
H8/500 Series

Programming Manual

Catalog No. ADE-602-021

1

Preface

The H8/500 Family of Hitachi-original microcontrollers is built around a 16-bit CPU core

that offers enhanced speed and a large address space. The CPU has a highly orthogonal

general-register architecture and an optimized instruction set that efficiently executes

programs coded in C language.

This manual describes the H8/500 instructions in detail, and is written for use with all chips

in the H8/500 Family. For information on assembly-language coding, see the H8/500

Series Cross Assembler User's Manual .

For details on chip hardware, see the hardware manual for the particular chip.

1

Section 1 CPU
1.1 Overview

The H8/500 CPU is a high-speed central processing unit designed for realtime control. It can

be used as a CPU core in application-specific integrated circuits. Its Hitachi-original

architecture features eight 16-bit general registers, internal 16-bit data paths, and an optimized

instruction set.

Section 1 summarizes the CPU architecture and instruction set.

1.1.1 Features

The main features of the H8/500 CPU are listed below.

• General-register machine

— Eight 16-bit general registers

— Seven control registers (two 16-bit registers, five 8-bit registers)

• High speed: maximum 10MHz

At 10MHz a register-register add operation takes only 200ns.

• Address space managed in 64K-byte pages, expandable to 16M bytes*

Simultaneous control is provided of four pages: a code page, stack page, data page, and

extended page. Two address-space modes can be selected:

— Minimum mode: Maximum 64K-byte address space

— Maximum mode: Maximum 16M-byte address space*

• Highly orthogonal instruction set

Addressing modes and data sizes can be specified independently within each instruction.

• Optimized for efficient programming in C language

In addition to the general registers and orthogonal instruction set, the H8/500 CPU has

short two-byte formats for frequently-used instructions and addressing modes.

* The CPU architecture supports up to 16M bytes, but for specific chips the maximum

address space is restricted by the number of external address lines (example: maximum

1M byte for the H8/532).

2

1.1.2 Data Structures

The H8/500 can process 1-bit data, 4-bit BCD data, 8-bit (byte) data, 16-bit (word) data, and

32-bit (longword) data.

Bit manipulation instructions operate on 1-bit data. Decimal arithmetic instructions operate on

4-bit BCD data. Almost all data transfer, shift, arithmetic, and logical operation instructions

operate on byte and word data. Multiply and divide instructions operate on longword data.

Table 1-1 lists the data formats used in general registers. Table 1-2 lists the data formats used

in memory.

(1) General Register Data Formats

Table 1-1 General Register Data Formats

Data type Register No. Data structure

1-Bit

15

15 14 13 12 11 10 9 8 7 5 4 2 136 0

0

	Rn

4-Bit

BCD

0348 715

Don't care Upper digit Lower digit	Rn

Byte
15 8 7 0

Don't care MSBRn LSB

Word
015

LSBMSB	Rn

Longword
015

31 16

MSB

LSB

	Rn

	Rn+1

	Upper word

		Lower word*
*

* For longword data n must be even (0, 2, 4, or 6).

3

(2) Data Formats in Memory

Access to word data in memory must always begin at an even address. Access to word data

starting at an odd address causes an address error.

Table 1-2 Data Formats in Memory

Data type Data format

1-Bit

Address n

1-Bit Even address

Odd address

Byte Address n

Word Even address

MSB

Upper 8 bits

Odd address Lower 8 bits

LSB

Byte in Even address Undefined data

stack Odd address MSB

LSB

Word in Even address MSB Upper 8 bits

stack Odd address Lower 8 bits

LSB

7 0

07 26 5 4 3 1

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

(in byte operand)

(in word operand)

MSB

LSB

Note: When the stack is accessed in exception processing, word access is always performed,

regardless of the actual data size. Similarly, when the stack is accessed by an

instruction using the @–R7 or @R7+ addressing mode, word access is performed

regardless of the operand size specified in the instruction. An address error will

therefore occur if the stack pointer indicates an odd address. Programs should be

constructed so that the stack pointer always indicates an even address.

4

5

1.1.3 Address Space

The CPU has two modes: a minimum mode which supports an address space of up to 64K

bytes, and a maximum mode which supports an address space of up to 16M bytes.

The mode is selected by input to the chip's mode pins. For details, see the H8 Hardware

Manual.

Minimum mode
Supports program and data

regions totaling up to 64K bytes.

CPU operating mode

Maximum mode
Supports program and data

regions totaling up to 16M bytes.

(1) Minimum Mode: Supports a maximum 64K-byte address space. The page register is

ignored. Branching instructions that cross page boundaries (PJMP, PJSR, PRTS, and

PRTD) are invalid.

(2) Maximum Mode: The page register is valid, supporting an address space of up to 16M

bytes. The address space is not continuous, but is divided into 64K-byte pages. When a

program crosses a page boundary, it must therefore use a page-crossing branching instruction

or an interrupt. (It is recommended for a program to be contained in a single page.) When

data access crosses a page boundary, the program must rewrite the page register before

accessing the data.

6

1.1.4 Register Configuration

Figure 1-2 shows the register structure of the CPU. There are two groups of registers: the

general registers (Rn) and the control registers (CR).

General registers (Rn)

015

R1

R2

R3

R4

R5

R6 (FP) FP: Frame Pointer

R7 (SP) SP: Stack Pointer

R0

Control registers (CR)

CCR

015

SR

PC

08 715

PC: Program Counter

SR: Status Register
CCR: Condition Code Register

CP: Code Page register

DP: Data Page register

EP: Extended Page register

TP: Stack Page register

BR: Base Register

 I I I 2 1 0T – – – – – – – – N Z V C

CP

DP

EP

TP

BR

7

Figure 1-1 Registers in the CPU

8

1.2 Register Descriptions

1.2.1 General Registers

All eight of the 16-bit general registers are functionally alike; there is no distinction between

data registers and address registers. When these registers are accessed as data registers, either

byte or word size can be selected. R6 and R7, in addition to functioning as general registers,

have special assignments.

R7 is the stack pointer, used implicitly in exception handling and subroutine calls. It is also

used implicitly by the LDM and STM instructions, which load and store multiple registers

from/to the stack and pre-decrement or post-increment R7 accordingly.

R6 functions as a frame pointer. High-level language compilers use R6 when they use

instructions such as LINK and UNLK to reserve or release a stack frame.

Unused area

SP →

Stack area

Figure 1-2 Stack Pointer (SP)

1.2.2 Control Registers

The control registers (CR) include a 16-bit program counter (PC), a 16-bit status register (SR)

containing an 8-bit condition code register (CCR), four 8-bit page registers, and one 8-bit base

register (BR).

9

The page registers are used only in the maximum mode. They are ignored in the minimum

mode.

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction

the CPU will execute.

(2) Status Register/Condition Code Register (SR/CCR): This 16-bit register indicates the

internal state of the CPU. The lower half of the status register is referred to as the condition

code register (CCR): its 8 bits can be accessed as a 1-byte condition code.

CCR

SR

15 14 13 12 11 10 9 8 7 5 4 2 136 0

 I I I 2 1 0T – – – – – N Z V C– – –

Bit 15—Trace (T): When this bit is set to "1," the CPU operates in trace mode and generates

a trace exception after every instruction. When this bit is cleared to "0" instructions are

executed in normal continuous sequence. This bit is cleared to "0" at a reset.

Bits 14 to 11—Reserved: These bits cannot be written, and when read, are always read as

"0."

Bits 10 to 8—Interrupt mask (I2 to I0): These bits indicate the interrupt request mask

level (0 to 7). As shown in 3, an interrupt request is not accepted unless it has a higher level

than the value of the mask. A nonmaskable interrupt (NMI), which has level 8, is always

accepted, regardless of the mask level.

4 indicates the values of the I bits after an interrupt is accepted. When an interrupt is accepted,

the value of bits I2 to I0 is raised to the same level as the interrupt, to prevent a further interrupt

from being accepted unless its level is higher.

A reset sets all three of bits (I2, I1, and I0) to "1."

1 0

Table 1-3 Interrupt Mask Levels

 I

Interrupt mask

Priority Level Interrupts accepted

High 7 1 1 1 NMI

6 1 1 0 Level 7 and NMI

5 1 0 1 Levels 6 to 7 and NMI

4 1 0 0 Levels 5 to 7 and NMI

3 0 1 1 Levels 4 to 7 and NMI

2 0 1 0 Levels 3 to 7 and NMI

1 0 0 1 Levels 2 to 7 and NMI

Low 0 0 0 0 Levels 1 to 7 and NMI

I2 I1 0

Table 1-4 Interrupt Mask Bits after an Interrupt is Accepted

Level of interrupt accepted I2 I1 I0

NMI (8) 1 1 1
7 1 1 1
6 1 1 0
5 1 0 1
4 1 0 0
3 0 1 1
2 0 1 0
1 0 0 1

Bits 7 to 4—Reserved: These bits cannot be written, and when read, are always read as "0."

Bit 3—Negative (N): This bit indicates the most significant bit (sign bit) of the result of an

instruction.

Bit 2—Zero (Z): This bit is set to "1" to indicate a zero result and cleared to "0" to indicate a

nonzero result.

Bit 1—Overflow (V): This bit is set to "1" when an arithmetic overflow occurs, and cleared

to "0" at other times.

1 1

Bit 0—Carry (C): This bit is set to "1" when a carry or borrow occurs at the most

significant bit, and is cleared to "0" (or left unchanged) at other times.

The specific changes that occur in the condition code bits when each instruction is executed are

detailed in the instruction descriptions in Section 2.2.1 and listed in Tables 2-7 (1) to (4) in

Section 2.5, "Condition Code Changes."

(3) Code Page Register (CP): The code page register and the program counter combine to

generate a 24-bit program code address, thereby expanding the program area. The code page

register contains the upper 8 bits of the 24-bit address.

In the maximum mode, both the code page register and program counter are saved and

restored in exception handling, and a new code page value is loaded from the exception vector

table.

(4) Data Page Register (DP): The data page register combines with general registers R0 to

R3 to generate a 24-bit effective address, thereby expanding the data area. The data page

register contains the upper 8 bits of the 24-bit effective address. The data page register is used

to calculate effective addresses in the register indirect addressing mode using R0 to R3, and in

the 16-bit absolute addressing mode (@aa:16).

(5) Extended Page Register (EP): The extended page register combines with general

register R4 or R5 to generate a 24-bit effective address, thereby expanding the data area. The

extended page register contains the upper 8 bits of the 24-bit address. It is used to calculate

effective addresses in the register indirect addressing mode using R4 or R5.

(6) Stack Page Register (TP): The stack page register combines with R6 (Frame pointer)

or R7 (Stack pointer) to generate a 24-bit stack address, thereby expanding the stack area. The

stack page register contains the upper 8 bits of the 24-bit stack address. It is used to calculate

effective addresses in the register indirect addressing mode using R6 or R7.

1 2

Page register PC or general register

R1

R6

R0

PCCP

DP

EP

TP

R2

R3

R4

R5

R7

@aa:16

8 Bits 16 Bits

24 Bits (effective address)

Figure 1-3 Combinations of Page Registers and PC or General Registers

(7) Base Register (BR): This register stores the base address used in the short absolute

addressing mode (@aa:8). In the short absolute addressing mode a 16-bit operand address is

generated by using the contents of the base register as the upper 8 bits and the address given in the

instruction code as the lower 8 bits. The page is always page 0 in the short absolute addressing

mode.

8 Bits 8 Bits

16 Bits (effective address)

@aa:8BR

1 3

Figure 1-4 Base Register

1 4

1.2.3 Initial Register Values

When the CPU is reset, its internal registers are initialized as shown in Table 1-5.

Table 1-5 Initial Values of CPU Registers

H'070 (N,
Z,V and C are
undetermined)

15 0

R0 – R7

0 7

CCR

015

SR

PC

08 715

 I I I 2 1 0T – – – – – – – – N Z V C

Initial value

Register Minimum mode Maximum mode
General registers

Undetermined Undetermined

Control registers

BR Undetermined Undetermined

Loaded from
vector table

Loaded from
vector table

H'070 (N,
Z,V and C are
undetermined)

CP Undetermined
Loaded from
vector table

DP Undetermined Undetermined

EP Undetermined Undetermined

TP Undetermined Undetermined

0 7

0 7

0 7

0 7

**

1 2

1.3 Instruction Set

The main features of the CPU instruction set are:

• A general-register architecture.

• Orthogonality. Addressing modes and data sizes can be specified independently in each

instruction.

• 1.5-type addressing (register-register and register-memory operations)

• Affinity for high-level languages, particularly C.

• Short formats for frequently-used instructions and addressing modes.

1.3.1 Types of Instructions

The CPU instruction set includes 63 types of instructions, listed by function in Table 1-6. Detailed

descriptions are given starting in Section 2.2.1.

Table 1-6 Instruction Classification

FunctionInstructions Types

Data transfer MOV, LDM, STM, XCH, SWAP, MOVTPE, MOVFPE 7

Arithmetic operations ADD, SUB, ADDS, SUBS, ADDX, SUBX, DADD, DSUB,

MULXU, DIVXU, CMP, EXTS, EXTU, TST, NEG, CLR, 17

TAS

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8

ROTXR

Bit manipulation BSET, BCLR, BTST, BNOT 4

Branch Bcc*, JMP, PJMP, BSR, JSR, PJSR, RTS, PRTS,

RTD, PRTD, SCB (/F, /NE, /EQ) 11

System control TRAPA, TRAP/VS, RTE, SLEEP, LDC, STC, ANDC,

ORC, XORC, NOP, LINK, UNLK 12

Total 63

*: Bcc is the generic name of the conditional branch instructions.

1.3.2 Instructions Listed by Function

Tables 1-7 (1) to (6) give a concise summary of the instructions in each functional category. The

notation used in these tables is listed below.

Operation Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

CR Control register

PC Program counter

CP Code page register

SP Stack pointer

FP Frame pointer

#IMM Immediate data

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

↔ Exchange

¬ Not

Table 1-7 Instructions Listed by Function (1)

Instruction Size Function

MOV (EAs) → (EAd), #IMM → (EAd)

 MOV:G B/W Moves data between two general registers, or between

 MOV:E B a general register and memory, or moves immediate
data MOV:I W to a general register or memory.

Data

 MOV:F B/W

transfer

 MOV:L B/W

 MOV:S B/W

*2

LDM W Stack → Rn (register list)

Pops data from the stack to one or more registers.

STM W Rn (register list) → stack

Pushes data from one or more registers onto the stack.

XCH W Rs ↔ Rd

Exchanges data between two general registers.

SWAP B Rd (upper byte) ↔ Rd (lower byte)

Exchanges the upper and lower bytes in a general register.

MOVTPE*1 B Rn → (EAd)

Transfers data from a general register to memory in

synchronization with the E clock.

MOVFPE*1 B (EAs) → Rd

Transfers data from memory to a general register in

synchronization with the E clock.

*: B—byte; W—word

Notes:

*1 Do not use the MOVTPE and MOVFPE instructions with the H8/520, which has no E-clock

output pin.

*2 B: byte

W: word

Table 1-7 Instructions Listed by Function (2)

Instruction Size Function

ADD Rd ± (EAs) → Rd, (EAd) ± #IMM → (EAd)

B/W

 ADD:G Performs addition or subtraction on data in two

 ADD:Q general registers or a general register and memory, or on

B/W

Arithmetic
operations

 SUB B/W immediate data and data in a general register or memory.

ADDS B/W

SUBS B/W

ADDX B/W Rd ± (EAs) ± C → Rd

SUBX B/W Performs addition or subtraction with carry or borrow on

data in two general registers or a general register and memory,

or on immediate data and data in a general register .

DADD B (Rd)10 ± (Rs)10 ± C → (Rd)10

DSUB B Performs decimal addition or subtraction on data in

two general registers.

MULXU B/W Rd × (EAs) → Rd

Performs 8-bit × 8-bit or 16-bit × 16-bit unsigned

multiplication on data in a general register and data in another

general register or memory, or on data in a general register

and immediate data.

DIVXU B/W Rd ÷ (EAs) → Rd

Performs 16-bit ÷ 8-bit or 32-bit ÷ 16-bit unsigned

division on data in a general register and data in another

general register or memory, or on data in a general register

and immediate data.

CMP Rd – (EAs), (EAd) – #IMM

 CMP:G B/W Compares data in a general register with data in

 CMP:E B another general register or memory, or with immediate

 CMP:I W data, or compares immediate data with data in memory.

EXTS B (<bit 7> of <Rd>) → (<bits 15 to 8> of <Rd>)

Converts byte data in a general register to word data by

extending the sign bit.

Table 1-7 Instructions Listed by Function (3)

Instruction Size Function

Arithmetic EXTU B 0 → (<bits 15 to 8> of <Rd>)

operations Converts byte data in a general register to word data by

padding with zero bits.

TST B/W (EAd) – 0

Compares general register or memory contents with 0.

NEG B/W 0 – (EAd) → (EAd)

Obtains the two's complement of general register or

memory contents.

CLR B/W 0 → (EAd)

Clears general register or memory contents to 0.

