To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

ENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but
there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire
or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)
placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or
mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customers in the selection of the Renesas Technology Corporation
product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any
other rights, belonging to Renesas Technology Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,
originating in the use of any product data, diagrams, charts, programs, agorithms, or circuit application examples contained in
these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents
information on products at the time of publication of these materials, and are subject to change by Renesas Technology
Corporation without notice due to product improvements or other reasons. It istherefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product
information before purchasing a product listed herein.

Theinformation described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other lossrising from these
inaccuracies or errors.

Please d so pay attention to information published by Renesas Technology Corporation by various means, including the
Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate al information as atotal system before making afinal decision on the applicability of
theinformation and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice or system that is used
under circumstancesin which human lifeis potentialy at stake. Please contact Renesas Technology Corporation or an
authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for
any specific purposes, such as gpparatus or systems for transportation, vehicular, medica, aerospace, nuclear, or undersea
repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these
materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under alicense
from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is
prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

RENESANS

-
»
9
q\
7
<
m
-
c
)

H8/300

Programming Manual

Renesas Electronlcs

WWww.renesas.co m

Cautions

1.

6]

. Products and product specifications may be subject to change without notice. Confirm that you

. Design your application so that the product is used within the ranges guaranteed by Hitachi par

. This product is not designed to be radiation resistant.
. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without

. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconduct

Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this docum
Hitachi bears no responsibility for problems that may arise with third party’s rights, including

intellectual property rights, in connection with use of the information contained in this document,

received the latest product standards or specifications before final design, purchase or use.

contact Hitachi's sales office before using the product in an application that demands especially

ent.

nave

. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,

high

quality and reliability or where its failure or malfunction may directly threaten human life or cause risk

of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportati
traffic, safety equipment or medical equipment for life support.

for maximum rating, operating supply voltage range, heat radiation characteristics, installation

conditions and other characteristics. Hitachi bears no responsibility for failure or damage when

on,

icularly

used

beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure

rates or failure modes in semiconductor devices and employ systemic measures such as fail-sa
that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

written approval from Hitachi.

products.

€s, SO

pr

Preface

The H8/300 CPU forms the common core of all chips in the H8/300 Series. Featuring a
Hitachi-original, high-speed, RISC-like architecture, it has eight 16-bit (or sixteen 8-bit)
general registers and a concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300 instructions. The descriptions apply |
all chips in the H8/300 Series. Assembly-language programmers should also read the sepe

H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

Y=o 1T o Tt R G L SR L.

1.1 General CPU ArCHITECIUIE.........uuiiiiiiiiiie et e e e e e e e e e

R {0 | 1 (=T £ T PP T PSPPI 5..

1.3 INSTIUCTIONS ..ottt e aeeeen s 8...

SecCtion 2. INSIIUCLION S@L. ..o oo 32
ADD (ADD DINArY) (DY) ...eiieiiiiiiie ittt 3
ADD (ADD DBINAry) (WOFQ)cceeeeeeeiiiieie ettt e e e e e e eeeas 3¢
ADDS (ADD With SigN @XENSION)eeiiiiiiiiiiiieieeeeee e e e e e e e e e e e e e 3
ADDX (ADD With @XIENG CAIMTY) ..uuttiiiiieiiiiiieiiieeee e e e e e e e e e e e e e e e 4(
AND (AND 1OGICAI) ...ttt e e 4
ANDC (AND CONLrol rEQISTEI) ...ceeiieieieeeeee ettt 4
BAND (Bit AND)....cetiiiiie ettt ettt e e e e ettt e e e e e e bbb e e e e e e eaaas 4
Bce (Branch conditionally)eeeeiiiieeeeee e £
BCLR (Bit CLEAR) ...ceiiiiiiiiiieeiee ettt e e e e e e r e e e e e e e eeas L
BIAND (Bit INVEIT AND) ..ccoiiiiiiieee ettt e e e e e e eeas vile
BILD (Bit INVEIT LOBD).....cciiiiiiiii ittt e e e e e e e e e e e s 5(
BIOR (BIt INVEIT OR) ...ttt ettt e e e e e e e e e e e e e e e nnn e 5
BIST (Bit INVEIT STOIE) ...ttt ettt e e e e e e e e e e e e e e s e £
BIXOR (Bit Invert @XCluSIVE OR)ccooiiiiiiiiii et 5!
BLD (BIt LOBD) ...ttt ettt e e e e e e e e e e e e e e 5
BNOT (BIt NOT) ..ottt ettt e e et et e e e e e e e e e e e e e e e e e nnnnnneeeeeees 5
BOR (BIt INCIUSIVE OR) .. e e e e e e e as 5
BSET (Bt SET)ittt ettt e e e e e e e e e e E
BSR (Branch to SUDROULING)ooiiiiiiiiiiii e
BST (BIt STOIE) ...ttt ettt e e e e e e e e e e e e e e e 2........ {
BT ST (Bl TOST) ceeiiiiiiiiiiee ettt e et e e e bbb r e e e e e e e e e aeeeeaaeaaaaans €
BXOR (Bit @XCIUSIVE OR) ...t e e e e e 6
CMP (COMPAIE) (DY) ...ttt ettt e e e e e e e e e e e e e e e e {
CMP (COMPAIE) (WOIT) ...ttt e e e et e e e e e e e e e e e e e e s e e annnnes €
DAA (Decimal AdJUSE AQ)coiieeiiiiieeeit et 6!
DAS (Decimal AdJUuSt SUDTIACE)uuiiiiiiiiiiiiiiieeee e e e 1
DEC (DECIEMENL) ...ttt ettt e e e e e e e e e e e e s bbb e e e et e e e e e aeeeeaaeaaeaaaannnes |
DIVXU (DIVide eXtend as UNSIgNed)ccccuuuumiiiiiiiiiiiiiiiieee e 7

EEPMOV (MOVe data to EEPROM).......oooiiiiiii e 7

INC (INCIEIMENT) .eeeiiiiiieeee ettt e e e e e e e e e e e e bbb e e e e et e e e e e e aaaeeaeeaaaaas .

JIMP (JUIMPY) ..ttt e e e e e e e e e e 79.........
JSR (JUMP 10 SUDROULINE) ...ttt
LDC (LoaD t0 CONLIOI FEGISTET) ...ttt e e e e e e e e 8
MOV(MOVE data) (DYLIE)....eeiiiiiieeeeiii ettt e e e e e e e eeas &
MOV(MOVE data) (WOI)cooeeiiiiiiiiiiitii ettt r e e e e e e e e e e eeeeas 8
MOV(MOVE data) (DYLIE)....eeiiiiiieeeeiii ettt e e e e e e e eeas &
MOV(MOVE data) (WOI)cooeeiiiiiiiiiiitii ettt r e e e e e e e e e e eeeeas 8
MOV(MOVE data) (DYLIE)....eiiiiiieeeieiiiieee ettt e e e e e e e e as &
MOV(MOVE data) (WOI)cooeeiiiiiiiiiiitii ettt r e e e e e e e e e e eeeeas 8
MOVFPE (MOVe data From Peripheral with E ClOCK).............ccooiiiiiiiiiiiiiieeeeee 8
MOVTPE (MOVe data To Peripheral with E ClOCK)oovviiiiiiii 8¢
MULXU (MULtiply eXtend as UNnSigned)cooooiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 9C
NEG (NEGAEE) ...ttt ettt ettt et et e e e e e e e e e e e e e e e s e abb bbb nne e e ee s
NOP (NO OPEIALION) ...ttt e e e ettt et et e e e e e e e e e e e e e e s s e s bbb b e e e e e eeees
NOT (NOT = logical COMPIEMENL)cooiiiii e 9
OR (iNCIUSIVE OR 1OGICAI) ...ttt ¢
ORC (inclusive OR CONLrol rEGISTET)ccoeeieieiiie ettt ¢
POP (POP TALA) ...ttt ettt e e e e e e e e e e e e e s e s e s annnnnnnnnnne
PUSH (PUSH AaEA) ...ttt e e e e e e e e e e e s
ROTL (ROTAE LETE) ..ttt e e e e e e e e e e e e e e e e e e ¢
ROTR (ROTALE RIGNT) ..ceeeiiiiiiieeeeie ettt e e e e e e e e e as !
ROTXL (ROTate with eXtend Carry Left)..........eeeiiiiiiiieeeeee e 1(
ROTXR (ROTate with eXtend carry RIght)cccouiiiiiiiiiiieee e 10
RTE (ReTUrn from EXCEPLION)cceiiiiiiiiiiieiii ittt 1
RTS (ReTUrN from SUBDIOULINE)uiiiiiiiiiiiiee e]
SHAL (SHift ArItRMETIC LETL) ...evvviiiiiiiiiiiiiieeee e 10
SHAR (SHift ArithmetiC RIGNT)........oooiiiiiii e 1C
SHLL (SHift LOGICAI LETL)eeeieeiiiiiiiiiee ettt 1C
SHLR (SHift Logical RIGNT) ... 1(
STC (STore from COoNtrol rEQISTEI)......uuiiiiiiiiiiieeee e 1
SUB (SUBTtract binary) (DY)eeeeeiiiiiiieeeeee ettt 1
SUB (SUBLract bDIiNAry) (WOI)........uueeeeeeeeeeiiieeaeeeeeee et e e e e e e e e e e e 1
SUBS (SUBtract with Sign @XtENSION)uuuuuiiiiiiiiiiiieeeeeee e 1
SUBX (SUBtract With @Xtend CArmy)cccccuuuuiiiiiiiiiieeeee e 1.

XOR (EXCIUSIVE OR 1OGICAI)uutteeiiieiiiiieieeeee e e e e 1

XORC (eXclusive OR CONLrol FEOISIEN).....ccuieeiiiiiiiie ittt 1
Appendix A. Operation Code Map......cccoviveriiiiiiiiiiiii 117
Appendix B. INStruction Set List.........ccooiiiiiiiiiiiii, 118

Appendix C. Number of EXecution States...........cccevvviiiniiiiiniiiii, 124

Section 1. CPU

This document is a reference manual for programming the H8/300, a high-speed central
processing unit with a Hitachi-original RISC-like architecture that is employed as a CPU cor
in a series of low-cost single-chip microcomputers intended for applications ranging from
smart cards to office and factory automation.

The H8/300 features a concise instruction set in which most frequently-used instructions are
two bytes long and execute in just two states (0.2us with a 10MHz system clock). Its gener
registers can be accessed as 16-bit word registers or 8-bit byte registers. The instruction s¢
includes both 8-bit and 16-bit instructions.

Section 1 of this manual summarizes the CPU architecture and instruction set. Section 2 gi
detailed descriptions of the instructions. Appendices give an operation code map, a comple
list of the instruction set, and tables for calculating instruction execution time. Programmers
should also refer to thdser's Manualof the chip being programmed for information on bus
cycles, interrupt service, 1/O ports, power-down modes, and on-chip facilities such as memc
and timers, and for a memory map.

1.1 General CPU Architecture
1.1.1 Features

Table 1-1 summarizes the CPU architecture. Figures 1-1 and 1-2 show how data are
stored in registers and memory.

Table 1-1. CPU Architecture

ltem Description

Address space 64K bytes, H'0000 to H'FFFF

Data types Bit, 4-bit (packed BCD), byte, word (2 bytes)

General registers Sixteen 8-bit general registers (ROH, ROL, ..., R7H, R7L),
also accessible as eight 16-bit general registers (RO to R7)

Control registers Program counter (PC)
Condition code register (CCR)

Addressing modes Rn Register direct
@RnN Register indirect
@(d:16, Rn) Register indirect with 16-bit displacement
@Rn+ Register indirect with post-increment
@-Rn Register indirect with pre-decrement
@aa:8, @aa:16 Absolute address (8 or 16 bits)
#xX:8, #xx:16 Immediate (8-, or 16-bit data)
@(d:8, PC) PC-relative (8-bit displacement)
@@aa:8 Memory indirect

Instruction length 2 or 4 bytes

Notes:

1. Word data stored in memory must be stored at an even address.
2. Instructions must be stored at even addresses.
3. General register R7 is used as the stack pointer (SP).

1.1.2 Data Structure

The H8/300 CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and 16

(word) data.

e Bit manipulation instructions operate on 1-bit data specified as bitn(n=0, 1, 2, ..., 7) in
byte operand.

* All operational instructions except ADDS and SUBS can operate on byte data.

* The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in

packed BCD form. Each 4-bit of the byte is treated as a decimal digit.
* The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 biis8 bits), and

DIVXU (16 bits + 8 bits) instructions operate on word data.

Data Structure in General Registers: Data of all the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format
7 0
1-Bit data RnH |7|6|5|4|3|2|1|O| Don't-care |
7 0
1-Bit data RnL | Don't-care |7|6|5|4|3|2|1|O|
7 0
Byte data RnH [, ..., Dontcare |
7I 1] 1] 1 IO
Byte data RnL | Donlt'Care |§| L1 1 11 Iél
15 0
Worddata Rn |§||||||I:||||||I;|
7 43 0
4-Bit BCD data RnH [upper digit | Lower digi [Don't-care |
7 43 0
4-Bit BCD data RnL | Don't-care |Up:per:dig:|it| L:OW{er d:ighl
RnH: Upper 8 bits of General Register
RnL: Lower 8 bits of General Register
MSB: Most Significant Bit
LSB: Least Significant Bit

Figure 1-1. Register Data Structure

Memory Data Structure: Figure 1-2 indicates the data structure in memory.

Word data stored in memory must always begin at an even address. In word access the lee
significant bit of the address is regarded as “0.” If an odd address is specified, no address ¢
occurs but the access is performed at the preceding even address. This rule affects MOV.W
instructions and branching instructions, and implies that only even addresses should be sto
in the vector table.

Data type Address Data format
T N
7 0

1-Bit data Address n 7|6|5| 4 42|1]0

Byte data Address n : : ' : : : :

Even address
Odd address

Word data

w0z

Even address
Odd address

Byte data (CCR) on stacl

worloor

Even address
Word data on stac} Odd address

CCR: Condition code register.
Note: Word data must begin at an even address.
*: Ignored when return.

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, twc
identical copies of the CCR are pushed to make a complete word. When they are returned,
lower byte is ignored.

1.1.3 Address Space
The H8/300 CPU supports a 64K-byte address space. The memory map differs depending

the particular chip in the H8/300 Series and its operating mode. Sdartheare Manuabf
the chip for details.

1.2 Registers

Figure 1-3 shows the register structure of the H8/300 CPU. There are sixteen 8-bit general
registers (ROH, ROL, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (R
to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit
condition code register (CCR).

7 07 0
ROH ROL
R1H R1L
R2H R2L
R3H R3L
R4H R4L
R5H R5L
R6H R6L
R7H (SP) R7L SP: Stack Pointer
15 0
PC | Program Counter

76543210
ccr | 1|ulH]uIn]Z]v]C] Condition Code Register
L Carry flag
—— Overflow flag
Zero flag

Negative flag
Half-carry flag

Interrupt mask bit
User bit

Figure 1-3. CPU Registers

1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When u
address registers, the general registers are accessed as 16-bit registers (RO to R7). When
as data registers, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to F
and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register len
is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts e
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7.
indicated in figure 1-4, R7 (SP) points to the top of the stack.

— ~— — A

Unused area

SP (R7) >

Stack area

Figure 1-4. Stack Pointer

1.2.2 Control Registers

The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction
the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significe
bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR):This 8-bit register indicates the internal status of the
CPU with an interrupt mask (1) bit and five flag bits: half-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

Bit 7 6 5 4 3 2 1 0

I U H U N Z \% C
Initial value 1 * * * * * * *
Read/Write R/W RW R/W R/W RW R/W R/W R/W

* Undetermined

Bit 7—Interrupt Mask Bit (I): When this bit is set to "1," all interrupts except NMI are
masked. This bit is set to "1" automatically by a reset and at the start of interrupt handling.

Bits 6 and 4—User Bits (U): These bits can be written and read by software for its own
purposes.

Bit 5—Half-Carry (H): This bit is used by add, subtract, and compare instructions to indica
a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3—Negative (N): This bit indicates the most significant bit (sign bit) of the result of an
instruction.

Bit 2—Zero (Z): This bit is set to "1" to indicate a zero result and cleared to "0" to indicate &
nonzero result.

Bit 1—Overflow (V): This bit is set to "1" when an arithmetic overflow occurs, and cleared
to "0" at other times.

Bit 0—Carry (C): This bit is used by:

* Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit

» Shift and rotate instructions, to store the value shifted out of the most or least significant
bit

« Bit manipulation instructions, as a bit accumulator

System control instructions can load and store the CCR, and perform logic operations to se
clear, or toggle selected bits.

1.2.3 Initial Register Values
When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (1) in the CCR is set to “1.” The other CCR bits and the general registers
not initialized.

In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack
pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

* The H8/300 has a concise set of 57 RISC-like instructions.

* Arithmetic and logic are performed as register-to-register operations, or with immediate
data.

» Allinstructions are 2 or 4 bytes long.

» Fast multiply/divide instructions; extensive bit manipulation instructions.

» Eight addressing modes.

1.3.1 Types of Instructions

Table 1-2 classifies the H8/300 instructions by type. Tables 1-3 to 1-10 briefly describe thei
functions. Section 2, Instruction Set, gives detailed descriptions.

Table 1-2. Instruction Classification

Function Instructions Types
Data transfer MOV, MOVFPE, MOVTPE, POP*x, PUSH 3
Arithmetic operation®\DD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, DIVXU, CMP, NEG
Logic operations AND, OR, XOR, NOT 4
Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8
ROTXR
Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST
Branch Bcc**, JIMP, BSR, JSR, RTS 5
System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8
Block data transfer EEPMOV 1
Total 57

* POP Rn is equivalent to MOV.W @SP+, Rn.
PUSH Rn is equivalent to MOV.W Rn, @-SP.
** Bcc is a conditional branch instruction in which cc represents a condition .

