F21 F22 F23 | Rx, exc; <{- Ry <{rel> [Rzle{32}
——————————— Opcode
CMPU.8 CMPU.16 CMPU.32 CMPU.64 | Implementation
327 | Rx, exc; <{- Ry <{rel) Rz
424 425 426 427 | Rx, exc; <{- Rx <{rel) ef{is}
527 ! Rx, exc; <{- Ry <{rel) =ef{12}
624 625 626 627 ' Rx, exc; <{- Ry <rel) e{32}
727 i Rx, exc; <{- Ry <rel) =e{32}
B24 B25 B26 B27 . Rx, exc; <~ Ry <rel) [Rz]
C24 c25 Cc26 c27 , Rx, exc;-<- Rx <reld [Ry][Rz]
D24 D25 D26 D27 , Rx, exc; <~ Rx <rel) [Rylef12}
E24 E25 E26 E27 . Rx, exc; <~ Rx <rel) [Ryl[Rzle{32}
F24 F25 F26 F27 , Rx, exc; <~ Ry <rel) [Rzle{32}
Instruction Specific ExXceptions: none
10.2 FLOATING POINT COMPARE
All floating point compare instructions first test for unordered

relations.

The FCMP and FCMP.BR
OPERATION exception only
The FCMPX and FCMPX.BR instructions generate an
exception if one or both operands are quiet or signaling NaN's.

instructions

is unordered to everything, including itself.

10

generate the
if one or both operands are signaling NaN's.

INVALID

INVALID OPERATION
A NaN

RELATIONAL TEST INSTRUCTIONS

The hardware exceptions are always generated before any software
exceptions specified in the appendage. The relations that may be
tested in the compare condition field are as follows:

UNORDERED
LESS THAN
EQUAL TO
GREATER THAN

O0O0O0

The following table specifies the outcome for an unordered relation
with the FCMP, FCMP.BR, FCMPX, and FCMPX.BR instructions. The table
headers have the following meaning:

E Exception handler enabled for INVALID OPERATION (bit 26 in PSW).
U Unordered bit state in the compare condition field.

E U ACTION

0 0 Set bit 27 in PSW. Terminate this instruction and

execute next instruction.
0 1 Set bit 27 in PSW. Test the operands and take the
action specified in the appendage.
1 X Set bit 27 in PSW. Take the INVALID OPERATION
exception handler.

10 - 7

RELATIONAL TEST INSTRUCTIONS

10.2.1 Compare Floating Point and Branch PC Relative

Compare the 32-, 64—, or 80-bit floating point operands. If true,
branch PC relative with the 12-bit signed integer offset specified in
the appendage.

10.2.1.1 FCMP.BR Compare Floating Point and Branch PC Relative
10.2.1.2 FCMPX.BR Compare Floating Point and Branch PC Relative,
Unordered Relation Excepted

----------- Opcode

\FCMP.BR.32 .64 FCMPX.BR.32 .64) Implementation \
¢ 13x 12x . Rx <rel) Rw branch |
, 338 339 , 3312 33B , Rx <rel) Rz branch
I 438 439 | 43a 43B |, Rx <rel) ef{1e} branch |
, 538 , 53A | Ry <re1l> =ef{12} branch |
, 638 639 , 63A 63B , Ry <re1) e{32} branch |
738 . 73R , Ry <rei) =e{32} branch |
! 93x ! . Rw <rel) [spPlef{s}: branch !
, B38 B39 , B3a B3B |, Ry <rel) [Rz] branch |
, €38 c39 |, c©3a C3B , Rx <rel) [Ryle{12} branch |
, D38 D39 |, D3A D3B , Rx <rel)> [Ryl[Rzle{32} branch |
| E38 E39 |, E32a E3B , Rx <rel) [Ryl[Rzle{32} branch |
| F38 F39 , F3a F3B , Ry <rel)> [Rzle{32} branch |
, Opcode assignment , Code | Implementation \
, FCMP.BR.80 , D09 | Ry,Ry+l <{rel) Rz,Rz+l, branch :
, FCMPX.BR.80 ., DOB |, Ry,Ry+l <rel> Rz,Rz+l, branch :

10 - 8

RELATIONAL TEST INSTRUCTIONS

Formats for the non-generalized instructions are

D, 0,90,y , 2z, appendage

———— ——— ——— ———— ———— G tom e e - — - — ————

FCMP.BR.80

D,0,B,0,y, 2z, appendage ,

FCMPX.BR.80

A A A A

' Source operand z,z+1

Source operand y,y+1l

Opcode

Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION

Table 10-2. Result Matrix for FCMP, FCMPX, FCMP.BR, FCMPX.BR
, If OP1 is , and OP2 is , then result is '
| Zero | Zero \ Zero with sign X
, Zero , Denorm, Normal |, OP2 "
\ Zero , Infinity , 0P2 :
, Denorm, Normal | Zero i OP1 :
, Denorm, Normal , Denorm, Normal , computed :
Denorm, Normal |, Infinity , OP2 |
, Infinity \ Zero , OP1 :
, Infinity . Denorm, Normal , OP1 \
, Infinity \ Infinity \ OPl1l or Invalid \

10.2.2 Compare Floating Point and either Set Register or
Generate Exception

Compare the 32-, 64—, or 80-bit floating point operands and perform the

action specified by bit 4 in the appendage.

If bit 4 = '0', then

"Set

Register" (set Rx equal to 'l' if the compare is true, and equal to '0'

if false).

If Dbit

exception specified in the appendage.

10 -

4 = '1' and the compare is true then generate the

RELATIONAL TEST INSTRUCTIONS

10.2.2.1 FCMP Compare Floating Point and either Set Register or
Generate Exception
10.2.2.2 FCMPX Compare Floating Point and either Set Register or
Generate EXxXception, Unordered Relation Excepted

----------- Opcode
, FCMP.32 .64 FCMPX.32 .64 , Implementation

, 328 329 |, 32A 32B , Rx, exc; <{- Ry <rel) Rz

428 429 | 42A 42B |, Rx, exc; <{- Rx <rel) ef{16}

' 628 629 |, 62A 62B |, Rx, exc; <{- Ry <rel) e{32}

. 728 ' 72A . Rx, exc; <{- Ry <rel) =e{32}

. B28 B29 , B2A B2B , Rx, exc; <~ Ry <rel) [Rz]

. €28 c29 |, C2A C2B |, Rx, exc; <{- Rx <rel) [Ryl[Rz]

| D28 D29 | D2A D2B , Rx, exc; <- Rx <rel) [Ryle{12}

, E28 E29 |, E2A E2B , Rx, exc; <{- Rx <rel}> [Ryl[Rz]e {32}
| F28 F29 |, F2A F2B , Rx, exc; {- Ry <reld [Rzle{32}

, Opcode assignment , Code | Implementation

: FCMP.80 , D08 |, Rx, exc; <{- Ry,Ry+l <{reld Rz,Rz+l

' FCMPX.80 . DOA | Rx, exc; <{~ Ry,Ry+l <{rel)> Rz,Rz+1

The formats for the non-generalized instructions are

——— e m— - Gmtmem EeemEm e n - ——— Ememe— ——— - ——— ———

y D, 0,8, %,y , 2, appendage | FCMP instruction
., D, 0 ,A X,y , 2, appendage | FCMPX instruction
A n A A AT -

\ Source operand z,z+l

i
i
]
!
) Source operand y,y+l

Result operand

Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION

10 - 10

RELATIONAL TEST INSTRUCTIONS

10.3 BYTE STRING COMPARE

The string operand is tested against another string or a constant.

10.3.1 CMPB.BR Compare Byte Strings and Branch

Compare two byte strings of equal 1length. The comparison proceeds
byte-wise from the respective starting addresses. RX contains the
address of string 1, Ry the address of string 2, and Rz contains the
length of the strings in bytes. If string 1 <{rel) string 2 is true,
then the relative branch is taken. This instruction has an appendage
identical in format to the integer CMP.BR instructions.

| Opcode assignment , Code Implementation \

: CMPB.BR 1 D00} [Rx:{st)>] <rel) [Ry:{st>], Rz:{len), br |

The format for the non-generalized CMPB.BR instruction is

i D, 0,0, %X,y , 2z ,ccd l2-bit disp,

A A A A A A A A

\ \ ' 12-bit PC rel displacement
1 I

t | .

' ‘ Condition code descriptor

[}

]

i Rz has length of strings in bytes

]

I

|

Ry has address of string 2

RX has address of string 1

Special Notes:

The contents of Rx, Ry and Rz are unpredictable at the end of the
instruction. If defined values for these registers are desired, use a
software loop instead of these instructions.

Instruction Specific Exceptions: none

10 - 11

RELATIONAL TEST INSTRUCTIONS

10.3.2 CMPB.BR.CONST Compare Byte String Against Constant and Branch

Compare, word-wise, a byte string against a 64-bit word constant. Rx
contains the address of the string, Ry contains a 64-bit word to be
used in the compare, and Rz contains the length of the string in bytes.
If string 1 <{rel> constant is true, then the relative branch is taken.
The final compare may be less than a word, i.e., the string need not be
a multiple of eight bytes in length. Thus, this instruction appears to
truncate on byte boundaries, if necessary, the word constant on the
final compare to conform to the length of the string.

This instruction has an appendage identical in format to the integer
CMP.BR instructions.

, Opcode assignment , Code | Implementation \

{ CMPB.BR.CONST , DO1 , [Rx:{st)] <{rel}> Ry, Rz:{lend, branch :

Special Notes:

The contents of Rx and Rz are unpredictable at the end of the
instruction. If defined values for these registers are desired, use a
software loop instead of these instructions.

The format for the non-generalized CMPB.BR.CONST instruction is

y D} 0,1, %,y 2z ccd]l2-bit disp|
A AT T T T T

' X ' 12-bit PC rel displacement
I 1

| 1
\ \ Condition code descriptor

]

|
. Rz has length of string 1 in bytes

I
1
1
I
1
1
1
i
1
1
i
|
i Ry has comparison word
i

[}

1

i

RX has address of string 1

Opcode

Instruction Specific Exceptions: none

RELATIONAL TEST INSTRUCTIONS

10.3.3 CMPB.TEST Compare Byte Strings and Generate Test Result

Compare, byte-wise, two strings of equal 1length. RX contains the
starting address of string 1, Ry the starting address of string 2, and
Rz contains the length of the strings in bytes. The first inequality
of the byte-wise compare, or, if equal, the exhaustion of the string,
will set RX to one of three values:

If [Rx]:<{st> less than [Ryl:<{st> then set RX to -1
If [Rx]:<{st) equal to [Ryl:<{st> then set Rx to 0
If [Rx]:{st> greater than [Ryl:<{st)> then set RX to 1

| Opcode assignment , Code , Implementation

CMPB.TEST 1 705 | [Rx]:<st)> <reld [Ryl:<{st)>, Rz:{len) '

Special Notes:
The contents of Ry and Rz are unpredictable at the end of the

instruction. If defined values for these registers are desired, use a
software loop instead of these instructions.

The format for the non-generalized CMPB.TEST instruction is

" Rz has length of strings in bytes

Ry has address of string 2
RX has address of string 1

Opcode

Instruction Specific Exceptions: none

10 - 13

DATA CONVERSION INSTRUCTIONS

11 DATA CONVERSION INSTRUCTIONS

These instructions allow conversion across data types, including Double
precision, Extended Double precision, Single precision, 64-bit signed

Integer and ASCII numeric strings.

CVT.AI
CVT.DE
CVT.DI
CVT.DS
CVT.ED
CVT.EI
CVT.ES
CVT.IA
CVT.ID
CVT.IE
CVT.IS
CVT.SD
CVT.SE
CVT.SI

FINP.32
FINP.64
FINP.80

Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert

ASCII String to Integer

from
from
from
from
from
from
from
from
from
from
from
from
from

Double to
Double to
Double to

Extended
Integer
Single

Extended to Double
Extended to Integer
Extended to Single
Integer to ASCII
Integer to Double
Integer to Extended
Integer to Single

Single to
Single to
Single to

Floating Point Integer
Floating Point Integer
Floating Point Integer

Given the numerical attributes
the expected result of a conversion for each instruction.

11

in the operand,

Double
Extended
Integer

Part

Part
Part

the table below shows

DATA CONVERSION INSTRUCTIONS

Table 11-1. Data Conversion Result Matrix for Operand States

; Opcode \ Zero Denorm Normal Infinity ONaN SNaN)
X CVT.DE L2 4 3 5 8 6 :
X CVT.DI y1 1 7 6 6 6 X
. CVT.DS y 2 9 3 5 10 6 |
: CVT.ED L2 9 3 5 10 6 \
: CVT.EI o1 1 7 6 6 6 \
: CVT.ES y2 9 3 5 10 6 \
. CVT.ID P12 12 12 12 12 12 .
. CVT.IE ;13 13 13 13 13 13 X
" CVT.IS L12 12 12 12 12 12 "
. CVT.SD L2 4 3 5 8 6 \
, CVT.SE y2 4 3 5 8 6 X
' CVT.SI . | 1 7 6 6 6 X
' FINP.32 y 2 11 11 6 6 6 \
" FINP.64 L2 11 11 6 6 6 X
X FINP.80 y 2 11 11 6 6 6 '

CONVERSION RESULT:

[1] Zero

[2] Zero with same sign

[3] Equivalent number

[4] Equivalent normalized number

[5] Infinity with same sign

[6] Floating Point Invalid Operation

[7] Truncated number

[8] Same Quiet NaN with zeroes appended to significand

[9] Floating Point Underflow

[10] Same Quiet NaN with least significant bits truncated
[11] Rounded to Floating Point Integer

[12] Rounded result

[13] Exact result

Using, for an example, the instruction CVT.DE (Convert Double to
Extended), assume

If operand to be converted is a denormalized number, then the
conversion result in the destination operand will be an equivalent
normalized number. This is conversion result (4) above.

If operand to be converted is a signaling NaN, then no conversion

takes place; rather, a FLOATING POINT INVALID OPERATION exception
is generated. This is conversion result (6) above.

11 - 2

DATA CONVERSION INSTRUCTIONS

Note that CVT floating to Integer instructions truncate, while CVT
floating to floating instructions obey the rounding mode. However, the
FINP instructions may be used to round floating point numbers to
Integer in the same floating point format. The instruction sequence

FINP.32
CVT.SI

will round a floating point number as it is converted to Integer.

1l.1 ASCII CONVERSION INSTRUCTIONS

These instructions perform conversions on 64-bit signed Integers and

numeric strings. A numeric string is a sequence of ASCII encoded
numbers within the set ['30'..'39'] hex.

CVT.AI replaces RxX with the conversion of Rz from an eight digit
numeric string to a 64-bit signed Integer. Results are unpredictable
if a byte in the numeric string is not hex '00' or hex '30' to '39'.

CVT.IA replaces RX with the conversion of Rz from a 64-bit signed
Integer to an eight digit numeric string. Results are unpredictable if
the operand is outside the range 0 through 99,999,999.

11.1.1 CVT.IA Convert from Integer to ASCII
11.1.2 CVT.AI Convert from ASCII to Integer

| Opcode assignment , Code Implementation \
: CVT.AI , 70C | Rx {- Rz converted X
: CVT.IA , 70D | Rx <{- Rz converted \

11 - 3

DATA CONVERSION INSTRUCTIONS

The formats of these non-generalized instructions are

V7,0 ,C %X ,-1 2z, CVT.AI instruction

A A A A

\ Rz has the numeric string to convert

V7,0 ,D,x,-,2| CVT.IA instruction

\ Rz has 64-bit Integer to convert

RX receives the converted value

Instruction Specific Exceptions: none

11.2 CONVERT FROM DOUBLE TO EXTENDED, INTEGER, OR SINGLE

Convert 'Last Operand' from Double to Double Extended (CVT.DE), 64-bit
Integer (CVT.DI), or Floating Point Single (CVT.DS). Place the result
into Operand 1. ‘

11.2.1 CVT.DE Convert from Double to Extended
11.2.2 CVT.DI Convert from Double to Integer
11.2.3 CVT.DS Convert from Double to Single

DD7 DD3 DD6
ED7 ED3 ED6
FD7 FD3 FD6

Rx(,Rx+1) <- [Ryl[Rzle{32} converted
Rx(,Rx+1) <~ [Ryl[Rzle{32} converted
Rx(,Rx+1) <~ [Rzle{32} converted

------- Opcode

, CVI.DE CVT.DI CVT.DS |, Implementation \
, 3D7 3D3 3D6 i Rx(,Rx+1l) <~ Rz converted |
' 4D7 4D3 4D6 i\ Rx(,Rx+1) <~ ef{1e} converted !
| 6D7 6D3 6D6 ' Rx(,Rx+1) <~ e{32} converted :
. BD7 BD3 BD6 1 Rx(,Rx+1) <~ [Rz] converted \
, CD7 CD3 CD6 . Rx(,Rx+1) <~ [Rylef{12} converted :
| | |
I] i
]] |
]] i
I] |

11 - 4

DATA CONVERSION INSTRUCTIONS

Instruction Specific Exceptions:

EXCEPTION ' CVT.DE CVT.DI CVT.DS :

FP Underflow \

FP Overflow \

FP Invalid Operation , X X
|
[}
i

M N

FP Inexact Result
Integer Overflow

11.3 CONVERT FROM EXTENDED TO DOUBLE, INTEGER, OR SINGLE

Convert 'Last Operand' from Extended to Double (CVT.ED), 64-bit Integer
(CVT.EI), or Floating Point Single (CVT.ES). Place the result into
Operand 1.

11.3.1 CVT.ED Convert from Extended to Double
11.3.2 CVT.EI Convert from Extended to Integer
11.3.3 CVT.ES Convert from Extended to Single

, Opcode assignment | Code Implementation \
X CVT.ED | FO7 Rx {- Rz,Rz+1 converted X
\ CVT.EI . FO3 Rx <{- Rz,Rz+l converted H
\ CVT.ES , FO6 Rx {- Rz,Rz+l converted '

11 - 5

DATA CONVERSION INSTRUCTIONS

The formats of these non-generalized instructions are

VFLo0,71x -1z CVT.ED instruction

' Rz,Rz+1 has Double Extended source

RX receives the Double precision number

VFL0 131 x -2z CVT.EI instruction

X Rz,Rz+l has Double Extended source

RX receives the Integer

VF,0,6,x -2z, CVT.ES instruction

. Rz,Rz+1 has Double Extended source

RX receives the Single precision number

Instruction Specific Exceptions:

i EXCEPTION \ CVT.ED CVT.EI CVT.ES
| .

, FP Underflow : X X

, FP Overflow X X X

, FP Invalid Operation | X X X

. FP Inexact Result ' X X

. Integer Overflow ' X

11 - 6

DATA CONVERSION INSTRUCTIONS

11.4 CONVERT FROM INTEGER TO DOUBLE, SINGLE, OR EXTENDED

Convert 'Last Operand' from 64-bit signed Integer to Double (CVT.ID),
Floating Point Single (CVT.IS), or Extended (CVT.IE). Place the result
into Operand 1.

ll1.4.1 CVT.ID Convert from Integer to Double
11.4.2 CVT.IS Convert from Integer to Single
11.4.3 CVT.IE Convert from Integer to Extended

——————— Opcode

X CVT.ID CVT.IS |, Implementation '
' 3D2 3c2 I Rx <~ Rz converted :
: 4D2 4c2 I Rx <~ efis} converted :
| 6D2 6C2 ! Rx {- e{32} converted :
" BD2 BC2 . Rx <~ [Rz] converted .
X CD2 ce2 , Rx <~ [Ryl[Rz] converted X
: DD2 DC2 . Rx <~ [Ryle{12} converted '
: ED2 EC2 ! Rx <~ [Ryl[Rzle{32} converted :
' FD2 FC2 ! Rx <{- [Rzle{32} converted :
| Opcode assignment , Code Implementation X
P - CVT.IE | FO2 Rx,Rx+1 {- Rz converted '

The format of the non-generalized CVT.IE instruction is

V F 0,2 %X, -2, CVT.IE instruction

i Rz contains the Integer source

Rx, Rx+1 receive the Extended conversion

11 - 7

DATA CONVERSION INSTRUCTIONS

Instruction Specific Exceptions:

EXCEPTION . CVT.ID CVT.IE CVT.IS '

1
]
]
]
, FP Inexact Result \ X X X

11.5 CONVERT FROM SINGLE TO DOUBLE, INTEGER, OR EXTENDED

Convert 'Last Operand' from Floating Point Single to Double (CVT.SD),
64-bit Integer (CVT.SI), or Extended (CVT.SE). Place the result into
Operand 1.

