
Systems Reference Library

IBM System/360 Principles of Operation

This manual is a comprehensive presentation of the
characteristics, functions, and features of the IBM Sys­
tem/360. The material is prescnted in a direct manner,
assuming that the reader has a basic knowledge of
IBM data processing systems and has read the IBM

System/360 Systems Summary, Form A22-6810. The
manual is useful for individual study, as an instruction
aid, and as a machine reference manual.

The manual defines System/360 operating princi­
ples, central processing unit, instructions, system con­
trol panel, branching, status switching, interruption
system, and input/output operations.

Descriptions of specific input/output devices used
with System/360 appear in separate publications.
Also, details unique to each model of the System/360
appear in separate publications.

Form A22-6821-0
File No. S360-01

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Customer Manuals, Dept. 898, PO Box 390, Poughkeepsie, N. Y. 12602

IBM System/360
General-Purpose Design
Compatibility
System Program
System Alerts
Multisystem Operation
Input/Output
Technology

System Structure
Main Storage

Information Formats

~1~;~!~~;n p~~iti~'~i~g"::
Central Processing Unit

General Registers
Floating-Point Registers

Arithmetic and Logical Unit
Fixed-Point Arithmetic
Decimal Arithmetic
Floating Point Arithmetic
Logical Operations

Program Execution
Instruction Format
Address Generation
Sequential Instruction Execution
Branching
Program Status Word
Interruption

Protection Feature
Timer Feature
Direct Control Feature
Multisystem Feature
Input/Output

Input/Output Devices and Control Units
Input/Output Interface
Channels
Input/Output Instructions
Input/Output Operation Initiation
Input/Output Commands
Input/Output Termination
Input/Output Interruptions

System Control Panel
System Control Panel Functions ~
Operation Control Section
Operation Intervention Section
Customer Engineering Section

Fixed-Point Arithmetic
Data Format
Number Representation
Condi~ion Code
Instruction Format
Instructions

Load
Load Halfword
Load and Test
Load Complement
Load Positive
Load Negative
Load Multiple
Add
Add Halfword
Add Logical
Subtract
Subtract Halfword
Subtract Logical

g~~~:~: H~if~~~d"'::
Multiply
Multiply Halfword
Divide
Convert to Binary
Convert to Decimal " ,
Store .. .
Store Halfword .. .
Store Multiple .. .
Shift Left Single .. .
Shift Right Single
Shift Left Double
Shift Right Double

Fixed-Point Arithmetic Exceptions , .. , ,

5
5
5
5
6
6
6
6

7
7
7
8
8
8
9
9
9

10
10
11
11
12
12
13
15
15
15
16
18
18
18
18
19
19
19
19
19
20
20
21
21
21
21
22
22
22

23
23
23
24
24
25
25
25
25
26
26
26
26
27
27
27
28
28
28
29
29
29
30
30
30
31
31
31
31
32
32
32
33
33

Contents

Decimal Arithmetic .. 34
Data Format . ' '.... 34
Number Representation 34
Condition Code , ,... 35

Instruction Format 35
Instructions , '... 35

Add Decimal ...•........................ 35
Subtract Decimal 36
Zero and Add .. 36
Compare Decimal '.............................. 37
Multiply Decimal '.. 37
Divide Decimal ,.. 37
Pack '.. 38
Unpack ... 38
Move with Offset 38

Decimal Arithmetic Exceptions ... 39

Floating-Point Arithmetic 40
Data Format .. 40
Number Representation .. 40
Normalization .. 41
Condition Code ... 41
Instruction Format ... 41
Instructions ,.. 42

Load ,... 43
Load and Test .. 43
Load Complement .. 43
Load Positive .. 43
Load Negative .. 44
Add Normalized 44
Add U nnormalized 45
Subtract Normalized ... 45
Subtract Unnormalized ... 46
Compare .. 46
IIalve 47
Multiply .. 47
Divide 48
Store 49

Floating-Point Arithmetic Exceptions 49

Logical Operations 50
Data Format 50
Condition Code 51
Instruction Format .. 51
Instructions " ... '" 52

Move , .. 52
Move Numerics .. 53
Move Zones .. 53
Compare Logical .. 53
AND .. 54
OR .. 54
Exclusive OR .. 55
Test Under Mask. ... 55
Insert Character '" 55
Store Character 55
Load Address 56
Translate 56
Translate and Test 56
Edit 57
Edit and Mark 58
Shift Left Single " , .. , .. , .. 59
Shift Right Single 59
Shift Left Double ... 59
Shift Right Double 60

Logical Operation Exceptions .. 60

Branching , ,... 61
Normal Sequential Operation 61

Sequential Operation Exceptions 62
Decision-Making 62
Instruction Formats 62
Branching Instructions 63

Branch On Condition ... 63
Branch and Link 64
Branch On Count 64
Branch On Index High ' 64
Branch On Index Low or Equal 65
Execute 65

Branching Exceptions 65

Status-Switching
Program States

Problem State , ,
Wait State
Masked States
Stopped State

Storage Protection .. .
Area Identification .. .
Protection Action '"
Locations Protected

Program Status Word
Multisystem Operation

Direct Address Relocation
Malfunction Indication
System Initialization .. .

Instruction Format , .. .
Instructions ,

Load PS"V " ,
Set Program Mask
Set System Mask
Supervisor Call ... _
Set Storage Key .. .
Insert Storage Key
Write Direct ,
Read Direct
Diagnose .. .

Status-Switching Exceptions

Interruptions
Interruption Action

Instruction Execution "
Source Identification .. .
Location Determination

Input/Output Interruption .
Program Interruption

Operation Exception _...........
Privileged-Operation Exception ... _ _
Execute Exception
Protection Exception
Addressing Exception _ _
Specifica tion Exception
Data Exception .. .
Fixed-Point-Overflow Exception . _
Fixed-Po:int-Divide Exception
Decimal-Overflow Exception
Decimal-Divide Exception
Exponent-Overflow Exception
Exponent-Underflow Exception
Significance Exception
Floating-Point-Divide Exception

Supervisor-Call Interruption
External Interruption

Timer .. .
Interrupt Key
External Signal .. .

Priority of Interruptions
Interruption Exceptions .. .

Input/Output Operations
Attachment of Input/Output Devices

Input/Output Devices
Control Units .. .
Channels
System Operation
Compatibility of Operation

Control of Input/Output Devices
Input/Output Device Addressing
Instruction Exception Handling
States of the Input/Output System
Resetting of the Input/Output System
Condition Code
Instruction Format.
Instructions
~rtVO
Test VO
Halt VO
Test Channel

Execution of Input/Output Operations

67
67
67
67
68
68
69
69
69
69
69
70
70
71
71
71
71
72
72
72
72
73
73
73
74
74
74

76
76
77
77
77
78
78
78
78
78
78
78
79
79
79
79
79
79
79
79
79
79
79
80
80
80
81
81
82