TAS B (EAd) – 0, (1)2 → (<bit 7> of <EAd>)

Tests general register or memory contents, then sets the

most significant bit (bit 7) to "1."

Logical AND B/W Rd ∧ (EAs) → Rd

operations Performs a logical AND operation on a general register

and another general register, memory, or immediate data.

OR B/W Rd ∨ (EAs) → Rd

Performs a logical OR operation on a general register

and another general register, memory, or immediate data.

XOR B/W Rd ⊕ (EAs) → Rd

Performs a logical exclusive OR operation on a general

register and another general register, memory, or immediate

data.

NOT B/W ¬(EAd) → (EAd)

Obtains the one's complement of general register or

memory contents.

Table 1-7 Instructions Listed by Function (4)

Instruction Size Function

Shift SHAL B/W (EAd) shift → (EAd)

operations SHAR B/W Performs an arithmetic shift operation on general register

or memory contents.

SHLL B/W (EAd) shift → (EAd)

SHLR B/W Performs a logical shift operation on general register or

memory contents.

ROTL B/W (EAd) rotate → (EAd)

ROTR B/W Rotates general register or memory contents.

ROTXL B/W (EAd) rotate with carry → (EAd)

ROTXR B/W Rotates general register or memory contents through the C

(carry) bit.

Bit BSET B/W ¬(<bit-No.> of <EAd>) → Z,

manipulations 1 → (<bit-No.> of <EAd>)

Tests a specified bit in a general register or memory, then

sets the bit to "1." The bit is specified by a bit-number given

in immediate data or a general register.

BCLR B/W ¬(<bit-No.> of <EAd>) → Z,

0 → (<bit-No.> of <EAd>)

Tests a specified bit in a general register or memory, then

clears the bit to "0." The bit is specified by a bit-number

given in immediate data or a general register.

BNOT B/W ¬(<bit-No.> of <EAd>) → Z,

→ (<bit-No.> of <EAd>)

Tests a specified bit in a general register or memory, then

inverts the bit. The bit is specified by a bit-number given in

immediate data or a general register.

BTST B/W ¬(<bit-No.> of <EAd>) → Z,

Tests a specified bit in a general register or memory. The

bit is specified by a bit-number given in immediate data or a

general register.

Table 1-7 Instructions Listed by Function (5)

Instruction Size Function

Branch Bcc — Branches if condition is true.

Mnemonic Description Condition

BRA (BT) Always (true) True

BRN (BF) Never (false) False

BHI High C ∨ Z = 0

BLS Low or Same C ∨ Z = 1

B

C

C

(

B

H

S

)

Carry Clear C = 0

(High or Same)

B

C

S

(

B

L

O

)

Carry Set (Low) C = 1

BNE Not Equal Z = 0

BEQ Equal Z = 1

BVC Overflow Clear V = 0

BVS Overflow Set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or Equal N ⊕ V = 0

BLT Less Than N ⊕ V = 1

BGT Greater Than Z ∨ (N ⊕ V) = 0

BLE Less or Equal Z ∨ (N ⊕ V) = 1

(∨ = Logic OR)

JMP — Branches unconditionally to a specified address in the same

page.

PJMP — Branches unconditionally to a specified address in a specified

page.

BSR — Branches to a subroutine at a specified address in the same

page.

JSR — Branches to a subroutine at a specified address in the same

page.

PJSR — Branches to a subroutine at a specified address in a specified

page.

RTS — Returns from a subroutine in the same page.

Table 1-7 Instructions Listed by Function (6)

Instruction Size Function
Branch PRTS — Returns from a subroutine in a different page.

RTD — Returns from a subroutine in the same page and adjusts
the stack pointer.

PRTD — Returns from a subroutine in a different page and adjusts
the stack pointer.

SCB/F — Controls a loop using a loop counter and/or a specified.
SCB/NE — CCR termination condition.
SCB/EQ —

System TRAPA — Generates a trap exception with a specified vector
control number.

TRAP/VS — Generates a trap exception if the V bit is set when the
instruction is executed.

RTE — Returns from an exception-handling routine.
LINK — FP → @–SP; SP → FP; SP + #IMM → SP

Creates a stack frame.

UNLK — FP → SP; @SP+ → FP
Deallocates a stack frame created by the LINK

instruction.
SLEEP — Causes a transition to the power-down state.
LDC B/W* (EAs) → CR

Moves immediate data or general register or memory
contents to a specified control register.

STC B/W* CR → (EAd)
Moves control register data to a specified general register

or memory location.

ANDC B/W* CR ∧ #IMM → CR
Logically ANDs a control register with immediate data.

ORC B/W* CR ∨ #IMM → CR
Logically ORs a control register with immediate data.

XORC B/W* CR ⊕ #IMM → CR
Logically exclusive-ORs a control register with immediate

data.

NOP — PC + 1 → PC
No operation. Only increments the program counter.

* The size depends on the control register.

1.3.3 Short Format Instructions

The ADD, CMP, and MOV instructions have special short formats. Table 1-8 lists these short

formats together with the equivalent general formats.

The short formats are a byte shorter than the corresponding general formats, and most of them

execute one state faster.

Table 1-8 Short-Format Instructions and Equivalent General Formats

Short-format Execution Equivalent general- Execution
instruction Length states *2 format instruction Length states *2

ADD:Q #xx,Rd *1 2 2 ADD:G #xx:8,Rd 3 3

CMP:E #xx:8,Rd 2 2 CMP:G.B #xx:8,Rd 3 3

CMP:I #xx:16,Rd 3 3 CMP:G.W #xx:16,Rd 4 4

MOV:E #xx:8,Rd 2 2 MOV:G.B #xx:8,Rd 3 3

MOV:I #xx:16,Rd 3 3 MOV:G.W #xx:16,Rd 4 4

MOV:L @aa:8,Rd 2 5 MOV:G @aa:8,Rd 3 5

MOV:S Rs,@aa:8 2 5 MOV:G Rs,@aa:8 3 5

MOV:F @(d:8,R6),Rd 2 5 MOV:G @(d:8,R6),Rd 3 5

MOV:F Rs,@(d:8,R6) 2 5 MOV:G Rs,@(d:8,R6) 3 5

Notes:

*1 The ADD:Q instruction accepts other destination operands in addition to a general register, but

the immediate data value (#xx) is limited to ±1 or ±2.

*2 Number of execution states for access to on-chip memory. For the H8/510, the number of

execution states for general register access.

1.3.4 Basic Instruction Formats

There are two basic CPU instruction formats: the general format and the special format.

(1) General format: This format consists of an effective address (EA) field, an effective address

extension field, and an operation code (OP) field. It is used in arithmetic instructions and other

general instructions.

• Effective address field: One byte containing information used to calculate the effective

address of an operand.

• Effective address extension: Zero to two bytes containing a displacement value, immediate data,

or an absolute address.

• Operation code: Defines the operation to be carried out on the operand located at the

address calculated from the effective address information. Each

instruction has a unique operation code.

Effective address extension Operation codeEffective address

Fetch direction

Note: Some instructions (DADD, DSUB, MOVFPE, MOVTPE) have an extended format in which

the operand code is preceded by a one-byte prefix code.

(Example: MOVTPE instruction)

0 0 0 0 0 0 0 1 0 1 r r00 r0

Prefix code

r r r: General register No.

Effective address

Operation code

(2) Special format: In this format the operation code comes first, followed by the effective

address field and effective address extension. This format is used in branching instructions, system

control instructions, and other instructions that can be executed faster if the operation to be

performed on the operand is specified first.

• Operation code: One or two bytes defining the operation to be performed by the instruction.

• Effective address field and effective address extension: Zero to three bytes containing

information used to calculate the effective address of an operand.

Effective address extensionEffective addressOperation code

Fetch direction

1.3.5 Addressing Modes and Effective Address Calculation

The CPU supports the seven addressing modes listed in Table 1-9 below. Due to the highly

orthogonal nature of the instruction set, most instructions having operands can use any applicable

addressing mode from 1 through 6. Mode 7 is used by branching instructions.

Table 1-9 explains how the effective address (EA) is calculated in each addressing mode.

Table 1-9 Addressing Modes

No. Addressing mode Mnemonic Effective Address and Extension Bytes

1 Register direct Rn 1 0 1 0 Sz r r r 1

2 Register indirect @Rn 1 1 0 1 Sz r r r 1

3 Register indirect @(d:8,Rn) 1 1 1 0 Sz r r r 2

with displacement @(d:16,Rn) 1 1 1 1 Sz r r r 3

4 Register indirect @–Rn 1 0 1 1 Sz r r r 1

with pre-decrement

Register indirect @Rn+ 1 1 0 0 Sz r r r 1

with post-increment

5 Absolute address @aa:8 0 0 0 0 Sz 1 0 1 2

@aa:16 0 0 0 1 Sz 1 0 1 3

6 Immediate #xx:8 2

#xx:16 3

7 PC-relative disp Effective address information is 1 or 2

specified in the operation code.

disp

disp (H) disp (L)

addr (L) addr (H)

addr (L)

0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0 data (H) data (L)

data

*3

*1, *2

N

otes:

*1 Sz: Operand size

Sz = 0: byte operand

Sz = 1: word operand

*2 rrr (register number field): General register number

000: R0 001: R1 010: R2 011: R3

100: R4 101: R5 110: R6 111: R7

*3 The @aa:8 addressing mode may be referred to as the short absolute addressing mode.

Table 1-10 Effective Address Calculation (1)

 0 0 0 1 Sz 1 0 1

∧

 ⊕∧
∨

15

No. Addressing mode
Effective address
calculation Effective address

1 Register direct None Operand is contents of Rn.
Rn

2 Register indirect
@Rn

None

3 Register indirect
with displacement
@(d:8,Rn)

-
@(d:16,Rn)

4 ➀ Register indirect
with pre-decrement

@–Rn

Rn is decremented by –1 or –2 before instruction execution.

➁ Register indirect None
with post-increment

@Rn+
 Rn is incremented by +1 or +2 after instruction execution.

contentsRn

8 bit

16 bit

 1 0 1 0 Sz r r r

 1 1 0 1 Sz r r r

 1 1 1 1 Sz r r r

 1 0 1 1 Sz r r r

 1 1 0 0 Sz r r r

Rn
23 15 0
DP/TP/EP

Ÿ

23 15 0
DP/TP/EP Result

 ⊕∧
∨

15
contentsRn

disp (sign extention)
15

Ÿ

23 15 0
DP/TP/EP Result

∨

15
contentsRn

15

Ÿ

23 15 0
DP/TP/EP Result

1 or 2

Rn
23 15 0
DP/TP/EP

disp

_

1 1 1 0 Sz r r r

5 Absolute address

@aa:8

@aa:16
-

None

None

EA extension data ↵

23 15 0
H'00 BR

23 15 0
DP EA extension data0 0 0 0 Sz 1 0 1

*3, *4, *5

*3, *4, *5

*1

*2

*1
*2

*1
*2

*1
*2

*1
*2

*1

15

Table 1-10 Effective Address Calculation (2)

No. Addressing mode
Effective address
calculation Effective address

8 Bits

6 Immediate None

#xx:8

#xx:16

Operand is 1-byte

EA extension data.

Operand is 2-byte

EA extension data

7 PC-relative

d:8

Displacement (sign extension)

-

d:16 16 Bits

-

↑

None

0 0 0 0 0 1 0 0

 0 0 0 0 1 1 0 0

 ⊕∧
∨

PC

 ⊕∧
∨

PC

disp

Ÿ

23 15 0
CP*1 Result

Ÿ

23 15 0
CP*1 Result

15

15

15

15

Notes:

1. The page register is ignored in the minimum mode.

2. In addressing modes No. 2, 3, and 4, the page register is as follows:

DP for register-indirect addressing with R0, R1, R2, or R3.

EP for register-indirect addressing with R4 or R5.

TP for register indirect addressing with R6 or R7.

3. Increment (Decrement) by 1 for a byte operand, and by 2 for a word operand.

4. In addressing mode No. 4 (register indirect with pre-decrement or post-increment), when register

R7 is specified the increment or decrement is always ±2, even when operand size is 1 byte.
5. If SP is saved by @-SP addressing mode and poped by @SP+, the result will be as follows.

SP
SP Old SP-2

after
MOV.W SP, @-SP MOV.W @SP+, SP

SP
→ →

after

2 5

1.3.6 Register Specification

(1) General Register Specification: General registers are specified by a three-bit register

number contained in the instruction code. Another bit may be used to indicate whether a

register operand is a byte or word operand. See Table 1-11.

Table 1-11 General Register Specification

OP fieldEA field
EA: Effective address

OP: Operation code

Sz: Size (byte/word)
General register number

Sz ri ri ri * * * * * * * * * rj rj rj

r r r / r r r :i ji i j j

Sz = 0 (Byte) Sz = 1 (Word)

 0

0 0 0 R0

0 0 1 R1

0 1 0 R2

0 1 1 R3

1 0 0 R4

1 0 1 R5

1 1 0 R6

1 1 1 R7

15 08 715
 Not used R0

 Not used R1

 Not used R2

 Not used R3

 Not used R4

 Not used R5

 Not used R6

 Not used R7

ri ri ri / rj rj rj

(2) Control Register Specification: Control registers are specified by a control register

number embedded in the operation code byte. See Table 1-12.

Table 1-12 Control Register Specification

EA field OP field

Effective address * * * * * c c c: Control register number fieldc c c

 SR

c c c Sz = 0 (Byte) Sz = 1 (Word)

0 0 0 (Not allowed*)

0 0 1 (Not allowed)

0 1 0 (Not allowed) (Not allowed)

0 1 1 BR (Not allowed)

1 0 0 EP (Not allowed)

1 0 1 DP (Not allowed)

1 1 0 (Not allowed) (Not allowed)

 1 1 1 TP (Not allowed)

 7 0

15 0

CCR

*

Control register numbers indicated as "(Not allowed)" should not be used, because they

may cause the CPU to malfunction.

Section 2 Instruction Set: Detailed Descriptions

2.1 Table Format and Notation

Each instruction is described in a table with the following format:

Name Mnemonic

<Operation> <Condition Code>

<Assembly-Language Format>

<Operand Size>

<Description>

<Instruction Format>

<Addressing Modes>

Name: A name indicating the function of the instruction.

Mnemonic: The assembly-language mnemonic of the instruction.

Operation: A concise, symbolic indication of the operation performed by the instruction.

The notation used is listed on the next page.

Operation notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

CR Control register

PC Program counter

CP Code page register

SP Stack pointer

FP Frame pointer

#IMM Immediate data

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

↔ Exchange

¬ Not

Condition code: Changes in the condition code (N, Z, V, C) after instruction execution are

indicated by the following symbols:

—: Not changed.

*: Undetermined

↕: Changed according to the result of the instruction.

0: Always cleared to "0."

1: Always set to "1."

∆: Handling depends on the operand.

Section 2.5, "Condition Code Changes," lists these changes with explicit formulas showing how the

bit values are derived.

Assembly-language format: The assembly-language coding of the instruction is indicated as

below.

2 9

(Example) ADD <EAs>, Rd

Destination operand

Source operand

Mnemonic

3 0

For details on assembly-language notation, see the H8/500 Series Cross Assembler Manual.

Operand size: The available operand sizes are indicated.

Description: A detailed description of the instruction.

Instruction format: The machine-language instruction format, including the effective address, is

indicated as shown below.

EA field OP field

EA

r r r: Register number field

Register No.

Effective address Operation code
c c c: Control register number field

1 1 1 r r00 r

No. Addressing mode Mnemonic Effective address and extension Bytes

1 Register direct Rn 1 0 1 0 Sz r r r 1

2 Register indirect @Rn 1 1 0 1 Sz r r r 1

3 Register indirect @(d:8,Rn) 1 1 1 0 Sz r r r 2

with displacement @(d:16,Rn) 1 1 1 1 Sz r r r 3

4 Register indirect @–Rn 1 0 1 1 Sz r r r 1

with pre-decrement

Register indirect @Rn+ 1 1 0 0 Sz r r r 1

with post-increment

5 Absolute address* @aa:8 0 0 0 0 Sz 1 0 1 2

@aa:16 0 0 0 1 Sz 1 0 1 3

6 Immediate #xx:8 2

#xx:16 3

7 PC-relative disp Effective address information is 1 or 2

specified in the operation code.

disp

disp (H) disp (L)

addr (L) addr (H)

addr (L)

0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0 data (H) data (L)

data

*

The @aa:8 addressing mode may be referred to as the short absolute addressing mode.

3 1

Addressing modes: The addressing modes that can be specified for the source and destination

operands are indicated in a table like the one below. "Yes" means that the mode can be used;

"—" means that it cannot.

(Example: ADD instruction)

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

Symbol Meaning

Rn Register direct

@Rn Register indirect

@(d:8,Rn) Register indirect with 8-bit displacement

@(d:16,Rn) Register indirect with 16-bit displacement

@–Rn Register indirect with pre-decrement

@Rn+ Register indirect with post-increment

@aa:8 Short absolute address (8 bits)

@aa:16 Absolute address (16 bits)

#xx:8 Immediate (8 bits)

#xx:16 Immediate (16 bits)

2.2 Instruction Descriptions

The individual instructions are described starting in Section 2.2.1.