11.5.1 CVT.SD Convert from Single to Double
11.5.2 CVT.SI Convert from Single to Integer
11.5.3 CVT.SE Convert from Single to Extended

——————— Opcode

, CVT.SD CVT.SI CVT.SE | Implementation |
, 3C6 3c3 3¢7 : (RX,Rx+1) <~ Rz converted

| 4C6 4C3 4c7 ' (RX,Rx+l1) <~ ef{16} converted

. 6C6 6C3 6C7 . (Rx,Rx+1) <~ e{32} converted |
, BCce BC3 BC7 : (Rx,Rx+1) <~ [Rz] converted

| CC6 cc3 cc7 : (Rx,Rx+1) <- [Ryl][Rz] converted '
, DC6 DC3 DC7 : (RX,Rx+1) <~ [Rylef{12} converted

, EC6 EC3 EC7 (Rx,Rx+1) <- [Ryl[Rz]e{32} converted !
, FC6 FC3 FC7 : (Rx,Rx+1) <~ [Rzle{32} converted

Instruction Specific Exceptions:

X EXCEPTION \ CVT.SD CVT.SE CVT.SI \
]
]
, FP Invalid Operation | X X X \
. Integer Overflow \ X \

11 - 8

DATA CONVERSION INSTRUCTIONS

1l.6 FINP FLOATING POINT INTEGER PART

With the two operand forms, Operand 2 is rounded at the binary point
based on the rounding mode, and the resulting floating point Integer
replaces Operand 1. With the three operand forms, Operand 3 is the
source and Operand 2 is ignored.

——————————— Opcode

\ FINP.32 FINP.64 : Implementation X
' 3CF 3DF i Rx <~ Integer part of Rz \
! 4CF 4DF ! Rx {- Integer part of e{16} \
! 6CF 6DF ! Rx <~ Integer part of e{32} "
' BCF BDF , Rx <~ Integer part of [Rz] '
\ CCF CDF . Rx (- Integer part of [Rz] \
! DCF DDF ! Rx {- Integer part of e{12} |
: ECF EDF ! Rx {- Integer part of [Rzle{32} |
' FCF FDF ! Rx <{- Integer part of [Rzle{32} |
| Opcode assignment , Code Implementation X
\ FINP.80 | FOF | (Rx,Rx+l) <- Integer part of (Rz,Rz+l) ,

The format of the non—generalized FINP.80 instruction is

\ Rz, Rz+l is source operand

Rx, Rx+1l is result operand

Opcode
Instruction Specific Exceptions: FLOATING POINT INVALID OPERATION
FLOATING POINT INEXACT RESULT

RESULT MATRIX FOR FINP

\ 1f OP1 is | then result is \

Zero
Denorm, Normal
Infinite

Zero. The sign of the operand is preserved.
Computed
Invalid Operation

11 - 9

FLOW OF CONTROL INSTRUCTIONS

12 FLOW OF CONTROL INSTRUCTIONS

The control instructions may be divided into 4 basic groups: simple
control transfer, conditional control transfer, procedural control
transfer and control transfers requiring special handling.

In all control instructions (including the compare and branch

instructions), any relative offsets refer to the first byte of the
instruction.

Simple Control Transfer Instructions

BR.ABS Branch Absolute
BR.REL Branch Relative
BR.BACKWARD Branch Backward Short Relative
BR.FORWARD Branch Forward Short Relative

Conditional Control Transfer Instructions

BR.<cond).ABS Branch Register Conditional absolute
BR.<{cond>.REL Branch Register Conditional relative
BR.B <cond>.SH REL Branch Backward Register conditional
BR.F {cond).SH REL Branch Forward Register conditional

Procedural Control Transfer Instructions

BR.REG Branch through Register

CALL Procedure Call Through Stack
CALL.REG Procedure Call Through Register
EXIT

Control Transfers Requiring Special Handling

BREAKPOINT

EXCEPTION

IXIT Exit from Interrupt
BXIT Exit from Break

12.1 UNCONDITIONAL BRANCHES

BR.ABS loads the program counter with the 32-bit displacement encoded
in the instruction.

BR.REL adds the 32-bit signed integer offset encoded in the instruction
to the program counter.

FLOW OF CONTROL INSTRUCTIONS

BR.BACKWARD subtracts the unsigned 8-bit displacement from the program
counter. The branch range is from 0 to -255 bytes.

BR.FORWARD adds the unsigned 8-bit displacement to the program counter.
The branch range is from 0 to 255 bytes.

12.1.1 BR.ABS Branch Absolute

12.1.2 BR.REL Branch Relative

12.1.3 BR.BACKWARD Branch Backward Short Relative
12.1.4 BR.FORWARD Branch Forward Short Relative

, Opcode assignment , Code | Implementation ,

BR.ABS EO7 PC {- displacement

] } I I
i 1 i |
X BR.REL , EOF , PC {- PC + displacement '
' BR.BACKWARD , BAOX |, PC <~ PC - unsigned displacement X
' BR.FORWARD { 20 , PC ¢ PC + unsigned displacement \

The formats for these instructions are

¢t E, 0 ,0P2, -, -, - | {32-bit displacement) '
. A AT T e e e e T T
1

\ | | OP2 code

1 I

] 1
: | ____OP1 code for non-generalized instructions
I

]

I

I

OP0 code

\OPO, 0 ;<daispl), Short Unconditional Branch format

A A A A

\ 8-bit unsigned displacement

|
]
I
|
: OP1 code for non-generalized instructions
I
]
I
1

OPO code

Instruction Specific Exceptions: none

12 - 2

FLOW OF CONTROL INSTRUCTIONS

12.2 BRANCH REGISTER CONDITIONAL LONG INSTRUCTIONS

Load (BR.{COND}>.ABS) or add (BR.{COND)>.REL) the 32-bit
encoded in the

signed

integer

instruction to the program counter if the relation
[(register) <{cond) zero] is true.

12.2.1 BR.{cond>.ABS Branch Register Conditional Absolute
12.2.2 BR.<cond).REL Branch Register Conditional Relative
Opcode assignment : Code Implementation
BR.GT.ABS , EO1 | PC <~ signed disp, Rx<{GT>0
BR.EQ.ABS . E02 | PC <{- signed disp, Rx<EQ)O
BR.GE.ABS . E03 | PC <- signed disp, Rx<{GE)O
BR.LT.ABS . E04 | PC <~ signed disp, Rx<{LT)>O
BR.NE.ABS , E0O5 | PC <- signed disp, Rx<{NEDO
BR.LE.ABS . E06 |, PC <~ signed disp, Rx<{LEDO
Opcode assignment Code : Implementation
BR.GT.REL , E09 | PC <~ PC+signed disp, Rx<{GT>0
BR.EQ.REL \ EoA |, PC {~ PC+signed disp, Rx<{EQ)O
BR.GE.REL , EOB | PC <~ PC+signed disp, Rx{GE)O
BR.LT.REL , EoC |, PC {- PC+signed disp, Rx<{LT>O
BR.NE.REL , EOD | PC <~ PC+signed disp, Rx<{NE)O
BR.LE.REL , EOE |, PC <~ PC+signed disp, Rx<{LEDO

The instruction format for the long conditional branches is

——— mm e = EmEmem ShGEen Gean e, GeEeeE WeER G Gh GG Ao e Gmemem GmEm - eeme -

0 ;0P2, x

A

| B

A A

OPO

Sub-op code

Instruction Specific Exceptions:

12

{32-bit displacement)

none

I Rx register to test

OPl code for non-generalized instructions

FLOW OF CONTROL INSTRUCTIONS

12.3 BRANCH REGISTER CONDITIONAL SHORT RELATIVE INSTRUCTIONS

Subtract (BR.B.{cond).SH.REL) or add (BR.F.{cond)>.SH.REL) the 8-bit
unsigned integer encoded in the instruction to the program counter if
the relation [(register) <{cond> zero] is true.

12.3.1 BR.B.<cond)>.SH.REL Branch Backward Register Conditional
Short Relative

12.3.2 BR.F.<cond>.SH.REL Branch Forward Register Conditional
Short Relative '

| Opcode assignment , Code Implementation \
. BR.B.GT.SH.REL , B09 , PC {~ PC-unsigned disp, Rx<{GT>0 \
, BR.B.EQ.SH.REL , BOA , PC <~ PC-unsigned disp, Rx<EQ)O '
| BR.B.GE.SH.REL , BOB PC {- PC-unsigned disp, Rx<{GE)O .
, BR.B.LT.SH.REL , BOC , PC {~ PC-unsigned disp, Rx<{LT>0 '
| BR.B.NE.SH.REL. |, BOD , PC (- PC-unsigned disp, Rx<NE>O .
, BR.B.LE.SH.REL , BOE , PC {- PC-unsigned disp, Rx<{LEDO '
, Opcode assignment |, Code Implementation :
\ BR.F.GT.SH.REL , 309 , PC {- PC+unsigned disp, Rx<{GT)0 \
, BR.F.EQ.SH.REL , 30A , PC (- PC+unsigned disp, Rx<{EQ)O \
, BR.F.GE.SH.REL , 30B , ©PC {- PC+unsigned disp, Rx<{GE)O :
, BR.F.LT.SH.REL. , 30C PCc (- PC+unsigned disp, Rx<{LT>0 :
| BR.F.NE.SH.REL , 30D , PcC {- PC+unsigned disp, Rx<{NE)O :
. BR.F.LE.SH.REL , 30E , ©PC {- PC+unsigned disp, Rx<{LEDO :

12 - 4 .-

FLOW OF CONTROL INSTRUCTIONS

The instruction format for the short conditional branches is

JOPO, 0 ;0P2, x ,<displ),

A A A A A A

' ' 8-bit unsigned displacement
1
i
I
i

RX register to test
OP2 code

OPl code for non-generalized instructions

OPO
OPO

3 for BR.F.{cond).SH.REL
B for BR.B.<{cond).SH.REL

o

Instruction Specific Exceptions: none

12.4 PROCEDURAL CONTROL TRANSFER INSTRUCTIONS

There are two types of procedure calls supported by the ELXSI
architecture. Their difference 1lies 3in where the return Program
Counter value is saved (the address of the instruction immediately
following the call), and by the architectural support provided for
local stack frame deallocation.

In the first and most commonly used type, the return PC value of the
calling procedure is placed (rather than pushed) in the 32-bit memory
location pointed at by the stack pointer (CALL). When returning from
the called procedure, the 1local stack frame is deallocated
automatically, restoring the return PC value (EXIT).

In the alternate procedure call mechanism, the return PC is passed in a
register (CALL.REG). To return to the calling procedure, a branch
through register is executed (BR.REG). No architectural stack frame
deallocation support is provided for the CALL.REG and BR.REG
instructions. Any local stack frame handling must be done by specially
emitted code.

For a complete description of the procedure calling mechanism, the
reader should refer to Section 2.3, "Procedure Calls".

Procedural Control Transfer Instructions

BR.REG Branch through Register

CALL Procedure Call Through Stack
CALL.REG Procedure Call Through Register
EXIT

12 - 5

FLOW OF CONTROL INSTRUCTIONS

12.4.1 BR.REG Branch through Register

Load the program counter from the specified register.

| Opcode assignment , Code | Implementation \

X BR.REG , 600 | PC <{- Rx |

Instruction Specific Exceptions: none

Special Notes:

This instruction is wused in conjunction with the CALL.REG instruction
to return from a procedure call.

The format of the non-generalized BR.REG instruction is

——— e rmme e ———

\ Load PC with the address in Rx

Opcode

12.4.2 CALL Procedure Call Through Stack

The CALL instruction places the return PC (as an absolute address) into
the 32-bit memory 1location pointed at by register 15 (the stack
pointer) and branches absolute to the 32-bit signed integer address
encoded in the instruction.

| Opcode assignment | Code ! Implementation \

CALL , EoO | [R15] {- PC+7, PC {- signed disp ,

12 - 6

FLOW OF CONTROL INSTRUCTIONS

The format of the non-generalized CALL instruction is

{EL 0,0 - - -, {32-bit address) X

———— E———— ———— e — E——— E—e—m Emem - EmE—— EmE——n mm—— mmaE e mmm—e— S e

Instruction Specific Exceptions: none

12.4.3 CALL.REG Procedure Call Through Register

The CALL.REG instruction places the return PC value (as an absolute
address) into the specified register and branches absolute to the

32-bit signed integer address encoded in the instruction.

, Opcode assignment , Code Implementation

\ CALL.REG , EO8 | Rx {- PC+7, PC <{- signed disp

The format of the non-generalized CALL.REG instruction is

'E'o!8lRx | - - ! {32-bit address)

: Return PC is placed in register Rx

Opcode

This instruction may also be used to place the current PC

specified register. Execute a CALL.REG with the address of the next
instruction as the destination of the call. This function may alsoc be
accomplished with the LD.64 instruction and the help of the binder.

Instruction Specific Exceptions: none

12 - 7

FLOW OF CONTROL INSTRUCTIONS

12.4.4 EXIT

The EXIT instruction deallocates the local stack frame or activation
record. It adds an unsigned 8-bit displacement to the stack pointer,
then places the absolute address from the new top-of-stack into the PC.
The displacement, encoded in the instruction, represents the distance
from the current stack pointer to the return PC location in the stack.

, Opcode assignment , Code | Implementation \

. EXIT , 300 SP {- SP + udisp, PC ¢~ [sP] \

The format of the non-generalized EXIT instruction is

Byte -0- -1- -2-

1 3,0, 0, - |<displ),

A A A A

i 8-bit unsigned value to add to SP

Opcode

EXIT and CALL instructions both assume stack storage for the PC return
values, and should be paired likewise. If using a CALL.REG
instruction, return through a branch register instruction, and perform
local stack frame handling by an add to the SP.

Slightly different code is usually emitted when the stack frame
contains dynamic arrays or arrays larger than 2*x8 bytes.

12.5 CONTROL TRANSFERS REQUIRING SPECIAL HANDLING

For a more complete description of exXception handling, see Chapter 2,
"Architecture".

12.5.1 BREAKPOINT

The BREAKPOINT instruction pushes the next instruction address and
registers RF through RO onto the stack, loads registers RO through R4
with specific information, and loads the PC with a prespecified entry
point into the system Debugger. See Section 2.4, "Interrupts and
Breakpoints", for a complete description of +the data placed in the
registers.

12 - 8

FLOW OF CONTROL INSTRUCTIONS

; Opcode assignment , Code Implementation |

' BREAKPOINT , 10, see above description \

The format of the non-generalized BREAKPOINT instruction is

: Opcode. This is a one-byte instruction

Instruction Specific Exceptions: none

12.5.2 EXCEPTION

Sends a Software Generated Exception class message which includes the
concatenated 64-bit values of Rx and Rz. Rx forms the high order 64
bits and Rz forms the low order 64 bits.

| Opcode assignment , Code Implementation ,

X EXCEPTION ¢ 000 see above description K

The format of the non-generalized EXCEPTION instruction is

10,00 X, -2, EXCEPTION instruction

| Rz contains second message value

Rx contains first message value

12 - 9

FLOW OF CONTROL INSTRUCTIONS

12.5.3 IXIT Exit from Interrupt

The IXIT instruction is used to exit from an interrupt routine. First,
the local stack frame is deallocated by adding an unsigned 8-bit
displacement to the stack pointer. The data in the stack belonging to
the interrupted routine is then restored and deallocated from the
stack, returning control to the interrupted routine. At the completion
of this instruction, the process's 1local priority will have been
restored to its o0ld saved value, or to the highest priority active
channel, whichever is higher.

Interrupts push data into the stack in the following order: the next
instruction address (as a 64-bit wvalue), the local priority of the
interrupted process (as a 64-bit value), and registers RF through RO.
See Section 2.4, "Interrupts and Breakponts", for a complete
description of the data placed in the stack.

12.5.4 BXIT Exit from Break

The BXIT instruction is used to exit from a routine entered through a
BREAKPOINT instruction or by a single step break (usually a Debugger.
action). The contents of register RO determines whether or not single
stepping is enabled. If RO = 0O, then single stepping is disabled. 1If
RO = 1, then single stepping is enabled. The only other difference
between the IXIT and BXIT instructions lies in the absence of the local
priority on the stack if the routine entered is the result of a
BREAKPOINT (RO = 0).

| Opcode assignment , Code | Implementation :
\ IXIT , 301 | see above description X
: BXIT \ 302 |, see above description X

12 - 10

FLOW OF CONTROL INSTRUCTIONS

The formats for these instructions are

Byte -0- -1- -2-
1370, 1 - <daispl), IXIT instruction
'3 70, 2, - 1<displ), BXIT instruction
T Ty
: ! Add 8-bit unsigned value to SP
]
]
" Opcode

Slightly different code is usually emitted when the stack contains
dynamic arrays or arrays larger than 2x*8 bytes.

INTER-PROCESS COMMUNICATIONS

13 INTER-PROCESS COMMUNICATIONS

A structural- view of the ELXSI multiprocessor environment is that of
time and location independent processes eXxXecuting concurrently and
communicating only through messages.

This chapter provides an introduction to the message system. Chapter
14 provides the details of the message system instructions. EMBOS
Programmer's Reference Manual, Volume 3, introduces the concepts of job
and process structures and provides a lower level detail of the message
system.

13.1 MESSAGE SYSTEM OVERVIEW

The message system serves as the intelligent medium through which
messages are sent. Following are some of the communication attributes
in the message system environment:

o Process Concurrence. The communication structures that enable
messages to be sent and received are created through a protocol
that requires the participation and agreement of both processes.

o Transparency. A process may send or receive a message from any
participating process (including itself) where the communication
path exists to transfer the message. The message system allows
the communication to be asynchronous through the provision of a
message buffer;- thus, messages may be gqueued until the
receiving process is ready to bring the message into its process-
space. The message system makes no modifications to any data
sent between processes.

o Process Substitution. A sending process need not be aware of
the physical 1location or even the real identity of a receiving
process. This allows the operating system to substitute
processes to allow, for example, I/0 redirection from a spooling
process.

0 Communication Security. All processes are bounded by their
32-bit virtual address space. Security and reliability of the
system are enhanced as the communication attributes of a process
are enforced through hardware protection. This has the
advantages of hiding the data structures and implementation
details of a given process from other processes, and of
providing firewall protection.

The assignment of communication links between processes is done
on a "need to know" Dbasis. Each process is responsible for
contrelling the incoming communication paths to itself. It does
this by providing these communication paths only to those
processes that must send messages to it. Consequently, with the
distribution of communication paths managed in this way, each
process is only given the communication paths to those processes

13 - 1

INTER-PROCESS COMMUNICATIONS

that it needs to send messages to. This scheme restricts the
range of outside processes that any one process can communicate
with, and it is not within the power of that process to expand
this range (since no process is allowed to alter the tables that
control its outgoing communication paths to other processes or
the tables that control the handling of incoming messages from
other processes). The only way it can expand this range is with
the cooperation of the process that will be the recipient of its
messages.

Many system security problems can be traced to malicious
processes that have been able to forge their identities. With
the ELXSI system, every message sent is tagged by the firmware
with the process ID of the sender. The sender has no way of
altering the process ID tag in the message, and it cannot alter
the location that the firmware uses as the source of the process
ID because this 1location is not even in the sender's address
space. Consequently, the sender has no way to forge the process
ID tag in the message, and the receiver can be assured that the
sender's process ID is authentic.

Oo No Privileged mode. There is no privileged instruction mode in
the ELXSI system. The process address space map, which controls
access to memory, and the process link table, which controls
access to the processes that manage other system resources, both
reside outside any user's address space. Because user access to
system address space, system processes, and system resources is
SO restricted, no privileged instruction mode is needed.

13.1.1 Communication Structures

The communication structure of a process consists of 1links, funnels,
and channels and the tables that they reside in. These tables are all
located outside the user process address space, and are not modifiable
by the user. The user, however, has read access, via instructions, to
the link and funnel tables and can look at individual link and funnel
table entries. Only the firmware can write into these tables, and it
is capable of adding or deleting table entries or of modifying fields
within each of the entries.

Links are the address pointers over which messages are sent. As such,
they generally point to outside processes, although they can also point
to this process since a process can also send messages to itself. Each
link corresponds to a single pointer and contains the process ID and
version ID of the target process and the ID of the funnel that is to
get the nmessage. The funnel resides on the target process and is the
mailbox slot into which the message goes when it is sent. Each funnel
corresponds to a single mailbox slot and contains the channel that it
is attached to and the head and tail pointers to the list of messages
that have been delivered into this funnel, but not yet received (with
the Receive instruction) by the target process. The channel that the
funnel is tied to provides it with attributes that are essential to the

13 - 2

INTER-PROCESS COMMUNICATIONS

interrupt system used to modify the instruction execution flow for this
process (when interrupting conditions occur) and the priority system
used to schedule and allocate system resources for this process
vis-a-vis other active processes on this particular processor. Each of
these three basic elements of a process's communication structure is
described in more detail below.

13.1.1.1 Links

Links serve as address pointers for the routing of messages in the
message system. They are used by sending processes to direct messages
into the funnels of target processes.

Links are composed of two basic elements: a data structure known as
the l1link table entry (LTE), and an index into the link table entry
known as the link ID.

Within the LTE is information on the link attributes, the process ID of
the link creator, and the funnel of the link creator that will receive
the messages. The 1link creator is the process that has created the
1ink to enable it to receive messages from other processes.

The link creator passes or copies the link to the link holder, that is,
the process from which the link creator wishes to receive messages.
The 1link is passed or copied by sending the LTE information in a
message. When the process receives the message, the incoming LTE
information is placed into the link table of that process. The link ID
specified by the receiver of the message is the index into the l1link
table entry location for placement of the incoming LTE.