83
83
83
83
84
85
86
87
87
88
88
90
90
92
92
92
93
94
95
96

~~~:~~y X~d~:s~a w ~~~i':::::::::::::::::::::::::::::::::::::::::::::::::::::: 
Channel Command Word ................................................. . 
Command Code ................................................................. . 
Definition of Storage Area ................................................. . 
Chaining .. .. .......................................................... . 
Skipping ........................................................................... . 
Program-Controlled Interruption ..................................... . 
Commands ................................................................... . 

Termination of Input/Output Operations ................ . 
Types of Termination ..................................................... . 
Input/Output Interruptions ............................................. . 
Channel Status Word ....................................................... . 
Unit Status Conditions .................................................... .. 
Channel Status Conditions .............................................. . 
Content of Channel Status Word .................................... .. 

System Control Panel ............................ ....................... . 
System Control Functions .................................................. . 

System Reset ..................................................................... . 
Store and Display ............................................................... . 
Initial Program Loading ................................................. . 

Operator Control Section ........ .. .................... . 
Emergency Pull Switch ................................................... . 
Power-On Key ............................................................ . 
Power-Off Key ........ . ........................................ . 
Interrupt Key ............................................................. . 
Wait Light ................................................. . 
Manual Light .............................................................. . 
System Light .................................................................... . 
Test Light ............................................................. . 
Load Light .......................................................... . 
Load-Unit Switches ............................................ . 
Load Key ....................................... . 
Prefix-Select Key Switch .................... . 

Operator Intervention Section ...................... . 
System-Reset Key ................................................. .. 
Stop Key ........................................................ . 
Rate Switch .................. . ....................................... . 
Start Key............... .. ....................................... . 
Storage-Select Switch ................................................... . 
Address Switches ..................................................... . 
Data Switches ............................................................ . 
Store Key .............................................................. . 
Display Key .................................................................... . 
Set IC Key .................................................................... . 
Address-Compare Switches .................................. . 
Alternate-Prefix Light .......................................... .. 

Customer Engineering Section ............................................. . 

96 
96 
96 
97 
97 
98 

100 
100 
101 
104 
104 
105 
108 
109 
112 
114 

117 
117 
117 
117 
118 
118 
119 
119 
119 
119 
119 
119 
119 
119 
119 
119 
120 
120 
120 
120 
120 
120 
120 
121 
121 
121 
121 
121 
121 
121 
121 
121 

Appendix ..... ...................... ............................................... 122 
A. Instruction Use Examples .. ............................................ 122 

Assembly Language Examples ... .................................... 128 
B. Fixed-Point and Two's Complement Notation ........... 132 
C. Floating-Point Arithmetic ................................................. 133 
D. Powers of Two Table ......... .. .............................. 135 
E. Hexadecimal-Decimal Conversion Table ...... 136 
F. EBCDIC and ASCII (Extended) Charts ...................... 141 
C. Instructions . .................. .. .. ...................... .......... 142 

Data Formats 142 
Hexadecimal Representation ........ ........................ 142 
Instructions by Format Type ................ 142 
Control Word Formats .................................... 144 
Operation Codes ........ .... ........... .. ............................. 145 
Permanent Storage Assignment .. ........................... 147 
Condition Code Setting .... ....................... 147 
Interruption Action ... ... ...................... 148 
Instruction Length Recording .................. 148 
Program Interruptions ... . ..................... 148 
Editing ..... . ....... ................. ........ . 153 
System Control Panel ......... ................................ 153 
Input/Output Operations ... ........... ............. .................. 153 
Time and Method of Creating and Storing Status 

Indications .. '" ........ . ..................................................... 155 
Functions That May Differ Among Models ........... ........ 156 
Alphabetic List of Instructions .. .............. ....... 159 
List of Instructions by Set and Feature ...... 160 
Index of Instruction Formats by Mnemonic 162 



The IBM System/360 is a solid-state, program com­
patible, data processing system providing the speed, 
precision, and data manipulating versatility demand­
ed by the challenge of commerce, science, and in­
dustry. System/360, with advanced logical design im­
plemented by microminiature technology, provides a 
new dimension of performance, flexibility, and relia­
bility. This dimension makes possible a new, more 
efficient systems approach to all areas of information 
processing, with economy of implementation and ease 
of use. System/360 is a single, coordinated set of new 
data processing components intended to replace the 
old logical structure with an advanced creative de­
sign for present and future application. 

The logical design of System/360 permits efficient 
use at several levels of performance with the preser­
vation of upward and downward program compati­
bility. Extremely high performance and reliability re­
quirements are met by combining several models into 
one multisystem using the multisystem feature. 

General-Purpose Design 
System/360 is a general-purpose system designed to 
be tailored for commercial, scientific, communications, 
or control applications. A Standard instruction set pro­
vides the basic computing function of the system .. To 
this set a decimal feature may be added to provide a 
Commercial instruction set or a floating-point feature 
may be added to provide a Scientific instruction set. 
When the storage protection feature is added to the 
commercial and scientific features, a Universal set is 
obtained. Direct control and timer features may be 
added to satisfy requirements for TELE-PROCESSINC@ 

systems to allow load-sharing or to satisfy real-time 
needs. 

System/360 can accommodate large quantities of 
addressable storage. The markedly increased capaci­
ties over other present storage is provided by the 
combined use of high-speed storage of medium size 
and large-capacity storage of medium speed. Thus, 
the requirements for both performance and size are 
satisfied in one system by incorporating a heirarchy 
of storage units. The design also anticipates future 
development of even greater storage capacities. Sys­
tem/360 incorporates a standard method for attaching 
input/output devices differing in function, data rate, 

IBM System/360 

and access time. An individual System/360 is obtained 
by selecting the system components most suited to the 
applications from a wide variety of alternatives in in­
ternal performance, functional ability, and input/out­
put (I/O). 

Models of System/360 differ in storage speed, width 
(the amount of data obtained in each instruction ac­
cess), register width, and capability of simultaneous 
processing. Yet these differences do not affect the logi­
cal appearance of System/360 to the programmer. 
Several cpu's permit a wide choice in internal per­
formance. The range is such that the ratio of internal 
performances between the largest and the smallest 
model is approximately 50 for scientific computation 
and 15 for commercial processing. 

Compatibility 
All models of System/360 are upward and downward 
program compatible, that is, any program gives identi­
cal results on any model. Compatibility allows for 
ease in systems growth, convenience in systems back­
up, and simplicity in education. 

The compatibility rule has three limitations. 
1. The systems facilities used by a program should 

be the same in each case. Thus, the optional CPU fea­
tures and the storage capacity, as well as the quantity, 
type, and priority of I/O equipment, should be equiva­
lent. 

2. The program should be independent of the re­
lation of instruction execution times and of I/O data 
rates, access times, and command execution times. 

3. The compatibility rule does not apply to detail 
functions for which neither frequency of occurrence 
nor usefulness of result warrants identical action in 
all models. These functions, all explicitly identified in 
this manual, are concerned with the handling of in­
valid programs and machine malfunctions. 

System Program 
Interplay of equipment and program is an essential 
consideration in System/360. The system is designed 
to operate with a supervisory program that coordi­
nates and executes all I/O instructions, handles excep­
tional conditions, and supervises scheduling and exe­
cution of multiple programs. System/360 provides for 

IBM System/360 5 



efficient switching from one program to another, as 
well as for the relocation of programs in storage. To 
the prob1em programmer, the supervisory program 
and the equipment are indistinguishable. 

System Alerts 
The interruption system permits the CPU automatically 
to change state as a result of conditions arising out­
side of the system, in 1/0 units, or in the CPU itself. 
Interruption switches the CPU from one program to 
another by changing not only the instruction address 
but all essential machine-status information. 

A storage protection feature permits one program to 
be preserved when another program erroneously at­
tempts to store information in the area assigned to 
the first program. Protection does not cause any loss 
of performance. Storage operations initiated from the 
CPU, as well as those initiated from a channel, are sub­
ject to the protection procedure. 

Programs are checked for correct instructions and 
data as they are executed. This policing-action identi­
fies and separates program errors and machine errors. 
Thus, program errors cannot create machine checks 
since each type of error causes a unique interruption. 
In addition to an interruption due to machine mal­
function, the information necessary to identify the 
error is recorded automatically in a predetermined 
storage location. This procedure appreciably reduces 
the mean-time to repair a machine fault. Moreover, 
operator errors are reduced by minimizing the active 
manual controls. To reduce accidental operator errors, 
operator consoles are 110 devices and function under 
control of the system program. 

Multisystem Operation 
Several models of System/360 can be combined into 
one multisystem configuration. Three levels of com­
munication between CPu's are available. Largest in ca­
pacity, and moderately fast in response, is communi­
cations by means of shared 1/0 device, for example, 

6 

a disk file. Faster transmission is obtained by direct 
connection between the channels of two individual 
systems. Finally, storage may be shared on some 
models between two cpu's, making information ex­
change possible at storage speeds. These modes of 
communication are supplemented by allowing one CPU 
to be interrupted by another CPU and by making direct 
status information available from one CPU to another. 

Input/Output 
Channels provide the data path and control for 1/0 

devices as they communicate with the CPU. In general, 
channels operate asynchronously with the CPU and, in 
some cases, a single data path is made up of several 
sub channels. When this is the case, the single data 
path is shared by several low-speed devices, for ex­
ample, card readers, punches, printers, and terminals. 
This channel is called a multiplexor channel. Chan­
nels that are not made up of several such subchannels 
can operate at higher speed than the multiplexor 
channels and are called selector channels. In every 
case, the amount of data that comes into the channel 
in parallel from an 110 device is a byte. All channels 
or subchannels operate the same and respond to the 
same 110 instructions and commands. 

Each 110 device is connected to one or more chan­
nels by an 110 interface. This 110 interface allows at­
tachment of present and future 110 devices without 
altering the instruction set or channel function. Con­
trol units are used where necessary to match the in­
ternal connections of the 110 device to the interface. 
Flexibility is enhanced by optional access to a control 
unit or dcvice from either of two channels. 

Technology 
System/360 employs solid-logic integrated compo­
nents, which in themselves provide advanced equip­
ment reliability. These components are also faster and 
smaller than previous components and lend them­
selves to automated fabrication. 



The basic structure of a System/360 consists of main 
storage, a central processing unit (cPu), the selector 
and multiplexor channels, and the input! output de­
vices attached to the channels through control units. 
It is possible for systems to communicate with each 
other by means of shared I/O devices, a channel, or 
shared storage. Figure 1 shows the basic organization 
of a single system. 

Main Storage 
Storage units may be either physically integrated with 
the CPU or constructed as stand-alone units. The stor­
age cycle is not directly related to the internal cycling 
of the CPU, thus permitting selection of optimum stor­
age speed for a given word size. The physical differ­
ences in the various main-storage units do not affect 
the logical structure of the system. 

Fetching and storing of data by the CPU are not af­
fected by any concurrent I/O data transfer. If an I/O 

operation refers to the same storage location as the 
CPU operation, the accesses are granted in the se­
quence in which they are requested. If the first refer­
ence changes the contents of the location, any sub­
sequent storage fetches obtain the new contents. Con­
current I/O and CPU references to the same storage 
location never cause a machine-check indication. 

Main 
Storage 

-
Control '--

System Structure 

Information Formats 

The system transmits information between main stor­
age and the CPU in units of eight bits, or a multiple 
of eight bits at a time. An eight-bit unit of information 
is called a byte, the basic building block of all formats. 
A ninth bit, the parity or check bit, is transmitted 
with each byte and carries parity on the bytes. The 
parity bit cannot be affected by the program; its only 
effect is to cause an interruption when a parity error 
is detected. References to the size of data fields and 
registers, therefore, exclude the associated parity bits. 
All storage capacities are expressed in number of bytes 
provided, regardless of the physical word size actually 
used. 

Bytes may be handled separately or grouped to­
gether in fields. A halfword is a group of two consecu­
tive bytes and is the basic building block of instruc­
tions. A word is a group of four consecutive bytes; a 
double word is a field consisting of two words (Figure 
2). The location of any field or group of bytes is spe­
cified by the address of its leftmost byte. 

The length of fields is either implied by the oper­
ation to be performed or stated explicitly as part of 
the instruction. When the length is implied, the in­
formation is said to have a fixed length, which can be 
either one, two, four, or eight bytes. 

When the length of a field is not implied by the 

Input/ 

I 1 - Output c Unit c f---t - Device ....c: 
U 

f-----t 
c--

.... 
~ f---i Q) 

1 f-----t 
""5 f---i 
::E f----i 

Central 
Processing t-

Input/ 
Unit Control t--

I-- Output 
f------\ Unit t- Device W c f---t 

t--
C 
c f---t ....c: 

U 
--I .... 

.8 --I u 
Q) 

--I W 
Vl --I 

Figure 1. IBM System/360 Basic Logical Structure 

System Structure 7 



operation code, but is stated explicitly, the informa­
tion is said to have variable field length. Variable­
length operands are variable in length by increments 
of one byte. 

Within any program format or any fixed-length op­
erand format, the bits making up the format are con­
secutively numbered from left to right starting with 
the number O. 

Byte 

Halfword 

11 0 0 1 Jo 0 0 1 11 0 1 0 KO 0 1 01 
15 

Word 

11 0 0 011 0 0 111 0 0 0 BO 0 1 011 0 0 1'1> 1 0 011 1 1 ~ 0 1 11 
16 24 31 

Figure 2. Sample Information Formats 

Addressing 

Byte locations in storage are consecutively numbered 
starting with 0; each number is considered the ad­
dress of the corresponding byte. A group of bytes in 
storage is addressed by the leftmost byte of the group. 
The addressing capability permits a maximum of 
16,777,216 bytes, using a 24-bit binary address. This 
set of main-storage addresses includes some locations 
reserved for special purposes. 

Storage addressing wraps around from the maximum 
byte address, 16,777,215, to address O. Variable-length 
operands may be located partially in the last and par­
tially in the first location of storage, and are processed 
without any special indication. 

When only a part of the maximum storage capacity 
is available in a given installation, the available stor­
age is normally contiguously addressable, starting at 
address O. An addressing exception is recognized 
when any part of an operand is located beyond the 
maximum available capacity of an installation. 

In some models main storage may be shared by 
more than one CPU. In that case, the address of a byte 
location is normally the same for each CPU. 

Informatic)n Positioning 

Fixed-length fields, such as halfwords and double 
words, must be located in main storage on an integral 
boundary for that unit of information. A boundary is 
called integral for a unit of information when its stor-

8 

age address is a multiple of the length of the unit in 
bytes. For example, words (four bytes) must be lo­
cated in storage so that their address is a multiple of 
the number 4. A halfword (two bytes) must have an 
address that is a multiple of the number 2, and double 
words (eight bytes) must have an address that is a 
multiple of the number 8. 

Storage addresses are expressed in binary form. In 
binary, integral boundaries for halfwords, words, and 
double words can be specified only by the binary ad­
dresses in which one, two, or three of the low-order 
bits, respectively, are zero. (Figure 3). For example, 
the integral boundary for a word is a binary address 
in which the two low-order positions are zero. 

Varia ble fields are not limited to integral bounda­
ries' but may start on any byte location. 

Binary 0000 0001 0010 0011 0100 01Ql 0110 0111 1000 1001 1010 
Address 

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte 

Halfword Halfword Halfword Halfword Halfword , 
l 

Word Word Word 
-( 

Double-Word Double-Word 

Figure 3. Integral Boundaries for Halfwords, Words, and 
Doublewords 

Central Processing Unit 

) 

l 

The central processing unit (Figure 4) contains the 
facilities for addressing main storage, for fetching or 
storing information, for arithmetic and logical proc­
essing of data, for sequencing instructions in the de­
sired order, and for initiating the communication be­
tween storage and external devices. 

The system control section provides the normal CPU 

control that guides the CPU through the operation 
necessary to execute the instructions. While the 
physical make-up of the control section in the various 
models of the Systems/360 may be different, the 
logical function remains the same. 

The CPU provides 16 general registers for fixed-point 
operands and four floating-point registers for floating­
point operands. Implementation of these registers may 
be in active elements, in a local storage unit, or in a 
separate area of main storage. In each case, the ad­
dress and functions of these registers are identical. 

, 
l 



Storage Address 

r- -'- -lOll( 
I I 

Instructions 

I Co mputer I 
I Sys tem I 
I 

~ 

Co ntrol , ..... Indexed 
Address 

I I 
I I 
I I 
L_ __ .-J 

Fixed Point 
Operations 

MAIN STORAGE 

Variable 
Field Length 

Operations 

J 

Floating Point 
Operations 

4 

16 
General 
Registers 

I Floating Point Registers 

Figure 4. Central Processing Unit 

General Registers 

The CPU can address information in 16 general regis­
ters. The general registers can be used as index regis­
ters, in address arithmetic and indexing, and as ac­
cumulators in fixed-point arithmetic and logical oper­
ations. The registers have a capacity of one word (32 
bits). The general registers are identified by numbers 
0-15 and are selected by a four-bit field in the in­
struction called the R field (Figure 5). 

R Field Reg No. General Registers Floating Point Registers 

0000 0 !i±32 Bits. hi:"":.'::::"': 64 Bits :::':":::::::::::::::;1I!l:1 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 ....... ,,' .. ··· .. ·'·:1 

0111 7 
1000 8 
1001 9 
1010 10 
1011 11 
1100 12 
1101 13 
1110 14 
1111 15 

Figure 5. General and Floating-Point Registers 

For some operations, two adjacent registers can be 
coupled together, providing a two-word capacity. 
In these operations, the addressed register contains 
the high-order operand bits and must have an even 
address, while the implied register, containing the 
low-order operand bits, has the next higher address. 

Floating-Point Registers 

Four floating-point registers are available for floating­
point operations. These registers are two words (64 
bits) in length and can contain either a short (one 
word) or a long (two word) floating-point operand. 
A short operand occupies the high-order bits of a 
floating-point register. The low-order portion of the 
register is ignored and remains unchanged in short­
precision arithmetic. The floating-point registers are 
identified by the numbers 0, 2, 4, and 6 (Figure 5). 
The operation code determines which type of register 
is to be used in an operation. 

Arithmetic and Logical Unit 
The arithmetic and logical unit can process binary in­
tegers and floating-point fractions of fixed length, deci­
mal integers of variable length, and logical information 
of either fixed or variable length. Processing may be in 

System Structure 9 



parallel or in series; the width of the arithmetic unit, 
the multiplicity of the shifting paths, and the degree 
of simultaneity in performing the different types of 
arithmetic differ from one CPU to another without af­
fecting the logical appearance of the design. 

Arithmetic and logical operations performed by the 
CPU fall into four classes: fixed-point arithmetic, deci­
mal arithmetic, floating-point arithmetic, and logical 
operations. These classes differ in the data formats 
used, the registers involved, the operations provided, 
and the way the field length is stated. 

Fixed-Point Arithmetic 

The basic arithmetic operand is the 32-bit fixed-point 
binary word. Sixteen-bit halfword operands may be 
specified in most operations for improved performancc 
or storage utilization. See Figure 6. To preserve 
precision, some products and all dividends are 64 bits 
long. 

Integer 
o 1 15 

Integer 

o 1 31 

Figure 6. Fixed-Point Number Formats 

Because the 32-bit word size conveniently accom­
modates a 24-bit address, fixed-point arithmetic can 
be used both for integer operand arithmetic and for 
address arithmetic. This combined usage provides 
economy and permits the entire fixed-point instruction 
set and several logical operations to be used in ad­
dress computation. Thus, multiplication, shifting, and 
logical manipulation of address components are pos­
sible. 

The absence of recomplementation and the ease of 
extension and truncation make two's-complement no­
tation desirable for address components and fixed­
point operands. Since integer and addressing algorisms 
often require repeated reference to operands or inter­
mediate results, the use of multiple registers is advan­
tageous in arithmetic sequences and address calcula­
tions. 

Additions, subtractions, multiplications, divisions, 
and comparisons are performed upon one operand in 
a register and another operand either in a register or 
from storage. Multiple-precision operation is made 
convenient by the two's-complement notation and by 
recognition of the carry from one word to another. A 

10 

word in one register or a double word in a pair of 
adjacent registers may be shifted left or right. A pair 
of conversion instructions - CONVERT TO BINARY and 
CONVERT TO DECIMAL - provides transition between 
decimal and binary radix (number base) without the 
use of tables. Multiple-register loading and storing in­
structions facilitate subroutine switching. 

Decimal Arithmetic 

Decimal arithmetic is designed for processes requiring 
few computational steps between the source input 
and the documented output. This type of processing 
is frequently found in commercial applications, par­
ticularly when use is made of problem-oriented lan­
guages. Because of the limited number of arithmetic 
operations performed on each item of data, radix con­
version from decimal to binary and back to decimal 
is not justified, and the use of registers for intermedi­
ate results yields no advantage over storage-to-storage 
processing. Hence, decimal arithmetic is provided, 
and both operands and results are located in storage. 
Decimal arithmetic includes addition, subtraction, 
multiplication, division, and comparison. 

Decimal numbers are treated as signed integers with 
a variable-field-length format from one to 16" bytes 
long. Negative numbers are carried in true form. 

The decimal digits 0-9 are represented in the four­
bit binary-cod ed-decimal form by 0000-1001, respec­
tively. The codes 1010-1111 are not valid as digits and 
are reserved for sign codes; 1011 and 1101 represent 
a minus; the other four codes are interpreted as plus. 
The sign codes generated in decimal arithmetic de­
pend upon the character set preferred (Figure 7). 
When the expanded binary coded decimal interchange 
code (EBCDIC) is preferred, the codes are 1100 and 
1101. When the ASCII set, expanded to eight bits, is 
preferred, the codes are 1010 and 1011. The choice 
between the two code sets is determined by a mode 
bit. 

Decimal operands are represented by four-bit bin­
ary-coded-decimal digits packed two to a byte. They 
appear in fields of variable length and are accompa­
nied by a sign in the rightmost four bits of the low-

Digit Code Sign Code 

0 0000 + 1010 
1 0001 - 1011 
2 0010 + 1100 
3 0011 - 1101 
4 0100 + 1110 
5 0101 + 1111 
6 0110 
7 0111 
8 1000 
9 1001 

Pigure 7. Bit Codes for Digits and Signs 



order byte. Operand fields may be located on any 
byte boundary, and may have length up to 31 digits 
and sign. Operands participating in an operation have 
independent lengths. Packing of digits within a byte 
(Figure 8) and of variable-length fields within stor­
age results in efficient use of storage, in increased 
arithmetic performance, and in an improved rate of 
data transmission between storage and files. 

I Digit I Digit I Digit [~~ ~-J Digit I Digit I Digit I Digit I Sign I 

I Zone I Digit I Zone C-_- ~~] Digit I Zone I Digit I Sign I Digit I 

Figure 8. Packed and Zoned Decimal Number Formats 

Decimal numbers may also appear in a zoned for­
mat as a subset of the eight-bit alphameric character 
set (Figure 8). This representation is required for 
character-set sensitive I/O devices. The zoned format 
is not used in decimal arithmetic operations. Instruc­
tions are provided for packing and unpacking decimal 
numbers so that they may be changed from the zoned 
to the packed format and vice versa. 

Floating-Point Arithmetic 

Floating-point numbers occur in either of two fixed­
length formats - short or long. These formats differ 
only in the length of the fractions (Figure 9). 

Short Floating-Point Number 

IS I Characteristic I Fraction 
o I 7 8 31 

Long Floating-Point Number 

~IS~I_C_h_a_r_ac_t_e_ri_st_ic~I _________ F_ra_c_ti_o_n ______ ~~~~ ______ ~ 
o 1 78 63 

Figure 9. Short and Long Floating-Point Number Formats 

Operands are either 32 or 64 bits long. The short 
length, equivalent to seven decimal places of pre­
cision, permits a maximum number of operands to be 
placed in storage and gives the shortest execution 
times. The long length, used when higher precision is 
desired, gives up to 17 decimal places of precision, 
thus eliminating most requirements for double-pre­
cision arithmetic. 

The operand lengths, being powers of two, permit 
maximum efficiency in the use of binary addressing 
and in matching the phys,ical word sizes of storage. 
Floating-point arithmetic is designed to allow easy 
transition between the two formats. 

The fraction of a floating-point number is expressed 
in hexadecimal ( base 16) digits, each consisting of 
four binary bits and having the values 0-15. In the 
short format, the fraction consists of six hexadecimal 
digits occupying bits 8-31. In the long format the 
fraction has 14 hexadecimal digits occupying bits 8-63. 

The radix point of the fraction is assumed to be im­
mediately to the left of the high-order fraction digit. 
To provide the proper magnitude for the floating­
point number, the fraction is considered to be mul­
tiplied by a power of 16. The characteristic portion, 
bits 1-7 of both formats, is used to indicate this power. 
The characteristic is treated as an excess 64 number 
with a range from -64 through +63, and permits 
representation of decimal numbers with magnitudes 
in the range of 10-78 to 1075 • 

Bit position 0 in either format is the sign (S) of the 
fraction. The fraction of negative numbers is carried 
in true form. 

Four 64-bit floating-point registers are provided. 
Arithmetic operations are performed with one oper­
and in a register and another either in a .register or 
from storage. The result, developed in a register, is 
generally of the same length as the operands. The 
availability of several floating-point registers elimi­
nates much storing and loading of intermediate re­
sults. 

Logical Operations 

Logical information is handled as fixed-length and 
variable-length data. It is subject to such operations as 
comparison, translation, editing, bit testing, and bit 
setting. 

When used as a fixed-length operand, logical in­
formation can consist of either one, four, or eight 
bytes and is processed in the general registers. 

A large portion of logical information consists of 
alphabetic or numeric character codes, called alpha­
meric data, and is used for communication with char­
acter-set sensitive I/O devices. This information has 
the variable-field-Iength format and can consist of up 
to 256 bytes (Figure 10). It is processed in storage, 
left to right, an eight-bit byte at a time. 

The CPU can handle any eight-bit character set, al­
though certain restrictions are assumed in the decimal 
arithmetic and editing operations. However, all char­
acter-set sensitive I/O equipment will assume either 
the extended binary-coded-decimal interchange code 

System Structure 11 



Fixed Lengl'h Logical Information 

I Logical Data 

Variable-Length Logical Information 

I Character I Character I-~~ 
16 

~~] Character 

Figure 10. Fixed-Length and Variable-Length Logical 
Information 

31 

( EBCDIC) (Figure 11) or the American Standard Code 
for Information Interchange (ASCII) extcnded to eight 
bits (Figure 12). 

The preferred codes do not have a graphic defined 
for all 256 eight-bit codes. When it is desirable to rep­
resent all possible bit patterns, a hexadecimal repre­
sentation may be used instead of the preferred eight­
bit code. The hexadecimal representation uses one 
graphic for a four-bit code, and therefore, two graph­
ics for an eight-bit byte. The graphics 0-9 are used 
for codes 0000-1001; the graphics A-F are used for 
codes 1010-1111. 

Bit Positions -,----. .. 01 L U:-
2
-3--00------, 

4567 00 01 10 11 

~------01------~ 

00 01 10 11 

0000 NUL BLANK & -
0001 / 
0010 

0011 

0100 PF RES BYP PN 

0101 HT NL LF RS 

0110 LC .BS EOB UC 
-
0111 DEL IDL PRE EOT 

1000 
--

1001 , " 
1010 ? ! : 

1011 $ , # 

1100 4--- * % @ 

1101 ( ) ry-.. I 

1110 + ; - = 

1111 $ C7 + j 
-

Figure 11. Extended Binary-Coded-Decimal Interchange Code 

12 

Program Execution 
The CPU program consists of instructions, index words, 
and control words specifying the operations to be per­
formed. This information resides in main storage and 
general registers, and may be operated upon as data. 

Instruction Format 

The length of an instruction format can be one, two, 
or three halfwords. It is related to the number of stor­
age addresses necessary for the operation. An instruc­
tion consisting of only one halfword causes no refer­
ence to main storage. A two-halfword instruction pro­
vides one storage-address specification; a three-half­
word instruction provides two storage-address specifi­
cations. All instructions must be located in storage on 
integral boundaries for halfwords. Figure 13 shows 
five basic instruction formats. 

The five basic instruction formats are denoted by 
the format codes RR, RX, RS, SI, and ss. The format 
codes express, in general terms, the operation to be 
performed. RR denotes a register-to-register operation; 
RX, a register-to-indexed-storage operation; RS, a regis-

~------10---~ ~-----11----------, 

00 01 10 11 00 01 10 11 

> < :j: 0 

a i A J 1 

b k s B K S 2 

c I t C L T 3 

d m u D M U 4 

e n v E N V 5 

f 0 w F 0 W 6 

9 P x G P X 7 

h q y H Q Y 8 

i r z I R Z 9 
1----- _._---



Bit Positions ----•• 76 L I • X5 00------, 

4321 00 01 10 11 

01 

00 01 10 11 00 01 10 

..----10-------.1 '--1 ----11-------. 

11 00 01 10 11 
~-~-~-~----~ 

0000 NULL DCa 
b a blank (a) P 

0001 50M DC
1 

--- ,---- ----- - r----A- --- ---
Q a q 

0010 EOA DC
2 

0011 EOM DC
3 

2 

41= 3 
--

B R 

C 5 

b r 
I---+----t-------f --------

C S 

-- 1------+----+ ----~ 

0100 EOT DC4 
5TOP $ 4 D T d t 

0101 WRU ERR % 5 E U e u 
--- ---- ----- 1---- -- -- - f-------f----J-----j 

0110 RU 5YNC & 6 F V v 

0111 BELL LEM 
--,------ ----"- ~ ~---, 

7 
- f---

G W 
- --- - -- - -------

9 W 

1000 BK5P 50 

1001 HT 51 

8 

9 

H X 
--f-- -

I Y 
f-----

~--+--_+--T_-~ 

h x 
---- 1----:- -- ----

I Y 
- I-- -- -~ -----f-----, ~ 

1010 LF 52 J Z i z 
r------ ------+----__j ---

1011 VT 53 + K [ k 
r------r--+---~--__j 

1100 FF 54 ~ 

-~-- ----
L " --~ r--·--r---+--1--

1101 CR 55 M ::J m 

1110 50 56 N f 
r----- r- - -f- -- - ---

n E5C 
1--- r- -- ----1----I ----------

1111 51 57 / ? 0 4-- o DEL 

Figure 12. Eight-Bit Representation for American Standard Code for Information Interchange 
for Use in Eight-Bit Environment 

ter-to-storage operation; SI, a storage and immediate­
operand operation; and SS, a storage-to-storage oper­
ation. 

For purposes of describing the execution of instruc­
tions, operands are designated as first and second op­
erands and, in the case of BRANCH ON INDEX, third op­
erands. These names refer to the manner in which the 
operands participate. The operand to which a field in 
an instruction format applies is generally denoted by 
the number following the code name of the field, for 
example, Rl, Bl, L2, D 2 • 

In each format, the first instruction halfword con­
sists of two parts. The first byte contains the oper­
ation code (op code). The length and format of an 
instruction are specified by the first two bits of the 
operation code. 

INSTRUCTION LENGTH RECORDING 

BIT POSITIONS INSTRUCTION INSTRUCTION 

<0-1) LENGTH FORMAT 

00 One halfword RR 
01 Two halfwords RX 
10 Two halfwords RS or SI 
11 Three halfwords SS 

The second byte is used either as two 4-bit fields 
or as a single eight-bit field. This byte can contain the 
following information: 

Four-bit operand register specification Rb R2, or 
R3 ) 

Four-bit index register specification (X2 ) 

Four-bit mask (M1 ) 

Four-bit operand length specification (Ll or L2 ) 

Eight-bit operand length specification (L) 
Eight-bit byte of immediate data (12 ) 

In some instructions a four-bit field or the whole sec­
ond byte of the first halfword is ignored. 

The second and third halfwords always have the 
same format: 

Four-bit base register designator (Bl or B2 ), fol­
lowed by a 12-bit displacement (Dl or D2)' 

Address Generation 

For addressing purposes, operands can be grouped 
in three classes: explicitly addressed operands in main 
storage, immediate operands placed as part of the in-

System Structure 13 



L-____ F_ir_s.t __ H_aT�f_w_o_rd ______ -; ____ s_ec_o_n_d __ H_a_�f_W_O_rd ________ ~----Th-i_rd--H_a_lf~ 
r Byte' Byte 2 ~ 

I 
:0 
1 
I 
I 
I 

10 

I 
I 

Register Register 
Operand' Operand 2 
~ 

Op Code I R 1 I R2 I RR Format 
7 8 11 12 15 

1 

Register 
Operand' 
~ 

Op Code I R, I X, B2 

7 8 11 12 1516 
I 

I I 

Register Register 
Operand' Operand 3 

r---' ..---A-----y 

7 8 

I 
11 12 

Immediate 
Ope~and 

Op Code 12 

1516 
I 

78 1516 
I 1 
I I 

1920 

1920 

1920 

Address 
Operand 2 

" 

D2 
31 

Address 
Oper~ ___ _ 

Address 

Oper?nd 1 

31 

31 

1 
I 
I 

RX Format 

RS Format 

SI Format 

I Length I Address Address 

Op~ ____ ----O-p_e-ra~An-d--'------~~----__ O--p-e~r?-n-d-2------~ 
SS Format Op Code I L, I L2 I B, D, 

7 8 11 12 15 16 1920 ------.-31-'--------1----------------'47 

Figure 13. Five Basic Instruction Formats 

struction stream in main storage, and operands lo­
cated in the general or floating-point registers. 

To permit the ready relocation of program seg­
ments and to provide for the flexible specifications of 
input, output, and working areas, all instructions re­
ferring to main storage have been given the capacity 
of employing a full address. 

The address used to refer to main storage is gen­
erated from the following three binary numbers: 

Base Address (B) is a 24-bit number contained in a 
general register specified by the program in the B 
field of the instruction. The B field is included in 
every address specification. The base address can be 
used as a means of static relocation of programs and 
data. In array-type calculations, it can specify the lo­
cation of an array and, in record-type processing, it 
can identify the record. The base address provides for 
addressing the entire main storage. The base address 
may also be used for indexing purposes. 

Index (X) is a 24-bit number contained in a general 
register specified by the program in the X field of the 
instruction. It is included only in the address speci-

14 

fied by the RX instruction format. The index can be 
used to provide the address of an element within an 
array. Thus, the RX format instructions permit double 
indexing. 

Displacement (D) is a 12-bit number contained in 
the instruction format. It is included in every address 
computation. The displacement provides for relative 
addressing up to 4095 bytes beyond the element or 
base address. In array-type calculations the displace­
ment can be used to specify one of many items as­
sociated with an element. In the processing of records, 
the displacement can be used to identify items within 
a record. 

In forming the address, the base address and index 
are treated as unsigned 24-bit positive binary integers. 
The displacement is similarly treated as a 12-bit posi­
tive binary integer. The three are added as 24-bit 
binary numbers, ignoring overflow. Since every ad­
dress includes a base, the sum is always 24 bits long. 
The address bits are numbered 8-31 corresponding to 
the numbering of the base address and index bits in 
the general register. 



The program may have zeros in the base address, 
index, or displacement fields. A zero is used to indi­
cate the absence of the corresponding address com­
ponent. A base or index of zero implies that a zero 
quantity is to be used in forming the address, regard­
less of the contents of general register O. A displace­
ment of zero has no special significance. Initialization, 
modification, and testing of base addresses and in­
dexes can be carried out by fixed-point instructions, 
or by BRANCH AND LINK, BRANCH ON COUNT, or BRANCH 

ON INDEX instructions. 
As an aid in describing the logic of the instruction 

format, examples of two instructions and their related 
instruction formats follow. 

RR Format 

I Add 7 9 
o 78 1112 15 

Execution of the ADD instruction adds the contents of 
general register 9 to the contents of general register 
7 and the sum of the addition is placed in general 
register 7. 

RX Format 

Store 3 10 14 300 
7 8 11 1 2 15 16 1 9 20 31 

Execution of the STORE instruction stores the contents 
of general register 3 at a main-storage location ad­
dressed by the sum of 300 and the low-order 24 bits 
of general registers 14 and 10. 

Sequential Instruction Execution 

Normally, the operation of the CPU is controlled by 
instructions taken in sequence. An instruction is 
fetched from a location specified by the current in­
struction address. The instruction address is then in­
creased by the number of bytes in the instruction to 
address the next instruction in sequence. The instruc­
tion is then executed and the same steps are repeated 
using the new value of the instruction address. 

Conceptually, all halfwords of an instruction are 
fetched from storage after the preceding operation is 
completed and before execution of the current oper­
ation, even though physical storage word size and 
overlap of instruction execution with storage access 
may cause actual instruction fetching to be different. 
Thus, it is possible to modify an instruction in storage 
by the immediately preceding instruction. 

A change from sequential operation may be caused 
by branching, status switching, interruptions, or man­
ual intervention. 

Branching 

The normal sequence of instructions is changed when 
reference is made to a subroutine, when a two-way 
choice is encountered, or when a segment of coding, 
such as a loop, is to be repeated. All these tasks can 
be accomplished with branching instructions. 

Subroutine linkage permits not only the intro­
duction of a new instruction address but also the pres­
ervation of the return address and associated informa­
tion. 

Decision-making is generally and symmetrically 
provided by the BRANCH ON CONDITION instruction. 
This instruction inspects a two-bit condition code that 
reflects the result of a majority of the arithmetic, logi­
cal, and I/O operations. Each of these operations can 
set the code in anyone of four states, and the con­
ditional branch can specify any selection of these four 
states as the criterion for branching. For example, the 
condition code reflects such conditions as nonzero, 
first operand high, equal, overflow, channel busy, zero, 
etc. Once set, the condition code remains unchanged 
until modified by an instruction that reflects a dif­
ferent condition code. 

The two bits of the condition code provide for four 
possible condition code settings: 0, 1, 2, and 3. The 
specific meaning of any setting is significant only to 
the operation setting the condition code. 

Loop control can be performed by the conditional 
branch when it tests the outcome of address arith­
metic and counting operations. For some particularly 
frequent combinations of arithmetic and tests, the in­
structions BRANCH ON COUNT and BRANCH ON INDEX are 
provided. These branches, being specialized, provide 
increased performance for these tasks. 

Program Status Word 

A double word, the program status word (psw), con­
tains the information required for proper program 
execution. The psw includes the instruction address, 
condition code, and other fields to be discussed. In 
general, the psw is used to control instruction se­
quencing and to hold and indicate the status of the 
system in relation to the program being executed. The 
active or controlling psw is called the "current psw." 
By storing the current psw during an interruption, the 
status of the CPU can be preserved for subsequent in­
spection. By loading a new psw or part of a psw, the 
state of the CPU can be initialized or changed. Figure 
14 shows the psw format. 

System Structure 15 



0-7 System mask 
o Multiplexor channel mask 
1 Selector c:hannel 1 mask 
2 Selector c:hannel 2 mask 
3 Selector channel 3 mask 
4 Selector c:hannel 4 mask 
5 Selector c:hannel 5 mask 
6 Selector c:hannel 6 mask 
7 External mask 

8-11 Protection key 
12 ASCII mode (A) 
13 Machine check mask (M) 

14 Wait state (W) 
15 Problem state (P) 

16-31 Interruption code 
32-33 Instruction Length code (ILC) 
34-35 Condition code (CC) 
36-39 Program mask 

36 Fixed-point overflow mask 
37 Decimal overflow mask 
38 Exponent underflow mask 
39 Significance mask 

40-63 Instruction address 

Figure 14. Program Status Word Format 

Interrupti~.n 

The interruption system permits the CPU to change 
state as a result of conditions external to the system, 
in input/output (I/O) units or in the CPU itself. Five 
classes of interruption conditions are possible: I/O, 

program, supervisor call, external, and machine check. 
Each class has two related psw's called "old" and 

"new" in unique main-storage locations (Figure 15). 
In all classes, an interruption involves merely storing 
the current psw in its "old" position and making the 
psw at the "new" position the current psw. The "old" 
psw holds all necessary status information of the sys­
tem existing at the time of the interruption. If, at the 
conclusion of the interruption routine, there is an in­
struction to make the old psw the current psw, the 
system is lrestored to the state prior to the interruption 
and the interrupted routine continues. 

Address length Purpose 

o 0000 0000 double word Initial program loading PSW 
8 0000 1000 double word Initial program loading CCWI 

16 0001 0000 double word Initial program loading CCW2 
24 0001 1000 double word External old PSW 
32 0010 0000 double word Supervisor call old PSW 
40 0010 1000 double word Program old PSW 
48 0011 0000 double word Machine check old PSW 
56 0011 1000 double word Input/output old PSW 
64 0100 0000 double word Channel status word 
72 0100 1000 word Channel address word 
76 0100 1100 word Unused 
80 0101 0000 word Timer 
84 0101 0100 word Unused 
88 0101 1000 double word External new PSW 
96 0110 0000 double word Supervisor call new PSW 

1 04 011 a 1000 double word Program new PSW 
112 0111 0000 double word Machine check new PSW 
120 0111 1000 double word Input/output new PSW 
128 1000 0000 Diagnostic scan-out area * 

* The size of j,he diagnostic scan-out area depends upon the 
particular system's CPU and I/O channels. 

Figure 15. Permanent Storage Assignments 

16 

Interruptions are taken only when the CPU is inter­
ruptable for the interruption source. The system mask, 
program mask, and machine check mask bits in the 
psw may be used to mask certain interruptions. When 
masked off, an interruption either remains pending or 
is ignored. The system mask may keep I/O and ex­
ternal interruptions pending, the program mask may 
cause four of the 15 program interruptions to be ig­
nored, and the machine-check mask may cause ma­
chine-check interruptions to be ignored. Other inter­
ruptions cannot be masked off. 

An interruption always takes place after one in­
struction execution is finished and before a new in­
struction execution is started. However, the occurence 
of an interruption may affect the execution of the cur­
rent instruction. To permit proper programmed action 
following an interruption, the cause of the interrupt­
ion is identified and provision is made to locate the 
last executed instruction. 

Input /OutPIJt Interruption 

An I/O interruption provides a means by which the 
CPU responds to conditions in the channels and I/O 

units. 
An I/O interruption can occur only when the related 

channel is not masked. The address of the channel 
and I/O unit involved are recorded in the old psw. 
Further information concerning the I/O action is pre­
served in the channel status word (csw) that is stored 
during the interruption. 

Program Interruption 

Unusual conditions encountered in a program create 
program interruptions. These conditions include in­
correct operands and operand specifications, as well 
as exceptional results. The interruption code identifies 
the interruption cause. Figure 16 shows the different 
causes that may occur. 

Interruption Program Interrupti on 
Code Cause 

1 00000001 Operation 
2 00000010 Privileged operation 
3 00000011 Execute 
4 00000100 Protection 
5 00000101 Addressing 
6 00000110 Specification 
7 00000111 Date 
8 00001000 Fixed-point overflow 
9 00001001 Fixed-point divide 

10 00001010 Decimal overflow 
11 0000101 I Decimal divide 
12 00001100 Exponent overflow 
13 000011 01 Exponent underflow 
14 00001 110 Significance 
15 00001111 Floating-point divide 

Figure 16. Interruption Code for Program Interruption 



Supervisor-Call Interruption 

This interruption occurs as a result of execution of the 
instruction SUPERVISOR CALL. Eight bits from the in­
struction format are placed in the interruption code 
of the old psw, permitting a message to be associated 
with the interruptions. A major use for the instruction 
SUPERVISOR CALL is to switch from the problem-state 
to the supervisor state. This interruption may also be 
used for other modes of status-switching. 

External Interruption 

The external interruption provides the means by 
which the CPU responds to signals from the interrup­
tion key on the system control panel, the timer, and 
the external signals of the direct control feature 
(Figure 17). 

Interruption External 
Code Bit I nterrupti on Cause Mask Bit 

24 Timer 
25 Interrupt key 7 
26 External signal 6 7 
27 External signal 5 7 
28 External signal 4 7 
29 External signal 3 7 
30 External signal 2 7 
3'1 External signal 1 7 

Figure 17. Interruption Code for External Interruption 

An external interruption can occur only when the 
system mask bit 7 is one. 

The source of the interruption is identified by the 
interruption code in bits 24-31 of the psw. Bits 16-23 
of the interruption code are made zero. 

Machine-Check Interruption 

The occurence of a machine check (if not masked 
off) terminates the current instruction, initiates a diag­
nostic procedure, and subsequently causes the ma­
chine-check interruption. A machine check cannot be 
caused by invalid data or instructions. The diagnostic 
scan is performed into the scan area starting at lo­
cation 128. Proper execution of these steps depends 
on the nature of the machine check. 

Priority of Interruptions 

During execution of an instruction, several interrup­
tion requests may occur simultaneously. Simultaneous 
interruption requests are honored in the following pre­
determined order: 

Machine Check 
Program or Supervisor Call 
External 
Input/Output 

The program and supervisor-call interruptions are 

mutually exclusive and cannot occur at the same time. 
When more than one interruption cause requests 

service, the action consists of storing the old psw and 
fetching the new psw belonging to the interruption 
which is taken first. This new psw subsequently is 
stored without any instruction execution and the next 
interruption psw is fetched. This process continues 
until no more interruptions are to be serviced. When 
the last interruption request has been serviced, in­
struction execution is resumed using the psw last 
fetched. The order of execution of the interruption 
subroutines is, therefore, the reverse of the order in 
which the psw's are fetched. 

Thus, the most important interruptions - I/O, ex­
ternal, program or supervisor call - are actually serv­
iced first. Machine check, when it occurs, does not al­
low any other interruptions to be taken. 

Program States 

Over-all CPU status is determined by four types of pro­
gram-state alternatives, each of which can be changed 
independently to its opposite and most of which are 
indicated by a bit or bits in the psw. The program­
state alternatives are named stopped or operating, 
running or waiting, masked or interruptable, and sup­
ervisor or problem state. These states differ in the way 
they affect the CPU functions and the manner in which 
their status is indicated and switched. All program 
states are independent of each other in their functions, 
indication, and status-switching. 

Stopped or Operating States: The stopped state is 
entered and left by manual procedure. Instructions are 
not executed, interruptions are not accepted, and the 
timer is not updated. In the operating state, the CPU 

is capable of executing instructions and being inter­
rupted. 

Running or Waiting State: In the running state, in­
struction fetching execution proceeds in the normal 
manner. The wait state is normally entered by the 
program to await an interruption, for example, an I/O 

interruption or operator intervention from the console. 
In the wait state, no instructions are processed, the 
timer is updated, and 110 and external interruptions 
are accepted, unless masked. Running or waiting state 
is determined by the setting of bit 14 in the psw. 

Masked or Interruptable State: The CPU may be in­
terruptable or masked for the system, program, and 
machine interruptions. \Vhen the CPU is interruptable 
for a class of interruptions, these interruptions are ac­
cepted. When the CPU is masked, the system inter­
ruptions remain pending, while the program and ma­
chine-check interruptions are ignored. The interrupt­
able states of the CPU are changed by changing the 
mask bits of the psw. 

System Structure 17 



Supervisor or Problem State: In the problem state, 
all 110 instructions and a group of control instructions 
are invalid. In the supervisor state, all instructions 
are valid. The choice of problem or supervisor state is 
determined by bit 15 of the psw. 

Protection feature 
The Protection Feature protects the contents of cer­
tain areas of storage from destruction due to errone­
ous storing of information during the execution of a 
program. This protection is achieved by identifying 
blocks of storage with a storage key and comparing 
this key with a protection key supplied with the data 
to be stored. The detection of a mismatch results in 
a protection interruption. 

For protection purposes, main storage is divided in­
to blocks of 2,048 bytes. A four-bit storage key is as­
sociated with each block. When data are stored in a 
storage block, the storage key is compared with the 
protection key. When storing is specified by an in­
struction, the protection key of the current psw is 
used as the comparand. When storing is specified by 
a channel operation, a protection key supplied by the 
channel iis used as the comparand. The keys are said 
to match when they are equal or when either one is 
zero. 

The storage key is not part of addressable storage. 
The key is changed by SET STORAGE KEY and is in­
spected by INSERT STORAGE KEY. The protection key in 
the psw occupies bits 8-11 of that control word. The 
protection key of a channel is recorded in bits 0-3 of 
the csw, which is stored as a result of the channel 
operation. When a protection mismatch due to an in­
struction is detected, the execution of this instruction 
is suppressed or terminated, and the program execu­
tion is altered by an interruption. The protected stor­
age location always remains unchanged. Protection 
mismatch due to an 110 operation causes the data 
transmission to be terminated in such a way that the 
protected storage location remains unchanged. The 
mismatch is indicated in the csw stored as a result of 
the operation. 

Timer f'eature 
The timer is provided as an interval timer and may 
be programmed to maintain the time of day. The 
timer consists of a full word in main storage location 
80. The timer word is counted down at a rate of 50 
or 60 cycles per second, depending on line frequency. 
The timer word is treated as a signed integer follow­
ing the rules of fixed-point arithmetic. An external in­
terruption condition is signaled when the value of the 

18 

timer word goes from positive to negative. The full 
cycle time of the timer is 15.5 hours. 

An updated timer value is available at the end of 
each instruction execution but is not updated in the 
stopped state. The timer is changed by addressing 
storage location 80. As an interval timer, the timer is 
used to measure elapsed time over relatively short in­
tervals. It can be set to any value at any time. 

Direct Control feature 
The direct control feature provides two instructions, 
READ DIRECT and WRITE DIRECT, and six external inter­
ruption lines. The read and write instructions provide 
for the transfer of a single byte of information be­
tween an external device and the main storage of the 
system. It is usually most desirable to use the data 
channels of the system to handle the transfer of any 
volume of information and u.se the direct data control 
feature to pass controlling and synchronizing informa­
tion between the CPU and special external devices. 

Each of the six external signal lines, when pulsed, 
sets up the conditions for an external interruption. 

Multisystem feature 
The design of System/360 permits communication be­
tween individual cpu's at several transmission rates. 
The communication is possible through shared con­
trol units, through a channel connector and through 
shared storage. These features are further augmented 
by the direct control feature and the multisystem 
feature. The direct control feature, described in 
the previous section, can be used to signal from one 
CPU to another. The multisystem feature provides di­
rect address relocation, malfunction indications, and 
electronic CPU initialization. 

The relocation procedure applies to the first 4,096 
bytes of storage. This area contains all permanent 
storage assignments and, generally, has special signifi­
cance to supervisory programs. The relocation is ac­
complishcd by inserting a 12-bit prefix in each address 
which has the high-order 12 bits set to zero and hence, 
pertains to location 0-4095. Two manually set prefixes 
are available to permit the use of an alternative area 
when storage malfunction occurs. The choice between 
the prefixes is determined by a prefix trigger set dur­
ing initial program loading. 

To alert one CPU to the possible malfunction of an­
other CPU, a machine check-out signal is provided, 
which can serve as an external interruption to another 
cpu. 

Finally, the feature includes provision for initial 
program loading initiated by a signal from another 
CPU. 



Input jOutput 

Input / Output Devices and Control Units 

Input/output operations involve the transfer of infor­
mation to or from main storage and an I/O device. 
Input/output devices include such equipment as card 
read punches, magnetic tape units, disk storage, drum 
storage, typewriter-keyboard devices, printers, TELE­

PROCESSINC@ devices, and process control equipment. 

Many I/O devices function with an external docu­
ment, such as a punched card or a reel of magnetic 
tape. Some I/O devices handle only electrical signals, 
such as those found in process-control networks. In 
either case, I/O device operation is regulated by a 
control unit. The control-unit function may be housed 
with the I/O device, as is the case with a printer, or a 
separate control unit may be used. In all cases, the 
control-unit function provides the logical and buffer­
ing capabilities necessary to operate the associated 
I/O device. From the programming point of view, 
most control-unit functions merge with I/O device 
functions. 

Each control unit functions only with the I/O de­
vice for which it is designed, but each control unit 
has standard-signal connections with regard to the 
channel to which it is attached. 

Input / Output Interface 

So that the CPU may control a wide variety of I/O 

devices, all control units are designed to respond to a 
standard set of signals from the channel. This control­
unit-to-channel connection is called the I/O interface. 
It enables the CPU to handle all I/O operations with 
only four instructions. 

Channels 

Channels connect with the CPU and main storage and, 
via the I/O interface, with control units. Each chan­
nel has facilities for: 

Accepting I/O instructions from the CPU 
Addressing devices specified by I/O instructions 
Fetching channel control information from main storage 
Decoding control information 
Testing ~ontrol information for validity 
Executing control information 
Providing control signals to the I/O interface 
Accepting control-response signals from the I/O interface 
Buffering data transfers 
Checking parity of bytes transferred 
Counting the number of bytes transferred 
Accepting status information from I/O devices 
Maintaining channel-status information 
Sending requested status information to main storage 
Sequencing interruption requests from I/O devices 
Signaling interruptions to the CPU 

A channel may be an independent unit, complete 
with necessary logical and storage capabilities, or it 
may share CPU facilities and be physically integrated 
with the CPU. In either case, channel functions are 
identical. 

The System/360 has two types of channels: multi­
plexor and selector. The channel facility necessary to 
sustain an operation with an I/O device is called a 
subchannel. The selector channel has one subchannel' 
the multiplexor channel has multiple subchannels. ' 

Channels have two modes of operation: burst and 
multiplex. 

In the burst mode, all channel facilities are mono­
polized for the duration of data transfer to or from a 
particular I/O device. The selector channel functions 
only in the burst mode. 

The multiplexor channel functions in both the burst 
mode and in the multiplex mode. In the latter mode, 
the multiplexor channel sustains simultaneous I/O op­
erations on several subchannels. Bytes of data are 
interleaved together and then routed to or from the 
selected I/O devices and to or from the desired loca­
tions in main storage. 

Input / Output Instructions 

The System/360 uses only four I/O instructions: 
START I/O 

TEST CHANNEL 

TEST I/O 

HALT I/O 

Input/output instructions can be executed only 
while the CPU is in the supervisor state. 

Start I/O 

The START I/O initiates an I/O operation. The adoress 
part of the instruction specifies the channel and I/O 

device. 

Test Channel 

The TEST CHANNEL scts the condition code in the psw 
to indicate the state of the channel addressed bv the 
instruction. The condition code then indicates ~han­
nel available, interruption condition in channel, chan­
neJ working, or channel not operational. 

Test I/O 

The TEST I/O causes a csw to be stored in location 64 
of main storage, if the device addressed by TEST I/O 

has specified conditions for interruption. The csw 
provides information on the status of the channel and 
I/O devices. 

Halt I/O 

The HALT I/O terminates a channel operation. 

System Structure 19 



Input/Output Operation Initiation 

All I/O operations are initiated by START I/O. If the 
channel facilities are free, START I/O is accepted and 
the CPU continues its program. The channel independ­
ently selects the I/O device specified by the instruction. 

Channel Address Word 

Successful execution of START I/O causes the channel 
to fetch a channel address word ( CAW) from the 
main-storage location 72. The CAW specifies the byte 
location in main storage where the channel program 
begins. 

Figure 18 shows the format for the CAW. Bits 0-3 
specify the storage-protection key that will govern the 
I/O operation. Bits 4-7 must contain zeros. Bits 8-31 
specify the location of the first channel command 
word (Cc:W). 

1 Key 100001 Command Address 

o 34 7 8 31 

Figure 18. Channel Address Word Format 

Channel Command Word 

The byte location specified by the CAW is the first of 
eight bytes of information that the channel fetches 
from main storage. These 64 bits of information are 
called a channel command word (CCw). 

One or more ccw's make up the channel program 
that directs channel operations. If more than one 
ccw is to be used, each ccw points to the next ccw 
to be fetched, except for the last ccw in the chain, 
which identifies itself as the last in the chain. Figure 
19 shows the format for ccw's. 

Six channel commands are provided: 
Read 
Write 
Read Backward 
Control 
Sense 
Transfer In Channel 

Input / OILJtput Commands 

Read 

The read command causes a read operation from the 
selected I/O device and defines the area in main 
storage to be used. 

20 

I Command Data Address Code 
0 7 8 

L Flags 1000~ Count 

3637 3940 4748 

Bits 0-7 specify the command code. 
Bits 8-31 specify the location of a byte in main storage. 
Bits 32-36 are flag bits. 

J 
63 

Bit 32 causes the address portion of the next CCW to be used a 

Bit 33 causes the command code and data address in the next 
CCW to be used. 

Bit 34 causes a possible incorrect length indication to be 
suppressed. 

Bit 35 suppresses the transfer of information to main storage. 
Bit 36 causes an interruption as 

Bits 37-39 must contain zeros. 
Bits 40-47 are ignored 
Bits 48-63 specify the number of bytes in the operation a 

Figure 19. Channel Command Word Format 

Write 

The write command causes a write operation on the 
selected I/O device and defines the data in main stor­
age to be written. 

Read Backward 

The read-backward command causes a read operation 
in which the external document is moved in a back­
ward direction. Bytes read backward are placed in 
descending main storage locations. 

Control 

The control command contains information used to 
control the selected I/O device. This control informa­
tion is caned an order. Orders are peculiar to the par­
ticular I/O device in use; orders can specify such func­
tions as rewinding a tape unit, searching for a par­
ticular track in disk storage, or line skipping on a 
printer. The relationship of I/O instructions, com­
mands, and orders is shown in Figure 20. 

CPU Channels Control Units 
and 

(Executes I/O Devices 

I/O (Execute f..---

Instructions) Commands) (Execute 
Orders) 

Figure 20. Relationship of 110 Instructions, Commands, and 
Orders 

Sense 

The sense command specifies the beginning main 
storage location to which status information is trans-



ferred from the selected control unit. This sense data 
may be one or more bytes long. It provides detailed 
information concerning the selected I/O device, such 
as a stacker-full condition of a card reader or a fiIe­
protected condition of a reel of magnetic tape on a 
tape unit. Sense data have a significance peculiar to 
the I/O device involved. 

Transfer In Channel 

The transfer-in-channel command specifies the loca­
tion of the next ccw to be used by the channel when­
ever the programmer desires to break the existing 
chain of ccw's and cause the channel to begin fetch­
ing a new chain of ccw's from a different area in 
main storage. 

External documents, such as punched cards or mag­
netic tape, may carry ccw's that the channel can use 
to govern reading of the external document being 
read. 

Input / Output Termination 

Input/output operations normally terminate with de­
vice-end signal and channel-end conditions and an in­
terruption signal to the CPU. 

A command can be rejected during execution of 
START I/O, however, by a busy condition, program 
check, etc. The rejection of the command is indicated 
in the condition code in the psw, and the details of 
the conditions that precluded initiation of the I/O op­
eration are provided in the channel status word stored 
when the command is rejected. 

Channel Status Word 

The channel status word (csw) provides information 
about the termination of an I/O operation. It is formed 
or reformed by START I/O, TEST I/O, or by an I/O in­
terruption. Figure 21 shows the csw format. 

Command Address 

o 34 7 8 31 

Status Count 

32 47 48 63 

Bits 0-3 contains the storage-protection key used in the 
operation. 

Bit 4-7 contain zeros. 
Bits 8-31 specify the location of the last CCW used. 
Bits 32-47 contain an I/O device-status byte and a channel­

status byte. The status bytes provide such information as data­
check, chaining check, control-unit end, etc. 

Bits 48-63 contain the residual count of the last CCW used. 

Figure 21. Channel Status Word Format 

Input / Output Interruptions 

Input/output interruptions are caused by termination 
of an I/O operation or by operator intervention at the 

I/O device. Input/output interruptions enable the 
CPU to provide appropriate programmed response to 
conditions that occur in I/O devices or channels. 

Input/output interruptions have two priority se­
quences, one for the I/O devices attached to a chan­
nel, and another for channel interruptions. A channel 
establishes interruption priority for its associated I/O 

devices before initiating an I/O interruption signal to 
the cpu. Conditions responsible for I/O interruption 
requests are preserved in the I/O devices or channels 
until they are accepted by the CPU. 

System Control Panel 
The system control panel provides the switches, keys, 
and lights necessary to operate and control the system. 
The need for operator manipulation of manual con­
trols is held to a minimum by the system design and 
the governing supervisory program. The result is few­
er and less serious operator errors. 

System Control Panel Functions 

The main functions provided by the system control 
panel are the ability to: reset the system; store and 
display information in main storage, in registers, and 
in the psw; and load initial program information. 

System Reset 

The system-reset function resets the CPU, the channels, 
and online control units and I/O devices. In general, 
the system is placed in such a state that processing 
can be initiated without the occurrence of machine 
checks, except those caused by subsequent machine 
malfunction. 

Store and Display 

The store-and-display function permits manual inter­
vention in the progress of a program. The function 
may be provided by a supervisory program in con­
junction with proper I/O equipment and the interrupt 
key. Or, the system-control-panel facilities may be 
used to place the CPU in the stopped state, and then 
to store and display information in main storage, in 
general and floating-point registers, and in instruction­
address portion of the psw. 

Initial Program Loading 

The initial-program-Ioading (IPL) procedure is used 
to begin or renew system operation. The load key is 
pressed after an input device is selected with the load­
unit switches. This causes a read operation at the 
selected input device. Six words of information are 

System Structure 21 



read into main storage and used as channel control 
words and as a psw that controls subsequent system 
operation. 

The system controls are divided into three sections: 
operator control, operator intervention, and customer 
engineering control. 

Operator Control Section 

This section of the system control panel contains the 
operator controls required when the CPU is operating 
under supervisory program control. 

The main functions provided are the control and 
indication of power, the indication of system status, 
and operator-to-machine communication. These in­
clude: 

22 

Emergency power-off pull switch 
Power-on back-lighted key 
Power-off key 
Interrupt key 
Wait light 
Manual light 
System light 
Test light 

Load light 
Load-unit switches 
T.oad key 

Operator Intervention Section 

This section of the system control panel provides 
controls required for operator intervention into normal 
programmed operation. These include: 

System reset key 
Stop key 
Start key 
Rate switch (single cycle or normal processing) 
Storage-select switches 
Address switches 
Data switches 
Store key 
Display key 
Set Ie key 
Address compare switches 

Customer Engineering Section 

This section of the system control panel provides the 
controls intended only for customer engineering use. 
Customer engineering controls are also available on 
some storage, channel, and control-unit equipment. 



The fixed-point instruction set performs binary arith­
metic on operands serving as addresses, index quanti­
ties, and counts, as well as fixed-point data. In general, 
both operands are signed and 32 bits long. Negative 
quantities are held in two's-complement form. One 
operand is always in one of the 16 general registers; 
the other operand may be in main storage or in a 
general register. 

The instruction set provides for loading, adding, 
subtracting, comparing, multiplying, dividing, and 
storing, as well as for the sign control, radix conver­
sion, and shifting of fixed-point operands. The entire 
instruction set is included in the standard instruction 
set. 

The condition code is set as a result of all sign­
control, add, subtract, compare, and shift operations. 

Data Format 
Fixed-point numbers occupy a fixed-length format 
consisting of a one-bit sign followed by the integer 
field. When held in one of the general registers, a 
fixed-point quantity has a 31-bit integer field and oc­
cupies all 32 bits of the register. Some multiply, divide, 
and shift operations use an operand consisting of 64 
bits with a 63-bit integer field. These operands are 
located in a pair of adjacent general registers and are 
addressed by an even address referring to the left­
most register of the pair. The sign-bit position of the 
rightmost register contains part of the integer. In reg­
ister-to-register operations the same register may be 
specified for both operand locations. 

Fullword Fixed-Point Number 

151 Integer 

o 1 31 

Halfword Fixed-Point Number 

I s\ Integer 

o 1 15 

Fixed-point data in main storage occupy a 32-bit word 
or a 16-bit halfword, with a binary integer field of 31 
or 15 bits, respectively. The conversion instructions 

Fixed-Point Arithmetic 

use a 64-bit decimal field. These data must be located 
on integral storage boundaries for these units of infor­
mation, that is, double-word, fullword, or halfword 
operands must bc addressed with three, two, or one 
low-ordcr address bit ( s) set to zero. 

A halfword operand in main storage is extended to 
a fullword as the operand is fetched from storage. 
Subsequently, the operand participates as a full word 
operand. 

Number Representation 
All fixed-point operands are treated as signed integers. 
Positive numbers are represented in true binary nota­
tion with the sign bit set to zero. Negative numbers 
are represented in two's-complement notation with a 
one in the sign bit. The two's complement of a num­
ber is obtained by inverting each bit of the number 
and adding a one in the low-order bit position. 

This type of number representation can be consider­
ed the low-order portion of an infinitely long represen­
tation of the number. When the number is positive, all 
bits to the left of the most significant bit of the num­
ber, including the sign bit, are zeros. When the num­
ber is negative, all these bits, including the sIgn bit, 
are ones. Therefore, when an operand must be ex­
tended with high-order bits, the expansion is achieved 
by prefixing a field in which each bit is set equal to 
the high-order bit of the operand. 

Two's-complement notation does not include a nega­
tive zero. It has a number range in which the set of 
negative numbers is one larger than the set of positive 
numbers. The maximum positive number consists of 
an all-one integer field with a sign bit of zero, whereas 
the maximum negative number consists of an all-zero 
integer field with a one-bit for sign. 

The CPU cannot represent the complement of the 
maximum negative number. When an operation, such 
as a subtraction from zero, produces the complement 
of the maximum negative number, the number remains 
unchanged, and a fixed-pOint overflow exception is 
recognized. An overflow does not result, however, 
when the number is complemented and the final re­
suIt is within the representable range. An example of 
this case is a subtraction from minus one. The product 
of two maximum negative numbers is representable as 
a double-length positive number. 

Fixed-Point Arithmetic 23 



The sign bit is leftmost in a number. An overHow 
carries into the sign-bit position and changes the sign. 
However, in algebraic shifting the sign bit does not 
change even if significant high-order bits are shifted 
out. 

Programming Notes 

Two's-complement notation is particularly suited to 
address computation and multiple-precision arithmetic. 

The two's-complement representation of a negative 
number may be considered the sum of the integer 
part of the field, taken as a positive number, and the 
maximum negative number. Hence, in multiple-preci­
sion arithmetic the low-order fields should be treated 
as positive numbers. Also, when negative numbers are 
shifted to the right, the resulting rounding, if any, is 
toward minus infinity and not toward zero. 

Conditic)n Code 
The results of fixed-point sign-control, add, subtract, 
compare" and shift operations are used to set the condi­
tion code in the program status word (psw). All other 
fixed-point operations leave this code undisturbed. 
The condition code can be used for decision-making 
by subsequent branch-on-condition instructions. 

The condition code can be set to reHect three types 
of results for fixed-point arithmetic. For most opera­
tions, the states 0, 1, or 2 indicate a zero, less than 
zero, or greater than zero content of the result reg­
ister' while the state 3 is used when the result over­
Hows. 

For a comparison, the states 0, 1, or 2 indicate that 
the first operand is equal, low, or high. 

For ADD LOGICAL and SUBTRACT LOGICAL, the codes ° and 1 indicate a zero or nonzero result register con­
tent in the absence of a logical carry out of thc sign 
position; the codes 2 and 3 indicate a zero or nonzero 
result register content with a logical carry out of the 
sign position. 

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHMETIC 

0 1 2 3 
Add H/F zero < zero > zero overflow 
Add Logical zero not zero zero, carry 

carry 
Compare H/F equal low high 
Load and Test zero < zero > zero 
Load Complement zero < zero > zero overflow 
Load Negative zero < zero 
Load Positive zero > zero overflow 
Shift Left Double zero < zero > zero overflow 
Shift Left Single zero < zero > zero overflow 
Shift Right Double zero < zero > zero 
Shift Right Single zero < zero > zero 
Subtract H/F zero < zero > zero overflow 
Subtract Logical not zero zero, carry 

carry 

24 

Instruction Format 

Fixed-point instructions use the following three for­
mats: 

RR Format 

7 8 11 12 15 

RX Format 

I Op Code Rl X
2 B2 

0 7 8 11 12 1516 1920 31 

RS Format 

Op Code Rl R3 B2 

7 8 11 12 1516 1920 31 

In these formats, RJ specifies the address of the gen­
eral register containing the first operand. The second 
operand location, if any, is defined differently for each 
format. 

In the HR format, the R2 field specifies the address of 
the general register containing the second operand. 
The same register may be specified for the first and 
second operand. 

In the RX format, the contents of the general reg­
isters specified by the X2 and B2 fields are added to 
the content of the D2 field to form an address designat­
ing the storage location of the second operand. 

In the RS format, the content of the general register 
specified by the B2 field is added to the content of the 
D.) field to form an address. This address designates 
th~ storage location of the second operand in LOAD 

MULTIPLE and STORE MULTIPLE. In the shift operations, 
the address specifies the amount of shift. The R:~ field 
specifics the address of a general register in LOAD 

MULTIPLE and STORE MULTIPLE and is ignored in the 
shift operations. 

A zero in an X2 or B2 field indicates the absence of 
the corresponding address component. 

An instruction can specify the same general register 
both for address modification and for operand loca­
tion. Address modification is always completed before 
operation execution. 

Results replace the first operand, except for STORE 

and CONVERT TO DECIMAL, where the result replaces 
the second operand. 

The contents of all general registers and storage 
locations participating in the addressing or execution 
part of an operation remain unchanged, except for the 
storing of the final result. 



Instructions 
The fixed-point arithmetic instructions and their mne-
monics, formats, and operation codes are listed in the 
following table. The table also indicates which instruc-
tions are not included in the small binary instruction 
set, when the condition code is set, and the exceptional 
conditions that cause a program interruption. 

NAME MNEMONIC 

Load LR 
Load L 
Load Halfword LH 
Load and Test LTR 
Load Complement LCR 
Load Positive LPR 
Load Negative LNR 
Load Multiple LM 
Add AR 
Add A 
Add Halfword All 
Add Logical ALR 
Add Logical AL 
Subtract SR 
Subtract S 
Subtract Halfword SH 
Subtract Logical SLR 
Subtract Logical SL 
Compare CR 
Compare C 
Compare Halfword CH 
Multiply MR 
Multiply M 
Multiply Halfword MH 
Divide DR 
Divide D 
Convert to Binary CVB 
Convert to Decimal CVD 
Store ST 
Store Halfword STH 
Store Multiple STM 
Shift Left Single SLA 
Shift Right Single SRA 
Shilt Left Double SLDA 
Shift Right Double SRDA 

Addressing exception 
Condition code is set 
Data exception 

TYPE 

RR 
RX 
RX 
RR 
RR 
RR 
RR 
RS 
RR 
RX 
RX 
RR 
RX 
RR 
RX 
RX 
RR 
RX 
RR 
RX 
RX 
RR 
RX 
RX 
RR 
RX 
RX 
RX 
RX 
RX 
RS 
RS 
RS 
RS 
RS 

NOTES 

A 
C 
D 
IF 
IK 
P 
S 

Fixed-Point overflow exception 
Fixed-point divide exception 
Protection exception 
Specification exception 

Programming Note 

EXCEPTIONS 

A,S 
A,S 

C 
C IF 
C IF 
C 

A,S 
C IF 
C A,S, IF 
C A,S, IF 
C 
C A,S 
C IF 
C A,S, IF 
C A,S, IF 
C 
C A,S 
C 
C A,S 
C A,S 

S 
A,S 
A,S 

S, IK 
A,S, IK 
A,S,D,IK 

P,A,S 
P,A,S 
P,A,S 
P,A,S 

C IF 
C 
C S, IF 
C S 

CODE 

18 
58 
48 
12 
13 
10 
11 
98 
lA 
5A 
4A 
IE 
5E 
IB 
5B 
4B 
IF 
5F 
19 
59 
49 
Ie 
5C 
4C 
ID 
5D 
4F 
4E 
50 
40 
90 
8B 
8A 
8F 
8E 

The logical comparisons, shifts, and connectives, as 
well as LOAD ADDRESS, BRANCH ON COUNT, BRANCH ON 

INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL, also 
may be used in fixed-point calculations. 

Load 

LR RR 

I 18 R1 R2 
0 7 8 11 12 15 

L RX 

I 58 R1 X2 B2 D2 
0 7 8 11 12 1516 1920 31 

The second operand is placed in the first operand loca­
tion. The second operand is not changed. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing (L only) 
Specification (L only) 

Load Halfword 

LH RX 

48 
7 8 11 12 15 16 1 9 20 31 

The halfword second operand is placed in the first 
operand location. 

The halfword second operand is expanded to a full­
word by propagating the sign-bit value through the 
16 high-order bit positions. Expansion occurs after the 
operand is obtained from storage and before insertion 
in the register. 

Program Interruptions: 
Addressing 
Specification 

Load and Test 

LTR RR 

12 
7 8 11 12 15 

The second operand is placed in the first operand loca­
tion, and the sign and magnitude of the second op­
erand determine the condition code. The second op­
erand is not changed. 

Fixed-Point Arithmetic 25 



Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Interruptions: None. 

Programming Note 

When the same register is specified as first and second 
operand location, the operation is equivalent to a test 
without data movement. 

Load Complement 

LCR RR. 

13 
78 1112 15 

The two's complement of the second operand is placed 
in the first operand location. 

An overflow condition occurs when the maximum 
negative number is complemented; the number re­
mains unchanged. The overflow causes a program in­
terruption when the fixed-point overflow mask bit is 
one. 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Interruptions: 
Fixed-point overflow 

Programming Note 

Zero rema.ins invariant under complementation. 

Load Posit'ive 

LPR RR 

10 

78 1112 15 

The absolute value of the second operand is placed in 
the first operand location. 

The operation includes complementation of nega­
tive numbers; positive numbers remain unchanged. 

An overflow condition occurs when the maximum 
negative number is complemented; the number re­
mains unchanged. The overflow causes a program in­
terruption when the fixed-point overflow mask bit is 
one. 

26 

Resulting Condition Code: 
o Result is zero 
1 
2 Result is greater than zero 
3 Overflow 

Program Interruptions: 
Fixed-point overflow 

Load Negative 

LNR RR 

11 
78 1112 15 

The two's complement of the absolute value of the 
second operand is placed in the first operand location. 
The operation complements positive numbers; nega­
tive numbers remain unchanged. The number zero 
remains unchanged with positive sign. 

Resulting Condition Code: 
o Result is zero 
1 Rcsult is less than zero 
2 
3 

Program Inten'uptions: None. 

Load Multiple 

LM RS 

98 
7 8 11 1 2 15 16 1 9 20 31 

The set of general registers starting with the register 
specified by RI and ending with the register specified 
by Ra is loaded from the locations designated by the 
second opcrand address. 

The storage area from which the contents of the 
general registers are obtained starts at the location 
designated by the second operand address and con­
tinues through as many words as needed. The general 
registers are loaded in the ascending order of their 
addresses, starting with the register specified by RI 
and continuing up to and including the register speci­
fied by Ra, with register 0 following register 15. 

The second operand remains unchanged. 
Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing 
Specification 



Programming Note 

All combinations of register addresses specified by Rl 
and Ra are valid. When the register addresses are 
equal, only one word is transmitted. When the address 
specified by Ra is less than the address specified by R1, 

the register addresses wrap around from 15 to O. 

Add 

AR RR 

lA 
7 8 11 12 15 

A RX 

5A 
7 8 11 12 15 16 1920 31 

The second operand is added to the first operand, 
and the sum is placed in the first operand location. 

Addition is performed by adding all 32 bits of both 
operands. If the carries out of the sign-bit position and 
the high-order numeric bit position agree, the sum is 
satisfactory; if they disagree, an overflow occurs. The 
sign bit is not changed after the overflow. A positive 
overflow yields a negative final sum, and a negative 
overflow results in a positive sum. The overflow causes 
a program interruption when the fixed-point overflow 
mask bit is one. 

Resulting Condition Code: 
o Sum is zero 
1 Sum is less than zero 
2 Sum is greater than zero 
3 Overflow 

Program Interruptions: 
Addressing (A only) 
Specification (A only) 
Fixed-point overflow 

Programming Note 

In two's-complement notation, a zero result is always 
positive. 

Add Halfword 

AH RX 

4A 

7 8 11 12 15 16 1920 31 

The halfword second operand is added to the first 
operand and the sum is placed in the first operand 
location. 

The halfword second operand is expanded to a full-

word before the addition by propagating the sign-bit 
value through the 16 high-order bit positions. 

Addition is performed by adding all 32 bits of both 
operands. If the carries out of the sign-bit position 
and the high-order numeric bit position agree, the 
sum is satisfactory; if they disagree, an overflow oc­
curs. The sign bit is not changed after the overflow. 
A positive overflow yields a negative final sum, and a 
negative overflow results in a positive sum. The over­
flow causes a program interruption when the fixed­
point overflow mask bit is one. 

Resulting Condition Code: 
o Sum is zero 
1 Sum is less than zero 
2 Sum is greater than zero 
3 Overflow 

Program Interruptions: 
Addressing 
Specification 
Fixed-point overflow 

Add Logical 

ALR RR 

1 E 

78 11 12 15 

AL RX 

5E 
78 1112 1516 1920 31 

The second operand is added to the first operand, and 
the sum is placed in the first operand location. The oc­
currence of a carry out of the sign position is recorded 
in the condition code. 

Logical addition is performed by adding all 32 bits 
of both operands without further change to the result­
ing sign bit. The instruction differs from ADD in the 
meaning of the condition code and in the absence of 
the interruption for overflow. 

If a carry out of the sign position occurs, the leftmost 
bit of the condition code (psw bit 34) is made one. In 
the absence of a carry, bit 34 is made zero. When the 
sum is zero, the rightmost bit of the condition code 
(psw bit 35) is made zero. A nonzero sum is indicated 
by a one in bit 35. 

Resulting Condition Code: 
o Sum is zero (no carry) 
1 Sum is not zero (no carry) 
2 Sum is zero (carry) 
3 Sum is not zero (carry) 

Fixed-Point Arithmetic 27 



Program Interruptions: 
Addressing (AL only) 
Specification (AL only) 

Subtract 

SR RR 

I 1B I R1 R2 
0 78 11 12 15 

S RX 

I 5B I R1 X2 B2 D2 
0 7 8 11 12 1516 1920 31 

The second operand is subtracted from the first op­
erand, and the difference is placed in the first operand 
location. 

Subtraction is performed by adding the one's com­
plement .of the second operand and a low-order one to 
the first operand. All 32 bits of both operands partici­
pate, as in ADD. If the carries out of the sign-bit posi­
tion and the high-order numeric bit position agree, the 
difference is satisfactory; if they disagree, an overflow 
occurs. The overflow causes a program interruption 
when the fixed-point overflow mask bit is one. 

ResulUng Condition Code: 
o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Interruptions: 
Addressing (S only) 
Specifications (S only) 
Fixed-point overflow 

Programming Note 

When the same register is specified as first and second 
operand location, subtracting is equivalent to clearing 
the register. 

Subtracting a maximum negative number from an­
other maximum negative number gives a zero result 
and no overflow. 

Subtract :Halfword 

SH RX 

4B 
7 8 11 12 15 16 1 9 20 31 

The halfword second operand is subtracted from the 
first operand, and the difference is placed in the first 
operand location. 

28 

The halfword second operand is expanded to a full­
word before the subtraction by propagating the sign­
bit value through 16 high-order bit positions. 

Subtraction is performed by adding the one's com­
plement of the expanded second operand and a low­
order one to the first operand. All 32 bits of both op­
erands participate, as in ADD. If the carries out of the 
sign-bit position and the high-order numeric bit posi­
tion agree, the difference is satisfactory; if they dis­
agree, an overflow occurs. The overflow causes a pro­
gram interruption when the fixed-point overflow mask 
bit is one. 

Resulting Condition Code: 
o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Interruptions: 
Addressing 
S pecifica tion 
Fixed-point overflow 

Subtract Logical 

SLR RR 

1 F 
78 1112 15 

SL RX 

5F 
7 8 11 1 2 15 16 1 9 20 31 

The second operand is subtracted from the first op­
erand, and the difference is placed in the first operand 
location. The occurrence of a carry out of the sign 
position is recorded in the condition code. 

Logical subtraction is performed by adding the one's 
complement of the second operand and a low-order 
one to the first operand. All 32 bits of both operands 
participate, without further change to the resulting 
sign bit. The instruction differs from SUBTRACT in the 
meaning of the condition code and in the absence of 
the interruption for overflow. 

If a carry out of the sign position occurs, the left­
most bit of the condition code (psw bit 34) is made 
one. In the absence of a carry, bit 34 is made zero. 
When the sum is zero, the rightmost bit of the condi­
tion code (psw bit 35) is made zero. A nonzero sum 
is indicated by a one in bit 35. 



Resulting Condition Code: 
o 
1 Difference is not zero (no carry) 
2 Difference is zero (carry) 
3 Difference is not zero (carry) 

Program Interruptions: 
Addressing (SL only) 
Specification (SL only) 

Programming Note 

A zero difference cannot be obtained without a carry 
out of the sign position. 

Compare 

CR RR 

I 19 R, R2 
0 7 8 11 12 15 

C RX 

I 59 R, X2 B2 
0 7 8 11 12 1516 1920 31 

The first operand is compared with the second op­
erand, and the result determines the setting of the 
condition code. 

Comparison is algebraic, treating both comparands 
as 32-bit signed integers. Operands in registers or 
storage are not changed. 

Resulting Condition Code: 
o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Interruptions: 
Addressing (C only) 
Specification (C only) 

Compare Halfword 

CH RX 

49 
7 8 11 12 15 16 1920 31 

The first operand is compared with the halfword sec- ' 
ond operand, and the result determines the setting of 
the condition code. 

The halfword second operand is expanded to a full­
word before the comparison by propagating the sign­
bit value through the 16 high-order bit positions. 

Comparison is algebraic, treating both comparands 
as 32-bit signed integers. Operands in registers or 
storage are not changed. 

Resulting Condition Code: 
o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Interruptions: 
Addressing 
Specification 

Multiply 

MR RR 

1C 
78 1112 15 

M RX 

5C 
7 8 11 1 2 15 1 6 1 9 20 

J 
31 

The product of the multiplier (the second operand) 
and the multiplicand (the first operand) replaces the 
multiplicand. 

Both multiplier and multiplicand are 32-bit signed 
integers. The product is always a 64-bit signed integer 
and occupies an even/odd register pair. Because the 
multiplicand is replaced by the product, the Rl field 
of the instruction must refer to an even-numbered reg­
ister. A specification exception occurs when Rl is odd. 
The multiplicand is taken from the odd register of the 
pair. The content of the even-numbered register re­
placed by the product is ignored, unless the register 
contains the multiplier. An overflow cannot occur. 

The sign of the product is determined by the rules 
of algebra from the multiplier and multiplicand sign, 
except that a zero result is always positive. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing (M only) 
Specification 

Programming Note 

The significant part of the product usually occupics 62 
bits or fewer. Only when two maximum negative 
numbers are multiplied are 63 significant product bits 
formed. Since two's-complement notation is used, the 
sign bit is extended right until the first significant 
product digit is encountered. 

Fixed-Point Arithmetic 29 



Multiply Halfword 

MH RX 

7 8 11 12 15 16 1920 31 

The product of the halfword multiplier (second op­
erand) and multiplicand (first operand) replaces the 
multiplicand. 

Both multiplicand and product are 32-bit signed 
integers and may be located in any general register. 
The half word multiplier is expanded to a fullword 
before multiplication by propagating the sign-bit value 
through the 16 high-order bit positions. The multi­
plicand is replaced by the low-order part of the prod­
uct. The bits to the left of the 32 low-order bits are 
not tested for significance; no overflow indication is 
given. 

The sign of the product is determined by the rules 
of algebra from the multiplier and multiplicand sign, 
except that a zero result is always positive. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing 
S pecifica tion 

Programming Note 

The significant part of the product usually occupies 46 
bits or fewer, the exception being 47 bits when both 
operands are maximum negative. Since the low-order 
32 bits of the product are stored unchanged, ignoring 
all bits to the left, the sign bit of the result may differ 
from the true sign of the product in the case of over­
flow. 

Divide 

DR RR 

1D 
7 8 11 12 15 

D RX 

5D 
7 8 11 1 2 15 16 1 9 20 31 

The dividend (first operand) is divided by the divisor 
(second operand) and replaced by the quotient and 
remainder. 

The dividend is a 64-bit signed integer and occupies 
the even/odd pair of registers specified by the Rl field 
of the instruction. A specification exception occurs 

30 

when Rl is odd. A 32-bit signed remainder and a 
32-bit signed quotient replace the dividend in the 
even-numbered and odd-numbered registers, respec­
tively. The divisor is a 32-bit signed integer. 

The sign of the quotient is determined by the rules 
of algebra. The remainder has the same sign as the 
dividend, except that a zero quotient or a zero re­
mainder is always positive. All operands and results 
are treated as signed integers. When the relative 
magnitude of dividend and divisor is such that the 
quotient cannot be expressed by a 32-bit signed integ­
er, a fixed-point divide exception is recognized (a 
program interruption occurs, no division takes place, 
and the dividend remains unchanged in the gcneral 
registers) . 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing (D only) 
S pecifica tion 
Fixed-point divide 

Programming Note 

Division applies to fullword operands in storage only .. 

Convert to Binary 

eva RX 

4F 
7 8 11 12 15 16 1920 31 

The radix of the second operand is changed from deci­
mal to binary, and the result is placed in the first 
