H8/500 Series

Programming Manual

Catalog No. ADE-602-021

Preface

The H8/500 Family of Hitachi-original microcontrollersis built around a 16-bit CPU core
that offers enhanced speed and alarge address space. The CPU has a highly orthogonal
general-register architecture and an optimized instruction set that efficiently executes
programs coded in C language.

This manual describes the H8/500 instructionsin detail, and is written for use with all chips
in the H8/500 Family. For information on assembly-language coding, see the H8/500
Series Cross Assembler User's Manual .

For details on chip hardware, see the hardware manual for the particular chip.

Section1l CPU

1.1 Overview

The H8/500 CPU is a high-speed central processing unit designed for realtime control. It can
be used as a CPU core in application-specific integrated circuits. Its Hitachi-original
architecture features eight 16-bit general registers, internal 16-bit data paths, and an optimized
instruction set.

Section 1 summarizes the CPU architecture and instruction set.

1.1.1 Features

The main features of the H8/500 CPU are listed below.

» Generd-register machine
— Eight 16-bit generd registers
— Seven control registers (two 16-hit registers, five 8-bit registers)
* High speed: maximum 10MHz
At 10MHz aregister-register add operation takes only 200ns.
» Address space managed in 64K-byte pages, expandable to 16M bytes*
Simultaneous control is provided of four pages. acode page, stack page, data page, and
extended page. Two address-space modes can be selected:
— Minimum mode: Maximum 64K -byte address space
— Maximum mode: Maximum 16M-byte address space*
» Highly orthogonal instruction set
Addressing modes and data sizes can be specified independently within each instruction.
* Optimized for efficient programming in C language
In addition to the general registers and orthogonal instruction set, the H8/500 CPU has
short two-byte formats for frequently-used instructions and addressing modes.

* The CPU architecture supports up to 16M bytes, but for specific chips the maximum
address space is restricted by the number of external address lines (example: maximum
1M byte for the H8/532).

1.1.2 Data Structures

The H8/500 can process 1-bit data, 4-bit BCD data, 8-bit (byte) data, 16-bit (word) data, and
32-bit (longword) data.

Bit manipulation instructions operate on 1-bit data. Decimal arithmetic instructions operate on
4-bit BCD data. Almost all datatransfer, shift, arithmetic, and logical operation instructions
operate on byte and word data. Multiply and divide instructions operate on longword data.

Table 1-1 lists the dataformats used in general registers. Table 1-2 lists the data formats used
in memory.

(1) General Register Data Formats

Table1-1 General Register Data Formats

Datatype Register No. Data structure
15
1-Bit Rn 15|14(13)12|11]10[9 (8|7 |6 |5|4[3 |2|1
4Bit 15 8 7 4 3 0
|
Rn Don't care Upper digit | Lower digit
BCD
15 8 7 0
Byte Rn Don't care MSB LSB
15 0
Word Rn MSB LSB
31 16
Rn* MSB Upper word
Rn+1* Lower word LSB
Longword 15 0

* For longword data n must be even (0, 2, 4, or 6).

(2) Data Formatsin Memory

Access to word datain memory must always begin at an even address. Accessto word data
starting at an odd address causes an address error.

Table 1-2 Data Formatsin Memory

Data type Data format
1-Bit ’.“’7 Oﬁ“’
(in byte operand) Address n 716]5([4]3([2]1
~ —~
1-Bit Even address 15|14|13 12|11 |10 9 8
(in word operand) Odd address 716543210
—~ —~
Byte Address n MSB LSB
* AY
Word Even address MSB Upper 8 bits
Odd address Lower 8 bits LSB
—~ —~
Bytein Even address Undefined data
stack Odd address MSB LSB
>~ P
Wordin Even address MSB Upper 8 bits
stack Odd address Lower 8 bits LSB
~C ~L
T T

Note: When the stack is accessed in exception processing, word access is always performed,
regardless of the actual datasize. Similarly, when the stack is accessed by an
instruction using the @—R7 or @R7+ addressing mode, word accessis performed
regardless of the operand size specified in the instruction. An address error will
therefore occur if the stack pointer indicates an odd address. Programs should be
constructed so that the stack pointer always indicates an even address.

1.1.3 Address Space

The CPU has two modes. a minimum mode which supports an address space of up to 64K
bytes, and a maximum mode which supports an address space of up to 16M bytes.

The mode is selected by input to the chip's mode pins. For details, see the H8 Hardware
Manual.

Supports program and data
regions totaling up to 64K bytes.

Minimum mode

CPU operating mode

Supports program and data
regions totaling up to 16M bytes.

Maximum mode

(1) Minimum Mode: Supports a maximum 64K -byte address space. The page register is
ignored. Branching instructions that cross page boundaries (PIMP, PJSR, PRTS, and
PRTD) areinvalid.

(2) Maximum Mode: The page register isvalid, supporting an address space of up to 16M
bytes. The address space is not continuous, but is divided into 64K-byte pages. When a
program crosses a page boundary, it must therefore use a page-crossing branching instruction
or an interrupt. (It isrecommended for a program to be contained in asingle page.) When
data access crosses a page boundary, the program must rewrite the page register before
accessing the data.

1.1.4 Register Configuration

Figure 1-2 shows the register structure of the CPU. There are two groups of registers. the
general registers (Rn) and the control registers (CR).

General registers (Rn)

15 0
RO
R1
R2
R3
R4
R5
R6 (FP)
R7 (SP)
Control registers (CR)
15 0
PC PC:
SR
A
— —
CCR
r % Y
15 8 7 0
SR
T ----1211l0| ----N2ZVC CCR:

EP

EP:

TP

TP:

BR

CP:
DP:

BR:

FP: Frame Pointer

SP: Stack Pointer

Program Counter

Status Register
Condition Code Register

Code Page register

Data Page register
Extended Page register
Stack Page register

Base Register

Figure 1-1 Registersin the CPU

1.2 Register Descriptions
1.2.1 General Registers

All eight of the 16-bit general registers are functionally aike; there is no distinction between
dataregisters and address registers. When these registers are accessed as data registers, either
byte or word size can be selected. R6 and R7, in addition to functioning as general registers,
have special assignments.

R7 isthe stack pointer, used implicitly in exception handling and subroutine calls. It isalso
used implicitly by the LDM and STM instructions, which load and store multiple registers
from/to the stack and pre-decrement or post-increment R7 accordingly.

R6 functions as aframe pointer. High-level language compilers use R6 when they use
instructions such as LINK and UNLK to reserve or release a stack frame.

v v A

Unused area

SP - r'y

Stack area

Figure 1-2 Stack Pointer (SP)
1.2.2 Control Registers
The control registers (CR) include a 16-bit program counter (PC), a 16-bit status register (SR)

containing an 8-bit condition code register (CCR), four 8-bit page registers, and one 8-bit base
register (BR).

The page registers are used only in the maximum mode. They are ignored in the minimum
mode.

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction
the CPU will execute.

(2) StatusRegister/Condition Code Register (SR/CCR): This 16-bit register indicates the
internal state of the CPU. The lower half of the status register is referred to as the condition
code register (CCR): its 8 bits can be accessed as a 1-byte condition code.

SR
A
— —~
CCR
r A N\
151413121110 9 8 7 6 5 4 3 2 1 0
T =[=[==[t2[r2flo-|=|=|=[N[z][|V]C

Bit 15—Trace (T): Whenthishitissetto"1," the CPU operates in trace mode and generates
atrace exception after every instruction. When thisbit is cleared to "0" instructions are
executed in normal continuous sequence. Thisbitisclearedto 0" at areset.

Bits 14 to 11—Reserved: These bits cannot be written, and when read, are dwaysread as
"0."

Bits 10 to 8—Interrupt mask (I2tolo): These bitsindicate the interrupt request mask
level (0to 7). Asshownin 3, an interrupt request is not accepted unless it has a higher level
than the value of the mask. A nonmaskable interrupt (NMI), which hasleve 8, isaways
accepted, regardless of the mask level.

4 indicates the values of the | bits after an interrupt is accepted. When an interrupt is accepted,
the value of bits2to lo israised to the same level asthe interrupt, to prevent afurther interrupt

from being accepted unlessitslevel is higher.

A reset setsal three of bits (12, 11, and lo) to "1."

Table 1-3 Interrupt Mask Levels

Interrupt mask
Priority Leve 21110 I nterrupts accepted
High 7 111 NMI
A 6 110 Leve 7 and NMI
5 101 Levels6to 7 and NMI
4 100 Levels5to 7 and NMI
3 011 Levels4to 7 and NMI
2 010 Levels3to 7 and NMI
1 001 Levels2to 7 and NMI
Low 0 000 Levels1to 7 and NMI

Table 1-4 Interrupt Mask Bitsafter an Interrupt is Accepted

Level of interrupt accepted 1211 lo
NMI (8) 111
7 111
6 110
5 101
4 100
3 011
2 010
1 001

Bits 7 to 4—Reserved: These bits cannot be written, and when read, are always read as"0."

Bit 3—Negative (N): Thisbit indicates the most significant bit (sign bit) of the result of an
instruction.

Bit 2—Zero (Z): Thishitissetto"1" toindicate azero result and cleared to "0" to indicate a
nonzero result.

Bit 1—Overflow (V): Thishbitissetto"1" when an arithmetic overflow occurs, and cleared
to"0" at other times.

Bit 0—Carry (C): Thishitissetto"1" when acarry or borrow occurs at the most
significant bit, and is cleared to "0" (or left unchanged) at other times.

The specific changes that occur in the condition code bits when each instruction is executed are
detailed in the instruction descriptionsin Section 2.2.1 and listed in Tables 2-7 (1) to (4) in
Section 2.5, "Condition Code Changes."

(3) Code Page Register (CP): The code page register and the program counter combine to
generate a 24-bit program code address, thereby expanding the program area. The code page
register contains the upper 8 bits of the 24-bit address.

In the maximum mode, both the code page register and program counter are saved and
restored in exception handling, and a new code page value is loaded from the exception vector
table.

(4) Data Page Register (DP): The data page register combines with genera registers RO to
R3 to generate a 24-bit effective address, thereby expanding the dataarea. The data page
register contains the upper 8 bits of the 24-bit effective address. The data page register is used
to calculate effective addresses in the register indirect addressing mode using RO to R3, and in
the 16-bit absolute addressing mode (@aa: 16).

(5 Extended Page Register (EP): The extended page register combines with general
register R4 or R5 to generate a 24-bit effective address, thereby expanding the dataarea. The
extended page register contains the upper 8 bits of the 24-bit address. It is used to calculate
effective addresses in the register indirect addressing mode using R4 or R5.

(6) Stack Page Register (TP): The stack page register combines with R6 (Frame pointer)
or R7 (Stack pointer) to generate a 24-bit stack address, thereby expanding the stack area. The
stack page register contains the upper 8 bits of the 24-bit stack address. It isused to calculate
effective addresses in the register indirect addressing mode using R6 or R7.

Page register PC or general register

8 Bits 16 Bits
<< > < >
CcP PC
(RO
R1
DP < R2
R3
g @aa:16
R4
EP
R5
R6
TP
R7
<< >

24 Bits (effective address)

Figure 1-3 Combinations of Page Registersand PC or General Registers

(7) BaseRegister (BR): Thisregister stores the base address used in the short absolute
addressing mode (@aa:8). In the short absolute addressing mode a 16-bit operand addressis
generated by using the contents of the base register as the upper 8 bits and the address given in the
instruction code as the lower 8 bits. The page is always page 0 in the short absolute addressing
mode.

< 8 Bits > < 8 Bits

BR @aa:8

16 Bits (effective address)

Figure1-4 Base Register

1.2.3 Initial Register Values

When the CPU isreset, itsinternal registers are initialized as shown in Table 1-5.

Table 1-5 Initial Values of CPU Registers

I nitial value

Register Minimum mode Maximum mode
General registers
15 0
RO —R7 Undetermined Undetermined
Control registers
15 0
o0 Loaded from Loaded from
vector table vector table
SR
— — = —
CCR
~ % ~
15 8 7 0 H'070* (N, H'070 = (N,
2 190 c undetermined) undetermined)
7 0
CP Undetermined b&?g??;gﬁem
7 0
DP Undetermined Undetermined
7 0
EP Undetermined Undetermined
7 0
TP Undetermined Undetermined
7 0
BR Undetermined Undetermined

1.3 Instruction Set

The main features of the CPU instruction set are:

* A generd-register architecture.

» Orthogonality. Addressing modes and data sizes can be specified independently in each
instruction.

* 15-typeaddressing (register-register and register-memory operations)

» Affinity for high-level languages, particularly C.

» Short formats for frequently-used instructions and addressing modes.

1.3.1 Typesof Instructions

The CPU instruction set includes 63 types of instructions, listed by function in Table 1-6. Detailed
descriptions are given starting in Section 2.2.1.

Table1-6 Instruction Classification

Functionl nstructions Types

Datatransfer MOV, LDM STM XCH, SWAP, MIWTPE, MOVFPE 7
Arithmetic operations ADD, SUB, ADDS, SUBS, ADDX, SUBX, DADD, DSUB,
MULXU, DI VXU, CWP, EXTS, EXTU, TST, NEG CLR, 17

TAS
Logic operations AND, OR, XOR, NOT 4
Shift SHAL, SHAR SHLL, SHLR ROIL, ROIR, ROTXL, 8

ROTXR
Bit manipulation BSET, BCLR, BTST, BNOT 4
Branch Bcc*, JMP, PIJMP, BSR, JSR PJSR RTS, PRTS,

RTD, PRTD, SCB (/F, /NE, /EQ 11
System control TRAPA, TRAP/ VS, RTE, SLEEP, LDC, STC, ANDC,

ORC, XORC, NOP, LINK, UNLK 12

Totd 63
*: Bcc isthe generic name of the conditional branch instructions.

1.3.2 Instructions Listed by Function

Tables 1-7 (1) to (6) give aconcise summary of the instructions in each functional category. The
notation used in these tables is listed below.

Operation Notation

Rd General register (destination)
Rs Genera register (source)
Rn General register

(EAd) Destination operand
(EAS) Source operand

CCR Condition code register
N N (negative) bit of CCR

Z Z (zero) bit of CCR
Vv V (overflow) bit of CCR
C C (carry) bit of CCR
CR Control register

PC Program counter

CP Code page register
SP Stack pointer

FP Frame pointer

#HMM Immediate data

disp Displacement

+ Addition

- Subtraction

X Multiplication

+ Division

O AND logica

O ORlogica

0 Exclusve OR logica
- Move

o Exchange

- Not

Table 1-7 Instructions Listed by Function (1)

I nstruction Size*2 Function
Daa MOV (EA9) - (EAd), #IMM - (EAd)
transfer MOV:G B/W Moves data between two general registers, or between
MOV:E B ageneral register and memory, or moves immediate
MOV: | wW to ageneral register or memory.
MOV:F B/'W
MOV:L B/'W
MV:S B/'W
LDM W Stack — Rn (register list)
Pops data from the stack to one or more registers.
ST™M W Rn (register list) — stack
Pushes data from one or more registers onto the stack.
XCH W Rs - Rd
Exchanges data between two general registers.
SWAP B Rd (upper byte) ~ Rd (lower byte)
Exchanges the upper and lower bytesin a general register.
MOVTPE'l B Rn - (EAd)
Transfers data from a general register to memory in
synchronization with the E clock.
MOVFPE'l B (EAs) - Rd

Transfers data from memory to ageneral register in
synchronization with the E clock.

*. B—byte; W—word

Notes:

*1 Do not use the MOV TPE and MOV FPE instructions with the H8/520, which has no E-clock

output pin.

*2 B: byte

W: word

Table 1-7 Instructions Listed by Function (2)

Instruction Size Function
Arithmetic ~ ADD Rd + (EAs) - Rd, (EAd) £ #iIMM - (EAd)
Operations [ADD: G B/I'W Performs addition or subtraction on datain two
ADD: Q B/W generd registersor agenera register and memory, or on
SUB B/ W immediate data and datain ageneral register or memory.
ADDS B/ W
SUBS B/ W
ADDX BIW Rdz(EAs)+C - Rd
SUBX B/ W Performs addition or subtraction with carry or borrow on
datain two general registers or ageneral register and memory,
or on immediate data and datain agenera register .
DADD B (Rd)10 £ (Rs)10 + C - (Rd)10
DSUB B Performs decimal addition or subtraction on datain
two general registers.
MULXU BfW Rdx(EAs) - Rd
Performs 8-bit x 8-bit or 16-bit x 16-bit unsigned
multiplication on datain ageneral register and data in another
genera register or memory, or on datain agenera register
and immediate data.
Dl VXU BIW Rd+(EAs) - Rd
Performs 16-bit + 8-bit or 32-bit + 16-bit unsigned
divison on datain ageneral register and datain another
genera register or memory, or on datain agenera register
and immediate data.
cwP Rd - (EAS), (EAd) —#MM
cw:. G B'W Compares datain ageneral register with datain
CW.E B another general register or memory, or with immediate
CVP: | W data, or compares immediate data with datain memory.
EXTS B (<bit 7> of <Rd>) - (<hits 15 to 8> of <Rd>)

Converts byte datain a general register to word data by
extending the sign bit.

Table 1-7 Instructions Listed by Function (3)

I nstruction

Size

Function

Arithmetic
operations

EXTU

B

0 - (<bits 15to 8> of <Rd>)
Converts byte datain a general register to word data by
padding with zero bits.

TST

B/ W

(EAd) -0
Compares general register or memory contents with O.

NEG

B/ W

0-(EAd) - (EAd)
Obtains the two's complement of general register or
memory contents.

CLR

B/ W

0 - (EAd)
Clears general register or memory contentsto O.

TAS

(EAd) -0, ()2 - (<bit 7> of <EAd>)
Tests general register or memory contents, then setsthe
most significant bit (bit 7) to"1."

Logica
operations

AND

B/ W

Rd O (EAs) - Rd
Performs alogical AND operation on a genera register
and another general register, memory, or immediate data.

B/ W

Rd O (EAs) - Rd
Performs alogical OR operation on ageneral register
and another general register, memory, or immediate data.

XCR

B/ W

RdO (EAs) - Rd

Performs alogical exclusive OR operation on ageneral
register and another general register, memory, or immediate
data.

B/ W

-(EAd) - (EAd)
Obtains the one's complement of general register or
memory contents.

Table 1-7 Instructions Listed by Function (4)

Instruction Size Function
Shift SHAL B/W (EAd) shift — (EAd)
operations SHAR B/ W Performs an arithmetic shift operation on general register
or memory contents.
SHLL B/W (EAd) shift — (EAd)
SHLR B/ W Performs alogical shift operation on general register or
memory contents.
ROTL B/W (EAd) rotate - (EAd)
ROTR B/ W Rotates general register or memory contents.
ROTXL B/W (EAd) rotate with carry — (EAd)
ROTXR B/ W Rotates general register or memory contents through the C
(carry) hit.
Bit BSET B/W =(<bit-No.> of <EAd>) - Z,
manipulations 1 - (<bit-No.> of <EAd>)

Tests aspecified bit in ageneral register or memory, then
setsthebitto "1." The bit is specified by a bit-number given
inimmediate data or agenera register.

