
~1993AT&T

ATI92010 H obbit™ Microprocessor

Programmer's Reference Manual

January 1993

Copyright

©Copyright 1992, 1993 by AT&T Microelectronics. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of AT&T
Microelectronics.

Disclaimers

AT &T Microelectronics makes no representations or warranties with respect to the design and
documentation herein described and especially disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, AT &T Microelectronics reserves the
right to revise this design and associated documentation and to make changes from time to time in
the content without obligation of AT &T Microelectronics to notify any person of such revisions or
changes.

Trademarks

Hobbit™ is a trademark of AT&T.

Many of the designations used by manufacturers and sellers to distinguish their product are
claimed as trademarks. Where those designations appear in this document, and AT &T
Microelectronics was aware of a trademark claim, the designations have been printed in initial
caps or all caps. Some trademark claims are distinguished by their mark (TM).

Printed in the United States of America

Chapter 1

Contents

Fonctional Description

1.1 List of Features 1-1

1.2 Data 'I}'pes 1-3

1.3 Addressing and Alignment Restrictions 1-3

1.3.1 Big-endian Byte Ordering 1-4
1.3.2 Uttle-endian Byte Ordering 1-4
1.3.3 Alignment 1-4

1.4 Stack Cache 1-5

1.4.1 Organi7.lltion 1-5
1.4.2 Maintenance 1-6
1.4.3 Integer Accumulator 1-7
1.4.4 Precautions 1-8

1.5 Control Registers 1-8

1.5.1 Configuration Register 1-9
1.5.2 Fault Register 1-10
1.5.3 JTAG ID Register 1-11
1.5.4 Interrupt Stack Pointer 1-12
1.5.5 Maximum Stack Pointer 1-12
1.5.6 Program Counter 1-13
1.5.7 Program Status Word 1-14
1.5.8 Shadow Register 1-16
1.5.9 Stack Pointer 1-17
1.5.10 Segment Table Base 1-18
1.5.11 Time One 1-19
1.5.12 nmerTwo 1-19
1.5.13 Victory Base 1-20

1.6 Instruction Format 1-21

1.6.1 One-Parcel Format 1-21
1.6.2 Three-Parcel Format 1-23
1.6.3 Five-Parcel Format 1-24

01992, 1993 AT&T January 1993

A1T92010 Programmer's Reference Manual

Chapter 2

II

1.7 Operand Addressing Modes 1-27

1.8 Integer Arithmetic Operation 1-28

1.8.1 Carry Bit 1-29
1.8.2 Overflow Bit 1-29
1.8.3 Division and Remainders 1-30
1.8.4 Tagged Integer Arithmetic 1-30

1.9 Fast Calling Sequence 1-30

1.10 Prefetching Strategy 1-32

1.10.1 Branch Prediction and Branch Folding 1-33
1.10.2 Conditional Branches 1-33
1.10.3 Tracing 1-33 ~'

1.11 Event Processing 1-34

1.11.1 Reset 1-35
1.11.2 Interrupt 1-36
1.11.3 Exceptions 1-38
1.11.4 Unimplemented Insttuction 1-39
1.11.5 Event Processing Priority 1-40

Memory Management

2.1 Address Translation 2-1

2.2 Address Mapping 2-3

2.2.1 Paged Segment Addresses 2-4
2.2.2 Nonpaged Segment Addresses 2-4

2.3 Segment Tables 2-4

2.3.1 Paged Segment Table Entries 2-5
2.3.2 Nonpaged Segment Table Entries 2-5
2.3.3 Mixed Paged and Nonpaged Segment Tables 2-6

2.4 Page Tables 2-6

2.5 Memory Management Operations 2-8

2.6 MMU Performance 2-9

January 1993 C 1992, 1993 AT&T

ATI'92010 Programmer's Reference Manual

Chapter3 Instruction Set

3.1 Format 3-1

3.2 Pipeline Considerations 3-3

3.3 Descriptions 3-4

Chapter 4 Performance

4.1 Execution Time 4-1

4.2 Delays 4-5

4.3 Branch Folding 4-7

AppendixA Bus Arbitration and Electrical Characteristics

A.1 Bus Protocol A-1

A.2 Surrendering the Bus A-2

A.3 Bus Transaction Types A-4

A.3.1 Read Transactions A-4
A.3.2 Write Transactions A-4
A.3.3 lnterlocked Bus Transfer A-6
A.3.4 Block Data Transfer A-6

A.4 Exception Handling A-6
A.4.1 Bus Retry A-6
A.4.2 BusError A-6
A.4.3 Rest A-8

01992, 1993 AT&T January 1993 III

A1T92010 Programmer's Reference Manual

Appendix B Electrical Characteristics

B.1 Absolute Maximum Ratings B-1

B.2 Handling Precautions B-1

Appendix C Testability

C.1 Test Access Port C-1

C.2 TAP Controller C-2

C.2.1 lnsbUction Register C-5
C.2.2 By-Pass Register C-5
C.2.3 Boundary-Scan Register C-6
C.2.4 Identification Register C-7

Glossary

Index

lv January 1993 01992, 1993 AT&T

01992, 1993 AT&T

Preface

The ATI'92010 Hobbii"' Microprocessor is the culmination of years of research
on computer architecture and software design at AT&T Bell Laboratories. The
ATT92010 Hobbit Microprocessor is a second generation implementation of the
CRISP architecture. This architecture combines salient features of the RISC and
CISC design philosophy to simultaneously optimize high performance and high
code density.

This Programmer's Reference Manual is intended for the experienced design
engineer. The material presented in this manual assumes familiarity with micro­
processors and is organized into the following section.

• Chapter 1 Functional Description-A detailed discussion of the ATT92010
Hobbit Microprocessor and its features.

• Chapter 2 Memory Management-An overview of the ATT92010 Hobbit
Microprocessor memory management unit.

• Chapter 3 Instruction Set-A detailed description of each instruction
arranged alphabetically. For quick reference, the instruction name appears at
the top of each page in this chapter.

Chapter 4 Performance-This chapter describes discusses performance data based
on detailed parameters.

• Appendix A, B and C-These appendixes present hardware information as a
point of reference.

January 1993 V

Chapter 1

01992, 1993 AT&T

Functional Description

The ATT92010 Hobbit™ Microprocessor is a high-performance 32-bit central
processing unit. Derived from AT&T Bell Laboratories' CRISP (C-Language
Reduced lnstruction Set Processor) architecture, the microprocessor combines
the best of RISC (Reduced Instruction Set Computing) devices, such as high
performance, with the best of CISC (Complex Instruction Set Computing)
devices, such as high code density.

1.1 List of Features

Major implementation features of the ATT92010 include:

• High Performance

-Single-cycle instruction execution (for most instructions)

--Operand bypass mechanism

-Branch prediction and Branch folding

• On-Chip lntegrated Resources

-3 Kbyte encoded instruction cache (organized as 3-way set associative)

-256 byte stack cache that holds top of user stack

-32-entry, direct-mapped, decoded instruction cache

-Memory Management Unit (MMU) with dual 32-entry translation look-
aside buffers (TLB) for text and data address translation

• Big-endian I Little-endian Data Byte Ordering

• Low Power Consumption

-250 mW at 3.3V, 20 MHz

-900 mW at 5.0V, 30 MHz

- <50µA in standby mode

• High Code Density

-Rationalized Instruction set

-Variable length instruction format

-Memory-to-Memory architecture

January 1993 1-1

AT1'92010 Programmer's Rejerence Manual

• Low 1/0 Traffic

-Integrated caches and Operand bypass

• Simple Programming Model

-No programmer-visible registers

The ATl'92010 Hobbit Microprocessor block diagram is shown in Figure 1-1.

Flgure 1-1 ATT92010 Block Diagram

--- DATA IN (32)

I ~ START
PREFETCH BUFFER m;

CACHE
....

NCACHE .~
1024 X 3 bytes IOC[1:0]

__M_
64

LOCK
HA[31:2] __

PREFETCH/DECODE
UNIT VIRTUAL ADDRESS HD[31:0]

......
Bi;(3:Qi --3-STAGE PIPELINE -- DTRI

19 i5TACK
1/0 -

BERR
MEMORY -

DECODED INSTRUCTION MANAGEMENT - HOLD
CACHE UNIT PHYSICAL RETRY -ADDRESS BREQ

32X192bits --2 x 32 PAGE TLB RC

192 2x1 SEG NPSR - BGACK
]_ '

...... , IL[2:0)

STACK 3?.L, EXECUTION Si'öP
CACHE

-, UNIT
l.icu:::sFT

VIRTUAL ADDRESS 64x32x2 -
32_L, 3-STAGE PIPELINE ..._ CLK23

bits ,- -
CLK34

DATA OUT (32) T-
ICK

TDI - TMS JTAG - TRSr - TDO --

1-2 January 1993 01992, 1993 AT&T

A1T92010 Programmer's Reference Manual

1.2 Data Types
~~~~~~~~~-

Six integer data types are supported: 

• Signed and unsigned bytes (8-bit) 

• Signed and unsigned half-words (16-bit) 

• Signed and unsigned words (32-bit) 

Non-word operands are aligned and then expanded to 32-bit through sign exten­
sion (if signed) or clearing high-order bits (if unsigned). 

The 32-bit ALU performs the requested fünction after alignment and expansion. 
Carry and overftow are determined relative to the 32-bit result. 

For destinations less than 32-bit, the least significant bits of the 32-bit ALU 
result are selected. Changing a value by truncation constitutes neither overftow 
norcarry. 

True three-operand (triadic) instructions are not provided. However, instruction 
encoding that provide two source operands and store the füll 32-bit result in the 
accumulator are provided. This instruction is called a two-and-a-half-operand 
instruction. 

For example, the mnemonic for an addition instruction is ADD3, while a two­
operand (dyadic) addition is ADD. Forthis instruction, the two source operands 
are added and the füll 32-bit result is stored in the accumulator. 

1.3 Addressing and Alignment Restrictions 
~~~~~~~~~-

01992, 1993 AT&T

Numbering of bits within bytes is the same as with the Intel"' 80x86, Motorola"'
680x0 and the DEC"' V .AX:". The numbering of bytes, within data words, is
selectable for the User and Kernel modes. The User mode is set via the program
status word (PSW) UL-bit (User Little endian-bit). The Kernel mode is set via
the configuration register (CONFIG) KL-bit (Kernel Little endian-bit).

January 1993 1-3

A1T92010 Programmer's Rejerence Manual

Flgure 1·2

Figure 1-3

1-4

1.3.1 Blg-endian Byte Orderlng

When the PSW user little-endian bit and CONFIG kemel little-endian bit equals
zero (0), the numbering of bytes within data words corresponds to that in the
IBM 370 user mode and Motorola 680XO kemel mode (see Figure 1-2).

Blg-endlan Byte Orderlng

1 31 BYTEO 24 1 23 BYTE1 11 l 1s BYTE2 s I 1 BYTE3 o 1

Note Text is always in big-endian order.

1.3.2 Little-endian Byte Ordering

When the PSW user little-endian bit and CONFIG kemel little-endian bit equals
one (1), the numbering of bytes within data words corresponds to that in the
VAX user mode and Intel 80X86 kemel mode (see Figure 1-3).

Little-endlan Byte Ordering

1 31 BYTE3 24 1 23 BYTE2 11 j 1s BYTE1 s I 1 BYTEO o 1

1.3.3 Alignment

The ATl'92010 Hobbit Microprocessor fetches words only; bytes and half­
words are accessed by extracting them from the surrounding word. Likewise, all
stores are done to word-addresses, with the appropriate write strobes enabled.
However during reads, the byte-strobes indicate which bytes, within the word
being fetched, will ultimately be extracted by the instruction.

All operand addresses should be naturally aligned for the operand type. lf an
operand fetch (or operand store) is to an address that is not properly aligned for
the data type, an alignment exception is signaled. Instructions can only be
fetched on half-word boundaries and should be suitably aligned even though no
exception is signaled. Alignment occurs as the least significant bit of the address
is ignored for text fetches.

January 1993 01992, 1993 ATltT

01992, 1993 AT&T

ATT92010 Programmer's Reference Manual

1.4 Stack Cache

Registers are typically used to hold frequently referenced variables inside a
CPU to reduce memory traffic and speed up operand accesses. The traditional
stack holds local variables, incoming and outgoing arguments, compiler tempo­
raries and registers being saved during procedure calls. Measurements have
shown that these accesses to the stack are typically only a few tens of words
concentrated around the top of the stack. The compiler attempts to move this
data into registers whenever possible. The result is a substantial amount of
memory traffic between a small number of general purpose registers and a few
locations on the stack.

The ATI'90210 Bobbit Microprocessor allocates data registers in a way that is
radically different from traditional machines. Rather than have the compiler
allocate registers and generate code to move data back and forth between regis­
ters and the stack, the microprocessor automatically maps the stack onto
machine registers, called the Stack Cache. By tracking the top of the stack in
high speed machine registers, useless traffic to and from the stack is avoided
and a high degree of register allocation is achieved.

Registers are allocated by the hardware, rather than by a software compiler and
general purpose registers are eliminated.

1.4.1 Organization

The stack cache consists of a bank of 64 registers (4 bytes wide) organized as a
circular buffer maintained by two 28-bit registers holding quad-word addresses.
These registers are:

• The Maximum Stack Pointer (MSP) - contains the address above the high­
est address of the data that is currently kept in the stack cache registers

• The Stack Pointer (SP) - delimits the lowest address of data in the stack
cache

Only a simple range-check is needed to determine if an address resides within
the stack cache. If SP ~DR <MSP, it falls within the stack cache. Even
though the stack cache limits are maintained on quad-word boundaries, the
stack cache is byte addressable and appears as normal memory. All virtual
addresses, generated to access data, can freely reference the stack cache.

January 1993 1-5

AT192010 Programmer's Reference Manual

1-6

Since, the stack cache can contain the top 64 words of the stack, most automatic
variables and incoming and outgoing arguments will be in the stack cache. The
stack cache is, therefore, a major factor in efficient instruction execution.

1.4.2 Maintenance

Six instructions maintain the stack cache:

• CALL - moves tbe return address onto the top of tbe stack and branches to
the target address

• CATCH - guarantees the stack cache is filled at least as deep as the number
of the bytes specified in its operand and is used after a CALL instruction to
ensure an optimal portion of the stack is on-chip

• CRET- used by tbe kemel to load a new SP and MSP and execute the
CATCH instruction. CRET also loads a new program status word (PSW) and
program counter address and is used for context switches

• ENTER - allocates space on the new stack frame by subtracting its oper­
and, tbe size of the new stack frame, from the SP

• POPN - deallocates the current stack frame by adding its argument to the
SP

• RETURN - deallocates the current stack frame by adding its argument to
the SP, then branches to the retum value previously placed on the stack

ENTER and CATCH are also used when tbe stack cache circular buffer is not
large enough to accommodate the entire stack frame. When a new procedure is
entered, the ENTER instruction attempts to allocate a new set of registers equal
to the size of the new stack frame. lf free register space exists in the circular
buffer, then only the SP needs to be modified. lf not, then the entries nearest the
MSP are ftushed back to main memory.

• lf the new stack frame size is less than 256 bytes, only the stack frame size,
minus the number of free entries, must be ftushed.

• If the new stack frame size is greater than or equal to 256 bytes, all valid
stack cache entries are ftushed and only part of the new stack frame nearest
the SP is kept in the stack cache.

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Rejerence Manual

When control has returned to the calling procedure, ftushed entries may need to
be restored to the Stack Cache, via the CATCH instruction. The CATCH
instruction argument specifies the number of stack cache entries that must be
valid before the ftow of execution can resume. The argument is used as a stack
offset and a virtual address is generated. H this calculated address resides within
the stack cache, execution continues.

However, if the calculated address resides outside the address range of valid
stack cache entries, quad-words pointed to by the MSP are restored to the stack
cache from off-chip memory. Theo the MSP is incremented until CATCH is sat­
isfied or the stack cache is füll.

1.4.3 Integer Accumulator

The integer accumulator is not an actual hardware register. lt is the word in
memory above the word addressed by the current stack pointer (CSP). The CSP
is either the stack pointer (SP) or the interrupt stack pointer (ISP) as determined
by the program status word (PSW).