3 2

2.2.1 ADD

(1) ADD:G (ADD, General format)

ADD Binary ADD:G

<Operation>
Rd + (EAs) → Rd

<Assembly-Language Format>

ADD:G <EAs>,Rd

(Example)

(1) ADD:G.B R0,R1

(2) ADD.B R0,R1*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C
↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a carry occurs; otherwise

cleared to "0."

<Description>

This instruction adds the source operand to the contents of general register Rd (destination

operand) and places the result in general register Rd.

When the source operand is the immediate data ±1 or ±2, the ADD:Q instruction in Section 2.2.1

(2) can be used. The ADD:Q instruction is shorter and executes more quickly.

<Instruction Format>

0 1 0 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.1 (2) ADD:Q (ADD Quick, short format)

ADD Quick ADD:Q

<Operation>
(EAd) + #IMM → (EAd)

<Assembly-Language Format>

ADD:Q #xx, <EAd>

(Example)

(1) ADD:Q.W #1,@R0

(2) ADD.W #1,@R0*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C
↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a carry occurs; otherwise

cleared to "0."

<Description>

This instruction adds immediate data to the destination operand and places the result in the

destination operand.

The values ±1 and ±2 can be specified as immediate data.

<Instruction Format>

ADD:Q #1,<EAd>

ADD:Q #2,<EAd>

ADD:Q #–1,<EAd>

ADD:Q #–2,<EAd>

0 0 0 0 010 0EA

0 0 0 0 010 1EA

0 0 0 1 010 0EA

0 0 0 1 010 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.2 ADDS (ADD with Sign extension)

ADD with Sign extension ADDS

<Operation>
Rd + (EAs) → Rd

<Assembly-Language Format>

ADDS <EAs>,Rd

(Example)

ADDS.W #H'10,R3

<Operand Size>

Byte

Word

<Condition Code>

N Z V C
— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction adds the source operand to the contents of general register Rd (destination

operand) and places the result in general register Rd.

Differing from the ADD instruction, this instruction does not alter the condition code.

If byte size is specified, the sign bit of the source operand is extended. The addition is

performed using the resulting word data. General register Rd is always accessed as a word-size

operand.

<Instruction Format>

0 1 0 r r10 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.3 ADDX (ADD with eXtend carry)

ADD with eXtend carry ADDX

<Operation>
Rd + (EAs) + C → Rd

<Assembly-Language Format>

ADDX <EAs>, Rd

(Example)

ADDX.B @(H'20,R4),R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the previous Z bit value

was "1" and the result of the instruction

is zero; otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a carry occurs; otherwise

cleared to "0."

<Description>

This instruction adds the source operand and the C bit to the contents of general register Rd

(destination operand) and places the result in general register Rd.

<Instruction Format>

1 1 0 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.4 AND (AND logical)

AND logical AND

<Operation>
Rd ∧ (EAs) → Rd

<Assembly-Language Format>

AND <EAs>,Rd

(Example)

AND.B @H'F8:8,R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the MSB of the result

is "1;" otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction obtains the logical AND of the source operand and the contents of general

register Rd (destination operand) and places the result in general register Rd.

<Instruction Format>

0 0 1 r r01 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.5 ANDC (AND Control register)

AND Control register ANDC

<Operation>
CR ∧ #IMM → CR

<Assembly-Language Format>

ANDC #xx,CR

(Example)

ANDC.B #H'FE,CCR

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>

N Z V C

∆ ∆ ∆ ∆

(1) When CR is the status register (SR or CCR),

the N, Z, V, and C bits are set according to

the result of the operation.

(2) When CR is not the status register (EP, TP,

DP, or BR), the bits are set as below.

N: Set to "1" when the MSB of the result is "1;"

otherwise cleared to "0."

Z: Set to "1" when the result is zero; otherwise

cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction ANDs the contents of a control register (CR) with immediate data and places the

result in the control register.

The operand size specified in the instruction depends on the control register as indicated in Table

1-12 in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the

end of this instruction.

<Instruction Format>

data

data (L)data (H)

ANDC #xx:8,CR

ANDC #xx:16,CR

10 0 00 0 0 0 c1 c c0 1 0 1

c1 c c0 1 0 111 0 00 0 0 0

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

2.2.6 Bcc (Branch conditionally)

Branch conditionally Bcc

<Operation>
If condition is true then PC + disp → PC

else next;

<Assembly-Language Format>

Bcc disp

The mnemonic varies depending on the

specified condition. See <Mnemonic and

Condition Field> below.

(Example)

BEQ LABEL

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

If the condition specified in the condition field (cc) is true, the displacement (disp) is added to the

program counter and execution branches to the resulting address. If the condition is not true, the

next instruction is executed.

The displacement can be an 8- or 16-bit value. The corresponding relative branching distances

are –128 to +127 bytes and –32768 to +32767 bytes. However, it is not possible to branch across a

page boundary.

The PC value used in the address calculation is the address of the instruction immediately

following this instruction.

<Instruction Format>

EA

0 1 0 c c0

0 1 0 c c0

disp

disp (H) disp (L)

cc: Condition field

Branch conditionally Bcc

<Mnemonic and Condition Field>

Mnemonic cc field Description Condition

BRA (BT) 0 0 0 0 Always (True) True

BRN (BF) 0 0 0 1 Never (False) False

BHI 0 0 1 0 High C ∨ Z = 0

BLS 0 0 1 1 Low or Same C ∨ Z = 1

BCC (BHS) 0 1 0 0 Carry Clear C = 0

(High or Same)

BCS (BLO) 0 1 0 1 Carry Set (Low) C = 1

BNE 0 1 1 0 Not Equal Z = 0

BEQ 0 1 1 1 Equal Z = 1

BVC 1 0 0 0 Overflow Clear V = 0

BVS 1 0 0 1 Overflow Set V = 1

BPL 1 0 1 0 Plus N = 0

BMI 1 0 1 1 Minus N = 1

BGE 1 1 0 0 Greater or Equal N ⊕ V = 0

BLT 1 1 0 1 Less Than N ⊕ V = 1

BGT 1 1 1 0 Greater Than Z ∨ (N ⊕ V) = 0

BLE 1 1 1 1 Less or Equal Z ∨ (N ⊕ V) = 1

2.2.7 BCLR (Bit test and CLeaR)

Bit test and CLeaR BCLR

<Operation>
¬(<bit No.> of <EAd>) → Z

0 → (<bit No.> of <EAd>)

<Assembly-Language Format>

BCLR #xx,<EAd>

BCLR Rs,<EAd>

(Example)

BCLR.B #7,@H'FF00

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

— ↕ — —

N: Previous value remains unchanged.

Z: Set to "1" if the value of the bit tested

was zero. Otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction tests a specified bit in the destination operand, sets or clears the Z bit according

to the result, then clears the specified bit to "0."

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a

specified general register. If a general register is used, the lower 4 bits of the register specify the bit

number and the upper 12 bits are ignored.

<Instruction Format>

0 0 1 r r11 rEA

BCLR #xx,<EAd>

BCLR Rs,<EAd>

1 0 1 Data1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.8 BNOT (Bit test and NOT)

Bit test and NOT BNOT

<Operation>
¬(<bit No.> of <EAd>) → Z

→ (<bit No.> of <EAd>)

<Assembly-Language Format>

BNOT #xx, <EAd>

BNOT Rs,<EAd>

(Example)

BNOT.W R0,R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

— ↕ — —

N: Previous value remains unchanged.

Z: Set to "1" if the value of the bit tested

was zero. Otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction tests a specified bit in the destination operand, sets or clears the Z bit according

to the result, then inverts the specified bit.

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a

specified general register. If a general register is used, the lower 4 bits of the register specify the bit

number and the upper 12 bits are ignored.

<Instruction Format>

1 1 0 Data1EA

0 1 0 r r11 rEA

BNOT #xx,<EAd>

BNOT Rs,<EAd>

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.9 BSET (Bit test and SET)

Bit test and SET BSET

<Operation>
¬(<bit No.> of <EAd>) → Z

1 → (<bit No.> of <EAd>)

<Assembly-Language Format>

BSET #xx, <EAd>

BSET Rs, <EAd>

(Example)

BSET.B #0,@R1+

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

— ↕ — —

N: Previous value remains unchanged.

Z: Set to "1" if the value of the bit tested

was zero. Otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction tests a specified bit in the destination operand, sets or clears the Z bit according

to the result, then sets the specified bit to "1."

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a

specified general register. If a general register is used, the lower 4 bits of the register specify the bit

number and the upper 12 bits are ignored.

<Instruction Format>

1 0 0 Data1EA

0 0 0 r r11 rEA

BSET #xx,<EAd>

BSET Rs,<EAd>

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.10 BSR (Branch to SubRoutine)

Branch to SubRoutine BSR

<Operation>
PC → @–SP

PC + disp → PC

<Assembly-Language Format>

BSR disp

(Example)

BSR LABEL

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction branches to a subroutine at a specified address.

It saves the program counter contents to the stack area, then adds a displacement to the program

counter and jumps to the resulting address.

The displacement can be an 8-bit value from –128 to +127 bytes or 16-bit value from –32768 to

+32767 bytes. However, it is not possible to branch across a page boundary.

This instruction is paired with the RTS instruction to execute a subroutine call. The PC value

saved to the stack and used in the address calculation is the address of the instruction immediately

following this instruction.

<Instruction Format>

0 0 0 1 110 0 disp

disp (H) disp (L)0 0 1 1 110 0

BSR d:8

BSR d:16

4 3

2.2.11 BTST (Bit TeST)

Bit TeST BTST

<Operation>
¬(<bit No.> of <EAd>) → Z

<Assembly-Language Format>

BTST #xx, <EAd>

BTST Rs, <EAd>

(Example)

BTST.B R0,@H'F0:8

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

— ↕ — —

N: Previous value remains unchanged.

Z: Set to "1" if the value of the bit tested

was zero. Otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction tests a specified bit in the destination operand and sets or clears the Z bit

according to the result.

The bit number (0 to 15) can be specified directly using immediate data, or can be placed in a

specified general register. If a general register is used, the lower 4 bits of the register specify the bit

number and the upper 12 bits are ignored.

<Instruction Format>

0 1 1 r r11 rEA

1 1 1 Data1EABTST #xx,<EAd>

BTST Rs,<EAd>

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.12 CLR (CLeaR)

CLeaR CLR

<Operation>
0 → (EAd)

<Assembly-Language Format>

CLR <EAd>

(Example)

CLR.W @(H'1000,R5)

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

0 1 0 0

N: Always cleared to 0.

Z: Always set to 1.

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction clears the destination operand (general register Rn or an operand in memory) to

zero.

<Instruction Format>

0 0 1 0 100 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.13 CMP

(1) CMP:G (CoMPare, General format)

CoMPare CMP:G

<Operation>

Set CCR according to result of (EAd) – #IMM

Set CCR according to result of Rd – (EAs)

<Assembly-Language Format>

CMP:G #xx,<EAd>

CMP:G <EAs>,Rd

(Example)

(1) CMP:G.B #H'AA,@–R3

(2) CMP.B #H'AA,@–R3*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts the source operand from the destination operand and sets or clears the

condition code (CCR) according to the result. It does not alter the destination operand.

The CMP instruction also has short formats (CMP:E and CMP:I) that can be used to compare a

general register with immediate data.

<Instruction Format>

r0

CMP #xx,<EAd>

EA data*

EA data (H)* data (L)*

CMP <EAs>,Rd EA

01 00 0 0 0 0

01 10 0 0 0 0

r r0 1 1 1

* The length of the immediate data depends on the size (Sz) specified for the first operation code:

one byte when Sz = 0; one word when Sz = 1.

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

CoMPare CMP:G

<Addressing Modes>

CMP #xx,<EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

Destination — Yes Yes Yes Yes Yes Yes Yes — —

CMP <EAs>,Rd

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.13 (2) CMP:E (CoMPare:E, short format)

CoMPare immediate bytE CMP:E

<Operation>

Set CCR according to result of Rd – #IMM

<Assembly-Language Format>

CMP:E #xx:8,Rd

(Example)

(1) CMP:E #H'00,R0

(2) CMP.B #H'00,R0*

<Operand Size>

Byte

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts one byte of immediate data from general register Rd and sets or

clears the condition code (CCR) according to the result. It does not alter the contents of

general register Rd.

This instruction is a short form of the CMP instruction. Compared with CMP:G #xx:8,

Rd, its object code is one byte shorter and it executes one state faster.

<Instruction Format>

datar0 r r0 1 0 0

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes —

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.13 (3) CMP:I (CoMPare:I, short format)

CoMPare Immediate word CMP:I

<Operation>

Set CCR according to result of Rd – #IMM

<Assembly-Language Format>

CMP:I #xx:16,Rd

(Example)

(1) CMP:I #H'FFFF,R1

(2) CMP.W #H'FFFF,R1*

<Operand Size>

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts one word of immediate data from general register Rd and sets or clears

the condition code (CCR) according to the result. It does not alter the contents of general register

Rd.

This instruction is a short form of the CMP instruction. Compared with CMP:G #xx:16, Rd, its

object code is one byte shorter and it executes one state faster.

<Instruction Format>

data (H) data (L)r1 r r0 1 0 0

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — — Yes

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.14 DADD (Decimal ADD with extend carry)

Decimal ADD with extend carry DADD

<Operation>
(Rd)10 + (Rs)10 + C → (Rd)10

<Assembly-Language Format>

DADD Rs,Rd

(Example)

DADD R0,R1

<Operand Size>

Byte

<Condition Code>

N Z V C

— ↕ — ↕

N: Previous value remains unchanged.

Z: Set to "1" if the previous Z bit value

was "1" and the result of the instruction

is zero; otherwise cleared to "0."

V: Previous value remains unchanged.

C: Set to "1" if a decimal carry occurs;

otherwise cleared to "0."

<Description>

This instruction adds the contents of a general register (source operand) and the C bit to the

contents of a general register (destination operand) as decimal numbers and places the result in the

destination register.

Correct results are not assured if word size is specified.

<Instruction Format>

0 0 0 0 000 01 1 0 r r00 r 1 1 0 r r00 rd d ds s s

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

DestinationYes — — — — — — — — —

2.2.15 DIVXU (DIVide eXtend as Unsigned)

DIVide eXtend as Unsigned DIVXU

<Operation>
Rd ÷ (EAs) → Rd

<Assembly-Language Format>

DIVXU <EAs>,Rd

(Example)

DIVXU.W @R3,R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ 0

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Always cleared to 0.

<Description>

When byte size is specified for the source operand, the 16-bit value in Rd is divided by the 8-bit

source operand, yielding an 8-bit quotient which is placed in the lower byte of Rd and 8-bit

remainder which is placed in the upper byte of Rd. When word size is specified for the source

operand, the 32-bit value in Rd and Rd+1 is divided by the 16-bit source operand, yielding a 16-bit

quotient which is placed in Rd+1 and a 16-bit remainder which is placed in Rd.

 quotientdividend (L)

 remainder=divisor÷dividend (H)
32 ÷ 16

quotientremainder=divisor÷dividend16 ÷ 8

15

15

00 RdRd

Rd

Rd+1

7 15 8 7 0

0150150

Rd

Rd+1

When the dividend is a 32-bit value located in Rd and Rd+1, d must be even (0, 2, 4, or 6).

Correct results are not assured if an odd register number is specified. Also:

(1) Attempted division by 0 causes a zero-divide exception. The N, V and C bits are cleared to 0

and the Z bit is set to 1.

(2) When an overflow is detected, the V bit is set to 1 and the division is not performed. The N, Z

and C bits are cleared to 0. The contents of general register Rd are not updated.

DIVide eXtend as Unsigned DIVXU

<Instruction Format>

1 1 1 r r10 rEA*

* When Sz = 0: 16 bits ÷ 8 bits.

When Sz = 1: 32 bits ÷ 16 bits

where Sz is the size bit in the EA code

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

DIVide eXtend as Unsigned DIVXU

<Note>

An overflow can occur in both cases of the DIVXU instruction:

➀ 16 bits ÷ 8 bits → 8-bit quotient, 8-bit remainder

➁ 32 bits ÷ 16 bits → 16-bit quotient, 16-bit remainder

Consider H'FFFF ÷ H'1 → H'FFFF in case ➀, for example. An overflow occurs because the

quotient is longer than 8 bits. Overflow can be avoided by using work registers as in the programs

shown below.

