FR-V..

FR400 Series
Instruction Set Manual

Version 2.2 Jan, 2004

%
FUJITSU

FUJITSU LIMITED

1) The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

2) The information, such as descriptions of function and application circuit examples, in this document are presented
solely for the purpose of reference to show examples of operations and uses of FUJITSU semiconductor device;
FUJITSU does not warrant proper operation of the device with respect to use based on such information. When you
develop equipment incorporating the device based on such information, you must assume any responsibility arising
out of such use of the information. FUJITSU assumes no liability for any damages whatsoever arising out of the use
of the information.

3) Any information in this document, including descriptions of function and schematic diagrams, shall not be construed
as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right
of FUJITSU or any third party or does FUJITSU warrant non-infringement of any third-party's intellectual property
right or other right by using such information. FUJITSU assumes no liability for any infringement of the intellectual
property rights or other rights of third parties which would result from the use of information contained herein.

4) The products described in this document are designed, developed and manufactured as contemplated for general use,
including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not
designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless
extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control,
air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or
(2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU will not be liable against you and/or any third party for any claims or damages arising in
connection with above-mentioned uses of the products.

5) Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss
from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire
protection, and prevention of over-current levels and other abnormal operating conditions.

6) If any products described in this document represent goods or technologies subject to certain restrictions on export
under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will
be required for export of those products from Japan.

© 2003 FUJITSU LIMITED
All Rights Reserved.

Contents

Contents

FR400 Series ..o I

Instruction Set Manual 1

1.

Instruction Set Reference...........coooovviiiiiiiiiiiiieeeeeee e, |
1.1. Explanation of €acCh termcccuiiiiiiiiiiiiieciie ettt e e 1
1.2, INte@ET INSLIUCHIONS ...eeviiiieiieiietieriteiteit ettt et et et e tee st e bt e bt e beesbeebeebeenbeenseenseenseenseennes 2

1.2.1. Add / Subtract (ADDSS and SUBSS are available for MB93405/MB93451.)cccceveneeee. 2

1.2.2. IMIUIEIPLY 1.ttt ettt et ettt e et eeta e e esseesbessaessaesseenseenseessesssanseessaensens 5

1.2.3. Multiply and Add / Subtract (These instructions are available for MB93405/MB93451.) ... 7

1.2.4. Multiply to IACC (This instruction is available for MB93405/MB93451.).....cccccccvceevenenee. 8

1.2.5. DAVIAC .ttt ettt et e et e et e e tb e e ta e et ae e tbe e tbeebae e tbeebaeetaeetaeenraeenreean 9

1.2.6. L0gICAl OPETALIONSc..eeeieiieieeie ettt ettt ettt ettt e et eeae e st e bt e teenteeneeeneesnean 11

1.2.7. Shift (SLASS instruction is available for MB93405/MB93451.).....cccceieviiiieiieneereenne, 13

1.2.8. Byte Compare INSTUCTION. .. .ceuteiieiieieeiieitieeeeee ettt et st seees 16

1.2.9. Accumulator Cut Instruction (This instruction is available for MB93405/MB93451.)...... 17
1.3, Load/Store INSIITUCTIONSeeitieiieiieiieieeieesteeteete et eteeteeteesteenteentesssesnsesssesnsesnsesssesssessnenes 19

1.3.1. LOAA GR ..ottt sttt bttt b et s b et et sttt st st ese b e st be b nene 19

1.3.2. LOAA FR.ooiieieeet ettt ettt ettt e e tb e s st e be e beesseensesneesneenseenseenseans 22

1.3.3. SEOTE GR ..o ettt sttt e st e et e st e et e s beeenbeeebaeearee s 24

1.3.4. STOTE FR ..ottt b et 26
1.4. Data transfer INStIUCIONScceerierieiieiiestieeee sttt ettt et ettt esteesteesteeteeteeseeseenseens 28

1.4.1. SWAPD 1.ttt ettt ettt ettt ettt et b ettt b sttt b e bRt b st n b et a e b et e st b et e st be b eneebenseneens 28

1.4.2. IMLOVE. ettt ettt ettt et e b e et s b e ettt bt st e s bt e et e s beesabeesabeenates 30
1.5. Control transfer INSTIUCHIONScceerieriieriiiiiiieeierteete ettt ettt et eteeae e ens 32

1.5.1. Integer Conditional Branchcccocooieriiiiiiiieiecieeeeeee ettt 32

1.5.2. Floating-point / media Conditional Branchcccccoeoievieiiinieiiiiieeeeeeeee e 34

1.5.3. LCR Conditional Branch to LR.........cccoociiiiiiiieiieieciecieeee et 36

1.5.4. Integer conditional Branches to LRcccooiiiiiiiiieeee e 37

1.5.5. Floating-point/Media Branches to LRc.cociiiiiiiiiiiiiiiieeee e 40

1.5.6. JUMP AN LINK 1ottt ettt ettt et a e et e st e e b e esaeeeneeraenaeas 43

1.5.7. Cll oottt ettt ettt b et be et et besbe st etenae st ebeebenene 44

1.5.8. REtUIN fTOM TTAP ...cvvieeiiiiieciieieeie ettt ettt ettt s ae st e saeesbeesbeesseesaeesnenseensanns 45

1.5.9. Integer ConditioNal TTAPccveevieviiiiiiieriett ettt ettt e st e steesteebeesseessesesesseenseens 46

1.5.10. Floating-point / media Conditional Trapcceeceerierieiiieieeiereee e 49

ST O O = 3 . TP 52

T O ¥ (<4 - T o BSOS P 53
1.6. Constant Setting INSIIUCLIONSccecvieeriiiriieriiertiesiteeeeeieeesreesreesreesseesseeesseessseessseenes 54

1.6.1. Sttt bt h bt n bRt bt n bt n bt e ne b et st bt et bentenene 54
1.7, SCAN INSTIUCTIONttiitieitietietie ettt sttt ettt ettt et et e bt et e et e eteenteenseenteenseenseenseensesnsesnsenns 56

1.7.1. N T 1 TSRS UPR PP 56
1.8. Condition Code Operating INSIIUCHIONS.cc.eerueeriieriieriieniienieeieerieeteeeeeteeee e eeeeteseeseee e 58

1.8.1. Check for Integer Condition Code............ccuerierieriieriieierieseeseesre e e eeeesree e esseeseeevensnens 58

1.8.2. Check for Floating-point/Media Condition Code...........cceevveeierierieniienieeieseeeieseesieevens 60

FRA400 Series Instruction Set Manual

1.8.3. Condition Code Logical OPerationsc.coeruererirerinieieieierienie ettt 62
1.9. Special Operation INSTIUCTIONScevveeriieriieriiiiieiieiiertereerte ettt ettt este e eeeseeeneeeneeeneeens 66
1.9.1. Instruction Cache INVAlIdate...........oceiiiiiiiieeeeee e e 66
1.9.2. Data Cache INValidate.ooeiiiiiiiiiere e 67
1.9.3. Data Cache FIUSH......co.oiiiiiiiee e 68
1.94. Instruction Cache Entry Invalidate INStruction............ccueeverierieeiieiiesiesceee e 69
1.9.5. Data Cache Entry Invalidate INStruction............cceeeereierienienieie e 70
1.9.6. Data Cache Entry Flush INStrUCHON.cc.eeiiiiiiieiieie et 71
1.9.7. Instruction Cache Pre-Load.........oooviiiiiiiiiee et 72
1.9.8. Data Cache Pre-Load.......c.cooiiiiieeee ettt 73
1.9.9. Instruction Cache UNLOCK........couiiiiiiiiieieieee e 74
1.9.10. Data Cache UNLOCKcc.oiiiiiiiiieieieereee ettt e 75
LLO.T1. BAITICT .ttt ettt et s bbbt e a e et et e et bbbt ebe et et nee 76
LK O Y (51T oy 27 1 4 1<) SRR 77
1.9.13. Load Real Address of Instruction (This instruction is available for MB93451.)................. 78
1.9.14. Load Real Address of Data (This instruction is available for MB93451.)ccccevenee.. 80
1.9.15. TLB Probe (This instruction is available for MB93451.).....ccccceecieiiiiiiieieeieeie e 82
1.10. Media INSEIUCHIONS. 1..veetieiieiieteeieete et et esteeteeteeteebeesbeebeesseesseesseenseenseenseenseensesnsessesnsenns 85
1.10.1. Media Nop Instruction (M -Type INStruction)..........cecceereerieeierienieieeieee e 85
L1.10.2. LOZICAl OPEIAtIONS .. .eeeueieiiieeietietieteeteeiieetiesteestte et et e et et e sse et e e bt enteenseeneesseesneesseenseeneeenes 86
LL10.30 ROTALE .ottt ettt b e bt e e ettt e b e bt et et e st e e bt e s bt e bt e e eaeeeaee 87
L.10.4. WOTA CUL ittt ettt s ae bt e st e ne et et e bt eaeebeeneeneenseneeneenes 88
1.10.5. Average (Halfword Dual)........cccoooiiiieiiiiiicece ettt 90
1.10.6. Shift (Halfword DUAL).........ccoiiiiiiiiieieeieeieeeeettee ettt e e sneeeas 91
1.10.7. Media Dual Rotate (Word Dual) InStructionceccvevuievieeieeienienieieeie e 92
1.10.8. Saturate (Halfword DUal)ccoeoueiiiriiiieiece ettt 93
1.10.9. Media Quad Saturation Operation (Halfword Quad) Instructioncccceeevveerienrennne. 95
1.10.10. Media Absolute Value Operation (Halfword Dual) Instructioncccceeceevveeeenveneennnne. 96
1.10.11. Compare (Halfword Dual).........ccoveviieiiiiiiiieiecicce ettt e 97
1.10.12. Add/ Subtract with Saturation (Halfword Dual)..........ccccevvieviiiiiniiiieiecieeeceeeee e 98
1.10.13. Multiply (Halfword DUAL)ccceeviieiieiicieiieieee ettt seae e 100
1.10.14. Cross Multiply (Halfword Dual)ccccceevuieriieiiieiecieseeeeie ettt 102
1.10.15. Multiply and Accumulate (Halfword Dual)ccooceeviieiieiiiiecieeeeee e 104
1.10.16. Multiply and Subtract (Halfword Dual)cccciriieieiieiieieeececeeee e 106
1.10.17. Add/ Subtract with Saturation (Halfword Quad)...........cccceevvieriieniieniieiiecre e 108
1.10.18. Multiply (Halfword QUad)ccceoiieiieiieieee ettt 111
1.10.19. Cross Multiply (Halfword Quad)ccueiiiiiiiieieeee e 113
1.10.20. Multiply and Accumulate (Halfword Quad)..........cceceeiieriiiiniiieieieeee e 115
1.10.21. Media ACC Cross Quad Multiply and Accumulation (Halfword Quad) Instruction)....... 117
1.10.22. Media ACC Cross Quad Cross Multiply and Accumulation (Halfword Quad) Instruction
119
1.10.23. Media Quad Cross Multiply and Accumulation (Halfword Quad) Instruction 121
1.10.24. Complex Multiply (Halfword Dual)..........ccccoiieiiiiieieiieieie e 123
1.10.25. Complex Multiply (Halfword QUad).........ccceeiieiiiiiieieiieiieie et 125
Lo10.20. CUL ettt etttk b e bt e bt e mt e et e ke beeh e e bt e ne et et e te bttt eneeneenneneennan 128
Lo10.27. GO ettt ettt etttk b e bt h e a et e et e ke he ekt e aeeneen b et et e bt eheeneeneenteneenean 130
1.10.28. Media Dual Cut INSIIUCLIONeeuieuieiiiiiiieiieiceceiteeee et 132
1.10.29. Expand (HalfWord)........cccccverciiiieniieiieiceeeeteeee ettt ssaesseessesnnesnnas 133
1.10.30. Pack/Unpack (HalfWord)........ccceeieriiiiiiiecierieee ettt 135
1.10.31. Pack (Halfword Dual)..........ccoeouieiiiieieieeee ettt 137
1.10.32. Convert Byte to/from HalfWwordcocoiiiiiiiiieeee e 139
1.10.33. Media Bit Concatenate (Halfword Dual) InStructionccceeeeveeviieevieeciieeceeeree e 141
1.10.34. Media Bit Concatenate (Word Dual) InStruction............cceeveevvieriieeieeeeienreere e 142
1.10.35. Clear ACCUMUIALOT «.....couiitiieietieieteeete ettt sttt a et et et e e be e st ene et enaeneeees 143

Contents

2.

1.10.36. Read/Write ACCUMUIATOTocueiiiiiiieeeeeeeee et e et e e e e s e eaaeeeeeeseesnnees 144
1.10.37. Media Accumulator Addition INStrUCION........ccoeuvviiiiiiiiiiiiiiee e 145
1.10.38. Media Accumulator Subtraction INSIIUCTIONcoovvviiiieeiiiiieieeeeee e 146
1.10.39. Media Dual Accumulator Addition INSTrUCTIONccvviiieviii i 147
1.10.40. Media Dual Accumulator Subtraction INnStruCtion...........cccc.eoeeveeeevviriieieee e, 148
1.10.41. Media Accumulator Addition and Subtraction INStruction............ccccvevevvvieiiieieeceee e, 149
1.10.42. Media Dual Accumulator Addition and Subtraction Instruction............c..ccceevvveeeevveeennee.. 150
1.10.43. Media SETHI/SETLO (Halfword) INStruction...........cceccveriierireiiesiesieneeie e see e 152
1.10.44. Media Quad Low Clear (Halfword Quad) Instruction (M-Type Instruction. This instruction
1S available fOr MBO3451.) ..ottt ettt e s e e st e e e be e s b e e s be e e nbeesnaeenes 154
1.10.45. Media Quad Scope Limitation (Halfword Quad) Instruction (M-Type Instruction. This
instruction is available for MBO3451.)ccviiiiiiieiiiieceeiece ettt s ees 155
1.10.46. Media Quad Shift (Halfword Quad) instruction (M-Type instruction. These instructions are
available for MBO3451.) . .ccuiiieiiciecieeeeteeee ettt ettt st eesa e e taesta e baesbeenbeeaaesaeeseennaens 156
1.11. Conditional Integer INSIUCTIONScc.ueiierierieiierierierte ettt e s es 158
1.11.1. Add/ Subtract / Multiply / Divide.........ccciviiiierieiiieieiecieeie ettt 158
1.11.2. Add, Subtract and Multiply with setting ICC / Divide unsigned integer...............cocuvn.... 160
L.11.3. LOICAl OPEIAtIONSecueeeieiieiieieetesitesttesteesteeseeseesseesseenteenseessesseesseesseesesnsesssesseesseenseens 162
1.11.4. Logical Operations with setting ICCccceroiiriirierieit et 164
L1015, SRITt ettt e e e e e e e et e e eeraeeseaaeas 166
1.11.6. Shift with SEttNgG ICCcciiiiieieiieiieieeee ettt eseeneensenens 168
1.12. Conditional Load/Store INStIUCTIONScooeoumieeeeeee e e 170
L12.10 LOAA GR oottt et e et e e e e e et e e st e e e eeseaaeas 170
L12.20 0 LOAA FR ..ottt e ettt e e et e e e e e e et e e e st e e e eaaeesenaeas 172
T12.30 STOTE GR ettt ettt e e s et e e et e ettt st e e e et e e e eaaeas 174
1.12.4. N 10 (30 Sl RO PRRRRRRRRRN 176
1.13. Conditional Data transfer INStIUCHIONSociivuviiiiiiiiieeciiee ettt e 178
L1300, SWAD oottt ettt et e e be e be b e e raeere e beebeenbeenbeeraesraeteas 178
) 5 Y, (4)£ TSR RPOTRRT 180
1.14. Conditional Control transfer INStrUCHIONS.ccvviiiiireieeeeiee et 182
1141, Jump and LinKcocoooiiiiiiiiiiicicceeeeee ettt ve e e e e ae e teesbeenbeesnesenesenas 182
1.15. Conditional SCAN INSIITCTIONcouueeeiiiie et e e e et e e e e e e e eraeeeeeens 183
1.15.1. Yo7 o SRRSO 183
1.16. Conditional Condition code operating INStrUCtiONS..........cceevueeierierienienieriesee e eee e 184
1.16.1. Check for Integer Condition COAEceriiriiirieiieiieiesiese et 184
1.16.2. Check for Floating-point/Media Conditional code............ccoecurriirienieniiiieeereeeee 187
1.17. Conditional Media INSIITUCTIONSvveiiiiiiieeee e e e e e e e e eeeeeaas 189
L17.1. LOZICAl OPEIAtIONSeeueeeieiieieeieeiesiiesttesteesteeteeseesseesseesteensesssessaesseesseenseensesnsesseesseenseens 189
1.17.2. Add/ Subtract with Saturation (Halfword Dual)........c..cccceevciiiiiiiiiiiieiecieeeeceeeeee 191
1.17.3. Multiply and Accumulate (Halfword Dual)ccoooieiiiiiiiiiiieeeeee e 193
1.17.4. Add/ Subtract with Saturation (Halfword Quad)..........cccceeveevriiiiiiiiiiieeeeceeeeeean 195
1.17.5. Multiply / Multiply and Accumulate (Halfword Quad)..........ccceeveeiieienineniiiiieceiene, 197
1.17.6. Complex Multiply (Halfword Dual).........c.ccceeieiiiiiiiiiiieieeeee et 199
1.17.7. Expand (HalfWOrd).......ccooceiiiiiieiieiieeeeeeeeee ettt essae s enees 201
1.17.8. Convert Byte to/from HalfWordccccoeiieiiiioiiiieieeee e 202
VLIW INSTTUCTION ettt ettt e e e e e e e e e et eaaeeeeeeeeeeeeene 205
2.1. Construct i0n of VLIW INSTIUCTIONcoeiiiiiiiiiiiiiiii et eeeiare e e eeaaaneeeee s 205
2.2, Execution Of VLIW INSTIUCHIONcooiviiiiiiiieeeeteee ettt eeaee e et eetaeeeeeaveeeeennees 206
2.2.1. Read/Write operation in same VLIW inStructionccoccvvevieeesieniienieereeeeseesie e 206
22.2. Execution of Control Transfer INStruCtiON..........c..ooovevviiiievieiiieeeeecee e 207

FR400 Series Instruction Set

Manual

APPEINAIX ..ttt e e e et e e r e e e aaa e e eareeeennns 213
1. Instruction Code Table..........ccoovviiiiiiiiiiie e, 213
2. INSruCtion IMALIIXoeeieeiiieiee et e e 226

2.1, Primary OPe-COUECeeiiiiieiieiieiieieett et ettt e st et eteebe e beebeesbeenbeenseenseenseensesnsesssesnsennnes 226

2.2, Secondary OPECOUE.oiuviiieiieiiieitieriesitestesttestteseesreesteesseesseesseesseesseesseesseesseesseesseesseenses 227
3. Instruction / Device No. Correspondence table...........ccccceeevvveeennennnee. 233
4. TACCO special TUlC.....ccccuiiieiiiieeiie e e 234

Table Contents

Table Contents

Table 1 #cond field and pseudo OPECOAEuuuuuuiiiiiieceeeceeceeeeeeeeeee e 33
Table 2 #cond field and pseudo 0PECOdevvveeeiiiiiiiiiiiiiieeeeeeeeeeee e 35
Table 3 #ccond field and evaluation condition of LCR......cooovviiiiiiiiiiiiiiiei, 36
Table 4 #ccond field and evaluation condition of LCR......ccoooviiiiiiiiiiiiiiiiiiiin, 39
Table 5 #cond field and pseudo OPECOAEuuueeeeeneieeeeeeeeeeece e 39
Table 6 #ccond field and evaluation condition of LCR......ccoooviiiiiiiiiiiiiiiiiiiien, 42
Table 7 #cond field and pseudo 0PeCodeuvveeeeeiiiiiiiiiiiieeeeeeieeeeeeee e 42
Table 8 PSEUAO OPECOAEuuuueiiiiiieiiiiiceee e e e e e et e e e e e e e e e as 48
Table 9 PSeUAO OPECOAEuuueeieiiiiiieiiieeee e e e e e 51
Table 10 #cond field and Pseudo 0peCOde........ccoeeeeeeeeeeeeieeeeeeeeeeeceeeeceeeeeeeeeeee e 59
Table 11 Result of ICC test and Value of CCCRICCX) ...couvevveeeeeeeeeeeeeeeeeeeeeeeeeenns 59
Table 12 #cond field and Pseudo opecode...........ceeeeeiiiiiiiiiiiiieieeiiiiiiiieeeeeeeeeeeee 61
Table 13 Result of FCC test and value of CCCRICCX) ..cuvveeeeeeeeeeeeeeeeeeeeeeeeeeee e 61
Table 14 Values of CCCR(CCx, CCy and CCz)......ccvevvieveieieeeeeeeeeeeeeeeeeeeeeeeee e 63
Table 15 ANDCR ..ot e ettt e e e e e e et 63
Table 16 ORCR c.oveeeiiiiieeeeeee et e e e e e 64
Table 17 XORCR. ... ettt e e e e e 64
Table I8 NANDGCR ... e e 64
Table 1O NORGCR ...t e e 64
Table 20 ANDINCR......coo et e et e e e e e e s 64
Table 21 ORNCR ...t e e 65
Table 22 NANDNG R ..ot e et 65
Table 283 NORNG Rooooiee e e e 65
Table 24 NOTCR ..ot e e e e e e e e e e e e e 65
Table 25 Values of Heond fleld..........uuviiiiiiiiiiiieeeeeeeeeeee e 159
Table 26 Values of #cond fleld...........uveeiiiiiiiiiiiiiieeeeeeieeee e 161
Table 27 Values of HCond fIeld..........uuuiiiiiiiiiiiiiieeee e 163
Table 28 Values of #eond fleld..........uuvveiiiiiiiiiiiiceceeeeeeee e 165
Table 29 Values of HCond f1eld..........uuuiiiiiiiiiiiiiiieee et 167
Table 30 Values of Heond fleld..........uueiiiiiiiiiiiiieeeeeeceeeee e 169
Table 31 Values of #cond fleld...........uueeeiiiiiiiiiiiiiieeceeeeeceee e 171
Table 32 Values of HCond f1eld..........uuuiiiiiiiiiiiiiiieee et 173
Table 33 Values of #eond fleld..........uuvveiiiiiiiiiiieeec e 175
Table 34 Values of HCond fIeld..........uuueiiiiiiiiiiiiiieeee et 177
Table 35 Values of Heond fleld..........uueiiiiiiiiiiiiieee e 179
Table 36 Values of #cond fleld............eeeiiiiiiiiiiiiiieeeeeeeceee e 181
Table 37 Values of Heond flelduuviieiiiiiiiiieee e 182
Table 38 Values of #eond fleld..........uuvviiiiiiiiiiiieeeeeeeeee e 183
Table 39 #cond field and pseudo OPECOAEuuvrrrrrrrrrrrrrrrirrreirrirererererereerrerererana—... 185
Table 40 Values of #econd f1eldouveeiiiiiiiiiiiiiceeeeeeee e 185
Table 41 Values of CCOCRciiiiiiccee et 185
Table 42 test results and values of CCCRuuviiiiiiiiiiieeeeeeeee e 185
Table 43 #cond field and pseudo 0PE-COAEceeeeeeiiiiiiiiiiiieeeeeeieeiceeeeeeeeeeeee 188
Table 44 Values of HCCond f1elduuveiiriiiiiiiiieieee e 188
Table 45 Values of COCR ...euiiiiieee e 188
Table 46 Values of HCond fIeld..........uuuviiiiiiiiiiiiiieeeeeeeeeee et 190
Table 47 Values of Heond fleld..........uueiiiiiiiiiiiieec e 192

FRA400 Series Instruction Set Manual

Table 48 Values of #cond fleld...........uveeiiiiiiiiiiiiiieeeeeeeeee e 194
Table 49 Values of Heond fleld..........uuviiiiiiiiiiiieeeee e 196
Table 50 Values of #eond fleld..........uuveviiiiiiiiiiiiiieeceeeeeeee e 198
Table 51 Values of HCond f1eld.........uuuuiiiiiiiiiiiiieee et 200
Table 52 Values of #eond fIeld..........uuvvviiiiiiiiiiiiieeeeeeeee e 201
Table 53 Values of #cond fleld...........ueeeeeiiiiiiiiiiiieeceeeeeee e 203

vi

Table Contents

vii

1 Instruction Set Reference

1. Instruction Set Reference

This chapter describes instruction set architecture, which are categorized into related
instructions.

1.1. Explanation of each term

Instruction table
This term is described about the ope-code of each instruction, op fields in instruction code, ope
fields in instruction code and execution behavior.

Category

This term is described about instruction type of each instruction.

Instruction format

This term is described about instruction format of each instruction.

Assembler description

This term is described about suggested assembly language syntax.

Behavior description

This term is described about description of instruction execution.

Operation example

In the instruction which needs a complex operation, an example is shown in the table.

Altered register other than a destination register

This term is described an altered register which is not indicated by assembly description.

For ICC, it is described that the flag may be altered by the instruction. A symbol O means that
the flag may be altered by the instruction. A symbol X means that the flag does not altered by
the instruction.

Occurrence exception

This term is described exceptions that may be occurred by the instruction.

Detected exception

When the instruction detects exceptions, there are exceptions which do not initiate an exception
processing and may store the information. This term is described about this kind of exception.
When the instruction is non-excepting instruction, the detected exception is initiated by the
COMMIT instruction. When the instruction is media instruction, the detected exception is
initiated by executing MTRAP instruction.

FRA400 Series Instruction Set Manual

1.2. Integer Instructions

1.2.1. Add/ Subtract (ADDSS and SUBSS are available for MB93405/MB93451.)

Ope-code op ope Operation

ADD 0000000 | 0000 Add

ADDcc 0000000 | 0001 Add and ICC setting

ADDX 0000000 | 0010 Add with carry

ADDXcc 0000000 | 0011 Add with carry and ICC setting
SUB 0000000 | 0100 Subtract

SUBcc 0000000 | 0101 Subtract and ICC setting
SUBX 0000000 | 0110 Subtract with carry

SUBXcc 0000000 | 0111 Subtract with carry and ICC setting

ADDI 0010000 Add (Immediate)

ADDlIcc 0010001 - Add and ICC setting (Immediate)
ADDXI 0010010 - Add with carry (Immediate)
ADDXIlcc 0010011 - Add with carry and ICC setting Immediate)
SUBI 0010100 - Subtract (Immediate)
SUBIcc 0010101 - Subtract and ICC setting (Immediate)
SUBXI 0010110 - Subtract with carry (Immediate)
SUBXIcc 0010111 - Subtract with carry and ICC setting (Immediate)
ADDSS 1000110 | 000000 | Add with Signed Saturation
SUBSS 1000110 | 000001 | Substract with Signed Saturation
: ADDSS and SUBSS are available for MB93405/MB93451.
Category
Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
GRk op GRi - ope GRj

Instruction Format (ADDSS,SUBSS)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi ope GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi #s12

Instruction Format (INT, Logic, Shift-cc Operation (R-R))
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi ope GRj
ICCi

1 Instruction Set Reference

Instruction Format (INT, Logic, Shift-cc Operation (R-simm))
313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
GRk op GRi #s10
ICCi

Assembler Syntax

ADD GRi, GRj, GRk
ADDce GRi, GRj, GRk, ICCi
ADDX GRi, GRj, GRk, ICCi
ADDXce GRi, GRj, GRk, ICCi
SUB GRi, GRj, GRk
SUBcc GRi, GRj, GRk, ICCi
SUBX GRi, GRj, GRk, ICCi
SUBXce GRi, GRj, GRk, ICCi
ADDI GRi, #s12, GRk
ADDIcc GRi, #s10, GRk, ICCi
ADDXI GRi, #s10, GRk, ICCi
ADDXIce GRi, #s10, GRk, ICCi
SUBI GRi, #s12, GRk
SUBIcc GRi, #510, GRk, ICCi
SUBXI GRi, #510, GRk, ICCi
SUBXIcc GRi, #s10, GRk, ICCi
ADDSS GRi, GRj, GRk
SUBSS GRi, GRj, GRk

Description

The integer addition and subtraction instructions add or subtract GRi and GRj (immediate
instruction: sign_ext (#s12) or sign_ext (#s10)) and write the result in GRk.

The ADD instruction calculates “GRi+GRj”.

The ADDX instruction calculates “GRi+GRj+C”. C is the carry bit of ICCi.

The SUB instruction calculates “GRi - GRj”.

The SUBX instruction calculates “GRi - GRj — C”. C is the carry bit of ICCi.

The ADDcc, ADDXcc, SUBcc, and SUBXcc instructions and their immediate instructions
change the integer condition code (ICC).

The ADDSS instruction adds a 32bit value of GRi to a 32bit value of GRj, and saturate,to
pruduce a 32bit result. The result is placed into GRk. If the result is overflow as 32bit signed
integer, maximum value of 32bit signed interger placed into GRk. (Ox7FFFFFFF or
0x80000000)

The SUBSS instruction subrtacts a 32bit value of GRi to a 32bit value of GRj, and saturate,to
pruduce a 32bit result. The result is placed into GRk. If the result is overflow as 32bit signed
integer, maximum value of 32bit signed interger placed into GRk. (Ox7FFFFFFF or
0x80000000)

Registers altered (except destination register)

ICCi ... instructions with “cc” only
N |Z |V |C
O |0 |0 |O

FRA400 Series Instruction Set Manual

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

nonec

1 Instruction Set Reference

1.2.2. Multiply

Ope-code op ope Operation

SMUL 0000000 | 1000 Signed Integer Multiply

SMULcc 0000000 | 1001 Signed Integer Multiply and ICC setting
UMUL 0000000 | 1010 Unsigned Integer Multiply

UMULce 0000000 | 1011 Unsigned Integer Multiply and ICC setting

SMULI 0011000 Signed Integer Multiply Immediate)

SMULIcc 0011001 - Signed Integer Multiply and ICC setting
(Immediate)

UMULI 0011010 - Unsigned Integer Multiply (Immediate)

UMULIcc 0011011 - Unsigned Integer Multiply and ICC setting
(Immediate)

Category

Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi - ope GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi #s12

Instruction Format (INT, Logic, Shift-cc Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi ope GRj

ICCi
Instruction Format (INT, Logic, Shift-cc Operation (R-simm))

31302928272625242322212019181716151413 1211109 8 7 6 5 43 2 1 0
GRk op GRi #s10

ICCi

Assembler Syntax

SMUL GRi, GRj, GRk
SMULcc GRi, GRj, GRk, ICCi
UMUL GRi, GRj, GRk
UMULce GRi, GRj, GRk, ICCi
SMULI GRi, #s12, GRk
SMULIcc GRi, #s10, GRk, ICCi
UMULI GRi, #s12, GRk

FRA400 Series Instruction Set Manual

UMULIcc GRi, #s10, GRk, ICCi

Description

The integer multiply instructions multiply GRi and GRj (immediate instruction: sign_ext (#s12)
or sign_ext (#s10)) and write the high-order 32 bits of the result in GRk and the low-order 32
bits in GRk+1.

The SMUL and SMULcc instructions calculate the product of signed integer word operands
and write a signed integer doubleword as the result.

The UMUL and UMULcc instructions calculate the product of unsigned integer word operands
and write an unsigned integer doubleword as the result.

The SMULcc and UMULcc instructions and their immediate instructions change the integer
condition code (ICC) specified by ICCi field.

register_exception (register not aligned) occur when the register number of GRk is an odd
number.

Registers altered (except destination register)

ICCi ... instructions with “cc” only

N |[Z |V |C
O |0 | X [X

Occurrence Exceptions

register_exception (unimplement_exception, register not_aligned)

Detected Exceptions

none

1

Instruction Set Reference

1.2.3. Multiply and Add / Subtract (These instructions are available for MB93405/MB93451.)

Ope-code op ope Operation
SMASS 1000110 | 000110 | Signed Multiply and Add with Signed Saturation
(64bit + 32bit x 32bit -> 64 bit)
SMSSS 1000110 | 000111 | Signed Multiply and Subtract with Signed
Saturation (64bit — 32bit x32bit -> 64bit)
Category
Integer

Instruction Format (SMASS,SMSSS)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi ope GRj
Assembler Syntax
SMASS GRi, GRj
SMSSS GRi, GRj
Description

SMASS multiplies the 32bit value in GRi and the 32bit value in GRj , then add the product
with the 64bit value in IACC. All operands are treated as signed values, to produce a 64bit
result. The result is placed into TACC. If the result is overflow as 64bit signed integer,
maximum value of 64bit signed integer is placed into IACC. (0x7FFFFFFFFFFFFFFF or
0x8000000000000000)
SMSSS multiplies the 32bit value in GRi and the 32bit value in GRj , then subtract the product
from the 64bit value in IACC. All operands are treated as signed values, to produce a 64bit
result. The result is placed into IACC. If the result is overflow as 64bit signed integer,
maximum value of 64bit signed integer is placed into IACC. (0x7FFFFFFFFFFFFFFF or
0x8000000000000000)

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

FRA400 Series Instruction Set Manual

1.2.4. Multiply to IACC (This instruction is available for MB93405/MB93451.)

Ope-code op ope Operation
SMU 1000110 | 000101 | Signed Multiply (32bit x 32bit -> 64 bit)
Category

Integer

Instruction Format (SMASS,SMSSS)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
- op GRi ope GRj

Assembler Syntax

SMU GRi, GRj

Description
SMU multiplies the 32bit value in GRi and the 32bit value in GRj.All operands are treated as
signed values, to produce a 64bit result. The result is placed into IACC.

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

1 Instruction Set Reference

1.2.5. Divide

Ope-code op ope Operation
SDIV 0000000 | 1110 Signed Integer Divide
UDIV 0000000 | 1111 Unsigned Integer Divide
SDIVI 0011110 - Signed Integer Divide (Immediate)
UDIVI 0011111 - Unsigned Integer Divide (Immediate)
Category

Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

GRi

ope

GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk op GRi #s12
Assembler Syntax
SDIV GRi, GRj, GRk
uDIV GRi, GRj, GRk
SDIVI GRi, #s12, GRk
UDIVI GRi, #s12, GRk
Description

The integer division instructions divide GRi by GR;j (immediate instruction: sign_ext (#s12))
and write the result in GRk. The surplus is not given as a result.
The SDIV instruction divides a signed integer word operand by a signed integer word operand

and writes a signed integer word as the result.

The result of 0x80000000/ (-1) in a SDIV instruction is Ox7fffffff in division exception mask
mode (ISR.EDEM=1), 0x80000000 in division exception detection mode.

Division_exception cannot be masked because Division exception mask mode is for only
overflow. The UDIV instruction divides an unsigned integer word operand by an unsigned
integer word operand and writes an unsigned integer word as the result.

The UDIVI instruction divides 32-bit signed integer which results from sign ext(#s12)
regarding as 32-bit unsigned integer.

Registers altered (except destination register)

none

Occurrence Exceptions

division_exception

register_exception (unimplement_exception)

FRA400 Series Instruction Set Manual

Detected Exceptions

none

10

1 Instruction Set Reference

1.2.6. Logical Operations
Ope-code op ope Operation
AND 0000001 | 0000 And
ANDcc 0000001 | 0001 And and ICC setting
OR 0000001 | 0010 Or
ORcc 0000001 | 0011 Or and ICC setting
XOR 0000001 | 0100 Xor
XORcc 0000001 | 0101 Xor and ICC setting
NOT 0000001 | 0110 Not
ANDI 0100000 - And (Immediate)
ANDIcc 0100001 - And and ICC setting (Immediate)
ORI 0100010 - Or (Immediate)
ORIce 0100011 - Or and ICC setting (Immediate)
XORI 0100100 - Xor (Immediate)
XORIce 0100101 - Xor and ICC setting Immediate)
Category
Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4

32

GRk

op

GRi - ope GRj

Instruction Format (NOT Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4

32

GRk

op

ope GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2

GRk

op

GRi #s12

Instruction Format (INT, Logic, Shift-cc Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4

32

GRk

op

GRi icci| ope GRj

Instruction Format (INT, Logic, Shift-cc Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2

1

GRk

op

GRi [CCi #s10

11

FRA400 Series Instruction Set Manual

Assembler Syntax

AND GRi, GRj, GRk
ANDce GRi, GRj, GRk, ICCi
OR GRi, GRj, GRk

ORce GRi, GRj, GRk, ICCi
XOR GRi, GRj, GRk
XORcc GRi, GRj, GRk, ICCi
NOT GRj, GRk

ANDI GRi, #s12, GRk
ANDIcc GRi, #s10, GRk, ICCi
ORI GRi, #s12, GRk
ORIce GRi, #s10, GRk, ICCi
XORI GRi, #s12, GRk

XORIcc GRi, #s10, GRk, ICCi

Description

The integer logical instructions execute logical operations on GRi and GRj bit by bit
(immediate instruction: GRi and sign_ext (#s12) or sign_ext (#s10)) and write the result in GRk.
The ANDcc, ORcc, and XORcc instructions and their immediate instructions change the
integer condition code (ICC) specified by ICCi field.