When the link holder wishes to send a message, the link ID of the 1link
is incorporated as a parameter in the message. This link ID points to
the LTE for that link, which in turn points to the location of the
process that is to receive the message.

There may be up to 65,535 links for each process. A link must always
be directed into exactly one funnel.

The 1link creator may specify other attributes of the 1link, including
the rights of a 1link holder to copy or pass the link to another
process, the right to receive notification if the link holder copies,
passes, or deletes the link, and other attributes as specified in the
link table data structure. If a link is copied, an additional link is
directed into the funnel of the link creator, thus several processes
may hold copies of the link, all directed into the same funnel.

13 - 3

INTER-PROCESS COMMUNICATIONS

13.1.1.2 Funnels

Funnels serve essentially as input ports through which a process. may
receive messages. The funnel ID is specified in the link entries for
all of the links that are directed into the funnel. A process may have
a total of 255 funnels, all of which may be attached to a given
channel. Each funnel has an associated interrupt vector to allow an
interrupt to be taken to an interrupt handling procedure if the channel
to which the funnel is attached is enabled for interrupts. The
interrupt is generated when a message arrives on a funnel attached to a
channel which has interrupts enabled.

Messages are received on funnels in FIFO order. However, funnels
attached to a given channel essentially have the same priority among
themselves. The priority of the channel to which a funnel is attached
determines the funnel's priority, and thus the priority of any messages
arriving on a funnel attached to that channel.

Any number of links may be directed into a funnel. Funnels must at all
times be attached to a channel, but may be moved to another channel if
desired.

13.1.1.3 Channels

Each process has 16 channels, numbered 0 to 15, and each channel has an
associated local priority that is the same as the channel number. The
highest priority channel is channel 0, with the priority decreasing
monotonically.

The channel priority map belonging to a process specifies a global
priority associated with its local priority. This global priority is
the process priority for that channel relative to other processes.

Channels can be interruptable. When a message arrives on a funnel
attached to a channel that has interrupts enabled, and that channel is
the highest priority active channel, and its priority is higher than
the currently executing code within the process, an interrupt is taken
to the interrupt handler address specified by the funnel interrupt
vector.

An active channel is a channel that has one or more messages pending in
one of its attached funnels. The local priority of a process is the
channel ID of highest priority active channel. The arrival of a
message may raise the local priority of a process but never lower it.
Local process priority may be raised or lowered explicitly through an
instruction provided for this purpose.

INTER-PROCESS COMMUNICATIONS

13.1.2 Message Composition

There are several types of messages. In the most typical case, that of
a "simple" message, the length of the data is variable, separable into
two message blocks if desired, with a maximum total length of 888
bytes. Messages may also contain links to be copied or passed from the
sending process, or they may contain data to be forwarded to a tertiary
process via an intermediate process. If a 1link is contained in a
message, the remaining length of the message may extend up to 672
bytes.

Messages from a sending process are prepended by the firmware with the
unforgeable process ID of the sending process. If the 1link to the
receiving process is undefined, no message will be sent.

13.2 MESSAGE SYSTEM OPERATIONS

This section presents an overview of how communication paths are
created between processes, and the general method through which
messages are sent and received.

13.2.1 Establishing a Communication Path

A communication path must be established before any message may be sent
or received. A process is conferred at birth with a certain number of
links and funnels, known as standard links and standard funnels. These
are discussed in the Programmer's Reference Manual, Volume 3.

To create a link, a funnel must exist for the link to be directed into.
The process then creates a link directed into its own funnel and then
passes or copies the link to the requesting process.

It is quite possible that a process (such as a spooler) might want
communication in only one direction. The underlying principle of the
message system is that processes communicate with each other by mutual
consent according to some protocol they agree upon. The message system
does not enforce some inherent protocol or synchronization. Rather, it
is the manner in which the message system is used that can establish a
protocol or synchronization.

13.2.2 Sending Messages

To send a message, the process first constructs a message in its data
space that contains both the data to be sent and the link ID over which
the message is to be sent. The data area containing the link ID is
referred to as the "parameter block", and the data area immediately
following as the "message block". When the process is ready to send
the message, a SEND type instruction is invoked which copies the
message from the sender's virtual address space into the system message
buffer space. :

13 - 5

INTER-PROCESS COMMUNICATIONS

The message system prepends, via firmware, the process ID of the
sending process to the message. The message system firmware then
performs the following:

1l. It looks up the corresponding 1link entry in the 1link table
belonging to the sending process, for which the link ID is the
index. 1If the link entry does not exist, an error message is
returned to the sender and the message is not sent. Otherwise
the message is copied from the user's virtual address space into
a linked group of free system message buffers.

2. Additional information is prepended to the message that
specifies the type of message, the funnel ID, the number of
bytes of data in the message, and other information depending on
the type of message. This, along with the "from process ID", is
encoded in a block of information known as "receive control
information".

3. A Send Message Operation Bus Information Quantum (BIQ) pair is
transmitted to notify the target process that an incoming
message is pending for it. This BIQ-pair is fielded by the
target unit's Send Message Operation Handler in a procedure
called "message delivery". This operation handler responds to
the sending process with bad status if the message cannot be
delivered or with good status if delivery can take place.

4. Actual delivery of the message occurs when this operation
handler attaches the message buffers containing the message to
the funnel queue of the funnel specified in the sender's 1link
table entry. At this point, the message continues to reside in
the system message buffers until the target process executes a
receive.

The important thing to note here is that the SEND instruction transmits
only the Send Message Operation BIQ-pair, essentially 2 GigaBus-width
words, to the target process to notify it that there is a message
pending for it. The BIQ-pair contains the destination funnel ID and a
pointer to the message buffer string having the actual message, and
this is the information that message delivery uses to attach the
message buffers to the funnel queue of the target process. The SEND
instruction does not have to transmit the entire message across the
GigaBus. Instead, the target process only gets the message transferred
to it's wvirtual address space when the target process executes the
receive operation against the message.

13 - 6

INTER-PROCESS COMMUNICATIONS

The following diagram illustrates the send message action:

Sending a Message

, PROCESS "aA" ; \ MESSAGE SYSTEM i
1 I
| code space . \ Firmware .
R - > finds correct Vo
| eees . : / receiving process
\ . ' | from Link Table , ,
| SEND instruction | , | ' \ L
| S | | 5
. o : ! v | |
, data space o 1 \ . o
\ L . . Encode message , ,
| T === === b : : with Do
| SEND parameter ,\ ' , From Process ID
| block w/index | ,—————-————- : .
, to link table ,/ , Encode Receive .
N , Control Info. Lo
| variable A\ \ : v
i length ; L DDDDIIIDIIIIIIIIIIIIIIDD v E E
, message data W/ / .
| === == == | Place message in , ,
' X | system message .
| \ X buffers. -
|
|

13.2.3 Receiving Messages

To receive a simple message, a process issues the receive instruction,
specifies the target virtual data space for the message, and constructs
the accompanying parameter block that specifies how the receive is to
operate. When the receive is executed, the message, along with the
receive control information, is transferred from the system message
buffers into the virtual address space of the receiving process. The
process can receive a message on a specific funnel by issuing a Receive
On Funnel instruction. This would be the kind of receive issued if an
incoming message arrived on an interrupting channel Dbecause the
interrupt handler would know which funnel the message arrived on.
Alternatively, the process can scan with the Receive On Channel
instruction, and then receive the message from the highest priority
active channel selected in the channel mask specified for that
instruction. To receive a message containing a link, the process can
issue a Receive Link On Funnel or Receive Link On Channel. These
instructions allow the process to designate a link table location for
storing the link in the message, in addition to the other 1link
parameters.

13 - 7

INTER-PROCESS COMMUNICATIONS

The receiving process also has the option of suspending itself until a
message has arrived on a particular funnel or channel. This can be
performed by specifying a receive type of synchronous as opposed to a
receive type of asynchronous. A synchronous Receive On Funnel issued
against a funnel with no messages on it will cause the process to be
blocked until a message does arrive on that funnel. A synchronous
Receive On Channel issued against an inactive channel will also cause
the process to be suspended until a message is delivered on any funnel
that is attached to that channel.

Receiving a Message

message data

, PROCESS "B" \ | MESSAGE SYSTEM |

] [}

| |

, code space Vo \ Control info -

[]

i ceee Pl . > for E E

| eees Lo " / Type receive Vo

. RCV instruction | , \ ' ' Lo

I] 1 [

. o : ! M P

, data space vy X \ , .

| Vo X , Message in system ;

- - - - - - Lo X | message buffer is | ,
\ RCV parameter | ' \ delivered to \

, block w/index | |-———=————- | receiving process , ,

, funnel table W/ : .

I I [

] - - - - ===) i [

, receive - [/ : Vo

, control < .

| information \ .

I 1 [

"""" 1 [

variable / .

length CLLLLLLLLLLLLLLLL LKL i i

P

[

[

[|

i

i

[}

|

13 - 8

INTER-PROCESS COMMUNICATIONS

13.3 DATA STRUCTURES

The data structures provided in this section describe the 1link and
funnel table entries and headers as well as data structures for
messages. The parameter blocks are described in detail with the
associated instructions in Chapter 14, "Message System Instructions".

13.3.1 Message
In general, a message consists of 0 to N bytes of information called

message data. The maximum value for N depends upon the particular type
of message:

Typical Form of Message in Transit

——— m—— ——— —— ——— ——— ——— —— >

| 64 bits of Receive Control , Variable length message

Instructions also exist for passing, copying, or forwarding links along
with a message. The details of these different types of messages are
discussed in Chapter 14.

13.3.1.1 Message Types

A simple message may contain from O to 888 bytes of message data which
may be organized into one or two Dblocks as the user may determine
convenient. Note that 888 bytes is the maximum message data length
regardless of the number of blocks used.

A small message may contain from 0 to 4 bytes of message data which
must be organized into one block.

A To Hardware message may contain from O toc 8 bytes of message data
which must be organized into one block.

13.3.1.2 Parameter Blocks

Parameter blocks reside in the virtual address data space of a process
and contain parameters for certain message system instructions. For a
process that wishes to send a simple message, for example, the process
constructs a parameter block containing the 1link ID. The message
itself follows after the two words of the parameter block.

13 - 9

INTER~-PROCESS COMMUNICATIONS

To illustrate usage, a simple message as represented in the virtual
space of the sending process is shown below. The registers indicated
are the entry parameters for a SEND instruction. The "link ID"
identifies the link over which the message will be sent.

Starting address of parameter block
in virtual memory
: Field lengths:

1
|
1
1
v —— m——— - e memen e eee—— ————

[Ry]l —=> unused | Link ID \ Unused 16 bits

=== === === ——= —me —em ——— —— Link ID 16 bits

. unused . Unused 32 bits

e e e e - - —————— rr——

X \ \ 64 bits
Rz--, , | message data space, block 1 |
A \| |]
t i I

\ I el e T T

!

I

: Variable length, in bytes, of message data in block 1

——— e m—— —— —— o——— ——— - ————

AN

message data space, block 2 : {-—Rv is variable
(optional) / length of block 2

——— ——— —— ——— e - ——— ——— ——

Starting address of message block 2

The RCV instruction uses the two words in the parameter block to
specify the funnel and the type of receive desired. The parameter
block is specified by the receiving process at some location in its
virtual address space.

[Ry]l->, Funnel ID (8) , <unused) (8) |, Type rcv (8) | <unused> (8) |

' Preferred Link ID (16) X <{unused) (16) X

A typical message that has been received and placed in the virtual
address space of the receiving process is shown below.

13 - 10

INTER-PROCESS COMMUNICATIONS

[Ry]->!| Funnel ID (8) | <unused) (8) | Type rcv (8) | <{unused) (8)

\ Preferred Link ID (16) \ {unused) (16) \
RCV Link Code (16) | Funnel ID (8) , Msg type (8)
CTL
INFO |, From Process ID (16) : Number of Bytes (16) \
] I
| t
/) Variable length message data \
Rz—-, | block 1 X
\| |
]]
| |
| |
[Re]->
i
\ Variable length message data
Rv—=, , block 2

The specific formats for the parameter blocks are given with each of
the receive instructions. The above fields are defined as follows:

Funnel ID
This 8-bit integer field in the first word of the parameter block
has meaning when the instruction is a Receive On Funnel. The field
identifies the funnel from which to receive a message, if any.

If the instruction is a Receive On Channel, the high order 16 Dbits
of the first word (shown above as Funnel ID <{8)> and Unused <8))
contain a channel mask, where bit 0 corresponds to channel 0, bit 1
to channel 1,..., bit 15 to channel 15. This field causes the
firmware to attempt to receive a message on every channel that has
its corresponding bit set in the channel mask. The firmware starts
with the highest priority channel and searches downward from there.
It completes the receive when it finds a channel with a message or
stops if there are no messages on any of the selected channels.

13 - 11

INTER-PROCESS COMMUNICATIONS

Type of Receive
This specifies one of three kinds of receive the user may execute.
The boolean values occupy the low order 3 bits of the receive type
field:

O Synchronous - If there is no message in the specified funnel,
the user is Dblocked until a message is delivered into the
funnel. If synchronous is not specified and no message is
found, the receive instruction completes normally, and execution
proceeds to the next instruction in the instruction stream.

o Interrogate - The message, if any, is copied into the user's
virtual address space, but the message remains attached to the
funnel. 1If there is no message, the action is controlled by the
Synchronous state.

¢ Dismiss - This option invokes an implicit SET.LOCAL.PRIORITY
instruction that will set the local priority of the process to
either 15 or that of the highest priority active channel,
whichever is higher.

Preferred Link ID

This field is used when the instruction is a Receive Link On Funnel
or a Receive Link On Channel. The value in this field identifies
the link table entry location where the link in the message should
be placed. If the value is zero, a default location is selected
from the 1list of free link table entries in order to receive the
link in the message. The actual 1link ID of the 1link selected is
returned in this field at the end of the instruction.

The registers specified in the above diagram are the input parameters
for the receive type instructions and are used to place the message as
described above into the address space of the receiving process.

Note that the receiving process may select one or two data blocks, and
may establish the 1lengths of either as desired, independently of the
format of the message as it originally existed in the sender's address
space. For example, even though the message existed as a single
contiguous block in the sender's space, the receiver is free to specify
one block to hold the parameter block data and another separate block
to hold the message itself. Note, however, that the receive control
information is always placed into the field following the receive
parameter block specified by [Ryl].

INTER-PROCESS COMMUNICATIONS

13.3.1.3 Receive Control Information

The firmware prepends 8 bytes of what is known as receive control
information to the message when it is sent. This information is
available to the receiving process and contains the link code of the
link upon which the message was sent, the identification number of the
funnel into which the message was delivered, the type of the message,
the process identification number of the sender and the length of the
message data in bytes. The receive control information is written by
the firmware and is not forgeable by the the sender.

Although the receive control information is the same for all messages
received by a process, the first part of the parameter block is
dependent on the type of receive instruction, and is specified
accordingly in Chapter 14.

Receive Control Information, message format

First 32 bits of word

' Link Code (16) Funnel ID (8) |, Msg type (8) ,

Second 32 bits of word

' From Process ID (16) : Number of Bytes (16)

The Receive Control fields are defined as follows:

Link Code
This is an arbitrary value associated with the link over which the
message was sent. The sending process is the holder of the link.

Funnel ID
This is the funnel into which the link is directed, and through
which the message was received.

Message Type
This field characterizes the incoming messages. It is typically
used for notifying a 1link creator when one of its links has been
copied, passed, or deleted. The notification message is sent
automatically by the system to the 1link creator when the
appropriate notify attribute for the link entry has been selected.

13 - 13

INTER-PROCESS COMMUNICATIONS

This boolean field is defined as follows (bits 0 through 2 are
unused) s

Small Message
The message may contain up to 4 bytes of message data organized
into one block. This is a special kind of send in which the
receiving process allocates a message buffer for the message,
rather than the sending process. Uses bit 3 of this field.

Link Deleted
This indicates to the receiving process that the sender has
deleted a link created by the link creator. Uses bit 4 of this
field.

Link Copied
This indicates to the receiving process (link creator) that a
link has been copied. Uses bit 5 of this field

Link Passed
This indicates to the receiving process (link creator) that a
link has been passed on to another process. Uses bit 6 of this
field.

Includes Link
This indicates that the message contains a link. Uses bit 7 of
this field.

From Process ID
This is the ID of the sending process encoded into the message
by firmware.

Number of bytes in message
This is the length of the message data, not including +the
receive control information, in bytes.

Notice that if the length of the message data is 2zero, the receive
control information will still be sent to the receiving process.

13.3.1.4 Notification

In many situations, it is useful for the creator or owner of a link to
know if that link has been copied, passed, or deleted by one or more of
the other processes that hold the link. If the link creator sets the
notify attributes in the Link Rights field, then the link creator will
be notified when the 1link is passed, copied, or deleted via a
notification message sent along the affected link.

The instructions that copy links, pass links, or delete links are also
the ones that generate the notification messages. Each of these
instructions checks the notify attributes in the Link Rights field to
determine if the notification should be sent. The notification is not
sent if the corresponding attribute is not set, or if the 1link holder
is also the 1link owner (It would not be useful for the link owner to

13 - 14

INTER-PROCESS COMMUNICATIONS

send a notification message to itself). The contents of the 1link
deleted notification message is simply the receive control information
that is sent with all messages, with the link deleted attribute set in
the message type field. The 1link copied and the 1link passed
notifications also contain the receive control information with either
the link copied or the link passed attribute set in the message type
field, along with an additional field that identifies the process to
which the link was copied or passed.

Notification Message for Copy and Pass Link Instructions

X Link Code (16) , Funnel ID (8) , Msg type (8)
\ From Process ID (16) \ Number of Bytes (16)
' To process ID (16) ' {unused)> (16) '

The fields in the notification message are defined below:

Link Code
This field specifies the link code of the 1link that was copied,

passed, or deleted. Links are always directed into the funnel of
the 1link creator.

Funnel ID .
This field specifies the funnel into which the 1link is directed,
and upon which the message is received.

Message Type
This field specifies through boolean values whether the 1link has
been copied, passed, or deleted by the notifying process.

From Process ID
This field specifies the process ID that executed the instruction
to copy, pass, or delete the link.

Number of bytes
The message block length "number of bytes" will be zero for delete
link notification, and 2 for copy and pass link notification. This
is because the To Process field is not sent on the delete 1link
notification.

To Process 1D
This field identifies the process which had the 1link copied or
passed to it. This field, and the unused field following it, are
not used for the delete link notification message.

INTER-PROCESS COMMUNICATIONS

13.3.2 Links

The link creator has ultimate control over the 1link and can specify
copy link rights, pass 1link rights, notification rights, or message
rights. A process may have up to 65,535 links. This number may be
restricted by the creator of the process.

13.3.2.1 Link Table Entries

A process can be a link owner and a 1link holder. Owned 1links are
created by the link owner and point only into the funnels of the owning
process. Consequently, the 1link owner is also sometimes called the
link creator. Owned links are circular and always point back into the
funnels of the owner process. The link owner can send a copy of a link
it owns to another process by issuing a Copy Link or Pass Link
instruction. The recipient of that link becomes the holder of the 1link
and now has a path for sending messages to the link owner.
Consequently, held links are always created by processes other than the
link holder and point into the funnels of those other processes (which
also happen to be the owners and the creators of these 1links). They
always point away from the holding process and are the communication
"links" between that process and the owning processes.

All of the links that belong to a process, whether they are owned or
held, are stored in double-word-length packets called 1link table
entries. These entries are organized into a link table, which contains
a combination of defined 1ink table entries and free 1link table
entries. The defined 1link table entries are the ones that contain
valid owned and held links. The free 1link table entries are those that
are available for creating new links or for storing additional held
links. These free entries are held together in a doubly linked list,
for simplicity in adding or removing elements from this list.

The link ID is used as an index to a particular entry in the 1ink
table. Links are identified by their corresponding link ID, such that
link 1 has 1link ID 1, link 44 has link ID 44, and so on. Link ID O for
link O is reserved and points to the header entry of the 1link table.
This entry contains information about the rest of the link table, such
as the forward and backward pointers to the free 1list of 1link table
entries, and whether or not more pages can be allocated to the link
table.

A process can have up to 65,535 1links, but in most cases can operate
with far fewer. Thus, pages of memory are allocated to the link table
as the links are used up. This is to avoid using large amounts of
memory on "empty" link table space filled with free link table entries
that would never be used. The task of managing 1link table space is
done by the Link Manager.

INTER-PROCESS COMMUNICATIONS

At process creation time, each process is given, at the very minimum, &
standard set of links. The pages needed to hold these 1links are
allocated and frozen into memory. Any additional pages that are needed
later can be allocated as required. However, regardless of the number
of links initially given to the process, the page containing the 1link
table header is always allocated. Only the firmware can directly
access allocated Link Table pages.

The data structure describing a link contains the following
information:

Link Table Entry

linkState
Defined or undefined. A defined link is a 1link that has Dbeen

successfully created. Messages are only allowed to be sent over a
defined link.