BCLR B/W =(<bit-No.> of <EAd>) - Z,
0 - (<bit-No.> of <EAd>)

Tests a specified bit in ageneral register or memory, then
clearsthe bit to "0." Thebit is specified by a bit-number
given in immediate data or agenera register.

BNOT B/ W =(<bit-No.> of <EAd>) - Z,
- (<bit-No.> of <EAd>)

Tests aspecified bit in ageneral register or memory, then
invertsthe bit. The bit is specified by abit-number givenin
immediate data or ageneral register.

BTST B/W =(<bit-No.> of <EAd>) - Z,

Tests a specified bit in ageneral register or memory. The
bit is specified by abit-number given in immediate dataor a
general register.

Table 1-7 Instructions Listed by Function (5)

Instruction Size Function
Branch Bcc — Branchesif condition istrue.
Mnemonic Description Condition
BRA (BT) Always (true) True
BRN (BF) Never (false) False
BHI High cadz=0
BLS Low or Same chz=1
BCC (BHS) Carry Clear C=0
(High or Same)

BCS (BLO Carry Set (Low) Cc=1
BNE Not Equal Z=0
BEQ Equal Z=1
BVC Overflow Clear V=0
BVS Overflow Set V=1
BPL Plus N=0
BM Minus N=1
BCGE Greater or Equal NOV=0
BLT Less Than NOV=1
BGI Greater Than ZOINDOV)=0
BLE Lessor Equa ZONNOV)=1
(O = Logic OR)

JMWP — Branches unconditionally to a specified addressin the same
page.

PJIMP — Branches unconditionally to a specified addressin a specified
page.

BSR — Branches to a subroutine at a specified address in the same
page.

JSR — Branches to a subroutine at a specified address in the same
page.

PJSR — Branches to a subroutine at a specified address in a specified
page.

RTS — Returns from a subroutine in the same page.

Table 1-7 Instructions Listed by Function (6)

I nstruction Size Function
Branch PRTS — Returns from a subroutine in a different page.
RTD — Returns from a subroutine in the same page and adjusts
the stack pointer.
PRTD — Returns from a subroutine in a different page and adjusts
the stack pointer.
SCB/ F — Controls aloop using aloop counter and/or a specified.
SCB/ NE — CCR termination condition.
SCBIEQ —
System TRAPA — Generates a trap exception with a specified vector
control number.
TRAP/ VS — Generates atrap exception if the V bit is set when the
instruction is executed.
RTE — Returns from an exception-handling routine.
LI NK — FP - @-SP, SP - FP, SP+# MM - SP
Creates a stack frame.
UNLK — FP - SP, @SP+ - FP
Deallocates a stack frame created by the LINK
instruction.
SLEEP — Causes atransition to the power-down state.
LDC B/ W (EAs) - CR
Movesimmediate data or generd register or memory
contents to a specified control register.
STC B/ W CR - (EAd)
Moves control register datato a specified general register
or memory location.
ANDC B/ W CRO#MM - CR
Logically ANDs a control register with immediate data.
ORC B/ W CR O# MM - CR
Logicaly ORs acontrol register with immediate data.
XCORC B/ W CR O#MM - CR
Logicaly exclusve-ORs a control register with immediate
data.
NOP — PC+1 - PC

No operation. Only increments the program counter.

* The size depends on the control register.

1.3.3 Short Format I nstructions

The ADD, CMP, and MOV instructions have special short formats. Table 1-8 lists these short
formats together with the equivalent general formats.

The short formats are a byte shorter than the corresponding general formats, and most of them
execute one state faster.

Table 1-8 Short-Format Instructions and Equivalent General Formats

Short-format Execution Equivalent general- Execution
instruction Length states*2 format instruction Length states*2
ADD: Q #xx,Rd *1 2 2 ADD: G #xx: 8, Rd 3 3
CWP:. E #xx:8,Rd 2 2 CwP:. G B #xx: 8, Rd 3 3
QWP | #xx: 16, Rd 3 3 CWP. G W#xx:16,Rd 4 4
MOV: E #xx: 8, Rd 2 2 MOV: G B #xx: 8, Rd 3 3
MOV: | #xx:16, Rd 3 3 MOV: G W#xx:16,Rd 4 4
MOV: L @a: 8, Rd 2 5 MOV: G @a: 8, Rd 3 5
MOV: S Rs, @a: 8 2 5 MOV: G Rs, @a: 8 3 5
MWV F @d: 8, R6),Rd 2 5 MV:G @d: 8, R6),Rd 3 5
MV:F Rs, @d: 8, R6) 2 5 MWV:G Rs, @d: 8, R6) 3 5

Notes:

*1 The ADD:Q instruction accepts other destination operandsin addition to agenera register, but
the immediate data value (#xx) islimited to £1 or +2.

*2 Number of execution states for access to on-chip memory. For the H8/510, the number of
execution states for general register access.

1.3.4 Basic Instruction Formats
There are two basic CPU instruction formats: the general format and the special format.
(1) General format: Thisformat consists of an effective address (EA) field, an effective address

extension field, and an operation code (OP) field. It isused in arithmetic instructions and other
general instructions.

 Effective addressfield: One byte containing information used to calculate the effective
address of an operand.

 Effective address extension: Zero to two bytes containing a displacement value, immediate data,
or an absolute address.

» Operation code: Defines the operation to be carried out on the operand located at the
address calculated from the effective addressinformation. Each
instruction has a unique operation code.

Fetch direction ————p»

Effective address Effective address extension Operation code

Note: Some instructions (DADD, DSUB, MOV FPE, MOV TPE) have an extended format in which
the operand code is preceded by a one-byte prefix code.

(Example: MOV TPE ingtruction)

Prefix code Operation code

A A

/e N\ N\
Effective address 00 00O OOO2 OO1TO0TTT'T

rrr. General register No.

(2) Special format: In thisformat the operation code comesfirst, followed by the effective
address field and effective address extension. Thisformat is used in branching instructions, system
control instructions, and other instructions that can be executed faster if the operation to be
performed on the operand is specified first.

* Operationcode: One or two bytes defining the operation to be performed by the instruction.

» Effective addressfield and effective address extension: Zero to three bytes containing
information used to cal culate the effective address of an operand.

Fetch direction ——
Operation code Effective address Effective address extension

1.3.5 Addressing Modes and Effective Address Calculation
The CPU supports the seven addressing modes listed in Table 1-9 below. Dueto the highly
orthogonal nature of the instruction set, most instructions having operands can use any applicable
addressing mode from 1 through 6. Mode 7 is used by branching instructions.

Table 1-9 explains how the effective address (EA) is calculated in each addressing mode.

Table 1-9 Addressing Modes

No. Addressingmode Mnemonic Effective Addressand Extension Bytes
1 Register direct Rn [1010Szrrr |*L72 1
Register indirect @Rn [1101Szrrr | 1
Registerindirect ~ @(d:8,Rn) [1110Szrrr | disp | 2
with displacement @(d:16,Rn) [1111Szrrr | dispH) | disp) | 3
4 Regigerindirect ~ @-Rn [1011Szrr1 | 1
with pre-decrement
Register indirect ~~ @Rn+ [1100Szrrr | 1
with post-increment
5 Absolute address*3 @aa8 [0o00sz101| addr) | 2
@aa16 |0001Sz10a| addr(H) [addr() | 3
6 Immediae #xX:8 00000100 data 2
#xx:16 00001100 | daa(H) data() | 3
7 PC-relative disp Effective addressinformation is lor2

specified in the operation code.

otes:
*1 Sz: Operand size
Sz =0: byte operand
Sz = 1: word operand
*2 rrr (register number field): General register number
000: RO 001: R1 010: R2 011: R3
100: R4 101: R5 110: R6 111: R7Y
*3 The @aa:8 addressing mode may be referred to as the short absol ute addressing mode.

Table 1-10 Effective Address Calculation (1)

Effective address
No. Addressingmode calculation Effective address
1 Register direct None Operand is contents of Rn.

Rn

2 Regiger indirect None 23 15 0
@Rn [DP/TPIEP™ | Rn |

*2

3 Regiger indirect
with displacement

@(d:8,Rn) 8 hit
111052 15 23 15 0
| Rn contents 3, [oprreEp] Result |
*2 |
15
[disp (sign extention) |j
@(d:16,Rn) 16 bit
11118z 15 23 15 0
I Rn contents hh [DPTPIEP*1] Result |
*2 |
15
I disp Ij
4 [0 Regigterindirect 15 23 15 0
with pre-decrement | Rn contents I_h [DP/TP/EP*1] Result |
L 2 [

@-Rn 15
| Lor? =

Rn is decremented by —1 or —2 before instruction execution. *3: *4, *5

l . Registgr indirect None 23 15 0
with post-increment [DPITP/EP*1] RN |
@Rn+ "2
110052 Rnisincremented by +1 or +2 after instruction execution. *3, *4, *5
5 Absolute address None 23 15 0
@aa8 [Hoo [BR | |
0001Sz|101 EA@(tmgondataD
@aa16 None 23 15 0

Table 1-10 Effective Address Calculation (2)

Effective address

No. Addressingmode calculation Effective address
6 Immediate None Operand is 1-byte
#xx:8 EA extension data.
16 None Operandis2-byte
EA extension data
7 PC-relative 8 Bits
d:8 15 23 15 0
| PC Ij [cp1 | Result |
i
15
I Ij
:
Displacement (sign extension)
&6 16Bits
15 23 15 0

| PC I_[h [cPl | Result |

15 % !
| disp
Notes:

1. The page register isignored in the minimum mode.
2. Inaddressing modes No. 2, 3, and 4, the page register is as follows:
DP for register-indirect addressing with RO, R1, R2, or R3.
EP for register-indirect addressing with R4 or R5.
TP for register indirect addressing with R6 or R7.
3. Increment (Decrement) by 1 for a byte operand, and by 2 for aword operand.
4. Inaddressing mode No. 4 (register indirect with pre-decrement or post-increment), when register

R7 is specified the increment or decrement is aways £2, even when operand sizeis 1 byte.
5. If SPissaved by @-SP addressing mode and poped by @SP+, the result will be asfollows.

SpPD

SpPD

MOV.W SP, @-SP

Old SP-2

after

SPD

after
MOV.W @SP+, SP

1.3.6 Register Specification
(1) General Register Specification: Genera registers are specified by athree-bit register

number contained in the instruction code. Another bit may be used to indicate whether a
register operand is abyte or word operand. See Table 1-11.

Table1-11 General Register Specification

EA: Effective address

EA field OPfied .
|****Szri fi ri|*****rj f] rj| OP: Operation code
Sz: Size (byte/lword)
ririri/rjrjrj; Genera register number
ririri/rjrjrj Sz=0 (Byte) Sz=1 (Word)

15 87 0 15 0
000 [Notused | RO | | RO |
001 [Notused | R1 | | R1 |
010 [Notused | R2 | | R2 |
011 [Notused | R3 | | R3 |
100 [Notused | R4 | | R4 |
101 [Notused | R5 | | R5 |
110 | Notused | R6 | | R6 |
111 [Notused | R7 | | R7 |

(2) Control Register Specification: Control registers are specified by a control register
number embedded in the operation code byte. See Table 1-12.

Table 1-12 Control Register Specification

EA field OPfield

[Effective address | * * * * * ccc | ccc. Control register number field

ccc Sz=0 (Byte) Sz=1 (Word)

000 (Not allowed*) 15 0
I SR |

7 0

001 | CCR | (Not allowed)

010 (Not alowed) (Not alowed)

011 | BR | (Not allowed)

100 | EP | (Not allowed)

101 I DP | (Not allowed)

110 (Not alowed) (Not alowed)

111 | TP | (Not allowed)

Control register numbersindicated as"(Not allowed)" should not be used, because they
may cause the CPU to malfunction.

Section 2 Instruction Set: Detailed Descriptions

2.1 Table Format and Notation

Each instruction is described in atable with the following format:

Name M nemonic

<Operation> <Condition Code>

<Assembly-L anguage For mat>

<Operand Size>

<Description>

<Instruction Format>

<Addressing M odes>

Name: A nameindicating the function of the instruction.

Mnemonic: The assembly-language mnemonic of the instruction.

Operation: A concise, symbolic indication of the operation performed by the instruction.
The notation used islisted on the next page.

Operation notation

Rd General register (destination) FP Frame pointer
Rs General register (source) #HMM Immediate data
Rn General register disp Displacement
(EAd) Destination operand + Addition

(EAS) Source operand - Subtraction
CCR Condition code register X Multiplication
N N (negative) bit of CCR + Divison

Z Z (zero) bit of CCR U AND logica

Vv V (overflow) bit of CCR U ORlogica

C C (carry) bit of CCR U Exclusive OR logica
CR Control register - Move

PC Program counter - Exchange

CP Code page register - Not

SP Stack pointer

Condition code: Changesin the condition code (N, Z, V, C) after instruction execution are
indicated by the following symbols:

—: Not changed.

Undetermined

Changed according to the result of the instruction.
Always cleared to "0."

Alwayssetto"1."

Handling depends on the operand.

*

> p o <«

Section 2.5, "Condition Code Changes," lists these changes with explicit formulas showing how the
bit values are derived.

Assembly-language format: The assembly-language coding of the instruction isindicated as
below.

(Example) ADD <EAs>, Rd

Destination operand

L Source operand
L Mnemonic

For details on assembly-language notation, see the H8/500 Series Cross Assembler Manual.

Operand size: The available operand sizes are indicated.

Description: A detailed description of the instruction.

Instruction format: The machine-language instruction format, including the effective address, is
indicated as shown below.

EA fidd OPfield
EA 1 01 10 r rr
> -~ 75 | ’ rrr: Register number field
Register No.{ ccc: Control register number field
Effective address Operation code
No. Addressing mode Mnemonic Effective addressand extension Bytes
1 Register direct Rn l1010Szrrr |
Register indirect @Rn [1101szrrr | 1
Register indirect @(d:8,Rn) [1110Szrrr | disp | 2
with displacement @(d:16,Rn) [1111Szrrr | disp(H) [disp() | 3
4 Regigter indirect @-Rn [to11szrrr | 1
with pre-decrement
Register indirect @Rn+ [L100Szrrr | 1
with post-increment
5 Absolute address* @aa8 0000sz101| addr) | 2
@aa 16 [boo1sz101]| addrH) | addr) | 3
6 Immediate #xX:8 00000100 data 2
#xx:16 00001100 data (H) data(l) | 3
7 PC-relative disp Effective addressinformation is lor2

specified in the operation code.

The @aa:8 addressing mode may be referred to as the short absolute addressing mode.

Addressing modes. The addressing modes that can be specified for the source and destination
operands are indicated in atable like the one below. "Yes' means that the mode can be used;

—" means that it cannot.

(Example: ADD instruction)

Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — - — _ _
Symbol Meaning

Rn Register direct

@Rn Register indirect

@(d:8,Rn) Register indirect with 8-bit displacement
@(d:16,Rn) Register indirect with 16-bit displacement

@-Rn Register indirect with pre-decrement
@Rn+ Register indirect with post-increment
@aa:8 Short absolute address (8 hits)

@aa 16 Absolute address (16 bits)

#xx:8 Immediate (8 bits)

#xx:16 Immediate (16 bits)

2.2 Instruction Descriptions

Theindividual instructions are described starting in Section 2.2.1.

2.2.1 ADD
(1)) ADD:G (ADD, General format)

ADD Binary ADD:G

<Operation> <Condition Code>

Rd + (EAs) - Rd N Z V C
! t ! t

<Assembly-L anguage Format>

ADD: G <EAs>, Rd N: Setto"1" whentheresult is negative;
(Example) otherwise cleared to "0."

(1) ADD G B RO, Rl Z: Setto"1" whentheresult is zero;
(2) ADD. B RO, RL* otherwise cleared to "0."

V: Setto"1" if an overflow occurs;

otherwise cleared to "0."
C. Setto"1"if acarry occurs, otherwise
clearedto "0."

<Operand Size>

Byte
Word

<Description>

This instruction adds the source operand to the contents of general register Rd (destination
operand) and places the result in genera register Rd.

When the source operand isthe immediate data+1 or £2, the ADD:Q instruction in Section 2.2.1
(2) can beused. The ADD:Q instruction is shorter and executes more quickly.

<Instruction Format>

EA 0O 01 00O Tr rr

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — - _ _ _

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.1 (2) ADD:Q (ADD Quick, short format)

ADD Quick ADD:Q

<Operation> <Condition Code>

(EAd) + #iIMM - (EAd) N Z V C
0 0 0 0

<Assembly-L anguage For mat>

ADD: Q #xx, <EAd> N: Setto"1" when theresult is negetive;

otherwise cleared to "0."

(Example)
(1) ADDQ W#1, @0 Z: Setto"1" when theresult is zero;
(2) ADD- W #1 @0* otherwise cleared to "0."

V: Setto"1"if an overflow occurs,
otherwise cleared to "0."

C. Setto"1"if acarry occurs, otherwise
clearedto "0."

<Operand Size>

Byte
Word

<Description>

Thisinstruction adds immediate data to the destination operand and places the result in the
destination operand.

Thevalues +1 and £2 can be specified asimmediate data.

<|nstruction Format>

ADD: Q #1, <EAd> EA 0 0001 000
ADD: Q #2, <EAd> EA 0 0001 001
ADD: Q #-1, <EAd> EA 00001 100
ADD: Q #-2, <EAd> EA 00001 101

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.2 ADDS (ADD with Sign extension)

ADD with Sign extension ADDS
<Operation> <Condition Code>

Rd + (EAs) - Rd N Z V C

<Assembly-L anguage Format>
ADDS <EAs>, Rd

(Example)

ADDS. W #H 10, R3

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Operand Size>

Byte
Word

<Description>

This instruction adds the source operand to the contents of general register Rd (destination
operand) and places the result in genera register Rd.

Differing from the ADD instruction, this instruction does not alter the condition code.

If byte Sizeis specified, the sign bit of the source operand is extended. The additionis
performed using the resulting word data. General register Rd is always accessed as aword-size
operand.

<Instruction Format>
EA 0O 01 01 r r r

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.3 ADDX (ADD with eXtend carry)

ADD with eXtend carry ADDX
<Operation> <Condition Code>
Rd + (EAs) + C - Rd N Z V C

! ! ! !