1.3.2 Instruction Functions

Tables 1-3 to 1-10 give brief descriptions of the instructions in each functional group.
The following notation is used.

Notation

Rd General register (destination)
Rs General register (source)
Rn General register

(EAd) Destination operand
(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#Imm Immediate data

#xx:3 3-Bit immediate data
#xx:8 8-Bit immediate data
#xx:16 16-Bit immediate data

op Operation field

disp Displacement

+ Addition

- Subtraction
x Multiplication

Division

AND logical

OR logical

Exclusive OR logical
Move

Not

O O

’

J

:3, :8, :16 3-bit, 8-bit, or 16-bit length.

Table 1-3. Data Transfer Instructions

Instruction Size* Function
MOV B/W (EAs) _ Rd, Rs_ (EAd)
Moves data between two general registers or between a general
register and memory, or moves immediate data to a general register.
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @—Rn, and
@Rn+ addressing modes are available for byte or word data. The
@aa:8 addressing mode is available for byte data only.
The @—R7 and @R7+ modes require word operands. Do not
specify byte size for these two modes.
MOVFPE B (EAs) _ Rd
Transfers data from memory to a general register in
synchronization with the E clock.
MOVTPE B Rs _ (EAd)
Transfers data from a general register to memory in
synchronization with the E clock.
POP W @SP+_ Rn
Pops a 16-bit general register from the stack.
Equivalent to MOV.W @SP+, Rn.
PUSH w Rn _ @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

* Size: Operand size
B: Byte
W: Word

10

Table 1-4. Arithmetic Instructions

Instruction Size* Function
ADD B/W Rd +Rs _ Rd, Rd+#mm_ Rd
SUB Performs addition or subtraction on data in two general registers,
or addition on immediate data and data in a general register.
Immediate data cannot be subtracted from data in a general register.
Word data can be added or subtracted only when both words are in
general registers.
ADDX B Rd+tRs+*C _ Rd, Rd+#mmz=C _ Rd
SUBX Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate data
and data in a general register.
INC B Rd+1 _ Rd
DEC Increments or decrements a general register.
ADDS w Rd+1 Rd,Rd+*2_Rd
SUBS Adds or subtracts immediate data to or from data in a general
register. The immediate data must be 1 or 2.
DAA B Rd decimal adjust_ Rd
DAS Decimal-adjusts (adjusts to packed BCD) an addition or
subtraction result in a general register by referring to the CCR.
MULXU B Rd 4Rs _ Rd
Performs 8-bit, 8-bit unsigned multiplication on data in two
general registers, providing a 16-bit result.
DIVXU B Rd+Rs _ Rd
Performs 16-bit + 8-bit unsigned division on data in two general
registers, providing an 8-bit quotient and 8-bit remainder.
CMP B/W Rd-Rs, Rd-#lmm
Compares data in a general register with data in another general
register or with immediate data. Word data can be compared only
between two general registers.
NEG B 0-Rd _ Rd

Obtains the two’s complement (arithmetic complement) of data in
a general register.

* Size: Operand size

B: Byte
W: Word

11

Table 1-5. Logic Operation Instructions

Instruction Size* Function
AND B RdgRs |, Rd, Rdp#mm _ Rd
Performs a logical AND operation on a general register and
another general register or immediate data.
OR B RdgRs | Rd, Rdg#mm _ Rd
Performs a logical OR operation on a general register and another
general register or immediate data.
XOR B Rd; Rs_ Rd, Rdj#mm _ Rd
Performs a logical exclusive OR operation on a general register
and another general register or immediate data.
NOT B -Rd _ Rd

Obtains the one’s complement (logical complement) of general
register contents.

* Size: Operand size

B: Byte

Table 1-6. Shift Instructions

Instruction Size* Function

SHAL B Rd shift | Rd

SHAR Performs an arithmetic shift operation on general register contents
SHLL B Rd shift _ Rd

SHLR Performs a logical shift operation on general register contents.
ROTL B Rd rotate | Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry, Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size

B: Byte

12

Table 1-7. Bit-Manipulation Instructions

Instruction Size*

Function

BSET B 1 _ (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to “1.” The bit
is specified by a bit number, given in 3-bit immediate data or the lowel
three bits of a general register.

BCLR B 0 _, (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory to “0.” The
bit is specified by a bit number, given in 3-bit immediate data or the
lower three bits of a general register.

BNOT B ~(<bit-No.> of <EAd>) _ (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory. The bit is
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BTST B - (<bit-No.> of <EAd>) _ Z

Tests a specified bit in a general register or memory and sets or
clears the Z flag accordingly. The bit is specified by a bit number,
given in 3-bit immediate data or the lower three bits of a general
register.

BAND B C (<bit-No.> of <EAd>) | C

ANDs the C flag with a specified bit in a general register or
memory.

BIAND B Cn [- (<bit-No.> of <EAd>)] _ C

ANDs the C flag with the inverse of a specified bit in a general
register or memory.

The bit number is specified by 3-bit immediate data.

BOR B C (<bit-No.> of <EAd>) | C
ORs the C flag with a specified bit in a general register or memory.
BIOR B Cn [- (<bit-No.> of <EAd>)] _ C

ORs the C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

13

Table 1-7. Bit-Manipulation Instructions (Cont.)

Instruction Size* Function

BXOR B C [(<bit-No.> of <EAd>) | C
Exclusive-ORs the C flag with a specified bit in a general register
or memaory.
BIXOR B C [~ (<bit-No.> of <EAd>)] | C

Exclusive-ORs the C flag with the inverse of a specified bit in a
general register or memory.
The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) | C
Copies a specified bit in a general register or memory to the C flag
BILD B - (<bit-No.> of <EAd>) _ C

Copies the inverse of a specified bit in a general register or
memory to the C flag.
The bit number is specified by 3-bit immediate data.

BST B C _ (<bit-No.> of <EAd>)
Copies the C flag to a specified bit in a general register or memory
BIST B -~ C _ (<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

* Size: Operand size
B: Byte

14

Table 1-8. Branching Instructions

Instruction Size Function
Bcc — Branches if condition cc is true.

Mnemonic cc Field Description Condition
BRA (BT) 0000 Always (True) Always

BRN (BF) 0001 Never (False) Never
BHI 0010 High CqZ=0
BLS 0011 Low or Same %Zzl

BCC (BHS) 0100 Carry Clear C=0
(High or Same)

BCS (BLO) 0101 Carry Set (Low) C=1
BNE 0110 Not Equal Z=0
BEQ 0111 Equal Z=1
BVC 1000 Overflow Clear V=0
BVS 1001 Overflow Set V=1
BPL 1010 Plus N=0
BMI 1011 Minus N=1
BGE 1100 Greater or Equal NV =0
BLT 1101 Less Than NV=1
BGT 1110 Greater Than 4Z(NpV)=0
BLE 1111 Lessor Equal A(NV)=1
JMP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified address.
JSR — Branches to a subroutine at a specified displacement from the current
address.
RTS — Returns from a subroutine.

15

Table 1-9. System Control Instructions

Instruction Size* Function

RTE — Returns from an exception-handling routine.
SLEEP — Causes a transition to the power-down state.
LDC B Rs _ CCR, #lmm_ CCR

Moves immediate data or general register contents to the condition
code register.

STC B CCR_ Rd

Copies the condition code register to a specified general register.
ANDC B CCR#lmm _ CCR

Logically ANDs the condition code register with immediate data.
ORC B CCR#lmm _ CCR

Logically ORs the condition code register with immediate data.
XORC B CCR #Imm _ CCR

Logically exclusive-ORs the condition code register with immediate

data.
NOP — PC+2_PC

Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-10. Block Data Transfer Instruction

Instruction Size Function
EEPMOV — if R4L # 0 then
repeat @R5+ @R6+
R4L-1_ R4L
until R4L=0
else next;

Moves a data block according to parameters set in general registers
R4L, R5, and R6.

RA4L: size of block (bytes)

R5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is
completed.

16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Care is required when these instructions are applied to registers with write-only
and to the 1/O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1: BCLR is executed to clear bit 0 in the port 4 data direction register (P4DDR)
under the following conditions.

P4 Input pin, Low, MOS pull-up transistor on

PZ: Input pin, High, MOS pull-up transistor off

P& — P4&. Output pins, Low

The intended purpose of this BCLR instruction is to switchfn output to input.

Before Execution of BCLR Instruction

P47 P4 P45 P# PB PR P4 Py

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off Oft Off

Execution of BCLR Instruction
BCLR #0 @P4DDR , clear bit 0 in data direction register

After Execution of BCLR Instruction
P47 P46 P45 P44 P43 P42 P41 P40

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High
DDR 1 1 1 1 1 1 1 0
DR 1 0 0 0 0 0 0 0
Pull-up Off Off Off Off Off Off Off Off

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PADDR. Since
PADDR is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit O of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to P4ADDR to complete the BCLR instruction.

As a result, PADDR is cleared to "0," making P4n input pin. In addition, PBDR and
P#4DDR are set to "1," making P4and P4 output pins.

Example 2: BSET is executed to set bit 0 in the port 4 data register (P4DR) under the
following conditions.

P4 Input pin, Low, MOS pull-up transistor on

P2: Input pin, High, MOS pull-up transistor off

P4 — P4: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level aoRALow to
High.

Before Execution of BSET Instruction

P47 P4 P45 P# PB PR P4 Py

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off Off Off

Execution of BSET Instruction

BSET #0 @PORT4 ; set bit O in port-4 data register

18

After Execution of BSET Instruction

P47 P4 P& P4 P4 P2 P4 P

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
DDR 0 0 1 1 1 1 1 1
DR 0 1 0 0 0 0 0 1
Pull-up Off On Off Off Off Off Off Off

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Sihce P/
and P4 are input pins, the CPU reads the level of these pins directly, not the value in the dat
register. It reads P4s Low ("0") and Pélas High ("1").

Since P&to P4 are output pins, for these pins the CPU reads the value in the data register
("0". The CPU therefore reads the value of port 4 as H'40, although the actual value in P4l
is H'80.

Next the CPU sets bit 0 of the read data to "1," changing the value to H'41.
Finally, the CPU writes this value (H'41) back to P4DR to complete the BSET instruction.

As a result, bit Pdlis set to "1," switching pin P40 High output. In addition, bits P4&nd
P% are both modified, changing the on/off settings of the MOS pull-up transistors of pins P4
and P4.

Programming Solution: The switching of the pull-ups for Pand P4 in example 2 can be
avoided by storing the same data in both the port-4 data register and in a work area in RAM
Bit manipulations are performed on the data in the work area, after which the result is move
into the port-4 data register. In the following example RAMO is a symbol for the user-select
address of the work area.

Before Execution of BSET Instruction
MOV.B #380 ROL ; write data (H'80) for data register

MOV.B ROL @RAMO ; write to DR work area (RAMO)
MOV.B ROL @PORT4 ; write to DR

19

P47 P4 P45 P# PB PR P4 Py

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off off Off
RAMO 1 0 0 0 0 0 0 0

Execution of BSET Instruction
BSET #0 @RAMO , set bit 0 in DR work area (RAMO)
After Execution of BSET Instruction

MOV.B @RAMO ROL ; get value in work area (RAMO)
MOV.B ROL @PORT4 ; write value to DR

P47 P4 P& P4 P4 P2 P4 P

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 1
Pull-up On Off Off Off Off Off Off Off
RAMO 1 0 0 0 0 0 0 1

20

1.3.3 Machine-Language Coding

15 8
| op | m | m
15 8
| op 'm | M
15 8
op m | [
disp.
15 8
| op m | n
15 8
| op | ' | abs.
15 8
op | n
abs.
15 8
[op | M | IMM
15 8
op n
IMM
15 8
op 'n
abs.
15 8
op n
Notation
op: Operation field
'm» 'n- Register field
disp: Displacement
abs.: Absolute address
IMM: Immediate data

MOV
Rm- Rn

Rn - @Rm, or @RmMm - Rn

@(d:16, Rm) - Rn, or
Rn - @(d:16, Rm)

@Rm+ - Rn,orRn - @-Rm

@aa:8 - Rn,orRn - @aa:8

@aa:16 - Rn, or
Rn - @aa:16

#xx:8 - Rn

#xx:16 - Rn

MOVFPE, MOVTPE

POP, PUSH

Figure 1-5. Machine-Language Coding of Data Transfer Instructions

21

15 8 7 0
| op 'm [rn | ADD, SUB, CMP (Rm)
ADDX, SUBX (Rm)
15 8 7 0
| op [rn | ADDS, SUBS, INC, DEC, DAA,
DAS, NEG, NOT
15 8 7 0
| op frm | rn | MULXU, DIVXU
15 8 7 0
| op | n | IMM | ADD, ADDX, SUBX, CMP
(#xx:8)
15 8 7 0
| op [n | AND, OR, XOR (Rm)
15 8 7 0
| op | n | IMM | AND, OR, XOR (#xx:8)
15 8 7 0
| op 'n | SHAL, SHAR, SHLL, SHLR,
ROTL, ROTR, ROTXL, ROTXR
Notation
op: Operation field
M'm» ' Register field
IMM: Immediate data

Figure 1-6. Machine-Language Coding of Arithmetic, Logic, and Shift Instruction Codes

22

15

op

15

op

15

op

op

15

op

op

15

op

op

15

op

op

15

op

15

op

op

o|o
o|o

15

op

op

o

Notation

op:

'ms e
abs.:
IMM:

Operation field
Register field
Absolute address
Immediate data

BSET, BCLR, BNOT, BTST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register direct (Rn)
Bit No.: register direct (Rm’

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: register direct (Rm’

Operand: absolute (@aa:8
Bit No.: immediate (#xx:3

Operand: absolute (@aa:8
Bit No.: register direct (Rm;

BAND, BOR, BXOR, BLD, BST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3

Operand: absolute (@aa:8
Bit No.: immediate (#xx:3

Figure 1-7. Machine-Language Coding of Bit Manipulation Instructions

15 8
op IMM 3!
15 8
op M 0 0 O
op Y 000
15 8
op abs.
op [MM [o o0 o
Notation
op: Operation field
'm n: Register field
abs.: Absolute address
IMM: Immediate data

BIAND, BIOR, BIXOR, BILD, BIS’
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3

Operand: absolute (@aa:8

Bit No.: immediate (#xx:3

Figure 1-7. Machine-Language Coding of Bit Manipulation Instructions (Cont.)

24

15 8 7 0

| op | cc | disp. | Bcc

15 8 7 0

| op | mwm [oo o (] IJMP (@Rm)

15 8 7 0
op JMP (@aa:16)
abs.

15 8 7 0

| op | abs. | JMP (@@aa:8)

15 8 7 0

| op | disp. | BSR

15 8 7 0

| op | ™ | o0oo0o0 0] JSR (@Rm)

15 8 7 0
op JSR (@aa:16)
abs.

15 8 7 0

| op | abs. | JSR (@@aa:8)

15 8 7 0

| op | RTS

Notation

op: Operation field

cc: Condition field

'm: Register field

disp.: Displacement

abs.: Absolute address

and to the I/O port registers.

Example 1: BCLR is executed to clear bit O in the port 4 data direction register (P4DDR)
under the following conditions.

P4 Input pin, Low, MOS pull-up transistor on

P4: Input pin, High, MOS pull-up transistor off

P& —P4&: Output pins, Low

The intended purpose of this BCLR instruction is to switchfn output to input.

25

15 8 7 0
| op RTE, SLEEP, NOP
15 8 7 0
| op n LDC, STC (Rn)
15 8 7 0
| op | IMM ANDC, ORC, XORC, LDC
(#xx:8)
Notation
op: Operation field
M Register field
IMM: Immediate data
Figure 1-9. Machine-Language Coding of System Control Instructions
15 8
op
op EEPMOV

Figure 1-10. Machine-Language Coding of Block Data Transfer Instruction

26

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-11 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Table 1-11. Addressing Modes

No. Mode Notation
(1) Register direct Rn
(2) Register indirect @RnN
(3) Register indirect with 16-bit displacement @(d:16, Rn)
4) Register indirect with post-increment @Rn+
Register indirect with pre-decrement @-Rn
(5) Absolute address (8 or 16 bits) @aa:8, @aa:16
(6) Immediate (3-, 8-, or 16-bit data) #xX:3, #xX:8, #xx:16
(7) PC-relative (8-bit displacement) @(d:8, PC)
(8) Memory indirect @@aa:8

(1) Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit genera
register containing the operand. In most cases the general register is accessed as an 8-bit
register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 Qjt8

bits), and DIVXU (16 bits + 8 bits) instructions have 16-bit operands.

(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general
register containing the address of the operand.

(3) Register Indirect with Displacement—@(d:16, Rn):This mode, which is used only in
MOV instructions, is similar to register indirect but the instruction has a second word (bytes
and 4) which is added to the contents of the specified general register to obtain the operanc
address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @—Rn:

* Register indirect with post-increment—@Rn+
The @Rn+ mode is used with MOV instructions that load register from memory.
It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is incremented after the operand is accessed. The size o
the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 fo

27

word operand. For a word operand, the original contents of the 16-bit general register
must be even.
* Register indirect with pre-decrement—@-Rn

The @—Rn mode is used with MOV instructions that store registers contents to memory.
It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is decremented before the operand is accessed. The size
the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 fc
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

(5) Absolute Address—@aa:8 or @aa:16The instruction specifies the absolute address of

the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FF.
The upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF

(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second
byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain
16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.
Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or
fourth byte of the instruction, specifying a bit number.