operand location. The number is treated as a right­
aligned signed integer both before and after conver­
sion. 

The second operand has the packed decimal data 
format and is checked for valid sign and digit codes. 
Improper codes are a data exception and cause a pro­
gram interruption. The decimal operand occupies a 
double-word storage field, which must be located on 
an integral boundary. The low-order four bits of the 
field represent the sign. The remaining 60 bits contain 
15 binary-coded-decimal digits in true notation. The 
packed decimal data format is described under "Deci­
mal Arithmetic." 

The result of the conversion is placed in the general 
register specified by R l • The maximum number that 
can be converted and still be contained in a 32-bit 
register is 2,147,483,647; the minimum number is 
-2,147,483,648. For any decimal number outside this 
range, the operation is completed by placing the 32 
low-order binary bits in the register; a fixed-point 



divide exception exists, and a program interruption 
follows. In the case of a negative second operand, the 
low-order part is in two's-complement notation. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing 
Specification 
Data 
Fixed-point divide 

Convert to Decimal 

eVD RX 

4E 
7 8 1 1 12 15 16 1 9 20 31 

The radix of the first operand is changed from binary 
to decimal, and the result is stored in the second op­
erand location. The number is treated as a right­
aligned signed integer both before and after con­
version. 

The result is placed in the storage location desig­
nated by the second operand and has the packed 
decimal format, as described in "Decimal Arithmetic." 
The result occupies a double-word in storage and must 
be located on an integral boundary. The low-order 
four bits of the field represent the sign. A positive sign 
is encoded as 1100 or 1010; a negative sign is encoded 
as 1101 or 1011. The choice between the two sign 
representations is determined by the state of psw bit 
12. The remaining 60 bits contain 15 binary-cod ed­
decimal digits in true notation. 

The number to be converted is obtained as a 32-bit 
signed integer from a general register. Since 15 deci­
mal digits are available for the decimal equivalent of 
31 bits, an overflow cannot occur. 

Condition Code: The code remains unchanged. 
Resulting Condition Code: 

Protection 
Addressing 
Specification 

Store 

5T RX 

I 50 Rl X2 B2 D2 
0 7 8 11 12 1516 1920 31 

The first operand is stored at the second operand 
location. 

The 32 bits in the general register are placed un­
changed at the second operand location. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 
Specification 

Store Halfword 

5TH RX 

40 
7 8 11 12 15 16 1 9 20 31 

The first operand is stored at the halfword second 
operand location. 

The 16 low-order bits in the general register are 
placed unchanged at the second operand location. The 
16 high-order bits of the first operand do not partici­
pate and are not tested. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 
Specification 

Store Multiple 

5TM R5 

90 
78 11 12 1516 1920 

The set of general registers starting with the register 
specified by Rl and ending with the register specified 
by R3 is stored at the locations designated by the 
second operand address. 

The storage area where the contents of the general 
registers are placed starts at the location designated 
by the second operand address and continues through 
as many words as needed. The general registers are 
stored in the ascending order of their addresses, start­
ing with the register specified by Rl and continuing 
up to and including the register specified by R3, with 
register 0 following register 15. The first operands 
remain unchanged. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 
S pecifica tion 

Fixed-Point Arithmetic 31 



Shift Left Single 

SLA RS 

8B 
7 8 11 12 1516 1920 31 

The integer part of the first operand is shifted left the 
number OIf bits specified by the second operand ad­
dress. 

The second operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The sign of the first operand remains unchanged. All 
31 integer bits of the operand participate in the left 
shift. Zeros are supplied to the vacated low-order reg­
ister positions. 

If a bit unlike the sign bit is shifted out of position 
1, an overflow occurs. The overflow causes a program 
interruption when the fixed-point overflow mask bit 
is one. 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Interruptions: Fixed-point overflow. 

Programming Note 

The base register participating in the generation of the 
second operand address permits indirect specification 
of the shift amount. A zero in the B:! field indicates 
the absence of indirect shift specification. 

Shift Right Single 

SRA RS 

8A 

78 ]] 12 1516 1920 31 

The integer part of the first operand is shifted right 
the num her of bits specified by the second operand 
address. 

The second operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The sign of the first operand remains unchanged. 
All 31 integer bits of the operand participate in the 
right shift. Bits equal to the sign are supplied to the 
vacated high-order bit positions. Low-order bits are 
shifted out without inspection and are lost. 

32 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Interruptions: None. 

Programming Note 

Right-shifting is similar to division by powers of two 
and to low-order truncation. Since negative numbers 
are kept in two's-complement notation, truncation is 
in the negative direction for both positive and nega­
tive numbers, rather than toward zero as in decimal 
arithmetic. 

Shift amounts from 32 through 63 cause all signifi­
cant digits to be shifted out of the register. They give 
a zero result for positive numbers and a minus one 
result for negative numbers. 

Shift Left Double 

SLDA RS 

8F 

78 ]]/]2 1516 1920 31 

The double-length integer part of the first operand is 
shifted left the number of bits specified by the second 
operand address. 

The RL field of the instruction specifics an even/odd 
pair of registers and must contain an even register 
address. A specification exception occurs when Rl is 
odd. 

The second operand address is not used to address 
data; its low-order 6-bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The operand is treated as a number with 63 integer 
bits and a sign in the sign position of the even register. 
The sign remains unchanged. The high-order position 
of the odd register contains an integer bit, and the 
content of the odd register participates in the shift in 
the same manner as the other integer bits. Zeros are 
supplied to the vacated low-order positions of the 
registers. 

If a bit unlike the sign bit is shifted out of bit posi­
tion 1 of the even register, an overflow occurs. The 
overflow causes a program interruption when the fixed­
point overflow mask bit is one. 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 



Program Interruptions: 
Specification 
Fixed-point overflow 

Shift Right Double 

SRDA RS 

8E 
78 1112 1516 1920 31 

The double-length integer part of the first 9perand is 
shifted right the number of places specified by the 
second operand address. 

The RI field of the instruction specifies an even/odd 
pair of registers and must contain an even register 
address. A specification exception occurs when RI is 
odd. 

The second operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

The sign of the first operand, which is leftmost in 
the even register, remains unchanged. Bits equal to 
the sign are supplied to the vacated high-order posi­
tions of both registers. Low-order bits are shifted out 
without inspection and are lost. 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Interruptions: 
Specification 

Programming Note 

A zero shift amount in the double-shift operations 
provides a double-length sign and magnitude test. 

fixed-Point Arithmetic Exceptions 
Exceptional instructions, data, or results cause a pro­
gram interruption. When a program interruption oc­
curs, the current psw is stored as an old PSW, and a 
new psw is obtained. The interruption code in the old 
psw identifies the cause of the interruption. The 

following exceptions cause a program interruption in 
fixed-point arithmetic. 

Protection: The storage key of a result location does 
not match the protection key in the psw. The opera­
tion is suppressed. Therefore, the condition code and 
data in registers and storage remain unchanged. The 
only exception is STORE MULTIPLE, which is terminated; 
the amount of data stored is unpredictable and should 
not be used for further computation. 

Addressing: An address designates a location out­
side the available storage for a particular installation. 
The operation is terminated. Therefore, the result data 
are unpredictable and should not be used for further 
computation. Operand addresses are tested only when 
used to address storage. Addresses used as a shift 
amount are not tested. The address restrictions do not 
apply to the components from which an address is 
generated - thc content of the D2 field and the con­
tents of the registers specified by X2 and B2 • 

Specification: A double-word operand is not located 
on a 64-bit boundary, a fuIlword operand is not located 
on a 32-bit boundary, a halfword operand is not lo­
cated on a 16-bit boundary, or an instruction specifies 
an odd register address for a pair of general registers 
containing a 64-bit operand. The operation is sup­
pressed. Therefore, the condition code and data in reg­
isters and storage remain unchanged. 

Data: A sign or a digit code of the decimal operand 
in CONVERT TO BINARY is incorrect. The operation is 
suppressed. Therefore, the condition code and data in 
register and storage rcmain unchanged. 

Fixed-Point Overflow: The result of a sign-control, 
add, subtract, or shift operation overflows. The inter­
ruption occurs only when the fixed-point overflow 
mask bit is one. The operation is completed by placing 
the truncated low-order result in the register and set­
ting the condition code to 3. The overflow bits are lost. 
In add-type operations the sign stored in the register 
is the opposite of the sign of the sum or difference. In 
shift operations the sign of the shifted number remains 
unchanged. The state of the mask bit docs not affect 
the result. 

Fixed-Point Divide: The quotient of a division ex­
ceeds the register size, including division by zero, or 
the result in CONVERT TO BINARY exceeds 31 bits. Divi­
sion is suppressed. Therefore, data in the registers 
remain unchanged. The conversion is completed by re­
cording the truncated low-order result in the register. 

Fixed-Point Arithmetic 33 



Decimal Arithmetic 

Decimal arithmetic operates on data in the packed 
format. In this format, two decimal digits are placed 
in one eight-bit byte. Since data are often communi­
cated to or from external devices in the zoned format 
(which has one digit in an eight-bit byte), the neces­
sary format-conversion operations are also provided 
in this instruction group. 

Data are interpreted as integers, right-aligned in 
their fields. They are kept in true notation with a sign 
in the low-order eight-bit byte. 

Processing takes place right to left between main­
storage locations. All decimal arithmetic instructions 
use a two-address format. Each address specifics the 
leftmost byte of an operand. Associated with this ad­
dress is a length field, indicating the number of addi­
tional bytes that the operand extends beyond the first 
byte. 

The decimal arithmetic instruction set provides for 
adding, subtracting, comparing, multiplying, and di­
viding, as well as the format conversion of variable­
length operands. Most decimal instructions are part of 
the decimal feature. 

The condition code is set as a result of all add-type 
and comparison operations. 

Data Format 

Decimal operands reside in main storage only. They 
occupy Helds that may start at any byte address and 
are composed of one to 16 eight-bit bytes. 

Lengths of the two operands specified in an instruc­
tion need not be the same. If necessary they are con­
sidered to be extended with zeros to the left of the 
high-order digits. Results never exceed the limits set 
by address and length specification. Lost carries or 
lost digits from arithmetic operations are signaled as 
a decimal overflow exception. Operands arc either in 
the packed or zoned format. 

Packed Decimal Number 

I Digit I Digit I Digit [~~ ~-J Digit I Digit I Digit I Digit I Sign I 

In the packed format, two decimal digits normally are 
placed adjacent in a byte, except for the rightmost 
byte of the field. In the rightmost byte a sign is placed 

34 

to the right of decimal digit. Both digits and a sign 
arc encoded and occupy four bits each. 

Zoned Decimal Number 

I Zone I Digit I Zone [-_- ~~] Digit I Zone I Digit I Sign I~ 

In the zoned format the low-order four bits of a byte, 
the numeric, are normally occupied by a decimal digit. 
The four high-order bits of a byte are called the zone, 
except for the rightmost byte of the field, where nor­
mally the sign occupies the zone position. 

Arithmetic is performed with operands and results 
in the packed format. In the zoned format, the digits 
are represented as part of an alphameric character 
set. A PACK instruction is provided to transform zoned 
data into packed data, an an UNPACK instruction per­
forms the reverse transformation. Moreover, the edit­
ing instructions may be used to change data from 
packed to zoned. 

The fields specified in decimal arithmetic other than 
in PACK, UNPACK, and MOVE WITH OFFSET either should 
not overlap at all or should have coincident rightmost 
bytes. In ZERO AND ADD, the destination field may also 
overlap to the right of the source field. Because the 
code configurations for digits and sign are verified 
during arithmetic, improper overlapping fields are 
recognized as data exceptions. In move-type oper­
ations, the operand digits and signs are not checked, 
and the operand fields may overlap without any re­
strictions. 

The rules for overlapped fields are established for 
the case where operands are fetched right to left from 
storage, eight bits at a time, just before they are pro­
cessed. Similarly, the results are placed in storage, 
eight bits at a time, as soon as they are generated. 
Actual processing procedure may be considerably dif­
ferent because of the use of preferred storage for in­
termediate results. Nevertheless, the same rules are 
observed. 

Number Representation 
Numbers are represented as right-aligned true integ­
ers with a plus or minus sign. 

The digits 0-9 have the binary encoding 0000-1001. 
The codes 1010-1111 are invalid as digits. This set of 



codes is interpreted as sign codes, with 1010, 1100, 
1110, and 1111 recognized as plus and with 1011 and 
1101 recognized as minus. The codes 0000-1001 are 
invalid as sign codes. The zones are not tested for 
valid codes as they are eliminated in changing data 
from the zoned to the packed format. 

The sign and zone codes generated for all decimal 
arithmetic results differ for the extended binary-coded­
decimal interchange code (EBCDIC) and the American 
Standard code for information interchange ( ASCII) . 

The choice between the two codes is determined by 
bit 12 of the psw. When bit 12 is zero, the preferred 
EBCDIC codes are generated; these are plus, 1100; 
minus, 1101; and zone, 1111. When bit 12 is one, the 
preferred ASCII codes are generated; these are plus, 
1010; minus, 1011; and zone, 0101. 

Condition Code 
The results of all add-type and comparison operations 
are used to set the condition code. All other decimal 
arithmetic operations leave the code unchanged. The 
condition code can be used for deciSion-making by 
subsequent branch-on-condition instructions. 

The condition code can be set to reflect two types 
of results for decimal arithmetic. For most operations 
the states 0, 1, and 2 indicate a zero, less than zero, 
and greater than zero content of the result field; the 
state 3 is used when the result of the operations over­
flows. 

For the comparison operation, the states 0, 1, and 2 
indicate that the first operand compared equal, low, 
or high. 

CONDITION CODE SETTING FOR DECIMAL ARITHMETIC 

0 1 2 3 
Add Decimal zero < zero > zero overflow 
Compare Decimal equal low high 
Subtract Decimal zero < zero > zero overflow 
Zero and Add zero < zero > zero overflow 

Instruction Format 
Decimal instructions use the following format: 

55 Format 

Op Code B1 I ~? D1 I B2 1~[5] 
7 8 11 12 1516 1920 31 32 35 36 47 

For this format, the contents of the general register 
specified by Bl is added to the content of the Dl field 
to form an address. This address specifies the leftmost 
byte of the first operand field. The number of operand 
bytes to the right of this byte is specified by the Ll 
field of the instruction. Therefore, the length in bytes 
of the first operand field is 1-16, corresponding to a 

length code in Ll of 0000-1111. The second operand 
field is specified similarly by the L 1, B2, and D2 in­
struction fields. 

A zero in the Bl or B2 field indicates the absence of 
the corresponding address component. 

Results of operations are always placed in the first 
operand field. The result is never stored outside the 
field specified by the address and length. In the event 
the first operand is longer than the second, the second 
operand is extended with high-order zeros up to the 
length of the first operand. Such extension never modi­
fies storage. The second operand field and the con­
tents of all general registers remain unchanged. 

Instructions 
The decimal arithmetic instructions and their mne­
monics and operation codes follow. All instructions 
use the ss format and assume packed operands and 
results. The only exceptions are PACK, which has a 
zoned operand, and UNPACK, which has a zoned result. 
The table indicates the feature to which each instruc­
tion belongs, when the condition code is set, and the 
exception that causes a program interruption. 

NAME MNEMONIC 

Add Decimal AP 
Subtract Decimal SP 
Zero and Add ZAP 
Compare Decimal CP 
Multiply Decimal MP 
Divide Decimal DP 
Pack PACK 
Unpack UNPK 
Move with Offset MVO 

NOTES 

Addressing exception 
Condition code is set 

TYPE 

SS T,C 
SS T,C 
SS T,C 
SS T,C 
SS T 
SS T 
SS 
SS 
SS 

A 
C 
D 
DF 
DK 
P 
S 
T 

Data exception 
Decimal-overflow exception 
Decimal-divide exception 
Protection exception 
Specification exception 
Decimal feature 

Programming Note 

EXCEPTIONS CODE 

P,A, D,DF FA 
P,A, D,DF FB 
P,A, D,DF F8 

A, D F9 
P,A,S,D FC 
P,A,S,D,DK FD 
P,A F2 
P,A F3 
P,A Fl 

The moving, editing, and logical comparing instruc­
tions may also be used in decimal calculations. 

Add Decimal 

AP 55 

FA B1 I ~? D1 1 B2 IJ[5] 
7 8 11 12 1516 1920 31 32 35 36 47 

The second operand is added to the first operand, and 
the sum is placed in the first operand location. 

Decimal Arithmetic 35 



Addition is algebraic, taking into account sign and 
all digits of both operands. All signs and digits are 
checked for validity. If necessary, high-order zeros are 
supplied for either operand. When the first operand 
field is too short to contain all significant digits of the 
sum, a decimal overflow occurs, and a program inter­
ruption is taken provided that the corresponding mask 
bit is one. 

Overflow has two possible causes. The first is the 
loss of a carry out of the high-order digit position of 
the result field. The second cause is an oversized re­
sult, which occurs when the second operand field is 
larger than the first operand field and significant result 
digits are lost. The field sizes alone are not an indi­
cation of overflow. 

The first and second operand fields may overlap 
when their low-order bytes coincide; therefore, it is 
possible to add a number to itself. 

The sign of the result is determined by the rules of 
algebra. A zero sum is always positive. When high­
order digits are lost because of overflow, a zero result 
has the sign of the correct sum. 

Resulting Condition Code: 
o Sum is zero 
1 Sum is less than zero 
2 Sum is greater than zero 
3 Overflow 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Protection 
Addressing 
Data 
Overflow 

Subtract [»ecimal 

5P 55 

FB 
78 11 12 1516 

The second operand is subtracted from the first oper­
and, and the difference is placed in the first operand 
location. 

Subtraction is algebraic, taking into account sign 
and all digits of both operands. The SUBTRACf DECIMAL 

is similar to ADD DECIMAL, except that the sign of the 
second operand is changed from positive to negative 
or from negative to positive after the operand is ob­
tained from storage and before the arithmetic. 

The sign of the result is determined by the rules of 
algebra. A zero difference is always positive. When 

36 

high-order digits are lost because of overflow, a zero 
result has the sign of the correct difference. 

Resulting. Condition Code: 
o Difference is zero 
1 Difference is less than zero 
2 Difference is greater than zero 
3 Overflow 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Protection 
Addressing 
Data 
Decimal overflow 

Programming Note 

The operands of SUBTRACT DECIMAL may overlap when 
their low-order bytes coincide, even when their 
lengths are unequal. This property may be used to set 
to zero an entire field or the low-order part of a ReId. 

Zero and Add 

ZAP 55 

F8 
78 11 12 1516 

The second operand is placed in the first operand lo­
cation. 

The operation is equivalent to an addition to zero. 
A zero result is positive. When high-order digits are 
lost because of overflow, a zero result has the sign of 
the second operand. 

Only the second operand is checked for valid sign 
and digit codes. Extra high-order zeros are supplied 
if needed. When the Rrst operand Reld is too short to 
contain all significant digits of the second operand, a 
decimal overflow occurs and results in a program in­
terruption, provided that the decimal overflow mask 
bit is one. The Rrst and second operand fields may 
overlap when the rightmost byte of the first operand 
field is coincident with or to the right of the rightmost 
byte of the second operand. 

Resulting Condition Code: 
o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Overflow 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Addressing 
Data 
Decimal overflow 
Protection 



Compare Decimal 

CP 55 

F9 B1 I ~? D1 I B2 IJ[5J 
7 8 11 12 1516 1920 3132 35 36 47 

The first operand is compared with the second, and 
the condition code indicates the comparison result. 

Comparison is right to left, taking into account the 
sign and all digits of both operands. All signs and 
digits are checked for validity. If the fields are un­
equal in length, the shorter is extended with high­
order zeros. A positive zero compares equal to a nega­
tive zero. Neither operand is changed as a result of 
the operation. Overflow cannot occur in this operation. 

The first and second fields may overlap when their 
low-order bytes coincide. It is possible, therefore, to 
compare a number to itself. 

Resulting Condition Code: 
o Operands equal 
1 First operand is low 
2 First operand is high 
3 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Addressing 
Data 

Programming Note 

The COMPARE DECIMAL is unique in processing from 
right to left; taking signs, zeros, and invalid characters 
into account; and extending variable-length fields 
when they are unequal in length. 

Multiply Decimal 

MP 55 

Fe 
78 11 12 1516 

The product of the multiplier (the second operand) 
and the multiplicand (the first operand) replaces the 
multiplicand. 

The multiplier size is limited to 15 digits and sign 
and must be less than the multiplicand size. Length 
code L2, larger than seven, or larger than or equal to 
the length code Ll, is recognized as a specification ex­
ception. The operation is suppressed and a program 
interruption occurs. 

Since the number of digits in the product is the sum 
of the number of digits in the operands, the multi­
plicand must have high-order zero digits for at least 
a field size that equals the multiplier field size; other-

wise, a data exception is recognized, and a program 
interruption occurs. This definition of the multiplicand 
field ensures that no product overflow can occur. The 
maximum product size is 31 digits. At least one high­
order digit of the product field is zero. 

All operands and results are treated as signed in­
tegers, right-aligned in their field. The sign of the 
product is determined by the rules of algebra from 
the multiplier and multiplicand signs, even if one or 
both operands are zero. 

The multiplier and product fields may overlap when 
their low-order bytes coincide. 

Condition Code: The code remains unchanged. 
Program Inte1'ruptions: 

Operation (if decimal feature is not installed) 
Addressing 
Protection 
Specification 
Data 

Programming Note 

When the multiplicand does not have the desired 
number of leading zeros, multiplication may be pre­
ceded by a ZERO AND ADD into a larger field. 

Divide Decimal 

DP 55 

FD 
7 8 11 12 1516 

The dividend (the first operand) is divided by the 
divisor (the second operand) and replaced by the 
quotient and remainder. 

The quotient field is placed leftmost in the first op­
erand field. The remainder field is placed rightmost in 
the first operand field and has a size equal to the di­
visor size. Together, the quotient and remainder oc­
cupy the entire dividend field; therefore, the address 
of the quotient field is the address of the first oper­
and. The size of the quotient field in eight-bit bytes 
is Ll - L2, and the length code for this field is one 
less (Ll - L2 - 1). When the divisor length code 
is larger than seven (15 digits and sign) or larger 
than or equal to the dividend length code, a specifi­
cation exception is recognized. The operation is sup­
pressed, and a program interruption occurs. 

The dividend, divisor, quotient, and remainder are 
all signed integers, right-aligned in their fields. The 
sign of the quotient is determined by the rules of al­
gebra from dividend and divisor signs. The sign of the 
remainder has the same value as the dividend sign. 
These rules are true even when quotient or remainder 
is zero. 

Decimal Arithmetic 37 



Overflow cannot occur. A quotient larger than the 
number of digits allowed is recognized as a decimal­
divide exception. The operation is suppressed, and a 
program interruption occurs. Divisor and dividend re­
main unchanged in their storage locations. 

The divisor and dividend fields may overlap only if 
their low··order bytes coincide. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if decimal feature is not installed) 
Addressing 
Protection 
Specification 
Data 
Decimal divide 

Programming Note 

The maximum dividend size is 31 digits and sign. 
Since the smallest remainder size is one digit and sign, 
the maximum quotient size is 29 digits and sign. 

The condition for a divide exception can be deter­
mined by a trial subtraction. The leftmost digit of the 
divisor field is aligned with the leftmost-less-one digit 
of the dividend field. When the divisor, so aligned, is 
less than or equal to the dividend, a divide exception 
is indicated. 

A decimal-divide exception occurs if the dividend 
does not have at least one leading zero. 

Pack 

PACK 55 

F2 
7 8 11 12 1516 

The format of the second operand is changed from 
zoned to packed, and the result is placed in the first 
operand location. 

The second operand is assumed to have the zoned 
format. All zones are ignored, except the zone over the 
low-order digit, which is assumed to represent a sign. 
The sign is placed in the right four bits of the low­
order byte, and the digits are placed adjacent to the 
sign and to each other in the remainder of the result 
field. The sign and digits are moved unchanged to the 
first operand field and are not checked for valid codes. 

The fields are processed right to left. If necessary, 
the second operand is extended with high-order zerO's. 
If the first operand field is too short to contain all 
significant digits of the second operand field, the re­
maining digits are ignored. Overlapping fields may 
occur and are processed by storing each result byte 
immediately after the necessary operand bytes are 
fetched. 

38 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 

Unpack 

UNPK SS 

F3 
7 8 11 12 1516 

The format of the second operand is changed from 
packed to zoned, and the result is placed in the first 
aperand lacation. 

The digits and sign of the packed operand are 
placed unchanged in the first operand location, using 
the zoned format. Zones with coding 1111 in the bin­
aJ'y-coded-decimal mode and coding 0101 in the ASCII 

made are supplied for all bytes, except the low-order 
byte, which receives the sign of the packed operand. 
The operand sign and digits are not checked for valid 
codes. 

The fields are processed right to left. The second 
operand is extended with zero digits before unpack­
ing, if necessary. If the first operand field is too short 
to contain all significant digits of the second operand, 
the remaining digits are ignored. The first and second 
operand fields may overlap and are processed by stor­
ing a result byte immediately after the necessary op­
erand bytes are fetched. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Addressing 
Protection 

Move with Offset 

MVO 55 

~ __ Fl __ ~L_l~I~L2~_B~1 ~1~J?~~Dl~I_B_2~1~~ 
7 8 11 12 15 16 1920 31 32 35 36 47 

The second operand is placed to the left of and ad­
jacent to the low-order four bits of the first operand. 

The low-order four bits of the first operand are at­
tached as low-order bits to the second operand, the 
second operand bits are offset by four bit positions, 
and the result is placed in the first operand location. 
The first and second operand bytes are not checked 
for valid codes. 

The fields are processed right to left. If necessary, 
the second operand is extended with high-order zerO's. 



If the first operand field is too short to contain all 
bytes of the second operand, the remaining informa­
tion is ignored. Overlapping fields may occur and are 
processed by storing a result byte as soon as the neces­
sary operand bytes are fetched. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 

Programming Note 

The instruction set for decimal arithmetic includes no 
shift instructions since the equivalent of a shift can be 
obtained by programming. Programs for right or left 
shift and for an even or odd shift amount may be writ­
ten with MOVE WITn OFFSET and the logical move in­
structions. 

Decimal Arithmetic Exceptions 

Exceptional instructions, data, or results cause a pro­
gram interruption. When the interruption occurs, the 
current psw is stored as an old PSW, and a new psw is 
obtained. The interruption code in the old psw identi­
fies the cause of the interruption. The following ex­
ceptions cause a program interruption in decimal 
arithmetic. 

Operation: The decimal feature is not installed and 
the instruction is ADD DECIMAL, SUBTRACT DECIMAL, 

ZERO AND ADD, COMPARE DECIMAL, MULTIPLY DECIMAL, 

or DIVIDE DECIMAL. The instruction is suppressed. 
Therefore, the condition code and data in storage and 
registers remain unchanged. 

Protection: The storage key of a result location does 
not match the protection key in the psw. 

Addressing: An address designates a location out­
side the available storage for the installed system. 

In the two preceding exceptions, the operation is 
terminated. The result data and the condition code 
are unpredictable and should not be used for further 
computation. 

These address exceptions do not apply to the com­
ponents from which an address is generated - the 
contents of the Dl and D2 fields and the contents of 
the registers specified by Bl and B2 • 

Specifications: A multiplier or a divisor size ex­
ceeds 15 digits and sign or exceeds the multiplicand 
or dividend size. The instruction is suppressed; 
therefore, the condition code and data in storage and 
registers remain unchanged. 

Data: A sign or digit code of an operand in ADD 

DECIMAL, SUBTRACT DECIMAL, ZERO AND ADD, COMPARE 

DECIMAL, MULTIPLY DECIMAL, or DIVIDE DECIMAL is in­
correct, a multiplicand has insufficient high-order 
zeros, or the operand fields in these operations overlap 
incorrectly. The operation is terminated. The result 
data and the condition code are unpredictable and 
should not be used for further computation. 

Decimal Overflow: The result of ADD DECIMAL, SUB­

TRACT DECIMAL, or ZERO AND ADD overflows. The pro­
gram interruption occurs only when the decimal-over­
flow mask bit is one. The operation is completed by 
placing the truncated low-order result in the result 
field and setting the condition code to 3. The sign and 
low-order digits contained in the result field are the 
same as they would have been for an infinitely long 
result field. 

Decimal Divide Check: The quotient exceeds the 
specified data field, including division by zero. Di­
vision is suppressed. Therefore, the dividend and 
divisor remain unchanged in storage. 

Decimal Arithmetic 39 



Floati nSI-Poi nt Arith metic 

The purpose of the floating-point instruction set is to 
perform calculations using operands with a wide range 
of magnitude and yielding results scaled to preserve 
precision. 

A floating-point number consists of a signcd ex­
ponent and a signed fraction. The quantity expressed 
by this number is the product of the fraction and the 
number 16 raised to the power of the exponent. The 
exponent is expressed in excess 64 binary notation; the 
fraction is expressed as a hexadecimal number having 
a radix point to the left of the high-order digit. 

To avoid unnecessary storing and loading operations 
for results and operands, four floating-point registers 
are provided. The floating-point instruction set pro­
vides for loading, adding, subtracting, comparing, 
multiplying, dividing, and storing, as well as the sign 
control of short or long operands. Short operands gen­
erally provide faster processing and require less stor­
age than long operands. On the other hand, long 
operands provide greater accuracy of computation. 
Operations may be either register to register or storage 
to register. All floating-point instructions and registers 
are part of the floating-point feature. 

To preserve maximum precision, addition, subtrac­
tion, multiplication, and division are performed with 
normalized results. Addition and subtraction may also 
be performed with unnormalized results. Normalized 
and unnormalized operands may be used in any float­
ing-point operation. 

The condition code is set as a result of all sign con­
trol, add, subtract, and compare operations. 

Data Format 
Floating-point data occupy a fixed-length format, 
which may be either a fullword short format or a 
double-word long format. Both formats may be used 
in main storage and in the floating-point registers. The 
four floating-point registers are numbered 0, 2, 4, 
and 6. 

Short Floating-Point Number 

Is I Characteristic I Fraction 
o I 78 31 

40 

Long Floating-Point Number 

~ls~I~C_h_a_ra_c_t_e_ri_st_iC-LI _________ Fr_a_c_ti_o_n ______ ~SS~ ____ ~ 
o I 7 8 63 

The first bit in either format is the sign bit (S). The 
subsequent seven bit positions are occupied by the 
characteristic. The fraction field may have either six 
or 14 hexadecimal digits. 

The entire set of floating-point instructions is avail­
able for both short and long operands. When short­
precision is specified, all operands and results are 32-
bit floating-point words, and the rightmost 32 bits of 
the floating-point registers do not participate in the 
operations and remain unchanged. An exception is the 
product in MULTIPLY, which is a 64-bit word and oc­
cupies a full register. When long-precision is specified, 
all operands and results are 64-bit floating-point words. 

Although final results in short-precision have six 
fraction digits, intermediate results in addition, sub­
traction, and division may extend to seven fraction 
digits. Thc low-order digit of a seven-digit fraction is 
called the guard digit and serves to increase the pre­
cision of the final result. Intermediate results in long­
precision do not exceed 14 fraction digits. 

Number Representation 
The fraction of a floating-point number is expressed in 
hexadecimal digits. The radix point of the fraction is 
assumed to be immediately to the left of the high­
order fraction digit. To provide the proper magnitude 
for the floating-point number, the fraction is consid­
ered to be multiplied by a power of 16. The character­
istic portion, bits 1-7 of both floating-point formats, in­
dicates this power. The characteristic is treated as an 
excess 64 number with a range from -64 through +63, 
coresponding to the binary values 0-127. 

Both positive and negative quantities have a true 
fraction, the difference in sign being indicated by the 
sign bit. The number is positive or negative according­
ly as the sign bit is zero or one. 

The range covered by the magnitude (M) of a 
normalized floating-point number is 
in short preciSion 16-65 L. M L. (1 -16- 6) • 1663, and 
in long precision 16-65 L. M L. (1 -16-14 ) • 1663, 

or approximately 2.4 . 10-78 L. M L. 7.2 . 1075 

in either precision. 



A number with zero characteristic, zero fraction, and 
plus sign is called a true zero. A true zero may arise 
as the result of an arithmetic operation because of the 
particular magnitude of the operands. A result is 
forced to be true zero when an exponent underflow 
occurs or when a result fraction is zero and no pro­
gram interruption due to significance exception is 
taken. When the program interruption is taken, the 
true zero is not forced, and the characteristic and sign 
of the result remain unchanged. Whenever a result has 
a zero fraction, the exponent overflow and underflow 
exceptions do not cause a program interruption. When 
a divisor has a zero fraction, division is omitted, a 
floating-point divide exception exists, and a program 
interruption occurs. Otherwise, zero fractions and zero 
characteristics participate as normal numbers in all 
arithmetic operations. 

The sign of a sum, difference, product, or quotient 
with zero fraction is positive. The sign of a zero 
fraction resulting from other operations is established 
by the rules of algebra from the operand signs. 

Normalization 
A quantity can be represented with the greatest pre­
cision by a floating-point number of given fraction 
length when that number is normalized. A normalized 
floating-point number has a nonzero high-order hex­
adecimal fraction digit. If one or more high-order 
fraction digits are zero, the number is said to be un­
normalized. The process of normalization consists of 
shifting the fraction left until the high-order hexadeci­
mal digit is nonzero and reducing the characteristic by 
the number of hexadecimal digits shifted. A zero frac­
tion can not be normalized, and its associated char­
acteristic therefore remains unchanged when normal­
ization is called for. 

Normalization usually takes place when the inter­
mediate arithmetic result is changed to the final result. 
This function is called postnol'malization. In perform­
ing multiplication and division, the operands are 
normalized prior to the arithmetic process. This func­
tion is called prenol'malization. 

Floating-point operations may be performed with 
or without normalization. Most operations are per­
formed in only one of these two ways. Addition and 
subtraction may be specified either way. 

When an operation is performed without normaliza­
tion, high-order zeros in the result fraction are not 
eliminated. The result mayor may not be normalized, 
depending upon the original operands. 

In both normalized and unnormalizcd operations, 
the initial operands need not be in normalized form. 
Also, intermediate fraction results are shifted right 

when an overflow occurs, and the intermediate fraction 
result is truncated to the final result length after the 
shifting, if any. 

Programming Note 

Since normalization applies to hexadecimal digits, the 
three high-order bits of a normalized number may be 
zero. 

Condition Code 
The results of floating-point sign-control, add, sub­
tract, and compare operations are used to set the con­
dition code. Multiplication, division, loading, and 
storing leave the code unchanged. The condition code 
can be used for dec i s ion -m a kin g by sub seq u e n t 
branch-on-condition instructions. 

The condition code can be set to reflect two types 
of results for floating-point arithmetic. For most opera­
tions, the states 0, 1, or 2 indicate the content of the 
result register is zero, less than zero, or greater than 
zero. A zero result is indicated whenever the result 
fraction is zero, including a forced zero. State 3 is used 
when the exponent of the result overflows. 

For comparison, the states 0, 1, or 2 indicate that the 
first operand is equal, low, or high. 

CONDITION CODE SETTING FOR FLOATING-POINT ARITHMETIC 

0 
Add Normalized S/L zero 
Add Unnormalized slL zero 
Compare S/L equal 
Load and Test S/L zero 
Load Complement S/L zero 
Load Negative s/L zero 
Load Positive S/L zero 
Subtract 

Normalized S/L zero 
Subtract 

Un normalized S/L zero 

Instruction format 

1 
< zero 
< zero 
low 
< zero 
< zero 
< zero 

< zero 

< zero 

2 

> zero 
> zero 
high 
> zero 
> zero 

> zero 

> zero 

> zero 

3 
overflow 
overflow 

overflow 

overflow 

Floating-point instructions use the following two 
formats: 

RR Format 

I Op Code R, R2 
o 78 1112 15 

RX Format 

I Op Code R, X2 B2 
o 7 8 11 12 15 16 1 9 20 31 

In these formats, Rl designates the address of a float­
ing-point register. The contents of this register will be 

Floating-Point Arithmetic 41 



called the first operand. The second operand location 
is defined differently for two formats. 

In the BB format, the R2 field specifies the address 
of a floating-point register containing the second op­
erand. The same register may be specified for the first 
and second operand. 

In the BX format, the contents of the general register 
specified by X2 and B2 arc added to the content of the 
D2 field to form an address designating the location of 
the second operand. 

A zero in an X2 or B2 field indicates the absence of 
the corresponding address component. 

The register address specified by the Rl and R2 
fields should be 0, 2, 4 or 6. Otherwise, a specification 
exeception is recognized, and a program interruption 
is caused. 

The storage address of the second operand should 
designate word boundaries for short operands and 
double-word boundaries for long operands. Otherwise, 
a specification exception is recognized, and a program 
interruption is caused. 

Results replace the first operand, except for the stor­
ing operations, where the second operand is replaced. 

Except for the storing of the final result, the contents 
of all floating-point or general registers and storage 
locations participating in the addressing or execution 
part of an operation remain unchanged. 

The floating-point instructions are the only instruc­
tions using the floating-point registers. 

Instructi,ons 
The floating-point arithmetic instructions and their 
mnemonics, formats, and operation codes follow. All 
operations can be specified in short and long precision 
and are part of the floating-point feature. The follow­
ing table indicates when normalization occurs, when 
the condition code is set, and the exceptions that 
cause a program interruption. 

NAME 

Load (Long) 
Load (Long) 
Load (Short) 
Load (Short) 
Load and Test 

(Long) 
Load and Test 

(Short) 
Load Complement 

(Long) 
Load Complement 

(Short) 

42 

MNEMONIC 

LDR 
LD 
LER 
LE 

LTDR 

LTER 

LCDR 

LCER 

TYPE 

RR F 
RX F 
RR F 
RX F 

RR F,C 

RR F,C 

RR F,C 

RR F,C 

EXCEPTIONS 

S 
A,S 

S 
A,S 

S 

S 

S 

S 

CODE 

28 
68 
38 
78 

22 

32 

23 

33 

NAME MNEMONIC TYPE 

Load Positive (Long) LPDR 
Load Positive (Short) LPER 
Load Negative (Long) LNDR 
Load Negative (Short) LNER 
Add Normalized 

(Long) 
Add Normalized 

(Long) 
Add Normalized 

( Short) 
Add N ormaHzed 

( Short) 
Add U nnormalized 

(Long) 
Add U nnormalized 

(Long) 
Add Unnormalized 

( Short) 
Add Unnormalized 

( Short) 
Subtract Normalized 

(Long) 
Subtract Normalized 

(Long) 
Subtract Normalized 

( Short) 
Subtract Normalized 

( Short) 
Subtract Unnorm­

alized (Long) 
Subtract Unnorm­

alized (Long) 
Subtract Unnorm­

alized (Short) 
Subtract Unnorm-

alized (Short) 
Compare (Long) 
Compare (Long) 
Compare (Short) 
Compare (Short) 
Halve (Long) 
Halve (Short) 
Multiply (Long) 
Multiply (Long) 
Multiply (Short) 
Multiply (Short) 
Divide (Long) 
Divide (Long) 
Divide (Short) 
Divide (Short) 
Store (Long) 
Store (Short) 

NOTES 

NADR 

NAD 

NAER 

NAE 

AWR 

AW 

AUR 

AU 

NSDR 

NSD 

NSER 

NSE 

SWR 

SW 

SUR 

SU 
CDR 
CD 
CER 
CE 
HDR 
HER 

NMDR 
NMD 
NMER 
NME 
NDDR 
NDD 
NDER 
NDE 

STD 
STE 

A Addressing exception 
C Condition code is set 

RR F,C 
BR F,C 
RR F,C 
RR F,C 

RR F,C 

RX F,C 

RR F,C 

RX F,C 

RR F,C 

RX F,C 

RR F,C 

RR F,C 

RR F,C 

RX F,C 

RR F,C 

RX F,C 

RR F,C 

RX F,C 

RR F,C 

RX F,C 
RR F,C 
RX F,C 
RR F,C 
RX F,C 
RR F 
RR F 
RR F 
RX F 
RR F 
RX F 
RR F 
RX F 
RR F 
RX F 
RX F 
RX F 

E Exponent-overflow exception 
F Floating-point feature 
FK Floating-point divide exception 
LS Significance exception 
N Normalized operation 
P Protection exception 
S Specification exception 
U Exponent-underflow exception 

EXCEPTIONS CODE 

S 20 
S 30 
S 21 
S 31 

S,U,E,LS 2A 

A,S, U ,E,LS 6A 

S,U,E,LS 3A 

A,S,U,E,LS 7A 

S, E,LS 2E 

A,S, E,LS 6E 

S, E,LS 3E 

A,S, E,LS 7E 

S,U,E,LS 2B 

A,S,U,E,LS 6B 

S,U,E,LS 3B 

A,S,U,E,LS 7B 

S, E,LS 2F 

A,S, E,LS 6F 

S, E,LS 3F 

A,S, E,LS 7F 
S 29 

A,S 69 
S 39 

A,S 79 
S 24 
S 34 
S,U,E 2C 

A,S,U,E 6C 
S,U,E 3C 

A,S,U,E 7C 
S,U,E,FK 2D 

A,S,U,E,FK 6D 
S,U,E,FK 3D 

A,S,U,E,FK 7D 
P,A,S 60 
P,A,S 70 



Load 

LER RR (Short Operands) 

I 38 Rl I R2 
0 78 11 12 15 

LE RX (Short Operands) 

I 78 Rl I X2 I B2 
0 7 8 11 12 1516 1920 31 

LOR RR (Long Operands) 

I 28 Rl I R2 I 
0 7 8 11 12 15 

LO RX (Long Operands) 

68 Rl I X2 I B2 
7 8 11 12 1516 1920 31 

The second operand is placed in the first operand 
location. 

The second operand is not changed. In short-preci­
sion the low-order half of the result register remains 
unchanged. Exponent overflow, exponent underflow, 
or lost significance cannot occur. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if floating-point feature is not in­
stalled) 

Addressing (LE, LD only) 
Specification 

Load and Test 

LTER RR 

32 

LTOR RR 

22 

(Short Operands) 

Rl I R2 
7 8 11 12 15 

78 

(Long Operands) 

Rl I R2 
11 12 15 

The second operand is placed in the first operand 
location, and its sign and magnitude determine the 
condition code. 

The second operand is not changed. In short-preci­
sion the low-order half of the result register remains 
unchanged and is not tested. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Interruptions: 
Operation (if floating -point feature is not in­

stalled) 
Specification 

Programming Note 

When the same register is specified as first and second 
operand location, the operation is equivalent to a test 
without data movement. 

Load Complement 

LCER RR (Short Operands) 

33 
78 1112 15 

LCOR RR (Long Operands) 

23 
78 1112 15 

The second operand is placed in the first operand 
location with the sign changed to the opposite value. 

The sign bit of the second operand is inverted, while 
characteristic and fraction are not changed. In short­
precision the low-order half of the result register re­
mains unchanged and is not tested. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 

Program Interruptions: 
Operation (if floating-point feature is not in­

stalled) 
Specification 

Load Positive 

LPER RR (Short Operands) 

30 
78 1112 15 

LPOR RR (Long Operands) 

20 Rl I R2 I 
78 1112 15 

The second operand is placed in the first operand 
location with the sign made plus. 

Floating-Point Arithmetic 43 



The sign bit of the second operand is made zero, 
while characteristic and fraction are not changed. In 
short-precision, the low-order half of the result register 
remains unchanged and is not tested. 

Resulting Condition Code: 
o Result fraction is zero 
1 
2 Result is greater than zero 
3 

Program Interruptions: 
Operation (if floating-p@int feature is not in­

sta.lled) 
Specification 

Load Negative 

LNER RR (Short Operands) 

31 
7 8 11 12 15 

LNDR RR (Long Operands) 

21 
78 1112 15 

The second operand is placed in the first operand 
location with the sign made minus. 

The sign bit of the second operand is made one, 
even if the fraction is zero. Characteristic and fraction 
are not changed. In short-precision, the low-order half 
of the result register remains unchanged and is not 
tested. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 
3 

Program Interruptions: 
Operation (if floating-point 

stalled) 
Specification 

Add Normalized 

AER RR. (Short Operands) 

I 3A R1 I R2 I 
0 78 11 12 15 

AE RX (Short Operands) 

I 7A Rl I X2 I B2 
0 78 11 12 1516 1920 

44 

feature is not in-

D2 
31 

ADR RR (Long Operands) 

I 2A Rl I R2 I 
0 78 11 12 15 

AD RX (Long Operands) 

I 6A Rl I X2 I B2 D2 
0 7 8 11 12 1516 1920 31 

The second operand is added to the first operand, and 
the normalized sum is placed in the first operand 
location. 

In short-precision the low-order halves of the float­
ing-point registers are ignored and remain unchanged. 

Addition of two floating-point numbers consists of a 
characteristic comparison and a fraction addition. The 
characteristics of the two operands are compared, and 
the fraction with the smaller characteristic is right­
shifted; its characteristic is increased by one for each 
hexadecimal digit of shift, until the two characteristics 
agree. The fractions are then added algebraically to 
form an intermediate sum. If an overflow carry occurs, 
the intermediate sum is right-shifted one digit, and the 
characteristic is increased by one. If this increase 
causes a characteristic overflow, an exponent-overflow 
exception is signaled, and a program interruption 
occurs. 

The short intermediate sum consists of seven hex­
adecimal digits and possible carry. The low-order 
digit is a guard digit retained from the fraction which 
is shifted right. Only one guard digit participates in 
the fraction addition. The guard digit is zero if no shift 
occurs. The long intermediate sum consists of 14 hex­
adecimal digits and a possible carry. No guard digit 
is retained. 

After the addition, the intermediate sum is left­
shifted as necessary to form a normalized fraction; 
vacated low-order digit positions are filled with zeros 
and the characteristic is reduced by the amount of 
shift. 

If normalization causes the characteristic to under­
flow, characteristic and fraction are made zero, an 
exponent-underflow exception exists, and a program 
interruption occurs if the corresponding mask bit is 
one. If no left shift takes place the intermediate sum 
is truncated to the proper fraction length. 

When the intermediate sum is zero and the signifi­
cance mask bit is one, a significance exception exists, 
and a program interruption takes place. No normal­
ization occurs; the intermediate sum characteristic 
remains unchanged. When the intermediate sum is 
zero and the significance mask bit is zero, the program 



interruption for the significance exception does not 
occur; rather, the characteristic is made zero, yielding 
a true zero result. Exponent underflow does not occur 
for a zero fraction. 

The sign of the sum is derived by the rules of 
algebra. The sign of a sum with zero result fraction 
is always positive. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Result exponent overflows 

Program Interruptions: 
Operation (if floating-point feature is not in-

stalled) 
Addressing (AE and AD only) 
Specification 
Significance 
Exponent overflow 
Exponent underflow 

Programming Note 

Interchanging the two operands in a floating-point 
addition does not affect the value of the sum. 

Add Unnormalized 

AUR RR (Short Operands) 

I 3E Rl I R2 I 
0 78 11 12 15 

AU RX (Short Operands) 

I 7E Rl I X2 I B2 D2 
0 78 11 12 1516 1920 31 

AWR RR (Long Operands) 

I 2E Rl I R2 I 
0 78 11 12 15 

AW RX (Long Operands) 

I 6E Rl I X2 I B2 
0 78 11 12 1516 1920 31 

The second operand is added to the first operand, and 
the unnormalized sum is placed in the first operand 
location. 

In short-precision, the low-order halves of the float­
ing-point registers are ignored and remain unchanged. 

After the addition the intermediate sum is truncated 
to the proper fraction length. 

When the resulting fraction is zero and the signifi­
cance mask bit is one, a significance exception exists 
and a program interruption takes place. When the 
resulting fraction is zero and the significance mask 
bit is zero, the program interruption for the signifi­
cance exception does not occur; rather, the character­
istic is made zero, yielding a true zero result. 

Leading zeros in the result are not eliminated by 
normalization, and an exponent underflow cannot 
occur. 

The sign of the sum is derived by the rules of 
algebra. The sign of a sum with zero result fraction is 
always positive. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Result exponent overflows 

Program Interruptions: 
Operation (if floating-point feature is not in-

stalled) 
Addressing (AU and A w only) 
Specification 
Significance 
Exponent overflow 

Subtract Normalized 

SER RR (Short Operands) 

I 3B Rl I R2 I 
0 78 11 12 15 

SE RX (Short Operands) 

I 7B Rl I X2 I B2 D2 
0 78 11 12 1516 1920 31 

SDR RR (Long Operands) 

I 2B Rl I R2 I 
0 78 11 12 15 

SD RX (Long Operands) 

6B 
7 8 11 12 1516 1920 31 

The second operand is subtracted from the first op­
erand, and the normalized difference is placed in the 
fi'rst operand location. 

Floating-Point Arithmetic 45 



In short-precision, the low-order halves of the Hoat­
ing-point registers are ignored and remain unchanged. 

The SUBTRACT NORMALIZED is similar to ADD NORMAL­

IZED, except that the sign of the second operand is 
inverted before addition. 

The sign of the difference is derived by the rules of 
algebra. The sign of a difference with zero result 
fraction is always positive. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Result exponent overHows 

Program Interruptions: 
Operation (if Hoating-point feature is not in-

stalled) 
Addressing (SD and SE only) 
Specification 
Significance 
Exponent overHow 
Exponent underHow 

Subtract Unnormalized 

SUR RR. (Short Operands) 

3F 
78 11 12 15 

SU RX (Short Operands) 

7F 

7 8 11 12 1516 1920 

SWR (Long Operands) 

2F 
7 8 11 12 15 

SW RX (Long Operands) 

6F 
7 8 11 12 1516 1920 

D2 
31 

31 

The second operand is subtracted from the first op­
erand, and the unnormalized difference is placed in 
the first operand location. 

In short-precision, the low-order halves of the Hoat­
ing-point register are ignored and remain unchanged. 

46 

The SUBTRACT UNNORMALIZED is similar to ADD UN­

NORMALIZED, except for the inversion of the sign of the 
second operand before addition. 

The sign of the difference is derived by the rules of 
algebra. The sign of a difference with zero result 
fraction is always positive. 

Resulting Condition Code: 
o Result fraction is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Result exponent overHows 

Program Interruptions: 
Operation (if Hoating-point feature is not in-

stalled) 
Addressing (sw and su only) 
Specification 
Significance 
Exponent overHow 

Compare 

CER RR (Short Operands) 

39 
7 8 11 12 15 

CE RX (Short Operands) 

I 79 Rl I X2 I B2 
0 7 8 11 12 1516 1920 

CDR RR (Long Operands) 

I 29 Rl I R2 I 
0 78 11 12 15 

CD RX (Long Operands) 

I 69 Rl I X2 I B2 
0 7 8 11 12 1516 1920 

31 

31 

The first operand is compared with the second op­
erand, and the condition code indicates the result. 

In short-precision, the low-order halves of the Hoat­
ing-point registers are ignored. 

Comparison is algebraic, taking into account the 
sign, fraction, and exponent of each number. An expo­
nent inequality is not decisive for magnitude determi­
nation since the fractions may have different numbers 
of leading zeros. An equality is established by follow­
ing the rules for normalized Hoating-point subtraction. 
When the intermediate sum, including a possible 



guard digit, is zero, the operands are equal. Neither 
operand is changed as a result of the operation. 

Exponent overflow, exponent underflow, or lost sig­
nificance cannot occur. 

Resulting Condition Code: 
o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Interruptions: 
Operation (if floating-point feature is not in­

stalled) 
Addressing (CD and CE only) 
Significance 

Programming Note 

Numbers with zero fraction compare equal even when 
they differ in sign or characteristic. 

Halve 

HER RR (Short Operands) 

34 
7 8 11 12 15 

HDR RR (Long Operands) 

24 
7 8 11 12 15 

The second operand is divided by two, and the 
quotient is placed in the first operand location. 

In short-precision, the low-order half of the result 
register remains unchanged. 

The operation shifts the fraction right one bit; the 
sign and characteristic are not changed. No normaliza­
tion or test for zero fraction takes place. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if floating-point feature is not in­
stalled) 

Specification 

Programming Note 

The halve operation differs from a divide operation 
with the number two as divisor in the absence of pre­
normalization and postnormalization and in the ab­
sence of a zero-fraction test. 

Multiply 

MER RR (Short Operands) 

I 3C R] I R2 
0 7 8 11 12 15 

ME RX (Short Operands) 

7C R] I X
2 I B2 

7 8 11 12 1516 1920 31 

MDR RR (Long Operands) 

I 2C R] I R2 I 
0 7 8 11 12 15 

MD RX (Long Operands) 

I 6C R] I X2 I B2 
0 7 8 11 12 1516 1920 31 

The normalized product of multiplier (the second op­
erand) and multiplicand (the first operand) replaces 
the multiplicand. 

The multiplication of two floating-point numbers 
consists of a characteristic addition and a fraction 
multiplication. The sum of the characteristics less 64 is 
used as the characteristic of an intermediate product. 
The sign of the product is determined by the rules of 
algebra. 

The product fraction is normalized by prenormaliz­
ing the operands and postnormalizing the intermediate 
product, if necessary. The intermediate product char­
acteristic is reduced by the number of left-shifts. For 
long operands, the intermediate product fraction is 
truncated before the left-shifting, if any. For short 
operands (six-digit fractions), the product fraction has 
the full 14 digits of the long format, and the two low­
order fraction digits are accordingly always zero. 

Exponent overflow occurs if the final product char­
acteristic exceeds 127. The operation is terminated, 
and a program interruption occurs. The overflow ex­
ception does not occur for an intermediate product 
characteristic exceeding 127 when the final character­
istic is brought within range because of normalization. 

Exponent underflow occurs if the final product char-

Floating-Point Arithmetic 47 



acteristic is less than zero. The characteristic and 
fraction are made zero, and a program interruption 
occurs if the corresponding mask bit is one. Underflow 
is not signaled when an operand's characteristics be­
come less than zero during prenormalization, and the 
correct characteristic and fraction value are used in 
the multiplication. 

When all 14 result fraction digits are zero, the prod­
uct sign and characteristic are made zero, yielding a 
true zero result without exponent underflow and ex­
ponent overflow causing a program interruption. The 
program interruption for lost significance is never 
taken for multiplication. 

Condit'ion Code: The code remains unchanged. 
Program Interruptions: 

Operation (if floating-point feature is not in-
stalled) 

Addressing ( MD and ME only) 
Specification 
Exponent overflow 
Exponent underflow 

Programming Note 

Interchanging the two operands in a floating-point 
multiplication does not affect the value of the product. 

Divide 

DER RR. (Short Operands) 

30 
78 11 12 15 

DE RX (Short Operands) 

I 70 Rl I 
X2 I B2 

0 7 8 11 12 1516 1920 31 

DDR RR (Long Operands) 

I 20 Rl I R2 
0 78 11 12 15 

DD RX (Long Operands) 

I 60 Rl I 
X2 I B2 

0 7 8 11 12 1516 1920 31 

48 

The dividend (the first operand) is divided by the 
divisor (the second operand) and replaced by the 
quotient. No remainder is preserved. 

In short-precision, the low-order halves of the float­
ing-point register are ignored and remain unchanged. 

A floating-point division consists of a characteristic 
subtraction and a fraction division. The difference be­
tween thc dividend and divisor characteristics plus 
64 is used as an intermediate quotient characteristic. 
The sign of the quotient is determined by the rules of 
algebra. 

The quotient fraction is normalized by prenormaliz­
ing the operands. Postnormalizing the intermediate 
quotient is never necessary, but a right-shift may be 
called for. The intermediate-quotient characteristic is 
adjusted for the shifts. All dividend fraction digits 
participate in forming the quotient, even if the normal­
ized dividend fraction is larger than the normalized 
divisor fraction. The quotient fraction is truncated to 
the desired number of digits. 

A program interruption for exponent overflow oc­
curs when the final-quotient characteristic exceeds 127. 
The operation is terminated. 

A program interruption for exponent underflow oc­
curs if the final-quotient characteristic is less than 
zero. The characteristic, sign, and fraction are made 
zero, and the interruption occurs if the corresponding 
mask bit is one. Underflow is not signaled for the 
intermediate quotient or for the operand character­
istics during prenormalization. 

When division by a divisor with zero fraction is at­
tempted, the opcration is suppressed. The dividend 
remains unchanged, and a program interruption for 
floating-point divide occurs. When the dividend frac­
tion is zero, the quotient fraction will be zero. The 
quotient sign and characteristic are made zero, yield­
ing a true zero result without taking the program 
interruption for exponent underflow and exponent 
overflow. The program interruption for significance is 
never taken for division. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if floating-point feature is not in-
stalled) 

Addressing (DD and DE only) 
Specification 
Exponent overflow 
Exponent underflow 
Floating-point divide 



Store 

STE RX (Short Operands) 

I 70 R, I 
X

2 I B2 

0 7 8 11 12 1516 1920 31 

STD RX (Long Operands) 

I 60 R, I 
X

2 I B2 

0 7 8 11 12 1516 1920 31 

The first operand is stored at the second operand 
location. 

In short-precision, the low-order half of the first op­
erand register is ignored. The first operand remains 
unchanged. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if floating-point feature is not in-
stalled) 

Addressing 
Protection 
Specification 

Floating-Point Arithmetic Exceptions 
Exceptional instructions, data, or results cause a pro­
gram interruption. When the interruption occurs, the 
current psw is stored as an old psw, and a new psw 
is obtained. The interruption code in the old psw iden­
tifies the cause of the interruption. The following ex­
ceptions cause a program interruption in floating-point 
arithmetic. 

Operation: The Floating-Point Feature is not in­
stalled, and an attempt is made to execute a floating­
point instruction. The instruction is suppressed. The 
condition code and data in registers and storage re­
main unchanged. 

Protection: The storage key of a result location docs 
not match the protection key in the psw. The opera­
tion is suppressed. Therefore, the condition code and 
data in registers and storage remain unchanged. 

Addressing: An address designates a location outside 
the available storage for the installed system. The 
operation is terminated. The result data and the con­
dition code, if affected, are unpredictable and should 
not be used for further computation. 

Specification: A short operand is not located on a 
32-bit boundary or a long operand is not located on a 
64-bit boundary; or, a floating-point register address 
other than 0, 2, 4, or 6 is specified. The instruction is 
suppressed. Therefore, the condition code and data 
in registers and storage remain unchanged. The ad­
dress restrictions do not apply to the components from 
which an address is generated - the content of the 
D2 field and the contents of the registers specified by 
X2 and B2 • 

Exponent Overflow: The result exponent of an addi­
tion, subtraction, multiplication, or division overflows, 
and the result fraction is not zero. The operation is 
terminated; the result data are unpredictable and 
should not be used for further computation. The con­
dition code is set to 3 for addition and subtraction and 
remains unchanged for multiplication and division. 

Exponent Underflow: The result of an addition, sub­
traction, multiplication, or division underflows, and the 
result fraction is not zero. A program interruption oc­
curs if the exponent-underflow mask bit is one. The 
operation is completed by replacing the result with 
a true zero. The condition code is set to ° for addition 
and subtraction and remains unchanged for multipli­
cation and division. The state of the mask hit does not 
affect the result. 

Significance: The result fraction of an addition or 
subtraction is zero. A program interruption occurs if 
the significance mask bit is one. The mask bit affects 
also the result of the operation. When the significance 
mask bit is a zero, the operation is completed by re­
placing the result with a true zero. When the signifi­
cance mask bit is one, the operation is completed 
without further change to the characteristic of the 
result. In either case, the condition code is set to 0. 

Floating-Point Divide: Division by a number with 
zero fraction is attempted. The division is suppressed; 
therefore, the condition code and data in registers and 
storage remain unchanged. 

Floating-Point Arithmetic 49 



Logical Operations 

A set of instructions is provided for the logical ma­
nipulation of data. Generally, the operands are treated 
as eight-bit bytes. In a few cases the left or right four 
bits of a byte are treated separately or operands are 
shifted a bit at a time. The operands are either in 
storage or in the general register. Some operands are 
introduced from the instruction stream. 

Processing of data in storage proceeds left to right 
through fields which may start at any byte position. In 
the general registers, the processing, as a rule, in­
volves the entire register contents. 

Except: for the editing instructions, data are not 
treated as numbers. Editing provides a transformation 
from packed decimal digits to alphanumeric charac­
ters. 

The set of logical operations includes moving, com­
paring, bit connecting, bit testing, translating, editing, 
and shift operations. All logical operations other than 
editing are part of the standard instruction set. Edit­
ing instructions are pali of the decimal feature. 

The condition code is set as a result of all logical 
comparing, connecting, testing, and editing operations. 

Data Format 

Data reside in general registers or in storage or are 
introduced from the instruction stream. The data size 
may be a single or double word, a single character, or 
variable in length. When two operands participate 
they have equal length, except in the editing instruc­
tions. 

Fixed-Lenuth Logical Information 

Logical Data 

31 

Data in general registers normally occupy all 32 bits. 
Bits are treated uniformly, and no distinction is made 
between sign and numeric bits. In a few operations, 
only the low-order eight bits of a register participate, 
leaving the remaining 24 bits unchanged. In some 
shift operations, 64 bits of an even/odd pair of regis­
ters participate. 

50 

The LOAD ADDRESS introduces a 24-bit address into 
a general register. The high-order eight bits of the 
register are made zero. 

In storage-to-register operations, the storage data 
occupy either a word of 32 bits or a byte of eight bits. 
The word must be located on word boundaries, that 
is, its address must have the two low-order bits zero. 

Variable-Length Logical Information 

Character Character I ~~ ~~] Character 

16 

In storagc-to-storage operations, data have a variable 
field-length format, starting at any byte address and 
continuing for up to a total of 256 bytes. Processing 
is left to right. 

Operations introducing data from the instruction 
stream into storage, as immediate data, are restricted 
to an eight-bit byte. Only one byte is introduced from 
the instruction stream, and only one byte in storage 
participates. 

Use of general register 1 is implied in TRANSLATE 

AND TEST and EDIT AND MARK. A 24-bit address may be 
placed in this register during these operations. The 
TRANSLATE AND TEST also implies general register 2. 
The low-order eight bits of register 2 may be replaced 
by a function byte during a translate-and-test oper­
ation. 

Editing requires a packed decimal field and gen­
erates zoned decimal digits. The digits, signs, and 
zones are recognized and generated as for decimal 
arithmetic. Otherwise, no internal data structure is re­
quired, and all bit configurations are considered valid. 

The translating operations use a list of arbitrary 
values. A list provides a relation between an argument 
(the quantity used to reference the list) and the 
function (the content of the location related to the 
argument). The purpose of the translation may be to 
convert data from one code to another code or to per­
form a control function. 

A list is specified by an initial address - the address 
designating the leftmost byte location of the list. The 
byte from the operand to be translated is the argu­
ment. The actual address used to address the list is 
obtained by adding the argument to the low-order po-



sitions of the initial address. As a consequence, the list 
contains 256 eight-bit function bytes. In cases where 
it is known that not all eight-bit argument values will 
occur, it may be possible to reduce the size of the list. 

In a storage-to-storage operation, the operand fields 
may be defined in such a way that they overlap. The 
effect of this overlap depends upon the operation. 
When the operands remain unchanged, as in COMPARE 

or TRANSLATE AND TEST, overlapping does not affect 
the execution of the operation. In the case of MOVE, 

EDIT, and TRANSLATE, one operand is replaced by new 
data, and the execution of the operation may be af­
fected by the amount of overlap and the manner in 
which data are fetched or stored. For purposes of 
evaluating the effect of overlapped operands, consider 
that data are handled one eight-bit byte at a time. All 
overlapping fields are considered valid but, in editing, 
overlapping fields give unpredictable results. 

Condition Code 
The results of most logical operations are used to set 
the condition code in the psw. The LOAD ADDRESS, IN­

SERT CHARACTERS, STORE CHARACTER, TRANSLATE, and 
the moving and shift operations leave this code un­
changed. The condition code can be used for decision­
making by subsequent branch-on-condition instruc­
tions. 

The condition code can be set to reHect five types 
of results for logical operations: For COMPARE LOGICAL 

the states 0, 1, or 2 indicate that the first operand is 
equal, low, or high. 

For the logical-connectives, the states ° or 1 indi­
cate a zero or nonzero result field. 

For TEST UNDER MASK, the states 0, 1, or 3 indicate 
that the selected bits are all-zero, mixed zero and one, 
or all-one, 

For TRANSLATE AND TEST, the states 0, 1, or 2 indi­
cate an all-zero function byte, a nonzero function byte 
with the operand incompletely tested, or a last func­
tion byte nonzero. 

For editing the states 0, 1, or 2 indicate a zero, less 
than zero, or greater than zero content of the last re­
sult field. 

CONDITION CODE SETTING FOR LOGICAL OPEHA TIONS 

0 1 2 3 
And zero not zero 
Compare Logical equal low high 
Edit zero < zero > zero 
Edit and Mark zero < zero > zero 
Exclusive Or zero not zero 
Or zero not zero 
Test Under Mask zero mixed one 
Translate and Test zero incomplete complete 

Instruction format 
Logical instructions use the following five formats: 

RR Format 

I Op Code R1 R2 

o 78 1112 15 

RX Format 

Op Code R1 X
2 B2 

7 8 11 12 1516 1920 31 

R5 Format 

Op Code R1 R3 B2 

7 8 11 12 1516 1920 31 

51 Format 

Op Code 

7 8 15 16 1920 31 

5S Format 

Op Code L B1 I ~?D11 B2 IJ3J 
78 1516 1 9 20 31 32 35 36 47 

In the RR, RX, and RS formats, the content of the regis­
ter specified by Rl is called the first operand. 

In the SI and ss formats, the content of the general 
register specified by Bl is added to the content of the 
Dl field to form an address. This address deSignates 
the leftmost byte of the first operand field. The num­
ber of bytes to the right of this first byte is specified 
by the L field in the ss format. In the SI format the 
oper~nd size is one byte. 

In the RR format, the R2 field specifies the register 
containing the second operand. The same register may 
be specified for the first and second operand. 

In the RX format, the contents of the general regis­
ters specified by the X2 and B2 fields arc added to the 
content of the D2 field to form the address of the sec­
ond operand. 

In the RS format, used for shift operations, the con­
tent of the general register specified by the B2 field 
is added to the content of the D2 field. This sum is not 
used as an address but specifies the number of bits of 
the shift. The RH field is ignored in the shift oper­
ations. 

Logical Operations 51 



In the SI format, the second operand is the eight-bit 
immediate data field, 12, of the instruction. 

In the S8 format, the content of the general register 
specified by B2 is added to the content of the D2 field 
to form the address of the second operand. The sec­
ond operand field has the same length as the first op­
erand field. 

A zero in any of the X2, B1, or B2 fields indicates 
the absence of the corresponding address or shift­
amount component. An instruction can specify the 
same general register both for address modification 
and for operand location. Address modification is al­
ways completed prior to operation execution. 

Results replace the first operand, except in STORE 

CHARACTER, where the result replaces the second op­
erand. A variable-length result is never stored outside 
the field specified by the address and length. 

The contents of all general registers and storage lo­
cations participating in the addressing or execution of 
an operation generally remain unchanged. Exceptions 
are the result locations, general register 1 in EDIT AND 

MARK, and general registers 1 and 2 in TRANSLATE AND 

TEST. 

Instructions 
The logicalinstructions, their mnemonics, formats, and 
operation codes follow. The table also indicates the 
feature to which the instruction belongs, when the 
condition code is set, and the exceptions that cause 
a program interruption. 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Move MVI SI P,A 92 
Move MVC SS P,A D2 
Move Numerics MVN SS P,A Dl 
Move Zones MVZ SS P,A D3 
Compare Logical CLR RR C 15 
Compare Logical CL RX C A,S 55 
Compare Logical CLI SI C A 95 
Compare Logical CLC SS X,C A D5 
AND NR RR C 14 
AND N RX C A,S 54 
AND NI SI C P,A 94 
AND NC SS C P,A D4 
OR OR RR C 16 
OR 0 RX C A,S 56 
OR 01 SI C P,A 96 
OR OC SS C P,A D6 
Exclusive OR XR RR C 17 
Exclusive OR X RX C A,S 57 
Exclusive OR XI SI, C P,A 97 
Exclusive OR XC SS C P,A D7 
Test Under Mask TM SI C A 91 
Insert Character IC RX A 43 
Store Character STC RX P,A 42 
Load Address LA RX 41 
Translate TR SS P,A DC 
Translate and Test TRT SS C A DD 
Edit ED SS, T,C P,A, D DE 
F:dit and Mark EDMK SS, T,C P,A, D DF 

,52 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Shift Left Single 
Logical SLL RS 89 

Shift Right Single 
Logical SRL RS 88 

Shift Left Double 
Logical SLDL RS, X S 8D 

Shift Right Double 
Logical SRDL RS, X S 8C 

NOTES 

A Addressing exception 
C Condition code is set 
D Data exception 
P Protection exception 
S Specification exception 
T Decimal feature 

Programming Note 

The fixed-point loading and storing instructions also 
may be used for logical operations. 

Move 

MVI 51 

92 
7 8 1516 1920 31 

MVC 55 

D2 
7 8 1516 

The second operand is placed in the first operand lo­
cation. 

The ss format is used for a storage-to-storage move. 
The SI format introduces one 8-bit byte from the 
instruction stream. 

In storage-to-storage movement the fields may over­
lap in any desired way. Movement is left to right 
through each field a byte at a time. 

The bytes to be moved are not changed or in­
spected. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 

Programming Note 

It is possible to propagate one character through an 
entire field by having the first operand field start one 
character to the right of the second operand field. 



Move Numerics 

MVN SS 

Dl L 
7 8 1516 

The low-order four bits of each byte in the second op­
erand field, the numerics, are placed in the low-order 
bit positions of the corresponding bytes in the first 
operand fields. 

The instruction is storage to storage. Movement is 
left to right through each field one byte at a time, and 
the fields may overlap in any desired way. 

The numerics are not changed or checked for validi­
ty. The high-order four bits of each byte, the zones, 
remain unchanged in both operand fields. 

Condition Code: The code remains unchanged. 

Program Interruptions: 
Protection 
Addressing 

Move Zones 

MVZ SS 

D3 

78 

L B1 I ~{D11 B2 11m 
1516 19 20 31 32 35 36 47 

The high-order four bits of each byte in the second 
operand field, the zones, are placed in the high-order 
four bit positions of the corresponding bytes in the 
first operand field. 

The instruction is storage to storage. Movement is 
left to right through each field one byte at a time, and 
the fields may overlap in any desired way. 

The zones are not changed or checked for validity. 
The low-order four bits of each byte, the numerics, 
remain unchanged in both operand fields. 

Condition Code: The code remains unchanged. 

Program Interruptions: 
Addressing 
Protection 

Compare Logical 

CLR RR 

I 15 R1 R2 I 
0 78 11 12 15 

CL RX 

I 55 R1 X2 B2 D2 
0 78 11 12 1516 1920 31 

CLI SI 

95 
78 15 16 1920 31 

CLC SS 

D5 L B1 I ~{D11 B2 11m 
78 1516 19 20 31 32 35 36 47 

The first operand is compared with the second oper­
and, and the result is indicated in the condition code. 

The instructions allow comparisons that are register 
to register, storage to register, instruction to storage, 
and storage to storage. 

Comparison is binary, and all codes are valid. The 
operation proceeds left to right and terminates as soon 
as an inequality is found. 

Resulting Condition Code: 
o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Interruptions: 
Addressing (CL, CLI, CLC only) 
Specification (CL only) 

Programming Note 

The COMPARE LOGICAL is unique in treating all bits 
alike as part of an unsigned binary quantity. In vari­
able-length operation, comparison is left to right and 
may extend to field lengths of 256 bytes. The oper­
ation may be used for alphameric comparisons. 

Logical Operations 53 



AND 

NR RR. 

14 
78 1112 15 

N RX 

54 
7 8 11 12 15 16 19 20 31 

NI 51 

94 
7 8 1516 1920 31 

NC 55 

04 L 
78 1516 

The logical product (AND) of the bits of the first and 
second operand is placed in the first operand location. 

Operands are treated as unstructured logical quan­
tities, and the connective AND is applied bit by bit. All 
operands and results are valid. 

Resulting Condition Code: 
o Result is zero 
1 Result not zero 
2 
3 

Program Interruptions: 
Protection (NI, NC only) 
Addressing (N, NI, NC only) 
Specification (N only) 

Programming Note 

The AND may be used to set a bit to zero. 

54 

OR 

OR RR 

16 
78 1112 15 

o RX 

~1 ___ 5_6 ____ ~ __ Rl~ __ X_2~~B_2~ _______ 0_2 ____ ~ 
o 7 8 11 12 15 16 19 20 31 

01 51 

~ ___ 96 ____ ~ ____ 1_2 __ ~~B_1~~ _____ 0_1 ____ ~ 
7 8 15 16 19 20 31 

OC 55 

06 L Bill? 01 I B2 Ijl3J 
L-------7~8 -----1...J5 "-16-- 1920 31 32 35 36 47 

The logical sum (OR) of the bits of the first and sec­
ond operand is placed in the first operand location. 

Operands are treated as unstructured logical quan­
tities, and the connective inclusive OR is applied bit by 
bit. All operands and results are valid. 

Resulting Condition Code: 
o Result is zero 
1 Result not zero 
2 
3 

Program Interruptions: 
Protection (01, oc only) 
Addressing (0, 01, oc only) 
Specification (0 only) 

Programming Note 

The OR may be used to set a bit to one. 



Exclusive OR 

XR RR 

I 17 R1 R2 
0 78 11 12 15 

X RX 

I 57 R1 X
2 B2 D2 

0 7 8 11 12 1516 1920 31 

XI 51 

97 
7 8 1516 1920 31 

XC 55 

D7 L B1 I ~?D11 B2 I~rn 
78 1516 1920 31 32 35 36 47 

The modulo-two sum (exclusive OR) of the bits of the 
first and second operand is placed in the first operand 
location. 

Operands are treated as instructured logical quanti­
ties, and the connective exclusive OR is applied bit by 
bit. All operands and results are valid. 

The instruction differs from AND and OR only in the 
connective applied. 

Resulting Condition Code: 
o Result is zero 
1 Result not zero 
2 
3 

Program Interruptions: 
Protection (XI, XC only) 
Addressing (x, XI, xc only) 
Specification (x only) 

Programming Note 

The exclusive OR may be used to invert a bit. 

Test Under Mask 

TM 51 

91 

78 1516 1920 31 

The state of the first operand bits selected by a mask 
is used to set the condition code. 

The byte of immediate data, 12, is used as an eight­
bit mask. The bits of the mask are made to correspond 
one for one with the bits of the character in storage 
specified by the first operand address. 

A mask bit of one indicates that the storage bit is 
selected. When the mask bit is zero, the storage bit is 
ignored. When all storage bits thus selected are zero, 
the condition code is made O. The code is also made 
o when the mask is all-zero. When the selected bits 
are all-one, the code is made 3; otherwise, the code is 
made 1. The character in storage is not changed. 

Resulting Condition Code: 
o Selected bits all-zero; mask is all-zero 
1 Selected bits mixed zero and one 
2 
3 Selected bits all-one 

Program Interruptions: 
Addressing. 

Insert Character 

IC RX 

43 
7 8 11 12 15 16 19 20 31 

The eight-bit character at the second operand address 
is inserted into bit positions 24-31 of the register spe­
cified as the first operand location. The remaining bits 
of the register remain unchanged. 

The instruction is storage to general register. The 
byte to be inserted is not changed or inspected. 

Condition Code: The code remains unchanged. 
Program Interruptions: Addressing. 

Store Character 

5TC RX 

42 
7 8 11 12 15 16 19 20 31 

Bit positions 24-31 of the register designated as the 
first operand are placed at the second operand ad­
dress. 

The instruction is general register to storage. The 
byte to be stored is not changed or inspected. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 

Logical Operations 55 



Load Address 

LA RX 

41 
7 8 11 12 15 16 19 20 31 

The address of the second operand is inserted in the 
low-order 24 bits of the general register specified by 
R i • The remaining bits of the general register are 
made zero. No storage references for operands take 
place. 

The address specified by the X2, B2, and D2 fields is 
inserted in bits 8-31 of the general register specified 
by R i • Bits 0-7 are set to zero. The address is not in­
spected for availability, protection, or resolution. 

The address computation follows the rules for ad­
dress arithmetic. Any carries beyond the 24th bit are 
ignored. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Programming Note 

The same general register may be specified by the Rb 
X2, and H2 instruction field, except that general regis­
ter 0 can be specified only by the Ri field. In this 
manner, it is possible to increment the low-order 24 
bits of 2l general register, other than 0, by the con­
tents of the D2 field of the instruction. The register 
to be incremented should be specified by Ri and by 
either X2 (with B2 set to zero) or B2 (with X2 set to 
zero ). 

Translah! 

TR S5 

DC L B1 I ~?Dll B2 IU3J 
78 15 16 19 20 31 32 35 36 . 47 

The eight-bit bytes of the first operand are used as 
arguments to reference the list designated by the sec­
ond operand address. Each eight-bit function byte se­
lected from the list replaces the corresponding argu­
ment in the first operand. 

The bytes of the first operand are selected one by 
one for translation, proceeding left to right. Each 
argument byte is added to the entire initial address, 
the second operand address, in the low-order bit po­
sitions. The sum is used as the address of the function 
byte, which then replaces the original argument byte. 

All data are valid. The operation proceeds until the 
first operand field is exhausted. The list is not altered 
unless an overlap occurs. 

56 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Protection 
Addressing 

Translate and Test 

TRT 55 

DD 
7 8 

L B1 I ~{Dll B2 I}~ 
1516 1920 3132 3536 47 

The eight-bit bytes of the first operand are used as 
arguments to reference the list designated by the sec­
ond' operand address. Each eight-bit function byte 
thus selected from the list is used to determine the 
continuation of the operation. vVhen the function byte 
is a zero, the operation proceeds by fetching and 
translating the next argument byte. When the function 
byte is nonzero, the operation is completed by insert­
ing the related argument address in general register 
1, and by inserting the function byte in general regis­
ter 2. 

The bytes of the first operand are selected one by 
one for translation, proceeding from left to right. The 
first operand remains unchanged in storage. Fetching 
of the function byte from the list is performed as in 
TRANSLATE. The function byte retrieved from the list 
is inspected for the all-zero combination. 

When the function byte is zero, the operation pro­
ceeds with the next operand byte. When the first op­
erand field is exhausted before a nonzero function byte 
is encountered, the operation is completed by setting 
the condition code to O. The contents of general regis­
ter 1 and 2 remain unchanged. 

When the function byte is nonzero, the related ar­
gument address is inserted in the low-order 24 bits of 
general register 1. This address points to the argument 
last translated. The high-order eight bits of register 1 
remain unchanged. The function byte is inserted in 
the low-order eight bits of general register 2. Bits 0-23 
of rcgister 2 remain unchanged. The condition code 
is set to 1 when the one or more argument bytes have 
not been translated. The condition code is set to 2 if 
the last function byte is nonzero. 

Resulting Condition Code: 
o All function bytes are zero 
1 Nonzero function byte before the first operand 

field is exhausted 
2 Last function byte is nonzero 
3 

Program Interruptions: 
Addressing 



Programming Note 

The TRANSLATE AND TEST is useful for scanning an in­
put stream and locating delimiters. The stream can 
thus be rapidly broken into statements or data fields 
for further processing. 

Edit 

ED 55 

DE L Bl I ~?Dli B2 I~~ 
78 1516 19 20 31 32 35 36 47 

The format of the source (the second operand) is 
changed from packed to zoned and is edited under 
control of the pattern (the first operand). The edited 
result replaces the pattern. 

Editing includes sign and punctuation control and 
the suppressing and protecting of leading zeros. It 
also facilitates programmed blanking of all-zero fields. 
Several numbers may be edited in one operation, and 
numeric information may be combined with text. 

The length field applies to the pattern (the first op­
erand). The pattern has the unpacked format and may 
contain any character. The source (the second oper­
and) has the packed format and must contain valid 
decimal digit and sign codes. The left four bits of a 
byte must be 0000-1001; the codes 1010-1111 are 
recognized as a data exception and cause a program 
interruption. The right four bits are recognized as 
either a sign or a digit. 

Both operands are processed left to right one char­
acter at a time. Overlapping pattern and source fields 
give unpredictable results. 

The character to be stored in the first operand field 
is determined by three things: the digit obtained from 
the source field, the pattern character, and the state 
of a trigger, called the S trigger. One of three actions 
may be taken: 

1. The source digit is expanded to zoned format 
and is stored. 

2. The pattern character is left unchanged. 
3. A fill character is stored. 
S Trigger: The S trigger is used to control the stor­

ing or replacing of source digits and pattern charac­
ters. Source digits are replaced when zero suppression 
or protection is desired. Digits to be stored in the re­
sult, whether zero or not, are termed significant. Pat­
tern characters are replaced or stored when they are 

significance-dependent (such as punctuation) or sign­
dependent (such as credit symbols). The S trigger 
also is used to record the sign of the source number 
and set the condition code accordingly. 

The S trigger is set to the zero state at the start of 
the operation and is subsequently changed depending 
upon the source number and the pattern characters. 

Pattern Character: Three pattern characters have a 
special use in editing. They are the digit-select char­
acter, the significance-start character, and the field­
separation character. These three characters are re­
placed, either by a source digit or by a fill character; 
their encoding is shown in the next table. 

1. The digit-select character causes either a source 
digit or the fill character to be inserted in the result 
field. 

2. The significance-start character has the same 
function but also indicates, by setting the S trigger, 
that the foll0'Ying digits are significant. 

3. The field-separator character identifies individual 
fields in a multiple-field editing operation. The char­
acter is replaced by the fill character. The S trigger is 
set to zero, and testing for a zero-field is then re­
initiated. 

4. All other pattern characters are treated in a com­
mon way: If the S trigger is one, the pattern character 
is left unchanged; if the S trigger is zero, the pattern 
character is replaced by the fill character. 

If the pattern character is either a digit-select or a 
significance-start character, the source digit is exam­
ined. The source digit replaces the pattern character 
if the S trigger is one or if the source digit is nonzero. 
If the nonzero digit is inserted when the S trigger is 
zero, the S trigger is set to one to indicate that the 
subsequent digits are significant. If the S trigger and 
the source digit are both zero, the fill character is sub­
stituted for the pattern character. 

Source Digit: When the source digit is stored in the 
result, its code is expanded from the packed to the 
zoned format by attaching a zone. When psw bit 12 is 
zero, the preferred EBCDIC zone code 1111 is gener­
at,ed. When psw bit 12 is one, the preferred ASCII zone 
code 0101 is generated. 

The source digits are examined only once during an 
editing operation. They are selected eight bits at a 
time from the second operand field. The leftmost four 
bits are examined first, and the rightmost four bits re­
main available for the next pattern character which 
calls for a digit examination. However, the rightmost 

Logical Operations 57 



four bits are inspected for a sign code immediately 
after the leftmost four bits are examined. 

Any of the plus-sign codes 1010, 1100, 1110, or 1111 
will set the S trigger to zero after the digit is in­
spected, whereas the minus-sign codes 1011 and 1101 
will leave the S trigger unchanged. When one of these 
sign codes is encountered in the four rightmost bits, 
these bits no longer are treated as a digit, and a new 
character is fetched from storage for the next digit to 
be examined. 

A plus sign sets the S trigger to zero even if the trig­
ger was set to one for a nonzero digit in the same 
source byte or by a significance-start character for that 
digit. 

Fill Character: The fill character is obtained from 
the pattern as part of the editing operation. The first 
character of the pattern is used as a fill character and 
is left unchanged in the result field, except when it is 
the digit-.select or significance-start character. In the 
latter cases a digit is examined and, when nonzero, 
inserted. 

Result Condition: To facilitate the blanking of all­
zero fields, the condition code is used to indicate the 
sign and zero status of the last field edited. All Jigits 
examined are tested for the code 0000. The presence 
or absence of an all-zero source field is recorded in the 
condition code at the termination of the editing oper­
ation. 

1. The condition code is made 0 for a zero source 
field, regardless of the state of the S trigger. 

2. For a nonzero source field and an S trigger of 
one, the code is made 1 to indicate less than zero. 

3. For a nonzero source field and an S trigger of 
zero, the code is made 2 to indicate greater than zero. 

The condition-code setting pertains to fields as spe­
cified by the field-separator characters, regardless of 
the number of signs encountered. 

For the multiple-field editing operations the con­
dition-code setting reflects only the field following the 
last field-separator character. When the last character 
of the pattern is a field-separator character, the con­
dition code is made O. 

The following table gives the details of the edit op­
eration. The leftmost columns give the pattern char­
acter and its code. The next columns snow the states 
of the digit and the S trigger used to determine thc 
resulting action. The rightmost column shows the new 
setting of the S trigger. 

58 

CHAR- EXAM- TRIG- RESULT TRIG-

ACTER NAME AND INE GER DIGIT CHAR- GER 

CODE PURPOSE DIGIT STATUS STATUS ACTER SET 

0010 0000 digit select yes s=l digit 
s=O dnotO digit s=l 
s=O d=O fill 

00100001 significance yes s=l digit 
start s=O d nota digit s=l 

s=O d=O fill s=l 
00100010 field no fill s=O 

separator 
other message no s=l leave 

insertion s=O fill 

NOTES 

d Source digit 
S trigger (1: minus sign, digits, or pattern used; 0: 
plus sign, fill used) 

digit A source digit replaces the pattern character. 
fill The fill character replaces the pattern character. 
leave The pattern character remains unchanged. 

Resulting Condition Code: 
o Result field is zero 
1 Result field is less than zero 
2 Result field is greater than zero 
3 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Protection 
Addressing 
Data 

Programming Note 

As a rule the source operand is shorter than the pat­
tern since it yields two digits or a digit and a sign for 
each source number. 

When a single instruction is used to edit several 
numbers, the zero-field identification is provided only 
for the last field. 

Edit and Mark 

EDMK 55 

DF L B1 I ~?D11 B2 IJ~ 
7 8 15 16 19 20 31 32 35 36 47 

The format of the source (the second operand) is 
changed from packed to zoned and is edited under 
control of the pattern (the first operand). The address 
of each first significant result digit is recorded in gen­
eral register 1. The edited result replaces the pattern. 



The operation is identical to EDIT, except for the ad­
ditional function of inserting a byte address in general 
register 1. The use of general register 1 is implied. 
The byte address is inserted in bits 8-31 of this regis­
ter. The byte address is inserted each time the S trig­
ger is in the zero state and a nonzero digit is inserted 
in the result field. The address is not inserted when 
significance is forced by the significance-start charac­
ter of the pattern. Bits 0-7 are not changed. 

Resulting Condition Code: 
o Result field is zero 
1 Result field is less than zero 
2 Result field is greater than zero 
3 

Program Interruptions: 
Operation (if decimal feature is not installed) 
Protection 
Addressing 
Data 

Programming Notes 

The EDIT AND MARK facilitates the programming of 
floating currency-symbol insertion. The character ad­
dress inserted in register 1 is one more than the ad­
dress where a floating currency-sign would be inserted. 
The BRANCH ON COUNT, with zero in the R2 field, may 
be used to reduce the inserted address by one. 

The character address is not stored when signifl­
cance is forced. Therefore, the address of the charac­
ter following the significance-start character should be 
placed in register 1 prior to EDIT AND MARK. 

When a single instruction is used to edit several 
numbers, the address of the first significant digit of 
each number is inserted in general register 1. Only 
the last address will be available after the instruction 
is completed. 

Shift Left Single 

SI.L RS 

89 
7 8 11 12 1516 1920 31 

The first operand is shifted left the number of bits 
specified by the second operand address. 

The second operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

All 32 bits of the general register specified by Rl 
participate in the shift. High-order bits are shifted out 

without inspection and are lost. Zeros are supplied to 