<Assembly-L anguage For mat> | |
ADDX <EAs>, Rd N: Setto"1" whentheresult is negative;

(Example) otherwise cleared to "0."
Z. Setto"1"if the previous Z hit value

ADDX. B @H 20, R4), RO
was "1" and the result of the instruction

<Operand Size> is zero; otherwise cleared to "0.

Byte
Word

V: Setto"1" if an overflow occurs,
otherwise cleared to "0."

C. Setto"1"if acarry occurs, otherwise
cleared to "0."

<Description>
Thisinstruction adds the source operand and the C bit to the contents of general register Rd
(destination operand) and places the result in general register Rd.

<lnstruction Format>
EA 1 0 1 0O r r r

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — —_ — — —_ _ — _

2.24 AND (AND logical)

AND logical AND
<Operation> <Condition Code>
Rd O (EAs) — Rd N Z V C

! ! 0 | —

<Assembly-L anguage Format>
AND <EAs>, Rd

(Example)

AND. B @1 F8: 8, R1

N: Setto"1" whenthe MSB of the result
is"1;" otherwisecleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Previous value remains unchanged.

<

<Operand Size>
Byte
Word

<Description>
Thisinstruction obtains the logical AND of the source operand and the contents of general
register Rd (destination operand) and places the result in general register Rd.

<Instruction Format>

EA 01 010 r r r

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.25 ANDC (AND Control register)

AND Control register ANDC
<Operation> <Condition Code>
CRO#IMM - CR N Z V C

A A A A

<Assembly-L anguage Format>
ANDC #xx, CR

(Example)

ANDC. B #H FE, CCR

(1) When CRisthe statusregister (SR or CCR),
theN, Z, V, and C bits are set according to
the result of the operation.

(2) When CRisnot the status register (EP, TP,
DP, or BR), the bits are set as below.

N: Setto"1" whenthe MSB of theresultis"1;"
otherwise cleared to "0."

<Operand Size>
Byte
Word

(Depends on the control register) Z: Setto"1" when theresult is zero; otherwise

clearedto "0."
Always cleared to O.
C. Previous value remains unchanged.

<

<Description>

Thisinstruction ANDs the contents of a control register (CR) with immediate data and places the
result in the control register.

The operand size specified in the instruction depends on the control register asindicated in Table
1-12in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the
end of thisinstruction.

<lnstruction Format>

ANDC #xx:8,CR [00000100 data 01011lccc

ANDC #xx:16,CR00001100 data (H) data (L) 0101l1ccc

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

2.2.6 Bcc (Branch conditionally)

Branch conditionally Bcc

<Operation> <Condition Code>

If condition istrue then PC + disp — PC N Z V C
else next; — == =

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Assembly-L anguage Format>

Bcc disp

The mnemonic varies depending on the
specified condition. See <Mnemonic and
Condition Field> below.

(Example)

BEQ LABEL

<Operand Size>

<Description>

If the condition specified in the condition field (cc) is true, the displacement (disp) is added to the
program counter and execution branches to the resulting address. If the condition is not true, the
next instruction is executed.

The displacement can be an 8- or 16-bit value. The corresponding relative branching distances
are—128 to +127 bytes and —32768 to +32767 bytes. However, it is not possible to branch across a
page boundary.

The PC value used in the address calculation is the address of the instruction immediately
following this instruction.

<Instruction Format>

0 0 1 0 ccC disp

0 0 1 0 cC disp (H) disp (L)
cc: Condition field

Branch conditionally Bcc
<Mnemonic and Condition Field>

Mnemonic ccfied Description Condition
BRA (BT) 0000 Always (True) True

BRN (BF) 0001 Never (False) False

BHI 0010 High cadz=0
BLS 0011 Low or Same chiz=1
BCC (BHS) 0100 Carry Clear C=0

(High or Same)

BCS (BLO 0101 Carry Set (Low) Cc=1
BNE 0110 Not Equal Z=0
BEQ 0111 Equal Z=1

BVC 1000 Overflow Clear V=0
BVS 1001 Overflow Set V=1

BPL 1010 Plus N=0

BM 1011 Minus N=1

BGE 1100 Greater or Equal NOV=0
BLT 1101 Less Than NOV=1
BGT 1110 Greater Than ZONOV)=0
BLE 1111 Lessor Equa ZONOV)=1

2.2.7 BCLR (Bit test and CLeaR)

Bit test and CLeaR

BCLR

<Operation>
—(<bit No.> of <EAd>) - Z
0 - (<bit No.> of <EAd>)

<Assembly-L anguage Format>
BCLR #xx, <EAd>

BCLR Rs, <EAd>

(Example)

BCLR B #7, @4 FFOO

<Operand Size>

Byte
Word

<Condition Code>
N

Z

V

C

!

N: Previous value remains unchanged.
Z: Setto"1" if the value of the bit tested
was zero. Otherwise cleared to "0."

<

Previous value remains unchanged.

C. Previous value remains unchanged.

<Description>

Thisinstruction tests a specified bit in the destination operand, sets or clearsthe Z bit according
to the result, then clears the specified bit to "0."

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a
specified general register. If agenera register is used, the lower 4 bits of the register specify the bit
number and the upper 12 bits are ignored.

<Instruction Format>

BCLR #xx, <EAd>

EA

1 1 0 1 Data

BCLR Rs, <EAd>

EA

01 011 r r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes

Yes Yes Yes Yes

2.2.8 BNOT (Bit test and NOT)

Bit test and NOT

BNOT

<Operation>
—(<bit No.> of <EAd>) - Z
— (<bit No.> of <EAd>)

<Assembly-L anguage Format>
BNOT #xx, <EAd>

BNOT Rs, <EAd>

(Example)

BNOT. W RO, R1

<Operand Size>

Byte
Word

<Condition Code>
N

Z

V

C

!

N: Previous value remains unchanged.
Z: Setto"1" if the value of the bit tested
was zero. Otherwise cleared to "0."

<

Previous value remains unchanged.

C. Previous value remains unchanged.

<Description>

Thisinstruction tests a specified bit in the destination operand, sets or clearsthe Z bit according
to the result, then inverts the specified hit.

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a
specified general register. If agenera register is used, the lower 4 bits of the register specify the bit
number and the upper 12 bits are ignored.

<Instruction Format>

BNOT #xx, <EAd>

EA

1 1 1 0 Data

BNOT Rs, <EAd>

EA

0O 1 1 01 r r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes

Yes Yes Yes Yes

2.2.9 BSET (Bit test and SET)

Bit test and SET

BSET

<Operation>
—(<bit No.> of <EAd>) - Z
1 - (<bit No.> of <EAd>)

<Assembly-L anguage Format>
BSET #xx, <EAd>

BSET Rs, <EAd>

(Example)

BSET. B #0, @r1+

<Operand Size>

Byte
Word

<Condition Code>
N

Z

V

C

!

N: Previous value remains unchanged.
Z: Setto"1" if the value of the bit tested
was zero. Otherwise cleared to "0."

<

Previous value remains unchanged.

C. Previous value remains unchanged.

<Description>

Thisinstruction tests a specified bit in the destination operand, sets or clearsthe Z bit according
to the result, then sets the specified bit to "1."

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a
specified general register. If agenera register is used, the lower 4 bits of the register specify the bit
number and the upper 12 bits are ignored.

<Instruction Format>

BSET #xx, <EAd>

EA

1 1 0 O Data

BSET Rs, <EAd>

EA

0O 1 001 r r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes

Yes Yes Yes Yes

2.2.10 BSR (Branch to SubRoutine)

Branch to SubRoutine

BSR

<Operation>
PC - @-SP
PC + disp - PC

<Assembly-L anguage Format>
BSR di sp

(Example)

BSR LABEL

<Operand Size>

<Condition Code>

N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction branches to a subroutine at a specified address.

It saves the program counter contents to the stack area, then adds a displacement to the program
counter and jumps to the resulting address.
The displacement can be an 8-bit value from —128 to +127 bytes or 16-bit value from —32768 to

+32767 bytes. However, it is not possible to branch across a page boundary.

Thisinstruction is paired with the RTS instruction to execute a subroutine call. The PC value
saved to the stack and used in the address calculation is the address of the instruction immediately

following this instruction.

<Instruction Format>

BSR d: 8

0O 0 0OO1 110

disp

BSRd:16 [0 0 0 1 1 1 1 O

disp (H) disp (L)

2.2.11 BTST (Bit TeST)

Bit TeST

BTST

<Operation>
—(<bit No.> of <EAd>) - Z

<Assembly-L anguage Format>
BTST #xx, <EAd>

BTST Rs, <EAd>

(Example)

BTST. B RO, @1 FO: 8

<Operand Size>

Byte
Word

<Condition Code>
N Z V C

R ! R —_—

N: Previous value remains unchanged.
Z: Setto"1" if the value of the bit tested
was zero. Otherwise cleared to "0."

<

Previous value remains unchanged.
C. Previous value remains unchanged.

<Description>

Thisinstruction tests a specified bit in the destination operand and sets or clearsthe Z bit

according to the result.

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a
specified general register. If agenera register is used, the lower 4 bits of the register specify the bit

number and the upper 12 bits are ignored.

<Instruction Format>

BTST #xx, <EAd>

EA

1 1 1 1 Data

BTST Rs, <EAd>

EA

o1 1 11 r r r

<Addressing M odes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa:16 #xx:8 #xx:16

DegtinationYes Yes Yes

Yes Yes Yes Yes —— —

2212 CLR (CLeaR)

CLeaR CLR
<Operation> <Condition Code>
0 - (EAd) vV C

<Assembly-L anguage Format>
CLR <EAd>

(Example)

CLR W@H 1000, R5)

<Operand Size>

Byte
Word

0O0]1)0]O0

N: Always cleared to O.
Z: Alwayssettol.

V: Always cleared to 0.
C. AlwaysclearedtoO.

<Description>

Thisinstruction clears the destination operand (general register Rn or an operand in memory) to

Z€ero.

<Instruction Format>

EA 0O 0 0O10 011

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes

Yes Yes Yes Yes —— —

2.2.13 CMP
(1) CMP:G (CoMPare, Genera format)

CoMPare CMP:G
<Operation> <Condition Code>
Set CCR according to result of (EAd) —#MM N Z V C
Set CCR according to result of Rd — (EAS) 0 0 0 0
<Assembly-L anguage For mat> N: Setto"1" when theresult is negative;
CWVP: G #xXx, <EAd> otherwise cleared to "0."
CWP: G <EAs>, Rd Z: Setto"1" whentheresult is zero;
(Example) otherwise cleared to "0."
(1) aw:. G B #H AA @R3 V: Setto"1" if an overflow occurs,
(2) CQW.B #H AA @-R3* otherwise cleared to "0."

C. Setto"1"if aborrow occurs;
<Operand Size> otherwise cleared to "0."
Byte
Word

<Description>

This instruction subtracts the source operand from the destination operand and sets or clears the
condition code (CCR) according to the result. It does not ater the destination operand.

The CMP instruction also has short formats (CMP.E and CMP:I) that can be used to compare a
genera register with immediate data.

<|nstruction Format>

EA 00000100 data*
CVP #xx, <EAd> aa

EA 00000101 data (H)* data (L)*
CWP <EAs>, Rd EA 01110 rrr

* Thelength of the immediate data depends on the size (Sz) specified for the first operation code:
one byte when Sz = 0; one word when Sz = 1.

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

CoM Pare CMP:G

<Addressing Modes>

CVWP #xx, <EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source —_ — — — — — — — Yes Yes
Dedtination — Yes Yes Yes Yes Yes Yes Yes — —
CWP <EAs>, Rd

Rn @Rn@(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — —_ — — —_ _ — _

2.2.13 (2) CMP:E (CoMPare:E, short format)

CoM Pareimmediate bytE CMP:E
<Operation> <Condition Code>
Set CCR according to result of Rd—# MM N Z V C

! ! ! !

<Assembly-L anguage For mat>

CWP: E #xx: 8, Rd N: Setto"1" when theresult is negative;

otherwise cleared to "0."

(Example)
(1) CWP:E #H 00, RO Z. Setto"1" when theresult is zero;
(2) CWP.B #H 00’ RO* otherwise cleared to "0."

V. Setto"1" if an overflow occurs;
otherwise cleared to "0."

C. Setto"1"if aborrow occurs;
otherwise cleared to "0."

<Operand Size>
Byte

<Description>

Thisinstruction subtracts one byte of immediate data from general register Rd and sets or
clears the condition code (CCR) according to the result. It does not alter the contents of
general register Rd.

Thisinstruction is a short form of the CMP instruction. Compared with CMP.G #xx:8,
Rd, its object code is one byte shorter and it executes one state faster.

<|nstruction Format>
01000rrr data

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source —_ — — — — — — — Yes —
DegtinationYes — — — — — — — _ _

* |n assembly-language coding it is usually not necessary to specify the general or specia format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.13 (3) CMP:l (CoMPare:l, short format)

CoM Par e Immediate word CMP:I
<Operation> <Condition Code>
Set CCR according to result of Rd—# MM N Z V C

! ! ! !

<Assembly-L anguage For mat>

CVP: | #xx: 16, Rd N: Setto"1" when theresult is negative;

otherwise cleared to "0."

(Example)
(1) OWP:1 #H FFFF, Rl Z. Setto"1" when theresult is zero;
(2) OW. W#H |:|:|:|:, R1* otherwise cleared to "0."

V. Setto"1" if an overflow occurs;
otherwise cleared to "0."

C. Setto"1"if aborrow occurs;
otherwise cleared to "0."

<Operand Size>
Word

<Description>

This instruction subtracts one word of immediate data from general register Rd and sets or clears
the condition code (CCR) according to the result. It does not alter the contents of general register
Rd.

Thisinstruction is ashort form of the CMP instruction. Compared with CMP.G #xx:16, Rd, its
object code is one byte shorter and it executes one state faster.

<Instruction Format>
010021 rrr data (H) data (L)

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—-Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source —_ — — — — — — — — Yes
DegtinationYes — — — — — —_ — — _

* In assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.14 DADD (Decimal ADD with extend carry)

Decimal ADD with extend carry

DADD

<Operation>

<Condition Code>

(Rd)10 + (R9)10 + C - (Rd)10

<Assembly-L anguage Format>

DADD Rs, Rd
(Example)
DADD RO, R1

N

Z V C

! — !

N: Previous value remains unchanged.
Z. Setto"1"if the previous Z hit value
was "1" and the result of the instruction

is zero; otherwise cleared to "0."

<Operand Size>
Byte

<

Previous value remains unchanged.

C. Setto"1"if adecimal carry occurs,
otherwise cleared to "0."

<Description>

Thisinstruction adds the contents of a general register (source operand) and the C bit to the
contents of ageneral register (destination operand) as decimal numbers and places the result in the
destination register.

Correct results are not assured if word sizeis specified.

<Instruction Format>

1 0 1 0O

I's

's

's

0O 0 0O OO O0O0O

1 01 00O

q "9 g

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes
DegtinationYes

2.2.15 DIVXU (DIVide eXtend as Unsigned)

DIVide eXtend as Unsigned DIVXU
<Operation> <Condition Code>
Rd + (EAs) - Rd N Z V C

! ! ! 0

<Assembly-L anguage Format>
Dl VXU <EAs>, Rd

(Example)

DI VXU. W @3, RO

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

V: Setto"1" if an overflow occurs,
otherwise cleared to "0."

C. AlwaysclearedtoO.

<Operand Size>

Byte
Word

<Description>

When byte sizeiis specified for the source operand, the 16-bit value in Rd is divided by the 8-bit
source operand, yielding an 8-bit quotient which is placed in the lower byte of Rd and 8-bit
remainder which is placed in the upper byte of Rd. When word size is specified for the source
operand, the 32-bit value in Rd and Rd+1 is divided by the 16-bit source operand, yielding a 16-bit
quotient which is placed in Rd+1 and a 16-bit remainder which is placed in Rd.

15 Rd 0o 7 0 15 Rd 87 0
16 +8 dividend - divisor = | remainder quotient
15 0 15 0 15 0
32 - 16 Rd dividend (H) | = divisor = Rd remainder
Rd+1 dividend (L) Rd+1 quotient

When the dividend is a 32-bit value located in Rd and Rd+1, d must be even (0, 2, 4, or 6).
Correct results are not assured if an odd register number is specified. Also:
(1) Attempted division by 0 causes azero-divide exception. The N, V and C bitsare cleared to 0
and the Z bit isset to 1.
(2) When an overflow is detected, the V bit is set to 1 and the division is not performed. TheN, Z
and C bitsare cleared to 0. The contents of general register Rd are not updated.

DIVide eXtend as Unsigned DIVXU

<lnstruction Format>

EA* 1 0 1 11 r r r
* When Sz =0: 16 bhits + 8 hits.

When Sz = 1: 32 bits+ 16 hits

where Sz isthe size bit in the EA code

<Addressing Modes>
Rn @Rn@(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — —_ — — —_ _ — _

DIVide eXtend as Unsigned

DIVXU

<Note>

An overflow can occur in both cases of the DIV XU instruction:

0 16bits+8hbits - 8-bit quotient,
0 32bits+ 16 bits -

quotient islonger than 8 bits. Overflow can be avoided by using work registers asin the programs

shown below.

O 16 bits+ 8 hits
DIVXU.B <EA>,R0

RO dividend
RO H'00 dividend (H)
R1 H'00 dividend (L)

v

RO guotient

R1 remainder

quotient (L)

MOV. B RO, R1

SWAP RO

AND. W #H OOFF 16, RO
D VXU. B <EA>, RO

SWAP RO

SWAP Rl

MOV. B RO, R1

SWAP Rl

D VXU. B <EA>, R1

MOV. B R1, RO

8-bit remainder
16-bit quotient, 16-bit remainder
Consider H'FFFF + H'1 —» H'FFFF in case [, for example. An overflow occurs because the

0 32 bhits+ 16 hits
DIVXU.W <EA>,RO

— RO dividend (H)
R1 dividend (L)
RO H'0000
R1 dividend (H)
L
R2 H'0000
R3 dividend (L)
RO quotie:t (H)
R1 quotient (L)
R2 remainder
R3 quotient (L)
MOV. W Rl, R3
MOV. W RO, R1
CLR W RO
D VXU W <EA> RO
MOV. W RO, R2
MOV. W R1, RO
D VXU W <EA> R2
MOV. W R3, R1

2.2.16 DSUB (Decimal SUBtract with extend carry)

Decimal SUBtract with extend carry

DSUB

<Operation>

<Condition Code>

(Rd)10 — (Rs)10—C - (Rd)10

<Assembly-L anguage Format>

DSUB Rs, Rd
(Example)
DSUB R2, R3

N

Z V C

! — !

N: Previous value remains unchanged.
Z. Setto"1"if the previous Z hit value
was "1" and the result of the instruction

is zero; otherwise cleared to "0."

<Operand Size>
Byte

<

Previous value remains unchanged.