The integer accumulator normally resides on-chip in the stack cache, but it may
be off-chip if the SP = MSP or CSP = ISP.

Figure 1-4 Integer Accumulator

31 0

OxFFFFFFFC

ACCUMULATOR +-CSP+4

PCSAVEAREA +-CSP

0

01992, 1993 AT&T January 1993 1-7

AT192010 Programmer's Reference Manual

1.4.4 Precautions

If an address is generated in any processing stage (an indirect address calcula­
tions, for example) the stack cache is referenced if that address is greater than or
equal to the SP and less than the MSP. This conceptual model is violated when
executing with CSP =ISP. There are no problems with memory accesses as long
as the stack cache, based at the SP, and the intenupt stack, based at the ISP, do
not overlap. For similar reasons, the following addresses must not lie between
the SP and MSP:

• The vector table, defined by the vector base (VB)

• The address translation tables used by the memory management unit (MMU)

• Any text address

1.5 Control Registers
~~~~~~~~~-

Table 1·1 

1-8 

The A'l192010 Hobbit Microprocessor control registers are shown in Table 1-1. 
Each register is describe in the sections that follow. 

Control Registers 

Name Descrlptlon 

CONFIG Configuration Register 

FAULT Fault Register 

10 ldentification Register 

ISP Interrupt Stack Pointer 

MSP Maximum Stack Pointer 

PC Program Counter 

PSW Program Status Word 

SHAD Shadow Register 

SP Stack Pointer 

STB Segment Table Base 

TIMER1 Timer1 Register 

TIMER2 Timer2 Register 

VB Vector Base 

January 1993 01992, 1993 AT&T 



Table 1·2 

ATI92010 Programmer's Reference Manual 

1.5.1 Configuration Register 

The configuration register (CONFIG) is set to OxO upon reset. 

BIT(S)....._ _ _.3-.1,_:25-...._......,...,_;;;....i~;p&.i,;.a..;;;a,.;,,.;....,.. ______ 1.;,,;;5;.;..;:0-.. ____ _.. 

RESERVED 
KERNEL LITILE ENDIAN 

PC EXTENSION 
STACK CACHE ENABLE 

INSTRUCTION CACHE ENABLE 
PREFETCH BUFFER ENABLE 

PREFETCH MODE 
TIMER1 CONFIGURATION 

TIMER2 CONFIGURATION 

Configuration Register (Sheet 1 of 2) 

Bit(s) Descrlption 

31:25 Tlmer2 Conflguratlon. A 7-bit field that configures Timer2. 

• Bit 31. lf 0, Timer2 does not generate an interrupt. lf 1, Timer2 generates an interrupt 
using a Timer2 vector when an overflow occurs (goes from OxFFFFFFFF to OxO). 
This is a level one interrupt. An extemal level one interrupt and a Timer1 interrupt 
have priority over Timer2. 

• Bit 30. lf 0, Timer2 is on all the time (with reference to bits 29:25). lf 1, the timer only 
increments in kemel mode (PSW execution level bit is 0). 

• Bit 29:25 selects the intemal event to increment Timer2. 

Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Event 
0 0 0 0 0 Count clock cycles. 

0 0 0 0 1 Count completed instructions (folded 
branches are not counted). 

1 1 1 1 1 Do not increment the timer; a low 
power feature. 

24:22 Tlmer1 Conflguratlon. A 3-bit field that configures Timer1. 

• Bit 24. lf 0, Timer1 does not generate an interrupt. lf 1, Timer1 generates an interrupt 
using a Timer1 vector when an overflow occurs (goes from OxFFFFFFFF to OxO). 
This is a level one interrupt. An extemal level one interrupt has priority over Timer1 . 

• Bit 23. lf 0, Timer1 is on all the time (with reference to bit 22). lf 1, the timer only incre­
ments in kemel mode (PSW execution level bit is 0). 

• Bit 22. lf 0, Timer1 counts clock cycles. lf 1, Timer1 counts completed instructions 
(folded branches are not counted). 

21 Prefetch Mode. This bit controls prefetching of instructions. lf 0, prefetching off-chip is 
not performed; predecoding from the prefetch buffer into the instruction cache is per­
formed. lf 1, aggressive prefetching is performed. 

01992, 1993 AT&T January 1993 1-9 



A1T92010 Programmer's Reference Manual 

Table 1·2 

1-10 

Configuration Register ( Sheet 2 of 2) 

Blt(s) 

20 

19 

18 

17 

16 

15:0 

Description 

Prefetch Butter Enable. A 0 disables the prefetch buffer from hitting; a 1 enables it. The 
prefetch buffer is neither flushed nor altered when this bit ls modified. 

lnstructlon Cache Enable. A O disables the instruction cache from accessing; a 1 
enables it. The instruction cache ls nelther flushed nor altered when this bit is modified. 

Stack Cache Enable. A 0 disables the stack cache from accessing; a 1 enables it. The 
stack cache ls neither flushed nor altered when thls bit is modified. 

PC Extension. A 0 selects 0 extension of 16-blt absolute addresses; a 1 selects the 
extension of 16-blt absolute addresses where blts 31 :29 are copied from bits 31 :29 of the 
PC and bits 28:16 are set to 0. 

Kernel Llttle Endlan. A O selects data as big endian in kemel mode; a 1 selects data as 
little endian in kemel mode. 

Reserveei. They retum 0 when read and should be written with 0 on CONFIG wrltes. 

Special precautions must be taken when modifying the configuration register. 
The number of no-operation instructions (NOPs) that must follow the register 
write varies according to the bit(s) being modified and the number of wait-states 
being used by 1/0 transactions. 

Modify CONFIG by following the CONFIG write with either a context retum 
from kemel (CRET) instruction or kemel retum (KRET) instruction. 

1.5.2 Fault Register 

This s reports the 32-bit operand aligned virtual address for the processing of 
exception IDs Ox8 and Ox9. 

BIT(S).._~~~~~~~~~~~.......-3~1:_0~~~~~~~~~~~~-' 

FAULT ADDRESS 

January 1993 01992, 1993 AT&T 



Table 1-3 

Table 1-4 

Fault Register 

Blt(a) 

31:0 

A1T920JO Progrommer's Reference Manual 

Descrlptlon 

Fault Addresa. The address causing the current exception for use by 
the exception handler. 

1.5.3 JTAG ID Register 

This register is tbe JTAG device identification (ID) register. lt is readable by 
serial shifting tbrougb tbe test access port (TAP) and tbrough nonnal register 
access. This register is read only. H this register is written to, no operation is 
performed. 

BIT(S) ._I ..-a1,..:2_s__.. _____ .... 2_1,,;..;:1..,2 _____ ...._ ____ 1;.o.1-:o ___ ___,I 

1 JART CODE l..r.uFACTUAER CODE 

VERSION CODE 

ldentlfication (ID) Register 

Bit(s) Descrlption 

31:28 Version Code. This field is OxO for mask one and Ox1 for mask two. 

27:12 Part Code. This field is OxO for the ATT9201 O Hobbit Microprocessor. 

11:0 Manufacturer Code. This field is Ox3B for AT&T Microelectronics. 

01992, 1993 AT&T January 1993 1·11 



AT192010 Programmer's Reference Manual 

Table 1·5 

1-12 

1.5.4 Interrupt Stack Pointer (ISP) 

The intenupt stack pointer (ISP) is used to generate addresses whenever the 
program status word (PSW) current stack pointer bit is zero (0). For example, 
the address in stack offset modes, to locate the accumulator, and as the pointer 
manipulated by the instructions CALL, RETURN, POPN, and ENTER. The 
ISP is not associated with the stack cache. 

The instructions CRET, KCALL, and KRET, and operating system sequences, 
intenupts, and exceptions use the ISP to maintain a stack of event blocks. The 
ISP must be valid at all times. A fault, on any ISP based address, during event 
processing will reset the ATI'92010 Hobbit Microprocessor. Address translation 
is performed if the MMU is enabled by setting the PSW virtual/physical 
addressing mode bit to one (1). 

BIT(S)l ___________ 3 ... 1:_4 _____________ 3..,:0_ 

1 1 
RESERVED 

QUAD-ALIGNED INTERRUPT STACK POINTER 

·Interrupt Stack Pointer (ISP) 

Bit(s) Description 

31:4 Quad-Allgned Interrupt Stack Pointer. This is the address of the 
interrupt stack. 

3:0 Reserveei. These bits retum 0 when read. 

1.5.5 Maximum Stack Pointer (MSP) 

The maximum stack pointer (MSP), in conjunction with the SP, is associated 
with the on-chip stack cache. If the stack cache is enabled and the current stack 
pointer is the SP, then any address greater than, or equal to, the SP and less than 
the MSP hits the stack cache. 

Stack cache hits when SP < address < MSP 

January 1993 01992, 1993 AT&T 



Table 1-6 

A'IT92010 Programmer's Reference Manual 

With a memory access that hits the stack cache, data is fetched or stored in the 
cache, not in extemal memory. The MSP must be greater than or equal to the SP 
and less than or equal to SP + 256 (stack cache size), or the result of stack cache 
accesses are dependent upon context and therefore are unpredictable. 

When the SPis the direct destination of an instruction, through a CPU-prefixed 
instruction with the SP as the destination, the MSP is updated with the same 
value. This defines an empty stack cache (SP = MSP). The MSP is manipulated 
implicitly by CATCH, CRET, ENTER, POPN, and RETIJRN. Consequently, 
the MSP should only be modified by stack manipulation instructions. Address 
translation is performed if the MMU is enabled by setting the PSW virtual/ 
physical addressing mode bit to one (virtual addressing is enabled). 

BIT(S)l..__ _________ _..3..,.1: .... 4 __________ _...._...3.,..:0.._. 

1 ~ESERVED 
QUAD-ALIGNED MAXIMUM STACK POINTER 

Maximum Stack Pointer 

Blt(s) Descrlptlon 

31:4 Quad-Allgned Maximum Stack Pointer. This is the address above 
top of user stack. 

3:0 Reserveei. These bits retum 0 When read. 

1.5.6 Program Counter (PC) 

The program counter (PC) addresses the instruction currently being executed. 
Instructions are aligned on parcel (half-word) boundaries. Since parcels are 
composed of 2 bytes, the PC is always a multiple of two and the low-order bit is 
always 0. The PC cannot be directly manipulated by a general instruction. lt can 
only be read or modified by control-ftow instructions CALL, CRET, JMP, 
KCALL, KRET, and RETURN and read by the move instruction LDRAA 
(Load Relative Address into Accumulator). 

BIT(S)l..__ ____________ 31,..:1 ___________ __.1 ...... o 1 

1 ~ESERVED 
PROGRAM COUNTER 

01992, 1993 AT&T January 1993 1-13 



AT/92010 Programmer's Reference Manual 

Table 1-7 

Table 1-8 

1-14 

Program Counter 

Bit(s) Description 

31:1 Program Counter. This is the address of the current instruction. 

0 Reserveei. 

1.5. 7 Program Status Word (PSW) 

The program status word (PSW) is set to OxO upon reset. 

BIT(S) L,__ ____ -..31 .... :1 ..... 1 ____ _.I...,.1 [...,1][,..._1...,4:_12 .... J...,11,...ill"""'Q[...,9..._I a,...I""T1 J.._6 .... if .... sI.._4,....1_-..a:o___,] 

l ~ESERVED 
FLAG 

RESERVED 

CARRY 
OVERFLOW 

TRACE INSTRUCTION 
TRACE BASIC BLOCK 

CURRENT STACK POINTER 
EXECUTION LEVEL 

ENTERGUARD 
INTERRUPT PRIORITY LEVEL 

USER LITTLE ENDIAN 
VIRTUALJPHYSICAL ADDRESSING MODE 

Program Status Word ( Sheet 1 of 3) 

Bit(s) Description 

31:17 Reserveei. 

16 Vlrtual/Physical Addressing Mode. lf 0, physical addressing (memory management 
disabled) is enabled, and NCACHE is asserted. lf 1, virtual addressing is enabled (mem-
ory management enabled). Special precautions must be taken when explicitly modifying 
this bit. lf it is explicitly modified, the section of code executing must be mapped physical 
address = virtual address. The safest means of manipulating this bit is through KRET. 

15 User Little-Endlan. lf 0, data is selected as big-endian in user mode. lf 1, data is 
selected as little-endian in user mode. 

January 1993 01992, 1993 AT&T 



AT/92010 Programmer~ Reference Manual 

Table 1-8 Program Status Word ( Sheet 2 of 3) 

Blt(s) Descrlption 

14:12 lntenupt Prlorlty Level. Interrupts are acceptecl when the requesting device level 
(IL[2:0]) is less than interrupt priority level or equal to o. When these bits equal 7, all inter-
rupts are enabled. 

11 Enter Guard. Set on an ENTER instruction that does not result in any steck cache flush. 
This bit is not cleared when the PSW is read. 

10 Execution Level. lf 0, execution at the kemel level is perfonned. lf 1, execution at the 
user level is perfonnecl. 

9 Current Stack Pointer. lf 0, the ISP is usecl as the CSP for stack operations. lf 1, the SP 
is used as the CSP for steck operations. lf this bit is modifiecl by a direct write to the 
PSW, thereby changing the CSP, it is necessary to update SHAD to the value of the new 
SP. This update is handled automatically by the CRET, KCALL, and KRET instructions. 

lf this bit is set to 1, and it was previously 0, the instruction modifying the PSW should be 
followecl by the instruction MOV %SP, %SHAD. lf this bit is set to 0 when it was previously 
1, the next instruction should be MOV %ISP, %SHAD. Due to interrupts and exceptions, it 
is recommended that this bit not be modified by a direct write to the PSW since the above 
operations cannot be guaranteecl to be atomic. 

8 Trace Basic Block. Controls basic block tracing. lf 1, the ATT9201 o Hobbit Microproces-
sor executes instructions until a CALL, RETURN, or any jump (foldecl or not) instruction, 
referred to as the N instruction, executes. The instruction following instruction N, referred 
to as N + 1, is not pennittecl in the execution unit, and a trace instruction is generatecl 
intemally. 

This trace instruction blocks the pipeline and forces the ATT92010 Hobbit Microproces-
sor to take a trace exception using the PC of the N + 1 instruction as the exception PC. 
As branch folding is perfonned prior to the trace identifier, foldecl branches are not explic-
itly traceable. lf both the trace instruction and the trace basic block bits are set to 1, the 
function is that of the trace instruction. 

7 Trace lnstructlon. Controls instruction tracing. When 1, the ATT92010 HobbitMicropro-
cessor allows the next instruction, N, to execute nonnally. The instruction following 
instruction N, referred to as N + 1, is not pennittecl in the execution unit, and a trace 
instruction is generatecl on the fly. 

This trace instruction blocks the pipeline and forces the ATT92010 Hobbit Microproces-
sor to take a trace exception using the PC of the N + 1 instruction as the exception PC. 
As branch folding is perfonned prior to the trace identifier, foldecl branches are not explic-
itly traceable. lf both the trace instruction and the trace basic block bits are set to 1, the 
function is that of the trace instruction. 

01992, 1993 AT&T January 1993 1·15 



A1T92010 Programmer's Reference Manual 

Table 1-8 

1-16 

Program Status Word (Sheet 3 of 3) 

Bit(s) 

6 

5 

4 

3:0 

Description 

Overflow. lf 0, this bit indicates that an operation did not generate a signed overflow. lf 1, 
this bit indicates that an operation generated a signed overflow. This bit is not cleared by 
a read of the PSW. 

Carry. lf 0, this bit indicates that an operation did not generate an unsigned overflow. lf 1, 
this bit indicates that an operation generated an unsigned overflow. This bit is not cleared 
by a read of the PSW. 

Flag. Set/cleared by CMP, TADD, TESTC, TESTV, and TSUB instructions. This bit is not 
cleared by a read of the PSW. 

Reserveei. These bits are reserved. They retum 0 when read and must be written with o 
on PSW writes. 

The exception and interrupt sequences alter only the lower 16-bits of the pro­
gram status word (PSW). To remain restartable, the carry and overflow bits are 
not cleared on reading the PSW until the instruction completes. Reads of the 