The following fields have meaning if, and only if, the 1ink State is
defined.

toFunnel
The identification number of the funnel into which the 1link is
directed. A link may be directed into exactly one funnel.

linkRights
These are specified by the creator of the 1link at the time of
creation. There are three types of rights associated with each
link, specified by the creator of the link at the time of 1link
creation:

notificationRights
These rights require the holder of the 1link to issue a
notification message to the owner of the link when the link is
copied, passed, or deleted. These notification rights are as
follows:

informOnPass

Send notification to the link owner when the 1link holder
has passed the 1link to another process. Passing a link
differs from copying a link in that the process passing a
link has that 1link deleted from its link table at the end
of the operation. A process that passes a link no longer
holds that 1link, whereas a process that copies a link will
continue to hold that 1link at the completion of the
operation.

3 - 17

INTER-PROCESS COMMUNICATIONS

informOnCopy.
Send notification to the link owner when the 1link holder
has copied the link to another process.

informOnDelete
Send notification to the link owner when the 1link holder
has deleted the link from its link table.

copyLinkRights
These confer upon the holder of the link the right to copy the
link and/or the right to pass the link, as follows:

canbPass
The link holder is allowed to pass the 1link to another
process.

canCopy The link holder is allowed to copy the link to another
process.

msgRights

These confer upon the holder of the 1link the right of the
holder to forward messages on the link and/or the right to send
messages to the hardware (firmware) on the link. There rights
are in addition to the right to send messages. For example, it
is quite legal to send a regular message over a link with the
toHardware right and it will be delivered to the software
process specified in the link. However, it is not 1legal to
send a message to the hardware over a link that does not have
the To Hardware right. These are as follows:

forwardMessage
Messages may be forwarded over this link.

toHardware
Messages to the hardware (firmware) may be sent over this
link.
toProcess

This is the process identification number of the process into whose
funnel the link is directed.

versionlD .
This is the version number associated with the process
identification number in the toProcess field. The version ID
prevents links with stale information in them from being used to
send messages to new processes Wwith recycled process ID's. For
example, process A sends a message to process B and process B's
process ID 1is the same as the toProcess ID in process A's link to
process B. 1If B's version ID is different from the version ID in
A's link to B, then process B is not the same process as the one
that existed when A's link to B was created, and A is so informed.

INTER-PROCESS COMMUNICATIONS

linkCode
This is a 16-bit unsigned number, which the creator of the link may
associate with the link. It has meaning only to the creator and
holder of the link. The link code is available to the receiver of
a message in the receive control information section of the
parameter block.

linkGrail
This is a 48-bit array of booleans associated with the link.

The following table indicates the bits corresponding to each link entry

in the link table. These link entries may be read by the READ.LTE
instruction.

13 - 18

INTER-PROCESS COMMUNICATIONS

Table 13-1. Link Table Entry

NN N -

mmm =N N e =N N mm e e N Nmmmmmmmmmmm e N N e e e L N

000 (== Link State [0..1] undefined, defined
001 <~
\—— unused
007 <~
o008 <~
009 ' \
\—— To Funnel : Funnel ID
\ | type Integer
014 ' \
015 <~
ole <- -— unused
017 . X Inform On Pass
018 \ X Inform On Copy
019 \~— Link Rights \ Inform On Delete
020 \ \ Can Pass
021 : \ Can Copy
022 ' \ Forward Message
023 <~ -—- To Hardware
024 <~
025 \ X
, ' Process ID
\—— To Process | type Integer
X : uses 16 bits
038 ' :
039 (-
040 (-~ unused
041 <{-—- unused
042 <-
043 ' :
\ \ Version ID of process
,—— Version ID : type Integer
X \ uses 22 bits
062 ' .
063 <~
064 <-
065 ' '
" X Link Code
\—— Link Code L type Integer
| : uses 16 bits
078 | \
079 <-
080 <~
081 X \
\ \ Link Grail
\=— Link Grail \ type Boolean
" : uses 48 bits
126 \ \
127 <-

13 - 20

INTER-PROCESS COMMUNICATIONS

13.3.2.2 Link Table Header

The link table header resides in the first doubleword of the link table
and contains the following information:

linkHeaderState
This is bit 0 and is always set to zero. The Link Table Header is
always tagged as being undefined so it will never be mistaken for a
valid defined link table entry.

maxCreatedLinkID
This specifies the highest number link ID that has been created so
far. Uses bits 16 to 31.

fwdFreeLink
This is the index to the next free 1link in the free 1ink 1list.
Uses bits 32 to 47 of the first word.

revFreelLink
This is the index to the previous free link in the free link 1list.
Uses bits 48 to 63 of the first word.

allocatablePages
This is a boolean bit, bit 0 of the second word, and specifies
whether or not additional pages can be allocated to the link table.

allocatablePageCount
This specifies the number of remaining pages that can be allocated
to the 1link table for this process. Uses bits 8 to 23 of the
second word. .

13.3.3 Funnels

Each process in the system may have up to 255 funnels, although this
number may be restricted Dby the creator of the process. Each funnel
within the process has a unique identification number associated with
it called the funnel 1ID. This number is used as an index into the
table that contains the funnel table entries for this process. A valid
funnel may have any number of links directed into it.

13.3.3.1 Funnel Table Entries

All the funnels within a process are organized into double-word entries
in that process's funnel table. Each funnel table entry, as these are
called, is either defined or free. A defined funnel table entry is one
that has Dbeen created by the process and, as such, has its defined Dbit
set and is attached to a channel. A free funnel funnel table entry is
one that is available for creation and, as such, has its defined bit
reset and is attached to the list of free funnels. This list consists
of a doubly-linked group of free funnel table entries. Like the 1list
of free links, the pointers to the head and tail of this list reside in

13 - 21

INTER-PROCESS COMMUNICATIONS

the header entry or funnel 0. An entry is removed from the free 1list
when a funnel is created (by means of the CREATE.FUNNEL instruction),
and a entry is added to the free list when a funnel is deleted (by
means of the DELETE. FUNNEL instruction).

Each funnel table entry is indexed by an identifier called the funnel
ID. Funnel 1ID's span the range O to 255. The full complement of
funnels for a process can fit on two memory pages. Funnels with ID's O
to 127 reside on the first page, and those with ID's 128 to 255 reside
on the second page. Since most processes will never use even 127
funnels, they will be created with the second page of the funnel table
unallocated. The first page will always be allocated, and the funnel
table header entry will always be set up.

The data structure defining a funnel contains the following
information:

Funnel Table Entry

funnelState
Defined or undefined. A defined funnel is one that has been
successfully created. A 1link may be configured into a defined
funnel. Deleting a defined funnel causes it to become undefined.

The following fields have meaning if and only if the funnel State is
defined.

channellD
The identification number of the channel to which the funnel is
attached. B2All defined funnels must be attached to exactly one
channel. When a funnel is created it is attached to channel number
15. The user may move the funnel to any channel (except channel 0)
with the Attach Funnel To Channel instruction.

nextFunnel

This field only has meaning if there are messages dqueued on this
funnel. Then it contains the funnel ID of the next funnel that
also has messages queued up and is attached to the same channel.
This singly linked pointer string forms what is called the active
funnels list for that channel. Only active funnels (those with
queued messages) are linked into this list. The funnel at the tail
of this list will have zero value in its nextFunnel field.

messageCount

The number of messages currently delivered to the funnel but not
yet received. The count is a 16-bit integer.

13 - 22

INTER-PROCESS COMMUNICATIONS

interruptvVector
The virtual address of the interrupt handler invoked when an
interrupt is generated for this funnel. If interrupts are never
generated for messages delivered into this funnel, then the
interrupt vector may be zero. Note, however, that if an interrupt
was ever to be generated with an address of =zero, an access
violation would occur.

headBuffer
Messages delivered into a funnel, but not yet received, are
organized into a singly 1linked 1list of system message buffers.
HeadBuffer holds the physical address of the first message buffer
in this 1list. When a receive is executed, headBuffer is used to
dequeue the first message on this funnel.

tailBuffer

This field holds the physical address of the last system message
buffer in the funnel's queue of unreceived messages. When a
message is being delivered, tailBuffer is used to append the new
message onto the tail of this list. The operations that enqueue
and dequeue messages from the funnel queue exist to maintain the
list in FIFO order. If no messages have been delivered into the
funnel, then the head and tail buffer addresses are zero.

13 - 23

INTER-PROCESS COMMUNICATIONS

Table 13-2.

Funnel Table Entry

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

030
031
032
033

062
063
064
065

094
095
096
097

126
127

Funnel State

unused

Channel ID

Next Funnel

Message Count

Interrupt Vector

Head Buffer

Tail Buffer

[0..1] undefined, defined

Channel ID
type Integer

Funnel ID
type Integer

Number of messages
type Integer
uses 16 bits

Interrupt vector
32-bit virtual address
uses 32 bits

Start address of msg buffer
32-bit physical address
uses 32 bits

End address of msg buffer
32-bit physical address
uses 32 bits

13

24

INTER-PROCESS COMMUNICATIONS

13.3.3.2 Funnel Table Header

The funnel table header resides in the first doubleword of the funnel
table and contains the following:

funnelHeaderState
This is bit 0 of the first word and is always set to =zero. The
funnel table header entry is always tagged as undefined so that it
will never be mistaken for a valid funnel table entry.

maxCreatedFunnellD
This contains the highest numbered funnel ID created so far. This
uses bits 16 to 23.

fwdFreeFunnel
This is the ID (index) of the next free funnel in the list of free
funnels. It uses bits 48 to 55.

revFreeFunnel
This is the ID (index) of the previous free funnel the list of free
funnels. This uses bits 56 to 63 of the first word.

allocatablePages
This is bit 0 of the second word and specifies whether or not a
second page can be allocated to the funnel table.

13.3.4 Channels

Channels allow users to organize funnels and prioritize the receiving
of messages. Every process has 16 channels (channel O through channel
15), and every channel has a message system priority associated with
it. The associated priority is the same as the channel number, with
priority O being the highest and priority 15 the lowest. This priority
is called the local priority because its scope is local to that process
only. It has direct bearing on what that process will do next and
which queued message will be received next. A channel may have from O
to 255 funnels attached to it. All of the funnels attached to a
particular channel will have that channel's priority.

Channels may be interrupting or non-interrupting. Interrupting
channels are those that have been enabled for interrupts; non-
interrupting channels are those that have been disabled for interrupts.

A channel mask is used to designate which of the 16 channels are
interrupting and which are non-interrupting. Bit O of this mask is
associated with channel 0, bit 1 with channel 1,..., Dbit 15 with
channel 15. Each bit set on indicates that the corresponding channel
is enabled for interrupts; each bit set off means that the
corresponding channel has interrupts disabled. The user can modify the
channel mask by issuing the ENABLE.CHANNEL.INT and DISABLE.CHANNEL.INT
instructions.

13 - 25

INTER-PROCESS COMMUNICATIONS

There are, however, architectural restrictions placed on the interrupt
structure:

1. The priority of interrupting channels must be higher than the
priority of non-interrupting channels.

2. The above implies that interrupting channels and non-
interrupting channels must exist in two separate groups, since
an interrupting channel followed by a non-interrupting channel
can never be followed by another interrupting channel.

To reiterate, the basic premise of the interrupt structure is this:
The arrival of a message on a funnel that is attached to an
interrupting channel will cause an interrupt to occur.

Channel 0 is used in special ways by the operating system. As such, it
has some special restrictions associated with it:

1. Channel 0 is always interrupting and can never be disabled.

2. No funnel may be attached to channel 0 with the
ATTACH.FUNNEL.TO.CHANNEL instruction. The only funnel attached
to this channel is the lifelLine funnel (funnelID = 1), and this
funnel can neither be disabled nor moved to another channel.

13.4 PRIORITY STRUCTURE OF MESSAGE SYSTEM

The priority structure is an ordering scheme through which execution
priority is defined. There are two kinds of priority: Local Priority
and Global Priority. Local Priority applies locally to a process and
is used to determine which message that process will receive next or
what task that process will perform next. Global Priority applies to
all living processes on a particular CPU. It crosses process bound-
aries and is used by the Scheduler to determine the execution order of
the processes that are ready to run.

Local Priority and Global Priority are related to each other and are
mapped into one another in the channel priority map. This maps a local
priority which can range in value from 0 to 15 into a global priority
which can range in value from O to 255. In general, Local Priority
values and Global Priority values track each other in the sense that a
high local priority will be mapped into a correspondingly high global
priority. There are, however, no architectural constraints that
local/global priorities follow such a pattern.

13 - 26

INTER-PROCESS COMMUNICATIONS

13.4.1 Local Priority

Local Priority Local priority has -meaning only within an individual
process. Its value can be explicitly modified by the user with the
SET.LOCAL.PRIORITY instruction or implicitly modified by the firmware
(which performs the set 1local priority function when delivering
messages or exiting from an interrupt with the IXIT instruction). The
way the set 1local priority function works is to modify the local
priority of the process to either the specified value or the channel
number of the highest priority active channel, whichever is higher in
priority. A channel is active when any funnel attached to that channel
contains a message. As such, the local priority will often be at the
priority of the highest priority active channel. For example, if
funnel 200 with a queued message is attached to channel 10, funnel 14
with a queued message is attached +to channel 5, and only these two
channels contain messages, then the resulting local priority would be
5. Should a message be delivered into a funnel attached to a higher
priority channel, then the local priority of the process would Dbe
raised. On the other hand, the delivery of a message into a funnel
attached to a 1lower priority channel will not change the local
priority.

Message delivery can only raise the local priority of a process. A
process generally has its local priority raised to a high level so it
can vie for additional system resources (at the expense of other
processes) in order to get certain demanding tasks done in a timely
manner. (Note that a high local priority wvalue normally translates
into a high global priority value, and a high global priority means a
high scheduling priority). If the process were 1left at this high
priority, it would continue to usurp system resources that it really
did not need. Consequently, once the process has completed its high
priority tasks, its local priority must be lowered. The can be done in
several ways:

o It can issue the SET.LOCAL.PRIORITY instruction and specify that
the local priority be set to the "base" local priority value for
this process.

0 The RECEIVE instruction that was wused to receive the high
priority message can specify the DISMISS option which on the
completion of the receive operation will perform a a set 1local
priority with a priority wvalue of 15. This will lower the
process priority to that of the highest priority active channel,
or, if no channels are active, to a local priority of 15.

o If the high local priority has come about because of servicing
an interrupt, the lowering of priority will occur automatically
when the process returns from the interrupt handler through the
IXIT instruction. The last part of this instruction performs a
set local priority with the priority value set to the 1local
priority that the process had prior to the delivery of the
interrupting message (Chapter 2 describes how the o0ld 1local
priority is placed onto the stack on the occurrence of an
interrupt). The process local priority upon return from the

13 - 27

INTER-PROCESS COMMUNICATIONS

interrupt handler will be the higher of either the restored old
local priority or the wvalue of the highest priority active
channel.

13.4.2 Global Priority

Global priority is the execution priority of a particular process
relative to all other processes in the system. It is used by the
operating system to control resource allocation and may be dynamically
modified to effect load balancing among all the processes executing in
the system. A global priority is assigned to each of the 16 1local
priorities, and to each of the 16 channels since channel numbers and
local priority values have a one-to-one correspondence. The mapping of
these assignments is held in the channel priority map of that process's
PCB (Process Control Block). The global priorities for each process
are assigned to each channel at process creation time. These
assignments are not modifiable by the user, but they may be modified by
the operating system from time to time.

When a process becomes eligible for execution, it is put into a queue
of eligible processes called the Active List. The processes in this
list are ordered according to global priority, and those with high
global priorities are given preferential treatment by the scheduling
mechanism. As a result, high priority processes are allowed to execute
sooner and more often than 1low priority processes. This priority
scheme together with the setting of time quantums restricting how long
each process can run at a single stretch form the basic components of
the scheduling mechanism.

13.5 STANDARD COMMUNICATION PATHS

When a process is started, it has a set of standard links and funnels
already created by EMBOS. These links and funnels have ID's in the
range 1-20. This range of link and funnel IDs is reserved for EMBOS,
so the user should not delete any predefined link or funnel, or create
a link or funnel with a preferredLink(Funnel)ID in the range 1-20.
Since all links and funnels in the range 1-20 are not presently used, a
createlLink (createFunnel) with a preferredlLink(Funnel)ID of 0 may
result in the <creation of a link or funnel in the range 1-20. This
will cause no problems, since all EMBOS-reserved links and funnels are
created before the user's code begins executing.

13 - 28

INTER-PROCESS COMMUNICATIONS

13.5.1 Standard Links

The standard 1links for each process consist of special self-links and
communcation paths to the process' parent and to certain system
processes. The only LinkID relevant to this document is the following:

userExceptionLinkID (1inkID = 1)
This link is directed into the process' userExceptionFunnel
(funnelID = 2) and is used by firmware and software to send user
interceptable exception messages to the process.

13.5.2 Standard Funnels

The standard funnels for each process consist of funnels into which
self-links, and 1links from the process' parent, and certain system
processes are directed. The two funnels relevant to this document are:

userLifelineFunnel (funnellD = 1)
This funnel is attached to channel 0. The firmware prevents this
funnel from being altered in any way. It cannot be deleted,
disabled, attached to a different channel, have its interrupt
vector changed, or have links created into it. Any receive on the
funnel will always find it empty, so a synchronous receive will
wait forever (or until an interrupt occurs).

userExceptionFunnel (funnellID = 2)
This is the funnel into which the userExceptionLink belonging to
the process is directed. The funnel is attached to channel 1D 1,
and has an interrupt vector which points to an EMBOS supplied
exception dispatcher. All user interceptible exceptions arrive on
this funnel. The exception dispatcher receives all exception
messages and invokes the appropriate exception handler.

13 - 28

MESSAGE SYSTEM INSTRUCTIONS

14 MESSAGE SYSTEM INSTRUCTIONS

The message system instructions are used for implementing and modifying
communication structures. These instructions should not be considered
as the primary user interface to the message system, as software for
this purpose is included in all ELXSI supplied languages.

process.

ATT.FUN.TO.CHAN Attach Funnel to Channel
COPY.LINK Copy Link

CREATE.FUN Create Funnel

CREATE.LINK Create Link to Funnel

DEL.FUN Delete Funnel

DEL.LINK Delete Link

DEL.MSG Delete Message from Funnel
DISABLE.CHAN.INT Disable Interrupts on Channel
DISABLE.FUN Disable Funnel
ENABLE.CHAN.INT Enable Interrupts on Channel
ENABLE.FUN Enable Funnel
EXCH.LINK.FORWARD Exchange Message Link and Forward
FORWARD.MSG Forward Message

PASS.LINK Pass Link

RCV Receive Message

RCV.CHAN Receive Message on Channel
RCV.LINK Receive Message with Link
RCV.LINK.ON.CHAN Receive Message with Link on Channel
READ.FTE Read Funnel Table Entry
READ.LTE Read Link Table Entry

SEND Send Message

SEND.SMALL.MSG Send Small Message
SEND.TO.HARDWARE Send Message to Hardware
SET.FUN.INT.VECTOR Set Funnel Interrupt Vector
SET.LOCAL.PRI Set Local Priority

These codes

The message system instructions return a status code to the
tell the user whether

the operation was

successful or not, and can also provide information on abnormal
conditions encountered during execution of the instruction. The status
code is instruction specific and is returned in register RX as a right
justified integer value.

A list of the status codes is provided with each instruction. The
column to the right of these codes provide information on whether or
not the instruction executed successfully. A "y" indicates that the
associated status is merely an advisory. An "n" indicates that the
instruction has partially or completely failed.

14 - 1

MESSAGE SYSTEM INSTRUCTIONS

A summary of the codes is provided below:

Table 14-1. Status Return Codes

1l = MSYS Funnel Does Not Exist
2 = MSYS Illegal Channel ID
3 = MSYS Funnel Not Disabled
4 = MSYS Funnel Not Empty
5 = MSYS Transport Hardware Error On Notification
6 = MSYS Message Too Long
7 = MSYS Illegal to Modify Interrupt Vector On This Funnel
8 = MSYS Funnel Table Is Full
9 = MSYS Illegal Preferred Funnel ID
10 = MSYS Funnel Already Created
11 = MSYS Link Table Is Full
12 = MSYS Link Already Created
14 = MSYS No Message In Funnel
15 = MSYS Illegal To Disable Interrupts
17 = MSYS Illegal To Disable Funnel ID
18 = MSYS Specified Funnel Already Disabled
21 = MSYS Specified Funnel Already Enabled
23 = MSYS Cannot Forward On Link
28 = MSYS Message Contains Link
29 = MSYS No Messages On Channels
30 = MSYS Message Does Not Contain Link
31 = MSYS Link Does Not Have Hdwr Right
32 = MSYS Illegal Preferred Link ID
34 = MSYS Illegal To Move Funnel
36 = MSYS Link 1 Receiving Process Dead
37 = MSYS No Message Buffer Available
38 = MSYS Too Many Buffers In Transit
39 = MSYS Link 1 Too Many Attached Buffers
40 = MSYS Link 1 Link Not Defined
41 = MSYS Link 1 Unallocated Page
42 = MSYS Link 1 Unallocatable Page
43 = MSYS Link 1 Exceeds No Of Link Levels
45 = MSYS Link 1 Zero Link ID
46 = MSYS Negative Data Block Length
47 = MSYS Link 1 Funnel Not Enabled
48 = MSYS Destination Process Not On Target Unit
49 = MSYS Bad Pointer In Free Link
50 = MSYS Access Unallocated Page Of Funnel Table
51 = MSYS Link Cannot Be Sent
52 = MSYS Link 1 Target Unit Busy
54 = MSYS Message Not Sent
54 = MSYS Transport Hardware Error On Data Message
55 = MSYS Transport Hardware Error
56 = MSYS Link Fault
136 = MSYS Link 2 Receiving Process Dead
139 = MSYS Link 2 Too Many Attached Buffers
140 = MSYS Link 2 Link Not Defined
141 = MSYS Link 2 Unallocated Page
142 = MSYS Link 2 Unallocatable Page

14 - 2

MESSAGE SYSTEM INSTRUCTIONS

143 = MSYS Link 2 Exceeds No Of Link Levels
145 = MSYS Link 2 Zero Link ID

147 = MSYS Link 2 Funnel Not Enabled

152 =

MSYS Link 2 Target Unit Busy

Descriptions of the data structures, such as the Funnel Table Entry
(FTE) and the Link Table Entry (LTE), may be found in Chapter 13,
"Inter-Process Communications". The message length, when specified, is
in bytes. All unused fields must be set to zero.