C: Setto"1" if adecima borrow occurs;
otherwise cleared to "0."

<Description>

Thisinstruction subtracts the contents of general register Rs (source operand) and the C bit from
the contents of genera register Rd (destination operand) as decimal numbers and places the result in
general register Rd.

Correct results are not assured if word size is specified for the operand size.

<Instruction Format>

1 0 1 0O

I's

's

's

0O 0 0O OO O0O0O

1 0 1 10

q "9 g

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes
DegtinationYes

2.2.17 EXTS (EXTend as Signed)

EXTend as Signed EXTS

<Operation> <Condition Code>

(<bit 7> of <Rd>) - (<bits 15 to 8> of <Rd>) N Z V C
Sign extension 0 ! 0|0

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

<Assembly-L anguage Format>

EXTS Rd |
(Example) Z: Setto"1" whentheresult is zero;
EXTS RO otherwise cleared to "0."

<

Always cleared to 0.
C. AlwaysclearedtoO.

<Operand Size>
Byte

<Description>
Thisinstruction converts byte datain general register Rd (destination operand) to word data by
propagating the sign bit. 1t copiesbit 7 of Rd into bits 8 through 15.

<Instruction Format>
101 00 r r r|/0OO0O010 001

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes — — — — — _ — _ _

2.2.18 EXTU (EXTend as Unsigned)

EXTend as Unsigned EXTU

<Operation> <Condition Code>

0 - (<bits 15to 8> of <Rd>) N Z V C
Zero extension 0|1 0|0

N: Always cleared to O.
Z: Setto"1" when theresult is zero;

<Assembly-L anguage Format>

EXTU Rd '
(Example) otherwise cleared to "0."
EXTU R1 V: Always cleared to 0.

C. AlwaysclearedtoO.

<Operand Size>
Byte

<Description>
Thisinstruction converts byte datain general register Rd (destination register) to word data by
filling bits 8 to 15 of Rd with zeros.

<Instruction Format>
101 00 r r r|/0OO0O010 D010

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes — — — — — _ — _ _

2.2.19 JMP (JuMP)

JuMP JMP
<Operation> <Condition Code>
Effective address — PC N Z V C

<Assembly-L anguage Format>
JMP <EA>

(Example)

JMP @#H 10, R4)

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Operand Size>

<Description>
Thisinstruction branches unconditionally to a specified address in the same page. It cannot
branch across a page boundary.

<Instruction Format>

JMP @Rn 00010001[121010 rrr

JW @d:8,Rn) [00010001{11100 rrr disp

JW @d:16,Rn) (00010 001{11110 rrr disp (H) disp (L)
JVWP @a: 16 00010 000 address(H) address (L)

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Dedtination — Yes Yes Yes — — — Yes — —

2.2.20 JSR (Jump to SubRoutine)

Jump to SubRoutine JSR
<Operation> <Condition Code>
PC - @-SP N Z V C

Effective address - PC A I I

<Assembly-L anguage For mat> N: Prev! ousvalue remq ns unchanged.

JSR <EA> Z Prev! ousvaue remq ns unchanged.

(Example) V: Previous value remains unchanged.
C

JSR @H OFFF, R3) Previous value remains unchanged.

<Operand Size>

<Description>

Thisinstruction pushes the program counter contents onto the stack, then branchesto a
specified address in the same page. The address pushed on the stack is the address of the
instruction immediately following this instruction.

Thisinstruction cannot branch across a page boundary.

<Instruction Format>

JSR @n 00010001[11011rrr

JSR @d:8,Rn) [poo10001{11101rrr disp

JSR @d:16,Rn)jooo10 001111112 rrr disp (H) disp (L)
JSR @a: 16 00011 000| address (H) address (L)

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Dedtination — Yes Yes Yes — — — Yes — —

2.2.21 LDC (LoaD to Control register)

LoaD to Control register LDC
<Operation> <Condition Code>
(EAs) - CR N Z V C

A A A A

<Assembly-L anguage Format>
LDC <EAs>, CR

(Example)

LDC. B #H 01, DP

(1) When CR isthe status register (SR or
CCR), theN, Z, V, and C bits are set
according to the result of the
operation.

(2) When CR is not the status register
(EP, TP, DP, or BR), the previous
value remains unchanged.

<Operand Size>

Byte

Word

(Depends on the control register)

<Description>

Thisinstruction loads the source operand (immediate data, or general register or memory
contents) into a specified control register (CR).

The operand size specified in the instruction depends on the control register asindicated in Table
1-12 in Section 1.3.6, "Register Specification.”

Interrupts are not accepted and trace exception processing is not performed immediately after the
end of thisinstruction.

<Instruction Format>

EA 1 0 0 01 ¢c ¢ c

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

2222 LDM (LoaD toMultipleregisters)

LoaD to Multipleregisters LDM
<Operation> <Condition Code>
@SP+ (stack) — Rd (register group) N Z V C

<Assembly-L anguage Format>
LDM @P+, <regi ster |ist>
(Example)

LDM @P+, (R0, R2—R4)

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Operand Size>
Word

<Description>

Thisinstruction restores data saved on the stack to a specified list of genera registers. In
the instruction code, the register list is encoded as one byte in which bits set to "1" indicate
registersthat receive data. Thefirst word of datais restored to the lowest-numbered register in
the list, the next word to the next-lowest-numbered register, and so on.

At the end of thisinstruction, general register R7 (the stack pointer) is updated to the value:
(contents of R7 before thisinstruction) + 2 x (number of registers restored).

<Instruction Format>

0O 0 OO0 01O register list

Register list
7 6 5 4 3 2 1 0
R7 | R6 | R5 | R4 [R3 | R2 | R1 | RO

LoaD to Multipleregisters LDM

<Note>

The LDM instruction can be used to restore agroup of registers from the stack on return
from asubroutine call. When there are many registersto restore, the LDM instruction is faster
than the MOV instruction.

The status of the stack before and after an LDM instruction is shown below.

v) v \J
Stack Stack
SP+2 - SP
SP - Old RO - RO
SP+2 - SP
Old R1 - R1 Sp+2 sp
+ —
Old R5 - R5
Old R6 ~ R6 SP+2 -~ SP
old R7-2 - X SP+2 - SP
(Dummy read) 0, sp -
“y N AV ~N

Execution of LDM @SP+, (RO,R1,R5-R7)

If R7 (the stack pointer) isincluded in the register list, adummy read of the stack is performed.
Accordingly, the instruction will execute faster if R7 isnot specified. The value of R7 after
execution of theinstructionis. (contents of R7 before the instruction) + 2 x (number of registers

restored).

LoaD to Multipleregisters LDM
<Note (Continued)>

The following graph compares the number of machine states required for execution of LDM and
execution of the same process using the MOV instruction.

Repetitions of MOV.W @SP+,Rn

/
50 7
45 /
/
40 / _ LDM

35 / ///
Number 30 r//
of states 5 7//
20 /

15 /

10 .
Y

5

0 1 2 3 4 5 6 7 8 Number of registers loaded

Note: Thisgraphisfor the casein which instruction fetches and stack access are both to on-chip
memory.

The LDM ingtruction is faster when the number of registersisfour or more. The MOV
instruction is faster when there are only one or two registersto restore. When the instruction fetches
are to off-chip memory, the LDM instruction is faster when there are two registers or more.

2.2.23 LINK (LINK)

LINK stack LINK

<Operation> <Condition Code>

FP (R6) — @-SP N z V C
SP . FP(R6)

SP+#lMM - SP —_ | — | —= | —

<Assembly-L anguage Format>
LI NK FP, #xx

(Example)

LI NK FP, #-4

<Operand Size>

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction saves the frame pointer (FP = R6) to the stack, copies the stack pointer

(SP = R7) contents to the frame pointer, then adds a specified immediate value to the stack pointer to

dlocate anew framein the stack area.

The immediate data can be an 8-bit value from —128 to +127 or a 16-bit value from —32768 to

+32767. Note that the LINK instruction allows negative immediate data.

The frame allocated with the LINK instruction can be deall ocated with the UNLK instruction.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd
address. The immediate data should be an even number so that the stack pointer indicates an

even address after execution of the LINK instruction.

<Instruction Format>

LINK FP,#xx:8 |0 0 0 1 0 1 1 1

data

LINK FP, #xx:16/0 0 0 1 1 1 1 1

data (H) data (L)

LINK stack LINK
<Note>

The LINK and UNLK instructions provide an efficient way to allocate and deallocate areas for
local variables used in subroutine and function calls in high-level languages. Loca variablesare
accessed relative to R6 (the frame pointer).

The LINK and UNLK instructions can be broken down into the following groups of more
genera instructions:

LI NK FP, #-n 0 MOV. W FP, @SP
MV.W SP, FP
ADDS. W #-n, SP
(providing an n-byte local variable areq)
UNLK FP 0 MOV. W FP, SP
MV. W @P+, FP

An example of the usage of these instructions in a C-language program is shown below. The
program contains a function swap that uses two work variablest enpl andt enp2 to exchange the
contents of four variablesa, b, ¢, and d.

Before swap() isexecuted:

After swap() isexecuted:

The coding in C languageiis:

Global variablesa, b, c, d

int a, b, c, d;

swap() Accessible anywhere in the program.
{ Always present in memory.
int tenpl, tenp2; —— Locd variablest enpl, tenp2
templ = a; Usable only inthe swap() function.
tenp2 = b; Present in memory only when the swap()
a=d; functionis called.
b = c;
c = tenp2;
d = tenpl;

LINK stack LINK

<Note (Continued)>

An assembly-language coding of the swap function is:

Swap: LI NK FP, #-4 - See [] on next page.
MOV @, RO - tenmpl = a;
MOV: F RO, @-2, FP)
MOV @, RO - tenp2 = b;
MOV: F RO, @-4, FP)
MOV @, RO -»a =d;
MOV RO, @
MOV @, RO -b =c;
MOV RO, @
MOV: F @-4, FP), RO -~ C = tenp?;
MOV RO, @
MOV: F @-2, FP), RO ->d = tenpl;
MOV RO, @
UNLK FP - See [] on next page.

RTS - See [] on next page.

LINK stack

LINK

SP -

<Note (Continued)>

A map of the stack areain memory at various stagesin this routine is shown below.

Before LINK

Stack

return PC

SP

FP -

The LINK instruction

[0 After LINK

Stack

temp2 area

templ area

old FP

return PC

(FP-4)
(FP-2)

SP

saves the old FP, copies
the SP to the FP, then
allocates a temporary
area by moving the SP
up. In this example the
SP is decremented by 4.
The temporary area is
accessed relative to the

FP.

[0 After UNLK

Stack

= return PC

SP -

The UNLK instruction
copies the FP to the SP,
thus deallocating the
temporary area, then
restores the FP.

O After RTS

Stack

2.2.24 MOV
(1) MOV:G (MOVe datafrom source to destination, General format)

MOV e data from sour ce to destination MOV:G
<Operation> <Condition Code>
(EAs) - (EAd) N Z V C

! ! 0 | —

<Assembly-L anguage Format>
MOV: G Rs, <EAd>

MOV: G #xx, <EAd>

MOV: G <EAs>, Rd

(Example)

(1) MOV:GWRO, @1

(2) MW.WRO, @r1*

N: Setto"1" when the value moved is
negative; otherwise cleared to "0."

Z. Setto"1" whenthevalue movedis

zero; otherwise cleared to "0."

Always cleared to 0.

Previous value remains unchanged.

0 <

<Operand Size>

Byte
Word

<Description>

Thisinstruction copies source operand data to a destination, and sets or clearsthe N and Z bits
according to the data value.

Alternative short formats can be used for the R6 indirect with displacement addressing mode
(MOV: F), the short (@aa: 8) absolute addressing mode (MOV: L and MOV: S), and the immediate
addressing modes (MOV: Efor #xx: 8 and MOV: | for #xx: 16).

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

MOVe data from source to destination MOV:G

<lnstruction Format>

MOV: G Rs, <EAd>
MOV: G <EAs>, Rd

MOV: G #xx, <EAd>

*1

EA 100dOTrrr
EA™2 00000 110 data™®

*2

EA 00000 111 data(H) data (L)

Notes:

*1 Thed bit indicates the direction of the transfer: load if d = O; storeif d = 1.
When d = 1, the <EA> field cannot contain immediate data or specify aregister.

*2 The <EA> fidld cannot contain immediate data or specify aregister.

*3 If theimmediate data length is 8 bits but word size is specified in the <EA> field, the sign bit of
theimmediate datais extended and 16 bits of data are transferred.

<Addressing Modes>
MWV: G Rs, <EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes — — — — — — — — —
Dedtination — Yes Yes Yes Yes Yes Yes Yes — —

MOV: G #xx, <EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source —_ — — — — — — — Yes Yes
Dedtination — Yes Yes Yes Yes Yes Yes Yes — —

MOV: G <EAs>, Rd

Rn @Rn@(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — —_ — — —_ _ — _

2.2.24 (2) MOV:E (MQOVedataE, short format)

MOVeimmEdiate byte MOV:E
<Operation> <Condition Code>
#IMM - Rd N Z V C

! ! 0 | —

<Assembly-L anguage For mat>
MOV: E #xx: 8, Rd

(Example)

(1) MOV:E #H 55, RO

(2) MO.B #H 55, RO*

N: Setto"1" when the value moved is
negative; otherwise cleared to "0."

Z. Setto"1" whenthevalue movedis

zero; otherwise cleared to "0."

Always cleared to 0.

Previous value remains unchanged.

<

0

<Operand Size>
Byte

<Description>

This instruction moves one byte of immediate datato a genera register, and sets or clearsthe N
and Z bits according to the data value.

Thisinstruction is ashort form of the MOV instruction. Compared with the general form
MOV: G #xx: 8, Rd, its object code is one byte shorter and it executes one state faster.

<Instruction Format>
0 1 010 r r r data

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source — — — — — — — — Yes —
DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.24 (3) MOV:F (MQOVe dataF, short format)

MOVe stack Frame data MOV:F

<Operation> <Condition Code>

(EAs) - Rd N Z V C
Rs —» EAd 0 ! 0 | —

N: Setto"1" when the value moved is
negative; otherwise cleared to "0."

Z. Setto"1" whenthevalue movedis

zero; otherwise cleared to "0."

Always cleared to 0.

Previous value remains unchanged.

<Assembly-L anguage Format>
MOV: F @d: 8, R6), Rd

MV: F Rs, @d: 8, R6)
(Example)

(1) MOV:F.B @4,R6),R0
(2) MW.B @4, R6), RO*

0 <

<Operand Size>

Byte
Word

<Description>

This instruction moves data between a stack frame and a genera register, and sets or clearsthe N
and Z bits according to the data value.

Thisinstruction is a short form of the MOV instruction. Compared with the general form
MV:G @d:8,R6), RdorMIV: G Rs, @d: 8, R6) , itsobject code is one byte shorter.

<Instruction Format>
MV:F @d:8,R6),Rd|1 0 0 0 S, r r r disp
MWV.F Rs, @d:8,R6) |[1 0 0 1 S, r r disp

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

MOVe stack Frame data MOV:F

<Addressing M odes>
MOV: F @d: 8, R6), Rd

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source —_ — Y es* — — — — — — _
DedtinationYes — — — — — — — _ _

MOV: F Rs, @d: 8, R6)

Rn @Rn@(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — - —_ _ _
Dedtination — — Yes* — —_ — — — — _

* Thisinstruction can specify R6 (FP) only.

2.2.24 (4) MOV:I (MOVedatal, short format)

MOVe Immediate word MOV:I
<Operation> <Condition Code>
#IMM - Rd N Z V C

! ! 0 | —

<Assembly-L anguage For mat>

MOV: | #xx: 16, Rd N: Setto"1" when the value moved is

negative; otherwise cleared to "0."

(Example)
(1) MOV:1 #H FFOO, RS Z: Setto"1" whenthevalue movedis
(2) NOV. W#H FFOO, R5* zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Operand Size>
Word

<Description>

Thisinstruction moves one word of immediate data to a general register, and setsor clearsthe N
and Z bits according to the data value.

Thisinstruction is ashort form of the MOV instruction. Compared with the general form
MOV: G #xx: 16, Rd, its object code is one byte shorter.

<Instruction Format>
01 012121 r r data (H) data (L)

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source —_ — — — — — — — — Yes
DegtinationYes — — — — — —_ — — _

* In assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.24 (5) MOV:L (MOVedatal, short format)

MOVedata (L oad register) MOV:L
<Operation> <Condition Code>
(EAs) - Rd N Z V C

! ! 0 | —

<Assembly-L anguage For mat>

MOV: L @a: 8, Rd N: Setto"1" when the value moved is

negative; otherwise cleared to "0."

(Example)
(1) MV L.B @ AO: 8, RO Z: Setto"1" whenthevalue movedis
(2) MNOV.B @f AO: 8, RO* zero; otherwise cleared to "0."

V: Always cleared to 0.
<Operand Size> C: Previous value remains unchanged.
Byte
Word

<Description>

Thisinstruction copies source operand data to a general register, and sets or clearsthe N and Z
bits according to the data value.

Thisinstruction is ashort form of the MOV instruction. Compared with the general form
MOV: G @a: 8, Rd, itsobject code is one byte shorter.

<Instruction Format>
0 1.1 0S,r rr address (L)

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — - — — — — Yes — — —
DedtinationYes — — — — — - — _ _

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.24 (6) MOV:S (MOVedataS, short format)

MOVedata (Storeregister) MOV:S
<Operation> <Condition Code>
Rs - (EAd) N Z V C

! ! 0 | —

<Assembly-L anguage For mat>

MOV: S Rs, @a: 8 N: Setto"1" when the value moved is

negative; otherwise cleared to "0."

(Example)
(1) MDV:S.WRO, @ AO: 8 Z. Setto"1" whenthevalue movedis
(2) MOV. WRO0, @1 AO: 8* zexro; otherwise cleared to "0."

V: Always cleared to 0.
<Operand Size> C: Previous value remains unchanged.
Byte
Word

<Description>

Thisinstruction stores general register data to a destination, and sets or clearsthe N and Z bits
according to the data value.

Thisinstruction is ashort form of the MOV instruction. Compared with the general form
MOV: G Rs, @a: 8, itsobject code is one byte shorter.

<Instruction Format>
0 11 1S,r rr address (L)

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —
Dedtination — — — — — — Yes — — —

* |n assembly-language coding it is usually not necessary to specify the general or special format
(by coding :Getc.). If the format specification is omitted, the assembler automatically generates
the optimum object code. If aformat is specified, the assembler follows the format specification.

2.2.25 MOVFPE (MOVeFrom Peripheral with E clock)

MOVe From Peripheral with E clock MOV FPE

<Operation> <Condition Code>

(EAs) - Rd N Z V C

Synchronized with E clock — | — | = | —

<Assembly-L anguage For mat> N: Previous value remains unchanged.