the vacated low-order register positions. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Shift Right Single 

SRL RS 

88 
7 8 11 12 1516 1920 31 

The first operand is shifted right the number of bits 
specified by the second operand address. 

The second operand address is not used to address 
data; its low-order six bits indicate the number of bit 
positions to be shifted. The remainder of the address 
is ignored. 

All 32 bits of the general register specified by Rl 
participate in the shift. Low-order bits are shifted out 
without inspection and are lost. Zeros are supplied to 
the vacated high-order register positions. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Shift Left Double 

SLDL RS 

80 

7 8 11 12 1516 1920 31 

The double-length first operand is shifted left the 
number of bits specified by the second operand ad­
dress. 

The Rl field of the instruction specifies an even/odd 
pair of registers and must contain an even register 
address. An odd value for Rl is a specification excep­
tion and causes a program interruption. The second 
operand address is not used to address data; its low­
order six bits indicate the number of bit positions to 
be shifted. The remainder of the address is ignored. 

All 64 bits of the even/odd register pair specified 
by Rl participate in the shift. High-order bits are 
shifted out of the even-numbered register without in­
spection and are lost. Zeros are supplied to the va­
cated low-order positions of the odd-numbered regis­
ters. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Specification 

Logical Operations 59 



Shift Riglht Double 

SRDI. RS 

8e 
7 8 11 12 1516 1920 31 

The double-length first operand is shifted right the 
number of bits specified by the second operand ad­
dress. 

The R L field of the instruction specifies an even/odd 
pair of registers and must contain an even register ad­
dress. An odd value for Rl is a specification exception 
and causes a program interruption. The second oper­
and address is not used to address data; its low-order 
six bits indicate the number of bit positions to be 
shifted. The remainder of the address is ignored. 

All 64 bits of the even/odd register pair specified 
by Rl participate in the shift. Low-order bits are 
shifted out of the odd-numbered register without in­
spection and are lost. Zeros are supplied to the va­
cated high-order positions of the registers. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

S pedfica tion 

Programming Note 

The logical shifts differ from the arithmetic shifts in 
that the high-order bit participates in the shift and is 
not propagated, the condition code is not changed, 
and no overflow occurs. 

Logical Operation Exceptions 

Exceptional instructions, data,or results cause a pro­
gram interruption. When the interruption occurs, the 
current psw is stored as an old psw and a new psw 

60 

is obtained. The interruption code in the old psw 
identifies the cause of the interruption. The following 
exceptions cause a program interruption in logical op­
erations. 

Operation: The decimal feature is not installed, and 
the instruction is EDIT or EDIT AND MARK. The opera­
tion is suppressed. Therefore, the condition code and 
data in registers and storage remain unchanged. 

Protection: The storage key of a result location in 
storage does not match the protection key in the psw. 
The operation is suppressed. Therefore, the condition 
code and data in registers and storage remain un­
changed. The only exceptions are the variable-length 
storage-to-storage operations, which are terminated. 
For terminated operations, the result data and con­
dition code, if affected, are unpredictable and should 
not be used for further computation. 

Addressing: An address designates a location out­
side the available storage for the installed system. The 
operation is terminated. The result data and the con­
dition code, if affected, are unpredictable and should 
not be used for further computation. 

Specification: A fullword operand in a storage-to­
register operation is not located on a 32-bit boundary 
or an odd register address is specified for a pair of 
general registers containing a 64-bit operand. The op­
eration is suppressed. Therefore, the condition code 
and data in registers and storage remain unchanged. 

Data: A digit code of the second operand in EDIT or 
EDIT AND MARK is invalid. The operation is terminated. 
The result data and the condition code are unpredict­
able and should not be used for further computation. 

Operand addresses are tested only when used to ad­
dress storage. Addresses used as a shift amount are 
not tested. Similarly, the address generated by the use 
of LOAD ADDRESS is not tested. The address restrictions 
do not apply to the components from which an ad­
dress is generated - the contents of the Dl and D2 
fields, and the contents of the registers specified by 
X2 , B1 , and B2 • 



Instructions are performed by the central process­
ing unit primarily in the sequential order of their 
locations. A departure from this normal sequential 
operation may occur when branching is performed. 
The branching instructions provide a means for mak­
ing a two-way choice, to reference a subroutine, or to 
,repeat a segment of coding, such as a loop. 

Branching is performed by introducing a branch ad­
dress as a new instruction address. 

The branch address may be obtained from one of 
the general registers or it may be the address specified 
by the instruction. The branch address is independent 
of the updated instruction address. 

The detailed operation of branching is determined 
by the condition code which is part of the program 
status word (psw) or by the results in the general reg­
isters which are specified in the loop-closing opera­
tions. 

During a branching operation, the rightmost half of 
the psw, including the updated instruction address, 
may be stored before the instruction address is re­
placed by the branch address. The stored information 
may be used to link the new instruction sequence with 
the preceding sequence. 

The instruction EXECUTE is grouped with the branch­
ing instructions. The branch address of EXECUTE desig­
nates a single instruction to be inserted in the instruc­
tion sequence. The updated instruction address norm­
ally is not changed in this operation, and only the in­
struction located at the branch address is executed. 

All branching operations are provided in the stand­
ard instruction set. 

Normal Sequential Operation 

Normally, operation of the CPU is controlled by in­
structions taken in sequence. An instruction is fetched 
from a location specified by the instruction-address 
field of the psw. The instruction address is increased 
by the number of bytes of the instruction to address 
the next instruction in sequence. This new instruction­
address value, called the updated instruction address, 
replaces the previous contents of the instruction-ad­
dress field in the psw. The current instruction is exe­
cuted, and the same steps are repeated, using the up­
dated instruction address to fetch the next instruction. 

Branching 

Instructions occupy a halfword or a multiple there­
of. An instruction may have up to three halfwords. 
The number of halfwords in an instruction is specified 
by the first two instruction bits. A 00 code indicates a 
halfword instruction, codes 01 and 10 indicate a two­
halfword instruction, and code 11 indicates a three­
halfword instruction. 

Hallword format 

I OpCode ~ 
o 78 15 

Two-Ha/fword format 

I Op Code 
o 

Three-Ha/fword format 

I Op Code Bl ID1~~ I 
o 7 8 1516 1920 3132 

Storage wraps around from the maximum address­
able storage location, byte location 16,777,215, to byte 
location O. An instruction having its last halfword at 
the maximum storage location is followed by the in­
struction at address O. Also, a multiple-halfword in­
struction may straddle the upper storage boundary; no 
special indication is given in these cases. 

Conceptually, an instruction is fetched from storage 
after the preceding operation is completed and before 
execution of the current operation, even though physi­
cal storage word size and overlap of instruction execu­
tion with storage access may cause actual instruction 
fetching to be different. 

A change in the sequential operation may be caused 
by branching, status-switching, interruption, or man­
ual intervention. Sequential operation is initiated and 
terminated from the system control panel. 

Branching 61 



Programming Note 

It is possible to modify an instruction in storage by 
means of the immediately preceding instructions. 

Sequenticd Operation Exceptions 

Exceptional instruction addresses or operation codes 
cause a program interruption. vVhen the interruption 
occurs, the current psw is stored as an old PSW, and a 
new psw is obtained. The interruption code in the old 
psw identifies the cause of the interruption. (In this 
manual, part of the description of each class of instruc­
tions is a list of the program interruptions that may 
occur for these instructions.) The following program 
interruptions may occur in normal instruction sequenc­
ing, independently of the instruction performed. 

Operation: The operation code is not assigned. 
Addressing: An instruction halfword is located out­

side the available storage for the particular installation. 
Specification: The low-order bit of the instruction 

address is one. 
In each case, the operation is suppressed; therefore, 

the condition code and data in storage and registers 
remain unchanged. The instruction address stored as 
part of the old psw has been updated by the number 
of halfwords indicated by the instruction length code 
in the old psw. 

Programming Notes 

An unavailable instruction address may occur when 
normal instruction sequencing proceeds from a valid 
storage region into an unavailable region or following 
a branching or status-switching operation. 

The oeld instruction address can occur only follow­
ing branching or status-switching operations. 

When the last location in available storage contains 
an instruction that again introduces a valid instruction 
address, no program interruption is caused, even 
though the updated instruction address designates an 
unavailable location. 

The main-storage or register address specification of 
an instruction with unassigned operation code may 
cause an addressing or specification interruption when 
the requirements for the particular instruction class are 
not met. 

Decisiol1l-Making 
Branching may be conditional or unconditional. Un­
conditional branches replace the updated instruction 
address with the branch address. Conditional branches 
may use the branch address or may leave the updated 
instruction address unchanged. When branching takes 
place, the instruction is called successful; otherwise, it 
is called unsuccessful. 

62 

Whether a conditional branch is successful depends 
on the result of operations concurrent with the branch 
or preceding the branch. The former case is repre­
sented by BRANCH ON COUNT and the branch-on-index 
instructions. The latter case is represented by BRANCH 

ON CONDITION, which inspects the condition code that 
reflects the result of a previous arithmetic, logical, or 
I/O operation. 

The condition code provides a means for data-de­
pendent decision-making. The code is inspected to 
qualify the execution of the conditional-branch instruc­
tions. The code is set by some operations to reHect the 
result of the operation, independently of the previous 
setting of the code. The code remains unchanged for 
all other operations. 

The condition code occupies bit positions 34 and 35 
of the psw. When the psw is stored during status­
switching, the condition code is preserved as part of 
the psw. Similarly, the condition code is stored as part 
of the rightmost half of the psw in a branch-and-link 
operation. A new condition code is obtained by a LOAD 

PSW or SET PROGRAM MASK or by the new psw loaded 
as a result of an interruption. 

The condition code indicates the outcome of some 
of the arithmetic, logical, or I/O operations. It is not 
changed for any branching operation, except for EXE­

CUTE. In the case of EXECUTE, the condition code is set 
or left unchanged by the subject instruction, as would 
have been the case had the subject instruction been in 
the normal instruction stream. 

The table at the end of this section lists all instruc­
tions capable of altering the condition code and the 
meaning of the codes for these instructions. 

Instruction Formats 
Branching instructions use the following three formats: 

RR Format 

7 8 11 12 15 

RX Format 

I Op Code I Rl/Mll X2 B2 
0 7 8 11 12 1516 1920 31 

RS Format 

Op Code Rl R3 B2 
7 8 11 12 1516 1920 31 



In these formats Rl specifies the address of a gen­
eral register. In BRANCH ON CONDITION a mask field 
( M1 ) identifies the bit values of the condition code. 
The branch address is defined differently for the three 
formats. 

In the RR format, the R2 field specifies the address of 
a general register containing the branch address, ex­
cept when R2 is zero, which indicates no branching. 
The same register may be specified by Rl and R2. 

In the RX format, the contents of the general reg­
isters specified by the X2 and B2 fields are added to 
the content of the D2 field to form the branch address. 

In the RS format, the content of the general register 
specified by the B2 field is added to the content of the 
D2 field to form the branch address. The Rg field in 
this format specifies the location of the second operand 
and implies the location of the third operand. The first 
operand is specified by the Rl field. The third operand 
location is always odd. If the Rg field specifies an even 
register, the third operand is obtained from the next 
higher addressed register. If the Rg field specifies an 
odd register, the third operand location coincides with 
the second operand location. 

A zero in a B2 or X2 field indicates the absence of 
the corresponding address component. 

An instruction can specify the same general register 
for both address modification and operand location. 
The order in which the contents of the general reg­
isters are used for the different parts of an operation 
is: 

1. Address computation. 

2. Arithmetic or link information storage. 

3. Replacement of the instruction address by the 
branch address obtained under step 1. 

Results are placed in the general register specified 
by R1 . Except for the storing of the final results, the 
contents of all general registers and storage locations 
participating in the addressing or execution part of an 
operation remain unchanged. 

Programming Note 

In several instructions the branch address may be 
specified in two ways: in the RX format, the branch 
address is the address specified by X2, B2, and D2, in 
the RR format, the branch address is the contents of 
the register specified by R2. Note that the relation of 
the two formats in branch-address specification is not 
the same as in operand-address specification. For op­
erands, the address specified by X2, B2 , and D2 is the 
operand address, but the register specified by R2 con­
tains the operand itself. 

Branching Instructions 
The branching instructions and their mnemonics, for­
mats, and operation codes follow. The table also shows 
which instructions are not part of the small binary in­
struction set and the exceptions that cause a program 
interruption. The subject instruction of EXECUTE fol­
lows its own rules for interruptions. The condition 
code is never changed for branching instructions. 

NAME 

Branch on 
Condition 

Branch on 
Condition 

Branch and Link 
Branch and Link 
Branch on Count 
Branch on Count 
Branch on Index 

High 
Branch on Index 

Low or Equal 
Execute 

NOTES 

MNEMONIC TYPE EXCEPTIONS CODE 

BCR RR 07 

BC RX 47 
BALR RR 05 
BAL RX 45 
BCTR RR 06 
BCT RX 46 

BXH RS 86 

BXLE RS 87 
EX RX A,S, EX 44 

A Addressing exception 
EX Execute exception 
S Specification exception 

Branch On Condition 

BCR RR 

I 07 
78 1112 15 

BC RX 

47 
7 8 11 12 15 16 19 20 31 

The updated instruction address is replaced by the 
branch address if the state of the condition code is as 
specified by M1 ; otherwise, normal instruction se­
quencing proceeds with the updated instruction ad­
dress. 

The Ml field is used as a four-bit mask. The four bits 
of the mask correspond, left to right, with the four 
condition codes (0, 1, 2, and 3) as follows: 

CONDITION 

CODE 

o 
1 
2 
3 

INSTRUCTION 

BIT 

8 
9 

10 
11 

The branch is successful whenever the condition 
code has a corresponding mask bit of one. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Branching 63 



Programming Note 

When all four mask bits are ones, the branch is un­
conditional. When all four mask bits are zero or when 
the R2 field in the RR format contains zero, the branch 
instruction is equivalent to a no-operation. 

Branch all1d Link 

SALR I~R 

05 
78 1112 15 

SAL RX 

45 
7 8 11 12 15 16 19 20 31 

The rightmost 32 bits of the PSW, including the up­
dated instruction address, are stored as link informa­
tion in the general register specified by RI . Subse­
quently, the instruction address is replaced by the 
branch address. 

The branch address is determined before the link 
information is stored. The link information contains 
the instruction length code, the condition code, and 
the program mask bits, as well as the updated instruc­
tion address. The instruction-length code is 1 or 2, 
depending on the format of the BRANCH AND LINK. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Programm.'ng Note 

The link information is stored without branching when 
in the RR format the R2 field contains zero. 

When BRANCH AND LINK is the subject instruction of 
EXECUTE, the instruction-length code is 2. 

Branch On Count 

SCTR RR 

06 
78 1112 15 

SCT RX 

46 
7 8 11 12 15 16 19 20 31 

The content of the general register specified by RI is 
algebraically reduced by one. When the result is zero, 
normal instruction sequencing proceeds with the up-

64 

dated instruction address. When the result is not zero, 
the instruction address is replaced by the branch ad­
dress. 

The branch address is determined prior to the count­
ing operation. Counting does not change the condition 
code. The overflow occurring on transition from the 
maximum negative number to the maximum positive 
number is ignored. Otherwise, the subtraction pro­
ceeds as in fixed-point arithmetic, and all 32 bits of the 
general register participate in the operation. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Programming Notes 

Counting is performed without branching when the R2 
field in the RR format contains zero. 

An initial count of zero is not a special case. It re­
sults in minus one and causes branching to be exe­
cuted. 

Branch On Index High 

8XH RS 

86 
7 8 11 12 15 16 19 20 31 

The second operand is added to the first operand', and 
the sum is compared algebraically with the third op­
erand. Subsequently, the sum is placed in the first 
operand location, regardless of whether the branch is 
taken. When the sum is high, the instruction address 
is replaced by the branch address. When the sum is 
low or equal, instruction sequencing proceeds with the 
updated instruction address. 

The first and the second operands are in the registers 
specified hy Rl and R3 • The third operand register ad­
dress is odd and is either one larger than R3 or equal 
to R.'l' The branch address is determined prior to the 
addition and comparison. 

Overflow caused by the addition is ignored and does 
not affect the comparison. Otherwise, the addition and 
comparison proceed as in fixed-point arithmetic. All 
32 bits of the general registers participate in the opera­
tions, and negative quantities are expressed in two's­
complement notation. When the first and third oper­
and locations coincide, the original register contents 
are used as third operand. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Programming Note 

The name "branch on index high" indicates that one 
of the major purposes of this instruction is the incre-



menting and testing of an index value. The increment 
may be algebraic and of any magnitude. 

Branch On Index Low or Equal 

BXLE RS 

7 8 11 12 15 16 1 9 20 31 

The second operand is added to the first operand, and 
the sum is compared algebraically with the third op­
erand. Subsequently, the sum is placed in the first 
operand location, regardless of whether the branch is 
taken. When the sum is low or equal, the instruction 
address is replaced by the branch address. When the 
sum is high, normal instruction sequencing proceeds 
with the updated instruction address. 

The first and the second operands are in the registers 
specified by Rl and Ri!' The third operand register ad­
dress is odd and is either one larger than R3 or equal 
to Ri!. The branch address is determined prior to the 
addition and comparison. 

This instruction is similar to BRANCH ON INDEX HIGH, 
except that the branch is successful when the sum is 
low or equal compared to the third operand. 

Condition Code: The code remains unchanged. 
Program Interruptions: None. 

Execute 

EX RX 

44 
7 8 11 12 15 16 19 20 31 

The single instruction at the branch address is modi­
fied by the content of the general register specified by 
R" and the resulting subject instruction is executed. 

Bits 8-15 of the instruction designated by the branch 
address are oR'ed with bits 24-31 of the register speci­
fied by R1 , except when register 0 is specified, which 
indicates that no modification takes place. The sub­
ject instruction may be 16, 32, or 48 bits in length. 
The oR'ing does not change either the content of the 
register specified by R] or the instruction in storage 
and is effective only for the interpretation of the in­
struction to be executed. 

The execution and exception handling of the sub­
ject instruction are exactly as if the subject instruction 
were obtained in normal sequential operation, except 
for instruction address and instruction-length record­
ing. 

The instruction address of the psw is increased by 
the length of EXECUTE. This updated address and the 
length code (2) of EXECUTE are stored in the psw in 
the event of a branch-and-link subject instruction or 
in the event of an interruption. 

When the subject instruction is a successful branch­
ing instruction, the updated instruction address of the 
psw is replaced by the branch address of the subject 
instruction. When the subject instruction in turn is an 
EXECUTE, an execute exception occurs and results in a 
program interruption. The effective address of EXE­
CUTE must be even; if not, a specification exception will 
cause a program interruption. 

Condition Code: The code may be set by the sub­
ject instruction. 

Program Interruptions: 
Execute 
Addressing 
Specification 

Programming Notes 

The oR'ing of eight bits from the general register with 
the designated instruction permits indirect length, in­
dex, mask, immediate data, and arithmetic-register 
specification. 

If the subject instruction is a successful branch, the 
length code still stands at 2. 

An addressing or specification exception may be 
caused by EXECUTE or by the subject instruction. 

Branching Exceptions 
Exceptional instructions cause a program interrup­
tion. When the interruption occurs, the current psw is 
stored as an old psw, and a new psw is obtained. The 
interruption code in the old psw identifies the cause. 
Exceptions that cause a program interruption in 
branching are: 

Execute: An EXECUTE instruction has as its subject 
instruction another EXECUTE. 

Addressing: The branch address of EXECUTE desig­
nates an instruction-halfword location outside the 
available storage for the particular installation. 

Specification: The branch address of EXECUTE is odd. 
The last three exceptions occur only for EXECUTE. 

The instruction is suppressed. Therefore, the condition 
code and data in registers and storage remain un­
changed. 

Exceptions arising for the subject instruction of EXE­
CUTE are the same as would have arisen had the sub­
ject instruction been in the normal instruction stream. 
However, the instruction address stored in the old 

Branching 65 



PSW is the address of the instruction following EXECUTE. 

Similarly, the instruction-length code in the old psw 
is the instruction-length code (2) of EXECUTE. 

The address restrictions do not apply to the com­
ponents from which an address is generated - the 
content of the Dl field and the content of the register 
specified by B1 • 

Programming Note 

An unavailable or odd branch address of a successful 
branch is detected during the execution of the next 
instruction and not as part of the branch. 

CONDITION CODE SETTING 

o 
Fixed-Point Arithmetic 

Add H/F zero 
Add Logical zero 

Compare H/F 
Load and Test 
Load Complement 
Load Negative 
Load Positive 
Shift Left Double 
Shift Left Single 
Shift Right Double 
Shift Right Single 
Subtract H/F 

Subtract Logical 

Decimal Arithmetic 
Add Decimal 
Compare Decimal 
Subtract Decimal 
Zero and Add 

equal 
zero 
zero 
zero 
zero 
zero 
zero 
zero 
zero 
zero 

zero 
equal 
zero 
zero 

Floating-Point Arithmetic 
Add Normalized 

S/L zero 
Add Unnormalized 

S/L zero 
Compare S/L equal 
Load and Test S/L zero 
Load Complement 

S/L zero 
Load Negative S/L zero 
Load Positive S/L zero 
Subtract Normal-

ized S IL zero 
Subtract Unnorm-

alized S/L zero 

66 

1 

< zero 
not zero 

low 
< zero 
< zero 
< zero 

< zero 
< zero 
< zero 
< zero 
< zero 

not zero 

< zero 
low 

< zero 
< zero 

< zero 

< zero 
low 

< zero 

< zero 
< zero 

< zero 

< zero 

2 

> zero 
zero, 
carry 

high 
> zero 
> zero 

> zero 
> zero 
> zero 
> zero 
> zero 
> zero 
carry 
zero, 
carry 

> zero 
high 

> zero 
> zero 

> zero 

> zero 
high 

> zero 

> zero 

> zero 

> zero 

> zero 

3 

overflow 
carry 

carry 
overflow 

overflow 
overflow 
overflow 

overflow 

carry 

overflow 

overflow 
overflow 

overflow 

overflow 

overflow 

overflow 

Logical Operations 

And zero 
equal 
zero 
zero 
zero 
zero 
zero 
zero 

not zero 
Compare Logical 
Edit 
Edit and Mark 
Exclusive Or 
Or 
Test Under Mask 
Translate and Test 

low 
< zero 
< zero 
not zero 
not zero 
mixed 

high 
> zero 
> zero 

incomplete complete 
one 

I nput-Output Operations 

Halt I/O 

Start I/O 

Test Channel 

Test I/O 

NOTES 

available 
busy 
carry 
complete 
CSW ready 

CSW stored 
equal 
F 
> zero 
H 
halted 

high 
incomplete 
L 
< zero 
low 
mixed 
not oper 
not working 
not zero 
one 
overflow 
S 
stopped 
working 
zero 

not 
working 

available 

not 
working 

available 

halted 

CSW 
stored 
CSW 
ready 

CSW 
stored 

stopped not oper 

busy not oper 

working not oper 

working not oper 

Unit and channel available 
Unit or channel busy 
A carryout of the sign position occurs 
Last result byte nonzero 
Channel status word ready for test or 

interruption 
Chanel status word stored 
Operands compare equal 
Fullword 
Result is greater than zero 
Halfword 
Data transmission stopped. Unit in halt-reset 

mode 
First operand compares high 
Nonzero result byte; not last 
Long precision 
Result is less than zero 
First operand compares low 
Selected bits are both zero and one 
Unit or channel not operational 
Unit or channel not working 
Result is not all zero 
Selected bits are one 
Result overflows 
Short precision 
Data transmission stopped 
U nit or channel working 
Result or selected bits are zero 

NOTE: The condition code also may be changed by 
LOAD PSW, SET SYSTEM MASK, and DIAGNOSE and by an 
interrupti on. 



A set of operations is provided to switch the status of 
the CPU, of storage, and of communication between 
systems. 

The over-all CPU status is determined by several 
program-state alternatives, each of which can be 
changed independently to its opposite and most of 
which are indicated by a bit in the program status 
word (psw). The CPU status is further defined by the 
instruction address, the condition code, the instruction­
length code, the storage-protection key, and the inter­
ruption code. These all occupy fields in the psw. 

Storage is protected by storage keys, which are 
matched with a protection key in the psw or in a chan­
nel. The protcction status of storage may be changed 
by introducing new storage keys, using SET STORAGE 

KEY. The storage keys may be inspected by using IN­

SERT STORAGE KEY. 

The system formed by CPU, storage, and I/O can 
communicate with other systems by means of the sig­
nals of the direct control feature and the multisystem 
feature. The READ DIRECT makes signals available to 
the CPU; WRITE DIRECT provides signals to other 
systems. 

All status-switching instructions, other than those of 
the protection feature or direct control feature, are 
provided in the standard instruction set. 

Program States 
The four types of program-state alternatives, which 
determine the over-all CPU status, are named Problem/ 
Supervisor, Wait/Running, Masked/Interruptable, and 
Stopped/Operating. These states differ in the way they 
affect the CPU functions and in the way their status is 
indicated and switched. Each state, except masked, 
has one alternative. 

All program states are independent of each other in 
their function, indication, and status-switching. Status­
switching does not affect the contents of the arith­
metic registers or the execution of I/O operations but 
may affect the timer operation. 

Problem State 

The choice between supervisor and problem state de­
termines whether the full set of instructions is valid. 
The names of these states reflect their normal use. 

In the problem state all I/O, protection, and direct-

Status-Switch i ng 

control instructions are invalid, as well as LOAD psw, 
SET SYSTEM MASK, and DIAGNOSE. These are called privi­
leged instructions. A privileged instruction encount­
ered in the problem state constitutes a privileged-op­
eration exception and causes a program interruption. 
In the supervisor state all instructions are valid. 

When bit 15 of the psw is zero, the CPU is in the 
supervisor state. When bit 15 is one, the CPU is in the 
problem state. The supervisor state is not indicated on 
the operator sections of the system control panel. 

The CPU is switched between problem and super­
visor state by changing bit 15 of the psw. This bit can 
be changed only by introducing a new psw. Thus 
status-switching may be performed by LOAD psw, using 
a new psw with the desired value for bit 15. Since 
LOAD PSW is a privileged instruction, the CPU must be 
in the supervisor state prior to the switch. A new psw 
is also introduced when the CPU is interrupted. The 
SUPERVISOR CALL causes an interruption and thus may 
change the CPU state. Similarly, initial program load­
ing introduces a new psw and with it a new CPU state. 
The new psw may introduce the problem or supervisor 
state regardless of the preceding state. No explicit op­
erator control is provided for changing the supervisor 
state. 

Timer updating is not affected by the choice be­
tween supervisor and problem state. 

Programming Note 

To allow return from an interruption-handling routine 
to a preceding program by a LOAD psw, the psw for 
the interruption routine should specify the supervisor 
state. 

Wait State 

In the wait state no instructions are processed, and 
storage is not addressed repeatedly for this purpose, 
whereas in the running state, instruction fetching and 
execution proceed in the normal manner. 

When bit 14 of the PSW, is one, the CPU is waiting. 
When bit 14 is zero, the CPU is in the running state. 
The wait state is indicated on the operator control 
section of the system control panel by the wait light. 

The CPU is switched between wait and running state 
by changing bit 14 of the psw. This bit can be changed 
only by introducing an entire new PSW, as is the case 
with the problem-state bit. Thus, switching from the 

Status Switching 67 



running state may be achieved by the privileged in­
struction LOAD psw, by an interruption such as for 
SUPERVISOR CALL, or by initial program loading. Switch­
ing from the wait state may be achieved by an I/O or 
external interruption or, again, by initial program 
loading. The new psw may introduce the wait or run­
ning state regardless of the preceding state. No ex­
plicit operator control is provided for changing the 
wait state. 

Timer updating is not affected by the choice be­
tween running and wait state. 

Programming Note 

To leave the wait state without manual intervention, 
the CPU should remain interruptable for some active 
I/O or external interruption source. 

Masked States 

The CPU may be masked or interruptable for all sys­
tems and machine-check interruptions and for some 
program interruptions. When the CPU is interruptable 
for a class of interruptions, these interruptions are 
accepted. When the CPU is masked, the system inter­
ruptions remain pending, while the program and ma­
chine-check interruptions are ignored. 

The system mask bits (psw bits 0-7), the program 
mask bits (psw bits 36-39), and the machine-check 
mask bit (psw bit 13) indicate as a group the masked 
state of the CPU. When a mask bit is one, the CPU is 
interruptible for the corresponding interruptions. 
When the mask bit is zero, these interruptions are 
masked off. The system mask bits indicate the masked 
state of the CPU for the multiplexor channel, the six 
selector channels, and the external signals. The pro­
gram mask bits indicate the masked state for four of 
the 15 types of program exceptions. The machine­
check mask bit pertains to all machine checks. Pro­
gram interruptions not maskable, as well as the super­
visor-call interruption, are always taken. The masked 
states are not indicated on the operator sections of the 
system control panel. 

"Most mask bits do not affect the execution of CPU 

operations. The only exception is the significance mask 
bit, which determines the manner in which a Hoating­
point operation is completed when a significance ex­
ception occurs. 

The interruptable state of the CPU is switched by 
changing the mask bits in the psw. The program mask 
may be changed separately by SET PROGRAM MASK, and 
the system mask may be changed separately by the 
privileged instruction SET SYSTEM MASK. The machine­
check mask bit can be changed only by introducing an 
entire new PSW, as is the case with the problem-state 
and wait-state bits. Thus, a change in the entire 

68 

masked status may be achieved by the privileged in­
struction LOAD psw, by an interruption such as for sup­
ERVISOR CALL, or by initial program loading. The new 
psw may introduce a new masked state regardless of 
the preceding state. No explicit operator control is 
provided for changing the masked state. 

Timer updating is not affected by the choice be­
tween masked or interruptable states. 

Programming Note 

To prevent an interruption-handling routine from be­
ing interrupted before necessary housekeeping steps 
are performed, the new psw for that interruption 
should mask the CPU for further interruptions of the 
kind that caused the interruption. 

Stopped State 

When the CPU is in the stopped state, instructions and 
interruptions are not executed. In the operating state, 
the CPU executes instructions (if not waiting) and in­
telTui1tions (if not masked off). 

The stopped state is indicated on the operator con­
trol section of the system control panel by the manual 
light. The stopped state is not identified by a bit in 
the psw. 

A change in the stopped or operating state can be 
effected only by manual intervention or by machine 
malfunction. No instructions or interruptions can stop 
or start the CPU. The CPU is commanded to stop when 
the stop key on the operator intervention section of 
the system control panel is pressed, when an address 
comparison indicates equality, and when the rate 
switch is set to INSTRUCTION STEP. In addition, the CPU 

is placed in the stopped state after power is turned on 
or following a system reset, except during initial pro­
gram loading. The CPU is placed in the operating state 
when the start key on the operator intervention panel 
is pressed. The CPU is also placed in the operating 
state when initial program loading is commenced. 

The transition from operating to stopped state oc­
curs at the end of instruction execution and prior to 
starting the next instruction execution. When the CPU 

is in the wait state, the transition takes place immedi­
ately. All interruptions pending and not masked off 
are taken while the CPU is still in the operating state. 
They cause an old psw to be stored and a new psw to 
be fetched before entering the stopped state. Once the 
CPU is in the stopped state, interruptions are no longer 
takcn but remain pending. 

The timer is not updated in the stopped state. 

Programming Notes 

Except for timing considerations, execution of a pro­
gram is not affected by stopping the CPU. 



When because of machine malfunction the CPU is 
unable to end an instruction, the stop key is not effect­
ive, and initial program loading or system reset should 
be used. 

Input/output operations continue to completion 
while the CPU is in the problem, wait, masked, or 
stopped state. However, no new I/O operations can be 
initiated while the CPU is stopped, waiting, or in the 
problem state. Also, the interruption caused by I/O 

completion remains pending when masked off or when 
the CPU is in the stopped state. 

Storage Protection 
Storage protection is provided to protect the contents 
of certain areas of storage from destruction caused by 
erroneous storing of information during the execution 
of a program. This protection is achieved by identify­
ing blocks of storage with a storage key and compar­
ing this key with a protection key supplied with the 
data to be stored. The detection of a mismatch is a 
protection exception and results in a program inter­
ruption. 

Area Identification 

For protection purposes, main storage is divided into 
blocks of 2,048 bytes, each block having an address 
that is a multiple of 2,048. A four-bit storage key is 
associated with each block. When data are stored in a 
storage block, the storage key is compared with the 
protection key. The protection key of the current psw 
is used as the comparand when storing is specified by 
an instruction. When storing is specified by a channel 
operation, the protection key supplied to the channel 
by the command address word is used as the com­
parand. The keys are said to match when they are 
equal or when either one is zero. 

The storage key is not part of addressable storage. 
The key is changed by SET STORAGE KEY and is in­
spected by INSERT STORAGE KEY. The protection key in 
the psw occupies bits 8-11 of that control word. The 
protcction key of a channel is recorded in bits 0-3 of 
the channel status word, which is stored as a result of 
the channel operation. 

Protection Action 

The storage-protection system is always active. It is 
independent of the problem, supervisor, or masked 
state of the CPU and of the type of instruction or I/O 

command being executed. 
When an instruction causes a protection mismatch, 

execution of the instruction is suppressed or termi­
nated, and program execution is altered by a program 

interruption. The protected storage location always 
remains unchanged. 

In general, the detection of a protected location 
causes the instruction specifying this location to be 
suppressed, that is to be omitted entirely. In opera­
tions using multiple words or variable-length fields, 
part of the operation may already have been com­
pleted when the protected area is referenced. In these 
operations the instruction cannot be suppressed and, 
hence, is terminated. 

Protection mismatch due to an I/O operation causes 
data transmission to be terminated in such a way that 
the protected storage location remains unchanged. 
The mismatch is indicated in the channel status word 
stored as a result of the operation. 

Storage protection is optional in some models. When 
protection is not installed, the protection key in the 
psw and the protection key of the channels must be 
zero; otherwise, a program interruption or program­
check I/O termination occurs. 

Locations Protected 

All main-storage locations where information is stored 
in the course of an operation are subject to protection. 
A location not actually used does not cause protection 
action. 

Locations whose addresses are generated by the 
CPU for updating or interruption purposes, such as the 
timer, channel status word, or psw addresses, are not 
protected. However, when the program specifies these 
locations, they are subject to protection. 

Program Status Word 
The psw contains all information not contained in 
storage or registers but required for proper program 
execution. By storing the PSW, the program can pre­
serve the detailed status of the CPU for subsequent in­
spection. By loading a new psw or part of a PSW, the 
state of the CPU may be changed. 

In certain circumstances all of the psw is . . _ .0d or 
loaded; in others, only part of it. The entire psw is 
stored, and a new psw is introduced when the CPU is 
interrupted. The rightmost 32 bits are stored in 
BRANCH AND LINK. The LOAD PSW introduces a new 
PSW; SET PROGRAM mask introduces a new condition 
code and program-mask field in the psw; SET SYSTEM 

MASK introduces a new system-mask field. 
The psw has the following format: 

Program Status Word 

System Mask Interrupti on Code 

31 

Instruction Address 

32 33 34 35 36 39 40 63 

Status Switching 69 



The following is a summary of the purposes of the 
psw fields: 

System Mask: Bits 0-7 of the psw are associated with 
I/O channels and external signals as specified in the 
following table. When a mask bit is one, thc source 
can interrupt the cpu. When a mask bit is zero, the 
corresponding source can not interrupt the cpu and 
interruptions remain pending. 

SYSTEM 

MASK HIT 

o 
1 
2 
3 
4 
5 
6 
7 
7 
7 

INTERRUPTION SOURCE 

Multiplexor channel 
Selector channel 1 
Selector channel 2 
Selector channel 3 
Selector channel 4 
Selector channel 5 
Selector channel 6 
Timer 
Interrupt key 
External signal 

Protection Key: Bits 8-11 of the psw form the cpu 
protection key. The key is matched with a storage key 
whenever a result is stored. When the protection fea­
ture is not implemented, bits 8-11 must be zero when 
loaded and are zero when stored. 

ASCII(A): When bit 12 of the psw is one, the codes 
preferred for the extended ASCII code are generated 
for decimal results. When psw 12 is zero, the codes 
preferred for the extended binary-coded-decimal inter­
change code are generated. 

Machine-Check Mask (M): When psw bit 13 is one, 
the machine-check interruption, machine check out­
signal, and diagnostics occur upon malfunction detec­
tion. When bit 13 of the psw is zero, the cpu is masked 
for machine-check interruptions, and any associated 
signals and diagnostic procedures do not take place. 
The interruption does not remain pending. 

Wait State (W): ""hen bit 14 of the psw is one, the 
cpu is in the wait state. When psw bit 14 is zero, the 
cpu is in the running state. 

Problem State (P): When bit 15 of the psw is one, 
the cpu is in the problem state. When psw bit 15 is 
zero, the cpu is in the supervisor state. 

Interruption Code: Bits 16-31 of the psw identify 
the cause of an I/O, program, supervisor call, or ex­
ternal interruption. The code is zero when a machine­
check interruption occurs. Use of the code for all 
five interruption types is shown in a table appearing 
in the "Interruptions" section. 

Instruction Length Code (ILC): The code in psw 
bits 32 and 33 indicates the length, in halfwords, of the 
last-interpreted instruction when a program or super­
visor-call interruption occurs. The code is unpredict­
able for I/O, external, or machine-check interruptions. 
Encoding of these bits is summarized in a table ap­
pearing in the "Interruptions" sections. 

70 

Condition Code (CC): Bits 34 and 35 of the psw are 
the two bits of the condition code. The condition 
codes for all instructions arc summarized in a table 
appearing in the "Branching" section. 

Program Mask: Bits 36-39 of the psw are the four 
program mask bits. Each bit is associated with a pro­
gram exception, as specified in the following table. 
When the mask bit is one, the exception results in an 
interruption. When the mask bit is zero, no interrup­
tion occurs. The significance mask bit also detennines 
the manner in which Hoating-point addition and sub­
traction are completed. 

PROGRAM 

MASK BIT PROGHAM EXCEPTION 

36 Fixed-point overflow 
37 Decimal overflow 
38 Exponent underflow 
39 Significance 

Instruction Address: Bits 40-63 of the psw are the in­
struction address. This address specifies the leftmost 
eight-bit byte position of the next instruction. 

Multisystem Operation 
Various fcatures are provided to permit communica­
tion between individual systems. Messages may be 
transmitted by means of a shared I/O device, a chan­
nel connector, or a shared storage unit. Signaling may 
be accomplished when the direct control feature is in­
stalled by WRITE DIRECT and READ DIRECI' and by the 
signal-in lines of the external interruption. 

The multisystem feature adds to these facilities the 
ability to relocate direct addressed locations, to signal 
the machine malfunction of one system to another, 
and to initiate system operation from another system. 

Direct Address Relocation 

Addresses 0-4095 can be generated without a base 
address or index. This property is important when the 
psw and general register contents must be preserved 
and restored during program-switching. These ad­
dresses further include all addresses generated by the 
cpu for fixed locations, such as old PSW, new psw, 
channel address word, channel status word, and timer. 

This set of addresses can be relocated by means of a 
main prefix to permit more than one cpu to use one 
uniquely addressed storage. Furthermore, an alternate 
prefix is provided to permit a change in relocation in 
case storage malfunction occurs or reconfiguration be­
comes otherwise desirable. 

A prefix is used whenever an address has the high­
order 12 bits all-zero. The use of the prefix is inde­
pendent of the manner in which the address is gener­
ated and does not apply to the components, such as the 



base or index registers, from which the address is 
generated. The use of the prefix applies both to ad­
dresses obtained from the program (CPU or I/O), and 
to fixed addresses generated by the CPU for updating 
or interruption purposes. 

Both main prefix and alternate prefix occupy 12 
bits. One or the other replaces the 12 high-order ad­
dress bits when these are found to be zero. 

The choice of main or alternate prefix is determined 
by the prefix trigger. This trigger is set during initial 
program loading (IPL) and remains unchanged until 
the next initial program loading occurs. Manual IPL 

sets the prefix trigger to the state of the prefix-select 
switch on the operator. control section of the system 
control panel. Electronic IPL sets the prefix trigger to 
the state indicated by the signal line used. The state 
of the prefix is indicated by the alternate-prefix light 
on the operator intervention section of the system con­
trol panel. 

The prefixes can be changed by hand within 5 min­
utes from one prewired encoding to another. The low­
order four bits of a prefix always have even parity, 
and the total number of one-bits in a prefix cannot 
exceed seven. 

Malfunction Indication 

A machine check out-signal occurs whenever a ma­
chine check is recognized and the machine-check mask 
bit is one. The signal has D.5-microsecond to l.O-micro­
second duration and is identical in electronic charac­
teristics to the signals on the signal-out lines of the 
direct control feature. 

The machine check out-signal is given during ma­
chine-check handling and has a high probability of 
being issued in the presence of machine malfunction. 

System Initialization 

A main IPL in-line and an alternate IPL in-line respond 
to O.5-microsecond to 1.0-microsecond pulses. Either 
line, when pulsed, sets the prefix trigger to the state 
indicated by its name and subsequently starts initial 
program loading. Thus, these lines permit electronic 
initiation of IPL. 

The definition of the signal to which these lines re­
spond is identical in electronic characteristic to the 
definition for the signal-in lines of the external inter­
ruption. 

Instruction format 
Status-switching instructions use the following two 
formats: 

RR Format 

I Op Code Rl R2 I 
0 78 11 12 15 

51 Format 

Op Code 12 Bl Dl 
78 1516 1920 31 

In the RR format, the Rl field specifies a general reg­
ister, except for SUPERVISOR CALL. The R2 field speci­
fies a general register in SET STORAGE KEY and INSERT 

STORAGE KEY. The Rl and R2 fields in SUPERVISOR CALL 

contain an identification code. In SET PROGRAM MASK 

the R2 field is ignored. 
In the SI format the eight-bit immediate field (12 ) 

of the instruction contains an identification code. The 
h field is ignored in LOAD psw and SET SYSTEM MASK. 

The content of the general register specified by Bl is 
added to the content of the Dl field to form an address 
designating the location of an operand in storage. 
Only one operand location is required in status-switch­
ing operations. 

A zero in the Bl field indicates the absence of the 
corresponding address component. 

Instructions 

The status-switching instructions and their mnemonics, 
formats, and operation codes follow. The table also 
indicates the feature to which an instruction belongs 
and the exceptions that cause a program interruption. 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Load PSW LPSW SI L M, A,S 82 
Set Program Mask SPM RR L 04 
Set System Mask SSM SI M, A 80 
Supervisor Call SVC RR OA 
Set Storage Key SSK RR Z M, A,S 08 
Insert Storage Key ISK RR Z M, A,S 09 
Write Direct WRD SI Y M, A 84 
Read Direct RDD SI Y M,P,A 85 
Diagnose SI M, A,S 83 

NOTES 

A Addressing exception 
L New condition codc loaded 
M Privileged-operation exception 
P Protection exception 
S Specification exception 
Y Direct control feature 
Z Protection feature 

Programming Note 

The program status is also switched by interruptions, 
initial program loading, and manual control. 

Status Switching 71 



Load PSW 

LP5W 51 

82 
78 1516 1920 31 

The double word at the location designated by the 
operand address replaces the psw. 

The operand address must have its three low-order 
bits zero to designate a double word; otherwise, a 
specification exception results in a program interrup­
tion. 

The double word which is loaded becomes the psw 
for the next sequence of instructions. Bits 40-63 of the 
double word become the new instruction address. The 
new instruction address is not checked for available 
storage or for an even byte address during a load psw 
operation. These checks occur as part of the execution 
of the next instructions. 

Bits 8-11 of the double word become the new pro­
tection key. The protection key must be zero when 
the protection feature is not installed; otherwise, the 
key is made zero, and a specification exception causes 
a program interruption. 

The interruption code in bit positions 16-31 of the 
new psw is not retained as the psw is loaded. When 
the psw is subsequently stored because of an interrup­
tion, these bit positions contain a new code. Similarly, 
bits 32 and 33 of the psw are not retained upon load­
ing. They will contain the instruction-length code for 
the last-interpreted instruction when the psw is stored 
during a branch-and-link operation or during a pro­
gram or supervisor-call interruption. 

Condition Code: The code is set according to bits 
34 and 35 of the new psw loaded. 

Program Interruptions: 
Privileged operation 
Addressing 
Specification 

Programming Note 

The CPU enters the problem state when LOAD psw loads 
a double word with a one in bit position 15 and sim­
ilarly enters the wait state if bit position 14 is one. 
The LOAD psw is the only instruction available for 
entering the problem state or the wait state. 

72 

Set Program Mask 

5PM RR 

04 
78 11 12 15 

Bits 2-7 of the general register specified by the Rl field 
replace the condition code and the program mask bits 
of the current psw. 

Bits 0, 1, and 8-31 of the register specified by the Rl 
field are ignored. The contents of the register specified 
by the R 1 field remain unchanged. 

The instruction permits setting of the condition code 
and the mask bits in either the problem or supervisor 
state. 

Condition Code: The code is set according to bits 
2 and 3 of the register specified by R1. 

Program Interruptions: None. 

Programming Note 

Bits 2-7 of the general register may have been loaded 
from the psw by BRANCH AND LINK. 

Set System Mask 

5SM 51 

80 ~B]I 
78 1516 1920 31 

The byte at the location designated by the operand 
address replaces the system mask bits of the current 
psw. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Privileged operation 
Addressing 

Supervisor Call 

SVC RR 

I OA R] R2 I 
o 78 11 12 15 

The instruction causes a supervisor-call interruption, 
with the Rl and R2 field of the instruction providing 
the intenuption code. 



The contents of bit positions 8-15 of the instruction 
are placed in bit positions 24-31 of the old psw which 
is stored in the course of the interruption. Bit positions 
16-23 of the old psw are made zero. The old psw is 
stored at location 32, and a new psw is obtained from 
location 96. The instruction is valid in both problem 
and supervisor state. 

Condition Code: The code remains unchanged in 
the old psw. 

Program Interruptions: None. 

Set Storage Key 

55K RR 

08 
7 8 11 12 15 

The key of the storage block addressed by the register 
designated by R2 is set according to the key in the 
register designated by R1. 

The storage block of 2,048 bytes, located on a mul­
tiple of the block length, is addressed by bits 8-20 of 
the register designated by the R2 field. Bits 0-7 and 
21-27 of this register are ignored. Bits 28-31 of the 
register must be zero; otherwise, a specification ex­
ception causes a program interruption. 

The four-bit storage key is obtained from bits 24-27 
of the register designated by the Rl field. Bits 0-23 and 
28-31 of this register are ignored. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if protection feature is not installed) 
Privileged operation 
Addressing 
Specification 

Insert Storage Key 

15K RR 

09 
7 8 11 12 15 

The key of the storage block addressed by the reg­
ister designated by R2 is inserted in the register desig­
nated by R1 . 

The storage block 2,048 bytes, located on a mul­
tiple of the block length, is addressed by bits 8-20 of 
the register designated by the R2 field. Bits 0-7 and 

21-27 of this register are ignored. Bits 28-31 of the 
register must be zero; otherwise, a specification ex­
ception causes a program interruption. The four-bit 
storage key is inserted in bits 24-27 of the register 
specified by the Rl field. Bits 0-23 of this register re­
main unchanged, and bits 28-31 are set to zero. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if protection feature is not installed) 
Privileged operation 
Addressing 
Specification 

Write Direct 

WRD 51 

84 __ L-_B~l-L __ . _____ D_l ______ ] 
78 1516 1920 31 

The byte at the location designated by the operand 
address is made available as a set of direct-out static 
signals. Eight instruction bits are made available as 
signal-out timing signals. 

The eight data bits of the byte fetched from storage 
are presented on a set of eight direct-out lines as 
static signals. These signals remain until the next 
WRITE DIRECT is executed. No parity is presented with 
the eight data bits. 

Instruction bits 8-15, the I2 field, are made available 
simultaneously on a set of eight signal-out lines as 0.5-
microsecond to 1.0-microsecond timing signals. On a 
ninth line (write out) a 0.5-microsecond to 1.0-micro­
second timing signal is made available coincident with 
these timing signals. The leading edge of the timing 
signals coincides with the leading edge of the data 
signals. The eight signal-out lines are also used in 
READ DIRECT. No parity is made available with the 
eight instruction bits. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if direct control feature is not installed) 
Privileged operation 
Addressing 

Programming Note 

The timing signals and the write-out signal may be 
used to alert the equipment to which the data are 
sent. When data are sent to another CPU, the external 
signal interruption may be used to alert that CPU. 

Status Switching 73 



Read Direct 

RDD 51 

85 
78 15 16 1920 31 

Eight instruction bits are made available as signal-out 
timing signals. A direct-in data byte is accepted from 
an external device in the absence of a hold signal and 
is placed in the location designated by the operand 
address. 

Instruction bits 8-15, the 12 field, are made available 
on a set of eight signal-out lines as O.5-microsecond to 
l.O-microsecond timing signals. These signal-out lines 
are also used in WRITE DIRECT. On a ninth line (Read 
Out) a O.5-microsecond to l.O-microsecond timing 
signal is made available coincident with these timing 
signals. The read-out line is distinct from the write-out 
line in WRITE DIRECT. No parity is made available with 
the eight instruction bits. 

Eight data bits are accepted from a set of eight 
direct-in Hnes. when the hold signal on the hold-in 
line is absent. The hold signal is sampled after the 
read-out signal has been completed and should be 
absent for at least O.5-microsecond. No parity is ac­
cepted with data signals, but a parity bit is generated 
as the data are placed in storage. When the hold sig­
nal is not removed, the CPU does not complete the in­
struction. Excessive duration of this instruction may 
result in incomplete updating of the timer. 

Condition Code: The code remains unchanged. 
Program Interruptions: 

Operation (if direct control feature is not installed) 
Privileged operation 
Protection 
Addressing 

Programming Note 

The direct-out lines of one CPU may be connected to 
the direct-in lines of another CPU, providing cpu-to-cpu 
static signaling. Further, the write-out signal of the 
sending CPU may serve as the hold signal for the re­
ceiving CPU, temporarily inhibiting a READ DIRECT when 
the signals are in transition. 

Equipment connected to the hold-in line should be 
so constructed that the hold signal is removed when 
READ DIRECT is performed. Absence of the hold signal 
should correspond to absence of current in such a 
fashion that the CPU can proceed when power is re­
moved from the source of the hold signal. 

74 

Diagnose 

51 

83 
78 1516 1920 31 

The CPU performs built-in diagnostic functions. 
The purpose of the h field and the operand address 

may be defined in greater detail for a particular CPU 

and its appropriate diagnostic procedures. Similarly, 
the number of low-order address bits which must be 
zero is further specified for a particular CPU. When the 
address does not have the required number of low­
order zeros, a specification exception causes a program 
interruption. 

The purpose of the diagnostic functions is verifica­
tion of proper functioning of the CPU equipment and 
locating faulty components. 

The DIAGNOSE is completed either by taking the next 
sequential instruction or by obtaining a new psw from 
location 112. The diagnostic procedure may affect the 
problem, supervisor, and interruptable status of the 
CPU, the condition code, and the contents of storage, 
registers, and timer, as well as the progress of 1/0 

operations. 
Some diagnostic functions turn on the test light on 

the operator control section of the system control 
panel. 

Since the instruction is not intended for problem­
program or supervisor-program use, DIAGNOSE has no 
mnemonic. 

Condition Code: The code is unpredictable. 
Program Interruptions: 

Privileged operation 
Specification 
Addressing 

Status-Switching Exceptions 
Exceptional instructions or data cause a program in­
terruption. When the interruption occurs, the current 
psw is stored as an old PSW, and a new psw is obtained. 
Thc interruption code inserted in the old psw identi­
fies the cause of the interruption. The following ex­
ception conditions cause a program interruption in 
status-switching operations. 

Operation: The direct control feature is not installed, 
and the instruction is READ DIRECT or WRITE DIRECT; or, 



the protection feature is not installed and the instruc­
tion is SET STORAGE KEY or INSERT STORAGE KEY. 

Privileged Operation: A LOAD PSW, SET SYSTEM MASK, 

SET STORAGE KEY, INSERT STORAGE KEY, WRITE DIRECT, 

READ DIRECT, or DIAGNOSE is encountered while the 
processor is in the problem state. 

Protection: The storage key of the location desig­
nated by READ DIRECT does not match the protection 
key in the psw. 

Addressing: An address designates a location out­
side the available storage for the installed model. 

Specification: The operand address of a LOAD psw 
does not have all three low-order bits zero; the operand 
address of DIAGNOSE does not have as many low-order 
zero bits as required for the particular CPU; the 
block address specified by SET STORAGE KEY or INSERT 

STORAGE KEY does not have the four low-order bits aII­
zero; or the protection feature is not installed and a 

psw with two nonzero protection keys is introduced. 
In most of the above interruption conditions, the in­

struction is suppressed. Therefore, storage and exter­
nal signals remain unchanged, and the psw is not 
changed by information from storage. The only ex­
ception is READ DIRECT, which is terminated when a 
protection or addressing violation is detected. Al­
though storage remains unchanged, a timing signal 
may have been made available. 

When an interruption is taken, the instruction ad­
dress stored as part of the old psw has been updated 
by the number of halfwords indicated by the instruc­
tion-length code in the old psw. 

Operand addresses are tested only when used to ad­
dress storage. The address restrictions do not apply 
to the components from which an address is generated: 
the content of the Dl field and the content of the 
register specified by B1 . 

Status Switching 75 



I nterru ptions 

The interruption system permits the CPU to change its 
state as a result of conditions external to the system, 
in I/O units, or in the CPU itself. The five classes of 
these conditions are input; output, program, super­
visor-call, external, and machine-check interruptions. 

Interruption Action 
An interruption consists of storing the current psw as 
an old psw and fetching a new psw. 

Processing resumes in the state indicated by the 
new psw. The old psw contains the address of the in­
struction that would have been executed next if an 
interruption had not occurred and the instruction­
length code of the last-interpreted instruction. 

Interruptions are taken only when the CPU is inter­
ruptable for the interruption source. Input/output and 
external interruptions may be masked by the system 
mask, four of the 15 program interruptions may be 
masked by the program mask, and the machine-check 
interruptions may be masked by the machine-check 
mask. 

An interruption always takes place after one instruc­
tion interpretation is finished and before a new in­
struction interpretation is started. However, the oc­
currence of an interruption may affect the execution 
of the current instruction. To permit proper program­
med action following an interruption, the cause of the 
interruption is identified and provision is made to 
locate the last-interpreted instruction. 

When the CPU is commanded to stop, the current 
instruction is finished, and all interruptions that are 
pending or become pending before the end of the 
instruction, and which are not masked, are taken. 

The details of instruction execution, source identifi­
cation, and location determination are explained in 
later sections and are summarized in the following 
table. 

Programming Note 

A pending interruption will be taken even if the CPU 

becomes interruptable during only one instruction. 

76 

INSTRUC­

TION INTERRUPTION 

SOURCE 

JDENTlFICA TlON 

INTERRUPTION CODE MASK ILC EXE-

PSW BITS 16-31 BITS SET CUTION 

Input/Output (old PSW 56, new PSW 120, priority 4) 

Multiplcxor channel 00000000 aaaaaaaa 0 x complete 
Scledor channell 00000001 aaaaaaaa 1 x complcte 
Scledor channel 2 00000010 aaaaaaaa 2 x complete 
Selector channel 3 00000011 aaaaaaaa 3 x complete 
Seledor channel 4 00000100 aaaaaaaa 4 x complete 
Selector channel 5 00000101 aaaaaaaa 5 x complete 
Scledor channel 6 00000110 aaaaaaaa 6 x completc 

Program (old PSW 40, new PSW 104, priority 2) 

Operation 0000000000000001 1,2,3 
Privileged opcration 0000000000000010 1,2 
Executc 0000000000000011 2 
Protcction 0000000000000100 0,2,3 

Addressing 00000000 00000101 1,2,3 

Specification 00000000 00000110 1,2,3 
Data 00000000 00000111 2,3 
Fixed-point overflow 00000000 00001000 36 1,2 
Fixcd-point divide 00000000 00001001 1,2 

Dccimal overflow 00000000 00001010 37 3 
Decimal divide 0000000000001011 3 
Exponent overflow 00000000 00001100 1,2 
Exponcnt underflow 00000000 000011 0 1 38 1,2 
Significance 0000000000001110 39 1,2 
Floating-point divide 0000000000001111 1,2 

supprcss 
supprcss 
suppress 

suppress/ 
terminate 
suppress/ 
terminate 
suppress 

terminate 
complete 
suppress/ 
complete 
complete 
suppress 
terminate 
complcte 
complete 
suppress 

Supel'visol' Call (old PSW 32, new PSW 96, priority 2) 

Instruction bits 00000000 r rr r r 1'1' r 1 complete 

External (old PSW 24, new PSW 88, priority 3 ) 

Extcrnal signal 1 00000000 xxxxxxx 1 7 x complete 
External signal 2 00000000 xxxxxx1x 7 x complete 
External signal 3 00000000 xxxxx lxx 7 x complete 
External signal 4 00000000 xxxxlxxx 7 x complete 
External signal 5 00000000 xxxlxxxx 7 x complete 
External signal 6 00000000 xxlxxxxx 7 x complete 
Interrupt key 00000000 xlxxxxxx 7 x complete 
Timcr 00000000 lxxxxxxx 7 x complete 

Machine Check (old PSW 48, new PSW 112, priority 1) 

Machine malfunction 00000000 00000000 13 x terminate 

NOTES 

a Device address bits 
r Bits of R, and R2 field of SUPERVIson CALL 

x Unpredictable 



Instruction Execution 
An interruption occurs when the preceding instruction 
is finished and the next instruction is not yet started. 
The manner in which the preceding instruction is 
finishcd may be influenced by the cause of the inter­
ruption. The instruction is said to have been com­
pleted, terminated, or suppressed. 

In the case of instruction completion, results are 
stored and the condition code is set as for normal in­
struction operation, although the result may be influ­
enced by the exception which has occurred. 

In the case of instruction termination, all, part, or 
none of the result may be stored. Therefore, the result 
data are unpredictable. The setting of the condition 
code, if called for, may also be unpredictable. In 
general, the results should not be used for further 
computation. 

In the case of instruction suppression, the execution 
proceeds as if no operation were specified. Results 
are not stored, and the condition code is not changed. 

Source Identification 
The five classes of interruptions are distinguished by 
the storage locations in which the old psw is stored 
and from which the new psw is fetched. The detailed 
causes are further distinguishcd by the interruption 
code of the old psw, except for the machine-check 
interruption. The bits of the interruption code are 
numbered 16-31, according to their position in the psw. 

For 110 interruptions, additional information is pro­
vided by the contents of the channel status word 
stored as part of the 110 interruption. 

For machine-check interruptions, additional infor­
mation is provided by the diagnostic procedure, which 
is part of the interruption. 

The following table lists the permanently allocated 
main-storage locations. 

ADDRESS LENGTH PURPOSE 
a 0000 0000 Double word Initial program loading PSW 
8 0000 1000 Double word Initial program loading CCW1 

16 00010000 Double word Initial program loading CCW2 
24 0001 1000 Double word External old PSW 
32 0010 0000 Double word Supervisor call old PSW 
40 0010 1000 Double word Program old PSW 
48 0011 0000 Double word Machine old PSW 
56 00111000 Double word Input/output old PSW 
64 0100 0000 Double word Channel status word 
72 0100 1000 Word Channc1 address word 
76 0100 1100 Word Unused 
80 0101 0000 Word Timer 
84 0101 0100 Word Unused 
88 0101 1000 Double word External new PSW 
96 0110 0000 Double word Supervisor call new PSW 

104 0110 1000 Double word Program new PSW 
112 0111 0000 Double word Machine-check new PSW 
120 0111 1000 Double word Input/output new PSVV 
128 1000 0000 Diagnostic scan-out areal) 
I)Thc size of the diagnostic scan-out mea depends on the par-

ticular model and I/O channels. 

Location Determination 

For some interruptions, it is desirable to locate the in­
struction being interpreted when the interruption oc­
curred. Since the instruction address in the old psw 
designates the instruction to be executed next, it is 
necessary to know the lcngth of the preceding instruc­
tion. This length is recorded in bit positions 32 and 
33 of the psw as the instruction-length code. 

The instruction-length code is predictable only for 
program and supervisor-call interruptions. For I/O 

and external interruptions, the interruption is not 
caused by the last-interpreted instruction, and the 
code is not predictable for these instructions. For 
machine-check interruptions, the setting of the code 
may be affected by the malfunction and, therefore, is 
unpredictable. 

For the supervisor-caB interruption, the instruction­
length code is 1, indicating the halfword length of 
SUPERVISOR CALL. For program interruptions, the codes 
1, 2, and 3 indicate the instruction length in halfwords. 
The code 0 is reserved for program interruptions 
where the length of the instruction is not available be­
cause of certain overlapping conditions in struction 
fetching. In code-O cases, the instruction address in 
the old psw does not represent the next instruction 
address. Instruction-length code 0 can occur for a 
program interruption only when the interruption is 
caused by a protected or an unavailable data address. 
The following table shows the states of the instruction­
length code. 

INSTRUC-
TION INSTRUC- INSTRUC-

J.ENGTH psw BITS TJON INsTRUCTION TION 
CODE 32-33 BITS 0-1 LENGTH FORMAT 

a 00 Not available 
1 01 00 One halfword RR 
2 10 01 Two halfwords RX 
2 10 10 Two halfwords RS or SI 
3 11 11 Three halfwords SS 

Programming Notes 

When a program interruption is due to an incorrect 
branch address, the location determined from the in­
struction address and instruction-length code is the 
branch address and not the location of the branch 
instruction. 

When an interruption occurs while the CPU is in the 
wait state, the instruction-length code is always unpre­
dictable. 

The instruction EXECUTE represents upon interrup­
tion an instruction-length code which docs not reflect 
thc length of the instruction executed, but is 2, the 
length of EXECUTES. 

Interruptions 77 



Input/Output Interruption 
The 1/ () interruption provides a means by which the 
CPU responds to signals from I/O devices. 

A request for an I/O interruption may occur at any 
time, and more than one request may occur at the 
same time. The requests are preserved in the I/O 

section until accepted by the CPU. Priority is estab­
lished among requests so that only one interruption 
request is processed at a time. 

An I/O interruption can occur only after execution 
of the current instruction is completed and while the 
CPU is interruptable for the channel presenting the 
request. Channels are masked by system mask bits 0-6. 
Interruptions masked off remain pending. 

The I/O interruption causes the old psw to be stored 
at location 56 and causes the channel status word as­
sociated with the interruption to be stored at location 
64. Subsequently, a new psw is loaded from location 
120. 

The interruption code in the old psw identifies the 
channel and device causing the interruption in bits 
21-23 and 24-31, respectively. Bits 16-20 of the old psw 
are made zero. The instruction-length code is unpre­
dictable. 

Program Interruption 
Exceptions resulting from improper specification or 
use of instructions and data cause a program interrup­
tion. 

The current instruction is completed, terminated, or 
suppressed. Only one program interruption occurs for 
a given instruction and is identified in the old psw. 
The occurrence of a program interruption docs not 
preclude the simultaneous occurrence of other pro­
gram-interruption causes. Which of several causes is 
identified may vary from one occasion to the next and 
from one model to another. 

A program interruption can occur only when the 
corresponding mask bit, if any, is one. When the mask 
bit is zero, the interruption is ignored. Program inter­
ruptions do not remain pending. Program mask bits 
36-39 permit masking of four of the 15 interruption 
causes. 

The program interruption causes the old psw to be 
stored at location 40 and a new psw to be fetched 
from location 104. 

The cause of the interruption is identified by inter­
ruption-code bits 28-31. The remainder of the interrup­
tion code, bits 16-27 of the PSW, are made zero. The 
instruction-length code indicates the length of the 
preceding instruction in halfwords. For a few cases, 

78 

the instruction length is not available. These cases are 
indicated by code O. 

A description of the individual program exceptions 
follows. The application of these rules to each class of 
instructions is further described in the applicable sec­
tions. Some of the exceptions listed may also occur in 
operations executed by I/O channels. In that event, the 
exception is indicated in the channel status word 
stored with the I/O interruption (as explained under 
"Input/Output Operations"). 

Operation Exception 

When an operation code is not assigned or the as­
signed operation is not available on the particular 
model, an operation exception is recognized. The op­
eration is suppressed. 

The instruction-length code is 1, 2, or 3. 

Privileged-Operation Exception 

When a privileged instruction is encountered in the 
problem state, a privileged-operation exception is rec­
ognized. The operation is suppressed. 

The instruction-length code is 1 or 2. 

Execute Exception 

When the subject instruction of EXECUTE is another 
EXECUTE, an execute exception is recognized. The 
operation is suppressed. 

The instruction-length code is 2. 

Protection Exception 

When the storage key of a result location does not 
match the protection key in the PSW, a protection ex­
ception is recognized. 

The operation is suppressed, except in the case of 
STORE MULTIPLY, READ DIRECT, and variable-length op­
erations, which are terminated. 

The instruction-length code is 0, 2, or 3. 

Addressing Exception 

When an address specifies any part of data, an in­
struction, or a control word outside the available 
storage for the particular installation, an addressing 
exception is recognized. 

The operation is terminated for an invalid data 
address. Data in storage remain unchanged, except 
when designated by valid addresses. The operation is 
suppressed for an invalid instruction address. 

The instruction-length code normally is 1, 2 or 3; 
but may be 0 in the case of a data address. 



Specification Exception 

A specification exception is recognized when: 
1. A data, instruction, or control-word address does 

not specify an integral boundary for the unit of in­
formation. 

2. The Rl field of an instruction specifies an odd 
register address for a pair of general registers that 
contains a 64-bit operand. 

3. A floating-point register address other than 0, 2, 
4, or 6 is specified. 

4. The multiplier or divisor in decimal arithmetic 
exceeds 15 digits and sign. 

5. The first operand field is shorter than or equal to 
the second operand field in decimal multiplication or 
division. 

6. The block address specified in SET STORAGE KEY or 
INSERT STORAGE KEY has the four low-order bits not 
all zero. 

7. A psw with nonzero protection key is loaded 
and the protection feature is not installed. 

The operation is suppressed. The instruction-length 
code is 1, 2, or 3. 

Data Exception 

A data exception is recognized when: 
1. The sign or digit codes of operands in decimal 

arithmetic or editing operations or in CONVERT TO 

BINARY are incorrect. 
2. Fields in decimal arithmetic overlap incorrectly. 
3. The decimal multiplicand has too many high­

order significant digits. 
The operation is terminated. The instruction-length 

code is 2 or 3. 

Fixed-Point-Overflow Exception 

When a high-order carry occurs or high-order signifi­
cant bits are lost in fixed-point add, subtract, shift, or 
sign-control operations, a fixed-point-overflow excep­
tion is recognized. 

The operation is completed by ignoring the infor­
mation placed outside the register. The interruption 
may be masked by psw bit 36. 

The instruction-length code is 1 or 2. 

Fixed-Point-Divide Exception 

A fixed-point-divide exception is recognized when a 
quotient exceeds the register size in fixed-pOint divi­
sion, including division by zero, or the result of CON­

VERT TO BINARY exceeds 31 bits. 
Division is suppressed. Conversion is completed by 

ignoring the information placed outside the register. 
The instruction-length code is 1 or 2. 

Decimal-Overflow Exception 

When the destination field is too small to contain the 
result field in a decimal operation, a decimal-overflow 
exception is recognized. 

The operation is completed by ignoring the overflow 
information. The interruption may be masked by psw 
bit 37. 

The instruction-length code is 3. 

Decimal-Divide Exception 

When a quotient exceeds the specified data field 
size, a decimal-divide exception is recognized. The 
operation is suppressed. 

The instruction-length code is 3. 

Exponent-Overflow Exception 

When the result characteristic exceeds 127 in floating­
point addition, subtraction, multiplication, or division, 
an exponent-overflow exception is recognized. The 
operation is terminated. 

The instruction-length code is 1 or 2. 

Exponent-U nderflow Exception 

When the result characteristic is less than zero in 
floating-point addition, subtraction, multiplication, or 
division, an exponent-underflow exception is rec­
ognized. 

The operation is completed by making the result a 
true zero. The interruption may be masked by psw 
bit 38. 

The instruction-length code is 1 or 2. 

Significance Exception 

When the result of a floating-point addition or sub­
traction has an all-zero fraction, a significance excep­
tion is recognized. 

The operation is completed. The interruption may 
be masked by psw bit 39. The manner in which the 
operation is completed is determined by the mask bit. 

The instruction-length code is 1 or 2. 

Floating-Point-Divide Exception 

When division by a floating-point number with zero 
fraction is attempted, a floating-point divide exception 
is recognized. The operation is suppressed. 

The instruction-length code is 1 or 2. 

Supervisor-Col/Interruption 
The supervisor-call interruption occurs as a result of 
the execution of SUPEHVISOR CALL. 

The supervisor-call interruption causes the old psw 
to be stored at location 32 and a new psw to be 
fetched from location 96. 

Interruptions 79 



The contents of bit positions 8-15 of the SUPERVISOR 

CALL become bits 24-31 in the interruption code of the 
old psw. Bits 16-23 of the interruption code are made 
zero. The instruction-length code is 1, indicating the 
halfword length of SUPERVISOR CALL. 

Programming Notes 

The name "supervisor call" indicates that one of the 
major purposes of the interruption is the switching 
from problem to supervisor state. This major purpose 
does not preclude the use of this interruption for other 
types of status-switching. 

The jnterruption code may be used to convey a 
message from the calling program to the supervisor. 

When SUPERVISOR CALL is performed as the subject 
instruction of EXECUTE, the instruction-length code is 2. 

External Interruption 

The external interruption provides a means by which 
the CPU responds to signals from the timer, from the 
interrupt key, and from external units. 

A request for an external interruption may occur at 
any time, and requests from diHerent sources may 
occur at the same time. Requests are preserved until 
honored by the CPU. All pending requests are pre­
sented simultaneously when an external interruption 
occurs. Each request is presented only once. When 
several requests from one source are made before the 
interruption is taken, only one interruption occurs. 

An external interruption can occur only when sys­
tem mask bit 7 is one and after execution of the cur­
rent instruction is completed. The interruption causes 
the old psw to be stored at location 24 and a new 
psw to be fetched from location 88. 

The source of the interruption is identified by inter­
ruption-code bits 24-31. The remainder of the interrup­
tion code, psw bits 16-23, is made zero. The instruc­
tion-length code is unpredictable for external inter­
ruptions. 

Timer 

A timer value changing from positive to negative 
causes an external interruption with bit 24 of the in­
terruption code turned on. 

Timer 111111111 
23 24 25 26 27 28 29 30 31 

The timer occupies a 32-bit word at storage location 
80. In the standard form, the contents of the timer are 
reduced by a one in bit position 21 and in bit position 

80 

23 every 1/60th of a second or the timer contents are 
reduced by one in bit position 21 and in bit position 22 
every 1/50th of a second. The choice is determined by 
the available line frequency. The gross result in either 
case is equivalent to reducing the timer by one in bit 
position 23 every 1/300th of a second. 

Higher resolution may be obtained in some models 
by counting with higher frequency in one of the posi­
tions 24 through 31. In each case, the frequency is ad­
justed to give counting at 300 cycles per second in bit 
23, as shown in the table. The full cycle of the timer 
is 15.5 hours. 

BIT 

POSITION FREQUENCY RESOLUTION 

23 300 cps 3.33 ms 
24 600 cps 1.67 ms 
25 1.2 kc 833 fLS 

26 2.4 kc 417 fLS 

27 4.8 kc 208 fLS 

28 9.6 kc 104 fLS 

29 19.2 kc 52 fLS 

30 38.4 kc 26 fLS 

31 76.8 kc . 13 fLS 

The count is treated as a signed integer by following 
the rules for fixed-pOint arithmetic. The negative over­
flow, occurring as the timer is counted from a large 
negative number to a large positive number, is ig­
nored. The interruption is initiated as the count pro­
ceeds from a positive number, including zero, to a 
negative number. 

The timer is updated whenever access to storage 
permits. An updated timer value is normally available 
at the end of each instruction execution; thus, a real­
time count can be maintained. Timer updating may he 
omitted when I/O data transmission approaches the 
limit of storage capability and when the instruction 
time for READ DIRECT is excessive. 

After an interruption is initiated, the timer may 
have been updated several times before the CPU is 
actually interrupted, depending upon instruction exe­
cution time. 

The timer remains unchanged when the CPU is in 
the stopped state or when the rate switch on the 
operator intervention panel is set to INSTRUCTION STEP. 

The timer value may be changed at any time by 
storing a new value in storage location 80 (except 
when this location is protected). 

The timer is an optional feature on some models. 

Programming Note 

The timer in association with a program can serve both 
as a real-time clock and as an interval timer. 

Interrupt Key 

Pressing the interrupt key on the operator control 
section of the system control panel causes an external 



interruption with bit 25 of the interruption code 
turned on. 

The key is active while power is on. 

External Signal 

An external signal causes an external interruption, 
with the corresponding bit in the interruption code 
turned on. 

A total of six signal-in lines may be connected to 
the CPU for receiving external signals. The pattern 
presented in interruption-code bits 26-31 depends 
upon the pattern received before the interruption is 
taken. 

The external signals are part of the direct control 
feature. 

Programming Note 

The signal-in lines of one CPU may be connected to the 
signal-out timing lines of the direct control feature or 
the machine check out-line of the multisystem feature 
of another CPU. An interconnection of this kind allows 
one CPU to interrupt another. Also, the direct-out lines 
of one CPU may be connected to the direct-in lincs of 
the other, and vice versa. 

Machine-Check Interruption 

The machine-check interruption provides a means for 
recovery from and fault location of machine malfunc­
tion. 

When the machine-check mask bit is one, occur­
rence of a machine check terminates the current in­
struction, initiates a diagnostic procedure, issues a 
signal on the machine check out-line, and subsequent­
ly causes the machine-check interruption. 

The old psw is stored at location 48 with an inter­
ruption code of zero. The state of the CPU is scanned 
out into the storage area, starting with location 128 
and extending through as many words as the given 
CPU requires. The new psw is fetched from location 
112. Proper execution of these steps depends on the 
nature of the machine check. 

The machine check out-signal is provided as part of 
the multisystem feature. The signal is a O.5-micro­
second to l.O-mierosecond timing signal that follows 
the I/O interface line-driving and terminating specifi­
cations. The signal is designed so that it has a high 
probability of being issued in the presence of machine 
malfunction. 

When the machine-check mask bit is zero, an at­
tempt is made to complete the current instruction 
upon the occurrence of a machine check and to pro­
ceed with the next sequential instruction. No diagnos­
tic procedure, signal, or interruption occurs. 

A change in the machine-check mask bit due to the 
loading of a new psw results in a change in the treat­
ment of machine checks. Depending on the nature of 
a machine check, the earlier treatment may still be in 
force for several cycles. 

Following emergency power turn-off and turn-on 
or system reset, incorrect parity may exist in storage 
or registers. Unless new information is loaded, a ma­
chine check may occur erroneously. Once storage and 
registers are cleared, a machine check can be caused 
only by machine malfunction and never by data or in­
structions. 

Machine checks occurring in operations executed 
by I/O channels either cause a machine-check inter­
ruption or are recorded in the channel status word for 
that operation. 

Priority of Interruptions 
During execution of an instruction, several interrup­
tion-causing events may occur simultaneously. The 
instruction may give rise to a program interruption, an 
external interruption may occur, a machine check may 
occur, and an I/O interruption request may be made. 
Instead of the program interruption, a supervisor-call 
i~terruption might occur; however, both cannot occur 
since these two interruptions are mutually exclusive. 
Simu1taneous interruption requests are honored in a 
predetermined order. 

The machine-check interruption has highest priority. 
When it occurs, the current operation is terminated. 
Program and supervisor-call interruptions that would 
have occurred as a result of the current instruction are 
eliminated. Every reasonable attempt is made to limit 
the side-effects of a machine check. Normally, I/O and 
external interruptions, as well as the progress of the 
I/O data transfer and the updating of the timer, re­
main unaffected. 

When no machine check occurs, the program inter­
ruption or supervisor-call interruption is taken first, the 
external interruption is taken next, and the I/O inter­
ruption is taken last. The action consists of storing the 
old psw and fetching the new psw belonging to the 
interruption first taken. This new psw is subsequently 
stored without any instruction execution, and the next 
interruption psw is fetched. This storing and fetching 
continues until no more interruptions are to be serv­
iced. The external and I/O interruptions are taken only 
if the immediately preceding psw indicates that the 
CPU is interruptable for these causes. 

Instruction execution is resumed using the last­
fetched psw. The order of executing interruption sub­
routines is therefore the reverse of the order in which 
the psw's arc fetched. 

Interruptions 81 



The interruption code of a new psw is not loaded 
since a new interruption code is always storcd. The 
instruction-length code in a new psw is similarly ig­
nored since it is unpredictable for all interruptions 
other than program or supcrvisor call. The protcction 
key of a new psw is stored unchanged when the pro­
tection feature is installed. When the feature is not 
installed, the protection key is made zero upon storing. 

Programming Note 

When interruption sources are not masked off, thc 
order of priority in handling the intcrruption sub­
routines is machine check, I/O, external, and program 
or supervisor call. This order can be changed to some 
extent by masking. The priority rule applies to inter­
ruption requests made simultaneously. An interruption 
request made after some interruptions have already 
been taken is honored according to the priority pre­
vailing at the moment of request. 

Interruption Exceptions 
The only exception that can cause a program inter­
ruption during an interruption is a specification ex­
ception. 

Specification: The protection feature is not installed, 
and a new psw with nonzero protection kcy is loaded. 

A program interruption is taken immediately upon 

82 

loading thc new PSW, regardless of the type of inter­
ruption introducing thc erroneous protection key and 
prior to any other pending interruptions. The protec­
tion key is made zero when the psw is stored. 

If the new psw for the program interruption has a 
nonzero protection key, another program interruption 
occurs. Since this second program interruption intro­
duces the same unacceptable protection key in the 
new PSW, the process is repeated with the CPU caught 
in a string of program interruptions. This string can be 
broken only by initial program loading or system reset. 

The instruction address in a new psw is not tested 
for availability or resolution as the psw is fetched 
during an interruption. However, an unavailable or 
odd instruction address is detected as soon as the 
instruction address is used to fetch an instruction. 
These exceptions are described in the section on 
normal sequential operation. 

If the new psw for the program interruption has an 
unacceptable instruction address, another program 
interruption occurs. Since this second program inter­
ruption introduces the same unaccept'able instruction 
address, a string of program interruptions is estab­
lished. This string may be broken by an external or 
I/O interruption. If these interruptions also have an 
unacceptable new psw, new supervisor information 
must be introduced by initial program loading or by 
manual intervention. 



Transfer of information to and from main storage, 
other than to or from the central processing unit or via 
the direct control path, is referred to as input and out­
put operation. An inputloutput (1/0) operation in­
volves the use of an inputloutput device. Input! out­
put devices perform 110 operations under control of 
control units, which are attached to the central proc­
essing unit (cpu) by means of channels. 

This portion of the manual describes, from the pro­
gramming point of view, the control of 110 devices by 
the channels and the CPU. The programmed control 
procedures apply to all 1/0 operations and are inde­
pendent of the type of 110 device, its speed, or its 
mode of op·eration. 

Attachment of Input/Output Devices 

Input / Output Devices 

Input! output devices provide external storage and a 
means of communication between data processing 
systems or between a system and the external world. 
Input! output devices include such equipment as card 
read-punches, magnetic tape units, direct-access-stor­
age devices (disk or drum), typewriter-keyboard de­
vices, printers, TELE-PROCESSING devices, and process 
control equipment. 

Most types of 110 devices, such as printers, card 
equipment, or tape devices, deal directly with external 
documents, and these devices are physically distin­
guishable and identifiable. Other types consist only of 
electronic equipment and do not directly handle 
physical recording media. The channel-to-channel 
adapter, for example, provides a channel-to-channel 
data transfer path, and the data never reach a physical 
recording medium outside main storage; the IBM 2702 
Transmission Control handles transmission of informa­
tion between the data processing system and a remote 
station, and its input and output are signals on a 
transmission line. Furthermore, the equipment in this 
case may be time-shared for a number of concurrent 
operations, and it is denoted as a particular 110 device 
only during the time period associated with the opera­
tion on the corresponding remote station. 

Input! output devices may be accessible from one or 
more channels. Devices accessible from one channel 
normally are attached to one control unit only. A 
device can be made accessible to two or more chan­
nels by switching it between two or more control units, 

Input / Output Operations 

each attached to a different channel, or by switching 
the control unit between two or more channels. 

Control Units 

The control unit provides the logical capability neces­
sary to operate and control an 110 device and adapts 
the characteristics of cach device to the standard form 
of control provided by the channel. 

All communications betwccn the control unit and 
the channel take place over the 110 interface. The 
control unit accepts control signals from the channel, 
controls the timing of data transfer over the 110 inter­
face, and provides indications concerning thc status 
of the device. 

The 110 interface provides an information format 
and a signal sequence common to all 1/0 devices. The 
interface consists of a set of lines that can connect a 
number of control units to the channel. Except for the 
signal used to establish priority among control units, 
all communications to and from the channel occur 
over a common bus, and any signal provided by the 
channel is available to all control units. At anyone 
instant, however, only one control unit is logically 
connected to the channel. Thc selection of a control 
unit for communication with the channel is controlled 
by a signal that passes serially through all control units 
and permits, sequentially, each control unit to respond 
to the signals provided by the channel. A control unit 
remains logically connected on the interface until it 
has transferred the information it needs or has, or until 
the channel signals it to disconnect, whichever occurs 
earlier. 

The 110 device attached to the control unit may be 
designed to perform only certain limited operations. 
A typical operation is moving the recording medium 
and recording data. To accomplish these functions, the 
device needs detailed signal sequences peculiar to the 
type of device. The control unit decodes the com­
mands received from the channel, interprets them for 
the particular type of device, and provides the signal 
sequence required for execution of the operation. 

A control unit may be housed separately or it may 
be physically and logically integral with the 110 de­
vice. In the case of most electromechanical devices, a 
well-defined interface exists betwecn the device and 
the control unit because of the difference in the type of 
equipment the control unit and the device contain. 
These electromechanical devices often are of a type 
where only one device of a group is rcquired to op-

Input/Output Operations 83 



erate at a time (magnetic tape units and disk access 
mechanisms, for example), and the control unit is 
shared among a number of I/O devices. On the other 
hand, in electronic I/O devices such as the channel-to­
channel adapter, the control unit does not have an 
identity of its own. 

From the user's point of view, most functions per­
formed by the control unit can be merged with those 
performed by the I/O device. In view of this, the con­
trol unit normally is not identified, and execution of 
I/O operations is described in this manual as if the I/O 

devices communicated directly with the channel. Ref­
erence is made to the control unit only when a func­
tion performed by it is emphasized or when sharing 
of the control unit among a number of devices affects 
the execution of I/O operations. 

Channels 

The channel directs the flow of information between 
I/O devices and main storage. It relieves the CPU of 
the task of communicating directly with the devices 
and permits data processing to proceed concurrently 
with I/O operations. 

The channel provides a standard interface for con­
necting different types of I/O devices to the CPU and 
to main storage. It accepts control information from 
the CPU in the format supplied by the program and 
changes it into a sequence of signals acceptable to a 
control unit. After the operation with the device has 
been initiated, the channel assembles or disassembles 
data and synchronizes the transfer of data bytes over 
the interface with main-storage cycles. To accomplish 