(7) PC-Relative—@(d:8, PC): This mode is used to generate branch addresses in the Bcc
and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is —126 to +128 bytes (—63 to +64 words) from the current addres

(8) Memory Indirect—@ @aa:8: This mode can be used by the JMP and JSR instructions.
The second byte of the instruction code specifies an 8-bit absolute address from H’0000 to
H’00FF (0 to 255). Note that the initial part of the area from H'0000 to H'OOFF contains the
exception vector table. See the hardware manual of the specific chip for details. The word
located at this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.\
instruction, the least significant bit is regarded as “0,” causing word access to be performed
the address preceding the specified address. See the memory data structure description in
section 1.1.2, Data Structure.

28

Calculation of Effective Address: Table 1-12 shows how the H8/300 calculates effective
addresses in each addressing mode.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,
ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MQV instruction uses all the addressing modes except program-counter relative (7) anc
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within
the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct
addressing (1) to identify the bit.

Effective Address Calculation
Table 1-12 explains how the effective address is calculated in each addressing mode.
Table 1-12, Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address
1 Register direct Rn. None
3 0 3 0
15 87 43 o0 [regm]| | regn]
OoP | reg m| reg ni

Operand are contained in
registers m and n

2 Register indirect @RnN

15 0

>| 16-bit register contents
15 76 |43 0 | 15 0

oP reg | >I

Operand is at address
indicated by register

29

Table 1-12, Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address
3 Register indirect with displacement
@(d:16, Rn)
15 0
16-bit register contents 15
+)—>

15 76 43 0 —

op reg 16-bit displacement Operand address is sl

, A of register contents ar
disp displacement

4 Register indirect with pre-decrement
@-Rn
15 0
\I H H
> 16-bit register contents 15

15 76| 43 0 A |_¢
j—)

OoP reg
|1 or 2*| Register is decremen
before operand acces

Register indirect with post-increment

@Rn+
15 0 15
15 26 | 13 o >I 16-bit register contents
op | re | | A Register is incremented
9 after operand access
* 1 for a byte operand,
2 for a word operand
5 Immediate #xx:8. None
15 87 0
Operand is 1-byte
IMM
Sl immediate data
Immediate #xx:16 None
15 0
oP Operand is 2-byte
IMM immediate data

30

Table 1-12, Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address
6 Absolute address None
@aa:8
15 87 0
H'FF
15 87 o | ; |
[op abs |

Operand address is in ran
from H'FFOO0 to H'FFFF
Absolute address

@aa:16

15 0 15 0
OoP

abs T
Arbitrary addres

7 PC-relative @(d:8, PC)

15 0
PC contents 15 0
S
15 87 o [3!9n extension dis; Destination address
oP | disp H
8 Memory indirect @ @aa:8
15 87 0
OP | abs i
15 87 y O
H'00 |
15 0 15 0

16-bit memory content: |—>

Destination address

reg, regm, regn: General register

op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

31

Section 2. Instruction Set

Section 2 gives full descriptions of all the H8/300 instructions, presenting them in alphabetic
order. Each instruction is explained in a table like the following:

ADD (ADD binary) (byte) ADD
<Operation> <Condition Code>

Rd + (EAs) _ Rd | H N 7 V C

— |— ¢t |—] [T T

<Assembly-Language Format>

ADD.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto "1" when there is a carry from bit
3; otherwise cleared to "0."

. Set to "1" when the result is negative;
otherwise cleared to "0."

Z. Setto "1" when the result is zero;
otherwise cleared to "0."

. Setto "1" if an overflow occurs;
otherwise cleared to "0."

C: Setto "1" if there is a carry from bit 7;

otherwise cleared to "0."

<Examples>
ADD.B ROH, R1H N
ADD.B #H'64, R2L

<Operand Size>
Byte vV

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and pla
the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

; Instruction code
Addressin
mode g Mnem. Operands :ls\ltg'té)sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B | #xx:8,Rd |8 rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2
| |

32

<Instruction Formats>
Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: Describes the instruction in symbolic notation. The following symbols are used.

Symbol Meaning

(EAS) Source operand

(EAd) Destination operand

Rs, Rd, Rn 8-bit or 16-bit general register (s—source; d—destination)
#xx:3, #xx:8, #xx:16 3-bit, 8-bit, or 16-bit immediate data
d:8, d:16 8-bit or 16-bit displacement

PC Program counter

SP Stack pointer

CCR Condition code register

Z Zero flag in CCR

C Carry flag in CCR

The result of the operation on the left is assigned to the operand on the

right (For compare instructions, the resulting condition code is
assigned.)
+ Addition

- Subtraction
% Multiplication

+ Division

AND logical

OR logical
Exclusive OR logical
Exchange

Not

O (OO

J

Assembly-Language

Format: The assembly- ADD. B <EAs>, Rd

I_I

language coding of the Mnemonic Size Source Destination
instruction. An example is

33

The operand size is indicated by the letter B (byte) or W (word). The size is indicated
explicitly in this manual, but for instructions that permit only one size, the size designation c:
be omitted in source-program coding.

The abbreviation EAs or EAd (effective address of source or destination) is used for operan
that permit more than one addressing mode.

Examples: Examples of the assembly-language coding of the instruction are given.

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because
these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in the CCR is indicated.
The following notation is used:

Symbol Meaning
+ The flag is altered according to the result of the instruction.

0 Theflag is cleared to "0."
— The flag is not changed.
* Undetermined; the flag is left in an unpredictable state.

Description: A detailed explanation is given of the action of the instruction.
Instruction Formats: Each possible format of the instruction is shown explicitly, indicating
the addressing mode, the object code, and the number of states required for execution whe

instruction and its operands are located in on-chip memory. The following symbols are uset

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)
abs. An absolute address (8 bits or 16 bits)
disp. Displacement (8 bits or 16 bits)

rs, rd, m General register number (3 bits or 4 bits) The s, d, and n correspond to the lett
in the operand notation

34

16-bit general registers are indicated by a 3spitiror mvalue. 8-bit registers are indicated

by a 4-bit &, rd, or mvalue. Address registers used in the @Rn, @(disp:16, Rn), @Rn+, and
@-Rn addressing modes are always 16-bit registers. Data registers are 8-bit or 16-bit regi:
depending on the size of the operand. For 8-bit registers, the lower three $it¢; of m

give the register number. The most significant bit is "1" if the lower byte of the register is
used, or "0" if the upper byte is used. Registers are thus indicated as follows:

16-Bit register 8-Bit registers
rs, rd, orrn rs, rd, orrn Register
Register 0000 ROH
000 RO 0001 R1H
001 R1 : X
: : 0111 R7H
111 R7 1000 ROL
1001 R1L
1111 R7L

Bit Data Access: Bit data are accessed as the n-th bit of a byte operand in a general registe
memory. The bit number is given by 3-bit immediate data, or by a value in a general registe
When a bit number is specified in a general register, only the lower three bits of the register
significant. Two examples are shown below.

BSET R1L, R2H

R1L | don't care ‘O 1 1|

—— Bit number = 3

R2H |01100101|

Bit 3 is set to "1"

35

BLD #5, @H'FF02:8

/Tt No.5
H'FFO02 1010011
/'\/

Loaded to C (carry >|C
flag in CCR ’

/

The addressing mode and operand size apply to the register or memory byte containing the

Number of States Required for Execution: The number of states indicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RA
If the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See Appendix C.

36

ADD (ADD binary) (byte) ADD

<Operation> <Condition Code>
Rd + (EAs) _ Rd

I H N Z V C
— |— [T | —]T | T ||

<Assembly-Language Format>

ADD.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto "1" when there is a carry from bit
3; otherwise cleared to "0."

. Set to "1" when the result is negative;
otherwise cleared to "0."

<Examples>
ADD.B ROH, R1H N
ADD.B #H'64, R2L

Z: Setto "1" when the result is zero;
<Operand Size>

Byte vV

otherwise cleared to "0."
. Setto "1" if an overflow occurs;
otherwise cleared to "0."
C: Setto "1" if there is a carry from bit 7;
otherwise cleared to "0."

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and pla
the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Addressin Instruction code
mode g Mnem. Operands s'?!cg't:sf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B | #xx:8,Rd |8 Ird IMM 2
Register direct | ADD.B Rs, Rd 0 8 rs | rd 2
| |

37

ADD (ADD binary) (word) ADD

<Operation> <Condition Code>
Rd+Rs _ Rd | H N Z V C

— |— ¢t | —T] |T |

<Assembly-Language Format>

ADD.W Rs, Rd

I: Previous value remains unchanged.
<Examples> H: Setto "1 When there |szic?rry from bit
ADD.W RO, R1 11; otherwise cleared to "0.

N: Setto "1" when the result is negative;
otherwise cleared to "0."

<Operand Size>

Word Z: Setto "1" when the result is zero;

otherwise cleared to "0."

V. Setto "1"if an overflow occurs;
otherwise cleared to "0."

C. Setto "1"if there is a carry from bit 15;
otherwise cleared to "0."

<Description>
This instruction adds word data in two general registers and places the result in the second
general register.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands sth'tgs]:
1stbyte | 2nd byte | 3rd byte | 4th byte
0 T T 1
Register direct | ADD.W | Rs, Rd 0 19 [0rs0ird 2
L

38

ADDS (ADD with Sign extension) ADDS

<Operation> <Condition Code>

Rd+1 R

d - Rd | H N Z V C
Rd+2_Rd

<Assembly-Language Format>))
Previous value remains unchanged.

ADDS #1, Rd " _ : h
ADDS #2. Rd H: Prev!ous value rema?ns unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
<Examples> . .
V. Previous value remains unchanged.
ADDS #1, R4 . ,
C: Previous value remains unchanged.
ADDS #2, R5

<Operand Size>
Word

<Description>
This instruction adds the immediate value 1 or 2 to word data in a general register. Differing
from the ADD instruction, it does not affect the condition code flags.

<Instruction Formats>

: Instruction code
Addressin
mode g Mnem. Operands ’S\Itg'té’sf
1st byte | 2nd byte | 3rd byte | 4th byte
] T 1
Register direct | ADDS #1, Rd 0 i B| 0 0rd 2
! 1
Register direct | ADDS #2, Rd 0O B| 8 0rd 2

Note: This instruction cannot access byte size data.

39

ADDX (ADD with eXtend carry) ADDX

<Operation> <Condition Code>
Rd + (EAs) + C_ Rd | H N Z V C

— |—|t | =] T][

<Assembly-Language Format>

ADDX <EAs>, Rd
I: Previous value remains unchanged.

H: Setto "1" if there is a carry from bit 3;

<Examples>
ADDX ROL. R1L otherwise cleared to "0."
ADDX #H'0A. R2H N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Setto "1" when the result is zero;
otherwise cleared to "0."

V. Set to "1" if an overflow occurs;
otherwise cleared to "0."

C. Setto "1"if there is a carry from bit 7,
otherwise cleared to "0."

<Operand Size>
Byte

<Description>

This instruction adds the source operand and carry flag to the contents of an 8-bit general
register and places the result in the 8-bit general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Addressin Instruction code
mode g Mnem. Operands slj![g't:sf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate ADDX #xx:8,Rd |9 Ird IMM 2
Register direct | ADDX Rs, Rd 0 |E rs | rd 2

40

AND (AND logical) AND

<Operation> <Condition Code>
Rd;(EAs) | Rd | H N 7z V C

— ===t []O|—

<Assembly-Language Format>
AND <EAs>, Rd
I: Previous value remains unchanged.

<Examples> H: Previous value remains unchanged.
AND R6H, R6L N: Setto "1" when the result is negative;
AND #H'FD, ROH otherwise cleared to "0."

Z: Setto "1" when the result is zero;
<Operand Size> otherwise cleared to "0."
Byte V: Cleared to "0."

C: Previous value remains unchanged.

<Description>

This instruction ANDs the source operand with the contents of an 8-bit general register and
places the result in the 8-bit general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

. Instruction code
Addressin
mode g Mnem. Operands Sth'thf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate AND #xx:8,Rd | E | rd IMM 2
Register direct | AND Rs, Rd 1 16 rs | rd 2

41

ANDC (AND Control register) ANDC

<Operation> <Condition Code>
CCR#IMM _ CCR

| H N Z V C
U O I

<Assembly-Language Format>
ANDC #xx:8, CCR

ANDed with bit 7 of the immediate data.
ANDed with bit 5 of the immediate data.
ANDed with bit 3 of the immediate data.
ANDed with bit 2 of the immediate data.
ANDed with bit 1 of the immediate data.
ANDed with bit 0 of the immediate data.

<Examples>
ANDC #H'7F, CCR

<Operand Size>
Byte

OsNzI ™

<Description>

This instruction ANDs the condition code register (CCR) with immediate data and places th:
result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, includin
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands Sth'thf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate ANDC #xx:8,CCR| 0 |6 IMM 2

42

BAND (Bit AND) BAND

<Operation> <Condition Code>

— | —[——|———]

<Assembly-Language Format>
BAND #xx:3, <EAd>
Previous value remains unchanged.

<Examples> Previous value remains unchanged.
BAND #0, R1L Previous value remains unchanged.
BAND #4, @R3 Previous value remains unchanged.

Previous value remains unchanged.
ANDed with the specified bit.

BAND #7, @H'FFEO:8

OsNZI™

<Operand Size>
Byte

<Description>

This instruction ANDs a specified bit with the carry flag and places the result in the carry fla
The specified bit can be located in a general register or memory. The bit number is specifie
by 3-bit immediate data. The operation is shown schematically below.

Bit No. 7 X377 0
1 1 1

<EAd>*- Byte data in register or memc |
[efT—[e

The value of the specified bit is not changed.

<Instruction Formats>

gc:)c:jreessmg mnem. | Operands Instruction code ’S\‘tg-tg;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BAND |#xx:3, Rd 7 i 6 OiIMMi rd 2
Register indirect | BAND |#xx:3,@Rd 7 i C Oird i 0 7 % 6 OilMMi 0 6
Absolute address| BAND |#xx:3,@aa:8 | 7 i E abs 7 % 6 OilMMi 0 6

* Register direct, register indirect, or absolute addressing.

43

Bcc (Branch conditionally) Bcc

<Operation> <Condition Code>

If cc then | Y N Z V C
PC+d:8_ PC

else next;

<Assembly-Language Format>
Bcc d:8
‘T=condition code field
(For mnemonics, see the table on the
next page.)

<Examples>
BHI H'42
BEQ H'-7E

<Operand Size>

Qs Nz~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

44

Bcc (Branch conditionally) Bcc
<Description>

If the specified condition is false, this instruction does nothing; the next instruction is execut
If the specified condition is true, a signed displacement is added to the address of the next
instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination addr
can be located in the range —126 to +128 bytes from the address of the Bcc instruction.
The available conditions and their mnemonics are given below.

Mnemonic cc Field Description Condition Meaning
BRA (BT) 0000 Always (True) Always true
BRN (BF) 0001 Never (False) Never
BHI 0010 High CqZ=0 X>Y (Unsigned)
BLS 0011 Low or Same GZ=1 X<Y (Unsigned)
BCC (BHS) 0100 Carry Clear C=0 XY (Unsigned)

(High or Same)
BCS(BLO) 0101 Carry Set (LOw), C=1 X <Y (Unsigned
BNE 0110 Not Equal Z=0 XY (Signed or
unsigned)
BEQ 0111 EQual Z=1 X =Y (Signed or
unsigned)

BVC 1000 oVerflow Clear V=0
BVS 1001 oVerflow Set V=1
BPL 1010 PLus N=0
BMI 1011 Minus N=1
BGE 1100 Greater or Equal NV =0 X=Y (Signed)
BLT 1101 Less Than NV=1 X <Y (Signed)
BGT 1110 Greater Than A(NgV)=0 | X>Y (Signed)
BLE 1111 Less or Equal A(NgV)=1 | X<Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

45

Bcc (Branch conditionally) Bcc

<Instruction Formats>
Adressing Instruction code No . of
mode Mnem. | Operands 1st byte 2nd byte 3rd byte 4th byte states
PC relative BRA (BT) d:8 4 0 disp. 4
PC relative BRN (BF) d:8 4 1 disp. 4
PC relative BHI d:8 4 2 disp. 4
PC relative BLS d:8 4 3 disp. 4
PC relative BCC (BHS) d:8 4 4 disp. 4
PC relative BCS (BLO) d:8 4 5 disp. 4
PC relative BNE d:8 4 6 disp. 4
PC relative BEQ d:8 4 7 disp. 4
PC relative BVvVC d:8 4 8 disp. 4
PC relative BVS d:8 4 9 disp. 4
PC relative BPL d:8 4 A disp. 4
PC relative BMI d:8 4 B disp. 4
PC relative BGE d:8 4 Cc disp. 4
PC relative BLT d:8 4 D disp. 4
PC relative BGT d:8 4 E disp. 4
PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

46

BCLR (Bit CLeaR) BCLR
<Operation> <Condition Code>
0 (<Bit No.> of <EAd>)

- I H N Z V C

<Assembly-Language Format>

BCLR #xx:3, <EAd>
BCLR Rn, <EAd>

<Examples>

BCLR #0, ROL

BCLR #1, @R5

BCLR R6L, @H'FFCO:8

<Operand Size>
Byte

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O<SNzZzI~

Previous value remains unchanged.

<Description>

This instruction clears a specified bit in the destination operand to "0." The bit number can
specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altere:

<EAd>*- Byte data in register or mema

#xx:3 or Rn

AR

[Y

|
0

*Register direct, register indirect, or absolute addressing.

47

BCLR (Bit CLeaR) BCLR
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BCLR |#xx:3, Rd 7 i 2 Oi IMM% rd 2
Register indirect | BCLR |#xx:3,@Rd | 7 i D Oi rdi 0 7 % 2 Oi IMM% 0 8
Absolute address| BCLR |#xx:3,@aa8 | 7 i F abs 7 i 2 O% IMM% 0 8
Register direct BCLR |Rn, Rd 6 i 2 rn i rd 2
Register indirect | BCLR |Rn, @Rd 7 i D Oi rd i 0 6 i 2 m i 0 8
Absolute address| BCLR |Rn, @aa:8 7 i F abs 6 i 2 n i 0 8

48

BIAND (Bit Invert AND)

BIAND

<Operation>

C]~ (<BitNo.> of <EAd>)] _ C

<Condition Code>

I H N Z V C

<Assembly-Language Format>
BIAND #xx:3, <EAd>

— | == ===]=]:

Previous value remains unchanged.
Previous value remains unchanged.