Registers altered (except destination register)

ICCi ... instructions with “cc” only
N |Z |V |C
O |0 | X |X

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

None

12

1 Instruction Set Reference

1.2.7. Shift (SLASS instruction is available for MB93405/MB93451.)
Ope-code op ope Operation
SLL 0000001 | 1000 Shift Left Logical
SLLcc 0000001 | 1001 Shift Left Logical and ICC setting
SRL 0000001 | 1010 Shift Right Logical
SRLcc 0000001 | 1011 Shift Right Logical and ICC setting
SRA 0000001 | 1100 Shift Right Arithmetic
SRAcc 0000001 | 1101 Shift Right Arithmetic and ICC setting
SLLI 0101000 - Shift Left Logical Immediate)
SLLIcc 0101001 Shift Left Logical and ICC setting (Immediate)
SRLI 0101010 Shift Right Logical (Immediate)
SRLIce 0101011 Shift Right Logical and ICC setting (Immediate)
SRAI 0101100 Shift Right Arithmetic Immediate)
SRAIcc 0101101 Shift Right Arithmetic and ICC setting
(Immediate)
SLASS 1000110 | 000010 | Shift Left Arithmetic with Signed Saturation
: SLASS is available for MB93405/MB93451.
Category
Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4

3210

GRk

op

GRi - ope GRj

Instruction Format (SLASS)

313029282726252423222120191817161514131211109 8 7 6 5 4

3210

GRk

op

GRi ope GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

GRi #s12

Instruction Format (INT, Logic, Shift-cc Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4

3210

GRk

op

GRi ICCi| ope GRj

Instruction Format (INT, Logic, Shift-cc Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 43 2 1 0

GRk

op

GRi ICCi #s10

13

FRA400 Series Instruction Set Manual

Assembler Syntax

SLL GRi, GRj, GRk
SLLcc GRi, GRj, GRk, ICCi
SRL GRi, GRj, GRk
SRLcc GRi, GRj, GRk, ICCi
SRA GRi, GRj, GRk
SRAcc GRi, GRj, GRk, ICCi
SLLI GRi, #s12, GRk
SLLIcc GRi, #s10, GRk, ICCi
SRLI GRi, #s12, GRk
SRLIcc GRi, #s10, GRk, ICCi
SRAI GRi, #s12, GRk

SRAIlcc GRi, #s10, GRk, ICCi
SLASS GRi, GRj, GRk

Description

The integer shift instructions shift GRi by the number of bits implied by the shift-count and
write the result in GRk. The shift-count is specified by the low-order 5 bits of GRj (immediate
instruction: sign_ext (#s12) or sign_ext (#s10)).

The SLL instruction shifts GRi to the left, replacing the vacated positions with zero.

The SRL instruction shifts GRi to the right, replacing the vacated positions with zero.

The SRA instruction shifts GRi to the right, replacing the vacated positions with the highest bit
of GRi.

The SLLcc SRLcc, and SRAcc instructions and their immediate instructions change the integer
condition code (ICC) specified by ICCi field.

Each bit of shift out is calculated in logical OR, and result in the C flag of ICC in SRAcc
instruction.

Each bit of shift out is calculate in logical OR, and result in the V flag of ICC in SLLcc
instruction.

SLASS shifts a 32bit value of GRi toward left at a 32bit value of GRj, and saturate,to pruduce a
32bit result. The result is placed into GRk. If the result is overflow as 32bit signed integer,
maximum value of 32bit signed interger placed into GRk. (0x7FFFFFFF or 0x80000000)

Registers altered (except destination register)

ICCi ... instructions with “cc” only

SRLcc,SRLIcc

N |Z |V |C

O |0 |X |X
SLLcc,SLLIcc

N |Z |V |C

O |0 |0 |X
SRAcc,SRAIcc

N |Z |V |C

O |0 |[X |O

Occurrence Exceptions

register_exception (unimplement_exception)

14

1 Instruction Set Reference

Detected Exceptions

none

15

FRA400 Series Instruction Set Manual

1.2.8. Byte Compare Instruction

Ope code op ope Operation
CMPB 0000000 | 1100 Byte Comparison and ICC field
CMPBA 0000000 | 1101 OR of Byte Comparison and ICC field
Category

Integer

Instruction format (INT, Logic, Shift-cc operation (R — R))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
- op GRi ICCi| ope GRj

Assembler description

CMPB GRi,GRj,ICCH
CMPBA GRi,GRj,ICCi

Description

The CMPB instruction compares GRiy with GRjy; when they match, the instruction writes 1 to
ICCi.n; when they do not match, the instruction writes 0 to ICCi.n. Simultaneously, the
instruction compares GRi; with GRj;, and when they match, the instruction writes 1 to ICCi.z;
when they do not match, the instruction writes 0 to ICCi.z. Simultaneously, the instruction
compares GRi, with GRj,, and when they match, the instruction writes 1 to ICCi.v; when they
do not match, the instruction writes 0 to ICCi.v. Simultaneously, the instruction compares
GRi; with GRj;, and when they match, the instruction writes 1 to ICCi.c; when they do not
match, the instruction writes 0 to ICCi.c.

The CMPBA instruction compares GRiy with GRjp; GRi; with GRj;; GRi, with GRj,; and GRi;
with GRj;, respectively; when there is at least one match, the instruction writes 1 to ICCi.c;
when there is no match at all, the instruction writes 0 to ICCi.c. The instruction writes 0 to
ICCi.n, ICCi.z, and ICCl.v.

Indexes used for GRi and GRj show the byte locations in the register. The relationship between
byte location and bit position is shown below:

GRi0 = GRi (bit 31 to bit 24), GRil = GRi (bit 23 to bit 16)
GRi2 = GRi (bit 15 to bit 8), GRi3 = GRi (bit 7 to bit 0)
Note: The same relationship also applies to GRj.

Registers altered (except destination register)

None

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

None

16

1 Instruction Set Reference

1.2.9. Accumulator Cut Instruction (This instruction is available for MB93405/MB93451.)

Ope code op ope Operation
SCUTSS 1000110 | 000100 Signed Cut with Signed Saturation (Immediate)
Category

Integer

Instruction format (SCTUTSS)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

ope GRj

Assembler description

SCUTSS GRj,GRk

Description

SCUTSS round the 64bit value of lacc with bit_position of 7bit signed value of GRj, and cut
and saturate, to pruduce a 32bit result. The result is placed into GRk. At round phase, if (32-
bit_posion)th bit of Iacc is 'l', 2°(32-bit position) is added to TACC. At cut phase, if
bit_position is minus vlaue, the value of IACC is entended with sign bit. At saturation phase, if
the result is overflow as 32bit signed integer, maximum value of 32bit signed interger placed
into GRk. (0x7FFFFFFF or 0x80000000)

Ex.
IACC : FFFFFEDC BA987654
GRj : 16(00000010)
GRk : FEDCBA98
IACC : FFFFFEDC BA987654
GRj : 12(0000000c¢)
GRk : FFEDCBAA
IACC : FFFFFEDC BA987654
GRj : -4(FFFFFFFC)
GRk : FFFFFFEE
IACC : FFFFFEDC BA987654
GRj : 24(00000018)
GRk : 80000000

: without round_increment, saturation case

: with round_increment case

: with sign extention case

: with saturation case

Registers altered (except destination register)

None

Occurrence Exceptions

register_exception (unimplement_exception)

17

FRA400 Series Instruction Set Manual

Detected Exceptions

None

18

1 Instruction Set Reference

1.3. Load/Store Instructions
1.3.1. Load GR
Ope-code op ope Operation
LDSB 0000010 | 000000 | Load Signed Byte
LDUB 0000010 | 000001 | Load Unsigned Byte
LDSH 0000010 | 000010 | Load Signed Halfword
LDUH 0000010 | 000011 | Load Unsigned Halfword
LD 0000010 | 000100 | Load Word
LDD 0000010 | 000101 | Load Double
LDSBU 0000010 | 010000 | Load Signed Byte with Update Index
LDUBU 0000010 | 010001 | Load Unsigned Byte with Update Index
LDSHU 0000010 | 010010 | Load Signed Halfword with Update Index
LDUHU 0000010 | 010011 | Load Unsigned Halfword with Update Index
LDU 0000010 | 010100 | Load Word with Update Index
LDDU 0000010 | 010101 | Load Double with Update Index
LDSBI 0110000 - Load Signed Byte (Immediate)
LDSHI 0110001 Load Signed Halfword (Immediate)
LDI 0110010 Load Word (Immediate)
LDDI 0110011 Load Double (Immediate)
LDUBI 0110101 Load Unsigned Byte (Immediate)
LDUHI 0110110 Load Unsigned Halfword (Immediate)
Category

Integer

Instruction Format (Load/Store (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

GRi ope GRj

Instruction Format (Load/Store (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 43 2 1 0

GRk

op

GRi di2

Assembler Syntax

LDSB
LDUB
LDSH
LDUH
LD
LDD
LDSBU

@(GRi, GRj), GRk
@(GRi, GRj), GRk
@(GRi, GRj), GRk
@(GRi, GRj), GRk
@(GRi, GRj), GRk
@(GRi, GRj), GRk
@(GRi, GRj), GRk

19

FRA400 Series Instruction Set Manual

LDUBU @(GRi, GRj), GRk
LDSHU @(GRi, GRj), GRk
LDUHU @(GRi, GRj), GRk
LDU @(GRi, GRj), GRk
LDDU @(GRi, GRj), GRk
LDSBI @(GRi, d12), GRk
LDUBI @(GRi, d12), GRk
LDSHI @(GRi, d12), GRk
LDUHI @(GRi, d12), GRk
LDI @(GRi, d12), GRk
LDDI @(GRi, d12), GRk

Description

The integer Load instructions calculate “GRi + GRj” as an effective address (immediate
instruction: “GRi + sign_ext (d12)”) and copy data from memory to a general-purpose register
(GR). Byte or halfword data is written in the GRk register which is right-justified and it is
either sign-extended or zero-extended on the left, depending on whether or not the opecode
specifies a signed or unsigned operation, respectively. In doubleword Load instruction, it is
necessary to set the register number of GRk as an even number with software, and the high-
order word is written in the even register and the low-order word in the odd. (sign_ext(X): X
extended with a sign)

An instruction with “update” form calculates “GRi + GRj” as an effective address and writes
the result in GRi.

The mem_address not aligned exception occurs when the effective address is not aligned on a
halfword boundary in halfword Load instruction, when it is not aligned on a word boundary in
word Load instruction or when it is not aligned on a doubleword boundary in doubleword Load
instruction.

The register_exception (register not aligned) exception occurs when the register number of
GRk is not an even number in doubleword Load instruction.

When an imprecise exception occurs in the Load with Update Index instruction, it completes to
write the effective address in GRi and it does not complete to copy data from memory
indicating by the effective address to GRk.

Operation example

LDSHU @(GRi,GRj),GRk

GRi Start 1000 +—> +“ =
completed 1002 < 1

Reads data (0x89AB)

+— referring to memory of found

address (IOOZT

GRj

N

A

GRk completed OxFFFF89AB

Registers altered (except destination register)

GRIi ... Instruction with “update” form only

Occurrence Exceptions

mem_address_not aligned (except byte Load instruction)

20

1 Instruction Set Reference

data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception, register not_aligned)

Detected Exceptions

none

21

FRA400 Series Instruction Set Manual

1.3.2. Load FR

Ope-code op ope Operation

LDBF 0000010 | 001000 | Load Byte FR register
LDHF 0000010 | 001001 | Load Halfword FR register
LDF 0000010 | 001010 | Load FR register

LDDF 0000010 | 001011 | Load Double FR register

LDBFU 0000010 | 011000 | Load Byte FR register with Update Index

LDHFU 0000010 | 011001 | Load Halfword FR register with Update Index

LDFU 0000010 | 011010 | Load FR register with Update Index

LDDFU 0000010 | 011011 | Load Double FR register with Update Index

LDBFI 0111000 Load Byte FR register (Immediate)
LDHFI 0111001 - Load Halfword FR register (Immediate)
LDFI 0111010 - Load FR register Immediate)
LDDFI 0111011 - Load Double FR register Immediate)
Category

Integer

Instruction Format (Load/Store (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op GRi ope GRj

Instruction Format (Load/Store (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op GRi d12

Assembler Syntax

LDBF @(GRi, GRj), FRk
LDHF @(GRi, GRj), FRk
LDF @(GRi, GRj), FRk
LDDF @(GRi, GRj), FRk

LDBFU @(GRi, GRj), FRk
LDHFU @(GRi, GRj), FRk
LDFU @(GRi, GRj), FRk
LDDFU @(GRi, GRj), FRk
LDBFI @(GRi, d12), FRk
LDHFI @(GRi, d12), FRk
LDFI @(GRi, d12), FRk
LDDFI @(GRi, d12), FRk

Description

The floating-point Load instructions calculate “GRi + GR;j” as an effective address (immediate
instruction: “GRi + sign_ext (d12)”) and copy data from memory to FR.

22

1 Instruction Set Reference

The LDBF instruction copies byte data from memory to all byte positions of FR without a
signed extension.

The LDHF instruction copies halfword aligned data from memory to all halfword positions of
FR without a signed extension.

The LDF instruction copies word aligned data from memory to FR.

The LDDF instruction copies doubleword aligned data from memory to FRk and FRk+1.

An instruction with “update” form calculates “GRi + GRj” as an effective address and writes
the result in GRi.

The mem_address not_aligned exception occurs when the effective address is not aligned on a
halfword boundary in halfword Load instruction, when it is not aligned on a word boundary in
word Load instruction, when it is not aligned on a doubleword boundary in doubleword Load
instruction.

The register_exception (register not aligned) exception occurs when the register number of
FRk is not an even number in doubleword Load instruction.

When an imprecise exception occurs in the Load with Update Index instruction, it completes to
write the effective address in GRi and it does not complete to copy data from memory
indicating by the effective address to FRk.

Operation example
LDBFU @(GRi,GRj),FRk

GRi Start 1000 +—> +“ =
completed 1008 B l

Reads data (0x89) referring
to memory of found address

(1008) T

GRj

[ee}

A

FRk completed 0x89898989

Registers altered (except destination register)

GRi ... Instruction with update only

Occurrence Exceptions

fp_disabled

mem_address not_aligned

data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception, register not_aligned)

Detected Exceptions

none

23

FRA400 Series Instruction Set Manual

1.3.3. Store GR

Ope-code op ope Operation
STB 0000011 000000 | Store Byte
STH 0000011 000001 | Store Halfword
ST 0000011 000010 | Store Word
STD 0000011 000011 | Store Double
STBU 0000011 010000 | Store Byte with Update Index
STHU 0000011 010001 | Store Halfword with Update Index
STU 0000011 010010 | Store Word with Update Index
STDU 0000011 010011 | Store Double with Update Index
STBI 1010000 - Store Byte (Immediate)
STHI 1010001 - Store Halfword (Immediate)
STI 1010010 - Store Word (Immediate)
STDI 1010011 - Store Double (Immediate)
Category

Integer

Instruction Format (Load/Store (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 43 2 1 0
GRk op GRi ope GRj

Instruction Format (Load/Store (R-simm))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
GRk op GRi di2

Assembler Syntax

STB GRk, @(GRi, GRj)
STH GRk, @(GRi, GRj)
ST GRk, @(GRi, GRj)
STD GRk, @(GRi, GRj)
STBU GRk, @(GRi, GRj)
STHU GRk, @(GRi, GRj)
STU GRk, @(GRi, GRj)
STDU GRk, @(GRi, GRj)
STBI GRk, @(GRi, d12)
STHI GRk, @(GRi, d12)
STI GRk, @(GRi, d12)
STDI GRk, @(GRi, d12)
Description

The integer Store instructions calculate “GRi + GR;j” as an effective address (immediate
instruction: “GRi + sign_ext (d12)”) and copy data from a general-purpose register(GRk) into
memory. In doubleword Store instruction, it is necessary to set the register number of GRk as

24

1 Instruction Set Reference

an even number with software, and the high-order word is stored in memory from the even
register and the low-order word from the odd. (sign_ext (X): X extended with a sign)

An instruction with “update” form calculates “GRi + GRj” as an effective address and writes
the result in GRi.

The mem_address_not_aligned exception occurs when the effective address is not aligned on a
halfword boundary in halfword Store instruction, when it is not aligned on a word boundary in
word Store instruction or when it is not aligned on a doubleword boundary in doubleword Store
instruction.

The register_exception (register not aligned) occurs when the register number of GRk is an
odd number in doubleword Store instruction.

When an imprecise exception occurs in the Store with Update Index instruction, it completes to
write the effective address in GRi and it does not complete to copy data from GRk to memory
indicating by the effective address.

Operation example
STU GRk,@(GRi,GRj)

GRi Start 1000 +—> +“ =
completed 1002 < 1

Writes data of GRk to found

+— address (1002)

GRj

N

GRk 0x12345678 +

Registers altered (except destination register)

GRi ... Instruction with update only

Occurrence Exceptions

mem_address_not_aligned (except byte Store)
data_access_exception

data_access MMU_miss

data_access_error

data_store error

register_exception (unimplement exception, register not aligned)

Detected Exceptions

none

25

FRA400 Series Instruction Set Manual

1.3.4. Store FR

Ope-code op ope Operation
STBF 0000011 001000 | Store Byte FR register
STHF 0000011 001001 | Store Halfword FR register
STF 0000011 001010 | Store FR register
STDF 0000011 001011 | Store Double FR register
STBFU 0000011 011000 | Store Byte FR register with Update Index
STHFU 0000011 011001 | Store Halfword FR register with Update Index
STFU 0000011 011010 | Store FR register with Update Index
STDFU 0000011 011011 | Store Double FR register with Update Index
STBFI 1001110 - Store Byte FR register (Immediate)
STHFI 1001111 - Store Halfword FR register (Immediate)
STFI 1010101 - Store FR register (Immediate)
STDFI 1010110 - Store Double FR register (Immediate)
Category

Integer

Instruction Format (Load/Store (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op GRi ope GRj

Instruction Format (Load/Store (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op GRi d12

Assembler Syntax

STBF FRk, @(GRi, GRj)
STHF FRk, @(GRi, GRj)
STF FRk, @(GRi, GRj)
STDF FRk, @(GRi, GRj)

STBFU FRk, @(GRi, GRj)
STHFU FRk, @(GRi, GRj)
STFU FRk, @(GRi, GRj)
STDFU FRk, @(GRi, GRj)
STBFI FRk, @(GRi, d12)
STHFI FRk, @(GRi, d12)
STFI FRk, @(GRi, d12)
STDFI FRk, @(GRi, d12)

Description

The floating-point Store instructions calculate “GRi + GRj” as an effective address (immediate
instruction: “GRi + sign_ext (d12)”’) and copy data from FRk into memory.

26

1 Instruction Set Reference

The STBEF instruction copies the lowest-order byte of FR to memory.

The STHF instruction copies low-order halfword data of FR to memory.

The STF instruction copies word data from FR to memory.

The STDF instruction copies doubleword data from FRk and FRk+1 to memory.

An instruction with “update” form calculates “GRi + GRj” as an effective address and writes
the result in GRi.

The mem_address_not aligned exception occurs when the effective address is not aligned on a
halfword boundary in halfword Store instruction, when it is not aligned on a word boundary in
word Store instruction or when it is not aligned on a doubleword boundary in doubleword Store
instruction.

When an imprecise exception occurs in executing the Store with Update Index instruction, it
completes to write the effective address in GRi and it does not complete to copy data from FRk
to memory indicated by the effective address.

Operation example

STDFU FRk,@(GRi,GRj)

GRi Start 1000 +—> +“ = m
completed 1008

Writes data of FRk and
GRj 8 +— FRk+1 to found address
(1008)
+0) T
FRk 0x12345678
+1

0x9abcdef0

Registers altered (except destination register)

GRi ... Instruction with update only

Occurrence Exceptions

fp_disabled

mem_address_not_aligned

data_access_exception

data_access MMU_miss

data_access_error

data_store error

register_exception (unimplement_exception, register not_aligned)

Detected Exceptions

none

27

FRA400 Series Instruction Set Manual

1.4. Data transfer Instructions

14.1. Swap

Ope-code op ope Operation
SWAP 0000011 000101 | SWAP register with memory
SWAPI 1001101 - SWAP register with memory (Immediate)
Category
Control

Instruction Format (Load/Store (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

GRi

ope

GRj

Instruction Format (Load/Store (R-simm))

313029282726252423222120191817161514131211109 8 7 6 543 2 1 0

GRk

op

GRi

di2

Assembler Syntax

SWAP

SWAPI

Description

The swap instructions calculates “GRi+GRj* as an effective address (Immediate instruction:
“GRitsign_ext (d12)”) and exchange the contents of GRk with the contents of the word
addressed memory location.The operation is performed atomically, that is, without allowing
intervening interrupts. In a multiprocessor system, two or more processors executing SWAP or
atomic Load-Store instruction addressing the same word or byte simultaneously are guaranteed

@(GRi, GRj), GRk

@(GRi, d12), GRk

to be executed without allowing intervening.

The mem_address not aligned exception occurs when the effective address is not aligned on a

word boundary.

Operation example

SWAP @(GRi,GRj),GRk

GRi

GRj

GRk

Start

completed

1000

|

+

i

Reads data of found address

(1000)

and writes data of GRk.
Others can't access while
reading and writing.

—

R

1 Instruction Set Reference

Registers altered (except destination register)

none

Occurrence Exceptions

mem_address not_aligned
data_access_exception

data_access MMU_miss

data_access_error

data_store error

register_exception (unimplement_exception)

Detected Exceptions

none

29

FRA400 Series Instruction Set Manual

1.4.2. Move

Ope-code op ope Operation

MOVGF 0000011 | 010101 | Move GR to FR
MOVGFD 0000011 | 010110 | Move GR to FR Double
MOVFG 0000011 | 001101 | Move FR to GR
MOVFGD 0000011 | 001110 | Move FR to GR Double
MOVGS(*1) | 0000011 | 000110 | Move GR to SPR
MOVSG(*1) | 0000011 | 000111 | Move SPR to GR

(*1) privileged instruction if source register or destination register is privileged.

Category
Integer, Control (MOVGS, MOVSG)

Instruction Format (Register transfer instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op sr ope GRj

Assembler Syntax

MOVGF GRj, FRk

MOVGFD GRj, FRk

MOVFG FRk, GRj

MOVFGD FRk, GRj

MOVGS GRj, SPR

MOVSG SPR, GRj

(“SPR” in assembler syntax is 12 bits field concatenating the FRk field and the sr field,
following FRk with sr, in MOVGS instruction and MOVSG instruction.)

Description

The register transfer instructions copy the contents between GR, FR, and SPR.

The instruction MOVGF copies the contents of GRj to FRk.

The instruction MOVGEFD copies the contents of GRj to FRk and from GRj+1 to FRk+1

The instruction MOVFG copies the contents of FRk to GR;j.

The instruction MOVFGD copies the contents of FRk to GRj and from FRk+1 to GRj+1

The instruction MOVGS copies the contents of GRj to SPR.

The instruction MOVSG copies the contents of SPR to GR;.

The register _exception (register not_aligned) occurs when the register number of FRk or GRj
is an odd number in doubleword transfer.

Registers altered (except destination register)

nonc

Occurrence Exceptions
fp_disabled
register_exception (unimplement_exception, register not_aligned)
privileged instruction

30

1 Instruction Set Reference

Detected Exceptions

none

31

FRA400 Series Instruction Set Manual

1.5. Control transfer Instructions

1.5.1. Integer Conditional Branch

Ope-code op Operation
Bicc 0000110 Integer Conditional Branch
Category

Branch

Instruction Format (Branch instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond | ICCi op label 16
#hint

Assembler Syntax

Bicc ICCi, #hint, label16
BEQ 1 Z==1
BNE 1 Z==0
BLE 1 (Z or(N xor V))==
BGT 1 (Z or (N xor V))==0
BLT : (N xor V)=—=
BGE : (N xor V)==0
BLS :(CorZ2)==

BHI :(CorZ)==0
BC : C==1
BNC :C==0
BN :N==1
BP : N==0
BV :V==1
BNV 1 V==0

BNO

BRA labell6

Description

The Integer Conditional Branch instruction evaluates the #cond field of ICCi, according to the
#cond field of the instruction.

When the evaluation is true, the instruction cause control transfer to the address “PC + (4 x
sign_ext (label 16))”. When the evaluation is false, the branch is not taken.

The #hint bit is 2bit field which is set by software, and the hint bit is used for a branch
prediction. When there is a high probability of branching, you should specify 2 to #hint. When
there is not much probability of branching, you should specify 0 to #hint.

The following table is shown the evaluation condition of ICCi indicating by #cond field.

32

1

Instruction Set Reference

Table 1 #cond field and pseudo opecode

Pseudo opecode | cond mean ICC test
BEQ 0100 Branch Equal Z
BNE 1100 Branch Not Equal not Z
BLE 0111 Branch Less or Equal Z or (N xor V)
BGT 1111 Branch Greater Not (Z or (N xor
V)
BLT 0011 Branch Less N xor V
BGE 1011 Branch Greater or Equal Not (N xor V)
BLS 0101 Branch Less or Equal Unsigned CorZ
BHI 1101 Branch Greater Unsigned Not (C or 7)
BC 0001 Branch Carry Set C
BNC 1001 Branch Carry Clear Not C
BN 0110 Branch Negative N
BP 1110 Branch Positive Not N
BV 0010 Branch Overflow Set \Y
BNV 1010 Branch Overflow Clear Not V
BNO 0000 Branch Never 0
BRA 1000 Branch Always 1

Registers altered (except destination register)

none

Occurrence Exceptions

nonc

Detected Exceptions

none

33

FRA400 Series Instruction Set Manual

1.5.2. Floating-point / media Conditional Branch

Ope-code op Operation
FBfcc 0000111 Floating-point/Media Conditional Branch
Category

Branch

Instruction Format (Branch instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
#cond |FCCi op label 16
#hint

Assembler Syntax

FBfcc FCCi, #hint, labell6
FBNE :(LorGorU)==I
FBEQ s E==1
FBLG :(LorG==1
FBUE :(EorU)==1
FBUL :(LorU)==1
FBGE :(Eor G)=—=
FBLT :L==1
FBUGE :(EorGorU)==1
FBUG (GorU)=—=

FBLE :L==1

FBGT 1 G==1

FBULE :(EorL or G=1

FBU :U==1

FBO :(EorLor G==1
FBNO

FBRA labell6

Description

The floating-point / media Conditional Branch instruction evaluates the #cond field of FCCi,
according to the #cond field of the instruction.

When the evaluation is true, the instruction cause control transfer to the address “PC + (4 x
sign_ext (label 16))”. When the evaluation is false, the branch is not taken.

The #hint bit is 2-bit field which is set by software, and the hint bit is used for a branch
prediction. When there is a high probability of branching, you should specify 2 to #hint. When
there is not much probability of branching, you should specify 0 to #hint.

The following table is shown the evaluation condition of FCCi indicating by #cond field.

34

1

Instruction Set Reference

Table 2 #cond field and pseudo opecode

Pseudo opecode | #cond mean FCC test
FBNE 0111 Branch Not Equal LorGorU
FBEQ 1000 Branch Equal E

FBLG 0110 Branch Less or Greater LorG
FBUE 1001 Branch Unordered or Equal EorU
FBUL 0101 Branch Unordered or Less LorU
FBGE 1010 Branch Greater or Equal EorG
FBLT 0100 Branch Less L

FBUGE 1011 Branch Unordered or Greater or Equal EorGorU
FBUG 0011 Branch Unordered or Greater GorU
FBLE 1100 Branch Less or Equal EorL
FBGT 0010 Branch Greater G

FBULE 1101 Branch Unordered or Less or Equal EorLorU
FBU 0001 Branch Unordered U

FBO 1110 Branch Ordered EorLor G
FBNO 0000 Branch Never 0

FBRA 1111 Branch Always 1

Registers altered (except destination register)

none

Occurrence Exceptions

fp_disabled

Detected Exceptions

none

35

FRA400 Series Instruction Set Manual

1.5.3. LCR Conditional Branch to LR

Ope-code Op ope Operation
BetrLR 0001110 001 LCR Conditional Branch to LR
Category

Branch

Instruction Format (Branch instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
. - op #hint | °P¢€ -
t#ccond

Assembler Syntax
BcetrLR #ccond, #hint

Description

BcetrLR instruction decrements the LCR and evaluates the condition shown by the following
table. When the evaluation is true, the instruction cause control transfer to the address stored in
the LR. When the evaluation is false, the branch is not taken.

Table 3 #ccond field and evaluation condition of LCR

#ccond Operation LCR test
0 Branch if LCR =0 LCR!=0
1 Branch if LCR =0 LCR=0

Registers altered (except destination register)

nonec

Occurrence Exceptions

none

Detected Exceptions

nonec

36

1 Instruction Set Reference

1.5.4. Integer conditional Branches to LR

Ope-code op ope Operation
BiccLR 0001110 010 Integer Conditional Branch to LR
BCiccLR 0001110 011 Integer and LCR Conditional Branch to LR
Category

Branch

Instruction Format (Branch instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond op ope -
ICCi #hint #ccond

Assembler Syntax
BiccLR ICCi, #hint

BEQLR :Z==1

BNELR :Z==0

BLELR :(Z or (N xor V))==

BGTLR 1 (Z or (N xor V))==0

BLTLR : (N xor V)==

BGELR : (N xor V)==0

BLSLR :(Cor Z)==

BHILR :(CorZy==0

BCLR 1 C==1

BNCLR :C==0

BNLR :N==

BPLR : N==0

BVLR : V=

BNVLR 1 V==0
BNOLR
BRALR

37

FRA400 Series Instruction Set Manual

BCiccLR ICCi, #ccond, #hint

BCEQLR :Z==1
BCNELR :Z==0
BCLELR :(Z or (N xor V))==
BCGTLR : (Z or (N xor V))==0
BCLTLR (N xor V)=
BCGELR : (N xor V)=0
BCLSLR :(Cor Z)y==
BCHILR :(CorZy==0
BCCLR 1 C==
BCNCLR :C==0
BCNLR :N==1
BCPLR s N==0
BCVLR 1 V=1
BCNVLR :V==0

BCNOLR

BCRALR #ccond

Description

BiccLR instruction evaluates the #cond field of ICCi, according to the #cond field of the
instruction. When the evaluation is true, the instruction cause control transfer to the address
stored in the LR. When the evaluation is false, the branch is not taken.

BCiccLR instruction decrements the LCR and evaluates the condition shown Table 4 and also
evaluates the #cond field of ICCi, according to the #cond field of the instruction. When the
both evaluations are true, the instruction cause control transfer to the address stored in the LR.
When the either condition is false, the branch is not taken.

Even if the Integer conditional Branch to LR Instructions and another branch instructions are in
a same VLIW instruction and the condition of another branch instructions are true, the
decrement of LCR in Integer condition Branch to LR instruction is executed.

The #hint bit is 2-bit field which is set by software, and the hint bit is used for a branch
prediction. When there is a high probability of branching, you should specify 2 to #hint. When
there is not much probability of branching, you should specify 0 to #hint.

Registers altered (except destination register)

nonec

Occurrence Exceptions

none

Detected Exceptions

none

38

1 Instruction Set Reference

Table 4 #ccond field and evaluation condition of LCR

#ccond | Operation LCR test
0 Branch if LCR =0 LCR =0
1 Branch if LCR =0 LCR=0

Table 5 #cond field and pseudo opecode

Pseudo opecode ope | #cond Operation ICC test
BEQLR 010 | 0100 Branch Equal to LR Z
BNELR 010 | 1100 Branch Not Equal to LR Not Z
BLELR 010 | 0111 Branch Less or Equal to LR Z or (N xor V)
BGTLR 010 | 1111 Branch Greater to LR Not (Z or (N xor

V)
BLTLR 010 | 0011 Branch Less to LR N xor V
BGELR 010 | 1011 Branch Greater or Equal to LR Not (N xor V)
BLSLR 010 | 0101 Branch Less or Equal Unsigned to LR CorZ
BHILR 010 | 1101 Branch Greater Unsigned to LR Not (C or Z)
BCLR 010 | 0001 Branch Carry Set to LR C
BNCLR 010 | 1001 Branch Carry Clear to LR Not C
BNLR 010 | 0110 Branch Negative to LR N
BPLR 010 | 1110 Branch Positive to LR Not N
BVLR 010 | 0010 Branch Overflow Set to LR \Y
BNVLR 010 | 1010 Branch Overflow Clear to LR NotV
BNOLR 010 | 0000 Branch Never to LR 0
BRALR 010 | 1000 Branch Always to LR 1
BCEQLR 011 | 0100 Branch LCR and Equal to LR 4
BCNELR 011 | 1100 Branch LCR and Not Equal to LR Not Z
BCLELR 011 | 0111 Branch LCR and Less or Equal to LR Z or (N xor V)
BCGTLR 011 | 1111 Branch LCR and Greater to LR Not (Z or (N xor
V)
BCLTLR 011] 0011 Branch LCR and Less to LR NxorV
BCGELR 011 | 1011 Branch LCR and Greater or Equal to LR | Not (N xor V)
BCLSLR 011 | 0101 Branch LCR and Less or Equal Unsigned | C or Z
to LR

BCHILR 011 | 1101 Branch LCR and Greater Unsigned to LR | Not (C or Z)
BCCLR 011 | 0001 Branch LCR and Carry Set to LR C
BCNCLR 011 | 1001 Branch LCR and Carry Clear to LR Not C
BCNLR 011 | 0110 Branch LCR and Negative to LR N
BCPLR 011 | 1110 Branch LCR and Positive to LR Not N
BCVLR 011 | 0010 Branch LCR and Overflow Set to LR \
BCNVLR 011 | 1010 Branch LCR and Overflow Clear to LR NotV
BCNOLR 011 | 0000 Branch LCR and Never to LR 0
BCRALR 011 | 1000 Branch LCR and Always to LR 1

39

FRA400 Series Instruction Set Manual

1.5.5. Floating-point/Media Branches to LR

Ope-code Op ope Operation
FBfccLR 0001110 110 Floating-point/Media Conditional Branch to LR
FCBfccLR 0001110 111 Floating-point/Media and LCR Conditional Branch to LR
Category

Branch

Instruction Format (Branch instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond

op

ope -

FCCi

Assembler Syntax

FBfccLR FCCi, #hint
:(Lor GorU)==1

FBNELR
FBEQLR
FBLGLR
FBUELR
FBULLR
FBGELR
FBLTLR
FBUGELR
FBUGLR
FBLELR
FBGTLR
FBULELR
FBULR
FBOLR

FBNOLR

FBRALR

:E==

:(Lor G)=—=
:(EorU)=—=
:(LorU)==
:(E or G)==1

L==1

#hint #ccond

:(EorGor U)=—=
:(GorU)==
:(EorL)=—=

:G==

:(EorL or U)==

U=

:(EorL or G==

40

1 Instruction Set Reference

FCBfccLR FCCi, #ccond, #hint
FCBNELR :(LorGorU)==1
FCBEQLR : E==1
FCBLGLR :(Lor G==
FCBUELR :(EorU)==
FCBULLR :(LorU)=
FCBGELR :(Eor G)=—=
FCBLTLR ==
FCBUGELR :(EorGorU)==
FCBUGLR :(GorU)==
FCBLELR :(EorL)==
FCBGTLR :G==1
FCBULELR :(EorLorU)==1

FCBULR :U==1
FCBOLR :(EorLor G=—
FCBNOLR

FCBRALR #ccond

Description

FBfccLR instruction evaluates the #cond field of FCCi, according to the pseudo opecode shown
by Table 7. When the evaluation is true, the instruction cause control transfer to the address
stored in the LR. When the evaluation is false, the branch is not taken.

FCBfccLR instruction decrements the LCR and evaluates the condition shown by Table 6 and
also evaluates the #cond field of FCCi, according to the pseudo opecode shown by Table 7.
When the both evaluations are true, the instruction cause control transfer to the address stored
in the LR. When the either condition is false, the branch is not taken.

Even if the Floating-point/Media Branch instruction to LR Instructions and other branch
instructions are in the same VLIW instruction and the condition of the other branch instructions
are true, the decrement of LCR in the FCBfccLR instruction is executed.

The #hint is 2-bit field which is set by software, and the hint bit is used for a branch prediction.
When there is a high probability of branching, you should specify 2 to #hint. When there is not
much probability of branching, you should specify 0 to #hint.

Registers altered (except destination register)

nonec

Occurrence Exceptions

fp_disabled

Detected Exceptions

nonc

41

FRA400 Series Instruction Set Manual

Table 6 #ccond field and evaluation condition of LCR

#ccond Operation LCR test
0 Branch if LCR!=0 LCR!=0
1 Branch if LCR =0 LCR=0

Table 7 #cond field and pseudo opecode

Pseudo opecode | ope | #cond | Operation FCC test
FBNELR 110 | 0111 Branch Not Equal to LR LorGorU
FBEQLR 110 | 1000 Branch Equal to LR E
FBLGLR 110 | 0110 Branch Less or Greater to LR LorG
FBUELR 110 | 1001 Branch Unordered or Equal to LR EorU
FBULLR 110 | 0101 Branch Unordered or Less to LR LorU
FBGELR 110 | 1010 Branch Greater or Equal to LR EorG
FBLTLR 110 | 0100 Branch Less to LR L
FBUGELR 110 | 1011 Branch Unordered or Greater or Equal | E or G or U

to LR
FBUGLR 110 | 0011 Branch Unordered or Greater to LR GorU
FBLELR 110 | 1100 Branch Less or Equal to LR EorL
FBGTLR 110 | 0010 Branch Greater to LR G
FBULELR 110 | 1101 Branch Unordered or Less or Equalto | Eor L or U
LR
FBULR 110 | 0001 Branch Unordered to LR U
FBOLR 110 | 1110 Branch Ordered to LR EorL or G
FBNOLR 110 | 0000 Branch Never to LR 0
FBRALR 110 | 1111 Branch Always to LR 1
FCBNELR 111 | 0111 Branch LCR and Not Equal to LR LorGorU
FCBEQLR 111 | 1000 Branch LCR and Equal to LR E
FCBLGLR 111 | 0110 Branch LCR and Less or Greater to LorG
LR
FCBUELR 111 | 1001 Branch LCR and Unordered or Equal | E or U
to LR
FCBULLR 111 | 0101 Branch LCR and Unordered or Lessto | L or U
LR
FCBGELR 111 | 1010 Branch LCR and Greater or Equal to EorG
LR
FCBLTLR 111 | 0100 Branch LCR and Less L
FCBUGELR 111 | 1011 Branch LCR and Unordered or Greater | E or G or U
or Equal to LR
FCBUGLR 111 | 0011 Branch LCR and Unordered or Greater | G or U
to LR
FCBLELR 111 | 1100 Branch LCR and Less or Equalto LR | Eor L
FCBGTLR 111 | 0010 Branch LCR and Greater to LR G
FCBULELR 111 | 1101 Branch LCR and Unordered or Less or | Eor L or U
Equal
FCBULR 111 | 0001 Branch LCR and Unordered U
FCBOLR 111 | 1110 Branch LCR and Ordered EorL or G
FCBNOLR 111 | 0000 Branch LCR and Never to LR 0
FCBRALR 111 | 1111 Branch LCR and Always to LR 1

42

1

Instruction Set Reference

1.5.6. Jump and Link

Ope-code Op Operation
JMPL 0001100 Jump and Link
JMPIL 0001101 Jump (Immediate) and Link
Category
Integer

Instruction Format (Jmp instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi - GRj

LI

Instruction Format (Jmp instruction (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi di2
LI
Assembler Syntax
JMPL @(GR1,GRj) (In case LI=0)
CALLL @(GR1,GRj) (In case LI=1)
JMPIL @(GRi,d12) (In case LI=0)
CALLIL @(GRi,d12) (In case LI=1)

Description

The JMPL instructions execute the unconditional branch to the branch target address given by
“GRi+GRj” (Immediate: “GRitsign_ext (d12)”)

When the LI field is ‘1°, the JMPL (CALLL or CALLIL) instruction writes the PC value of the
first instruction of next VLIW instruction to LR. When the LI field is ‘0, it does not write the
value to the LR.