PSW are not interlocked against flag setting. lf an instruction sets the ftag, carry, 
or overflow bits, there must be at least two intervening instructions, which do 
not use or modify these bits, before the PSW can be read accurately. 

1.5.8 Shadow Register (SHAD) 

The shadow register (SHAD) is a copy of the current stack pointer (CSP). lt is 
maintained by the ATI'92010 Hobbit Microprocessor's intemal sequences to 
facilitate restarting of instructions. In the course of the CRET, ENTER, 
KCALL, KRET, and RETURN instructions, or any time the CSP is modified, 
SHAD is automatically updated to be consistent with the CSP. 

BIT(S) ._I ------------3 .... 1:4 ___________ __._ __ 3.,.:0__, 

1 ~ESERVED 
QUAD-ALIGNED CSP SHADOW 

January 1993 01992, 1993 AT&T 



Table 1-9 

Table 1-10 

A1792010 Programmer's Reference Manual 

Shadow Register 

Bit(s) Description 

31:4 Quac:l-Allgneel CSP Shadow. These bits contain a copy of the CSP. 

3:0 Reserveei. These bits retum 0 when read. 

If the program status word (PSW) current stack pointer (CSP) bit is modified by 
a direct write to the PSW, thereby changing the CSP, it is necessary to update 
SHAD to the value of the new SP. The instructions KCALL and KRET handle 
this automatically. 

1.5.9 Stack Pointer (SP) 

The stack pointer (SP) addresses the top of the stack. The stack grows down­
wards toward memory location zero (0). The SP is used to generate addresses 
(i.e., as the base address in offset modes, to locate the accumulator, and as the 
pointer manipulated by CALL, ENTER, POPN, and RETURN) whenever the 
PSW current stack pointer bit is one (1 ). Address translation is performed if the 
MMU is enabled by setting the PSW virtual/physical addressing mode bit to 
one (1). 

BIT(S)._I -----------3 .... 1:_4 __________ __.__3"'":0..___.J 
1 ~ESERVED 
QUAD-ALIGNED USER STACK POINTER 

Stack Pointer 

Bit(s) Description 

31:4 Quad-Aligneel User Stack Pointer. This is the user stack address. 

3:0 Reserveei. These bits retum O when read. 

01992, 1993 AT&T January 1993 1-17 



ATl'92010 Programmer's Rejerence Manual 

Table 1-11 

1-18 

1.5.1 O Segment Table Base (STB) 

When virtual addressing is tumed on by the program status word (PSW) virtual/ 
physical addressing mode bit, the segment table base (STB) contains a pointer 
to the start of the segment table used in address translation. 

The base of the segment table is always page-size aligned, 4 Kbyte boundary. 
The STB is only used during miss processing, which in turn is used to fi.11 
entries in the on-chip translation look-aside buffer (TLB) or segment registers. 

When the STB is written, the TLBs and segment registers of the memory man­
agement unit (MMU) are flushed, invalidating all entries. Neither the physically 
addressed prefetch buffer (PFB), the virtually addressed instruction cache (IC), 
nor the virtually addressed stack cache (SC) are flushed. Cache coherency is the 
responsibility of the user. 

BIT(S)._I ________ 3.,.1:_12 _______ _....l1 .... 1l.__ ___ 1_0_:0 ___ _. 

1 1 1 
RESERVED 

CACHE BIT 
SEGMENT T ABLE BASE ADDRESS 

Segment Table Base 

Blt(s) Description 

31:12 Segment Table Base Address. This is the page-aligned base address of the 
segment table. 

11 Cache Bit. A cacheable bit that is copied to the cacheable pin whenever a seg-
ment table access is made during misprocessing, indicating if segment table 
entries should be cached. lt 1, NCACHE is deasserted and caching of segment 
table entries is allowed. 

10:0 Reserveei. Return O when read. 

January 1993 C 1992, 1993 AT&T 



Table 1-12 

Table 1-13 

ATIY2010 Programmer's Rejerence Manual 

1.5.11 Timer One (TIMER1) 

Timer1 

This register is a 32-bit intemal register that is configured by the 3-bit field 
(24:22) of CONFIG to count various events. 

errcs> ... I ___________ _...s...,1-.:0 ___________ _.... 
1 
TIMER1 VALUE 

Bit(s) Description 

31 :O Tlmer1 Value. These bits contain the count value for Timer1. 

1.5.12 Timer 1Wo (TIMER2) 

Timer2 

This register is a 32-bit intemal register that is configured by the 7-bit field 
(31 :25) of CONFIG to count various events. 

BIT(S).___ ____________ 3~1_:o ___________ ___. 

TIMER2 VALUE 

Bit(s) Descriptlon 

31 :O Tlmer2 Value. These bits contain the count value for Timer1. 

01992, 1993 AT&T January 1993 1-19 



ATT92010 Programmer's Reference Manual 

Table 1-14 

1·20 

1.5.13 Vector Base (VB) 

The vector base (VB) is used as a table base that contains transfer addresses 
used by interrupts, exceptions and the KCALL instruction. Address translation 
is performed when the memory management unit (MMU) is enabled by setting 
the PSW virtual/physical bit to one (1 ). The Vector Table (see Table 1-14) 
should always be available. H access to the Vector Table is faulted, the 
ATI'92010 Hobbit Microprocessor resets. 

A memory fault causes an infinite loop until the interrupt stack is exhausted and 
the ATI'92010 Hobbit Microprocessor resets. Consequently, an exception pro­
gram counter (PC) should be present in memory. In addition, the niladic trap 
and unimplemented instruction handler must be in user memory space so that 
the handler can be accessed while in user mode. 

BIT(S)~'~~~~~~~~~~--3~1:_4~~~~~~~~~~--"~-3~:0__, 
1 ~ESERVED 
QUAD-ALIGNED VECTOR T ABLE BASE 

Vector Base (VB) 

Bit(s) Description 

31 :4 Quad-Allgnec:I Vector Table Base. The vector table (shown below) should always 
be available. 

VB + 52~ FP EXCEPTION 

VB+~ TIMER2 INTERRUPT 

VB + 44-+ TIMER1 INTERRUPT 

VB + 40~ INTERRUPT 6 

VB+~ INTERRUPT 5 

VB + 32~ INTERRUPT 4 

VB + 28~ INTERRUPT 3 

VB + 24-+ INTERRUPT 2 

VB + 2~ INTERRUPT 1 

VB+ 1~ NONMASKABLE INTERRUPT 

VB+ 12~ UNIMPLEMENTED INSTRUCTION 

VB + 8~ NILADIC TRAPS 

VB + 4-+ EXCEPTION PC 

VB~ KCALLPC 

3:0 Reserveei. These bits retum 0 when read. 

January 1993 01992, 1993 AT&T 



01992, 1993 AT&T 

A1T92010 Programmer's Reference Manual 

1.6 lnstruction Format 

Instructions are composed of two-byte long parcels and are encoded in one-, 
three- and five-parcel lengths. A simple instruction is encoded in five-parcels, 
allowing for encoding of two complete 32-bit addresses in each instruction. In 
general, the one- and three-parcel instructions are more compact encoding of 
five-parcel instructions. 

Instructions have a maximum of two operands that can be used for addressing 
modes. For the dyadic instructions, one source doubles as destination or the 
accumulator is selected to serve as an implicit destination. The instruction for­
mats are 

• One-parcel - for zero-, one- and two-operand instructions 

• Three-parcel - for one- and two-operand instructions 

• Five-parcel - for two-operand instructions 

1.6.1 One-Parcel Format 

Many of the most common zero-, one- and two-operand instruction types are 
encoded in one-parcel. 

NILAOICI 0 1 OxB 
1019 

SUBCODE 
ol (NOOPERAND) 1514 

(ONE c:: 1 ~ 114 
OPCODE 

1019 
SOURCE 

ol 

STACKI ~ 114 
OX2 

1019 
SOURCE 

2l1 ~ggf: ol 

DYADICI 0 1 OPCODE 
1019 SOURCE 5 1~ESTINATI0~1 (TWOOPERANDS) 1514 

A zero (0) in the most significant bit distinguishes all one-parcel instruction for­
mats. The subcode field distinguishes the niladic and stack instructions. 

For operands, 5-bit immediate fields are sign extended and 5-bit stack offset 
fields are zero extended. All 10-bit fields are zero extended except for the CALL 
and JMP instruction which are sign extended. The 8-bit fields are zero extended, 
except for the ENTER instruction, which is one-filled. Tables 1-15, 
1-16 and 1-17 detail the one-parcel instruction encoding. 

January 1993 1·21 



ATI92010 Programmer's Reference Manual 

Table 1-15 

opcode[4:3] 

00 

01 

10 

11 

Table 1-16 

Table 1-17 

Note that operand alignment restrictions allow some address offsets to be 
scaled; extending the effective addressing range. The scaling of certain immedi­
ate constants is possible by the specific operand value restrictions of the corre­
sponding instructions. Five-bit offset values are multiplied by four before they 
are added to the stack pointer (SP). The 10-bit PC-relative offsets in the JMP 
and CALL instructions are multiplied by 2 before they are used; the other 10-bit 
values are multiplied by four before they are used. 

Monadics/Dyadics Encoding (One-Parcel) 

opcode[2:0] 

000 001 010 011 100 101 110 111 

KCALL CALL stad< JMP JMPFN JMPFY JMPTN JMPTY 

unimp* unimp* MOV.WS niladic unimp* ADD3.WS AND3.CS AND.SS 

CMPEQ.CS CMPGT.SS CMPGT.CS CMPEQ.SS ADD.CS ADD3.CS ADD.SS ADD3.SS 

MOV.SS MOV.IS MOV.SI MOV.11 MOV.CS MOVA.SS SHL3.CS SHR3.CS 

*The unimplemented instruction sequence is perfonned 

C=5-bit immediate, 1=5-bit indim:t stack offset, S=5-bit word-aligned immediate 

Encoding Stack (One-Parcel) 

subcode[1 :0) 

00 01 10 11 

ENTER CATCH RETURN ·POPN 

Niladics Encoding (One-Parcel) 

subcode[2:0] . .i subcode[9:3] 
000 010 011 100 101 110 111 

0000000 CPU 

0000001 TESTV 

000001x unimp* 

00001xx unimp* 

0001xxx unimp* 

001xxxx unimp* 

01xxxxx unimp* 

1xxxxxx trapt 

1-22 

001 

KRET NOP FLUSHI FLUSHP 

TESTC CLRE unimp* unimp* 

unimp* unimp* unimp* unimp* 

unimp* unimp* unimp* unimp* 

unimp* unimp* unimp* unimp* 

unimp* unimp* unimp* unimp* 

unimp* unimp* unimp* unimp* 

trapt trapt trapt trapt 

*1be unimplemented instruction sequence is perfonned 

tThe niladic trap through VB+ 8 is perfonned 

January 1993 

CRET FLUSHC* unimp* 
~ 

unimp* zni~ unimp* 

unimp* 'üillmp* unimp* 

unimp* unimp* unimp* 

unimp* unimp* unimp* 

unimp* unimp* unimp* 

unimp* unimp* unimp* 

trapt trapt trapt 

01992, 1993 AT&T 



01992, 1993 AT&T 

ATIY)2010 Programmer's Reference Manual 

1.6.2 Three-Parcel Format 

Three-parcel instmctions are distinguished by a '10' in the two most significant 
bits. The subcode field distinguishes the different monadic instmctions. The 
notation operand-lo represents the low-order 16-bits and operand-hi represents 
the high-order 16-bits. A similar convention applies to the source and destina­
tion operands of the five-parcel dyadic instmctions. The three-parcel fonnats 
are shown below. 

Monadic (One Operand) 

1stPARCE :~ 15 10 1l3 
OPCODE J SMODE lSUBCODE 

87 43 0 

2nc:IPARCEL OPERAND-HI 
15 0 

3ndPARCEL OPERAND-LO 
15 0 

Dyadic (Two Operand) 

1st PARCE L 15 10 1l13 
OPCODE ! SMODE ! DMODE 

8 7 4 3 0 

2nd PARCEL SOURCE 
15 0 

3nc:IPARCEL DESTINATION 
15 0 

The 16-bit source and destination fields are sign extended to 32-bit when they 
are used in immediate or offset modes. When the 16-bit source and destination 
fields are used as absolute addresses, extension of the upper 16-bit depends on 
the setting of the CONFIG PC extension bit. 

lf the CONFIG PC extension bit is l, bits 28:16 are replaced with 0 and bits 
31:29 (the high-order 3 bits) are copied from bits 31:29 of the program counter. 
lf the CONFIG PC extension bit is zero (0), the upper 16-bits are set to zero (0). 
The source and destination addressing mode fields are encoded in the same way 
for both three- and five-parcel instmctions. Tables 1-18 and 1-19 detail the 
three-parcel instmction encoding. 

January 1993 1-23 



ATI92010 Programmer's Reference Manual 

Table 1-18 Encodlng (Three-Parcel) 

opcoc:le[5:3] 
opcode[2:0] 

000 001 010 011 100 101 110 111 

000 monadic ORI ANDI ADDI MOVA UREM MOV DOM 

001 unimp* unimp* unimp* unimp* TADD TSUB unimp* unimp* 

010 unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp* 

011 unimp* unimp* unimp* unimp* unimp* CMPGT CMPHI CMPEQ 

100 SUB OR AND ADD XOR REM MUL DIV 

101 unimp* unimp* unimp* unimp* SHR USHR SHL UDIV 

110 SUB3 OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3 

111 unimp* unimp* unimp* unimp* SHR3 USHR3 SHL3 unimp* 

*'The unimplemented instruction sequence is perfonned. 

Table 1-19 Monadic Subcoding (Three-Parcel) 

subcode[9:3] 
subcode[2:0] 

000 001 010 011 100 101 110 111 

0 KCALL CALL RETURN JMP JMPFN JMPFY JMPTN JMPTY 

1 CATCH ENTER LDRAA FLUSHPTE FLUSHPBE FLUSHDCE* unimp* POPN 

*'The unimplemented instruction sequence is perfonned. 

1.6.3 Five-Parcel Format 

Five-parcel instructions are distinguished by a '11' in the two most significant 
bits. Five-parcel instructions are encoded similarly to three-parcel instructions. 

1st PARCEL 11 l OPCODE ~ SMODE ! DMODE 
15 14 13 8 7 4 3 0 

2nd PARCEL SOURCE·HI 
15 0 

3nd PARCEL SOURCE·LO 
15 0 

4nd PARCEL DESTINATION-HI 
15 0 

5nd PARCEL DESTINATION-LO 
15 0 

Table 1-20 details the five-parcel encoding. 

1-24 January 1993 C 1992, 1993 AT&T 



A1T92010 Programmer's Reference Manual 

Table 1-20 Encoding (Flve-Parcel) 

opcode[5:3] 
000 

000 unimp• 

001 unimp• 

010 unimp• 

011 unimp• 

100 SUB 

101 unimp• 

110 SUB3 

111 unimp• 

opcode[2:0] 

001 010 011 100 101 110 111 

ORI ANDI ADDI MOVA UREM MOV DQM 

unimp• unimp• unimp• TADD TSUB unimp• unimp• 

unimp• unimp• unimp• unimp• unimp• unimp• unimp• 

unimp• unimp• unimp• unimp• CMPGT CMPHI CMPEQ 

OR AND ADD XOR REM MUL DIV 

unimp• unimp• unimp• SHR USHR SHL UDIV 

OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3 

unimp• unimp• unimp• SHR3 USHR3 SHL3 unimp• 

The source and destination addressing mode field for three-parcel and five­
parcel instructions are encoded the same way (see Table 1-21thruTable1-24). 

Table 1-21 General Addressing Mode Encoding 

Code Mode Descrlptlon 

OxO •$addr:B Byte absolute 

Ox1 •$addr:UB Unsignecl byte absolute 

Ox2 •$addr:H Half-word absolute 

Ox3 •$addr:UH Unsignecl half-word absolute 

Ox4 Roffset:B Byte stack Offset 

Ox5 RoffsetUB Unsignecl byte stack offset 

Ox6 Roffset:H Half-word stack offset 

Ox7 RoffsetUH Unsignecl half-word stack offset 

Ox8 •Roffset:B Byte stack offset indirect 

Ox9 •Roffset:UB Unsignecl byte stack offset indirect 

OxA •Roffset:H Half-word stack offset indirect 

OxB •Roffset:UH 
Unsignecl half-word stack offset 
indirect 

OxC •$addr:W Word absolute 

OxD Roffset:W Word stack offset 

OxE •Roffset:W Word stack offset indirect 

OxF $data Immediate 

01992, 1993 AT&T January 1993 1·25 



------------------------------------------------------------------------~·---AT/'92010 Programmer's Reference Manual 

Table 1-22 CPU Modified Addressing Mode Encoding 

Code Mode Descrlption 

Ox7 reg ist er CPU prefixed 

OxC •$addr:W Word absolute 

OxD Roffset:W Word stack offset 

OxE •Roffset:W Word stack offset indirect 

OxF $data Immediate 

Table 1-23 CALUJMP Addressing Mode Encoding 

Code Mode Descrlptlon 

OxC ••$addr Absolute indirect 

OxD •Roffset Stack offset indirect 

OxE Label Program counter relative 

OxF •$addr Absolute 

Table 1-24 Source/Destination Register Encoding 

Code Register 

Ox1 MSP 

Ox2 ISP 

Ox3 SP 

Ox4 CONFIG 

Ox5 PSW 

Ox6 SHAD 

Ox7 VB 

Ox8 STB 

Ox9 FAULT 

OxA 10 

OxB TIMER1 

OxC TIMER2 

OxD unimp 

OxE unimp 

OxF unimp 

1-26 January 1993 01992, 1993 AT&T 



A1T92010 Programmer's Reference Manual 

1.7 Operand Addressing Modes 
~~~~~~~~~-

01992, 1993 AT&T

The ATl'92010 Hobbit Microprocessor architecture uses seven addressing
modes for accessing data.