<Examples>
BIAND #0, R1H

BIAND #2, @R5

BIAND #4, @H'FFDE:8

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
ANDed with the inverse of the specified
bit.

OsNzI ™

<Operand Size>

Byte

<Description>

This instruction ANDs the inverse of a specified bit with the carry flag and places the result i
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

<EAd>*- Byte data in register or memc —

Bit No. 7 X377 0

I I 1 \ I I

I I e 7
/4

Invert

O30

The value of the specified bit is not changed.

<Instruction Formats>

gotljzreessmg Mnem. | Operands Instruction code Sth.teog
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIAND | #xx:3, Rd 7 i 6 1§IMM§ rd 2
Register indirect | BIAND |#xx:3,@Rd 7 i C 0% rd i 0 7 % 6 liIMMi 0 6
Absolute address| BIAND |#xx:3,@aa:8 | 7 i E abs 7 i 6 1§IMM§ 0 6

*Register direct, register indirect, or absolute addressing.

49

BILD (Bit Invert LoaD) BILD

<Operation> <Condition Code>

— | —[—=——[—[—]:

<Assembly-Language Format>

BILD #xx:3, <EAd>
Previous value remains unchanged.

Previous value remains unchanged.
<Examples> ! !
BILD #3, R4L Erev?ous va:ue rema!ns uncEangej.
BILD #5, @R5 revious value remains unchanged.

Previous value remains unchanged.

O<SNZzZzIT~

BILD #7, @H'FFA2:8 _ _ N
Loaded with the inverse of the specified

bit.

<Operand Size>
Byte

<Description>

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can |
located in a general register or memory. The bit number is specified by 3-bit immediate dat
The operation is shown schematically below.

Bit No 7 #xx:B—J 0
I 1 1 I I
<EAd>*- Byte data in register or memc

P - (-

| | |
41ver1—> C

The value of the specified bit is not changed.

<Instruction Formats>

ﬁ\]%%reessmg Mnem. | Operands Instruction code Sth;[eosf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BILD |#xx:3, Rd 7 i 7 1§IMM§ rd 2
Register indirect | BILD |#xx:3,@Rd 7 i C Oi rd i 0 7 % 7 lilMM% 0 6
Absolute address| BILD |#xx:3,@aa:8 | 7 i E abs 7 i 7 liIMMi 0 6

*Register direct, register indirect, or absolute addressing.

50

BIOR (Bit Invert OR) BIOR

<Operation> <Condition Code>

— | —[——|———]

<Assembly-Language Format>

BIOR #xx:3, <EAd> . .
Previous value remains unchanged.

Previous value remains unchanged.
<Examples> ! | | ’ ‘
BIOR #6, R1H Erev!ous value remafns unchanged.

r remains unchanged.
BIOR #3, @R2 evious value remains unchange

Previous value remains unchanged.
ORed with the inverse of the specified

BIOR #0, @H'FFFO0:8

s Nz~

<Operand Size> bit.

Byte

<Description>

This instruction ORs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 X3 0

<EAd>*- Byte data in register or memc o

V
Invert

[P[Y-[]e

The value of the specified bit is not changed.

<Instruction Formats>

ﬁ;%%fssmg Mnem. | Operands Instruction code ’S\'tg't:g
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIOR |#xx:3, Rd 7 i 4 11 IMM% rd 2
Register indirect | BIOR | #xx:3,@Rd | 7 c 0 rd 0 | 7 4 1§|MM§ 0 6
Absolute address| BIOR |#xx:3,@aa:8 | 7 i E abs 7 i 4 l%IMMi 0 6

*Register direct, register indirect, or absolute addressing.

51

BIST (Bit Invert STore) BIST

<Operation> <Condition Code>
- C _ (<Bit No.> of <EAd>) | H N 7 V C

<Assembly-Language Format>

BIST #xx:3, <EAd>
Previous value remains unchanged.

<Examples> Previous value remains unchanged.
BIST #0, ROL Previous value remains unchanged.
BIST #6, @R3 Previous value remains unchanged.

BIST #7, @H'FFBB:8 Previous value remains unchanged.

O<s Nz I~

Previous value remains unchanged.

<Operand Size>
Byte

<Description>

This instruction stores the inverse of the carry flag to a specified bit location in a general
register or memory. The bit number is specified by 3-bit immediate data. The operation is
shown schematically below.

BitNo. 7373 0
I I I
<EAd>*- Byte data in register or memc \

| | |
C:|—> Inverk

The values of the unspecified bits are not changed.

<|nstruction Formats>

gizfssmg vnem. | Operands Instruction code gltg'tg
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIST |#xx:3,Rd 6 i 7 1% IMM% rd 2
Register indirect | BIST |#xx:3,@Rd 7 i D 0% rd i 0 6 % 7 liIMMi 0 8
Absolute address| BIST |#xx:3,@aa:8 | 7 i F abs 6 i 7 1§IMM§ 0 8

* Register direct, register indirect, or absolute addressing.

52

BIXOR (Bit Invert eXclusive OR) BIXOR

<Operation> <Condition Code>

— | — ===

<Assembly-Language Format>

BIXOR #xx:3, <EAd> Previous value remains unchanged.

Previous value remains unchanged.
<Examples> Previous value remains unchanged.
BIXOR #1. R4L Previous value remains unchanged.

Previous value remains unchanged.
Exclusive-ORed with the inverse of the
specified bit.

BIXOR #2, @R5
BIXOR #3, @H'FF60:8

Os Nz I~

<Operand Size>
Byte

<Description>

This instruction exclusive-ORs the inverse of a specified bitwith the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. Tt
bit number is specified by 3-bit immediate data. The operation is shown schematically belo

BitNo. 7 X3 0
1 1 1

<EAd>*- Byte data in register or memc

¥
nvert

D00

The value of the specified bit is not changed.

<Instruction Formats>

giﬂreessmg Mnem. | Operands Instruction code Sth;[eosf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIXOR |#xx:3, Rd 7 i 5 1% IMME rd 2
Register indirect | BIXOR |#xx:3,@Rd | 7 i C 0% rd i 0 7 % 5 lilMM% 0 6
Absolute address| BIXOR |#xx:3,@aa:8 | 7 i E abs 7 i 5 1§IMM§ 0 6

* Register direct, register indirect, or absolute addressing.

53

BLD (Bit LoaD) BLD

<Operation> <Condition Code>
(<Bit No.> of <EAd>) _ C I H N Z V C

— | — ===

<Assembly-Language Format>

BLD #xx:3, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
BLD #1, R3H Z:. Previous value remains unchanged.
BLD #2, @R2 V: Previous value remains unchanged.

C:

BLD #4, @H'FF90:8 Loaded with the specified bit.

<Operand Size>
Byte

<Description>

This instruction loads a specified bit into the carry flag. The specified bit can be located in &
general register or memory. The bit number is specified by 3-bit immediate data. The
operation is shown schematically below.

BitNo. 7 X377 0
1 1 1

<EAd>*- Byte data in register or memc L L

- []e

The value of the specified bit is not changed.

<Instruction Formats>

gc:)c:jreessmg mnem. | Operands Instruction code ,S\ltg.tg;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BLD #xx:3, Rd 7 i 7 0% IMM% rd 2
Register indirect | BLD #xx:3,@Rd 7 i C 0% rd i 0 7 % 7 0% IMM% 0 6
Absolute address| BLD #xx:3,@aa:8 | 7 i E abs 7 i 7 0% IMMi 0 6

* Register direct, register indirect, or absolute addressing.

54

BNOT (Bit NOT) BNOT
<Operation> <Condition Code>

- (<Bit No.> of <EAd>) | H N Z V C
_, (<Bit No.> of <EAd>)

<Assembly-Language Format>

Previous value remains unchanged.
BNOT #xx:3, <EAd>

K

H: Previous value remains unchanged.
BNOT Rn, <EAd> . .

N: Previous value remains unchanged.

Z: Previous value remains unchanged.
<Examples> V. Previous value remains unchanged.
BNOT #7, R1H C:

Previous value remains unchanged.
BNOT R1L, @R6

BNOT #3, @H'FFB4:8

<Operand Size>
Byte

<Description>

This instruction inverts a specified bit in a general register or memory location. The bit
number is specified by 3-bit immediate data, or by the lower three-bits of a general register.
The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 _i 0

<EAd>*- Byte data in register or memc

L1 AN 11

4Invertx

The bit is not tested before being inverted. The condition code flags are not altered.

*Register direct, register indirect, or absolute addressing.

55

BNOT (Bit NOT) BNOT
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BNOT |#xx:3, Rd 7 i 1 Oi IMM% rd 2
Register indirect | BNOT |#xx:3,@Rd 7 i D Oi rd i 0 7 % 1 O% IMM% 0 8
Absolute address| BNOT |#xx:3,@aa:8 | 7 i F abs 7 i 1 Oi IMM% 0 8
Register direct BNOT |Rn, Rd 6 i 1 r i rd 2
Register indirect | BNOT |Rn, @Rd 7 i D Oi rd i 0 6 % 1 m % 0 8
Absolute address| BNOT |Rn, @aa:8 7 i F abs 6 % 1 m % 0 8

56

BOR (Bit inclusive OR) BOR
<Operation> <Condition Code>
C H(<Bit No.> of <EAd>) C

0(<Bl)~ | H N Z V C

<Assembly-Language Format>
BOR #xx:3, <EAd>

<Examples>

BOR #5, R2H

BOR #4, @R1

BOR #5, @H'FFB6:8

<Operand Size>
Byte

O<SNzI~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
ORed with the specified bit.

<Description>

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specifie
by 3-bit immediate data. The operation is shown schematically below.

Bit No.
<EAd>*- Byte data in register or memc

The value of the specified bit is not changed.

7 #xx:BW

*Register direct, register indirect, or absolute

57

addressing.

BOR (Bit inclusive OR) BOR
<Instruction Formats>
; Instruction code
Addressin
mode g Mnem. | Operands L\I;[g{eog
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct | BOR |#xx:3,Rd |7 14 [0/IMM rd 2
Register indirect | BOR |#xx:3,@Rd | 7 i C 03 rd i 0 7 i 4 OiIMMi 0 6
Absolute address| BOR |#xx:3,@aai8 | 7 | E abs 7 14]0IMM 0 6

58

BSET (Bit SET) BSET
<Operation> <Condition Code>
1 _ (<Bit No.> of <EAd>) | H N Z V C

<Assembly-Language Format>
BSET #xx:3,<EAd>
BSET Rn,<EAd>

<Examples>

BSET #3, R2L

BSET R2H, @R6
BSET #7, @H'FFE4:8

<Operand Size>
Byte

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

OsN=zI ™

<Description>

This instruction sets a specified bit in the destination operand to "1." The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altere:

<EAd>*- Byte data in register or memc

#xx:3 or Rn

A

I I S

!
1

*Register direct, register indirect, or absolute addressing.

59

BSET (Bit SET) BSET
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BSET |#xx:3, Rd 7 i 0 0% IMM% rd 2
Register indirect | BSET |#xx:3,@Rd 7 i D Oi rd i 0 7 % 0 OilMMi 0 8
Absolute address| BSET |#xx:3,@aa:8 | 7 i F abs 7 i 0 OilMMi 0 8
Register direct BSET |Rn,Rd 6 i 0 m i rd 2
Register indirect | BSET |Rn, @Rd 7 i D Oi rd i 0 6 i 0 m % 0 8
Absolute address| BSET |Rn, @aa:8 7 i F abs 6 i 0 m % 0 8

60

BSR (Branch to SubRoutine) BSR
<Operation> <Condition Code>

PC_, @-SP | H N Z V C

PC+d:8_ PC T T T T T T

<Assembly-Language Format>
BSR d:8

<Examples>
BSR H'76

<Operand Size>

OsN=zI ™

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction pushes the program counter (PC) value onto the stack, then adds a specifie
displacement to the program counter value and branches to the resulting address. The pro

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching rang

—126 to +128 bytes from the address of the BSR instruction.

<Instruction Formats>

: Instruction code
Addressin
mode g Mnem. Operands gltg'tg
1st byte | 2nd byte | 3rd byte | 4th byte
PC-relative BSR d:8 5 |5 disp 6

61

BST (Bit STore) BST

<Operation> <Condition Code>
C _ (<Bit No.> of <EAd>) | H N Z V C

<Assembly-Language Format>
BST #xx:3, <EAd>
Previous value remains unchanged.

I
<Examples> H: Previous value remains unchanged.
BST #7, R4L N: Previous value remains unchanged.
BST #2, @R3 Z:. Previous value remains unchanged.
BST #6, @H'FFD1:8 V. Previous value remains unchanged.
C: Previous value remains unchanged.
<Operand Size>
Byte
<Description>

This instruction stores the carry flag to a specified flag location in a general register or
memory. The bit number is specified by 3-bit immediate data. The operation is shown
schematically below.

Bit No.
<EAd>*- Byte data in register or memc

7 #xx:3—¢ 0

L1 1 AL 1 1

ol |——

<Instruction Formats>

g((j)(ér;ssmg Mnem. | Operands Instruction code ’S\‘tg;[é’sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BST #xx:3, Rd 6 i 7 Oi IMM% rd 2
Register indirect | BST #xx:3,@Rd 7 % D 0% rd i 0 6 % 7 OilMMi 0 8
Absolute address| BST #xx:3,@aa:8 | 7 i F abs 6 % 7 OiIMMi 0 8

* Register direct, register indirect, or absolute addressing.

62

BTST (Bit TeST) BTST

<Operation> <Condition Code>

—_ | — | — _ —) _ —

<Assembly-Language Format>
BTST #xx:3, <EAd>

BTST Rn, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
BTST #4, R6L Z: See to "1"if the specified bit is zero;

BTST R1H, @R5 otherwise cleared to "0".
BTST #7, @H'FF6C:8 Previous value remains unchanged.
C: Previous value remains unchanged.

<

<Operand Size>
Byte

<Description>

This instruction tests a specified bit in a general register or memory location and sets or cle:
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by tf
lower three bits of an 8-bit general register. The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 W 0
L LI
<EAd>*- Byte data in register or memc ooy L
Test

The value of the specified bit is not altered.

*Register direct, register indirect, or absolute addressing.

63

BTST (Bit TeST) BTST
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BTST |#xx:3,Rd 7 i 3 Oi IMM% rd 2
Register indirect | BTST | #xx:3,@Rd 7 i C Oi rd i 0 7 % 3 OiIMMi 0 6
Absolute address| BTST | #xx:3,@aa:8 | 7 i E abs 7 i 3 OilMMi 0 6
Register direct BTST |Rn,Rd 6 i 3 m i rd 2
Register indirect | BTST | Rn, @Rd 7 i C Oi rd i 0 6 i 3 m % 0 6
Absolute address| BTST | Rn, @aa:8 7 i E abs 6 % 3 m % 0 6

64

BXOR (Bit eXclusive OR) BXOR
<Operation> <Condition Code>
C (<Bit No.> of <EAd>) | C | H N Z V C

<Assembly-Language Format>
BXOR #xx:3, <EAd>

<Examples>

BXOR #4, R6H

BXOR #2, @RO
BXOR #1, @H'FFAOQ:8

<Operand Size>
Byte

— | — === |=|—]:

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Exclusive-ORed with the specified bit.

O<SNZI-=

<Description>

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit numbe
specified by 3-bit immediate data. The operation is shown schematically below.

<EAd>*- Byte data in register or memc

The value of the specified bit is not changed.

7 #xx:3—¢ 0

*Register direct, register indirect, or absolute addressing.

65

BXOR (Bit eXclusive OR) BXOR

<Instruction Formats>

gizfssmg Mnem. | Operands Instruction code Sth'thf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BXOR | #xx:3, Rd 7 i 5 Oi IMM% rd 2
Register indirect | BXOR | #xx:3,@Rd | 7 cClod o |7 5 o IMM% 0 6
Absolute address| BXOR | #xx:3,@aa:8 | 7 i E abs 7 i 5 O% IMM% 0 6

66

CMP (CoMPare) (byte) CMP
<Operation> <Condition Code>
Rd — (EAs); set condition code

| H N Z V C

— |t =]t |||

<Assembly-Language Format>

CMP.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto "1" when there is a borrow from

<Examples>
CMP.B #H'E5, R1H N
CMP.B R3L, R4L

bit 3; otherwise cleared to "0."

. Set to "1" when the result is negative;
otherwise cleared to "0."

Z: Setto "1" when the result is zero;

<Operand Size> otherwise cleared to "0."

Byte V: Setto "1" if an overflow occurs;
otherwise cleared to "0."
C. Setto "1"if there is a borrow from bit 7;
otherwise cleared to "0."

<Description>

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destinatio
register and sets the condition code flags according to the result. The destination register i
altered.

<Instruction Formats>

: Instruction code
Addressin
mode g Mnem. Operands s,:ltg'tgsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate CMP.B #xx8Rd | A | rd IMM 2
Register direct | CMP.B Rs, Rd 1 'Clrs | 2
| |

67

CMP (CoMPare) (word) CMP

<Operation> <Condition Code>

Rd — Rs; set condition code | H N Z V C

— |— ¢t |—]T [T T |

<Assembly-Language Format>

CMP.WRs, Rd

I: Previous value remains unchanged.
<Examples> H: Setto "1" when there is a borrow from
CMP.W R5, R6 bit 11; otherwise cleared to "0."