➀ 16 bits ÷ 8 bits
DIVXU.B <EA>,R0

R0 dividend

R0 H'00 dividend (H)

R1 H'00 dividend (L)

R0 quotient

R1 remainder quotient (L)

MOV.B R0,R1

SWAP R0

AND.W #H'00FF 16,R0

DIVXU.B <EA>,R0

SWAP R0

SWAP R1

MOV.B R0,R1

SWAP R1

DIVXU.B <EA>,R1

MOV.B R1,R0

➁ 32 bits ÷ 16 bits

R0 dividend (H)

R1 dividend (L)

R0 H'0000

R1 dividend (H)

R2 H'0000

R3 dividend (L)

R0 quotient (H)

R1 quotient (L)

R2 remainder

R3 quotient (L)

DIVXU.W <EA>,R0

MOV.W R1,R3

MOV.W R0,R1

CLR.W R0

DIVXU.W <EA>,R0

MOV.W R0,R2

MOV.W R1,R0

DIVXU.W <EA>,R2

MOV.W R3,R1

2.2.16 DSUB (Decimal SUBtract with extend carry)

Decimal SUBtract with extend carry DSUB

<Operation>
(Rd)10 – (Rs)10 – C → (Rd)10

<Assembly-Language Format>

DSUB Rs,Rd

(Example)

DSUB R2,R3

<Operand Size>

Byte

<Condition Code>

N Z V C

— ↕ — ↕

N: Previous value remains unchanged.

Z: Set to "1" if the previous Z bit value

was "1" and the result of the instruction

is zero; otherwise cleared to "0."

V: Previous value remains unchanged.

C: Set to "1" if a decimal borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts the contents of general register Rs (source operand) and the C bit from

the contents of general register Rd (destination operand) as decimal numbers and places the result in

general register Rd.

Correct results are not assured if word size is specified for the operand size.

<Instruction Format>

0 0 0 0 000 01 1 0 r r00 r 1 1 1 r r00 rd d ds s s

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

DestinationYes — — — — — — — — —

2.2.17 EXTS (EXTend as Signed)

EXTend as Signed EXTS

<Operation>
(<bit 7> of <Rd>) → (<bits 15 to 8> of <Rd>)

Sign extension

<Assembly-Language Format>

EXTS Rd

(Example)

EXTS R0

<Operand Size>

Byte

<Condition Code>

N Z V C

↕ ↕ 0 0

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction converts byte data in general register Rd (destination operand) to word data by

propagating the sign bit. It copies bit 7 of Rd into bits 8 through 15.

<Instruction Format>

0 0 1 0 000 11 1 0 r r00 r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes — — — — — — — — —

2.2.18 EXTU (EXTend as Unsigned)

EXTend as Unsigned EXTU

<Operation>
0 → (<bits 15 to 8> of <Rd>)

Zero extension

<Assembly-Language Format>

EXTU Rd

(Example)

EXTU R1

<Operand Size>

Byte

<Condition Code>

N Z V C

0 ↕ 0 0

N: Always cleared to 0.

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction converts byte data in general register Rd (destination register) to word data by

filling bits 8 to 15 of Rd with zeros.

<Instruction Format>

0 0 1 0 100 01 1 0 r r00 r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes — — — — — — — — —

2.2.19 JMP (JuMP)

JuMP JMP

<Operation>
Effective address → PC

<Assembly-Language Format>

JMP <EA>

(Example)

JMP @(#H'10,R4)

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction branches unconditionally to a specified address in the same page. It cannot

branch across a page boundary.

<Instruction Format>

JMP @Rn

JMP @(d:8,Rn) disp

JMP @(d:16,Rn)

JMP @aa:16 address (L)

r0 r r1 1 0 1

r0 r r1 1 1 0

00 0 10 0 0 1

00 0 10 0 0 1

00 0 00 0 0 1

00 0 10 0 0 1 r0 r r1 1 1 1 disp (H) disp (L)

address (H)

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Destination — Yes Yes Yes — — — Yes — —

2.2.20 JSR (Jump to SubRoutine)

Jump to SubRoutine JSR

<Operation>
PC → @–SP

Effective address → PC

<Assembly-Language Format>

JSR <EA>

(Example)

JSR @(H'0FFF,R3)

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction pushes the program counter contents onto the stack, then branches to a

specified address in the same page. The address pushed on the stack is the address of the

instruction immediately following this instruction.

This instruction cannot branch across a page boundary.

<Instruction Format>

disp

address (L)

r1 r r1 1 0 1

r1 r r1 1 1 0

00 0 10 0 0 1

00 0 10 0 0 1

001 00 0 0 1

00 0 10 0 0 1 r1 r r1 1 1 1 disp (H) disp (L)

address (H)

JSR @Rn

JSR @(d:8,Rn)

JSR @(d:16,Rn)

JSR @aa:16

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Destination — Yes Yes Yes — — — Yes — —

2.2.21 LDC (LoaD to Control register)

LoaD to Control register LDC

<Operation>
(EAs) → CR

<Assembly-Language Format>

LDC <EAs>,CR

(Example)

LDC.B #H'01,DP

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>

N Z V C

∆ ∆ ∆ ∆

(1) When CR is the status register (SR or

CCR), the N, Z, V, and C bits are set

according to the result of the

operation.

(2) When CR is not the status register

(EP, TP, DP, or BR), the previous

value remains unchanged.

<Description>

This instruction loads the source operand (immediate data, or general register or memory

contents) into a specified control register (CR).

The operand size specified in the instruction depends on the control register as indicated in Table

1-12 in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the

end of this instruction.

<Instruction Format>

1 0 0 c c10 cEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

2.2.22 LDM (LoaD to Multiple registers)

LoaD to Multiple registers LDM

<Operation>
@SP+ (stack) → Rd (register group)

<Assembly-Language Format>

LDM @SP+,<register list>

(Example)

LDM @SP+,(R0,R2–R4)

<Operand Size>

Word

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction restores data saved on the stack to a specified list of general registers. In

the instruction code, the register list is encoded as one byte in which bits set to "1" indicate

registers that receive data. The first word of data is restored to the lowest-numbered register in

the list, the next word to the next-lowest-numbered register, and so on.

At the end of this instruction, general register R7 (the stack pointer) is updated to the value:

(contents of R7 before this instruction) + 2 × (number of registers restored).

<Instruction Format>

0 0 0 0 100 0 register list

Register list
7 6 5 4 3 2 1 0

R0R7 R6 R5 R4 R3 R2 R1

6 3

LoaD to Multiple registers LDM

<Note>

The LDM instruction can be used to restore a group of registers from the stack on return

from a subroutine call. When there are many registers to restore, the LDM instruction is faster

than the MOV instruction.

The status of the stack before and after an LDM instruction is shown below.

Stack

SP → Old R0 → R0

Old R1 → R1

Old R5 → R5

Old R6 → R6

Old R7–2 → X

(Dummy read)

SP + 2 → SP

SP + 2 → SP

SP + 2 → SP

SP + 2 → SP

SP + 2 → SP

Stack

SP →←

Execution of LDM @SP+, (R0,R1,R5–R7)

If R7 (the stack pointer) is included in the register list, a dummy read of the stack is performed.

Accordingly, the instruction will execute faster if R7 is not specified. The value of R7 after

execution of the instruction is: (contents of R7 before the instruction) + 2 × (number of registers

restored).

6 4

LoaD to Multiple registers LDM

<Note (Continued)>

The following graph compares the number of machine states required for execution of LDM and

execution of the same process using the MOV instruction.

50

45

40

35

30

25

20

15

10

5

0 1 2 4 5 6 7 83

Repetitions of MOV.W @SP+,Rn

LDM

Number

of states

Number of registers loaded

Note: This graph is for the case in which instruction fetches and stack access are both to on-chip

memory.

The LDM instruction is faster when the number of registers is four or more. The MOV

instruction is faster when there are only one or two registers to restore. When the instruction fetches

are to off-chip memory, the LDM instruction is faster when there are two registers or more.

6 2

2.2.23 LINK (LINK)

LINK stack LINK

<Operation>
FP (R6) → @–SP

SP → FP (R6)

SP+#IMM → SP

<Assembly-Language Format>

LINK FP,#xx

(Example)

LINK FP,#–4

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction saves the frame pointer (FP = R6) to the stack, copies the stack pointer

(SP = R7) contents to the frame pointer, then adds a specified immediate value to the stack pointer to

allocate a new frame in the stack area.

The immediate data can be an 8-bit value from –128 to +127 or a 16-bit value from –32768 to

+32767. Note that the LINK instruction allows negative immediate data.

The frame allocated with the LINK instruction can be deallocated with the UNLK instruction.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd

address. The immediate data should be an even number so that the stack pointer indicates an

even address after execution of the LINK instruction.

<Instruction Format>

data (L)data (H)0 0 1 1 110 1

data0 0 1 1 100 1LINK FP,#xx:8

LINK FP,#xx:16

LINK stack LINK

<Note>

The LINK and UNLK instructions provide an efficient way to allocate and deallocate areas for

local variables used in subroutine and function calls in high-level languages. Local variables are

accessed relative to R6 (the frame pointer).

The LINK and UNLK instructions can be broken down into the following groups of more

general instructions:

LINK FP, #–n ➩ MOV.W FP, @–SP

MOV.W SP, FP
ADDS.W #–n, SP

(providing an n-byte local variable area)
UNLK FP ➩ MOV.W FP, SP

MOV.W @SP+, FP

An example of the usage of these instructions in a C-language program is shown below. The

program contains a function swap that uses two work variables temp1 and temp2 to exchange the

contents of four variables a, b, c, and d.

Before swap() is executed: a b c d

After swap() is executed: a b c d

The coding in C language is:

int a, b, c, d; ————— Global variables a, b, c, d
swap() Accessible anywhere in the program.
{ Always present in memory.
int temp1, temp2; ——— Local variables temp1, temp2
 temp1 = a; Usable only in the swap() function.
 temp2 = b; Present in memory only when the swap()
 a = d; function is called.
 b = c;
 c = temp2;
 d = temp1;
}

LINK stack LINK

<Note (Continued)>

An assembly-language coding of the swap function is:

Swap: LINK FP, #–4 → See ➀ on next page.

MOV @a, R0 → temp1 = a;

MOV:F R0, @(–2, FP)

MOV @b, R0 → temp2 = b;

MOV:F R0, @(–4, FP)

MOV @d, R0 → a = d;

MOV R0, @a

MOV @c, R0 → b = c;

MOV R0, @b

MOV:F @(–4, FP), R0 → c = temp2;

MOV R0, @c

MOV:F @(–2, FP), R0 → d = temp1;

MOV R0, @d

UNLK FP → See ➁ on next page.

RTS → See ➂ on next page.

LINK stack LINK

<Note (Continued)>

A map of the stack area in memory at various stages in this routine is shown below.

Before LINK ➀ After LINK ➁ After UNLK ➂ After RTS

Stack Stack Stack Stack

SP → temp2 area (FP–4)

temp1 area (FP–2)

FP→ old FP

SP → return PC return PC SP → return PC

SP →

The LINK instruction
saves the old FP, copies
the SP to the FP, then
allocates a temporary
area by moving the SP
up. In this example the
SP is decremented by 4.
The temporary area is
accessed relative to the
FP.

The UNLK instruction
copies the FP to the SP,
thus deallocating the
temporary area, then
restores the FP.

2.2.24 MOV

(1) MOV:G (MOVe data from source to destination, General format)

MOVe data from source to destination MOV:G

<Operation>
(EAs) → (EAd)

<Assembly-Language Format>

MOV:G Rs,<EAd>

MOV:G #xx,<EAd>

MOV:G <EAs>,Rd

(Example)

(1) MOV:G.W R0,@R1

(2) MOV.W R0,@R1*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction copies source operand data to a destination, and sets or clears the N and Z bits

according to the data value.

Alternative short formats can be used for the R6 indirect with displacement addressing mode

(MOV:F), the short (@aa:8) absolute addressing mode (MOV:L and MOV:S), and the immediate

addressing modes (MOV:E for #xx:8 and MOV:I for #xx:16).

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

MOVe data from source to destination MOV:G

<Instruction Format>

MOV:G Rs,<EAd>

MOV:G <EAs>,Rd

MOV:G #xx,<EAd>

r

0

1

r0 r1 0 0 d

10 10 0 0 0

10 10 0 0 0

EA

*1

EA data

EA data (H) data (L)

*2

*2

*3

Notes:

*1 The d bit indicates the direction of the transfer: load if d = 0; store if d = 1.

When d = 1, the <EA> field cannot contain immediate data or specify a register.

*2 The <EA> field cannot contain immediate data or specify a register.

*3 If the immediate data length is 8 bits but word size is specified in the <EA> field, the sign bit of

the immediate data is extended and 16 bits of data are transferred.

<Addressing Modes>

MOV:G Rs, <EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

Destination — Yes Yes Yes Yes Yes Yes Yes — —

MOV:G #xx, <EAd>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

Destination — Yes Yes Yes Yes Yes Yes Yes — —

MOV:G <EAs>,Rd

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.24 (2) MOV:E (MOVe data:E, short format)

MOVe immEdiate byte MOV:E

<Operation>
#IMM → Rd

<Assembly-Language Format>

MOV:E #xx:8,Rd

(Example)

(1) MOV:E #H'55,R0

(2) MOV.B #H'55,R0*

<Operand Size>

Byte

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction moves one byte of immediate data to a general register, and sets or clears the N

and Z bits according to the data value.

This instruction is a short form of the MOV instruction. Compared with the general form

MOV:G #xx:8,Rd, its object code is one byte shorter and it executes one state faster.

<Instruction Format>

0 0 1 r r01 r data

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes —

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.24 (3) MOV:F (MOVe data:F, short format)

MOVe stack Frame data MOV:F

<Operation>
(EAs) → Rd

Rs → EAd

<Assembly-Language Format>

MOV:F @(d:8,R6),Rd

MOV:F Rs,@(d:8,R6)

(Example)

(1) MOV:F.B @(4,R6),R0

(2) MOV.B @(4,R6),R0*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction moves data between a stack frame and a general register, and sets or clears the N

and Z bits according to the data value.

This instruction is a short form of the MOV instruction. Compared with the general form

MOV:G @(d:8,R6),Rd or MOV:G Rs,@(d:8,R6), its object code is one byte shorter.

<Instruction Format>

MOV:F @(d:8,R6),Rd 1 0 0 r rS0 rz disp

MOV:F Rs,@(d:8,R6) 1 0 1 r rS0 rz disp

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

MOVe stack Frame data MOV:F

<Addressing Modes>

MOV:F @(d:8,R6),Rd

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — Yes* — — — — — — —

DestinationYes — — — — — — — — —

MOV:F Rs,@(d:8,R6)

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

Destination — — Yes* — — — — — — —

* This instruction can specify R6 (FP) only.

2.2.24 (4) MOV:I (MOVe data:I, short format)

MOVe Immediate word MOV:I

<Operation>
#IMM → Rd

<Assembly-Language Format>

MOV:I #xx:16,Rd

(Example)

(1) MOV:I #H'FF00,R5

(2) MOV.W #H'FF00,R5*

<Operand Size>

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction moves one word of immediate data to a general register, and sets or clears the N

and Z bits according to the data value.

This instruction is a short form of the MOV instruction. Compared with the general form

MOV:G #xx:16,Rd, its object code is one byte shorter.

<Instruction Format>

data (L)data (H)0 0 1 r r11 r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — — Yes

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.24 (5) MOV:L (MOVe data:L, short format)

MOVe data (Load register) MOV:L

<Operation>
(EAs) → Rd

<Assembly-Language Format>

MOV:L @aa:8,Rd

(Example)

(1) MOV:L.B @H'A0:8,R0

(2) MOV.B @H'A0:8,R0*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction copies source operand data to a general register, and sets or clears the N and Z

bits according to the data value.

This instruction is a short form of the MOV instruction. Compared with the general form

MOV:G @aa:8,Rd, its object code is one byte shorter.

<Instruction Format>

0 1 0 r rS1 rz address (L)

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — Yes — — —

DestinationYes — — — — — — — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.24 (6) MOV:S (MOVe data:S, short format)

MOVe data (Store register) MOV:S

<Operation>
Rs → (EAd)

<Assembly-Language Format>

MOV:S Rs,@aa:8

(Example)

(1) MOV:S.W R0,@H'A0:8

(2) MOV.W R0,@H'A0:8*

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the value moved is

negative; otherwise cleared to "0."

Z: Set to "1" when the value moved is

zero; otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction stores general register data to a destination, and sets or clears the N and Z bits

according to the data value.

This instruction is a short form of the MOV instruction. Compared with the general form

MOV:G Rs,@aa:8, its object code is one byte shorter.

<Instruction Format>

0 1 1 r rS1 rz address (L)

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

Destination — — — — — — Yes — — —

* In assembly-language coding it is usually not necessary to specify the general or special format

(by coding :G etc.). If the format specification is omitted, the assembler automatically generates

the optimum object code. If a format is specified, the assembler follows the format specification.

2.2.25 MOVFPE (MOVe From Peripheral with E clock)

MOVe From Peripheral with E clock MOVFPE

<Operation>
(EAs) → Rd

Synchronized with E clock

<Assembly-Language Format>

MOVFPE <EAs>,Rd

(Example)

MOVFPE @H'F000,R0

<Operand Size>

Byte

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction transfers data from a source operand to a general register in synchronization

with the E clock.

The operand must be byte size. Correct results are not guaranteed if word size is specified.

Note: This instruction should not be used with chips that do not have an E clock output pin.