MOVFPE <EAs>, Rd Z: Previous value remains unchanged.

(Example) V: Previous value remains unchanged.
C. Previous value remains unchanged.

MOVFPE @+ FO00, RO

<Operand Size>
Byte

<Description>

Thisinstruction transfers data from a source operand to a genera register in synchronization
with the E clock.

The operand must be byte size. Correct results are not guaranteed if word size is specified.

Note: Thisinstruction should not be used with chips that do not have an E clock output pin.
(Example: the H8/520)

<Instruction Format>
EA 0 000OO0O O0OOT O|1L O0O0OO0OO0TTFT

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source — Yes Yes Yes Yes Yes Yes Yes — —
DedtinationYes — — — — — _ _ _ _

2.2.26 MOVTPE (MOVeTo Peripheral with E clock)

MOVe To Peripheral with E clock MOVTPE

<Operation> <Condition Code>

Rs - (EAd) N Z V C

Synchronized with E clock — | — | = | —

<Assembly-L anguage For mat> N: Previous value remains unchanged.

MOVTPE Rs, <EAd> Z: Previous value remains unchanged.

(Example) V: Previous value remains unchanged.
C. Previous value remains unchanged.

MOVTPE RO, @R1

<Operand Size>
Byte

<Description>

Thisinstruction transfers data from a genera register to a destination in synchronization with the
E clock.

The operand must be byte size. Correct results are not guaranteed if word size is specified.

Note: Thisinstruction should not be used with chips that do not have an E clock output pin.
(Example: the H8/520)

<Instruction Format>
EA 0 000OO0O O0OTU O|1L O0O0OT1O0TT T

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes — — — — — — — — —
Dedtination — Yes Yes Yes Yes Yes Yes Yes — —

2.2.27 MULXU (MULtiply eXtend as Unsigned)

MULtiply eXtend as Unsigned

MUL XU

<Operation>
Rd x (EAS) - Rd

<Condition Code>

<Assembly-L anguage Format>
MULXU <EAs>, Rd

(Example)

MJULXU. B RO, R1

N Z

vV C

! !

01]O0

N: Setto"1" when theresult is negative;

otherwise cleared to "0."

Z: Setto"1" when theresult is zero;

otherwise cleared to "0."

<Operand Size>

Byte
Word

<

Always cleared to 0.

C. AlwaysclearedtoO.

<Description>

Thisinstruction multiplies the contents of general register Rd (destination operand) by a source

operand and places the result in general register Rd.

When byte sizeis specified for the source operand, the 8-bit value in the lower byte of Rd is
multiplied by the 8-bit source operand, yielding a 16-bit result. When word sizeis specified for the
source operand, the 16-bit value in Rd is multiplied by the 16-bit source operand, yielding a 32-bit

result which is placed in Rd and Rd+1.

15 Rd 0 7 EAs 0 15 Rd 0
88 multiplicand | x| multiplier | = product
Rd
15 Rd 0 15 EAs 0
. — product (H)
16 x 16 multiplicand X multiplier =
product (L)
Rd+1

When word sizeis specified and the 32-bit product is placed in Rd and Rd+1, d must be even (O,

2, 4, or 6). Correct results are not assured if an odd register number is specified.

MULtiply eXtend as Unsigned MULXU

<Instruction Format>
EA* 10 1 01 r r r
* When Sz=0: 8 bits x 8 bits= 16 bits
When Sz = 1. 16 bits x 16 bits = 32 bits
where Sz isthe size bit in the EA code

<Addressing Modes>
Rn @Rn@(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — —_ — — —_ _ — _

2.2.28 NEG (NEGate)

NEGate NEG
<Operation> <Condition Code>
0-(EAd) - (EAd) N Z V C

! ! ! !

<Assembly-L anguage Format>
N: Setto"1" when theresult is negative;

NEG <EAd> '
(Example) otherwise cleared to "0."
NEG W RO Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

V: Setto"1" if an overflow occurs,
otherwise cleared to "0."

C. Setto"1"if aborrow occurs;
otherwise cleared to "0."

<Operand Size>

Byte
Word

<Description>

This instruction replaces the destination operand (general register Rd or memory contents) with
itstwo's complement. It subtracts the destination operand from zero and places the result in the
destination.

<Instruction Format>
EA 0 0010 100

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.29 NOP (No OPeration)

No OPeration

NOP

<Operation>
PC+1 - PC

<Assembly-L anguage Format>
NOP

(Example)

NOP

<Operand Size>

<Condition Code>

N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction only increments the program counter.

<Instruction Format>
0 0000 O0OTO O

2.2.30 NOT (NOT = logical complement)

L ogical complement NOT
<Operation> <Condition Code>
~(EAd) - (EAd) N Z V C

! ! 0 | —

<Assembly-L anguage Format>
NOT <EAd>

(Example)

NOT.B @H 10, R2)

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Previous value remains unchanged.

<

<Operand Size>

Byte
Word

<Description>
This instruction replaces the destination operand (general register Rd or memory contents) with
its one's complement.

<Instruction Format>
EA 0 0010 101

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,RnN)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.31 OR (inclusive OR logical)

Inclusive logical OR OR
<Operation> <Condition Code>
Rd O(EAs) - Rd N Z V C

! ! 0 | —

<Assembly-L anguage Format>

OR <EAs>, Rd N: Setto"1" when theresult is negative;
(Example) otherwise cleared to "0."

R B @1 FO: 8, Rl Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."
Always cleared to 0.

C. Previous value remains unchanged.

<

<Operand Size>

Byte
Word

<Description>
Thisinstruction obtains the logical OR of the source operand and general register Rd (destination
operand) and places the result in genera register Rd.

<Instruction Format>

EA 01 00O Tr rr

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.32 ORC (OR Control register)

OR Control register ORC
<Operation> <Condition Code>
CRO#MM - CR N Z V C

A A A A

<Assembly-L anguage Format>
ORC #xx, CR

(Example)

ORC. W#H 0700, SR

(1) When CRisthe statusregister (SR or
CCR), theN, Z, V, and C bits are set
according to the result of the operation.

(2) When CRisnot the status register (EP, TP,
DP, or BR), the bits are set as below.

N: Setto"1" whenthe MSB of theresultis
"1;" otherwise cleared to "0."

<Operand Size>
Byte
Word

(Depends on the control register) Z: Setto"1" when theresult is zero; otherwise

clearedto "0."
Always cleared to O.
C. Previous vaue remains unchanged.

<

<Description>

Thisinstruction ORs the contents of a control register (CR) with immediate data and places the
result in the control register.

The operand size specified in the instruction depends on the control register as explained in Table
1-12in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the
end of thisinstruction.

<lnstruction Format>

ORC #xx:8,CR |oooo0100 data 01001l ccc
ORC #xx:16,CRl00001 100 data (H) data (L) 01001ccc

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source —_ — — — — — — — Yes Yes

2.2.33 PIMP (Page JUMP)

Page JuMP PIMP
<Operation> <Condition Code>
Effective address — CP, PC N Z V C

<Assembly-L anguage Format>

PIMP @a: 24 N: Previous value remains unchanged.
PIMP @ Z. Previous value remains unchanged.
(Example) V: Previous value remains unchanged.
PIMP @R4 C:. Previous value remains unchanged.

<Operand Size>

<Description>

Thisinstruction branches unconditionally to a specified address in a specified page, updating the
code page (CP) register. If register indirect (@Rn) addressing is used, the lower byte of genera
register Rnis copied to the code page register, and the contents of general register Rn+1 are copied to
the program counter (PC). The register number n must be even (n =0, 2, 4, or 6). Correct results
are not assured if nisodd.

Thisinstruction isinvalid when the CPU is operating in minimum mode.

<Instruction Format>
PIMP @a: 24100010011 page address (H) address (L)

PIMP @Rn 0001000111000 rrrTr

2.2.34 PJSR (Page Jump to SubRoutine)

Page Jump to SubRoutine

PJSR

<Operation>
PC - @-SP
CP - @-SP
Effective address - CP, PC

<Assembly-L anguage For mat>
PISR @a: 24

PISR @

(Example)

PIJSR @4 010000

<Operand Size>

<Condition Code>

N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous val ue remains unchanged.

<Description>

Thisinstruction pushes the program counter (PC) and code page registers (CP) onto the stack,
then branches to a specified address in a specified page. The PC and CP values pushed on the stack

are the address of the instruction immediately following the PISR instruction.

If register indirect (@Rn) addressing is used, the lower byte of general register Rnis copied to
the code page register, and the contents of general register Rn+1 are copied to the program counter.
The register number n must be even (n =0, 2, 4, or 6). Correct results are not assured if nisodd.

Thisinstruction isinvalid when the CPU is operating in minimum mode.
The status of the stack after execution of this instruction is shown below.

TP:SP _, |Indeterminate data CcP
PC
<Instruction Format>
PIJSR @a: 2400000011 page address (H) address (L)
PJSR @n 00010001f11001 rrr

2.2.35 PRTD (Page ReTurn and Deallocate)

Page ReTurn and Deallocate PRTD

<Operation> <Condition Code>

@SP+ - CP N Z VvV C
@SP+ - PC ===

SP+#MM - SP

N: Previous value remains unchanged.
<Assembly-L anguage For mat> Z Prev! ousvaue remq ns unchanged.
PRTD #xX V: Prev! ousvaue remq ns unchanged.
(Example) C: Previous value remains unchanged.
PRTD #8

<Operand Size>

<Description>

Thisinstruction is used to return from a subroutine in a different page and deall ocate the stack
area used by the subroutine. It pops the code page register (CP) and program counter (PC) from the
stack, then adjusts the stack pointer by adding immediate data specified in the instruction. The
immediate data value can be an 8-bit value from -128 to +127, or a 16-bit value from -32768 to
+32767.

Thisinstruction can be used to restore the previous stack when returning from a subroutine
called by the PISR instruction.

Thisinstruction isinvalid when the CPU is operating in minimum mode.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd
address. The immediate data should be an even number so that the stack pointer indicates an
even address after execution of the PRTD instruction.

<Instruction Format>

PRTD #xx:8 (0001000100010 100 data
PRTD #xx:16{00010 00100011 100 data (H) data (L)

2.2.36 PRTS (Page ReTurn from Subroutine)

Page ReTurn from SubRoutine

PRTS

<Operation>
@SP+ - CP
@SP+ - PC

<Condition Code>

<Assembly-L anguage Format>

PRTS
(Example)
PRTS

<Operand Size>

N

Z

V

C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction is used to return from a subroutine in a different page. It pops the code page
register (CP) and program counter (PC) from the stack. Execution continues from the popped

address.

Thisinstruction is used to return from a subroutine called by PJSR instruction.
Thisingtruction isinvalid when the CPU is operating in minimum mode.

<Instruction Format>

0O 0 0O1 0 O0O01

0O 0 0O11 0O01

2.2.37 ROTL (ROTate Leéft)

ROTate L eft ROTL
<Operation> <Condition Code>
(EAd) rotated left — (EAd) N Z V C

! ! 0 !

<Assembly-L anguage Format>
N: Setto"1" when theresult is negative;

ROTL <EAd> '
(Example) otherwise cleared to "0."
ROTL. W RO Z: Setto"1" when theresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Settothe value shifted out from the
most significant hit.

<

<Operand Size>

Byte
Word

<Description>
Thisinstruction rotates the destination operand (genera register Rd or memory contents) |eft,
and sets the C bit to the value rotated out from the most significant bit.

MSB LSB

<Instruction Format>
EA 0 0011 100

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.38 ROTR (ROTate Right)

ROTate Right ROTR
<Operation> <Condition Code>
(EAd) rotated right — (EAd) N Z V C

! ! 0 !

<Assembly-L anguage Format>
N: Setto"1" when theresult is negative;

ROTR <EAd> '
(Example) otherwise cleared to "0."
ROTR B @1 Z: Setto"1" whentheresult is zero,

otherwise cleared to "0."

Always cleared to 0.

C. Settothe value shifted out from the
least significant bit.

<

<Operand Size>

Byte
Word

<Description>
Thisinstruction rotates the destination operand (general register Rd or memory contents) right,
and sets the C bit to the value rotated out from the least significant bit.

MSB LSB

<Instruction Format>
EA 0 0011 101

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.39 ROTXL (ROTatewith eXtend carry Left)

ROTatewith eXtend carry L eft ROTXL
<Operation> <Condition Code>
(EAd) rotated left through C bit — (EAd) N Z V C

! ! 0 !

<Assembly-L anguage Format>
ROTXL <EAd>

(Example)

ROTXL. W@H 02, R1)

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Recevesthe vaue shifted out from the
most significant hit.

<

<Operand Size>

Byte
Word

<Description>

Thisinstruction rotates the destination operand (general register Rd or memory contents) left
through the C bit. The least significant bit of the destination operand receives the old value of the C
bit. The most significant bit isrotated to become the new value of the C bit.

MSB LSB

<Instruction Format>
EA 0 0011 110

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.40 ROTXR (ROTatewith eXtend carry Right)

ROTate with eXtend carry Right ROTXR
<Operation> <Condition Code>
(EAd) rotated right through C bit — (EAd) N Z V C

! ! 0 !

<Assembly-L anguage Format>
ROTXR <EAd>

(Example)

ROTXR B @1 FA: 8

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Recevesthe vaue shifted out from the
least significant bit.

<

<Operand Size>

Byte
Word

<Description>

Thisinstruction rotates the destination operand (general register Rd or memory contents) right
through the C bit. The most significant bit of the destination operand receives the old value of the C
bit. Theleast significant bit is rotated to become the new value of the C bit.

MSB LSB

——&| C

<Instruction Format>
EA 0 0011 111

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@-Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2241 RTD (ReTurn and Deallocate)

ReTurn and Deallocate RTD
<Operation> <Condition Code>
@SP+ - PC N Z V C

SP+#MM - SP — ===

<Assembly-L anguage For mat> N: Previous value remains unchanged.
RTD #xx Z. Previous value remains unchanged.
(Example) V: Previous value remains unchanged.
RTD #4 C. Previous value remains unchanged.

<Operand Size>

<Description>

Thisinstruction is used to return from a subroutine in the same page and deallocate the stack area
used by the subroutine. It pops the program counter (PC) from the stack, then adjusts the stack
pointer by adding immediate data specified in the instruction.

The immediate data value can be an 8-bit value from -128 to +127, or a 16-bit value from
-32768 to +32767.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd
address. The immediate data should be an even number so that the stack pointer indicates an
even address after execution of the RTD instruction.

<Instruction Format>

RTD #xx:8 |0 0 0 1 0 1 0 O data

RTD #xx:16]/0 0 0 1 1 1 0 O data (H) data (L)

ReTurn and Deallocate

RTD

<Note>

The RTD instruction works efficiently with programs coded in high-level languages that use
function routines. Besides returning from afunction cal, it can deallocate an argument area used by

the function.

The RTD instruction can be broken down into more general instructions as follows.

RTD

#0n O RTS
ADDS. W #n, SP

(where n isthe size of the argument area)

The usage of the RTD instruction in a program coded in C language isillustrated below.

Sample program
main ()

{

i nt b;
10;

a,
a
b

}
func(x)
int X;

{

= func(a);

Function call with argument a.

function processing

In assembly language this program could be coded as follows.

nai n: MOV
MOV
JSR
func: MOV

- #10, RO
RO, @-SP
func

@2, SP), R0 — Get argument a.

—— Passargument to function via stack.

function processing

RTD

#2

Return and deallocate argument area.

ReTurn and Deallocate

RTD

<Note (Continued)>

The stack area during and after the function call is shown below.

N/ v
Stack
SP - Return PC
Argument a
N N

Duringf unc() call.

Stack

SP -

After RTD

The PC is popped as in RTS,
then the stack pointer is
moved downward to
deallocate the argument a. In
this example the stack pointer
is incremented by 2.

2.2.42 RTE (ReTurn from Exception)

ReTurn from Exception RTE
<Operation> <Condition Code>
@SP+ - SR N Z V C
(if maximum mode then @SP+ — CP) P 0 ! !
@SP+ - PC

N: Popped from stack.
<Assembly-L anguage For mat> Z: Popped from stack.

V: Popped from stack.
RTE
(Example) C. Popped from stack.
RTE

<Operand Size>

<Description>

Thisinstruction returns from an exception-handling routine. It pops the program counter (PC)
and status register (SR) from the stack. 1n the maximum mode it also pops the code page register
(CP).*

Execution continues from the new address in the program counter (and code page register in
maximum mode).

Interrupts are not accepted and trace exception processing is not performed immediately after the
end of thisinstruction.

* The code page (CP) register isone bytein length. A full word is popped from the stack and the
lower 8 bits are placed in the CP.

<Instruction Format>
0 0001 010

2.2.43 RTS (ReTurn from Subroutine)

ReTurn from Subroutine RTS
<Operation> <Condition Code>
@SP+ - PC N Z V C

<Assembly-L anguage Format>

RTS N: Previous value remains unchanged.
(Example) Z. Previous value remains unchanged.
RTS V: Previous value remains unchanged.

C. Previous value remains unchanged.

<Operand Size>

<Description>

Thisinstruction is used to return from a subroutine in the same page. It pops the program
counter (PC) from the stack. Execution continues from the new PC address.

Thisinstruction can be used to return from a subroutine called by the BSR or JSR instruction.

<Instruction Format>
0 0011 001

2.2.44 SCB (Subtract, Compare and Branch conditionally)

Subtract, Compare and Branch conditionally SCB
<Operation> <Condition Code>
If condition is true then next; N Z V C

dseRn-1 - Rn; == =

If Rn =-1 then next
else PC + disp —» PC;

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous val ue remains unchanged.

<Assembly-L anguage For mat>

SCB/ cc Rn, di sp

Note: F (False), NE (Not Equal), or EQ
(EQual) can be specified in the condition code
field (cc). Thereare accordingly three
mNemonics:

SCB/ F, SCB/ NE, and SCB/ EQ
(Example)

SCB/ EQ R4, LABEL

<Operand Size>

<Description>

Thisinstruction is used for loop control. The condition code (cc) field can be set to create a pure
counted loop (SCB/F), or ado-while or do-until (SCB/NE or SCB/EQ) loop with alimiting count.

If the specified condition (cc) istrue, thisinstruction exits the loop by proceeding to the next
instruction. Otherwise, it decrements the counter register (Rc) and exitsthe loop if theresultis -1
When it does not exit the loop, this instruction branches to arelative address given by an
8-hit displacement value from -128 to +127.

The loop counter register (Rc) is decremented as aword register. The program counter (PC)
value used in address calculation is the address of the instruction immediately following the SCB
instruction.