Even if the branch target address is not aligned on word boundary, the
mem_address not_aligned exception doesn't occur. In this case, the low-order bits below the
word boundary in the branch target address are "0".

Registers altered (except destination register)

LR

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

43

FRA400 Series Instruction Set Manual

1.5.7. Call

Ope-code op Operation
CALL 0001111 Call and Link
Category

Branch

Instruction Format (Call instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 43 2 1 0
labelH6 op labelL 18

Assembler Syntax

CALL label24
(label 24 is 24 bits fields concatenating the labelH6 field and the labelL18 in the CALL
instruction.)

Description

The CALL instruction executes the unconditional PC relative control transfer to the address
“PC + (4 x sign_ext (label 24))”, and writes the PC value of the first instruction in the next
VLIW instruction in LR.
The PC relative displacement is 26-bit width which is following disp 24 field with 0 as 2-bit
value.

Registers altered (except destination register)

LR

Occurrence Exceptions

nonec

Detected Exceptions

none

44

1 Instruction Set Reference

1.5.8. Return from Trap

Ope-code op Operation
RETT 0000101 Return from Trap
Category

Privileged Control

Instruction Format (Return from Trap instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- d op - - -

Assembler Syntax

RETT #d

Description

The RETT instruction is used for returning from a trap handler.
When an exception does not occur and the d field is 0 in the normal running mode, the RETT
instruction

1) executes unconditional control transfer to the target address in PCSR register.

2) restores the S field of PSR from the PS field of PSR.

3) sets the ET field of PSR to ‘1°
When the d field is 1, the RETT instruction

1) executes unconditional control transfer to the target address, which is calculated by

lower 2 bits of BPCSR register defined to 0.

2) restores the S field of PSR from the BS field of BPSR.

3) restores the ET field of PSR from the BET field of BPSR.

4) Transfers the processor mode to normal running mode from debug running mode.
The following exception may occur when a RETT instruction executed
The privileged instruction exception occurs when the trap is permitted (PSR.ET=1) and the
processor executes in the user-mode (PSR.S=0).
It transits in the HALT mode when the trap is permitted (PSR.ET=1) and the processor
executes in super-visor mode (PSR.S=1).
It transits in the HALT mode when the trap is inhibit (PSR.ET=0) and the processor executes in
the usr-mode (PSR.S=0).

Registers altered (except destination register)
PSR

Occurrence Exceptions

privileged instruction

Detected Exceptions

none

45

FRA400 Series Instruction Set Manual

1.5.9. Integer Conditional Trap

Ope-code op Ope | Operation
Ticc 0000100 00 Integer Conditional Trap
Tlicc 0011100 - Integer Conditional Trap (Immediate)
Category
Control

Instruction Format (Trap instruction (R-R))

313029 282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
#cond |[ICCi op GRi1 — ope GRj
Instruction Format (Trap instruction (R-simm))
31302928 2726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
#cond |[ICCi op GRi #s12
Assembler Syntax
Ticc ICCi, GRi, GRj
TEQ 1 Z==1
TNE : 7Z==0
TLE :(Z or (N xor V))==
TGT : (Z or (N xor V))==0
TLT : (N xor V)==
TGE : (N xor V)==0
TLS :(Cor Z)==
THI :(CorZ)y==0
TC : C==1
TNC :C==0
TN :N==
TP :N==0
TV V=
TNV ==(
TNO
TRA GRi, GRj

46

1 Instruction Set Reference

Tlicc ICCi, GRi, #s12
TIEQ :Z==
TINE : Z==0
TILE :(Z or (N xor V))==
TIGT 2 (Z or (N xor V))==0

TILT : (N xor V)==1
TIGE : (N xor V)==0
TILS :(Cor2)=—=
TIHI :(Cor Z2)==0
TIC : C==
TINC : C==0
TIN :N==1
TIP : N==0
TIV 1 V=1
TINV 1 V==0

TINO

TIRA GRi, #s12

Description

The integer conditional trap instruction evaluates the #cond field of ICCi. When the evaluation
is true and the higher priority trap or interrupt requests are not deferred, the trap instruction is
generated. When the evaluation is false, it behaves like a NOP operation.

When the trap_instruction is generated, the tt field of the trap base register (TBR) is written
with 128 plus the least significant seven bits of “GRi+GRj” (immediate instruction: “GRi +
sign_ext (#s12)”) (sign_ext (X): X extended with a sign).

If the break interrupt or the program interrupt occurs in the previous instruction in a same
VLIW instruction, this instruction is not executed and software interrupt is not initiated. The
multiple trap instructions are not put in a same VLIW instruction.

The test condition of ICC shown by the content of the #cond field and ICCi is as follows.

Registers altered (except destination register)

nonec

Occurrence Exceptions

trap_instruction

Detected Exceptions

nonc

47

FRA400 Series Instruction Set Manual

Table 8 Pseudo opecode

Pseudo opecode | #cond Operation ICC test
TEQ 0100 Trap Equal Z
TNE 1100 Trap Not Equal Not Z
TLE 0111 Trap Less or Equal Z or (N xor V)
TGT 1111 Trap Greater Not (Z or (N xor
V)
TLT 0011 Trap Less N xor V
TGE 1011 Trap Greater or Equal Not (N xor V)
TLS 0101 Trap Less or Equal Unsigned CorZ
THI 1101 Trap Greater Unsigned Not (C or Z)
TC 0001 Trap Carry Set C
TNC 1001 Trap Carry Clear Not C
TN 0110 Trap Negative N
TP 1110 Trap Positive Not N
TV 0010 Trap Overflow Set \Y
TNV 1010 Trap Overflow Clear Not V
TNO 0000 Trap Never 0
TRA 1000 Trap Always 1
TIEQ 0100 Trap Immediate Equal Z
TINE 1100 Trap Immediate Not Equal Not Z
TILE 0111 Trap Immediate Less or Equal Z or (N xor V)
TIGT 1111 Trap Immediate Greater Not (Z or (N xor
V)
TILT 0011 Trap Immediate Less N xor V
TIGE 1011 Trap Immediate Greater or Equal Not (N xor V)
TILS 0101 Trap Immediate Less or Equal Unsigned | CorZ
TIHI 1101 Trap Immediate Greater Unsigned Not (C or Z)
TIC 0001 Trap Immediate Carry Set C
TINC 1001 Trap Immediate Carry Clear Not C
TIN 0110 Trap Immediate Negative N
TIP 1110 Trap Immediate Positive Not N
TIV 0010 Trap Immediate Overflow Set \Y
TINV 1010 Trap Immediate Overflow Clear Not V
TINO 0000 Trap Immediate Never 0
TIRA 1000 Trap Immediate Always 1

48

1

Instruction Set Reference

1.5.10. Floating-point / media Conditional Trap

Ope-code op ope | Operation
FTfcc 0000100 01 Floating-point/Media Conditional Trap
FTlfcc 0011101 - Floating-point/Media Conditional Trap (Immediate)
Category
Control

Instruction Format (Conditional instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond

FCCi

op

GRi

ope

GRj

Instruction Format (Conditional instruction (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond |FCCi op GRi #s12
Assembler Syntax
FTfcc FCCi, GRi, GRj
FTNE :(LorGorU)==
FTEQ :E==1
FTLG :(Lor G==1
FTUE :(EorU)==
FTUL :(LorU)==
FTGE :(Eor G)==
FTLT :L==1
FTUGE :(EorGorU)==
FTUG :(Gor U)==1
FTLE :(EorL)==1
FTGT :G==
FTULE :(EorL orU)==1
FTU s U==1
FTO :(EorLorG)==
FTNO

FTRA GRi, GRj

49

FRA400 Series Instruction Set Manual

FTIfce FCCi, GRi, #s12

FTINE
FTIEQ
FTILG
FTIUE
FTIUL
FTIGE
FTILT
FTIUGE
FTIUG
FTILE
FTIGT
FTIULE
FTIU
FTIO

FTINO

: (L or Gor U)==1
:E==

:(Lor G)=—=
:(EorU)==
:(LorU)==
:(EorG) ==
L=
:(EorGorU)==
:(GorU)==
:(EorL)==1

: G==1
:(EorLorU)==1
:U==1
:(EorLorG)==

FTIRA GRi, #s12

Description

The floating-point / media conditional trap instruction evaluates the #cond field of FCCi.
When the evaluation is true and the higher priority trap or interrupt requests are not deferred,
the trap_instruction is generated. When the evaluation is false, it behaves like a NOP operation.
When the trap_instruction is generated, the tt field of the trap base register (TBR) is written
with 128 plus the least significant seven bits of “GRi+GR;j” (immediate instruction: “GRi +
sign_ext (#s12)”) (sign_ext (X): X extended with a sign).

If the break interrupt or the program interrupt occurs in the previous instruction in a same
VLIW instruction, this instruction is not executed and software interrupt is not initiated. The
multiple trap instructions are not put in a same VLIW instruction.

The test condition of FCC shown by the content of the #cond field and the FCC is as follows.

Registers altered (except destination register)

none

Occurrence Exceptions

fp_disabled
trap_instruction

Detected Exceptions

none

50

1 Instruction Set Reference

Table 9 Pseudo opecode

Pseudo opecode #cond Operation FCC test
FTNE 0111 Trap Not Equal LorGorU
FTEQ 1000 Trap Equal E

FTLG 0110 Trap Less or Greater LorG
FTUE 1001 Trap Unordered or Equal EorU
FTUL 0101 Trap Unordered or Less LorU
FTGE 1010 Trap Greater or Equal Eor G
FTLT 0100 Trap Less L

FTUGE 1011 Trap Unordered or Greater or Equal EorGorU
FTUG 0011 Trap Unordered or Greater GorU
FTLE 1100 Trap Less or Equal EorL
FTGT 0010 Trap Greater G

FTULE 1101 Trap Unordered or Less or Equal EorLorU
FTU 0001 Trap Unordered U

FTO 1110 Trap Ordered EorLorG
FTNO 0000 Trap Never 0

FTRA 1111 Trap Always 1

FTINE 0111 Trap Immediate Not Equal LorGorU
FTIEQ 1000 Trap Immediate Equal E

FTILG 0110 Trap Immediate Less or Greater LorG
FTIUE 1001 Trap Immediate Unordered or Equal EorU
FTIUL 0101 Trap Immediate Unordered or Less LorU
FTIGE 1010 Trap Immediate Greater or Equal EorG
FTILT 0100 Trap Immediate Less L

FTIUGE 1011 Trap Immediate Unordered or Greater or Equal Eor GorU
FTIUG 0011 Trap Immediate Unordered or Greater GorU
FTILE 1100 Trap Immediate Less or Equal EorL
FTIGT 0010 Trap Immediate Greater G

FTIULE 1101 Trap Immediate Unordered or Less or Equal EorLorU
FTIU 0001 Trap Immediate Unordered U

FTIO 1110 Trap Immediate Ordered EorLorG
FTINO 0000 Trap Immediate Never 0

FTIRA 1111 Trap Immediate Always 1

51

FRA400 Series Instruction Set Manual

1.5.11. Break

Ope-code op ope | Operation
Break 0000100 11 Break Trap
Category

Control

Instruction Format (Trap instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op - - ope -

Assembler Syntax

BREAK

Description

The break interrupt occurs in the break instruction.
When the break interrupt is detected, the tt field of the trap base register (TBR) is set to 255.

Registers altered (except destination register)

none

Occurrence Exceptions

nonec

Detected Exceptions

none

52

1 Instruction Set Reference

1.5.12. Media Trap

Ope-code op ope | Operation
Mtrap 0000100 10 Media Trap
Category

Control

Instruction Format (Trap instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op -

ope

Assembler Syntax
MTRAP

Description

The media trap instruction tests the msr.mtt and the msr.ov, and finds out whether the msr.mtt

and the msr.ov are true or false.

When the result is true, i.e. the exception factors are held by the msr, the media_exception is
generated. When the result is false, the media_exception is not generated and it behaves like a

nop operation.

Registers altered (except destination register)

nonc

Occurrence Exceptions
mp_disabled
mp_exception

Detected Exceptions

nonc

53

FRA400 Series Instruction Set Manual

1.6. Constant Setting Instructions

1.6.1. Set
Ope-code op Operation
SETLO 0111101 Set Low-Order unsigned 16 bits
SETHI 0111110 Set High-Order 16 bits
SETLOS 0111111 Set Low-Order Signed 16 bits
Category

Integer

Instruction Format (INT,Logic,Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk op - #s16

Assembler Syntax

SETHI #116, GRk
SETLO #ul6, GRk
SETLOS #s16, GRk

Description

The SETHI instruction replaces the high-order 16 bits of the GRk with #s16.
The SETLO instruction replaces the low-order 16 bits of the GRk with #s16.
The SETLOS instruction sets sign extended #s16 data into the GRk.

Operation example

SETHI #0x1234,GRk

#s16 0x1234

GRk start 0XFFFFFFFF

completed 0x1234FFFF

SETLO #0x8888,GRk

#s16 0x8888

GRk start 0x11112222

completed 0x11118888

SETLOS #0x89AB,GRk

54

1

Instruction Set Reference

#s16

GRk

Registers altered (except destination register)

none

Occurrence Exceptions

start

completed

0x89AB

0x11112222

O0xFFFF89AB

register_exception (unimplement_exception)

Detected Exceptions

none

55

FRA400 Series Instruction Set Manual

1.7. Scan instruction

1.7.1. Scan

Ope-code Op Operation
SCAN 0001011 SCAN
SCANI 1000111 SCAN (Immediate)
Category
Integer

Instruction Format (INT, Logic, Shift Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi - GRj

Instruction Format (INT, Logic, Shift Operation (R-simm))

313029282726252423222120191817161514131211109 8 7 6 5 43 2 1 0
GRk op GRi #s12

Assembler Syntax

SCAN GRi, GRj, GRk
SCANI GRi, #s12, GRk

Description

The SCAN instruction shifts the value of GRj (immediate instruction : sign_ext (#s12)) to the
right by 1 bit and extends with a sign, and executes XOR calculating on the value of GRi and
the shifted-extended value of GRj, and writes the position of the highest-order bit of "1" in GRk
as a result. So when the MSB of the result of XOR calculating is "1", the result is 0. When the
LSB is "1" and the others bits are "0", the result is 31. When all of the bits as the result of XOR
calculating are "0", the result of SCAN instruction is 0.

Operation example

SCAN GRi,GRj,GRk

GRi 0x08888888 +—>XOR = ._l

Scans the highest-order bit of

GRj 0x00000000 Shifts to right "I" of XOR result and finds
by 1 bit with a .
- the position
sign I
GRk completed 4 <

56

1 Instruction Set Reference

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

57

FRA400 Series Instruction Set Manual

1.8. Condition Code Operating Instructions

1.8.1. Check for Integer Condition Code

Ope-code op Operation
CKicc 0001000 Check for Integer Condition code
Category

Branch

Instruction Format (Checking Instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond | CCx-4 op - ICCi

Assembler Syntax

CKice ICCi, CCx (x =4-7)
CKEQ (==
CKNE : Z==0
CKLE :(Z or (N xor V))==
CKGT :(Z or (N xor V))==0
CKLT : (N xor V)==1
CKGE : (N xor V)==0
CKLS :(Cor2)—=—=

CKHI :(CorZ)y=0
CKC : C==1
CKNC : C==0

CKN :N=

CKP : N==0

CKV D V==

CKNV :V==0
CKNO CCx (x =4-7)
CKRA CCx (x=4-7)

Description

The CKicc instruction tests ICCi according to the contents of #cond field, shown by Table 10
The result of test is written into the condition code register for conditional instruction CCX,
shown by Table 11.

58

1

Instruction Set Reference

Table 10 #cond field and Pseudo opecode

Pseudo opecode | #cond Operation ICC test
CKEQ 0100 Check Equal Z
CKNE 1100 Check Not Equal Not Z
CKLE 0111 Check Less or Equal Z or (N xor V)
CKGT 1111 Check Greater Not (Z or (N xor

V))

CKLT 0011 Check Less N xor V
CKGE 1011 Check Greater or Equal Not (N xor V)
CKLS 0101 Check Less or Equal Unsigned CorZ
CKHI 1101 Check Greater Unsigned Not (C or Z)
CKC 0001 Check Carry Set C
CKNC 1001 Check Carry Clear Not C
CKN 0110 Check Negative N
CKP 1110 Check Positive Not N
CKV 0010 Check Overflow Set \
CKNV 1010 Check Overflow Clear Not V
CKNO 0000 Check Never 0
CKRA 1000 Check Always 1

Table 11 Result of ICC test and Value of CCCR(CCx)

Result of test value of cccr
false 10
true 11

Registers altered (except destination register)

nonec

Occurrence Exceptions

none

Detected Exceptions

nonc

59

FRA400 Series Instruction Set Manual

1.8.2. Check for Floating-point/Media Condition Code

Ope-code op Operation
FCKfcc 0001001 Check for Floating-point/Media Conditional code
Category

Branch

Instruction Format (Checking Instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
#cond | CCx op - FCCi

Assembler Syntax

FCKfcc FCCi, CCx (x =0-3)
FCKNE :(LorGorU)==

FCKEQ : E=
FCKLG :(Lor G)==
FCKUE :(EorU)==

FCKUL :(LorU)=—=
FCKGE :(Eor G=—=
FCKLT s L==1
FCKUGE :(EorGorU)==1
FCKUG (GorU)=—=
FCKLE :(Eor L=
FCKGT : G==1
FCKULE :(EorLorU)==
FCKU :U==
FCKO :(EorLorG)==
FCKNO CCx (x=0-3)
FCKRA CCx(x=0-3)
Description

Check for floating-point/media condition code instruction tests FCCi according to contents of
#cond field shown by Table 12 . The result of test is written into the condition code register for
conditional instruction CCx shown by Table 13.

60

1

Instruction Set Reference

Table 12 #cond field and Pseudo opecode

Pseudo opecode | #cond Operation FCC test
FCKNE 0111 Check Not Equal LorGorU
FCKEQ 1000 Check Equal E

FCKLG 0110 Check Less or Greater LorG
FCKUE 1001 Check Unordered or Equal E or U
FCKUL 0101 Check Unordered or Less LorU
FCKGE 1010 Check Greater or Equal EorG
FCKLT 0100 Check Less L
FCKUGE 1011 Check Unordered or Greater or Equal EorGorU
FCKUG 0011 Check Unordered or Greater GorU
FCKLE 1100 Check Less or Equal EorL
FCKGT 0010 Check Greater G
FCKULE 1101 Check Unordered or Less or Equal EorLorU
FCKU 0001 Check Unordered U

FCKO 1110 Check Ordered EorLorG
FCKNO 0000 Check Never 0

FCKRA 1111 Check Always 1

Table 13 Result of FCC test and value of CCCR(CCx)

Result of test value of ccer
false 10
true 11

Registers altered (except destination register)

none

Occurrence Exceptions

fp_disabled

Detected Exceptions

none

61

FRA400 Series Instruction Set Manual

1.8.3. Condition Code Logical Operations

Ope-code op ope Operation
ANDCR 0001010 001000 | AND CR
ORCR 0001010 001001 | OR CR
XORCR 0001010 001010 | XOR CR
NOTCR 0001010 001011 | NOT CR
NANDCR 0001010 001100 | NAND CR
NORCR 0001010 001101 | NOR CR
ANDNCR 0001010 010000 | NOT-AND CR
ORNCR 0001010 010001 | NOT-OR CR
NANDNCR | 0001010 010100 | NOT-NAND CR
NORNCR 0001010 010101 | NOT-NOR CR

Category

Branch

Instruction Format (Condition code logic instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- CCz op - CCx ope - CCy
Instruction Format (Condition code not instruction)

313029928 2726952423222120 1018 1716151413 1211109 & 7 6 5 4 3 2 1 0

- CCz op - ope - CCy

Assembler Syntax

ANDCR CCx, CCy, CCz
ORCR CCx, CCy, CCz
XORCR CCx, CCy, CCz
NOTCR CCy, CCz

NANDCR CCx, CCy, CCz
NORCR CCx, CCy, CCz
ANDNCR CCx, CCy, CCz
ORNCR CCx, CCy, CCz
NANDNCR CCx, CCy, CCz
NORNCR CCx, CCy, CCz

62

1 Instruction Set Reference

Description

Condition code logic instruction execute following logical operation between condition code
for conditional instruction register specified by CCx and condition code for conditional
instruction register specified by CCy. Condition code logic instruction deals with three kinds of
values: true, false and undefined.

ANDCR is specified by Table 15.

ORCR is specified by Table 16

XORCR is specified by Table 17

NANDCR is specified by Table 18

NORCR is specified by Table 19.

ANDNCR is specified by Table 20

ORNCR is specified by Table 21

NANDNCR is specified by Table 22

NORNCR is specified by Table 23
The result of operation is written into condition code field specified by CCz.
NOTCR instruction is specified by Table 24 and executes not-operation.
operation is written into condition field specified by CCz.
Pay attention that the result will change when CCx is exchanged for CCy in ANDCR,
NANDCR, ANDNCR, ORNCR, NANDNCR and NORNCR.
(Table 14 shows relation between values of CCCR and “true/false/undefined” in Table 15-

The result of

Table 24.)
Table 14 Values of CCCR(CCx, CCy and CCz)
mean
00 Undefined
01 Undefined
10 False
11 True
Table 15 ANDCR
oo CCy true false undefined
true true false undefined
false undefined | undefined | undefined
undefined | undefined | undefined | undefined

63

FRA400 Series Instruction Set Manual

Table 16 ORCR

con CCy true false undefined
true true true true
false true false false
undefined true false undefined
Table 17 XORCR
o0 CCy true false undefined
true false true true
false true false undefined
undefined | undefined | undefined | undefined
Table 18 NANDCR
o CCy true false undefined
true false true undefined
false undefined | undefined | undefined
undefined | undefined | undefined | undefined
Table 19 NORCR
con CCy true false undefined
true false false false
false false true true
undefined false true undefined
Table 20 ANDNCR
con CCy true false undefined
true undefined | undefined | undefined
false true false undefined
undefined | undefined | undefined | undefined

64

1

Instruction Set Reference

Registers altered (except destination register)

CCCR

Occurrence Exceptions

none

Detected Exceptions

nonec

Table 21 ORNCR
con CCy true false undefined
true true false false
false true true true
undefined true false undefined
Table 22 NANDNCR
oo CCy true false undefined
true undefined | undefined | undefined
false false true undefined
undefined | undefined | undefined | undefined
Table 23 NORNCR
oo CCy true false undefined
true false true true
false false false false
undefined false true undefined
Table 24 NOTCR
CCy
true false
false true
undefined | undefined

65

FRA400 Series Instruction Set Manual

1.9. Special Operation Instructions

1.9.1. Instruction Cache Invalidate

Ope-code op ope Operation
ICI 0000011 | 111000 | Instruction Cache Invalidate
Category

Control

Instruction Format (Cache invalidate instruction (R-R))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
- op GRi ope GRj

Assembler Syntax

ICI @(GRi, GRj)

Description

Instruction Cache Invalidate instruction calculates “GRi+GRj” as an effective address and
invalidates a block of instruction cache, which contains byte data specified by the effective
address, if the block is in the instruction cache.

This instruction invalidates the instruction cache regardless of the cache enable bit (HSRO.ICE).

Registers altered (except destination register)

nonec

Occurrence Exceptions

instruction_access_error

register_exception (unimplement_exception)
Detected Exceptions

nonec

66

1 Instruction Set Reference

1.9.2. Data Cache Invalidate

Ope-code op ope Operation
DCI 0000011 | 111100 | Data Cache Invalidate
Category

Control

Instruction Format (Cache invalidate instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi

ope

GRj

Assembler Syntax

DCI @(GRi, GRj)

Description

Data Cache Invalidate instruction calculate “GRi+GRj” as an effective address and invalidates
a block of data cache, which contains byte data specified by the effective address, if the block is

in the data cache.

The block is invalidated even if the block in the data cache is the latest one.
This instruction invalidates the data cache regardless of the write-back/write-through mode

(HSRO.CBM) and the state of the cache enable bit (HSR0O.DCE).

Registers altered (except destination register)

none

Occurrence Exceptions
data_access_error

register_exception (unimplement_exception)

Detected Exceptions
none

67

FRA400 Series Instruction Set Manual

1.9.3. Data Cache Flush

Ope-code op ope Operation
DCF 0000011 | 111101 | Data Cache flush
Category

Control

Instruction Format (Cache invalidate instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
- op GRi ope GRj

Assembler Syntax
DCF @(GRi, GRj)

Description

Data Cache Flash instruction calculate “GRi+GRj” as an effective address and invalidates a
block of data cache, which contains byte data specified by the effective address, if the block is
in the data cache. When the block in the data cache is the latest data, the data is copied from
data cache to memory.
This instruction invalidates the data cache regardless of the write-back/write-through mode
(HSR0.CBM) and the state of the cache enable bit (HSR0O.DCE).

Registers altered (except destination register)

nonec

Occurrence Exceptions

data_access_error

register_exception (unimplement_exception)
Detected Exceptions

nonec

68

1 Instruction Set Reference

1.9.4. Instruction Cache Entry Invalidate Instruction

Ope code op ope Operation
ICEI 0000011 111001 | Instruction Cache Entry Invalidate
Category

Control

Instruction format (Instruction cache invalidate instruction (R — R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
- a op GRi ope GRj

Assembler description

ICEI @(GRi,GRj),a

Descri ption

When a block containing byte data pointed to by the entry calculated using “GRi+GR;j” exists
in the instruction cache, the instruction cache invalidate instruction invalidates that block.
When bit “a”is 1, all entries in the instruction cache are invalidated.

This instruction invalidates the cache independently of the cache validate bit (HSRO.ICE).

This instruction is optional so it is not necessarily implemented.

Registers altered (except destination register)

None

Occurrence Exceptions

instruction_access_exception
instruction_access MMU _miss
instruction_access_error

register_exception (unimplement_exception)

Detected Exceptions

None

69

FRA400 Series Instruction Set Manual

1.9.5. Data Cache Entry Invalidate Instruction

Ope code op ope Operation
DCEI 0000011 111010 | Data Cache Entry Invalidate
Category

Control

Instruction format (Data cache invalidate instruction (R — R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
- a op GRi ope GRj

Assembler description
DCEI @(GR1,GRj),a

Description

When a block containing byte data pointed to by the entry calculated using “GRi+GR;j” exists
in the data cache, the data cache invalidate instruction invalidates that block. When that block
is the latest data, that block is discarded (but not flushed).

When bit “a” is 1, all entries in the data cache are invalidated.

This instruction invalidates the cache independently of the write back mode/write through mode
(HSR0.CBM) and the cache validate bit (HSRO.DCE).

This instruction is optional so it is not necessarily implemented.

Registers altered (except destination register)

None

Occurrence Exceptions

data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception)

Detected Exceptions

None

70

1 Instruction Set Reference

1.9.6. Data Cache Entry Flush Instruction

Ope code op ope Operation
DCEF 0000011 111011 | Data Cache Entry Flush
Category

Cotrol

Instruction format (Data cache invalidate instruction (R — R))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
- a op GRi ope GRj

Assembler description
DCEF @(GR1,GRj),a

Description

When a block containing byte data pointed to by the entry calculated using “GRi+GR;j” exists
in the data cache, the data cache entry flush instruction invalidates that block. When that block
is the latest data, that block is recorded in main memory.

When bit “a” is 1, all entries in the data cache are invalidated.

This instruction invalidates the cache independently of the write back mode/write through mode
(HSR0.CBM) and the cache validate bit (HSR0.DCE).

This instruction is optional so it is not necessarily implemented.

Registers altered (except destination register)

None

Occurrence Exceptions

data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception)

Detected Exceptions

None

71

FRA400 Series Instruction Set Manual

1.9.7. Instruction Cache Pre-Load

Ope-code op ope Operation

ICPL 0000011 | 110000 | Instruction Cache Pre-Load
Category

Control

Instruction Format (Instruction Cache Pre-Load Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi ope GRj

#lock

Assembler Syntax

ICPL GRi, GRyj, #lock

Description

The Instruction Cache Pre-Load Instruction pre-loads the data of the number of bytes which
GRj shows from the address area specified by GRi to the instruction cache. When GRj is 0, the
instruction pre-loads one block size of data which contains effective address shown by GRi.

If lock bit is 1 and instruction cache has lock mechanism, the instruction locks the pre-loaded
data.

When the instruction cache for storage is already in the state of the lock, the instruction

operates as NOP.
If instruction cache is disabled(HSR0.ICE=0), the instruction operates as NOP.
When the instruction_access_exception, instruction_access MMU _miss,

instruction_access_error is detected, the instruction operates as NOP and exception does not
occur.

Programming Notes

In using this instruction, processor can lock instruction cache in every block. But lock
mechanism of the instruction cache in an actual implementation often becomes the unit of way.
Therefore it is effective to pre-load and to lock the capacity corresponding of each way of the
instruction cache.

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception

Detected Exceptions

none

72

1

Instruction Set Reference

1.9.8. Data Cache Pre-Load

Ope-code op ope Operation
DCPL 0000011 | 110100 | Data Cache Pre-Load
Category

Control

Instruction Format (Data Cache Pre-Load Instruction(R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

op

GRi ope

GRj

#lock

Assembler Syntax

DCPL

Description

GRi, GRj, #lock

The Data Cache Pre-Load Instruction pre-loads the data of the number of bytes which GRj
shows from the address area specified by GRi to the data cache. When GRj is 0, the instruction
pre-loads one block size of data which contains effective address shown by GRi.

If lock bit is 1 and data cache has lock mechanism, the instruction locks the pre-loaded data.
When the data cache for storage is already in the state of the lock, the instruction operates as
NOP.
If data cache is disabled (HSR0.DCE=0), the instruction operates as NOP.

When the data_access_exception, data_access MMU_miss, data_access_error is detected, the
as NOP and exception does not occur.

instruction operates

Programming Notes

In using this instruction, processor can lock instruction cache every block. But lock mechanism
of the data cache in an actual implementation often becomes the unit of way. Therefore it is
effective to pre-load and to lock the capacity corresponding of each way of the data cache.

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception

Detected Exceptions

none

73

FRA400 Series Instruction Set Manual

1.9.9. Instruction Cache UnLock

Ope-code op ope Operation
ICUL 0000011 | 110001 | Instruction Cache UnLock
Category

Control

Instruction Format (Instruction Cache UnLock Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi ope -

Assembler Syntax
ICUL GRi

Description

The Instruction Cache UnLock Instruction unlocks instruction cache, which contain byte data
specified by the effective address in GRi.

The unit of unlocking (All or way or block) depends on implementation.

If instruction cache is disabled (HSR0.ICE=0), the instruction operates as NOP.

When the instruction_access_exception, instruction_access MMU_miss,
instruction_access_error is detected, the instruction operates as NOP and exception does not
occur.

Registers altered (except destination register)

nonec

Occurrence Exceptions

register_exception

Detected Exceptions

nonc

74

1

Instruction Set Reference

1.9.10. Data Cache UnLock

Ope-code op ope Operation
DCUL 0000011 | 110101 | Data Cache UnLock
Category

Control

Instruction Format (Data Cache UnLock Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

op

GRi ope

Assembler Syntax
DCUL GRi

Description

The Data Cache UnLock Instruction unlocks data cache, which contain byte data specified by
the effective address in GRi.
The unit of unlocking (All or way or block) depends on implementation.

If data cache is disabled (HSR0.DCE=0), the instruction operates as NOP.

When the data_access_exception, data_access MMU miss, data_access_error, is detected, the

instruction operates as NOP and exception does not occur.

Registers altered (except destination register)

nonc

Occurrence Exceptions

register_exception

Detected Exceptions

none

75

FRA400 Series Instruction Set Manual

1.9.11. Barrier

Ope-code op ope Operation
BAR 0000011 | 111110 | Barrier
Category

Control

Instruction Format (Barrier Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op - ope -

Assembler Syntax
BAR

Description

The Barrier Instruction waits for the completion of the integer instructions, load/store
instructions, floating-point instructions, and media instructions executed by processor before
this instruction.
If co-processor is synchronized mode (PSR.ECS=1), the instruction waits for the completion of
the instruction executed by co-processor, too.

Registers altered (except destination register)

none

Occurrence Exceptions

nonec

Detected Exceptions

none

76

1

Instruction Set Reference

1.9.12. Memory Barrier

Ope-code op ope Operation
MEMBAR | 0000011 | 111111 | Memory Barrier
Category

Control

Instruction Format (Memory Barrier Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

op

- ope

Assembler Syntax
MEMBAR

Description

The Memory Barrier Instruction waits for the completion of the load/store instructions, issued

load/store instructions executed by processor before this instruction.

Registers altered (except destination register)

nonec

Occurrence Exceptions

none

Detected Exceptions

none

77

FRA400 Series Instruction Set Manual

1.9.13. Load Real Address of Instruction (This instruction is available for MB93451.)

Ope-code op ope Operation
LRAI 0000011 | 100000 | Load Real Address of Instruction
Category

Control

Instruction Format (Load Real Address of Instruction (R-R))

31302928272625242322212019181716151413 1211109 8 7 6 543 2 1 0
GRk op GRi ope E(D|S -

Assembler Syntax
LRAI GRi, GRk, #E, #D, #S

Description

LRALI instruction takes GRi as “VA” for searching IAMR/TLB and Implicit SAT entries to
generate corresponding “RA” which is then returned in GRk.
DAT mode is applied for the searching.

If an entry is found in IAMR/TLB or in Implicit SAT entries and corresponding “RA”
generation is successful, high order 18bits of “RA” and 14bits status code are stored in GRk.

If IAMR/TLB and Implicit SAT entries are missed in search, “TLB miss exception” is reported
when #D=0 or “MMU miss exception” is reported when #D=1 in STW(Software Table Walk)
mode. Address translation and re-searching is performed by hardware in HTW(Hardware Table
Walk) mode.

If #E is set (to 1), above actions (exception report or hardware translation) are suppressed and
instead all-0 in high order 18bits and 14bits status code are stored in GRk.

#D/#S can be set (to 1) to suppress DAT/SAT entry search, respectively. If #D or #S is set then
corresponding report of “MMU multiple hit exception” is also suppressed. If both #D and #S
are set then 0x00000000 is stored in GRk and there’s no other side effect.

In the below, the detail of the output format in GRk is explained:
High order 18bits of GRk is set by high order 18bits of “RA” if its successfully generated, or is

set by all-0 if failed
Low order 14bits of GRk is not a part of “RA” but is the code in following format :

bitl0: “1” indicates there was a hit in IJAMR
“0” indicates there was no hit in TAMR
bit9-4 : If IAMR is hit, the JAMR number is set (0-63)

If IAMR is missed, following code is set :
0b000000 : all factors below was not detected
0b000001 : TLB is hit
0b000010 : Implicit SAT entry for FExxxxxx is hit

78

1 Instruction Set Reference

bit3 :

bit2 :

bit0 :

else:

0b000011 : Implicit SAT entry for FFxxxxxx is hit
0b001110 : the cause of “MMU multiple-hit exception” is detected
(but not reported)
*only possible when #E is 1
0b001111 : the cause of “TLB miss exception”(#D=0) or “MMU miss
exception”(#D=1) in STW mode or Address translation in HTW
mode are detected (but not reported/translated)
*only possible when #E is 1
If “RA” is successfully generated :
“1” indicates the area is supervisor protected
“0” indicates the area is not supervisor protected
“0” is set if “RA” is not generated
If “RA” is successfully generated :
“1” indicates the area is not cacheable
“0” indicates the area is cacheable
“0” is set if “RA” is not generated
“1” indicates “RA” is successfully generated
“0” indicates “RA” is not successfully generated
Values to be set are “M-D”

HSRO.EDAT is ignored during the execution of this instruction.
GRk is not modified if the exception is reported.

If this instruction is executed in MMU off mode, #E is assumed to be 1 regardless of the setting.
If this instruction is executed in Compatible SAT mode, 0x00000000 is stored in GRk
regardless of #E/#D/#S, and has no side effect.