(Example: the H8/520)

<Instruction Format>

0 0 0 0 000 0 1 0 0 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — Yes Yes Yes Yes Yes Yes Yes — —

DestinationYes — — — — — — — — —

2.2.26 MOVTPE (MOVe To Peripheral with E clock)

MOVe To Peripheral with E clock MOVTPE

<Operation>
Rs → (EAd)

Synchronized with E clock

<Assembly-Language Format>

MOVTPE Rs,<EAd>

(Example)

MOVTPE R0,@R1

<Operand Size>

Byte

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction transfers data from a general register to a destination in synchronization with the

E clock.

The operand must be byte size. Correct results are not guaranteed if word size is specified.

Note: This instruction should not be used with chips that do not have an E clock output pin.

(Example: the H8/520)

<Instruction Format>

0 0 0 0 000 0 1 0 1 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

Destination — Yes Yes Yes Yes Yes Yes Yes — —

2.2.27 MULXU (MULtiply eXtend as Unsigned)

MULtiply eXtend as Unsigned MULXU

<Operation>
Rd × (EAs) → Rd

<Assembly-Language Format>

MULXU <EAs>,Rd

(Example)

MULXU.B R0,R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 0

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction multiplies the contents of general register Rd (destination operand) by a source

operand and places the result in general register Rd.

When byte size is specified for the source operand, the 8-bit value in the lower byte of Rd is

multiplied by the 8-bit source operand, yielding a 16-bit result. When word size is specified for the

source operand, the 16-bit value in Rd is multiplied by the 16-bit source operand, yielding a 32-bit

result which is placed in Rd and Rd+1.

=

=

15

15

00 RdRd 7 15 0EAs

0150

multiplicand ×

multiplier product8 × 8

16 × 16

multiplicand

multiplier

 product (H)

product (L)

×

Rd

Rd + 1

EAsRd

When word size is specified and the 32-bit product is placed in Rd and Rd+1, d must be even (0,

2, 4, or 6). Correct results are not assured if an odd register number is specified.

MULtiply eXtend as Unsigned MULXU

<Instruction Format>

1 1 0 r r10 rEA*

* When Sz = 0: 8 bits × 8 bits = 16 bits

When Sz = 1: 16 bits × 16 bits = 32 bits

where Sz is the size bit in the EA code

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.28 NEG (NEGate)

NEGate NEG

<Operation>
0 – (EAd) → (EAd)

<Assembly-Language Format>

NEG <EAd>

(Example)

NEG.W R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction replaces the destination operand (general register Rd or memory contents) with

its two's complement. It subtracts the destination operand from zero and places the result in the

destination.

<Instruction Format>

0 0 1 1 000 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.29 NOP (No OPeration)

No OPeration NOP

<Operation>
PC + 1 → PC

<Assembly-Language Format>

NOP

(Example)

NOP

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction only increments the program counter.

<Instruction Format>

0 0 0 0 000 0

8 0

2.2.30 NOT (NOT = logical complement)

Logical complement NOT

<Operation>
¬(EAd) → (EAd)

<Assembly-Language Format>

NOT <EAd>

(Example)

NOT.B @(H'10,R2)

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction replaces the destination operand (general register Rd or memory contents) with

its one's complement.

<Instruction Format>

0 0 1 1 000 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.31 OR (inclusive OR logical)

Inclusive logical OR OR

<Operation>
Rd ∨ (EAs) → Rd

<Assembly-Language Format>

OR <EAs>,Rd

(Example)

OR.B @H'F0:8,R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction obtains the logical OR of the source operand and general register Rd (destination

operand) and places the result in general register Rd.

<Instruction Format>

0 0 0 r r01 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.32 ORC (OR Control register)

OR Control register ORC

<Operation>
CR ∨ #IMM → CR

<Assembly-Language Format>

ORC #xx, CR

(Example)

ORC.W #H'0700,SR

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>

N Z V C

∆ ∆ ∆ ∆

(1) When CR is the status register (SR or

CCR), the N, Z, V, and C bits are set

according to the result of the operation.

(2) When CR is not the status register (EP, TP,

DP, or BR), the bits are set as below.

N: Set to "1" when the MSB of the result is

"1;" otherwise cleared to "0."

Z: Set to "1" when the result is zero; otherwise

cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction ORs the contents of a control register (CR) with immediate data and places the

result in the control register.

The operand size specified in the instruction depends on the control register as explained in Table

1-12 in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the

end of this instruction.

<Instruction Format>

 data

data (L)data (H)

ORC #xx:8,CR

ORC #xx:16,CR

10 0 00 0 0 0 c1 c c0 1 0 0

c1 c c0 1 0 011 0 00 0 0 0

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

2.2.33 PJMP (Page JuMP)

Page JuMP PJMP

<Operation>
Effective address → CP, PC

<Assembly-Language Format>

PJMP @aa:24

PJMP @Rn

(Example)

PJMP @R4

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction branches unconditionally to a specified address in a specified page, updating the

code page (CP) register. If register indirect (@Rn) addressing is used, the lower byte of general

register Rn is copied to the code page register, and the contents of general register Rn+1 are copied to

the program counter (PC). The register number n must be even (n = 0, 2, 4, or 6). Correct results

are not assured if n is odd.

This instruction is invalid when the CPU is operating in minimum mode.

<Instruction Format>

00 0 10 0 0 1 r0 r r1 1 0 0

00 1 10 0 0 1PJMP @aa:24 page address (H) address (L)

PJMP @Rn

2.2.34 PJSR (Page Jump to SubRoutine)

Page Jump to SubRoutine PJSR

<Operation>
PC → @–SP

CP → @–SP

Effective address → CP, PC

<Assembly-Language Format>

PJSR @aa:24

PJSR @Rn

(Example)

PJSR @H'010000

<Operand Size>

<Condition Code>
N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>
This instruction pushes the program counter (PC) and code page registers (CP) onto the stack,

then branches to a specified address in a specified page. The PC and CP values pushed on the stack

are the address of the instruction immediately following the PJSR instruction.

If register indirect (@Rn) addressing is used, the lower byte of general register Rn is copied to

the code page register, and the contents of general register Rn+1 are copied to the program counter.

The register number n must be even (n = 0, 2, 4, or 6). Correct results are not assured if n is odd.

This instruction is invalid when the CPU is operating in minimum mode.

The status of the stack after execution of this instruction is shown below.

TP:SP Indeterminate data CP

PC

→

<Instruction Format>

00 0 10 0 0 1 r1 r r1 1 0 0

00 1 10 0 0 0PJSR @aa:24 page address (H) address (L)

PJSR @Rn

2.2.35 PRTD (Page ReTurn and Deallocate)

Page ReTurn and Deallocate PRTD

<Operation>
@SP+ → CP

@SP+ → PC

SP + #IMM → SP

<Assembly-Language Format>

PRTD #xx

(Example)

PRTD #8

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction is used to return from a subroutine in a different page and deallocate the stack

area used by the subroutine. It pops the code page register (CP) and program counter (PC) from the

stack, then adjusts the stack pointer by adding immediate data specified in the instruction. The

immediate data value can be an 8-bit value from -128 to +127, or a 16-bit value from -32768 to

+32767.

This instruction can be used to restore the previous stack when returning from a subroutine

called by the PJSR instruction.

This instruction is invalid when the CPU is operating in minimum mode.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd

address. The immediate data should be an even number so that the stack pointer indicates an

even address after execution of the PRTD instruction.

<Instruction Format>

data (L)data (H)

10 0 00 0 0 1

11 0 00 0 0 1

PRTD #xx:8

PRTD #xx:16

data00 0 10 0 0 1

00 0 10 0 0 1

2.2.36 PRTS (Page ReTurn from Subroutine)

Page ReTurn from SubRoutine PRTS

<Operation>
@SP+ → CP

@SP+ → PC

<Assembly-Language Format>

PRTS

(Example)

PRTS

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction is used to return from a subroutine in a different page. It pops the code page

register (CP) and program counter (PC) from the stack. Execution continues from the popped

address.

This instruction is used to return from a subroutine called by PJSR instruction.

This instruction is invalid when the CPU is operating in minimum mode.

<Instruction Format>

0 0 1 0 000 1 0 0 1 0 010 1

2.2.37 ROTL (ROTate Left)

ROTate Left ROTL

<Operation>
(EAd) rotated left → (EAd)

<Assembly-Language Format>

ROTL <EAd>

(Example)

ROTL.W R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Set to the value shifted out from the

most significant bit.

<Description>

This instruction rotates the destination operand (general register Rd or memory contents) left,

and sets the C bit to the value rotated out from the most significant bit.

C

MSB LSB

•

<Instruction Format>

0 0 1 1 010 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.38 ROTR (ROTate Right)

ROTate Right ROTR

<Operation>
(EAd) rotated right → (EAd)

<Assembly-Language Format>

ROTR <EAd>

(Example)

ROTR.B @R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Set to the value shifted out from the

least significant bit.

<Description>

This instruction rotates the destination operand (general register Rd or memory contents) right,

and sets the C bit to the value rotated out from the least significant bit.

C•
MSB LSB

<Instruction Format>

0 0 1 1 010 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.39 ROTXL (ROTate with eXtend carry Left)

ROTate with eXtend carry Left ROTXL

<Operation>
(EAd) rotated left through C bit → (EAd)

<Assembly-Language Format>

ROTXL <EAd>

(Example)

ROTXL.W @(H'02,R1)

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Receives the value shifted out from the

most significant bit.

<Description>

This instruction rotates the destination operand (general register Rd or memory contents) left

through the C bit. The least significant bit of the destination operand receives the old value of the C

bit. The most significant bit is rotated to become the new value of the C bit.

C

MSB LSB

<Instruction Format>

0 0 1 1 110 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.40 ROTXR (ROTate with eXtend carry Right)

ROTate with eXtend carry Right ROTXR

<Operation>
(EAd) rotated right through C bit → (EAd)

<Assembly-Language Format>

ROTXR <EAd>

(Example)

ROTXR.B @H'FA:8

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Receives the value shifted out from the

least significant bit.

<Description>

This instruction rotates the destination operand (general register Rd or memory contents) right

through the C bit. The most significant bit of the destination operand receives the old value of the C

bit. The least significant bit is rotated to become the new value of the C bit.

C

MSB LSB

<Instruction Format>

0 0 1 1 110 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.41 RTD (ReTurn and Deallocate)

ReTurn and Deallocate RTD

<Operation>
@SP+ → PC

SP + #IMM → SP

<Assembly-Language Format>

RTD #xx

(Example)

RTD #4

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction is used to return from a subroutine in the same page and deallocate the stack area

used by the subroutine. It pops the program counter (PC) from the stack, then adjusts the stack

pointer by adding immediate data specified in the instruction.

The immediate data value can be an 8-bit value from -128 to +127, or a 16-bit value from

-32768 to +32767.

Note: When the stack is accessed an address error will occur if the stack pointer indicates an odd

address. The immediate data should be an even number so that the stack pointer indicates an

even address after execution of the RTD instruction.

<Instruction Format>

data

data (H) data (L)

0 0 1 1 000 0

0 0 1 1 010 0

RTD #xx:8

RTD #xx:16

ReTurn and Deallocate RTD

<Note>

The RTD instruction works efficiently with programs coded in high-level languages that use

function routines. Besides returning from a function call, it can deallocate an argument area used by

the function.

The RTD instruction can be broken down into more general instructions as follows.

RTD #n ➩ RTS

ADDS.W #n,SP

(where n is the size of the argument area)

The usage of the RTD instruction in a program coded in C language is illustrated below.

Sample program

main ()

{

int a, b;

a = 10;

b = func(a); ————— Function call with argument a.

}

func(x)

int x;

{

function processing

}

In assembly language this program could be coded as follows.

main: MOV:I #10,R0

MOV R0,@–SP ——— Pass argument to function via stack.

JSR func

func: MOV @(2,SP),R0 —— Get argument a.

function processing

RTD #2 —————————— Return and deallocate argument area.

ReTurn and Deallocate RTD

<Note (Continued)>

The stack area during and after the function call is shown below.

Stack

SP →

Stack

SP →

Return PC

aArgument

During call. After

The PC is popped as in RTS,
then the stack pointer is
moved downward to
deallocate the argument a. In
this example the stack pointer
is incremented by 2.

RTD func()

2.2.42 RTE (ReTurn from Exception)

ReTurn from Exception RTE

<Operation>
@SP+ → SR

(if maximum mode then @SP+ → CP)

@SP+ → PC

<Assembly-Language Format>

RTE

(Example)

RTE

<Operand Size>

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Popped from stack.

Z: Popped from stack.

V: Popped from stack.

C: Popped from stack.

<Description>

This instruction returns from an exception-handling routine. It pops the program counter (PC)

and status register (SR) from the stack. In the maximum mode it also pops the code page register

(CP).*

Execution continues from the new address in the program counter (and code page register in

maximum mode).

Interrupts are not accepted and trace exception processing is not performed immediately after the

end of this instruction.

* The code page (CP) register is one byte in length. A full word is popped from the stack and the

lower 8 bits are placed in the CP.

<Instruction Format>

0 0 0 0 110 0

2.2.43 RTS (ReTurn from Subroutine)

ReTurn from Subroutine RTS

<Operation>
@SP+ → PC

<Assembly-Language Format>

RTS

(Example)

RTS

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction is used to return from a subroutine in the same page. It pops the program

counter (PC) from the stack. Execution continues from the new PC address.

This instruction can be used to return from a subroutine called by the BSR or JSR instruction.

<Instruction Format>

0 0 1 0 010 1

9 6

2.2.44 SCB (Subtract, Compare and Branch conditionally)

Subtract, Compare and Branch conditionally SCB

<Operation>
If condition is true then next;
 else Rn – 1 → Rn;

If Rn = –1 then next
 else PC + disp → PC;

<Assembly-Language Format>

SCB/cc Rn,disp

Note: F (False), NE (Not Equal), or EQ

(EQual) can be specified in the condition code

field (cc). There are accordingly three

mnemonics:

SCB/F, SCB/NE, and SCB/EQ

(Example)

SCB/EQ R4,LABEL

<Operand Size>

<Condition Code>
N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>
This instruction is used for loop control. The condition code (cc) field can be set to create a pure

counted loop (SCB/F), or a do-while or do-until (SCB/NE or SCB/EQ) loop with a limiting count.

If the specified condition (cc) is true, this instruction exits the loop by proceeding to the next

instruction. Otherwise, it decrements the counter register (Rc) and exits the loop if the result is -1.

When it does not exit the loop, this instruction branches to a relative address given by an

8-bit displacement value from -128 to +127.

The loop counter register (Rc) is decremented as a word register. The program counter (PC)

value used in address calculation is the address of the instruction immediately following the SCB

instruction.

Mnemonic Description Condition

SCB/F False

SCB/NE Not Equal Z = 0

SCB/EQ Equal Z = 1

Subtract, Compare and Branch conditionally SCB

<Instruction Format>

SCB/F

SCB/NE

SCB/EQ

disp0 0 0 0 000 1

0 0 0 1 100 0

disp0 0 0 1 100 1

disp1 1 1 r r10 r

1 1 1 r r10 r

1 1 1 r r10 r

Subtract, Compare and Branch conditionally SCB

<Note>

The general SCB instruction controls a loop with a counter register and the CCR bits as

termination conditions. The H8/500 provides three SCB instructions: SCB/F, SCB/NE, and

SCB/EQ.

➀ The SCB/F instruction can be broken down into the following more general instructions:

SCB/F Rn, LOOP ➩ SUB.W #1,Rn

CMP.W #-1,Rn

BNE LOOP

If a loop count is set in Rn, this produces a simple counted loop. In the following example the

loop is executed 9 + 1 = 10 times. The final value left in R1 is 10.

MOV.W #9,R0

CLR.W R1

LO: ADD.W #1,R1 Start loop

SCB/F R0,LO End loop

➁ The SCB/NE instruction can be broken down into the following more general instructions:

SCB/NE Rn, LOOP ➩ BNE NEXT

SUB.W #1,Rn

CMP.W #–1,Rn

BNE LOOP

NEXT:

In the following example a search for a value other than "A" is made in a block of the length

indicated by general register R3 beginning at the address indicated by R4.

Subtract, Compare and Branch conditionally SCB

<Note (Continued)>

 Length = 10 bytes

R4 R3

A A A A A A B A A A

▼

MOV.W #9,R3

LO: CMP.B #"A", @R4+ Start loop

SCB/NE R3,LO End loop

With the data shown, the loop executes 7 times and ends with the Z bit cleared to 0 and the value

3 in R3. The position of the first non-"A" data can be calculated as R4 + (10 – R3). If all the data

were "A," the loop would end with the Z bit set to 1 and R3 = –1.

➂ The SCB/EQ instruction can be broken down into the following more general instructions:

SCB/EQ Rn, LOOP ➩ BEQ NEXT

SUB.W #1,Rn

CMP.W #–1,Rn

BNE LOOP

NEXT:

In the following example a search for the value "A" is made in a block of the length indicated by

general register R3 beginning at the address indicated by R4.