Channel masks are l6-bit right justified fields that are used to select
or deselect channels for particular instructions. Each bit corresponds
to a channel. If the bit is set to 'l1l', the indicated function is
performed for that channel. Bits set to '0' have no effect.

CHANNEL MASK in Ry, right justified

Channel ~> 00 01 02 ... ee. 12 13 14 15
< t t T 1 T 1 T _-_/ /——— t } [} i |
. 07 1, 1, Oeeewns ceees0 , 1, 0O, 1, 1,
< —/ /-
Bit position 47 48 49eo 60 61 62 63

The channels selected above are channels [0,1,12,14,15]. Observe that
the logical relation of this mask to the object is defined by the
instruction, whereas a returned operand will be the actual object. For
example, assume that the enabled channels in the channel mask happen to
be = 1010101010101010 and we perform a DISABLE.CHAN.INT with the above
mask. The new word will be 1000101010100000 and the returned (old)
word will be 1010101010101010.

14.1 CREATE A COMMUNICATION PATH

To send a message to another process, a link must be established that
is directed into the funnel of the receiving process. One may then
send messages via the link.

If a process (A) is already sending to process (B) but wishes to
receive messages from process (B), process (A) must create a link
directed into one of its own funnels, and then copy or pass the link to
process (B). The 1link attributes are discussed in Chapter 13,
"Inter-Process Communications".

14 - 3

MESSAGE SYSTEM INSTRUCTIONS

14.1.1 CREATE.LINK Create Link to Funnel

All links are created with this instruction and are self links, that
is, they are directed into one of the creator's own funnels. The 1link
configuration is specified in the create link parameter block whose
address is in Ry. The instruction places the configuration into the
link table belonging to the process. Upon completion, status is
returned in RX.

1 §

\ Implementation X 4 Addressing mode usage :
., 8,0 ,2, %X,y ,0 ' CREATE.LINK Rx, [Ry]
: - A A A A

This field must be zero

Ry parameter block address

I
I
I
3
I
I
1
]
i
}
i
|
, Rx = Instruction Specific Return Status ——————————o
[}
|
i
t
1
|
i
]
I
|
1
]
i
|

i

1
0 = Success [yl |
1 = Funnel Does Not Exist [n]
11 = Link Table Is Full [n] ,
12 = Link Already Created [n] |
32 = Illegal Preferred Link ID [n] ,
50 = Access Unallocated Page Of Funnel Table [n] |

If the link ID specified in the parameter block is zero, then the next
free link is created, otherwise the specified link is created. The
link ID actually created is returned in the parameter block in the l1link
ID field. If [Rx] <) 0, then the link is not created. Following are
descriptions of the parameter block fields.

Link ID
This is the 1link ID of the link to be created or zero, if the next
undefined link ID is to be used. The firmware returns the link ID
actually created in this field upon successful completion.

Funnel ID
This is the funnel ID in the creator's Funnel Table into which the
link being created will be directed. The funnel must have been
created prior to creating the link.

14 - 4

MESSAGE SYSTEM INSTRUCTIONS

Link Rights
These are boolean rights associated with the 1link, presented from
high order to 1low order in the field. The To Hardware Right may

never be specified for this instruction. These rights are as
follows:

Unused

Inform on Pass (notify link creator when passing link)
Inform on Copy (notify link creator when copying link)
Inform on Delete (notify link creator when deleting link)
Can Pass Link (link can be passed to another process)

Can Copy Link (1link can be copied to another process)

Can Forward Message (messages may be forwarded on this 1ink)
To Hardware (messages to hardware may be sent on this 1link)

Link Code
This is a 16-bit unsigned integer which may contain information
specified by the link creator. The default value is O.

Link Grail
This is an array of 48 booleans. The default is 48 bits of zero.

A full description of these data structures may be found in Chapter 13,
"Inter-Process Communications".

CREATE.LINK Parameter Block

[Ry]l->| Funnel ID (8) , Link Rts (8) , Link ID (16) '

! . <{unused) (32) |

| Link Code (16) X Link Grail (1) -->

) Link Grail (32) \

14.1.2 CREATE.FUN Create Funnel

Before a link can be created into a funnel or a message received on a
funnel, the funnel must be created. Funnels are always created
attached to channel 15.

The funnel specified in Ry is created as follows: if [Rv] = 0, the
next funnel on the 1list of free funnels is used, otherwise the
specified funnel is used. The funnel table entry corresponding to the
specified funnel ID is removed from the list of free funnels. Its
defined bit is set, it is attached to channel 15, and the rest of its
fields are set to initial wvalues. The funnel channel map entry for
this funnel is updated to show this funnel attached to channel 15.

14 - 5

MESSAGE SYSTEM INSTRUCTIONS

Upon completion, the actual ID of the funnel created is returned in Ry,
and the status is returned in Rx. If [Rx] < 0, then no funnel is
created.

\ Implementation \ \ Addressing mode usage X
/1 8,0,1,%,y,0] : CREATE.FUN RX,Ry '
A AT TV

This field must be zero

&

Instruction Specific Return Status ——————re——

|

]

0 = Success [yl |
8 = Funnel Table Is Full [n] ,
9 = Illegal Preferred Funnel ID [n] |
10 = Funnel Already Created [n] ,
50 = Access Unallocated Page Of Funnel Table [n] |

14.1.3 ATT.FUN.TO.CHAN Attach Funnel to Channel

All funnels are attached to channel 15 when created. This instruction
allows the user to move a funnel to another channel.

The instruction attaches the funnel specified in Ry to the channel
specified in Rz. Upon completion, status is returned in Rx and the
channel to which the funnel was previously attached is returned in Rz.
If [Rx] <> 0, then Rz is unchanged. A funnel cannot be attached to
channel O.

MESSAGE SYSTEM INSTRUCTIONS

Implementation : : Addressing mode usage '
18,010, XY, 2, | ATT.FUN.TO.CHAN RX,Ry,Rz
A A A A

[t
1 I
\ " Rz Channel ID
|
1
1

Ry Funnel 1D

g

Instruction Specific Return Status -—-—=-===—-——- |

]

0 = Success (vl |

1 = Funnel Does Not Exist [n]

2 = Illegal Channel ID [n] |

34 = 1Illegal To Move Funnel [n] |
50 = Access Unallocated Page Of Funnel Table [n] |

This instruction modifies the funnel table entry and the funnel channel
map for the funnel specified in Ry. The addresses of both data
structures are known to the system.

The funnel specified in Ry must have been created with the CREATE.FUN
instruction prior to executing this instruction.

14.2 DESTROY A COMMUNICATION PATH

These instructions delete the links and funnels belonging to a process.
Deleting standard links and funnels may produce unexpected results.

14.2.1 DEL.LINK Delete Link

The specified 1link is deleted from the 1link table and returned to the
list of free links. The first word in the parameter block contains the
link ID to be deleted. If "Inform on Delete"™ is specified in the 1link
entry for the link to be deleted, a notification message is sent to the
creator of the 1link. Ry contains the address of the parameter block.
The notification message will not be sent if the link creator deletes a
link that is directed into one of its own funnels.

14 - 7

MESSAGE SYSTEM INSTRUCTIONS

N Implementation i | Addressing mode usage
19,0, 11X,y ,0,-,-, | DEL.LINK Rx, [Ry]
T T T
1 1 1
I | I |
' ' | \ This field must be zero
Opcode . \
| \ Ry parameter block address
:
1
1
; Rx = Instruction Specific Return Status --——-—-———-—-
i
1
' 0 = Success [yl
, 36 = Link 1 Receiving Process Dead [y]
, 40 = Link 1 Link Not Defined [n]
. 41 = Link 1 Unallocated Page [n]
, 42 = Link 1 Unallocatable Page [n]
y 43 = Link 1 Exceeds No Of Link Levels [n]
, 45 = Link 1 Zero Link ID [n]
{ 47 = Link 1 Funnel Not Enabled [y]
, 55 = Link 1 Transport Hardware Error [v]
, 139 = Link 1 Too Many Attached Buffers [yl
DEL.LINK Parameter Block
[Ryl-)>| {unused) (16) \ Link ID (16)

{unused> (32)

Notification Message to Link Creator

\ Link Code (16)

Funnel ID (8) , Msg type (8)

From Process ID (16) \

Number of Bytes (16)

14 =

MESSAGE SYSTEM INSTRUCTIONS

14.2.2 DEL.FUN Delete Funnel

The funnel specified in Ry is deleted by returning its entry in the
funnel table to the free list. Prior to deleting a funnel, it must be
disabled by executing the DISABLE.FUN instruction, and all messages

must be

removed from its funnel queue by executing the DELETE.MESSAGE

instruction. Upon completion, status is returned in RX.

Implementation \ X Addressing mode usage \

1
18103 %X,y ,0, : DEL.FUN Rx,Ry !
[A A A A
| I]
| b
! oo This field must be zero
Opcode \
1
I

g

Instruction Specific Return Status =————=——=-—-

]

]

0 Success [yl |
1 = Funnel Does Not Exist [n] ,
3 = Funnel Not Disabled [n] |
4 = Funnel Not Empty [n] |
50 = Access Unallocated Page Of Funnel Table [n] |

14.3 SEND MESSAGES

There are three types of messages a user may send. They are 1listed
below by the instructions used in sending them.

(o]

SEND. This is used to send the typical message. The length of
this message may vary from O bytes to a maximum of 888 bytes.
The message data to be sent can be organized into one or two
(not necessarily contiguous) data blocks in the user's virtual
space. The message preamble and the message data are
transferred into message buffers (see Chapter 13, "Inter-Process
Communications") contributed by the sending functional unit.

SEND.SMALL.. This type allows the user to place a 32-bit message
into a register and send it to another process. The receiving
functional unit, rather than the sending functional unit,
contributes the message buffer for this kind of send.

SEND.TO.HARDWARE. This sends a message to the hardware (CPU)
being used by the process into which the link is directed. A
link can only have the toHardware link right conferred to it via
system intrinsics not covered in this section. No message
buffer is required to send this 64-bit message to the hardware.

14 - 9

MESSAGE SYSTEM INSTRUCTIONS

The maximum size of a message is 888 bytes. If a link is contained in
the message, as with COPY.LINK or PASS.LINK, the link uses 16 bytes,
leaving a remainder of 872 bytes for message data.

14.3.1 SEND Send Message

This instruction copies the specified message from the caller's virtual
address space to the system message buffers, then attaches the buffer
to the funnel specified in the 1link table entry for the sending
process. Ry contains the virtual address of the send parameter block
and Rz the length of the message data. If [Rv] < 0, then the message
is in two parts, with Rt containing the virtual address of the second
message block and Rv the length. Upon completion, status is returned
in Rx.

| Implementation . ' Addressing mode usage \
19 0,2, X,y 12, ,t v | SEND Rx,[Ry],Rz,[Rt],Rv '
Che———a A A AT

—— = o

]]
[}] |
: \ . Rv 2nd message block data length
I I

t |
\ X Rt 2nd message block address

|

1

!

Rz 1st message block data length

Ry 1st parameter block address

Rx = Instruction Specific Return Status —-————————mm
[}

]

0 = Success [yl |

6 = Message Too Long [n] |

36 = Link 1 Receiving Process Dead [n] ,
3% = Link 1 Too Many Attached Buffers [n] ,
40 = Link 1 Link Not Defined [n] |
41 = Link 1 Unallocated Page [n]
42 = Link 1 Unallocatable Page [n] |
43 = Link 1 Exceeds No Of Link Levels [n] |
45 = Link 1 Zero Link ID [n] |
46 = Negative Data Block Length [n] ;|
47 = Link 1 Funnel Not Enabled [n] ,
55 = Transport Hardware Error [n] ,

14 - 10

MESSAGE SYSTEM INSTRUCTIONS

SEND Parameter Block

[Ry]-), {unused)> (16) ' Link ID (16)
, {unused)> (32)
| i
| 1
1
|
Rz Message data block 1
]
| |
]]
[Rt]1-D
Rv Message data block 2

14

11

-

MESSAGE SYSTEM INSTRUCTIONS

14.3.2 SEND.SMALL.MSG Send Small Message

The data in the low order 32 bits of Rz (bits 32 through 63) are formed
into a message, and sent on the link specified in Ry. High order bits
0 through 31 of Rz must be zero. Upon completion, status is returned
in RX.

| Implementation) | Addressing mode usage \
8,0, E | x,v7) 2| , SEND.SMALL.MSG Rx,Ry,Rz |
—A A A A A

i
I
i , Rz Message data
|
]
I

Ry Link ID

i

I

1

|

1

]

I

]

I

|

[}

1

i Rx = Instruction Specific Return Status --—--———————
I I
i]
, 0 = Success [yl |
\ 36 = Link 1 Receiving Process Dead [n] |
i\ 37 = No Message Buffer Available [n] |
, 40 = Link 1 Link Not Defined [n]
, 41 = Link 1 Unallocated Page [n]
, 42 = Link 1 Unallocatable Page [n]
| 43 = Link 1 Exceeds No Of Link Levels [n] |
, 45 = Link 1 Zero Link ID - [n] ,
\ 47 = Link 1 Funnel Not Enabled [n] |
. 55 = Transport Hardware Error [n] |

14.3.3 SEND.TO.HARDWARE Send Message to Hardware

This instruction is similar to the SEND.SMALL.MSG instruction, except
that the message is not received by the specified target. Instead, the
message is interpreted by the CPU that owns the target process. The
64-bit data in Rz is formed into a message, and is sent on the link 1ID
specified in Ry. Upon completion, status is returned in Rx.

i4 - 12

MESSAGE SYSTEM INSTRUCTIONS

The link on which this message is sent must have toHardware rights
specified by the link creator.

, Implementation X : Addressing mode usage '
8,0, D, X, Y, 2, .\ SEND.TO.HARDWARE Rx,RY,Rz
_:— - -A- _A_ _: _A

Rz Message data

i
l
|

Opcode \
i Ry Link ID
:
|
i Rx = Instruction Specific Return Status ==——=——-c——- .
1 |
| 0 = Success [yl |
, 31 = Link Does Not Have Hardware Right [n] |
, 36 = Link 1 Receiving Process Dead [n] ,
! 40 = Link 1 Link Not Defined [n] |
| 41 = Link 1 Unallocated Page [n] |
i\ 42 = Link 1 Unallocatable Page [n] |
, 43 = Link 1 Exceeds No Of Link Levels [n] ,
, 45 = Link 1 Zero Link ID [n] ,
, 55 = Transport Hardware Error [n]

14.3.4 COPY.LINK Copy Link

This instruction copies a link along with a message from the caller's
virtual address space to the system message buffers, then attaches the
buffer to the funnel specified in the caller's 1link table. This
instruction is identical to SEND with the addition of a 1link ID to copy
as specified in the parameter block. A 1link must be defined in order
to be copied.

The receiver of a link places the link into its link table. The 1ink
~attributes of the original and the copied 1ink both have the same
funnel, that is, an additional 1link is now directed into the funnel.

Ry contains the address of the first send parameter block and Rz
contains the length of the data (message) in the parameter block. Rt
contains the address of the second message block and Rv contains the
length of the data in the second message block. If [Rv] = 0, there is
no second message block and the contents of Rt have no meaning. Upon
completion, the status is returned in RX.

14 - 13

MESSAGE SYSTEM INSTRUCTIONS

A notification message is sent to the creator of the 1link only if
"notify on copy" is specified in the link entry for the copied link. A
notification message is never sent, regardless of the setting of the
"notify on copy" bit, if the owner (creator) of the link is the process
invoking COPY.LINK.

, Implementation X . Addressing mode usage X
19,0 ,0 , X,y .2 ,t,v, , COPY.LINK Rx,[Ry],Rz,[Rt],Rv ,
C—a A A AW

Rv 2nd message block data length
Rt 2nd message block address
Rz 1lst message block data length

Ry 1lst parameter block address

1

1

1

1

1

I

]

1

'

]

I

]

I

I

t

I

I

I

I

|

i Rx = Instruction Specific Return Status =—=———————-n
]]
| I
, 0 = Success lyl
i 5 = Transport Hardware Error On Notification [n] ,
\ 6 = Message Too Long [n]
, 36 = Link 1 Receiving Process Dead [n]
, 39 = Link 1 Too Many Attached Buffers [n] |
\ 40 = Link 1 Link Not Defined [n] |
, 41 = Link 1 Unallocated Page [n] |
, 42 = Link 1 Unallocatable Page [n] |
, 43 = Link 1 Exceeds No Of Link Levels [n] |
. 45 = Link 1 Zero Link ID [n] |
, 46 = Negative Data Block Length [n]
, 47 = Link 1 Funnel Not Enabled [n] |
, 51 = Link Cannot Be Sent [n] |
, 52 = Link 1 Target Unit Busy [n] |
. 54 = Transport Hardware Error On Data Message [n] |
, 136 = Link 2 Receiving Process Dead [n] |
{ 139 = Link 2 Too Many Attached Buffers , [n] |
, 140 = Link 2 Link Not Defined [n] ,
, 141 = Link 2 Unallocated Page [n] |
, 142 = Link 2 Unallocatable Page [n] ,
143 = Link 2 Exceeds No Of Link Levels (n] ,
y 145 = Link 2 Zero Link ID [n] |
, 147 = Link 2 Funnel Not Enabled [n]
y 152 = Link 2 Target Unit Busy [n]

14 - 14

MESSAGE SYSTEM INSTRUCTIONS

COPY.LINK Parameter Block

[Ry1->| {unused) (16) : Link ID (16) !
' {unused) (16) : Link ID to Copy (16) '
|

Y
N

]

|

]

t

Message data block 1 X
|

]

|

[Rt]-)

Rv Message data block 2

Notice that execution of the COPY.LINK instruction simply allows the
receiving process to place the link in the message into its link table.
The link owner now has two links directed into one of its funnels: the
original link that the process created or held that was directed into
its own funnel, and the copied link now held by the receiver of the
message. :

14 - 15

MESSAGE SYSTEM INSTRUCTIONS

The notification message to the creator of the 1link, if sent, has the
following format:

COPY.LINK notification message

' Link Code (16) , Funnel ID (8) |, Msg type (8) !
From Process ID (16) ' Number of Bytes (16) X
X Receive Process ID (16) X {unused)> (16)

14.3.5 PASS.LINK Pass Link

PASS.LINK is identical to COPY.LINK, except that after the link to be
passed is put in the message, the entry for it is deleted from the
holder's 1link table. When the receiver of the link does a receive
link, there will still be only one link. Ry contains the address of
the first send parameter block and Rz contains the length of the data
(message) in the parameter block. Rt contains the address of the
second send parameter block and Rv contains the length of the data
(message) in the parameter block. If [Rv] = O, then there is no second
parameter block, and the contents of Rt have no meaning. Upon
completion, status is returned in Rx.

If the Link Rights field of the link to be passed specifies "inform on
pass", then a default notification message will be sent to the creator
of the 1link. (See Section 14.3.4, "“COPY.LINK", for diagrams and
contents of notification message.) If the "inform on pass" bit is set,
.and the owner of the 1link is invoking PASS.LINK, no notification
message is sent.