this, the channel maintains and updates an address 
and a count that describe the destination or source of 
data in main storage. When an I/O device provides 
signals that should be brought to the attention of the 
program, the channel again converts the signals to a 
format compatible to that used in the CPU. 

The channel contains all the common facilities for 
the control of I/O operations. When these facilities are 
provided in the form of separate autonomous equip­
ment designed specifically to control I/O devices, I/O 

operations are completely overlappcd with the activity 
in the CPU. The only main-storage cycles rcquired 
during I/O operations in such channels are those need­
ed to transfer data and control information to or from 
the final locations in main storage. These cycles do 
not interfere with the CPU program, except when both 
the CPU and the channel concurrently attempt to refer 
to the same main storage. 

Alternatively, the system may use to a greater or 
lesser extent the facilities of the CIJU for controlling I/O 

devices. When the CPU and the channel share common 

84 

equipment, interference varies from delaying the CPU 

by occasional cycles to a complete lockout of CPU 

activity, depending on the extent of sharing and on the 
I/O data rate. The sharing of the equipment, however, 
is accomplished automatically, and the program is not 
aware of CPU delays, except for an increase in execu­
tion time. 

Modes of Operation 

Data can be transferred between main storage and an 
I/O device in two modes: burst and multiplex. 

In burst mode, the I/O device monopolizes all chan­
nel controls and stays logically connected on the I/O 

interface for the transfer of a burst of information. 
Only one dcvice can be communicating with the 
channel during the time a burst is transferred. The 
burst can consist of a few bytes, a whole block of data, 
or a sequence of blocks with associated control and 
status information. 

In multiplex mode, the facilities in the channel may 
bc shared by a number of concurrent I/O operations. 
The multiplex mode causes all I/O operations to be 
split into short intervals of time during which only a 
segment of information is transferred over the inter­
face. The intervals associated with different operations 
are intermixed in response to demands from the I/O 

devices. The channel controls are occupied with any 
one opcration only for the time required to transfer a 
segment of information. The segment can consist of a 
single byte of data, a few bytes of data, or a control 
sequence such as initiation of a new operation or a 
status report from the device. 

Short bursts of data can appear in both the burst 
and multiplex modes of operation. The distinction be­
tween a short burst occurring in the multiplex mode 
and an operation in the burst mode is in the length of 
the bursts. Whenever the burst causes the device to 
be connccted to the channel for more than approxi­
mately 100 microseconds, the channel is considered to 
be operating in the burst mode. 

Operation in burst and multiplex modcs is differ­
entiated because of the way the channels respond to 
r/o instructions. A channel operating in the burst mode 
appears busy to new I/O instructions, whereas a chan­
nel operating in the multiplex mode is available for 
initiation of new operations. A channel that can op­
erate in both modes determines its mode of operation 
by time-out. If such a channel happens to be com­
municating with an I/O device at the instant a new 
I/O instruction is issued, action on the instruction is 
delayed until the current mode of operation is estab­
lished. New I/O operations are initiated only after the 
channel has serviced all outstanding requests for data 
transfer for previously initiated operations. 



Types of Channels 

A system can be equipped with two types of channels: 
selector and multiplexor. Channels are classified ac­
cording to the modes of operation they can sustain. 

The channel facilities required for sustaining a 
single I/O operation are termed a subchannel. The 
subchannel consists of the channel storage used for 
recording the addresses, count, and any status and 
control information associated with the I/O operation. 
The mode in which a channel can operate depends 
upon whether it has one or more subchannels. 

The selector channel has only one subchannel and 
operates only in the burst mode. The burst always 
extend over the whole block of data, or, when com­
mand chaining is specified, over the whole sequence 
of blocks. The selector channel cannot perform any 
multiplexing and therefore can be involved in only 
one data transfer operation at a time. In the meantime, 
other I/O devices attached to the channel can execute 
operations not involving communication with the 
channel. When the selector channel is not executing 
an operation or a chain of operations and is not proc­
essing an interruption, it scans the attached devices for 
status information. 

The multiplexor channel contains multiple subchan­
nels and can operate in either multiplex or burst mode. 
It can switch between the two modes at any time, and 
an operation on anyone sub channel can occur partial­
ly in the multiplex and partially in the burst mode. 

When the multiplexor channel operates in multiplex 
mode, it can sustain concurrently one J /0 operation 
per subchannel, provided that the total load on the 
channel does not exceed its capacity. 'To the program, 
each subchannel app(~ar5 as an independent selector 
channel. ''''hen the multiplexor channel is not servic­
ing an I/O device, it scans its devices for data and for 
interruption conditions. 

''''hen thc rnu]tiplexo1' channel operat('s in burst 
modC', tlw suhchannel associated vilith the ImI'st opera­
tion monopolizes all channel htc'ilitics and appears to 
the prf)~ram as a single selector channel. 

The remaining 5U hchanncls on the multiplexor chan­
nel must remain dormant and cannot respond to de­
vices until the burst is completed. 

System Operation 

Input/output operations arc initiated and controlled 
by information with tlUCt; typcs of formats: instruc­
tions, commands, and orders. Instructions are decoded 
and executed by the CPU and arc part of the CPU pro­
gram. Commands are decoded and executed by the 
channels, and initiate I/O operations, such as reading 
and writing. Both instructions and commands are 

fetched from main storage and are common to all 
types of I/O devices. 

Functions peculiar to a device, such as rewinding 
tape or spacing a line on the printer, are specified by 
orders. Orders are decoded and executed by I/O de­
vices. The execution of orders is initiated by a control 
command, and the associated control information is 
transferred to the device as data during the control 
operation or is specified in the modifier bits of the 
command code. 

The CPU program initiates I/O operations with the 
instruction START I/O. This instruction identifies the 
device and causes the channel to fetch the channel 
address word ( CAW) from a fixed location in main 
storage. The CAW contains the protection key and 
designates the location in main storage from which 
the channel subsequently fetches the first channel 
command word (ccw). The ccw specifies the com­
mand to be executed and the storage area, if any, to 
be used. 

If the channel is not operating in burst mode and if 
the sub channel associated with the address I/O device 
is not busy, the channel attempts to select the device 
by sending the address of the device to all attached 
control units. A control unit that recognizes the ad­
dress connects itself logically to the channel and re­
sponds to the selection by returning the address. The 
channel subsequently sends the command code over 
the interface, and the device responds with a status 
byte indicating whether it can execute the command. 

At this time, the execution of START I/O is termi­
nated. The results of the attempt to initiate the execu­
tion of the command are indicated by setting the 
condition code in the program status word ( psw) , 
and, under certain conditions, by storing a portion of 
the channel status word (csw). 

If the operation is initiated at the device and its 
execution involves transfer of data, the subchannel 
is set up to respond to service requests from the device 
and assumes further control of the operation. In the 
case of operations that do not require any data to be 
transferred to or from the device, the device may 
signal the end of the operation immediately on receipt 
of the command code. 

An I/O operation may involve transfer of data to 
one storage area, designated by a single ccw, or, when 
data chaining is specified, to a number of noncon­
tiguous storage areas. In the latter case, a chain of 
ccw's is used, in which each ccw designates an area 
in main storage for the original operation. The pro­
gram can be notified of the progress of chaining by 
specifying that the channel interrupt the program 
upon fetching a new ccw. 

Input/Output Operations 85 



Termination of the I/O operation normally is indi­
cated by two conditions: channel end and device end. 
The channel-end condition indicates that the I/O de­
vice has received or provided all information associ­
ated with the operation and no longer needs channel 
facilities. The device-end signal indicates that the 
I/O device has terminated execution of the operation. 
The device-end condition can occur concurrently with 
the channel-end condition or later. 

Operations that tie up the control unit after releasing 
channel facilities may, under certain conditions, cause 
a third type of signal. This signal, called control unit 
end, may occur only after channel end and indicates 
that the control unit is available for initiation of an­
other operation. 

The conditions signaling the termination of an I/O 

operation can be brought to the attention of the pro­
gram by I/O interruptions or, when the channel is 
masked, by programmed interrogation of the I/O de­
vice. In either case, these conditions cause storing the 
csw, which contains additional information concern­
ing the execution of the operation. At the time the 
channel-end condition is generated, the channel pro­
vides an address and a count that indicate the extent 
of main storage used. Both the channel and the device 
can provide indications of unusual conditions. The 
device-end and control-unit-end conditions can be ac­
companied by error indications from the device. 

Facilities are provided for the program to initiate 
execution of a chain of commands with a single START 

I/O. When command chaining is specified, the receipt 
of the device-end signal causes the channel to fetch 
a new ccw and to initiate a new command at the 
device. A chained command is initiated by mcans of 
the same sequence of signals over the I/O interface as 
the first command specified by START I/O. The condi­
tions signaling the termination of an operation are 
not made available to the program when command 
chaining occurs. 

Conditions that initiate I/O interruptions are asyn­
chronous to the activity in the CPU, and more than one 
condition can occur at the same time. The channel and 
the CPU establish priority among the conditions so that 
only one interruption request is processed at a time. 
The conditions are preserved in the I/O devices and 
subchannels until accepted by the CPU. 

Execution of an I/O operation or chain of operations 
thus involves up to four levels of participation. Except 
for the effects of shared equipment, the CPU is tied up 
for the duration of execution of START I/O, which 

86 

lasts at most until the addressed I/O device responds 
to the first command. The subchannel is busy with the 
execution from the time the operation is initiated at 
the I/O device until the channel-end condition for the 
last operation of the command chain is accepted by 
thc CPU. The control unit may remain busy after the 
subchannel has been released and may generate the 
control-unit-end condition when it becomes free. Final­
ly, the I/O device is busy from the initiation of the 
first command until the device-end condition associ­
ated with the last operation is cleared. A pending 
device-end condition causes the associated device to 
appear busy, but does not affect the state of any other 
part of the system. A pending control unit end blocks 
communications through the control unit to any device 
attached to it, while a pending channel end normally 
blocks all communications through the subchannel. 

Compatibility of Operation 

The organization of the I/O system provides for a uni­
form method of controlling I/O operations. The capac­
ity of a channel, however, depends on its use and on 
the model to which it belongs. Channels are provided 
with different data-transfer capabilities, and an I/O 

device designed to transfer data only at a specific rate 
(a magnetic tape unit or a disk storage for example) 
can operate only on a channel that can accommodate 
at least this data rate. 

The data rate a channel can accommodate depends 
also on the way the I/O operation is programmed. The 
channel can sustain its highest data rate when no data 
chaining is specified. Data chaining reduces the maxi­
mum allowable rate, and the extent of the reduction 
depcnds on the frequency at which new ccw's are 
fetched and on the address resolution of the first byte 
in the new area. Furthermore, since the channel may 
share main storage with the CPU and other channels, 
activity in the rest of the system affects the accessi­
bility of main storage and, hence, the instantaneous 
load the channel can sustain. 

In view of the dependence of channel capacity on 
programming and on activity in the rest of the system, 
an evaluation of the ability of a specific I/O configu­
ration to function concurrently must be based on a 
consideration of both the data rate and the way the 
I/O operations are programmed. Two systems employ­
ing identical complements of I/O devices may be able 
to executc certain programs in common, but it is pos­
sible that other programs requiring, for example, data 
chaining, may not run on one of the systems. 



Control of Input/Output Devices 
The CPU controls I/O operations by means of four I/O 

instructions: START I/O, TEST I/O, HALT I/O, and TEST 

CHANNEL. 

The instruction TEST CHANNEL addresscs a channel; 
it does not address an I/O device. The other three I/O 

instructions address a channel and a device on that 
channel. 

Input/Output Device Addressing 

An I/O device is designated by an I/O address. Each 
I/O address corresponds to a unique I/O device and is 
specified by means of an II-bit binary number in the 
I/O instruction. The address identifies, for example, a 
particular magnetic tape drive, disk access mcchanism, 
or transmission line. 

The I/O address consists of two parts: channel ad­
dress in the three high-order bit positions, and a device 
address in the eight low-order bit positions. The chan­
nel address specifies the channel to which the instruc­
tion applies; the device address identifies the particular 
I/O device in that channel. Any number in the range 
0-255 can be used as a device address, providing facili­
ties for addressing 256 devices per channel. The assign­
ment of I/O addresses is: 

ADDRESS 

000 xxxx xxxx 
001 xxxx xxxx 
010 xxx x xxxx 
011. xxxx xxxx 
1. 00 xxxx xxxx 
101 xxx x xxxx 
11 0 xxxx xxxx 
111 xxxx xxxx 

ASSIGNMENT 

Devices on the multiplexor channel 
Devices on selector channel 1 
Devices on selector channel 2 
Devices on selector channel 3 
Devices on selector channel 4 
Devices on selector channel 5 
Devices on selector channel 6 
Invalid 

On the multiplexor channel the device address 
identifies the su bchannel as well as the I/O device. A 
subchannel can be assigned a unique device address, 
or it can be referred to by a group of addresses. When 
more than one device address 'designates the same sub­
channel, the subchannel is called shared. 

The following table lists the basic assignment of de­
vice addresses on the multiplexor channel. Addresses 
with a zero in the high-order bit position pertain to 
subchannels that are not shared. The seven low-order 
bit positions of an address in this set identify one of 
128 distinct subchannels. The presence of a one in the 
high-order bit position of the address indicates that 
the address refers to a shared sub channel. There are 
eight such shared subchannels, each of which may be 
shared by as many as 16 I/O devices. In addresses that 
designate shared subchannels, the four low-order bit 
positions identify the I/O device on the subchannel. 

ADDRESS 

00000000 
to 

0111 1111 
1000 xxxx 
1001 xxxx 
1.010 xxxx 
1011 xxxx 
1100 xxxx 
1101. xxxx 
1110 xxxx 
1111 xxxx 

ASSIGNMENT 

Devices that do not share a subchannel 

Devices on shared subchanncl 0 
Devices on shared subchannel 1 
Devices on shared subchanncl 2 
Devices on shared subchannel 3 
Devices on shared subchannel 4 
Devices on shared subchannel 5 
Devices on shared subchanncl 6 
Devices on shared subchannel 7 

Physically, the shared subchannels are the same as 
the first eight non-shared subchannels. In particular, 
the set of addresses 1000 xxxx refers to the same sub­
channel as the address 00000000, the set 1001 xxxx re­
fers to the same sub channel as the address 0000 0001, 
etc, while the set 1111 xxxx refers to the same subchan­
nel as the address 00000111. Thus, the installation of 
all eight sets of devices on the shared subchannels re­
duces the maximum possible number of devices that 
do not share a subchannel to 120. 

For devices sharing a control unit (for example, 
magnetic tape units and the 2702 Transmission Con­
trol), the high-order bit positions of the device address 
identify the control unit. The number of bit positions 
in the common field depends upon the number of de­
vices installed but is designed to accommodate 16 or 
the high-order bits of all addresses are common. Con­
trol units with more than 16 devices may be assigned 
noncontiguous sets of 16 addresses. The low-order bit 
positions of the address identify the device on the con­
trol unit. 

When the control unit is designed to accommodate 
fewer devices than can be addressed with the common 
field, the control unit does not recognize the addresses 
not assigned to it. For example, if a control unit is 
designed to control devices having only bits 0000-1001 
in the low-order positions, it does not recognize ad­
dresses containing 1010-1111 in these bit positions. 
However, when a contra] unit has fewer than 16 de­
vices installed but is designed to accommodate 1 or 
more, it may respond to all 16 addresses and may in­
dicate unit check for the invalid addresses. 

Devices sharing both a control unit and a subchan­
nel ( magnetic tape units, disk access mechanism) 
are always assigned as sets of 16 addresses, with four 
high-order bits common. These addresses refer to the 
same sub channel even if the control unit does not 
recognize the whole set. 

Input! output devices accessible through more than 
one channel have a distinct address for each path of 
communications. This address identifies the channel, 
sub channel, and the control unit. For devices sharing 
a control unit, the position of the address identifying 

Input/Output Operations 87 



the device on the control unit is fixed and does not de­
pend on the path of communications. 

In models in which more than 128 sub channels are 
available, the shared subchannels can optionally be re­
placed by sets of unshared subchannels. When the 
option is implemented, the additional unshared sub­
channels are assigned sequential addresses starting at 
128. 

Except for the rules described, the assignment of de­
vice addresses is arbitrary. The assignment is made at 
the time of installation and normally is fixed. 

Programmill1g Notes 

Shared subchannels are used with devices, such as 
magnetic tape units and disk access mechanisms, that 
share a control unit. For such devices, the sharing of 
the subchannel does not restrict the concurrency of I/O 

operations since the control unit permits only one de­
vice to be involved in a date transfer operation at a 
time. 

The program can refer to a shared sub channel by 
addresses 0-7 or by one of the addresses assigned to 
the subchannel. No restrictions are imposed on the use 
of a shared subchannel. If the subchannel is available, 
the addressed device is selected, and the specified op­
eration is performed, regardless of the control unit to 
which the device is attached. 

Instruction Exception Handling 

Before the channel is signaled to execute an I/O in­
struction, the instruction is tested for validity by the 
CPU. Exceptional conditions detected at this time cause 
a program interruption. When the interruption occurs, 
the current psw is stored as the old psw and is replaced 
by a new psw. The interruption code in the old psw 
identifies the cause of the interruption. 

The following exception may cause a program inter­
ruption: 

Privileged Operation: An I/O instruction is encoun­
tered when the CPU is in the problem state. The in­
struction :is suppressed before the channel has been 
signaled to execute it. The csw, the condition code in 
the psw, and the state of the addressed sub channel 
and I/O device remain unchanged. 

States of the Input/Output System 

The state of the I/O system identified by an I/O ad­
dress depends on the collective state of the channel, 
sub channel, and I/O device. Each of these components 
of the I/O system can have up to four states, as far as 
the response to an I/O instruction is concerned. These 
states are listed in the following table. The name of 
the state is followed by its abbreviation and a brief 
definition. 

88 

I/O DEVICE 

Available 
Interruption pending 
Working 
Not operational 

SUDCHANNEL 

Available 
Interruption pending 

Working 
Not operational 

CHANNEL 

Available 
Interruption pending 

Working 
Not operational 

ADBREV DEFINITION 

A None of the following states 
I Interruption condition pending in 

W Device executing an operation 
N Device not operational 

ADDREV DEFINITION 

A None of the following states 
I Information for CSW available in 

subehannel 
W Subchannel executing an operation 
N Subchannel not operational 

ADDREV DEFINITION 

A None of the following states 
I Interruption immediately available 

from channel 
W Channel operating in hurst mode 
N Channel not operational 

A channel, subchannel, or I/O device that is avail­
able, that contains a pending interruption condition, or 
that is working, is said to be operational. The states of 
containing an interruption condition, working, or be­
ing not operational are collectively referred to as "not 
available." 

In the case of the multiplexor channel, the channel 
and subchannel are easily distinguishable and, if the 
channel is operational, any combination of channel and 
subchanncl states are possible. Since the selector chan­
nel can have only one subchannel, the channel and 
subchannel are functionally coupled, and certain states 
of the channel are related to those of the subchannel. 
In particular, the working state can occur only concur­
rently in both the channel and subchannel and, when­
ever an interruption condition is pending in the sub­
channel, the channel also is in the same state. The 
channel and sub channel, however, are not synony­
mous, and an interruption condition not associated 
with data transfer, such as attention or device end, 
does not affect the state of the subchannel. Thus, the 
subchanne.1 may be available when the channel has 
an interruption condition pending. Consistent dis­
tinction between the subchannel and channel permits 
both types of channels to be covered uniformly by a 
single description. 

The device referred to in the preceding table in­
cludes both the device proper and its control unit. For 
some types of devices, such as magnetic tape units, the 
working and the interruption-pending states can be 
caused by activity in the addressed device or control 
unit. A shared control unit imposes its state on all de­
vices attached to the control unit. The states of the de­
vices are not related to those of the channel and sub­
channel. 

When the response to an I/O instruction is deter­
mined on the basis of the states of the channel and 
subchannel, the components further removed are not 
interrogated. Thus, ten composite states are identified 



as conditions for the execution of the I/O instruction. 
Each composite state is identified in the following dis­
cussion by three alphabetic characters; the first char­
acter position identifies the state of the channel, the 
second identifies the state of the subchannel, and the 
third refers to the state of the device. Each character 
position can contain A, I ,w, or N, denoting the state 
of the component. The symbol x in place of a letter 
indicates that the state of the corresponding compo­
nent is not significant for the execution of the in­
struction. 

Available (AAA): The addressed channel, subchan­
nel, control unit, and I/O device are operational, are 
not engaged in the execution of any previously initi­
ated operations, and do not contain any pending in­
terruption conditions. 

Interruption Pending in Device (AAI) or Device 
Working (AA W): The addressed I/O device or control 
unit is executing a previously initiated operation or 
contains a pending interruption condition. The ad­
dressed sub channel and channel are available. These 
situations are possible: 

1. The device is executing an operation after sig­
naling the channel-end condition, such as rewinding 
tape or seeking on a disk file. 

2. The control unit associated with the device is 
executing an operation after signaling the channel­
end condition, such as backspacing file on a magnetic 
tape unit. 

3. The device or control unit is executing an opera­
tion on another sub channel or channel. 

4. The device or control unit contains the device­
end, control-unit-end, or attention condition or, on 
the selector channel, the channel-end condition as­
sociated with an operation terminated by HALT I/O. 

Device Not Operational (AAN): The addressed I/O 

device is not operational. A device appears not opera­
tional when no control unit recognizes the address. 
This occurs when the control unit is not provided in 
the system, when power is off in the control unit, or 
when the control unit has been logically switched off 
the I/O interface. For some types of devices, the not­
operational state is indicated also when the addressed 
device is not installed on the control unit. The ad­
dressed subchannel and channel are available. 

For devices such as magnetic tape units, the device 
appears operational as long as the control unit asso­
ciated with the addressed device is operational. If 
the device is not installed or has been logically re­
moved from the control unit, selection of the device 
for TEST I/O or a command other than sense causes 
the unit-check indication. 

Interruption Pending in Subchannel (AIX): An in­
terruption condition is pending in the addressed sub-

channel because of the termination of the portion of 
the operation involving the use of channel facilities. 
The subchannel has information for a complete csw. 
The interruption condition can indicate termination 
of an operation at the addressed I/O device or at 
another device on the subchannel. In the case of the 
multiplexor channel, the channel is available. The 
state of the addressed device is not significant, except 
when TEST I/O is addressed to the device associated 
with the terminated operation. The device associated 
with the terminated operation normally is in the in­
terruption pending state. 

On the selector channel the existence of an inter­
ruption condition in the sub channel immediately 
causes the channel to assign to this condition the 
highest priority for I/O interruptions and, hence, leads 
to the state IIX. 

Sub channel Working (AWX): The addressed sub­
channel is executing a previously initiated operation 
or chain of operations in the multiplex mode and has 
not yet reached the channel end for the last opera­
tion. All devices sharing the currently operating con­
trol unit appear in the working state but, for shared 
subchannels, the states of devices not attached to the 
control unit are not known. The addressed channel is 
available. 

The sub channel-working state does not occur on the 
selector channel since all operations on the selector 
channel are executed in the burst mode and cause the 
channel to be in the working state ( wwx) . 

Subchannel Not Operational (ANX): The addressed 
sub channel on the multiplexor channel is not opera­
tional. A subchannel is not operational when it is not 
provided in the system. The channel is available. 
This state cannot occur on the selector channel. 

Interruption Pending in Channel (IXX): The ad­
dressed channel has established which device will 
cause the next I/O interruption from this channel. 
The state where the channel contains a pending in­
terruption condition is distinguished only by the in­
struction TEST CHANNEL. This instruction does not 
cause the subchannel and I/O device to be interro­
gated. The other I/O instructions consider the chan­
nel available when it contains a pending interruption 
condition. 

Channel Working (WXX): The addressed channel 
is operating in the burst mode. In the case of the 
multiplexor channel, a burst of bytes is currently 
being handled. In the case of the selector channel, an 
operation or a chain of operations is currently being 
executed, and the channel end for the last operation 
has not yet been reached. The states of the addressed 
device and, in the case of the multiplexor channel, 
of the sub channel are not significant. 

Input/Output Operations 89 



Channel Not Operational (NXX): The addressed 
channel is not operational, or the channel address in 
the instruction is invalid. A channel is not operational 
when it is not provided in the system or when it has 
been switched to the test mode. The states of the 
addressed I/O device and sub channel are not signifi­
cant. 

Resetting of the Input/Output System 

Two types of resetting can occur in the I/O system. 
The reset states overlap the hierarchy of states distin­
guished for the purpose of responding to the CPU 

during the execution of I/O instructions. Resetting ter­
minates the current operation, disconnects the device 
from the channel, and may place the device in cer­
tain modes of operation. The meaning of the two 
reset states for each type of I/O device is specified in 
the Systems Reference Library (SRL) publication for 
the device. 

System Re,set 

The system-reset function is performed when the 
system-reset key is pushed, when initial program 
loading is performed, or when a system power-on 
sequence is completed. 

System reset causes the channel to terminate opera­
tions on all subchannels. Status information and in­
terruption conditions in the subchannels are reset, and 
all operational subchannels are placed in the available 
state. The channel sends the system-reset signal to all 
I/O devices attached to it. 

If the device is! currently communicating over the 
I/O interface, the device immediately disconnects 
from the channel. Data transfer and any operation 
using the facilities of the control unit are immediately 
terminated, and the I/O device is not necessarily posi­
tioned at the beginning of a block. Mechanical mo­
tion not involving the use of the control unit, such as 
rewinding magnetic tape or positioning a disk access 
mechanism, proceeds to the normal stopping point, if 
possible. The device remains unavailable until the 
termination of mechanical motion or the inherent 
cycle of operation, if any, whereupon it becomes 
available" Status information in the device and con­
trol unit :is reset, and no interruption condition is gen­
erated upon completing the operation. 

A control unit accessible by more than one channel 
is reset if it is currently associated with a channel on 
the CPU generating the reset. 

Malfunction Reset 

The malfunction-reset function is performed when the 
channel detects equipment malfunctioning. 

90 

Execution of malfunction reset in the channel de­
pends on the type of error and the model. It may 
cause all operations in the channel to be terminated 
and all operational subchannels to be reset to the 
available state. The channel may send either the mal­
function-reset signal to the device connected to the 
channel at the time the malfunctioning is detected, 
or channels sharing common equipment with the 
CPU may send the system-reset signal to all devices 
attached to the channel. 

When the channel signals malfunction reset over 
the interface, the device immediately disconneots 
from the channel. Data transfer and any operation 
using the facilities of the control unit are immediately 
terminated, and the I/O device is not necessarily po­
sitioned at the beginning of a block. Mechanical mo­
tion not involving the control unit, such as rewinding 
magnetic tape or positioning a disk access mechanism, 
proceeds to the normal stopping point, if possible. 
The device remains unavailable until the termination 
of mechanical motion or the inherent cycle of opera­
tion, if any, whereupon it becomes available. Status 
information associated with the addressed device is 
reset, but an interruption condition may be generated 
upon completing any mechanical operation. 

When a malfunction reset occurs, the program is 
alerted by an I/O interruption or, when the malfunc­
tion is detected during the execution of an I/O instruc­
tion, by the setting of the condition code. In either 
case the csw identifies the condition. The device ad­
dressed by the I/O instruction or the device identified 
by the I/O interruption, however, is not necessarily 
the one placed in the malfunction-reset state. In chan­
nels sharing common equipment with the CPU, mal­
functioning detected by the channel may be indicated 
by a machine-check interruption, in which case a csw 
is not stored and a device is not identified. The 
method of identifying malfunctioning depends upon 
the model. 

Condition Code 

The results of certain tests by the channel and device, 
and the original state of the addressed part of the I/O 

system are used during the execution of an I/O in­
struction to set one of four condition codes in bit 
positions 34 and 35 of the psw. The condition code 
is set at the time the execution of the instruction is 
completed, that is, the time the CPU is released to 
proceed with the next instruction. The condition code 
indicates whether or not the channel has performed 
the function specified by the instruction and, if not, 
the reason for the rejection. The code can be used for 
decision-making by subsequent branch-on-condition 
operations. 



The following table lists the conditions that are 
identified and the corresponding condition codes for 
each instruction. The states of the system and their 
abbreviations are defined in "States of the Input/Out­
put System." The digits in the table represent the 
numeric value of the code. The instruction START I/O 

can set code 0 or 1 for the AAA state, depending on 
the type of operation that is initiated. 

CONDITION CODE FOR 

START TEST HALT TEST 

CONDITIONS I/O I/O I/O CHAN 

Available AAA O,P~ 0 0 0 
Interruption pend. in device AAI 1~ 1~ 0 0 
Device working AAW 1~ 1~ 0 0 
Device not operational AAN 3 3 0 0 
Interruption pend. in sub channel AIX 

For the addressed device 2 1~ 0 0 
For another device 2 2 0 0 

Subchannel working AWX 2 2 1~ 0 
Subchannel not operational ANX 3 3 3 0 
Interruption pend. in channel IXX sce note below 1 
Channel working WXX 2 2 2 2 
Channel not operational NXX 3 3 3 3 
Error 

Channel equipment error P P 1~ 

Channel programming error 1~ 

Device error 1~ 1~ 

~The CSW or its status portion is stored at location 64 during 
execution of the instruction. 

- The condition cannot be identified during execution of the in­
struction. 

NOTE: For the purpose of executing START I/O, TEST I/O, 
and HALT I/O, a channel containing a pending interruption 
condition appears the same as an available channel, and the 
condition codes for the IXX state are the same as for the AXX 
state, where the X's represent the states of the subchannel and 
the device. As an example, the condition eode for the IAA 
state is the same as for the AAA state. 

The available condition is indicated only when no 
errors are detected during the execution of the I/O 

instruction. When a programming error occurs in the 
information placed in the CAW or ccw and the ad­
dressed channel or subchannel is working, either con­
dition code 1 or 2 may be set, depending upon the 
model. Similarly, either code 1 or 3 may be set when 
a programming error occurs and a part of the ad­
dressed I/O system is not operational. 

When a subchannel on the multiplexor channel con­
tains a pending interruption condition (state AIX), 

the I/O device associated with the terminated opera­
tion normally is in the interruption-pending state. 
When the channel detects during execution of TEST 

I/O that the device is not operational, condition code 
3 is set. Similarly, condition code 3 is set when HALT 

I/O is addressed to a subchannel in the working state 
and operating in the multiplex mode (state A WX ) , 

but the device turns out to be not operational. The 
not-operational state in both situations can be caused 

by operator intervention or by equipment malfunction 
and, for HALT I/O, may occur when the isntruction is 
addressed to a control unit other than the one cur­
rently operating. 

The error conditions listed in the preceding table 
include all equipment or programming errors detected 
by the channel or the I/O device during execution of 
the I/O instruction. Except for channel equipment er­
rors, in which case no csw may be stored, the status 
portion of the csw identifies the error. Three types of 
errors can occur: 

Channel Equipment Error: The channel can detect 
the following equipment errors during execution of 
START r/o, TEST I/O, and HALT r/o: 

1. The device address that the channel received on 
the interface during initial selection either has a 
parity error or is not the same as the one the channel 
sent out. Some device other than the one addressed 
may be malfunctioning. 

2. The unit-status byte that the channel received on 
the interface during initial selection has a parity error. 

3. A signal from the I/O device occurred during 
initial selection at an invalid time or had invalid 
duration. 

4. The channel detected an error in its control 
equipment. 

The channel may perform the malfunction-reset 
function, depending on the type of error and the 
model. If a csw is stored, channel control check or 
interface control check is indicated, depending on the 
type of error. 

Channel Programming Error: The channel can de­
tect the following programming errors during execu­
tion of START I/O: 

1. Invalid ccw address in CAW 

2. Invalid ccw address specification in CAW 

3. Invalid storage protection key in CAW 

4. Invalid CAW format 
5. First ccw specifies transfer in channel 
6. Invalid command code in first ccw 
7. Initial data address exceeds addressing capacity 

of model 
8. Invalid count in first ccw 
9. Invalid format of first ccw 
The csw indicates program check. 
Device Error: Programming or equipment crrors 

detected by the device during the execution of START 

I/O are indicated by unit check or unit exception in 
the csw. The instruction TEST I/O can cause unit check 
to be generated. 

The conditions responsible for unit check and unit 
exception for each type of 1/0 device are detailed in 
the SRL publication for the device. 

[nput/Output Operations 91 



Instruction Format 

All I/O instructions use the following SI format: 

OpCode ~ B1 I 
78 1516 1920 31 

Bit positioIiS 8-15 of the instruction are ignored. 
The content of the Bl field designates a register. The 
sum obtained by the addition of the content of reg­
ister Bl and content of the Dl field identifies the 
channel and the I/O device. This sum has the format: 

Bit positions 0-7 are not part of the address. Bit 
positions 8-20, which constitute the high-order portion 
of the address, are ignored. Bit positions 21-23 of the 
sum contain the channel address, while bit positions 
24-31 identify the device on the channel and, on the 
multiplexor channel, the subchannel. 

Instructionls 

The mnemonics, format, and operation codes of the 
I/O instructions follow. The table also indicates that 
all I/O instructions cause program interruption when 
they are encountered in the problem state, and that 
all I/O instructions set the condition code. 

NAME MNEMONIC TYPE EXCEPTION CODE 

Start 110 SIO SI, C M 9C 
Test 110 TIO SI, C M 9D 
Halt 110 HIO SI, C M 9E 
Test Channel TCH SI, C M 9F 

NOTES 

C Condition code is set 
M Privileged-operation exception 

Programming Note 

The instructions START I/O, TEST I/O, and HALT I/O 
may cause a csw to be stored. To prevent the con­
tents of the csw stored by the instruction from being 
destroyed by an immediately following I/O interrup­
tion, all channels must be masked before issuing 
START I/O, TEST I/O, or HALT I/O and must remain 
masked until the information in the csw provided by 
the instruction has been acted upon or stored else­
where for later use. 

92 

Start I/O 

5/0 51 

9C ~B1 
7 8 1516 1920 31 

A write, read, read backward, control or sense opera­
tion is initiated at the addressed I/O device and sub­
channel. The instruction START I/O is executed only 
when the CPU is in the supervisor state. 

Bit positions 21-31 of the sum formed by the addi­
tion of the content of register Bl and the content of 
the Dl field identify the channel, sub channel, and I/O 
device to which the instruction applies. The CAW at 
location 72 contains the protection key for the sub­
channel and the address of the first ccw. The ccw so 
designated specifies the operation to be performed, 
the main-storage area to be used, and the action to 
be taken when the operation is completed. 

The I/O operation specified by START I/O is initiated 
if the addressed I/O device and subchannel are avail­
able, the channel is available or is in the interruption­
pending state, and errors or exceptional conditions 
have not been detected. When the addressed part of 
the I/O system is in any other state or when the chan­
nel or device detect any error or exceptional condition 
during exccution of the instruction, the I/O operation 
is not initiated. 

When any of the following conditions occurs, START 
I/O causes the status portion, bit positions 32-47, of 
the csw at location 64 to be replaced by a new set of 
status bits. The status bits pertain to the device ad­
dressed by the instruction. The contents of the other 
fields of the csw at location 64 are not changed. 

1. An immediate operation was executed, and no 
command chaining is taking place. An operation is 
called immediate when the I/O device signals the 
channel-end condition immediately on receipt of the 
command code. The csw contains the channel-end bit 
and any other indications provided by the channel or 
the device. The busy bit is off. The I/O operation has 
been initiated, but no information has been transferred 
to or from the storage area designated by the ccw. No 
interruption conditions are generated at the device or 
snbchannel, and the sub channel is available for a 
new I/O operation. 

2. The I/O device contains a pending interruption 
condition due to device end or attention, or the con-



trol unit contains a pending channel end or control 
unit end for the addressed device. The csw unit­
status field contains the busy bit, identifies the inter­
ruption condition, and may contain other bits pro­
vided by the device or control unit. The interruption 
condition is cleared. The channel-status field contains 
zeros. 

3. The I/O device or the control unit is executing a 
previously initiated operation, or the control unit has 
pending channel end or control unit end for a device 
other than the one addressed. The csw unit-status 
field contains the busy bit or, if the control unit is 
busy, the busy and status-modifier bits. The channel­
status field contains zeros. 

4. The I/O device or channel detected an equip­
ment or programming error during execution of the 
instruction. The channel-end and busy bits are off, 
unless the error was detected after the device was 
selected and was found to be busy, in which case the 
busy bit, as well as any bits indicating pending inter­
ruption conditions, are on. The interruption conditions 
indicated in the csw have been cleared at the device. 
The csw identifies the error condition. The I/O op­
eration has not been initiated. No interruption condi­
tions are generated at the I/O device or subchannel. 

Resulting Condition Code: 
o I/O operation initiated and channel proceed-

ing with its execution 
1 csw stored 
2 Channel or sub channel busy 
3 Not operational 

Program Interruptions: Privileged operation. 

Programming Note 

When a programming error occurs and the addressed 
device contains an interruption condition, with the 
channel and subchannel in the available state, START 

I/O mayor may not clear the interruption condition, 
depending on the type of error and the model. If the 
instruction has caused the device to be interrogated, 
as indicated by the presence of the busy bit in the 
csw, the interruption condition has been cleared, and 
the csw contains program check, as well as the status 
from the device. 

Test I/O 

rio 51 

9D ~Bll 
78 1516 1920 31 

The state of the addressed channel, subchannel, and 
device is indicated by setting the condition code in 
the psw and, under certain conditions, by storing the 
csw. Pending interruption conditions may be cleared. 

The instruction TEST I/O is executed only when the 
CPU is in the supervisor state. 

Bit positions 21-31 of the sum formed by the addi­
tion of the content of register Bl and the content of 
the Dl field identify the channel, subchannel, and 
I/O device to which the instruction applies. 

When any of the following conditions is detected, 
TEST I/O causes the csw at location 64 to be stored. 
The content of the csw pertains to the I/O device ad­
dressed by the instruction. 

1. The subchannel contains a pending interruption 
condition due to a terminated operation at the ad­
dressed device. The interruption condition is cleared. 
The protection key, command address, and count 
fields contain the final values for the I/O operation, 
and the status may include other bits provided by 
the channel and the device. The interruption condi­
tion in the subchannel is not cleared, and the csw is 
not stored if the interruption condition is associated 
with an operation on a device other than the one 
addressed. 

2. The I/O device contains a pending interruption 
condition due to device end or attention, or the con­
trol unit contains a pending channel end or control 
unit end for the addressed device. The csw unit-status 
field identifies the interruption condition and may 
contain other bits provided by the device or control 
unit. The interruption condition is cleared. The busy 
bit in the csw is off. The other fields of the csw con­
tain zeros. 

3. The I/O device or the control unit is executing a 
previously initiated operation or the control unit has 
pending channel end or control unit end for a device 
other than the one addressed. The csw unit-status 
field contains the busy bit or, if the control unit is 
busy, the busy and status-modifier bits. Other fields 
of the csw contain zeros. 

4. The I/O device or channel detected an equip­
ment error during execution of the instruction. The 
csw identifies the error condition. No interruption 
conditions are generated at the I/O device or the sub­
channel. 

When TEST I/O is used to clear an interruption con­
dition from the subchannel and the channel has not 
yet accepted the condition from the device, the in­
struction causes the device to be selected and the 
interruption condition in the device to be reset. Dur­
ing certain I/O operations, some types of devices can­
not provide their current status in response to TEST 

I/O. The tape control unit, for example, is in such a 
state when it has provided the channel-end condition 
and is executing the backspace-file operation. When 
TEST I/O is issued to a control unit in such a state, the 
unit-status field of the csw contains the busy and 

Input/Output Operations 93 



status-modifier bits, with zeros in the other csw fields. 
The interruption condition in the device and in the 
subchannel is not cleared. 

On some types of devices, such as the 2702 Trans­
mission Control, the device never provides its current 
status in response to TEST I/O, and an interruption 
condition can be cleared only by permitting an I/O 

interruption. When TEST I/O is issued to such a device, 
the unit-status field contains the status-modifier bit. 
The interruption condition in the device and in the 
subchannel, if any, is not cleared. 

However, at the time the channel assigns the high­
est priority for interruptions to a condition associated 
with an operation at the subchannel, the channel ac­
cepts the status from the device and clears the cor­
responding condition at the device. When TEST I/O 

is addressed to a device for which the channel has 
already accepted the interruption condition, the de­
vice is not selected, and the condition in the subchan­
nel is cleared regardless of the type of device and its 
present state. The csw contains unit status and other 
information associated with the interruption condi­
tion. 

Resulting Condition Code: 
o Available 
1 csw stored 
2 Channel or subchannel busy 
3 Not operational 

Program Interruptions: Privileged operation. 

Programming Notes 

Masking of channels provides the program a means of 
controlling the priority of I/O interruptions selectively 
by channels. The priority of devices attached on a 
channel is fixed and cannot be controlled by the pro­
gram. The instruction TEST I/O permits the program to 
clear interruption conditions selectively by I/O device. 

When a csw is stored by TEST I/O, the interface­
control-check and channel-control-check indications 
may be due to a condition already existing in the 
channel or due to a condition created by TEST I/O. 

Similarly, presence of the unit-check bit in the ab­
sence of channel-end, control-unit-end or device-end 
bits may be due to either a condition created by the 
preceding operation or an equipment error detected 
during the execution of TEST I/O. 

Halt I/O 

HIO 51 

9E ~Bl 
78 1516 1920 31 

Execution of the current I/O operation at the address­
ed sub channel or channel is terminated. The subse-

94 

quent state of the subchannel depends on the type of 
channel. The csw may be stored. The instruction HALT 

I/O is executed only when the CPU is in the supervisor 
state. 

Bit positions 21-31 of the sum formed by the addi­
tion of the content of register Bl and the content of 
the Dl field identify the I/O device to whose subchan­
nel or channel the instruction applies. 

When HALT I/O is issued to a channel operating in 
the burst mode, data transfer for the burst operation 
is terminated and the device performing the burst 
operation is immediately disconnected from the chan­
nel. The subchannel and I/O device address in the in­
struction is ignored. When the instruction is issued to 
the multiplexor channel operating in the multiplex 
mode and the addressed subchannel is working, data 
transfer for the current operation on the subchannel 
is terminated. In this case the channel uses the device 
address appearing in the instruction to identify the 
subchanncl and select the device on the I/O interface. 
The address of the device on the subchannel is not 
significant, providing the control unit responds to the 
address. 

The termination of an operation by HALT I/O on the 
selector channel causes the channel and su bchannel to 
be placed in the interruption-pending state. The in­
terruption condition is generated without receiving 
the channel-end signal from the device. When HALT 

I/O causes an operation on the multiplexor channel to 
be terminated, the subchannel remains in the working 
state until the device provides the next status byte, 
whereupon the subchannel is placed in the interrup­
tion-pending state. 

The control unit associated with the terminated 
operation remains unavailable for a new I/O operation 
until the data-handling portion of the operation in 
the control unit is terminated, whereupon it generates 
the channel-end condition. Channel end may be gen­
erated at the normal time for the operation, earlier, 
or later, depending upon the operation and type of 
device. The I/O device executing the terminated oper­
ation remains in ,the working state until termination 
of the inherent cycle of the operation, at which time 
device end is generated. If blocks of data at the de­
vice are defined, such as reading on magnetic tape, 
the recording medium is advanced to the beginning of 
the next block. 

If the control unit is shared, all devices attached to 
the control unit appear in the working state until the 
channel-end condition is accepted by the CPU. The 
states of the other devices, however, are not perma­
nently affected. Operations such as rewinding mag­
netic tape or positioning a disk access mechanism are 



not interrupted, and any pending attention and de­
vice-end conditions in these devices are not reset. 

When any of the following conditions occurs, HALT 

I/O causes the status portion, bit positions 32-47, of 
the csw at location 64 to be replaced by a new set of 
status bits. The status bits pertain to the device ad­
dressed by instruction. The contents of the other fields 
of the csw at location 64 are not changed. The extent 
of data transfer and the conditions of termination of 
the operation at the subchannel are provided in the 
csw associated with the termination. 

1. The device on the addressed subchannel current­
ly involved in data transfer in the multiplex mode has 
been signaled to terminate the operation. The csw 
contains z,eros in the status field. 

2. The addressed subchannel on the multiplexor 
channel is working, and no burst operation is in prog­
ress, but the control unit or the I/O device is executing 
a type of operation or is in such a state that it cannot 
accept the halt-I/o signaI. The device has not been 
signaled to terminate the operation, but the subchan­
nel has been set up to signal termination to the device 
the next time the device requests or offers a byte of 
data. The csw unit-status field contains the busy and 
status-modifier bits. The channel-status field contains 
zeros. 

3. The channel detected an equipment malfunction 
during the execution of HALT I/O. The status bits in 
the csw identify the error condition. The state of the 
channel and the progress of the I/O operation are un­
predictable. 

When the subchannel on the multiplexor channel is 
shared and no burst operation is in progress, HALT I/O 
causes the operation to be terminated as long as the 
instruction is addressed to a device on the currently 
working control unit. If another device is addressed, a 
malfunction has occurred, or the operator has changed 
the state of the operating control unit, no device may 
recognize the address. If the device appears not oper­
ational during execution of HALT I/O, condition code 
3 is set, and the subchannel is set up to signal ter­
mination to the device the next time the device offers 
or requests a byte of data. 

Resulting Condition Code: 
o Channel and subchannel not working 
1 csw stored 

2 Burst operation terminated 
3 Not operational 

Program Interruptions: Privileged operation. 

Programming Note 

The instruction HALT I/O provides the program a 
means of terminating an I/O operation before all data 
specified in the operation have been transferred. It 
permits the program to immediately free the selector 
channel for an operation of higher priority. On the 
multiplexor channel, HALT I/O provides a means of 
controlling real-time operations and permits the pro­
gram to terminate data transmission on a communi­
cation line. 

Test Channel 

TCH 51 

9F ~Bl 
78 1516 1920 31 

The condition code in the psw is set to indicate the 
state of the addressed channeI. The state of the chan­
nel is not affected, and no action is caused. The in­
struction TEST CHANNEL is executed only when the CPU 

is in the supervisor state. 
Bit positions 21-23 of the sum formed by the addi­

tion of the content of register Bl and the content of 
the Dl field identify the channel to which the instruc­
tion applies. Bit positions 24-31 of the address are 
ignored. 

The instruction TEST CHANNEL inspects only the state 
of the addressed channeI. It tests whether the channel 
is operating in the burst mode, is aware of any out­
standing interruption conditions from its devices, or 
is not operationaI. When none of these conditions 
exists, the available state is indicated. No device is 
selected, and, on the multiplexor channel, the sub­
channels are not interrogated. 

Resulting Condition Code: 
o Channel available 
1 Interruption pending in channel 
2 Channel operating in burst mode 
3 Channel not operational 

Input/Output Operations 95 



Execution of Input/Output Operations 
The channel can execute six commands: 

Write 
Read 
Read backward 
Control 
Sense 
Transfer in channel 
Each command except transfer in channel initiates 

a corresponding I/O operation. The term "I/O oper­
ation" refers to the activity initiated by a command in 
the I/O device and subchannel. The subchannel is in­
volved with the execution of the operation from the 
initiation of the command until the channel-end signal 
is received or, in the case of command chaining, until 
the device-end signal is received. The operation in the 
device lasts until device end occurs. 

Blocking of Data 

Data recorded on an external document may be di­
vided into blocks. A block of data is defined for each 
type of 110 device as the amount of information rec­
orded in the interval between adjacent starting and 
stopping points of the device. The length of a block 
depends on the documents; for example, a block can 
be a card, a line of printing, or the information rec­
orded between two consecutive gaps on tape. 

The maximum amount of information that can be 
transferred in one I/O operation is one block. An I/O 

operation is terminated when the associated storage 
area is exhausted or the end of the block is reached 
whichever occurs first. For some operations, such a~ 
writing on a magnetic tape unit or on an inquiry sta­
tion, blocks are not defined, and the amount of in­
formation transferred is controlled only by the pro­
gram. 

Channel Address Word 

The channel address word ( CAW) specifies the storage 
protection key and the address of the first ccw associ­
ated with START I/O. It appears at location 72. The 
channel refers to the CAW only during the execution 
of START I/O. The pertinent information thereafter is 
stored in the channel, and the program is free to 
change the content of the CAW. Fetching of the CAW 
by the channel does not affect the contents of location 
72. 

The CAW has the following format: 

I Key I 0 () 0 0 I Command Address 

o 34 78 31 

The fields in the CAW are allocated for the follow­
ing purposes: 

96 

Protection Key: Bits 0-3 form the storage protection 
key for all commands associated with START I/O. This 
key is matched with a storage key whenever data are 
placed in storage. 

Command Address: Bits 8-31 designate the location 
of the first ccw in main storage. 

Bit positions 4-7 of the CAW must contain zeros. 
When the protection feature is not implemented, the 
protection key must be zero. The three low-order bits 
of the command address must be zero to specify the 
ccw on integral boundaries for double words. If any 
of these restrictions is violated or if the command ad­
dress specifies a location outside the main storage of 
the particular installation, START I/O causes the status 
portion of the csw to be stored with the program­
check bit on. In this event, the I/O operation is not 
initiated. 

Channel Command Word 

The channel command word (ccw) specifies the com­
mand to be executed and, for commands initiating 
I/O operations, it designates the storage area associ­
ated with the operation and the action to be taken 
whenever transfer to or from the area is completed. 
The ccw' s ~an be located anywhere in main storage, 
and more than one can be associated with a START 
I/O. The channel refers to a ccw in main storage only 
once, whereupon the pertinent information is stored 
in the channel. 

The first ccw is fetched during the execution of 
START I/O. Each additional ccw in the chain is ob­
tained when the operation has progressed to the point 
where the additional ccw is needed. Fetching of the 
CCw's by the channel does not affect the contents of 
the location in main storage. 

The ccw has the following format: 

I Command 
. Code Data Address 
o 78 

Flags looO~ Count 

32 36 37 3940 4748 63 

The fields in the ccw are allocated for the following 
purposes: 

Command Code: Bits 0-7 specify the operation to 
he performed. 

Data Address: Bits 8-31 specify the location of an 
eight-bit byte in main storage. It is the first location 
referred to in the area designated by the ccw. 

Chain-Data Flag: Bit 32, when one, specifies chain­
ing of data. It causes the storage area designated by 
the next ccw to be used with the current operation. 
Whcn bit 32 is zero, the current control word is the 
last one for the operation. 



Chain-Command Flag: Bit 33, when one and when 
the chain-data flag is off, specifics chaining of com­
mands. It causes the operation specified by the com­
mand code in the next ccw to be initiated on normal 
completion of the current operation. Whcn bit 33 is 
zero or when the CD flag is one, the next ccw docs not 
specify a new command. 

Suppress-Length-Indication Flag: Bit 34 controls 
whether an incorrect length condition is to be indi­
cated to the program. When this bit is one and the CD 

flag is off in the last ccw used, the incorrect-length in­
dication is suppressed. If the ccw has the cc flag on, 
command chaining takes place. Absence of the SLI flag 
or the presence of the CD flag causes the program to 
be notified of the incorrect-length condition when it 
occurs. 

Skip Flag: Bit 35, when one, specifies suppression 
of transfer of information to storage during a read, 
read-backward, or sense operation. When bit 35 is 
zero, normal transfer of data takes place. 

Program-Controlled-Interruption Flag: Bit 36, 
when one, causes the channel to generate an inter­
ruption condition upon fetching the ccw. When bit 36 
is zero, normal operation takes place. 

Count: Bits 48-63 specify the number of eight-bit 
byte locations in the storage area designated by the 
ccw. 

Bit positions 37-39 of every ccw other than one spe­
cifying transfer in channel must contain zeros. Viola­
tion of this restriction generates the program-check 
condition. When the first ccw designated by the CAW 

does not contain the required zeros, thc I/O operation 
is not initiated, and the status portion of the csw with 
the program-check indication is stored during execu­
tion of START I/O. Detection of this condition during 
data chaining causes the I/O device to be signaled to 
terminate the operation. When the absence of these 
zeros is detected during command chaining, the new 
operation is not initiated, and no interruption condition 
is generated. 

The content of bit positions 40-47 of the ccw is 
ignored. 

Command Code 

The command code in the ccw specifies to the chan­
nel and the I/O device the operation to be performed. 

The two low-order bits or, when these bits are 
00, the four low-order bits of the command code iden­
tify the operation to the channel. The channel dis­
tinguishes among the following four operations: 

Output forward (write, control) 
Input forward (read, sense) 
Input backward (read backward) 
Branching (transfer in channel) 

The channel ignores the high-order bits of the com­
mand code. 

Commands that initiate I/O operations (write, read, 
read backward, control, and sense) cause all eight bits 
of the command code to be transferred to the I/O de­
vice. In these command codcs, the high-order bit po­
sitions contain modifier bits. The modifier bits specify 
to the device how the command is to he executed. 
They may cause, for example, the device to compare 
data rcceived during a write operation with data pre­
viously recorded, and they may specify such con­
ditions as recording density and parity. For the control 
command, the modifier bits may contain thc order 
code specifying the control function to be performed. 
The meaning of the modifier bits depends on the type 
of I/O device and is specified in the SRL publication 
for the device. 

The command code assignment is listed in the fo]­
lowing table. The symhol x indicates that the bit po­
sition is ignored; m identifies a modifier hit. 

CODE 

X X X X 0000 

MMMM 0100 

x x x x 1000 

MMMM 1100 

MMMMMMOI 

MMMMMM10 

MMMMMM11 

COMMAND 

Invalid 
Sense 
Transfer in channel 
Read hackward 
\Vritc 
Read 
Control 

Whenever the channel detects an invalid command 
code during the initiation of a command, the pro­
gram-check condition is generated. When the first ccw 
designated by the CAW contains an invalid command 
code, the status portion of the csw with the program­
check indication is stored during execution of START 

I/O. When the invalid code is detected during com­
mand chaining, the new operation is not initiated, and 
an interruption condition is generated. The command 
code is ignored during -data chaining, unless it speci­
fies transfer in channel. 

Definition of Storage Area 

The main-storage area associated with an I/O oper­
ation is defined by ccw's. A ccw defines an area by 
specifying the address of the first eight-bit hyte to be 
transferred and the number of consecutive eight-bit 
bytes contained in the area. The address of the first 
hyte appears in the data-address field of the ccw. The 
number of bytes contained in the storage area is spe­
cified in the count field. 

In write, read, control, and sense operations storage 
locations are used in ascending order of addresses. As 
information is transferred to or from main storage, the 
content of the address field is incremented, and the 
content of the count field is decrementcd .. The read­
backward operation causes data to be placed in stor-

Input/Output Operations 97 



age in a descending order of addresses, and both the 
count and the address are stepped down. When the 
count in any operation reaches zero, the storage area 
defined by the ccw is exhausted. 

Any main-storage location provided in the system 
can be used to transfer data to or from an I/O device, 
provided that during an input operation the location 
is not protected. Similarly, the ccw's can be specified 
in any part of available main storage. When the chan­
nel attempts to store data at a protected location, the 
protection-check condition is generated, and the de­
vice is signaled to terminate the operation. 

When the channel refers to a location not provided 
in the system, the program-check condition is gener­
ated. When this condition occurs because the first ccw 
designated by the CAW contains a data address ex­
ceeding the addressing capacity of the model, the I/O 

operation is not initiated, and the status portion of the 
csw with the program-check indication is stored dur­
ing execution of START I/O. Invalid data addresses de­
tected after initiation of the opcration or detection of 
an invalid ccw address during chaining is indicated 
to the program with the interruption conditions at the 
termination of the operation or chain of operations. 

During an output operation, thc channel may fetch 
data from main storage ahead of the time the I/O de­
vice requests the data. As many as 16 bytes may be 
prefetehed and buffered. Similarly, on data chaining 
during an output operation, the channel may fetch the 
new ccw when as many as 16 bytes remain to be 
transferred under the control of the current ccw. 
When the I/O operation uses data and ccw's from 10-
ations near the end of the available storage, such pre­
fetching may cause the channel to refer to locations 
that do not exist. Invalid addresses detected during 
prefetching of data or ccw's do not affect the execu­
tion of the operation and do not cause error indica­
tions until the I/O operation actually attempts to use 
the information. If the operation is terminated by the 
I/O device or by HALT I/O before the invalid informa­
tion is needed, the condition is not brought to the 
attention of the program. 

Storage addresses do not wrap around to location 0 
unless the system has the maximum addressable stor­
age (16,777,216 bytes). When the maximum address­
able storage is provided, location 0 follows location 
16,777,215 and, on reading backward, location 
16,777,215 follows location O. 

The count field in the ccw can specify any number 
of bytes up to 65,535. Except for a ccw specifying 
transfer in channel, it may not contain the value zero. 
Whenever the count field in the ccw initially contains 
a zero, the program-check condition is generated. 
When this occurs in the first ccw designated by the 

98 

CAW, the operation is not initiated, and the status por­
tion of the csw with the program-check indication is 
stored during execution of START I/O. When a count 
of zero is detected during data chaining, the I/O de­
vice is signaled to terminate the operation. Detection 
of a count of zero during command chaining sup­
presses initiation of the new operation and generates 
an interruption condition. 

Chaining 

When the channel has performed the transfer of in­
formation specified by a ccw, it can continue the ac­
tivity initiated by START I/O by fetching a new ccw. 
The fetching of a new ccw upon the exhaustion of the 
current ccw is called chaining and the ccw's belonging 
to such a sequence are said to be chained. 

Chaining takes place only between ccw's located 
in successive double-word locations in storage. It pro­
ceeds in an ascending order of addresses; that is, the 
address of the new ccw is obtained by adding eight 
to the address of the current ccw. Two chains of 
ccw's located in noncontiguous storage areas can be 
coupled for chaining purposes by a transfer in chan­
nel command. All ccw's in a chain apply to the I/O 

device specified in the original START I/O. 

Two types of chaining are provided: chaining of 
data and chaining of commands. Chaining is con­
trolled by the chain-data (CD) and chain-command 
(cc) flags in the ccw. These flags specify the action 
to be taken by the channel upon the exhaustion of 
the current ccw. The following code is used: 

CD CC ACTION 

o 0 No chaining. The current CCW is the last. 
o 1 Command chaining 
1 0 Data chaining 
1 1 Data chaining 

The specification of chaining is effectively propa­
gated through a transfer in channel command. When 
in the process of chaining a transfer-in-channel com­
mand is fetched, the ccw designated by the transfer 
in channel is used for the type of chaining specified 
in the ccw preceding the transfer in channel. 

The CD and cc flags are ignored in the transfer-in­
channel command. 

Data Chaining 

During data chaining, the new ccw fetched by the 
channel defines a new storage area for the original I/O 

operation. Execution of the operation at the I/O device 
is not affected. Data chaining occurs only when all data 
designated by the current ccw have been transferred 
to or from the device and causes the operation to con­
tinue, using the storage area designated by the new 



ccw. The content of the command-code field of the 
new ccw is ignored, unless it specifies transfer in 
channel. 

Data chaining is considered to occur immediately 
after the last byte of data designated by the current 
ccw has been transferred to or from the device. When 
the last byte has been placed in main storage or ac­
cepted by the device, the new ccw takes over the con­
trol of the operation and replaces the pertinent in­
formation in the subchannel. If the device sends chan­
nel end after exhausting the count of the current ccw 
but before transferring any data to or from the storage 
area designated by the new ccw, the csw associated 
with the termination identifies the new ccw. 

If programming errors are detected h ... the new ccw 
or during its fetching, the program-check condition is 
generated, and the device is signaled to terminate the 
operation when it attempts to transfer data designatcd 
by the new ccw. If the device signals the channel-end 
condition before transferring any data designated by 
the new ccw, program check is indicated in the csw 
associated with the termination. Unless the address of 
the new ccw is invalid or programming errors are de­
tected in an intervening transfer-in-channel command, 
the content of the csw pertains to the new ccw. A 
data address referring to a nonexistent area or, on 
reading, to a protected area causes an error indication 
only after the I/O device has attempted to transfer 
data to or from the invalid location, but an address 
exceeding the addressing capacity of the model is de­
tected immediately upon fetching the ccw. 

Data chaining during an input operation causes the 
new ccw to be fetched when all data designated by 
the current ccw have been placed in main storage. On 
an output operation, the channel may fetch the new 
ccw from main storage ahead of the time data chain­
ing occurs. The earliest such prefetching may occur 
is when 16 bytes still remain to be transferred under 
the control of the current ccw. Any programming 
errors in the prefetched ccw, however, do not affect 
the execution of the operation until all data desig­
nated by the current ccw have been transferred to the 
I/O device. If the device terminates the operation be­
fore all data designated by the current ccw have been 
transferred, the conditions associated with the pre­
fetched ccw are not indicated to the program. 

Only one ccw describing a data area may be pre­
fetched and buffered in the channel. If the prefetched 
ccw specifies transfer in channel, only one more ccw 
is fetched before the exhaustion of the current ccw. 

Programming Notes 

Data chaining permits information to be rearranged 
as it is transferred between main storage and the I/O 

device. Data chaining also permits a block of informa­
tion to be transferred to or from noncontiguous areas 
of storage, and, when used in conjunction with the 
skipping function, it permits the program to place in 
storage selected portions of a block of data. 

When during an input operation, the program 
specifies data chaining to a location into which data 
have been placed under the control of the current 
ccw, the channel fetches the new contents of the lo­
cation, even if the location contains the last byte 
transferred under thc control of the current ccw. 
The program, therefore, can use self-describing rec­
ords; that is, it can chain to a ccw that has been read 
under the control of the current ccw. However, 
since the program is not notified of any data errors 
until the end of the operation, there is no assurance 
that the ccw is correct. The ccw in main storage may 
be invalid even though its parity is good. 

Command Chaining 

During command chaining, the new ccw fetched by 
the channel specifies a new I/O operation. The chan­
nel fetches the new ccw and initiates the new oper­
ation upon the receipt of the device-end signal for the 
current operation. When command chaining takes 
place, the completion of the current operation does 
not cause an I/O interruption, and the count indicat­
ing the amount of data transferred during the current 
operation is not made available to the program. For 
operations involving data transfer, the new command 
always applies to the next block at the device. 

Command chaining takes place and the new oper­
ation is initiated only if no unusual conditions have 
been detected in the current operation. If a condition 
such as unit check, unit exception, or incorrect length 
has occurred, the sequence of operations is termi­
nated, and the status associated with the current op­
eration causes an interruption condition to be gener­
ated. The new ccw in this case is not fetched. The 
incorrect-length condition does not suppress command 
chaining if the current ccw has the SLI Hag on. 

An exception to sequential chaining of ccw's occuts 
when the I/O device presents the status-modifier con­
dition with the device-end signal. When command 
chaining is specified and no unusual conditions have 
been detected, the combination of status-modifier and 
device-end bits causes the channel to fetch and chain 
to the ccw whose main-storage address is 16 higher 
than that of the current ccw. 

When both command and data chaining are used, 
the first ccw associated with the operation specifies 
the operation to be executed, and the last ccw indi­
cates whether another operation follows. 

Input/Output Operations 99 



Programming Note 

Command chaining makes it possible for the program 
to initiate transfer of multiple blocks of data by means 
of a single START I/O. It also permits a sub channel to 
be set up for execution of auxiliary functions, such as 
positioning the disk access mechanism, and for data 
transfer operations without interference by the pro­
gram at the end of each operation. Command chain­
ing, in conjunction with the status-modifier condition, 
permits the channel to modify the normal sequence of 
operations in response to signals provided by the I/O 

device. 

Skipping 

Skipping is the suppression of main-storage references 
during an I/O operation. It is defined only for read, 
read backward, and sense operations and is controlled 
by the skip Bag, which can be specified individually 
for each ccw. When the skip Hag is one, skipping oc­
curs; when zero, normal operation takes place. The 
setting of the skip flag is ignored in all other oper­
ations. 

Skipping affects only the handling of information 
by the channel. The operation at the I/O device pro­
ceeds normally, and information is transferred to the 
channel. The channel keeps updating the count but 
does not place the information in main storage. If the 
chain-command or chain-data flag is one, a new ccw 
is obtained when the count reaches zero. In the case 
of data chaining, normal operation is resumed if the 
skip Hag in the new ccw is zero. 

No checking for invalid or protected data addresses 
takes place during skipping, except that the initial 
data address in the ccw cannot exceed the addressing 
capacity of the model. 

Programming Note 

Skipping, when combined with data chaining, permits 
the program to place in main storage selected portions 
of a block of information from an I/O device. 

Program-Controlled Interruption 

The program-controlled interruption ( PCI) function 
permits the program to cause an I/O interruption dur­
ing execution of an I/O operation. The function is con­
trolled by the PCI flag in the ccw. The flag can be on 
either in the first ccw specified by START I/O or in a 
ccw fetched during chaining. Neither the PCI Hag nor 
the associated interruption affects the execution of the 
current operation. 

Whenever the PCI Hag in the ccw is on, the channel 
attempts to interrupt the program. When the first ccw 
associated with an operation contains the PCI Bag, 

100 

either initially or upon command chaining, the inter­
ruption may occur as early as immediately upon the 
initiation of the operation. The PCI flag in a ccw 
fetched on data chaining causes the interruption to 
occur after all data designated by the preceding ccw 
have been transferred. The time of the interruption, 
however, depends on the model and the current ac­
tivity in the system and may be delayed even if the 
channel is not masked. No predictable relation exists 
between the time the interruption due to the PCI Hag 
occurs and the progress of data transfer to or from the 
area designated by the ccw. 

If chaining occurs before the interruption due to 
the PCI flag has taken place, the PCI condition is car­
ried over to the new ccw. This carryover occurs both 
on data and command chaining and, in either case, 
the condition is propagated through the transfer-in­
channel command. The PCI conditions are not stacked; 
that is, if another ccw is fetched with a PCI Bag before 
the interruption due to the PC! Hag of the previous 
ccw has occurred, only one interruption takes place. 

A csw containing the PCI bit may be stored by an 
interruption while the operation is still proceeding or 
upon the termination of the operation. 

When the csw is stored by an interruption before 
the operation or chain of operations has been termi­
nated, the command address is eight higher than the 
address of the current ccw, and the count is unpre­
dictable. All unit-status bits in the csw are off. If the 
channel has detected any unusual conditions, such as 
channel data check, program check, or protection 
check by the time the interruption occurs, the corre­
sponding channel-status bit is on, although the con­
dition in the channel is not reset and is indicated 
again upon the termination of the operation. 

Presence of any unit-status bit in the csw indicates 
that the operation or chain of operations has been 
terminated. The csw in this case has its regular for­
mat with the PCI bit added. 

The setting of the PCI Bag is inspected in every ccw 
except those specifying transfer in channel. In a ccw 
specifying transfer in channel, the setting of the Bag 
is ignored. The PCI Hag is ignored also during initial 
program loading. 

Programming Notes 

Since no unit-status bits are placed in the csw associ­
ated with the termination of an operation on the se­
lector channel by HALT I/O, the presence of a unit­
status bit with the PCI bit is not a necessary condition 
for the operation to be terminated. When the selector 
channel contains the PCI bit at the time the operation 
is terminated by HALT I/O, the csw associated with 
the termination is indistinguishable from the csw pro-



vided by an interruption during execution of the op­
eration. 

Program-controlled interruption provides a means 
of alerting the program of the progress of chaining 
during an I/O operation. It permits programmed dy­
namic main-storage allocation. 

Commands 

The following table lists the command codes for the 
six commands and indicates which Hags are defined 
for each command. The Hags are ignored for all com­
mands for which they are not defined. 

Write 
Read 

NAME 

Read backward 
Control 
Sense 
Transfer in channel 

NOTES 

FLAG 

CD CC SLI PCI 
CD CC SLI SKIP PCI 
CD CC SLI SKIP PCI 
CD CC SLI PCI 
CD CC SLI SKIP PCI 

CD Chain data 
CC Chain command 
SLI Suppress incorrect length 
SKIP Skip 
PCI Program-controlled interruption 

CODE 

MMMMMMOI 
MMMMMM10 
MMMM 1100 
MMMMMMII 
MMMM 0100 
x x x x 1000 

All Hags have individual significance, except that 
the cc and SLI Hags are ignored when the CD Hag is on. 
The SLI Hag is ignored on immediate operations, in 
which case the incorrect-length indication is sup­
pressed regardless of the setting of the Hag. The PCI 

Hag is ignored during initial program loading. 

Write 

A write operation is initiated at the I/O device, and the 
subchannel is set up to transfer data from main storage 
to the I/O device. Data in storage are fetched in an 
ascending order of addresses, starting with the ad­
dress specified in the ccw. 

A ccw used in a write operation is inspected for the 
CD, CC, SLI, and the PCI Hags. The setting of the skip 
Hag is ignored. Bit positions 0-5 of the ccw contain 
modifier bits. 

Programming Note 

On writing magnetic tape, block-length is not defined, 
and the amount of data written is controlled only by 
the count in the ccw. Every operation terminated 
under count control causes the incorrect-length indica­
tion, unless the indication is suppressed by the SLI Hag. 

Read 

A read operation is initiated at the I/O device, and the 
subchannel is set up to transfer data from the device 
to main storage. For devices such as magnetic tape 
units, disk storage, and card equipment, the bytes of 
data within a block are provided in the same sequence 

as written by means of a write command. Data in 
storage are placed in an ascending order of addresses, 
starting with the address specified in the ccw. 

A ccw used in a read operation is inspected for 
every ·one of the five Hags - CD, CC, SLI, skip, and PCI. 

Bit positions 0-5 of the ccw contain modifier bits. 

Read Backward 

A read-backward operation is initiated at the I/O de­
vice, and the subchannel is set up to transfer data 
from the device to main storage. On magnetic tape 
units, read backward causes reading to be performed 
with the tape moving backwards. The bytes of data 
within a block are sent to the channel in a sequence 
opposite to that on writing. The channel places the 
bytes in storage in a descending order of address, start­
ing with the address specified in the ccw. The bits 
within an eight-bit byte are in the same order as sent 
to the device on writing. 

A ccw used in a read-backward operation is in­
spected for everyone of the five Hags - CD, cc, SLI, 

skip, and PCI. Bit positions 0-3 of the ccw contain 
modifier bits. 

Programming Note 

When data chaining is used during a read-backward 
operation, the channel places data in storage in a de­
scending sequence but fetches ccw's in an ascending 
sequence. Consequently, if a magnetic tape is to be 
written so that it can be read in either the forward or 
backward direction as a self-describing record, the 
ccw must be written at both the beginning and the 
end of the physical record. If more than one ccw is to 
be used, the order of the ccw's must be reversed at the 
end of the record since the storage areas associated 
with the ccw's are used in reverse sequence. Further­
more, a ccw used for reading backward must describe 
the associated storage area by specifying the highest 
address of the area, whereas it normally cont ,IS the 
lowest address. 

Control 

A control operation is initiated at the I/O device, and 
the subchannel is set up to transfer data from main 
storage to the device. The device interprets the data 
as control information. The control information, if 
any, is fetched from storage in an ascending order of 
addresses, starting with the address specified in the 
ccw. A control command is used to initiate at the I/O 

device an operation not involving transfer of data -
such as backspacing or rewinding magnetic tape or 
positioning a disk access mechanism. 

For most control functions, the entire operation is 
specified by the modifier bits in the command code, 

Input/Output Operations 101 



and the function is performed over the I/O interface 
as an immediate operation (see "Immediate Opera­
tions" ). If the command code does not specify the 
entire control function, the data-address field of the 
ccw designates the required additional information for 
the operation. This control information may include 
an order code further specifying the operation to be 
performed or an address, such as the disk address for 
the seek function, and is transferred in response to re­
quests by the device. 

A control command code containing zeros for the 
six modifier bits is defined as no operation. The no­
operation order causes the addressed device to respond 
with channel end and device end without causing any 
action at the device. The order can be executed as an 
immediate operation, or the device can delay the 
status until after the initiation sequence is completed. 
Other operations that can be initiated by means of the 
control command depend on the type of I/O device. 
These operations and their codes are specified in the 
SRL publication for the device. 

A ccw used in a control operation is inspected for 
the CD, CC, SLI, and the PCI Rags. The setting of the 
skip Rag is ignored. Bit positions 0-5 of the ccw con­
tain modiB.er bits. 

Programming Note 

Since a count of zero is invalid, the program cannot 
use the ccw count field to specify that no data be trans­
ferred to the I/O device. Any operation terminated 
before data have been transferred causes the incorrcct­
length indication, provided the operation is not im­
mediate and has not been rejected during the initia­
tion sequence. The incorrect-length indication is sup­
pressed when the SLI Rag is on. 

Sense 

A sense operation is initiated at the I/O device, and 
the subchannel is set up to transfer data from the de­
vice to main storage. The data are placed in storage 
in an ascending order of addresses, starting with the 
address specified in the ccw. 

Data transferred during a sense operation provide 
information concerning both unusual conditions de­
tected in the last operation and the status of the de­
vice. The status information provided by the sense 
command is more detailed than that supplied by the 
unit-status byte and may describe reasons for the unit­
check indication. It may also indicate, for example, if 
the device is in the not-ready state, if the tape unit is 
in the file-protected state, or if magnetic tape is posi­
tioned beyond the end-of-tape mark. 

For most devices, the first six bits of the sense data 
describe conditions detected during the last opera-

102 

tion. These bits are common to all devices having this 
type of information and are designated as follows: 

BIT DESIGNATION 

o Command reject 
1 Intervention required 
2 Bus-out check 
3 Equipment check 
4 Data check 
5 Overrun 

The following is the meaning of the first six bits: 
Command Reject: The device has detected a pro~ 

gramming error. A command has been received which 
the device is not designed to execute, such as read is­
sued to a printer, or which the device cannot execute 
bccause of its present state, such as backspace issued 
to a tape unit with the tape at load point. 

Intervention Required: The last operation could not 
be executed because of a condition requiring some 
type of intervention at the device. This bit indicates 
conditions such as an empty hopper in a card punch 
or the printer being out of paper. It is also turned on 
when the addressed device is in the not-ready state, is 
in test mode, or is not provided on the control unit. 

Bus-Out Check: The device or the control unit has 
received a data byte or a command code with an in­
valid parity over the I/O interface. During writing, 
bus-out check indicates that incorrect data have been 
recorded at the device, but the condition does not 
cause the operation to be terminated prematurely. 
Errors on command codes and control information 
cause the operation to be immediately terminated. 

Equipment Check: During the last operation, the 
device or the control unit has detected equipment mal­
functioning, such as an invalid card hole count or 
printer buffer parity error. 

Data Check: The device or the control unit has de­
tected a data error other than those included in bus­
out check. Data check identifies errors associated with 
thc recording medium and includes conditions such as 
reading an invalid card code or detecting invalid par­
it yon data recorded on magnetic tape. 

On an input operation, data check indicates that 
incorrect data may have been placed in main storage. 
The control unit forces correct parity on data sent to 
the channel. On writing, this condition indicates that 
incorrect data may have been recorded at the device. 
Data errors on reading and writing do not cause the 
operation to be terminated prematurely. 

Overrun: The channel has failed to respond on time 
to a request for service from the device. Overrun can 
occur when data are transferred to or from a non­
buffered control unit operating with a synchronous 
medium, and the total activity initiated by the program 
exceeds the capability of the channel. When the chan-



nel fails to accept a byte on an input operation, the 
following data in main storage are shifted to fill the 
gap. On an output operation, overrun indicates that 
data recorded at the device may be invalid. The over­
run bit is also turned on when the device receives the 
new command too late during command chaining. 

All information significant to the use of the device 
normally is provided in the first two bytes. Any bit 
positions following those used for programming in­
formation contain diagnostic information, which may 
extend to as many bytes as needed. The amount and 
the meaning of the status information are peculiar to 
the type of I/O device and are specified in the SRL 

publication for the device. 
The sense information pertaining to the last I/O op­

eration is reset by the next command, other than 
sense, addressed to the control unit. The sense com­
mand cannot cause the command-reject, intervention­
required, data-check, or overrun bits to be turned on. 
If the control unit detects an equipment error or in­
valid parity of the sense command code, the equip­
ment-check or bus-out-check bits are turned on, and 
unit check is sent with the channel end. 

A ccw used in a sense operation is inspected for 
everyone of the five flags - CD, CC, SLI, skip, and 
PCI. Bit positions 0-3 of the ccw contain modifier bits. 

Transfer In Channel 

The next ccw is fetched from the location designated 
by the data-address field of the ccw specifying trans-

fer in channel. The transfer-in-channel command does 
not initiate any I/O operation at the channel, and the 
I/O device is not signaled of the execution of the com­
mand. The purpose of the transfer in channel com­
mand is to provide chaining between ccw's not lo­
cated in adjacent double-word locations in an ascend­
ing order of addresses. The command can occur in 
both data and command chaining. 

The first ccw designated by the CAW may not specify 
transfer in channel. When this restriction is violated, 
no I/O operation is initiated, and the program-check 
condition is generated. The error causes the status por­
tion of the csw with the program-check indication to 
be stored during the execution of START I/O. 

To address a ccw on integral boundaries for double 
words, a ccw specifying transfer in channel must con­
tain zeros in bit positions 29-31. Furthermore, a ccw 
specifying a transfer in channel may not be fetched 
from a location designated by an immediately preced­
ing transfer in channel. When either of these errors is 
detected or when an invalid address is specified in 
transfer in channel, the program-check condition is 
generated. Detection of these errors during data chain­
ing causes the operation at the I/O device to be ter­
minated, whereas during command chaining they 
cause an interruption condition to be generated. 

The contents of the second half of the ccw, bit po­
sitions 32-63, are ignored. Similarly, the contents of bit 
positions 0-3 of the ccw are ignored. 

Input/Output Operations 103 



Termination of Input/Output Operations 

When the operation or sequence of operations initiated 
by START I/O is terminated, the channel and the device 
generate status conditions. These conditions can be 
brought to the attention of the program by the I/O 

interruption mechanism, by TEST I/O, or, in certain 
cases, by START I/O. The status conditions, as well as 
an address and a count indicating the extent of the op­
eration sequence, are presented to the program in the 
form of a csw. 

Types of Termination 

Normally an I/O operation at the subchannellasts until 
the device signals channel end. The channel-end con­
dition can be signaled during the sequence initiating 
the operation, or later. When the channel detects 
equipment malfunctioning or a system reset is per­
formed, the channel disconnects the device without 
receiving channel end. The program can force a de­
vice on the selector channel to be disconnected pre­
maturely by issuing HALT I/O. 

Termination at Operation Initiation 

After the addressed channel and subchannel have been 
verified to be in a state where START I/O can be exe­
cuted, certain tests are performed on the validity of 
the information specified by the program and on the 
availability of the addressed control unit and I/O de­
vice. This testing occurs both during the execution of 
START I/O and during command chaining. 

A data-transfer operation is initiated at the subchan­
nel and device only when no programming or equip­
ment errors are detected by the channel and when the 
device responds with zero status during the initiation 
sequence. When the channel detects or the device sig­
nals any unusual condition during the initiation of an 
operation, but channel end is off, the command is said 
to be rejected. 

Rejection of the command during the execution of 
START I/O is indicated by the setting of the condition 
code in the psw. Unless the device is not operational, 
the conditions that precluded the initiation are de­
tailed by the portion of the csw stored by START I/O. 

The device is not started, no interruption conditions 
are generated, and the subchannel is not tied up be­
yond the initiation sequence. The device is immedi­
ately available for the initiation of another operation, 

104 

provided the command was not rejected because of 
the busy or non-operational condition. 

When an unusual condition causes a command to be 
rejected during initiation of an I/O operation by com­
mand chaining, an interruption condition is generated, 
and the subchannel is not available until the condition 
is cleared. The not-operational state on command 
chaining is indicated by means of interface control 
check; the other conditions are identified by the cor­
responding status bits in the associated csw. The new 