It will be “U-P” if state has changed from compatible SAT mode into MMU off mode without

TLB/IAMR initialization.

Registers altered (except destination register)

Occurrence Exceptions

register_exception

privileged exception

MMU_multiplehit exception
TLB_miss_exception (STW mode)
MMU_ miss_exception (STW mode)

DAT translation exception (HTW mode)

Detected Exceptions

79

FRA400 Series Instruction Set Manual

1.9.14. Load Real Address of Data (This instruction is available for MB93451.)

Ope-code Op ope Operation
LRAD 0000011 | 100001 | Load Real Address of Data
Category

Control

Instruction Format (Load Real Address of Instruction (R-R))

31302928272625242322212019181716151413 1211109 8 7 6 543 2 1 0
GRk op GRi ope E(D|S -

Assembler Syntax
LRAD GRi, GRk, #E, #D, #S

Description

LRAD instruction takes GRj as “VA” for searching DAMR/TLB and Implicit SAT entries to
generate corresponding “RA” which is then returned in GRk.
DAT mode is applied for the searching.

If an entry is found in DAMR/TLB or in Implicit SAT entries and corresponding “RA” is
successfully generated, high order 18bits of “RA” and 14bits status code are stored in GRk.

If DAMR/TLB and Implicit SAT entries are missed in search, “TLB miss exception” is
reported when #D=0 or “MMU miss exception” is reported when #D=1 in STW(Software
Table Walk) mode. Address translation and re-searching is performed by hardware in
HTW(Hardware Table Walk) mode.

If #E is set (to 1), above actions (exception report or hardware translation) are suppressed and
instead all-0 in high order 18bits and 14bits status code are stored in GRk.

#D/#S can be set (to 1) to suppress DAT/SAT entry search, respectively. If #D or #S is set then
corresponding report of “MMU multiple hit exception” is also suppressed. If both #D and #S
are set then 0x00000000 is stored in GRk and there’s no other side effect.

In the below, the detail of the output format in GRk is explained:
High order 18bits of GRk is set by high order 18bits of “RA” if its successfully generated, or is

set by all-0 if its failed
Low order 14bits of GRk is not a part of “RA” but is the code in following format :

bitl0: “1” indicates there was a hit in DAMR
“0” indicates there was no hit in DAMR
bit9-4 : If DAMR is hit, the DAMR number is set (0-63)

If DAMR is missed, following code is set :
0b000000 : all factors below was not detected
0b000001 : TLB is hit
0b000010 : Implicit SAT entry for FExxxxxx is hit

80

1 Instruction Set Reference

0b000011 : Implicit SAT entry for FFxxxxxx is hit
0b001110 : the cause of “MMU multiple-hit exception” is detected.
(but not reported)
*only possible when #E is 1
0b001111 : the cause of “TLB miss exception”(#D=0) or “MMU miss
exception”(#D=1) in STW mode or Address translation in HTW
mode are detected (but not reported/translated)
*only possible when #E is 1
bit3: If “RA” is successfully generated :
“1” indicates the area is supervisor protected
“0” indicates the area is not supervisor protected
“0” is set if “RA” is not generated
bit2 : If “RA” is successfully generated :
“1” indicates the area is not cacheable
“0” indicates the area is cacheable
“0” is set if “RA” is not generated
bitl : If “RA” is successfully generated :
“1” indicates the area is write protected
“0” indicates the area is not write protected
“0” is set if “RA” is not generated

bit0 : “1” indicates “RA” is successfully generated
“0” indicates “RA” is not successfully generated
else: Values to be set is “M-D”

HSRO.EDAT is ignored during the execution of this instruction.
GRk is not modified if the exception is reported.

If this instruction is executed in MMU off mode, #E is assumed to be 1 regardless of the setting.
If this instruction is executed in Compatible SAT mode, 0x00000000 is stored in GRk
regardless of #E/#D/#S, and has no side effect.

It will be “U-P” if state has changed from compatible SAT mode into MMU off mode without
TLB/DAMR initialization.

Registers altered (except destination register)

Occurrence Exceptions

register_exception

privileged exception

MMU_multiplehit exception
TLB_miss_exception (STW mode)
MMU_ miss_exception (STW mode)

DAT translation exception (HTW mode)

Detected Exceptions

81

FRA400 Series Instruction Set Manual

1.9.15. TLB Probe (This instruction is available for MB93451.)

Ope-code Op ope Operation
TLBPR 0000011 | 100100 | TLB Probe
Category

Control

Instruction Format (Load Real Address of Instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

opx (L op GRi ope GRj

Assembler Syntax

TLBPR GRi, GRj, #opx, #L.

Description

TLB is operated depending on the value of #opx.

#opx=000:

TLB is searched by “VA” (GRi+GRj) and Context number (TPLR.CXN),

and the matched entry’s content is read out to TPR.

If there is no entry matched, 0 is set to TPPR.V and all other fields of TPPR/TPLR are

unchanged.

Way number of read-out entry is set to TPXR.WAY.

If no read-out occurs then 1 is set to TPXR.E, otherwise 0 is set to TPXR.E.

* If multiple entries are hit on search, “MMU Multple-hit exception” is reported and
TPXR.E is remained unchanged.

* NG(Non global-share)-bit is refered but D(DAT entry)-bit is not refered.

* If TLB is not mounted, it is treated as NOP

#opx=001 :

The entry, specified by “VA” (GRi+GRj) and Way number (TPXR.WAY), is read out
from TLB to TPR.

0 is always set to TPXR.E.

* ”VA” is used only to specify the line of TLB.

*If TLB is not mounted, it is treated as NOP.

#opx=010:

TLB is searched by “VA” (GRi+GRj) and Context number (TPLR.CXN),

and the content of TPR is written into “selected-entry” in TLB.

If the search succeeded, the TPR is written into the hit-entry regardless of #L.

If the search missed, the TPR is written into the entry of the line specified by “VA” and
the “hardware-selected” way. The selection of line and way are “M-D.” The locked entry
(L(Lock)-bit is set) may be selected if #L is 1 but no entry is selected if #L is 0.

If TPR is successfully written into TLB, old content of the TLB entry is written back to
TPLR/TPPR and the way number of the entry is set to TPXR.WAY. TPXR.E is also set
to 0.

82

1 Instruction Set Reference

If TPR is not written into TLB, due for all entries locked when #L is 0, TPR are not

modified except TPXR.E which is set to 1.

* If multiple entries are hit on search, “MMU Multple-hit exception” is reported and no
TPR(including TPXR.E) are modified.

* NG(Non Global-share)-bit is refered but D(DAT entry)-bit is not refered.

* “VA” (GRi+GRj) should be corresponding to TPLR.VPFEN otherwise it is “U-P”

* If TLB is not mounted, it is treated as NOP

#opx=011:
The content of TPR is written into the entry specified by “VA” (GRi+GRj) and the Way
number (TPXR.WAY), regardless of #L.
0 is always set to TPXR.E and no other TPR is modified.
*”VA” is used only to specify the line of TLB
*”VA” (GRi+GRj) should be corresponding to TPLR.VPFN otherwise is “U-P”
* If TLB is not mounted, it is treated as NOP

* Hereinafter “the deletion of entry” means to make V(Valid)-bit of corresponding entry to 0.
* It is “M-D” whether TPXR.E is modified for #opx=100-111.

#opx=100:
TLB is searched by “VA” (GRi+GRj) and Context number (TPLR.CXN), and all the hit-
entries are deleted.
But the global entries (NG(Non-global)-bit is 0) are not deleted.
And if #L is 0, the locked entries (L(Lock)-bit set) are not deleted.
* D(DAT entry)-bit is not refered.
* “MMU Multple-hit exceptions” is not reported
* If TLB is not mounted, it is treated as NOP

#opx=101:
Regarding the line specified by “VA” (GRi+GRj) of TLB, all the entries matched with
Context number (TPLR.CXN) are deleted.
All the entries matched with Context number (TPLR.CXN) of IAMR/DAMR are deleted
at the same time.
But the global entries (NG(Non-global)-bit is 0) are not deleted.
And if #L is 0, the locked entries (L(Lock)-bit set) are not deleted.
* “MMU Multple-hit exceptions” is not reported
* If TLB is not mounted, it is treated as NOP

#opx=110:
Regarding the line specified by “VA” (GRi+GRj) of TLB, all the entries are deleted.
But if #L is 0, the locked entries (L(Lock)-bit is set) are not deleted.
* “MMU Multple-hit exceptions” is not reported
* If TLB is not mounted, it is treated as NOP

#opx=111:
All the entries of IAMR/DAMR are deleted.
But if #L is 0, the locked entries (L(Lock)-bit is set) are not deleted.
* “MMU Multple-hit exceptions” is not reported
* If TLB is not mounted, it is treated as NOP

The value of HSRO.EXMMU/EIMMU/EDMMU are ignored when this instruction is performed.

83

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

TPR

Occurrence Exceptions

register_exception
privileged instruction_exception
MMU_multiplehit_exception

Detected Exceptions

84

1 Instruction Set Reference

1.10. Media Instructions

1.10.1. Media Nop Instruction (M -Type Instruction)

Ope-code op ope Operation
MNOP 1111011 111011 | Media No Operation
Category

Media

Instruction Format (Media instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

111111 op 1 - ope -

Assembler Syntax

MNOP

Description

The MNOP instruction is a media type instruction. This instruction does nothing.

Registers altered (except destination register)

None

Occurrence Exceptions

mp_disabled

Detected Exceptions

None

85

FRA400 Series Instruction Set Manual

1.10.2. Logical Operations

Ope-code op ope Operation
MAND 1111011 000000 | Media And
MOR 1111011 000001 | Media OR
MXOR 1111011 000010 | Media XOR
MNOT 1111011 000011 | Media Not
Category

Media

Single word

Instruction Format (Media instruction (R-R))

31302928272625242322212019181716151413 1211109 8 7 6 5 43 2 1 0
FRk op FRi ope FRj

Instruction Format (Media NOT Operation (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op - ope FRj

Assembler Syntax

MAND FRi, FRj, FRk

MOR FRi, FRj, FRk

MXOR FRi, FRj, FRk

MNOT FRj, FRk
Description

The media logical instructions execute logical operations of FRi and FRj bit by bit and write the
result in FRk.

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

86

1

Instruction Set Reference

1.10.3. Rotate

Ope-code op ope Operation
MROTLI 1111011 000100 | Rotate Left Immediate
MROTRI 1111011 000101 | Rotate Right Immediate
Category

Media

Single word

Instruction Format (Media instruction (R-imm6))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope #s6
Assembler Syntax
MROTLI FRi, #s6, FRk
MROTRI FRi, #s6, FRk
Description

The media rotate (Word) instruction rotates FRi by the number specified by low-order five bits
of #s6 and writes the results in the FRk.

The MROTLI instruction rotates FRi to the left.
The MROTRI instruction rotates FRi to the right.
The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

87

FRA400 Series Instruction Set Manual

1.10.4. Word Cut

Ope-code op ope Operation
MWCUT 1111011 000110 | Word Data CUT from Doubleword Data
MWCUTI 1111011 000111 | Word Data CUT from Doubleword Data (Immediate)
Category
Media

Single word

Instruction Format (Media instruction (R))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Instruction Format (Media instruction (imm))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope #ub

Assembler Syntax

MWCUT FRi, FRj, FRk
MWCUTI FRi, #u6, FRk

Description

The MWCUT instruction concatenates FRi and FRi+1, following FRi with FRi+1, and takes
out 32 bits from the bit position specified by the lower 6 bits of FRj in the made 64 bits data,
and writes the result in FRk.

The MWCUTI instruction concatenates FRi and FRi+1, following FRi with FRi+1, and takes
out 32 bits from the bit position specified by #u6 in the made 64 bits data, and writes the result
in FRk.

MSB is 0 and LSB is 63, and according to the specified bit position, 32 bits data is taken out
from the 64 bits data which is made by concatenating FRi and FRi+1. When FRj is greater than
32, “0” is written in the bits which are rest in low-order.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

Operation example

MWCUT FRi, FRj, FRk

FRi +0

+1
0x9ABCDEFO

0x12345678 L 1

Takes out 32 bits of bit 36
FRj 16 +—> (top is bit 0) from 64 bits
data of FRi

!

A

FRk completed OxABCDEFO00

88

1

Instruction Set Reference

Registers altered (except destination register)

None

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

89

FRA400 Series Instruction Set Manual

1.10.5. Average (Halfword Dual)

Ope-code op ope Operation
MAVEH 1111011 001000 | Dual Average Halfword
Category

Media

Instruction Format (Media instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Assembler Syntax

MAVEH FRj, FRj, FRk

Description

The media average instruction calculates “FRihi + FRjhi” and writes the result in FRkhi as 16-
bit integer after 1 bit right arithmetic shifting and calculates “FRilo + FRjlo” and writes the
result in FRklo as 16-bit integer after 1 bit right arithmetic shifting.
When the result is an odd number, it is rounded to negative, minimum number.
For example,

3>(1.5->1,1->(0.5)->0, -1 ->(-0.5)>-1,

-3->(-1.5)->-2
The processing exception detected by the instruction is initiated by executing MTRAP
instruction.
(“FRihi” indicates the high-order 16 bits of FRi and “FRilo” indicates the low-order 16 bits)

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

90

1 Instruction Set Reference

1.10.6. Shift (Halfword Dual)

Ope-code op ope Operation
MSLLHI 1111011 001001 | Dual Shift Left Logical Halfword (Immediate)
MSRLHI 1111011 001010 | Dual Shift Right Logical Halfword (Immediate)
MSRAHI 1111011 001011 | Dual Shift Right Arithmetic Logical Halfword (Immediate)
Category
Media

Instruction Format (Media instruction (R-R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk

op

FRi ope #s6

Assembler Syntax

MSLLHI FRi, #s6, FRk
MSRLHI FRi, #s6, FRk
MSRAHI FRi, #s6, FRk

Description

The media shift instruction (Halfword Dual) shifts FRini and FRilo by the number specified by
the shift-count, and writes the result in the FRkni and FRkio. The shift-count is specified by
low-order four bits of #s6.

The MSLLHI instruction shifts FRini and FRilo to the left by the value specified by the shift-
count, replacing the vacated positions with zeros.

The MSRLHI instruction shifts FRini and FRilo to the right by the value specified by the shift-
count, replacing the vacated positions with zeros.

The MSRAHI instruction shifts FRini and FRilo to the right by the value specified by the shift-
count, replacing the vacated positions with highest bit of FRini and FRilo. After that, this
instruction rounds the result by the way specified by MSRO.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRini” indicates the high-order 16 bits of FRi and “FRilo” indicates the low-order 16 bits)

Registers altered (except destination register)

nonec

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

91

FRA400 Series Instruction Set Manual

1.10.7. Media Dual Rotate (Word Dual) Instruction

Ope code op ope Operation
MDROTLI 1111000 | 001011 Dual Rotate Left Immediate
Category

Media

Instruction format (Media instruction)
3130292827262524232221201918171615141312 109 8 7 6 5 4 3 2 1 0
FRk op FRi ope #s6

Assembler description
MDROTLI FRi,#s6,FRk

Description

The media dual rotate (Word Dual) instruction rotates FRi by the bit counts specified for lower
5 bits of #s6 and then stores the result of this rotation in FRk. Simultaneously, the instruction
rotates “FRi+1” by the bit counts specified for lower 5 bits of #s6 and then stores the result of
this rotation in “FRk+1".

The MDROTLI instruction rotates FRi and “FRi+1” to the left.

The register numbers of the Fri and FRk registers must be set to even numbers previously by
software; when they are odd numbers, mp_exception (register not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned)

92

1 Instruction Set Reference

1.10.8. Saturate (Halfword Dual)

Ope-code op ope Operation
MSATHS 1111011 001100 | Dual Saturation Halfword for Signed
MSATHU 1111011 001101 | Dual Saturation Halfword for Unsigned
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope FRj
Assembler Syntax
MSATHS FRi, FRj, FRk

MSATHU FRi, FRj, FRk

Description

The MSATHS instruction saturates 16-bit signed integer data of FRinhi within the range
indicated by FRjhi and writes the result in FRkni and saturates 16-bit signed integer data of
FRilo within the range indicated by FRjlo and writes the result in FRklo.

The data of FRi has two 16-bit signed integers. The data of FRj should be positive maximum
numbers which are under Ox7fff and they should be “2"-1” as well. The result is undefined
when FRj is not “2"-1”.

The MSATHU instruction saturates 16-bit unsigned integer data of FRini within the range
indicated by FRjhi and writes the result in FRkni and saturates 16-bit unsigned integer data of
FRilo within the range indicated by FRjlo and writes the result in FRklo.

The data of FRi has two 16-bit unsigned integers. The data of FRj should be positive maximum
numbers which are under Oxffff and they should be “2"-1 as well. The result is undefined
when FRj is not “2"-1”.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRini” indicates the high-order 16 bits of FRi and “FRilo” indicates the low-order 16 bits)

Operation example

MSATHS FRi, FRj, FRk
Saturates 0x1234

I by 0x1FFF
FRi 0x1234 OXS%; » Saturates 0x389AB
by 0x03FF
PR
FRj OX1FFF | 0x03FF@srrrrersmsmssssnsmssssnsnsnnsnanafinnsed
Y :
FRk completed |(y1234 | 0xpCoo |t

93

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

94

1 Instruction Set Reference

1.10.9. Media Quad Saturation Operation (Halfword Quad) Instruction

Ope code op ope Operation
MQSATHS 1111000 | 001111 Quad Saturation Halfword for Signed
Category

Media

Instruction format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope FRj
Assembler description
MQSATHS FRi,FRj,FRk
Description

The MQSATHS instruction performs signed saturating for FRihi in the range shown by FRjhi
and then stores the result in FRkhi. Simultaneously, the instruction performs signed saturating
for FRilo in the range shown by FRjlo and then stores the result in FRklo. Simultaneously, the
instruction performs signed saturating for “FRi+1hi” in the range shown by “FRj+1hi” and then
stores the result in “FRk+1hi”. Simultaneously, the instruction performs signed saturating for
“FRi+110” in the range shown by “FRj+110” and then stores the result in “FRk+110”.

FRi data and “FRi+1” data are two pairs of signed integer halfwords. FRj data and “FRj+1”
data are two pairs of maximum positive values below 0x7fff to be subjected to saturation, and
must be “2" — 17, When FRjhi, FRjlo, “FRj+1hi”, and “FRj+1l0” are not ‘2" — 17, the result is
undefined.

The register numbers of the FRi, FRj, and FRk registers must be set to even numbers previously
by software; when they are set to an odd numbers, mp_exception (register not aligned) is
detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register _not_aligned)

95

FRA400 Series Instruction Set Manual

1.10.10. Media Absolute Value Operation (Halfword Dual) Instruction

Ope code op ope Operation
MABSHS 1111000 | 001010 | Dual Absolute
Category

Media

Instruction format (Media instruction)
31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op - ope FRj

Assembler description
MABSHS FRj,FRk

Description

The MABSHS instruction stores the absolute value of FRjhi in FRkhi and simultaneously
stores the absolute value of FRjlo in FRklo. When the input value is 0x8000 (maximum
negative value), mp_exception (overflow) is detected, the result (0x7FFF) obtained after signed
saturating is stored in the register, and msr.ovf is set to 1.
For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, overflow)

96

1

Instruction Set Reference

1.10.11. Compare (Halfword Dual)

Ope-code op ope Operation
MCMPSH 1111011 001110 | Compare Signed Halfword (Halfword Dual)
MCMPUH 1111011 001111 | Compare Unsigned (Halfword Dual)
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- FCCk

op FRi ope

FRj

Assembler Syntax

MCMPSH FRi, FRj, FCCk
MCMPUH FRi, FRj, FCCk

Description

The MCMPSH instruction compares FRini with FRjhi as 16-bit signed integer and sets FCCk ,
and compares FRilo with FRjlo as 16-bit signed integer and sets FCCk+1. The FCC is set
according to the following table.
The MCMPUH instruction compares FRihi with FRjhi as 16-bit unsigned integer and sets
FCCk , and compares FRilo with FRjlo as 16-bit unsigned integer and FCCk+1. The FCC is set
according to the following table.
It is necessary to set FCCk as an even number with software. If FCCk is an odd number,
mp_exception(cr_not_aligned) occur.
The processing exception detected by the instruction is initiated by executing MTRAP

instruction.
FCCk condition
3(EQ) FRix = FRjx (“x” is “ hi” or “ 10”)
2(LT) FRix < FRjx (“x” is “ hi” or “ 10”)
1(GT) FRix > FRjx (“x” is “hi” or “lo”)
0(UO) (None)

Registers altered (except destination register)

FCCk,FCCk+1

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, cr_not_aligned)

97

FRA400 Series Instruction Set Manual

1.10.12. Add / Subtract with Saturation (Halfword Dual)

Ope-code op ope Operation

MADDHSS 1111011 010000 | Dual Add Signed Halfword with Saturation

MADDHUS 1111011 010001 | Dual Add Unsigned Halfword with
Saturation

MSUBHSS 1111011 010010 | Dual Subtract Signed Halfword with Saturation

MSUBHUS 1111011 010011 | Dual Subtract Unsigned Halfword with Saturation

Category
Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Assembler Syntax

MADDHSS FRi, FRj, FRk
MADDHUS FRi, FRj, FRk
MSUBHSS FRi, FRj, FRk
MSUBHUS FRi, FRj, FRk

Description

The MADDHSS instruction calculates “FRini +FRjhi “ and writes the result in FRkni as 16-bit
integer after signed saturation processing, and calculates “FRilo +FRjlo “ and writes the result in
FRkio as 16-bit integer after signed saturation processing. When the operation results overflow
and the result is a positive number, the instruction writes positive, maximum number (0x7fff) in
each halfword of FRk, or when the operation results overflow and the result is a negative
number, the instruction writes negative, minimum number (0x8000) in each halfword of FRk.
The MADDHUS instruction calculates “FRihi +FRjhi “ and writes the result in FRkni as 16-bit
integer after unsigned saturation processing, and calculates “FRilo +FRjlo “ and writes the result
in FRklo as 16-bit integer after unsigned saturation processing. When the operation results
overflow, the instruction writes positive, maximum number (0xffff) in each halfword of FRk.
The MSUBHSS instruction calculates “FRini - FRjhi “ and writes the result in FRkhi as 16-bit
integer after signed saturation processing, and calculates “FRilo -FRjlo ““ and writes the result in
FRkio as 16-bit integer after signed saturation processing. When the operation results overflow
and the result is positive number, the instruction writes positive, maximum number (0x7fff) in
each halfword of FRk , or when the operation results overflow and the result is negative
number, the instruction writes negative, minimum number (0x8000) in each halfword of FRk.
The MSUBHUS instruction calculates “FRini - FRjhi “ and writes the result in FRkni as 16-bit
integer after unsigned saturation processing, and calculates “FRilo -FRjlo* and writes the result
in FRklo as 16-bit integer after unsigned saturation processing. When the operation results
overflow, the instruction writes minimum number (0) in each halfword of FRk

When the result is overflow, “1” is set in the msr.ovf. The processing of the exception detected
by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

98

1 Instruction Set Reference

Operation example

MSUBHUS FRi, FRj, FRk

FRi 0xFFFF 4 } > _A= @

Saturates OXFFFE

by OXFFFF |
Saturates -1

by 0x0000
v ;

FRk completed |0xFFFE 0o |«

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, overflow)

99

FRA400 Series Instruction Set Manual

1.10.13. Multiply (Halfword Dual)

Ope-code op ope Operation

MMULHS 1111011 010100 | Dual Multiply Signed Halfword

MMULHU 1111011 010101 | Dual Multiply Unsigned Halfword

Category
Media
Instruction Format (Media instruction)

31302928272625242322212019181716151413 1211109 8 7 6 543 2 1 0
ACCk op FRi ope FRj

Assembler Syntax

MMULHS FRi, FRj, ACCk
MMULHU FRi, FRj, ACCk

Description

The MMULHS instruction signed multiplies FRini by FRjhi and writes the result in the
accumulator which concatenates ACCGk and ACCk as 40-bit integer, and signed multiplies
FRilo by FRjlo and writes the result in the accumulator which concatenates ACCGk+1 and
ACCk+1 as 40-bit integer.

The MMULHU instruction unsigned multiplies FRihi by FRjhi and writes the result in the
accumulator which concatenates ACCGk and ACCk as 40-bit integer, and unsigned multiplies
FRilo by FRjlo and writes the result in the accumulator which concatenates ACCGk+1 and
ACCk+1 as 40-bit integer.

It is necessary to set the accumulator number of ACCk as an even number with software. If the
accumulator number of ACCk is an odd number, the mp_exception (acc_not_aligned) occurs.
The instruction can not change the value of msr.ovf. The processing of the exception detected
by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

Operation example

MMULHS FRi, FRj, ACCk

FRi 2 3 } > *A = @
4

FRj 5 + ...
+0 P
ACCk completed 8 <
+1
l 5 < ...

100

1

Instruction Set Reference

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

101

FRA400 Series Instruction Set Manual

1.10.14. Cross Multiply (Halfword Dual)

Ope-code op ope Operation

MMULXHS 1111011 | 101000 | Dual Cross Multiply Signed Halfword

MMULXHU 1111011 | 101001 | Dual Cross Multiply Unsigned Halfword

Category
Media
Instruction Format (Media instruction)

31302928272625242322212019181716151413 1211109 8 7 6 543 2 1 0
ACCk op FRi ope FRj

Assembler Syntax

MMULXHS FRi, FRj, ACCk
MMULXHU FRi, FRj, ACCk

Description

The MMULXHS instruction signed multiplies FRihi by FRjlo and writes the result in the
accumulator which concatenates ACCGk and ACCk as 40-bit integer, and signed multiplies
FRilo by FRjhi and writes the result in the accumulator which concatenates ACCGk+1 and
ACCk+1 as 40-bit integer.

The MMULXHU instruction unsigned multiplies FRihi by FRjlo and writes the result in the
accumulator which concatenates ACCGk and ACCk as 40-bit integer, and unsigned multiplies
FRilo by FRjhi and writes the result in the accumulator which concatenates ACCGk+1 and
ACCk+1 as 40-bit integer.

It is necessary to set the accumulator number of ACCk as an even number with software. If the
accumulator number of ACCk is an odd number, the mp_exception (acc_not_aligned) occurs.
The instruction can not change the value of msr.ovf. The processing of the exception detected
by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

Operation example

MMULXHS FRi, FRj, ACCk

FRi 2

FR; 4

ACCk completed +0 10

12 <

102

1

Instruction Set Reference

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

103

FRA400 Series Instruction Set Manual

1.10.15. Multiply and Accumulate (Halfword Dual)

Ope-code op ope Operation

MMACHS 1111011 010110 | Dual Multiply and Accumulate Signed Halfword

MMACHU 1111011 010111 | Dual Multiply and Accumulate Unsigned Halfword

Category
Media
Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op FRi ope FRj

Assembler Syntax

MMACHS FRi, FRj, ACCk
MMACHU FRi, FRj, ACCk

Description

The MMACHS instruction singed multiplies FRihi by FRjhi and adds the result to the 40-bit
accumulator which concatenates ACCGk and ACCk, and signed multiplies FRilo by FRjlo and
adds the result to the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1. When
the result is overflow, the result is written in the accumulator after saturated to signed value and
msr.ovfis set to 1.

The MMACHU instruction unsigned multiplies FRini by FRjhi and adds the result to the 40-bit
accumulator which concatenates ACCGk and ACCKk, and unsigned multiplies FRilo by FRjio
and adds the result to the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1.
When the result is overflow, the result is written in the accumulator after saturated to unsigned
value and msr.ovfis set to 1.

It is necessary to set the accumulator number of ACCk as an even number with software. If the
accumulator number of ACCk is an odd number, the mp_exception (acc_not_aligned) occurs.
When the result of addition cause the overflow, “1” is set in the msr.ovf. The processing of the
exception detected by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

104

1 Instruction Set Reference

Operation example
MMACHS FRi, FRj, ACCk

FRi 5 3 } > *A = @
4

FRj 5 + ...
+0
ACCk Start 100
+1
200
+
completed 0 108
+1
2 l 5 4. ...

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

105

FRA400 Series Instruction Set Manual

1.10.16. Multiply and Subtract (Halfword Dual)

Ope-code op ope Operation

MMRDHS 1111011 110000 | Dual Multiply and Subtract Signed Halfword

MMRDHU 1111011 110001 | Dual Multiply and Subtract Unsigned Halfword

Category
Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op FRi ope FRj

Assembler Syntax

MMRDHS FRi, FRj, ACCk
MMRDHU FRi, FRj, ACCk

Description

The MMRDHS instruction signed multiplies FRihi by FRjhi and subtracts the result from the
40-bit accumulator which concatenates ACCGk and ACCKk, and signed multiplies FRilo by
FRjlo and subtracts the result from the 40-bit accumulator which concatenates ACCGk+1 and
ACCk+1. When the result is overflow, the result is written in the accumulator after saturated to
signed value and msr.ovfis set to 1.

The MMRDHU instruction unsigned multiplies FRini by FRjhi and subtracts the result from the
40-bit accumulator which concatenates ACCGk and ACCk, and unsigned multiplies FRilo by
FRjio and subtracts the result from the 40-bit accumulator which concatenates ACCGk+1 and
ACCKk+1. When the result is overflow, the result is written in the accumulator after saturated to
unsigned value(0) and msr.ovf'is set to 1.

It is necessary to set the accumulator number of ACCk as an even number with software. If the
accumulator number of ACCk is an odd number, the mp_exception(acc_not_aligned) occurs.
When the result of subtraction cause the overflow, “1” is set in the msr.ovf. The processing of
the exception detected by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

106

1 Instruction Set Reference

Operation example
MMRDHS FRi, FRj, ACCk

FRi 5 3 } > *A = @
4

FRj < + ...
+0|
ACCk Start 100
+1
200
+
completed 0 92
+1
l 8 5 ‘ ...

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

107

FRA400 Series Instruction Set Manual

1.10.17. Add / Subtract with Saturation (Halfword Quad)

Ope-code op ope Operation

MQADDHSS 1111011 | 011000 | Quad Add Signed Halfword with Saturation

MQADDHUS 1111011 | 011001 | Quad Add Unsigned Halfword with Saturation

MQSUBHSS 1111011 | 011010 | Quad Subtract Signed Halfword with Saturation

MQSUBHUS 1111011 | 011011 | Quad Subtract Unsigned Halfword with Saturation

Category
Media
Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Assembler Syntax

MQADDHSS FRi, FRj, FRk
MQADDHUS FRi, FRj, FRk
MQSUBHSS FRi, FRj, FRk
MQSUBHUS FRi, FRj, FRk

Description

The MQADDHSS instruction calculates “FRini +FRjni* and writes the result in FRkhi as 16-bit
integer after signed saturation processing, and calculates “FRilo +FRjlo” and writes the result in
FRkio as 16-bit integer after signed saturation processing. When the operation results overflow
and the result is positive number, the instruction writes positive, maximum number (0x7fff) in
each halfword of FRk, or when the operation results overflow and the result is negative number,
the instruction writes negative, minimum number (0x8000) in each halfword of FRk.

It also calculates “FRi+1hi +FRj+1hi” and writes the result in FRk+1hi as 16-bit integer after
signed saturation processing, and calculates “FRit+1lo +FRj+110” and writes the result in
FRk+110 as 16-bits integer after signed saturation processing. When the operation results
overflow and the result is positive number, the instruction writes positive, maximum number
(0x7fff) in each halfword of FRk+1, or when the operation results overflow and the result is
negative number, the instruction writes negative, minimum number (0x8000) in each halfword
of FRk+1.

The MQADDHUS instruction calculates “FRihi +FRjhi” and writes the result in FRkhi as 16-bit
integer after unsigned saturation processing, and calculates “FRilo +FRjlo” and writes the result
in FRkio as 16-bit integer after unsigned saturation processing. When the operation results
overflow, the instruction writes positive, maximum number (0xffff) in each halfword of FRk.

It also calculates “FRi+1hi +FRj+1hi” and writes the result in FRk+1hi as 16-bit integer after
unsigned saturation processing, and calculates “FRi+1lo +FRj+110” and writes the result in
FRk+110 as 16-bit integer after unsigned saturation processing. When the operation results
overflow, the instruction writes positive, maximum number (0xffff) in each halfword of FRk+1.
The MQSUBHSS instruction calculates “FRini -FRjhi” and writes the result in FRkni as 16-bit
integer after signed saturation processing, and calculates “FRilo -FRjlo” and writes the result in
FRkio as 16-bit integer after signed saturation processing. When the operation results overflow
and the result is positive number, the instruction writes positive, maximum number (0x7fff) in

108

1 Instruction Set Reference

each halfword of FRk, or when the operation results overflow and the result is negative number,
the instruction writes negative, minimum number (0x8000) in each halfword of FRk.

It also calculates “FRi+1hi -FRj+1hi” and writes the result in FRk+1hi as 16-bit integer after
signed saturation processing, and calculates “FRi+lio -FRj+110” and writes the result in
FRk+110 as 16-bit integer after signed saturation processing. When the operation results
overflow and the result is positive number, the instruction writes positive, maximum number
(0x7fftf) in each halfword of FRk+1, or when the operation results overflow and the result is
negative number, the instruction writes negative, minimum number (0x8000) in each halfword
of FRk+1.

The MQSUBHUS instruction calculates “FRihi -FRjhi” and writes the result in FRkni as 16-bit
integer after unsigned saturation processing, and calculates “FRilo -FRjlo” and writes the result
in FRklo as 16-bit integer after unsigned saturation processing. When the operation results
overflow and the result is a negative number , the instruction writes minimum number (0x0) in
each halfword of FRk.

It also calculates “FRi+1hi -FRj+1hi” and writes the result in FRk+1hi as 16-bit integer after
unsigned saturation processing, and calculates “FRi+11o -FRj+110” and writes the result in
FRk+110 as 16-bit integer after unsigned saturation processing. when the operation results
overflow and the result is a negative number, the instruction writes minimum number (0x0) in
each halfword of FRk+1.

It is necessary to set the register number of FRi, FRj and FRk in an even number with software.
If the register number of FRi, FRj or FRk is an odd number, the mp_ exception
(register_not aligned) occur.

When the operation results overflow, the instruction writes the saturated number in each FRk or
FRk+1 and “1” is set in the msr.ovf. The processing of the exception detected by the
instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

Operation example

MQADDHSS FRi, FRj, FRk

> 4+, =0—
FRi 4 5 } > -|-A = @
Saturates 12 :
by OX7FFF
FRj 8 Ox7FFE+ :
Saturates 0x08003
* by Ox7FFF
FRk completed R T (£ 17 s e OSSOSO
> 4+, =0—
FRi+1 OXFFF8} 'S .|.A = @

Saturates -15
by 0x8000

FRj+1 5 Ox8002+

n LT

Saturates-Oxl 7FFA
by 0x8000

FRk+1 completed -15 lox8000 4

109

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned, overflow)

110

1

Instruction Set Reference

1.10.18. Multiply (Halfword Quad)

Ope-code op ope Operation
MQMULHS 1111011 | 011100 | Quad Multiply Signed Halfword
MQMULHU 1111011 | 011101 | Quad Multiply Unsigned Halfword
Category

Media

Instruction Format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk op FRi ope FRj

Assembler Syntax

MQMULHS FRi, FRj, ACCk
MQMULHUFR;, FRj, ACCk

Description

The MQMULHS instruction signed multiplies FRihi by FRjhi and writes the result in the 40-bit
accumulator which concatenates ACCGk and ACCk, and signed multiplies FRilo by FRjlo and
writes the result in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1, and
signed multiplies FRi+1hi by FRj+1hi and writes the result in the 40-bit accumulator which
concatenates ACCGk+2 and ACCk+2, and signed multiplies FRi+1lo by FRj+110 and writes the
result in the 40-bit accumulator which concatenates ACCGk+3 and ACCk+3.

The MQMULHU instruction unsigned multiplies FRini by FRjhi and writes the result in the 40-
bit accumulator which concatenates ACCGk and ACCk, and unsigned multiplies FRilo by FRjlo
and writes the result in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1,
and unsigned multiplies FRi+1hi by FRj+1ni and writes the result in the 40-bit accumulator
which concatenates ACCGk+2 and ACCk+2, and unsigned multiplies FRi+11o by FRj+110 and
writes the result in the 40-bit accumulator which concatenates ACCGk+3 and ACCk+3.

It is necessary to set the register number of FRi and FRj as an even number with software. If
the register number of FRi or FRj is an odd number, the mp_exception (register not_aligned)
occurs.

It is necessary to set the accumulator number of ACCk as a multiple of four. If the accumulator
number of ACCk is not a multiple of four, the mp_exception (acc_not_aligned) occurs.

The instructions can not change the value of msr.ovf.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

111

FRA400 Series Instruction Set Manual

Operation example

MQMULHS FRi, FRj, ACCk

FRi 2 3 } » % A= ©
FRj 4 5 + ...

+0 P
ACCk completed 8 <

+1

[

FRi+1 0xTFFF OXSOO; > *A= P

FRj+1 0x7FFF | 0800 5+

+2 <
ACCk completed 0x003FFF0001 [
+3

0xFF40000000 SRR

Registers altered (except destination register)

nonc

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned, acc_not_aligned)

112

1

Instruction Set Reference

1.10.19. Cross Multiply (Halfword Quad)

Ope-code op ope Operation
MQMULXHS 1111011 | 101010 | Quad Cross Multiply Signed Halfword
MQMULXHU 1111011 | 101011 Quad Cross Multiply Unsigned Halfword
Category

Media

Instruction Format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk op FRi ope FRj

Assembler Syntax

MQMULXHS FRi, FRj, ACCk
MQMULXHU FRi, FRj, ACCk

Description

The MQMULXHS instruction signed multiplies FRihi by FRjlo and writes the result in the 40-
bit accumulator which concatenates ACCGk and ACCk, and signed multiplies FRilo by FRjni
and writes the result in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1,
and signed multiplies FRi+1hi by FRj+11o and writes the result in the 40-bit accumulator which
concatenates ACCGk+2 and ACCk+2, and signed multiplies FRi+11o by FRj+1hi and writes the
result in the 40-bit accumulator which concatenates ACCGk+3 and ACCk+3.