MESSAGE SYSTEM INSTRUCTIONS

Implementation

940 |

5

[}
| X

A

1 Y

A

| | Addressing mode usage
z,t, v, , PASS.LINK Rx,[Ry],Rz,[Rt],RV ,
A A A
[} 1
| 1 I
. : | Rv 2nd message block data length
i I
i 1
H \ Rt 2nd message block address
]
|
X Rz lst message block data length

1
1
1
|
|
1
1
}
!
1
t
i
i
|
|
I

Rx =

0

5

6
36
40
41
42
43
45
46
47
49
51
52
54
136
139
140
141
142
143
145
147
152

T T | O (O O | | 1 T 1 N T (I | A |

Ry 1lst parameter block address

Instruction Specific Return Status

Success

Transport Hardware Error On Notification

Message Too Long
Link 1 Receiving Process Dead

Link 1 Link Not Defined

Link 1 Unallocated Page

Link 1 Unallocatable Page

Link 1 Exceeds No Of Link Levels

Link 1 Zero Link ID

Negative Data Block Length

Link 1 Funnel Not Enabled

Link 1 Too Many Attached Buffers
Link Cannot Be Sent

Link 1 Target Unit Busy

Transport Hardware Error On Data Message

Link 2 Receiving Process Dead
Link 2 Too Many Attached Buffers
Link 2 Link Not Defined

Link 2 Unallocated Page

Link 2 Unallocatable Page

Link 2 Exceeds No Of Link Levels
Link 2 Zero Link ID

Link 2 Funnel Not Enabled

Link 2 Target Unit Busy

14 - 17

MESSAGE SYSTEM INSTRUCTIONS

14.4 RECEIVE MESSAGES

The receive instructions provide several means of interfacing to the
system message buffers.

Observe that the microcode adds the length of the parameter block to
the number of bytes specified in Rz to determine the address space for
the parameter block and the first message block. The parameter block
will always be stored at [Ry]. The message itself may be stored at [Ry
+ 4 words] with Rz length, or stored at [Rt] with Rv length, or split
up with the first part of the message at the former address, and the
second part at the latter address. The "number of bytes" specified in
the receive control part of the parameter block only includes the
length of the message data areas, not the parameter block. The user
would typically allocate 888 bytes + 1length of parameter block
(16 bytes) to cover worst cases.

14.4.1 RCV Receive Message

Copies the first message on the specified funnel into the user's
virtual address specified in Ry, for the number of bytes specified in
Rz. Optionally, if [Rv] < 0, then the message is copied into two
buffers. If so, then Rt contains the virtual address of the beginning
of the second buffer and Rv specifies the length of the buffer. Upon
completion, status is returned in Rx.

MESSAGE SYSTEM INSTRUCTIONS

Implementation | | Addressing mode usage :
19,0, 7, %X,Y,2,t,v, X RCV Rx,[Ry],Rz,[Rt],Rv '
N A A TN Ty

I [}
| i]
| \ ' Rv 2nd message block data length
i 1

1} |

X : Rt 2nd message block address

|

1

]

]
|
]
]
]
1
1
1
]
1
' Rz 1lst message block data length
!

I

Ry lst parameter block address

Rx = Instruction Specific Return Status -—---~=-—=—-- .
]

0 = Success vyl |
1 = Funnel Does Not Exist [n] |
6 = Message Too Long [n] |
14 = No Message In Funnel [n] ,
28 = Message Contains Link [n] |
55 = Transport Hardware Error [n] |

RCV Parameter Block

[Ry]—}: Funnel ID (8) | <unused) (8) | Type rcv (8) | <unused) (8)

') ‘{unused> (16) ' {unused)> (16)
RCV } L :] 1 !
| : ink Code (16) , Funnel ID (8) , Msg type (8) ,
CTL
INFO From Process ID (16) X Number of Bytes (16)
]
|

]
]
]
]
Rz | Message data block 1
|
]
|

14 - 18

MESSAGE SYSTEM INSTRUCTIONS

[Rt1->

Rv Message data block 2

The parameter fields are defined as follows:

Funnel ID
This is the funnel from which to take the message if there is a
message.

Type of receive
This specifies the kind of receive the user wishes to execute and
contains the following boolean values:

Synchronous
If there is no message in the specified funnel, the user is
blocked until a message is delivered into the funnel.
(Bit-7 of field).

Interrogate
The message, if any, is copied into the users virtual address
space, but the message remains attached to the funnel. If
there is no message, the action is controlled by the
synchronous specification. (Bit-6 of field).

Dismiss
This option implicitly sets the 1local priority to a value
previously specified by the SET.LOCAL.PRI instruction, or to 15
before any modification of 1local priority by the user. The
specification will be invoked prior to the receive.
(Bit~-5 of field).

If the user executes a RCV and the system detects that the message
contains a 1link, then RCV behaves exactly as for a RCV with
interrogate, and returns "message contains link" error (28). If the
user wishes to receive the message, the RECEIVE.LINK instruction must
be invoked.

14.4.2 RCV.CHAN Receive Message on Channel

This instruction searches for a message on all channels specified in a
channel mask, starting with the highest priority channel. If a message
is found, the instruction transfers the message in a manner identical
to the RCV instruction. If a message is not found on any specified
channel, the action is controlled by the "synchronous" parameter, as
follows: If "synchronous" is selected, the instruction will block the
user and continue to search the masked channels until a message
arrives; if false, the instruction terminates.

14 - 20

MESSAGE SYSTEM INSTRUCTIONS

The order in which funnels are checked for messages on a given channel
is not defined for the user (messages arriving on a funnel are received
in FIFO order). The channel mask is specified in the parameter block.
The instruction otherwise behaves identically to the RCV instruction on
the receipt of a message and for the "type receive" specification.

Implementation N N Addressing mode usage '
1910 ,6 X,y ,2 .t v, | RCV.CHAN Rx,[Ry],Rz,[Rt],RV ,
A A A A A A A

[} 1]
1 1]
X X X Rv 2nd message block data length
! 1

| I
: ' Rt 2nd message block address

[}

|

[}

]

Rz 1st message block data length

[}
t
]
=
]
]
:
i
i
]
Opcode .
: Ry lst parameter block address
T
]
, Rx = Instruction Specific Return Status =---——-—--—-
I I
| |
\ 0 = Success [yl |
! 6 = Message Too Long [n] ,
\ 28 = Message Contains Link [n] |
, 29 = No Messages On Channels [n] ;|
, 55 = Transport Hardware Error [n] ,
RCV.CHAN Parameter Block
[Ry]-)>| Channel Mask (16) i Type rcv (8) <unused)> (8) |
\ <{unused) (16) . {unused> (16) X
RCV | Link Code (16) Funnel ID (8) , Msg type (8) |
CTL
INFO , From Process ID (16) " Number of Bytes (16) X
1

o -

]
]
I
|
Message data block 1 :
1
|
1
|

14 - 21

MESSAGE SYSTEM INSTRUCTIONS

[Rt1->

Rv Message data block 2

14.4.3 RCV.LINK Receive Message with Link

This instruction is similiar to RCV in the copy of the message into the
user's virtual address space. In addition, there is a link table entry
in the message, which is put into the user's link table according to
the "preferred 1link ID" specification. As with RCV, Ry contains the
virtual address of the parameter block and Rz the length of the message
block. If [Rv] < 0, then the message is copied in two parts, with Rt
specifying the virtual address of the second block and Rv the length.
Upon completion, status is returned in RX.

Implementation | I Addressing mode usage :
9 , 0,8, X ,9Y,2,%t,v, | RCV.LINK Rx,[Ryl,Rz,[Rt],Rv |
A A T TS T T

I 1
I | |

X \ : Rv 2nd message block length
I i

[} | .

X \ Rt 2nd message block address

I

i

i

i

Rz 1lst message block data length

Ry lst parameter block address

Rx = Instruction Specific Return Status =-—=——-——e——e- ‘
1

0 = Success [yl
1 = Funnel Does Not Exist [n] ,
6 = Message Too Long [n]
11 = Link Table Is Full [nl ;
12 = Link Already Created [n] |
14 = No Message In Funnel [n] |
30 = Message Does Not Contain Link [n] ,
32 = 1Illegal Preferred Link ID [n] |
55 = Transport Hardware Error [n] |

14 - 22

MESSAGE SYSTEM INSTRUCTIONS

RCV.LINK Parameter Block

[Ryl->, Funnel ID (8) ; <{unused) (8) , Type rcv (8) :‘<unused> (8)

Preferred Link ID (16) \ <{unused) (16) '

RCV Link Code (16) . Funnel ID (8) , Msg type (8) |
CTL
INFO From Process ID (16) \ Number of Bytes (16) '
\ 1 [}
1 1 1

I i

| 1
Rz Message data block 1 ,

| |
i 1 I
i 1 I
[Re1->

I

i

i
Rv \ Message data block 2

i

1

The funnel, receive type and receive control information are the same
as for RCV. Preferred 1link ID is the link ID in the receiver's link
table into which the 1link entry is placed. If the user has no
preference, a zero (0) may be specified and the machine will use the
next free link in the table. 1In either case, the machine returns the
actual link ID assigned and places it in the Preferred Link ID field of
the parameter block.

If the user executes a RCV.LINK and the machine detects that the
message does not contain a link, the message is transferred exactly as
for a RCV, and the "Message Does Not Contain Link" error is returned to
the user. If status codes 11, 12, or 32 are returned, the message is
copied into the user's address space but the message is not deleted
from the funnel and the preferred 1link is not created.

14 - 23

MESSAGE SYSTEM INSTRUCTIONS

14.4.4 RCV.LINK.ON.CHAN Receive Message with Link on Channel

This instruction behaves exactly like RCV.LINK, except that a channel
(see RCV and RCV.CHAN above.)

mask is specified.

19,0

9 | x

RX

11
12
29
32
55

| Implementation

RCV.LINK.ON.CHAN Rx,[Ry],Rz,[Rt],Rv

oo

zZ,t v,

Addressing mode usage

Rv 2nd message block data length

Rt 2nd message block address

Rz 1st message block data length

Instruction Specific Return Status

Ry lst parameter block address

Success [v]
Message Too Long [n]
Link Table Is Full [n]
Link Already Created [n]
No Messages On Channels [n]
Illegal Preferred Link ID [n]
Transport Hardware Error [n]

14

MESSAGE SYSTEM INSTRUCTIONS

RCV.LINK.ON.CHAN Parameter Block

[Ry1l-), Channel Mask (16) , Type rcv (8) | <unused) (8)
\ Preferred Link ID (16) X {unused) (16) '
RCV | Link Code (16) | Funnel ID (8) , Msg type (8)
iggo . From Process ID (16) X Number of Bytes (16) H
|
Message data block 1

o
N

[Rt1->

Rv Message data block 2

14.5 FORWARD MESSAGES

These instructions forward messages from a funnel and send them out on
a link. Links cannot be forwarded from a message sender, rather the
EXCH.LINK.FORWARD instruction exXchanges the link with one held by the
intermediate process, and forwards the new 1link with the original
message.

14.5.1 FORWARD.MSG Forward Message

Take the first message from the funnel specified in the parameter block
and send it on the specified 1link. Ry contains the address of the
parameter block. Upon completion, status is returned in RX. Messages
containing links may not be forwarded.

14 - 25

MESSAGE SYSTEM INSTRUCTIONS

\ Implementation , , Addressing mode usage :
8,0 ,A %X ,9 0, ' FORWARD.MSG Rx, [Ry] X
en A A A

This field must be zero

!
|
I
|
Opcode :
: Ry parameter block address
[}
]
' .
i
1 Rx = Instruction Specific Return Status =——————————o
i [}
1 I
, 0 = Success [yl |
i 1 = Funnel Does Not Exist [n] |
, 14 = No Message In Funnel [n] |
\ 23 = Cannot Forward On Link [n] |
, 28 = Message Contains Link [n] ,
, 36 = Link 1 Receiving Process Dead [n] |
, 39 = Link 1 Too Many Attached Buffers [n] |
, 40 = Link 1 Link Not Defined [n]
y 41 = Link 1 Unallocated Page [n] |
. 42 = Link 1 Unallocatable Page [n] |
, 43 = Link 1 Exceeds No Of Link Levels [n] |
, 45 = Link 1 Zero Link ID [n] |
, 47 = Link 1 Funnel Not Enabled [n] |
, 55 = Transport Hardware Error [n] |
FORWARD.MSG Parameter Block
[Ryl->, Funnel ID (8) , <{unused) (8) , Link ID (8) | <unused> (8) |

: {unused) (32) |

14.5.2 EXCH.LINK.FORWARD Exchange Message Link and Forward Message

The instruction takes the first message on the funnel specified by
funnel ID, and forwards it on the 1link ID specified in the parameter
block. If the message contains a link, then the link ID contained in
the message is saved in "preferred link ID", and "link to be sent" is
substituted instead. Upon completion, status is returned in Rx. Ry
contains the address of the parameter block.

14 - 26

MESSAGE SYSTEM INSTRUCTIONS

| Implementation ' Addressing mode usage
., 8,0,9,x,9,0, | EXCH.LINK.FORWARD Rx, [Ry]
A A A A A
1 i 1 1
1 |]]
: \ \ \ This field must be zero
Opcode \ \
' ' Ry parameter block address
A
1
E Rx = Instruction Specific Return Status -—-——=——=————
t
' 0 Success [yl
y 1 = Funnel Does Not Exist [n]
, 11 = Link Table Is Full [n]
, 12 = Link Already Created [n]
| 14 = No Message In Funnel [n]
, 23 = Cannot Forward On Link [n]
, 32 = Illegal Preferred Link ID [n]
\ 36 = Link 1 Receiving Process Dead [n]
, 39 = Link 1 Too Many Attached Buffers [n]
, 40 = Link 1 Link Not Defined [n]
, 41 = Link 1 Unallocated Page [n]
, 42 = Link 1 Unallocatable Page [n]
, 43 = Link 1 Exceeds No Of Link Levels [n]
, 45 = Link 1 Zero Link ID [n]
\ 47 = Link 1 Funnel Not Enabled [n]
, 51 = Link Cannot Be Sent [n]
, 55 = Transport Hardware Error [n]
, 140 = Link 2 Link Not Defined [n]
, 141 = Link 2 Unallocated Page [n]
, 142 = Link 2 Unallocatable Page [n]
, 143 = Link 2 Exceeds No Of Link Levels [n]
, 145 = Link 2 Zero Link ID [n]
EXCH.LINK.FORWARD Parameter Block
[Ry]l-)>, Funnel ID (8) , <unused) (8) , Link ID (16)
Preferred Link ID (16) X Link to be sent (16)

MESSAGE SYSTEM INSTRUCTIONS

14.6 DELETE MESSAGES

This instruction disposes of messages.

14.6.1 DEL.MSG Delete Message from Funnel

Deletes the first message attached to the funnel specified in Ry. Upon
completion, status is returned in RX, and the message buffers holding
the deleted message are returned to the free list. Messages containing
links may not be deleted.

Implementation . \ Addressing mode usage ‘
1810 ,4 X ,y,0, ! DEL.MSG Rx,Ry !
A A ATy

This field must be zero

Ry Funnel ID

]
1
]
]
]
]
]
[}
]
]
]
1
I Rx
]
]
]
!
]
]
]
]
]
I
]

= Instruction Specific Return Status =——————————o .

]

0 = Success Iyl
1 = Funnel Does Not Exist [n] |
14 = No Message In Funnel [nl ;|
28 = Message Contains Link [n] ,
55 = Transport Hardware Error [yl ,

14.7 ENABLE AND DISABLE FUNNEL

These instructions toggle the enabled funnels bit in the Enabled
Funnels Map of the Process Control Block. This has the effect of
marking the associated funnel as enabled or disabled. The Enabled
Funnels Map contains an enabled funnels bit for each of a process' 256
funnels. Chapter 13, "Inter-Process Communications"™, covers this data
structure in detail.

14 - 28

MESSAGE SYSTEM INSTRUCTIONS

14.7.1 ENABLE.FUN Enable Funnel

The funnel specified in Ry is marked enabled in the enabled funnel map.
Any subsequent messages directed to the funnel will be delivered.
Status is returned in RX.

' Implementation | | Addressing mode usage \
18,0, 7, % ,5 0, \ ENABLE.FUN RX,Ry '
A A A A :

[} {

: ' This field must be zero
I

]

I

I

Ry Funnel ID

1
]
]
]
I
I
]
I
i
]
]
, Rx
|
]
1
I
!
]
!
|
[}

= Instruction Specific Return Status =—-—=—————ee--

[}

]

0 = Success (vl |
1 = Funnel Does Not Exist [n] ,
21 = Specified Funnel Already Enabled [n] ,
50 = Access Unallocated Page Of Funnel Table [n]

14.7.2 DISABLE.FUN Disable Funnel

The funnel specified in Ry is marked disabled in the enabled funnels
map. All messages currently attached to the funnel remain attached,
but subsequent messages directed to the funnel will not be attached and
bad (non-zero) status will be returned to the sender of the message.
Upon completion of the DISABLE.FUN instruction, status is returned in
Rx.

14 - 29

MESSAGE SYSTEM INSTRUCTIONS

I i

Implementation | 1 Addressing mode usage :
., 8,0 ,5 %X,y ,0, | DISABLE.FUN RX,RyY
-:- A A A A

This field must be zero

]
!
!
]
]
}
I
i
]
|
t
]
, Rx = Instruction Specific Return Status ——————————n
|
i
!
1
1
}
1
i
i
1
!

1

I
0 = Success [yl
1 = Funnel Does Not Exist [n] |
17 = 1Illegal To Disable Funnel ID [n]
18 = Specified Funnel Already Disabled [n] |
50 = Access Unallocated Page Of Funnel Table [n] ,

14.8 INTERRUPT AND LOCAL PRIORITY

If a channel is enabled for interrupts, any message arriving on a
funnel attached to the channel will generate an interrupt. Assuming
that no higher priority interrupts are extant, the instruction stream
of the process will be interrupted when the firmware loads the Program
Counter with the interrupt vector, that is, the address of the trap
handler. The trap handling procedure interprets the parameters passed
by the message that generated the interrupt. These mechanisms are
discussed in Chapter 2, "Architecture".

These instructions allow the process to control 1local priority, the
interrupt channel masks, and the interrupt vectors.

14.8.1 DISABLE.CHAN.INT Disable Interrupts on Channel

The channel(s) specified in the channel mask are marked to disable
interrupts by setting the associated bit(s) in Ry. Thereafter,
messages delivered to funnels attached to such channels will not cause
an interrupt. Upon completion, the old channel mask is returned in Ry
and status is returned in Rx. If the return status is non-zero, Ry is
unchanged. Interrupts may be disabled on any channel except channel O.

MESSAGE SYSTEM INSTRUCTIONS

Channel mask in Ry, right justified

< -—/ /---
Channel =-» , 00 , 01 , 02 ... ee. 12 | 13 |, 14 , 15
< -/ /-—-
Bit position 47 48 49 60 61 62 63
Implementation ' X Addressing mode usage '
18,06 X ,9Y,0, | DISABLE.CHAN.INT Rx,Ry |
N

1
|
. This field must be zero
1
|
1
I

Ry Channel mask

Rx = Instruction Specific Return Status -—=—==—————-
1

]

0 = Success (vl |
15 = Illegal To Disable Interrupts [n]

The channel mask is represented in the machine with bits set for
enabled channels, and bits cleared for disabled channels. The value
returned in Ry for the old channel mask will be displayed accordingly.

14.8.2 ENABLE.CHAN.INT Enable Interrupts on Channel

The channel(s) specified in the channel mask are marked to enable
interrupts by setting the associated bit(s) in Ry. Existing messages
on the funnels for the enabled channel will cause interrupts as well as
the delivery of subsequent messages. On completion, the old channel
mask is returned in Ry and status is returned in RX.

MESSAGE SYSTEM INSTRUCTIONS

. Implementation : | Addressing mode usage \
., 8,0 ,8,%x,v,0 | ENABLE.CHAN. INT RX,Ry |
A T —: A A A

This field must be zero

Ry Channel mask

1

Instruction Specific Return Status ---=——————-

o
L}

Success [yl

The channel mask is represented in the machine with bits set for
enabled channels, and bits cleared for disabled channels. The value
returned in Ry for the old channel mask will be displayed accordingly.

14.8.3 SET.FUN.INT.VECTOR Set Funnel Interrupt Vector

The interrupt vector for the funnel specified in Ry is changed to the
value specified in Rz. Upon completion, the o0ld interrupt vector is
returned in Rz, and status is returned in Rx. If a non-zero status is
returned in RX, then Rz is unchanged. The interrupt vector for funnel
1 cannot be modified with this instruction.

All vectors point to the system interrupt handlers at process start-up.
A value in Rz of zero is illegal, as it will cause an access violation
to page zero if an interrupt should occur that uses this wvector.

MESSAGE SYSTEM INSTRUCTIONS

Implementation | \ Addressing mode usage :
1810, C XY ,2, | SET.FUN.INT.VECTOR RX,RY,Rz
N A A TA

1 '
]]
X X Rz Interrupt vector
1
1
]
]

Ry Funnel ID

Rx = Instruction Specific Return Status -—————————-
1

]

0 = Success [yl |
1 = Funnel Does Not Exist [n] |
7 = Illeg. To Modify Int. Vector On This Funnel[n] |
50 = Access Unallocated Page Of Funnel Table [n] |

14.8.4 SET.LOCAL.PRI Set Local Priority

The local priority of the caller is modified to either the priority in
Ry or the priority of the highest active channel, whichever is higher.
An active channel is any channel having a funnel that contains a
message. On completion, the o0ld local priority is returned in Ry. No
status code is returned with this instruction.

\ Implementation : X Addressing mode usage '
9 101D - 1Y -, =, X _ SET.LOCAL.PRI Ry \
A . T

Ry specifies new local priority and
N returns old local priority

14 - 33

MESSAGE SYSTEM INSTRUCTIONS

14.9 PROCESS INQUIRY

These instructions read the 1ink and funnel table entries. If the
input parameter is zero, the associated link or funnel table header is
returned.