N: Setto "1" when the result is negative;
<Operand Size> otherwise cleared to "0."
Word Z: Setto "1" when the result is zero;

otherwise cleared to "0."

V. Setto "1" if an overflow occurs;
otherwise cleared to "0."

C: Setto "1" if there is a borrow from bit
15; otherwise cleared to "0."

<Description>
This instruction subtracts a source register from a destination register and sets the conditior
code flags according to the result. The destination register is not altered.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands ls\ltg'té)st
1stbyte | 2nd byte | 3rd byte | 4th byte
| T T
Register direct | CMPW | Rs, Rd 1 1D Oirs 10ird 2

68

DAA (Decimal Adjust Add) DAA
<Operation> <Condition Code>
Rd (decimal adjust) Rd | H N Z V C

<Assembly-Language Format>
DAA Rd

<Examples>
DAA R5L

<Operand Size>
Byte

—|—[*]—]t [t]|*]

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to "1" if the adjusted result is
negative; otherwise cleared to "0."

Z. Setto"1"if the adjusted result is zero;

otherwise cleared to "0."

Unpredictable.

0O <

Set to "1" if there is a carry from bit 7;
otherwise left unchanged.

<Description>
Given that the result of an addition operation

performed by the ADD.B or ADDX instruction

on 4-bit BCD data is contained in an 8-bit general register and the carry and half-carry flags
the DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general

register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment value Resulting
Cflag | Upper nibble| Hflag @ Lower nibble —added | Cflag
0 0-9 0 0-9 H'00 0
0 0-8 0 A-F H'06 0
0 0-9 1 0-3 H'06 0
0 A-F 0 0-9 H'60 1
0 9-F 0 A-F H'66 1
0 A-F 1 0-3 H'66 1
1 0-2 0 0-9 H'60 1
1 0-2 0 A-F H'66 1
1 0-3 1 0-3 H'66 1

69

DAA (Decimal Adjust Add) DAA

<Instruction Formats>

Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte | 2nd byte 3rd byte | 4th byte
Register direct DAA Rd 0 i F 0 i rd 2

70

DAS (Decimal Adjust Subtract)

<Operation> <Condition Code>

Rd (decimal adjust) Rd |

H

N Z V

*

<Assembly-Language Format>
DAS Rd

<Examples> N
DAS ROH

<Operand Size>
Byte

<

I: Previous value remains unchanged.
H: Unpredictable.
. Setto "1" if the adjusted result is
negative; otherwise cleared to "0."

Z:. Setto "1"if the adjusted result is zero;
otherwise cleared to "0."
Unpredictable.
C: Previous value remains unchanged.

<Description>

Given that the result of a subtraction operation performed by the SUB.B, SUBX, or NEG
instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half
carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'AQ, or H'9A to the

general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment

Value Resulting
Cflag = Upper nibble| Hflag | Lower nibble added | Cflag
0 0-9 0 0-9 H'00 0
0 0-8 1 6-F H'FA 0
1 7—-F 0 0-9 H'AO 1
1 6-F 1 6-F H'9A 1

71

DAS (Decimal Adjust Subtract) DAS
<Instruction Formats>
; Instruction code
Addressin
mode g Mnem. | Operands Is\ltgi;;
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct DAS Rd 1 i F 0 i rd 2

72

DEC (DECrement) DEC

<Operation> <Condition Code>
Rd-1_ Rd

I H N Z2 V C
o el el e E I O

<Assembly-Language Format>

DEC Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
DEC R2L N: Setto "1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1"if the result is zero; otherwise
Byte cleared to "0."

V. Set to "1" if an overflow occurs (the
previous value in Rd was H'80);
otherwise cleared to "0."

C: Previous value remains unchanged.

<Description>
This instruction decrements an 8-bit general register and places the result in the 8-bit gener
register.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands sthié);
1st byte 2nd byte | 3rd byte | 4th byte
Register direct DEC Rd 1 i A 0 | rd 2

73

DIVXU (DIVide eXtend as Unsigned) DIVXU

<Operation> <Condition Code>
Rd+Rs_ Rd

| H N Z V C

<Assembly-Language Format>

DIVXU Rs, Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
DIVXU ROL, R1 N: Setto "1" if the divisor is negative;
otherwise cleared to "0."
<Operand Size> Z:. Setto "1" if the divisor is zero;
Byte otherwise cleared to "0."

<

Previous value remains unchanged.
C: Previous value remains unchanged.

<Description>

This instruction divides a 16-bit general register by an 8-bit general register and places the
result in the 16-bit general register. The quotient is placed in the lower byte. The remainde
placed in the upper byte. The operation is shown schematically below.

Rd
/—/H
Rd Rs (RdH) (RdL)
Dividend + Divisor - Remainder| Quotient
16 8 8 8

Valid results are not assured if division by zero is attempted or an overflow occurs. Division
by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown on the
next page.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands [s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
| f |
Register direct DIVXU Rs, Rd 5 i 1 rs 303 rd 14

74

DIVXU (DIVide eXtend as Unsigned) DIVXU

<Note: DIVXU Overflow>
Since the DIVXU instruction performs 16-bit + 8-bit 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FF
+H'01 _ H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is
required.

To perform
DIVXU ROL, R1: ROL Divisor
MOV.B #H'00, R2H R1 Dividend
CMP.B ROL, R1H ¢
BCC L1 R1| Remainder Quotient (*1)
DIVXU ROL, R1 1) v
MOV.B R1L, R2L R1 Dividend
BRA L2 R2 H'00 Dividend (High)| (*2)
L1 MOV.B R1H, R2L (*2) |
DIVXU ROL, R2 R1 | Partial remainder| Dividend (Low)
MOV.B R2H, R1H (*3)
DIVXU ROL, R1 R2 | Partial remainde | Quotient (High)| (*3)
MOV.B R2L, R2H >
MOV.B R1L, R2L , _
R1 Remainder Quotient (Low)
L2 RTS (*4)
R2 Quotient (*4)

75

EEPMOV (MOVe data to EEPROM) EEPMOV

<Operation> <Condition Code>
if R4L # 0 then | H N Z V C
repeat @R5+ @R6+
RAL—1 RAL —
until R4L =0
else next; Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Assembly-Language Format> N: Previous value remains unchanged.
EEPMOV Z: Previous value remains unchanged.

V: Previous value remains unchanged.
<Examples> C: Previous value remains unchanged.

MOV.B #H'20, R4L
MOV.W #H'FECO, R5
MOV.W #H'6000, R6
EEPMOV

<Operand Size>

<Description>

This instruction moves a block of data from the memory location specified in general registe
R5 to the memory location specified in general register R6. General register R4L gives the
byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented
RA4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is
executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'00. R5 and R6 contain the last transfer addres
+1.

Chips in the H8/300 Series having large on-chip EEPROM memories use this instruction to
write data in the EEPROM. For details, see the hardware manual for the particular chip.
The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

76

EEPMOV (MQV data to EEPROM) EEPMQV
<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states

1st byte | 2nd byte 3rd byte 4th byte

— EEPMOV 7 'B |51 C 5 19 |8 ! F|8+tn
| | | I

* n is the initial value in R4L (& n< 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

Notes on EEPMOV Instruction
1. The EEPMOQV instruction is a block data transfer instruction. It moves the number of byt
specified by R4L from the address specified by R5 to the address specified by R6.

R5 -

-~ R6

R5 + R4L -

— R6 + R4L

2. When setting R4L and R6, make sure that the final destination address (R6 + R4L) does
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during executi
of the instruction.

R5 + R4L -

- R6

HFFFF

~ R6 + R4L

Not allowed

77

INC (INCrement) INC
<Operation> <Condition Code>

Rd+1_)Rd | H N 7 V C

el el e R O

<Assembly-Language Format>

INC Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
INC R3L N: Setto "1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1"if the result is zero; otherwise
Byte cleared to "0."

V. Setto "1" if an overflow occurs (the
previous value in Rd was H'7F);
otherwise cleared to "0."

C: Previous value remains unchanged.

<Description>
This instruction increments an 8-bit general register and places the result in the 8-bit gener:
register.

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states

1st byte 2nd byte | 3rd byte 4th byte

NC Rd OiA 0 | rd 2

Register direct

78

JMP (JuMP) IJMP
<Operation> <Condition Code>
(EAd) PC

- I H N Z V C

<Assembly-Language Format>
JMP <EA>

<Examples>
JMP @R6
JMP @H'2000
JMP @ @H'9A

<Operand Size>

OsNzI ™

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction branches unconditionally to a specified destination address.
The destination address must be even.

<Instruction Formats>

ﬁ;do(?jreessmg e Operands Instruction code Sth;[gsf
Istbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | IMP @RnN 5 i 9 O‘ rn i 0 4
Absolute address| IMP @aa:16 5 % A 0 i 0 abs. 6
Memory indirect | JIMP @@aa:8 5 i B abs. 8

79

JSR (Jump to SubRoutine) JSR

<Operation> <Condition Code>
PC @-SP

- I H N Z V C
(EAd) _ PC

<Assembly-Language Format>

JSR <EA> I: Previous value remains unchanged.

H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
JSR @R3 Z: Previous value remains unchanged.
JSR @H'1D26 V: Previous value remains unchanged.
JSR @ @H'FO C: Previous value remains unchanged.

<Operand Size>

<Description>

This instruction pushes the program counter onto the stack, then branches to a specified
destination address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction. The destination address must be even.

<Instruction Formats>

Qc:)%r:ssmg Mnem. | Operands Instruction code ’S\Itg'tg
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | JSR @Rn 5 i D 0% n i 0 6
Absolute address | JSR @aa:16 5 i E| O i 0 abs. 8
Memory indirect | JSR @@aa:8 5 i F abs. 8

80

LDC (LoaD to Control register) LDC

<Operation> <Condition Code>
(EAs) , CCR | H N Z V C

! ! I]t ! I !

<Assembly-Language Format>
LDC <EAs>, CCR
Loaded from the source operand.

<Examples> Loaded from the source operand.
LDC #H'80, CCR Loaded from the source operand.
LDC R4H, CCR Loaded from the source operand.

Loaded from the source operand.
Loaded from the source operand.

O<SNZI-=

<Operand Size>
Byte

<Description>

This instruction loads the source operand contents into the condition code register (CCR).
source operand can be an 8-bit general register or 8-bit immediate data. Bits 4 and 6 are
loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, includin
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte
Immediate LDC #xx:8,CCR| 0 | 7 IMM 2
Register direct LDC Rs, CCR 0 3 0 3 rs 2

81

MOV (MOVe data) (byte) MOV

<Operation> <Condition Code>
Rs_, Rd | H N Z V C
— | ===t]t |O|—

<Assembly-Language Format>
MOV.B Rs, Rd I Previous value remains unchanged.

H: Previous value remains unchanged.
<Examples> N: Setto "1" if the data value is negative;
MOV.B R1L, R2H otherwise cleared to "0."

Z: Setto "1"if the data value is zero;
<Operand Size> otherwise cleared to "0."
Byte V. Cleared to "0."

C: Previous value remains unchanged.

<Description>
This instruction moves one byte of data from a source register to a destination register and
condition code flags according to the data value.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands 'S\ltg:[gsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct MOV.B |Rs, Rd 0/ C|rs i 2

82

MOV (MOVe data) (word) MOV
<Operation> <Condition Code>

Rs _, Rd | H N Z V C
—|—|—[—]t |t |O|—

<Assembly-Language Format>
MOV.WRs, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;
otherwise cleared to "0."

Z: Setto "1" if the data value is zero;
otherwise cleared to "0."

V. Cleared to "0."

C: Previous value remains unchanged.

<Examples>
MOV.W R3, R4

<Operand Size>
Word

<Description>
This instruction moves one word of data from a source register to a destination register and
sets condition code flags according to the data value.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands Is\ltgi:sf
1st byte | 2nd byte 3rd byte | 4th byte
1 I [
Register direct |MOV.W | Rs, Rd 0 (D |0irs 0ird 2
L

83

MOV (MOVe data) (byte) MOV

<Operation> <Condition Code>
(EAs) _ Rd | H N Z V C
—|—]—=[—=]t |t |O0]—

<Assembly-Language Format>

MOV.B <EAs>, Rd l: Previous value remains unchanged.

H: Previous value remains unchanged.

<Examples> N: Set to "1" if the data value is negative;
MOV.B @R1, R2H otherwise cleared to "0."

MOV.B @R5+, ROL Z: Setto "1" if the data value is zero;
MOV.B @H'FFF1, R1H otherwise cleared to "0."

MOV.B #H'A5, R3L

<

Cleared to "0."
C: Previous value remains unchanged.

<Operand Size>
Byte

<Description>

This instruction moves one byte of data from a source operand to a destination register and
condition code flags according to the data value. The source operand can be memory cont
or immediate data.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in
stack pointer. This may result in loss of data, since the stack is always accessed a word at
time at an even address.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. Operands ’s\ltg'tgsf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate MOV.B |#xx:8, Rd F oird | IMM 2
Register indirect | MOV.B | @RS, Rd 6 '8 |0 rs; rd 4
Register indirect | N
with displacement |MOV.B | @(d:16,Rs),Rd | 6 | E 0rs; rd disp. 6
Register indirect | o
with post-increment| MOV.B | @Rs+, Rd 6 ' C |0 ;rsi rd 6
Absolute address | MOV.B | @aa:8, Rd 2 i rd abs 4
| I
Absolute address |MOV.B | @aa:16, Rd 6 | A O ' rd abs. 6

84

MOV (MOVe data) (word) MOV
<Operation> <Condition Code>
(EAs) | Rd | H N Z V C

—|— ==t []O|—

<Assembly-Language Format>

MOV.W<EAs>, Rd l: Previous value remains unchanged.

H: Previous value remains unchanged.

<Examples> N: Setto "1" if the data value is negative;
MOV.W @R3, R4 otherwise cleared to "0."
MOV.W @(H'0004,R5), R6 Z. Setto "1" if the data value is zero;
MOV.W @R7+, RO otherwise cleared to "0."
MOV.W #H'BO0A, R1 V: Cleared to "0."

C: Previous value remains unchanged.

<Operand Size>
Word

<Description>

This instruction moves one word of data from a source operand to a destination register an
sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W @R7+, Rd is identical in machine language to POP.W Rd.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands I;,[g'tg
1stbyte | 2nd byte | 3rd byte | 4th byte

Immediate MOV.W | #xx:16, Rd 7 19,0 0 IMM 4
Register indirect | MOV.W | @RS, Rd 6 | 9 |0rs0rd 4
Register indirect | | o
with displacement |MOV.W @(d:16,Rs),Rd | 6 | F |0:rs0;rd disp. 6
Register indirect | | o
with post-increment| MOV.W | @Rs+, Rd 6 | D|0OrsOird 6
Absolute address | MOV.W | @aa:16, Rd 6 i B| O 303 rd abs. 6

85

MOV (MOVe data) (byte)

<Operation>
Rs _ (EAd)

<Assembly-Language Format>
MOV.B Rs, <EAd>

<Examples>

MOV.B R1L, @RO

MOV.B R3H, @(H'8001, RO)
MOV.B R5H, @-R4

MOV.B R6L, @H'FE77

<Operand Size>
Byte

<Condition Code>

| X N Z V C
-

Previous value remains unchanged.
. Previous value remains unchanged.
N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z. Setto "1"if the data value is zero;
otherwise cleared to "0."
Cleared to "0."
Previous value remains unchanged.

s

0 <

<Description>

This instruction moves one byte of data from a source register to memory and sets conditiol
code flags according to the data value.

The MOV.B Rs, @—R7 instruction should never be used, because it leaves an odd value in
stack pointer. This may result in loss of data, since the stack is always accessed a word at

time at an even address.

The instruction MOV.B RnH, @—Rn or MOV.B RnL, @—Rn decrements register Rn, then
moves the upper or lower byte of the decremented result to memory.

<Instruction Formats>

. Instruction code
Addressin
mode g Mnem. Operands [s\ltgtgsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect MOV.B |Rs, @Rd 6 i 8 1irdi rs 4
Register indirect Rs, | | |
with displacement | MOV.B | @(d:16,Rd) 6 ' E 11rd} rs disp. 6
Register indirect | o
with pre-decrement | MOV.B |Rs, @-Rd 6 | C |1irsirs 6
Absolute address | MOV.B |Rs,@aa:8 3 i rs abs 4
| \
Absolute address |MOV.B |Rs,@aa:16 6 | A 8 |rs abs. 6

86

MOV (MOVe data) (word) MOV

<Operation> <Condition Code>

Rs_ (EAd) | H N Z V C
— —|—[t [t |0 —

<Assembly-Language Format>
MOV.WRs, <EAd>

I: Previous value remains unchanged.

<Examples>

MOV.W R3, @R4

MOV.W R2, @(H,0030,R5)
MOV.W R1, @-R7

H: Previous value remains unchanged.
N: Setto "1" if the data value is negative;
otherwise cleared to "0."
Z:. Setto "1"if the data value is zero;
otherwise cleared to "0."

MOV.W RO, @H'FEDG6

<Operand Size>
Word

<

Cleared to "0."
Previous value remains unchanged.

<Description>

This instruction moves one word of data from a general register to memory and sets conditi
code flags according to the data value.