The MQMULXHU instruction unsigned multiplies FRini by FRjlo and writes the result in the
40-bit accumulator which concatenates ACCGk and ACCk, and unsigned multiplies FRilo by
FRjhi and writes the result in the 40-bit accumulator which concatenates ACCGk+1 and
ACCk+1, and unsigned multiplies FRi+1hi by FRj+1lo and writes the result in the 40-bit
accumulator which concatenates ACCGk+2 and ACCk+2, and unsigned multiplies FRi+11o by
FRj+1ni and writes the result in the 40-bit accumulator which concatenates ACCGk+3 and
ACCk+3.

It is necessary to set the register number of FRi and FRj as an even number with software. If
the register number of FRi or FRj is an odd number, the mp_exception (register not_aligned)
occurs.

It is necessary to set the accumulator number of ACCk as a multiple of four. If the accumulator
number of ACCk is not a multiple of four, the mp_exception (acc_not_aligned) occurs.

The instructions can not change the value of msr.ovf, holding the previous value.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

113

FRA400 Series Instruction Set Manual

Operation example
MQMULXHS FRi, FRj, ACCk
+0 *

FRi 2 3
+1

FRj
ACCk completed 0 14 <
+1 i
18 S [ETTTTCECETTTTRTYYYPEEE (EETER PR P EEEEEEEEEEEE L LD
+2
36
+3 <
40 N

Registers altered (except destination register)

nonec

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned, acc_not_aligned)

114

1

Instruction Set Reference

1.10.20. Multiply and Accumulate (Halfword Quad)

Ope-code op ope Operation
MQMACHS 1111011 | 011110 | Quad Multiply and Accumulate Signed Halfword
MQMACHU 1111011 | 011111 | Quad Multiply and Accumulate Unsigned Halfword
Category

Media

Instruction Format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk op FRi ope FRj

Assembler Syntax

MQMACHS FRi, FRj, ACCk
MQMACHUFR;, FRj, ACCk

Description

The MQMACHS instruction signed multiplies FRihi by FRjhi and adds the result to the 40-bit
accumulator which concatenates ACCGk and ACCk, and signed multiplies FRilo by FRjlo and
adds the result to the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1, and
signed multiplies FRi+1hi by FRj+1hi and adds the result to the 40-bit accumulator which
concatenates ACCGk+2 and ACCk+2, and signed multiplies FRi+11o by FRj+11o and adds the
result to the 40-bit accumulator which concatenates ACCGk+3 and ACCk+3. When the result
is overflow, the result is written in the accumulator after saturated to signed value and msr.ovf
is set to 1.

The MQMACHU instruction unsigned multiplies FRihi by FRjhi and adds the result to the 40-
bit accumulator which concatenates ACCGk and ACCk, and unsigned multiplies FRilo by FRjio
and adds the result to the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1, and
unsigned multiplies FRi+1hi by FRj+1hi and adds the result to the 40-bit accumulator which
concatenates ACCGk+2 and ACCk+2, and unsigned multiplies FRi+1io by FRj+11o and adds
the result to the 40-bit accumulator which concatenates ACCGk+3 and ACCk+3. When the
result is overflow, the result is written in the accumulator after saturated to unsigned value and
msr.ovfis setto 1.

It is necessary to set the register number of FRi and FRj as an even number with software. If
the register number of FRi or FRj is an odd number, the mp_exception (register not_aligned)
occurs.

It is necessary to set the accumulator number of ACCk as a multiple of four with software. If
the accumulator number of ACCk is not a multiple of four, the mp_exception (acc_not_aligned)
occurs.

When the result of addition is overflow, “1” is set in msr.ovf.

The processing of the exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

115

FRA400 Series Instruction Set Manual

Operation example
MQMACHS FRi, FRj, ACCk

FRi+0

pie

FRj+0

+0

+1

200

+
completed 0 108
+1 5
2 l 5 ‘ ...

FRi+1 ‘ ; }
FRj+1 8 9 +

+2
+3
400
+
completed 2 348
+3
463

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions
mp_exception (unimplement_exception, register not_aligned, acc_not_aligned , overflow)

116

1

Instruction Set Reference

1.10.21. Media ACC Cross Quad Multiply and Accumulation (Halfword Quad) Instruction)

Ope code op ope Operation
MQXMACHS | 1111000 | 000000 | Quad Multiply and Cross Accumulate Signed Halfword
Category

Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk

op

FRi

ope

FRj

Assembler description
MQXMACHS

Description

FRi,FRj,ACCk

The MQXMACHS instruction calculates FRihi*FRjhi, adds the result obtained from this
calculation to the 40-bit integer data in which “ACCGk+2” and “ACCk+2” are concatenated,
and then stores the result of this addition in the 40-bit register in which “ACCGk+2” and
“ACCk+2” are concatenated, as a 40-bit signed integer. Simultaneously, the MQXMACHS
instruction calculates FRilo*FRjlo, adds the result obtained from this calculation to the 40-bit
integer data in which “ACCGk+3” and “ACCk+3” are concatenated, and then stores the result
of this addition in the 40-bit register in which “ACCGk+3” and “ACCk+3” are concatenated, as
a 40-bit signed integer. Simultaneously, the MQXMACHS instruction calculates
FRi+1hi*FRj+1hi, adds the result obtained from this calculation to the 40-bit integer data in
which ACCGk and ACCk are concatenated, and then stores the result of this addition in the
register in which ACCGk and ACCk are concatenated, as a 40-bit signed integer.
Simultaneously, the MQXMACHS instruction calculates FRi+1lo*FRj+1lo, adds the result
obtained from this calculation to the 40-bit integer data in which “ACCGk+1” and “ACCk+1”
are concatenated, and then stores the result of this addition in the 40-bit register in which
“ACCGk+1” and “ACCk+1” are concatenated, as a 40-bit signed integer. When the result
overflows, the result obtained after signed saturating is stored in the register, and msr . ovf is
setto 1.

The register numbers of the Fri and FRj registers must be set to even numbers previously by
software; if they are set to odd numbers, mp_exception (register not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

(FRihi shows upper 16 bits of FRi; and FRilo shows lower 16 bits of FRi.)

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

117

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

118

1 Instruction Set Reference

1.10.22. Media ACC Cross Quad Cross Multiply and Accumulation (Halfword Quad) Instruction

Ope code op ope Operation

MQXMACXHS | 1111000 | 000001 Quad Cross Multiply and Cross Accumulate Signed Halfword

Category
Media

Instruction format (Media accumulator instruction)
31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
ACCk op FRi ope FRj

Assembler description
MQXMACXHS FRi,FRj,ACCk

Description

The MQXMACXHS instruction calculates FRihi*FRjlo, adds the result obtained from this
calculation to the 40-bit integer data in which “ACCGk+2” and “ACCk+2” are concatenated,
and then stores the result of this addition in the 40-bit register in which “ACCGk+2” and
“ACCk+2” are concatenated, as a 40-bit signed integer. Simultaneously, the instruction
calculates FRilo*FRjhi, adds the result obtained from this calculation to the 40-bit integer data
in which ACCGk+3 and ACCk+3 are concatenated, and then stores the result of this addition in
the 40-bit register in which “ACCGk+3” and “ACCk+3” are concatenated, as a 40-bit signed
integer. Simultaneously, the instruction calculates FRi+1hi*FRj+1lo, adds the result obtained
from this calculation to the 40-bit integer data in which ACCGk and ACCk are concatenated,
and then stores the result of this addition in the register in which ACCGk and ACCk are
concatenated, as a 40-bit signed integer. Simultaneously, the instruction calculates
FRi+110*FRj+1hi, adds the result obtained from this calculation to the 40-bit integer data in
which “ACCGk+1” and “ACCk+1” are concatenated, and then stores the result of this addition
in the 40-bit register in which “ACCGk+1” and “ACCk+1" are concatenated, as a 40-bit signed
integer. When the result overflows, the result obtained after signed saturating is stored in the
register, and msr.ovf is setto 1.

The register numbers of the Fri and FRj registers must be set previously to even numbers by
software; if they are odd numbers, mp_exception (register not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

(FRihi shows upper 16 bits of FRi; and FRilo shows lower 16 bits of FRi.)

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

119

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

120

1

Instruction Set Reference

1.10.23. Media Quad Cross Multiply and Accumulation (Halfword Quad) Instruction

Ope code op ope Operation
MQMACXHS 1111000 | 000010 | Quad Cross Multiply and Cross Accumulate Signed Halfword
Category

Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk op FRi ope FRj

Assembler description

MQMACXHS FRi,FRj,ACCk

Description

The MQMACXHS instruction calculates FRihi*FRjlo, adds the result obtained from this
calculation to the 40-bit integer data in which ACCGk and ACCk are concatenated, and then
stores the result of this addition in the 40-bit register in which ACCGk and ACCk are
concatenated, as a 40-bit signed integer. Simultaneously, the instruction calculates
FRilo*FRjhi, adds the result obtained from this calculation to the 40-bit integer data in which
“ACCGk+1” and “ACCk+1” are concatenated, and then stores the result of this addition in the
40-bit register in which “ACCGk+1” and “ACCk+1” are concatenated, as a 40-bit signed
integer. Simultaneously, the instruction calculates FRi+1hi*FRj+1lo, adds the result obtained
from this calculation to the 40-bit integer data in which “ACCGk+2” and “ACCk +2” are
concatenated, and then stores the result of this addition in the register in which “ACCGk+2”
and “ACCk+2” are concatenated, as a 40-bit signed integer. Simultaneously, the instruction
calculates FRi+110*FRj+1hi, adds the result obtained from this calculation to the 40-bit integer
data in which “ACCGk+3” and “ACCk+3” are concatenated, and then stores the result of this
addition in the 40-bit register in which “ACCGk+3” and “ACCk+3” are concatenated, as a 40-
bit signed integer. When the result overflows, a value obtained after signed saturating is stored
in the register, and msr.ovf is set to 1.

The register numbers of the Fri and FRj registers must be set to even numbers previously by
software; if they are set to odd numbers, mp_exception (register not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

(FRihi shows upper 16 bits of FRi; and FRilo shows lower 16 bits of FRi.)

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

121

FRA400 Series Instruction Set Manual

Detected Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

122

1 Instruction Set Reference

1.10.24. Complex Multiply (Halfword Dual)

Ope-code Op ope Operation
MCPXRS 1111011 100000 | Dual Complex Real Signed Halfword
MCPXRU 1111011 100001 | Dual Complex Real Unsigned Halfword
MCPXIS 1111011 100010 | Dual Complex Imaginary Signed Halfword
MCPXIU 1111011 100011 | Dual Complex Imaginary Unsigned Halfword
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk

op

FRi ope FRj

Assembler Syntax

MCPXRS FRi, FRj, ACCk
MCPXRU FRi, FRj, ACCk
MCPXIS FRi, FRj, ACCk
MCPXIU FRi, FRj, ACCk

Description

The MCPXRS instruction calculates “(FRihi * FRjhi) — (FRilo * FRjlo)” as a signed integer and
writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk.

The MCPXRU instruction calculates “(FRini * FRjhi) — (FRilo * FRjlo)” as an unsigned integer
and writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk. The
accumulator is set to 0 and msr.ovf is set to 1 when the subtracted result is minus.

The MCPXIS instruction calculates “(FRihi * FRjlo) + (FRilo * FRjhi)” as a singed integer and
writes the result in the 40-bit accumulator which concatenates ACCGk and ACCKk.

The MCPXIU instruction calculates “(FRini * FRjio) + (FRilo * FRjhi)” as an unsigned integer
and writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk.

The processing of the exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

123

FRA400 Series Instruction Set Manual

Operation example

MCPXRS FRi, FRj, ACCk

FRi 5 3 } >*, = e
FRj A < +

ACCk completed

MCPXIS FRi, FRj, ACCk

FRi

FRj

ACCk completed

22

Registers altered (except destination register)
MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

124

1 Instruction Set Reference

1.10.25. Complex Multiply (Halfword Quad)

Ope-code Op Ope Operation
MQCPXRS 1111011 100100 | Quad Complex Real Signed Halfword
MQCPXRU 1111011 100101 | Quad Complex Real Unsigned Halfword
MQCPXIS 1111011 100110 | Quad Complex Imaginary Signed Halfword
MQCPXIU 1111011 100111 | Quad Complex Imaginary Unsigned Halfword
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk

op

FRi ope FRj

Assembler Syntax

MQCPXRS FRi, FRj, ACCk
MQCPXRU FRi, FRj, ACCk
MQCPXIS FRi, FRj, ACCk
MQCPXIU FRi, FRj, ACCk

Description

The MQCPXRS instruction calculates “(FRihi * FRjhi) — (FRilo * FRjlo)” as a signed integer
and writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk, and
calculates “(FRi+1hi * FRj+1hi) — (FRi+11o * FRj+110)” as a signed integer and writes the result
in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1.

The MQCPXRU instruction calculates “(FRini * FRjhi) — (FRilo * FRjlo)” as an unsigned
integer and writes the result in the 40-bit accumulator which concatenates ACCGk and ACCK,
and calculates “(FRi+1hi * FRj+1hi) — (FRi+1lo * FRj+110)” as an unsigned integer and writes
the result in the 4-bit accumulator which concatenates ACCGk+1 and ACCk+1. The
accumulator is set to 0 and msr.ovf is set to 1 when the subtracted result is minus.

The MQCPXIS instruction calculates “(FRihi * FRjlo) + (FRilo * FRjhi)” as a signed integer and
writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk, and
calculates “(FRi+1hi * FRj+110) + (FRi+1lo * FRj+1hi)” as a signed integer and writes the result
in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1.

The MQCPXIU instruction calculates “(FRini * FRjlo) + (FRilo * FRjhi)”” as an unsigned integer
and writes the result in the 40-bit accumulator which concatenates ACCGk and ACCk, and
calculates “(FRi+1hi * FRj+11o) + (FRi+1lo * FRj+1hi)” as an unsigned integer and writes the
result in the 40-bit accumulator which concatenates ACCGk+1 and ACCk+1.

When the operation results overflow, “1” is set in the msr.ovf. The processing of the exception
detected by the instruction is initiated by executing MTRAP instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of
FRi.)

125

FRA400 Series Instruction Set Manual

Operation example

MQCPXRS FRi, FRj, ACCk

FRi 5 3 } >*, = e
FRj A < +

—> —% =
ACCk completed +0 —7 .—|
| > *, =e—
FRi+1 . ﬂ >k, = e
PRI —Q—T+ ...
—> —% =
ACCk completed t1 -15 ._I

MQCPXIS FRi, FRj, ACCk

FRi

FRj

ACCk completed +0

FRi+1

FRj+1

ACCk completed +1 110

126

1

Instruction Set Reference

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

127

FRA400 Series Instruction Set Manual

1.10.26. Cut

Ope-code op ope Operation
MCUT 1111011 101100 | CUT Accumulator
MCUTI 1111011 101110 | CUT Accumulator (Immediate)
Category
Media

Single word

Instruction Format (Media instruction (R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op ACCi ope FRj

Instruction Format (Media instruction (imm))
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op ACCi ope #s6

Assembler Syntax

MCUT ACCi, FRj, FRk
MCUTI ACCi, #s6, FRk

Description

The MCUT instruction cuts the accumulator which concatenates ACCGi and ACCi as 32-bit
integer from bit position which is indicated by the shift count and writes the result in the FRk.
MSB of the 40 bit data, which is made by concatenating ACCGi and ACCi is 0 and LSB is 39,
and according to specified bit position, 32-bit data is taken out from the 40-bit data. The value
greater than 31 can not be indicated as the shift count. But the negative number can be
indicated as the shift count. When the negative number is indicated as the shift count, the sign
bit is written into the negative bit positions.

The shift count is indicated by the lower 6 bits of FRj (immediate instruction: the 6 bits of #s6)
as a signed integer.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

128

1 Instruction Set Reference

Operation example

MCUT ACCi, FRj, FRk

ACCi

FRj

FRk completed

Registers altered (except destination register)

nonc

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

0x123456789A P

12

0x456789A0

—

!

Cuts from bit 12 specified
by FRj in ACCi

A

129

FRA400 Series Instruction Set Manual

1.10.27. Cut

Ope-code op ope Operation

MCUTSS 1111011 101101 | CUT with Signed Saturation Accumulator

MCUTSSI 1111011 101111 | CUT with Signed Saturation Accumulator (Immediate)

Category

Media
Single word

Instruction Format (Media instruction (R))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op ACCi ope FRj

Instruction Format (Media instruction (imm))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op ACCi ope #s6

Assembler Syntax

MCUTSS ACCi, FRj, FRk
MCUTSSI ACCi, #s6, FRk

Description

The MCUTSS instruction cuts the accumulator which concatenates ACCGi and ACCi as 32-bit
integer from bit position which is indicated by the shift count and writes the result in the FRk
after signed saturation processing.

MSB of the 40 bit data, which is made by concatenating ACCGi and ACCi is 0 and LSB is 39,
and according to specified bit position, 32-bit data is taken out from the 40-bit data. The value
greater than 31 can not be indicated as the shift count. But the negative number can be
indicated as the shift count. When the negative number is indicated as the shift count, the sign
bit is written into the negative bit positions.

The shift count is indicated by the lower 6 bits of FRj (immediate instruction: the 6 bits of #s6)
as a signed integer.

When the result overflows, the result obtained after signed saturating is stored in the register,
and nsr . ovf issetto 1.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

130

1 Instruction Set Reference

Operation example

MCUTSS ACCi, FRj, FRk

ACCi

FRj

FRk completed

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

0x123456789A P

12

0x456789A0

—

!

Cuts from bit 12 specified
by FRj in ACCi

A

mp_exception (unimplement_exception,overflow)

131

FRA400 Series Instruction Set Manual

1.10.28. Media Dual Cut Instruction

Ope code op ope Operation
MDCUTSSI 1111000 | 001110 Dual CUT and Signed Saturation Accumulator (Immediate)
Category

Media

Instruction format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op ACCi ope #s6

Assembler description

MDCUTSSI ACCi,#s6,FRk

Description

The MDCUTSSI instruction extracts 32 bits out of 40-bit data in which ACCGi and ACCi are
concatenated, beginning at the bit position specified for the shift count, performs signed
saturating, and then stores the result in FRk. Simultaneously, the instruction extracts 32 bits
out of 40-bit data in which “ACCGi+1” and “ACCi+1” are concatenated, beginning at the bit
position specified for the shift count, performs signed saturating, and then stores the result in
“FRk+1”. ACCi (ACCi+1) data extracts 32 bits in 40-bit data (in which ACCGi (ACCGi+1)
and ACCi (ACCi+1) are concatenated in this order), beginning at the specified bit position,
with the MSB (left) side of 40-bit data allocated to bit 0 followed by “bit 1 to bit 31" allocated
rightwards. It is not possible to specify extraction of 32 or larger bits. Also, a negative value
can be specified for the shift count; when a negative value is specified, the bit position
indicating the negative value is set to a sign. The shift count is specified for 6 bits of #s6.

When the result overflows, the result obtained after signed saturating is stored in the register,
and msr . ovf issetto 1.

The register numbers of the ACCi and FRk registers must be set to even numbers previously by
software; when the register number of the ACCi register is set to an odd number, mp_exception
(acc_not_aligned) is detected. When the register number of the FRk register is set to an odd
number, MP__exception (register not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned, overflow)

132

1 Instruction Set Reference

1.10.29. Expand (Halfword)

Ope-code op ope Operation
MEXPDHW 1111011 | 110010 | Expand Halfword to Word
MEXPDHD 1111011 | 110011 | Expand Halfword to Double-Word
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk

op

FRi ope #s6

Assembler Syntax

MEXPDHW FRi, #s6, FRk
MEXPDHD FRi, #s6, FRk

Description

The MEXPDHW instruction copies the halfword data of FRi indicated by the LSB of #s6 to
FRkni and FRklo.

The MEXPDHD instruction copies the halfword data of FRi indicated by the LSB of #s6 to
FRkni, FRklo, FRk+1hi and FRk+11o.

The LSB of #s6 indicates that 0 is high-order halfword and 1 is low-order halfword.

It is necessary to set the register number of FRk of the MEXPDHD instruction as an even
number with software. If the register number of FRk is an odd number, the mp_ exception
(register_not_aligned) occurs.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRkni” indicates the high-order 16 bits of FRk and “FRklo” indicates the low-order 16 bits of
FRk.)

Operation example

MEXPDHD FRi, #s6, FRk

o

FRi 0x1234 Ox5675+
\ 4
Transfers halfword data
#s6 l » specified by #s6 in FRi to FRk
\2 L 2
+0
FRk completed [0x5678|0x5678
+1
0x5678[0x5678
S

133

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

nonc

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned)

134

1 Instruction Set Reference

1.10.30. Pack/Unpack (Halfword)

Ope-code op ope Operation

MPACKH 1111011 | 110100 | Pack Halfword to Word

MUNPACKH 1111011 | 110101 | Unpack Word to Halfword

Category
Media
Instruction Format (Media instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Assembler Syntax

MPACKH FRi,FRj,FRk
MUNPACKH FRi,FRk

Description

The MPACKH instruction writes FRilo in FRkni and writes FRjlo in FRklo.

The MUNPACKH instruction copies the contents of FRini to FRkhi and FRklo, and copies the
contents of FRilo to FRk+1hi and FRk+11o.

It is necessary to set the register number of FRk as an even number with software. If the
register number of FRk in the MUNPACKH instruction is an odd number, the mp_exception
(register_not_aligned) occurs.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

(“FRkni” indicates the high-order 16 bits of FRk and “FRkio” indicates the low-order 16 bits of
FRk.)

Operation example

MPACKH FRi,FRj,FRk MUNPACKH FRi,FRk

FRi 0x1234 Ox567#_ FRi 0x1234 0X5678+ ------ .

FRj 0x9ABC OxREFO FRk completedJrO 0x1234|0x1234

: +1
\ 4 0x5678 [0x5678

FRk completed |0x5678|0xDEFO

A

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

135

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned)

136

1

Instruction Set Reference

1.10.31. Pack (Halfword Dual)

Ope-code op ope Operation
MDPACKH 1111011 | 110110 Dual Pack Halfword to Word
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope FRj
Assembler Syntax
MDPACKH FRi, FRj, FRk
Description

The MDPACKH instruction writes FRilo in FRkni and FRjlo in FRklo and also writes FRi+11o in
FRk+1hi and FRj+11o in FRk+11o
It is necessary to set the register number of FRi, FRj and FRk of the MDPACKH instruction as
an even number with software. If the register number of FRi, FRj or FRk in the MDPACKH
instruction is an odd number, the mp_exception (register not_aligned) occurs.

The processing exception detected by the instruction is initiated by executing MTRAP

instruction.

(“FRini” indicates the high-order 16 bits of FRi, and “FRilo” indicates the low-order 16 bits of

FRi.)

137

FRA400 Series Instruction Set Manual

Operation example

MDPACKH FRi, FRj, FRk

+
FRi 0

+1

FRk completed 2 6 4 3

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned)

138

1 Instruction Set Reference

1.10.32. Convert Byte to/from Halfword

Ope-code op ope Operation
MBTOH 1111011 | 111000 | Byte To Halfword
MHTOB 1111011 | 111001 | Halfword To Byte
Category

Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op - ope FRj

Assembler Syntax

MBTOH FRj, FRk
MHTOB FRj, FRk

Description

The MBTOH instruction converts the unsigned byte data in FRj3 to the unsigned halfword data
in FRkni, and converts the unsigned byte data in FRj2 to the unsigned halfword data in FRkio,
and converts the unsigned byte data in FRj1 to the unsigned halfword data in FRk+1hi, and
converts the unsigned byte data in FRjo to the unsigned halfword data in FRk+11o.

The MHTOB instruction converts the unsigned halfword data in FRjhi to the unsigned byte data
in FRk3 after unsigned saturation processing with the maximum number of unsigned byte (0xf¥),
and converts the unsigned halfword data in FRjio to the unsigned byte data in FRk2 after
unsigned saturation processing with the maximum number of unsigned byte (0xff), and
converts the unsigned halfword data in FRj+1hi to the unsigned byte data in FRki after
unsigned saturation processing with the maximum number of unsigned byte (0xff), and
converts the unsigned halfword data in FRj+llo to the unsigned byte data in FRko after
unsigned saturation processing with the maximum number of unsigned byte (0xff).

It is necessary to set the register number of FRk of the MBTOH instruction and the register
number of FRj of the MHTOB instruction in an even number with software. If the register
number of FRk of the MBTOH instruction or the register number of FRj of the MHTOB
instruction is an odd number, the mp_exception (register not_aligned) occurs.

The processing exception detected by the instruction is initiated by executing MTRAP
instruction.

The side small number of FRk* specify the position of byte in the register. The relation of the
position of byte with the position of bit is below.

FRk3 = FRk (31 bits-24 bits), FRk2 = FRK (23 bits-16 bits)

FRk1 = FRK (15 bits-8 bits), FRko = FRK (7 bits-0 bit)

139

FRA400 Series Instruction Set Manual

Operation example

Saturates unsigned integers
within the range 0 and 255

MBTOH FRj, FRk
31 23 15 7 0

FRj

FRk completed |0x0001[0x0002[0x0003|0x0004

MHTOB FRj, FRk

FRj +0 +1
0x0001|0x0102 Ox8200 0x0004
31

FRk completed [oxo1 joxrr [oxFF [0x04

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned)

140

1

Instruction Set Reference

1.10.33. Media Bit Concatenate (Halfword Dual) Instruction

Ope code op ope Operation
MCPLHI 1111000 | 001100 Dual Coupling Half Word Data (Immediate)
Category

Media

Instruction format (Media instruction)

31302928272625242322212019 1817

1514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope #s6
Assembler description
MCPLHI FRi,#s6,FRk
Description

The media bit concatenate (Halfword Dual) instruction concatenates FRihi[15-n:0] and
FRi+1hi[n-1:0] with allocating Fri+1[n-1:0] to the LSB side and then stores the result of this
concatenation in Frkhi on condition that “n” represents the bit counts specified for lower 4 bits
of #s6. Simultaneously, the instruction concatenates FRilo[15-n:0] and FRi+1lo[n-1:0] with
allocating Fri+1lo[n-1:0] to the LSB side and then stores the result of this concatenation in
FRklo.
The register number of the FRi register must be set to an even number previously by software;
when it is set to an odd number, mp_exception (register not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned)

141

FRA400 Series Instruction Set Manual

1.10.34. Media Bit Concatenate (Word Dual) Instruction

Ope code op ope Operation
MCPLI 1111000 | 001101 Dual Coupling Word Data (Immediate)
Category

Media

Instruction format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope #s6

Assembler description
MCPLI FRi,#s6,FRk

Description

The media bit concatenate (Word Dual) instruction concatenates FRi[31-n:0] and FRi+1[n-1:0]
with allocating Fri+1[n-1:0] to the LSB side and then stores the result of this concatenation in
FRk on condition that “n” represents the bit counts specified for lower 5 bits of #s6.
The register number of the FRi register must be set to an even number previously by software;
when it is an odd number, Mp__exception (register not_aligned) is detected.
For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register _not_aligned)

Suspension exceptions to be started

None

142

1 Instruction Set Reference

1.10.35. Clear Accumulator

Ope-code op ope Operation

MCLRACC 1111011 111011 Clear Accumulator

Category
Media

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCi op - ope -
#A

Assembler Syntax

MCLRACC ACCi, #A

Description

The MCLRACC instruction clear the contents of ACCi and ACCGid, and set to zero.
If #A bit is “1” and ACCi is 0, all of ACC and all of ACCG are cleared.
If the indicated ACC doesn’t exist, this instruction behaves as NOP.

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

143

FRA400 Series Instruction Set Manual

1.10.36. Read/Write Accumulator

Ope-code op ope Operation

MRDACC 1111011 111100 | Read Accumulator

MWTACC 1111011 111101 Write Accumulator

MRDACCG 1111011 111110 | Read Accumulator Guard

MWTACCG 1111011 111111 | Write Accumulator Guard

Category
Media
Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op ACCi ope -

Instruction Format (Media instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op FRi ope -

Assembler Syntax

MRDACC ACCi, FRk
MWTACC FRi, ACCk
MRDACCG ACCGi, FRk
MWTACCG FRi, ACCGk

Description

The MRDACC instruction copies the contents of ACCi to FRk.
The MWTACC instruction copies the contents of FRi to ACCKk.
The MRDACCG instruction copies the contents of ACCGi to low-order 8-bit of FRk and zero
to higher-order bits.
The MWTACCG instruction copies the contents of low-order 8-bit of FRi to ACCGk.
The processing exception detected by the instruction is initiated by executing MTRAP
instruction.
Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

144

1

Instruction Set Reference

1.10.37. Media Accumulator Addition Instruction

Ope code op ope Operation
MADDACCS 1111000 | 000100 | Add Signed Accumulator with Saturation
Category

Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ACCk op ACCi ope -
Assembler description
MADDACCS ACC1,ACCk
Description

The MADDACCS instruction adds signed 40-bit data in which ACCGi and ACCi are
concatenated and signed 40-bit data in which “ACCGi+1” and “ACCi+1” are concatenated, and
then stores the result obtained from this addition in the 40-bit register in which ACCGk and
ACCk are concatenated. When the result overflows, the result obtained after signed saturating

is stored in the register, and msr.ovf is set to 1.

The register number of the ACCi register must be set to a multiple of 2 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.
For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned,
acc_not_aligned , overflow)

145

FRA400 Series Instruction Set Manual

1.10.38. Media Accumulator Subtraction Instruction

Ope code op ope Operation

MSUBACCS 1111000 | 000101 Subtract Signed Accumulator with Saturation

Category
Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op ACCi ope -

Assembler description
MSUBACCS ACCi,ACCk

Description

The MSUBACCS instruction subtracts signed 40-bit data in which “ACCGi+1” and “ACCi+1”
are concatenated, from signed 40-bit data in which ACCGi and ACCi are concatenated, and
then stores the result obtained from this subtraction in the 40-bit register in which ACCGk and
ACCk are concatenated. When the result overflows, the result obtained after signed saturating
is stored in the register, and msr.ovf is set to 1.

The register number of the ACCi register must be set to a multiple of 2 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned,
acc_not_aligned , overflow)

146

1 Instruction Set Reference

1.10.39. Media Dual Accumulator Addition Instruction

Ope code op ope Operation

MDADDACCS | 1111000 | 000110 Dual Add Signed Accumulator with Saturation

Category
Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op ACCi ope -

Assembler description
MDADDACCS ACCi,ACCk

Description

The MDADDACCS instruction adds signed 40-bit data in which ACCGi and ACCi are
concatenated and signed 40-bit data in which “ACCGi+1” and “ACCi+1” are concatenated, and
then stores the result obtained from this addition in the 40-bit register in which ACCGk and
ACCk are concatenated. Simultaneously, the instruction adds signed 40-bit data in which
“ACCGi+2” and “ACCi+2” are concatenated and signed 40-bit data in which “ACCGi+3” and
“ACCi+3” are concatenated, and then stores the result obtained from this addition in the 40-bit
register in which “ACCGk+1” and “ACCk+1” are concatenated. When the result overflows,
the result obtained after signed saturating is stored in the register, and msr.ovf is set to 1.

The register number of the ACCi register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 2 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

147

FRA400 Series Instruction Set Manual

1.10.40. Media Dual Accumulator Subtraction Instruction

Ope code op ope Operation

MDSUBACCS | 1111000 | 000111 Dual Subtract Signed Accumulator with Saturation

Category
Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op ACCi ope -

Assembler description
MDSUBACCS ACCi,ACCk

Description

The MDSUBACCS instruction subtracts signed 40-bit data in which “ACCGi+1” and
“ACCit+1” are concatenated, from signed 40-bit data in which “ACCGi” and “ACCi” are
concatenated, and then stores the result obtained from this subtraction in the 40-bit register in
which ACCGk and ACCk are concatenated. Simultaneously, the instruction subtracts signed
40-bit data in which “ACCGi+3” and “ACCi+3” are concatenated, from signed 40-bit data in
which “ACCGi+2” and “ACCi+2” are concatenated, and then stores the result obtained from
this subtraction in the 40-bit register in which “ACCGk+1” and “ACCk+1” are concatenated.
When the result overflows, the result obtained after signed saturating is stored in the register,
and msr.ovf is setto 1.

The register number of the ACCi register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 2 previously by software;
otherwise, Mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)
MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register _not_aligned,
acc_not_aligned , overflow)

148

1 Instruction Set Reference

1.10.41. Media Accumulator Addition and Subtraction Instruction

Ope code op ope Operation
MASACCS 1111000 | 001000 | Add and Subtract Signed Accumulator with Saturation
Category

Media

Instruction format (Media accumulator instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op ACCi ope -

Assembler description
MASACCS ACCi,ACCk

Description

The MASACCS instruction adds signed 40-bit data in which ACCGi and ACCi are
concatenated and signed 40-bit data in which “ACCGi+1” and “ACCi+1” are concatenated, and
then stores the result obtained from this addition in the 40-bit register in which ACCGk and
ACCk are concatenated. Simultaneously, the instruction subtracts signed 40-bit data in which
“ACCGi+1” and “ACCi+1” are concatenated, from signed 40-bit data in which ACCGi and
ACCi are concatenated, and then stores the result obtained from this subtraction in the 40-bit
register in which “ACCGk+1” and “ACCk+1” are concatenated. When the result overflows,
the result obtained after signed saturating is stored in the register, and msr.ovf is set to 1.

The register number of the ACCi register must be set to a multiple of 2 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 2 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

149

FRA400 Series Instruction Set Manual

1.10.42. Media Dual Accumulator Addition and Subtraction Instruction

Ope code op ope Operation

MDASACCS 1111000 | 001001 Dual Add and Subtract Signed Accumulator with Saturation

Category
Media

Instruction format (Media accumulator instruction)
31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
ACCk op ACCi ope -

Assembler description

MDASACCS ACCi,ACCk

Description

The MDASACCS instruction adds signed 40-bit data in which ACCGi and ACCi are
concatenated and signed 40-bit data in which “ACCGi+1" and “ACCi+1” are concatenated, and
then stores the result obtained from this addition in the 40-bit register in which ACCGk and
ACCk are concatenated. Simultaneously, the instruction subtracts signed 40-bit data in which
“ACCGi+1” and “ACCi+1” are concatenated, from signed 40-bit data in which ACCGi and
ACCi are concatenated, and then stores the result obtained from this subtraction in the 40-bit
register in which “ACCGk+1” and “ACCk+1” are concatenated. Simultaneously, the
instruction adds signed 40-bit data in which “ACCGi+2” and “ACCi+2” are concatenated and
signed 40-bit data in which “ACCGi+3” and “ACCi+3” are concatenated, and then stores the
result obtained from this addition in the 40-bit register in which “ACCGk+2” and “ACCk+2”
are concatenated. Simultaneously, the instruction subtracts signed 40-bit data in which
“ACCGi+3” and “ACCi+3” are concatenated, from signed 40-bit data in which “ACCGi+2”
and “ACCi+2” are concatenated, and then stores the result obtained from this subtraction in the
40-bit register in which “ACCGk+3” and “ACCk+3” are concatenated. When the result
overflows, the result obtained after signed saturating is stored in the register, and msr.ovf is set
to 1.

The register number of the ACCi register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

The register number of the ACCk register must be set to a multiple of 4 previously by software;
otherwise, mp_exception (acc_not_aligned) is detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned,
acc_not_aligned , overflow)

150

1 Instruction Set Reference

151

FRA400 Series Instruction Set Manual

1.10.43. Media SETHI/SETLO (Halfword) Instruction

Ope code op ope Operation

MHSETLOS 1111000 | 100000 Set Lower signed 12 bits

MHSETLOH 1111000 | 100001 Set Upper 5 bits

MHSETHIS 1111000 | 100010 | Set Upper signed 12bits
MHSETHIH 1111000 | 100011 Set Upper 5 bits
MHDSETS 1111000 | 100100 | Dual Set Half Word signed 12 bits
MHDSETH 1111000 | 100101 Dual Set Upper 5 bits of Half Word
Category

Media

Instruction format (Media instruction (set immediate 12))

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op #u6b 1 ope #ub 2

Instruction format (Media instruction (set immediate 5))

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op - ope - #s5

Assembler description

MHSETLOS #ul2,FRk (#ul2[11:6]=#u6_1, #ul2[5:0]=H#u6 _2)
MHSETHIS #ul12,FRk (#ul2[11:6]=#u6_1, #ul2[5:0]=Hu6_2)
MHDSETS #u12,FRK (#ul2[11:6]=#u6_1, #ul2[5:0]=#u6_2)
MHSETLOH #s5,FRk
MHSETHIH #s5,FRk
MHDSETH #35,FRk

Description

The MHSETLOS instruction replaces the lower 12 bits of FRklo with the value of #ul2, and
simultaneously, replaces each of the upper 4 bits of FRklo with MSB of #u12.

The MHSETHIS instruction replaces the lower 12 bits of FRkhi with the value of #ul2, and
simultaneously, replaces each of the upper 4 bits of FRkhi with MSB of #ul2.

The MHDSETS instruction replaces the lower 12 bits of FRkhi with the value of #ul2.
simultaneously, replaces each of the upper 4 bits of FRkhi with MSB of #ul2. simultaneously,
replaces the lower 12 bits of FRklo with the value of #ul2. simultaneously, replaces each of
the upper 4 bits of FRklo with MSB of #ul2.