B C B A D F F O B B

▼

Length = 10 bytes

R4 R3

MOV.W #9,R3

LO: CMP.B #"A", @R4+ Start loop

SCB/EQ R3,LO End loop

With the data shown, the loop executes 4 times and ends with the Z bit set to 1 and the value 6 in

R3. The position of the first "A" can be calculated as R4 + (10 – R3). If there was no "A," the loop

would end with the Z bit cleared to 0 and R3 = –1.

2.2.45 SHAL (SHift Arithmetic Left)

SHift Arithmetic Left SHAL

<Operation>
(EAd) shifted arithmetic left → (EAd)

<Assembly-Language Format>

SHAL <EAd>

(Example)

SHAL.B @R2+

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" when the shift changes the

value of the most significant bit;

otherwise cleared to "0."

C: Set to the value shifted out from the

most significant bit.

<Description>

This instruction shifts the destination operand (general register Rd or memory contents)

left, and sets the C bit to the value shifted out from the most significant bit. The least

significant bit is cleared to "0."

 C

MSB LSB

0

<Instruction Format>

0 0 1 0 010 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.46 SHAR (SHift Arithmetic Right)

SHift Arithmetic Right SHAR

<Operation>
(EAd) shifted arithmetic right → (EAd)

<Assembly-Language Format>

SHAR <EAd>

(Example)

SHAR.W @H'FF00

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Set to the value shifted out from the

least significant bit.

<Description>

This instruction shifts the destination operand (general register Rd or memory contents) right,

and sets the C bit to the value shifted out from the least significant bit. The most significant bit does

not change, so the sign of the result remains the same.

C

MSB LSB

<Instruction Format>

0 0 1 0 010 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.47 SHLL (SHift Logical Left)

SHift Logical Left SHLL

<Operation>
(EAd) shifted logical left → (EAd)

<Assembly-Language Format>

SHLL <EAd>

(Example)

SHLL.B R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Set to the value shifted out from the

most significant bit.

<Description>

This instruction shifts the destination operand (general register Rd or memory contents) left, and

sets the C bit to the value shifted out from the most significant bit. The least significant bit is cleared

to 0. The only difference between this instruction and SHAL is that this instruction clears the V bit

to "0."

 C

MSB LSB

0

<Instruction Format>

0 0 1 0 110 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.48 SHLR (SHift Logical Right)

SHift Logical Right SHLR

<Operation>
(EAd) shifted logical right → (EAd)

<Assembly-Language Format>

SHLR <EAd>

(Example)

SHLR.W @–R1

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

0 ↕ 0 ↕

N: Always cleared to 0.

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Set to the value shifted out from the

least significant bit.

<Description>

This instruction shifts the destination operand (general register Rd or memory contents) right,

and sets the C bit to the value shifted out from the least significant bit. The most significant bit is

cleared to 0.

 C

MSB LSB

0

<Instruction Format>

0 0 1 0 110 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.49 SLEEP (SLEEP)

SLEEP SLEEP

<Operation>
Normal operating mode → power-down mode

<Assembly-Language Format>

SLEEP

(Example)

SLEEP

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

When the SLEEP instruction is executed, the CPU enters the power-down mode. Its internal

state remains unchanged, but the CPU stops executing instructions and waits for an exception

handling request. When it receives such a request, the CPU exits the power-down mode and begins

exception handling.

<Instruction Format>

0 0 1 0 110 0

2.2.50 STC (STore Control register)

STore Control register STC

<Operation>
CR → (EAd)

<Assembly-Language Format>

STC CR,<EAd>

(Example)

STC.B BR,R0

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction stores the contents of a control register (CR) to a general register or memory

location (destination operand).

The operand size specified in the instruction depends on the control register as indicated in Table

1-12 in Section 1.3.6, "Register Specification."

<Instruction Format>

1 0 1 c c10 cEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.51 STM (STore Multiple registers)

STore Multiple registers STM

<Operation>
Rs (register group) → @–SP (stack)

<Assembly-Language Format>

STM <register list>,@–SP

(Example)

STM (R0–R3),@–SP

<Operand Size>

Word

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction pushes data from a specified list of general registers onto the stack. In the

instruction code, the register list is encoded as one byte in which bits set to "1" indicate registers to

be pushed. The highest-numbered register in the list is pushed first, the next-highest-numbered

register second, and so on.

At the end of this instruction, general register R7 (the stack pointer) is updated to the value:

(contents of R7 before this instruction) – 2 × (number of registers pushed). If the register list

includes R7, the value pushed is (contents of R7 before this instruction) – 2.

<Instruction Format>

0 0 1 0 100 0 register list

Register list
7 6 5 4 3 2 1 0

R0R7 R6 R5 R4 R3 R2 R1

STore Multiple registers STM

<Note>

The STM instruction can be used to save a group of registers to the stack at the beginning of

exception handling routine or a subroutine. When there are many registers to save, the STM

instruction is faster than the MOV instruction.

The status of the stack before and after an STM instruction is shown below.

SP →

StackStack

SP →Old R0

Old R1

Old R2

Old R3

Old R7–2

Execution of STM (R0–R3, R7),@–SP

If R7 (the stack pointer) is included in the register list, the value of R7 pushed on the stack is:

(contents of R7 before the instruction) – 2. The value of R7 after execution of the instruction is:

(contents of R7 before the instruction) – 2 × (number of registers restored).

Normally the STM instruction is paired with an LDM instruction which restores the registers.

LDM does not, however, restore R7; it performs a dummy read instead. Accordingly, the program

will execute faster if R7 is not specified in the register list.

STore Multiple registers STM

<Note (Continued)>

The following graph compares the number of machine states required for execution of STM and

execution of the same process using the MOV instruction.

50

45

40

35

30

25

20

15

10

5

0 1 2 4 5 6 7 83

STM
Number

of states

Number of registers pushed

Repetitions of MOV.W Rn,@–SP

Note: This graph is for the case in which instruction fetches and stack access are both to on-chip

memory.

The STM instruction is faster when the number of registers is four or more. The MOV

instruction is faster when there are only one or two registers to save. If the instruction fetches are to

off-chip memory, the STM instruction is faster when there are two registers or more.

2.2.52 SUB (SUBtract binary)

SUBtract binary SUB

<Operation>
Rd – (EAs) → Rd

<Assembly-Language Format>

SUB <EAs>,Rd

(Example)

SUB.W @R1,R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts a source operand from general register Rd (destination operand) and

places the result in general register Rd.

<Instruction Format>

0 1 1 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.53 SUBS (SUBtract with Sign extension)

SUBtract with Sign extension SUBS

<Operation>
Rd – (EAs) → Rd

<Assembly-Language Format>

SUBS <EAs>,Rd

(Example)

SUBS.W #2,R2

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction subtracts the source operand from the contents of general register Rd

(destination operand) and places the result in general register Rd.

Differing from the SUB instruction, this instruction does not alter the condition code.

If byte size is specified, the sign bit of the source operand is extended. The subtraction is

performed using the resulting word data. General register Rd is always accessed as a word-size

operand.

<Instruction Format>

0 1 1 r r10 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

1 1 1

2.2.54 SUBX (SUBtract with eXtend carry)

SUBtract with eXtend carry SUBX

<Operation>
Rd – (EAs) – C → Rd

<Assembly-Language Format>

SUBX <EAs>,Rd

(Example)

SUBX.W @R2+,R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ ↕ ↕

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if a borrow occurs;

otherwise cleared to "0."

<Description>

This instruction subtracts the source operand contents and the C bit from general register Rd

(destination operand) and places the result in general register Rd.

<Instruction Format>

1 1 1 r r00 rEA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.55 SWAP (SWAP register halves)

SWAP register halves SWAP

<Operation>
Rd (upper byte) ↔ Rd (lower byte)

<Assembly-Language Format>

SWAP Rd

(Example)

SWAP R0

<Operand Size>

Byte

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction interchanges the upper eight bits of general register Rd (destination register)

with the lower eight bits.

<Instruction Format>

0 0 1 0 000 01 1 0 r r00 r

2.2.56 TAS (Test And Set)

Test And Set TAS

<Operation>

Set CCR according to result of (EAd) – 0

(1)2 → (<bit 7> of <EAd>)

<Assembly-Language Format>

TAS <EAd>

(Example)

TAS @H'F000

<Operand Size>

Byte

<Condition Code>

N Z V C

↕ ↕ 0 0

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction tests a destination operand (general register Rd or memory contents) by

comparing it with 0, sets the condition code register according to the result, then sets the most

significant bit of the operand to "1."

<Instruction Format>

0 0 1 1 100 1EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

Test And Set TAS

<Note>

Execution of the TAS instruction causes the CPU to perform the read-modify-write cycle shown

below. No signal is output to indicate this cycle, but at the point between the read and write cycles

the CPU will not accept interrupts and will not relinquish the bus. If an address error or other

exception condition occurs during the read cycle, it is not handled until the write cycle has been

executed.

The timing chart below is for access to off-chip memory by the H8/532.

Read cycle Write cycle

2.2.57 TRAPA (TRAP Always)

TRAP Always TRAPA

<Operation>
PC → @–SP

(If maximum mode then CP → @–SP)

SR → @–SP

(If maximum mode then <vector> → CP)

<vector> → PC

<Assembly-Language Format>

TRAPA #xx

(Example)

TRAPA #4

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction generates a trap exception with a specified vector number.

When a TRAPA instruction is executed, the CPU initiates exception handling according to its

current operating mode. In the minimum mode, it pushes the program counter (PC) and status

register (SR) onto the stack, then indexes the vector table by the vector number specified in the

instruction and copies the vector at that location to the program counter. In the maximum mode, it

pushes the code page register* (CP), PC, and SR onto the stack and copies the vector to CP and

PC.

* The code page register is byte size, but the stack and vector table are always accessed as word

data. The lower eight bits are used.

TRAP Always TRAPA

<Instruction Format>

0 0 1 #VEC00 0 0 0 010 0
#VEC: A 4-bit number from 0 to 15

specifying an exception vector

number acording to the table

below.

Vector address Vector address
#VEC

Minimum mode Maximum mode Minimum mode Maximum mode

0 H'0020 – H'0021 H'0040 – H'0043 8 H'0030 – H'0031 H'0060 – H'0063

1 H'0022 – H'0023 H'0044 – H'0047 9 H'0032 – H'0033 H'0064 – H'0067

2 H'0024 – H'0025 H'0048 – H'004B 10 H'0034 – H'0035 H'0068 – H'006B

3 H'0026 – H'0027 H'004C – H'004F 11 H'0036 – H'0037 H'006C – H'006F

4 H'0028 – H'0029 H'0050 – H'0053 12 H'0038 – H'0039 H'0070 – H'0073

5 H'0054 – H'0057 13 H'003A – H'003B H'0074 – H'0077

6 H'002C – H'002D H'0058 – H'005B 14 H'003C – H'003D H'0078 – H'007B

7 H'002E – H'002F H'005C – H'005F 15 H' 003E – H'003F H'007C – H'007F

#VEC

H'002A – H'002B

2.2.58 TRAP/VS (TRAP if oVerflow)

TRAP if oVerflow bit is Set TRAP/VS

<Operation>

If V bit is set then TRAP

 else next;

<Assembly-Language Format>

TRAP/VS

(Example)

TRAP/VS

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

When this instruction is executed, the CPU checks the CCR (condition code register) and

initiates exception handling if the V bit is set to "1". If the V bit is cleared, execution proceeds to the

next instruction without an exception.

The vector address of the exception generated by a TRAP/VS instruction is shown below.

 Minimum mode Maximum mode

 H'0008 – H'0009 H'0010 – H'0013

<Instruction Format>

0 0 0 0 010 1

2.2.59 TST (TeST)

TeST TST

<Operation>

Set CCR according to result of (EAd) – 0

<Assembly-Language Format>

TST <EAd>

(Example)

TST @(H'1000,R1)

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 0

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Always cleared to 0.

<Description>

This instruction compares the destination operand (general register Rd or memory contents) with

0 and sets the condition code register according to the result. It does not modify the destination

operand.

<Instruction Format>

0 0 1 1 100 0EA

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

DestinationYes Yes Yes Yes Yes Yes Yes Yes — —

2.2.60 UNLK (UNLinK)

UNLinK UNLK

<Operation>
FP (R6) → SP

@SP+ → FP (R6)

<Assembly-Language Format>

UNLK FP

(Example)

UNLK FP

<Operand Size>

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction deallocates a stack frame created by a LINK instruction.

It copies the frame pointer (FP = R6) contents to the stack pointer (SP = R7), then pops the top

word in the new stack area (the FP saved by the LINK instruction) to the frame pointer.

<Instruction Format>

0 0 0 1 110 1

2.2.61 XCH (eXCHange registers)

eXCHange register XCH

<Operation>
Rs ↔ Rd

<Assembly-Language Format>

XCH Rs,Rd

(Example)

XCH R0,R1

<Operand Size>

Word

<Condition Code>

N Z V C

— — — —

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

<Description>

This instruction interchanges the contents of two general registers.

<Instruction Format>

1 1 0 r r10 r 1 0 1 r r00 rd d ds s s

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes — — — — — — — — —

DestinationYes — — — — — — — — —

2.2.62 XOR (eXclusive OR logical)

eXclusive OR logical XOR

<Operation>
Rd ⊕ (EAs) → Rd

<Assembly-Language Format>

XOR <EAs>,Rd

(Example)

XOR.B @H'A0:8,R0

<Operand Size>

Byte

Word

<Condition Code>

N Z V C

↕ ↕ 0 —

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction obtains the logical exclusive OR of the source operand and the contents of

general register Rd (destination operand) and places the result in general register Rd.

<Instruction Format>

EA 0 1 0 r r01 r

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

DestinationYes — — — — — — — — —

2.2.63 XORC (eXclusive OR Control register)

eXclusive OR Control register XORC

<Operation>
CR ⊕ #IMM → CR

<Assembly-Language Format>

XORC #xx,CR

(Example)

XORC.B #H'01,CCR

<Operand Size>

Byte

Word

(Depends on the control register)

<Condition Code>

N Z V C

∆ ∆ ∆ ∆

(1) When CR is the status register (SR or

CCR), the N, Z, V, and C bits are set

according to the result of the operation.

(2) When CR is not the status register (EP, TP,

DP, or BR), the bits are set as below.

N: Set to "1" when the MSB of the result is

"1;" otherwise cleared to "0."

Z: Set to "1" when the result is zero; otherwise

cleared to "0."

V: Always cleared to 0.

C: Previous value remains unchanged.

<Description>

This instruction exclusive-ORs the contents of a control register (CR) with immediate data and

places the result in the control register.

The operand size specified in the instruction depends on the control register as indicated in Table

1-12 in Section 1.3.6, "Register Specification."

Interrupts are not accepted and trace exception processing is not performed immediately after the

end of this instruction.

<Instruction Format>

data

data (L)data (H)

10 0 00 0 0 0 c1 c c0 1 1 0

c1 c c0 1 1 011 0 00 0 0 0

XORC #xx:8,CR

XORC #xx:16,CR

<Addressing Modes>

Rn @Rn @(d:8,Rn) @(d:16,Rn)@–Rn @Rn+ @aa:8 @aa:16 #xx:8 #xx:16

Source — — — — — — — — Yes Yes

2.3 Instruction Codes

Table 2-1 shows the machine-language coding of each instruction.

• How to read Table 2-1 (a) to (d).

The general operand format consists of an effective address (EA) field and operation-code

(OP) field specified in the following order:

654321

EA field Op field

Bytes 2, 3, 5, 6 are not present in all instructions.

 Operation code (OP)Instruction

 4 5 6

MOV:G.B <EAs>,Rd 2 2 3 4 2 2 3 4 3

MOV:G.W <EAs>,Rd 2 2 3 4 2 2 3 4 4

MOV:G.B Rs,<EAd> 2 2 3 4 2 2 3 4 3

MOV:G.W Rs,<EAd> 2 2 3 4 2 2 3 4 4

R
n @
R

n
@

(d
:8

, R
n)

@
(d

:1
6,

 R
n)

@
-R

n
@

R
n+

@
aa

:8

@
aa

:1
6

#x
x:

8

#x
x:

16A
dd

re
ss

-
in

g
m

od
e

O
pe

ra
ti

on
 c

od
e

(E
A

)

1

di
sp

di
sp

 (H
)

di
sp

 (L
)

ad
dr

es
s

ad
dr

es
s

(H
)

ad
dr

es
s

(L
)

da
ta

da

ta
 (H

)
da

ta
 (L

)

2
3

Byte length of instruction Shading indicates addressing
modes not available for this
instruction.

in
st

ru
ct

io
n

1
0

1
0

Sz
 r

r

 r

1
1

0
1

Sz
 r

r

 r
1

1
1

0
Sz

 r

r
 r

1
1

1
1

Sz
 r

r

 r

1
0

1
1

Sz
 r

r

 r

1
1

0
0

Sz
 r

r

 r

0
0

0
0

S
z

1
0

1

0
0

0
1

S
z

1
0

1

0
0

0
0

 1
 1

 0
 0

0
0

0
0

 0
 1

 0
 0

1 0 0 0 0 r r r d d d

1 0 0 0 0 r r r d d d

1 0 0 1 0 r r r s s s

1 0 0 1 0 r r r s s s

Some instructions have a special format in which the operation code comes first.