The destination address in memory must be even.
MOV.W Rs, @-R?7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @—Rn decrements register Rn by 2, then moves the decrement

result to memory.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands [s\ltg'tgst
1stbyte | 2nd byte | 3rd byte 4th byte

Register indirect MOV.W | Rs, @Rd 6 i 9 13 rd 303 rs 4
Register indirect Rs, | R
with displacement | MOV.W | @(d:16, Rd) 6 | F 1irdOjrs disp. 6
Register indirect | | N
with pre-decrement | MOV.W | Rs, @-Rd 6 | D 11 rd!0!rs 6
Absolute address | MOV.W | Rs, @aa:16 6 i B | 8 303 rs abs. 6

87

MOVFPE (MOVe data From Peripheral with E clock) MOVFPE

<Operation> <Condition Code>
synchronization with the E clock | H N Z V C
(EAs) _ Rd T T—T—T:T: Tol—=
<Assembly-Language Format>
MOVFPE@aa:16, Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto "1" if the data value is negative;
MOVFPE @H'FF81, ROH otherwise cleared to "0."
Z: Setto "1"if the data value is zero;
<Operand Size> otherwise cleared to "0."
Byte V: Cleared to "0."
C: Previous value remains unchanged

<Description>

This instruction moves one byte of data from an absolute address location to a destination
register, and sets the condition code flags according to the data value. The transfer is
performed in synchronization with the E (enable) clock used by peripheral devices. The
transfer requires 9 to 16 states, so the execution time is variable. For further information on
basic timing, See the eaklardware Manuals

This instruction should not be used with chips not having an E clock output pin or in single-
chip mode.

When the source operand is located in on-chip memory or the on-chip register field, the
MOVFPE instruction is identical in operation to MOV.B @aa:16, Rd.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferrec

<|nstruction Formats>

. Instruction code
Addressing
mode Mnem. | Operands sl\ltgl'teosf
1st byte 2nd byte | 3rd byte | 4th byte
Absolute address | MOVFPE |@aa:16, Rd | 6 i A 4 ‘ rd abs. 13-20

88

MOVTPE (MOVe data To Peripheral with E clock) MOVTPE

<Operation> <Condition Code>
synchronization with the E clock | H N Z V C
Rs (EAd)
- — ===t |t [O0] —
<Assembly-Language Format>
MOVTPERs, @aa:16 I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto "1" if the data value is negative;
MOVTPE R2L, @H'FF8D otherwise cleared to "0."
Z: Setto "1"if the data value is zero;
<Operand Size> otherwise cleared to "0."
Byte V. Cleared to "0."
C: Previous value remains unchanged.

<Description>

This instruction moves one byte of data from a source register to an absolute address locati
and sets the condition code flags according to the data value. The transfer is performed in

synchronization with the E (enable) clock used by peripheral devices. The transfer requires
to 16 states, so the execution time is variable. For further information on basic timing, see

eachHardware Manuals

This instruction should not be used with chips not having an E clock output pin or in single-

chip mode.

When the destination operand is located in on-chip memory or the on-chip register field, the
MOVTPE instruction is identical in operation to MOV.B Rs, @aa:16.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferrec

<Instruction Formats>

. Instruction code
Addressing No. of
mode Mnem. Operands states
1st byte 2nd byte | 3rd byte | 4th byte
Absolute address | MOVTPE |Rs, @aa:16 | 6 i A C rs abs. 13-20

89

MULXU (MULtiply eXtend as Unsigned) MULXU
<Operation> <Condition Code>
RdxRs _, Rd ! H N Z V C

<Assembly-Language Format>

MULXURSs, Rd Previous value remains unchanged.
Previous value remains unchanged.
<Examples> Previous value remains unchanged.

MULXU ROH, R3 Previous value remains unchanged.

Previous value remains unchanged.

OsNzI ™

<Operand Size>
Byte

Previous value remains unchanged.

<Description>

This instruction performs 8-bjt 8-bit _ 16-bit multiplication. It multiplies a destination
register by a source register and places the result in the destination register. The source
register is an 8-bit register. The destination register is a 16-bit register containing the data t
be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both by
of the destination register. The operation is shown schematically below.

Rd Rs Rd
| Don't-care | Multiplicandl x | Multiplier | - | Product |
8 8 16

The multiplier can occupy either the upper or lower byte of the source register.

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states

1st byte | 2nd byte 3rd byte 4th byte

Register direct | MULXU | Rs, Rd 510 |rs 0! rd 14

90

NEG (NEGate) NEG

<Operation> <Condition Code>
0-—Rd_, Rd | H N Z V C
—|— [t [—=]t s |t]
<Assembly-Language Format>
NEG Rd I: Previous value remains unchanged.
H: Setto "1" when there is a borrow from
<Examples> bit 3; otherwise cleared to "0."
NEG ROL N: Setto "1" when the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1" when the result is zero;
Byte otherwise cleared to "0."

V. Setto "1" if an overflow occurs (the
previous contents of the destination
register was H'80); otherwise cleared to
no."

C: Setto "1"if there is a borrow from bit 7
(the previous contents of the destination
register was not H'00); otherwise
cleared to "0."

<Description>

This instruction replaces the contents of an 8-bit general register with its two's complement.
(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80
the overflow flag is set.

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states

1stbyte | 2nd byte 3rd byte 4th byte

Register direct NEG Rd 1 17 |8 2

91

NOP (No OPeration) NOP

<Operation> <Condition Code>
PC+2 _PC

I H N Z V C

<Assembly-Language Format>

NOP Previous value remains unchanged.
Previous value remains unchanged.
< > . .
Examples Previous value remains unchanged.
NOP

Previous value remains unchanged.
Previous value remains unchanged.

OsNzI =

< ize> . .
Operand Size Previous value remains unchanged.

<Description>

This instruction only increments the program counter, causing the next instruction to be
executed. The internal state of the CPU does not change.

The NOP instruction can be used to fill in gaps in programs, or for software synchronization

<|nstruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte
— NOP 0.0 0. 0 2

92

NOT (NOT = logical complement) NOT
<Operation> <Condition Code>
- Rd Rd
- I H N Zz V C
—|—=|[—=]—=]t]t |O|—

<Assembly-Language Format>
NOT Rd

<Examples>
NOT R4L

<Operand Size>
Byte

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;
otherwise cleared to "0."

Z: Setto "1"if the result is zero; otherwise

cleared to "0."

Cleared to "0."

C: Previous value remains unchanged.

<

<Description>

This instruction replaces the contents of an 8-bit general register with its one's complement
(subtracts the register contents from H'FF).

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct NOT Rd 1 7 0 rd 2

93

OR (inclusive OR logical) OR

<Operation> <Condition Code>
Rd;(EAs) _ Rd

I H N Z V C
— ===t]t |O0]—
<Assembly-Language Format>
OR <EAs>, Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Set to "1" when the result is negative;
OR R2H, R3H otherwise cleared to "0."
OR #H'CO, ROH Z. Setto "1" when the result is zero;
otherwise cleared to "0."
<Operand Size> V. Cleared to "0."

Q

Previous value remains unchanged.

Byte

<Description>

This instruction ORs the source operand with the contents of an 8-bit general register and
places the result in the general register .

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Addressing Instruction code No. of
mode Mnem. | Operands states

1st byte 2nd byte 3rd byte 4th byte

Immediate OR #xx:8, Rd C

|
Register direct | OR Rs, Rd 1 4 rs | rd 2

94

ORC (inclusive OR Control register) ORC

<Operation> <Condition Code>
CCR#IMM _ CCR

I H N Z V C
U O R O A

<Assembly-Language Format>
ORC #xx:8, CCR ORed with bit 7 of the immediate data.
ORed with bit 5 of the immediate data.
ORed with bit 3 of the immediate data.
ORed with bit 2 of the immediate data.
ORed with bit 1 of the immediate data.

ORed with bit O of the immediate data.

<Examples>
ORC #H'80, CCR

O<SNZzZzIT~

<Operand Size>
Byte

<Description>

This instruction ORs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, includin
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte
Immediate ORC #xx:8,CCR| 0 | 4 IMM 2

95

POP (POP data) POP
<Operation> <Condition Code>
@SP+_ Rn | H N zZ V C

<Assembly-Language Format>
POP Rn

<Examples>
POP R1

<Operand Size>
Word

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Setto "1" if the data value is zero;

otherwise cleared to "0."

0O <

Cleared to "0."
Previous value remains unchanged.

<Description>

This instruction pops data from the stack to a 16-bit general register and sets condition codke

flags according to the data value.

POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

<|Instruction Formats>

Addressing
mode Mnem. | Operands

Instruction code

1st byte

2nd byte

3rd byte

4th byte

No. of
states

— POP Rd

6 | D| 7 0m

96

PUSH (PUSH data) PUSH

<Operation> <Condition Code>
Rn -SP
e I H N Z V C
— ===t]t |O]—
<Assembly-Language Format>
PUSH Rn
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
PUSH R2 N: Setto "1" if the data value is negative;

otherwise cleared to "0."
<Operand Size> Z: Setto "1"if the data value is zero;
Word otherwise cleared to "0."
Cleared to "0."
Previous value remains unchanged.

0O <

<Description>

This instruction pushes data from a 16-bit general register onto the stack and sets condition
code flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @-SP.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands sl\,ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
— PUSH Rs 6 | D F 10m 6

97

ROTL (ROTate Left) ROTL

<Operation> <Condition Code>
Rd (rotated left) Rd

I H N Z V C
—|—[—=]—=]t |t [O]1
<Assembly-Language Format>
ROTL Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
ROTL R2L N: Setto "1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1"if the result is zero; otherwise
Byte cleared to "0."

V. Cleared to "0."
Receives the previous value in bit 7.

Q

<Description>

This instruction rotates an 8-bit general register one bit to the left. The most significant bit i
rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

MSB LSB
I:IE-— [5—
C Bit 7 Bit O
<Instruction Formats>
. Instruction code
Addressin
mode g Mnem. | Operands [s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTL Rd 1128 | 2

98

ROTR (ROTate Right) ROTR

<Operation> <Condition Code>

Rd (rotated right) Rd | H N 7 V C
—|—]—=]—]t]t [O]

<Assembly-Language Format>

ROTRRd

<Examples>
ROTR R5L

<Operand Size>
Byte

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto "1" if the result is negative;
otherwise cleared to "0."

Z: Setto "1" if the result is zero; otherwise

cleared to "0."

<

Cleared to "0."

C: Receives the previous value in bit O.

<Description>

This instruction rotates an 8-bit general register one bit to the right. The least significant bit
rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

‘ MSB LSB
Bit 7 Bit0O C
<Instruction Formats>
: Instruction code
Addressin
mode J Mnem. | Operands ls\ltg;[eosf
1st byte 2nd byte | 3rd byte | 4th byte
1 T
Register direct | ROTR Rd 1 3|8 | 2

99

ROTXL (ROTate with eXtend carry Left) ROTXL

<Operation> <Condition Code>
Rd (rotated with carry left) Rd

I H N Z V C
— | —|—[—]t |t |0
<Assembly-Language Format>
ROTXL Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.

ROTXL R1H N: Setto "1" if the result is negative;
otherwise cleared to "0."

Z. Setto "1"if the result is zero; otherwise

cleared to "0."

Cleared to "0."

C: Receives the previous value in bit 7.

<Operand Size>
Byte

<

<Description>

This instruction rotates an 8-bit general register one bit to the left through the carry flag. Th
carry flag is rotated into the least significant bit of the register. The most significant bit rotat:
into the carry flag.

The operation is shown schematically below.

MSB LSB

]| -

C Bit 7 Bit 0

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte 2nd byte | 3rd byte | 4th byte

Register direct | ROTXL Rd 1120 | 2

100

ROTXR (ROTate with eXtend carry Right) ROTXR

<Operation> <Condition Code>
Rd (rotated with carry right) Rd

I H N Z V C
—|— ==t]t |0
<Assembly-Language Format>
ROTXRRd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
ROTXR R5L N: Setto "1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1" if the result is zero; otherwise
Byte cleared to "0."
V: Cleared to "0."
C: Receives the previous value in bit O.

<Description>

This instruction rotates an 8-bit general register one bit to the right through the carry flag. T
least significant bit is rotated into the carry flag. The carry flag rotates into the most
significant bit.

The operation is shown schematically below

MSB LSB
L —| |

Bit 7 Bit0O C

<|nstruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTXR Rd 1 i 3 0 ! 2

101

RTE (ReTurn from Exception) RTE

<Operation> <Condition Code>
@SP+_ CCR | H N Z V C
@SP+_ PC

ol B e o

<Assembly-Language Format>
Restored from stack.

RTE I
H: Restored from stack.
<Examples> N: Restored from stack.
RTE Z: Restored from stack.
V: Restored from stack.
C: Restored from stack.

<Operand Size>

<Description>

This instruction returns from an interrupt-handling routine. It pops the condition code regist:
(CCR) and program counter (PC) from the stack. Program execution continues from the
address restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8
bits are ignored).

This instruction therefore adds 4 to the value of the stack pointer (R7).

<Instruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

e RTE 5167 0 10

102

RTS (ReTurn from Subroutine) RTS

<Operation> <Condition Code>
@SP+_ PC | H N Z V C

<Assembly-Language Format>

RTS
Previous value remains unchanged.

<Examples> Previous value remains unchanged.

RTS Previous value remains unchanged.

Previous value remains unchanged.

<Operand Size> Previous value remains unchanged.

_ . Previous value remains unchanged.

oSNz I

<Description>

This instruction returns from a subroutine. It pops the program counter (PC) from the stack
Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands [s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
] T
— RTS 5 4 | 7 10 8

103

SHAL (SHift Arithmetic Left) SHAL

<Operation> <Condition Code>
Rd (shifted arithmetic left) Rd

I H N Z V C
— | — ==t |t |t]
<Assembly-Language Format>
SHAL Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
SHAL R5H N: Setto "1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto "1"if the result is zero; otherwise
Byte cleared to "0."

V: Setto "1" if an overflow occurs;
otherwise cleared to "0."
C: Receives the previous value in bit 7.

<Description>

This instruction shifts an 8-bit general register one bit to the left. The most significant bit
shifts into the carry flag, and the least significant bit is cleared to "0."

The operation is shown schematically below.

=

MSB LSB
I:IE— =— 0
C Bit7 Bit 0

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow
(V) flag.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands sthigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHAL Rd 1 i 0/ 8 ' 2

104

SHAR (SHift Arithmetic Right) SHAR
<Operation> <Condition Code>
Rd (shifted arithmetic right) Rd

I H N Zz V C

<Assembly-Language Format>

SHAR Rd

l:
<Examples> H:
SHAR R5H N
<Operand Size> Z
Byte

V.

C:

Previous value remains unchanged.

otherwise cleared to "0."

Set to "1" if the result is zero; otherwise

cleared to "0."
Cleared to "0."
Receives the previous value in bit O.

. Previous value remains unchanged.
. Set to "1" if the result is negative;

<Description>

This instruction shifts an 8-bit general register one bit to the right. The most significant bit
remains unchanged. The sign of the result does not change. The least significant bit shifts

the carry flag.

The operation is shown schematically below.

MSB LSB
D =
— |
Bit 7 Bit0O C
<Instruction Formats>
. Instruction code
Addressin
mode g Mnem. | Operands [s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
] T
Register direct | SHAR Rd 1 1|8 | rd 2

105

SHLL (SHift Logical Left)

<Operation>
Rd (shifted logical left) Rd

<Condition Code>

| H

N

<Assembly-Language Format>
SHLL Rd

I: Previous value remains unchanged.

<Examples>
SHLL R2L

H: Previous value remains unchanged.
N: Setto "1" if the result is negative;
otherwise cleared to "0."

<Operand Size>
Byte

Z: Setto "1" if the result is zero; otherwise

cleared to "0."
V: Cleared to "0."

Q

Receives the previous value in bit O.

<Description>

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is

cleared to "0." The most significant bit shifts into the carry flag.
The operation is shown schematically below.

=

MSB LSB
[-
C Bit 7 Bit 0

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow

(V) flag.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands ’s\ltg'tgsf
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | SHLL Rd 1 i 0 0 ' rd 2

106

SHLR (SHift Logical Right) SHLR
<Operation> <Condition Code>
Rd (shifted logical right) Rd
- I H N Z V C
—|—]—=]—=]t]t O]

<Assembly-Language Format>

SHLR Rd

<Examples>
SHLR R3L

<Operand Size>
Byte

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto "1" if the result is negative;
otherwise cleared to "0."

Z: Setto "1"if the result is zero; otherwise

cleared to "0."

Cleared to "0."

Receives the previous value in bit O.

O <

<Description>

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is
cleared to 0. The least significant bit shifts into the carry flag.
The operation is shown schematically below.

inll
MSB LSB
0 —tJ —EII:I
Bit 7 Bit0O C
<Instruction Formats>
; Instruction code
Addressin
mode g Mnem. | Operands gg:[e();
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHLR Rd 1110 o 2

107

SLEEP (SLEEP) SLEEP
<Operation> <Condition Code
Program execution state power- | Y N 7 V C

down mode

<Assembly-Language Format>

SLEEP

<Examples>
SLEEP

<Operand Size>

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

OsNzI ™

Previous value remains unchanged.

<Description>

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal
state remains unchanged, but the CPU stops executing instructions and waits for an except
handling request (interrupt or reset). When it receives an exception-handling request, the C
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to "1," the power-down mode can be released only by a

nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, seéidreware Manuafor the particular

chip.

<|nstruction Formats>

: Instruction code
Addressin
mode g Mnem. | Operands sthieC)sf
1st byte | 2nd byte 3rd byte | 4th byte
— SLEEP 011 8 |0 2

108

STC (STore from Control register) STC
<Operation> <Condition Code>
CCR_ Rd | H N zZ v C

<Assembly-Language Format>
STC CCR, Rd

<Examples>
STC CCR, R6H

<Operand Size>
Byte

O<sNZI-=

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction copies the condition code register (CCR) to a specified general register. Bit

and 4 are copied as well as the flag bits.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands 'S\Itg:[ecg
1st byte | 2nd byte 3rd byte | 4th byte
| T
Register direct STC CCR, Rd 0 20 i 2

109

SUB (SUBtract binary) (byte) SUB

<Operation> <Condition Code>
Rd - Rs_ Rd

I H N Z V C
— |—{t | =[] [T]

<Assembly-Language Format>

SUB.B Rs, Rd

I: Previous value remains unchanged.
<Examples> H: Setto "1" when there is a borrow from
SUB.B ROL, R2L bit 3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

<Operand Size> otherwise cleared to "0."