The MHSETLOH instruction replaces the upper 5 bits of FRklo with the value of #s5.

The MHSETHIH instruction replaces the upper 5 bits of FRkhi with the value of #s5.

The MHDSETH instruction replaces the upper 5 bits of FRkhi with the value of #s5, and
simultaneously, replaces the upper 5 bits of FRklo with the value of #s5.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

152

1

Instruction Set Reference

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

153

FRA400 Series Instruction Set Manual

1.10.44. Media Quad Low Clear (Halfword Quad) Instruction (M-Type Instruction. This instruction
is available for MB93451.)

Ope code op ope Operation

MQLCLRHS 1111000 | 010000 Quad Clear Lower Value Signed Halfword

Category
Media

Instruction format (Extended Media instruction)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi ope FRj

Assembler description

MQLCLRHS FRi,FRj,FRk

Description

The MQLCLRHS instruction stores A in C when B is positive and |A[>|B|, otherwise it stores 0 into C.
This instruction also stores —A (if A=0x8000, stores 0x7FFF) into ¢ when B is negative and |A[>B|,
otherwise it stores 0 into C.

However, A,B,C are signed halfword integers and the combinations are as follows:

{A, B, C}={FRihi, FRjhi, FRkhi}, {FRilo, FRjlo, FRklo}, {FRi+1hi, FRj+1hi, FRk+1hi}, {FRi+1lo,
FRj+1lo, FRk+1lo }

The register numbers of FRi, FRj and FRk need to be set to even with software. When the register
numbers of FRi, FRj, FRk are odd, mp_exception(register not_aligned) are detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)
MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception(unimplemented exception, register not_aligned)
Started Pending Exceptions

None

154

1 Instruction Set Reference

1.10.45. Media Quad Scope Limitation (Halfword Quad) Instruction (M-Type Instruction. This
instruction is available for MB93451.)

Ope code op ope Operation

MQLMTHS 1111000 | 010100 Quad Set Limits Signed Halfword

Category
Media

Instruction format (Extended Media instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope FRj

Assembler description
MQLMTHS FRi,FRj,FRk

Description

The MQLMTHS stores A into C when -|B|<A<|B|, stores —B (if B=0x8000, stores 0x7FFF) into C
when A =-|B| and stores B into C when [B|<=A.

However, A,B,C are signed halfword integers and the combinations are as follows:

{A, B, C}={FRihi, FRjhi, FRkhi}, {FRilo, FRjlo, FRklo}, {FRi+1hi, FRj+1hi, FRk+1hi}, {FRi+1lo,
FRj+1lo, FRk+1lo }

The register numbers of FRi, FRj and FRk need to be set to even with software. When the register
numbers of FRi, FRj and FRk are odd, mp_exception(register not aligned) are detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception(unimplemented _exception, register not_aligned)
Started Pending Exceptions

None

155

FRA400 Series Instruction Set Manual

1.10.46. Media Quad Shift (Halfword Quad) instruction (M-Type instruction. These instructions are
available for MB93451.)

Ope code op ope Operation
MQSLLHI 1111000 | 010001 Quad Shift Lest Logical Halfword (Immediate)
MQSRAHI 1111000 | 010011 Quad Shift Right Arithmetic Logical Halfword
(Immediate)
Category
Media

Instruction format (Extended Media instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi ope #s6

Assembler description

MQSLLHI FRi#s6,FRk
MQSRAHI FRi#s6,FRk

Description

The Media Quad Shift instruction shifts FRihi by the number of bits specified by the shift counter and
stores the result into FRkhi. It also shifts FRilo and stores the result into FRklo, shifts FRi+1hi and
stores the result into FRk+1hi and shifts Ri+1lo and stores the result into FRk+1lo. The shift count is
specified by the lower 4 bits of #s6. The MQSRAHI instruction takes the value rounded by the
rounding method specified in MSRO as the result.

The MQSLLHI instruction shifts FRihi, FRilo, FRi+1hi and FRi+1lo to the left and makes the bits that
became empty by the shift 0.

The MQSRAHI instruction shifts FRihi, FRilo, FRi+1hi and FRi+1lo to the right and fills the bits that
became empty the shift with the highest bits of FRihi, FRilo, FRi+1hi and FRi+1lo respectively.

The register numbers of Fri and FRk need to be set even with software. When the register numbers of
FRi and FRk are odd, mp_exception(register not_aligned) are detected.

For exceptions detected by this instruction, exception handling can be started by executing the
MTRAP instruction.

(FRihi is the higher 16 bits of FRi. FRilo is the lower 16 bits of FRi. FRi+1hi is the higher 16 bits of
FRi+1. FRi+1lo is the lower 16 bits of FRi+1. FRk is the same as this.)

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception(unimplemented exception, register not_aligned)

156

1 Instruction Set Reference

Started Pending Exceptions

None

157

FRA400 Series Instruction Set Manual

1.11. Conditional Integer Instructions

1.11.1. Add/ Subtract / Multiply / Divide

Ope-code op ope Operation

CADD 1011000 00 Conditional Add

CSUB 1011000 01 Conditional Subtract

CSMUL 1011000 10 Conditional Signed Integer Multiply
CSDIV 1011000 11 Conditional Signed Integer Divide
Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi CCi ope GRj

#cond

Assembler Syntax

CADD GRi, GRj, GRk, CCi, #cond
CSUB GRi, GRj, GRk, CCi, #cond
CSMUL GRi, GRj, GRk, CCi, #cond
CSDIV GRi, GRj, GRk, CCi, #cond

Description

The Conditional Integer Arithmetic Instruction operates GRi and GRj in arithmetic. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instruction
writes the result in GRk. Otherwise, it doesn’t change GRk.

The CADD instruction operates “GRi+GR;j”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

The CSUB instruction operates “GRi-GRj”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

The CSMUL instruction operates “GRi*GRj”, when the condition specified by the #cond field
is equal to the condition shown with CCi.

The CSDIV instruction operates “GRi/GRj”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

Table 25 shows the values of #cond field.

Registers altered (except destination register)

none

Occurrence Exceptions

division_exception
register_exception (unimplement_exception)

158

1

Instruction Set Reference

Detected Exceptions

none

Table 25 Values of #cond field

value meaning
0 False
1 True

159

FRA400 Series Instruction Set Manual

1.11.2. Add, Subtract and Multiply with setting ICC / Divide unsigned integer

Ope-code op ope Operation

CADDcc 1011001 00 Conditional Add and ICC setting

CSUBcc 1011001 01 Conditional Subtract ICC setting

CSMULcc 1011001 10 Conditional Signed Integer Multiply ICC setting
CUDIV 1011001 11 Conditional Unsigned Integer Divide

Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi CCi | |ope GRj
#cond

Assembler Syntax

CADDcc GRi, GRj, GRk, CCi, #cond
CSUBcc GRi, GRj, GRk, CCi, #cond
CSMULcc GRi, GRj, GRk, CCi, #cond
CUDIV GRi, GRj, GRk, CCi, #cond

Description

The Conditional Integer Arithmetic Instruction operates GRi and GRj in arithmetic. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instruction
writes the result in GRk. Otherwise, it doesn’t change GRk.

The CADDcc instruction operates “GRi+GR;j”, when the condition specified by the #cond field
is equal to the condition shown with CCi.

The CSUBcc instruction operates “GRi-GRj”, when the condition specified by the #cond field
is equal to the condition shown with CCi.

The CSMULcc instruction operates “GRi*GRj”, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CUDIV instruction operates “GRi/GRj”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

The CADDcc, CSUBcc, and CSMULcc instructions change the integer condition code (ICC)
specified by the low-order 2-bit of CCi field.

Table 26 shows the values of #cond field.

160

1

Instruction Set Reference

Registers altered (except destination register)

ICC ... instructions with “cc” only

N |Z |V |C
OO0]0 |O

Occurrence Exceptions

division_exception
register_exception (unimplement_exception)

Detected Exceptions

nonec

Table 26 Values of #cond field

Value meaning
0 False
1 True

161

FRA400 Series Instruction Set Manual

1.11.3.

Logical Operations

Ope-code op ope Operation

CAND 1011010 00 Conditional AND
COR 1011010 01 Conditional OR
CXOR 1011010 10 Conditional XOR
CNOT 1011010 11 Conditional NOT
Category

Instru

Integer, Conditional

ction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op GRi CCi ope GRj

Instru

#cond
ction Format (Conditional Not-Operation instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk CCi

op ope GRj

#cond

Assembler Syntax

CAND GRi, GRj, GRk, CCi, #cond

COR GRi, GRj, GRk, CCi, #cond

CXOR GRi, GRj, GRk, CCi, #cond

CNOT GRj, GRk, CCi, #cond
Description

Regist

Occur

The Conditional Integer Logical Instruction operates GRi and GRj in logical. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instruction
writes the result in GRk. Otherwise, it doesn’t change GRk.

The CAND instruction operates “GRi and GRj”, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The COR instruction operates “GRi or GRj”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

The CXOR instruction operates “GRi xor GRj”, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CNOT instruction operates “not GRj”, when the condition specified by the #cond field is
equal to the condition shown with CCi.

Table 27 shows the values of #cond field.

ers altered (except destination register)

none

rence Exceptions

register_exception (unimplement_exception)

162

1

Instruction Set Reference

Detected Exceptions

none

Table 27 Values of #cond field

value meaning
0 False
1 True

163

FRA400 Series Instruction Set Manual

1.11.4. Logical Operations with setting ICC

Ope-code op ope Operation

CANDcc 1011011 00 Conditional AND and ICC setting
CORcc 1011011 01 Conditional OR and ICC setting
CXORcc 1011011 10 Conditional XOR and ICC setting
Category

Integer, Conditional

Instruction Format (Conditional instruction)

31302928272625242322212019181716151413 1211109 8 7 6 543 2 1 0
GRk op GRi CCi ope GRj
#cond

Assembler Syntax

CANDcc GRi, GRj, GRk, CCi, #cond
CORcc GRi, GRj, GRk, CCi, #cond
CXORcc GRi, GRj, GRk, CCi, #cond

Description

The Conditional Integer Logical Instruction operates GRi and GRj in logical. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instruction
writes the result in GRk. Otherwise, it doesn’t change GRk.

The CANDcc instruction operates “GRi and GRj”, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CORcc instruction operates “GRi or GRj”, when the condition specified by the #cond field
is equal to the condition shown with CCi.

The CXORcc instruction operates “GRi xor GRj”, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CANDcc, CORcc, and CXORcc instructions change the integer condition code (ICC)
specified by the low-order 2-bit of CCi field.

Table 28 shows the values of #cond field.

Registers altered (except destination register)

ICC ... instructions with “cc” only

N |Z |V |C
O |0 | X [X

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

nonec

164

1

Instruction Set Reference

Table 28 Values of #cond field

value meaning
0 False
1 True

165

FRA400 Series Instruction Set Manual

1.11.5. Shift

Ope-code op ope Operation

CSLL 1011100 00 Conditional Shift Left Logical
CSRL 1011100 01 Conditional Shift Right Logical
CSRA 1011100 10 Conditional Shift Right Arithmetic
Category

Integer, Conditional

Instruction Format (Conditional instruction)
313029282726252423222120191817161514131211109 8 7 6 54 3 2 10
GRk op GRi CCi ope GRj
#cond

Assembler Syntax

CSLL GRi, GRj, GRk, CCi, #cond

CSRL GRi, GRj, GRk, CCi, #cond

CSRA GRi, GRj, GRk, CCi, #cond
Description

The Conditional Integer Shift Instructions shift GRi by the number of bits implied by the shift-
count and write the result in GRk. The shift-count is specified by the low-order 5 bits of GR;.
When the condition specified by the #cond field is equal to the condition shown with CCi, the
instruction writes the result in GRk. Otherwise, it doesn’t change GRk.

The CSLL instruction shifts GRi to the left, replacing the vacated positions with zero, when the
condition specified by the #cond field is equal to the condition shown with CCi.

The CSRL instruction shifts GRi to the right, replacing the vacated positions with zero, when
the condition specified by the #cond field is equal to the condition shown with CCi.

The CSRA instruction shifts GRi to the right, replacing the vacated positions with the highest
bit of GRi, when the condition specified by the #cond field is equal to the condition shown with
CCi.

Table 29 shows the values of #cond field.

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

nonec

166

1

Instruction Set Reference

Table 29 Values of #cond field

value meaning
0 False
1 True

167

FRA400 Series Instruction Set Manual

1.11.6. Shift with setting ICC

Ope-code op ope Operation

CSLLcc 1011101 00 Conditional Shift Left Logical and ICC setting
CSRLcc 1011101 01 Conditional Shift Right Logical and ICC setting
CSRAcc 1011101 10 Conditional Shift Right Arithmetic and ICC setting
Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
GRk op GRi CCi ope GRj
#cond

Assembler Syntax

CSLLcc GRi, GRj, GRk, CCi, #cond
CSRLcc GRi, GRj, GRk, CCi, #cond
CSRAcc GRi, GRj, GRk, CCi, #cond

Description

The Conditional Integer Shift Instructions shift GRi by the number of bits implied by the shift-
count and write the result in GRk. The shift-count is specified by the low-order 5 bits of GR;.
When the condition specified by the #cond field is equal to the condition shown with CCi, the
instruction writes the result in GRk. Otherwise, it doesn’t change GRk.

The CSLLcc instruction shifts GRi to the left, replacing the vacated positions with zero, when
the condition specified by the #cond field is equal to the condition shown with CCi.

The CSRLcc instruction shifts GRi to the right, replacing the vacated positions with zero, when
the condition specified by the #cond field is equal to the condition shown with CCi.

The CSRACcc instruction shifts GRi to the right, replacing the vacated positions with the highest
bit of GRi, when the condition specified by the #cond field is equal to the condition shown with
CCi.

The CSLLcc, CSRLcc, and CSRAcc instructions change the integer condition code (ICC)
specified by the low-order 2-bit of the CCi field.

Table 30 shows the values of #cond field.

Registers altered (except destination register)
ICC ... instructions with “cc” only

N |Z |V [C
O |0 | X |O

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

168

1

Instruction Set Reference

Table 30 Values of #cond field

value meaning
0 False
1 True

169

FRA400 Series Instruction Set Manual

1.12. Conditional Load/Store Instructions

1.12.1. Load GR

Ope-code op ope Operation

CLDSB 1011110 00 Conditional Load Signed Byte

CLDUB 1011110 01 Conditional Load Unsigned Byte

CLDSH 1011110 10 Conditional Load Signed Halfword

CLDUH 1011110 11 Conditional Load Unsigned Halfword

CLD 1011111 00 Conditional Load Word

CLDD 1011111 01 Conditional Load Double

CLDSBU 1100001 00 Conditional Load Signed Byte with Update Index
CLDUBU 1100001 01 Conditional Load Unsigned Byte Update Index
CLDSHU 1100001 10 Conditional Load Signed Halfword Update Index
CLDUHU 1100001 11 Conditional Load Unsigned Halfword Update Index
CLDU 1100010 00 Conditional Load Word Update Index

CLDDU 1100010 01 Conditional Load Double Update Index
Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op GRi

CCi

ope

GRj

Assembler Syntax

CLDSB
CLDUB
CLDSH
CLDUH
CLD
CLDD
CLDSBU
CLDUBU
CLDSHU
CLDUHU
CLDU
CLDDU

Description

The conditional integer Load instructions calculate “GRi + GR;” as an effective address. When
the condition specified by the #cond field is equal to the condition shown with CCi, the

@(GRi, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GR1i, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GR1i, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond
@(GR1i, GRj), GRk, CCi, #cond
@(GRi, GRj), GRk, CCi, #cond

#cond

instructions copy data from memory to GRk. Otherwise, they don’t change GRk.
As the description of each instruction, refer to 1.3.1 Load GR (page 19).

The CLDSB instruction operates as LDSB instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

170

1 Instruction Set Reference

The CLDUB instruction operates as LDUB instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDSH instruction operates as LDSH instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDUH instruction operates as LDUH instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLD instruction operates as LD instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CLDD instruction operates as LDD instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CLDSBU instruction operates as LDSBU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDUBU instruction operates as LDUBU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDSHU instruction operates as LDSHU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDUHU instruction operates as LDUHU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDU instruction operates as LDU instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CLDDU instruction operates as LDDU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

Table 31 shows the values of #cond field.

Registers altered (except destination register)

GRi ... Instruction with “update” form only

Occurrence Exceptions

mem_address_not_aligned (except byte Load instruction)
data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception, register not_aligned)

Detected Exceptions

none

Table 31 Values of #cond field

value meaning
0 False
1 True

171

FRA400 Series Instruction Set Manual

1.12.2. Load FR

Ope-code op ope Operation

CLDBF 1100000 00 Conditional Load Byte FR register

CLDHF 1100000 01 Conditional Load Halfword FR register

CLDF 1100000 10 Conditional Load Word FR register

CLDDF 1100000 11 Conditional Load Double FR register

CLDBFU 1100011 00 Conditional Load Byte FR register with Update index
CLDHFU 1100011 01 Conditional Load Halfword FR register with Update index
CLDFU 1100011 10 Conditional Load Word FR register with Update index
CLDDFU 1100011 11 Conditional Load Double FR register with Update index
Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk

op

GRi CCi ope GRj

Assembler Syntax

CLDBF
CLDHF
CLDF
CLDDF
CLDBFU
CLDHFU
CLDFU
CLDDFU

Description

The conditional floating-point Load instructions calculate “GRi + GR;j” as an effective address.
When the condition specified by the #cond field is equal to the condition shown with CCi, the

#cond

@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GRi, GRj), FRk, CCi, #cond
@(GR1i, GRj), FRk, CCi, #cond

instructions copy data from memory to FRk. Otherwise, they don’t change FRk.
As the description of each instruction, refer to 1.3.2 Load FR (page 22).

The CLDBF instruction operates as LDBF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CLDHF instruction operates as LDHF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CLDF instruction operates as LDF instruction, when the condition specified by the #cond

field is equal to the condition shown with CCi.

The CLDDF instruction operates as LDDF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CLDBFU instruction operates as LDBFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CLDHFU instruction operates as LDHFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

172

1 Instruction Set Reference

The CLDFU instruction operates as LDFU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CLDDFU instruction operates as LDDFU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

Table 32 shows the values of #cond field.

Registers altered (except destination register)

GRIi ... Instruction with “update” form only

Occurrence Exceptions

fp_disabled

mem_address_not aligned (except byte Load instruction)
data_access_exception

data_access MMU_miss

data_access_error

register_exception (unimplement_exception, register not aligned)

Detected Exceptions

nonec

Table 32 Values of #cond field

value meaning
0 False
1 True

173

FRA400 Series Instruction Set Manual

1.12.3. Store GR

Ope-code op ope Operation

CSTB 1100100 00 Conditional Store Byte

CSTH 1100100 01 Conditional Store Halfword

CST 1100100 10 Conditional Store Word

CSTD 1100100 11 Conditional Store Double

CSTBU 1100111 00 Conditional Store Byte with Update Index
CSTHU 1100111 01 Conditional Store Halfword with Update Index
CSTU 1100111 10 Conditional Store Word with Update Index
CSTDU 1100111 11 Conditional Store Double with Update Index
Category

Integer, Conditional

Instruction Format (Conditional instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 43 2 1.0
GRk op GRi CCi ope GRj

#cond

Assembler Syntax

CSTB GRk, @(GRi, GRj), CCi, #cond
CSTH GRk, @(GRi, GRj), CCi, #cond
CST GRk, @(GRi, GRj), CCi, #cond
CSTD GRk, @(GRi, GRj), CCi, #cond

CSTBU GRk, @(GRi, GRj), CCi, #cond
CSTHU GRk, @(GRi, GRj), CCi, #cond
CSTU GRk, @(GRi, GRj), CCi, #cond
CSTDU GRk, @(GRi, GRj), CCi, #cond

Description

The conditional integer Store instructions calculate “GRi + GRj” as an effective address. When
the condition specified by the #cond field is equal to the condition shown with CCi, the
instructions copy data from GRk into memory. Otherwise, they don’t change memory.

As the description of each instruction, refer to 1.3.3 Store GR (page 24).

The CSTB instruction operates as STB instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CSTH instruction operates as STH instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CST instruction operates as ST instruction, when the condition specified by the #cond field
is equal to the condition shown with CCi.

The CSTD instruction operates as STD instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CSTBU instruction operates as STBU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CSTHU instruction operates as STHU instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

174

1

Instruction Set Reference

The CSTU instruction operates as STU instruction, when the condition specified by the #cond

field is equal to the condition shown with CCi.

The CSTDU instruction operates as STDU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

Table 33 shows the values of #cond field.

Registers altered (except destination register)

GRIi ... Instruction with “update” form only

Occurrence Exceptions

mem_address_not_aligned (except byte Store)
data_access_exception
data_access MMU_miss

data_access_error
data_store error

register_exception (unimplement_exception, register not aligned)

Detected Exceptions

nonec

Table 33 Values of #cond field

value meaning
0 False
1 True

175

FRA400 Series Instruction Set Manual

1.12.4. Store FR

Ope-code op ope Operation

CSTBF 1100110 00 Conditional Store Byte FR register

CSTHF 1100110 01 Conditional Store Halfword FR register

CSTF 1100110 10 Conditional Store Word FR register

CSTDF 1100110 11 Conditional Store Double FR register

CSTBFU 1101000 00 Conditional Store Byte FR register with Update Index
CSTHFU 1101000 01 Conditional Store Halfword FR register with Update Index
CSTFU 1101000 10 Conditional Store Word FR register with Update Index
CSTDFU 1101000 11 Conditional Store Double FR register with Update Index
Category

Integer, Conditional

Instruction Format (Conditional instruction)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op GRi CCi ope GRj
#cond

Assembler Syntax

CSTBF FRk, @(GRi, GRj), CCi, #cond
CSTHF FRk, @(GRi, GRj), CCi, #cond
CSTF FRk, @(GRi, GRj), CCi, #cond
CSTDF FRk, @(GRi, GRj), CCi, #cond
CSTBFU FRk, @(GRi, GRj), CCi, #cond
CSTHFU FRk, @(GRi, GRj), CCi, #cond
CSTFU FRk, @(GRi, GRj), CCi, #cond
CSTDFU FRk, @(GRi, GRj), CCi, #cond

Description

The conditional floating-point Store instructions calculate “GRi + GRj” as an effective address.
When the condition specified by the #cond field is equal to the condition shown with CCi, the

instructions copy data from FRk into memory. Otherwise, they don’t change memory.
As the description of each instruction, refer to 1.3.4 Store FR (page 26).

The CSTBF instruction operates as STBF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CSTHF instruction operates as STHF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CSTF instruction operates as STF instruction, when the condition specified by the #cond

field is equal to the condition shown with CCi.

The CSTDF instruction operates as STDF instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CSTBFU instruction operates as STBFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CSTHFU instruction operates as STHFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

176

1

Instruction Set Reference

The CSTFU instruction operates as STFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

The CSTDFU instruction operates as STDFU instruction, when the condition specified by the

#cond field is equal to the condition shown with CCi.

Table 34 shows the values of #cond field.

Registers altered (except destination register)

GRIi ... Instruction with “update” form only

Occurrence Exceptions

fp_disabled
mem_address_not_aligned (except byte Store)
data_access_exception
data_access MMU_miss
data_access_error
data_store error
register_exception (unimplement exception, register not aligned)

Detected Exceptions

none

Table 34 Values of #cond field

value meaning
0 False
1 True

177

FRA400 Series Instruction Set Manual

1.13. Conditional Data transfer Instructions

1.13.1. Swap

Ope-code op ope Operation
CSWAP 1100101 10 Conditional Swap register with memory
Category

Control, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

GRk

op

GRi CCi ope GRj

Assembler Syntax
CSWAP

Description

The Conditional Swap Load-Store Instructions calculate “GRi + GR;j” as an effective address.
When the condition specified by the #cond field is equal to the condition shown with CCi, the
instruction exchange GRk with the contents of the word addressed memory location.

#cond

@(GRi, GRj), GRk, CCi, #cond

Otherwise, the instruction changes neither GRk nor memory.

The CSWAP instruction operates as SWAP instruction(page 28), when the condition specified

by the #cond field is equal to the condition shown with CCi.
Table 35 shows the values of #cond field.

Registers altered (except destination register)

none

Occurrence Exceptions

mem_address_not_aligned

data_access_exception
data_access MMU_miss

data_access_error

data_store error
register_exception (unimplement_exception)

Detected Exceptions

none

178

1

Instruction Set Reference

Table 35 Values of #cond field

value meaning
0 False
1 True

179

FRA400 Series Instruction Set Manual

1.13.2. Move

Ope-code op ope Operation

CMOVGF 1101001 00 Conditional Move GR to FR
CMOVGFD 1101001 01 Conditional Move GR to FR Double
CMOVFG 1101001 10 Conditional Move FR to GR
CMOVFGD 1101001 11 Conditional Move FR to GR Double
Category

Integer, Conditional

Instruction Format (Conditional instruction)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
FRk op - CCi ope GRj
#cond

Assembler Syntax

CMOVGF GRj, FRk, CCi, #cond
CMOVGEFD GRj, FRk, CCi, #cond
CMOVFG FRk, GRj, CCi, #cond
CMOVFGD FRk, GRj, CCi, #cond

Description

When the condition specified by the #cond field is equal to the condition shown with CCi, the
conditional register transfer instructions copy data between GR and FR. Otherwise, the
instructions do not copy data.

As the description of each instruction, refer to 1.4.2 Move (page 30).

The CMOVGEF instruction operates as MOVGF instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CMOVGFD instruction operates as MOVGFD instruction, when the condition specified by
the #cond field is equal to the condition shown with CCi.

The CMOVFG instruction operates as MOVFG instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CMOVFGD instruction operates as MOVFGD instruction, when the condition specified by
the #cond field is equal to the condition shown with CCi.

Table 36 shows the values of #cond field.

Registers altered (except destination register)

nonec

Occurrence Exceptions

fp_disabled

register_exception (unimplement_exception, register not aligned)
Detected Exceptions

nonec

180

1

Instruction Set Reference

Table 36 Values of #cond field

value meaning
0 False
1 True

181

FRA400 Series Instruction Set Manual

1.14.

1.14.1.

Conditional Control transfer Instructions

Jump and Link

Ope-code op ope Operation
CJMPL 1101010 10 Conditional JUMP and Link
Category

Integer, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

- op GRi CCi ope GRj
LI #cond
Assembler Syntax
CIMPL @(GRi, GRj), CCi, #cond (In case LI=0)
CCALLL @(GRi, GRj), CCi, #cond (In case LI=1)

Description

The CJMPL Instructions operates as JMPL instruction(page 43), when the condition specified
by the #cond field is equal to the condition shown with CCi.

Table 37 shows the values of #cond field.

Even if the branch target address is not aligned on word boundary, the
mem_address not_aligned exception doesn't occur. In this case, the low-order bits below the
word boundary in the branch target address is "0".

Table 37 Values of #cond field

value meaning
0 False
1 True

Registers altered (except destination register)

LR

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

none

182

1 Instruction Set Reference

1.15. Conditional Scan instruction

1.15.1. Scan

Ope-code op Ope Operation
CSCAN 1100101 11 Conditional SCAN
Category

Integer, Conditional

Instruction Format (Conditional instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
GRk op GRi CCi ope GRj
#cond

Assembler Syntax
CSCAN GRi, GRj, GRk, CCi, #cond

Description

The Conditional SCAN Instruction operates as SCAN instruction(page 56), when the condition
specified by the #cond field is equal to the condition shown with CCi.
Table 38 shows the values of #cond field.

Registers altered (except destination register)

none

Occurrence Exceptions

register_exception (unimplement_exception)

Detected Exceptions

nonec

Table 38 Values of #cond field

value meaning
0 False
1 True

183

FRA400 Series Instruction Set Manual

1.16. Conditional Condition code operating Instructions

1.16.1. Check for Integer Condition code

Ope-code op ope Operation
CCKicc 1101010 00 Conditional Check for Integer Condition code
Category

Branch, Conditional

Instruction Format (Conditional Branch Instruction)

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
#cond |CCx-4 op - CCi ope - ICCi

#ccond

Assembler Syntax

CCKice ICCi, CCx, CCi, #ccond (x =4-7)
CCKEQ :Z==
CCKNE :Z==0
CCKLE : (Z or(N xor V))==1
CCKGT :(Z or(N xor V))==0
CCKLT : (N xor V)==
CCKGE :(Nxor V)==
CCKLS :(CorZ)y==1
CCKHI :(CorZ)==0

CCKC :C==
CCKNC :C==
CCKN :N==
CCKP :N==
CCKV V=

CCKNV :V==0
CCKNO CCx, CCi, #ccond (x=4-7)
CCKRA CCx, CCi, #ccond (x=4-7)

Description

When the condition specified by the #ccond field is equal to the condition shown with CCi, the
CCKicc instruction tests the #cond field of ICCi shown in Table 39 and copies the result in
CCx. Otherwise, the instruction copies Undefined to CCx. Table 40 shows the value of #ccond
field.

184

1

Instruction Set Reference

Table 39 #cond field and pseudo opecode

Pseudo Ope-code cond Operation icc test

CCKEQ 0100 Conditional Check Equal Z

CCKNE 1100 Conditional Check Not Equal Not Z

CCKLE 0111 Conditional Check Less or Equal Z or (N xor V)

CCKGT 1111 Conditional Check Greater Not (Z or (N xor
V)

CCKLT 0011 Conditional Check Less N xor V

CCKGE 1011 Conditional Check Greater or Equal Not (N xor V)

CCKLS 0101 Conditional Check Less or Equal Unsigned CorZ

CCKHI 1101 Conditional Check Greater Unsigned Not (C or Z)

CCKC 0001 Conditional Check Carry Set C

CCKNC 1001 Conditional Check Carry Clear Not C

CCKN 0110 Conditional Check Negative N

CCKP 1110 Conditional Check Positive Not N

CCKV 0010 Conditional Check Overflow Set \Y

CCKNV 1010 Conditional Check Overflow Clear Not V

CCKNO 0000 Conditional Check Never 0

CCKRA 1000 Conditional Check Always 1

Table 40 Values of #ccond field

value meaning
0 False

1 True

Table 41 Values of CCCR

value meaning
00 Undefined
01 Undefined
10 False

11 True

Table 42 test results and values of CCCR

icc result meaning
True 11
False 10

185

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

none

Occurrence Exceptions

nonec

Detected Exceptions

none

186

1 Instruction Set Reference

1.16.2. Check for Floating-point/Media Conditional code

Ope-code op ope Operation
CFCKfcc 1101010 01 Conditional Check for Floating-point/Media Conditional code
Category

Branch, Conditional

Instruction Format (Conditional Branch Instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

#cond

CCx

op

- CCi ope - FCCi

Assembler Syntax

CFCKfce FCCi, CCx, CCi, #iccond (x =0-3)

CFCKNE
CFCKEQ
CFCKLG
CFCKUE
CFCKUL
CFCKGE
CFCKLT

CFCKUGE

CFCKUG
CFCKLE
CFCKGT

CFCKULE

CFCKU
CFCKO

Description

:(Lor GorU)==1

:E=

: (L or G)==
:(Eor U)==
:(Lor U)==
:(E or G)==
:L==1

:(Eor GorU)==

:(Gor U)==1
:(EorL)==1
:G==

:(Eor L or U)==1

:U==1

:(EorLor G==
CFCKNO CCx, CCi, #ccond (x = 0-3)
CFCKRA CCx, CCi, #ccond (x =0-3)

#ccond

When the condition specified by the #ccond field is equal to the condition shown
with CCi, the CFCKfcc instruction tests the #cond field of FCCi shown in
Table43, and copies the result in CCx. Otherwise the instruction copies
Undefined to CCx. Table 44 shows the value of #ccond field.

187

FRA400 Series Instruction Set Manual

Table 43 #cond field and pseudo ope-code

Pseudo Ope-code Cond | Operation fcc test
CFCKNE 0111 Conditional Check Not Equal LorGorU
CFCKEQ 1000 | Conditional Check Equal E
CFCKLG 0110 | Conditional Check Less or Greater LorG
CFCKUE 1001 Conditional Check Unordered or Equal EorU
CFCKUL 0101 Conditional Check Unordered or Less LorU
CFCKGE 1010 | Conditional Check Greater or Equal Eor G
CFCKLT 0100 | Conditional Check Less L
CFCKUGE 1011 Conditional Check Unordered or Greater or Equal Eor GorU
CFCKUG 0011 Conditional Check Unordered or Greater GorU
CFCKLE 1100 | Conditional Check Less or Equal EorL
CFCKGT 0010 | Conditional Check Greater G
CFCKULE 1101 Conditional Check Unordered or Less or Equal EorLorU
CFCKU 0001 Conditional Check Unordered U

CFCKO 1110 | Conditional Check Ordered EorLorG
CFCKNO 0000 | Conditional Check Never 0
CFCKRA 1111 Conditional Check Always 1

Table 44 Values of #ccond field

value meaning
0 False

1 True

Table 45 Values of CCCR

value meaning
00 Undefined
01 Undefined
10 False

11 True

Registers altered (except destination register)

nonec

Occurrence Exceptions

fp_disabled

Detected Exceptions

nonec

188

1 Instruction Set Reference

1.17.

1.17.1.

Conditional Media Instructions

Logical Operations

Ope-code op ope Operation

CMAND 1110000 00 Conditional Media And
CMOR 1110000 01 Conditional Media OR
CMXOR 1110000 10 Conditional Media XOR
CMNOT 1110000 11 Conditional Media NOT
Category

Media, Conditional
Single word

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk op FRi CCi ope FRj

#cond

Instruction Format (Conditional Not-Operation instruction)

31302928 27262524 2322212019 1R 1716151413 121110 9 8 7 6 5 4 3 2 1 0

FRk op - CCi ope FRj

#cond

Assembler Syntax

CMAND FRi, FRj, FRk, CCi, #cond
CMOR FRi, FRj, FRk, CCi, #cond
CMXOR FRi, FRj, FRk, CCi, #cond
CMNOT FRj, FRk, CCi, #cond

Description

The Conditional Media Logical Instruction operates FRi and FRj in logical. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instruction
writes the result in FRk. Otherwise, they don’t change FRk.

As the description of each instruction, refer to 1.10.2 Logical Operations (page 86).

The CMAND instruction operates as MAND instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CMOR instruction operates as MOR instruction, when the condition specified by the #cond
field is equal to the condition shown with CCi.

The CMXOR instruction operates as MXOR instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CMNOT instruction operates as MNOT instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

Table 46 shows the values of #cond field.

189

FRA400 Series Instruction Set Manual

Registers altered (except destination register)

none

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception)

Table 46 Values of #cond field

value meaning
0 False
1 True

190

1 Instruction Set Reference

1.17.2. Add / Subtract with Saturation (Halfword Dual)

Ope-code op ope Operation
CMADDHSS 1110001 00 Conditional Dual Add Signed Halfword with Saturation
CMADDHUS 1110001 01 Conditional Dual Add Unsigned Halfword with
Saturation
CMSUBHSS 1110001 10 Conditional Dual Subtract Signed Halfword with Saturation
CMSUBHUS 1110001 11 Conditional Dual Subtract Unsigned Halfword with
Saturation
Category

Media, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

FRk

op

FRi CCi ope FRj

Assembler Syntax

#cond

CMADDHSS FRi, FRj, FRk, CCi, #cond
CMADDHUS FRi, FRj, FRk, CCi, #cond
CMSUBHSS FRi, FRj, FRk, CCi, #cond
CMSUBHUS FRi, FRj, FRk, CCi, #cond

Description

The Conditional Media Addition and Subtraction with Saturation Instructions operate FRi and
FRj in arithmetic. When the condition specified by the #cond field is equal to the condition
shown with CCi, the instruction writes the result in FRk. Otherwise, they don’t change FRk.

As the description of each instruction, refer to 1.10.12 Add / Subtract with Saturation
(Halfword Dual) (page 98).

The CMADDHSS instruction operates as MADDHSS instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

The CMADDHUS instruction operates as MADDHUS instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMSUBHSS instruction operates as MSUBHSS instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

The CMSUBHUS instruction operates as MSUBHUS instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

Table 47 shows the values of #cond field.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

191

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception, overflow)

Table 47 Values of #cond field

value meaning
0 False
1 True

192

1 Instruction Set Reference

1.17.3. Multiply and Accumulate (Halfword Dual)

Ope-code op ope Operation

CMMULHS 1110010 00 Conditional Dual Multiply Signed Halfword

CMMULHU 1110010 01 Conditional Dual Multiply Unsigned Halfword

CMMACHS 1110010 10 Conditional Dual Multiply and Accumulate Signed
Halfword

CMMACHU 1110010 11 Conditional Dual Multiply and Accumulate Unsigned
Halfword

Category

Media, Conditional

Instruction Format (Conditional media ACC instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 10
ACCk op FRi CCi ope FRj
#cond

Assembler Syntax

CMMULHS FRi, FRj, ACCk, CCi, #cond
CMMULHU FRj, FRj, ACCk, CCi, #cond
CMMACHS FRi, FRj, ACCk, CCi, #cond
CMMACHUFRI, FRj, ACCk, CCi, #cond

Description

The Conditional Media Dual Multiply and Accumulation Instructions operate FRi and FRj in
arithmetic. When the condition specified by the #cond field is equal to the condition shown
with CCi, the instruction writes the result in ACCk. Otherwise, they don’t change ACCk.