The following notation is used in the tables.

• Sz: Operand size (byte or word)

Byte: Sz = 0

Word: Sz = 1

• r r r: General register number field

 Not used R7

 Not used R0

 Not used R5

 Not used R3

r r r Sz = 0 (Byte) Sz = 1 (Word)

 0
0 0 0 R0

0 0 1 Not used R1 R1

0 1 0 Not used R2 R2

0 1 1 R3

1 0 0 Not used R4 R4

1 0 1 R5

1 1 0 Not used R6 R6

1 1 1 R7

15 08 715

• c c c: Control register number field

 SR

c c c Sz = 0 (Byte) Sz = 1 (Word)

0 0 0 (Not allowed*)

0 0 1 (Not allowed)

0 1 0 (Not allowed) (Not allowed)

0 1 1 BR (Not allowed)

1 0 0 EP (Not allowed)

1 0 1 DP (Not allowed)

1 1 0 (Not allowed) (Not allowed)

 1 1 1 TP (Not allowed)

 7 0

15 0

CCR

* "Disallowed" means that this combination of bits must not be specified. Specifying a

disallowed combination may cause abnormal results.

• register list: A byte in which bits indicate general registers as follows

R6 R5 R4 R3 R2 R1R7 R0

7 6 5 4 3 2 1 0Bit:

• #VEC: Four bits designating a vector number from 0 to 15. The vector numbers

correspond to addresses of entries in the exception vector table as follows:

Vector address Vector address
#VEC

Minimum mode Maximum mode Minimum mode Maximum mode

0 H'0020 – H'0021 H'0040 – H'0043 8 H'0030 – H'0031 H'0060 – H'0063

1 H'0022 – H'0023 H'0044 – H'0047 9 H'0032 – H'0033 H'0064 – H'0067

2 H'0024 – H'0025 H'0048 – H'004B 10 H'0034 – H'0035 H'0068 – H'006B

3 H'0026 – H'0027 H'004C – H'004F 11 H'0036 – H'0037 H'006C – H'006F

4 H'0028 – H'0029 H'0050 – H'0053 12 H'0038 – H'0039 H'0070 – H'0073

5 H'0054 – H'0057 13 H'003A – H'003B H'0074 – H'0077

6 H'002C – H'002D H'0058 – H'005B 14 H'003C – H'003D H'0078 – H'007B

7 H'002E – H'002F H'005C – H'005F 15 H'003E – H'003F H'007C – H'007F

#VEC

H'002A – H'002B

• Examples of machine-language coding

Example 1: ADD:G.B @R0,R1

EA field OP field

Table 2.1 (a) 1 1 0 1 Sz r r r

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1Machine code

 H'D021

0 0 1 0 0 r r rd d d

Example 2: ADD:G.W @H'11:8,R1

 EA field OP field

Table 2.1 (a) 0 0 0 0 Sz 1 0 1 0 0 0 1 0 0 0 1

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1Machine code

 H'0D1121

0 0 1 0 0 r r rd d d

1 3 9

2.5 Condition Code Changes

The changes in the condition code bits occurring after the execution of each CPU instruction are

summarized in Tables 2-7 (1) to (4). The following notation is used.

Sm: Most significant bit of source operand

Dm: Most significant bit of destination

operand

Rm: Most significant bit of result

Dn: Bit n of destination operand

—: Not changed.

↕: Changed according to the result of the

instruction.

0: Always cleared to "0."

1: Always set to "1."

∆: Handling depends on the operand.

Instruction N Z V C Definitions

ADD ↕ ↕ ↕ ↕

ADDS — — — —

ADDX ↕ ↕ ↕ ↕ N = ~

Z = ~

V = ~

C = ~

Table 2-7 Condition Code Changes (1)

Instruction N Z V C Definitions

ADD ↕ ↕ ↕ ↕ N = Rm

Z = Rm·Rm-1·...·R0

V = Sm·Dm·Rm + Sm·Dm·Rm

C = Sm·Dm + Dm·Rm + Sm·Rm

ADDS — — — —

ADDX ↕ ↕ ↕ ↕ N = Rm

Z = Z'·Rm·...·R0*

V = Sm·Dm·Rm + Sm·Dm·Rm

C = Sm·Dm + Dm·Rm + Sm·Rm

AND ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

ANDC ∆ ∆ ∆ ∆ If CR = SR (CCR): N, Z, V, and C are ANDed with source operand

bits 3 to 0.

If CR ≠ SR (CCR): N = Rm

Z = Rm·Rm-1·...·R0

V = 0

C = remains unchanged.

Bcc — — — —

BCLR — ↕ — — Z = Dn

BNOT — ↕ — — Z = Dn

BSET — ↕ — — Z = Dn

BSR — — — —

BTST — ↕ — — Z = Dn

CLR 0 1 0 0

CMP ↕ ↕ ↕ ↕ N = Rm

Z = Rm·Rm-1·...·R0

V = Sm·Dm·Rm + Sm·Dm·Rm

C = Sm·Dm + Dm·Rm + Sm·Rm

DADD — ↕ — ↕ Z = Z·Rm·...·R0

C = decimal carry

DIVXU ↕ ↕ ↕ 0 N = Rm

Z = Rm·Rm-1·...·R0

V = division overflow

* Z' is the Z bit before execution.

Table 2-7 Condition Code Changes (2)

Instruction N Z V C Definitions

DSUB — ↕ — ↕ Z = Z·Rm·...·R0

C = decimal borrow

EXTS ↕ ↕ 0 0 N = Rm

Z = Rm·Rm-1·...·R0

EXTU 0 ↕ 0 0 Z = Rm·Rm-1·...·R0

JMP — — — —

JSR — — — —

LDC ∆ ∆ ∆ ∆ If CR = SR (CCR), then N, Z, V, and C are loaded from the

 source operand.

If CR ≠ SR (CCR), then N, Z, V, and C remain unchanged.

LDM — — — —

LINK — — — —

MOV ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

MOVFPE — — — —

MOVTPE — — — —

MULXU ↕ ↕ 0 0 N = Rm

Z = Rm·Rm-1·...·R0

NEG ↕ ↕ ↕ ↕ N = Rm

Z = Rm·Rm-1·...·R0

V = Dm·Rm

C = Dm + Rm

NOP — — — —

NOT ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

OR ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

ORC ∆ ∆ ∆ ∆ If CR = SR (CCR): N, Z, V, and C are ORed with source

operand bits 3 to 0.

If CR ≠ SR (CCR): N = Rm

Z = Rm·Rm-1·...·R0

V = 0

C = remains unchanged.

Table 2-7 Condition Code Changes (3)

Instruction N Z V C Definitions

PJMP — — — —

PJSR — — — —

PRTS — — — —

PRTD — — — —

ROTL ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = Dm

ROTR ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = D0

ROTXL ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = Dm

ROTXR ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = D0

RTD — — — —

RTE ↕ ↕ ↕ ↕ Popped from the stack.

RTS — — — —

SCB — — — —

SHAL ↕ ↕ ↕ ↕ N = Rm

Z = Rm·Rm-1·...·R0

V = Dm·Dm-1 + Dm·Dm-1

C = Dm

SHAR ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = D0

SHLL ↕ ↕ 0 ↕ N = Rm

Z = Rm·Rm-1·...·R0

C = Dm

Table 2-7 Condition Code Changes (4)

Instruction N Z V C Definitions

SHLR 0 ↕ 0 ↕

Z = Rm·Rm-1·...·R0

C = D0

SLEEP — — — —

STC — — — —

STM — — — —

SUB ↕ ↕ ↕ ↕ N = Rm

Z = Rm·Rm-1·...·R0

V = Sm·Dm·Rm + Sm·Dm·Rm

C = Sm·Dm·Dm + Rm·Sm·Rm

SUBS — — — —

SUBX ↕ ↕ ↕ ↕ N = Rm

Z = Z'·Rm·...·R0*

V = Sm·Dm·Rm + Sm·Dm·Rm

C = Sm·Dm + Dm·Rm + Sm·Rm

SWAP ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

TAS ↕ ↕ 0 0 N = Rm

Z = Rm·Rm-1·...·R0

TRAPA — — — —

TRAP/VS — — — —

TST ↕ ↕ 0 0 N = Rm

Z = Rm·Rm-1·...·R0

UNLK — — — —

XCH — — — —

XOR ↕ ↕ 0 — N = Rm

Z = Rm·Rm-1·...·R0

XORC ∆ ∆ ∆ ∆ If CR = SR (CCR): N, Z, V, and C are exclusive-ORed with

source operand bits 3 to 0.

If CR ≠ SR (CCR): N = Rm

Z = Rm·Rm-1·...·R0

V = 0

C = remains unchanged.

* Z' is the Z bit before execution.

2.6 Instruction Execution Cycles

Tables 2-8 (1) through (6) list the number of cycles required by the CPU to execute each instruction

in each addressing mode.

The meaning of the symbols in the tables is explained below. The values of I, J, and K are used to

calculate the number of execution cycles when off-chip memory is accessed for an instruction fetch

or operand read/write. The formulas for these calculations are given next. Different formulas are

used for the H8/520/532/534/536, which have an 8-bit external bus, and the H8/510/570, which

have a 16-bit external bus.

2.6.1 Calculation of Instruction Execution States (H8/520, H8/532, H8/534,

H8/536)

One state is one cycle of the system clock (Ø). If Ø = 10MHz, then one state = 100ns.

Instruction fetch Operand read/write Number of states

On-chip memory*1 On-chip memory, general (Value in Table 2-8) + (Value in Table 2-9)

register, or no operand

On-chip supporting module Byte (Value in Table 2-8) + (Value in Table 2-9) + I

or off-chip memory*2 Word (Value in Table 2-8) + (Value in Table 2-9) + 2 I

Off-chip memory*2 On-chip memory, general (Value in Table 2-8) + 2(J + K)

register, or no operand

On-chip supporting module Byte (Value in Table 2-8) + I + 2(J + K)

or off-chip memory*2 Word (Value in Table 2-8) + 2(I + J + K)

*1 When the instruction is fetched from on-chip memory (ROM or RAM), the number of execution

states varies by 1 or 2 depending of whether the instruction is stored at an even or odd address.

This difference must be noted when software is used for timing, and in other cases in which the

exact number of states is important.

*2 If wait states are inserted in access to external memory, add the necessary number of cycles.

2.6.2 Tables of Instruction Execution Cycles

Tables 2-8 (1) through (6) should be read as shown below:

 J + K: Number of
 instruction fetch cycles.

Addressing mode

I: Total number of bytes
written and read when
operand is in memory.

Instruction I J 1 1 2 3 1 1 2 3 2 3

ADD.B 1 1 2 5 5 6 5 6 5 6 3

ADD.W

ADD:Q.B

ADD:Q.W

DADD

Shading in the I column means
Shading indicates addressing modes thatthe operand cannot be in memory.
cannot be used with this instruction.

R
n

@
R

n

@
(d

:8
,R

n)

@
(d

:1
6,

R
n)

@
-R

n

@
R

n+

@
aa

:8

@
aa

:1
6

#x
x:

8

#x
x:

16

K

2 1 2 5 5 6 5 6 5 6 4

2 1 2 7 7 8 7 8 7 8

4 1 2 7 7 8 7 8 7 8

2 4

2.6.3 Examples of Calculation of Number of States Required for Execution

(H8/520, H8/532, H8/534, H8/536)

(Example 1) ADD:G.W @R0, R1: instruction fetch from on-chip memory

Operand Start Assembler notation Table 2-8 + Number
Read/Write addr. Address Code Mnemonic Table 2-9 of states

On-chip memory Even H'0100 H'D821 ADD @R0, R1 5 + 1 6

or general register Odd H'0101 H'D821 ADD @R0, R1 5 + 0 5

(Example 2) JSR @R0: instruction fetch from on-chip memory

Operand Branch Assembler notation Table 2-8

+

Number
Read/Write addr. Address Code Mnemonic Table 2-9

+

2

I

of states

External Even H'FC00 H'11D8 JSR @R0 9 + 0 + 2 × 2 13

memory (word) Odd H'FC01 H'11D8 JSR @R0 9 + 1 + 2 × 2 14

(Example 3) ADD:G.W @R0, R1: instruction fetch from external memory

Operand Assembler notation Table 2-8

+

Number
Read/Write Address Code Mnemonic 2(J

+

K) of states

On-chip memory H'9002 H'D821 ADD:G.W @R0, R1 5 + 2 × (1 + 1) 9

or general register

On-chip supporting H'9002 H'D821 ADD:G.W @RD, R1 5

+

2

×

(

2

+

1

+

1

)

13

module or external

memory

2.6.4 Number of Execution States (H8/510, H8/570)

One state is one cycle of the system clock (Ø). If Ø = 10MHz then one state = 100ns.

Instruction
fetch Operand access Number of states

16-bit bus, 16-bit bus and 2-state (Value in Table 2-8) + (Value in Table 2-9)
2-state access access address space,
address space or general register

16-bit bus and 3-state Byte (Value in Table 2-8) + (Value in Table 2-9) + I

access address space Word (Value in Table 2-8) + (Value in Table 2-9) + I/2

8-bit bus and 2-state Byte (Value in Table 2-8) + (Value in Table 2-9)

access address space Word (Value in Table 2-8) + (Value in Table 2-9) + I

8-bit bus and 3-state Byte (Value in Table 2-8) + (Value in Table 2-9) + I

access address space, Word (Value in Table 2-8) + (Value in Table 2-9) + 2I
or on-chip register field

16-bit bus, 16-bit bus and 2-state (Value in Table 2-8) + (Value in Table 2-9) + (J + K)/2
3-state access access address space,
address space or general register

16-bit bus and 3-state Byte (Value in Table 2-8) + (Value in Table 2-9) + I +
access address space (J + K)/2

Word (Value in Table 2-8) + (Value in Table 2-9) +
(I + J + K)/2

8-bit bus and 2-state Byte (Value in Table 2-8) + (Value in Table 2-9) +
access address space (J + K)/2

Word (Value in Table 2-8) + (Value in Table 2-9) +
I + (J + K)/2

8-bit bus and 3-state Byte (Value in Table 2-8) + (Value in Table 2-9) + I +
access address space, (J + K)/2

or on-chip register field Word (Value in Table 2-8) + (Value in Table 2-9) +
2I + (J + K)/2

Instruction
fetch Operand access Number of states

8-bit bus, 16-bit bus and 2-state (Value in Table 2-8) + J + K
2-state access access address space,
address space or general register

16-bit bus and 3-state Byte (Value in Table 2-8) + I + J + K

access address space Word (Value in Table 2-8) + I/2 + J + K

8-bit bus and 2-state Byte (Value in Table 2-8) + J + K
access address space Word (Value in Table 2-8) + I + J + K

8-bit bus and 3-state Byte (Value in Table 2-8) + I + J + K

access address space, Word (Value in Table 2-8) + 2I + J + K
or on-chip register field

8-bit bus, 16-bit bus and 2-state (Value in Table 2-8) + 2(J + K)
3-state access access address space,
address space or general register

16-bit bus and 3-state Byte (Value in Table 2-8) + I + 2(J + K)

access address space Word (Value in Table 2-8) + I/2 + 2(J + K)

8-bit bus and 2-state Byte (Value in Table 2-8) + 2(J + K)

access address space Word (Value in Table 2-8) + I + 2(J + K)

8-bit bus and 3-state Byte (Value in Table 2-8) + I + 2(J + K)

access address space, Word (Value in Table 2-8) + 2(I + J + K)
or on-chip register field

Notes: 1. When an instruction is fetched from the 16-bit bus access address space, the number of
states differs by 1 or 2 depending on whether the instruction is stored at an even or odd
address. This point should be noted in software timing routines and other situations in
which the precise number of states must be known.

2. If wait states or Tp states are inserted in access to the 3-state access address space, add
the necessary number of states.

3. When an instruction is fetched from the 16-bit-bus, 3-state access address space, the
term (J + K)/2 is rounded down to an integer.