Byte Z: Setto "1" when the result is zero;

otherwise cleared to "0."

V. Set to "1" if an overflow occurs;
otherwise cleared to "0."

C. Setto "1"if there is a borrow from bit 7;
otherwise cleared to "0."

<Description>

This instruction subtracts an 8-bit source register from an 8-bit destination register and plact
the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to |
the SUBX.B instruction, first setting the zero flag to "1" and clearing the carry flag to "0".

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR (2) ADD #(0 — Imm), Rd
- SUBX #(Imm — 1), Rd XORC #H'01, CCR

110

SUB (SUBtract binary) (byte) SUB
<Instruction Formats>
; Instruction code
Addressin
mode 9 Mnem. | Operands sthigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUB.B Rs, Rd 1 i 8 | rs | d 2

111

SUB (SUBtract binary) (word) SUB

<Operation> <Condition Code>
Rd-Rs _, Rd

| H N Z V C
— |— |t |—] T[T]

<Assembly-Language Format>

SUB.W Rs, Rd

I: Previous value remains unchanged.
<Examples> H: Setto "1" when there is a borrow from
SUB.W RO, R1 bit 11; otherwise cleared to "0."

N: Set to "1" when the result is negative;
<Operand Size> otherwise cleared to "0."
Word Z: Setto "1" when the result is zero;

otherwise cleared to "0."

V. Set to "1" if an overflow occurs;
otherwise cleared to "0."

C. Setto "1"if there is a borrow from bit
15; otherwise cleared to "0."

<Description>
This instruction subtracts a 16-bit source register from a 16-bit destination register and plac
the result in the destination register.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands Is\ltg;[eosf
1st byte | 2nd byte 3rd byte | 4th byte
I I T T
Register direct | SUB.W Rs, Rd 1 ‘ 9 Oi rs '0rd 2

112

SUBS (SUBtract with Sign extension) SUBS

<Operation> <Condition Code>
Rd-1_ Rd | H N zZ vV C
Rd-2_ Rd T T T T17-T17_

<Assembly-Language Format>

SUBS #1, Rd I Previous value remains unchanged.
SUBS #2, Rd H: Previous value remains unchanged.

N: Previous value remains unchanged.
<Examples> Z: Previous value remains unchanged.
SUBS #1, R3 V. Previous value remains unchanged.
SUBS #2, R5 C: Previous value remains unchanged.

<Operand Size>
Word

<Description>

This instruction subtracts the immediate value 1 or 2 from word data in a general register.
Differing from the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands sN,tgigs]c
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUBS | #1, Rd 11 B0 0r 2
Register direct SUBS #2, Rd 1B 8 !0 2

113

SUBX (SUBtract with eXtend carry) SUBX
<Operation> <Condition Code>
Rd - (EAs)-C _Rd

- I H N Z V C

<Assembly-Language Format>
SUBX <EAs>, Rd

<Examples>
SUBX ROL, R3L
SUBX #H'32, R5H

<Operand Size>
Byte

— |— ¢ | —T] |T |

Previous value remains unchanged.
Set to "1" if there is a borrow from bit 3;
otherwise cleared to "0."

Set to "1" when the result is negative;
otherwise cleared to "0."

Previous value remains unchanged when
the result is zero; otherwise cleared to
"o."

Set to "1" if an overflow occurs;
otherwise cleared to "0."

Set to "1" if there is a borrow from bit 7;
otherwise cleared to "0."

<Description>

This instruction subtracts the source operand and carry flag from the contents of an 8-bit

general register and places the result in the general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands gltg;{gsf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate SUBX #xx:8,Rd | B | rd IMM 2
; I
Register direct SUBX Rs, Rd 1 ' E rs | rd 2
| |

114

XOR (eXclusive OR logical) XOR
<Operation> <Condition Code>
Rd (EAs) _ Rd | 4 N Z V C

—|—|—=]—]s]t]0]—

<Assembly-Language Format>

XOR <EAs>, Rd
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto "1" when the result is negative;
otherwise cleared to "0."

Z:. Setto "1" when the result is zero;

otherwise cleared to "0."

Cleared to "0."

C: Previous value remains unchanged.

<Examples>
XOR ROH, R1H
XOR #H'FO, R2L

<Operand Size>
Byte

<

<Description>

This instruction exclusive-ORs the source operand with the contents of an 8-bit general
register and places the result in the general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Instruction code

Addressin
mode 9 Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XOR #xx:8,Rd | D | rd IMM 2
Register direct | XOR Rs, Rd 1 5| rs | rd 2

115

XORC (eXclusive OR Control register) XORC

<Operation> <Condition Code>
CCR#IMM _ CCR

I H N Z V C
U R O

<Assembly-Language Format>

XORC#xx:8, CCR
I Exclusive-ORed with bit 7 of the

<Examples> immediate data.

XORC #H'50, CCR H: Exclusive-ORed with bit 5 of the
immediate data.

<Operand Size> N: Exclusive-ORed with bit 3 of the

Byte immediate data.

Z: Exclusive-ORed with bit 2 of the
immediate data.

V: Exclusive-ORed with bit 1 of the
immediate data.

C: Exclusive-ORed with bit O of the
immediate data.

<Description>

This instruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as
flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, includin
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

; Instruction code
Addressin
mode 9 Mnem. | Operands sthigsf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XORC | #xx:8,CCR| 0 } 5 IMM 2

116

"Z UO11085 39S *(PIOM L0 ONIISUT BU JO 9 110) g 1XBU U3 Ul paleueie 1P

ae foU L *(piom uononisu1ay) Jo / 01 GT SHg) 81Ag pUOISS SUj O 11q) 3511 Pue 31AQ 1S11) SU) U1 SUOTIINIISUL AOIA O} [EINUSP! 81 SUONINASUI 3d LAOIN PUe Sd4AOWBUL «

NOW

aNVv

40X

40

Xdans

dINO

xXaav

aav

aTig_—Janvig_— [Hoxia_— [doid
uononJisul uo e ndivew 19 7>o_>_n_m_m_§ & NOW x a18 anval_—doxg_— dog

ISE 1S19 | 47109 | 1ONgG | 13S9
*NOIN sq

oS 7 dINC 314 dS9 | S1d NXAIQ NXTNIN

378 | 199 | 118 | 398 | IN@ | d8 | SAS | OAd | 038 | 3Ng | SO8 | 008 | S8 | IHE | Nda | wig

MON

3N 4104 dVHS TVHS
Sva | xans dwo | sans | o3a ans 93N {on| ANV | HOX | dO 108, o s | s

Old | N T OO~ O |/ MmO |O0|WiLw

vva | Xaav NOW 7mn_n_< ONI aav 2d7T |[OdNV | 240X | 24O odan OIS |d331S | dON

4 | 3 | al o | a9 | v | 6 | 8 | 2 | 9 | s | v | e | z |1 0 [a<l

de |\ apoD uolreodO

TSI (p10Mm uoONIISUL ISI1Y JO / 11G) 2 91AQ JO 11g 1S11J UBYM UOIONIISU| T
.'0..S! (PJom uonoNIISUL 1811 JO / 110) 2 91AQ JO 110 1S11J USYM UOoNJISU| P

*(pJom uononsul
1s114343 JO / 11q) 814q puodss a3 J 11q IS11) 33 AQ paTe US4} IP 9 SUOTONIISU1 853 | 'S3YAd 18114 [d1uapul 9/ey suoonJisul jo sited swos

*(pJom uononsul
1s11}8Y} JO 8 01 GT S1I0) 8POD UONONISUI BY} JO 814 18114 8} U pBU IRIU0D SSP0J Uoieedo ay) Jo dew e s| Xipuadde siy) ul a|qelay L

de |\ apo)D uoirRedD "V Xipuaddy

117

Appendix. B Instruction Set List

Addressing mode/
instruction length

Q + Condition code
M nemonic o Operation Cl&|o|C 8
g 3 <5 %
T o o922 8 8 -
<3 $lclz|2|T 82|02 ©
o £|&|e|5|o|6l@|e|E|! |[H|N|Z|V|C|S
MOV.B #xx:8,Rd B | #xx:8—Rd8 2 -1t[1[o[-|2
MOV.B RsRd B | Rs8—Rd8 2 it lo[=2
MOV.B @Rs,Rd B | @Rs16—Rd8 2 -1t]o]|-]|4
MOV.B @(d:16,R),Rd | B | @(d:16,Rs16)—~Rd8 4 - 1[1][o]-|6
MOV.B @Rs+,Rd B | @Rs16 —Rd8 2 11 lol=6
Rsl6+1—Rsl6
MOV.B @aa:8,Rd B| @aa:8—Rd8 2 -1tl{1]o[-]4
MOV.B @aa:16,Rd B| @aa:16—Rd8 4 -11]tlo]-1|6
MOV.B Rs,@Rd B| Rs8—@Rd16 2 -11]110|-]4
MOV.B Rs,@(d:16,Rd) | B | Rs8—@(d:16,Rd16) 4 -11lt]o|-1|6
MOV.B Rs,@-Rd B | Rd16-1—Rd16 2 -111t]o|-1|6
Rs8— @Rd16
MOV.B Rs,@aa:8 B| Rs8—@aa:8 2 -(1|1|0|-|4
MOV.B Rs,@aa: 16 B| Rs8— @aa: 16 4 -11]tlo]-1|6
MOV.W #xx:16,Rd W | #xx:16 —Rd 4 -11{tlol-|4
MOV.W Rs,Rd W | Rs16—Rd16 2 -1tl1]o[-]2
MOV.W @RsRd W | @Rs16—Rd16 2 -1tl1]o|-|4
MOV.W @(d:16,Rs),Rd | W | @(d:16,Rs16) —~Rd16 4 -1111]o]|-1]6
MOV.W @Rs+,Rd W | @Rs16—Rd16 2 -1t |o|-1|6
Rs16+2— Rsl6
MOVW @aa:16Rd |W | @aa:16—Rd16 4 -[1]tlol-|6
MOV.W Rs,@Rd W| Rsl6— @Rd16 2 -11]tlol-]4
MOV.W Rs,@(d:16,Rd) | W | Rs16— @(d:16,Rd16) 4 -11l1]ol-1]6
MOV.W Rs@-Rd W| Rsl6-2—Rd16 2 -1111]o]|-1]6
Rs16— @Rd16
MOVW Rs@aa:16 |W| Rsl6— @aa:16 4 - Tlol-]6
POPRd W/| @SP—Rd16 2 -11]t]o|-|6
SP+2—~SP
PUSH Rs W | SP-2—SP 2 -t |o|-1|6
Rs16— @SP
MOVFPE @aa:16,Rd | B | @aa:16—Rd (Synchroniza- 4 =111 lo]-1®
ion with E
clock)
MOVTPE Rs,@aa;16 |B | Rs— @aa:16 %ﬁ%}gﬁn&z& 4 -111110|-1®
Clocl

118

Addressing mode/
instruction length

Q |+ Condition code
M nemonic o Operation @ e g) o 9 %
& o IS 3
y P 5
o g&lo8ooBle|! [HIN|Z|V|c|g
ADD.B #xx:8,Rd B | Rd8+#xx:8—Rd8 2 -1ttt
ADD.B RsRd B | Rs8+Rd8—Rd8 2 -1t lt]2
ADD.W Rs,Rd W | Rs16+Rd16—Rd16 2 1ottt]2
ADDX.B #xx:8,Rd B | Rd8+#xx:8+C —Rd8 2 -1t lell|1]2
ADDX.B Rs,Rd B | Rd8+Rs8+C —Rd8 2 -1t lelt]t]2
ADDSW #1,Rd W | Rd16+1—Rd16 2 —=l-|-l-]-12
ADDSW #2,Rd W | Rd16+2—Rd16 2 -=l=-1-1-1-12
INC.BRd B | Rd8+1—~Rd8 2 — =13t -12
DAA.BRd B | Rd8 decimal adjust —Rd8 2 =11 l*|®|2
SUB.B RsRd B | Rd8-Rs8—Rd8 2 Lttt 2
SUB.W RsRd W | Rd16-Rs16 —Rd16 2 o111t 2
SUBX.B #xx:8,Rd B | Rd8—#xx:8-C —~Rd8 2 -1l tle|]2
SUBX.B RsRd B | Rd8-Rs8-C —~Rd8 2 -1l tle|1]1l2
SUBSW #1,Rd W | Rd16-1—Rd16 2 —=l=1=]=]-]2
SUBS.W #2,Rd W | Rd16-2 —~Rd16 2 __l=1=1=1=]2
DEC.BRd B | Rd8-1—Rd8 2 =111 11]-|2
DASB Rd B | Rd8 decimal adjust —Rd8 2 =¥t =12
NEG.B Rd B | 0-Rd —Rd 2 “[tltiiitltl2
CMPB #xx:8,Rd B | Rd8-+#xx:8 2 130ttt 2
CMPB RsRd B | Rd8-Rs8 2 -1ttt 2
CMPW RsRd W | Rd16-Rs16 2 oIt]2
MULXU.B RsRd B | Rd8xRs8—Rd16 2 _-l=1=1=1=114
DIVXU.B Rs,Rd B | Rd16+Rs8—Rd16 2 -l-l®elo|-|-|14

(RdH:remainder,RdL :quotient)

AND.B #xx:8,Rd B | Rd8 A#xx:8—Rd8 2 --t]1]o]|-]2
AND.B Rs,Rd B | Rd8 ARs3—Rd8 2 =111t]lo]l-|2
OR.B #xx:8,Rd B | Rd8v #xx:8—Rd8 2 -1={1ll]o]-]2
OR.B Rs,Rd B | Rd8v Rs8—Rd8 2 =15l]lol-|2
XOR.B #xx:8,Rd B | Rd8®#xx:8—Rd8 2 -[=11{t]o|-[2
XOR.B Rs,Rd B | Rd8®Rs8—Rd8 -1={t]flof-]2
NOT.BRd B | Rd—Rd 2 =15l]lol-|2

119

Addressing mode/
instruction length

Q + Condition code

M nemonic o Operation @ G g lo |G 8

g o s|@ g% g

o S DS g[8 5

& o ©

S Eé%@@é@%lHszcg

SHAL BRd g| CLLLITT[KO 2 AR
b7 bo

SHAR.BRd B| LLLITTITPC 2 “|- ot
b bo

SHLL B Rd g| CLIII[[[Tro | |2 =[] Tolt]2
b7 bo

SHLRBRd B| O-{[[[[T[]F[2 =|={oll |0l |2

ROTXL.B Rd B mo 2 (=111 oll]2
b7 bo

ROTXR.BRd B rD]]]]]]]*lj 2 R RE:

ROTLBRd : l@jjjjm 2 BEBERE

ROTR.B Rd B m. 2 ==t toll)2

BSET #xx:3,Rd B | (#xx:3 of Rd8) <1 2 -1-1-1-1-1-12

BSET #xx:3,@Rd B | (#xx:3 of @Rd16)-—1 4 —-l=]l=1=1=1-18

BSET #xx:3,@aa:8 B | (#xx:3 of @aa:8) 1 4 === |-1-|8

BSET Rn,Rd B | (Rn8of Rd8)—1 2 - =1=1=1=1=-12

BSET Rn,@Rd B | (Rn8 of @Rd16)«—1 4 === T=1-g

BSET Rn,@aa:8 B | (Rn8 of @aa:8)—1 4 Y I I

BCLR #xx:3,Rd B | (#xx:3 of Rd8)<—0 2 —|=1=l=1=1-1]2

BCLR #xx:3,@Rd B | (#xx:3 of @Rd16)—0 4 =T =1=T=1<]g

BCLR #xx:3,@aa:8 B | (#xx:3 of @aa:8)—0 4 —|-1=]=-]-1-18

BCLR Rn,Rd B | (Rn8of Rd8)«0 2 --1-l-1-1-12

BCLR Rn,@Rd B | (Rn8 of @Rd16)—0 4 “T=T=1=T=1<%

BCLR Rn,@aa:8 B | (Rn8 of @aa:8)—0 4 | =1=1=-1-1-1s8

BNOT #xx:3,Rd B | (#xx:3 of Rd8)—(#xx:3 of Rd8) 2 -1=1-1-1-1-12

BNOT #xx:3,@Rd B | (#xx:3 of @Rd16) (#xx:3 of @Rd16) 4 | -1-1=]-]-8

BNOT #xx:3,@aa:8 B | (#xx:3 of @aa:8)-— (#xx:3 of @aa:8) 4 I [) I

120

Addressing mode/
instruction length

g |+ Condition code
Mnemonic g Operation © e g) o 9 %
S B SIE®|s| g 7
z ¢l |E15|%|8IE|8 5
O g z|c|5|e|0[8|o|! [H|N|Z|V|Cc|e
BNOT Rn,Rd B | (Rn8 of Rd8)~—(Rn8 of Rds) 2 _=T=1=1=1-1]2
BNOT Rn,@Rd B | (Rn8 of @Rd16)<— (Rn8 of @Rd16) 4 —l=l=l=1=1=1]8
BNOT Rn,@aa:8 B | (Rn8of @aa:8)—(Rn8 of @aa:8) 4 - =1=1=1=|=18
BTST #xx:3,Rd B | (#xx:3 of Rd8)—Z 2 -l=1=l1|-1-|2
BTST #xx:3,@Rd B | (#xx:3 of @Rd16)—Z 4 -|=1-l1|-1-|6
BTST #xx:3,@aa:8 B | (#xx:3 of @aa:8)—~Z 4 Y [
BTST Rn,Rd B | (Rn8 of Rd8)—Z 2 -1=1=111-1-12
BTST Rn,@Rd B | (Rn8 of @Rd16)—Z 4 -1=1-11]-1-16
BTST Rn,@aa:8 B | (Rn8 of @aa:8)—Z 4 —|=1-11]-]-|6
BLD #xx:3,Rd B | (#xx:30f Rd8)—C 2 -=1-1-1-1112
BLD #xx:3,@Rd B | (#xx:3of @Rd16)—C 4 “T=-1-T-1-T11s
BLD #xx:3,@aa:8 B | (#xx:3 of @aa:8)—C 4 -1=1-1-1-/t116
BILD #xx:3,Rd B | (#xx:30f Rd8)—C 2 -1-1-1-1-1112
BILD #xx:3,@Rd B | (#xx:3of @Rd16)—C 4 -|-1-1-1-11]6
BILD #xx:3,@aa:8 B | (#xx:3 of @aa:8)—C 4 -1-1-1-1-111s
BST #xx:3,Rd B | C—(#xx:3 of Rd8) 2 —|==|=|=1=12
BST #xx:3,@Rd B | C—(#xx:3 of @Rd16) 4 —=T=T=1T=1=Ts
BST #xx:3,@aa:8 B | C—(#xx:30of @aa:8) 4 - -]==|=]-1]8
BIST #xx:3,Rd B | C— (#xx:3 of Rd8) 2 —=1=1=1=1=12
BIST #xx:3,@Rd B | C—(#xx:3 of @Rd16) 4 - =1-1-1-|-18
BIST #xx:3,@aa:8 B | C— (#xx:3 of @aa:8) 4 —-|=-]-1-]-1-18
BAND #xx:3,Rd B | C A(#xx:3 of Rd8)—C 2 -l=1-1-1-11]2
BAND #xx:3,@Rd B | CA(#xx:3 of @Rd16)—C 4 -|=1=1-1-11|6
BAND #xx:3,@aa:8 B | CA(#xx:3 of @aa:8)—C 4 -|=-{-{-|-|1]6
BIAND #xx:3,Rd B | CA(#xx:30of Rd8)—C 2 -1-1-1-1-1112
BIAND #xx:3,@Rd B | C A(#xx:3 of @Rd16)—C 4 -|=1=-1-1-11|6
BIAND #x:3,@aa:8 | B | CA#xx:3 of @aa:8)—C 4 ~-T-1-1-1116
BOR #xx:3,Rd B | Cv (#xx:3 of Rd8)—C 2 -=1-1-1-11]2
BOR #xx:3,@Rd B | Cv (#xx:3 of @Rd16)—C 4 -|1=1-1-1-l1|6
BOR #xx:3,@aa:8 B | Cv (#xx:3 of @aa:8)— 4 -|=1=|-|-11|6
BIOR #xx:3,Rd B | Cv (#xx:3 of Rd8)—~C 2 —-1=1=-1-1-11]2

121

Addressing mode/
instruction length

g |+ Condition code
Mnemonic g Operation © £ g) o 9 %
8 = G| (D |5 17
2 PP 5
O g z|c|5|e|0[8|o|! [H|N|Z|V|Cc|e
BIOR #xx:3,@Rd B | Cv(#xx:3 of @Rd16) —~C 4 -1=1-1-1-1t1]6
BIOR #xx:3,@aa:8 B | Cv(#xx:3 of @aa:8)—C 4 ~I=1-1-T-1t1s
BXOR #xx:3,Rd B | C(#xx:3 of Rd8) —C 2 === 1-1112
BXOR #xx:3,@Rd B | Ca(#xx:3 of @Rd16) —C 4 -|-1-|-1-11]6
BXOR #xx:3,@aa:8 B | Co(#xx:3 of @aa:8) —C 4 —-|=1=1=1=11!6
BIXOR #xx:3,Rd B | Ca(#xx:3 of Rd8)—~C 2 -1=1-1-1-1t]2
BIXOR#0:3@Rd | B | Ca#xc3 of @Rd16)—C 4 --1-1-1-]1]6
BIXOR #xx:3,@aa:8 |B | Ca(#xx:3of @aa:8)—~C 4 —1=T=1T=1-111%
BRA d:8 (BTd:8) — | PC~—PC+d:8 2 -|=|=-|-1-1-14
BRN d:8 (BFd:8) - | PC—PC+2 2 —=1=|=|-1-14
BHI d:8 — | if truethen Cvz=0 2 -|=l=-1-|-1-14
BLSd:8 - | PC<PC+d:8|Cvz=1 2 —=|-|-|-|-]4
BCC d:8(BHSd:8) — | elsenext C=0 2 —l=l=|=l=|=]2
BCSd:8(BLO d:8) - Cc=1 2 —|-|=|=|=|=|4
BNE d:8 - Z=0 2 [-|-1-|-1-1-14
BEQ d:8 - 7=1 2 | =l=]=]=|=]4
BvCd:8 - V=0 2 | —l=]=]=]=]24
BVSd:8 - V=1 2 —|=1=1=1=1-14
BPL d:8 - N=0 2 —|-|=|=|=1=|4
BMI d:8 - N=1 2 | =l=1=1=]1=]4
BGE d:8 - NeV=0 2 -|=-1-1-1-]1-4
BLT d:8 - Nav=1 2 - =1=-1=-1-1-]4
BGT d:8 - Z V(NaV)=0 2 —=l=]=1=1-|24
BLE d:8 - Z v(Nav)=1 2 - =l-|-]1-]-14
JMP @Rn — | PC—Rn16 2 _=T=T=1=1-]4
JMP @aa: 16 — | PC—aa:16 4 —|=|l=-]1-|-]1-16
JMP @@aa:8 - | PC—@aa:8 2= =|-|=|-|-]8
BSR - | sP2—-sp 21 (=1 =[=1==1<]%
PC— @SP
PC-—PC+d:8
JSR @Rn - | sP2—sp 2 I===1=[=16
PC— @SP
PC-—Rnl16

122

Addressing mode/
instruction length
Q n Condition code
. . . =|c —
M nemonic g Operation © é %) o 8 %
S o SIS ||| B %
1 AT - i
>< N N—r .
o fElolglelol®|e|E|! [H|N|Z|V|c|S
JSR @aa: 16 -| SP2—SP 4 —=|l=1=1=-]1-18
PC— @SP
PC—aa 16
JSR @@aa:8 - | SP2—SP 2 -1=l-|-|-|-18
PC— @SP
PC— @aa:8
RTS - | PC—@SP 2(-1-|-1-1-]-1]8
SP+2—SP
RTE - | CCR+ @SP 21010ttt]20
SP+2—SP
PC—@SP
SP+2—SP
SLEEP —| Transit to sleep mode. 2(-|-(-|-1-1-12
LDC #xx:8,CCR B| #xx:8—CCR 2 PLVLVLT T2
LDC Rs,CCR B| R88—CCR PISILlt]t]2
STC CCR,Rd B| CCR— Rd8 2 e e el el el el Y
ANDC #xx:8,CCR B | CCRA#xx:8—~CCR 2 (O A A O R A O+
ORC #xx:8,CCR B | CCRv#xx:8—CCR 2 RN R
XORC #xx:8,CCR B | CCR&#xx:8—CCR PILlsItltls]2
NOP - | PC—PC+2 2| -[-|-|-|-]-|2
EEPMOV — | if RALZ0 then S el e el el Bl
Repeat @R5— @R6
R5+1—R5
R6+1—R6
R4L-1—R4L
Until R4L=0
elsenext

Notes: The number of statesis the number of states required for execution when the instructions and its
operands are located in on-chip memory.

Set to "1" when thereisacarry or borrow from bit 11; otherwise cleared to "0."

If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to "0."
Setto"1" if decimal adjustment produces a carry; otherwise cleared to "0."

The number of statesis 4n+8 (n: initial value of R4L)

These instructions transfer datain synchronization with the E clock. The number of states varies
depending on the synchronization delay.

Set to"1" if the divisor is negative; otherwise cleared to "0."

Setto"1" if the divisor is zero; otherwise cleared to "0."

0O® 0 ®ee06

123

Appendix C. Number of Execution States

The tables in this appendix can be used to calculate the number of states required for
instruction execution. Table C-1 indicates the number of states required for each cycle
(instruction fetch, branch address read, stack operation, byte data access, word data acces
internal operation). Table C-2 indicates the number of cycles of each type occurring in eack
instruction. The total number of states required for execution of an instruction can be
calculated from these two tables as follows:

Execution states =4 S+ IXSI+ KX SK+ L xS L+ M xSM + N x SN

Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait stat
inserted in external memory access.

1. BSET #0, @'FFC7
From table C-2:
I=L=2, J=K=M=N=0
From table C-1:
S=8 8$=3
Number of states required for execution = @ + 2x 3 =22

2. JSR@@ 30
From table C-2:
=2, J=K=1, L=M=N=0
From table C-1:
S=9=XK=8
Number of states required for execution x 2+ 1x8 + 1x 8 = 32

124

Table C-1. Number of States Taken by Each Cycle in Instruction Execution

Execution Status Access Location

(instruction cycle) On-Chip Memory On-Chip Reg. Field External Memory
Instruction fetch s
Branch addressread JS 6 6 +2m
Stack operation IS 2
Byte data access LS 3 3+m
Word data access MS 6 6 +2m
Internal operation s 2

Notes: 1. m: Number of wait states inserted in access to external device.
2. The byte data access cycle to an external device by the MOVFPE and MOVTPI
instructions requires 9 to 16 states since it is synchronized with the E clock. Se
theHardware Manuafor timing details.

125

Table C-2. Number of Cycles in Each Instruction

Instruction

Mnemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

Word Data
Access

Internal
Operatio

)

J

K

L

M

N

ADD

ADD.B #xx:8, Rd
ADD.B Rs, Rd
ADD.W Rs, Rd

ADDS

ADDS.W #1/2, Rd

1

1
1
1

ADDX

ADDX.B #xx:8, Rd
ADDX.B Rs, Rd

AND

AND.B #xx:8, Rd
AND.B Rs, Rd

ANDC

ANDC #xx:8, CCR

BAND

BAND #xx:3, Rd
BAND #xx:3, @Rd
BAND #xx:3, @aa:8

Bcc

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8
BLS d:8
BCC d:8 (BHS d:8)
BCS d:8 (BLO d:8)
BNE d:8
BEQ d:8
BVvVC d:8
BVS d:8
BPL d:8
BMI d:8
BGE d:8
BLT d:8
BGT d:8
BLE d:8

1
1
1
1
1
1
2
2
2
2

2

N

NN

N DN O NN NN NN

BCLR

BCLR #xx:3, Rd
BCLR #xx:3, @Rd
BCLR #xx:3, @aa:8
BCLR Rn, Rd

L N I

126

=)

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch Addr. Read|Operation| Access Access| Operatio
| J K L M N

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2
BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1
BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1
BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1
BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2
BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1
BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1
BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2
BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1
BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

127

=)

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatio
I J K L M N
BSET BSET Rn, @aa:8 2 2
BSR BSR d:8 2 1
BST BST #xx:3, Rd 1
BST #xx:3, @Rd 2 2
BST #xx:3, @aa:8 2 2
BTST BTST #xx:3, Rd 1
BTST #xx:3, @Rd 2 1
BTST #xx:3, @aa:8 2 1
BTST Rn, Rd 1
BTST Rn, @Rd 2 1
BTST Rn, @aa:8 2 1
BXOR BXOR #xx:3, Rd 1
BXOR #xx:3, @Rd 2 1
BXOR #xx:3, @aa:8 2 1
CMP CMP. B #xx:8, Rd 1
CMP. B Rs, Rd 1
CMP.W Rs, Rd 1
DAA DAA.B Rd 1
DAS DAS.B Rd 1
DEC DEC.B Rd 1
DIVXU DIVXU.B Rs, Rd 1 6
EEPMOV | EEPMOV 2 2n+2
INC INC.B Rd 1
JMP JMP @Rn 2
JMP @aa:16 2 1
JMP @ @aa:8 2 1 1
JSR JSR @Rn 2 1
JSR @aa:16 2 1 1
JSR @@aa:8 2 1 1
LDC LDC #xx:8, CCR 1
LDC Rs, CCR 1
MOV MOV.B #xx:8, Rd 1
MOV.B Rs, Rd 1
MOV.B @Rs, Rd 1 1

128

=)

Instruction | Branch Stack |Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatio
I J K L M N
MOV MOV.B @(d:16, Rs), Rd 2 1
MOV.B @Rs+, Rd 1 1 1
MOV.B @aa:8, Rd 1 1
MOV.B @aa:16, Rd 2 1
MOV.B Rs, @Rd 1 1
MOV.B Rs, @(d:16, Rd 2 1
MOV.B Rs, @—Rd 1 1 1
MOV.B Rs, @aa:8 1 1
MOV.B Rs, @aa:16 2 1
MOV.W #xx:16, Rd 2
MOV.W Rs, Rd 1
MOV.W @Rs, Rd 1 1
MOV.W @(d:16, Rs), Rd 2 1
MOV.W @Rs+, Rd 1 1 1
MOV.W @aa:16, Rd 2 1
MOV.W Rs, @Rd 1 1
MOV.W Rs, @(d:16, Rd) 2 1
MOV.W Rs, @-Rd 1 1 1
MOV.W Rs, @aa:16 2 1
MOVFPE | MOVFPE @aa:16, Rd 2 Kl
MOVTPE | MOVTPE Rs, @aa:16 2 q
MULXU |MULXU.B Rs, Rd 1 6
NEG NEG.B Rd 1
NOP NOP 1
NOT NOT.B Rd 1
OR OR.B #xx:8, Rd 1
OR.B Rs, Rd 1
ORC ORC #xx:8, CCR 1
ROTL ROTL.B Rd 1
ROTR ROTR.B Rd 1
ROTXL ROTXL.B Rd 1
ROTXR ROTXR.B Rd 1
RTE RTE 2 2 1
RTS RTS 2 1 1

129

=)

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatio
I J K L M N

SHAL SHAL.B Rd 1
SHAR SHAR.B Rd 1
SHLL SHLL.B Rd 1
SHLR SHLR.B Rd 1
SLEEP SLEEP 1
STC STC CCR, Rd 1
SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1
SUBS SUBS.W #1/2, Rd 1
SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1
XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1
XORC XORC #xx:8, CCR 1
Notes:
*1 n: Initial value in R4L. The source and destination operands are accessed n + 1 time:

each.

*2 Data access requires 9 to 16 states.

130

H8/300 Programming Manual
Publication Date: 1st Edition, December 1989

Published by: Business Planning Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1989. All ghts reserved. Printed inphn.

	Cover
	Cautions
	Preface
	Contents
	Section 1. CPU
	1.1 General CPU Architecture
	1.1.1 Features
	1.1.2 Data Structure
	1.1.3 Address Space

	1.2 Registers
	1.2.1 General Registers
	1.2.2 Control Registers
	1.2.3 Initial Register Values

	1.3 Instructions
	1.3.1 Types of Instructions
	1.3.2 Instruction Functions
	1.3.3 Machine-Language Coding
	1.3.4 Addressing Modes and Effective Address Calculation

	Section 2. Instruction Set
	ADD (ADD binary) (byte)
	ADD (ADD binary) (word)
	ADDS (ADD with Sign extension)
	ADDX (ADD with eXtend carry)
	AND (AND logical)
	ANDC (AND Control register)
	BAND (Bit AND)
	Bcc (Branch conditionally)
	BCLR (Bit CLeaR)
	BIAND (Bit Invert AND)
	BILD (Bit Invert LoaD)
	BIOR (Bit Invert OR)
	BIST (Bit Invert STore)
	BIXOR (Bit Invert eXclusive OR)
	BLD (Bit LoaD)
	BNOT (Bit NOT)
	BOR (Bit inclusive OR)
	BSET (Bit SET)
	BSR (Branch to SubRoutine)
	BST (Bit STore)
	BTST (Bit TeST)
	BXOR (Bit eXclusive OR)
	CMP (CoMPare) (byte)
	CMP (CoMPare) (word)
	DAA (Decimal Adjust Add)
	DAS (Decimal Adjust Subtract)
	DEC (DECrement)
	DIVXU (DIVide eXtend as Unsigned)
	EEPMOV (MOVe data to EEPROM)
	INC (INCrement)
	JMP (JuMP)
	JSR (Jump to SubRoutine)
	LDC (LoaD to Control register)
	MOV (MOVe data) (byte)
	MOV (MOVe data) (word)
	MOV (MOVe data) (byte)
	MOV (MOVe data) (byte)
	MOV (MOVe data) (word)
	MOVFPE (MOVe data From Peripheral with E clock)
	MOVTPE (MOVe data To Peripheral with E clock)
	MULXU (MULtiply eXtend as Unsigned)
	NEG (NEGate)
	NOP (No OPeration)
	NOT (NOT = logical complement)
	OR (inclusive OR logical)
	ORC (inclusive OR Control register)
	POP (POP data)
	PUSH (PUSH data)
	ROTL (ROTate Left)
	ROTR (ROTate Right)
	ROTXL (ROTate with eXtend carry Left)
	ROTXR (ROTate with eXtend carry Right)
	RTE (ReTurn from Exception)
	RTS (ReTurn from Subroutine)
	SHAL (SHift Arithmetic Left) ﾙ
	SHAR (SHift Arithmetic Right)
	SHLL (SHift Logical Left) ﾙ
	SHLR (SHift Logical Right)
	SLEEP (SLEEP)
	STC (STore from Control register)
	SUB (SUBtract binary) (byte)
	SUB (SUBtract binary) (word)
	SUBS (SUBtract with Sign extension)
	SUBX (SUBtract with eXtend carry)
	XOR (eXclusive OR logical)
	XORC (eXclusive OR Control register)

	Appendix A. Operation Code Map
	Appendix. B Instruction Set List
	Appendix C. Number of Execution States
	Colophon