The Conditional Media Dual Multiply and Accumulation Instructions operate FRi, FRj,
ACCGk and ACCKk in arithmetic. When the condition specified by the #cond field is equal to
the condition shown with CCi, the instruction writes the result in the accumulator which
concatenates ACCGk and ACCk as 40-bit integer. Otherwise, they change neither ACCGk nor
ACCk.

The CMMULHS instruction operates as MMULHS instruction(page 100), when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMMULHU instruction operates as MMULHU instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

The CMMACHS instruction operates as MMACHS instruction(page 104), when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMMACHU instruction operates as MMACHU instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

Table 48 shows the values of #cond field.

Registers altered (except destination register)
MSR

193

FRA400 Series Instruction Set Manual

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, acc_not_aligned, overflow)

Table 48 Values of #cond field

value meaning
0 False
1 True

194

1 Instruction Set Reference

1.17.4. Add / Subtract with Saturation (Halfword Quad)

Ope-code op ope Operation

CMQADDHSS 1110011 | 00 Conditional Quad Add Signed Halfword with Saturation

CMQADDHUS 1110011 | 01 Conditional Quad Add Unsigned Halfword with
Saturation

CMQSUBHSS 1110011 | 10 Conditional Quad Subtract Signed Halfword with
Saturation

CMQSUBHUS 1110011 | 11 Conditional Quad Subtract Unsigned Halfword with
Saturation

Category

Media, Conditional

Instruction Format (Conditional instruction)
31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi CCi ope FRj
#cond

Assembler Syntax

CMQADDHSS FRi, FRj, FRk, CCi, #cond
CMQADDHUS FRi, FRj, FRk, CCi, #cond
CMQSUBHSS FRi, FRj, FRk, CCi, #cond
CMQSUBHUS FRi, FRj, FRk, CCi, #cond

Description

The Conditional Media Quad Addition and Subtraction with Saturation Instructions operate FRi
and FRj in arithmetic. When the condition specified by the #cond field is equal to the condition
shown with CCi, the instruction writes the result in FRk. Otherwise, they don’t change FRk.

As the description of each instruction, refer to 1.10.17 Add / Subtract with Saturation
(Halfword Quad) (page 108).

The CMQADDHSS instruction operates as MQADDHSS instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMQADDHUS instruction operates as MQADDHUS instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMQSUBHSS instruction operates as MQSUBHSS instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMQSUBHUS instruction operates as MQSUBHUS instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

Table 49 shows the values of #cond field.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

195

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception, register not_aligned, overflow)

Table 49 Values of #cond field

values meaning
0 False
1 True

196

1 Instruction Set Reference

1.17.5. Multiply / Multiply and Accumulate (Halfword Quad)

Ope-code op ope Operation

CMQMULHS 1110100 00 Conditional Quad Multiply Signed Halfword

CMQMULHU 1110100 01 Conditional Quad Multiply Unsigned Halfword

CMQMACHS 1110100 10 Conditional Quad Multiply and Accumulate Signed
Halfword

CMQMACHU 1110100 11 Conditional Quad Multiply and Accumulate Unsigned
Halfword

Category

Media, Conditional

Instruction Format (Conditional media ACC instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
ACCk op FRi CCi ope FRj
#cond

Assembler Syntax

CMQMULHS FRi, FRj, ACCk, CCi, #cond
CMQMULHU FRi, FRj, ACCk, CCi, #cond
CMQMACHS FRi, FRj, ACCk, CCi, #cond
CMQMACHU FRi, FRj, ACCk, CCi, #cond

Description

The Conditional Media Quad Multiply/Multiply and Accumulation Instructions operate FRi
and FRj in arithmetic. When the condition specified by the #cond field is equal to the condition
shown with CCi, the instruction writes the result in accumulator which concatenates ACCGKk,
ACCk as 40-bit integer. Otherwise, they don’t change accumulator.

The Conditional Media Quad Multiply/Multiply and Accumulation Instructions operate FRi,
FRj, ACCGk and ACCk in arithmetic. When the condition specified by the #cond field is equal
to the condition shown with CCi, the instruction writes the result in the accumulator which
concatenates ACCGk, ACCk as 40-bit integer. Otherwise, they don’t change accumulator.

The CMQMULHS instruction operates as MQMULHS instruction(page 111), when the
condition specified by the #cond field is equal to the condition shown with CCi.

The CMQMULHU instruction operates as MQMULHU instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

The CMQMACHS instruction operates as MQMACHS instruction(page 115), when the
condition specified by the #cond field is equal to the condition shown with CCi.

The CMQMACHU instruction operates as MQMACHU instruction, when the condition
specified by the #cond field is equal to the condition shown with CCi.

Table 50 shows the values of #cond field.

Registers altered (except destination register)
MSR

197

FRA400 Series Instruction Set Manual

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned, acc_not_aligned, overflow)

Table 50 Values of #cond field

value meaning
0 False
1 True

198

1 Instruction Set Reference

1.17.6. Complex Multiply (Halfword Dual)

Ope-code op ope Operation

CMCPXRS 1110101 00 Conditional Dual Complex Real Signed Halfword
CMCPXRU 1110101 01 Conditional Dual Complex Real Unsigned Halfword
CMCPXIS 1110101 10 Conditional Dual Complex Imaginary Signed Halfword
CMCPXIU 1110101 11 Conditional Dual Complex Imaginary Unsigned Halfword
Category

Media, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
ACCk op FRi CCi ope FRj
#cond

Assembler Syntax

CMCPXRS FRi, FRj, ACCk, CCi, #cond
CMCPXRU FRi, FRj, ACCk, CCi, #cond
CMCPXIS FRi, FRj, ACCk, CCi, #cond
CMCPXIU FRi, FRj, ACCk, CCi, #cond

Description

The Conditional Media Dual Multiply with Additional for Complex number Instruction
operates FRi and FRj in arithmetic. When the condition specified by the #cond field is equal to
the condition shown with CCi, the instruction writes the result in accumulator which
concatenates ACCGk, ACCk as 40-bit integer. Otherwise, they don’t change accumulator.

As the description of each instruction, refer to 1.10.24 Complex Multiply (Halfword Dual)
(page 123).

The CMCPXRS instruction operates as MCPXRS instruction, when the condition specified by
the #cond field is equal to the condition shown with CCi.

The CMCPXRU instruction operates as MCPXRU instruction, when the condition specified by
the #cond field is equal to the condition shown with CCi.

The CMCPXIS instruction operates as MCPXIS instruction, when the condition specified by
the #cond field equal to the condition shown with CCi.

The CMCPXIU instruction operates as MCPXIU instruction, when the condition specified by
the #cond field equal to the condition shown with CCi.

Table 51 shows the values of #cond field.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

199

FRA400 Series Instruction Set Manual

Detected Exceptions

mp_exception (unimplement_exception)

Table 51 Values of #cond field

values meaning
0 False
1 True

200

1 Instruction Set Reference

1.17.7. Expand (Halfword)

Ope-code op ope Operation

CMEXPDHW 1110110 10 Conditional Expand Halfword to Word
CMEXPDHD 1110110 11 Conditional Expand Halfword to Double-Word
Category

Media, Conditional

Instruction Format (Conditional instruction)

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 0
FRk op FRi CCi ope #s6

#cond
Assembler Syntax

CMEXPDHW FRi, #s6, FRk, CCi, #cond
CMEXPDHD FRi, #s6, FRk, CCi, #cond
Description

When the condition specified by the #cond field is equal to the condition shown with CCi, the
Conditional Media Expand Instructions copy data of FRi indicated by #s6 to FRk. Otherwise,
they don’t change FRk.

The CMEXPDHW instruction operates as MEXPDHW instruction(page 133), when the
condition specified by the #cond field is equal to the condition shown with CCi.

The CMEXPDHD instruction operates as MEXPDHD instruction, when the condition specified
by the #cond field is equal to the condition shown with CCi.

Table 52 shows the values of #cond field.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register_not_aligned)

Table 52 Values of #cond field

value meaning
0 False
1 True

201

FRA400 Series Instruction Set Manual

1.17.8. Convert Byte to/from Halfword

Ope-code op ope Operation

CMBTOH 1110111 00 Conditional Byte To Halfword
CMHTOB 1110111 01 Conditional Halfword To Byte
Category

Media, Conditional

Instruction Format (Conditional instruction)

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
FRk op - CCi ope FRj

#cond

Assembler Syntax

CMBTOH FRj, FRk, CCi, #cond
CMHTOB FRj, FRk, CCi, #cond

Description

The Conditional Media Byte-Halfword Conversion Instructions convert data in FRj. When the
condition specified by the #cond field is equal to the condition shown with CCi, the instructions
write the result in FRk. Otherwise, they don’t change FRk.

As the description of each instruction, refer to 1.10.32 Convert Byte to/from Halfword (page
139).

The CMBTOH instruction operates as MBTOH instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

The CMHTOB instruction operates as MHTOB instruction, when the condition specified by the
#cond field is equal to the condition shown with CCi.

Table 53 shows the values of #cond field.

Registers altered (except destination register)

MSR

Occurrence Exceptions

mp_disabled

Detected Exceptions

mp_exception (unimplement_exception, register _not_aligned)

202

1

Instruction Set Reference

Table 53 Values of #cond field

value meaning
0 False
1 True

203

FRA400 Series Instruction Set Manual

204

2 VLIW instruction

2. VLIW instruction

FR400 series processor is implemented based on embedded Very Long Instruction Word (VLIW)
processor architecture (FR-V architecture). This chapter provide the construction method of VLIW

instruction, and VLIW instruction behavior.

2.1. Construct ion of VLIW instruction

FR-V architecture is based on Very Long Instruction Word (VLIW) architecture. Each instruction
in a VLIW instruction is executed in parallel. VLIW instruction boundaries are specified by packing
flag in each instruction. If a packing flag indicates 1, the instruction and the preceding instructions
with the packing flag equal to 0 is packed in same VLIW instruction.

FR-V assembler language define instruction option (.p) to specify the instructions in a VLIW
instruction. Specifying the instruction option (.p) in the operation field indicates that the succeeding

instruction is packed into the same VLIW instruction.
[Example]

<Assembler Language>

I1 : SUBcc.p GR26,GR22,GRO0,icc0
12 : MSUBHSS.p FR2,FR3,FR7
13 : SUBILp GR26,#16,GR24
14 : MADDHSS FR2,FR3,FR6
I5: CKLT ICC0,CC4
16 : CLDDEF.p @(GR26,GR0), FR0,CC4,#1
17 : CLDDF @(GR26,GR23),FR2,CC4.,#1
<VLIW Instruction>
VLIW1 0 11 0 12 0 13 14
VLIW2 1 15
VLIW3 0 16 1 17

205

FRA400 Series Instruction Set Manual

2.2. Execution of VLIW instruction

2.2.1. Read/Write operation in same VLIW instruction

GR1+GR2 Writing into GR3

< | ADpD GRI,GR2,®3 [— |
% GR3+GR4 Writing into GR5
(=
2 | ADD @,GR4,GR5 | |
-+
— /
different value GR3+GR6 Writing into GR7
:
S | Ao (Rj,GR6,GR7 | |
=
]
=}
28
o

The instructions in one VLIW instruction are executed in same time. When the same
resource is read and written in the same VLIW instruction, in this case, the reading value is the
value before updating.

If the same resource is read and written in same VLIW instruction and the instruction which
is read from the same resource detects the non-deferred precise interrupts, the instruction which
is written into the same resource completes, and to read and write the same resource in the same
VLIW instruction when it is necessary to ensure the recovery from the interrupts.

If storing a result into same resource with different instructions in the same VLIW
instruction, the value is not guaranteed.

GR1+GR2 writing into GR3

ADD GRI,GRZ,@ | =mmmmmmmm o | the value of GR3 is not guaranteed
GR4+GR5 writing into GR3 4

ADD GR4,GR5,@ R et |

T3sU] MI'TA

206

2 VLIW instruction

2.2.2. Execution of Control Transfer Instruction

This section explains the operation of the control transfer instruction. The control
transfer instruction is composed by the following six instructions.
- conditional branch instruction(Bicc,FBfcc)
- conditional branch instruction to LR(BiccLR,FBfccLR)
- JMP and LINK instruction
- CALL and LINK instruction
- RETT instruction
- trap instruction(Ticc,FTfcc)

2.2.2.1 Execution of Control Transfer Instruction
The pipeline behavior when the condition is false and true is explained by using the
conditional branch instruction as a control transfer instruction. To make easy to understand, the

execution of a control transfer instruction in the VLIW instruction is explained in this section.

€ When the condition of conditional branch is false.

§ Bicc label [-=-------- | €—— The condition is false.
% writing into FR3
[a—
8 FADD FR1,FR2,FR3 Il R i
-+
= — preprocessing postprocessing
§ ADD GR1,GR2,GR3 |-
P
=
[S—
8 FADD FR4,FR5,FR6 e I
+
ro — writing into FR6
0
0
0
label: ADD GR4,GR5,GR6 v
< The instructions do not execute.
> s
= FADD FR7,FR8,FR9
[S—
&
+
5 0
0
0

207

FRA400 Series Instruction Set Manual

When the condition of conditional branch is false, the sequential VLIW instruction in the
VLIW instruction which contains the conditional branch instruction is executed after the VLIW
instruction is executed. The instruction included in the same VLIW instruction as the branch
instruction completed execution.

€ When the condition of conditional branch is true.

---------- | 4—— The condition is true.
writing into FR3

FADD FR1,FR2,FR3 |eremmreren [e e

T3SUl MI'TA

preprocessing postprocessing

ADD GR1,GR2,GR3 Y
The instructions do not execute.

FADD FR4,FR5,FR6 'y

G1ISUl MI'TA

ADDGR4,GR5GR6 |-

FADD FR7,FR8,FR9 e REEEEEEEEREEEEER

writing into FR9

<
=
e
=
=}

@
=}

When the condition of conditional branch is true, a target VLIW instruction is executed after
the VLIW instruction which contains the conditional branch instruction, and the sequential
VLIW instruction in the VLIW instruction is not executed. The instruction included in the same
VLIW instruction as the branch instruction completed execution.

The target address of control transfer instruction should be a head of VLIW instruction. The
operation when the target address is not at the head of VLIW instruction is not ensure.

208

2 VLIW instruction

2.2.2.2 Execution of Multiple Control Transfer Instruction is One VLIW
In this section, the execution of multiple control transfer instruction in the VLIW instruction
is explained. To make easy to understand the execution of two control transfer instructions in

the VLIW instruction are used for the explanation.

€ When both condition of conditional branch are false

§ Bicclabell |- | <€—— The condition is false.
i)
=
]
2 Bicclable2 |- | <€—— The condition is false.
= L
§ ADD GR1,GR2,GR3 |-
i)
=
[
2 FADD FR1,FR2,FR3 Rl
+
no — preprocessing postprocessing writing into FR3
0
0
Labell* ™ App GR4,GR5,GR6 v
ﬁ The instructions do not execute.
— /
= FADD FR4,FR5,FR6
5
a
5 0
0
Label2 ™ \pp Gr7,GR8,GR9 v
ﬁ The instructions do not execute.
(]
= FADD FR7,FR8,FR9 'y
5
a
b 0
0

When both of the condition of conditional branch is false, the sequential VLIW instruction in
the VLIW instruction which contains the conditional instruction is executed after the VLIW
instruction is executed, and the target VLIW instruction do not execute.

209

FRA400 Series Instruction Set Manual

€ When the first condition of conditional branch is true and the second is false.

| < The condition is true.

Bicc Yable2 | < The condition is false.

T3sUl MI'TA

'ADD GR1,GR2,GR3 \
The instructions do not execute.

FADD FR1,FR2,FR3 'y

G’UT MI'TA

ADD GR4,GR5,GR6 |-
<
=
o
= FADD FR4,FR5,FR6 [|
[a—
5 pre-processing post-processing Writing into FR6
5 0
0
Label2: [\pp GR7,GR8,GRY v
ﬁ The instructions do not execute.
—{
= FADD FR7,FRS,FR9 'y
5
7]
b 0

When the first condition of conditional branch is true and the second one is false, the target
VLIW instruction which is target of the first conditional branch is executed after the VLIW
instruction which contains the conditional branch instruction.

210

2 VLIW instruction

€ When the first condition of conditional branch is false and the second is true.

ﬁ Bicclabell ~ [------ee- | <€—— The condition is false.
(=]
=
=
2 | BiccQable2) |- | <—— The condition is true.
23
—_
<
= ADIYGR1,GR2,GR3 e
= The instructions do no execute.
5 A
2 FADD FR1,FR2,FR3
23
o
0
0
ADD GR4,GR5,GR6 e
The instructions do no execute.
FADD FR4,FR5,FR6 A
0
0
ADD GR7,GR8,GR9 |-
<
-
(=
= FADD FR7,FR8,FR9 el I |
=
2 preprocessing postprocessing writing into FR9
5 0
0

When the first condition of conditional branch is false and the second one is true, the target
VLIW instruction which is target of the second conditional branch is executed after the VLIW
instruction which contains the conditional branch instruction.

211

FRA400 Series Instruction Set Manual

€ When both of the condition of conditional branch are true.

§ Bice labell | <« The condition is true.
P
=
=
8 Bicce lable2 | <« The condition is true.
ct+
—_
<
o ADD GR1,GR2,GR3 Y
= The instructions do no execute.
p— /
> FADD FR1,FR2,FR3
@
Do
0
0
Labell [AppGRa4GR5E,GRE ~ |eeeee
<
.
]
=
=)
& FADD FR4,FR5,FR6 Rl
3 — preprocessing postprocessing writing into FR9
0
0
Label2 [\pp Gr7,GR8,GR9 v
ﬁ The instructions do no execute.
= /
= FADD FR7,FR8,FR9
5
&
= 0
0

When multiple condition of control transfer instruction are taken, the target VLIW
instruction, which is target of the branch instruction with young PC value, is executed.

212

Appendix

Appendix

1. Instruction Code Table

31 30 29 28 27 26 25 24 232221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

ADD GRk 0000000 GRi - 0000 GRj
ADDcc GRk 0000000 GRi ICCi] 0001 GRj
ADDX GRk 0000000 GRi ICCi] 0010 GRj
ADDXce GRk 0000000 GRi ICCi| 0011 GRj
SUB GRk 0000000 GRi - 0100 GRj
SUBcc GRk 0000000 GRi ICCi| 0101 GRj
SUBX GRk 0000000 GRi ICCi] 0110 GRj
SUBXcc GRk 0000000 GRi ICCi| 0111 GRj
SMUL GRk 0000000 GRi - 1000 GRj
SMULce GRk 0000000 GRi ICCi] 1001 GRj
UMUL GRk 0000000 GRi - 1010 GRj
UMULcce GRk 0000000 GRi ICCi| 1011 GRj
CMPB - 0000000 GRi ICCi] 1100 GRj
CMPBA - 0000000 GRi ICCi| 1101 GRj
SDIV GRk 0000000 GRi - 1110 GRj
UDIV GRk 0000000 GRi - 1111 GRj
AND GRk 0000001 GRi - 0000 GRj
ANDcc GRk 0000001 GRi ICCi] 0001 GRj
OR GRk 0000001 GRi - 0010 GRj
ORcc GRk 0000001 GRi ICCi] 0011 GRj
XOR GRk 0000001 GRi - 0100 GRj
XORcc GRk 0000001 GRi ICCi] 0101 GRj
NoT GRk 0000001 - - 0110 GRj
SLL GRk 0000001 GRi - 1000 GRj
SLLcc GRk 0000001 GRi ICCi] 1001 GRj
SRL GRk 0000001 GRi - 1010 GRj
SRLcc GRk 0000001 GRi ICCi| 1011 GRj
SRA GRk 0000001 GRi - 1100 GRj
SRAcc GRk 0000001 GRi ICCi| 1101 GRj

213

FRA400 Series Instruction Set Manual

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1

LDSB GRk 0000010 GRi 000000 GRj
LDUB GRk 0000010 GRi 000001 GRj
LDSH GRk 0000010 GRi 000010 GRj
LDUH GRk 0000010 GRi 000011 GRj
LD GRk 0000010 GRi 000100 GRj
LDD GRk 0000010 GRi 000101 GRj
LDBF FRk 0000010 GRi 001000 GRj
LDHF FRk 0000010 GRi 001001 GRj
LDF FRk 0000010 GRi 001010 GRj
LDDF FRk 0000010 GRi 001011 GRj
LDSBU GRk 0000010 GRi 010000 GRj
LDUBU GRk 0000010 GRi 010001 GRj
LDSHU GRk 0000010 GRi 010010 GRj
LDUHU GRk 0000010 GRi 010011 GRj
LDU GRk 0000010 GRi 010100 GRj
LDDU GRk 0000010 GRi 010101 GRj
LDBFU FRk 0000010 GRi 011000 GRj
LDHFU FRk 0000010 GRi 011001 GRj
LDFU FRk 0000010 GRi 011010 GRj
LDDFU FRk 0000010 GRi 011011 GRj

214

Table Contents

31 30 29 28 27 26 25 24 23 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

STB GRk 0000011 GRi 000000 GRj
STH GRk 0000011 GRi 000001 GRj
ST GRk 0000011 GRi 000010 GRj
STD GRk 0000011 GRi 000011 GRj
SWAP GRk 0000011 GRi 000101 GRj
MOVGS FRk 0000011 ST 000110 GRj
MOVSG FRk 0000011 st 000111 GRj
STBF FRk 0000011 GRi 001000 GRj
STHF FRk 0000011 GRi 001001 GRj
STF FRk 0000011 GRi 001010 GRj
STDF FRk 0000011 GRi 001011 GRj
MOVFG FRk 0000011 - 001101 GRj
MOVFGD FRk 0000011 - 001110 GRj
STBU GRk 0000011 GRi 010000 GRj
STHU GRk 0000011 GRi 010001 GRj
STU GRk 0000011 GRi 010010 GRj
STDU GRk 0000011 GRi 010011 GRj
MOVGF FRk 0000011 - 010101 GRj
MOVGFD FRk 0000011 - 010110 GRj
STBFU FRk 0000011 GRi 011000 GRj
STHFU FRk 0000011 GRi 011001 GRj
STFU FRk 0000011 GRi 011010 GRj
STDFU FRk 0000011 GRi 011011 GRj
LRAI GRk 0000011 GRi 100000 E[D[S] ooo
LRAD GRk 0000011 GRi 100001 E[D[s] ooo
TLBPR - | opx |L 0000011 GRi 100100 GRj

215

FRA400 Series Instruction Set Manual

31 30 29 28 27 26 2524 232221201918 17161514 13121110 9 8 7 6 5 4 3 2 1 0

ICPL - Ilocl« 0000011 GRi 110000 GRj
ICUL - 0000011 GRi 110001 -
DCPL - Ilocl« 0000011 GRi 110100 GRj
DCUL - 0000011 GRi 110101 -
ICI - 0000011 GRi 111000 GRj
ICEI - a 0000011 GRi 111001 GRj
DCEI - a 0000011 GRi 111010 GRj
DCEF - a 0000011 GRi 111010 GRj
DCI - 0000011 GRi 111100 GRj
DCF - 0000011 GRi 111101 GRj
BAR - 0000011 - 111110 -
MEMBAR - 0000011 - 111111

216

Table Contents

31 30 29 28 27 26 2524 23 222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

Tice #cond |ICCi 0000100 GRi - 00 GRj
FTfce #cond |FCCy 0000100 GRi - 01 GRj
MTRAP - 0000100 - - 10 -
BREAK - 0000100 - - 11

RETT - I d 0000101 -

Bice #cond |ICCi 0000110 Hhint label 16

FBfec #cond |FCCH 0000111 Hhint label 16

CKice #cond JCCx-4 0001000 - 1CC1
FCKfcc #cond | CCx 0001001 - FCCi
CLRGR GRk 0001010 - 000000

CLRGA - 0001010 - 000001

CLRFR FRk 0001010 - 000010

CLRFA - 0001010 - 000011

ANDCR - CCz 0001010 - CCx 001000 - CCy
ORCR - CCz 0001010 - CCx 001001 - CCy
XORCR - CCz 0001010 - CCx 001010 - CCy
NOTCR - CCz 0001010 - 001011 - CCy
NANDCR - CCz 0001010 - CCx 001100 - CCy
NORCR - CCz 0001010 - CCx 001101 - CCy
ANDNCR - CCz 0001010 - CCx 010000 - CCy
ORNCR - CCz 0001010 - CCx 010001 - CCy
NANDNCR - CCz 0001010 - CCx 010100 - CCy
NORNCR - CCz 0001010 - CCx 010101 - CCy
SCAN GRk 0001011 GRi - GRj
JMPL - 0 0001100 GRi - GRj
CALLL 1 0001100 GRi - GRj
JMPIL 0 0001101 GRi d12

CALLIL 1 0001101 GRi d12

BetrLR - 0001110 #hin 001 <{-#ccond -

BiccLR #cond |ICCi 0001110 #hing 010 |- -

BCiccLR #cond |ICCi 0001110 #hing 011 <{-#ccond -

FBfecLR #cond [FCCH 0001110 #hing 110 |- -

FCBfccLR #cond |FCCH 0001110 Hhing 111 <{-#ccond -

CALL labelh 6 0001111 labell 18

217

FRA400 Series Instruction Set Manual

31 30 29 28 27 26 2524 23 222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

ADDI GRk 0010000 GRi #s12
ADDIce GRk 0010001 GRi ICCi #s10
ADDXI GRk 0010010 GRi ICCi #s10
ADDXIce GRk 0010011 GRi ICCi #s10
SUBI GRk 0010100 GRi #s12
SUBIcc GRk 0010101 GRi ICCi #s10
SUBXI GRk 0010110 GRi ICCi #s10
SUBXIcc GRk 0010111 GRi ICCi #s10
SMULI GRk 0011000 GRi #s12
SMULIce GRk 0011001 GRi ICCif #s10
UMULI GRk 0011010 GRi #s12
UMULIcc GRk 0011011 GRi ICCi #s10
TTice #cond [ICCi 0011100 GRi #s12
FTIfce #cond |FCCi 0011101 GRi #s12
SDIVI GRk 0011110 GRi #s12
UDIVI GRk 0011111 GRi #s12
ANDI GRk 0100000 GRi #s12
ANDIcc GRk 0100001 GRi ICCif #s10
ORI GRk 0100010 GRi #s12
ORIcc GRk 0100011 GRi ICCi #s10
XORI GRk 0100100 GRi #s12
XORIcc GRk 0100101 GRi ICCif #s10
SLLI GRk 0101000 GRi #s12
SLLIce GRk 0101001 GRi ICCif #s10
SRLI GRk 0101010 GRi #s12
SRLIcc GRk 0101011 GRi ICCi #s10
SRAI GRk 0101100 GRi #s12
SRAIce GRk 0101101 GRi ICCi #s10

218

Table Contents

LDSBI
LDSHI
LDI
LDDI
LDUBI
LDUHI
LDBFI
LDHFI
LDFI
LDDFI
SETLO
SETHI
SETLOS
ADDSS
SUBSS
SLASS
SCUTSS
SMU
SMASS
SMSSS
SCANI
SWAPI
STBFI
STHFI
STBI
STHI
STI
STDI
STFI
STDFI

3130 29 28 27 26 252423 222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

GRk 0110000 GRi di2

GRk 0110001 GRi di2

GRk 0110010 GRi di2

GRk 0110011 GRi d12

GRk 0110101 GRi di2

GRk 0110110 GRi di2

FRk 0111000 GRi di2

FRk 0111001 GRi di2

FRk 0111010 GRi di2

FRk 0111011 GRi di2

GRk 0111101 #ul6

GRk 0111110 #i16

GRk 0111111 #s16

GRk 1000110 GRi 000000 GRj

GRk 1000110 GRi 000001 GRj

GRk 1000110 GRi 000010 GRj

GRk 1000110 000100 GRj
1000110 GRi 000101 GRj
1000110 GRi 000110 GRj
1000110 GRi 000111 GRj

GRk 1000111 GRi #s12

GRk 1001101 GRi di2

FRk 1001110 GRi di2

FRk 1001111 GRi di2

GRk 1010000 GRi di2

GRk 1010001 GRi di2

GRk 1010010 GRi di2

GRk 1010011 GRi di2

FRk 1010101 GRi di2

FRk 1010110 GRi di2

219

FRA400 Series Instruction Set Manual

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1

CADD GRk 1011000 GRi CCi |#c| 00 GRj
CSUB GRk 1011000 GRi CCi |#c| 01 GRj
CSMUL GRk 1011000 GRi CCi |#c]| 10 GRj
CSDIV GRk 1011000 GRi CCi |#c| 11 GRj
CADDcc GRk 1011001 GRi CCi |#c| 00 GRj
CSUBcc GRk 1011001 GRi CCi |#c| 01 GRj
CSMULce GRk 1011001 GRi CCi |#c| 10 GRj
CUDIV GRk 1011001 GRi CCi |#c| 11 GRj
CAND GRk 1011010 GRi CCi |#c| 00 GRj
COR GRk 1011010 GRi CCi |#c| 01 GRj
CXOR GRk 1011010 GRi CCi |#c]| 10 GRj
CNOT GRk 1011010 - CCi |#c| 11 GRj
CANDcc GRk 1011011 GRi CCi |#c| 00 GRj
CORcc GRk 1011011 GRi CCi |#c| 01 GRj
CXORcc GRk 1011011 GRi CCi |#c| 10 GRj
CSLL GRk 1011100 GRi CCi |#c| 00 GRj
CSRL GRk 1011100 GRi CCi |#c| 01 GRj
CSRA GRk 1011100 GRi CCi |#c]| 10 GRj
CSLLcc GRk 1011101 GRi CCi |#c| 00 GRj
CSRLcc GRk 1011101 GRi CCi |#c| 01 GRj
CSRAcc GRk 1011101 GRi CCi |#c| 10 GRj
CLDSB GRk 1011110 GRi CCi |#c| 00 GRj
CLDUB GRk 1011110 GRi CCi |#c| 01 GRj
CLDSH GRk 1011110 GRi CCi |#c| 10 GRj
CLDUH GRk 1011110 GRi CCi |#c| 11 GRj
CLD GRk 1011111 GRi CCi |#c| 00 GRj
CLDD GRk 1011111 GRi CCi |#c| 01 GRj
CLDBF FRk 1100000 GRi CCi |#c| 00 GRj
CLDHF FRk 1100000 GRi CCi |#c| 01 GRj
CLDF FRk 1100000 GRi CCi |#c| 10 GRj
CLDDF FRk 1100000 GRi CCi |#c| 11 GRj
CLDSBU GRk 1100001 GRi CCi |#c| 00 GRj
CLDUBU GRk 1100001 GRi CCi |#c| 01 GRj
CLDSHU GRk 1100001 GRi CCi |#c]| 10 GRj
CLDUHU GRk 1100001 GRi CCi |#c| 11 GRj
CLDU GRk 1100010 GRi CCi |#c| 00 GRj
CLDDU GRk 1100010 GRi CCi |#c| 01 GRj
CLDBFU FRk 1100011 GRi CCi |#c| 00 GRj
CLDHFU FRk 1100011 GRi CCi |#c| 01 GRj
CLDFU FRk 1100011 GRi CCi |#c| 10 GRj
CLDDFU FRk 1100011 GRi CCi |#c| 11 GRj

220

Table Contents

3130 29 28 27 26 2524 23222120191817161514 13121110 9 8 7 6 5 4 3 2 1 0

CSTB GRk 1100100 GRi CCi | #c| 00 GR;j
CSTH GRk 1100100 GRi CCi |#c| 01 GR;j
CST GRk 1100100 GRi CCi | #c| 10 GR;j
CSTD GRk 1100100 GRi CCi |#c| 11 GRj
CSWAP GRk 1100101 GRi CCi | #c| 10 GR;j
CSCAN GRk 1100101 GRi CCi |#c| 11 GR;j
CSTBF FRk 1100110 GRi CCi | #c| 00 GR;j
CSTHF FRk 1100110 GRi CCi |#c| 01 GR;j
CSTF FRk 1100110 GRi CCi | #c| 10 GRj
CSTDF FRk 1100110 GRi CCi |#c| 11 GR;j
CSTBU GRk 1100111 GRi CCi | #c| 00 GR;j
CSTHU GRk 1100111 GRi CCi |#c| 01 GRj
CSTU GRk 1100111 GRi CCi | #c| 10 GRj
CSTDU GRk 1100111 GRi CCi |#c| 11 GRj
CSTBFU FRk 1101000 GRi CCi | #c| 00 GRj
CSTHFU FRk 1101000 GRi CCi |#c| 01 GRj
CSTFU FRk 1101000 GRi CCi | #c| 10 GR;j
CSTDFU FRk 1101000 GRi CCi |#c| 11 GRj
CMOVGF FRk 1101001 - CCi | #c| 00 GRj
CMOVGFD FRk 1101001 - CCi |#c| 01 GRj
CMOVFG FRk 1101001 - CCi | #c| 10 GRj
CMOVFGD FRk 1101001 - CCi |#c| 11 GRj
CCKicc #cond |CCx-4 1101010 - CC1 *1 00 - 1CC1
CFCKfce #cond |CCx 1101010 - CCi *1 01 - FCCi
CJMPL - 0 1101010 GRi CCi | #c| 10 GRj
CCALLL - 1 1101010 GRi CCi | #c| 10 GRj
#c #cond
* #ccond

221

FRA400 Series Instruction Set Manual

CMAND FRk 1110000 FRi CCi |#c| 00 FRj
CMOR FRk 1110000 FRi CCi |#c| 01 FRj
CMXOR FRk 1110000 FRi CCi |#c| 10 FRj
CMNOT FRk 1110000 - CCi |# 11 FRj
CMADDHSS FRk 1110001 FRi CCi |#c| 00 FRj
CMADDHUS FRk 1110001 FRi CCi |# 01 FRj
CMSUBHSS FRk 1110001 FRi CCi |#c 10 FRj
CMSUBHUS FRk 1110001 FRi CCi |# 11 FRj
CMMULHS ACCk 1110010 FRi CCi |#c| 00 FRj
CMMULHU ACCk 1110010 FRi CCi |#c| 01 FRj
CMMACHS ACCk 1110010 FRi CCi |#c| 10 FRj
CMMACHU ACCk 1110010 FRi CCi |# 11 FRj
CMQADDHSS FRk 1110011 FRi CCi |#c| 00 FRj
CMQADDHUS FRk 1110011 FRi CCi |#c 01 FRj
CMQSUBHSS FRk 1110011 FRi CCi |#q 10 FRj
CMQSUBHUS FRk 1110011 FRi CCi |#q 11 FRj
CMQMULHS ACCk 1110100 FRi CCi |#c| 00 FRj
CMQMULHU ACCk 1110100 FRi CCi |#c 01 FRj
CMQMACHS ACCk 1110100 FRi CCi |#c| 10 FRj
CMQMACHU ACCk 1110100 FRi CCi |# 11 FRj
CMCPXRS ACCk 1110101 FRi CCi |#c| 00 FRj
CMCPXRU ACCk 1110101 FRi CCi |#c 01 FRj
CMCPXIS ACCk 1110101 FRi CCi |#c| 10 FRj
CMCPXIU ACCk 1110101 FRi CCi |# 11 FRj
CMEXPDHW FRk 1110110 FRi CCi |#q| 10 #s6
CMEXPDHD FRk 1110110 FRi CCi |#q 11 #s6
CMBTOH FRk 1110111 - CCi |#c| 00 FRj
CMHTOB FRk 1110111 - CCi |#c 01 FRj
#c #cond

222

Table Contents

31 30 29 28 27 26 2524 23 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

MQXMACHS ACCk 1111000 FRi 000000 FR;j
MQXMACXHS ACCk 1111000 FRi 000001 FRj
MQMACXHS ACCk 1111000 FRi 000010 FR;j
MADDACCS ACCk 1111000 ACCi 000100 -
MSUBACCS ACCk 1111000 ACCi 000101

MDADDACCS ACCk 1111000 ACCi 000110

MDSUBACCS ACCk 1111000 ACCi 000111

MASACCS ACCk 1111000 ACCi 001000

MDASACCS ACCk 1111000 ACCi 001001

MABSHS FRk 1111000 - 001010 FRj
MDROTLI FRk 1111000 FRi 001011 #s6
MCPLHI FRk 1110000 FRi 001100 #s6
MCPLI FRk 1110000 FRi 001101 #s6
MDCUTSSI FRk 1110000 ACCi 001110 #s6
MQSATHS FRk 1111000 FRi 001111 FRj
MQLCLRHS FRk 1111000 FRi 010000 FRj
MQSLLHI FRk 1111000 FRi 010001 #s6
MQSRAHI FRk 1111000 FRi 010011 #s6
MQLMTHS FRk 1111000 FRi 010100 FR;j
MHSETLOS FRk 1111000 #u6_1 100000 #u6_2
MHSETLOH FRk 1111000 - 100001 - | #s5
MHSETHIS FRk 1111000 #u6_1 100010 #u6_2
MHSETHIH FRk 1111000 - 100011 - | #s5
MHDSETS FRk 1111000 #u6_1 100100 #u6_2
MHDSETH FRk 1111000 - 100101 - | #s5

223

FRA400 Series Instruction Set Manual

31 30 29 28 27 26 2524 232221201918 17161514 13121110 9 8 7 6 5 4 3 2 1 0

MAND FRk 1111011 FRi 000000 FR;j
MOR FRk 1111011 FRi 000001 FR;j
MXOR FRk 1111011 FRi 000010 FR;j
MNOT FRk 1111011 - 000011 FR;j
MROTLI FRk 1111011 FRi 000100 #s6
MROTRI FRk 1111011 FRi 000101 #s6
MWCUT FRk 1111011 FRi 000110 FR;j
MWCUTI FRk 1111011 FRi 000111 #ub
MAVEH FRk 1111011 FRi 001000 FR;j
MSLLHI FRk 1111011 FRi 001001 #s6
MSRLHI FRk 1111011 FRi 001010 #s6
MSRAHI FRk 1111011 FRi 001011 #s6
MSATHS FRk 1111011 FRi 001100 FRj
MSATHU FRk 1111011 FRi 001101 FRj
MCMPSH - FCCi 1111011 FRi 001110 FRj
MCMPUH - FCCi 1111011 FRi 001111 FRj
MADDHSS FRk 1111011 FRi 010000 FRj
MADDHUS FRk 1111011 FRi 010001 FRj
MSUBHSS FRk 1111011 FRi 010010 FRj
MSUBHUS FRk 1111011 FRi 010011 FRj
MMULHS ACCk 1111011 FRi 010100 FRj
MMULHU ACCk 1111011 FRi 010101 FRj
MMACHS ACCk 1111011 FRi 010110 FRj
MMACHU ACCk 1111011 FRi 010111 FRj
MQADDHSS FRk 1111011 FRi 011000 FRj
MQADDHUS FRk 1111011 FRi 011001 FRj
MQSUBHSS FRk 1111011 FRi 011010 FRj
MQSUBHUS FRk 1111011 FRi 011011 FRj
MQMULHS ACCk 1111011 FRi 011100 FRj
MQMULHU ACCk 1111011 FRi 011101 FRj
MQMACHS ACCk 1111011 FRi 011110 FRj
MQMACHU ACCk 1111011 FRi 011111 FRj
MCPXRS ACCk 1111011 FRi 100000 FRj
MCPXRU ACCk 1111011 FRi 100001 FRj
MCPXIS ACCk 1111011 FRi 100010 FRj
MCPXIU ACCk 1111011 FRi 100011 FRj
MQCPXRS ACCk 1111011 FRi 100100 FRj
MQCPXRU ACCk 1111011 FRi 100101 FRj
MQCPXIS ACCk 1111011 FRi 100110 FRj
MQCPXIU ACCk 1111011 FRi 100111 FRj
MMULXHS ACCk 1111011 FRi 101000 FRj
MMULXHU ACCk 1111011 FRi 101001 FRj
MQMULXHS ACCk 1111011 FRi 101010 FRj
MQMULXHU ACCk 1111011 FRi 101011 FRj

224

Table Contents

31 30 29 28 27 26 25 24 23 2221 2019181716151413121110 9 8 7 6 5 4 3 2 1 O

MCUT FRk 1111011 ACCi 101100 FRj
MCUTSS FRk 1111011 ACCi 101101 FRj
MCUTI FRk 1111011 ACCi 101110 #s6
MCUTSSI FRk 1111011 ACCi 101111 #s6
MMRDHS ACCk 1111011 FRi 110000 FRj
MMRDHU ACCk 1111011 FRi 110001 FRj
MEXPDHW FRk 1111011 FRi 110010 #s6
MEXPDHD FRk 1111011 FRi 110011 #s6
MPACKH FRk 1111011 FRi 110100 FRj
MUNPACKH FRk 1111011 FRi 110101 -
MDPACKH FRk 1111011 FRi 110110 FRj
MBTOH FRk 1111011 - 111000 FRj
MHTOB FRk 1111011 - 111001 FRj
MCLRACC ACCi 1111011 A - 111011 -
MNOP 111111 1111011 1 - 111011

MRDACC FRk 1111011 ACCi 111100

MWTACC ACCk 1111011 FRi 111101

MRDACCG FRk 1111011 ACCGi 111110

MWTACCG ACCGk 1111011 FRi 111111

225

FRA400 Series Instruction Set Manual

2. Instruction Matrix

2.1. Primary Ope-code

op[6:3] op[2:0]

000 001 010 011 100 101 110 111
0000] +++ +++ +++ +++ +++ RETT Bicc FBfcc
0001 CKicc FCKfcc | #++ SCAN JMPL JMPIL +++ CALL
0010] ADDI ADDIcc | ADDXI | ADDXIcc| SUBI SUBIcc | SUBXI SUBXlcc
0011f SMULI | SMULIcc| UMULI | UMULIcc| Tlice FTlfcc | SDIVI [UDIVI
0100] ANDI [ANDIcc | ORI ORIcc [XORI [XORIcc | -——- —
0101 SLLI SLLIcc | SRLI SRLIcc | SRAI SRAlcc | —- —
0110 LDSBI [£DSHI | LDI LDDI | —- LDUBI | LDUHI | -—
0111 LDBFI [LDHFI | LDFI LDDFI | -——- SETLO | SETHI | SETLOS
1000] —— — — — — — +H+ SCANI
1001] —- — — — — SWAPI | STBFI [STHFI
1010| STBI STHI STI STDI — STFI STDFI | -—-
1011] +++ +++ +++ +++ +++ +++ +++ +++
1100| +++ +++ +++ +++ +++ +++ +++ +++
1101] +++ +++ +++ +++ +++ +++ +++ +++
1110 +++ +++ +++ +++ +++ +++ +++ +++
1111 — +++ —_— +++ — -— —_— -—

The column of +++ has the secondary ope-code.