operation at the I/O device is not started. 

Immediate Operations 

Instcad of accepting or rejecting a command, the I/O 

device can signal the channel-end condition immedi­
atcly upon receipt of the command code. An I/O op­
eration causing the channel-end condition to be sig­
nalcd during the initiation sequence is called an 
"immediate operation." 

When the first ccw designated by the CAW initiates 
an immediate operation, no interruption condition is 
generated. If no command chaining occurs, the chan­
nel-end condition is brought to the attention of the 
program by causing START I/O to store the csw status 
portion, and the subchannel is immediately made avail­
able to the program. The I/O operation, however, is 
initiated, and, if channel-end is not accompanied by 
device end, the devicc remains busy. Device end, when 
subsequently provided by the device, causes an inter­
ruption condition to be generated. 

When command chaining is specified after an im­
mediate operation and no unusual conditions have 
been detected during the execution, START I/O does not 
cause storing of csw status. The subsequent commands 
in the chain are handled normally, and the channel-end 
condition for the last operation generates an inter­
ruption condition even if the device provides the sig­
nal immediately upon receipt of the command code. 

Whenever immediate completion of an I/O oper­
ation is signaled, no data have been transferred to or 
from the device. The data address in the ccw is not 
checked for validity, except that it may not exceed 
the addressing capacity of the model. 

Since a count of zero is not valid, any ccw specifying 
an immediate operation must contain a nonzero count. 
When an immediate operation is executed, however, 
incorrect length is not indicated to the program, and 
command chaining is not suppressed. 



Input / Output Interruptions 

Input/output interruptions provide a means for the 
CPU to change its state in response to conditions that 
occur in I/O devices or channels. These conditions can 
be caused by the program or by an external event at 
the device. 

Interruption Conditions 

The conditions causing requests for I/O interruptions 
to be initiated are called interruption conditions. An 
interruption condition can be brought to the attention 
of the program only once and is cleared when it causes 
an interruption. Alternatively, an interruption con­
dition can be cleared by TEST I/O, and conditions gen­
erated by the I/O device following the termination of 
the operation at the subchannel can be cleared by 
START I/O. The latter include the attention, device-end, 
and control-unit-end conditions, and the channel-end 
condition when provided by a device on the selector 
channel after termination of the operation by HALT I/O. 

The device initiates a request to the channel for an 
interruption whenever it detects any of the following 
conditions: 

Channel end 
Control unit end 
Device end 
Attention 
Unit check 
Unit exception 

When command chaining is specified and is not sup­
pressed because of error conditions, channel end and 
device end do not cause interruption conditions and 
are not made available to the program. Unit-check and 
unit-exception conditions cause interruption to be re­
quested only when the conditions are detected during 
the initiation of a chained command. Once the com­
mand has been accepted by the device, unit check 
and unit exception do not occur in the absence of 
channel end, control unit end, or device end. 

When the channel detects any of the following con­
ditions, it initiates a request for an I/O interruption 
without having received the status byte from the de­
vice: 

PCI flag in a ccw. 
Execution of HALT I/O on selector channel. 

The interruption conditions from the channel can be 
accompanied by other channel status indications, but 
none of the device status bits is on when the channel 
initiates the interruption. 

A request for an I/O interruption due to a program­
check condition detected during command chaining 
(such as invalid command code, count of zero, or two 
sequential transfer-in-channel commands) may be ini­
tiated either by the I/O device or by the channel, de-

pending on the type of channel. To stack the inter­
ruption condition in the device, as occurs on the 
multiplexor channel, the channel signals the device to 
respond with a unit-status byte consisting of all zeros 
on a subsequent scan for interruption conditions. The 
error indication is preserved in the subchannel. 

The method of processing a request for interruption 
due to equipment malfunctioning, as indicated by the 
presence of the channel-control-check and interface­
control-check conditions, depends on the model. 

More than one interruption condition can be cleared 
concurrently. As an example, when the PCI condition 
exists in the subchannel at the termination of an oper­
ation, the PCI condition is indicated with channel end 
and only one I/O interruption occurs, or only one TEST 

I/O is needed. Similarly, if the channel-end condition 
is not cleared until device end is generated, both con­
ditions may be indicated in the csw and cleared at 
the device concurrently. 

However, at the time the channel assigns highest 
priority for interruptions to a condition associated with 
an operation at the subehannel, the channel accepts 
the status from the device and clears the condition at 
the device. The interruption condition is subsequently 
preserved in the snbchannel. Any subsequent status 
generated by the device is not included with the con­
dition at the suhchannel, even if the status is generated 
before the CPU accepts the condition. 

Priority of Interruptions 

All requests for I/O interruption are asynchronous to 
the activity in the CPU, and interruption conditions as­
sociated with more than one I/O device can exist at 
the same time. The priority among requests is con­
trolled by two types of mechanisms - one establishes 
the priority among interruption conditions associated 
with devices attached to the same channel, and another 
establishes priority among requests from different 
channels. A channel requests an I/O interruption only 
after it has established priority among requests from 
its devices. The conditions responsible for the requests 
are preserved in the dcvices or channels until accepted 
by the CPU. 

Assignment of priority to requests for interruption 
associated with devices on anyone channel is a func­
tion of the type of interruption condition and the po­
sition of the device on the I/O interface cable. 

The selector channel assigns the highest priority to 
conditions associated with the portion of the operation 
in which the channel is involved. These conditions in­
clude channel end, program-controlled interruptions, 
errors detected or command chaining, and execution 
of HALT I/O in the channel. The channel cannot handle 

Input/Output Operations 105 



ceipt of the signal from the device. The channel-end 
indication in this case is not made available to the 
program. 

Termination by HALT I/O 

The instruction HALT r/ a causes the current operation 
at the addressed channel or subchannel to be termi­
nated immediately. The method of termination differs 
from that used upon exhaustion of count or upon de­
tection of programming errors to the extent that ter­
mination by HALT r/o is not contingent on the receipt 
of a service request from the device. 

When HALT r/o is issued to a channel operating in 
the burst mode, the channel issues the haIt-r/o signal 
to the device regardless of the current activity in the 
channel and on the interface. If the channel is involved 
in the data-transfer portion of an operation, data trans­
fer is immediately terminated, and the device is dis­
connected from the channel. If HALT I/O is addressed 
to a selector channel executing a chain of operations 
and the device has already provided channel end for 
the current operation, the instruction causes the de­
vice to be disconnected and the chain-command Hag 
to be removed. 

When HALT I/O is issued to the multiplexor channel 
and the channel is not operating in the burst mode, 
the haIt-I/o signal is sent to the device whenever the 
addressed subchannel is in the working state. The sub­
channel may be transferring data, or it may have al­
ready received channel end for the current operation 
and may be waiting for device end to initiate a new 
operation by command chaining. In either case, HALT 

r/o causes the device to be selected, and the halt-I/o 
signal is issued as the device responds. When com­
mand chaining is indicated in the subchannel, HALT I/O 
causes the chain-command Hag to be turned off. 

Termination of an operation by HALT I/O on the se­
lector channel results in up to four distinct interrupt­
ion conditions. The first one is generated by the chan­
nel upon execution of the instruction and is not con­
tingent on the receipt of status from the device. The 
command address and count in the associated csw 
indicate how much data have been transferred, and 
the channel-status bits reHect the unusual conditions 
if any, detected during the operation. If HALT r/o i~ 
issued before all data specified for the operation have 
been transferred, incorrect length is indicated, subject 
to the control of the SLI Hag in the current ccw. The 
execution of HALT I/O itself is not reHected in csw 
status, and all status bits in a csw due to this inter­
ruption condition can be zero. The channel is available 
for the initiation of a new I/O operation as soon as the 
interruption condition is cleared. 

The second interruption condition on the selector 

106 

channel occurs when the control unit generates the 
channel-end condition. The selector channel handles 
this condition as any other interruption condition from 
the device with the sub channel available and provides 
zeros in the protection key, command address, count, 
and channel status fields of the associated csw. The 
channel-end condition is not made· available to the 
program when HALT I/O is issued to a channel execu­
ting a chain of operations and the device has already 
provided channel end for the current operation. 

Finally, the third and fourth interruption conditions 
occur when control unit end, if any, and device end 
are generated. These conditions are handled as for any 
other I/O operation. 

Termination of an operation by HALT I/O on the 
multiplexor channel causes the normal interruption 
conditions to be generated. If the instruction is issued 
when the subchannel is in the data-transfer portion of 
an operation, the subchannel remains in the working 
state until channel end is signaled by the device, at 
which time the subchannel is placed in the interrupt­
ion-pending state. If HALT r/o is issued after the de­
vice has signaled channel end and the sub channel is 
executing a chain of operations, the channel-end con­
dition is not made available to the program, and the 
sub channel remains in the working state until the next 
status byte from the device is received. Receipt of a 
status byte subsequently places the sub channel in the 
interruption-pending state. 

The csw associated with the interruption condition 
in the sub channel contains the status bytes provided 
by the device and the channel, and indicates at what 
point data transfer was terminated. If HALT r/o is is­
sued before all data areas associated with the current 
opcration have been exhausted or filled, incorrect 
length is indicated, subject to the control of the SLI 

Hag in the current ccw. The interruption condition is 
processed as for any other type of termination. 

Termination Due to Equipment Malfunction 

When channel equipment malfunctioning is detected 
or invalid signals are received over the I/O interface, 
the recovery procedure and the subsequent states of 
the subchannels and devices on the channel depend 
on the type of error and on the model. Normally, the 
program is alerted of the termination by an I/O inter­
ruption, and the associated csw indicates the channel­
control-check or interface-control-check condition. In 
channels sharing common equipment with the CPU, 

malfunctioning detected by the channel may be indi­
cated by a machine-check interruption, in which case 
no csw is stored. Equipment malfunctioning may cause 
the channel to perform the malfunction-reset function. 



Programming Note 

Control operations for which the entire operation is 
specified in the command code may be executed as 
immediate operations. Whether the control function is 
executed as an immediate operation depends on the 
operation and type of device and is specified in the SRL 

publication for the device. 

Termination of Data Transfer 

When the device accepts a command, the subchannel 
is set up for data transfer. The subchannel is said to 
be working during this period. Unless the channel de­
tects equipment malfunctioning or, on the selector 
channel, the operation is terminated by HALT I/O, the 
working state lasts until the channel receives the chan­
nel-end signal from the device. When no command 
chaining is specified or when chaining is suppressed 
because of unusual conditions, the channel-end con­
dition causes the operation at the subchannel to be ter­
minated and an interruption condition to be generated. 
The status bits in the associated csw indicate channel 
end and the unusual conditions, if any. The device can 
signal channel end at any time after initiation of the 
operation, and the signal may occur before any data 
have been transferred. 

For operations not involving data transfer, the de­
vice normally controls the timing of the channel-end 
condition. The duration of data transfer operations 
may be variable and may be controlled by the device 
or the channel. 

Excluding equipment errors and HALT I/O, the chan­
nel signals the device to terminate data transfer when­
ever any of the following conditions occurs: 

The storage areas specified for the operation are 
exhausted or filled. 

Program-check condition is detected. 
Protection-check condition is detected. 
Chaining-check condition is detected. 

The first of these conditions occurs when the channel 
has stepped the count in the last ccw associated with 
the operation to zero. A count of zero indicates that 
the channel has transferred all information specified 
by the program. The other three conditions are due to 
errors and cause premature termination of data trans­
fer. In either case, the termination is signaled in re­
sponse to a service request from the device and causes 
data transfer to cease. If the device has no blocks de­
fined for the operation (such as writing on magnetic 
tape), it terminates the operation and generates the 
channel-end condition. 

The device can control the duration of an operation 
and the timing of channel end by blocking of data. On 
certain operations for which blocks are defined (such 
as reading on magnetic tape), the device does not 

provide the channel-end signal until the end of the 
block is reached, regardless of whether or not the de­
vice has been previously signaled to terminate data 
transfer. 

The channel suppresses initiation of an I/O operation 
when the data address in the first ccw associated with 
the operation exceeds the addressing capacity of the 
model. Complete check for the validity of the data ad­
dress is performed only as data are transferred to or 
from main storage. When the initial data address in 
the ccw is invalid, no data are transferred during the 
operation, and the device is signaled to terminate the 
operation in response to the first service request. On 
writing, devices such as magnetic tape units request 
the first byte of data before any mechanical motion is 
started and, if the initial data address is invalid, the 
operation is terminated before the recording medium 
has been advanced. However, since the operation has 
been initiated, the device provides channel end, and 
an interruption condition is generated. Whether a 
block at the device is advanced when no data are 
transferred depends on the type of device and is speci­
fied in the SRL publication for the device. 

When command chaining takes place, the subchan­
nel appears in the working state from the time the 
first operation is initiated until the device signals the 
channel-end condition of the last operation of the 
chain. On the selector channel, the device executing 
the operation stays connected to the channel and the 
whole channel appears to be in the working state for 
the duration of the execution of the chain of oper­
ations. On the multiplexor channel an operation in the 
burst mode causes the channel to appear to be in the 
working state only for the duration of the transfer of 
the burst of data. If channel end and device end do 
not occur concurrently, the device disconnects from 
the channel after providing channel end, and the chan­
nel can in the meantime communicate with other de­
vices on the interface. 

Any unusual conditions cause command chaining to 
be suppressed and an interruption condition to be gen­
erated. The unusual conditions can be detected by 
either the channel or the device, and the device can 
provide the indications with channel end, control unit 
end, or device end. When the channel is aware of the 
unusual condition by the time the channel-end signal 
for the operation is received, the chain is terminated 
as if the operation during which the condition oc­
curred were the last operation of the chain. The de­
vice-end signal subsequently is processed as an inter­
ruption condition. When the device signals unit check 
or unit exception with control unit end or device end, 
the sub channel terminates the working state upon re-

Input/Output Operations 107 



any interruption conditions while an operation is in 
progress. 

As soon as the selector channel has cleared the in­
terruption conditions associated with data transfer, it 
starts scanning devices for attention, control-unit-end, 
and device-end conditions and for the channel-end 
condition associated with operations terminated by 
HALT I/O. The highest priority is assigned to the I/O 

device that first identifies itself on the interface. 
On the multiplexor channel the priority among re­

quests for interruption is based only on the response 
to scanning. The multiplexor channel continuously 
scans its I/O devices. The highest priority is assigned 
to the device that first responds with an interruption 
condition or that requests service for data transfer and 
contains the PCI condition in the subchannel. The PCI, 

as well as any other condition in the subchannel, can­
not cause an I/O interruption unless the device initiates 
a reference to the subchannel. 

Except for conditions associated with termination of 
data transfer, the current assignment of priority for 
interruption among devices on a channel may be can­
celed when START I/O or TEST I/O is issued to the chan­
nel. Whenever the assignment is canceled, the channel 
resumes scanning for interruption conditions and re­
assigns the priority on completion of the activity as­
sociated with the I/O instruction. 

The assignment of priority among requests for inter­
ruption from channels is based on the type of channel. 
The priorities of selector channels are in the order of 
their addresses, with channel 1 having the highest 
priority. The interruption priority of the multiplexor 
channel is not fixed and depends on the model and on 
the current activity in the channel. Its priority may 
be above, below, or between those of the selector 
channels. 

Interruption Action 

An I/O interruption can occur only when the channel 
accommodating the device is not masked and after the 
execution of the current instruction in the CPU has 
been terminated. If a channel has established the 
priority among requests for interruption from devices 
while it is masked, the interruption occurs immediate­
ly after the termination of the instruction removing 
the mask and before the next instruction is executed. 
This interruption is associated with the highest priority 
condition on the channel. If more than one channel is 
unmasked concurrently, the interruption occurs from 
the channel having the highest priority among those 
requesting interruption. 

If the priority among interruption conditions has not 
yet been established in the channel by the time the 
mask is removed, the interruption does not necessarily 

108 

occur immediately after the termination of the instruc­
tion removing the mask. This delay can occur regard­
less of how long the interruption condition has existed 
in the device or the subchannel. 

The interruption causes the current program status 
word (psw) to be stored as the old psw at location 56 
and causes the csw associated with the interruption to 
be stored at location 64. Subsequently, a new psw is 
loaded from location 120, and processing resumes in 
the state indicated by this psw. The I/O device causing 
the interruption is identified by the channel address 
in bit positions 21-23 and by the device address in bit 
positions 24-31 of the old psw. The csw associated 
with the interruption identifies the condition respon­
sible for the interruption and provides further details 
about the progress of the operation and the status of 
the device. 

Programming Note 

When a number of I/O devices on a shared control unit 
are concurrently executing operations such as rewind­
ing tape or positioning a disk access mechanism, the 
initial device-end signals generated on completion of 
the operations are provided in the order of generation, 
unless command chaining is specified for the operation 
last initiated. In the latter case, the control unit pro­
vides the device-end signal for the last initiated op­
eration first, and the other signals are delayed until 
the subchannel is freed. Whenever interruptions due 
to the device-end signals are delayed either because 
the channel is masked or the subchannel is busy, the 
original order of the signals is destroyed. 

Channel Status Word 

The channel status word (csw) provides to the pro­
gram the status of an I/O device or the conditions 
under which an I/O operation has been terminated. 
The csw is formed, or parts of it are replaced, in the 
process of I/O interruptions and during execution of 
START I/O, TEST I/O, and HALT I/O. The csw is placed in 
main storage at location 64 and is available to the pro­
gram at this location until the time the next I/O inter­
ruption occurs or until another I/O instruction causes 
its content to be replaced, whichever occurs first. 

When the csw is stored as a result of an I/O inter­
ruption, the I/O device is identified by the I/O address 
in the old psw. The information placed in the csw by 
START I/O, TEST I/O, or HALT I/O pertains to the device 
addressed by the instruction. 

The csw has the following format: 

I~K_e_Y~I_o_o __ o_o~I __________ C_om_m_a_n_d_A __ dd_r_es_s __ ---------.J 
34 7 8 31 

L Status Count 
4748 63 



The fields in the csw are allocated for the following 
purposes: 

Protection Key: Bits 0-3 form the storage protection 
key used in the chain of operations initiated by the 
last START I/O. 

Command Address: Bits 8-31 form an address that 
is eight higher than the address of the last ccw used. 

Status: Bits 32-47 identify the conditions in the de­
vice and the channel that caused the storing of the 
csw. Bits 32-39 are obtained over the I/O interface and 
indicate conditions detected by the device or the con­
trol unit. Bits 40-47 are provided by the channel and 
indicate conditions associated with the subchannel. 
Each of the 16 bits represents one type of condition, 
as follows: 

nIT DESIGNATION BIT DESIGNATION 

32 Attention 40 Pro gram -con trolled 
interruption 

33 Status modifier 41 Incorrcct length 
34 Control unit end 42 Program check 
35 Busy 43 Protection check 
36 Channel end 44 Channel data check 
37 Device end 45 Channel control check 
38 Unit cheek 46 Interface control check 
39 Unit exception 47 Chaining check 

Count: Bits 48-63 form the residual count for the 
last ccw used. 

Unit Status Conditions 

The following conditions are detected by the I/O de­
vice or control unit and are indicated to the channel 
over the I/O interface. The timing and causes of these 
conditions for each type of device are specified in the 
SRL publication for the device. 

When the I/O device is accessible from more than 
one subchannel, status is signaled to the sub channel 
that initiated the associated I/O operation. The han­
dling of conditions not associated with I/O operations 
depends on the type of device and condition and is 
specified in the SRL publication for the device. 

The channel does not modify the status bits received 
from the I/O device. These bits appear in the csw as 
received over the interface. 

Attention 

Attention is caused upon the generation of the atten­
tion signal at the I/O device. The attention signal can 
be generated at any time and is interpreted by the 
program. Attention is not associated with the initiation, 
execution, or termination of any I/O operation. 

The attention condition cannot be indicated to the 
program while an operation is in progress at the I/O 

device, control unit, or subchannel. Otherwise, the 
handling and presentation of the condition to the chan­
nel depend on the type of device. 

Status Modifier 

Status modifier is generated by the device when the 
normal sequence of commands has to be modified or 
when the control unit detects during the selection 
sequence that it cannot execute the command or in­
struction as specified. 

When the status-modifier condition is provided in 
response to TEST I/O, presence of the bit indicates that 
the device cannot execute the instruction and that no 
bits pertaining to the current status of the device have 
been provided. The status of the device and subchan­
nel is not changed, and the csw stored by TEST I/O 

contains zeros in the key, command address, channel 
status, and count fields. The 2702 Transmission Con­
trol is an example of a type of device that cannot 
execute TEST I/O. 

When the status-modifier bit appears in the csw to­
gether with the busy bit, it indicates that the busy 
condition pertains to the control unit associated with 
the addressed I/O device. The control unit appears 
busy when it is executing a type of operation or is in 
a state that precludes the acceptance of any command 
or the instruction TEST I/O and HALT I/O. This occurs 
for operations such as backspace tape file, in which 
case the control unit remains busy after providing 
channel end, and for operations terminated on the 
selector channel by HALT I/O. The combination of 
busy and status modifier can be provided in response 
to any command as well as TEST I/O and HALT I/O. 

Presence of both busy and status modifier in response 
to TEST I/O is handled the same way as when status 
modifier alone is on. 

Once the execution of a command has been initi­
ated, the status-modifier indication can be provided 
only together with device end. The handling of this 
set of bits by the channel depends on the operation. 
If command chaining is specified in the current ccw 
and no unusual conditions have been detected, pres­
ence of the bit causes the channel to fetch and chain 
to the ccw whose main-storage address is 16 higher 
than that of the current ccw. If the I/O device signals 
the status-modifier condition at a time when the chain­
command flag is off or when any unusual conditions 
have been detected, no action is taken in the channel, 
and the status-modifier bit is placed in the csw. 

Programming Note 

When the multiplexor channel detects a programming 
error during command chaining, the interruption con­
dition is queued at the I/O device. On devices such as 
the 2702 Transmission Control, queuing of the con­
dition may generate the status-modifier indication, 
which subsequently appears in the csw associated 
with the termination of the operation. 

Input/Output Operations 109 



Control Unit End 

Control unit end indicates that the control unit has 
become available for use for another operation. 

The control-unit-end condition is provided only by 
control units shared by I/O devices and only when one 
or both of the following conditions has occurred: 

1. The program has caused the control unit to be 
interrogated while the control unit was executing an 
operation. The control unit is considered to have been 
interrogated when START I/O, TEST I/O, or HALT I/O 

has been issued to a device on the control unit, and 
the control unit had responded with busy and status 
modifier in the unit status byte. START I/O and TEST 

I/O cause interrogation of the control unit when the 
control unit is still executing a previously initiated op­
eration, but the sub channel is available or, for TEST 

I/O, the subchannel on the multiplexor channel con­
tains an interruption condition for the addressed de­
vice. The instruction HALT I/O can cause the control 
unit to be interrogated when issued to a device shar­
ing a control unit and operating in the multiplex 
mode. 

2. The control unit detected an unusual condition 
during the portion of the operation after channel end 
had been signaled to the channel. 

If the control unit remains busy with the execution 
of an operation after signaling channel end but has not 
been interrogated by the program, control unit end 
is not generated. Similarly, control unit end is not pro­
vided when the control unit has been interrogated and 
could perform the indicated function. The latter case 
is indicated by the absence of busy and status modi­
fier in the response to the instruction causing the in­
terrogation. 

When the busy state of the control unit is tem­
porary, control unit end is included with busy and 
status modifier in response to the interrogation even 
though the control unit has not yet been freed. The 
busy condition is considered to be temporary if its 
duration is short with respect to the program time 
required to handle an I/O interruption. The 2702 
Transmission Control is an example of a device in 
which the control unit may be busy temporarily and 
which includes control unit end with busy and status 
modifier. 

The device address associated with control unit end 
depends on the type of I/O device. The address can be 
fixed for the control unit, may identify the device on 
which the terminated operation was executed, or may 
be the device address specified in the instruction caus­
ing the control unit to be interrogated. 

The control-unit-end condition can be signaled with 
channel end, device end, or between the two. A pend-

110 

ing control unit end causes the control unit to appear 
busy for initiation of new operations. 

Busy 

Busy indicates that the I/O device or control unit can­
not execute the command or instruction because it is 
executing a previously initiated operation or because 
it contains an interruption condition. The interruption 
condition for the addressed device, if any, accompa­
nies the busy indication. If the busy condition applies 
to the control unit, busy is accompanied by status 
modifier. 

The following table lists the conditions when the 
busy bit (B) appears in the csw and when it :is ac­
companied by the status-modifier bit (SM). A double 
hyphen (--) indicates that the busy bit is off; an 
asterisk (~) indicates that csw status is not stored or 
an I/O interruption cannot occur; and the (cl) indi­
cates that the interruption condition is cleared and 
the status appears in the csw. The abbreviation DE 

stands for device end, while cu stands for control unit. 

CONDITION 

Subchannel available 
DE or attention in device 
Device working, CU available 
CU end or channel end in CU: 

for the addressed device 
for another device 

CU working 
Interruption pend. in subchannel 

for the addressed device 
because of: 

chaining terminated by 
attention 

other type of termination 
Subchannel working 

CSW STATUS STORED BY: 

START TEST HALT I/O 

I/O I/O I/O INT. 

B,cl 
B 

B,cl 
B,SM 
B,SM 

--,cl 
B 

--,cl 
B,SM 
B,SM 

,cl 
--,cl 

--,cl 
~ 

--,cl 
--,cl 
~ 

B,cl 
--,cl 

CU available ~ ~ ~ 

CU working ~ ~ B,SM ~ 

The busy bit is included in the status associated 
with a pending interruption condition from the sub­
channel only when a chain of commands has been 
prematurely terminated because of attention and no 
interruption was pending in the channel at the time 
of chaining. 

Channel End 

Channel end is caused by the completion of the por­
tion of an I/O operation involving transfer of data or 
control information between the I/O device and the 
channel. The condition indicates that the sub channel 
has become available for use for another operation. 

Each I/O operation causes a channel-end condition 
to be gencrated, and there is only one channel end for 
an operation. When command chaining takes place, 
only the channel end of the last operation of the chain 
is made available to the program. The channel-end 



condition, however, is not made available to the pro­
gram when a chain of commands is prematurely ter­
minated because of an unusual condition indicated 
with control unit end or device end. The channel-end 
condition is not generated when programming or 
equipment errors are detected during initiation of the 
operation. 

The instant within an I/O operation when channel 
end is generated depends on the operation and the 
type of device. For operations such as writing on mag­
netic tape, the channel-end condition occurs when the 
block has been written. On devices that verify the 
writing, channel end mayor may not be delayed until 
verification is performed, depending on the device. 
When magnetic tape is being read, the channel-end 
condition occurs when the gap on tape reaches the 
read-write head. On devices equipped with buffers, 
such as a line printer, the channel-end condition oc­
curs upon completion of data transfer between the 
channel and the buffer. During control operations, 
channel end is generated when the control information 
has been transferred to the devices, although for short 
operations the condition may be delayed until com­
pletion of the operation. Operations that do not cause 
any data to be transferred can provide the channel­
end condition during the initiation sequence. 

A channel-end condition pending in the control unit 
causes the control unit to appear busy for initiation of 
new operations. Unless the operation has been per­
formed on the selector channel and has been termi­
nated by HALT I/O, channel end causes the subchannel 
to be in the interruption-pending state. 

Device End 

Device end is caused by the completion of an I/O op­
eration at the device or, on some devices, by manually 
changing the device from the not-ready to the ready 
state. The condition indicates that the I/O device has 
become available for use for another operation. 

Each I/O operation causes a device-end condition, 
and there is only one device end to an operation. 
When command chaining takes place, only the device 
end of the last operation of the chain is made avail­
able to the program. The device-end condition is not 
generated when any programming or equipment er­
rors are detected during initiation of the operation. 

The device-end condition associated with an I/O 

operation is generated either simultaneously with the 
channel-end condition or later. On data transfer op­
erations on devices such as magnetic tape units, the 
device terminates the operation at the time channel 
end is generated, and both device end and channel 
end occur together. On buffered devices, such as a 
line printer, the device-end condition occurs upon 

completion of the mechanical operation. For control 
operations, device end is generated at the completion 
of the operation at the device. The operation may be 
completed at the time channel end is generated or 
later. 

When command chaining in the current ccw is spe­
cified, receipt of the device-end signal, in the absence 
of any unusual conditions, causes the channel to ini­
tiate a new I/O operation. 

Unit Check 

Unit check is caused by any programming or equip­
ment errors detected by the I/O device or control unit. 
The errors responsible for the unit check are detailed 
by the information available to a sense command. The 
unit-check bit provides a summary indication of the 
errors identified by sense data. 

The unit-check condition is generated only when 
the error is detected during the execution of TEST I/O 

or a command. The device does not alert the program 
of any equipment malfunction occurring at a time 
when the device is not executing an operation and 
does not have a pending interruption condition. Mal­
functioning detected at this time may cause the device 
to become not ready; unit check in this case is sig­
naled to the program the next time the device is 
selected. 

If the device detects during the initiation sequence 
that the command cannot be executed, unit check is 
presented to the channel and appears in the csw with­
out channel end, control unit end, or device end. Such 
unit status indicates that no action has been taken at 
the device in response to the command. If the con­
dition precluding proper execution of the operation 
occurs after execution has been started, unit check is 
accompanied by channel end, control unit end, or de­
vice end, depending on when the condition was de­
tected. 

Termination of an operation with the unit-check 
indication causes command chaining to be suppressed. 

Unit Exception 

Unit exception is caused when the I/O device detects 
a condition that usually does not occur. The condition 
includes conditions such as recognition of a tape mark 
and does not necessarily indicate an error. It has only 
one meaning for any particular command and type of 
device. 

The unit-exception condition can be generated only 
when the device is executing an I/O operation. If the 
device detects during the initiation sequence that the 
operation cannot be executed, unit exception is pre­
sented to the channel and appears in the csw without 

Input/Output Operations III 



channel end, control end, or device end. Such unit 
status indicates that no action has bcen taken at the 
device in response to the command. If the condition 
precluding normal execution of the operation occurs 
after the execution has been started, unit exception is 
accompanied by channel end, control unit end, or de­
vice end, depending on when the condition was de­
tected. 

Termination of an operation with the unit-exception 
indication causes command chaining to be suppressed. 

Channel Status Conditions 

The following conditions are detected and indicated by 
the channel. Except for the conditions caused by equip­
ment ma1functioning, they can occur only while the 
subchannel is involved with the execution of an I/O 

operation. 

Program-Controlled Interruption 

The program-controlled-interruption condition is gen­
erated when the channel fetches a ccw with the pro­
gram-controlled-interruption (PCI) flag on. The inter­
ruption due to the PC! flag takes place as soon as 
possible after fetching the ccw but may be delayed an 
unpredictable amount of time because of masking of 
the channel or other activity in the system. 

Detection of the PCI condition does not affect the 
progress of the I/O operation. 

Incorrect Length 

Incorrect length occurs when the number of bytes con­
tained in the storage areas assigned for the I/O oper­
ation is not equal to the number of bytes requested or 
offered by the I/O device. Incorrect length is indicated 
for one of the following reasons: 

l.Jong blocl( on Input: During a read, read-backward, 
or sense operation, the device attempted to transfer 
one or more bytes to storage after the assigned storage 
areas were filled. The extra bytes have not been placed 
in main storage. The count in the csw is zero. 

IJong Block on Output: During a write or control 
operation the device requested one or more bytes from 
the channel after the assigned main-storage areas were 
exhausted. The count in the csw is zero. 

Short Block on Input: The number of bytes trans­
ferred during a read, read hackward, or sense oper­
ation is insufficient to fill the storage areas assigned to 
the operation. The count in the csw is not zero. 

Short Block on Output: The device terminated a 
write or control operation before all information con­
tained in the assigned storage areas was transferred to 
the device. The count in the csw is not zero. 

The incorrect-length indication is suppressed when 

112 

the current ccw has the SLI flag and does not have the 
CD flag. The indication does not occur for immediate 
operations and for operations rejected during the ini­
tiation sequence. 

Presence of the incorrect-length condition suppresses 
command chaining unless the SLI flag in the ccw is on 
or unless the condition occurs in an immediate oper­
ation. 

The following table lists the effect of the incorrect­
length condition for all combinations of the CD, CC, 

and SLI flags. It indicates for the two types of oper­
ations when the operation at the sub channel is termi­
nated (stop) and when the command chaining takes 
place. The entry "incorrect length" (IL) means that 
the indication is made available to the program; a 
double hyphen (--) means that the indication is sup­
pressed. For all entries, the current operation is as­
sumed to have caused the incorrect-length condition. 

FLAGS ACTION AND INDICATION 

CD CC SLI HEGULAB OPEBA TION IMMEDIATE OPEHATION 

0 0 0 Stop,IL Stop, --
0 0 1 Stop, -- Stop, --
0 1 0 Stop,IL Chain command 
0 1 1 Chain command Chain command 
1 0 0 Stop,IL Stop, --
I 0 1 Stop,IL Stop, --
I 1 0 Stop,IL Stop, --
I 1 1 Stop,IL Stop, --

Program Check 

Program check occurs when programming errors are 
detected hy the channel. The condition can be due to 
the following causes: 

Invalid C CW Address Specification: The CAW or the 
transfer-in-channel command does not designate the 
ccw on integral boundaries for double words. The 
three low-order bits of the ccw address are not zero. 

Invalid CCW Address: The channel has attempted 
to fetch a ccw from a location outside the main stor­
age of the particular installation. An invalid ccw ad­
dress can occur in the channel because the program 
has specified an invalid address in the CAW or in the 
transfer-in-channel command or because on chaining 
the channel has stepped the address above the highest 
available location. 

Invalid Command Code: The command code in the 
first ccw designated by the CAW or in a ccw fetched on 
command chaining has four low-order zeros. The com­
mand code is not tested for validity during data chain­
ing. 

Invalid Count: A ccw other than a ccw specifying 
transfer in channel contains the value zero in bit po­
sitions 48-63. 

Invalid Data Address: The channel has attempted 
to transfer data to or from a location outside the main 
storage of the particular installation. An invalid data 



address can occur in the channel because the program 
has specified an invalid address in the ccw or because 
the channel has stepped the address above the highest 
available address or, on reading backward, below zero. 

Invalid Key: The CAW contains a nonzero storage 
protection key in a model not having the protection 
feature installed. 

Invalid CAW Format: The CAW does not contain 
zeros in bit positions 4-7. 

Invalid CCW Format: A ccw other than a ccw spe­
cifying transfer in channel does not contain zeros in 
hit positions 37-39. 

Invalid Sequence: The first ccw designated by the 
CAW specifies transfer in channel or the channel has 
fetched two successive ccw's both of which specify 
transfer in channel. 

Detection of the program-check condition during 
the initiation of an operation causes execution of the 
operation to be suppressed. When the condition is de­
tected after the device has been started, the device is 
signaled to terminate the operation. The program­
check condition causes command chaining to be sup­
pressed. 

Protection Check 

Protection check occurs when the channel attempts to 
place data in a portion of main storage that is protect­
ed for the current operation on the subchannel. The 
protection key associated with the I/O operation does 
not match the key of the addressed main-storage lo­
cation, and neither of the keys is zero. 

Detection of the protection-check condition causes 
the device to be signaled to terminate the operation; 
command chaining is suppressed. 

The protection-check condition can be generated 
only on models having the protection feature installed. 

Channel Data Check 

Channel data check is caused by data errors detected 
in the channel or in main storage. The condition covers 
all data transferred to or from an I/O device, including 
sense and control information. It includes any parity 
errors detected on I/O data in main storage, in the 
channel, or as received from the device over the I/O 

interface. 
The channel attempts to force correct parity on data 

placed in main storage. On output operations, the par­
ity of data sent to the device is not changed. 

Parity errors on data cause command chaining to be 
suppressed and, depending on model, may cause the 
current operation to be terminated. When the channel 
and the CPU share common equipment, parity errors on 
data may cause malfunction reset to be performed. The 

recovery procedure in the channel and the subsequent 
state of the subchannel upon a malfunction reset de­
pend on the model. 

Channel Control Check 

Channel control check is caused by any machine mal­
functioning affecting channel controls. The condition 
includes parity errors on ccw and data addresses and 
parity errors on the contents of the ccw. Conditions 
responsible for channel control check usually cause the 
contents of the csw to be invalid and conflicting. 

The csw as generated by the channel has correct 
parity. The channel either forces correct parity on the 
csw fields or sets the invalid fields to zero. 

Detection of the channel-control-check condition 
causes the current operation, if any, to be immediately 
terminated and may cause the channel to perform the 
malfunction-reset function. The recovery procedure in 
the channel and the subsequent state of the subchannel 
upon a malfunction reset depend upon the model. 

Interface Control Check 

Interface control check is caused by any invalid signal 
on the I/O interface. The condition is detected by the 
channel and usually indicates malfunctioning of an I/O 

device. It can be due to the following reasons: 
1. The address or status byte received from a de­

vice has invalid parity. 
2. A device responded with an address other than 

the address specified by the channel during initiation 
of an operation. 

3. During command chaining the device appeared 
not operational or indicated the busy condition with­
out providing any other status bits. 

4. A signal from a device occurred at an invalid 
time or had invalid duration. 
Detection· of the interface-control-check condition 

causes the current operation, if any, to be immediately 
terminated and may cause the channel to perform the 
maHunction-reset function. The recovery procedure in 
the channel and the subsequent state of the subchan­
nel upon a malfunction reset depends on the model. 

Chaining Check 

Chaining check is caused by channel overrun during 
data chaining on input operations. The condition oc­
curs when the I/O data rate is too high for the particu­
lar resolution of data addresses. Chaining check cannot 
occur on output operations. 

Detection of the chaining-check condition causes the 
110 device to be signaled to terminate the operation. 
It causes command chaining to be suppressed. 

Input/Output Operations 113 



Content of Channel Status Word 

The content of the csw depends on the condition caus­
ing the storing of the csw and on the programming 
method by which the information is obtained. The 
status portion always identifies the condition that 
caused storing of the csw. The protection key, com­
mand address, and count fields may contain informa­
tion pertaining to the last operation or may be set to 
zero, or the original contents of these fields at location 
64 may be left unchanged. 

Information Provided by Channel Status Word 

Conditions associated with the execution or termi­
nation of an operation at the subchannel cause the 
whole csw to be replaced. 

Such a csw can be stored only by an I/O interruption 
or by TEST I/O. Except for conditions associated with 
command chaining, the storing can be caused by the 
PCI or channel-end condition, by the execution of 
HALT I/O on the selector channel, or by equipment 
malfunction. The contents of the csw are related to the 
current values of the corresponding quantities, al­
though the count is unpredictable after programming 
errors and after an interruption due to the PCI flag. 

A csw stored upon the execution of a chain of oper­
ation pertains to the last operation the channel exe­
cuted or attempted to initiate. Information concerning 
the preceding operations is not preserved and is not 
made available to the program. 

When an unusual condition causes command chain­
ing to be suppressed, the premature termination of the 
chain is not explicitly indicated in the csw. A csw 
associated with a termination due to a condition occur­
ing at channel-end time contains the channel-end bit 
and identifies the unusual condition. When the device 
signals the unusual condition with control unit end or 
device end, the channel-end indication is not made 
available to the program, and the channel provides the 
current protection key, command address, and count, 
as well as the unusual indication, with the control­
unit-end or device-end bit in the csw. The command 
address and count fields pertain to the operation that 
was executed. 

When the execution of a chain of commands is ter­
minated by an error detected during initiation of a 
new operation, the command address and count fields 
pertain to the rejected command. Termination at initi­
ation time can occur because of attention, unit check, 
unit exception, program check, or equipment mal­
functioning and causes both the channel-end and de­
vice-end bits in the csw to be off. 

114 

A csw associated with conditions occurring after the 
opcration at the subchannel has been terminated con­
tains zeros in the protection key, command address, 
and count fields, provided the conditions are not 
cleared by START I/O. These conditions include atten­
tion, control unit end, and device end (and channel 
end when it occurs after termination of an operation 
on the selector channel by HALT I/O). 

When the above conditions are cleared by START I/O, 

only the status portion of the csw is stored, and the 
original contents of the protection key, command ad­
dress, and count fields in location 64 are preserved. 
Similarly, only the status bits of the csw are changed 
when the command is rejected or the operation at the 
subchannel is terminated during the execution of START 

I/O or whenever HALT I/O causes csw status to be 
stored. 

Errors detected during execution of the I/O oper­
ation do not affect the validity of the csw unless the 
channel-control-check or interface-control-check con­
ditions are indicated. Channel control check indicates 
that equipment errors have been detected, which can 
cause any part of the csw, as well as the address in the 
psw identifying the I/O device, to be invalid. Interface 
control check indicates that the address identifying the 
device or the status bits received from the device may 
he invalid. The channel forces correct parity on invalid 
csw fields. 

Protection Key 

A csw stored to reflect the progress of an operation at 
the su bchannel contains the protection key used in 
that operation. The content of this field is not affected 
by programming errors detected by the channel or by 
the condition causing termination of the operation. 

Models in which the protection feature is not im­
plemented cause an all-zero key to be stored. 

Command Address 

When the csw is formed to reflect the progress of the 
I/O operation at the subchannel, the command address 
is normally eight higher than the address of the last 
ccw used in the operation. 

The following table lists the contents of the com­
mand address field for all conditions that can cause 
the csw to be stored. The conditions are listed in order 
of priority; that is, if two conditions are indicated or 
occur, the csw appears as indicated for the condition 
higher on the list. The programming errors listed in 
the table refer to conditions included in program 
check. 



CONDITION 

Channel control check 
Status stored by START I/O 
Status stored by HALT I/O 
Invalid CCW address spec. in 

TIC 
Invalid CCW address in TIC 
Invalid CCW address 

generated 
Invalid command code 
Invalid count 
Invalid data address 
Invalid CCW format 
Invalid sequence - 2 TIC's 
Protection check 
Chaining check 
Termination under count 

control 
Termination by I/O device 
Termination by HALT I/O 
Suppression of command 

chaining due to unit check 
or unit exception with de­
vice end or control unit end 

Termination on command 
chaining by attention, unit 
check, or unit exception 

Program-controlled interrup-
tion 

Interface control check 
Ch. end after HIO on seI. ch. 
Control unit end 
Device end 
Attention 
Busy 
Status modifier 

Count 

CONTENT 

Unpredictable 
Unchanged 
Unchanged 

Address of TIC + 8 
Address of TIC + 8 

Address first invalid CCW + 8 
Address of invalid CCW + 8 
Address of invalid CCW + 8 
Address of invalid CCW + 8 
Address of invalid CCW + 8 
Address of second TIC + 8 
Address of invalid CCW + 8 
Address of last-used CCW + 8 

Address of last-used CCW + 8 
Address of last-used CCW + 8 
Address of last-used CCW + 8 

Address of last CCW used in 
the completed operation + 8 

Address of CCW specifying 
the new operation + 8 

Address of last-used CCW + 8 
Address of last-used CCW + 8 
Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

The residual count, in conjunction with the original 
count specified in the last ccw used, indicates the 
number of bytes transferred to or from the area desig­
nated by the ccw. When an input operation is termi­
nated, the difference between the original count in the 
ccw and the residual count in the csw is equal to the 
number of bytes transferred to main storage; on an out­
put operation, the difference is equal to the number 
of bytes transferred to the I/O device. 

The following table lists the contents of the count 
field for all conditions that can cause the csw to be 
stored. The conditions are listed in the order of prior­
ity; that is, if two conditions are indicated or occur, 
the csw appears as for the condition higher on the list. 

CONDITION 

Channel control check 
Status stored by START I/O 
Status stored by HALT I/O 
Program check 
Protection check 
Chaining check 
Termination under count 

control 
Termination by I/O device 
Termination by HALT I/O 
Suppression of command 

chaining due to unit check, 
unit exception with device 
end, or control unit end 

Termination on command 
chaining by atention, by 
unit check, or unit 
exception 

Program-controlled inter-
ruption 

Interface control check 
Ch. end after HIO on sel. ch. 
Control unit end 
Device end 
Attention 
Busy 
Status Modifier 

Status 

CONTENT 

Unpredictable 
Unchanged 
Unchanged 
Unpredictable 
Unpredictable 
Correct 

Correct 
Correct 
Correct 

Correct. Residual count of last 
CCW used in the completed 
operation. 

Correct. Original count of 
CCW specifying the new 
operation. 

Unpredictable 
Correct 
Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

The status bits identify the conditions that have been 
detected during the I/O operation, that have caused a 
command to be rejected, or that have been generated 
by external events. 

The csw contains at least one status bit, unless it is 
stored by HALT I/O issued to the multiplexor channel 
or the interruption condition responsible for the stor­
ing is caused by HALT r/o issued to the selector chan­
nel. In both of the latter cases, all status bits may be 
off. 

When the channel detects several error conditions, 
all conditions may be indicated or only one may ap­
pear in the csw, depending on the condition and 
model. Conditions associated with equipment mal­
fU'hctioning have precedence, and whenever maHunc­
tioning causes an operation to be terminated, channel 
control check, interface control check, or channel data 
check is indicated, depending on the condition. When 
an operation is terminated by program check, pro­
tection check, or chaining check, the channel identifies 

Input/Output Operations 115 



the condition responsible for the termination and may 
or may not indicate incorrect length. When a data er­
ror has been detected before termination due to pro­
gram check, protection check, or chaining check, both 
data check and the programming error are identified. 

If the csw fetched on command chaining contains 
the PCI flag but a programming error in the contents of 
the csw or an unusual condition signaled by the de­
vice precludes the initiation of the operation, the PCI 

bit appears in the csw associated with the interruption 
condition. Similarly, if device status or a programming 
error in the contents of the ccw causes the command 

to be rejected during execution of START I/O, the csw 
stored by START I/O contains the PCI flag. The I/O flag, 
however, is not included in the csw if a programming 
error in the contents of the CAW prevents the oper­
ation from being initiated. 

Conditions detected by the channel are not related 
to those identified by the I/O device. 

The following table summarizes the handling of 
status bits. The table lists the states and activities that 
can cause status indications to be created and the 
methods by which these indications can be placed in 
the csw. 

TIME AND METHOD OF CREATING AND STORING STATUS INDICATIONS 

WHEN WHEN UPON TERMINATION OF OPERATION DURING BY BY BY BY I/O 

I/O IS SUB CHANNEL AT AT CONTROL AT COMMAND START TEST HALT INTER-

STATUS IDLE WORKING SUBCIIANNEL UNIT DEVICE CHAINING I/O I/O I/O RUPTION 
----------

Attention Co 
Status modifier 
Control unit end 
Busy 
Channel end Co 
Device end Co 
Unit check C 
Unit exception C 

Program-controlled interruption Co C 

Incorrect length C C 
Program check C C 
Protection check C C 
Channel data check Co C 
Channel control check Co Co Co 
Interface control check Co Co Co 
Chaining check C C 

NOTES 

C-The channel or the device can create or present the status 
condition at the indicated time. A CSW or its status portion is 
not necessarily stored at this time. 

Condition such as channel end and device end are created at 
the indicated time. Other conditions may have been created 
previously, but are made accessible to the program only at the 
indicated time. Examples of such conditions are program check 
and channel data check, which are detected while data are 
transferred, but are made available to the program only with 
channel end, unless the PCI flag or equipment malfunctioning 
have caused an interruption condition to be generated earlier. 

S-The status indication is stored in the CSW at the indicated 
time. 

An S appearing alone indicates that the condition has been 
created previously. The letter C appearing with the S indicates 
that the status condition did not necessarily exist previously in 
the form that causes the program to be alerted, and may have 

116 

C Co S S S 
C C CS CS CS S 

C1) CS CS CS S 
C CS CS CS S 

C1)H COt Ct S S S 
Co C l' C1' S s S 

C C Co CS CS CS 
C C Co CS S S 

C CS S S 

S S 
Co CS S S 

S S 
S S 

C1) Co Co CS CS CS CS 
C1) Co Co Cs CS Cs CS 

S S 

been created by the I/O instruction or I/O interruption. For 
example, equipment malfunctioning may be detected during an 
I/O interruption, causing channel control check or interface 
control check to be indicated; or a device such as the 2702 
Transmission Control Unit may signal the control-un it-busy 
condition in response to interrogation by an I/O instruction, 
causing status modifier, busy, and control unit end to be indi­
cated in the CSW. 

1) -The status condition generates or, in the case of channel 
data check, may generate an interruption condition. 

Channel end and device end do not result in interruption 
conditions when command chaining is specified and no unusual 
conditions have becn detected. 

1'-This status indication can be created at the indicated time 
only by an immediate operation. 

II-When an operation on the selector channel has been termi­
natcd by HALT I/O, channel end indicates the termination of 
thc datu-hundling portion of the operation at the control unit. 



The system control panel contains the switches and 
lights necessary to operate and control the system. 
The system consists of the CPU, storage, channels, on­
line control units, and I/O devices. Off-line control 
units and I/O devices, although part of the system 
environment, are not considered part of the system 
proper. 

System controls are divided into three sections: 
operator control, operator intervention, and customer 
engineering control. Customer engineering controls 
are also available on some storage, channel, and con­
trol-unit frames. 

No provision is made for locking out any section of 
the system control panel. The conditions under which 
individual controls are active are described for each 
case. 

System Control Functions 
The system-reset function resets the CPU, the channels, 
panel are the ability to reset the system; to store and 
display information in storage, in registers and in the 
PSW; and to load initial program information. 

System Reset 

The system-reset function resets the CPU, the channels, 
and on-line, nonshared control units and I/O devices. 

The CPU is placed in the stopped state and all pend­
ing interruptions are eliminated. The parity of general 
and floating-point registers, as well as the parity of the 
PSW, may be corrected. All error-status indicators are 
reset to zero. 

In general, the system is placed in such a state that 
processing can be initiated without the occurrence of 
machine checks, except those caused by subsequent 
machine malfunction. 

The reset state for a control unit or device is de­
scribed in the appropriate System Reference Library 
(SRL) publication. Off-line control units are not reset. 
A system-reset signal from a CPU resets only the 
functions in a shared control unit or device belonging 
to that CPU. Any function pertaining to another CPU 

remains undisturbed. 
The system-reset function is performed when the 

system-reset key is pressed, when initial program 

System Control Panel 

loading is initiated, or when a power-on sequence is 
performed. 

Programming Notes 

Because the system reset may occur in the middle of 
an operation, the contents of the psw and of result 
registers or storage locations are unpredictable. If the 
CPU is in the wait state when the system reset is per­
formed, and I/O is not operating this uncertainty is 
eliminated. 

Following a system reset, incorrect parity may exist 
in storage in all models and in the registers in some 
models. Since a machine check occurs when informa­
tion with incorrect parity is used, the incorrect in­
formation should be replaced by loading new infor­
mation. 

Store and Display 

The store-and-display function permits manual inter­
vention in the progress of a program. The store-and­
display function may be prOVided by a supervisor 
program in conjunction with proper I/O equipment 
and the interrupt key. 

In the absence of an appropriate supervisor pro­
gram, the controls on the operator intervention panel 
permit the CPU to be placed in the stopped state and 
subsequently to store and display information in main 
storage, in general and floating-point registers, and in 
the instruction-address part of the psw. The stopped 
state is achieved at the end of the current instruction 
when the stop key is pressed, when single instruction 
execution is specified, or when a preset address is 
reached. Once the desired intervention is completed, 
the CPU can be started again. 

All basic store-and-display functions can be simu­
lated by a supervisor program. The stopping and start­
ing of the CPU in itself does not cause any alteration 
in program execution other than the time element in­
volved (the transition from operating to stopped state 
is described under "Stopped State" in "Status-Switch­
ing"). 

Interruption checks occurring during store-and-dis­
play functions do not interrupt or log immediately but 
may, in some cases, create a pending interruption. This 
interruption request can be removed by a system re­
set. Otherwise, the interruption, when not masked off, 
is taken when the CPU is again in the operating state. 

System Control Panel 117 



Initial Program Loading 

Initial program loading (IPL) is provided for the ini­
tiation of processing when the contents of storage or 
the psw are not suitable for further processing. 

Initial program loading is initiated manually by se­
lecting an input device with the load-unit switches 
and subsequently pressing the load key. When the 
multisystem feature is installed, initial program load­
ing may be initiated electronically by a signal received 
on one of the IPL in-lines. 

Depressing the load key causes a system reset, turns 
on the load light, turns off the manual light, sets the 
prefix trigger (if present), and subsequently initiates 
a read operation from the selected input device. 
When reading is completed satisfactorily, a new psw 
is obtained, the CPU starts operating, and the load 
light is turned off. 

When a signal is received on one of the IPL in-lines, 
the same sequence of events takes place, except that 
the read operation is omitted. 

System reset suspends all instruction processing, in­
terruptions, and timer updating and also resets all 
channels, on-line nonshared control units, and I/O de­
vices. The contents of general and floating-point regis­
ters remain unchanged, except that the reset proce­
dure may introduce correct parity. 

The prefix trigger is set after system reset. In man­
ually initiated IPL, the trigger is set according to the 
state of the prefix-select key switch. When IPL is initi­
ated by a signal on one of the two IPL in-lines, the 
trigger is set according to the identity of each line. 
The prefix trigger is part of the multisystem feature. 

If IPL is initiated manually, the select input device 
starts reading. The first 24 bytes read are placed 
in storage locations 0-23. Storage protection, pro­
gram-controlled interruption, and a possible incor­
rect length indication are ignored. The double-word 
read into location 8 is used as the channel command 
word (ccw) for a subsequent input command. When 
chaining is specified in this ccw, the operation pro­
ceeds with the ccw in location 16. 

After the input operation is performed, the I/O ad­
dress is stored in bits 21-31 of the first word in storage. 
Bits 16-20 are made zero. Bits 0-15 remain unchanged. 
The input operation and the storing of the I/O address 
are not performed when IPL is initiated by means of 
the IPL in-lines. 

The CPU subsequently fetches the double word in lo­
cation 0 as a new psw and proceeds under control of 
the new psw. The load light is turned off. When the 

118 

I/O operations and psw loading are not completed 
satisfactorily, the CPU stops, and the load light remains 
on. 

Programming Notes 

Initial program loading resembles a START I/O that 
specifies the I/O device selected in the loa d -u nit 
switches and a zero protection key. The ccw for this 
START I/O has a read command, zero data address, a 
byte count of 24, command-chain flag on, suppress­
length-indication flag on, program-controlled-inter­
ruption flag off, and a virtual command address of 
zero. 

Initial program loading reads new information into 
the first six words of storage. Since the remainder of 
the IPL program may be placed in any desired section 
of storage, it is possible to preserve such areas of stor­
age as the timer and psw locations, which may be 
helpful in program debugging. 

If the selected input device is a disk, the IPL infor­
mation is read from track O. 

The selected input device may be the channel-to­
channel adapter involving two cpu's. A system reset 
on this adapter causes an attention signal to be sent 
to the addressed CPU. That CPU then should issue the 
write command necessary to load a program into main 
storage of the requesting CPU. 

When the psw in location 0 has bit 14 set to one, 
the CPU is in the wait state after the IPL procedure 
(the manual, the system, and the load lights are off, 
and the wait light is on). Interruptions that become 
pending during IPL are taken before instruction exe­
cution. 

Operator Control Section 
This section of the system control panel contains only 
the controls required by the operator when the CPU 

is operating under full supervisor control. Under su­
pervisor control, a minimum of direct manual inter­
vention is required since the supervisor performs 
operations like store and display. 

The main functions provided by the operator con­
trol section are the control and indication of power, 
the indication of system status, operator to machine 
communication, and initial program loading. 

The operator control section, with the exception of 
the emergency pull switch, may be duplicated once as 
a remote panel on a console. 

The following table lists all operator controls by 
the names on the panel or controls and describes 
them. 



NAME 

Emergency Pull 
Power On 
Power Off 
Interrupt 
Wait 
Manual 
System 
Test 
Load 
Load Unit 
Load 
Prefix Select\) 

(I< Multisystem feature 

Emergency Pull Switch 

IMPLEMENTATION 

Pull switch 
Key, backlighted 
Key 
Key 
Light 
Light 
Light 
Light 
Light 
Three rotary switches 
Key 
Key switch 

Pulling this switch turns off all power beyond the 
power-entry terminal on every unit that is part of the 
system or that can be switched onto the system. There­
fore, the switch controls the system proper and all 
off-line and shared control units and 110 devices. 

The switch latches in the out position and can be 
restored to its in position by maintenance personnel 
only. 

When the emergency pull switch is in the out po­
sition, the power-on key is ineffective. 

Power-On Key 
This key is pressed to initiate the power-on sequence 
of the system. 

As part of the power-on sequence, a system reset is 
performed in such a way that the system performs no 
instructions or 110 operations until explicitly directed. 
the contents of main storage, including its protection 
keys, remain preserved. 

The power-on key is backlighted to indicate when 
the power-on sequence is completed. The key is ef­
fective only when the emergency pull switch is in its 
in position. 

Power-Off Key 

The power-off key is pressed to initiate the power-off 
sequence of the system. 

The contents of main storage and its protection keys 
are preserved. 

Interrupt Key 

The interrupt key is pressed to request an external 
interruption. 

The interruption is taken when not masked off and 
when the CPU is not stopped. Otherwise, the inter­
ruption request remains pending. Bit 25 in the inter­
ruption-code portion of the current psw is made one 
to indicate that the interrupt key is the source of the 
external interruption. 

Wait Light 

The wait light is on when the CPU is in the wait state. 

Manual Light 

The manual light is on when the CPU is in the stopped 
state. Several of the manual controls are effective only 
when the CPU is stopped, that is, when the manual 
light is on. 

System Light 

The system light is on when the CPU cluster meter or 
customer-engineering meter is running. 

Programming Note 

The states indicated by the wait and manual lights 
are independent of each other; however, the state of 
the system light is not independent of the state of 
these two lights because of the definition of the run­
ning condition for the meters. The following table 
shows possible conditions. 

SYSTEM MANUAL WAIT CPU I/O 

LIGHT LIGHT LIGHT STATE STATE 

off off off Not allowed when power is on 
off off on Waiting Not operating 
off on off Stopped Not operating 
off on on Stopped, Not operating 

waiting 
on off off Running Undetermined 
on off on Waiting Operating 
on on off Stopped Operating 
on on on Stopped, Operating 

waiting 

Test Light 

The test light is on when a manual control is not in 
its normal position or when a maintenance function is 
being performed for CPU, channels, or storage. 

Any abnormal switch setting on the system control 
panel or on any separate maintenance panel for the 
CPU, storage, or channels that can affect the normal 
operation of a program causes the test light to be on. 

The test light may be on when one or more diag­
nostic functions under control of DIAGNOSE are acti­
vated or when certain abnormal circuit breaker or 
thermal conditions occur. 

The test light does not reflect the state of marginal 
voltage controls. 

Load Light 

The load light is on during initial program loading; 
it is turned on when the load key is pressed and is 
turned off after the loading of the new psw is com­
pleted successfully. 

Load-Unit Switches 

Three rotary switches provide the II-bit address of 
the device to be used for initial program loading. 

System Control Panel 119 



The leftmost rotary switch has eight positions label­
ed 0-7. The other two are 16-position rotary switches 
labeled with the hexadecimal characters 0-9, A-F. 

Load Key 

The load key is pressed to start initial program load­
ing, and is effective while power is on the system. 

Prefix-Select Key Switch 

The prefix-select key switch provides the choice be­
tween main prefix and alternate prefix during manu­
ally initiated initial program loading. 

The setting of the switch determines the state of the 
prefix trigger following the system reset after the load 
key is pressed. 

The switch is part of the multisystem feature. 

Operato,' Intervention Section 
This section of the system control panel contains the 
controls required for the operator to intervene in nor­
mal programming operation. These controls may be 
intermixed with the customer engineering controls, 
and additional switch positions and nomenclature may 
be included, depending on the model. 

Operator intervention provides the system-reset and 
the store-and-display functions. Compatibility in per­
forming these functions is maintained, except that the 
word size used for store and display depends on the 
physical word size of storage for the model. Switches 
for display of the instruction address are absent on 
models that continuously display the instruction ad­
dress. 

The following table lists all intervention controls by 
the names on the panel or controls and describes them. 

NAME 

System Reset 
Stop 
Rate 
Start 
Storage Select 
Address 
Data 
Store 
Display 
Set IC 
Address Compare 
Alterna te Prefix ~ 

~ Multisystem feature 

System-Re!;et Key 

IMPLEMENT A TI ON 

Key 
Key 
Rotary switch 
Key 
Rotary or key switch 
Rotary or key switches 
Rotary or key switches 
Key 
Key 
Key 
Rotary or key switches 
Light 

The system-reset key is pressed to cause a system re­
set; it is effective while power is on the system. The 
reset function does not affect any off-line or shared 
device. 

120 

Stop Key 

The stop key is pressed to cause the CPU to enter the 
stopped state; it is effective while power is on the sys­
tem. 

Programming Note 

Pressing the stop key has no effect when a continuous 
string of interruptions is performed or when the CPU 

is unable to complete an instruction because of ma­
chine malfunction. The effect of pressing the key is 
indicated by the turn-on of the manual light as the 
CPU enters the stopped state. 

Rate Switch 

This rotary switch indicates the way in which instruc­
tions are to be performed. 

The switch has two or more positions, depending 
on model. The vertical position is marked PROCESS. In 
this position, the system starts operating at normal 
speed whcn the start key is pressed. The position 
left of vertical is marked INSTRUCTION STEP. When the 
start key is pressed with the rate switch in this po­
sition, one complete instruction is performed, and all 
pending, not masked interruptions are subsequently 
taken. The CPU next returns to the stopped state. 

Any instruction can be executed with the rate 
switch set to INSTRUCTION STEP. Input/output opera­
tions are completed to the interruption point. When 
the CPU is in the wait state, no instruction is per­
formed, but pending interruptions, if any, are taken 
before the CPU returns to the stopped state. Initial 
program loading is completed with the loading of the 
new psw before any instruction is performed. The 
timer is not updated while the rate switch is set to 
INSTRUCTION STEP. 

The test light is on when the rate switch is not set 
to PROCESS. 

The position of the rate switch should be changed 
only while the CPU is in the stopped state. Otherwise 
unpredictable results occur. 

Start Key 

The start key is pressed to start instruction execution 
in the manner defined by the rate switch. 

Pressing the start key after a normal stop causes in­
struction processing to continue as if no stop had oc­
curred, provided that the rate switch is in the PROCESS 

or INSTRUCTION-STEP position. If the key is pressed 
after a system reset, the instruction designated by the 
instruction address in the psw is the first instruction 
executed. In some models, the start key cannot be 
pressed after a system reset until a new instruction 
address or psw is introduced by pressing the set IC or 
load switch. 



The key is effective only while the CPU is in the 
stopped state. 

Storage-Select Switch 

The storage area to be addressed by the address 
switches is selected by the storage-select switches. 

The switch can select main storage, the general reg­
isters, the floating-point registers and, in some cases, 
the instruction-address part of the psw. 

When the general or floating-point registers are not 
addressed directly but must be addressed by using 
another address such as a local-store location, infor­
mation is included on the panel to enable an operator 
to compute the required address. 

The switch can be manipulated without disrupting 
CPU operations. 

Address Switches 

The address switches address a location in a storage 
area and can be manipulated without disrupting CPU 

operation. The address switches, with the storage-se­
lect switch, permit access to any addressable location. 
Correct address parity is generated. 

Data Switches 

The data switches specify the data to be stored in the 
location specified by the storage-select switch and ad­
dress switches. 

The number of data switches is sufficient to allow 
storing of a full physical storage word. Correct data 
parity is generated. Some models generate either cor­
rect or incorrect parity under switch control. 

Store Key 

The store key is pressed to store information in the 
location specified by the storage-select switch and ad­
dress switches. 

The contents of the data switches are placed in the 
main storage, general register, or floating-point .regis­
ter location specified. Storage protection is ignored. 
When the location designated by the address switches 
and storage-select switch is not available, data are not 
stored. 

The key is effective only while the CPU is in the 
stopped state. 

Display Key 

The display key is pressed to display information in 
the location specified by the storage-select switch and 
address switches. 

The data in the main storage, general register, or 
floating-point register location, or in the instruction-

address part of the psw specified by the address 
switches and the storage-select switch, are displayed. 
When the designated location is not available, the dis­
played information is unpredictable. In some models, 
the current instruction address is continuously dis­
played and hence is not explicitly selected. 

The key is effective only while the CPU is in the 
stopped state. 

Set IC Key 

This key is pressed to enter an address into the in­
struction-address part of the current psw. 

The key is effective only while the CPU is in the 
stopped state. 

The address in the address switches is entered in 
bits 40-63 of the current psw. In some models the ad­
dress is obtained from the data switches. 

Address-Compare Switches 

These rotary or key switches provide a means of stop­
ping the CPU on a successful address comparison. 

When these switches are set to the stop position, 
the address in the address switches is compared 
against the value of the instruction address on all 
models and against all addresses on some models. An 
equal comparison causes the CPU to enter the stopped 
state. Comparison includes only the part of the in­
struction address that addresses the physical word size 
of storage. 

Comparison of the entire halfword instruction ad­
dress is provided in some models, as is the ability to 
compare data addresses. 

The address-compare switches can be manipulated 
without disrupting CPU operation other than by caus­
ing the address-comparison stop. When they are set 
to any position but normal, the test light is on. 

Programming Note 

When an address not used in the program is selected 
in the address switches, the CPU runs as if the address­
compare switches were set to normal, except for the 
reduction in performance which may be caused by the 
address comparison. 

Alternate-Prefix Light 

The alternate-prefix light is on when the prefix trigger 
is in its alternate state. The light is part of the multi­
system feature. 

Customer Engineering Section 
This section of the system control panel contains con­
trols intended only for customer-engineering use. 

System Control Panel 121 



Appenclix A. Instruction Use Examples 

The following examples illustrate the use of many 
System/360 instructions. Note that these examples 
closely approximate machine language to best illus­
trate the operation of the system. For clarity, the 
mnemonic for each operation code is used instead of 
the actual machine code. In addition, whenever possi­
ble, the contents of registers, storage locations, and so 
on, are given in decimal notation rather than the actual 
binary formats. When binary formats are used, they 
are segmented into bytes (eight bits) for ease of visual 
comparison. 

Included at the end of this Appendix are program­
ming examples that utilize the assembly language 
symbols and formats'. 

Load Complement 

The two's complement of general register 4 is to be 
placed into general register 2. 

Assume: 
Condition code = 2; greater than zero 
Reg 2 (before) 00000000 00000000 00000010 11010110 
Reg 4 00000000 00000000 01001001 11010101 

The instruction is: 

Op Code 

LCR 2 4 

Reg 2 (after) 1111111111111111 1011011000101011 
Reg 2 contains the two's complement of Reg 4. 
Condition code setting = 1; less than zero. 

Load Multiple 

General registers 5, 6, and 7 are to be loaded from 
consecutive words starting at 3200. 

Assume: 
Reg 5 (before) 
Reg 6 (before) 
Reg 7 (before) 
Reg 12 
Loc 3200-,3203 
Loc 3204-3207 
Loc 3208-3211 

The instruction is: 

Op Code 

LM 

Reg 5 (after) 
Reg 6 (after) 
Reg 7 (after) 

5 

R. 

7 

Condition code: unchanged. 

122 

12 

00 00 75 63 
00 00 01 26 
00 32 76 45 
00 00 30 00 
00 12 57 27 
00 00 25 63 
73 26 00 12 

D2 

200 

00 12 57 27 
00 00 25 63 
73 26 00 12 

Compare 

The contents of register 4 are to be algebraically com­
pared with the contents of register 2. 

Assume: 
Reg 2 
Reg 4 

The instruction is: 

Op Code 

CR 4 2 

00 00 03 92 
00 00 03 47 

Condition code = 1; first operand low. 

Divide (Fixed Point) 

The contents of the even/odd pair of general registers 
6 and 7 are to be divided by the contents of general 
register 4. 

Assume: 

Reg 6 (before) 
00000000 00000000 00000000 00000000 ( 1st Word) 
Reg 7 (before) 
0000000000000000 0000100011011110 = +2270 (.2ndWord) 
Reg 4 
00000000 00000000 00000000 00110010 = + 50 

The instruction is: 

Op Code 

DR 6 4 

Heg 6 (after) 
000000000000000000000000 00010100 ( remainder) = +20 
Heg 7 (after) 
00000000 000000000000000000101101 (quotient) = +45 
Condition code: unchanged. 

The instruction divides the contents of registers 6 
and 7 by the content of register 4. The quotient re­
places the content of register 7, and the remainder 
replaces the content of register 6. 

Convert to Binary 

The signed, packed decimal field at double-word loca­
tion 1000-1007 is to be converted into a binary integer 
and placed in general register 7. 

Assume: 

Reg 5 
Reg 6 
Loe 1000-1007 
Reg 7 (before) 

00 00 00 50 
00 00 09 00 
00 00 00 00 00 25 59 4+ 
11111111 111000001111011110111111 



The instruction is: 

Op Code x, 0, 

CVB 7 5 6 50 

Reg 7 (after) 00000000000000000110001111111010 
Condition code: unchanged. 

Convert to Decimal 

The binary contents of general register 3 are to be 
converted into a packed decimal integer of 15 digits 
and sign and stored in double-word location 2000. 

Assume: 
00 00 00 40 
00 00 18 60 

Reg 4 
Reg 15 
Reg 3 
Loc 2000 (before) 

00000000 00000000 010 11 0 11 01000001 
01 47 63 27 42 73 21 17 

The instruction is: 

op Code R, x, 

CVD I 3 4 15 100 

Loc 2000 (after) 00 00 00 00 00 23 36 1 + 
Condition code: unchanged. 

Store Multiple 

The contents of general registers 14, 15, 0, and 1 are 
to be stored in consecutive words starting with 4050. 

Assume: 
Reg 14 
Reg 15 
Reg 0 
Reg 1. 
Reg 6 
Loc 4050-4053 (before) 
Loc 4054-4057 (before) 
Loc 4058-4061 (before) 
Loc 4062-4065 (before) 

The instruction is: 

Op Code Ra 

00 00 25 63 
00 01 27 36 
12 43 00 62 
73 26 12 57 
00 00 40 00 
63 25 41 32 
17 25 63 42 
07 16 32 71 
98 67 45 21 

0, 

c=i_TM __ ~1 _14~1 __ ~_6~ _____ 50 ____ ~ 

Loc 4050-4053 (after) 
Loc 4054-4057 (after) 
Loc 4058-4061 (after) 
Loc 4062-4065 (after) 
Condition code: unchanged 

Decimal Add 

00 00 25 63 
00 01 27 36 
12 43 00 62 
73 26 12 57 

The signed, packed decimal field at location 500-503 
is to be added to the signed, packed decimal field at 
location 2000-2002. 

Assume: 
Reg 12 
Reg 13 
Loc 2000-2002 (before) 
Loc 500-503 

00 00 20 00 
00 00 04 80 

38 46 0-
01 1.2 34 5+ 

The instruction is: 

Op Code L, L, B, 

Loc 2000-2002 (after) 73 88 5+ 
Condition code = 2; sum is greater than zero. 

Zero and Add 

0, 

20 i'U 

The signed, packed decimal field at location 4500-
4502 is to be moved to location 4000-4004 with four 
leading zeros in the result field. 

Assume: 
Reg 9 
Loc 4000-4004 (before) 
Loc 4500-4502 

The instruction is: 

OpC~e ~ k • 

00 00 40 00 
12 34 56 78 90 

38 46 0-

0, 

a 
O2 

500 i'U 
Loc 4000-4004 (after) 00 00 38 46 0-
Condition code = 1.; sum is less than zero. 

Compare Decimal 

The contents of location 700-703 are to be compared 
algebraically with the contents of location 500-503. 

Assume: 
Reg 12 
Reg 13 
Loc 700-703 
Loc 500-503 

The instruction is: 

00 00 05 50 
00 00 04 00 
1.7 25 35 6+ 
06 72 1.4 2+ 

100 i'U 
Condition code = 2; first operand is high. 

Multiply Decimal 

The signed, packed decimal field in location 1200-1204 
is to be multiplied by the signed, packed decimal field 
in location 500-501, and the product is to be placed in 
location 1200-1204. 

Assume: 
Reg 4 
Reg 6 
Loc 1200-1.204 (before) 
r ,oc 500-501 

The instruction is: 

Op Code L, k Bl 

Loc 1200-1204 (after) 
Condition code: unchanged. 

a 

00 00 12 00 
00 00 02 50 

00 00 38 46 0-
32 1-

~~ I 6 I 250 

01 23 45 66 0+ 

Appendix A 123 



Divide Decimal 

The signed, packed decimal field at location 2000-2004 
is to be divided by the packed decimal field at location 
3000-3001.. 

Assume: 
Reg 12 
Reg 13 
Loc 2000-2004 (before) 
Loc 3000-3001 

The instmction is: 

Op Code L, L, 8, 

00 00 18 00 
00 00 25 00 
01 23 45 67 8+ 

32 1-

0, 

200 ~~ 113 I 
Loc 2000-2004 (after) 38 46 0- 01 8+ 

o. 

500 i'iJ 
where the quotient is 38460- and the remainder is 018+. 
Condition code: unchanged. 

Pack 

Assume locations 1000-1004 contain the following: 
ZI Z2 Z:3 Z4 S5 

where Z =: four-bit zone code 
S == four-bit sign code 

The field is to be in packed format with two leading 
zeros and placed in location 2500-2503. 
Reg 12 
Reg 13 
Loc 1000-1004 
Loc 2500-2503 (before) 

The instruction is: 

OpCo~ ~ k L 

00 00 10 00 
00 00 25 00 
ZI Z2 Z3 Z4 S5 
ABC D 

0, 

o 

Loc 2500-2503 (after) 00 12 34 5S 
Condition code: unchanged. 

Unpack 

o 

Assume locations 2501-2503 contains the following 
fields: 

12 34 5S 

This field is to be put into zoned format and placed in 
the locations 1000-1004 where: S is a four bit sign 
code. 
Reg 12 
Reg 13 
Loc 2501-2503 
Loc 1000··1004 (before) 

The instruction is: 

OpC~e ~ k L 

~D 4121121 0 

and results in 

00 00 10 00 
00 00 25 00 
12 34 5S 
ABC D E 

0, B. 

Loc 1000-1004 (after) ZI Z2 Z3 Z4 S5 
where Z is a four-bit zone code. 
Condition codc: unchanged. 

124 

Move with Offset 

The unsigned three-byte field at location 4500-4502 is 
to be moved to location 5600-5603 and given the sign 
of the one byte field located at 5603. 

Assume: 
Reg 12 
Reg 15 
Loc 5600-5603 (before) 
Loc 4500-4502 

The instruction is: 
Op Code L, L2 8, 

IMVO~~13121121 
Loc 5600-5603 (after) 
Condition code: unchanged. 

Move Immediate 

00 00 50 00 
00 00 40 00 
77 88 99 0+ 
12 34 56 

0, B. 

600 ~~ 115 1 

01 23 45 6+ 

O2 

500 i'iJ 

A dollar sign ($) is to be placed in location 2100, 
leaving locations 2101-2105 unchanged. Let Z rep­
resent a four-bit zone. 

Assume: 
Reg 12 
Loe 2100-2105 (before) 

The instruction is: 

Op Code 

MVI $ 

Loc 2100-2105 (after) 
Condition code: unchanged. 

Move Numeric 

00 00 20 00 
ZO ZI Z2 Z3 Z5 ZO 

8, 0, 

12 100 

$ ZI Z2 Z3 Z5 ZO 

Let Z and Y represent four-bit zones. The numeric 
parts of the eight-bit characters in the field at locations 
6070-6074 are to be replaced by the numeric parts of 
eight-bit characters at locations 8080-8084. 

Assume: 
Reg 12 
Beg 15 
Loc 6070-6074 (before) 
Loc 8080-8084 

The instruction is: 

00 00 60 00 
00 00 80 00 
Yl Y2 Y3 Y4 Y5 
Z3 Z6 Z9 Z7 Z8 

Loe 6070-6074 (after) Y3 Y6 Y9 Y7 Y8 
Condition code: unchanged. 

Move Zones 

Let Z and Y represent four-bit zones in the eight-bit 
characters making up the fields at location 2006-2010 
and 3007-3011, respectively. The zones of the field at 
2006-2010 arc to be replaced by the zones from loca­
tion 3007-3011. 



Assume: 
Reg 12 
Reg 15 
Loc 2006-2010 (before) 
Loc 3007-3011 

The instruction is: 

Op Code B, 

00 00 20 00 
00 00 30 00 
Zl Z4 Z7 Z8 Z5 
Y8 Y7 Y4 Y6 Y8 

D, 

6 

Loc 2006-2010 (after) Y1 Y4 Y7 Y8 Y5 
Condition codc: unchanged. 

AND (Register to Register) 

When two operands are combined by an AND, they 
are matched bit for bit. If corresponding bits are both 
1, the result is 1. If either is 0, the result is O. For 
example, if the logical AND of register 5 and 6 is to 
be taken, 

Assume: 
Reg 6 
Reg 5 (before) 

The instruction is: 
Op Code RJ 

NR 5 

00000000000000000000000001011011 
00000000000000000000000001110110 

6 

Reg 5 00000000 00000000 00000000 01010010 
Condition code = 1; not all-zero result. 

OR 

When two operands are combined by an OR, they are 
matched bit-for-bit. If either of the corresponding bits 
is 1, the result is 1. If both are 0, the result is O. For 
example, if the logical OR of register 5 and 6 is to be 
taken, 

Assume: 
Reg 6 00000000 00000000 00000000 10110111 
Reg 5 (before) 00000000 00000000 00000000 1110 11 0 1 

The instruction is: 

Op Code 

OR 5 6 

Heg 5 (after) 00000000 00000000 00000000 11111111 
Condition code = 1; not all-zero result. 

Exclusive OR 

When two operands are combined by an EXCLUSIVE OR, 

they are matched bit-for-bit. If the corresponding bits 
match (both ° or both 1), the result is O. If they differ, 
the result is 1. For example, if the EXCLUSIVE OR of 
register 5 and 6 is to be taken, 

Assume: 
Reg 6 00000000 00000000 00000000 10110111 
Reg 5 (before) 00000000 00000000 00000000 111011 0 1 

The instruction is: 

Op Code R, 

XR 5 6 

Beg 5 (after) 00000000 00000000 00000000 01011010 
Condition code = 1; not all-zero result. 

Test Under Mask 

Test bit positions 0, 2, 3, and 6 of a given byte in 
storage to determine if all of these bit positions contain 
ones. A TEST UNDER MASK with a mask of 10110010 == 
178 lO is used. The byte to be tested is stored at loca­
tion 1250 and contains 01101101. 

Assume: 
Beg 10 00 00 12 00 

The instruction is: 

Op Code '" D, 

TM 178 10 50 

t-.1ask from TM 
Byte testcd 
Selected result 
Condition code 
bits are 1. 

Insert Character 

10110010 
01101101 
0- 10 -- 0-

1; some selected hits are 0, some selected 

The character at location 4200 is to be inserted into 
the low-order eight bits of register 7. 

Assume: 
Reg 7 (before) 
Heg4 
Reg 5 
Loc 4200 

The instruction is: 

Op Code R, 

Ie 7 

00000000 10110110 11000101 01101101 
00 00 02 00 
00 00 30 00 

00001011 

x, 

4 5 1000 J 
Reg 7 (after) 00000000 101101101100010100001011 
Condition code: unchanged. 

Load Address 

The effective address obtained by adding 1000 to the 
low-order 24 bits of general registers 3 and 2, is to be 
placed in general register 4. 

Assume: 
Reg 4 (before) 
Reg 3 
Reg 2 

The instruction is: 

Op Code 

LA 4 

Reg 4 (after) 

3 

Condition code: unchanged. 

73 16 00 12 
00 03 00 10 
00 00 02 00 

2 

00 03 12 10 

1000 

Appendix A 125 



TranslatEt 

Assume a stream of 20 characters comes into location 
2100 in ASCII code (extended to eight bits). Translate 
to EBCDIC. 

Assume: 
Reg 12 
Reg 15 

00 00 20 00 
00 00 10 00 

Loc 2100-2119 (before) JOliN JONES 257 W. 95 

The instruction is: 

0 , o. 

100 ;) 115 o 

Loc 2100-2119 (after) JOHN' JONES 257 W~95 
where the over bar means the same graphic in EBCDIC. 

Condition code: unchanged. 

Translate Table 

1000 
r----

1015 

1----t--4--t---+---t--+--+-+--+--,-' --"""t---+--+'-+----+----t 

1016 
f---l---+-+----+-.--I-,-,- --, ---, -,-,,' , -"'-, ""'--"-,--, 

1032 
- ~-

_. -_. --+--t---"-+-"-'j-'-- +-- ,- -,- ""'" - , ----~ 

1048 
,--'-

1064 BI 
+-'-+"""I-"--~--+--- ( + 

1080 & $ * ) 
-

t"""--+- -'j-'-+-"- t----+---t-----jf----c-I--=' ,',' """-

Assume: 
Reg 1 (before) 
Reg 2 (before) 
Reg 12 
Reg 15 
Loc 3000-3029 

The instruction is: 

Op Code 

00 00 00 00 
00 00 00 00 
00 00 30 00 
00 00 20 00 
UNPK PHOUT (9), WORD ( 5 ) 

0, 0, 

~~r-r-1-2-9 ---"I:o-12--r-1--o ---;),--,-1"""-1 =15===0=--'J~ 
Reg 1 (after) 00 00 30 11 
Reg 2 (after) 00 00 00 20 
Condition code = 1; scan not completed. 

In general, TRANSLATE AND TEST is executed by use 
of EXECUTE, which supplies the length specification 
from a register. In this way a complete statement scan 
can be performed with a single TRANSLATE AND TEST 

instruction repeated over and over by means of 
EXECUTE. This is done by computing the length of the 
remaining part of the statement to be scanned in a 
general register, and referencing that register in the 
Rl field of EXECUTE, whose address references a TRANS­

LATE AND TEST instruction in which L=O, Bl=1, Dl=1 
and the B2 and D2 reference the table to be used 'in 
the scan. 

Translate and Test Table 

2015 

1096 / -; % 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
,--- ---- -,-- -,- - -- -- ,-- - r'- f"--- -,--,--" '-

1112 @ ... = 2016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I---t----+-+---+---I-"-- -,---" -"-, '-,--, ---/----I----t- --

1128 abc de 9 hi 
f---t----t---j---+---I---j---- --" ",,--,1,--

1144 
I---t--_--t_-t-__ --+-_m_-t-n--t_

o
_ t-P , q ,',' 1 ,~- ",' 

1160 u v w x y z 
I----t---j--t---t---t--/-----' -----t-'-+' "-f --- "-,- --,--"" "" 

1176 

1192 

1208 

1224 

ABC D G H I 
I---t----j--I---t---t--t---t----t"-"-,-,--, ,"- ,,"--

K LMNOP QR 
,-- ---- -_. __ . 

,""",,-- ----

T U V W X y Z 
'""""'" 

2 3 4 5 6 7 8 9 ,',-,-""- .... _--

,-,- ,-,--""-"" -,-

"" 

-- '""- --

1256 

Note: If all possible combinations of eight bits (i.e., 256 combinations) 
cannot appear in the statement being translated, then a table of less 
than 256 bytes can be used. 

Translate and Test 

Assume that an Autocoder statement, located on 3000-
3029, is to be scanned for various punctuation marks. 
A translate and test table is constructed with zeros in 
all positions except where punctuation marks are 
assigned. 

126 

2032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
---

2048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-- --

2064 0 0 0 0 0 0 0 0 0 0 0 10 15 20 25 0 
-- ---

2080 90 0 0 0 0 0 0 0 0 0 0 30 35 40 45 0 
-- --

2096 80 85 0 0 0 0 0 0 0 0 0 50 55 0 0 0 
--

2112 0 0 0 0 0 0 0 0 0 0 0 60 65 70 75 0 
f--- - -_.- --_. 

2128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
~--- -"-_.-- 1-- ---I----- --,---I---- 1---- --

2144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
.. _- ----

2160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1---I-- -" r---- --r---- -- ------

2176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-- - ,-"-" 

2192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-- --,-

2208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-,---- I-- --, ---r---- - - -"'" '" 

2224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
:-:-

2256 

Note: If all possible combinations of eight bits (i.e., 256 combinations) 
cannot appear in the statement being scanned, then a table less than 
256 bytes can be used. 



Edit and Edit and Mark 

The following examples show the step-by-step editing 
of a packed field with a length specification of four 
against a pattern 13 bytes long. The following symbols 
are used: 

SYMDOL 

b 
( 
) 
d 

Assume: 

MEANING 

blank character 
significance start character 
field separator character 
digit-select character 

Loc 1000-1012 (first operand) 
Loc 120-1203 (second operand) 
Reg 120 

bdd,dd ( .ddbCR 
02 57 42 6+ 

00 00 10 00 

The instruction is: 

OpCode D. 