• Immediate - mode addressing allows a constant to be embedded in the
instruction itself. Values up to 32-bits in length are permitted. Shorter values
are appropriately sign or 0 extended before use.

• Absolute - addressing uses an absolute address in the instruction to access
data. Absolute addressing is typically used to reference global variables.

• Stack Offset - addressing develops the address of an operand by adding a
constant offset in the instruction to the address of the current stack pointer
(CSP). For negative offsets, off-chip stack accesses are performed and cache
coherency is not maintained. This addressing mode is used to access local
variables, temporaries and incoming and outgoing arguments.

• Stack Offset Indirect - addressing adds a constant offset in the instruction
to the address of the current stack pointer (CSP). Tbe word at this address is
fetched and then used as an address to obtain the data operand. The offset
must be word aligned. An alignment fault (Ox4) is executed if the offset is
not word aligned.

• Absolute lndirect - addressing stores the operand's address in the instruc­
tion. This mode is used for the JMP (Jump), CALL and LDRAA (Load Rel­
ative Address into Accumulator) instructions. The operand value should be
an instruction address that is parcel (half-word) aligned.

• Program Counter Relative - addressing adds a signed, two's complement
offset stored in the instruction to the address of the instruction to obtain the
operand value. This mode is used only with the JMP (Jump), CALL and
LDRAA (Load Relative Address into Accumulator) instructions.

• Register - addressing precedes the instruction with a CPU instruction. Tbe
CPU instruction is never directly executed bot rather it modifies the next
instruction 's addressing modes for both operands. Code Ox7 allows access to
the intemal register for use as data. The register number is specified in the
operand (source/destination field). Only bits 3:0 are considered for determin­
ing the register number. The upper bits are ignored bot should be 0 for com­
patibility.

At most, one register may be read per instruction. ff register OxO or OxD
through OxF is specified, an unimplemented register exception sequence,
exception ID Ox6, is performed. Registers can be read in user mode, bot if
there is a register write in user mode, a privilege violation exception
sequence, exception ID Ox5, is performed.

January 1993 1-27

A'IT92010 Programmer's Rejerence Manual

The arithmetic logic unit (ALU) operations generally permit any of the first four
addressing modes (Immediate, Absolute, Stack Offset and Stack Offset Indi­
rect) to be used with either operand. Any mode not explicitly mentioned for a
given instruction should not be used.

The operand can also have a suffix. The suffixes indicate the size of data oper­
ands while a missing suffix implies signed word operands.

• :B - signed byte
• :UB - unsigned byte
• :UH - signed half-word
• :W-word

1.8 Integer Arlthmetic Operation
~-----------------

1-28

The ATI'92010 Hobbit Microprocessor offers seven arithmetic instructions:

• ADD a, b ;add a tob

• DIV a, b ;divide b by a, signed

• MUL a, b ;multiply b by a

• REM a, b ;calculate the remainder of signed division of b by a

• SUB a, b ;subtract a from b

• UDIV a, b ;divide b by a, unsigned

• UREM a, b ;calculate the remainder of unsigned division of b by a

REM and UREM are defined in terms of DIV and UDIY, respectively. Operands
a and b may be referenced using a variety of addressing modes, with sign inter­
pretation given for byte and half-word arguments.

For the instructions above, the result is stored in b. ADD, DIV, MUL, REM, and
SUB as weil as other instructions also have a 2 1/2 address version (denoted by
a trailing 3) where the result is stored in the accumulator (R4).

January 1993 01992, 1993 AT&T

01992, 1993 AT&T

ATl92010 Programmers Reference Manual

1.8.1 C&rry Bit

The program status word (PSW) carry bit indicates the occurrence of a borrow
during unsigned subtraction or of overftow during unsigned addition or multi­
plication. Unsigned overftow arises when a result exceeds unsigned
(OxFFFFFFFF). In these operations, the PSW carry bit is set when:

Unsigned(b) - Unsigned(a) < 0

or unsigned overftow on an addition or multiplication:

Unsigned(b) {+ or *} Unsigned(a) > Unsigned(OxFFFFFFFF)

Unsigned overftow cannot occur in UDIV and UREM.

In the ADD operation, the adder computes the sum of a and b; the word result is
delivered and, if carry-out occurs, the PSW carry bit is set. In the SUB opera­
tion, the two's complement of a is added to b, and the PSW carry bit is set only
if no carry-out occurs.

1.8.2 Overflow Bit

The program status word (PSW) overftow bit signals the occurrence of signed
overftow of the word result of an arithmetic operation; this is a result outside the
interval:

[Signed(Ox80000000) to Signed(Ox7FFFFFFF)]

In terms of the operations above, the PSW overftow bit is set unless:

Signed(Ox80000000) (Signed(b) {+, -, 01'*} Signed(a)) Signed(Ox7FFFFFFF)

Signed overftow cannot occur in REM. Signed overftow does arise in DIV in
precisely the case of Ox80000000 divided by -1, that is OxFFFFFFFF.

January 1993 1-29

ATI92010 Programmer's Reference Manual

1-30

1.8.3 Division and Remainders

Unsigned overftow does not apply to UDIV because its dividend is at most
unsigned (OxFFFFFFFF) and its divisor is no less than 1 (except for a zero divi­
sor, which triggers a divide-by-zero exception), so its result is no greater than its
dividend. A similar argument applies to DIV, except for the case of overftow.

Like UDIV, unsigned overftow does not apply to UREM. UD and UR are the
word results of the UDIV and UREM operations, respectively. Apply these
results to operands a and b. UDIV and UREM are related by the formula:

b = (UD•a) + UR, where 0 UR < a

with all values unsigned. UR is no greater than a and therefore no greater than
unsigned (OxFFFFFFFF); consequently overftow cannot occur. A similar argu­
ment applies to REM.

1.8.4 Tagged Integer Arithmetic

These instructions are useful in object-oriented languages where a given vari­
able may represent different data types at different times during program execu­
tion.

• TADD a, b ;tagged add a into b

• TSUB a, b ;tagged subtract a from b

The tagged instructions ensure that the low 2 bits, called tags, of both operands
are zero (0), prior to performing the arithmetic operation. lf either tag is non­
zero, the program status word (PSW) flag bit is set to one (1), and the result is
not stored. lf both tags are zero, the result is stored only if the operation doesn 't
result in an arithmetic overftow. If the arithmetic overftow occurs, the PSW flag
bit is set to one (1) and the result is not stored.

1.9 Fast Calling Sequence

The ATI'90210 Hobbit Microprocessor provides an efficient procedure calling
sequence. Outgoing arguments are moved onto the stack frame. For word argu­
ments, the first argument is stored at current stack pointer (CSP) + 4, the second
at CSP + 8, and so one.

January 1993 01992, 1993 ATliT

Figure 1-5 Stack Frame

01992, 1993 AT&T

A11Y2010 Programmer's Reference Manual

The CALL instruction performs an atomic move and jump operation, saving the
retum point at the CSP and loading the program counter (PC) with the address
of the first instruction of the called function. The first instruction of the called
function is usually ENTER which adjusts the CSP to allocate its new stack
frame.

The last instruction of the called function, RETURN, readjusts the CSP to
deallocate its stack frame and then branches to the address pointed to by the
CSP. Customarily, a CATCH follows the RETURN in user mode or when the
user stack is enabled to refill the stack cache.

This function call overhead-<:all, allocate, deallocate, and retum-can be as
little as four clock cycles. Figure 1-5 shows a typical stack frame from the
called function's point of view.

INCOMING ARGUMENT N
INCOMING ARGUMENT N -1

...
INCOMING ARGUMENT 1/

INTEGER FUNCTION RETURN
VALUE

OLDSP~ SAVED PC OF CALLER
LOCAL VARIABLE N

LOCAL VARIABLEN -1

...
LOCAL VARIABLE 1

TEMPORARY VARIABLES

OUTGOING ARGUMENT N
OUTGOING ARGUMENT N -1

...
OUTGOING ARGUMENT 1

SP~ EMPTY (PC SAVE AREA)

HIGHER MEMORY

DIRECTION OF
STACK GROWTH

J.

LOWER MEMORY

The stack grows downward in memory with the stack pointer (SP) always
pointing to the top of the stack. The program counter (PC) is stored in this free
slot on a function call (or unimplemented instruction exception). This avoids
having to adjust the current stack pointer (CSP) to save or restore the PC. The
PC is the only machine register implicitly saved during a function call.

January 1993 1-31

A77'92010 Programmer's Reference Manual

Above the saved PC slot in the stack frame is a large area to store outgoing
arguments for any call from the current function. Above the outgoing arguments
temporary values and local variables are stored. This permits outgoing argu­
ments to be calculated in place with stack offset addressing modes. This stati­
cally allocated stack frame allows the CSP to be updated only on function entry
and function retum.

Traditional PUSH or POP instructions that automatically adjust the CSP are
intentionally avoided. POPN is provided to deallocate from the stack frame and
is useful in tail recursion. Side effects to the CSP are nearly eliminated and
operand address generation for subsequent instructions can smoothly proceed in
a pipeline implementation.

1.10 Prefetching Strategy

1-32

The ATI'92010 Hobbit Microprocessor has two types of instruction fetching.
Both are selectable through the CONFIG prefetch mode bit.

• Aggressive Prefetching

• Demand Fetching

When aggressive prefetching is enabled (CONFIG prefetch mode bit = 1), the
microprocessor prefetch unit fetches text (not been previously fetched and
stored in the prefetch buffer memory), in quad-word pieces consisting of two
double-word 1/0 requests.

Text is prefetched sequentially until a branch (predicted jump, unconditional
jump, CALL, CRET, KCALL, KRET, or RETURN) is decoded. If the target of
the branch is encoded in the instruction (non-indirect), prefetching continues
from the target (if it is not already in the prefetch buffer). If the target is indirect,
prefetching stops and waits for a demand fetch request from the execution unit.

A demand fetch is requested if the execution unit takes a unpredicted or indirect
branch and the target has not been previously decoded. If at any time while the
prefetch unit is prefetching sequential code and following predicted branches a
demand fetch is requested, any 110 requested by the unit will complete, and
prefetching begins anew from the execution unit requested target.

January 1993 01992, 1993 AT&T

01992, 1993 AT&T

ATT92010 Programmer's Rejerence Manual

1.10.1 Branch Prediction and Branch Folding

Branches break the ftow of instruction execution and may degrade the perfor­
mance of a pipelined microprocessor. More important, the target of a condi­
tional jump is not known until the instruction is executed. The ATI'90210
Hobbit Microprocessor solves these problems in two ways:

• Static Branch Prediction

• Prefetch Decode Unit (PDU)

The instruction format provides a static branch prediction field. The field is set
at compile time and can indicate whether it is likely to take the conditional
branch or not. The prefetch decode unit (PDU) continues prefetching along the
predicted path of a conditional jump, the instructions can be issued and exe­
cuted into the pipeline without any discontinuity.

Second, the PDU assigns a next-PC (program counter) and altemate-next-PC
field for each decoded instruction.

1.10.2 Condltional Branches

Conditional branches are specified by first setting the program status word
(PSW) ftag bit using one of the compare instructions (CMPEQ, CMPGT,
CMPHI) or using a miscellaneous instruction (TESTC or TESTV). Theo, finish
with a conditional jump instruction (JMPTY, JMPTN, JMPFY, or JMPFN).

The jump doesn't need tobe the next instruction after the ftag is set. The pipe­
line runs more efficiently if three instructions, which do not reference off-chip
memory, are sandwiched between the compare instructions and the jump.

The Y or N at the end of the conditional jump instruction is the prediction of the
branch (Y-jump, N-continue).

1.10.3 Tracing

Instruction tracing is supported by the program status word trace basic block or
trace instruction bits. These bits control when tracing is enabled. If an instruc­
tion is traceable, a trace exception is taken after the instruction completes exe­
cution. The program counter (PC) saved on the interrupt stack is the next
instruction PC.

January 1993 1-33

A1T92010 Programmer's Reference Manual

1-34

Instructions before folded branches cannot be traced. For example, if a jump is
folded into the previous instruction, the trace will occur after the jump. To avoid
jumps being folded, all jumps must be encoded as three-parcel.

Event sequences are nontraceable, including exceptions and interrupts. The
unimplemented instruction sequence is traceable if the trace bits are not altered.
CRET, KCALL, and KRET are always non-traceable.

1.11 Event Processing

There are several sequences that trigger the ATI'92010 Hobbit Microprocessor
that are not invoked by the regular instruction set. These events include, in order
of priority:

• Reset

• Interrupt

• Exception

The sequences executed by the ATI'92010 Hobbit Microprocessor for each of
these events are discussed in the following sections. In all cases, interrupts are
inhibited while an event processing sequence (the sequence that initiates the
event handler) is in progress.

The processing of exceptions and interrupts includes saving the program
counter (PC) and the program status word (PSW) on the interrupt stack. For
instructions that change the PC, the current PC is defined as one of the follow­
ing.

• CALL and JUMP - If the location pointed to by the instruction cannot be
referenced, a fetch-fault results and the PC stored on the interrupt stack is the
target PC, not the PC of the instruction. If the indirection word of an indirect
instruction cannot be referenced, a read-fault results and the PC stored on the
interrupt stack is that of the instruction.

• KCALL - If the location pointed to by the KCALL PC entry in the vector
cannot be referenced, a fetch-fault results and the PC stored on the interrupt
stack is the target PC, not the PC of the original KCALL.

• CRET, KRET, and RETURN - If the location pointed to by the new PC
value cannot be referenced, a fetch-fault results and the PC stored on the
interrupt stack is the new PC value, not the address of the instruction.

January 1993 01992, 1993 AT&T

C 1992, 1993 AT&T

ATI92010 Programmers Rejerence Manual

1.11.1 Reset

The A1T92010 Hobbit Microprocessor enters the reset sequence when:

• The extemal reset pin (HRESET) is asserted.

• A memory fault, which is signaled either extemally or by the memory man­
agement unit (MMU), occurs

-when attempting to read or write the interrupt stack during any event pro­
cessing sequence.

-when attempting to read from the vector table during any event processing
sequence.