Mnemonic Description Condition
SCB/ F False
SCB/ NE Not Equal Z=0

SCB/ EQ Equal z=1

Subtract, Compar e and Branch conditionally

<lnstruction Format>

SCB/ F
SCB/ NE

SCB/ EQ

0 0 OO0 OO0O1|12 01 11 rr disp
0 00O0OO 1 102 01112 rr disp
0O 0O0OOO 111112 0111 r disp

Subtract, Compar e and Branch conditionally SCB

<Note>

The general SCB instruction controls aloop with a counter register and the CCR bits as
termination conditions. The H8/500 provides three SCB instructions. SCB/F, SCB/NE, and
SCB/EQ.
[0 The SCB/F instruction can be broken down into the following more genera instructions:

SCB/ F Rn, LOCP U SUB. W #1, Rn
CW. W #-1, Rn
BNE LOOP

If aloop count is set in Rn, this produces a simple counted loop. In the following example the
loop isexecuted 9 + 1 = 10 times. Thefinal valueleft in R1is10.

MOV. W #9, RO

CLR W RL
LO ADD. W #1, Rl Start loop
SCB/ F RO, LO End loop

[0 The SCB/NE instruction can be broken down into the following more general instructions:

SCB/ NE Rn, LOCP O BNE NEXT
SUB.W #1, Rn
CW. W #-1 Rn
BNE LOOP
NEXT:

In the following example a search for avalue other than "A" is madein ablock of the length
indicated by general register R3 beginning at the address indicated by R4.

Subtract, Compar e and Branch conditionally SCB
<Note (Continued)>

AlAJTA|JA|JA|JA]|IBJALIA]LA

R4 = R3 >
Length = 10 bytes

MOV. W #9, R3
LO Qw.B #' A", @4+ Startloop
SCB/ NE R3, LO End loop

With the data shown, the loop executes 7 times and ends with the Z bit cleared to 0 and the value
3in R3. Theposition of thefirst non-"A" data can be calculated as R4 + (10 — R3). If al the data
were"A," the loop would end with the Z bit set to 1 and R3 = —1.

[0 The SCB/EQ instruction can be broken down into the following more general instructions:

SCB/EQ Rn, LOCP 0O BEQ NEXT
SUB. W #1, Rn
Qw. W #-1, Rn
BNE LOCP
NEXT:

In the following example a search for the value "A" is made in ablock of the length indicated by
genera register R3 beginning at the address indicated by R4.

v

B|C|[B|A|[D/|F F|1]O|B |B

R4 = R3 >
Length = 10 bytes

MOV. W #9, R3
LO Ow.B #' A", @4+ Startloop
SCB/ EQ R3, LO End loop

With the data shown, the loop executes 4 times and ends with the Z bit set to 1 and the value 6 in
R3. The position of the first A" can be calculated as R4 + (10 — R3). If therewasno "A," the loop
would end with the Z bit cleared to 0 and R3 = 1.

2.2.45 SHAL (SHift Arithmetic L eft)

SHift Arithmetic L eft SHAL
<Operation> <Condition Code>
(EAd) shifted arithmetic left — (EAd) N Z V C

! ! ! !

<Assembly-L anguage For mat> | |
SHAL <EAd> N: Setto"1" when theresult is negative;

(Example) otherwise cleared to "0."

SHAL. B @+ Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

V: Setto"1" when the shift changesthe
value of the most significant bit;
otherwise cleared to "0."

C. Settothe value shifted out from the

most significant hit.

<Operand Size>

Byte
Word

<Description>

This instruction shifts the destination operand (general register Rd or memory contents)
left, and sets the C bit to the value shifted out from the most significant bit. The least
significant bit iscleared to "0."

MSB LSB

<lnstruction Format>
EA 0 0011 000

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.46 SHAR (SHift Arithmetic Right)

SHift Arithmetic Right SHAR
<Operation> <Condition Code>
(EAd) shifted arithmetic right — (EAd) N Z V C

! ! 0 !

<Assembly-L anguage For mat> | |
SHAR <EAd> N: Setto"1" when theresult is negative;

(Example) otherwise cleared to "0."

SHAR. W @1 FFO0 Z: Setto '1 when the result is zero;
otherwise cleared to "0."

Always cleared to 0.

C:. Setto the value shifted out from the

least significant bit.

<

<Operand Size>

Byte
Word

<Description>

Thisinstruction shifts the destination operand (general register Rd or memory contents) right,
and sets the C hit to the value shifted out from the least significant bit. The most significant bit does
not change, so the sign of the result remains the same.

MSB LSB

|:1 | c

<Instruction Format>

EA 0O 0 0O11 001

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.47 SHLL (SHift Logical Left)

SHift Logical L eft

SHLL

<Operation>
(EAd) shifted logical left — (EAd)

<Assembly-L anguage Format>
SHLL <EAd>

(Example)

SHLL. B RL

<Operand Size>

Byte
Word

<Condition Code>
N Z V C
0 0 0 0

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. Settothe value shifted out from the
most significant hit.

<

<Description>

Thisinstruction shifts the destination operand (general register Rd or memory contents) left, and
sets the C hit to the value shifted out from the most significant bit. The least significant bit is cleared
to 0. Theonly difference between thisinstruction and SHAL isthat thisinstruction clearsthe V bit

to"0."

MSB LSB

<|nstruction Format>

EA 0 0011 010

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DegtinationYes Yes Yes

Yes Yes Yes Yes —— —

2.2.48 SHLR (SHift Logical Right)

SHift L ogical Right SHLR
<Operation> <Condition Code>
(EAd) shifted logical right — (EAd) N Z V C

O] ¢+t | O]

<Assembly-L anguage Format>
N: Always cleared to O.

SHLR <EAd> SC |
(Example) Z: Setto '1 when the result is zero;
SHLR W @R1L otherwise cleared to "0.

V: Always cleared to 0.

C: Set to the value shifted out from the

<Operand Size> o .
least significant bit.

Byte
Word

<Description>

Thisinstruction shifts the destination operand (general register Rd or memory contents) right,
and sets the C bit to the value shifted out from the least significant bit. The most significant bit is
cleared to O.

MSB LSB
0o — S——

<|nstruction Format>

EA 0 0011 011

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—-Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DegtinationYes Yes Yes Yes Yes Yes Yes Yes —— —

2.2.49 SLEEP (SLEEP)

SLEEP SLEEP
<Operation> <Condition Code>
Normal operating mode — power-down mode N Z V C

<Assembly-L anguage Format>

SLEEP N:
(Example) Z
SLEEP V:

C

<Operand Size>

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

When the SLEEP instruction is executed, the CPU enters the power-down mode. Itsinternal
state remains unchanged, but the CPU stops executing instructions and waits for an exception
handling request. When it receives such arequest, the CPU exits the power-down mode and begins

exception handling.

<Instruction Format>
0 0011 010

2250 STC (SToreControl register)

STore Control register

STC

<Operation>
CR - (EAd)

<Assembly-L anguage Format>
STC CR, <EAd>

(Example)

STC. B BR RO

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>
N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction stores the contents of a control register (CR) to ageneral register or memory

location (destination operand).

The operand size specified in the instruction depends on the control register asindicated in Table

1-12 in Section 1.3.6, "Register Specification.”

<Instruction Format>

EA 1 0 0 11

c

c C

<Addressing M odes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes

Yes Yes Yes Yes

2251 STM (SToreMultipleregisters)

STore Multipleregisters

STM

<Operation>
Rs (register group) - @-SP (stack)

<Assembly-L anguage Format>
STM <regi ster |ist> @SP

(Example)
STM (RO-R3) , @-SP

<Operand Size>

Word

<Condition Code>

N

Z

V

C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction pushes data from a specified list of general registers onto the stack. Inthe
instruction code, the register list is encoded as one byte in which bits set to "1" indicate registers to
be pushed. The highest-numbered register in thelist is pushed first, the next-highest-numbered
register second, and so on.

At the end of thisinstruction, general register R7 (the stack pointer) is updated to the value:
(contents of R7 before thisinstruction) — 2 x (number of registers pushed). If theregister list

includes R7, the value pushed is (contents of R7 before this instruction) — 2.

<Instruction Format>

0O 0 010 010 register list
Register list
7 6 5 4 3 2 1 0
R7 R6 R5 R4 R3 R2 R1 RO

STore Multipleregisters STM

<Note>

The STM instruction can be used to save a group of registers to the stack at the beginning of
exception handling routine or a subroutine. When there are many registers to save, the STM
instruction isfaster than the MOV instruction.

The status of the stack before and after an STM instruction is shown below.

v [V} v V)
Stack Stack
Old RO ~ SP
Old R1
Old R2
Old R3
Old R7-2
SP
AV ~N N N

Execution of STM (RO—-R3, R7), @-SP

If R7 (the stack pointer) isincluded in the register list, the value of R7 pushed on the stack is:
(contents of R7 before the instruction) — 2. The value of R7 after execution of the instructionis:
(contents of R7 before the instruction) — 2 x (number of registers restored).

Normally the STM instruction is paired with an LDM instruction which restores the registers.
LDM does not, however, restore R7; it performs adummy read instead. Accordingly, the program
will execute faster if R7 is not specified in the register list.

STore Multipleregisters STM

<Note (Continued)>

The following graph compares the number of machine states required for execution of STM and
execution of the same process using the MOV instruction.

50

45

Repetitions of MOV.W Rn,@-SP
40

ST™M

Number 30
of states 25 /

15

10 /7

0 1 2 3 4 5 6 7 8 Number of registers pushed

Note: Thisgraphisfor the casein which instruction fetches and stack access are both to on-chip
memory.

The STM instruction is faster when the number of registersisfour or more. The MOV
instruction is faster when there are only one or two registersto save. If theinstruction fetches areto
off-chip memory, the STM instruction is faster when there are two registers or more.

2.2.52 SUB (SUBtract binary)

SUBtract binary SUB
<Operation> <Condition Code>
Rd - (EAs) - Rd N Z V C

! ! ! !

<Assembly-L anguage Format>
N: Setto"1" when theresult is negative;

SUB <EAs>, Rd '
(Example) otherwise cleared to "0."
SUB. W @1, RO Z: Setto"1" when the result is zero;

otherwise cleared to "0."

<Operand Size> V: Setto"1" if an overflow occurs,

Byte
Word

otherwise cleared to "0."
C:. Setto"1" if aborrow occurs;
otherwise cleared to "0."

<Description>
This instruction subtracts a source operand from general register Rd (destination operand) and
places the result in general register Rd.

<Instruction Format>

EA 0 0110 T r

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.53 SUBS (SUBtract with Sign extension)

SUBtract with Sign extension SUBS
<Operation> <Condition Code>
Rd - (EAs) - Rd N Z V C

<Assembly-L anguage Format>

SUBS <EAs>, Rd N: Prev! ousvaue rema! ns unchanged.
(Example) Z Prev! ousvaue remq ns unchanged.
SUBS. W #2, R2 \é Previous value remains unchanged.

Previous value remains unchanged.

<Operand Size>

Byte
Word

<Description>

This instruction subtracts the source operand from the contents of general register Rd
(destination operand) and places the result in general register Rd.

Differing from the SUB instruction, this instruction does not ater the condition code.

If byte Sizeis specified, the sign bit of the source operand is extended. The subtractionis
performed using the resulting word data. General register Rd is always accessed as aword-size
operand.

<Instruction Format>

EA 0O 0111 r r r

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.54 SUBX (SUBtract with eXtend carry)

SUBtract with eXtend carry SUBX
<Operation> <Condition Code>
Rd-(EAs)-C - Rd N Z V C

! ! ! !

<Assembly-L anguage Format>
SUBX <EAs>, Rd

(Example)

SUBX. W @2+, RO

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

<Operand Size> V: Setto"1" if an overflow occurs,

Byte
Word

otherwise cleared to "0."
C:. Setto"1" if aborrow occurs;
otherwise cleared to "0."

<Description>
This instruction subtracts the source operand contents and the C bit from general register Rd
(destination operand) and places the result in general register Rd.

<Instruction Format>

EA 1 0 1 10 r r r

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.55 SWAP (SWAP register halves)

SWAP reg_]ister halves SWAP
<Operation> <Condition Code>
Rd (upper byte) ~ Rd (lower byte) N Z V C

! ! 0 | —

<Assembly-L anguage Format> . .
SWAP Rd N: Setto"1" when theresult is negative;

(Example) otherwise cleared to "0."

SWAP RO Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."
Always cleared to 0.

C. Previous value remains unchanged.

<

<Operand Size>
Byte

<Description>
This instruction interchanges the upper eight bits of general register Rd (destination register)
with the lower eight bits.

<Instruction Format>

101 00 Tr r rjo 0010 O0OO0TPO

2.256 TAS (Test And Set)

Test And Set TAS

<Operation> <Condition Code>

Set CCR according to result of (EAd) -0 N Z V C
()2 - (<bit 7> of <EAd>) ! t 10| O

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

<Assembly-L anguage Format>

TAS <EAd> |
(Example) Z: Setto"1" whentheresult is zero;
TAS @1 FO00 otherwise cleared to "0."

<

Always cleared to 0.
C. AlwaysclearedtoO.

<Operand Size>
Byte

<Description>

Thisinstruction tests a destination operand (general register Rd or memory contents) by
comparing it with O, sets the condition code register according to the result, then sets the most
significant bit of the operand to "1."

<Instruction Format>
EA 0 0010 111

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

Test And Set TAS

<Note>

Execution of the TAS instruction causes the CPU to perform the read-modify-write cycle shown
below. No signal isoutput to indicate this cycle, but at the point between the read and write cycles
the CPU will not accept interrupts and will not relinquish the bus. 1f an address error or other
exception condition occurs during the read cycle, it is not handled until the write cycle has been
executed.

The timing chart below isfor access to off-chip memory by the H8/532.

Read cycle Writecycle

2257 TRAPA (TRAP Always)

TRAP Always TRAPA

<Operation> <Condition Code>

PC - @-SP N Z V C

(If maximum mode then CP - @-SP) ===

SR - @-SP

(If maximum mode then <vector> — CP) N: Previous value remains unchanged.

<vector> - PC Z. Previous value remains unchanged.
V: Previous value remains unchanged.

<Assembly-L anguage Format> C: Previous value remains unchanged.

TRAPA #xX

(Example)

TRAPA #4

<Operand Size>

<Description>

Thisinstruction generates a trap exception with a specified vector number.

When a TRAPA instruction is executed, the CPU initiates exception handling according to its
current operating mode. In the minimum mode, it pushes the program counter (PC) and status
register (SR) onto the stack, then indexes the vector table by the vector number specified in the
instruction and copies the vector at that |ocation to the program counter. In the maximum mode, it
pushes the code page register* (CP), PC, and SR onto the stack and copies the vector to CP and
PC.

* The code page register is byte size, but the stack and vector table are always accessed as word
data. Thelower eight bits are used.

TRAP Always TRAPA
<Instruction Format>
0 0001 0O0O0O|0O O0Oa1 #VEC

#VEC

Vector address

Minimum mode

Maximum mode

#VEC

#VEC: A 4-bit number from Oto 15

specifying an exception vector
number acording to the table

below.

Vector address

Minimum mode

Maximum mode

~N o o0k~ NP O

H'0020 — H'0021
H'0022 — H'0023
H'0024 — H'0025
H'0026 — H'0027
H'0028 — H'0029
H'002A — H'002B
H'002C — H'002D
H'002E — H'002F

H'0040 — H'0043
H'0044 — H'0047
H'0048 — H'004B
H'004C — H'004F
H'0050 — H'0053
H'0054 — H'0057
H'0058 — H'005B
H'005C — H'005F

8

9

10
11
12
13
14
15

H'0030 — H'0031
H'0032 — H'0033
H'0034 — H'0035
H'0036 — H'0037
H'0038 — H'0039
H'003A — H'003B
H'003C — H'003D
H' 003E — H'003F

H'0060 — H'0063
H'0064 — H'0067
H'0068 — H'006B
H'006C — H'006F
H'0070 — H'0073
H'0074 — H'0077
H'0078 — H'007B
H'007C — H'007F

2.2.58 TRAP/IVS (TRAP if oVerflow)

TRAP if oVerflow bit is Set TRAP/VS

<Operation> <Condition Code>

If V bitisset then TRAP N Z V C
else next; ===

<Assembly-L anguage For mat> N: Previous value remains unchanged.

TRAP/ VS Z. Previous value remains unchanged.

(Example) V: Previous value remains unchanged.

TRAP/ VS C. Previous value remains unchanged.

<Operand Size>

<Description>

When thisinstruction is executed, the CPU checks the CCR (condition code register) and
initiates exception handling if the V bitissetto "1". If theV bit is cleared, execution proceedsto the
next instruction without an exception.

The vector address of the exception generated by a TRAP/V Sinstruction is shown below.

Minimum mode M aximum mode
H'0008 — H'0009 H'0010 — H'0013

<lnstruction Format>
0 0001 001

2259 TST (TeST)

TeST TST
<Operation> <Condition Code>
Set CCR according to result of (EAd) -0 N Z V C

! ! 0|0

<Assembly-L anguage Format>
TST <EAd>

(Example)

TST @H 1000, R1)

N: Setto"1" when theresult is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

Always cleared to 0.

C. AlwaysclearedtoO.

<

<Operand Size>

Byte
Word

<Description>

Thisinstruction compares the destination operand (general register Rd or memory contents) with
0 and sets the condition code register according to the result. It does not modify the destination
operand.

<Instruction Format>
EA 0 0010 110

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

DedtinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.60 UNLK (UNLinK)

UNLinK UNLK
<Operation> <Condition Code>
FP (R6) — SP N Z VvV C

@SP+ — FP (R6)

<Assembly-L anguage Format>
UNLK FP
(Example)
UNLK FP

<Operand Size>

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

Thisinstruction deallocates a stack frame created by a LINK instruction.

It copies the frame pointer (FP = R6) contents to the stack pointer (SP = R7), then pops the top

word in the new stack area (the FP saved by the LINK instruction) to the frame pointer.

<Instruction Format>
0 0001 111

2.2.61 XCH (eXCHangeregisters)

eXCHangeregister XCH
<Operation> <Condition Code>
Rs -« Rd N Z V C

<Assembly-L anguage Format>

XCH Rs, Rd N: Previous value remains unchanged.
(Example) Z. Previous value remains unchanged.
XCH RO, Rl V: Previous value remains unchanged.

C. Previous value remains unchanged.

<Operand Size>
Word

<Description>
Thisinstruction interchanges the contents of two general registers.

<Instruction Format>

10101rsrsr810010rdrdrOI

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,RnN)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes — — — — — - — _ _
DedtinationYes — — — — — - _ _ _

2.2.62 XOR (eXclusive OR logical)

eXclusive OR logical XOR
<Operation> <Condition Code>
Rd O (EAs) —» Rd N Z V C

! ! 0 | —

<Assembly-L anguage For mat> | |
XOR <EAs>, Rd N: Setto"1" when the result is negative;

(Example) otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

Always cleared to 0.