~~~1-1-2~1-12~1---o~»I~I-12~1--20-0~~ 

and provides the following:

PATTERN DIGIT S TRIGGER RULE LOCATION 1000-1012
b o leave(l)bdd, dd(. ddbCR
d 0 o fill hhd, dd(. ddbCR
d 2 1 digit bh2, dd(. ddbCR(2)

1 leave same
1 digit bh2, 5d(. ddbCR d 5

d 7 1 digit bb2, 57 (. ddbCR
(4 1 digit bh2, 574. ddbCR

1 leave same
d 2 1 digit bb2, 574. 2bdCR
d 6+ o digit bb2, 574. 26bCR (3)

b o fill same
C o fill bh2, 574, 26bbR
R o fill bb2,574,26bbb

Thus:
Loc 1000-1012 (after) bb2,574.26bCR

NOTES

1. This character is saved as the fill character.
2. First nonzero digit sets S trigger to 1.
3. Plus sign in this same byte sets S trigger to zero.
Condition code = 2; result greater than zero.

If the second operand in location 1200-1203 is
00 00 02 6-, the following results are obtained:

Loc 1000-1012 (before) hdd, dd(. ddbCR
Loc 1000-1012 (after) bbbbbbb. 26hCR
Condition code = 1; result less than zero.

In this case the significance-start character in the
pattern causes the decimal point to be left unchanged.
The minus sign does not reset the S trigger so that
the cn symbol is also preserved.

In the edit examples above, if the initial character
of the pattern was an asterisk, then asterisk-protec­
tion would be achieved.

In the same example, if EDIT AND MARK was used:

Reg 1 (before) 00 12 34 56
Reg 1 (after) 00 00 10 02

Branch On Condition

Assume a prior operation has been perfonned which
resulted in setting the condition code in the psw. The
program is to branch if the result of the previous
operation is nonzero.

The BRANCH ON CONDITION with a mask of 0111 ==
710 in the Ml field becomes a branch-on-nonzero
instruction.

Reg 5 00000100
Reg 12 00040000

The instruction is:

Op Code Ml X2 B2 D,

Be 7 5 12 100

and causes a branch to location 40,200, provided the condition
code is not zero.
Condition code setting is unchanged.

Execute

The ADD instruction at location 350 is to be executed
by means of EXECUTE:

Assume:
Reg 3
Reg 12
Loc 350

The instruction is:

Op Code

EX o
X2

3

00 00 00 10
00 00 03 30
AR 4,6

12

D2

10

The CPU executes the ADD instruction and takes the
next sequential instruction after EXECUTE.

The move character instruction MVC at location 1200
is to be executed, and the number of characters to be
moved is computed in register 5.

Assume:

Reg 5 (rightmost 8 bits)
Reg 7
Reg 13
Loc 1200
Length field (8 bits) =

The instruction is:

Op Code Rl X2

EX 5 7

01110000 = 11210

00 00 00 50
00 00 10 50
MVC 0, 15, 100, 12, 1000
00000000

B2

13 100

The rightmost eight bits of R5 arc OR' cd with the
length portion (positions 8-15) of the instruction being
executed, at location 1200 prior to execution of MOVE.

However, the actual instruction at location 1200 re-

Appendix A 127

mains unchanged, and the instruction actually exe-
uted by EXECUTE is

Op Code B, 0, B. D.

I MvclIT 112 1151 100 ?~1121 100 ~LJ

to provide a move with a length of 112 bytes and thus
move 113 bytes.

Assembly Language Examples
These programming examples use the System/360 as­
sembly-language format and mnemonics. In general,
the operands are shown symbolically with indexing or
length specification following the symbol and enclosed
in parentheses. Lengths are given as the total number
of bytes in the field. This differs from the machine
definition regarding lengths which states that the
length is the number of bytes to be added to the field
address to obtain the address of the last byte of the
field. Thus the machine length is one less than the
assembly-language length. The assembly language
automatically subtracts one from the length specified
when the instruction is assembled.

Examples

l. Decimal right shift - even number of places.
Assume symbolic location "Source" is:
Source: 12 34 56 78 9S
and we wish to drop two places.
MOVE NUMERICS (MVN) can be used to accomplish this

Source
MVN Source + 3 (1), Source + 4 12 34 56 7S 9S
~y usin~ a length of 4 instead of 5 in operations using sym­

bohc locatIOn Source, the result is accomplished.

2. Decimal right shift - odd number of places.
Source: 12 34 56 78 9S

Assume we wish to drop three places.
The move with offset (MVO) instmction is used.

Source
MVO Source (5), Source (3) 00 01 23 45 6S

3. Decimal left shift - even number of places.
Assume tbe following at symbolic location "ZERO."

Zero: 00 00
Source: 12 34 56 78 9S

A left shift of four places can be performed as follows:

Source
MVC Source + 5 (2), Zero 12 34 56 78 9S 00 00
MVN Source + 6 (1), Source + 4 12 34 56 78 9S 00 OS
NI Source + 4,240 12 3456 78 90 00 OS

. Note the number 24010 in the AND IMMEDIATE instmction pro­
VIdes a mask of 11110000 which is to be used to make the old
sign positions zero.

128

4. Decimal left shift - odd number of places.
Zero: 00 00
Source: 12 34 56 78 9S
Assume the shift to be three places.

Source
MVC Souree + 5 (2), Zero
MVN Source + 6 (1), Source + 4
NI Souree + 4, 240
MVO Source (6), Source (5)

12 34 56 78 9S 00 00
12 34 56 78 9S 00 OS
12 34 56 78 90 00 OS
01 23 45 67 89 00 OS

5. A master inventory file is to be updated by issue
and receipt transactions. There may be multiple trans­
actions pertaining to a master record. Both inactive
and updated master records are to be rewritten. The
following calculations are performed to update the
master:

Receipts

l. Receipt quantity X unit cost == receipt cost
2. Receipt cost + total cost == new total cost
3. Receipt quantity + quantity on hand new

quantity
4. New total cost --;- new quantity == new average

unit cost

Issues

l. Quantity on hand - issue quantity == new quantity
(if quantity on hand is less than issue quantity, go
to an exception routine) .

2. Issue quantity X average unit cost == issue cost
3. Total cost -issue cost == new total cost
4. If new quantity is not greater than the reorder level,

go to an exception routine. >

Record Description

NI aster Record:
Item #: 6 alphameric characters
Description: 20 alphabetic characters
Quantity: 7 digits plus sign
Total cost: 11 digits plus sign (2 decimal places)
Average unit cost: 7 digits plus sign (3 decimal places)
Reorder level: 5 digits plus sign

Transaction Record:
Type code: 1 digit plus sign
(plus 1 == receipt)
(plus 2 == issue)
Item #: 6 alphameric characters
Quantity: 5 digits plus sign
Receipt unit cost: 6 digits plus sign (2 decimal places)

IB14 IBM System/3S0 ABBembler CDding PDrm

PROGRAM MASTER INVENTOR'!' FILE MAINTENANCE PUNCHING INSTRUCTIONS PAGE I OF :3
I-------------+-G-RAPH-'C ------,I,---~II ~I--'-1 -'-1 --.-1-+----··--­

CARD ELECTRO NUMBER

~P-RO-G-R-AM-M-ER-----------------------------------'----------~-P-U-NC-H---------I~-~I-~I-~I-+-I-+-I-+-I-4

Nome Operation
1 10 12 16
STA R T X. f.-- BA LR

I USI NG t· f-- -f.-

Ml4-S fC- --L 8 C
I OS I
• os

M~T)7- ·t]05
I TO TC I DS 1-

IAVG • .. 0 5

BJl &12 OS I

t
X I 05

-

TV PE I eQU
1-·

fr~1 M +C--H--~~ --- -

Yc- ., uc • DS
IPI? 00 1 DS
OI V I OS
IDli VA 05
IFIT VE Oc

18
Operand

25

/5,1 0
*) I 5
15 J START
CL6 c. i.. -20 -
PJ.4 .. -

PL6
- Pi..4
PL3
c
X.
CL6
Ii 3
!Pili
PJ.7
PL7
I'Ll
P \ 5 I

--..

.. _ ..

...