The reset sequence is:

Disable interrupts

Flush the PFB and IC

if raset

SHAD=OxO

eise

SHAD=PSW

PSW=OxO

CONFIG =OxO

PC=OxO

Enable NMI interrupts

The shadow register (SHAD) is set either to OxO or the current program status
word (PSW) depending on the reset type. Independent of the reset type, the
prefetch buffer (PFB) and instruction cache (IC) are ftushed and the PSW,
CONFIG, and program counter (PC) are initialized to OxO. Initialization of the
PSW register sets:

• the execution level to kernel mode

• physical addressing to enable

• tracing to disable

• interrupts are inhibited

• the interrupt stack pointer (ISP) as the current stack pointer (CSP)

January 1993 1-35

AT/'92010 Programmer's Reference Manual

Table 1-25

1-36

Initialization of the CONFIG register sets:

• disables all on-chip caches

• disables timer interrupts

• and selects demand prefetching

Initiafüation in the PC register starts executing instructions at physical address
OxO.

Note If the reset sequence was initiated by the extemal reset pin, the stack
pointer (SP) and the maximum stack pointer (MSP) are undefined. The
caches should not be enabled until these registers are assigned values
since the range check circuitry would not know whether an address
should access the on-chip stack cache or off-chip memory.

1.11.2 Interrupt

An interrupt is signaled when an extemal device requests service on the inter­
rupt request input lines (IL[2:0]) or either Tunerl or Tuner2 overftows with the
interrupts enabled.

The three input lines associated with extemal interrupts and the timer interrupts,
which are asserted at level l, are compared with the program status word (PSW)
interrupt priority level (IPL) field. If the interrupt request is less than the IPL
field, the interrupt can be serviced. An IPL field of 7 allows interrupts at levels 0
through 6. An IPL field of 0 inhibits interrupts 1 through 6 and allows interrupts
at level 0 only. This is referred to as a nonmaskable interrupt (NMI). Table 1-25
list the interrupt levels.

Interrupt Levels

IL[2:0] Interrupt Level

000 NMI

001 Level 1

010 Level2

011 Level3

100 Level4

101 Levels

110 Level6

111 No interrupt

January 1993 01992, 1993 AT&T

01992, 1993 AT&T

AT/'92010 Programmer's Reference Manual

The interrupt request input lines IL[2:0] must be asserted with the same value
for at least two cycles before an interrupt is recognized by the ATI'92010
Hobbit Microprocessor. The interrupt should remain asserted until the interrupt
handler clears it. If the interrupt is accepted, the request enters at the top of the
execution unit pipeline. Theo all further interrupts are disabled until completion
of the interrupt sequence. The ATI'92010 Hobbit Microprocessor does not
indicate when it is servicing an interrupt other than the 1/0 caused by the
interrupt handler.

Nonmaskable Interrupt

A nonmaskable interrupt (NMI) is generated by setting IL[2:0] to OxO. An inter­
rupt at level 0 is edge sensitive, that is, it must be deasserted for at least two
cycles before another interrupt at any level is recognized. When an interrupt
enters the execution pipeline, all interrupts are disabled, including NMI. After
the interrupt sequence completes, the NMI will be serviced if it is still asserted.

Most instructions cornplete execution before the interrupt request enters the top
ofthe execution unit pipeline. CATCH, ENTER, MUL[3], DIV[3], REM[3],
UDIV, and UREM are interruptible. The CATCH portion of CRET is interrupt­
ible. The PC stored on the interrupt stack is the address of the interrupted
instruction for transparently resuming execution. CATCH, ENTER, and the
CATCH portion of CRET continues (as opposed to restarting).

Interrupt Sequence

When the interrupt is serviced, the sequence is:

Disable interrupts

if (CSP = ISP) ISP = SHAD

eise SP =SHAD

•(ISP-8) = PC of interrupted instruction /• Becomes RB with respect to new ISP •/

•(ISP-4) = PSW /• Becomes R12 with respect to new ISP•/

ISP-= 16

SHAD= ISP

PC= •(VB+ 16 + (4 x interrupt level))

PSW &= OxFFFFOOOO

Enable NMI interrupts

Where interrupt Level is the value of the IL[2:0] lines producing the interrupt.
Note that the interrupt sequence is almost the same as the KCALL sequence
(the event frame left on the interrupt stack is the same). Consequently, a KRET
instruction is sufficient for retuming from an interrupt; interrupts are disabled
during this processing.

January 1993 1-37

ATl'92010 Programmer's Reference Manual

Table 1-26

1-38

1.11.3 Exceptions

Exceptions signal an error in a program. The ATT92010 Hobbit Microprocessor
recognizes the exceptions listed in Table 1-26.

Exception ldentHier

Code Exceptlon

OX1 Integer zero-divide

Ox2 Trace

Ox3 Illegal instruction

OX4 Alignment fault

oxs Privilege violation

OX6 Unimplernented register

OX7 Fetch fault

OX8 Data read fault

Ox9 Data write fault

OxA Memory access 1/0 bus fault

OXB MMU table walk bus fault

The exception handler must always be presenL--

Exception Sequence

The sequence is similar to the KCALL sequence. H the target address of a
CALL, CRET, JMP, KCALL, KRET, or RETURN instruction, or of an inter­
rupt, causes a memory fault, the PC saved on the interrupt stack is the target PC,
not the address of the current instruction. The sequence is:

Disable interrupts

if (CSP = ISP) ISP = SHAD

eise SP = SHAD

• (ISP-12) = exception identifier

•(ISP-8) = PC of faulted instruction

•(ISP-4) = PSW

ISP-= 16
SHAD=ISP

PC= •(VB+ 4)

PSW &= OxFFFFOOOO

Enable NMI interrupts

January 1993

/• Becomes R4 with respect to new ISP •/

/• Becomes RB with respect to new ISP •/

/• Becomes R12 with respect to new ISP•/

01992, 1993 AT&T

01992, 1993 AT&T

A1T92010 Programmer's Rejerence Manual

In exception IDs Ox8 and Ox9, the 32-bit operand aligned virtual address of
faulted access is saved in the Fault Register.

For a text fetch bus error or a data read bus error, the program counter (PC)
placed on the intermpt stack is the address of the instruction with the faulting
address.

For a data write bus error, the PC placed on the intermpt stack is not the PC of
the instruction associated with the faulted access. Because of the unhinged
nature of the stores in the ATI'92010 Hobbit Microprocessor, the PC stored is
the PC of the instruction which was at the bottom of the execution pipeline
when·the fault occurred, and not the PC of the instruction with which the faulted
store is associated.

1.11.4 Unimplemented lnstruction

An attempt to execute an unimplemented opcode results in an unimplemented
instruction sequence. 'Ibis sequence is faster than the exception sequence for
software emulation of extended instructions. Since an unimplemented instruc­
tion can occur in either execution mode, the unimplemented instruction handler
should be in both the user and kemel address space.

If an unimplemented instruction has an addressing mode that is illegal for that
instruction class, it is considered an illegal instruction (exception ID Ox3). Spe­
cifically:

• An unimplemented monadic instruction is illegal if it has a nonword
addressing mode (<OxC).

• An unimplemented instruction is illegal if it follows a CPU instruction and
contains an illegal addressing mode, or combination of modes.

• A RETIJRN instruction with a negative operand.

There are no tests performed on the addressing modes of unimplemented dyadic
instructions which do not follow CPU instructions.

Unimplemented lnstruction Sequence

The sequence is:

•(CSP) = PC of unimplemented opcode

PC= •(VB+ 12)

Where current stack pointer (CSP) is either stack pointer (SP) or intermpt stack
pointer (ISP), depending on the state of the PSW current stack pointer bit.

January 1993 1-39

A17'92010 Programmer's Reference Manual

1-40

'ftapped Niladic E:xception

An attempt to execute a one-parcel niladic with an opcode in the range Ox200
through Ox3FF results in a variant of an unimplemented instruction sequence
known as a trapped niladic exception. This sequence is the same as the unim­
plemented instruction sequence except VB + 8 is used for the vector. The
trapped niladic handler should be in both the user and kemel address space. The
sequence is:

•(CSP) = PC of unimplemented opcode

PC= •(VB+ 8)

Where current stack pointer (CSP) is either stack pointer (SP) or interrupt stack
pointer (ISP), depending on the state of the PSW current stack pointer bit.

1.11.5 Event Processlng Priorlty

Since several event requests can be generated simultaneously, an event process­
ing priority has been established. The priorities assigned to each event type
request are:

1 Reset

2 Interrupts

3 Trace

4 Instruction fetch f aults

5 lliegal instructions

6 Unimplemented instructions/trapped niladic

7 Unimplemented registers

8 Alignment faults

9 Data read and write and read bus error faults

10 Privilege violation

11 Divide by zero

The high-priority events (reset and interrupts) occur independently of an
instruction execution. All other events are associated with a particular instruc­
tion. During some intemal sequences, interrupts are disabled. Many events are
mutually exclusive of each other and cannot occur at the same time or within
the same instruction.

January 1993 01992, 1993 AT&T

Chapter2

01992, 1993 AT&T

Memory Management

The ATT92010 Hobbit Microprocessor has an on-chip memory management
unit (MMU), which can translate virtual addresses, as seen by a programmer,
into physical addresses. The two methods for address translation are:

• Paged segments

• Nonpaged segments

The 32-bit virtual address space is divided into 1,024 segments, each
representing 4 MB of virtual addresses with a 4 MB alignment. Paged segments
are further divided into 1024-word pages (see Figure 2-1). Nonpaged segments
provide a variable-sized contiguous segment of memory (see Figure 2-2). In
paged segment address translation, each page can be mapped anywhere in the
32-bit physical address space.

2.1 Address Translation

Address translation is enabled by setting the program status word (PSW) vir­
tual/physical bit to 1 (VP-1). To speed paged segment address translation, the
ATT92010 Hobbit Microprocessor has two translation lookaside buffers
(TLBs~ne for text addresses and one for data addresses. Each TLB has 32
entries and is fully associative. 1\vo nonpaged segment registers (NPSRs), one
for a text address and one for a data address, speed nonpaged segment address
translation.

Additionally, to provide a physical prefetch buffer, a micro-TLB is provided for
text references in the present page. This micro-TLB contains the last translation
used by the prefetch unit and provides zero-cycle address translation. If the
micro-TLB misses, one cycle is required for update if the address translation
hits in the text TLB or text NPSR.

If an address is not contained in the appropriate TLB or NPSR, the on-chip
MMU automatically fetches the appropriate entry by walking the memory man­
agement tables.

January 1993 2-1

AT/'92010 Programmer's Reference Manual

Figure 2-1

Figure 2-2

2-2

Paged Segment Address Mapping

PAGED VIRTUAL ADDRESS 31 SEGMENT# 22 21

SEGMENT
TABLE

SEGMENT TB
ENTRY

PAGE#

PAGE
TABLE

PAGETBL
ENTRY

1211PAGE OFFSET o

PAGE
FRAME

PHYSICAL
WORD

PAGE FRAME BASE

SEGMENT T ABLE BASE

Nonpaged Segment Address Mapping

NONPAGED VIRTUAL ADDRESS 31SEGMENT # 21 SEGMENT OFFSET

SEGMENT
TABLE

SEGMENT T ABLE BASE

January 1993

BOUND

BASE

SEGMENT
FRAME

PHYSICAL
WORD

0

C 1992, 1993 AT&T

01992, 1993 AT&T

ATIY2010 Programmer's Reference Manual

2.2 Address Mapping

All addresses in the ATI'92010 Hobbit Microprocessor are translated by walk­
ing a series of map tables. All map tables in the ATI'92010 memory mapping
scheme are 4,096 bytes long (one-page frame). All addresses contained within a
memory management table are physical addresses, so address translation is not
recursive.

Address mapping checks the validity of virtual addresses and translates them
into physical addresses. A virtual address is ftagged as illegal if one of the fol­
lowing happens:

• There is no valid physical mapping

• User execution level code attempts to access kemel execution level
addresses

• A store is attempted to read-only data

• Any violation is signaled as a memory fault:

Fetch fault - If, during an address translation for text, there is no physical
mapping or an attempt is made to access a kemel only page while in user
mode, this fault is signaled. Note that a fetch fault is generated only on
demand fetches and only stops fetching, until a demand fetch, if aggressive
fetching is enabled by the PSW prefetch bit.

Read fault - If, during an address translation for reading data, there is no
physical mapping or an attempt is made to access a kemel only page while in
user mode, this fault is signaled. This fault can be ignored if the read was
requested because of a mispredicted branch.

Write fault - If, during an address translation for either writing data or
while executing one of the stack manipulation instructions, there is no phys­
ical page, an attempt is made to access a kemel only page in user mode, or an
attempt is made to write to a nonwritable page, this fault is signaled.

January 1993 2-3

ATJ'92010 Programmer's Reference Manual

2.2.1 Paged Segment Addresses

A page frame is a contiguous region of 4,096 bytes, beginning at an address
evenly divisible by 4,096 (the low 12-bits of the address are all 0). Because all
page frames begin on page boundaries, additions are not necessary to calculate
addresses. When paged segment translation is in use, virtual addresses are
divided into the following three fields:

• Segment number

• Page number

• Page offset

2.2.2 Nonpaged Segment Addresses

When nonpaged segment translation is in use, virtual addresses are divided into
the following two fields:

• Segmentnumber

• Segment offset

2.3 Segment Tables
~~~~~~~~~~ 

2-4 

The segment number selects one entry from 1,024 entries in the segment 
table-a 4 KB table located in one page frame in physical memory. Bach seg­
ment table entry is 4 bytes long and contains the base address of a page table or 
the base address and size of a nonpaged segment. The base address of the seg­
ment table is contained in the segment table base (STB) register. 

The address of a segment table entry is formed by concatenating the upper 20 
bits of the segment table base register with the upper 10 bits of the virtual 
address: the base address field in the segment table base defines the beginning 
of a segment table in physical memory, and the segment number field of the vir­
tual address defines a word within the segment table. 

There are two possible formats for a segment table entry. Paged segments have 
referenced and modified bits for enhanced memory management. Nonpaged 
segments only require the segment table to resolve references. 

January 1993 01992, 1993 AT&T 



A1T92010 Programmer's Reference Manual 

2.3.1 Paged Segment Table Entries 

The segment table for paged segments defines 1,024 segments, each 1,024 
pages long (for a total of 4,294,967,296 bytes). Segmentsare defined as a series 
of pages, so there may be holes in a segment's address space. There is no length 
specification for a segment: the validity of constituent pages defines a segment's 
extent. Each paged segment table entry defines the base of a page table. 

BIT(S) L.__ _____ _....a...,1,;.;,;:12....._ ______ l,...1 .... !J. __ 1_,.o-.:4 __ l&.13;..1,l..;;;;2;;..;.:1_.l .... 0J 
1 iALID 

CACHE 
PAGE TABLE BASE ADDRESS 

RESERVED 
SEGMENT 

RESERVED 

Table 2·1 Paged Segment Table Entry 

01992, 1993 AT&T 

Blt(s) NamelDescrlption 

31:12 
Page Table Base Address. The base address in physical 
memory of the page table. 

11 
C8che. lf 1, NCACHE is deasserted when fetching page table 
entries. 

10:4 Reserveei. 

3 Segment. 0 for paged segment translation. 

2:1 Reserveei. 

0 Valid. lf 1, the entry is valid. 

2.3.2 Nonpaged Segment Table Entries 

The segment table for nonpaged segments defines the base and bound of a seg­
ment. 

errcs> [.__ __ ...;;a;.;,;1 :;;;;;22--. __ l..__ __ .;;;;2~1 :1.;.;;;2--.. __ J ... 1,...'!1 __ 1...,o,.;..;:4 __ 1....,a,...1.;p.21.._1,..l..p.loJ 

l ~ALID 

CACHE 
SEGMENT BOUND 

SEGMENT BASE ADDRESS 

January 1993 

WRITABLE 
USER 

SEGMENT 
RESERVED 

2-5 



AT/92010 Programmer's Reference Manual 

Table 2·2 Nonpaged Segment Table Entry 

Blt(s) Nama.'Descriptlon 

31:22 
Segment Base Address. These bits contain the base address of the 
segment in physical rnemory. 

21:12 
Segment Bound. These bits contaln the size of the segment, ranging 
from 4,096 bytes (OxO) to 4 MBs (Ox3FF) in increments of 4,096 bytes. 

Ceche. lf 0, NCACHE is asserted when accessing this segment. Text 
fetches will not be cached in the prefetch buffer cache, but they. will be 

11 cached in the decoded instruction cache. lf 1, NCACHE is deasserted 
when accessing nonpaged segments. This bit has no effect on the use 
of the stack cache. 

10:4 Reaerved. 

3 Segment. A 1 for nonpaged segrnent translation. 

2 
User. lf 1, the segrnent can be accessed at user execution level (all 
valid segments can be accessed at kernel level). 

1 
Wrttable. lf 1, the segrnent can be written (all valid segrnents can be 
read). 

0 Valid. lf 1, the segment is valid. 

The segment offset field of the virtual address defines the byte within the seg­
ment frame in which the virtual address is mapped. The physical address con­
sists of the segment base address from the segment table entry concatenated 
with the segment offset field of the virtual address. lf a protection violation is 
detected, no memory access is made and a memory fault exception is executed. 

2.3.3 Mixed Paged and Nonpaged Segment Tables 

Since the segment bit in the segment table entry controls if the segment table 
entry is paged or nonpaged, a segment table can contain both paged and non­
paged entries. 

2.4 Page Tables 
----------------------------------------

The address of a page table entry is formed by concatenating the upper 20 bits 
of the 8egment table entry with bits 21:12 of the virtual address (the page num­
ber). 

January 1993 01992, 1993 AT&T 



ATI'92010 Programmer's Reference Manual 

A page table entry defines the physical address corresponding to the virtual 
address and provides protection information and other data available for paging 
algorithms. The reference and modified bits are automatically set by the on-chip 
MMU, but they must be cleared by software when needed. 

BIT{S) L,__ _____ ___,3...,1:......,12..__ ______ J..,11 ... 11_......,10,...:s _ __.L.,.41...,3...,1l..,.2l...,1,...1...,0J 

1. ~ALID 

CACHE 
PAGE FRAME BASE ADDRESS 

WRITABLE 
USER 

REFERENCED 
MODIFIED 

RESERVED 

Table 2-3 Page Table Entry 

Blt(s) Name/Descrlptlon 

31:12 
Page Frame Base Address. These bits contain the base address in 
physical memory of the page frame. 

C&che. lf 0, NCACHE is asserted when accessing this page. Text 
fetches will not be cached in the prefetch buffer cache, but they will be 

11 cached in the decoded instruction cache. lf 1, NCACHE is deasserted 
when accessing this page. This bit has no effect on the use of the stack 
cache. 

10:5 Reserveei. 

Modlfled. Set to 1 when a write occurs within the page. On subsequent 
writes to this page, the memory copy of the page table entry is not 

4 accessed toset this bit again. lf a direct write to the memory copy of the 
page table entry changes this bit, the entry should be flushed from the 
TLB using the FLUSHPTE instruction. 

Aeferenced. Set to 1 when a page is first referenced. On subsequent 
references to this page, the memory copy of the PTE is not accessed to 

3 set this bit again. lf a direct write to the memory copy of the PTE 
changes this bit, the entry should be flushed from the TLB using the 
FLUSHPTE instruction. 

2 
User Bit. lf 1, the page can be accessed at user execution level (all 
valid pages can be accessed by the kemel). 

1 Wrltable. lf 1, the page can be written (all valid pages can be read). 

0 Valid. lf 1, the page is valid. 

01992, 1993 ATAT January 1993 2-7 



A7T92010 Programmer's Reference Manual 

The page offset field of the virtual address defines the byte within the page 
frame in which the virtual address is mapped. The physical address consists of 
the page frame base address from the page table entry concatenated with the 
page offset field of the virtua1 address. lf a protection violation is detected, no 
memory access is made and a memory fault exception is executed. 

2.5 Memory Management Operations 
~~~~~~~~~-

2-8

Both translation lookaside buffers (11.Bs) and nonpaged segment registers
(NPSRs) are completely ftushed whenever the ATI'92010 Hobbit Microproces­
sor is reset (either by asserting the extemal reset pin, or the detection of an inter­
nal event that causes the ATI'92010 to reset). The 1LBs and NPSRs are also
ftushed whenever the segment table base register is written.

Individual 1LB and NPSR entries may be ftushed using the FLUSHPI'E
instruction. lf the effective address in the FLUSHPI'E instruction is cached in
either the translation lookaside buffer or the nonpaged segment register, the
1LB or NPSR entry is marked invalid. Any subsequent access of that virtual
address will be translated by the füll memory map table walk.

The FLUSHPI'E instruction is not privileged, so a user process may ftush any or
all entries in the on-chip 1LBs or NPSRs. Although this may degrade the per­
formance of the process, it does not affect correctness, since the memory man­
agement tables in physical memory define the address mapping and the
FLUSHPI'E instruction does not alter the tables in memory.

~ is asserted when page table entries are fetched. lf the R and M bits of the
entry are current, ~ is cleared. lf either R or M bits must be updated, the
page table entry is written back to memory with ~ still asserted. LOCK is de­
asserted when the write completes.

lf there is an extemal bus error signaled during the memory management table
walk, the ATI'92010 Hobbit Microprocessor will take an exception.

January 1993 01992, 1993 ATAT

AT/'92010 Programmer's Reference Manual

2.6 MMU Performance

Table 2-4 details the performance of address translation. These performance
numbers do not include the time required to access the actual item. In the table
an A represents the YO delay for a single word access.

Table 2-4 Address Translation Performance

Condltlon Penalty

Text reference, micro-TLB miss, TLBINPSR miss, paged segment
3A+3 walk, R blt modified

Text reference, micro-TLB miss, TLBJNPSR miss, paged segment
2A+3 walk, R blt previously set

Text reference, micro-TLB miss, TLBJNPSR miss, nonpaged
A+1 segment walk

Text reference, micro-TLB miss, TLBJNPSR hlt 1

Text reference, micro-TLB hit 0

Data read, TLBJNPSR miss, paged segment walk, R bit modified 3A+3

Data read, TLBINPSR miss, paged segment walk, R bit previously
2A+3 set

Data read, TLBINPSR miss, nonpaged segment walk A+3

Data read, TLBJNPSR hlt 0

Data wrlte, TLBJNPSR miss, paged segment walk, R ancl/or M bit
3A+3 modified

Data wrlte, TLBJNPSR miss, paged segment walk, R and M blt
2A+3 previously set -

Data wrlte, TLBJNPSR miss, nonpaged segment walk A+3

Data wrlte, TLBJNPSR hit and Mbit previously set 0

0 1992, 1993 AT&T January 1993 2-9

Chapter3 Instruction Set

The instruction set falls into eight categories: Arithmetic, Compare, Logical,
Move, Program Control, Sbift, Tagged, and Other. There are two special nota­
tions used within these categories: [] and (1). For example, ADD[3] indicates
that both the ADD and ADD3 instructions apply. JMP (FIT)(YIN) indicates that
JMPFY, JMPFN, JMPfY, and JMPTN instructions exist.

3.1 Format

The general instruction format is:

lnstruction source, destination

where the instruction can contain a 3 indicating that the destination is the accu­
mulator (R4). Otherwise, the destination is the second operand.

Table 3-1 list the instructions, in alphabetic order, identifies the type and
function.

Table 3-1 lnstructlons (Sheet 1 of 2)

lnstructlon Functlon Type

ADD[3] Add Arithmetic

ADDI Add interlocked Arithmetic

AND[3] Bitwise logical AND Logical

ANDI Bitwise logical AND interlocked Logical

CALL Call subroutine C Program Control

CATCH Fill stack cache Program Control

CLRE Clear PSW enter guard bit Other

CMPEQ Equality comparison Compare

CMPGT Signed greater than comparison Compare

CMPHI High comparison (unsigned greater than) Compare

CPU Register access escape Other

CRET Return from kemel with context Program Control

01992, 1993 AT&T January 1993 3-1

A1T92010 Programmer's Reference Manual

Table 3·31 lnstructions (Sheet2 of 2)

lnstructlon Function Type

DIV[3] Divide Arithmetic

DQM Double-word or Quad-word move Move

ENTER Enter subroutine Program Control

FLUSHD Flush data cache Other

FLUSHDCE Flush data cache entry Other

FLUSHI Flush the decoded instruction cache Other

FLUSHP Flush the prefetch buffer Other

FLUSHPBE Flush an entry in prefetch buffer Other

FLUSHPTE Flush a page table entry in the TLBs Other

JMP Unconditional Jump Program Control

JMP(Fln (YIN) Conditional jump based on PSW flag bit Program Control

KCALL Kernelcall Prograrn Control

KRET Return from kernel Program Control

LDRAA Load relative address into the accumulator Move

MOV Move Move

MOVA Move address 'Move

MUL[3] Multiply Arithmetic

NOP No operation Other

OR[3] Bitwise logical OR Logical

ORI Bitwise logical OR interlocked Logical

POPN Free n entries from stack space Program Control

RETURN Return from subroutine Program Control

REM[3] Remainder Arithmetic

SHL[3] Left shift Shift

SHR[3] Arithmetic right shift Shift

SUB[3] Subtract Arithmetic

TADD Tagged addition Tagged

TESTC Test program status word carry Other

TESTV Test program status word overflow Other

TSUB Tagged subtraction Tagged

UDIV Unsigned divide Arithmetic

UREM Unsigned remainder Arithmetic

USHR[3] Logical right shift Shift

XOR[3] Bitwise logical exclusive OR Shift

3-2 January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Reference Manual

3.2 Pipeline Considerations
~~~~~~~~~-

01992, 1993 AT&T 

Certain combinations of instructions may produce unexpected results because of 
the pipelining within the microprocessor. Most of these cases are noted in the 
descriptions of each instruction that follows this section. The following is a 
summary of these combinations. 

• There must be at least two instructions separating an instructions that sets the 
Carry and Overflow bits (such as ADD or MUL) and an instruction that 
explicitly reads the program status word, using the CPU prefix. The interven­
ing instructions are not necessary if the Carry and Overflow bits are queried 
with the TESTC or TESTV instructions. 

• An ENTER cannot immediately follow the invalidation of the page into 
which it enters. There should be two instructions between the invalidation of 
the page and the ENTER instruction to allow the memory table to update. 

• If an ADD, SHL, or MUL instruction with a destination size of byte or half­
word results in a number that overflows the destination size, but can fit in a 
32-bit word, a subsequent instruction may use the 32-bit version of the 
result, rather than a truncated 8- or 16-bit result. The non-truncated result 
may affect the computation if the MUL, USHR, or ADD overflows its byte 
or half-word destination and 

-the following instruction is a divide or a right shift and it uses the 
destination of the first instruction as one of its operands, or 

-the destination of the second instruction is larger than the destination of 
the first instruction. ' 

Using the truncated version of the result can be forced by interposing two 
instructions between the MUL, SHL, or ADD and the following instruction. 
For example: 

MUL 

USHR 

MUL 
MOV 

$0x&F,R4:BMUL$0x7F, R4:B$$ 
$4,R4:B --+ instr 

instr 
USHR$4,R4:B 

$0x7F,R4:BMUL$0x&F,R4:B 

R4:B, R8:L --+instr 

instr 
MOVR4:B, R8:L 

January 1993 3-3 



A1T92010 Programmer's Reference Manual 

• An instruction that remis the SHAD register cannot be executed immediately 
after ENTER or RETIJRN. Two NOPs should be placed between such 
instructions to permit the writing of the SHAD register. For example: 

ENTER 

MOV 

CALL 

ADD 

3.3 Descriptions 

R-16ENTERR-16 

$new, %SHADNOP 

NOP 

MOV$new, %SHAD 

routineCALLroutine 

$16, %SHADNOP 

NOP 

ADD$16,%SHAD 

~~~~~~~~~~ 

Table 3-2

Abv.

abs32

fgen[n]

flow32

gen[n]

imm[n]

istk5

pvtr110

stk5

stk8

stk32

uimm[n]

wai[n]

word32

The following pages contain detailed descriptions of the instruction set. Abbre­
viations used in the following pages are defined in Table 3-2.

Abbreviations

Description

A 32-bit value with any of the two-word operand addressing modes: PC-relative or absolute

Any of the following modes with a value that can fit in n-bits: absolute, immediate, stack offset or stack
offset indirect.

A 32-bit value with any of the four-word operand addressing modes (modes ::!: OxC): absolute, absolute
indirect, PC-relative or stack offset indirect mode.

Any of the following modes with a value that can fit in n-bits: absolute, immediate, stack offset or stack
offset indirect. Note that the CPU prefix instruction modifies the meaning of theses addressing modes.

A two's complement constant in the range-2""1 through 2""1-1

An lndirect Stack Offset mode of type word with the offset a number divisible by four in the range O
through 124.

A PC-offset mode where the offset is a number divisible by 2 in the range -1024 through -1022

A Stack Offset mode with the offset number in the range 0 through 124 and is divisible by four, (the
operand size of word).

A Stack Offset mode which is operand size of word.

A Stack Offset mode with the offset any 32-bit number.

An unsigned constant in the range 0 through 2"-1

An unsigned constant in the range 0 through 2"-1 which is multiplied by 4 (word-aligned).

A 32-bit value with any of the four word operand addressing modes (modes > = Ox C): absolute,
immediate modes, stack offset or stack offset indirect.

January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Rejerence Manual ADD-Addition

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

ADD-Addition

ADD[3] src, dst

ADD:
dst+=dst
''unsigned overftow" ? PSW.C = 1 : PSW.C = 0
"signed overftow" ? PSW. V = 1 : PSW. V = 0

ADD3:
Ace = dst + src
''unsigned overftow" ? PSW.C = 1 : PSW.C = 0
"signed overftow" ? PSW. V = 1 : PSW. V = 0

The source operand is added to the destination operand and the sum is placed in
either the destination (ADD) or the Accumulator (ADD3).

The PSW C-bit is set to 1 on unsigned overftow and the PSW V-bit is set to 1 on
signed overftow, otherwise the PSW C- and V-bits are set to 0 (zero).

Encodings:

length opcode lnstructlon src d8t

2 OxOD ADD3 wai5, stk5
2 Ox14 ADD imm5, stk5
2 Ox15 ADD3 imm5, stk5

2 Ox16 ADD stk5, stk5

2 Ox17 ADD3 stk5 stk5
6 Ox23 ADD gen16, gen16
6 Ox33 ADD3 gen16, gen16
10 Ox23 ADD gen32, gen32
10 Ox33 ADD3 gen32, gen32

January 1993

ADDl-addition interlocked

Name:

Format:

Operation:

Description:

A7792010 Programmer's Reference Manual

ADDl-eddition interlocked

ADDI src, dst

hidden dst
dst+= src
Acc=hidden

The source operand is added to the destination operand, and the sum is placed
in the destination. ~ is asserted during the fetch of dst if dst is in memory
and not in the stack cache.~~ is deasserted at the completion of the final
store to dst. No other accesses are done between the fetch and store of dst. The
original value of dst is placed in the accumulator. If the accumulator is not in
the stack cache, a store is made after the interlocked 1/0 completes.

The ~W carry and overftow bits are not affected by ADDI.

Encodings:

length opcode lnstructlon sn: dst

6 Ox03 ADDI gen16 gen16

10 Ox03 ADDI gen32 gen32

Notes

Pipeline bypass hazards associated with semaphore operations are avoided in
the ATI'92010 Hobbit Microprocessor by clearing the pipeline before an inter­
locked instruction enters the first pipeline stage. No other instruction is allowed
into the pipeline until the executing interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the
previous value of R4; hence, no operation is performed.

If the accumulator is not in the stack cache, CSP = MSP, an 1/0 access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner; ADDI is not restartable from this
point of the operation.

January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Reference Manual AND-bitwise logical AND

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

AND-bitwise logical AND

AND[3] src, dst

AND:
dst & = src

AND3:
Ace = dst & src

A bitwise logical AND operation is performed on the source and destination
operands. The result is placed in either the destination (AND) or the accumula­
tor (AND3).