226

Table Contents

2.2.

Primary=0000000

Secondary Opecode

opel[3] ope[2:0]
000 001 010 011 100 101 110 111
0| ADD ADDcc ADDX ADDZXce SUB SUBce SUBX SUBXce
1| SMUL SMULcc UMUL UMULce CMPB CMPBA SDIV UDIV
Primary=0000001
opel[3] ope[2:0]
000 001 010 011 100 101 110 111
0] AND ANDcc OR ORce XOR XORce NOT --
1| SLL SLLcc SRL SRLcc SRA SRAcc - -
Primary=0000010
ope[5:3] ope[2:0]
000 001 010 011 100 101 110 111
000| LDSB LDUB LDSH LDUH LD LDD -
001| LDBF LDHF LDF LDDF - - -
010| LDSBU LDUBU LDSHU LDUHU LDU LDDU - -
011| LDBFU LDHFU LDFU LDDFU - - -
100| --- - - - - - -
101 --- - - - - - -
110{ --- - - - - - -
111) --- - - - - - -
Primary=0000011
ope[5:3] ope[2:0]
000 001 010 011 100 101 110 111
000] STB STH ST STD - SWAP MOVGS MOVSG
001| STBF STHF STF STDF - MOVFG MOVFGD -
010| STBU STHU STU STDU - MOVGF MOVGFD -
011] STBFU STHFU STFU STDFU - - - --
100|LRAI LRAD - - TLBPR -- -
101 --- - - - - -
110|ICPL ICUL - - DCPL DCUL -
111|ICI ICEI DCEI DCEF DCI DCF BAR MEMBAR
Primary=0000100
opel1:0]
00 01 10 11
- Tice FTfce MTRAP BREAK

227

FRA400 Series Instruction Set Manual

Primary=0001010

opel[5:3] ope[2:0]
000 001 010 011 100 101 110 111
000|] CLRGR CLRGA CLRFR CLRFA

001| ANDCR ORCR XORCR NOTCR NANDCR | NORCR

010 ANDNCR | ORNCR NANDNCR| NORNCR

011) ---

100| ---

101) -

110| -

111 -

Primary=0001110
ope[2:0]
000 001 010 011 100 101 110 111
BetrLR BiccLR BCiccLR FBfccLR FCBfccLR
Primary=1000110
opel[2:0]

000 001 010 011 100 101 110 111
ADDSS SUBSS SLASS SCUTSS SMU SMASS SMSSS
Primary=1011000

ope[1:0]

00 01 10 11
CADD CSUB CSMUL CSDIV
Primary=1011001

ope[1:0]

00 01 10 11
CADDcc CSUBcc CSMULce |CUDIV
Primary=1011010

ope[1:0]

00 01 10 11
CAND COR CXOR CNOT
Primary=1011011

ope[1:0]

00 01 10 11

CANDcc CORcc CXORcc

228

Table Contents

Primary=1011100
ope[1:0]
00 01 10| 11
CSLL CSRL CSRA
Primary=1011101
ope[1:0]
00 01 10| 11
CSLLcc CSRLcc CSRAcc
Primary=1011110
ope[1:0]
00 01 10| 11
CLDSB CLDUB CLDSH CLDUH
Primary=1011111
ope[1:0]
00 01 10| 11
CLD CLDD
Primary=1100000
ope[1:0]
00 01 10| 11
CLDBF CLDHF CLDF CLDDF
Primary=1100001
ope[1:0]
00 01 10) 11
CLDSBU CLDUBU CLDSHU CLDUHU
Primary=1100010
opel[1:0]
00 01 10| 11
CLDU CLDDU
Primary=1100011
opel1:0]
00 01 10| 11
CLDBFU CLDHFU CLDFU CLDDFU

229

FRA400 Series Instruction Set Manual

Primary=1100100

ope[1:0]
00 01 10 11
CSTB CSTH CST CSTD
Primary=1100101
ope[1:0]
00 01 10 11
CSWAP CSCAN
Primary=1100110
ope[1:0]
00 01 10 11
CSTBF CSTHF CSTF CSTDF
Primary=1100111
ope[1:0]
00 01 10 11
CSTBU CSTHU CSTU CSTDU
Primary=1101000
ope[1:0]
00 01 10 11
CSTBFU CSTHFU CSTFU CSTDFU
Primary=1101001
ope[1:0]
00 01 10 11
CMOVGF CMOVGFD |CMOVFG CMOVFGD
Primary=1101010
ope[1:0]
00 01 10 11
CCKice CFCKfce CJMPL

230

Table Contents

Primary=1110000

ope[1:0]

00 01 10 11
CMAND CMOR CMXOR CMNOT
Primary=1110001

ope[1:0]

00 01 10 11
CMADDHSS | CMADDHUS |CMSUBHSS | CMSUBHUS
Primary=1110010

ope[1:0]

00 01 10 11
CMMULHS CMMULHU |CMMACHS CMMACHU
Primary=1110011

ope[1:0]

00 01 10 11
CMQADDHSS| CMQADDHUYCMQSUBHSS | CMQSUBHUS
Primary=1110100

ope[1:0]

00 01 10 11
CMQMULHS | CMQMULHU |[CMQMACHS | CMQMACHU
Primary=1110101

ope[1:0]

00 01 10 11
CMCPXRS CMCPXRU CMCPXIS CMCPXIU
Primary=1110110

ope[1:0]
00 01 10 11
CMEXPDHW | CMEXPDHD
Primary=1110111
opel[1:0]

00 01 10 11

CMBTOH CMHTOB

231

FRA400 Series Instruction Set Manual

Primary=1111000

ope[5:3] ope[2:0]

000 001 010 011 100 101 110 111
000|MQXMACHS |MQXMACXHS|MQMACXHS |--- MADDACCS|MSUBACCS |MDADDACCS [MDSUBACCS
001|MASACCS |MDASACCS |MABSHS |MDROTLI |MCPLHI [MCPLI MDCUTSSI | MQSATHS
010|MQLCLRHS|MQSLLHI [--- MQSRAHI |MQLMTHS [---

011|-- -

100|MHSETLOS [MHSETLOH | MHSETHIS [MHSETHIH|MHDSETS |MHDSETH |-
101)---
110])---
111)--

Primary=1111011

ope[5:3] ope[2:0]

000 001 010 011 100 101 110 111
000|MAND MOR MXOR MNOT MROTLI |MROTRI |MWCUT |MWCUTI

00| MAVEH |MSLLHI |MSRLHI |MSRAHI |MSATHS |MSATHU |MCMPSH | MCMPUH
010| MADDHSS | MADDHUS| MSUBHSS | MSUBHUS | MMULHS | MMULHU | MMACHS | MMACHU
011| MQADDHS{ MQADDHU| MQSUBHS{ MQSUBHU{ MQMULHS| MQMULHU| MQMACHS| MQMACHU
100|MCPXRS |MCPXRU [MCPXIS |MCPXIU [MQCPXRS |MQCPXRU |MQCPXIS |MQCPXIU

101{MMULXHS |MMULXHU [MQMULXHY MQMULXH| MCUT MCUTSS | MCUTI MCUTSSI
110|MMRDHS |MMRDHU | MEXPDHW| MEXPDHD | MPACKH | MUNPACK] MDPACKH
111 MBTOH MHTOB MCLRACC | MRDACC | MWTACC | MRDACCG | MWTACCG

232

Table Contents

3. Instruction / Device No. Correspondence table

Instruction Device To.
MB93401 | MB93401A | MB93402 [MB93403 | MB93405 | MB93451
ADDSS N/A N/A N/A N/A available | available
SUBSS N/A N/A N/A N/A available | available
SLASS N/A N/A N/A N/A available | available
SCUTSS N/A N/A N/A N/A available | available
SMU N/A N/A N/A N/A available | available
SMASS N/A N/A N/A N/A available | available
SMSSS N/A N/A N/A N/A available | available
LRAI N/A N/A N/A N/A N/A available
LRAD N/A N/A N/A N/A N/A available
TLBPR N/A N/A N/A N/A N/A available
MQLCLRHS| N/A N/A N/A N/A N/A available
MQLMTHS N/A N/A N/A N/A N/A available
MQSRAHI N/A N/A N/A N/A N/A available
MQSLLHI N/A N/A N/A N/A N/A available
other available | available | available | available | available | available

233

FRA400 Series Instruction Set Manual

4. TACCO special rule

TACCO(SPR NO. 280-281) is added for MB93405/MB93451. It doesn’t exist on
MB93401/MB93401A/MB93402/MB93403.
Special rule for IACCO is below.

1. On MB93401/MB93401A/MB93402/MB93403, when movsg instruction reads IACCO, value is 0.
Serialization is occurred.

2. On MB93401/MB93401A/MB93402/MB93403, when movgs instruction writes [ACCO, any register is
not updated. Serialization is occurred.

3. On MB93405/MB93451, when movsg instruction reads IACCO, correct value is read. Serialization is
not occurred.

4. On MB93405/MB93451, when movgs instruction writes TACCO0, IACCO is updated. Serialization is
not occurred.

To achive common context save/restore routine for all FR400 series without checking CPU version,
should only saving IACCO0 by movsg and restoreing IACC0 by movgs.

234

Index

Index

ADD .o 2,3 CLDUBU.......coovvieeeeeeeeeec 170, 171
ADDCC ..o 2,3 CLDUHoooeiiiieeeeeeee 170, 171
ADDI ... 2,3 CLDUHU ..o 170, 171
ADDICC ..o 2,3 CMADDHSS ..., 191
ADDSS ..o 2 CMADDHUS......cooeeeeeeeeeeeeeeeeeee 191
ADDSS ... 3 CMAND ..o 189
ADDX .o 2,3 CMBTOHoooiviiiiieeeeeeeeeee, 202
ADDXCCuuvvvveieieeeeeeeeeeeee e 2,3 CMCPXIS..coooeiiiieeeeeeeeeeeeeeeeeeeen 199
FiN D15) 2,3 CMCPXIU ...ooooiiiiieeeeeeeeeeeeeeeieeeeeen 199
ADDXICC cvvvvveeeiiieeeeeeeeeeeeeeeeeeeeeee e 2,3 CMCPXRS....oooiiiieeeeeeeeeeeeeeeeeeeen 199
AND. oo, 11, 12, 162, 164 CMCPXRU ..o 199
ANDCC e 11, 12 CMEXPDHD.....ccoovviiiieiiiiiiiiieeeeeen, 201
ANDCR ...ooooiieieeeeeeeeeeeeeee e, 62, 63 CMEXPDHWccoovviviiieieiiieeciiieeeeeee. 201
ANDI ..., 11, 12 CMHTOBcooiieeeeeeeeeeeceeeeee 202
ANDICC. . 11, 12 CMMACHS ... 193
ANDNCR ..o 62, 63, 64 CMMACHUcoooveeeeeeeeeeeeeee, 193
atomic Load Store instructions 178 CMMULHS ..., 193
BAR oo 76 CMMULHU ..o, 193
BCiccLR ..o, 37, 38 CMNOT ..o 189
BetrLR..ooooo 36 CMOR ..ot 189
BiCC i 32 CMOVEG ...ooooiiiieeeeeeeeeeeee 180
BicCLR..ooooiiiiiiiiiieeeeeee 37, 38 CMOVEGD.....ccoovvoiiiiiiiiiieeieeeee, 180
Break....ii 52 CMOVGE ... 180
CADD ..o 158 CMOVGED.....cooooeeeeiiiiieeeeeeeeeeee 180
CADDCC....ccvveeeeeeeeeeeeecee e, 160 CMPB ... 16
CALL ... 44 CMPBA ..o 16
CALL instructioncccceeeeevevvnneeeeeennnn. 44 CMQADDHSS ..., 195
CAND ... 162 CMQADDHUS........ovveeeeeeeeeeeeeeeeeeee, 195
CANDCC....eeeeeeeeeeeeeeeeeeeeeeeee 164 CMQMACHS ..., 197
(] 0] G T 184 CMQMACHU.......vvvvveeeeeeieeeeeeeee, 197
CECKILCC .o 187 CMQMULHS ..., 197
CIMPL ... 182 CMQMULHU......cccooviiieiieeeeiee e, 197
(] 2 TR 58 CMQSUBHSS......ccviiieeiieeeeee e, 195
CLD e, 170, 171 CMQSUBHUS ..., 195
CLDBE ... 172 CMSUBHSS.....ooooeeieeeeeeeeeeeeeeeeee 191
CLDBEU ... 172 CMSUBHUS. ..., 191
CLDD ..., 170, 171 CMXOR ..o 189
CLDDEF ..., 172 CNOT ..o 162
CLDDFU...oooiiiiiieieee e, 172,173 condition code of condition code register
CLDDU ...cooovviiiiiii 170, 171 for conditional instruction................... 58
[51 D) R 172 condition code registercccccevvvvvennnnns 58
CLDFU....ooooiiiii 172, 173 control transfer instruction 207
CLDHF ... 172 COR e 162
CLDHEFU. ... 172 CORCC et 164
CLDSB ... 170 CSCAN ... 183
CLDSBU ..., 170, 171 CSDIV e 158
(6171015 2 DO 170, 171 (615) T 166
CLDSHU......ooviiiiiiiiiiieeeeeeeeee, 170, 171 CSLLCC e 168
CLDU ..., 170, 171 CSMUL .oovveiieiieeeeeeeeeeeeeeeeeeeeee e 158
CLDUB ..., 170, 171 CSMULCC e 160

235

FRA400 Series Instruction Set Manual

CSRA.....oeeeee e 166
CSRACC....ccooeeeeeeeeeeeecee e, 168
CSRL.....oeeee e 166
CSRLCC....coteeeeeee e 168
CST ..o, 174
CSTB ..o 174
CSTBEF.....eeeeeee e 176
CSTBFU....oooeveiiieeeeeeeeeeeeeeee 176
CSTBU ... 174
CSTD e 174
CSTDE ..., 176
CSTDFU ..., 176, 177
CSTDU ..., 174,175
CSTE .o 176
CSTFU ...coooviviiiiiii 176, 177
CSTH.......oooviiiiii, 174
CSTHE ... 176
CSTHEU ... 176
CSTHU. ... 174
CSTU .., 174, 175
CSUB ... 158
CSUBCC ...coovviiiiiiiii 160
CSWAP ... 178
CUDIV e, 160
CXOR ..o 162
CXORCC ...cooeovveeeeeeeeeeeeeeee e, 164

data_access_error21, 23, 25, 27, 29, 67, 68,
70,71, 73, 75,171, 173, 175, 177, 178
data_access_exception21, 23, 25, 27, 29, 70,
71,73, 75,171,173, 175, 177, 178
data_access_ MMU_miss 21, 23, 25, 27, 29,
70, 71, 73, 75,171, 173, 175, 177, 178
data_store_error.. 25, 27, 29, 175, 177, 178

DCEF ...t 71
DCEIL ..o 70
DCF e, 68
DCI .., 67
DCPL..ooeeeeeeeeeee e, 73
1510 6 OO 75
division_exceptionc..eee.e. 9, 158, 161
2 T R 34
FBICCLR ..coovvvveveeeeeeaaan 40
FCBIeCLR ... 40
FCKLCC.c.oovvviiiieiieeeaaan 60
floating-point instruction...............cccu..... 76

fp_disabled.. 23, 27, 30, 35, 41, 50, 61, 173,
177, 181

FR. .o 22, 23, 26, 27, 30
FR Load instructionscccoeeeuvnnnen.. 22
FR Store instructions...............cccoeeuvnnen.. 26
FTLCC i, 49
] T 49

general-purpose register................... 20, 24
GR.oii e 19, 20, 24, 30
GR Load instructionscccccveeeeeunnee.. 19
GR Store instructions...........ccceceeeeeennneenn. 24
HSR .o 67, 68
ICEL...oiiiiieee et 69
| [USSP 66
ICPL v 72
ICUL..uoiiiieeeeeeeeee e 74
Instruction_access_error....... 66, 69, 72, 74
instruction_access_exception 69, 72, 74
instruction_access MMU_miss 69, 72, 74
integer addition and subtraction
INSErUCEIONS .eevveeiiiiiieeeiieeeeeee e, 3
integer division instructions..................... 9
integer multiply instructions.................... 6
integer shift instructions 14
JMP i 43
JMPIL .o 43
JMPLi..ooiiiie e 43
LCR ..o 36, 37, 38, 39, 40, 41, 42
LD e 19, 171
LDBF ..., 22,23, 172
LDBFT oo 22
LDBFU ...t 22,172
LDD o 19, 171
LDDF...oooiiiiieieeeeeee e 22,23, 172
LDDFT ..o 22
LDDFU...ccviiiieiieee e 22,173
LDDI....ooiiiieee e 19, 20
LDDU ..o 19, 20, 171
LDF oo 22,23, 172
LDFIL ..o, 22
LDFU...oooiiiieeeeeeeeeee e 22,173
LDHF ..ooooiiiiiieeeeeee 22,23, 172
LDHFT ..o 22
LDHFU ..o 22, 172
LDI e 19, 20
LDSB...ooiiieeeeeeeeee e 19, 170
LDSBL...ooooiiiiieeeee e 19, 20
LDSBU ...t 19, 171
LDSH....oooiiieieeeeeeeeeeee e 19, 171
LDSHI ...ocoviiiiieeeeee e 19, 20
LDSHU.....coooeviieiieiee e 19, 20, 171
LDU ..o, 19, 20, 171
LDUB ..o 19,171
LDUBI....ccviieieeieeee e, 19, 20
LDUBUcooiiiieiiiiieeeeiee 19, 20, 171
LDUH....oooiiiiiiiieeeeeee 19, 171
LDUHI ...t 19, 20
LDUHU ..., 19, 20, 171
LR............ 36, 37, 38, 39, 40, 41, 42, 43, 44

236

LRAD i 80
LRAT ..ot 78
MABSHS.....ooiiieeeeeeeeeee e 96
MADDACCS ..o 145
MADDHSS.....cciieeiieieeeeeeeee e, 98, 191
MADDHUS.......oovieeiieee e, 98, 191
MAND ..ot 86, 189
MASACCS ..ottt 149
MAVEHcoooiiiiiiiieeeeeeeee e 90
MBTOH......cccoeeeeiiieeeieeeens 139, 140, 202
MCLRACC ..ot 143
MCMPSH......oooiiiiiieieeieeeee e 97
MCMPUH ...ttt 97
MCPLHIL......ooiiiiiiiieiieeeeeeeee e 141
MCPLL.....oooiieeeeeee et 142
MCPXIS ..ottt 123
MCPXIU ...oeviiiiiieiieceeeeeee e 123
MCPXRSooiiiiieeieeeeeeee et 123
MCPXRUooiiiieiieciieecieeeee e 123
MCUT ...ooiiieeeeeeee e 128, 129
MCUTT ..oooiieieeeeeeeeeeeee e 128
MCUTSS ... 130, 131
MCUTSST ...t 130
MDADDACCSooeiieieeeeeieeeeeieee e 147
MDASAACCS ..ottt 150
MDASACCS......oiiiieteeieeeieeeeee e 150
MDCUTSSI.....veeeiiecieeeeeeeiee e 132
MDPACKHoooovviiiieiieeeeiiee, 137, 138
MDROTLIcccvtieieeeiie et 92
MDSUBACCS......cieieeeieerieeeee e 148
media average instruction....................... 90
media INStructionoooceevevvvvnnnnn... 1, 76, 77
MEMBAR.......ccoiiiieieeeecee e 77
MEXPDHDcccoovviiieiieciieeeieeae 133, 201
MEXPDHW......ccooiiiiieiiieeeiieeene 133, 201
MHDSETHcoooviiiiiieieieeiee e, 152
MHDSETS ..ottt 152
MHSETHIH........ccooeeiiiiiieeiieeeeieee e 152
MHSETHIS ..o, 152
MHSETLOH.......cccvviiiiiieeiiee, 152, 156
MHSETLOS.......cccoieiieiieeeeiee, 152, 156
MHTOB......c.ooeovieieeeieeeee 139, 140, 202
MMACHS........cccoeiieeieeeieene 104, 105, 193
MMACHU.......ccvveieeiieiee e 104, 193
MMRDHS ...t 106, 107
MMRDHU......ccoiiiiiieiieeieeeeeee e 106
MMULHS ..o 100, 193
MMULHU.....cocoiiiiiieiieeeeeee 100, 193
MMULXHS ...ttt 102
MMULXHUooiviiiiiiieieeieeeieeeiee 102
MNOP ..ot 85
MNOT ...t 86

MOR ...ooiiiiiiiiiiiciciieec 86, 189
MOVEG ...t 30, 180
MOVEFGDccoovviiiiiinicccene, 30, 180
MOVGEF ..ot 30, 180
MOVGEDcoooiniiiiieiniceeenn, 30, 180
MOVGS ..ot 30
MOVSG ..o 30

mp_disabled.. 52, 53, 85, 86, 87, 90, 91, 92,
94, 95, 96, 97, 99, 101, 103, 105, 107,
110, 112, 114, 116, 117, 119, 121, 124,
127, 129, 131, 132, 134, 136, 138, 140,
141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 153, 154, 155, 156, 190, 191,
194, 195, 198, 199, 201, 202

MPACKHcccvtveeiieiieeie e 135
MQADDHSS ..., 108, 195
MQADDHUScccoovvirene 108, 109, 195
MQCPXIS....cooiieeiieetee e 125
MQCPXIU...ccciieeiieeiie et 125
MQCPXRSovvieiieeieeciee e 125
MQCPXRU.....cccitieeeiieeeeiee e 125
MQLCLRHS........cooviiieieeeeee e 154
MQLMTHSoooooiiieiiieeeeeeeeeee e 155
MQMACHS............. 115, 116, 154, 155, 197
MQMACHUccociiiiiiieeeeeeeen 115, 197
MQMACXHS ..ot 121
MQMULHS........coceeieeirene. 111, 112, 197
MQMULHUccocviviieiieeieeeeenn 111, 197
MQMULXHSccvveeieeieeeeeeeeenn 113, 114
MQMULXHU.....ccoeeviieeiiiecieeeieeeiee s 113
MQSATHSooviieeeeeee e 95
MQSUBHSScccvvevieeeeeee e, 108, 195
MQSUBHUS.......c.cceveeeiiene 108, 109, 195
MQXMACHScooiiiiieeeeee e, 117
MQXMACXHS......coocieeeeieeeeeiee e, 119
MRDACC ...oiiiiieiieeeeeeeeee e 144
MRDACCG......cciiiieeiieeieeeiee e 144
MROTLI.....ooiiiiiiieeieeeeeee e 87
MROTRI.....oooiiiiieeeie et 87
MSATHS ..ot 93
MSATHU.....cooiieeiieeeee e 93
MSLLHTooiiiiiie e 91
MSRAHI ...t 91
MSRLHI ..ot 91
MSUBACCS.....cccie e 146
MSUBHSSooooviiieieeeeeeee, 98, 191
MSUBHUS.......ccoovieiieieeeien, 98, 99, 191
MEFAP...coeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeee s 53
multiple control transfer instruction ... 209
MUNPACKH........cccooiiiiriieeieeeieeeiee 135
MWCUT ... 88
MWOCUTT...cooiieeieeeeeeeeeee e 88

237

FRA400 Series Instruction Set Manual

MWTACC ..., 144
MWTACCG ... 144
MXOR oo 86
NANDCR ..., 62, 64
NANDNCR ...t 62, 63, 65
NOP...oveeeeiiiiin 47, 50, 72, 73, 74, 75
NORCR ..o 62, 64
NORNCR ..o, 62, 63, 65
NOT ..o, 11, 12, 162
NOTCR ..cooiiieeeieeeeeeeeee, 62, 63, 65
OR e 11, 12, 162, 164
ORCC coeiveeeeieeeeeeeeeeeeaa 11, 12
ORCR oo 62, 63, 64
ORI oo, 11, 12
ORICC..cccovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 11, 12
ORNCR ..o 62, 63, 65
packing flagcccovvvveeeieiiiieieeeeeeeee, 205
PCSRouoeeiiiieeeeeeeeeeeeee e, 45
privileged_instruction........................ 30, 45
PSR 45,76
register transfer instructions.......... 30, 180
RETT .o, 45
RETT Instructionccccceevvvevemeneennnnnnnnnnn. 45
SCAN .o 56
SCANT ... 56
SCUTSS ... 17
SDIV ..o 9
SDIVI ... 9
SETHI ... 54
SETHI instruction...............cccccceeinennn.... 54
SETLO ..o 54
SETLOS ... 54
SLASS ..o 13, 14
1 1 TSR 13, 14
SLLCC....cooiiiiiiiiiiiieeeee, 13, 14
SLLL oo 13,14
SLLICCccoovviiiiiiiiiiii 13, 14
SMASS ... 7
SMSSS .. 7
SMU .o 8
SMUL ... 5,6
SIMULCC....cooiieeeiieeeeeee e 5,6
SMULL ... 5
SMULICC ..ccooveeeeiiiiiiiiiiiiiii 5
SRA ..o 13, 14
SRACC .., 13, 14
SRAT ..ot 13, 14
SRAICC....ccoovvviiiiiiiii 13, 14
SRLicoooiiiiieeeeee e, 13, 14
SRLCC coovvviiiiiiiiii 13, 14
] 24) 13, 14
SRLICC..ccoiviviiiiiiiiiiii 13, 14

ST e 24,174
STB...ooooeeeeeeeeeeeeeeeeeee e 24,174
STBE ..., 26, 27, 176
STBET ... 26
STBEU ..o, 26, 176
1 N = PN 24
STBU ...t 24,174
STD e 24,174
SN 0) 26,27, 176
STDEFL....ooveeieeiieeeeeeeeeeeeeeeeeee e 26
STDFU oo 26, 177
STDI ... 24
STDU. ... 24, 175
STE ..o, 26, 27, 176
1 N 2 U 26
STEU ... 26, 177
1 = U 24
I N 26, 27, 176
I = 1 S 26
STHEU ..o, 26, 176
STHI ... 24
YN & 10 AT 24,174
ST .. 24
STU .o 24, 175
SUB ... 2,3
SUBCC vttt 2,3
SUBL ... 2,3
SUBICC....uvvveeeiiie e 2,3
SUBSS. ..o 2
SUBSS ... 3
SUBX ... 2,3
SUBXCC..uuiiiiiiiiieeee e 2,3
SUBXI ..o 2,3
SUBXICC ..vvvvvvviviiiiiiiieeee e 2,3
SWAP... oo 28,178
SWAaP INSEIUCEION ..vvvvvveeeeeeeeeeeiiireeeeenee. 28
SWAaP INSEIUCEIONS ...vvvvvveeeeeeeeeeeiiirreeeennen. 28
SWAPT ..o, 28
TBR oo 47, 50
TLBPR.....oooeeeeee e 82
trap_Instruction..........ccceevvvevevevvvnnnnns 47, 50
UDIV oo 9
UDIVI..ooiiieeeeeeee e 9
UMUL ..o 5,6
UMULCC .ottt 5,6
UMULL.....cooeeeeeeeeeeeeeeeeeeeeeeeeeee 5
UMULICC....ciiieiiiieeeeeeeeeeeeeeeeeen, 5,6
VLIW oo 205
VLIW instruction.........cccoeeevvvveeeeeeeeeennnns 206
XOR oo, 11, 12, 162, 164
XORCC .cooviiiiiiiiiiiiiiiiieeeeeeeeiae 11, 12
XORCR ..o 62, 63, 64

238

239

	Instruction Set Reference
	Explanation of each term
	Integer Instructions
	Add / Subtract (ADDSS and SUBSS are available for MB93405/MB93451.)
	Multiply
	Multiply and Add / Subtract (These instructions are available for MB93405/MB93451.)
	Multiply to IACC (This instruction is available for MB93405/MB93451.)
	Divide
	Logical Operations
	Shift (SLASS instruction is available for MB93405/MB93451.)
	Byte Compare Instruction
	Accumulator Cut Instruction (This instruction is available for MB93405/MB93451.)

	Load/Store Instructions
	Load GR
	Load FR
	Store GR
	Store FR

	Data transfer Instructions
	Swap
	Move

	Control transfer Instructions
	Integer Conditional Branch
	Floating-point / media Conditional Branch
	LCR Conditional Branch to LR
	Integer conditional Branches to LR
	Floating-point/Media Branches to LR
	Jump and Link
	Call
	Return from Trap
	Integer Conditional Trap
	Floating-point / media Conditional Trap
	Break
	Media Trap

	Constant Setting Instructions
	Set

	Scan instruction
	Scan

	Condition Code Operating Instructions
	Check for Integer Condition Code
	Check for Floating-point/Media Condition Code
	Condition Code Logical Operations

	Special Operation Instructions
	Instruction Cache Invalidate
	Data Cache Invalidate
	Data Cache Flush
	Instruction Cache Entry Invalidate Instruction
	Data Cache Entry Invalidate Instruction
	Data Cache Entry Flush Instruction
	Instruction Cache Pre-Load
	Data Cache Pre-Load
	Instruction Cache UnLock
	Data Cache UnLock
	Barrier
	Memory Barrier
	Load Real Address of Instruction (This instruction is available for MB93451.)
	Load Real Address of Data (This instruction is available for MB93451.)
	TLB Probe (This instruction is available for MB93451.)

	Media Instructions
	Media Nop Instruction (M -Type Instruction)
	Logical Operations
	Rotate
	Word Cut
	Average (Halfword Dual)
	Shift (Halfword Dual)
	Media Dual Rotate (Word Dual) Instruction
	Saturate (Halfword Dual)
	Media Quad Saturation Operation (Halfword Quad) Instruction
	Media Absolute Value Operation (Halfword Dual) Instruction
	Compare (Halfword Dual)
	Add / Subtract with Saturation (Halfword Dual)
	Multiply (Halfword Dual)
	Cross Multiply (Halfword Dual)
	Multiply and Accumulate (Halfword Dual)
	Multiply and Subtract (Halfword Dual)
	Add / Subtract with Saturation (Halfword Quad)
	Multiply (Halfword Quad)
	Cross Multiply (Halfword Quad)
	Multiply and Accumulate (Halfword Quad)
	Media ACC Cross Quad Multiply and Accumulation (Halfword Quad) Instruction)
	Media ACC Cross Quad Cross Multiply and Accumulation (Halfword Quad) Instruction
	Media Quad Cross Multiply and Accumulation (Halfword Quad) Instruction
	Complex Multiply (Halfword Dual)
	Complex Multiply (Halfword Quad)
	Cut
	Cut
	Media Dual Cut Instruction
	Expand (Halfword)
	Pack/Unpack (Halfword)
	Pack (Halfword Dual)
	Convert Byte to/from Halfword
	Media Bit Concatenate (Halfword Dual) Instruction
	Media Bit Concatenate (Word Dual) Instruction
	Clear Accumulator
	Read/Write Accumulator
	Media Accumulator Addition Instruction
	Media Accumulator Subtraction Instruction
	Media Dual Accumulator Addition Instruction
	Media Dual Accumulator Subtraction Instruction
	Media Accumulator Addition and Subtraction Instruction
	Media Dual Accumulator Addition and Subtraction Instruction
	Media SETHI/SETLO (Halfword) Instruction
	Media Quad Low Clear (Halfword Quad) Instruction (M-Type Instruction. This instruction is available for MB93451.)
	Media Quad Scope Limitation (Halfword Quad) Instruction (M-Type Instruction. This instruction is available for MB93451.)
	Media Quad Shift (Halfword Quad) instruction (M-Type instruction. These instructions are available for MB93451.)

	Conditional Integer Instructions
	Add / Subtract / Multiply / Divide
	Add, Subtract and Multiply with setting ICC / Divide unsigned integer
	Logical Operations
	Logical Operations with setting ICC
	Shift
	Shift with setting ICC

	Conditional Load/Store Instructions
	Load GR
	Load FR
	Store GR
	Store FR

	Conditional Data transfer Instructions
	Swap
	Move

	Conditional Control transfer Instructions
	Jump and Link

	Conditional Scan instruction
	Scan

	Conditional Condition code operating Instructions
	Check for Integer Condition code
	Check for Floating-point/Media Conditional code

	Conditional Media Instructions
	Logical Operations
	Add / Subtract with Saturation (Halfword Dual)
	Multiply and Accumulate (Halfword Dual)
	Add / Subtract with Saturation (Halfword Quad)
	Multiply / Multiply and Accumulate (Halfword Quad)
	Complex Multiply (Halfword Dual)
	Expand (Halfword)
	Convert Byte to/from Halfword

	VLIW instruction
	Construct ion of VLIW instruction
	Execution of VLIW instruction
	Read/Write operation in same VLIW instruction
	Execution of Control Transfer Instruction
	Execution of Control Transfer Instruction
	Execution of Multiple Control Transfer Instruction is One VLIW

	Appendix
	Instruction Code Table
	Instruction Matrix
	Primary Ope-code
	Secondary Opecode

	Instruction / Device No. Correspondence table
	IACC0 special rule