14.9.1 READ.FTE Read Funnel Table Entry

The funnel table entry for the funnel specified in Ry is returned in
registers Rz and Rt. If zero is specified, then the funnel table
header is returned. Rz holds the first word of the funnel table entry,
and Rt holds the second word of the funnel table entry. The status is
returned in Rx. Upon completion, if [RxX] is not equal to =zero, then
the contents of Rz and Rt have no meaning.

| Implementation X | Addressing mode usage X
19,0 ,2 X,y ,2z,t0] : READ.FTE RX,Ry,RZ,Rt X
T TS TS T T

1 |
]]
: \ This field must be zero

I

1
X Rt 2nd word of funnel table entry

[}
1
]
1]
]
]
I
|
!
i
X Rz 1st word of funnel table entry
!

]

)

|

Ry Funnel ID

Rx = Instruction Specific Return Status =————me————e-
)

1

0 = Success [yl |
50 = Access Unallocated Page Of Funnel Table [n] |

14 - 34 -

MESSAGE SYSTEM INSTRUCTIONS

14.9.2 READ.LTE Read Link Table Entry

The link table entry for the 1link specified in Ry is returned in
registers Rz and Rt. If zero is specified, then the link table header
is returned. Rz holds the first word of the link table entry, and Rt
holds the second word of the link table entry. The status is returned
in Rx. Upon completion, if [Rx] is not equal to zero, then the
contents of Rz and Rt have no meaning.

X Implementation : \ Addressing mode usage X
9103, %X ,Y .2 ,t,0, , READ.LTE RX,RyY,Rz,Rt '
_-A-— - -I\ A A _A A -A

This field must be zero

Rt 2nd word of 1link table entry

Rz 1st word of link table entry

1
I
]
|
[}
|
I
|
1
|
i
|
Opcode "
' Ry Link ID
|
1
i
\ Rx = Instruction Specific Return Status ---————-—--
] [}
| 1
! 0 = Success [yl |
! 41 = Link 1 Unallocated Page [n]
! 42 = Link 1 Unallocatable Page [n] |
, 43 = Link 1 Exceeds No Of Link Levels [n] |

14 - 35

GENERAL INSTRUCTIONS

15 GENERAL INSTRUCTIONS

This chapter covers the miscellaneous instructions:

MEMORY .MAN Memory Management
MODIFY.PME Modify Page Map Entry
READ.PME Read Page Map Entry

NOP No Operation
READ.CPU.TIMER Read CPU Timer
READ.REAL.TIMER Read Real Time Clock
READ.STAT Read Process Status Word
WRITE.STAT Write Process Status Word

READ.MACH.ID

15.1 MEMORY.MAN . MEMORY MANAGEMENT

This instruction sends a message to the Memory Manager Process to
request an operation on a page or group of pages. The request may be
either synchronous or asynchronous. If synchronous, then the process
executing this instruction will be stopped until the Memory Manager
explicitly restarts it. RX contains the operation code to be performed
by the memory manager, Ry contains the starting address of the virtual
page(s), and Rz contains the number of bytes in the page(s).

15 - 1 : -

GENERAL INSTRUCTIONS

, Implementation \ X Addressing mode usage :
V7,0 ,0,x 1y |z, ' MEMORY . MAN Rx,[Ryl,Rz |
—:_ - A A A A

Rz number of bytes

Ry starting address of page(s)

Rx = Memory manager operation code -————-=—-

Asynchronous TOUCH
Synchronous TOUCH
Asynchronous FORCE
Synchronous FORCE
Asynchronous CLEANSE
Synchronous CLEANSE

Od WO

TOUCH is an asynchronous hint to start a pre-fetch on a page or a group
of pages.

FORCE is a request to write a page or a group of pages to disk. The
reference bit is not modified. If the page(s) are not dirty, then they
are not written.

CLEANSE is a request to reset a page or group of pages to "virgin".
This resets the page map entry (PME) for every virtual page having an
actual page of disk space. When the page is subsequently referenced,
the Memory Manager will not fault the page in off of disk, but instead
will allocate a zeroed page in physical main memory. The copy on disk
will not Dbe initialized to zero as is normally the case when a pagde is
allocated. This is typically used to clean pages that have not been
referenced and do not need to be written to disk.

15.2 MODIFY.PME MODIFY PAGE MAP ENTRY

Rx contains the clear bit mask and Ry contains the set bit mask to
modify the PME bits. Rz contains the address of the page belonging to
the PME. In the bit masks, a bit having the value one indicates that
the appropriate operation is to be performed on the corresponding bit
in the PME. A Dbit having the value 2ero indicates that the
corresponding bit in the PME is not to be modified.

The instruction operates as follows: [Rx] and [Ry] are first ANDed
with internally maintained masks to restrict the PME bits that the user
may modify. The clear mask is applied first. To clear bits, the
verified [Rx] is complemented and ANDed with the PME. This result is
then ORed with the verified [Ry]. The PME is then rewritten. The only

15 - 2

GENERAL INSTRUCTIONS

bits which may be modified are the three trace bits and the reference
bit. The instruction operates correctly on shared pages.

: PME bits | type | mask bit

| maintenanceBit |, boolean 60 \

, readTraceBit , boolean | 61 \

, writeTraceBit , boolean | 62 '

, executeTraceBit , boolean 63 \
\ Implementation \ \ Addressing mode usage |
V7,041, x,Y, 2z, \ MODIFY.PME Rx,Ry, [Rz] X
Chn A A A

Rz page address
Ry set bit mask

RX clear bit mask

15.3 NOP NO OPERATION

The NOP instruction has no action other than to cause the PC to be
incremented to the next instruction. .

Instruction Specific Exceptions: none

15 - 3

GENERAL INSTRUCTIONS

15.4 READ.CPU.TIMER

Load the specified register with the 64-bit Process CPU Timer.

; Implementation , \ Addressing mode usage "
., 6,0 ,4 %, | READ.CPU.TIMER Rx '
n A

] I

]]

X \ Rx specifies register to return value
Opcode

Instruction Specific Exceptions: none

Each process has a 64-bit CPU Timer which is initialized at process
start-up to zero. The timer is incremented by one every 25 nanoseconds
when the process is executing.

15.5 READ.MACH.ID

Load the specified register with the 64-bit CPU identification code.
This code is unique for each CPU and is assigned when manufactured.
The contents of the identification code are currently undefined.

; Implementation , , Addressing mode usage X
., 6, 0,3, %, ' READ.MACH.ID Rx X
A A A

RX specifies register to return value

Instruction Specific Exceptions: none

15 - 4

GENERAL INSTRUCTIONS

15.6 READ.PME READ PAGE MAP ENTRY

The page map entry for the page containing the byte address in Ry is
returned in Rz. The PME level is returned in Rt. A page map entry is
always returned, regardless of whether or not the address in Rz is
allocatable or not. The status is returned in Rx. If the return value
of [RX] is non-zero, then Rz is not modified.

Implementation | ' Addressing mode usage '

'9 10,4 Xy izt -, | READ.PME Rx,[Ry],Rz,Rt '

1 [} 1 1 I t t i 1] . [4 r r 1
A A A A A A

1 I I
i I |
| : X Rt level of returned PME
1 1

| |
\ . Rz returned PME

]

]

1

]

Ry page address

Rx = Instruction specific Return Status ---

0 Success
32 Illegal page address

15.7 READ.REAL.TIMER

Load the specified register with the 64-bit Absolute Timer.

. Implementation, , Addressing mode usage "
, 6 , 0,5, %, : READ.REAL.TIMER RX '
e n A

The Service Processor contains a battery powered clock which measures
time and date. At cold load of the system, the time and date are
converted to a wvalue which represents the absolute number of 25
nanosecond ticks which have occurred since a base time and date. This
value is placed into the Real Time Clock at CPU initialization. The
Real Time Clock in incremented by 1 every 25 nanoseconds. Since the

15 - 5

GENERAL INSTRUCTIONS

clock is 64 bits wide, the clock can time an interval of over 7,200
years (not counting the sign bit).

The base time is March 1, 1600.

15.8 READ.STAT READ PROCESS STATUS WORD

Load the specified register with the 64-bit Process Status Word.

, Implementation, X Addressing mode usage ‘
. 6,0 ,6 ;% X READ.STAT RX '
heeeeh A

Instruction Specific ExXceptions: none

15.9 WRITE.STAT WRITE PROCESS STATUS WORD

Copy the specified register into the 64-bit Process Status Word. -

, Implementation, . ’ X Addressing mode usage :
1 6107 X : : WRITE.STAT Rx !
e—en A

RX is source for new PSW

Instruction Specific Exceptions: none

APPENDIX A:

ADD

ADDI

ADDUC

AND
ASCII.ADD
ASCII.ADDC
ASCII.SUB
ASCII.SUBC

ATT.FUN.TO.CHAN

BR.ABS
BR.BACKWARD

BR.B.<cd>.SH.REL

BR.<cd>.ABS
BR.<cd)>.REL
BREAKPOINT

BR.F.<cd).SH.REL

BR.FORWARD
BR.REG
BR.REL
BXIT

CALL
CALL.REG
CLEAR.BIT
CMP
CMPB.EBR
CMPB.BR.CONST
CMP.BR
CMPB.TEST
CMPU
CMPU.BR
COPYB
COPYB.CONST
COPY.LINK
CREATE.FUN
CREATE.LINK
CVT.AI
CVT.DE
CVT.DI
CVT.DS
CVT.ED
CVT.EI
CVT.ES
CVT.IA
CVT.1D
CVT.IE
CVT.IS
CVvT.SD
CVT.SE
CVT.SI
DEL.FUN
DEL.LINK

ALPHABETICAL LIST OF OPCODES

ALPHABETICAL LIST OF OPCODES

Integer AdditiON.ccececsccccosccccscaccccccnccncsebBel
Integer Addition with Immediate Operand..........6.2
Unsigned Integer Addition Generate Carrye.ceececece..6.2
LOgical BND.:eeesocoocececscacnscnscoascnccsacsaneaaTdeld
ASCII AAAQitiONe ecesscsssocnscacccssscsesscssncssnccelel
ASCII Addition Generate Carrye.ccececcecesceccecsssa8.l
ASCII SUDEIrACL.ccceacccsascctacscssssssssnscsscsnaseBel
ASCII Subtract Generate CArrY...ececesescsccsccscseaBe2
Attach Funnel tO ChaNNel..cceeecsscsacocscacscsssld.f
Branch Absolute........ teesesccsscssssassscnsssall.l
Branch Backward ShOrt...cececscescsacossccccncesll.d
Branch Backward...... ccecscsssscsscsscncsssssassnsel2.B
Branch Register Conditiona@lececececcccecscsscsccnsceall.d
Branch Register Conditionale.ccceececececcccas eeeel2.4
BreakpOiNt..ceecescscecscateccccssancnccsesssaseal2.l0
Branch FOrward. cecececescscosncscccces cesssecsssaes 12.5
Branch Forward Short Relative...ececcececacsecesal2.3
Branch through RegisSter.cc.ceeccecccccccceccsseesll.
Branch RelatiVeeeeeececcesssessscacsasssscsacssesllel
EXit from BreaK..cccssscseseaccaccccs ceecencceealZ2lll
Procedure Call Through StaCK.eeccececeecscscoccssesl2.7
Procedure Call Through RegiSte€rec.ceccececscsccesessl2.8
Clear Bite.ecescesesssassscasscssssossssssssssssocnsesIel
CoOmpare..cceceececcces P 1 0 1.1
Compare Byte Strings and BranCh.e.cecescecessss.10.9
Compare Byte String & Constant, Branch.........10.10
Compare Signed Integers and Branch PC.....ceec...10.4
Compare Byte Strings and TeSt.ceececececceaeaaa10.11
Compare Unsigned IntegerS..ceccececcccccsccsceasal0.5
Compare Unsigned Integers and Branch PC.........1l0.4
CopYy Byte StriNg..ceccsccetecccccccccccssscsscsesab.8
Copy Constant Byte String...ceciececececececcacessb.9
COPY LiNKeeeeeoeeoouesecncososcscscsoecssssososseald.]l2
Create PUNNel.cecececeasssosssssoscscscccssnsssesnsld.b
Create Link tO FUNNEle.ceeceesscsccacscsnccnsesssld.d
Convert from ASCII to Integer.e..ccceccssccssessslle3
Convert from Double toO Extended....cccesceececssll.d
Convert from Double tO Integer..cccececcscecsccesll.d
Convert from Double tO Single..c.ccceccecesceccccsssll.d
Convert from Extended tO DOUblE...cceeecvesccsaall.’
Convert from Extended to Integer.....ccceeeeceeesll.h
Convert from Extended to Singl€..ccecescccccecsesll.d
Convert from Integer tO ASCII..iecevccscocaconneslled
Convert from Integer tO DOUDlE..cceececccceseeseslle
Convert from Integer to ExXtended........cecccee.ll.b
Convert from Integer t0 SiNgl€..cccecscsccscsceall.f
Convert from Single tO DOUDlE.eicescsccccoscosoalle?
Convert from Single to Extended....ccececceceesesll.?
Convert from Single to Integer..ecciecececccecceceeall.?
Delete FUNNEliccceoccosscscesssessccscsssssasscseeald.8
Delete LiNKeceeeeoosoescosoanssonsnccsascsccaccsceeld.?

DEL.MSG
DISABLE.CHAN.INT
DISABLE.FUN
DIV

DIVR
ENABLE.CHAN.INT
ENABLE.FUN
EXCEPTION

EXCH

EXCH.AND
EXCH.LINK.FORWARD
EXCH.OR

EXIT

EXTRACT
EXTRACTZ

FADD

FCMP

FCMP.BR

FCMPX

FCMPX.BR

FDIV

FDIVR
FIND.FIRST
FINP

FMUL
FORWARD.MSG
FREM

FSOR

FSUB

FSUBR

INSERT

IXIT

LD

LDZ

MEMORY . MAN
MODIFY.PME

MUL

MUL.128
MULU.128

NEG

NOP

NOT

OR

PASS.LINK

RCV

RCV.CHAN
RCV.LINK
RCV.LINK.ON.CHAN
READ.CPU.TIMER
READ.FTE
READ.LTE
READ.MACH.ID
READ.PME
READ.REAL.TIMER

ALPHABETICAL LIST OF OPCODES

Delete Message from FUNNEl...ceeeececcanasceesald.25
Disable Interrupts on ChanNel.cceeceececcacesosald.26
Disable FUNNEl.ceieeeenoseesosscscccancncncsasssld.24
Integer DivViSiON.e.eeeecceersecccceccaccosscsnccseebBeld
Reverse Integer DivViSiON.c.ceeceeccececccccnaceeebBal
Enable Interrupts on ChanNel...ceeceecececoceeesald 27
Enable FUNNEel.cccesreccsocsscsssanansocnnansesald.23
EXCEePLiON.eceeteereececssesrerscscecscnscnncoceesal2.10
Exchange Register and MemOIY.cceecececeececeocccccesabe’?

Exchange AND....ceeee.. cesesescsccccsccsersscessnceDe
Exchange Message Link, Forward Message.........14.22
EXChAGnge OR..ccceceecncrccvasccsssssescsaccacsnsabe’

EXiteeeeeneneeeeeeeeneaennnnsssssscnasosnnaanenal2.9

Extract Bit Field, Sign ExXtendeGe..ccceceeccecessssb.5
Extract Bit Field, Zero Extended...cseceeecececcesebHa5
Floating Point AdQitiON...eecececcecccccocnconosaTel
Floating Point COMPAre...ccecececcccscososscacessl0.8
Floating Point Compare, BranCh..c.cceccececescee.10.6
Floating Point Compare, Unordered......ceccece...10.8
Floating Point Compare Branch, Unordered........10.6
Floating Point DivVisSiON..ceeeececcccccocascacsacsaToed
Floating Point Division Reversed....cceceeceeccceesTed
Find First Logical ONe..eeccecccccceccccaccnnsneaded
Floating Point Integer Part....cecececeoes ceesssll.B
Floating Point MUltipPly.cecececcccecacccosccncnosealeb
Forward MeSSag€.cecececececeans cecvesssssnsrocss 14.21
Floating Point RemMAinNAer....cccceeecccecccconcsessaTe8
Floating Point Square ROOt....ccceccceececencaaaaTO
Floating Point SubtractioN..cccieceeececcceseeaaT7.10
Floating Point Subtraction Reversed....... cecees7.10
Insert Bit Field OperatiON.cccecccecccceccccnceceeabeb
EXit from Interrupt..c.ceeecececesccccannneas ..12.11
Load Register Sign Extended.....ccceeceencencaeseabe?
Load Register Zero Extended.....ccceeeecee.. ceeseab.2
Memory ManagemeNt.ceeeseeccecceoccasoosoaocsssaselbe
Modify Page Map Entry..cececee.. Y e
Integer MUltipPly:.eeeeeececccscnccococncsosecacensabed
128-Bit Integer MUltiPlVe.ceceecececcocsssosacceacboad
128-Bit Unsigned Integer MUltipPl¥.eeeeeeeceoseesabald
Integer Negate OperationS..ccccicccccecccccenceoeabeb
NO OperatiON.ecccccescscescseccccacsccnsnnconseaalded
LOgical NOT..eeeeeeooncccccsscsacccacacccnceanosnesade?
LOGiCaAl OReececcoceccosesnssensssccaccccccsossoesede
PASS LiNKeeeerteoeoeooeeanaoscoccccacanncncnnas .14.14
ReCeive MeSSaAgC.ceecesccscscccnccccascccocensseld.1l5
Receive Message On ChanNel.cececececccccccconeeeald.17
Receive Message With LiNK...eeceeeeocecccnacensaoald.18

Receive Message with Link on_Channel.......... .14.20
Rea@d CPU TiMer..ccescrecscccscscecccconcnassseselbeb
Read Funnel Table ENtr¥.ceceecececcecccenaccncanes .14.30
Read Link Table ENtIV..cecececeeeccscccccosscecnesaseald.3]l
Read MachinNe ID..ceecccecccoocacooccsonsancnnens .15.6
Read Page Map ENtrV.cceescecessceocecocnceccnneeasslba’
Read Real Time ClOCK.eeeeeececacecacancancnnen ..15.8

READ.STAT

REM

REMR

ROL

ROR

SEND
SEND.SMALL.MSG
SEND.TO.HARDWARE
SET.BIT
SET.INT.VECTOR
SET.LOCAL.PRI
SLA

SLL

SLL1

SLL2

SLL3

SLR

SRA

ST

STI

STIN

STV

SUB

SUBI

SUBR

SUBUC

SUBUCR
TOGGLE.BIT
WRITE.STAT
XOR

ALPHABETICAL LIST OF OPCODES

Read Process StatusS WOrG...eeececesccseccscssessealbe9
Remainder of Integer Divid€..cccecececcececccccsccceebeb
Remainder of Reverse Integer Divid€.eeecscecesce.6.6
Logical Rotate Left.ceeeceeccerceccccccccsnscenessaded
Logical Rotate Right..... ceccssccscscasscessscssedd
Send MeSSATJCccesesoassasssscessscsscsscasssnsesssld.9
Send Small MeSSATC..eacasssctssossscccccsoscsssld .1l
Send Message tO HArAWAI€...ccceoceosocoscessssaldoll
SEt Biteeeeseooesescecncasssscsssscsnscssossscensnceaded
Set Funnel Interrupt VeCtOr..c.ececeeececsccesss.14.28
Set LOCAl PriOritV¥esesceccssesscscacncsscecesesld.29
Shift Left ArithmetiC.ccccceccscscoccscnvencessaball
Shift Left Logicalececcec.e cecsecccnssccsssasssssedd
Shift Left Logical DY leeeieeseccccsccacsancncasadb
Shift Left Logical DY 2.ecescccccscccscccccseacssadeb
Shift Left LOGicCal DY 3eeceecsscssocnccsccccsseassTeb
Shift Right LOGiCAl.cevecsrcssscssossncsccncsseeesded
Shift Right ArithmetiC..ccceececeeccccccccaseanssb6.10
StOre RegiSter.cceceesveccsossscsscssccacsacsessasbed
Store IMMEdiAte..cceeecceccccsccsscssscscsccsccnnsaeboed
Store Immediate Negate@d....eeevececcccccecccaceseabod
Store Register with OvVerflow CheCKe..eceeeeecesesssa5.3
Integer SUDLIrACt.cccececccsccccecscccacccsnsccaneabe?
Integer Subtraction with Immediate Operand.......6.9
Reverse Integer SubtraCt....ccececeeccecscccscseseabe’
Unsigned Integer Subtract Gen Carrye.....esse000..6.8
Reverse Unsigned Integer Subtract Gen Carry......6.8
TOggle Biteeeessseosscseoscscnscncccsascnscsssncsssdsl
Write Process Status Word...eeesceesscccasesessl5.10
Logical. Exclusive OReceeeccscnscs cessessssccsssessd.2

APPENDIX B: DATA

DATA TYPES

TYPES

o] 7
|———_| ----l
l ' . L] - I
0 . o e n-1
'S
0] 7
'S {extend bits) | \
0 57 63
'S |
0 15
- {extend bits) !
0 49 63
'S :
(o] 31
=N {extend bits) , '
0 33 63
'S !
0 63
B - 1