C. Previous value remains unchanged.

XOR B @1 A0: 8, RO

<

<Operand Size>

Byte
Word

<Description>
Thisinstruction obtains the logical exclusive OR of the source operand and the contents of
genera register Rd (destination operand) and places the result in genera register Rd.

<Instruction Format>
EA 01 1 0O0 r rr

<Addressing Modes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
DedtinationYes — — — — — _ _ _ _

2.2.63 XORC (eXclusive OR Control register)

eXclusive OR Control register XORC
<Operation> <Condition Code>
CRO#MM - CR N Z V C

A A A A

<Assembly-L anguage Format>
XORC #xx, CR

(Example)

XORC. B #H 01, CCR

(1) When CR isthe status register (SR or
CCR), theN, Z, V, and C bits are set
according to the result of the operation.

(2) When CR isnot the status register (EP, TP,
DP, or BR), the bits are set as below.

N: Setto"1" whenthe MSB of theresult is
"1;" otherwise cleared to "0."

Z: Setto"1" whentheresult is zero; otherwise

clearedto "0."

Always cleared to 0.

C. Previous value remains unchanged.

<Operand Size>

Byte

Word

(Depends on the control register)

<

<Description>

Thisinstruction exclusive-ORs the contents of a control register (CR) with immediate data and
places the result in the control register.

The operand size specified in the instruction depends on the control register asindicated in Table
1-12in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the
end of thisinstruction.

<lnstruction Format>

XORC #xx:8,CR 00000100 data 01101 ccc
XORC #xx:16,CR 00001 100 data (H) data (L) 01101 ccec

<Addressing M odes>
Rn @Rn @(d:8,Rn) @(d:16,Rn)@—Rn @Rn+ @aa8 @aa 16 #xx:8 #xx:16

Source —_ — — — — — — — Yes Yes

2.3 Instruction Codes

Table 2-1 shows the machine-language coding of each instruction.

» Howtoread Table 2-1 (a) to (d).

The genera operand format consists of an effective address (EA) field and operation-code
(OP) field specified in the following order:

EA field Op field

A A

1 2 3 4 5 6

Bytes 2, 3, 5, 6 are not present in al instructions.

disp (L)
address (L)
data(L)

address (H)
daa
data (H)

address

Operation code (EA)
2
disp
disp (H)

1010Szrrr
1101Szrrr
1110Szrrr
1111Szrrr
1011Szrrr
1100Szr rr
0000Sz101
0001szi101
00000100
00001100

Address-
ing mode

Instruction Operation code (OP)

4 5

w | #xx:8
#xXx:16

MOV:G.B <EAs>,Rd [|10000rgrqrg

MOV:G.W <EAs>Rd [410000 rgrgrg

MOV:G.B Rs<EAd> 10010rsrsrs

N NN | @Rn
w|w|w|w | @8, Rn)
» s s [» [@@16, Rn)
NN [N [| @-Rn
NN | @Rt
wlw|w]|w | @asd

NN NN RN

MOV:G.W Rs<EAd> 411001 0rgrgrg

instruction

Byte length of instruction J L Shading indicates addressing

modes not available for this
instruction.

Some instructions have a specia format in which the operation code comes first.
The following notation is used in the tables.
e Sz: Operand size (byte or word)

Byte: Sz=0
Word: Sz=1

* rrr: Genera register number field

rrr Sz =0 (Byte) Sz=1 (Word)
15 87 0 15 0
000 [Notused | RO | | RO |
001 [Notused | R1 | | R1 |
010 [Notused | R2 | | R2 |
011 [Notused | R3 | | R3 |
100 [Notused | R4 | | R4 |
101 [Notused | R5 | | R5 |
110 [Notused | R6 | | R6 |
111 [Notused | R7 | | R7 |
* ccc: Control register number field
ccc Sz=0 (Byte) Sz=1 (Word)
000 (Not allowed) 1o 0
7 0 | =R |
001 CCR (Not allowed)
010 (Not allowed) (Not allowed)
011 (Not allowed)
100 (Not allowed)
101 (Not allowed)
110 (Not allowed) (Not allowed)
111 (Not allowed)

*

"Disallowed" means that this combination of bits must not be specified. Specifying a

disallowed combination may cause abnormal results.

* register list: A bytein which bitsindicate general registers as follows

Bit:

R7 R6

R5 R4

R3

R2 R1

RO

* #VEC: Four bitsdesignating avector number from 0 to 15. The vector numbers
correspond to addresses of entriesin the exception vector table as follows:

#VEC

Vector address

Minimum mode

Maximum mode

#VEC

Vector address

Minimum mode

Maximum mode

0 H'0020 — H'0021 H'0040 — H'0043 8 H'0030 — H'0031 H'0060 — H'0063
1 H'0022 — H'0023 H'0044 — H'0047 9 H'0032 — H'0033 H'0064 — H'0067
2 H'0024 — H'0025 H'0048 — H'004B 10 H'0034 — H'0035 H'0068 — H'006B
3 H'0026 — H'0027 H'004C — H'004F 11 H'0036 — H'0037 H'006C — H'006F
4 H'0028 — H'0029 H'0050 — H'0053 12 H'0038 — H'0039 H'0070 — H'0073
5 H'002A — H'002B H'0054 — H'0057 13 H'003A — H'003B H'0074 — H'0077
6 H'002C — H'002D H'0058 — H'005B 14 H'003C — H'003D H'0078 — H'007B
7 H'002E — H'002F H'005C — H'005F 15 H'003E — H'003F H'007C — H'007F
» Examples of machine-language coding
Examplel: ADD:G.B @RO,R1
EA field OP field
Table2.1(@ | 1101Szrrr |00100rgrdrd
Machinecode | 11010000 | 00100001
H'D021
Example2: ADD:G.W @H'11:8,R1
EA field OP field
Table2.1 (a) 0000Sz101 | 00010001 | 00100rgrdrd
Machinecode| 00001 101 | 00010001 [00100001
H'0D1121

2.5 Condition Code Changes

The changesin the condition code bits occurring after the execution of each CPU instruction are
summarized in Tables 2-7 (1) to (4). Thefollowing notation is used.

Sm: Most significant bit of source operand

Dm: Most significant bit of destination Instruction N Z V C Definitions
operand ADD t ottt

Rm: Most significant bit of result ADDS -

Dn: Bit nof destination operand ADDX Tttt =~

—: Not changed. =~

1. Changed according to the result of the =~
instruction. C=-~

0: Alwaysclearedto"0."

1. Alwayssetto"1."

A: Handling depends on the operand.

Table 2-7 Condition Code Changes (1)

Instruction N Z V C Definitions
ADD t ¢t ¢t t N=Rm
Z = Rm-Rm-1-...-R0
V = Sm:Dm-Rm + Sm-Dm-Rm
C=5Sm-Dm+ Dm-Rm + Sm-Rm
ADDS —_—— —
ADDX t 1t 1 1t N=Rm
Z = Z"Rm-...-RO*
V = Sm-Dm-Rm + Sm-Dm-Rm
C=5Sm:-Dm+ Dm-Rm + Sm-Rm
AND t + 0 — N=Rm
Z = Rm-Rm-1-...-R0
ANDC A A A A IfCR=SR(CCR):. N,Z,V,andC are ANDed with source operand
bits 3to 0.
If CR#SR(CCR): N=Rm
Z = Rm-Rm-1-...-RO
V=0
C = remains unchanged.
Bcc _—— —
BCLR — ¢t — — Z=Dn
BNOT — t — — Z=Dn
BSET — ¢t — — Z=Dn
BSR _—— —
BTST — ¢t — — Z=Dn
CLR 01 0O
QwP 0 t ¢t N=Rm
Z = Rm-Rm-1-...-RO
V = Sm-Dm-Rm + Sm-Dm-Rm
C =Sm:Dm + Dm-Rm + Sm-Rm
DADD — 1t — t Z=ZRm-....RO
C =decimal carry
D VXU t ¢t ¢ 0 N=Rm

Z = Rm-Rm-1-...-RO
V = division overflow

* Z'isthe Z bit before execution.

Table 2-7 Condition Code Changes (2)

Instruction N Z V C

Definitions

DSUB — ¢t — 1t Z=ZRm...RO
C = decimal borrow
EXTS t ¢+ 0 0O N=Rm
Z = Rm-Rm-1....-R0
EXTU 0O ¢+ 0 0 Z=RmRm-1....RO
JMWP _—— —
JSR _—— —
LDC A A A A IfCR=SR(CCR),thenN, Z,V,and C areloaded from the
source operand.
If CR# SR (CCR), then N, Z, V, and C remain unchanged.
LDM _—— —
LI NK _—— —
MoV t t 0 — N=Rm
Z = Rm-Rm-1....-R0
MOVIFPE —_—— —
MOVTPE —_—— —
MULXU t ¢+ 0 0O N=Rm
Z = Rm-Rm-1....-R0
NEG t ¢t 1t ¢t N=Rm
Z = Rm-Rm-1....-R0
V =Dm-Rm
C=Dm+Rm
NOP - — —
NOT t t 0 — N=Rm
Z = Rm-Rm-1....-R0
R t t 0 — N=Rm
Z = Rm-Rm-1....-R0
ORC A A A A IfCR=SR(CCR): N,Z,V,andC are ORed with source

operand bits 3to 0.
If CR# SR (CCR): N=Rm
Z = Rm-Rm-1-...-RO

V=0
C = remains unchanged.

Table 2-7 Condition Code Changes (3)

Instruction N Z V C Deéefinitions

PIMP _— — —

PISR _— — —

PRTS _— — —

PRTD _— — —

ROTL t ¢t 0 t N=Rm
Z = Rm-Rm-1-...-RO
C=Dm

ROTR t 1t 0 t N=Rm
Z = Rm-Rm-1-...-R0
C=D0

ROTXL t 1+ 0 ¢t N=Rm
Z = Rm-Rm-1.-...-RO
C=Dm

ROTXR t 1+ 0 ¢t N=Rm
Z = Rm-Rm-1.-...-RO
C=D0

RTD _— — —

RTE t ¢t ¢ Poppedfrom the stack.

RTS _— — —

SCB _— — —

SHAL t ¢t ¢t N=Rm
Z = Rm-Rm-1-...-RO
V =Dm-Dm-1 + Dm-Dm-1
C=Dm

SHAR t ¢t 0 ¢t N=Rm
Z = Rm-Rm-1-...-RO
C=D0

SHLL t 1+ 0 ¢t N=Rm

Z = Rm-Rm-1-...-R0O

Dm

Table 2-7 Condition Code Changes (4)

Instruction N Z V C Deéefinitions

SHLR O ¢+ 0 ¢
Z = Rm-Rm-1-...-R0
C=D0
SLEEP _—— —
STC —_—— —
STM —_— — —
SUB t 1 1t 1t N=Rm
Z = Rm-Rm-1-...-R0
V = Sm-Dm-Rm + Sm-Dm-Rm
C =Sm-Dm:-Dm + Rm-Sm-Rm
SUBS _—— —
SUBX t ¢t 1t N=Rm
Z = Z"Rm-....-RO*
V = Sm-Dm-Rm + Sm-Dm-Rm
C =Sm:Dm + Dm-Rm + Sm-Rm
SWAP t ¢+ 0 — N=Rm
Z = Rm-Rm-1-...-R0
TAS t ¢+ 0 0 N=Rm
Z = Rm-Rm-1-...-R0
TRAPA _—— —
TRAP/IVS — — — —
TST t ¢+ 0 0 N=Rm
Z = Rm-Rm-1-...-R0
UNLK _— — —
XCH _—— —
XOR t ¢+ 0 — N=Rm
Z = Rm-Rm-1-...-R0
XORC A A A A IfCR=SR(CCR): N,Z,V,andC are exclusve-ORed with

source operand bits 3to 0.
If CR# SR (CCR): N=Rm

Z = Rm-Rm-1....-R0

V=0

C = remains unchanged.

* Z'isthe Z bit before execution.

2.6 Instruction Execution Cycles

Tables 2-8 (1) through (6) list the number of cycles required by the CPU to execute each instruction
in each addressing mode.

The meaning of the symbolsin the tablesis explained below. Thevaluesof I, J, and K are used to
calculate the number of execution cycles when off-chip memory is accessed for an instruction fetch
or operand read/write. The formulas for these calculations are given next. Different formulas are
used for the H8/520/532/534/536, which have an 8-bit external bus, and the H8/510/570, which
have a 16-bit external bus.

2.6.1 Calculation of Instruction Execution States (H8/520, H8/532, H8/534,
H8/536)

One state is one cycle of the system clock (). If @ =10MHz, then one state = 100ns.

Instruction fetch Operand read/write Number of states

On-chip memory* 1 On-chip memory, genera (Valuein Table 2-8) + (Vauein Table 2-9)

register, or no operand

On-chip supporting module Byte (Valuein Table 2-8) + (Valuein Table 2-9) + |
or off-chip memory” 2 Word (Valuein Table 2-8) + (Valuein Table 2-9) + 21

Off-chip memory*2 On-chip memory, genera (Valuein Table 2-8) + 2(J + K)

register, or no operand

On-chip supporting module Byte (Valuein Table2-8) + 1 + 2(J + K)
or off-chip memory*2 Word (Vauein Table 2-8) + 2(1 + J+ K)

*1 When theinstruction is fetched from on-chip memory (ROM or RAM), the number of execution
states varies by 1 or 2 depending of whether the instruction is stored at an even or odd address.
This difference must be noted when software is used for timing, and in other cases in which the
exact number of statesis important.

*2 If wait states are inserted in access to external memory, add the necessary number of cycles.

2.6.2 Tablesof Instruction Execution Cycles

Tables 2-8 (1) through (6) should be read as shown below:

J+ K: Number of
instruction fetch cycles.

Addressing mode

I: Total number of bytes
written and read when
operand isin memory.

Instruction
ADD.B
ADD.W
ADD:Q.B
ADD:Q.W
DADD

wl N #xx:8
w | #xx:16

~| ~| o ol ,|@RN
~| ~| a1 ;| | @(d:8,RN)
o| o| of o] w|@(d:16,Rn)
~| ~| o ;| »|@-Rn
o| o| o | = | @R+
~| ~| o | | @aa8
o| 0| | o w|@aal6

Al NN R —
N Y IS [

INENIEVIE IRV A=Y AR

T

Shading in the | column means \

cannot be used with this instruction.

2.6.3 Examplesof Calculation of Number of States Required for Execution
(H8/520, H8/532, H8/534, H8/536)

(Examplel) ADD:G.W @RO, R1: instruction fetch from on-chip memory

Operand Start Assembler notation Table2-8+ Number
Read/Write addr. Address Code Mnemonic Table 2-9 of states
On-chipmemory Even H'0100 H'D821 ADD @RO,R1 5+1 6
or genera register Odd H'0101 H'D821 ADD @RO,R1 5+0 5

(Example 2) JSR @RO: instruction fetch from on-chip memory

Operand Branch Assembler notation Table2-8+ Number
Read/Write addr. Address Code Mnemonic Table2-9+2 of states
External Even H'FCO0 H'11D8 JSR @RO 9+0+2x2 13

memory (word) Odd H'FCO01 H'11D8 JSR @RO 9+1+2x2 14

(Example3) ADD:G.W @RO, R1: instruction fetch from external memory

Operand Assembler notation Table2-8+ Number
Read/Write Address Code M nemonic 2(J +K) of states

On-chipmemory H'9002 H'D821 ADD:GW @RO,R1 5+2x(1+1) 9
or genera register

On-chip supporting H'9002 H'D821 ADD:GW @RD,R1 5+2x(2+1+1) 13
modul e or external
memory

2.6.4 Number of Execution States (H8/510, H8/570)

One state is one cycle of the system clock (@). If @ = 10MHz then one state = 100ns.

Instruction
fetch Operand access Number of states

16-hit bus, 16-bit busand 2-state (Vauein Table 2-8) + (Valuein Table 2-9)
2-state access access address space,
addressspace or general register

16-bit busand 3-state Byte (Vauein Table2-8) + (Vauein Table2-9) + |

accessaddressspace Word (Vauein Table 2-8) + (Valuein Table 2-9) + 1/2

8-bitbusand 2-state Byte (Vauein Table2-8) + (Vauein Table 2-9)

accessaddressspace Word (Valuein Table 2-8) + (Vauein Table2-9) + |

8-bitbusand 3-state Byte (VaueinTable2-8) + (Valuein Table 2-9) + 1

access address space, Word (Vauein Table 2-8) + (Vauein Table 2-9) + 2
or on-chip register field

16-hit bus, 16-bit busand 2-state (Valuein Table 2-8) + (Vauein Table 2-9) + (J+ K)/2
3-state access access address space,
address space or general register

16-bit busand 3-state Byte (VadueinTable2-8) + (VaueinTable2-9) +1 +

access address space J+K)/2
Word (Vauein Table 2-8) + (Vauein Table 2-9) +
(I + I+ K)/2
8-bitbusand 2-state Byte (Vauein Table2-8) + (Vauein Table 2-9) +
access address space J+K)/2
Word (Vauein Table 2-8) + (Vauein Table 2-9) +
| +(J+K)/2
8-bit busand 3-state Byte (ValueinTable2-8) + (VaueinTable2-9) +1 +
access address space, J+K)/2

or on-chip register field Word (Vauein Table 2-8) + (Vauein Table 2-9) +
21 + (J+K)/2

Instruction
fetch Operand access Number of states

8-bit bus, 16-bit busand 2-state (Valuein Table2-8) + J+ K
2-state access access address space,
address space or general register

16-bit busand 3-state Byte (VaueinTable2-8) +1+J+K

accessaddressspace Word (VaueinTable2-8) +1/2+J+K

8-bit bus and 2-state Byte (VaueinTable2-8) +J+K
accessaddressspace Word (VaueinTable2-8) +1 +J+K

8-bit bus and 3-state Byte (VaueinTable2-8)+1+J+K

access addressspace, Word (VaueinTable2-8) + 21 + J+ K
or on-chip register field

8-bit bus, 16-bit busand 2-state (Vauein Table 2-8) + 2(J + K)
3-state access access address space,
addressspace or general register

16-bit busand 3-state Byte (VaueinTable2-8) +1 + 2(J+ K)

accessaddressspace Word (Vauein Table 2-8) + 1/2 + 2(J + K)

8-bit bus and 2-state Byte (Vauein Table?2-8) +2(J+ K)

accessaddressspace Word (Vauein Table 2-8) + 1 + 2(J + K)

8-bit bus and 3-state Byte (VaueinTable2-8) +1+2(J+K)

access addressspace, Word (Vauein Table 2-8) + 2(1 + J+ K)
or on-chip register field

Notes. 1. When aninstruction isfetched from the 16-bit bus access address space, the number of
states differs by 1 or 2 depending on whether the instruction is stored at an even or odd
address. This point should be noted in software timing routines and other situationsin
which the precise number of states must be known.