Encodings:

length opcode lnstructlon arc eist

2 OXOE AND3 imm5, stk5

2 OxOF AND stk5 stk5

6 Ox22 AND gen16 gen16
6 Ox32 AND3 gen16 gen16
10 Ox22 AND gen32 gen32
10 Ox32 AND3 gen32 gen32

January 1993 3-7

ANDI-bitwise logical AND interlocked

Name:

Format:

Operation:

Description:

AT/'92010 Programmer's Reference Manual

ANDl-bitwise logical AND interlocked

ANDI src, dst

hidden =dst
dst&= src
Acc=hidden

A bitwise logical AND operation is performed on the source and destination
operands, and the result is placed in the destination. ~ is asserted during the
fetch of dst if dst is in memory and not in the stack cache. ~ is deasserted at
the completion of the final store to dst. No other accesses are done between the
fetch and store of dst. The original value of dst is placed in the accumulator. lf
the accumulator is not in the stack cache, a store is made after the interlocked II
0 completes.

Encodings:

length opcode lnstructlon src dst

6 0x02 ANDI gen16 gen16
10 0x02 ANDI gen32 gen32

Notes:

Pipeline bypass hazards associated with semaphore operations are avoided in
the Hobbit microprocessor by clearing the pipeline before an interlocked
instmction enters the first pipeline stage. No other instmction is allowed into the
pipeline until the executing interlocked instmction completes.

lf R4 is the destination, after the interlocked instmction completes, R4 is the
previous value of R4; hence, no operation is performed.

lf the accumulator is not in the stack cache, CSP = MSP, an 1/0 access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner; ANDI is not restartable from this
point of the operation.

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Reference Manual CAIL-subroutine C

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

CALL--subroutine C

CALLsrc

• (CSP) = next PC

PC=src

/*save retum PC in RO*/

The next program counter (PC) value (retum address) is stored at the location
indicated by the stack pointer (SP) or the interrupt stack pointer (ISP), which­
ever is the current stack pointer (CSP). The source operand (subroutine entry
point) becomes the new PC value.

Encodings:

length opcode subcode lnstructlon src

2 0x01 - CALL pcrel10

6 OxOO Ox1 CALL flow32

Notes:

lf the location pointed to by CALL cannot be referenced, a fetch-fault results. In
this case, the PC stored on the interrupt stack is the target PC, not the PC of the
original CALL. The address of the original CALL instruction is not saved. In
the event of an indirect CALL, if the ATI'92010 Hobbit Microprocessor cannot
reference the indirection word, a read-fault results and the PC stored on the
interrupt stack is that of the indirect CALL. In either case, fetch-fault or ~ad­
fault, the correct retum PC is saved in RO.

January 1993

CATCH-fil.l stack cache

3-10

Name:

Fonnat:

Operation:

SCSIZE))

Description:

A'IT92010 Programmer's Reference Manual

CATCH-fill stack cache

CATCHsrc

if(CSP=SP)
{
while ((MSP < (CSP + src)) && ((MSP- SP)<

{
stack_cache [MSP] = memory [MSP]
stack_cache [MSP + 4] = memory [MSP + 4]
stack_cache [MSP + 8] = memory [MSP + 8]
stack_cache [MSP + 12] = memory [MSP + 12]
MSP=MSP+ 16
}
}

lf the CSP is SP, the stack cache is filled to the extent indicated by the source
operand. The semantics of CATCH are somewhat different depending upon the
address mode of src.

• lf the source operand is defined with a stack offset mode (Roffset), the
address is formed by adding the offset to the SP to determine the target value
for the MSP (MSP = SP + offset).

• lf the source Operand is defined with an immediate mode ($data), the imme­
diate value is used as the target for the MSP (MSP = data).

• lfthe source operand is defined with a stack offset indirect mode (•Roffset),
the target value for the MSP is fetched from memory (or the stack cache) at
the address formed by adding the offset to SP (MSP = *(offset + SP)).

• If the source operand is defined with an absolute mode ($addr), the target
value for the MSP is fetched from memory (or the stack cache) at the address
specified in the absolute address (MSP = *(addr)).

In no case will the MSP be incremented beyond the size of the on-chip stack
cache. lf the CSP is the ISP, CATCH is a no-op.

January 1993 01992, 1993 ATl&T

ATIY2010 Programmer's Rejerence Manual CATCH-fill stock cache

01992, 1993 AT&T

Encodings:

length opcode aubcode lnatructlon arc

2 Ox02 Ox1 CATCH stk8•

6 OxOO Ox8 CATCH word32

•. The 8-bit stack offset is zero-extended and multiplied by six­
teen, providing an effective range of 0-4080 in quad-aligned
inacments.

Notes:

The MSP must be greater than or equal to the SP when CATCH executes; other­
wise, instruction operation depends upon context and is therefore unpredictable.

lf virtual addressing is enabled, and the MSP is updated, the new value is
checked to verify that stores are valid at the current execution level. lf the
address is not valid, either a read fault, exception ID Ox8, or a MMU Table Walk
Fault, exception ID OxB, is flagged for CATCH.

Since the lower 4 bits of the SP do not exist, cache filling is done in 16-byte
blocks. lf the source operand to CATCH is not divisible by 16, the cache is filled
to the next multiple of 16.

January 1993 3-11

CLRE-clear PSW E- bit

3-12

ATT92010 Programmer's Rejerence Manual

Name: CLJm..;.-cJear PSW E· bit

Fonnat: CLRE

Description:

CLRE clears the PSW enter guard bit. The PSW enter guard bit is set by
ENTER which has successfully completed execution.

Encodings:

length opcode aubcode lnatructlon

2 OxOB OxA CLRE

January 1993 01992, 1993 AT&T

A1192010 Pmgrammer's Rejerence Manual CMP-compare

01992, 1993 AT&T

Name: · CMP-compare

Format: ~lsrcl,src2

Operation: srcl rel src2? PSW.F = 1: PSW.F = 0

Description:

The program status word (PSW) ftag bit is set to 1 if the comparison between
the two source operands is true. H the comparison is false, the PSW ftag bit is
set to 0. Rel is one of the following:

Encodings:

length opcode

2 Ox10
2 Ox11
2 Ox12
2 Ox13
6 Ox1D
6 Ox1E
6 Ox1F
10 Ox1D
10 Ox1E
10 Ox1F

Notes:

EQ-equal to

GT-signed greater than

HI-higher (unsigned greater than)

lnstructlon src1 •rc2
CMPEQ imm5 stk5

CMPGT stk5 stk5

CMPGT imm5 stk5

CMPEQ stk5 stk5

CMPGT gen16 gen16
CMPHI gen16 gen16
CMPEQ gen16 gen16
CMPGT gen32 gen32
CMPHI gen32 gen32
CMPEQ gen32 gen32

src 1 is specified in the source operand field. src2 is specified in the destination
operand field.

CMPEQ can test either = or '* , CMPGT can test signed >, ~. <, s; and CMPHI
can test unsigned >, ~. <, s; . In the latter case, it is a matter of ordering the oper­
ands properly and testing the correct sense of the PSW ftag bit.

January 1993 3-13

CPU-register access escape

3-14

AT/'92010 Program.mer's Reference Manual

Name: CPU-register access escape

Format: CPU

Description:

CPU is a prefix that changes the meaning of the instruction that follows the
CPU instruction. Specifically, it changes the definition of address modes to
enable access to the intemal registers. Allword-sized address modes remain the
same, while mode Ox7 becomes the register addressing mode. The register
number is stored in the operand field.

The low 4 bits of the operand are used as the register number; the high-order
bits are ignored, but should be zero. Accessing the undefined register 0 results
in an unimplemented instruction exception.

Encodings:

tength opcode subcode lnstruction

2 OxOB OxO CPU

Notes:

The instruction following CPU is considered part of the CPU instruction. If an
exception or interrupt occurs, the program counter (PC) saved on the interrupt
stack is the PC of the CPU instruction. In the prefetch and decode section of the
ATI'92010 Hobbit Microprocessor, the PC is incremented by four or six par­
cels, depending on whether the instruction following the CPU instruction is
three or five parcels.

Caution:

The CPU is an interlocked instruction in that no other instruction is started until
the CPU reaches the result register pipeline stage. lt is possible to cause a
hazard between instructions that modify the program status word (PSW) ftag,
carry, overftow, or enter guard bits. If either of the two instructions proceeding
CPU modify the PSW ftag, carry, overftow, or enter guard bits, any access of
the PSW should be padded by two no-operation instructions (NOPs).

January 1993 C 1992, 1993 AT&T

A1T92010 Programmer's Reference Manual CREI'-context retum from kemel

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

· CRET--conte:xt return from kemel

CRET

disable interrupts
SP = *(ISP + 0)
fetch *(ISP+ 4)
enable interrupts
CATCH (MSP- SP)
disable interrupts
MSP= •(ISP+4)
PC = *(ISP + 8)
PSW = •(ISP+ 12)
ISP=ISP+ 16
if (CSP = ISP)

SHAD=ISP
else

SHAD=SP
enable interrupts

/* RO wrt ISP */

/* R4 wrt ISP */
/* R8 wrt ISP */
/* R12 wrt ISP */

A new stack pointer (SP) is loaded from the interrupt stack. The current contents
of the stack cache are discarded and an unconditional CATCH is performed fill­
ing the stack cache to the maximum stack pointer (MSP). The program status
word (PSW) and program counter (PC) values are restored by popping the inter­
rupt Stack.

Encodings:

length opcode subcode lnstructlon

2 OxOB Ox5 CRET

Notes:

The target MSP is fetched prior to the CATCH portion executing, but the MSP
is not updated until the CATCH portion completes. Interrupts are disabled dur­
ing a portion of CRET. Interrupts are enabled during the CATCH portion of
CRET at the level of the restored PSW. The CATCH portion of CRET is per­
formed consistently with the restored PSW current stack pointer and virtual/
physical addressing mode bits.

January 1993 3-15

CREI'-context retum from kernel A1T92010 Programmer'.r Reference Manual

3-16

If a memory fault occurs· while reading from the interrupt stack, the ATI'92010
Bobbit Microprocessor resets.

CRET is privileged. If CRET is initiated at the user level, a privilege exception
is executed.

CRET cannot be traced.

If the location pointed to by the new PC value cannot be referenced, a fetch­
fault results. In this case, the PC stored on the interrupt stack is the new PC
value, not the address of CRET.

January 1993 C 1992, 1993 AT&T

A1T92010 Programmer's Reference Manual DW--divide

01992, 1993 AT&T

Name: DIV-divide

Format: DIV[3] src, dst

Operation: DIV:
dst/= dst src
DIV3:
Acc=dst /src

Description:

Tbe destination operand is divided by the source operand, and the quotient is
placed in either the destination (DIV) or the accumulator (DIV3). 1\vo's com­
plement division is performed. See Section 3.3 for a description of integer arith­
metic.

Encodings:

length opcode lnstruction sn: eist

6 Ox27 DIV gen16 gen16
6 Ox37 DIV3 gen16 gen16
10 Ox27 DIV gen32 gen32
10 Ox37 DIV3 gen32 gen32

Notes:

Division by zero results in a zero divide exception. Division of Ox80000000 by
OxFFFFFFFF sets the program status word (PSW) overftow bit and retums the
result Ox80000000. The overftow bit is cleared in all other cases. The carry bit is
unchanged in all cases.

January 1993 3-17

DQM-double-word or quod-word move A1T92010 Programmer's Rejerence Manual

3-18

Name: DQM--double·word or quad-word move

Fonnat: DQM src,dst

Operation: dst= src

Description:

Double- or quad-word move moves either two or four contiguous words from
the source to the destination. The size of the transfer is determined by the desti­
nation address mode field.

Double-word data size is encoded in the destination mode field as OxO, Ox4, or
Ox8. Quad-word data size is encoded in the destination mode field as OxC, OxD,
orOxE.

lf the source mode is OxF, the constant is replicated either two or four times
depending upon the destination mode. lf the destination mode is OxF, an illegal
instruction exception is taken. All other addressing modes result in an align­
ment fault.

Encodings:

length opcode lnstruction src8 dsP

6 0x07 DOM gen16 gen16
10 0x07 DOM gen32 gen32

a. The limitations given in the description and note apply.

Notes:

Source and destination addresses of quad-word operands must be divisible by
16 (quad-aligned) and addresses of double-word operands must be divisible by
8 (double-aligned). Otherwise, an alignment exception occurs. Only word
addressing modes are permitted for the source and the special modes for the
destination. Other modes cause an illegal instruction sequence to occur.

January 1993 01992, 1993 AT&T

ATI92010 Programmer's Rejerence Manual

Name:

Format:

Operation:

C 1992, 1993 AT&T

ENTER-enter subroutine

ENTER-enter subroutine

EN1ERsrc

if (CSP = ISP)
{

SHAD =ISP = target
}
if ((CSP = SP) && (src address mode!= stack offset))
{

}

/*ftush stack cache unconditionally*/
while (MSP > SHAD)
{

memory[MSP- 16] = stack_cache[MSP- 16]
memory[MSP- 12] = stack_cache[MSP- 12]
memory[MSP - 8] = stack_cache[MSP - 8]
memory[MSP-4] = stack_cache[MSP-4]
MSP-=16

/*force stack cache to be empty* I
SHAD = MSP = SP = target

if ((CSP = SP) && (src address mode = stack offset))
{

}

/*ftush only as much of the stack cache as is necessary*/
if (MSP - target > SCSIZE)
{

}

while ((MSP SHAD) && (MSP- taget> SCSIZE))
{

}

memory[MSP - 16] = stack_cache[MSP-16]
memory[MSP- 12] = stack_cache[MSP - 12]
memory[MSP - 8] = stack_cache[MSP - 8]
memory[MSP- 4] = stack_cache[MSP- 4]
MSP-=16

if (MSP > (target + SCSIZE))
MSP = target + SCSIZE

SHAD = SP = target

PSW.E= 1

January 1993 3-19

ENTER-enter subroutine

3-20

A1T92010 Programmer's Rejerence Manual

Description:

The CSP is altered either by adding the source operand (stack offset addressing
mode) or replacing it with a new value (all other addressing modes). lf the SP is
not the CSP, no data traffic between the stack cache and memory is performed,
and the MSP is not updated. lf the SP is the CSP, the contents of the stack cache
are written to memory (if necessary) in quad-word transfers until no more than
SCSIZE bytes are held in the cache. The semantics of ENTER are somewhat
different depending upon the address mode of src.

1. lf the source operand is defined with a stack offset mode (Roffset), the
address formed by adding the offset to the CSP is used to determine the tar­
get value (MSP = CSP + offset)~ The bounds of the stack cache are set to
encompass the füll amount of ENTER, within the limits of SCSIZE.

2. lf the source operand is defined with an immediate mode ($data), the imme­
diate value is used as the target value (MSP = data) and the stack cache is
set empty at the completion of ENTER.

3. lfthe source operand is defined with a stack offset indirect mode (•Roffset),
the target value is fetched from memory (or the stack cache) using the
address formed by adding the offset to the CSP (MSP = •(offset + CSP))
and the stack cache is set empty at the completion of ENTER.

4. lf the source operand is defined with an absolute mode (•$addr), the target
value for the CSP is fetched from memory (or the stack cache) using the
address specified in the absolute address (MSP = •(addr)) and the stack
cache is set empty at the completion of ENTER.

Upon successful completion of ENTER, the PSW enter guard bit is set. This bit
is cleared with CLRE.

Encodings:

length opcode subcode lnstructlon src

2 Ox02 oxo ENTER stka•

6 OxOO Ox9 ENTER word32

a. The 8-bit stack offset is left padded with ones and multi­
plied by 16 giving it an effective range of -16 to -4096 in
quad-aligned decrements.

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Rejerence Manual ENTER-enter subroutine

01992, 1993 AT&T

Notes:

H the 6-byte form of ENTER is used with a stack offset mode for src, the magni­
tude of the offset must be greater than SCSIZE, and the offset must be less than
or equal to 0, or unpredictable results may occur. The MSP must be greater than
or equal to the SP when ENTER begins; otherwise, instruction operation
depends upon context and, therefore, is unpredictable.

For the stack offset addressing model, only negative stack offsets are legal; pos­
itive stack offsets trigger an illegal instruction sequence. This includes ENTER
RO.

H virtual addressing is enabled, the target address and the new MSP, if the MSP
is updated, are checked to verify that stores are valid at the current execution
level. H the addresses are not valid, a read fault exception, exception type 8, or
MMU an MMU table walk fault, exception ID OxB, is ftagged for ENTER. The
exception is processed after any stack ftushing is completed. Since the lower 4
bits of the SP do not exist, the lower 4 bits of the source operand are ignored.