8-bit Character

Character String
1 {= n {= 2%%32

8-bit Integer in
memory

and

in register

16-bit Integer in
memory

and

in register

32-bit Integer in
memory

and

in register

64-bit Integer in
memory and
register

Numeric string in register

position of binary point

DATA TYPES
|seee f... £, Single Floating
—— in memory
0 A 31
\ and
10... 0,seee f... £, in register
0 32 4 63
Double Floating
| seee eef... £, in memory
and register
0 A 63
0 16 63
| seee eeee,0... 0, Double Extended
Floating in
memory
[If... £, and
register
64* 127
s = sign bit
e = exponent bit (s)
f = fraction (significand) bit
I = Integer bit of significand if no hidden bit
h = apparent position of hidden bit
A=

X,D,x,D,;xX|D,;x,D|

——— e m———— G—— - ——— — s e e S e et e Em e e o ———

:X:D:X:D:XIDIXID:
0 1 2 3
where
X =
D = hex0 through hex9

4 5 6 7

hex3 or [= 0 if all bits to left or right = 0]

APPENDIX C:

GENERALIZED ADDRESSING INSTRUCTION FORMATS

1l reg, reg

0 |OP1, W , X ,

1l reg, reg

1 ,0P1, w , X ,

GENERALIZED ADDRESSING INSTRUCTION FORMATS

op RX,Rw

op Rx,Rw

Mode 2: Reserved for future use

2 reg, reg

, 3 |OP1,0P2, X |, ¥ , op Rx,Ry,Rz

1 reg, absolute

! 4 |OP1|0OP2| x | 16 bit vir abs, op Rx,ef{16}

2 reg, immediate

! 5 |OP1|0OP2, x | y }12-bit imm , op RX,Ry,=e {12}

2 reg, long absolute

6 |OP1,0P2, X , ¥ | -

2 reg, long immediate

7 \OPL|OP2, X , ¥ | -

{32-bit address>

op RX,Ry,e {32}

{32-bit immediate)

GENERALIZED ADDRESSING INSTRUCTION FORMATS

Stack pointer relative

, 8 |OP1, n | X , op

where e = 4n, 0 {= n <{= 15

Stack pointer relative

, 9 |OP1, n | x | op

where e = 4n, 0 {= n <= 15

Reg, base + zero displacement

, A JOP1, w , x , op

2 reg, base + zero displacement

, B |OP1,0P2} X | v | 2 | op

1l reg, base + index + zero displacement

, C |OP1,0P2} X | v | z | op

1l reg, base + 12-bit displacement

, D |OP1,0P2, X , y ;12-bit disp| op

1l reg, base + index + 32-bit displacement

Rx,[le{s}

Rx,[leis}

Rx, [Rw]

RX,Ry, [Rz]

Rx, [Ry][Rz]

Rx,[Ryl,e{12}

, E |OP1,0P2, X , ¥ | Z | {32-bit displacement) \

op

Rx,[Ry]l[Rz]e {32}

GENERALIZED ADDRESSING INSTRUCTION FORMATS

2 reg, base + 32-bit displacement

- - E——— EeM—. S S SR mEE Ememde EeMen e s GeGeSe GeEm e Geoman e ———

| F |OP1,0P2, X , ¥ | Z , {32-bit displacement) '

op RX,Ry, [Rz]e {32}

NON-GENERALIZED ADDRESSING INSTRUCTION FORMATS

APPENDIX D: NON-GENERALIZED ADDRESSING INSTRUCTION FORMATS

EXCEPTION

} 01010 X, - ¥,

FREM, MUL.128, MULU.128

ololorzlxiy !z

BREAKPOINT

BR.FORWARD

!'2) 0 |<aisp1l),; (PC + UNSIGNED <displ))

EXIT, IXIT, BXIT

13,0 ,0P2, -, I , (ADD UNSIGNED I TO GPR 15)

SET.BIT, CLEAR.BIT, TOGGLE.BIT

, 3,0 ,0P2, x, I (BIT I IN GPR X)
BR.F.{cond)>.SH.REL
! 3, 0 ,0P2, x ,<displ), (PC + UNSIGNED <displ)>, IF TRUE)

NON-GENERALIZED ADDRESSING INSTRUCTION FORMATS

NOP

BR.REG, READ.---, WRITE.STAT, CASE

, 6 , 0 |0P2, X |

EXCH, EXCH.AND, EXCH.OR, CVT.AI, CVT.IA

1710 ,0P2, X, - | z

MEMORY .MAN, MODIFY.PME, ASCII.---, COPYB, COPYB.CONST, CMPB.TEST

1700 0P2) XY, 2|

Message System 1

| 810 |OP2] X | ¥,z

Message System 2 and SET.LOCAL.PRI

19,0 0P2, X | Y, 2, ¢t vV,

ASCII.SUB

V910, E | X,y ,2,t,-

BR.BACKWARD

\ A, 0 ,<daispl) (PC - UNSIGNED <displ))

NON-GENERALIZED ADDRESSING INSTRUCTION FORMATS

BR.B.<{cond>.SH.REL

| B} 0 ;0P2, x ,<{displ),
—————— —m— e ——— e (PC - UNSIGNED <{displ), IF

CMPB.BR, CMPB.BR.CONST

' D} 0 0P2} x , ¥, z ccd;<{12-bit ds),
INSERT
'!'D} 0|5 X,y , 2, start;, len

EXTRACT, EXTRACTZ

' D) O |0P2, X |, - , Z ,,,start,,64-1len,

FCMP.BR.80, FCMPX.BR.80, FCMP.80, FCMPX.80

'!'D) O |OP2, X , ¥y, 2, appendage

CALL, BR.ABS, BR.REL

' E,} 0 |OP2, - |, = |, -, {32-bit displ)

CALL.REG, BR.{cond).ABS, BR.{cond).REL

i E | 0 JOP2] X ;| - | - | {32-bit displ)

————- ——— Gn G- EeEme. Gheee SEem - SmE e e eme— S ke WRGR e Sm M Gmeme S - ——

CVT.IE, CVT.EI, CVT.ES, FxxX.80

y F | 0 |OP2} X | ¥ | 2,

TRUE)

ELXSI MACHINE INSTRUCTION DESCRIPTORS

APPENDIX E: ELXSI MACHINE INSTRUCTION DESCRIPTORS

[M]

Rspec

Rn

[Rn]

OPOC

OPl

OP2

The effective address of an operand.
The contents of memory location M.

Register specifiers reside in the fields tabled below for
appropriate instructions.

| nibble 2 ;3,4 ,5,6, 17,
I-—- T—— _-_l—-—l——_I_——I—_—l——-l_——I
, register , w | X ,¥Y , 2, t v,

The contents of register Rn, where n = 0 to 15.
The contents of register Rn points to a memory location.

The replace descriptor (e.g., [M] {- RX means "the contents of
the memory location pointed at by M is replaced by the
contents of Rx").

The nibble in the instruction which normally specifies
register RX is interpreted as an immediate operand.

Register to register instruction.
Register to memory or memory to register instruction.

In Short Op form, this represents nibble 2 as register Rw.
Example: m3xX, where m is the addressing mode.

Refers to the lst nibble in the instruction. (nibble 0), For
generalized and short opcode instructions, this represents the
addressing mode.

Refers to the 1st nibble in the instruction (nibble 0), which
for non-generalized instructions is the first opcode
specifier.

Refers to the 2nd nibble in the instruction (nibble 1), which
is OPcode specifier 1.

Refers to the 3rd nibble in the instruction (nibble 2), which
is OPcode specifier 2.

Represents an expression which can be evaluated by the
assembler and results in an integer value. If an "=" preceeds
the "e", then the expression is used as an immediate operand.

{3

(]

ELXSI MACHINE INSTRUCTION DESCRIPTORS

These delimiters, which may follow an expression, enclose a
value that indicates the bit-size of the field which will hold
the integer result of the expression. For example, =0{12}
would force the usage of the 12-bit immediate mode, while
=0{32} would force the 32-bit immediate mode. If this
specification is not present, the assembler will use either
the 12- or 32-bit mode, depending on the magnitude of the
value of the expression.

When enclosing a register specification, indicates that the
contents of the register are to be used as the address of the
operand, rather than as the operand itself. If used without a
register specification, the stack pointer (RF) is assumed.
This is the manner in which modes 8 and 9 are forced.

The comma is used to separate operands. Values appearing next
to each other in a single operand, if allowed, are summed
together to generate the effective address of the operand.
Thus, "[R3]1500" would be interpreted as "add 1500 to the
contents of register 3 and use this as the effective address
of the operand". "[RA]J[R6]10" would be interpreted as "add 10
to the sum of the contents of register 10 plus the contents of
register 6, and use this as the effective address of the
operand".

[opl:<{s:1> The effective operand is the bit string in the operand

starting at st and of length len.

INDEX

Index

absolute timer, 15-5
ADD,

definition, 6-4

reference, 6-1
ADDI, definition, 6-4
address calculations, 4-5

overflow, 4-5
address, data, 3-1
address evaluation, 4-5
address mode, 4-3

usage, 4-5
address space, 4-5
addressing mode interpretation, 4-2
addressing modes, discussion, 4-1
ADDUC, definition, 6-4
AND, definition, 9-1
appendage, 10-1
architecture, 2-1
arithmetic, multiple precision, 6-2
Arithmetic Shift instructions, 6-12
array indexing, 9-4
ASCII Arithmetic Instructions, 8-1
ASCII.ADD, definition, 8-4
ASCII.ADDC, definition, 8-4
ASCII.SUB, definition, 8-5
ASCII.SUBC, definition, 8-5
assembler notation, E-1
assembler register definitions, 4-4
ATT.FUN.TO.CHAN, description, 14-6

battery powered clock, 15-5
binary point, 3-1
BIQ-pair, 13-6
bit numbering, 3-1
boolean operations, 9-1
BR.ABS, definition, 12-1
BR.BACKWARD, definition, 12-2
BR.B.<{cond)>.SH.REL, definition, 12-3
BR.<{cond).ABS, definition, 12-3
BR.<{cond)>.REL, definition, 12-3
BR.F.<{cond)>.SH.REL, definition, 12-4
BR.FORWARD, definition, 12-2
BR.REG, definition, 12-5
BR.REL, definition, 11-2
BREAKPOINT,
definition, 12-8
entry environment, 2-8
breakpoints, discussion, 2-8
BXIT,
definition, 12-10
single stepping enabled, entry environment, 2-8
usage, 2-10

Index - 1

INDEX

cache, 5-8
CALL, definition, 12-6
CALL.REG, definition, 12-7
carry bit, discussion, 6-2
chained subtraction, example, 6-3
channel ID, 13-22
channel mask, diagram, 14-3
channel priority, 13-25
channels, description, 13-25
character data, 3-13
character string, 3-13
CLEAR.BIT, definition, 9-2
CMP, definition, 10-5
CMPB.BR, definition, 10-11
CMPB.BR.CONST, definition, 10-12
CMP.BR, definition, 10-4
CMPB.TEST, definition, 10-12
CMPU, definition, 10-6
CMPU.BR, definition, 10-5
cold load, 15-5
communication paths, establishment, 13-5
communication security, 13-1
communication structure, 13-2
compare condition, 10-1
conditional control transfer, 12-1
copy link rights, 13-18
COPY.LINK,

definition, 14-13

reference, 14-16
CPU initialization, 15-5
CREATE.FUN, definition, 14-5
CREATE.LINK, definition, 14-5
CVT.AI, definition, 11-3
CVT.DE, definition, 11-4
CVT.DI, definition, 11-4
CVT.DS, definition, 11-4
CVT.ED, definition, 11-5
CVT.EI, definition, 11-5
CVT.ES, definition, 11-5
CVT.IA, definition, 11-3
CVT.ID, definition, 11~-7
CVT.IE, definition, 11-7
CVT.IS, definition, 11-7
CVT.SD, definition, 11-8
CVT.SE, definition, 11-8
CVT.SI, definition, 11-8

Data Conversion instructions, 11-1
data representations, 3-1

Data Transfer instructions, 5-1
Debugger, entry environment, 2-8
DEL.FUN, definition, 14-9
DEL.LINK, definition, 14-7

Index -

INDEX

DEL.MSG, definition, 14-28
denormalized number, 3-6
descriptors, E-1

DISABLE.CHAN.INT, definition, 14-30
DISABLE.FUN, definition, 14-29
DISMISS, reference, 14-20

DIV, definition, 6-5

DIVR, definition, 6-5

Double, Floating Point, 3-4

effective address, 4-5, E-2
ENABLE.CHAN.INT, definition, 14-31
ENABLE.FUN, definition, 14-29
EXCEPTION, definition, 12-9
exception, 10-3

FP Divide by Zero, 3-9

FP Inexact Result, 3-10

FP Invalid Operation, 3-10

FP Overflow, 3-9

FP Underflow, 3-9
exception enable default, 2-4
exception flag bits, 2-2
exception handler, 10-4
exception handler enable bits, 2-2
EXCH, definition, 5-8
EXCH.AND, definition, 5-8
EXCH.LINK.FORWARD, definition, 14-26
EXCH.OR, definition, 5-8
EXIT, definition, 12-7
expression evaluation, assembler; E-1
Extended Double, Floating Point, 3-5
EXTRACT,

definition, 5-5

reference, 5-7, 9-4

usage, 6-12
EXTRACTZ, definition, 5-5

FADD, definition, 7-1

FADD result matrix, 7-2
FCMP, definition, 10-10

FCMP result matrix, 10-9
FCMP.BR, definition, 10-6, 10-8
FCMP.BR result matrix, 10-9
FCMPX, definition, 10-10
FCMPX result matrix, 10-9
FCMPX.BR, definition, 10-8
FCMPX.BR result matrix, 10-9
FDIV, definition, 7-4

FDIV result matrix, 7-5
FDIVR, definition, 7-4

FDIVR result matrix, 7-5
FIND.FIRST, definition, 9-3
FINP, definition, 11-9

FINP result matrix, 11-9

Index -

INDEX

Floating Point instructions, 7-1
Flow of Control instructions, 12-1
FMUL, definition, 7-5
FMUL result matrix, 7-6
FORTRAN, 6-9
FORWARD.MSG, definition, 14-25
FP Divide by Zero exception, 3-9
FP Invalid Operation exception, 3-10
FP Overflow exception, 3-9
FP Underflow exception, 3-9
FREM, definition, 7-7
FREM result matrix, 7-8
FSQR, definition, 7-9
FSOR result matrix, 7-9
FSUB, definition, 7-10
FSUB result matrix, 7-2
FSUBR, definition, 7-10
FSUBR result matrix, 7-2
funnel entries, 13-21
funnel ID, 13-17
funnels,
general description, 13-21
maximum number of, 13-21

generalized address mode, instruction format, 4-5
generalized addressing mode, description, 4-2
GPR (general purpose register), 2-1

hidden bit, floating point, 3-2

IEEE Floating Point Standard, 7-1
immediate mode, 12-pbit, E-2
immediate mode, 32-bit, E-2
immediate operand, assembler, E~1
inexact result exception, 3-10
infinity symbol, 3-6
information hiding, 13-1
INSERT,

definition, 5-6

reference, 5-6, 9-4

usage, 6-12)
instruction format, discussion, 4-1
instruction set composition, 4-1
instruction size, 4-6
integer, 3-10
Integer instructions, 6-1
inter-process communications, 13-1
interrupt masking, 13-25
interrupt vectors, 13-23
interrupts, 2-8

discussion, 2-8

on channels, 13-5
Invalid Operation exception, 3-10

Index - 4

INDEX

IXIT,
definition, 12-10
usage, 2-11

LD, definition, 5-2
LDZ, definition, 5-2
link, data structure, 13-17
link code, 13-19
link creator, 13-19
link grail, 13-19
link holder, 13-1S
link rights, 13-17
link table, 13-16, 14-16, 14-23
links, 13-16
general description, 13-16
maximum number of, 13-16
local process priority, 13-5
logical data, 3-12
Logical instructions, 9-1
logical operations, 9-1
Logical Shift instructions, 9-4

m, E-1
MEMORY.MAN, definition, 15-1
message blocks, 13-9
message count, 13-22
message data length, 13-9
message rights, 13-18
Message System instructions, 14-1
messages, 13-1 :
general format, 13-9
simple, 13-9
small, 13-9
to hardware, 13-9
mode 0O, usage, 4-6
mode 1, usage, 4-6
mode 3, usage, 4-6
mode 4, usage, 4-7
mode 5, usage, 4-7
mode 6, usage, 4-7
mode 7, usage, 4-7
mode 8, E-2
usage, 4-8
mode 9, E-2
usage, 4-8
mode A, usage, 4-8
mode B, usage, 4-8
mode C, usage, 4-9
mode D, usage, 4-9
mode E, usage, 4-9
mode F, usage, 4-9
MODIFY.PME, definition, 15-2
MUL, definition, 6-6
MUL.64, reference, 6-1

Index -

INDEX

MUL.128,
definition, 6-7
reference, 6-1
MULU.128, definition, 6-7
mutual exclusion, 5-8
Mutual Exclusion instructions, 5-8

Namespace Manager, 13-5
NaN, 3-6

NEG, definition, 6-8
non-generalized addressing mode, description, 4-2
NOP, definition, 15-3
normalized number, 3-6
NOT, definition, 9-1
Not-a-Number symbol, 3-6
notation, E-1
notification rights, 13-17
numeric string, 3-14

OPO, 4-3

OP1, 4-3

operating system, 1-1
OR, definition, 9-1
overflow, integer, 6-1

page map levels, 2-22
parameter block, 13-12
PASS.LINK, definition, 14-16
PC relative, 10-3
privileged mode, 13-2
procedural control transfer, 12-1
Procedural Control Transfer instructions, 12-5
procedure call, discussion, 2-4
process environment, 1-1
process ID, 13-18
security, 13-2
Process Status Word, 2-1
process substitution, 13-1
PSW, 15-6
reference, 15-6
usage, 6-2

RCV, definition, 14-18

RCV.CHAN, definition, 14-20
RCV.LINK, definition, 14-22
RCV.LINK.ON.CHAN, definition, 14-24
READ.CPU.TIMER, definition, 15-4
READ.FTE, definition, 14-34
READ.LTE, definition, 14-35
READ.MACH.ID, definition, 15-4
READ.PME, definition, 15-5
READ.REAL.TIMER, definition, 15-5
READ.STAT, definition, 15-6

Real Time Clock, 15-5

Index -~ 6

INDEX

.

receive control information, 13-12, 13-13
register loads with non-fullword operands, 5-2
register to register stores, 5-2

Relational Test instructions, 10-1

REM, definition, 6-9

REMR, definition, 6-9

restricting creation of communication paths, 13-1
result matrix, 7-2, 11-9

RM, 3-7

RN, 3-7

ROL, definition, 9-3

ROR, definition, 9-3

round to nearest even, 3-7

round to zero, 3-7

round toward minus infinity, 3-7

round toward positive infinity, 3-7

RP, 3-7

RZ, 3-7

SEND, definition, 14-10
SEND, reference, l4-14
SEND.SMALL.MSG, definition, 14-12
SEND.TO.HARDWARE, definition, 14-12
Service Processor, 15-5
SET.BIT, definition, 9-2
SET.FUN.INT.VECTOR, definition, 14-32
SET.LOCAL.PRI, definition, 14-33
SET.LOCAL.PRIORITY, usage, 2-11
shift distances, 6-12
short opcode addressing mode, description, 4-2
short opcode mode, instruction format, 4-5
significand, floating point, 3-2
simple control structures, 12-1
simple control transfer, 12-1
sLA,

definition, 6-13

reference, 9-4
SLL,

definition, 9-4

reference, 6-13
SLL1l1, definition, 9-5
SLL2, definition, 9-5
SLL3, definition, 9-5
SLR, definition, S-4
special handling control transfers, 12-1, 12-8
SRA, definition, 6-13
ST, definition, 5-3
status codes, 14-2
STI, definition, 5-4
STIN, definition, 5-4
storage requirements, Double Extended, 3-3
string, 3-14

Index -~ 7

INDEX

STV,
definition, 5-3
reference, 6-1
SUB, definition, 6~10
SUBI, definition, 6-12
SUBR, definition, 6-10
SUBUC, definition, 6-11
SUBUCR, definition, 6~11

TOGGLE.BIT, definition, 9-2
version ID, 13-18
WRITE.STAT, definition, 15-6
XOR, definition, 9-1

zero, 3-6

Index -

System Architecture READER'S COMMENTS

ELXSI relies on your observations, comments, and suggestions to ensure
the accuracy, readability, and usefulness of its documentation. Please
use specific page and paragraph references when appropriate.

What is your overall impression of this manual? Please consider such
aspects as accuracy, organization, and writing style.

Does this manual meet your requirements?

What did you find most useful?

How could it be improved?

Please cite any technical errors you have found in this manual.

Name Street

Title City

Department State/Country
drganization Zip

Please return this form to:
ELXSI .
Technical Publications
2334 Lundy Place

San Jose, CA 95131