2.6.5 Examples of Calculation of Number of States Required for Execution (H8/510,
H8/570)

(Example 1) Instruction fetch from 16-bit-bus, 2-state access address space

Operand Start Assembler notation Table 2-8 + Number
Read/Write addr. Address Code Mnemonic Table 2-9 of states

16-bit-bus, 2-state Even H'0100 D821 ADD @R0, R1 5 + 1 6

access address Odd H'0101 D821 ADD @R0, R1 5 + 0 5
space, or general
register

(Example 2) Instruction fetch from 16-bit-bus, 2-state access address space (stack in 8-bit-
bus, 3-state access address space)

Operand Branch Assembler notation Table 2-8

+

Number
Read/Write addr. Address Code Mnemonic Table 2-9

+

2

I

of states

8-bit-bus, Even H'FC00 11D8 JSR @R0 9 + 0 + 2 × 2 13

3-state Odd H'FC01 11D8 JSR @R0 9 + 1 + 2 × 2 14

access address
space (word)

(Example 3) Instruction fetch from 8-bit-bus, 3-state access address space

Operand Assembler notation Table 2-8

+

Number
Read/Write Address Code Mnemonic 2(J

+

K) of states

16-bit-bus, 2-state H'9002 D821 ADD @R0, R1 5 + 2 × (1 + 1) 9

access address space,
or general register

(Example 4) Instruction fetch from 16-bit-bus, 2-state access address space

Table 2-8

+

Operand Start Assembler notation Table 2-9 + Number
Read/Write addr. Address Code Mnemonic (J + K)/2 of states

16-bit-bus, Even H'0100 D821 ADD @R0, R1 5 + 1 + (1 + 1) /2 7

2-state access Odd H'0101 D821 ADD @R0, R1 5 + 0 + (1 + 1) /2 6
address space,
or general register

1 5 4

Table 2-8 Instruction Execution Cycles (5)

Instruction (Condition) Execution cycles I J + K
Bcc d:8 Condition false, branch not taken 3 2

Condition true, branch taken 7 5
Bcc d:16 Condition false, branch not taken 3 3

Condition true, branch taken 7 6
BSR d:8 9 2 4

d:16 9 2 5
JMP @aa:16 7 5

@Rn 6 5
@(d:8, Rn) 7 5
@(d:16, Rn) 8 6

JSR @aa:16 9 2 5
@Rn 9 2 5
@(d:8, Rn) 9 2 5
@(d:16, Rn) 10 2 6

LDM 6+4n* 2n 2
LINK #xx:8 6 2 2

#xx:16 7 2 3
NOP 2 1
RTD #xx:8 9 2 4

#xx:16 9 2 5
RTE Minimum mode 13 4 4

Maximum mode 15 6 4
RTS 8 2 4
SCB Condition false, branch not taken 3 3

Count = –1, branch not taken 4 3
Other than the above, branch taken 8 6

SLEEP Cycles preceding transition to power- 2 0
down mode

STM 6+3n* 2n 2
* n is the number of registers specified in the register list.

Table 2-8 Instruction Execution Cycles (6)

J + KInstruction (Condition) Execution cycles I
TRAPA Minimum mode 17 6 4

Maximum mode 22 10 4
TRAP/VS V = 0, trap not taken 3 1

V = 1, trap taken, minimum mode 18 6 4
V = 1, trap taken, maximum mode 23 10 4

UNLK 5 2 1
PJMP @aa:24 9 6

@Rn 8 5
PJSR @aa:24 15 4 6

@Rn 13 4 5
PRTS 12 4 5
PRTD #xx:8 13 4 5

#xx:16 13 4 6

Table 2-9 (a) Adjusted value (branch instructions)

Instruction Address Adjusted value

BSR, JMP, JSR, RTS, RTD, RTE even 0

TRAPA, PJMP, PJSR, PRTS, PRTD odd 1

Bcc, SCB, TRAP/VS (When branches) even 0

odd 1

Table 2-9 (b) Adjusted value (Other instructions by addressing modes)

Instructor Start
address

R
n

@
R

n

@
(d

:8
,R

n)

@
(d

:1
6,

R
n)

@
-R

n

@
R

n+

@
aa

:8

@
aa

:1
6

#x
x:

8

#x
x:

16

MOV.B #xx:8, <EA> even 1 1 1 1 1 1 1

MOVTPE, MOVFPE odd 1 1 1 1 1 1 1

MOV.W #xx:16, <EA> even 2 0 2 2 2 0 2

odd 0 2 0 0 0 2 0

Instructions other than above even 0 1 0 1 1 1 0 1 0 0

odd 0 0 1 0 0 0 1 0 0 0

2.7 Invalid Instruction Exception Handling

Handling of Undefined Instruction Codes: When an attempt is made to execute an instruction

with an undefined bit pattern (undefined operation code or addressing mode), the H8/500 initiates

invalid instruction exception handling. "Undefined" means that the corresponding entry in the

operation code map is blank.

Table 2-10 lists the invalid instruction codes. In addition to the instruction codes listed, there are

invalid combinations of addressing modes. These do not cause an invalid instruction exception, so

proper handling is not assured.

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (a)

Effective address Operation code

H'0B

H'16

H'1B

Register H'01 to H'07

Rn H'0A, H'0B

H'0E, H'0F

Memory @Rn H'01 to H'03

@(d:8,Rn) @(d:16,Rn) H'0A, H'0B

@-Rn @Rn+ H'0E, H'0F

@aa:8 @aa:16 H'10 to H'12

Immediate #xx:8 #xx:16 H'00 to H'0F

H'10 to H'1F

H'78 to H'7F

H'90 to H'9F

H'C0 to H'CF

H'D0 to H'DF

H'E0 to H'EF

H'F0 to H'FF

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (b)

Operation code Effective address

H'01 H'00 to H'0F

H'06 H'10 to H'13

H'07 H'15 to H'18

H'11 H'1A, H'1B

H'1D to H'1F

H'20 to H'7F

H'88 to H'8F

H'98 to H'9F

H'A8 to H'AF

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (c)

Effective address Prefix code Operation code

Register or Rn H'00 H'00 to H'0F

memory @Rn H'10 to H'13

@(d:8, Rn), @(d:16, Rn) H'15 to H'18

@–Rn, @Rn+ H'1A, H'1B

@aa:8, @aa:16 H'1D to H'1F

H'20 to H'7F

H'88 to H'8F

H'98 to H'9F

H'A8 to H'AF

The following additional instruction codes are invalid in minimum mode.

Table 2-10 Instruction Codes Causing Invalid Instruction Exceptions (d)

Operation code Effective address

H'03

H'13

H'11 H'14, H'19

H'1C

H'C0 to H'CF

Section 3 State Transitions

The CPU operates in five main states: the program execution state, exception handling state, bus-

released state, reset state, and power-down state. Figure 3-1 shows the transitions among these

states.

Bus-released state

Program execution state

SLEEP
 instruction
 with
 standby
 flag setException

handling
request

NMI

Software standby
mode

Hardware standby
mode

STBY=1
RES=0

Reset state

Exception-handling
state

 End of
 exception
handling

BREQ=1

BREQ=0

Sleep mode

BREQ=1

BREQ=0

SLEEP
 instruction

Interrupt
request

Notes: From any state except the hardware standby mode, a transition to the reset state occurs
whenever RES=0.
A transition to the hardware standby mode from any state occurs when STBY=0. In the
H8/520, this transition is made by selecting mode 6 at MD 2 to MD0.
The H8/520 does not support BREQ.
The H8/570 does not support recovery from software standby by NMI.

*1
*2

RES=1

*3

*3

*4

*1

*2

*3
*4

Figure 3-1 State Transitions

3.1 Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.2 Exception Handling State

3.2.1 Types of Exception Handling and Their Priorities

As indicated in Table 3-1 (a) and (b), exception handling can be initiated by a reset, address error,

trace, interrupt, or instruction. An instruction initiates exception handling if the instruction is an

invalid instruction, a trap instruction, or a DIVXU instruction with zero divisor. Exception handling

begins with a hardware exception-handling sequence which prepares for the execution of a user-

coded software exception-handling routine.

There is a priority order among the different types of exceptions, as shown in Table 3-1 (a). If two

or more exceptions occur simultaneously, they are handled in their order of priority. An instruction

exception cannot occur simultaneously with other types of exceptions.

Table 3-1 (a) Exceptions and Their Priority

Priority
Exception
type Detection timing

Start of exception-
handling sequence

High Reset External,
internal

Immediately

Low

Source

RES Low-to-High transition

Address error Internal End of instruction
execution

Instruction fetch or data
read/write bus cycle

Trace Internal End of instruction
execution

End of instruction execution,
if T = "1" in status register

Interrupt External,
internal

End of instruction
execution

End of instruction execution
or end of exception-handling
sequence

Table 3-1 (b) Instruction Exceptions

Exception type Start of exception-handling sequence

Invalid instruction Attempted execution of instruction with undefined code

Trap instruction Started by execution of trap instruction

Zero divide Attempted execution of DIVXU instruction with zero divisor

3.2.2 Exception Handling Sources and Vector Table

Figure 3-2 classifies the sources of exception handling. Each source has a different vector address,

as listed in Table 3-2. The vector addresses differ between the minimum and maximum modes.

• Reset
External

NMI

interrupt
IRQ

• Interrupt
Interrupt

Internal requested by
Exception interrupt on-chip

module
• Address error
• Trace

Invalid instruction
Zero divide• Instruction
TRAPA instruction
TRAP/VS instruction

Figure 3-2 Sources of Exception Handling

Table 3-2 Exception Vector Table

Type of exception Minimum mode Maximum mode

Reset (initialize PC) H'0000 to H'0001 H'0000 to H'0003

 — (reserved for system) H'0002 to H'0003 H'0004 to H'0007

Invalid instruction H'0004 to H'0005 H'0008 to H'000B

DIVXU instruction (zero divide) H'0006 to H'0007 H'000C to H'000F

TRAP/VS instruction H'0008 to H'0009 H'0010 to H'0013

 — H'000A to H'000B H'0014 to H'0017

— (reserved for system) H'000C to H'000D H'0018 to H'001B

— H'000E to H'000F H'001C to H'001F

Address error H'0010 to H'0011 H'0020 to H'0023

Trace H'0012 to H'0013 H'0024 to H'0027

— (reserved for system) H'0014 to H'0015 H'0028 to H'002B

Nonmaskable external interrupt (NMI) H'0016 to H'0017 H'002C to H'002F

H'0018 to H'0019 H'0030 to H'0033

— (reserved for system) to to

H'001E to H'001F* H'003C to H'003F*

TRAPA instruction (16 factors) H'0020 to H'0021 H'0040 to H'0043

to to

H'003E to H'003F H'007C to H'007F

External and H'0040 to H'0041 H'0080 to H'0083

Internal interrupt to to

H'009E to H'009F H'013C to H'013F

Note: 1. In maximum mode the exception vector table is located in page 0.

2. Each products have different vector table. See the H8 Hardware Manual for details.

* Assigned to ISP address error in the H8/570.

3.2.3 Exception Handling Operation

When exception handling is started by a source other than a reset, in the minimum mode the program

counter (PC) and status register (SR) are pushed onto the stack; in the maximum mode the code page

register (CP), PC, and SR are pushed onto the stack. Then the trace (T) bit in the status register is

cleared to "0," the address of the pertinent exception handling routine is read from the exception

vector table, and execution branches to that address.

A reset is handled as follows. When the RES pin goes Low, the CPU waits for the RES pin to

go High, then latches the value at the mode input pins in the mode select bits (MDS0 to MDS2) of

the mode control register (MDCR). Next the CPU reads the address of the reset handling routine

from the exception vector table and executes the program at that address.

3.3 Bus-Released State

When it receives a bus request (BREQ) signal* from an external device, the CPU waits until the

end of a machine cycle, then releases the bus.

To notify the external device that it has released the bus, the CPU responds to the BREQ signal

by asserting a Low BACK signal. When it receives the BACK signal, the device that requested

the bus becomes the bus master and can use the address bus, data bus, and control bus.

* The H8/520 does not support the BREQ signal.

3.4 Reset State

A reset has the highest exception handling priority. A reset provides a way to initialize the system at

power-up or when recovering from a fatal error.

When the RES pin goes Low, whatever process is being executed is halted and the micro-

computer unit enters the reset state.

A reset clears the T bit (bit 15) of the status register (SR) to "0" to disable the trace mode, and sets

the interrupt mask level in I2 to I0 (SR bits 10 to 8) to 7, the highest level. In the reset state all

interrupts are disabled, including the nonmaskable interrupt (NMI).

When the RES pin returns from Low to High, the microcomputer unit comes out of the reset

state and begins executing the reset exception routine.

3.5 Power-Down State

In the power-down state some or all of the clock signals are stopped to conserve power. There are

three power-down modes. Table 3-1 describes the state of the CPU and the on-chip supporting

functions in each mode.

Table 3-3 Power-Down Modes

Mode Clock CPU Supporting CPU registers Recovery methods
functions and on-chip RAM

Sleep Runs Halts Run Held Interrupt—Interrupt is accepted and

interrupt handling begins.
RES—Transition to reset state
STBY*2—Transition to hardware

standby mode

Software Halts Halts Halt Held NMI—NMI starts clock; NMI

standby and exception handling starts

initialized automatically after time set in

watchdog timer

RES—Clock starts, followed by

transition to reset state.

STBY*2—Hardware standby mode.

Hardware Halts Halts Halt Held*1 High input at STBY pin*3 and

standby and Low input at RES pin followed,

initialized after clock settling time, by High

input at RES pin initiates reset

exception handling routine.

Notes: 1. Only on-chip RAM contents are held.

2. In the H8/520, select mode 6 at MD2 to MD0.

3. In the H8/520, select mode 1, 2, 3, 4, or 7 at MD2 to MD0.

3.5.1 Sleep Mode

Execution of the SLEEP instruction normally causes a transition to the sleep mode. CPU operation

halts immediately after execution of the SLEEP instruction, but the CPU register contents remain

unchanged. The on-chip supporting functions, in particular the clock, continue to operate.

The CPU "wakes up" from the sleep mode when it receives an exception handling request such as a

reset or an interrupt of an acceptable level. The CPU then returns via the exception-handling state to

the program execution state.

3.5.2 Software Standby Mode

When the software standby (SSBY) bit in the standby control register (SBYCR)* is set to "1,"

execution of a SLEEP instruction causes a transition to the software standby mode.

In this mode the CPU, the clock, and the other on-chip supporting functions all stop operating. The

on-chip supporting modules are reset, but as long as a minimum voltage level is maintained the

contents of CPU registers and on-chip RAM remains unchanged. The status of I/O ports also

remains unchanged.

A reset or nonmaskable interrupt is required to recover from the software standby mode. The CPU

returns via the exception-handling state to the program execution state. (The H8/570 recovers from

software standby mode by reset only. Program execution restarts after the reset exception-handling

sequence.)

If a Low STBY signal is received in the software standby mode, the mode changes to the hardware

standby mode.

* See the H8 Hardware Manual.

3.5.3 Hardware Standby Mode

Input of a Low STBY signal causes a transition to the hardware standby mode.

In this mode, as in the software standby mode, all operations halt.

All clock signals stop and the on-chip supporting modules are reset, but as long as a minimum

voltage level is maintained the contents of on-chip RAM remains unchanged. I/O ports are set to the

high-impedance state.

A reset is required to recover from the software standby mode. The CPU returns via the exception-

handling state to the program execution state.

Section 4 Basic Operation Timing

The CPU operates on the Ø clock, which is created by dividing the clock oscillator output by 2.

One cycle of the Ø clock is called a "state". The following sections describe the timing of access to

on-chip memory, on-chip supporting modules, and off-chip devices.

4.1 On-Chip Memory Access Timing (H8/520/532/534/536/570)

For high-speed execution, access to on-chip memory (RAM and ROM) is performed in two states.

The data width is 16 bits.

Figure 4-1 is a timing chart for access to on-chip memory.

No wait state (TW) is inserted.

Ø

Internal address bus

Internal data bus
(for read access)

Internal Write signal

Internal Read signal

Internal data bus
(for write access)

Bus cycle

T state1 T state2

Address

Read data

Write data

Figure 4-1 On-Chip Memory Access Timing

4.2 On-Chip Supporting Module Access Timing

On-chip supporting modules are accessed in three states as shown in Figure 4-2. The data width is

8 bits.

No wait state (TW) is inserted.

Ø

Internal address bus

Internal data bus
(for read access)

Internal Write signal

Internal Read signal

Internal data bus
(for write access)

Bus cycle

T state1 T state2

Address

Read data

Write data

T state3

Figure 4-2 On-Chip Supporting Module Access Timing

4.3 External Device Access Timing

Off-chip devices are accessed in two or three states as shown in Figures 4-3 and 4-4.

The access timing depends on the particular off-chip device. A wait-state controller can insert

additional wait states (TW) as necessary. (Wait states cannot be inserted in access to the two-state

access address space, however, because of the high processing speed.)

For details about the insertion of wait states, see the H8 Hardware Manual.

Ø

Read cycle

T state1 T state2

Address

Read data

T state3

A to A

AS

R/W

DS

RD

WR

D to D

19 0

7 0

*

*

* The H8/520 does not output R/W and DS bus control signals.

(H8/520/532/534/536)

High

a. Read

Figure 4-3 (a) External Access Cycle (Read Access)

Ø

Write cycle

T state1 T state2

Address

T state3

A to A

AS

R/W

DS

RD

WR

D to D

19 0

7 0

(H8/520/532/534/536)

High

Write data

b. Write

Figure 4-3 (b) External Access Cycle (Write Access)

Bus cycle

T state1 T state2

Ø

A to A23 0

RD, AS

D to D15 0

HWR, LWR

D to D15 0

Address

Read data

Write data

a. Two-State-Access Address Space Access Cycle

Figure 4-4 External Access Cycle (H8/510/570)

Bus cycle

T state1 T state2

Ø

A to A23 0

AS

HWR, LWR

D to D
(write access)

15 0

Address

Read data

Write data

RD

D to D
(read access)

15 0

* Write access

*

*

High

T state3

b. Three-State-Access Address Space Access Cycle

Figure 4-4 External Access Cycle (H8/510/570) (cont)

	H8/500 Series