T I .. -S1A RT I GE
E. T X I GET

~~~-H'-+-+-+--+-~=-i-!C"H-+ .~I'-~~~ A 5 i X c--t--I--

CO MP .-"t-

- +--+-- -I-' I 
r 

HIr~ H~ 
-"t 
--L_ 

I 
T 

-I---
~~C 
Be 
Be. 
PUT 
G£"T 

I TE M; ~Arstr--
6,EQUAL. 
2."HIGH 
~~rSl~ xci: PiT JoIN 
M~6IT 

30 

PROGRAM MASTE.R INVENTORY FILE. MAINTE.NANCE. 

I DATE 

STATEMENT 

35 40 

-I 

-1-

1·- -

I 

1--1-

Identificatlon-
Comments 

~ ITE~ ~ N~W8C 'If f60 I II~ .. ~ 
~TEM O~SCRIPT N 
~UANTI TV 

c- T'O TAL cos l7 I 
I AVERAGE COST I I 

173 
Sequence 

f· 

i---

,. 

R S 0 Rip E R LEveL I I 
+ - TRANSAC-TlrON wOfqK A~IIEA 

TYPE COOS 
ITEM Nu1M.8ER 

I .. 1-
f.-

1+-

- - QU ANITI TY II II. 
UNIT COS7 

f- -

-1-1-- PRO 0 U C 7 WOR J< ARE AI I 
DIVISION .. I 

O~V/~/OW WORK ARE~ I 

1+ "- 0 'tJ S r A IV.. T tJ s c 0 HAL IF IA 0 JUS T 
GET FIRST M.ASTER I I 
GeT ITRANSACTIO~ I 
C He C I( FOR ACT 11 vITI y I 

~g Z~~~L,kFM:~~~~rJ~~r~Y~! 

.
r 0 EX c'IE P Tit q~ ~R A NI5 .1 L Ol~ Iv. R 1 T E MAS 7 c R (laC 5) I 
READ MA~TER (laCS) I _. I 

1-1--+--+--1-++--+ 

PUNCHING INSTRUCTIONS PAGE 2... OF .3 

GRAPHIC 

,8Q 

i-· 

1-

t--

I I I CARD ELECTRO NUMBER 
~P-RO-G-R-AM-M-E-R----------------------------------'I-DA-T-E--------~-PU-N-CH-----------~I~--+---~I-+I--4--+----l 

Nome Operation Operand 
10 12 16 18 25 30 

'---i-t--t---f--+=:B_+C I 5 COM P ~Q"u A L -: I eLI.... T y ~ E .J. ~ ... C Z I 

~--l---Ie--+-+--L 8 C. 8 ISS U E-
-f- - c-:- eLI TV P E ) )( ... C 1 I 
_I-- _I _ t 8 C 8 ) 1? E eEl P T 

~+--l---+--+--l-_ _I_--I----I--I~ii, t _ 1!i:1i; ~ K £: ~ j:J T I 01111 
ISSUE I SP MQTY-!.TQTY 

f ~Z'ACp. !~.G.XCg.P.I'ON 
I-+----l---II--++-t---+-++--+---jl~ l' ROD , A V G 
I-+----l---If--+--I---I---+-++ + M P J'- ROD ) T <n:. Y 

I AP PROD FI VE 
1-+--_-I-~-+----I-~--+-._'~-+I--++--l-+-~~I'o'M,~V;'-+O -- p~ ~ 9 D ~ t'R q D C ~ ) 

SP TOTC,PROO+I(6) 
I--+--+-+-+---i rep ..... ~9 T Y , R Q R. 0 

I--I--f.- __ . 1 8 c 1.3 I E X <: E P r.r ION 
I IJC 15)GET~ 

R'€+C Ii I!P~T ZAP PROD I U C. 
/tiP PROD)TQTY 

1--+--+-+-+---+ +1- APT 0 T C. ) PRODoj- I ( 6 ) 
1--1-- _ A P ", Q TV) T Q T Y 

I--+--+-+---+---+--+-' _+---+---I_-_I_--+"Z ~e p I V J TOT C 
MVN DIVA)OlV+6 

-+--~- - ~ + 
"t 

_ /-_1·.. 1 
I 1--+--+-+-+---+-, 
I 

MVe> DI V(S)l.D I Y 
N I D I \I A, I!) 
OP Dlvced"MQTY 
~VC AVG)DIV 

_L_l_ . 

PROGRAM MASTER INVE.NTORY FILE MAINTf.NANCE. 

STATEMENT 

35 40 45 
Comments 

50 55 1 t T1--I42 
-

_. 71 ~ 

co,., PAR e T Y pelT 0 III I 
TO ISS U ElF T Y P E IE Qlu A L 5 2 
COM PAR E Tly peT 0 II I 
TO R e eel P T 1FT" P E IE QUA L I 
Toe XC E P T ~ 0 N e R ROIR Ie A R 0 
COMPUTE NeW QUANTII Tlv 

~ ••. ~ G: R~ ~R. w.b ... ~ K 1 i~ ~~I~IF IQ TV 
COM P V Tel 6 9 U! e 0 &IT I 

HALf ADJUST I 
SH'F~. RE6U. L.T RI~~T_IO. ~E_PLA CO~PUTE N61w TO~Al COST 
CHECK IGlil~ v~hReo oelR POl Nl 
TO 1: R R 0 R 1 1= N of. H 1 GIH 
Fl e T II R N ToG E Tlx. I I 
A V & T 01'" 0 R KARlE A.I I I 
co,..,? U T Ii -RG c. e 1 pIT ~IO SiT 
N E Iw TOT ALe 0 5 T, I I 
colMPUTE NEW QTY II I 
~O~AL COST TO I~ORK ~REA 

ISH1 fT DI V A ReA LIEF!T ONE. 

1-' PLACE II I 
C 011>1 PUT E. HE. W A vie RAIG el Cos T 
ADJUST MASTER I 

I 
PUNCHING INSTRUCTIONS 

Identification-

r1"l1" 
II I 
I

I I 
I I 

I 
I 

I 
I 

1 

PAGE 3 OF ,3 
-.--~----------~-----

I-P-RO-G-RA-M-M-ER-----------------------------------.--IDA-TE----------l-:-:-::-:-IC------------"If--+---t--l~ ± I + :.'-"''''0 '""'" 

1-__________ --r.--___ ---,--.-____________________ -..:S~TA::.cT~EM~EN~T ___________________________________ .. ___ " 

Name 
Identlfication­

Sequence 

Appendix A 129 



6. Assume that record read into dcfincd storage con­
tains a field labeled "date." This field is stored in six 
character positions as follows: 

Day - two characters 
Month - two characters 
Year - two characters 
Place the date an item is ordered (year, month, 

day) into a record field labeled "key." 

--------

IBM IBM System/360 ABBBmblBr Coding Form 

PROGRAM REORDER. ACTIVITY - TRANSLATE INSTRUCTION PUNCHING INSTRUCTIONS 

GRAPHIC I I 
PROGRAMMER I DATE PUNCH I I 

STATEMENT 

Name Operation Operand Comments 
1 10 12 16 18 25 30 35 40 45 50 55 0 -
r-~ 1--- -- -:-~-]-- M VC KE Y , ST R£ AM Pl- ACE TA lJL t- VA L()E IN 
r-~I I·· iT R KE Y 3 DA TE TR. AN S L ATE ]) A T~ IN TO 

scr RE A~!-·· _ B C XL 6 ' OS" 06 O~ 0'1 01 02' 
I 

t .. 
f- ...... , ... I -1-

130 

--
X28-6S09 

Prinled in U,S.A. 

PAGE OF 

I CARD ELECTRO NUMBER 

I 
Identificction-

Sequence 
65 71 73 80 

TO SO RT KEY 
PR. oP {R SE Q. 

t 
--



7. Assume two streams of bytes, N bytes separated 
(N L 4095) and a 256 byte table. 

Translate and Test Table 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
In stream 1 locate the first nonzero bit of each byte. 

On finding the first nonzero bit in stream 1, set the 
corresponding bit position in stream 2 to zero. Con­
tinue this process to the end of the stream. A 256-
byte translate-and-test table is constructed in storage 
such that: 
Byte from 00000000 
Byte from lxxxxxxx 
Byte from 01xxxxxx 
Byte from 001xxxxx 
Byte from 0001xxxx 
Byte from 00001xxx 
Byte from 000001xx 
Byte from 0000001x 
Byte from 00000001 

fetches 
fetches 
fetches 
fetches 
fetches 
fetches 
fetches 
fetches 
fetches 

00000000 from the table. (OJO) 
01111111 from the table. (12710 ) 

10111111 from the table. (191 10 ) 

11011111 from the table. (22310 ) 

11101111 from the table. (23910 ) 

11110111 from the table. (24710) 
11111011 from the table. (25110) 
11111101 from the table. (25310 ) 

11111110 from the table. (25410 ) 

o 

16 

32 

48 

64 

80 

96 

112 

128 

144 

160 

176 

192 

208 

224 

240 

o 254 253 

239 239 239 

223 223 223 

223 223 223 

191 191 191 

191 191 191 

191 191 191 

191 191 191 

127 127 127 

127 127 127 

127 127 127 

127 127 127 

127 127 127 

127 127 127 

127 127 127 

127 127 127 

.. _.-

253 251 2 51 251 251 247 

239 2392 39239239 239 

223 2232 23223223 223 
- -

223 2232 23223223 223 

191 191 1 91 191 191 191 
--

191 191 1 91 191 191 191 
I-

191 191 1 91 191 191 191 
~-

191 191 1 91 191 191 191 
1-----

127 1271 27 127 127 127 

127 1271 27 127 127 127 

127 1271 27127127 127 
I---

127 1271 27127127 127 

127 1271 27 127 127 127 

127 1271 27 127 127 127 

127 1271 27 127 127 127 
--

127 1271 27 127 127 127 

--r--

247 247 247 247 247 247 247 
--- - ."- ----

239 239 239 239 239 239 239 
--- -- ---

223 223 223 223 223 223 223 
• ----- --~ I--- --(----

223 223 223 223 223 223 223 

191 191 191 191 191 191 191 
1---- f------- - -- ---f.---1--

191 191 191 191 191 191 191 
--1----f.---- --

191 191 191 191 191 191 191 
--- --- -- I--1----1--- --

191 191 191 191 191 191 191 
f.-- f--- -" --
127 127 127 127 127 127 127 

-- ---- ---I----I-- --- - -

127 127 127 127 127 127 127 
--1------ --- -- f----1--- ---

127 127 127 127 127 127 127 
1----- 1---- 1---- ---

127 127 127 127 127 127 127 
- --- I---- ---~ 1-----1-- - t--

127 127 127 127 127 127 127 
-- I--1----1--- ---

127 127 127 127 127 127 127 
---[----J- - -

127 127 127 127 127 127 127 
-- - -- --- - ----- -- ---t-

127 127 127 127 127 127 127 

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 

All Decimal Numbers Represent an 8-Bit Binary Value 

IBM IBM SYBtem/360 Aesumbler Coding Form 

PROGRAM TEST AND Cf/AN(j£ BIT STREAMS PUNCHiNG iNSTRUCTiONS PAGE OF 

I I 
ti t-FF 

--- .-

GRAPHiC CARD ELECTRO NUMBER 

PROGRAMMER I DATE PUNCH T T 
STATEMENT 

Identification-
Name Operation Operand Comments Sequence 

1--!-r-...,,---,-,--,;-r-~,-'I'-"10 ----I-'-'12T-,_~-~1~6 _+-"',18 _T_-.--T2=,5,--,-,--r-r=3.:;-0 --.--,,-,=35.-,-,-,-,4.:;-0 -c::-r-.-T----r=45'-r---,--.-- , __ 50 ___ "~ ~ _ _ ,Q.Q _ _ _ _ 45"r-r---.--,-,-_~71 f-----l-'-7",3 -,--,,---,--_,-_, -i?O 
I-~~ I?- ~- T:_ 0 J'l Ii "t'19 , f- P Ii M 0 R L G I II POI W T i _ 
I-~_I- _ 1-1 B A L R I " , 0 _ I-- I-- __ I- 0 A P.c-: R E (j I S 
I- - I U S_ I II Cj *, / oS" D €f J II E 13 A S £ R. E <i 1 S-

I B _ START ~_ START l'<iM 
~~(}NS7};--=i~ DC F' 249' S;L8EAM I L ENg Ttf 

q 0 IV. S Tl~1- Iv C f=- -A ( S T R ~ A M - I )_ 1 __ C 0 (II ~ TAN TAD D R 
__ r~ B L £1 1-__ 1_ D C X L 2 oS" 6 • - - - foO - - - • __ _ T RAN S ~ ATE T A 'B L £. 

.§. T R. £ A;M i- _ D S· - 7 SO CST REA M- S TO 1( A q £. ARE A 
I 

- -- -- I 
.s: LA ~ 7) -I-lc--}---I--l,L""-\ 

-'_ L 
I AR 

i&-0t-t---! LR 
I __ •. S(R 

EX 
BC 
EX 

~-l---+---+-+--+-:_C R 
f---f-I---+-Ih-I +-+_I---+"~ L 

1-

TRANSII--
AND r 

TR T 
NI 

+1-

+--t-- --
-1--- I 

-:-

----f---I---
- -1--

i- O,COi-1STI 
( 1 C Q IV. ~tI- 2 
0) I 
t/,O 
t/,I 

j-

'I, TR.,4 N i 
8 ,ouT 
Z)AND 
o , I I---
OU T 
LOOP -1--

I(,I),TABL£ 
SOO(I),O 

f--

f- -- -

ST~£AM LGTH TO RO 
I-- S T R'£~ M S TAR TAD D R - ITO 

-i--

E 1'112+- 0 F S T R £ A M - / TOR 0 
ENDI-0F STREAM -/IITO R'I 
LiN ~ i H 0 F S T R £ AM TO, R'II 
£ X E C (j T E T R TIN S T/ / I / 
£ NiD ..• 0 F 5 T R £ A M BRA N C H . . 

£ X £ C (j T E A["lv I' I 
EN',Z)r-_.--.OF. STREAM. -I VS IT£_·.sT 
OuT LAST STREAM ITEM 

CONTiNUE I 

;~A~SLATE • rEiT ST'EA~ 
HT STRW Z POSlf ON I 

i- i 

I--

-1--

-- +-
j-

R I 
f 

f- ... 

1- - -

f-I---j-
._-

f- -t--

P OS 

--

I- .. 

-------~---

Appendix A 131 



Appendix B. Fixed-Point and Two's Complement Notation 

A fixed-point number is a signed value, recorded as a 
binary integer. It is called fixed point because the pro­
grammer determines the fixed positioning of the binary 
point. 

Fixed-point operands may be recorded in halfword 
(16 bits) or word (32 bits) lengths. In both lengths, 
the first bit position (0) holds the sign of the number, 
with the remaining bit positions (1-15 for halfwords 
and 1-31 for fullwords) used to designate the mag­
nitude of the number. 

Positive fixed-point numbers are represented in true 
binary form with a zero sign bit. Negative fixed-paint 
numbers are represented in two's complement notation 
with a one bit in the sign position. In all cases, the 
bits between the sign bit and the leftmost significant 
bit of the integer are the same as the sign bit (i.e. 
all zeros for positive numbers, a1l ones for negative 
numbers). 

Negative fixed-point numbers arc formed in two's 
complement notation by inverting each bit of the posi­
tive binary number and adding one. For example, the 
true binary form of the decimal value (plus 26) is 
made negative (minus 26) in the following manner: 

+26 
Invert 
Add 1 

-26 

S INTEGER 

o 0000000 00011010 
1 1111111 11100101 

1 

1111111111100110 (Two's complement form) 

This is equivalent to subtracting the number: 
0000000000011010 from 1 0000000000000000. 

132 

The following addition examples illustrate two's 
complement arithmetic. Only eight bit positions are 
used. All negative numbers are in two's complement 
form. 

COMMENTS 

+57 00111001 
+35 00100011 

+92 01011100 

+57 00111001 
-35 11011101 No overflow 

+22 00010110 Ignore carry - carry into high 
order position and carry out. 

+35 00100011 
-57 11000111 

-22 11101010 Sign change only; no carry. 

-57 11000111 
-35 11011101 No overflow 

-92 10100100 Ignore carry - carry into high 
order position and carry out. 

-57 11000111 
-92 10100100 

-149 (/01101011 (/Overfiow - no carry into high 
order position but carry out. 

+57 00111001 
+92 01011100 

149 (/10010101 (/Overflow - carry into high order 
position, no carry out. 

The following are 16-bit fixed-point numbers. The 
first is the largest positive number and the last, the 
largest negative number. 

NUMBER DECIMAL S INTEGER 

2 '0 -1 32,767 =0 1111111 11111111 
2° 1 = 0 0000000 00000001 
0 0 = 0 0000000 00000000 

_2° -1 =1111111111111111 
__ 2]" -32,768 = 1 0000000 00000000 

The following are 32 bit fixed-point numbers. The 
first is the largest positive number that can be repre­
sented by 32 bits, and the last is the largest negative 
number. 

NUMBER 

231 -1 
2·'fl 
2° 
o 
--2" 
-2' 
_218 
__ 281 +1 = 
_231 

DECIMAL 

2147483647 
65536 

1 
o 

-1 
-2 

-65536 
-2 147483647 
-2 147483 648 

INTEGER 

=0 111111111111111 11111111 11111111 
= 0 0000000 00000001 00000000 00000000 
= 0 0000000 00000000 00000000 00000001 
= 0 0000000 00000000 00000000 00000000 
= 1 111111111111111 11111111 11111111 
=1 111111111111111 1111111111111110 
= 1 1111111 11111111 00000000 00000000 
= 1 0000000 00000000 00000000 00000001 
= 1 0000000 00000000 00000000 00000000 



Floating-point arithmetic simplifies programming by 
automatically maintaining binary point placement 
( scaling) during computations in which the range of 
values used vary widely or are unpredictable. 

The key to floating-point data representation is the 
separation of the significant digits of a number from 
the size (scale) of the number. Thus, the number is 
expressed as a fraction times a power of 16. 

A floating-point number has two associated sets of 
values. One set represents the significant digits of the 
num ber and is called the fraction. The second set 
specifies the power (exponent) to which 16 is raised 
and indicates the location of the binary point of the 
number. 

These two numbers (the fraction and exponent) are 
recorded in a single word or double-word. 

Since each of these two numbers is signed, some 
method must be employed to express two signs in an 
area that provides for a single sign. This is accom­
plished by having the fraction sign use the sign associ­
ated with the word (or double word) and expressing 
the exponent in excess 64 arithmetic; that is, the ex­
ponent is added as a signed number to 64. The result­
ing number is called the charactcristic. Since 64 uses 7 
bits, the characteristic can vary from 0 to 127, permit­
ting the exponent to vary from -64 through 0 to +63. 
This provides a decimal range of n x 1075 to n x 10-78 • 

Floating-point data in the System/360 may be re­
corded in short or long formats, depending on the 
precision required. Both formats use a sign bit in bit 
position 0, followed by a characteristic in bit positions 
1-7. Short-precision floating-point data operands con­
tain the fraction in bit positions 8-31; long-precision 
operands have the fraction in bit positions 8-63. 

Short-Precision Floating-Point Format 

Is I Characteristic I Fraction 
o 1 7 8 31 

Long-Precision Floating-Point Format 

l~s~I_C_h_a_ra_c_t_e_ri_st_ic~I _________ F_ra_c_ti_o_n ______ ~~S~ ____ ~ 
o 1 7 8 63 

The sign of the fraction is indicated by a zero or one 
bit in bit position 0 to denote a positive or negative 
fraction, respectively. 

Appendix C. Floating-Point Arithmetic 

Within a given fraction length (24 or 56 bits), a 
floating-point operation will provide the greatest pre­
cision if the fraction is normalized. A fraction is nor­
malized when the high-order digit (bit positions 8, 
9, 10 and 11) is not zero. It is unnormalized if the 
high-order digit contains all zeros. 

If normalization of the operand is desired, the float­
ing-point instructions that provide automatic normal­
ization are used. This automatic normalization is ac­
complished by left-shifting the fraction (four bits per 
shift) until a nonzero digit occupies the high-order 
digit position. The characteristic is reduced by one for 
each digit shifted. 

Conversion Example 

Convert the decimal number 149.25 to a short-preci­
sion floating-point operand. 

1. The number is decomposed into a decimal integer 
and a decimal fraction. 

149.25 149 plus 0.25 

2. The decimal integer is converted to its hexadeci­
mal representation. 

14910 

3. The decimal fraction is converted to its hexadeci­
mal representation. 

0.2510 

4. Combine the integral and fractional parts and ex­
press as a fraction times a power of 16 (exponent). 

95.4]6 (0.954 X 162 ha 

5. The characteristic is developed from the expon­
ent and converted to binary. 

base + exponent characteristic 
64 + 2 = 66 = 1 0 0 0 0 1 0 

6. The fraction is converted to binary and grouped 
hexadecimally. 

.95410 = .1001 0101 0100 
7. The characteristic and the fraction are stored in 

short precision format. The sign position contains the 
sign of the fraction. 

S Char Fraction 
o 1000010 100101010100000000000000 

Appendix C 133 



The following are sample normalized short floating­
point numbers. The last two numbers represent the 
smallest and the largest positive normalized numbers. 

NUMBER POWERS OF 16 S CHAR FRACTION 

1.0 -- +1116 X 161 =0 1000001 0001 0000 0000 0000 0000 0000 
0.5 +8/16 X 16° =0 1000000 1000 0000 0 000 0000 0000 0000 
1164 +4/16 X l6-1 =0 0111111 a 100 0000 0000 0000 0000 0000 
0.0 -- +0 x l6-61 =0 0000000 0000 0000 0000 0000 0000 0000 

-15.0 -- -15/16 X 161 =1 1000001 1111 0000 0000 0000 0000 0000 
2 X 10-78 -- +1116 x l6-61 =0 0000000 0001 0000 0000 0000 0000 0000 
7 X 1075 -- (1-16-6

) X 1663 =0 1111111 11111111 1111111111111111 

134 



Appendix D. Powers of Two Table 

2n n 2- 11 

1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0,000 000 953 674 316 406 25 
2 097 152 21 0,000 000 476 8"37 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0,000 000 119 209 289 550 781 25 

16 777 216 24 0,000 000 059604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0,000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268435 456 28 0,000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0,000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0,000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0,000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0,000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0,000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0,000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0,000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0,000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0,000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0,000 000 000 001 818 989 403 545 856 475 830 078 125 

Appendix D 135 



Appendix E. Hexadecimal-Decimal Conversion Table 

The table in this appendix provides for direct con­
version of decimal and hexadecimal numbers in these 
ranges: 

HEXADECIMAL 

000 to FFF 
DECIMAL 

0000 to 4095 

For numbers outside the range of the table, add the 
following values to the table figures: 

000 
010 
020 
030 
040 
050 
060 
070 
080 
090 
OAO 
OBO 
OCO 
ODO 
OEO 
OFO 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
lAO 
IBO 
leO 
1DO 
lEO 
1FO 

136 

HEXADECIMAL 

1000 
2000 
3000 

0 1 

0000 0001 
0016 0017 
0032 0033 
0048 0049 
0064 0065 
0080 0081 
0096 0097 
0112 0113 
0128 0129 
0144 0145 
0160 0161 
0176 0177 
0192 0193 
0208 0209 
0224 0225 
0240 0241 

0256 0257 
0272 0273 
0288 0289 
0304 0305 
0320 0321 
0336 0337 
0352 0353 
0368 0369 
0384 0385 
0400 0401 
0416 0417 
0432 0433 
0448 0449 
0464 0465 
0480 0481 
0496 0497 

2 

0002 
0018 
0034 
0050 
0066 
0082 
0098 
0114 
0130 
0146 
0162 
0178 
0194 
0210 
0226 
0242 

0258 
0274 
0290 
0306 
0322 
0338 
0354 
0370 
0386 
0402 
0418 
0434 
0450 
0466 
0482 
0498 

3 

0003 
0019 
0035 
0051 
0067 
0083 
0099 
0115 
0131 
0147 
0163 
0179 
0195 
0211 
0227 
0243 

0259 
0275 
0291 
0307 
0323 
0339 
0355 
0371 
0387 
0403 
0419 
0435 
0451 
0467 
0483 
0499 

DECIMAL 

4096 
8192 

12288 

4 5 

0004 0005 
0020 0021 
0036 0037 
0052 0053 
0068 0069 
0084 0085 
0100 0101 
0116 0117 
0132 0133 
0148 0149 
0164 0165 
0180 0181 
0196 0197 
0212 0213 
0228 0229 
0244 0245 

0260 0261 
0276 0277 
0292 0293 
0308 0309 
0324 0325 
0340 0341 
0356 0357 
0372 0373 
0388 0389 
0404 0405 
0420 0421 
0436 0437 
0452 0453 
0468 0469 
0484 0485 
0500 0501 

6 7 

0006 0007 
0022 0023 
0038 0039 
0054 0055 
0070 0071 
0086 0087 
0102 0103 
0118 0119 
0134 0135 
0150 0151 
0166 0167 
0182 0183 
0198 0199 
0214 0215 
0230 0231 
0246 0247 

0262 0263 
0278 0279 
0294 0295 
0310 0311 
0326 0327 
0342 0343 
0358 0359 
0374 0375 
0390 0391 
0406 0407 
0422 0423 
0438 0439 
0454 0455 
0470 0471 
0486 0487 
0502 0503 

HEXADECIMAL 

8 

0008 
0024 
0040 
0056 
0072 
0088 
0104 
0120 
0136 
0152 
0168 
0184 
0200 
0216 
0232 
0248 

0264 
0280 
0296 
0312 
0328 
0344 
0360 
0376 
0392 
0408 
0424 
0440 
0456 
0472 
0488 
0504 

4000 
5000 
6000 
7000 
8000 
9000 
AOOO 
BOOO 
COOO 
DOOO 
EOOO 
FOOO 

9 

0009 
0025 
0041 
0057 
0073 
0089 
0105 
0121 
0137 
0153 
0169 
0185 
0201 
0217 
0233 
0249 

0265 
0281 
0297 
0313 
0329 
0345 
0361 
0377 
0393 
0409 
0425 
0441 
0457 
0473 
0489 
0505 

A 

0010 
0026 
0042 
0058 
0074 
0090 
0106 
0122 
0138 
0154 
0170 
0186 
0202 
0218 
0234 
0250 

0266 
0282 
0298 
0314 
0330 
0346 
0362 
0378 
0394 
0410 
0426 
0442 
0458 
0474 
0490 
0506 

B C 

0011 0012 
0027 0028 
0043 0044 
0059 0060 
0075 0076 
0091 0092 
0107 0108 
0123 0124 
0139 0140 
0155 0156 
0171 0172 
0187 0188 
0203 0204 
0219 0220 
0235 0236 
0251 0252 

0267 0268 
0283 0284 
0299 0300 
0315 0316 
0331 0332 
0347 0348 
0363 0364 
0379 0380 
0395 0396 
0411 0412 
0427 0428 
0443 0444 
0459 0460 
0475 0476 
0491 0492 
0507 0508 

DECIMAL 

16384 
20484 
24576 
28672 
32768 
36864 
40960 
45056 
49152 
53248 
57344 
61440 

D E 

0013 0014 
0029 0030 
0045 0046 
0061 0062 
0077 0078 
0093 0094 
0109 0110 
0125 0126 
0141 0142 
0157 0158 
0173 0174 
0189 0190 
0205 0206 
0221 0222 
0237 0238 
0253 0254 

0269 0270 
0285 0286 
0301 0302 
0317 0318 
0333 0334 
0349 0350 
0365 0366 
0381 0382 
0397 0398 
0413 0414 
0429 0430 
0445 0446 
0461 0462 
0477 0478 
0493 0494 
0509 0510 

F 

0015 
0031 
0047 
0063 
0079 
0095 
0111 
0127 
0143 
0159 
0175 
0191 
0207 
0223 
0239 
0255 

0271 
0287 
0303 
0319 
0335 
0351 
0367 
0383 
0399 
0415 
0431 
0447 
0463 
0479 
0495 
0511 
--



0 1 2 3 4 5 6 7 8 9 A B C D E F 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 
240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 
280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 
2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 
340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 
380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 
3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 
440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 ll51 
480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 ll94 1195 1196 1197 1198 1199 
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 
4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 
540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 
580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5BO 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 
5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

Appendix E 137 



0 1 2 3 4 5 6 7 8 9 A B C D E F 
--------- --

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1.552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1.568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1.584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 
640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 
680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6BO 1'712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 
6CO 1'728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6DO 1'744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6FO 1'776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

700 1'792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 
740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 
780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7BO 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 
7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 
840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140. 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 
880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2~~24 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 
8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2$~88 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2:304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 
940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 
980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 
9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9DO 2512 2513 2514 25i5 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2E;44 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

138 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
A10 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 
A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 
A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 
B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 
B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976' 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 
BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
C10 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 
C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 
C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 
CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
D10 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 
D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 
D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 
DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

Appendix E 139 



0 1 2 3 4 5 6 7 8 9 A B C D E F 

EOO .3584 3585 3586 3587 3583 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E10 .3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 .3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 .3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 
E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 .3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 :3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 
E80 :3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO :3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 
ECO :3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDO :3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO :3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO :3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO :3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 :3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 
F40 :3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 :3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 
F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 :3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FEO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 
FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

140 



Extended Sinary-Coded-Decimal Interchange Code (EBCDIC) 

Bit Positions ----.. ~ 01 

L LJ:-2-3---00----'1 'I ----01----, 

00 01 10 11 4567 00 01 10 11 

0000 NUL BLANK & -
0001 / .-

0010 

0011 

0100 PF RES BYP PN 

0101 HT NL LF RS 
.-

0110 LC BS EOB UC 

0111 DEL IDL PRE EOT 

1000 

1001 f " 
1010 ? ! : 

1011 $ f 
# 

1100 +-- * % @ 

1101 ( ) r-.r'\ I 

1110 + i - == 

1111 $ <7 + I -

American Standard Code for Information Interchange (ASCII) 
Extended to Eight Sits 

Bit Positions ----... 76 

L' 00 '-----..~ X5 

4321 00 01 10 11 

.-------01-----, 

00 01 10 11 

0000 NULL DCO 
'0 0 blank 

0001 SOM DC
l 

! 1 

0010 EOA DC
2 " 2 

0011 EOM DC
3 

3 
--1---

=If 
--

0100 EOT DC4 
STOP % 4 

0101 WRU ERR % 5 

0110 RU SYNC & 6 

0111 BELL LEM 
, 

7 

1000 BK5P 50 ( 8 
--

1001 HT 51 ) 9 

1010 LF 52 * : 
-'"--

1011 VT 53 + i 

1100 FF 54 f "'" 
1101 CR 55 - == 

1110 50 56 > 
--

1111 51 57 / ? 

Appendix J:. EBCDIC and ASCII Charts 

.------10---~ .-------11--------. 

00 01 10 11 00 01 10 11 

:> < :j: 0 

a i --~--
A J 1 

-- _._-- r---
b k B K S 2 

c I C L T 3 

d m u D M U 4 
----- - -

e n v E N V 5 
---

0 w F 0 W 6 
---

9 P x G P X 7 
--

h q y H Q Y 8 

z I R Z 9 
-

-- -- -- .- --I--

f---- -----f---

~-_r---~-~---- --- ---- f---

--- ---

~_~ ___ L__~ ___ _ 

r------10---~ 11 

00 01 10 11 00 01 10 11 

@ P 
""--- ---- ---- --

A Q a q 

B R b 
--- ----- -----""- ---

C 5 c s 
r---- ----- ---

D T d t 
-

E U e u 
- --- ._-

F V v 
-----

G W 9 w 

H X x 

I Y y 
--

J Z i z 

K [ k 

L '\ 
-----

M :::J m 

N .r- ------
E5C 

~- --
0 '4--'- 0 DEL 

Appendix F 141 



Appendix G. Instructions 

Data Formats 

Fixed-Pount Numbers 

Fullword Fixed-Point Number 

Integer 
o 1 31 

Hallword Fixed-Point Number 

Integer 
o 1 15 

Floating-Point Numbers 

Short Floating-Point Number 

IS I Characteristic I Fraction 
a 1 7 8 31 

Long Floating-Point Number 

I ~S~I~C __ ha_r_a_c_te_r_is_t_ic~I _________ F_r_a_c_ti_o_n ________ ~SS~ ______ ~ 
a 1 7 8 63 

Decimal Numbers 

Packed Decimal Number 

I Digit I Digit I Digit [~~ ~~] Digit I Digit I Digit I Digit I Sign I 

Zoned Decimal Number 

I Zone I Digit I Zone [~- ~~] Digit I Zone I Digit I Sign I Digit I 

Logical Information 

Fixed-Length Logical Information 

Logi cal Data 

31 

Variable-Length Logical Information 

Character Character ~~] Character 

16 

142 

Hexadecimal Representation 
HEXADECIMAL PRINTED EDCDIC~ Ascnt 

CODE GRAPHIC CODE CODE 

0000 0 11110000 01010000 
0001 1 11110001 01010001 
0010 2 11110010 01010010 
0011 3 11110011 01010011 
0100 4 11110100 01010100 
0101 5 1111 0101 01010101 
0110 6 1111 0110 01010110 
0111 7 1111 0111 01010111 
1000 8 11111000 01011000 
1001 9 1111 1001 01011001 
1010 A 11000001 1010 0001 
1011 B 11000010 1010 0010 
1100 C 11000011 1010 0011 
1101 D 11000100 1010 0100 
1110 E 11000101 1010 0101 
1111 F 11000110 1010 0110 

~Extended Binary-Coded-Decimal Interchange Code. 
tAn eight-bit representation for American Standard Code for 
Information Interchange for use in eight-bit environments. 

Instructions by Format Type 

RR Format 

I Op Code R] R2 
a 78 1112 15 

Fixed Point 

Load 
Load and Test 
Load Complement 
Load Positive 
Load Negative 
Add 
Add Logical 
Subtract 
Subtract Logical 
Compare 
Multiply 
Divide 

Logical 

Compare 
AND 
OR 
Exclusive OR 

Branching 

Branch on Condition 
Branch and Link 
Branch on Count 

E 
E 

1 

Floating Point 

Load S/L 
Load and Test S/L 
Load Complement S/L 
Load Positive S/L 
Load Negative S/L 
Add Normalized S/L 
Add Un normalized S/L 
Subtract Normalized S/L 
Subtract Unnormalized S/L 
Compare S/L 
Halve S/L 
Multiply S/L 
Divide S/L 

Status Switching 

Set Program Mask 
Supervisor Call 
Set Storage Key 
Insert Storage Key 

2 
3 

Z 
Z 



RX Format 

o 7 8 11 1 2 15 16 1 9 20 31 

Fixed Point 

Load H/F 
Add H/F 
Add Logical 
Subtract H/F 
Subtract Logical 
Compare H/F 
Multiply H 
Multiply F 
Divide F 
Convert to Binary 
Convert to Decimal 
Store H/F 

Logical 

Compare 
Load Address 
Insert Character 
Store Character 
AND 
OR 
Exclusive OR 

R5 Format 

Op Code Rl 
7 8 

Fixed Point 

Load Multiple 
Store Multiple 
Shift Left Single 
Shift Right Single 
Shift Left Double 
Shift Right Double 

11 12 

E 
E 

2 
2 

E,2 
E,2 

1516 

Floating Point 

Load S/L 
Add Normalized S/L 
Add Unnormalized S/L 
Subtract Normalized S/L 
Subtract Unnormalized S/L 
Compare S/L 
Multiply S/L 
Store S/L 
Divide S/L 

Branching 

Branch on Condition 
Branch and Link 
Branch on Count 
Execute 

1920 

Logical 

Shift Left Single 
Shift Right Single 
Shift Left Double 
Shift Right Double 

Branching 

Branch on High 
Branch on Low-Eq 

1 

31 

2 
2 

E,2 
E,2 

51 Format 

Op Code 12 --=r!l Dl ~ 

Input/Output 

Start I/O 
Test I/O 
Halt I/O 
Test Channel 

Logical 

Move 
Compare 
AND 
OR 

7 8 

Exclusive OR 
Test Under Mask 

55 Format 

1516 

4 
4 
4 
4 

1920 31 

Status Switching 

LoadPSW 4 
Set System Mask 4 
W rite Direct Y 
Read Direct Y 
Diagnose 

~O~p_C_od_e~_L_l_~_L2~ __ Bl~IJ~?L_D~11 __ B2~11~ 
7 8 11 12 1516 1920 31 32 35 36 47 

Decimal Logical 

Pack Move 5 
Unpack Move Numeric 5 
Move With Offset Move Zone 5 
Zero and Add T Compare 5 
Add T AND 5 
Subtract T OR 5 
Compare T Exclusive OR 5 
Multiply T Translate 5 
Divide T Translate and Test 5 

Edit T,5 
Edit and Mark T,5 

FORMAT NOTES 

E Rl must be even 
F Fullword 
H Halfword 
L Long 
S Short 
T Decimal feature 
Y Direct control feature 
Z Protection feature 
1 Rl used as mask Ml 
2 R2 or Ra ignored 
3 Rl and R2 used as immediate information 
4 12 ignored 
5 Ll and L2 used as eight-bit L field 

All floating-point instructions are part of the floating-point fea­
ture. 

Appendix G 143 



Control Word Formats 

Base and ilndex Registers 

* B.ase Address or Index 

7 8 31 

0-7 Ignored 
8-31 Base address or index 

Program Status Word 

I System Mask Key I AMWP I Interruption Code 

o 78 1112 1516 31 

Instruction Address 

32 33 34 35 36 39 40 63 

0-7 System mask 13 Machine check mask 
0 Multiplexor channel (M) 

mask 14 Wait state (W) 
1 Selector channel 1 15 Problem state (P) 

mask 16-31 Interruption code 
2 Selector channel 2 32-33 Instruction length 

mask code (ILC) 
3 Selector channel 3 34-35 Condition code (CC) 

mask 36-39 Program mask 
4 Selector channel 4 36 Fixed-point overflow 

mask mask 
5 Selector channel 5 37 Decimal overflow 

mask mask 
6 Selector channel 6 38 Exponent underflow 

mask mask 
7 External mask 39 Significance mask 

8-11 Protection key 40-63 Instruction address 
12 ASCII mode (A) 

Channel Command Word 

Command Data Address J Code 
7 8 31 

C Flags IOOO[ * Count 

363:r 3940 4748 63 

0-7 Command code 35 Skip flag 
8-31 Data address 36 Program-controlled 

32-36 Command flags interruption flag 
32 Chain data flag 37-39 Zero 
33 Chain command flag 40-47 Ignored 
34 Suppress length 48-63 Count 

indication flag 

144 

Command Code Assignment 

FLAGS NAMES 

Write 
Read 
Read Backward 
Control 
Sense 

CD CC SLI PCI 
CD CC SLI SKIP PCI 
CD CC SLI SKIP PCI 
CD CC SLI PCI 
CD CC SLI SKIP PCI 

CODE 

MMMMMMOI 
MMMMMM10 
MMMM 1100 
MMMMMMll 
MMMM 0100 
x x x x 1000 Transfer in Channel 

CD 
CC 
SLI 

Chain data 
Chain command 
Suppress length 
indication 

Channel Address Word 

SKIP 

PCI 

Skip 
Program­
controlled 
interruption 

Ir-____ -, ____________ .-____________________________________________________________ ~ 

I Key [ 000 0 1 Command Address 

34 7 8 31 

0-3 Protection key 
4-7 Zero 
8-31 Command address 

Channel Status Word 

Command Address 

34 7 8 31 

Status Count 

32 47 48 63 

0-3 Protection key 40 Program-controlled 
4-7 Zero interruption 
8-31 Command address 41 Incorrect length 

32-47 Status 42 Program check 
32 Attention 43 Protection check 
33 Status modifier 44 Channel data check 
34 Control unit end 45 Channel control check 
35 Busy 46 Interface· control 
36 Channel end check 
37 Device end 47 Chaining check 
38 Unit check 48-63 Count 
39 U nit exception 



Operation Codes 

RR Format 

CLASS 
------

FIXED-POINT 

BRANCHING AND FULLWORD FLOATING-POINT FLOA TING-POINT 

STATUS SWITCHING AND LOGICAL LONG SHORT 
-~--"-'"--

xxxx OOOOxxxx 0001xxxx 0010xxxx 0011xxxx 

0000 Load Positive Load Positive Load Positive 
0001 Load Negative Load Negative Load Negative 
0010 Load and Test Load and Test Load and Test 
0011 Load Complement Load Complement Load Complement 
0100 Set Program Mask AND Halve Halve 
0101 Branch and Link Compare Logical 
0110 Branch on Co un t OR 
0111 Branch/Condition Exclusive OR 
1000 Set Key Load Load Load 
1001 Insert Key Compare Compare Compare 
1010 Supervisor Call Add Add N Add N 
1011 Subtract Subtract N Subtract N 
1100 Multiply Multiply Multiply 
1101 Divide Divide Divide 
1110 Add Logical Add U Add U 
1111 Subtract Logical Subtract U Subtract U 

RX Format 

CLASS 
-- ------._--

FIXED-POINT FIXED-POINT 

HALFWORD FULLWORD FLOA TING-POINT FLOATING-POINT 

AND BRANCHING AND LOGICAL LONG SHORT 
--" -----~~-

xxxx 0100xxxx 010lxxxx 0110xxxx 011lxxxx 
-"-~----

0000 Store Store Store Store 
0001 Load Address 
0010 Store Character 
0011 Insert Character 
0100 Execute AND 
0101 Branch and Link Compare Logical 
0110 Branch on Count OR 
0111 Branch/Condition Exclusive OR 
1000 Load Load Load Load 
1001 Compare Compare Compare Compare 
1010 Add Add AddN AddN 
1011 Subtract Subtract Subtract N Subtract N 
1100 Multiply Multiply Multiply Multiply 
1101 Divide Divide Divide 
1110 Convert-Decimal Add Logical Add U AcM U 
1111 Convert-Binary Subtract Logical Subtract U Subtract U 

Appendix G 145 



RS, SI FOl'mat 

BRANCHING 

STATUS SWITCHING 

xxxx 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

SS Format 

xxxx 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
lll0 
llll 

AND SHIFTING 

1000xxxx 

Set System Mask 

Load PSW 
Diagnose 
Write Direct 
Read Direct 
Branch/High 
Branch/Low-Equal 
Shift Right SL 
Shift Left SL 
Shift Right S 
Shift Left S 
Shift Right DL 
Shift Left DL 
Shift Right D 
Shift Left D 

1100xxxx 

OPERATION CODE NOTES 

N Normalized 
SL Single logical 
DL Double logical 

146 

U 
S 
D 

CLASS 

FIXED-POINT 

LOGICAL AND 

INPUT/OUTPUT 

100lxxxx 

Store Multiple 
Test Under Mask 
Move 

AND 
Compare Logical 
OR 
Exclusive OR 
Load Multiple 

Start I/O 
Test I/O 
Halt I/O 
Test Channel 

CLASS 

LOGICAL 

1l01xxxx 

Move Numeric 
Move 
Move Zone 
AND 
Compare Logical 
OR 
Exclusive OR 

Translate 
Translate and Test 
Edit 
Edit and Mark 

U nnormalized 
Single 
Double 

1010xxxx 

1110xxxx 

10llxxxx 

DECIMAL 

llllxxxx 

Move With Offset 
Paek 
Unpack 

Zero and Add 
Compare 
Add 
Subtract 
Multiply 
Divide 



Permanent Storage Assignment 
ADDRESS LENGTH PURPOSE 

o 0000 0000 double-word Initial program loading PSW 
8 0000 1000 double-word Initial program loading CCW 1 

16 0001 0000 double-word Initial program loading CCW2 
24 00011000 double-word External old PSW 
32 0010 0000 double-word Supervisor call old PSW 
40 0010 1000 double-word Program old PSW 
48 0011 0000 double-word Machine-check old PSW 
56 0011 1000 double-word Input/output old PSW 
64 01000000 double-word Channel status word 
72 01001000 word Channel address word 
76 0100 1100 word Unused 
80 0101 0000 word Timer 
84 0101 0100 word Unused 
88 0101 1000 double-word External new PSW 
96 01100000 double-word Supervisor call new PSW 

104 0110 1000 double-word Program new PSW 
112 01110000 double-word Machine-check new PSW 
120 0111 1000 double-word Input/output new PSW 
128 1000 0000 Diagnostic scan-out area 0 

o The size of the diagnostic scan-out area depends on the par­
ticular model and I/O channels. 

Condition Code Setting 

Fixed-Point Arithmetic 

0 1 2 3 
AddH/F zero < zero > zero overflow 
Add Logical zero not zero zero, carry 

carry 
Compare H/F equal low high 
Load and Test zero < zero > zero 
Load Complement zero < zero > zero overflow 
Load Negative zero < zero 
Load Positive zero > zero overflow 
Shift Left Double zero < zero > zero overflow 
Shift Left Single zero < zero > zero overflow 
Shift Right Double zero < zero > zero 
Shift Right Single zero < zero > zero 
Subtract H/F zero < zero > zero overflow 
Subtract Logical not zero zero, carry 

carry 

Decimal Arithmetic 

Add Decimal zero < zero > zero overflow 
Compare Decimal equal low high 
Subtract Decimal zero < zero > zero overflow 
Zero and Add zero < zero > zero overflow 

Floating-Point Arithmetic 

Add Normalized S/L zero < zero > zero overflow 
Add Unnormalized S/L zero < zero > zero overflow 
Compare S/L equal low high 
Load and Test S/L zero < zero > zero 

Load Complement S/L zero < zero > zero 
Load Negative S/L zero < zero 
Load Positive S/L zero > zero 
Subtract 

Normalized S/L zero < zero > zero overflow 
Subtract Unnorm-

alized S/L zero < zero > zero overflow 

Logical Operaticlns 

AND zero not zero 
Compare Logical equal low high 
Edit zero < zero > zero 
Edit and Mark zero < zero > zero 
Exclusive OR zero not zero 
OR zero not zero 
Test Under Mask zero mixed one 
Translate and Test zero incomplete complete 

Input / Output Oillerations 

Halt I/O not halted stopped not oper 
working 

Start I/O available CSW busy not oper 
stored 

Test Channel not CSW working not oper 
working ready 

Test I/O available CSW working not oper 
stored 

CONDITION CODE SETTING NOTES 

available Unit and channel available 
busy Unit or chanel busy 
carry A carry out of the sign position occurred 
complete Last result byte nonzero 
CSW ready Channel status word ready for test or interruption 
CSW stored Channel status word stored 
equal Ope:rands compare equal 
F Fullword 
> zero Result is greater than zero 
H Halfword 
halted Data transmission stopped. Unit in halt-reset mode 
high First operand compares high 
incomplete Nonzero result byte; not last 
L Long precision 
< zero Result is less than zero 
low First operand compares low 
mixed Selected bits are both zero and one 
not opel' Unit or channel not operational 
not working Unit or channel not working 
not zero Result is not all zero 
one Selected bits are one 
overflow Result overflows 
S Short precision 
stopped Data transmission stopped 
working Unit or channel working 
zero Result or selected bits are zero 
The condition code also may be changed by LOAD PSW, SET 
SYSTEM MASK, DIAGNOSE, and by an interruption. 

Appendix G 147 



Interruption Action 
INSTRUC­

TION INTERRUPTION 

SOURCE 

IDENTIFICATION 

INTERRUPTION CODE MASK ILC EXE-

PSW BITS 16-31 BITS SET CUTION 

Input / Output ( old PSW 56, new PSW 120, priority 4) 

Multiplexor channel 00000000 aaaaaaaa 0 x complete 
Selector channell 00000001 aaaaaaaa 1 x complete 
Selector channel 2 00000010 aaaaaaaa 2 x complete 
Selector channel 3 00000011 aaaaaaaa 3 x complete 
Selector channcl4 00000100 aaaaaaaa 4 x complete 
Selector channel 5 00000101 aaaaaaaa 5 x complete 
Selector channel 6 00000110 aaaaaaaa 6 x complete 

Program ( old PSW 40, new PSW 104, priority 2) 

Operation 00000000 00000001 1,2,3 suppress 
Privileged operation 00000000 00000010 1,2 suppress 
Execute 00000000 00000011 2 suppress 
Protection 00000000 00000100 0,2,3 suppress/ 

terminate 
Addressing 00000000 00000101 1,2,3 suppress/ 

terminate 
Specification 00000000 00000110 1,2,3 suppress 
Data 00000000 00000 III 2,3 terminate 
Fixed-point overflow 0000000000001000 36 1,2 complete 
Fixed-point divide 0000000000001001 1,2 suppress/ 

complete 
Decimal overflow 00000000 00001 0 1 0 37 3 complete 
Decimal divide 00000000 00001011 3 suppress 
Exponent overflow 00000000 00001100 1,2 terminate 
Exponent underflow 00000000 00001101 38 1,2 complete 
Significance 00000000 0000 III 0 39 1,2 complete 
Floating-point divide 0000000000001111 1,2 suppress 

Supervisol' Call ( old PSW 32, new PSW 96, priority 2) 

Instruction bits 00000000 r r r r r r r r 1 complete 

External ( old PSW 24, new PSW 88, priority 3 ) 

External signal 1 00000000 xxxxxxxi 7 x complete 
External signal 2 00000000 xxxxxx1x 7 x complete 
External signal 3 00000000 xxxxx1xx 7 x complete 
External signal 4 00000000 xxxx1xxx 7 x complete 
External signal 5 00000000 xxxlxxxx 7 x complete 
External signal 6 00000000 xx1xxxxx 7 x complete 
Interrupt key 00000000 xlxxxxxx 7 x complete 
Timer 00000000 lxxxxxxx 7 x complete 

Machine Check (old PSW 48, new PSW 112, priority 1) 

Machine malfunction 00000000 00000000 13 x terminate 

NOTES 

a 
r 
x 

Device address bits 
Bits of Rl and R2 field of SUPERVISOR CALL 

Unpredictable 

Instruction Length Recording 
INSTRUC-

TION INSTRUC-

I,ENGTH PEW BITS TION INSTRUCTION 

CODE ~~2-33 BITS 0-1 LENGTH 

0 00 Not available 
1 01 00 One halfword 
2 10 01 Two halfwords 
2 10 10 Two halfwords 
3 11 11 Three halfwords 

148 

INSTRUC-

TION 

FORMAT 

RR 
RX 

RS or SI 
SS 

Program Interruptions 
The listings in the "Type" and "Exceptions" columns 
of the tables in this section mean: 
A Addressing exception 
C Condition code is set 
D Data exception 
DF Decimal-overflow exception 
DK Decimal-divide exception 
E Exponent-overflow exception 
EX Execute exception 
F Floating-point feature 
FK Floating-point divide exception 
IF Fixed-point overflow exception 
IK Fixed-point divide exception 
L New condition code loaded 
LS Significance exception 
M Privileged-operation exception 
N Normalized operation 
P Protection exception 
S Specification exception 
T Decimal feature 
U Exponent-underflow exception 
Y Direct control feature 
Z Protection feature 

Operation (OP) 

The operation code is not assigned or the assigned 
operation is not available on the particular cpu. 

The operation is suppressed. 
The instruction-length code is 1, 2, or 3. 

Privileged Operation (M) 

A privileged instruction is encountered in the problem 
state. 

The operation is suppressed. 
The instruction-length code is 1 or 2. 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Diagnose SI M, A,S 83 
Halt 110 IIIO SI C M, 9E 
Insert Storage Key ISK RRZ M, A,S 09 
Load PSW LPSW SI L M, A,S 82 
Head Direct RDD SI Y M,P,A 85 
Sct Storage Key SSK RRZ M, A,S 08 
Set System Mask SSM SI C M, A 80 
Start 110 SIO SI C M, 9C 
Test Channel TCH SI C M, 9F 
Test 110 TIO SI C M, 9D 
Writc Direct WRD SI Y M, A 84 

Execute (EX) 

The subject instruction of EXECUTE is another EXECUTE. 

The operation is suppressed. 
The instruction-length code is 2. 

NAME 

Execute 

Protection (P) 

MNEMONIC 

EX 
TYPE 

RX 
EXCEPTIONS CODE 

A,S, EX 44 

The storage key of a result location does not match 
the protection key in the psw. 



The operation is suppressed, except in the case of NAME MNEMONIC TYPE EXCEPTIONS CODE NOTE 

STORE MULTIPLE, READ DIRECT, and variable-length op- AND NI SI C P,A, 94 SPR 

erations, which are terminated. AND NC SS C P,A D4 TRM 

The instruction-length code is 0, 2, or 3. 
Compare C RX C A,S, 59 TRM 
Compare 

NAME MNEMONIC TYPE EXCEPTIONS CODE NOTE Decimal CP SS T,C A, D F9 TRM 

Add Decimal AP SS T,C P,A, D, DF FA TRM Compare 

AND NI SI C P,A 94 SPR Halfword CH RX C A,S, 49 TRM 

AND NC SS C P,A D4 TRM Compare 

Convert to Logical CL RX C A,S, 55 TRM 

Decimal CVD RX P,A,S 4E SPR Compare 

Divide Decimal DP SS T P,A,S,D, DK FD TRM Logical CLI SI C A 95 TRM 

Edit ED SS T,C P,A, D DE TRM Compare 

Edit: and Mark EDMK SS T,C P,A, D DF TRM Logical CLC SS C A D5 TRM 

Exclusive OR XI SI C P,A 97 SPR Compare (Long) CD RXF,C A,S, 69 TRM 

Exclusive OR XC SS C P,A D7 TRM Compare (Short) CE RXF,C A,S, 79 TRM 

Move MVI SI P,A 92 SPR Convert to 

Move MVC SS P,A D2 TRM Binary CVB RX A,S,D, IK 4F TRM 

Move Numerics MVN SS P,A D1 TRM Convert to 

Move with Decimal CVD RX P,A,S, 4E SPR 

Offset MVO SS P,A F1 TRM Diagnose SI M, A,S, 83 SPR 
Move Zones MVZ SS P,A D3 TRM Divide D RX A,S, IK 5D TRM 
Multiply Divide Decimal DP SS T P,A,S,D, DK FO TRM 

Decimal MP SS T P,A,S,D FC TRM Divide (Long) NDD RXF A,S,U,E,FK 60 TRM 
OR 01 SI C P,A 96 SPR Divide (Short) NDE RXF A,S,U,E,FK 70 THM 
OR OC SS C P,A D6 TRM Edit ED SS T,C P,A, D DE TRM 
Pack PACK SS P,A F2 TRM Edit and Mark EDMK SS T,C P,A, D DF TRM 
Read Direct RDD SI Y M,P,A 85 TRM Exclusive OR X RX C A,S, 57 TRM 
Store ST RX P,A,S 50 SPR Exclusive OR XI SI C P,A, 97 SPR 
Store Character STC RX P,A 42 SPR Exclusive OR XC SS C P,A, D7 TRM 
Store Halfword STH RX P,A,S 40 SPR Execute EX RX A,S, EX 44 SPR 
Store Long STD RXF P,A,S 60 SPR Insert Character IC RX A 43 TRM 
Store Insert Storage 

Multiple STM RXF P,A,S 90 TRM Key ISK RRZ M, A,S 09 
Store Short STE RXF P,A,S 70 SPR 
Subtract Load L RX A,S, 58 TRM 

Decimal SP SS T,C P,A, D, DF FB TRM Load Halfword LH RX A,S, 48 TRM 

Translate TR SS P,A DC TRM Load (Long) LD RXF A,S, 68 TRM 

Unpack UNPK SS P,A F3 TRM Load Multiple LM RS A,S, 98 TRM 

Zero and Add ZAP SS T,C P,A, D, DF F8 TRM Load PSW LPSW SI LM, A,S 82 TRM 
Load (Short) LE RXF A,S, 78 TRM 

PROTECTION INTERRUPTION NOTES Move MVI SI P,A 92 SPR 
SPR = Operation suppressed Move MVC SS P,A D2 TRM 
TRM = Operation terminated Move Numerics MVN SS P,A D1 TRM 

Addressing (A) Move with Offset MVO SS P,A Fl TRM 
Move Zones MVZ SS P,A D3 TRM 

An address specifies any part of data, instructions, or Multiply M RX A,S 5C TRM 

control words outside the available storage for the par- Multiply 

ticular installation. 
Decimal MP SS T P,A,S,D FCTRM 

Multiply 
The operation is terminated. Data in storage remain IIalfword MH RX A,S 4C TUM 

unchanged, except when designated by valid ad- Multiply (Long) NMD RXF A,S,U,E 6C -;"'RM 

dresses. 
Multiply (Short) NME RXF A,S,U,E 7C TUM 

The instruction-length code normally is 2 or 3; but 
OR 0 RX C A,S, 56 TRM 
OR 01 SI C P,A 96 SPR 

may be 0, in the case of a data address. OR OC SS C P,A D6 TRM 

NAME MNEMONIC TYPE EXCEPTIONS CODE NOTE Pack PACK SS P,A F2 TRM 

Add A RX C A,S, IF 5A TRM Read Direct RDD SI Y M,P,A, 85 TRM 

Add Decimal AP SS T,C P,A D, DF FA TRM Set Storage Key SSK RRZ M, A,S 08 
Add Halfword AH RX C A,S, IF 4A TRM Set System Mask SSM SI M, A 80 TRM 
Add Logical AL RX C A,S, 5E TRM Store ST RX P,A,S 50 SPR 
Add Normalized Store Character STC RX P,A 42 SPR 

(Long) NAD RXF,C A,S,U,E,LS 6A TRM Store Halfword STH RX P,A,S 40 SPR 
Add Normalized Store (Long) STD RXF P,A,S 60 SPR 

( Short) NAE RXF,C A,S,U,E,LS 7A TRM Store Multiple STM RS P,A,S 90 TRM 
Add Unnorm- Store (Short) STE RXF P,A,S 70 SPR 

alized (Long) AW RXF,C A,S, E,LS 6E TRM Subtract S RX C A,S, IF 5B TRM 
Add Unnorm- Subtract Decimal SP SS T,C P,A, D, DF FB TRM 

alized (Short) AU RXF,C A,S, E,LS 7E TRM Subtract 
AND N RX C A,S, 54 TRM Halfword SH RX C A,S, IF 4B TRM 

Appendix G 149 



NAME MNEMONIC TYPE 

Subtract Logical SL RX C 
Subtract Norm-

alized (Long) N SD RX F,C 
Subtract Norm-

alized (Short) N SE RX F,C 
Subtract Un-

normalized 
(Long) 

Subtract Un­
normalized 
( Short) 

Test Under Mask 
Translate 
Translate and 

Test 

SW RX F,C 

SU RX F,C 

TM SI C 
TR SS 

TRT SS C 

UNPK SS 

EXCEPTIONS CODE NOTE 

A,S 5F TRM 

A,S,U,E,LS 6B TRM 

A,S,U,E,LS 7B TRM 

A,S, E,LS 6F TRM 

A,S, E,LS 7F TRM 

A 91 TRM 
P,A DC TRM 

A DDTRM 

P,A F3 TRM Unpack 

Write Direct 

Zero and Add 
'VRD SI Y M, A 84 TRM 

ZAP SS T,C P,A, D, DF F8 TRM 

The addressing interruption can occur in normal sequential 
operation following branching, LOAD PSW, interruption, or man­
ual operation. 

Instruction execution is suppressed. 

ADDRESSING INTERRUPTION NOTES 

SPR Operation suppressed 
TRM = Operation terminated 

Specification (S) 

1. A data, instruction, or control-word address does 
not specify an integral boundary for the unit of in­
formation. 

2. The Rl field of an instruction specifies an odd 
register address for a pair of general registers that 
contain a 64-bit operand. 

3. A floating-point register address other than 0, 2, 
4, or 6 is specified. 

4. The multiplier or divisor in decimal arithmetic 
exceeds 15 digits and sign. 

5. The first operand field is shorter than or equal to 
the second operand field in decimal multiplication or 
division. 

6. The block address specified in SET STORAGE KEY 

or INSERT STORAGE KEY has the four low-order bits not 
all zero. 

7. A psw with nonzero protection key is loaded 
when the protection feature is not installed. 

In all of these cases the operation is suppressed. 
The instruction-length code is 1, 2, or 3. 

NAME MNEMONIC 

Add A 
Add Halfword AH 
Add Logical AL 
Add Normalized 

(Long) N ADR 
Add Normalized 

(Long) N AD 
Add Normalized 

( Short) N AER 
Add NormaHzed 

(Short) N AE 

150 

TYPE 

RX C 
RX C 
RX C 

RRF,C 

RXF,C 

RRF,C 

RXF,C 

EXCEPTIONS 

A,S, 
A,S, 
A,S 

CODE NOTE 

IF 5A 4 
IF 4A 2 

5E 4 

S,U,E,LS 2A 3 

A,S,U,E,LS 6A 3,8 

S,U,E,LS 3A 3 

A,S,U,E,LS 7A 3,4 

NAME 

Add Unnorm­
alized (Long) 

Add Unnorm­
alizcd (Long) 

Add Un norm­
alized (Short) 

Add Unnorm­
alized (Short) 

AND 

Compare 
Compare 

I Ialfword 
Compare 

Logical 
Compare 

(Long) 
Compare 

(Long) 
Compare 

( Short) 
Compare 

( Short) 
Convert to 

Binary 
Convert to 

Decimal 

Diagnose 
Divide 
Divide 
Divide Dccimal 
Dividc (Long) 
Divide (Long) 
Divide (Short) 
Divide (Short) 

Exclusive OB 
Execute 

Halve (Long) 
Halve (Short) 

Insert Storage 
Key 

Load 
Load and Test 

(Long) 
I,oad and T(~st 

(Short) 
Load Comple­

ment (Long) 
Load Comple-

ment (Short) 
Load Halfword 
Load (Long) 
I,oad (Long) 
r,oad 

Multiple 
Load Negative 

( Long) 
Load Negative 

(Short) 
Load Positive 

(Long) 
T ,oad Positive 

(Short) 
Load PSW 
Load (Short) 
Load (Short) 

Multiply 
Multiply 

MNEMONIC 

AWR 

AW 

AUR 

AU 
N 

C 

CH 

CL 

CDR 

CD 

CER 

CE 

CVB 

CVD 

DR 
D 
DP 

NDDR 
NDD 
NDER 
NDE 

X 
EX 

HDR 
HER 

ISK 
L 

LTDR 

LTER 

LCDR 

LCER 
LH 
LDR 
LD 

LM 

LNDR 

LNER 

LPDR 

LPER 
LPS\V 
LER 
LE 

MR 
M 

TYPE EXCEPTIONS CODE NOTE 

RRF,C 

RX,F,C 

RRF,C 

RXF,C 
RX C 

RX C 

RX C 

RX C 

RR,F,C 

RX,F,C 

RR,F,C 

RX,F,C 

S, E,LS 2E 3 

A,S, E,LS 6E 3,8 

S, E,LS 3E 3 

A,S, E,LS 7E 3,4 
A,S 54 4 

A,S 

A,S 

A,S 

S 

A,S 

S 

A,S 

59 4 

49 2 

55 4 

29 3 

69 3,8 

39 3 

79 3,4 

RX A,S,D, IK 4F 8 

RX 

SI 
RR 
RX 
SS T 
RRF 
RXF 
RRF 
RXF 

RX C 
RX 

RRF 
RRF 

P,A,S 4E 8 

M, A,S 83 
S, IK ID 1 

A,S, IK 5D 1,4 
P,A,S,D, DK FD 5 

S,U,E,FK 2D 3 
A,S, U ,E,FK 6D 3,8 

S,U,E,FK 3D 3 
A,S,U,E,FK 7D 3,4 

A,S 57 4 
A,S, EX 44 2 

S 24 3 
S 34 3 

RRZ M, A,S 09 7 
RX A,S 

RR F,C S 

RR F,C S 

RR F,C S 

RRF,C 
RX 
RRF 
RXF 

RS 

RRF,C 

RRF,C 

RRF,C 

S 
A,S 

S 
A,S 

A,S 

S 

S 

S 

RR F,C S 
SI L M, A,S 
RRF S 
RX FA,S 

RR 
RX 

S 
A,S 

58 4 

22 3 

32 3 

23 3 

33 3 
48 2 
28 3 
68 3,8 

98 4 

21 3 

31 3 

20 3 

30 3 
82 6,8 
38 3 
78 3,4 

lC 1 
5C 1,4 



NAME MNEMONIC TYPE EXCEPTIONS CODE NOTE 

Multiply 
Decimal MP SS T P,A,S,D FC 5 

Multiply 
Halfword MH RX A,S 4C 2 

Multiply (Long) N MDR RRF S,U,E 2C 3 
Multiply (Long) N MD RXF A,S,U,E 6C 3,8 
Multiply (Short) N MER RRF S,U,E 3C 3 
Multiply (Short) N ME RXF A,S,U,E 7C 3,4 

OR 0 RX C A,S 56 4 

Set Storage 
Key SSK RRZ M, A,S 08 7 

Shift Left 
Double SLDA RS C S, IF 8F 1 

Shift Left 
Double 
Logical SLDL RS S 8D 1 

Shift Right 
Double SRDA RS C S 8E 1 

Shift Right 
Double 
Logical SRDL RS S 8C 1 

Store ST RX P,A,S 50 4 
Store IIalfword STH RX P,A,S 40 2 
Store (Long) STD RXF P,A,S 60 3,8 
Store Multiple STM RS P,A,S 90 4 
Store (Short) STE RXF P,A,S 70 3,4 
Subtract S RX C A,S, IF 5B 4 
Subtract 

Halfword SH RX C A,S, IF 4B 2 
Subtract 

Logical SL RX C A,S 5F 4 
Subtract Norm-

alized (Long) NSDR RRF,C S,U,E,LS 2B 3 
Subtract Norm-

alized (Long) NSD RXF,C A,S,U,E,LS 6B 3,8 
Subtract Norm-

alized (Short) NSER RRF,C S,U,E,LS 3B 3 
Subtract Norm-

alized (Short) NSE RXF,C A,S,U,E,LS 7B 3,4 
Subtract Un-

normalized 
(Long) 

Subtract Un-
SWR RRF,C S, E,LS 2F 3 

normalized 
(Long) SW RXF,C A,S, E,LS 6F 3,8 

Subtract Un-
normalized 
( Short) SUR RRF,C S, E,LS 3F 3 

Subtract Un-
normalized 
( Short) SU RXF,C A,S, E,LS 7F 3,4 

The spccification interruption can occur in normal sequential 
operation following branching, LOAD psw, intcrruption, or man-
ual operation (Note 1). 
The spccification interruption can occur during an interruption 
(Note 6). 

SPECIFICATION INTEnnUPTION NOTES 

1 Even register spccification 
2 Two-byte unit of information specification 
3 Floating-point register specification 
4 Four-bytc unit of information specification 
5 Decimal multiplier or divisor size specification 
6 Zero protection key specification 
7 Block address specification 
8 Eight-byte unit of information specification 

Data (D) 

1. The sign or digit codes of operands in decimal 
arithmetic, or editing operations, or CONVERT TO 

BINARY, are incorrect. 
2. Fields in decimal arithmetic overlap incorrectly. 
3. The decimal multiplicand has too many high­

order significant digits. 
The operation is terminated in all three cases. 
The instruction-length code is 2 or 3. 

NAME MNEMONIC TYPE EXCEPTIONS CODE NOTE 

Add Decimal AP SST,C P,A, D, DF FA 1 
Compare 

Decimal CP SS T,C A, D F9 1 
Convert to 

Binary CVB RX A,S,D IK 4F 
Divide Decimal DP SS T P,A,S,D, DK FD 1 
Edit ED SS T,C P,A, D DE 
Edit and Mark EDMK SS T,C P,A, D DF 
Multiply 

Decimal MP SS T P,A,S,D FC 1,2 
Subtract 

Decimal SP SS T,C P,A, D, DF FB 1 
Zero and Add ZAP SS T,C P,A, D, DF F8 1 

All instructions listed may have incorrect codes. 

DATA INTEHRUPTION NOTES 

1 Overlapping fields 
2 Multiplicand length 

Fixed-Point Overflow (IF) 

A high-order carry occurs or high-order significant bits 
are lost in fixed-point addition, subtraction, shifting, 
or sign-control operations. 

The operation is completed by ignoring the infor­
mation placed outside the register. The interruption 
may be masked by psw bit 36. 

The instruction-length code is 1 or 2. 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Add AR RR C IF 1A 
Add A RX C A,S, IF 5A 
Add Halfword AH RX C A,S, IF 4A 
Load Complement LCR RR C IF 13 
Load Positive LPH RR C IF 10 
Shift Left Double SLDA RS C S, IF 8F 
Shift Left Single SLA RS C IF 8B 
Subtract SR RR C IF IB 
Subtract S RX C A,S, IF 5B 
Subtract Halfword SH RX C A,S, IF 4B 

Fixed-Point Divide (IK) 

1. The quotient exceeds the register size in fixed­
point division, including division by zero. 

2. The result of CONVERT TO BINARY exceeds 31 bits. 
Division is suppressed. Conversion is completed by 

ignoring the information placed outside the register. 
The instruction -length code is 1 or 2. 

NAME MNEMONIC TYPE EXCEPTIONS CODE 

Convert to Binary CVB RX A,S,D, IK 4F 
Divide DR RR S, IK ID 
Dividc D RX A,S, IK 5D 

Appendix G 151 



Decimal Overflow (OF) Exponent Underflow (U) 
The destination field is too small to contain the result The result characteristic is less than zero in floating-
field in decimal operations. point addition, subtraction, multiplication, or division. 

The operation is completed by ignoring the over- The operation is completed by making the result of 
flow information. The interruption may be masked by the operation a true zero. The interruption may be 
psw bit 37. masked by psw bit 38. 

The interruption-length code is 3. The instruction-length code is 1 or 2. 
NAME MNEMONIC TYPE EXCEPTIONS CODE NAME MNEMONIC TYPE EXCEPTIONS CODE 

Add Decimal AP SS T,C P,A, D, DF FA Add Normalized 
Subtract Decimal SP SS T,C P,A, D, DF FB (Long) NADR RRF,C S,U,E,LS 2A 
Zero and Add ZAP SS T,C P,A, D, DF F8 Add Normalized 

( Long) NAD RXF,C A,S,U,E,LS 6A 
Decimal [)ivide (OK) Add Normalized 
The quotient exceeds the specified data field. (Short) NAER RRF,C S,U,E,LS 3A 

The operation is suppressed. Add Normalized 
( Short) NAE RXF,C A,S,U,E,LS 7A 

The instruction-length code is 3. Divide (Long) NDDR RRF S,U,E,FK 2D 
NAME MNEMONIC TYPE EXCEPTIONS CODE Divide (Long) NDD RXF A,S,U,E,FK 6D 

Divide Decimal DP SS T P,A,S,D, DK FD Divide (Short) NDER RRF S,U,E,FK 3D 
Divide (Short) NDE RXF A,S,U,E,FK 7D 

Exponent Overflow (E) Multiply (Long) NMDR RRF S,U,E 2C 
The result characteristic exceeds 127 in floating-point Multiply (Long) NMD RXF A,S,U,E 6C 

addition, subtraction, multiplication, or division. Multiply (Short) NMER RRF S,U,E 3C 
Multiply (Short) NME RXF A,S,U,E 7C 

The operation is terminated. Subtract Norm-
The instruction-length code is 1 or 2. alizcd (Long) NSDR RRF,C S,U,E,LS 2B 

NAME MNEMONIC TYPE EXCEPTIONS CODE 
Subtract Norm-

Add Normalized alized (Long) NSD RXF,C A,S,U,E,LS 6B 

(Long) NADR RRF,C S,U,E,LS 2A Subtract Norm-

Add Normalized alized (Short) NSER RRF,C S,U,E,LS 3B 

(Long) NAD RXF,C A,S,U,E,LS 6A Subtract Norm-

Add Normalized alizcd (Short) NSE RXF,C A,S,U,E,LS 7B 

( Short) NAER RRF,C S,U,E,LS 3A 
Add Normalized Significance (LS) 

( Short) NAE RXF,C A,S,U,E,LS 7A The result of a floating-point addition or subtraction 
Add Unnorm-

alized (Long) AWR RRF,C S, E,LS 2E has an all-zero fraction. 
Add UnnOIm- The operation is completed. The interruption may 

alized (Long) AW RXF,C A,S, E,LS 6E be masked by psw bit 39. The manner in which the 
Add Unnorm-

alized (Short) AUR RRF,C S, E,LS 3E operation is completed is determined by the mask bit. 
Add Unnorm- The instruction-length code is 1 or 2. 

alized (Short) AU RXF,C A,S, E,LS 7E NAME MNEMONIC TYPE EXCEPTIONS CODE 
Divide (Long) NDDR RRF S,U,E,FK 2D Add Normalized 
Divide (Long) NDD RXF A,S,U,E,FK 6D ( Long) NADR RRF,C S,U,E,LS 2A 
Divide (Short) NDER RRF S,U,E,FK 3D Add Normalized 
Divide (Short) NDE RXF A,S,U,E,FK 7D (Long) NAD RXF,C A,S,U,E,LS 6A 
Multiply (Long) NMDR RRF S,U,E 2C Add Normalized 
Multiply (Long) NMD RXF A,S,U,E 6C (Short) NAER RRF,C S,U,E,LS 3A 
Multiply (Short) NMER RRF S,U,E 3C Add Normalized 
Multiply (Short) NME RXF A,S,U,E 7C ( Short) NAE RXF,C A,S,U,E,LS 7A 
Subtract Norm- Add Unnorm-

alized (Long) NSDR RRF,C S,U,E,LS 2B alizcd (Long) AWR RRF,C S, E,LS 2E 
Subtract Norm- Add Unnonn-

alizcd (Long) NSD RXF,C A,S,U,E,LS 6B alized (Long) AW RXF,C A,S, E,LS 6E 
Subtract Norm- Add Unnonn-

alized (Short) NSER RRF,C S,U,E,LS 3B alizcd (Short) AUR RRF,C S, E,LS 3E 
Subtract Norm- Add Unnorm-

alizcd (Short) NSE RXF,C A,S,U,E,LS 7B alizcd (Short) AU RXF,C A,S, E,LS 7E 
Subtract U nnorm- Subtract Norm-

alized (Long) SWR RRF,C S, E,LS 2F alizcd (Long) NSDR RRF,C S,U,E,LS 2B 
Subtract Unnorm- Subtract Norm-

alized (Long) SW RXF,C A,S, E,LS 6F alizcd (Long) NSD RXF,C A,S,U,E,LS 6D 
Subtract Un norm- Subtract Norm-

alized (Short) SUR RRF,C S, E,LS 3F alizcd (Short) NSER RRF,C S,U,E,LS 3B 
Subtract Unnorm- Subtract Norm-

alized (Short) SU RXF,C A,S, E,LS 7F aHzcd (Short) NSE RXF,C A,S,U,E,LS 7B 

152 



NAME MNEMONIC TYPE EXCEPTIONS CODE 

Subtract Unnorm-
alized (Long) SWR RRF,C S, E,LS 2F 

Subtract Unnorm-
alized (Long) SW RXF,C A,S, E,LS 6F 

Subtract Un norm-
alized (Short) SUR RRF,C S, E,LS 3F 

Subtract Unnorm-
alized (Short) SU RXF,C A,S, E,LS 7F 

Floating-Point Divide (FK) 

Division by a floating-point number with zero fraction 
is attempted. 

The operation is suppressed. 
The instruction-length code is 1 or 2. 

NAME MNEMONIC TYPE EXCEPTIONS 

Divide (Long) NDDR RRF S,U,E,FK 
Divide (Long) NDD RXF A,S,U,E,FK 
Divide (Short) NDER RRF S,U,E,FK 
Divide (Short) NDE RXF A,S,U,E,FK 

Editing 
CHAR- EXAM- TRlG- RESULT 

ACTER NAME AND INE GER DIGIT CHAR-

CODE PURPOSE DIGIT STATUS STATUS ACTER 

00100000 digit select yes s=1 digit 
s=o d not 0 digit 
s=O d=O fill 

00100001 significance yes s=1 digit 
start s=O d not 0 digit 

s=O d=O fill 
0010 0010 field no fill 

separator 
other message no s=1 leave 

insertion s=O fill 
NOTES 

d Source digit 

CODE 

2D 
6D 
3D 
7D 

TRIG­

GER 

SET 

S trigger (1: minus sign, digits, or pattern used; 0: 
plus sign, fill used) 

digit 
fill 
leave 
other 

A source digit replaces the pattern character. 
The fill character replaces the pattern character. 
The pattern character remains unchanged. 
Any other pattern character. 

Timer 111111111 
23 24 25 26 27 28 29 30 31 

System Control Panel 

Operator Controls 

NAME 

Emergency Pull 
Power On 
Power Off 
Interrupt 
Wait 
Manual 
System 
Test 
Load 
Load Unit 
Load 
Prefix Select>O 

>0 Multisystem feature 

IMPLEMENTATION 

Pull switeh 
Key, backlighted 
Key 
Key 
Light 
Light 
Light 
Light 
Light 
Three rotary switches 
Key 
Key switch 

Intervention Contlrols 

NAME 

System Reset 
Stop 
Rate 
Start 
Storage Select 
Address 
Data 
Store 
Display 
Set IC 
Address Compare 
Alternate Prefix~ 

>0 Multisystem feature 

IMPLEMENTATION 

Key 
Key 
Rotary switch 
Key 
Rotary or key switch 
Rotary or key switches 
Rotary or key switches 
Key 
Key 
Key 
Rotary or key switches 
Light 

States of Wait and Manual lights 

SYSTEM MANUAL WAIT CPU I/O 

LIGHT LIGHT LIGHT STATE STATE 

off off off Not allowed when power is on 
off off on Waiting Not operating 
off on off Stopped Not operating 
off on on Stopped, Not operating 

waiting 
on off off Running Undetermined 
on off on Waiting Operating 
on on off Stopped Operating 
on on on Stopped, Operating 

waiting 

Input/Output ()perations 

Input / Output Address Assignment 

ADDRESS 

000 xxx x xxx x 
001 xxxx xxxx 
010 xxxx xxxx 
011 xxxx xxxx 
100 xxx x xxxx 
101 xxxx xxxx 
110 xxxx xxxx 
III xxxx xxxx 

ASSIGNMENT 

Devices on the multiplexor channel 
Devices on selector channel 1 
Devices on selector channel 2 
Devices on selector channel 3 
Dcvices on selector channel 4 
Devices on selector channel 5 
Devices on selector channel 6 
Invalid 

Address Assignmf~nt on Multiplexor Channel 

ADDRESS 

00000000 
to 

0111 1111 
1000 xxxx 
1001 xxxx 
1010 xxxx 
1011 xxxx 
1100 xxxx 
1101 xxxx 
1110 xxxx 
1111 xxxx 

Input / Output States 

I/O Device 
Available 
Working 
Not operational 
Interruption pending 

ASSIGNMENT 

Devices that do not share a sub channel 

Devices on shared subehannel 0 
Devices on shared subehannel 1 
Devices on shared sub channel 2 
Devices on shared sub channel 3 
Dcvices on shared subchannel 4 
Devices on shared subehanncl 5 
Devices on shared subehannel 6 
Devices on shared subehannel 7 

A None of the following statcs 
W Device executing an operation 
N Device Bot operational 
I Interruption condition pending in 

device 

Appendix G 153 



Channel 
A None of the following states Available 

Interruption pending I Interruption immediately available 
from channel 

Working 
Not operational 

W Channel operating in burst mode 
N Channel not operational 

A None of the following states 
Subchannel 
Available 
Interruption pending I Information for CSW available in 

subchannel 
Working 
Not operational 

W Subchannel executing an operation 
N Subchannel not operational 

Condition Code Setting for Input / Output Instructions 

CONDITIONS 
Available 
Interruption pend. in device 
Device working 
Device not operational 
Interruption pend. in subchannel 

For the addressed device 
For another device 

Subchannel working 
Subchannd not operational 
Interruption pend. in channel 
Channel working 
Channel not operational 
Error 

AAA 
AAI 
AAW 
AAN 
AIX 

AWX 
ANX 
IXX 
WXX 
NXX 

CONDITION CODE FOR 
START TEST HALT TEST 
I/O I/O I/O CHAN 
0,1 ~ 0 0 0 

P' 1"'" 0 0 
1"'" 1"'" 0 0 
3 3 0 0 

2 1"'" 0 0 
2 2 0 0 
2 2 1"'" 0 
3 3 3 0 

see note below 1 
2 2 2 2 
3 3 3 3 

Channel equipment error 1"'" 1 \) 1 "'" 
Channel programming error 1 "'" 
Device error 1 "'" 1 "'" 

NOTE: For the purpose of executing START I/O, TEST I/O, 
and HALT I/O, a channel containing a pending interruption 
condition appears the same as an available channel, and the 
condition codes for the IXX state arc the same as for the AXX 
state, where the X's represent the states of the subchannel and 
the device. As an example, the condition code for the IAA 
state is the same as for the AAA state. 
""'The CS\" or its status portion is stored at location 64 during 
execution of the instruction. 

-The condition cannot he identified during execution of the in­
struction. 

Flag Setting for Chaining Operations 

CD ACTION 

o 
CC 
o No chaining. The current CCW is the last. 

The operation is terminated 
o 
1 
1 

1 
o 
1 

Command chaining 
Data chaining 
Data chaining 

Content of Channel Status Word Address Field 
CONDITION 

Channel control check 
Status stored by START I/O 
Status stored by HALT I/O 
Invalid CCW address spec. in 

TIC 
Invalid CCW address in TIC 
Invalid CGW address 

generated 
Invalid command code 
Invalid count 
Invalid data address 

154 

CONTENT 
U npredicta ble 
Unchanged 
Unchanged 

Address of TIC + 8 
Address of TIC + 8 
Address of first invalid CCW 
+8 
Address of invalid CCW + 8 
Address of invalid CCW + 8 
Address of invalid CCW + 8 

CONDITION 
Invalid CCW format 
Invalid sequence - 2 TIC's 
Protcction check 
Chaining check 
Termination under count 

control 
Termination by I/O device 
Termination by HALT I/O 
Suppression of command 

chaining due to unit check 
or unit exception with de­
vice end or control unit end 

Termination on command 
chaining by attention, unit 
check, or unit exception 

Program-controlled interrup-
tion 

Interface control check 
Ch. end after HIO on seI. ch. 
Control unit end 
Dcvice end 
Attention 
Busy 
Status modifier 

CONTENT 
Address of invalid CCW + 8 
Address of second TIC + 8 
Address of invalid CCW + 8 
Address of last-used CCW + 8 

Address of last-used CCW + 8 
Address of last-used CCW + 8 
Address of last-used CCW + 8 

Address of last CCW used in 
the completed operation + 8 

Address of CCW specifying 
the new operation + 8 

Address of last-used CCW + 8 
Address of last-used CCW + 8 
Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

Content of Channel Status Word Count Field 
CONDITION 

Channel control check 
Status stored by START I/O 
Status stored by HALT I/O 
Program check 
Protection check 
Chaining check 
Termination under count 

control 
Termination by I/O device 
Termination by HALT I/O 
Suppression of command 

chaining duc to unit check 
or unit exception with device 
end or control unit end 

Termination on command 
chaining by attention, by 
unit check, or unit 
exception 

Program-controlled inter-
ruption 

Interface control check 
eh. end after HIO on sel. ch. 
Control unit end 
Devicc end 
Attention 
Busy 
Status Modifier 

CONTENT 
Unpredictable 
Unchanged 
Unchanged 
Unpredictable 
U npredicta ble 
Correct 

Correct 
Correct 
Correct 

Correct. Residual count of last 
CCW used in the completed 
operation. 

Correct. Original count of 
CCW specifying the new 
operation. 

Unpredictable 
Correct 
Zero 
Zero 
Zero 
Zero 
Zero 
Zero 

Indication of Busy Condition in Channel Status Word 

The table lists the conditions when the busy bit (B) 
appears in the csw and when it is accompanied by 
the status-modifier bit (8M). Two hyphens (--) incli­
cate that the busy bit is off; an asterisk (#) indicates 
that csw status is not stored or an I/O interruption 
cannot occur; the (cl) indicates that the interruption 
condition is cleared and the status appears in the csw. 
The abbreviation DE stands for device end, and cu 
stands for control unit. 



CSW STATUS STORED BY: Handling of IncorrE~ct Length 
START TEST HALT I/O 

I/O I/O I/O 
FLAGS ACTION AND INDICATION 

CONDITION INT. 
CD CC SLI REGULAH OPERATION IMMEDIATE OPERATION 

Subchannel available 0 0 0 Stop,IL Stop, --
DE or attention in device B,d --,d '" --,d 
Device working, CD available B B '" '" 

0 0 1 Stop, -- Stop, --
0 1 0 Stop,IL Chain command 

CU end or channel end in CU: 0 1 1 Chain command Chain command 
for the addressed device B,d --,d '" --,d 
for another device B,SM B,SM '" --,d 

1 0 0 Stop,IL Stop, --

CU working B,SM B,SM '" '" 
1 0 1 Stop,IL Stop, --
I 1 0 Stop,IL Stop, --

Interruption pend. in sub channel 1 1 1 Stop,IL Stop, --
for the addressed device 

because of: 
chaining terminated by 

attention '" B,d '" B,d 
other type of termination '" --,d '" --,cl 

Subchannel working 
CU available '" '" '" 
CU working '" '" B,SM <I< 

Time and Method of Creating and Storing Status Indications 

~ ~--~---

WHEN WHEN UPON TERMINATION OF OPERATION DURING BY BY BY BY I/O 

STATUS 

Attention 
Status modifier 
Control unit end 
Busy 
Channel end 
Device end 
Unit check 
U nit exception 

Program-controlled interruption 

Incorrcct length 
Program check 
Protection check 
Channel data check 
Channel control check 
Interface control check 
Chaining check 

NOTES 

I/O IS 

IDLE 

CO 

CO 

CO 
co 

SUBCHANNEL AT 

WORKING SUBCHANNEL 

CO 

C 
C 

C'" C 

C C 
C C 
C C co C co C'" co C'" 
C C 

C-The channel or the device can create or present the status 
condition at the indicatcd time. A CSW or its status portion is 
not necessarily stored at this time. 

Conditions such as channel end amI devicc end are created at 
the indicated time. Other conditions may have been created 
previously, but are made accessible to the program only at thc 
indicated time. Examples of such conditions arc program check 
and channel data check, which are detected while data arc 
transferred, but are made available to the program only with 
channel end, unless the PCI flag or equipment malfunctioning 
havc caused an interruption condition to be generated earlier. 

S-The status indication is stored in the CSW at the indicated 
time. 

An S appearing alone indicates that the condition has been 
created previously. The letter C appearing with the S indicates 
that the status condition did not necessarily exist previously in 
the form that causes the program to be alerted, and may have 

AT CONTROL AT COMMAND START TEST HALT INTER-

UNIT DEVICE CHAINING I/O I/O I/O RUPTION 
- - ---~- -------

C CO S S S 
C C CS CS CS S 

CO CS CS CS S 
C CS CS CS S 

C"'H C<>·!· Ct S S S 
CO c t Gr S S S 

C C C'" CS CS CS 
C C C'" CS S S 

C CS S S 

S S 
C'" CS S S 

S S 
S S 

CO CO C'" CS CS CS CS co CO C'" CS CS CS CS 
S S 

bccn created by the I/O instruction or I/O interruption. For 
example, equipment malfunctioning may be detected during an 
I/O interruption, causing channel control check or interface 
control check to be indicated; or a device such as the 2702 
Transmission Control Unit may signal the control-un it-busy 
condition in response ,to interrogation by an I/O instruction, 
causing status modifier, busy, and control unit end to be indi­
catcd in the CSW. 

"'-The status condition generates or, in the case of channel 
data check, may generate an interruption condition. 

Channel end and dcvice end do not result in interruption 
conditions when command chaining is spccified and no unusual 
conditions have bccn detected. 

1"-This status indication can be created at the indicated time 
only by an immediate operation. 

H-When an operatioll1 on the selector channel has been termi­
natcd by HALT I/O, channel end indicates the termination of 
the data-handling portion of the operation at the control unit. 

Appendix G 155 



Functions that May Differ Among Models 

Instruction Execution 

In the editing operations, overlapping fields give un­
predictable results. 

Equipment connected to the hold-in line of READ 

DIRECT should be so constructed that the hold signal 
will be removed when READ DIRECT is performed. Ex­
cessive duration of this instruction may result in in­
complete updating of the timer. 

The purpose of the 12 field and the operand address 
in the SI format of DIAGNOSE may be further defined 
for a particular CPU and its appropriate diagnostic 
procedures. Similarly the number of low-order address 
bits that must be zero is further specified for a par­
ticular CPU. When the address does not have the re­
quired number of low-order zeros, a specification ex­
ception is recognized and causes a program interrup­
tion. 

The diagnose operation is completed either by tak­
ing the next sequential instruction or by obtaining a 
new psw from location 112. The diagnostic procedure 
may affect the problem, supervisor, and interruptable 
states of the CPU, and the contents of storage registers 
and timer, as well as the progress of I/O operations. 

Instruction Termination 

Only one program interruption occurs for a given in­
struction. The old psw always identifies a valid cause. 
This does not preclude simultaneous occurrence of 
any other causes. Which of several causes is identified 
may vary from one occasion to the next and from one 
model to another. 

When instruction execution is terminated by an in­
terruption, all, part, or none of the result may be 
stored. The result data, therefore, are unpredictable. 
The setting of the condition code, if called for, may 
also be unpredictable. In general, the results of the 
operation should not be used for further computation. 

Cases of instruction termination for a program in­
terruption are: 

Protection: The storage key of a result location does 
not match the protection key in the psw. The opera­
tion is terminated in the case of STORE MULTIPLE, READ 

DIRECT, and variable-length operations. Protected stor­
age remains unchanged. The timing signals of READ 

DIRECT may have been made available. 
Addressing: An address specifies any part of data, 

instruction, or control word outside the available stor­
age for the particular installation. The operation is 
terminated. Data in storage remain unchanged, except 
when designated by valid addresses. 

156 

Data: The sign or digit codes of operands in deci­
mal arithmetic, CONVERT TO BINARY, or editing opera­
tions are incorrect, or fields in decimal arithmetic over­
lap incorrectly, or the decimal multiplicand has too 
many high-order significant digits. The operation is 
terminated in all three cases. The condition code set­
ting, if called for, is unpredictable for protection, ad­
dressing, and data exceptions. 

Exponent Overflow: The result exponent of an ADD, 

SUBTRACT, MULTIPLY, or DIVIDE overflows and the re­
sult fraction is not zero. The operation is terminated. 
The condition code is set to 3 for ADD and SUBTRACT, 

and remains unchanged for MULTIPLY and DIVIDE. 

Machine-Check Interruption 

For a machine-check interruption, the old psw is 
stored at location 48 with a zero interruption code. 
The state of the CPU is scanned out into the storage 
area starting with location 128 and extending through 
as many words as are required by the given CPU. The 
new psw is fetched from location 112. Proper execu­
tion of these steps depends Oil the nature of the ma­
chine check. A change in the machine-check mask bit 
due to the loading of a new psw results in a change 
in the treatment of machine checks. Depending upon 
the nature of a machine check, the old treatment may 
still be in force for several cycles. Machine checks that 
occur in operations executed by I/O channels may 
either cause a machine-check interruption or are re­
corded in the csw for that operation. 

Instruction-Length Code 

The instruction-length code is predictable only for 
program and supervisor-call interruptions. For I/O and 
external interruptions, the interruption is not caused 
by the last interpreted instruction, and the code is not 
predictable for these classes of interruptions. For ma­
chine-check interruptions, the setting of the code is a 
function of the malfunction and therefore unpredict­
able. 

For the supervisor-call interruption the instruction­
length code is 1, indicating the halfword length of 
SUPERVISOR CALL; for the program interruptions, the 
codes 1, 2, and 3 indicate the instruction length in 
halfwords. The code 0 is reserved for program inter­
ruptions where the length of the instruction is not 
available because of certain overlap conditions in in­
struction fetching. In those cases, the instruction ad­
dress in the old psw does not represent the next in­
struction address. The instn~ction-Iength code 0 can 
occur only for a program interruption caused by a 
protected or unavailable data address. 



Timer 

Updating of the timer may be omitted when I/O data 
transmission approaches the limit of storage capa­
bility. 

System Control Panel 

The system-reset function may correct the parity of 
general and floating-point registers, as well as the 
parity of the psw. 

The number of data switches is sufficient to allow 
storing of a full physical storage word. Correct parity 
generation is provided. In some models, either correct 
or incorrect parity is generated under switch control. 

The data in the storage, general register or floating­
point register location, or the instruction-address part 
of the psw as specified by the address switches and 
the storage-select switch can be displayed by the dis­
play key. When the location designated by the address 
switches and storage-select switch is not available, the 
displayed information is unpredictable. In some mod­
els, the instruction address is permanently displayed 
and hence is not explicitly selected. 

When the· address-comparison switches are set to 
the stop position, the address in the address switches 
is compared against the value of the instruction ad­
dress on some models, and against all addresses on 
others. Comparison includes only that part of the in­
struction address corresponding to the physical word 
size of storage. 

Comparison of the entire halfword instruction ad­
dress is provided in some models, as is the ability to 
compare data addresses. 

The test light may be on when one or more diag­
nostic functions under control of DIAGNOSE are acti­
vated, or when certain abnormal circuit breaker or 
thermal conditions occur. 

Normal Channel Operation 

Channel capacity depends on the way I/O operations 
are programmed and the activity in the rest of the 
system. In view of this, an evaluation of the ability 
of a specific I/O configuration to function concurrent­
ly must be based on the application. Two systems em­
ploying identical complements of I/O devices may be 
able to execute certain programs in common, but it 
is possible that other programs requiring, for example, 
data chaining may not run on one of the systems. 

The time when the interruption due to the PCI flag 
occurs depends on the model and the current activity. 
The channel may cause the interruption an unpredict­
able time after control of the operation is taken over 
by the csw containing the PCI flag. 

The content of the count field in a csw associated 

with an interruption due to the PCI flag is unpredict­
able. The content of the count field depends upon the 
model and its current activity. 

When the channel has established which device on 
the channel will cause the next I/O interruption, the 
identity of the device is preserved in the channel. Ex­
cept for conditions associated with termination of an 
operation at the subchannel, the current assignment 
of priority for interruptions among devices mayor 
may not be canceled when START r/o or TEST r/o is 
issued to the channel, depending upon the model. 

The assignment of priority among requests for in­
terruption from channels is based on the type of chan­
nel. The priorities of selector channels are in the order 
of their addresses, with channel 1 having the highest 
priority. The interruption priority of the multiplexor 
channel is not fixed, and depends on the model and 
the current activity in the channel. 

Channel Programming Errors 

A data address referring to a location not provided in 
the model normally causes program check when the 
device offers a byte of data to be placed at the non­
existent location or requests a byte from that location. 
Models in which the channel does not have the ca­
pacity to address 16,777,216 bytes of storage cause 
program check whenever the address is found to ex­
ceed the addressing capacity of the channel. 

In the following cases, action depends on the ad­
dressing capacity of the model. 

1. When the data address in the ccw deSignated 
by the CAW exceeds the addressing capacity of the 
model, the I/O operation is not initiated and the csw 
is stored during the execution of START rio. Normally 
an invalid data address does not preclude the initi­
ation of the operation. 

2. When the data address in a ccw fetched during 
command chaining exceeds the addressing capacity of 
the model, the I/O operation is not initiated. 

3. When a ccw fetched on data chaining contains 
an address exceeding the addressing capacity of the 
model and the device signals channel end immediate­
ly upon transferring the last byte designated by the 
preceding ccw, program check is indicated to the pro­
gram. Normally, program check is not indicated un­
less the device attempts to transfer one more byte of 
data. 

4. Data addresses are not checked for validity dur­
ing skipping, except that the initial data address in 
the ccw cannot exceed the addressing capacity of the 
model. 

When the channel detects program check or pro­
tection check, the content of the count field in the 
associated csw is unpredictable. 

Appendix G 157 



When a programming error occurs in the inform a -
tion placed in the CAW or ccw and the addressed 
channel or sub channel is working, either condition 
code 1 or 2 may be set, depending on the model. 
Similarly, either code 1 or 3 may be set when a pro­
gramming error occurs and a part of the addressed 
I/O system is not operational. 

When a programming error occurs and the ad­
dressed device contains an interruption condition, 
with the channel and sub channel in the available 
state, START I/O mayor may not clear the interruption 
condition, depending on the type of error and the 
model. If the instruction has caused the device to be 
interrogated, as indicated by the presence of the busy 
bit in the csw, the interruption condition has been 
cleared, and the csw contains program check, as well 
as the status from the device. 

When the channel detects several error conditions, 
all conditions may be indicated or only one may ap­
pear in the csw, depending on the condition and the 
model. 

Channe~ Equipment Errors 

Parity errors detected by the channel on data sent to 
or received from the I/O device on some models cause 
the current operation to be terminated. When the 
channel and the CPU share common equipment, parity 
errors on data may cause malfunction reset to be per­
formed. The recovery procedure in the channel and 

158 

subsequent state of the sub channel upon a malfunc­
tion reset depend on the model. 

Detection of channel control check or interface con­
trol check causes the current operation, if any, to be 
immediately terminated and causes the channel to per­
form the malfunction-reset function. The recovery pro­
cedure in the channel and the subsequent state of the 
sub channel upon a malfunction reset depend on the 
model. 

The contents of the csw, as well as the address in 
the psw identifying the I/O device, are unpredictable 
upon the detection of a channel-control-check con­
dition. 

Execution of malfunction reset in the channel de­
pends on the type of error and model. It may cause 
all operations in the channel to be terminated and all 
operational subchannels to be reset to the available 
state. The channel may send the malfunction-reset 
signal to the device connected to the channel at the 
time the malfunctioning is detected, or a channel shar­
ing common equipment with the CPU may send the 
system-reset signal to all devices attached to the chan­
nel. 

The method of processing a request for interruption 
due to equipment malfunctioning, as indicated by the 
presence of the channel-data-check, channel-control­
check, and interface-control-check conditions, depends 
on the model. In channels sharing common equipment 
with the CPU, malfunctioning detected by the channel 
may be indicated by the machine-check interruption. 



Alphabetic List of Instructions NAME MNEMONIC TYPE EXCEPTIONS CODE 

Compare Halfword CH RX C A,S 49 The listings in the TYPE and EXCEPTIONS columns mean: Compare Logical CLR RR C 15 
A Addressing exception Compare Logical CL RX C A,S 55 
C Condition code is set Compare Logical CLI SI C A 95 
D Data exception Compare Logical CLC SS C A D5 
DF Decimal-overflow exception Compare (Long) CDR RRF,C S 29 
DK Decimal-divide exception Compare (Long) CD HXF,C A,S 69 
E Exponen t -overflow exception Compare (Short) CER RRF,C S 39 
EX Execute exception Compare (Short) CE RXF,C A,S 79 
F Floating-point feature Convert to Binary CVB RX A,S,D, IK 4F 
FK Floating-point divide exception Convert to Decimal CVD RX P,A,S 4E 
IF Fixed-point overflow exception Diagnose SI M, A,S 83 IK Fixed-point divide exception Divide DR RR S, IK ID L New condition code loaded Divide D RX A,S, IK 5D LS Significance exception Divide Decimal DP SS T P,A,S,D, DK FD M Privileged-operation exception Divide (Long) NDDR RRF S,U,E,FK 2D N Normalized operation Divide (Long) NDD RXF A,S,U,E,FK 6D P Protection exception Divide (Short) NDER RRF S,U,E,FK 3D S Specification exception Divide (Short) NDE RXF A,S,U,E,FK 7D T Decimal feature 

Edit ED SS T,C P,A, D, DE U Exponent-underflow exception 
Edit and Mark EDMK SS T,C P,A, D, DF Y Direct control feature 
Exclusive OR XR RR C 17 Z Protection feature 
Exclusive OR X RX C A,S 57 

NAME MNEMONIC TYPE EXCEPTIONS CODE Exclusive OR XI SI C P,A 97 

Add AR RR C IF lA Exclusive OR XC SS C P,A D7 

Add A RX C A,S, IF 5A Execute EX RX A,S, EX 44 

Add Decimal AP SS T,C P,A, D, DF FA Halt 110 HIO SI CM 9E 
Add Halfword AH RX C A,S, IF 4A Halve (Long) HDR RRF S 24 
Add Logical ALR RR C IE Halve (Short) HER RRF S 34 
Add Logical AL RX C A,S, 5E Insert Character IC RX A 43 
Add Normalized Insert Storage Key ISK RRZ M, A,S 09 

(Long) NADR RRF,C S,U,E,LS 2A Load LR RR 18 
Add Normalized Load L RX A,S 58 

(Long) NAD RXF,C A,S,U,E,LS 6A Load Address LA RX 41 
Add Normalized Load and Test LTR RR C 12 

( Short) NAER RRF,C S,U,E,LS 3A Load and Test 
Add Normalized (Long) LTDR RRF,C S 22 

( Short) NAE RXF,C A,S,U,E,LS 7A Load and Test 
Add Unnorm- ( Short) LTER RRF,C S 32 

alized (Long) AWR RRF,C S, E,LS 2E Load Complement LCR RR C IF 13 
Add Unnorm- Load Complement 

alized (Long) AW RXF,C A,S, E,LS 6E (Long) LCDR RRF,C S 23 
Add Unnorm- Load Complement 

alized (Short) AUR RRF,C S, E,LS 3E ( Short) LCER RRF,C S 33 
Add Unnorm- Load Halfword LH RX A,S 48 

alized (Short) AU RXF,C A,S, E,LS 7E Load (Long) LDR RRF S 28 
AND NR RR C 14 Load (Long) LD RXF A,S 68 
AND N RX C A,S 54 Load Multiple LM RS A,S 98 
AND NI SI C P,A 94 Load Negative LNR RR C 11 
AND NC SS C P,A D4 Load Negative 
Branch and Link BALR RR 05 ( Long) LNDR RRF,C S 21 
Branch and Link BAL RX 45 Load Negative 
Branch on ( Short) LNER RRF,C S 31 

Condition BCR RR 07 Load Positive LPR RR C IF 10 
Branch on Load Positive 

Condition BC RX 47 ( Long) LPDR RRF,C S 20 
Branch on Count BCTR RR 06 Load Positive 
Branch on Count BCT RX 46 (Short) LPER RRF,C S 30 
Branch on Index Load PSW LPSW SI LM, A,S 82 

High BXH RS 86 Load (Short) LER RRF S 38 
Branch on Index Load (Short) LE RXF A,S 78 

Low or Equal BXLE RS 87 Move MVI SI P,A 92 
Compare CR RR C 19 Move MVC SS P,A D2 
Compare C RX C A,S 59 Move Numerics MVN SS P,A Dl 
Compare Decimal CP SS T,C A, D F9 Move with Offset MVO SS P,A Fl 

Appendix G 159 



NAME MNEMONIC TYPE EXCEPTIONS CODE List of Instructions by Set and Feature 
Move Zones MVZ SS P,A D3 
Multiply MR RR . S lC 

Standard Instruction Set Multiply M RX A,S 5C 
Multiply Decimal MP SS T P,A,S,D FC 

EXCEPTIONS CODE 4C NAME MNEMONIC TYPE 
Multiply Halfword MH RX A,S 

RR C IF lA Multiply (Long) NMDR RRF S,U,E 2C Add AR 

Multiply (Long) NMD RXF A,S,U,E 6C Add A RX C A,S, IF 5A 

Multiply (Short) NMER RRF S,U,E 3C Add Halfword AH RX C A,S, IF 4A 

Multiply (Short) NME RXF A,S,U,E 7C Add Logical ALR RR C IE 
Add Logical AL RX C A,S, 5E 

OR OR RR C 16 
AND NR RR C 14 

OR 0 RX C A,S 56 
AND N RX C A,S 54 

OR 01 SI C P,A 96 AND NI SI C P,A 94 
OR DC SS C P,A D6 AND NC SS C P,A D4 
Pack PACK SS P,A F2 Branch and Link BALR RR 05 
Read Direct RDD SI Y M,P,A 85 Branch and Link BAL RX 45 
Set Program Mask SPM RR L 04 Branch on 
Set Storage Key SSK RRZ M, A,S 08 Condition BCR RR 07 
Set System Mask SSM SI M, A 80 Branch on 
Shift Left Double SLDA RS C S, IF 8F Condition BC RX 47 
Shift Left Double Branch on Count BCTR RR 06 

Logical SLDL RS S 8D Branch on Count BCT RX 46 
Shift Left Single SLA RS C IF 8B Branch on Index 
Shift Left Single High BXH RS 86 

Logical SLL RS 89 Branch on Index 
Shift Right Double SRDA RS C S 8E Low or Equal BXLE RS 87 
Shift Right: Double Compare CR RR C 19 

Logical SRDL RS S 8C Compare C RX C A,S 59 
Shift Right: Single SRA RS C 8A Compare IIalfword CH RX C A,S 49 
Shift Right Single Compare Logical CLR RR C 15 

Logical SRL RS 88 Compare Logical CL RX C A,S 55 
Start I/O SID SI CM 9C Compare Logical CLC SS C A D5 
Store ST RX P,A,S 50 Compare Logical CLI SI C A 95 
Store Character STC RX P,A 42 Convert to Binary CVB RX A,S,D, IK 4F 
Store Halfword STH RX P,A,S 40 Convert to Decimal CVD RX P,A,S 4E 
Store (Long) STD RXF P,A,S 60 Diagnose SI M, A,S 83 
Store Multiple STM RS P,A,S 90 Divide DR RR S, IK ID 
Store (Short) STE RXF P,A,S 70 Divide D RX A,S, IK 5D 
Subtract SR RR C IF IB 

Exclusive OR XR RR C 17 Subtract S RX C A,S, IF 5B 
Exclusive OR X RX C A,S 57 Subtract Decimal SP SS T,C P,A, D, DF FB 
Exclusive OR XI SI C P,A 97 Subtract Halfword SH RX C A,S, IF 4B 
Exclusive OR XC SS C P,A D7 Subtract Logical SLR RR C IF 
Execute EX RX A,S, EX 44 Subtract Logical SL RX C A,S 5F 

Subtract N orm- Halt I/O HID SI CM 9E 
alized ( Long) NSDR RRF,C S,U,E,LS 2B Insert Character IC RX A 43 

Subtract Norm- Load LR RR 18 
alized ( Long) NSD RXF,C A,S,U,E,LS 6B Load L RX A,S 58 

Subtract Norm- Load Address LA RX 41 
alized (Short) NSER RRF,C S,U,E,LS 3B Load and Test LTR RR C 12 

Subtract Norm- Load Complcmcnt LCR RR C IF 13 
alized (Short) NSE RXF,C A,S,U,E,LS 7B Load Halfword LH RX A,S 48 

Subtract Unnorm- Load Multiple LM RS A,S 98 
alized (Long) SWR RRF,C S, E,LS 2F Load Negative LNR RR C 11 

Subtract Unnorm- Load Positive LPR RR C IF 10 
alized ( Long) SW RXF,C A,S, E,LS 6F LoadPSW LPSW SI LM, A,S 82 

Subtract U nnorm- Move MVI SI P,A 92 
alized (Short) SUR RRF,C S, E,LS 3F Move MVC SS P,A D2 

Subtract Unnorm- Move Numerics MVN SS P,A Dl 
alized (Short) SU RXF,C A,S, E,LS 7F Move with Offset MVO SS P,A Fl 

Supervisor Call SVC RR OA Movc Zones MVZ SS P,A D3 
Test Channel TCH SI CM 9F Multiply MR RR S lC 
Test I/O TID SI CM 9D Multiply M RX A,S 5C 
Test Under Mask TM SI C A 91 Multiply I lalfword MH RX A,S 4C 
Translate TR SS P,A DC OR OR RR C 16 
Translate and Test TRT SS C A DD OR 0 RX C A,S 56 
Unpack UNPK SS P,A F3 OR 01 SI C P,A 96 
Write Direct WRD SI Y M, A 84 OR OC SS C P,A D6 
Zero and Add ZAP SS T,C P,A, D, DF F8 Pack PACK SS P,A F2 

160 



Set Program Mask SPM RR L 04 Load (Long) LDR RRF S 28 
Set System Mask SSM SI M, A 80 Load (Long) LD RXF A,S 68 
Shift Left Double SLDA RS C S, IF 8F Load Negative 
Shift Left Single SLA RS C IF 8B (Long) LNDR RRF,C S 21 
Shift Left Double Load Negative 

Logical SLDL RS S 8D ( Short) LNER RRF,C S 31 
Shift Left Single Load Positive 

Logical SLL RS 89 (Long) LPDR RRF,C S 20 
Shift Right Double SRDA RS C S 8E Load Positive 
Shift Right Single SRA RS C 8A (Short) LPER RRF,C S 30 
Shift Right Double Load (Short) LER RRF S 38 

Logical SRDL RS S 8C Load (Short) LE RXF A,S 78 
Shift Right Single Multiply (Long) NMDR RRF S,U,E 2C 

Logical SRL RS 88 Multiply (Long) NMD RXF A,S,U,E 6C 
Start I/O SIO SI CM 9C Multiply (Short) NMER RRF S,U,E 3C 
Store ST RX P,A,S 50 Multiply (Short) NME RXF A,S,U,E 7C 
Store Character STC RX P,A 42 Store (Long) STD RXF P,A,S 60 
Store Halfword STH RX P,A,S 40 Store (Short) STE RXF P,A,S 70 
Store Multiple STM RS P,A,S 90 Subtract N orm-
Subtract SR RR C IF 1B alized (Long) NSDR RRF,C S,U,E,LS 2B 
Subtract S RX C A,S, IF 5B Subtract Norm-
Subtract Halfword SH RX C A,S, IF 4B alized (Long) NSD RXF,C A,S,U,E,LS 6B 
Subtract Logical SLR RR C IF 

Subtract Norm-Subtract Logical SL RX C A,S 5F alized (Short) NSER RRF,C S,U,E,LS 3B 
Supervisor Call SVC RR OA Subtract Norm-
Test Channel TCH SI CM 9F alized (Short) NSE RXF,C A,S,U,E,LS 7B 
Test I/O TIO SI CM 9D Subtract Unnorm-
Test Under Mask TM SI C A 91 dizcd (Long) SWR RRF,C S, E,LS 2F 
Translate TR SS P,A DC Subtract Unnorm-
Translate and Test TRT SS C A DD alized (Long) SW RXF,C A,S, E,LS 6F 
Unpack UNPK SS P,A F3 Subtract U nnorm-

alized (Short) SUR RRF,C S, E,LS 3F 
Subtract Unnorm-

Floating-Point Feature Instructions alized (Short) SU RXF,C A,S, E,LS 7F 
NAME MNEMONIC TYPE EXCEPTIONS CODE The scientific instruction set includes the instructions of both 

Add Normalized the standard instruction set and the floating-point feature. 
( Long) NADR RRF,C S,U,E,LS 2A 

Add Normalized Decimal Feature Il1structions 
(Long) NAD RXF,C A,S,U,E,LS 6A 

Add Normalized NAME MNEMONIC TYPE EXCEPTIONS CODE 

( Short) NAER RRF,C S,U,E,LS 3A Add Decimal AP SS T,C P,A, D, DF FA 
Add Normalized Compare Decimal CP SS T,C A, D F9 

( Short) NAE RXF,C A,S,U,E,LS 7A Divide Decimal DP SS T P,A,S,D, DK FD 
Add Unnorm- Edit ED SS T,C P,A, D DE 

ali zed (Long) AWR RRF,C S, E,LS 2E Edit and Mark EDMK SS T,C P,A, D DF 
Add Unnorm- Multiply Decimal MP SS T P,A,S,D FC 

alized (Long) AW RXF,C A,S, E,LS 6E Subtract Decimal SP SS T,C P,A, D, DF FB 
Add Unnorm- Zero and Add ZAP SS T,C P,A, D, DF F8 

alized (Short) AUR RRF,C S, E,LS 3E 
Add Unnorm- Commercial Instruction Set 

alized (Short) AU RXF,C A,S, E,LS 7E The commercial instruction set includes the instructions of both 
Compare (Long) CDR RRF,C S 29 the standard instruction set and the decimal feature. 
Compare (Long) CD RXF,C A,S 69 
Compare (Short) CER RRF,C S 39 Universal Instruction Set 
Compare (Short) CE RXF,C A,S 79 
Divide (Long) NDDR RRF S,U,E,FK 2D The universal instruction set includes the instructions of the 

Divide (Long) NDD RXF A,S,U,E,FK 6D standard instruction set, the floating-point feature, and the 

Divide (Short) NDER RRF S,U,E,FK 3D decimal feature. 

Divide (Short) NDE RXF A,S,U,E,FK 7D 
Halve Long HDR RRF S 24 Direct Control Feajture Instructions 
Halve (Short) HER RRF S 34 NAME MNEMONIC TYPE EXCEPTIONS CODE 

Load and Test Read Direct RDD SI Y M,P,A 85 
(Long) LTDR RRF,C S 22 Write Direct WRD SI Y M, A 84 

Load and Test 
( Short) LTER RRF,C S 32 Protection Feature Instructions 

Load Complement 
CODE (Long) LCDR RRF,C S 23 NAME MNEMONIC TYPE EXCEPTIONS 

Load Complement Insert Storage Key ISK RRZ M, A,S 09 
( Short) LCER RRF,C S 33 Set Storage Key SSK RRZ M, A,S 08 

Appendix G 161 



Page 

Instruction Formats by Mnemonic 
A RX 27 

5A 
7 8 11 12 15 16 19 20 31 

AD RX (Long Operands) 44 

6A 
78 11 12 1516 1920 31 

ADR RR (Long Operands) 44 

I 2A Rl R2 
Q 78 1112 15 

AE RX (Short Operands) 44 

7A 

7 8 11 12 15 16 19 20 31 

AER RR (Short Operands) 44 

3A 
78 11 12 15 

AH RX 27 

4A 

7 8 11 12 15 16 1 9 20 31 

AL RX 27 

5E 
7 8 11 12 15 16 19 20 31 

ALR RR 27 

1 E 

78 1112 15 

AP SS 35 

7-_F_A __ ~_Ll~_L_2~~Bl~I~'?L~Dl~I_B~2~1~~ 
7 8 11 12 15 16 1920 31 32 35 36 47 

AR RR 27 

lA 

78 1112 15 

AU RX (Short Operands) 45 

7E 
7 8 11 12 15 16 19 20 31 

162 

AUR RR 

3E 

AW RX 

6E 

AWR RR 

2E 

BAL RX 

45 

BALR RR 

05 

BC RX 

(Short Operands) 

7 8 11 12 15 

(Long Operands) 

7 8 11 12 1516 1920 

(Long Operands) 

78 111"l 15 

7 8 11 12 15 16 19 20 

78 1112 15 

Page 

45 

45 

31 

45 

64 

31 

64 

63 

~l ___ 4_7 __ ~~M~1~_X~2~~B2~~ ____ D~2~_~ 
7 8 11 12 15 16 1920 31 

BCR RR 63 

07 
78 1112 15 

BCT RX 64 

BCTR RR 64 

06 

78 11 12 15 

BXH RS 64 

7-__ 8_6 ____ ~_R~1~L-R~3~L-B~2~L------D~2~--~ 
7 8 11 12 15 16 19 20 31 

BXLE RS 65 

87 
7 8 11 12 15 16 19 20 31 



C RX 

59 

CD RX 

69 

CDR RR 

29 

CE RX 

79 

CER RR 

C 39 

CH RX 

49 

CL RX 

7 8 11 12 1 5 16 1 9 20 

(Long Operands) 

7 8 1112 1516 1920 

(Long Operands) 

7 8 11 12 15 

(Short Operands) 

7 8 11 12 1516 1920 

(Short Operands) 

78 1112 15 

7 8 11 12 15 16 1920 

Page 

29 

31 

46 

31 

46 

46 

31 

46 

29 

31 

53 

c==i5 ____ ~_R_l~_X_2~ __ B2~1 _______ 0_2 ____ ~ 
78 11 12 15 16 1920 31 

CLC SS 

7 8 1516 

CLI SI 53 

95 
78 1516 1920 31 

CLR RR 53 

15 
7 8 11 12 15 

CP SS 37 

~C= __ F_9 __ ~L,~I_L_2~B_,~IJ~?L_01~I_B_2~11[SJ 
o 78 1112 1516 1920 3132 3536 47 

CR RR 

19 

CVB RX 

4F 

CVD RX 

4E 

D RX 

50 

DD RX 

60 

DDR RR 

20 

DE RX 

70 

DER RR 

30 

7 8 11 12 15 

7 8 11 12 1516 1920 

7 8 11 12 1516 1920 

7 8 11 12 1516 1920 

(Lon!r;J Operands) 

7 8 11 12 15 16 19 20 

(Long Operands) 

78 1112 15 

(Shol,t Operands) 

7 8 11 12 1516 1920 

(Shelrt Operands) 

78 11 12 15 

Page 

29 

30 

31 

31 

31 

30 

31 

48 

31 

48 

48 

31 

48 

37 

~ __ FO __ ~L~1.~~_L~~_5lJ_,~?~_0~,I __ B2~11[SJ 

DP SS 

7 8 11 12 15 16 1920 31 32 35 36 47 

DR RR 30 

10 R1TR2J 
7 8 11 12 15 

ED SS 57 

OE L. __ --'-_B, ---LI.J~?L_O 1.;...L.I_B_2 .....u11[SJ 
7 8 1516 1920 31 32 35 36 47 

Appendix G 163 



EOMK 55 

DF L 
7 8 1516 1920 

EX RX 

44 
7 8 11 1 2 1 5 16 19 20 

HOR RR (Long Operands) 

7 8 11 12 15 

HER RR (Short Operands) 

34 
7 8 11 12 15 

HIO SI 

9E ~Bl 
7 8 1516 1920 

IC RX 

43 
7 8 11 1 2 15 16 19 20 

ISK RR 

09 
78 1112 15 

L RX 

58 
7 8 11 12 15 16 19 20 

LA RX 

41 
7 8 11 12 15 16 19 20 

LCOR RR (Long Operands) 

7 8 11 12 15 

LCER RIl (Short Operands) 

33 
7 8 11 12 15 

164 

3132 35 36 

31 

Page 

58 

47 

65 

31 

47 

47 

94 

55 

31 

73 

25 

31 

56 

31 

43 

43 

Page 

LCR RR 26 

13 

78 11 12 15 

LO RX (Long Operands) 43 

68 
7 8 11 1 2 15 1 6 1 9 20 31 

LOR RR (Long Operands) 43 

7 8 11 12 15 

LE (Short Operands) 43 

I L ____ 7_8 ____ L-_R1~~X_2 __ ~B-2~~------D2----~ 
o 7 8 11 12 15 16 1920 31 

LER RR (Short Operands) 43 

38 

7 8 11 12 15 

LH RX 25 

48 
7 8 11 12 15 16 19 20 31 

LM R5 26 

7 8 11 1 2 15 16 1 9 20 31 

LNOR RR (Long Operands) 44 

21 
78 11 12 15 

LNER RR (Short Operands) 44 

31 
78 1112 15 

LNR RR 26 

7 8 11 12 15 

LPOR RR (Long Operands) 43 

20 
7 8 11 12 15 



LPER RR (Short Operands) 

30 

78 11 12 15 

LPR RR 

10 

7 8 11 12 15 

LPSW SI 

82 
78 1516 1920 

I.R RR 

18 
7 8 11 12 15 

I.TDR RR (I.ong Operands) 

22 
7 8 11 12 15 

I.TER RR (Short Operands) 

78 1112 15 

I.TR RR 

c==='_1_2 ____ ~_R_1~ __ R_2~ 
7 8 11 12 15 

M RX 

.5C 
7 8 11 12 1516 1920 

MD RX (I.ong Operands) 

6C 

7 8 11 12 1516 1920 

MDR RR (I.ong Operands) 

c===,_2_C ____ ~_R_l~ __ R_2~ 
78 11 12 15 

ME RX (Short Operands) 

7C 
7 8 11 1 2 15 16 1 9 20 

31 

Page 

43 

26 

72 

25 

43 

43 

25 

29 

31 

47 

31 

47 

47 

31 

MER RR (Shorj' Operands) 

Page 

47 

~I _3_C_..L...---R1_C}2 ] 
o 7 8 11 12 15 

MH RX 30 

~I ____ 4_C ____ ~_R_l_r==x2~ __ B_2~ ________ D_2 ______ ~ 
o 7 8 11 1 ~ 1 5 16 1 9 20 31 

MP SS 37 

~_F_C __ ~Ll_L5,~I_B_l~IJ~~_Dl~I_B_2~1}[5J 
7 8 11 12 15 16 19 20 31 32 35 36 47 

MR RR 29 

1~ __ l_C __ -'-----R1_,[!2J 
o 78 1112 15 

MVC SS 52 

D2 
7 8 35 36 47 

MVI SI 52 

92 '2 Bl 
~------~----

7 8 1516 1920 31 

MVN SS 53 

~_D_1_....L---_,L __ =r2~?,--D_l I_B __ 2 -Ll1}[5J 
78 1516 1920 3132 3536 47 

MVO SS 38 

~_F __ 1 __ ....L---L_1 LL2~_B_l ~1~J?~_Dl~I_B_2~1}[5J 
7 8 11 12 15 16 19 20 31 32 35 36 47 

MVZ SS 53 

D3 L ....l.--B_l -'--JI ~?'-D~l I_B2 --LJI }[5J 
7 8 1516 1920 3132 35 36 47 

N RX 54 

~1 ____ 5_4 ____ ~_R_l_~,~ __ B_2~ ________ D_2 ______ ~ 
o 7 8 ill 2 15 16 19 20 31 

NC SS 54 

D4 L 
_L----.-

B l---'IL.....I~?'---D ........ l I_B_2 --&.II }[5J 
7 e 1516 1920 31'32 .35 36 47 

Appendix G 165 



NI 51 

Page 

54 

~ ____ L-___ 1_2 ____ L-_B1~L-______ D~1 ____ ~1 
7 8 15 16 19 20 31 

NR RR 54 

14 
78 11 12 15 

o RX 54 

~ ____ L-_R1~~X_2 __ ~B_2~~ ______ D2 ______ -Jl 
7 8 11 12 15 16 19 20 31 

OC .s;S 54 

~_D_6 ___ ~ __ L __ ~B_1~1~~?L_D~d __ B2~1~~ 
78 1516 1920 3132 3536 47 

01 51 54 

G o ---7~8------1~5-16--1-9~20-----------3~1 

OR RR 54 

16 
78 11 12 15 

PACK 55 38 

~ __ F2 ___ ~_L~1 ~_L2~_B~1~1~~~D~1~I_B~2~IJ~ 
7 8 11 12 15 16 1920 31 32 35 36 47 

ROO 51 74 

85 D1 
7 8 1516 1920 31 

5 RX 28 

~ ____ L-_R~1-L __ X~2~ __ B~2~ _______ D_2 ______ ~ 
7 8 11 12 1516 1920 31 

SO RX (Long Operands) 45 

31 

SOR RR (Long Operands) 45 

Q __ ~R_l ~I_R_; --J] 
78 11 12 15 

166 

SE RX (Short Operands) 

7B 

7 8 11 12 15 16 19 20 

SER RR (Short Operands) 

3B 

78 11 12 15 

SH RX 

48 
7 8 11 12 15 16 19 20 

SIO 51 

1~_9_C __ ~~~~~~~Bl~ ____ ~Dl ____ .J 
o 7 B IS 16 1920 31 

SL RX 

5F 
78 1112 1516 1920 

SLA RS 

8B 
7 8 11 12 1516 1920 

SLOA RS 

Page 

45 

31 

45 

28 

31 

92 

28 

31 

32 

31 

32 

~ ___ 8F __ ~~R~1~~~~~'B_2~ ______ D_2 __ ~ 
11'12 1516 7 8 1920 31 

SLOL RS 59 

8D I~ 
7 8 1112 1516 1920 31 

511 RS 59 

89 
7 8 11 12 1516 1920 31 

SLR RR 28 

78 1112 15 

SP SS 36 

~_F_B __ ~L~1~I __ L2~_B_l ~IJ~?~~Dl~I_B_2~IJ~ 
78 1112 1516 1920 3132 3536 47 



SPM 'RR 

04 

78 1112 15 

SR RR 

1 B 
78 11 12 15 

SRA RS 

8A 

78 11 12 1516 1920 

SRDA RS 

8E 
7 8 1112 1516 1920 

SRDL RS 

8e I~ 
78 11 12 1516 1920 

SRL RS 

88 I~ 
7 8 1112 1516 1920 

SSK RR 

08 
78 11 12 15 

SSM SI 

80 
78 1516 1920 31 

ST RX 

50 
7 8 11 12 15 16 19 20 

STC RX 

42 
7 8 11 12 15 16 19 20 

STD RX (Long Operands) 

60 
7 8 11 12 15 16 19 20 

Page 

72 STE RX (Shorf Operands) 

Page 

49 

28 

32 

31 

33 

31 

60 

31 

59 

31 

73 

72 

31 

31 

55 

31 

49 

31 

70 
7 8 11 1 2 15 16 1 9 20 

STH RX 

40 
7 8 11 12 1516 1920 

STM RS 

7 8 11 12 

su RX (Short Operands) 

7F 

7 8 11 12 1516 1920 

SUR RR (Short Operands) 

3F R113J 
78 11 12 15 

SVC RR 

1 OA R] 13] 
.... 0 --------7 ..... 8--1--'1-1:! 15 

SW RX 

6F 

SWR RR 

2F 

TCH SI 

9F 

TIO SI 

(Long Operands) 

R1 0 B2 
7 8 11 12 15 16 19 20 

(Lon!1 Operands) 

78 11 12 15 

78 1516 1920 

31 

31 

J 
31 

31 

.0;--'--=] 
31 

46 

31 

46 

72 

46 

J 
31 

46 

95 

31 

93 

~_9_D __ ~~~~~~iJ ___ D_]_~ 
78 1516 1920 31 

TM SI ss 

91 12 '--=r=a!=r 
78 1516 1920 31 

Appendix G 167 



A22-6821-0 

TR 55 

OC 1 L B] 1 ~~ 0] 1 
7 8 1516 1920 3132 

TRT 55 

00 L B] 1 ~~ 0] 1 
78 1516 1920 3132 

UNPK 5S 

F3 L] L2 B] 1 ~~ D] 1 
78 11 12 1516 1920 3132 

WRD .51 

I 84 ~ 12 B] 
0 78 1516 1920 

X RX 

I 57 R] X2 B2 
0 78 11 12 1516 1920 

International Business Machines Corporation 

Data Processing Division 

112 East Post Road, White Plains, N. Y. 10601 

B2 

B2 

B2 

D] 

D2 

Page Page 

56 XC 55 55 

IU3J 07 1 L B] 1 ~~ 0] I B2 1~13] 
35 36 47 7 8 1516 1920 3132 35 36 47 

56 XI 51 55 

1113] 97 12 B] 0] ~ 
35 36 47 7 8 1516 1920 31 

38 XR RR 55 

1113] I ]7 R] R2 
35 36 47 0 78 11 12 15 

73 ZAP SS 36 

F8 L] L2 B] 
1 ~~ D] I B2 IJ13] 

31 7 8 11 12 1516 1920 3132 35 36 47 

55 

31 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168