2. If wait states or Tp states are inserted in access to the 3-state access address space, add
the necessary number of states.

3. When an instruction is fetched from the 16-bit-bus, 3-state access address space, the
term (J + K)/2 is rounded down to an integer.

2.6.5 Examplesof Calculation of Number of States Required for Execution (H8/510,
H8/570)

(Example 1) Instruction fetch from 16-bit-bus, 2-state access addr ess space

Operand Start Assembler notation Table2-8+ Number
Read/Write addr. Address Code Mnemonic Table 2-9 of states
16-bit-bus, 2-state Even H'0100 D821 ADD@RO,R1 5+1 6

access address Odd H'0101 D821 ADD @RO,R1 5+0 5

space, or general

register

(Example2) Instruction fetch from 16-bit-bus, 2-state access addr ess space (stack in 8-bit-
bus, 3-state access addr ess space)

Operand Branch Assembler notation Table 2-8+ Number
Read/Write addr. Address Code Mnemonic Table2-9+2 of states
8-bit-bus, Even H'FCO0 11D8 JSR @RO 9+0+2x2 13
3-dtate Odd H'FCO1 11D8 JSR @RO 9+1+2x2 14
access address

space (word)

(Example 3) Instruction fetch from 8-bit-bus, 3-state access addr ess space

Operand Assembler notation Table 2-8+ Number
Read/Write Address Code Mnemonic 2(J +K) of states
16-bit-bus, 2-state H'9002 D821 ADD@RO,R1 5+2x(1+1) 9

access address space,

or general register

(Example 4) Instruction fetch from 16-bit-bus, 2-state access addr ess space

Table2-8+
Operand Start Assembler notation Table2-9 + Number
Read/Write addr. Address Code Mnemonic (J+K)/2 of states

16-bit-bus, Even H'0100 D821 ADD @RO,R1 5+1+(1+1)/2 7

2-stateaccess Odd H'0101 D821 ADD @RO,R1 5+0+(1+1)/2 6
address space,
or generd register

Table 2-8 Instruction Execution Cycles (5)

Instruction (Condition) Execution cycles I J+K
Bcc d: 8 Condition false, branch not taken 3 2
Condition true, branch taken 7 5
Bcc d: 16 Condition false, branch not taken 3 3
Condition true, branch taken 7 6
BSR d: 8 9 2 4
d: 16 9 2 5
JMP @a: 16 7 5
@n 6 5
@d: 8, Rn) 7 5
@d: 16, Rn) 8 6
JSR @a: 16 9 2 5
@n 9 2 5
@d: 8, Rn) 9 2 5
@d: 16, Rn) 10 2 6
LDM 6+4n* 2n 2
LI NK #xX: 8 6 2 2
#xx: 16 7 2 3
NOP 2 1
RTD #xX: 8 9 2 4
#xx: 16 9 2 5
RTE Minimum mode 13 4 4
Maximum mode 15 6 4
RTS 8 2 4
SCB Condition false, branch not taken 3 3
Count = —1, branch not taken 4 3
Other than the above, branch taken 8 6
SLEEP Cycles preceding transition to power- 2 0
down mode
STM 6+3n* 2n 2

* nisthe number of registers specified in the register list.

Table 2-8 Instruction Execution Cycles (6)

Instruction (Condition) Execution cycles I J+K
TRAPA Minimum mode 17 6 4
Maximum mode 22 10| 4
TRAP/ VS | V =0, trap not taken 3 B 1
V =1, trap taken, minimum mode 18 6 4
V =1, trap taken, maximum mode 23 10| 4
UNLK 5 2 1
PIMP @a: 24 9 6
@n 8 5
PJSR @a: 24 15 4 6
@n 13 4 5
PRTS 12 4 5
PRTD #xX: 8 13 4 5
#xx: 16 13 4 6

Table 2-9 (a) Adjusted value (branch instructions)

Instruction Address Adjusted value
BSR, JMP, JSR, RTS, RTD, RTE even 0
TRAPA, PIMP, PJSR, PRTS, PRTD odd 1
Bcc, SCB, TRAP/VS (When branches) even 0
odd 1

Table2-9 (b) Adjusted value (Other instructions by addressing modes)

O XX#

8:XX#

gIee@ | |+ |N O] d

g | |+ |[O|N|O

+UHO| A | d [N O |

UH-O|d|d N O |

UH'ITP)D|— |- |N O | H

gpP@ | [[© N[

U@ | = N[O | —

% 5sloc|lolo| ol o
52 |8|8|s|8|q|3
()
3
A o
wmm j
AL o
s1Ble |2
$|1=| % 9
— HW..“W m
g Bm.._W 2
S o = ©
= > > > o
3 o|o|o 3
j= A= j=

2.7 Invalid Instruction Exception Handling

Handling of Undefined Instruction Codes: When an attempt is made to execute an instruction
with an undefined bit pattern (undefined operation code or addressing mode), the H8/500 initiates
invalid instruction exception handling. "Undefined" means that the corresponding entry in the
operation code map is blank.

Table 2-10 lists the invalid instruction codes. In addition to the instruction codes listed, there are
invalid combinations of addressing modes. These do not cause an invalid instruction exception, so
proper handling is not assured.

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (a)

Effective address Operation code

H'0B
H'16
H'1B
Register H'01 to H'07
Rn H'OA, H'OB
H'OE, H'OF
Memory @n H'01 to H'03
@d: 8, R1) @d: 16, Rn) H'OA, H'OB
@ Rn @n+ H'OE, H'OF
@a: 8 @a: 16 H'10 to H'12
Immediate #xXx: 8 #xx: 16 H'00 to H'OF
H'10 to H'1F
H'78 to H'7F
H'90 to H'9F
H'CO to H'CF
H'DO to H'DF
H'EO to H'EF

H'FO to H'FF

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (b)

Operation code Effective address
H'01 H'00 to H'OF
H'06 H'10 to H'13
H'07 H'15 to H'18
H'11 H'1A, H'1B
H'1D to H'1F
H'20 to H'7F
H'88 to H'8F
H'98 to H'9F
H'A8 to H'AF

Table 2-10 Instruction Codes Causing Invalid I nstruction Exceptions (c)

Effective address Prefix code Oper ation code
Registeror Rn H'00 H'00 to H'OF
memory @Rn H'10 to H'13
@(d:8, Rn), @(d:16, Rn) H'15 to H'18
@-Rn, @Rn+ H'1A, H'1B
@aa8, @aa:16 H'1D to H'1F
H'20 to H'7F
H'88 to H'8F
H'98 to H'9F
H'A8 to H'AF

The following additional instruction codes are invalid in minimum mode.

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (d)

Operation code Effective address

H'03

H'13

H'11 H'14, H'19
H'1C

H'CO to H'CF

Section 3 State Transitions

The CPU operatesin five main states. the program execution state, exception handling state, bus-
released state, reset state, and power-down state. Figure 3-1 shows the transitions among these
states.

BREO=13

BREQ=0

Program execution state

SLEEP
SLEEP . .
instruction
BREQ=0 instruction
with
standby S| q
Bus-released state Exception flag set €eep mode
handling
request
End of
exception
handling Interrupt
request
Exception-handling Software standby
state NMI4 mode
STBY=1
RES=0 Hardware standby

*1
Reset state

mode*2

Notes: *1 From any state except the hardware standby mode, a transition to the reset state occurs
whenever RES=0. -
*2 A transition to the hardware standby mode from any state occurs when STBY=0. In the
H8/520, this transition is made by selecting mode 6 at MD 2 to MDo.
*3 The H8/520 does not support BREQ.
*4 The H8/570 does not support recovery from software standby by NMI.

Figure 3-1 State Transitions

3.1 Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.2 Exception Handling State
3.2.1 Typesof Exception Handling and Their Priorities

Asindicated in Table 3-1 (a) and (b), exception handling can be initiated by areset, address error,
trace, interrupt, or instruction. An instruction initiates exception handling if the instructionisan
invalid instruction, atrap instruction, or aDIV XU instruction with zero divisor. Exception handling
begins with a hardware exception-handling sequence which prepares for the execution of a user-
coded software exception-handling routine.

Thereisapriority order anong the different types of exceptions, as shownin Table 3-1 (). If two
or more exceptions occur simultaneoudly, they are handled in their order of priority. An instruction

exception cannot occur simultaneously with other types of exceptions.

Table 3-1 (a) Exceptionsand Their Priority

Exception Start of exception-
Priority type Source Detection timing handling sequence
High Reset External, RES Low-to-Hightransition Immediately
internal
Addresserror Internal Instruction fetch or data End of instruction
read/write bus cycle execution
Trace Internal End of instruction execution, End of instruction
if T="1"in status register execution
Interrupt External, End of instruction execution End of instruction
internal or end of exception-handling execution
Low sequence

Table 3-1 (b) Instruction Exceptions

Exception type Start of exception-handling sequence

Invalid instruction Attempted execution of instruction with undefined code

Trap instruction Started by execution of trap instruction

Zero divide Attempted execution of DIV XU instruction with zero divisor

3.2.2 Exception Handling Sour ces and Vector Table

Figure 3-2 classifies the sources of exception handling. Each source has a different vector address,
aslisted in Table 3-2. The vector addresses differ between the minimum and maximum modes.

("« Reset - NMI
_External IRQ
interrupt

« Interrupt <
Interrupt

. Internal requested by
Exception < _ interrupt on-chip

module

» Address error

* Trace

Invalid instruction

_ * Instruction Zero divide
TRAPA instruction

TRAP/VS instruction

Figure 3-2 Sources of Exception Handling

Table3-2 Exception Vector Table

Type of exception

Minimum mode

Maximum mode

Reset (initialize PC)

— (reserved for system)
Invalid instruction
DIV XU instruction (zero divide)
TRAP/VSinstruction

— (reserved for system)

H'0000 to H'0001
H'0002 to H'0003
H'0004 to H'0005
H'0006 to H'0007
H'0008 to H'0009
H'000A to H'000B
H'000C to H'000D
H'000E to H'000F

H'0000 to H'0003
H'0004 to H'0007
H'0008 to H'000B
H'000C to H'0O00F
H'0010 to H'0013
H'0014 to H'0017
H'0018 to H'001B
H'001C to H'001F

Address error
Trace

— (reserved for system)
Nonmaskable external interrupt (NMI)

— (reserved for system)

H'0010 to H'0011

H'0012 to H'0013

H'0014 to H'0015

H'0016 to H'0017

H'0018 to H'0019
to

H'001E to H'001F*

H'0020 to H'0023

H'0024 to H'0027

H'0028 to H'002B

H'002C to H'002F

H'0030 to H'0033
to

H'003C to H'003F*

TRAPA instruction (16 factors)

H'0020 to H'0021
to
H'003E to H'003F

H'0040 to H'0043
to
H'007C to H'007F

Externd and
Internal interrupt

H'0040 to H'0041
to
H'009E to H'0O09F

H'0080 to H'0083
to
H'013C to H'013F

Note: 1. In maximum mode the exception vector tableislocated in page O.
2. Each products have different vector table. See the H8 Hardware Manual for details.
* Assigned to ISP address error in the H8/570.

3.2.3 Exception Handling Operation

When exception handling is started by a source other than areset, in the minimum mode the program
counter (PC) and status register (SR) are pushed onto the stack; in the maximum mode the code page
register (CP), PC, and SR are pushed onto the stack. Then the trace (T) bit in the statusregister is
cleared to "0," the address of the pertinent exception handling routine is read from the exception
vector table, and execution branches to that address.

A reset is handled asfollows. When the RES pin goes Low, the CPU waits for the RES pin to
go High, then latches the value at the mode input pins in the mode select bits (MDS0 to MDS2) of
the mode control register (MDCR). Next the CPU reads the address of the reset handling routine
from the exception vector table and executes the program at that address.

3.3 Bus-Released State

When it receives a bus request (BREQ) signal* from an external device, the CPU waits until the
end of a machine cycle, then releases the bus.

To notify the external devicethat it has released the bus, the CPU responds to the BREQ signal
by asserting aLow BACK signal. When it receives the BACK signal, the device that requested
the bus becomes the bus master and can use the address bus, data bus, and control bus.

* The H8/520 does not support the BREQ signal.

3.4 Reset State

A reset has the highest exception handling priority. A reset provides away to initialize the system at
power-up or when recovering from afatal error.

When the RES pin goes Low, whatever process is being executed is halted and the micro-
computer unit enters the reset state.

A reset clearsthe T bit (bit 15) of the status register (SR) to "0" to disable the trace mode, and sets
theinterrupt mask level in 12 to lo (SR bits 10 to 8) to 7, the highest level. In the reset state all
interrupts are disabled, including the nonmaskabl e interrupt (NMI).

When the RES pin returns from Low to High, the microcomputer unit comes out of the reset
state and begins executing the reset exception routine.

3.5 Power-Down State
In the power-down state some or all of the clock signals are stopped to conserve power. There are
three power-down modes. Table 3-1 describes the state of the CPU and the on-chip supporting

functions in each mode.

Table 3-3 Power-Down Modes

Mode Clock CPU Supporting CPU registers Recovery methods
functions and on-chip RAM
Sleep Runs Hats Run Held Interrupt—Interrupt is accepted and

interrupt handling begins.
RES—Trangtion to reset state
STBY*2—Trangtion to hardware

standby mode
Software Halts Halts Halt Held NMI—NMI starts clock; NMI
standby and exception handling starts
initialized automatically after time set in

watchdog timer
RES—Clock starts, followed by

trangition to reset state.
STBY*2—Hardware standby mode.
Hardware Halts Halts Halt Held"1 Highinput at STBY pin*3and
standby and Low input at RES pin followed,
initialized after clock settling time, by High

input at RES pininitiates reset
exception handling routine.

Notes: 1. Only on-chip RAM contents are held.
2. Inthe H8/520, salect mode 6 at MD2 to MDo.
3. Inthe H8/520, select mode 1, 2, 3, 4, or 7 at MD2 to MDo.

3.5.1 Sleep Mode
Execution of the SLEEP instruction normally causes atransition to the sleep mode. CPU operation

haltsimmediately after execution of the SLEEP instruction, but the CPU register contents remain
unchanged. The on-chip supporting functions, in particular the clock, continue to operate.

The CPU "wakes up" from the sleegp mode when it receives an exception handling request such asa
reset or an interrupt of an acceptable level. The CPU then returns via the exception-handling state to
the program execution state.

3.5.2 Software Standby M ode

When the software standby (SSBY) bit in the standby control register (SBY CR)* issetto "1,"
execution of a SLEEP instruction causes a transition to the software standby mode.

In this mode the CPU, the clock, and the other on-chip supporting functions all stop operating. The
on-chip supporting modules are reset, but as long as aminimum voltage level is maintained the
contents of CPU registers and on-chip RAM remains unchanged. The status of 1/O ports also
remains unchanged.

A reset or nonmaskable interrupt is required to recover from the software standby mode. The CPU
returns via the exception-handling state to the program execution state. (The H8/570 recovers from
software standby mode by reset only. Program execution restarts after the reset exception-handling

sequence.)

If aLow STBY signal isreceived in the software standby mode, the mode changes to the hardware
standby mode.

* Seethe H8 Hardware Manual.
3.5.3 Hardware Standby Mode
Input of aLow STBY signal causes atransition to the hardware standby mode.
In this mode, asin the software standby mode, all operations halt.
All clock signals stop and the on-chip supporting modules are reset, but as long as a minimum

voltage level is maintained the contents of on-chip RAM remains unchanged. 1/0 ports are set to the
high-impedance state.

A reset isrequired to recover from the software standby mode. The CPU returns via the exception-
handling state to the program execution state.

Section 4 Basic Operation Timing

The CPU operates on the @ clock, which is created by dividing the clock oscillator output by 2.

One cycle of the @ clock is called a"state”. The following sections describe the timing of accessto
on-chip memory, on-chip supporting modules, and off-chip devices.

4.1 On-Chip Memory Access Timing (H8/520/532/534/536/570)

For high-speed execution, access to on-chip memory (RAM and ROM) is performed in two states.
The datawidth is 16 bits.

Figure 4-1 isatiming chart for access to on-chip memory.

No wait state (Tw) isinserted.

‘ Bus cycle
N

Tistate } T2 state

Internal address bus >< Address

Internal Read signal \

Internal data bus)\
(for read access) / | Read data

Internal Write signal 3 \

Internal data bus \ -
(for write access) / Write data

Figure4-1 On-Chip Memory Access Timing

4.2 0On-Chip Supporting Module Access Timing

On-chip supporting modules are accessed in three states as shown in Figure 4-2. The datawidth is
8 bits.

No wait state (Tw) isinserted.

Bus cycle

-t -
Lot -

Ti state } T2 state } T3 state
B —

Internal address bus >< Address

Internal Read signal \

Internal data bus

(for read access) Read data | >7

Internal Write signal \

Internal data bus
(for write access)

Write data

Figure 4-2 On-Chip Supporting Module Access Timing

4.3 External Device Access Timing

Off-chip devices are accessed in two or three states as shown in Figures 4-3 and 4-4.

The access timing depends on the particular off-chip device. A wait-state controller can insert
additional wait states (Tw) as necessary. (Wait states cannot be inserted in access to the two-state

access address space, however, because of the high processing speed.)

For details about the insertion of wait states, see the H8 Hardware Manual.

a. Read

‘ Read cycle ‘

Tistate } T2 state } T3 state

h (e e —]
14} 3 3
A19to Ao >< Address ><:
R / \
RD § \ / |
o | High |
WR
D7 to Do Read data

(H8/520/532/534/536)

* The H8/520 does not output R/W and DS bus control signals.

Figure4-3 (a) External Access Cycle (Read Access)

b. Write
Write cycle

T1 state | T2 state | T3 state

A19to Ao >< Address

High

D7 to Do f 3 Write data

(H8/520/532/534/536)

Figure4-3 (b) External AccessCycle (Write Access)

a. Two-State-Access Address Space Access Cycle

Bus cycle

A
Y.

T1 state ! T2 state

@

A23to Ao >< Address ><
s \ /

D15 to Do Read data

wain | /

D15 to Do Write data

Figure 4-4 External Access Cycle (H8/510/570)

b. Three-State-Access Address Space Access Cycle

‘ Bus cycle ‘

T1 state T2 state

A23to A0 >< Address ><:

Read data

(read access)

3 | * | |
R0\ i /T

3 3 High 3 3
HWR, LWR N R |
D15 to Do } 3

Write data >*

D15 to Do
(write access)

* \Write access

Figure 4-4 External Access Cycle (H8/510/570) (cont)

	H8/500 Series