January 1993 3-21

FLUSHD-jlush data cache

3-22

A1792010 Programmer's Reference Manual

Name: FLUSHD-ftusb data cache

Format: FLUSHD

Description:

The data cache is flushed; all entries are marked invalid.

Encodings:

length opcode subcode instruction

2 OxOB Ox6 FLUSHD

Notes:

Since there is no data cache, FLUSHD is not implemented in hardware. An
unimplemented instruction sequence is taken.

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Rejerence Manual FLUSHDCE-flush a data cache entry

01992, 1993 AT&T

Name:

Format:

Description:

FLUSllDCE-ftush a data cache entry

FLUSHDCE src

The quad-word at src is ftushed from the data cache.

Encodings:

length opcode subcode lnstructlon src

6 ··OxOO OXD FLUSHDCE word32

Notes:

Since there is no data cache, FLUSHDCE is not implemented in hardware. An
unimplemented instmction sequence is taken.

0

January 1993 3-23

FLUSHl-Jlush decoded instruction cache AT1'92010 Programmer's Reference Manual

Name: FLUSID-ftush decoded instruction cache

Format: Fl.USlll

Description:

The decoded instruction cache is ftushed: all entries are marked invalid.

Encodings:

length opcocle subcocle lnstructlon

2 OxOB Ox3 FLUSHI
=-

3-24 January 1993 01992, 1993 AT&T

A1T92010 Programmer's Reference Manual FLUSHP-flush prejetch bujfer cache

Name: FLUSHP-ftush prefetch butrer cache

Fonnat: FLUSHP

Description:

The prefetch buffer cache is ftushed: all entries are marked invalid.

Encodings:

length opcode subcode lnstruction

2 OxOB Ox4 FLUSHP

01992, 1993 AT&T January 1993 3-25

FLUSHPBE-jlush a prefetch buffer entry ATl'92010Programmer~ReferenceManual

3-26

Name: FLUSHPBE-ftush a prefetch butrer entry

Format: FLUSHPBE src

Description:

The quad-word at src is marked invalid in the PFB. No other caches are
affected.

Encodings:

length opcode subcode lnstructlon src

6 OxOO OxC FLUSHPBE word32

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Reference Manual FLUSHPTE-jlush a page table entry from the TLBs

01992, 1993 AT&T

Name: FLUSllPTE--ßush a page table entry from the TLBs

Format: FLUSHPI'Esrc

Description:

lf there is a page table entry for the address defined by src, in either the text or
data TLBs, the entry is marked invalid. Both the text and data nonpaged seg­
ment registers are invalidated.

Encodings:

length opcode subcode lnstructlon src

6 OxOO OxB FLUSHPTE word32

Notes:

For FLUSHPl'E, the src operand is an address. Normally, the address is moved
into the stack cache and the stack offset indirect addressing mode is used for src.

January 1993 3-27

JMP-jump

3-28

Name:

Format:

Operation:

Description:

JMP-~ump

JMPdst
JMPT(YIN) dst
JMPF(YIN) dst

JMP:
PC=&dst

JMPT:

A1T92010 Programmer's Reference Manual

if (PSW.F) PC = &eist
JMPF:

if (!PSW.F) PC = &dst

The jump instructions cause the address of the destination operand to become
the new PC value unconditionally (JMP), if the PSW ftag bit is 1 (JMPT), or if
the PSW ftag bit is 0 (JMPF). A branch prediction bit is available for the condi­
tional jumps to indicate that the jump more likely will (Y), or will not (N) be
taken. Conditional jumps cannot use indirect addressing modes.

Encodings:

length opcode subcode instructlon src(dst)

2 Ox03 - JMP pcrel10

2 Ox04 - JMPFN pcrel10

2 Ox05 - JMPFY pcrel10

2 Ox06 - JMPTN pcrel10

2 Ox07 - JMPTY pcrel10

6 OxOO Ox3 JMP flow32
6 OxOO Ox4 JMPFN abs32
6 OxOO Ox5 JMPFY abs32
6 OxOO Ox6 JMPTN abs32

6 OxOO Ox7 JMPTY abs32

Notes:

If the location pointed to by the jump instruction cannot be referenced, a fetch­
fault results. In this case, the PC stored on the interrupt stack is the target PC,
not the PC of the original jump. Tue address of the original jump instruction is
not saved. In the event of an indirect jump, if the ATI92010 Hobbit Micropro­
cessor cannot reference the indirection word, a read-fault results and the PC
stored on the interrupt stack is that of the indirect jump.

January 1993 C 1992, 1993 AT&T

ATl'92010 Programmer's Reference Manual KCALL-kemel call

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

KCA~emel call

KCALLsrc

disable interrupts
•(ISP-12) = src
•(ISP - 8) = PC of next instmction
•(ISP-4) =PSW
ISP-=16
SHAD=ISP
PC= •(VB +O)
PSW = PSW & OxFFFFOOOO
enable interrupts

/*R4 wrt new ISP*/
/*RS wrt new ISP*/
/*R12 wrt new ISP*/

The PSW, PC (return point), and src operand values are saved on the interrupt
stack as quad-words. The new PC value is read from the memory location
pointed to by the vector base register. The low-order 16 bits of the PSW are set
to 0, which selects kemel execution level, selects the ISP as the CSP, disables
tracing, and inhibits interrupts. The PSW virtual physical addressing mode bit
does not change.

Encodings:

length opcode subcode lnstructlon src

2 OxOO - KCALL imm1~

6 OxOO OxO KCALL word32

• The 10-bit immediate value is zero-extended and multiplied by
four giving it an effective range of 0 through 4092 in increments
of4.

Notes:

Interrupts are disabled while KCALL is processing. If a memory fault occurs
while writing to the interrupt stack or reading from the table pointed to by the
vector base, the Hobbit microprocessor resets.

If the location pointed to by the KCALL PC entry in the vector table cannot be
referenced, a fetch-fault results. In this case, the PC stored on the interrupt stack
is the target PC (the value in the location pointed to by the VB), not the PC ofthe
original KCALL instmction.

January 1993 3-29

KREJ'-lcernel retum A1T92010 Programmer's Reference Manual

Name:

Fonnat:

Operation:

Description:

KRET-kemel return

KRET

disable interrupts
PC =•(ISP + 8)
PSW= •(ISP+ 12)
ISP+=16
if (CSP = ISP)

SHAD=ISP
eise

SHAD=SP
enable interrupts

/*RS wrt ISP*/
/*R12 wrt ISP*/

The PSW and PC values are restored from the interrupt stack.

Encodings:

length opcocle subcode lnstructlon

2 OxOB Ox1 KRET

Notes:

Interrupts are disabled while KRET is processing. Ha memory fault occurs
while reading from the interrupt stack the ATI'92010 resets. KRET is privi­
leged. H KRET is executed at the user level, a privilege exception is executed.

KRET cannot be traced.

If the location pointed to by the new PC value cannot be referenced, a fetch­
fault results. In this case, the PC stored on the interrupt stack is the new PC
value, not the address of KRET.

January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Rejerence Manual LDRAA-load relative address into accumulator

01992, 1993 AT&T

Name: LDRAA-load relative address into accumulator

Fonnat: LDRAAdst

Operation: Acc=&dst

Description

The destination address is calculated as if a JMP instruction was being executed
and stored in the accumulator.

Encodings:

January 1993 3-31

MOV-move ATI92010 Programmer's Reference Manual

Name: MOV-move

Fonnat: MOV src,dst

Operation: dst= src

Description:

Tue value of the source operand is stored in the destination.

Encodings:

length opcocle lnstructlon 81'C eist

2 OxOA MOV wai5, stk5

2 Ox18 MOV stk5, stk5

2 Ox19 MOV istk5, stk5

2 Ox1A MOV stk5, istk5

2 Ox1B MOV istk5, istk5

2 Ox1C MOV imm5, stk5

6 Ox06 MOV gen16, gen16

10 Ox06 MOV gen32, gen32

January 1993 01992, 1993 AT&T

AT/92010 Programmer's Reference Manual MOVA-move address

01992, 1993 AT&T

Name: MOVA-move address

Format: MOVA src, dst

Operation: dst= &src

Description:

The address of the source operand is calculated and stored in the destination.

Encodings:

length opcode lnstructlon src dst

2 Ox1D MOVA stk5, stk5

6 Ox04 MOVA gen16*, gen16

10 Ox04 MOVA gen32*, gen32

• The source operand must use a word addressing mode
(that is modes :?: OxC) except for immediate as already
noted. Any other mode causes an illegal instruction
exception.

Notes:

If the size of the destination is byte or half-word, the calculated address is trun­
cated (or sign-extended) to 8 or 16 bits. An immediate source operand as well as
a register source or destination causes an illegal instruction exception.

January 1993 3-33

MU~ltiply

Name:

Format:

Operation:

Description:

A7T92010 Programmer's Reference Manual

MUI-multiply

MUL[3] src, dst

MUL:

dst * =src
"unsigned overftow" ? PSW.C = 1 : PSW.C = 0
"signed overftow" ? PSW.V = 1 : PSW.V = 0

MUL3:

Ace = dst * src
''unsigned overftow" ? PSW.C = 1 : PSW.C = 0
"signed overftow" ? PSW. V = 1 : PSW. V = 0

The source operand is multiplied by the destination operand and the product is
placed in either the destination (MUL) or the accumulator (MUL3). The PSW
carry bit is set to 1 if the product of the operands as unsigned values overftows
the destination (or accumulator); similarly, the PSW overftow bit is set to 1 if
the product of the operands as signed values overftows the destination (or accu­
mulator). Otherwise, the PSW carry and overftow bits are set to 0. See Section
3.3 for a description of integer arithmetic.

Encodings:

length opcode lnstruction src dst

6 Ox26 MUL gen16, gen16
6 Ox36 MUL3 gen16, gen16

10 Ox26 MUL gen32, gen32
10 Ox36 MUL3 gen32, gen32

January 1993 01992, 1993 ATltT

A7T920/0 Programmer's Reference Manual NOP-no-operation

Name: NOP-no-operation

Fonnat: NOP

Description:

No operation is performed.

Encodings:

length opcode subcode lnstructlon

2 OxOB Ox2 NOP

01992, 1993 AT&T January 1993

OR~itwise logical OR

Name:

Format:

Operation:

Description:

A1792010 Programmer's Reference Manual

OR-bitwise logical OR

OR[3] src, dst

OR:
dst 1 = src

OR3:
Ace = dst 1 src

A bitwise logical OR is performed on the source and destination operands, and
the result is placed in either the destination (OR) or the accumulator (OR3).

Encodings:

length opcode lnstructlon arc dat

6 Ox21 OR gen16, gen16

6 OX31 OR3 gen16, gen16

10 Ox21 OR gen32, gen32

10 OX31. OR3 gen32. gen32

January 1993 01992, 1993 AT&T

ATIY2010 Programmer's Reference Manual ORl-bitwise logical OR interlocked

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

ORI-bitwise logical OR interlocked

ORI src, dst

hidden=dst
dst 1 = src
Acc=hidden

A bitwise logical OR operation is perfonned on the source and destination
operands and the result is placed in the destination. ~ is asserted during the
fetch of dst if dst is in memory and not in the stack cache. ~ is deasserted at
the completion of the store to dst. No other accesses are done between the fetch
and store of dst. The original value of dst is placed in the accumulator. If the
accumulator is not in the stack cache, a store is made after the interlocked 1/0
completes.

Encodings:

length opcode lnstructlon src eist

6 Ox01 ORI gen16, gen16
10 Ox01 ORI gen32, gen32

Notes:

Pipeline bypass hazards associated with semaphore operations are avoided in
the Hobbit microprocessor by clearing the pipeline before an interlocked
instruction enters the first pipeline stage. No other instruction is allowed into the
pipeline until the executing interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the
previous value of R4; hence, no operation is performed.

If the accumulator is not in the stack cache, CSP = MSP, an 1/0 access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner, since ORI is not restartable from
this point of the operation.

January 1993 3-37

POPN-pop n entries from stack cache A7T92010 Programmer's Reference Manual

Name: POPN-pop n entries from stack cache

Format:

Operation:

Description:

POPNsrc

disable interrupts
SHAD = CSP = CSP + src
if ((CSP = SP) && (CSP > MSP))
MSPSP
enable interrupts

Tbe src operand is fetched, and added to the CSP and SHAD. If the CSP is SP,
and the new SP value exceeds the MSP, the MSP is also updated to the new
value. If the CSP is ISP, the MSP is not updated.

Encodings:

length opcode subcode lnstruction sn:

2 0x02 Ox3 POPN stkB*

6 OxOO OxF POPN stk32

• The 8-bit stack: offset is zero extended and multiplied by 16
giving it an effective range of 0 through 4080 in quad-aligned
increments.

Notes:

Only the stack offset addressing mode is legal; any other mode results in an ille­
gal instruction exception sequence. Negative stack offsets are illegal.

January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Reference Manual REM-remainder

C 1992, 1993 AT&T

Name:

Format:

Operation:

Description:

REM-remainder

REM[3] src, dst

REM:
dst % = src
REM3:
Ace = dst % src

The destination operand is divided by the source operand, and the remainder is
placed in either the destination (REM) or the accumulator (REM3). Two's com­
plement division is performed. See Section 3.3 for a description of integer arith­
metic.

Encodings:

length opcode instructlon src dst

6 Ox25 REM gen16, gen16
6 Ox35 REM3 gen16, gen16
10 Ox25 REM gen32, gen32
10 Ox35 REM3 gen32, gen32

Notes:

Division by zero results in a zero divide exception. The PSW overflow bit is
always cleared by REM, and the carry bit is unchanged in all the cases.

January 1993 3-39

REIVRN-return from subroutine AT/92010 Programmer's Reference Manual

Name: RETURN-return from subroutine

Format:

Operation:

Description:

RETURNsrc

disable interrupts
PC= PC* (CSP + src)
SHAD = CSP = CSP + src
if ((CSP = SP) && (CSP > MSP))
MSP=SP
enable interrupts

The src operand is fetched and used as the new PC value. lf the CSP is SP, and
the new SP value exceeds the MSP, the MSP is also updated to the new value. If
the CSP is ISP, the MSP is not updated.

Encodings:

length opcocle subcode lnstructlon src

2 0x02 Ox2 RETURN stk8*

6 OxOO Ox2 RETURN stk32

• Tue 8-bit stack offset is zero extended and multiplied by 16
giving it an effective range of 0 through 4080 in quad-aligned
increments.

Notes:

Only the stack offset addressing mode is legal; any other mode results in an ille­
gal instruction exception sequence. Even though the lower 4 bits of the SP do
not exist, RETURN can obtain a new PC for a word-aligned register offset that
is not a multiple of 16; but when adjusting the SP, the lower 4 bits of the offset
are ignored. For example:

RETURNR4

obtains the new PC from R4, but the SP does not change. Similarly,

RETURNR20

obtains the new PC from R20, but the SP only increments 16. Only positive off­
sets are legal. Negative offsets result in an illegal instruction exception
sequence. If the location pointed to by the new PC value cannot be referenced, a
fetch-fault results. In this case, the PC stored on the interrupt stack is the new
PC values, not the address of RETURN.

January 1993 01992, 1993 AT&T

A7T92010 Programmer's Reference Manual SHL-shift left

01992, 1993 AT&T

Name:

Fonnat:

Operation:

Description:

SJIL-.-5hift left

SHL[3] src, dst

SHL:
dst << = Unsigned(src)

SHL3:
Ace= dst << Unsigned(src)

The destination operand is sbifted left by tbe number of bits indicated by tbe
source Operand. Z.Cros replace tbe bits sbifted out of tbe least significant bit of
dst. Only tbe low-order 5 bits of src are used for tbe sbift amount. The upper bits
are ignored. For SHL3, tbe result is placed in tbe accumulator and tbe destina­
tion is left unchanged.

Encodings:

length opcode lnstructlon -src eist

2 Ox1E SHL3 uimm5, stk5

6 Ox2E SHL gen16, gen16

6 Ox3E SHL3 gen16, gen16

10 Ox2E SHL gen32, gen32

10 OX3E SHL3 gen32, gen32

January 1993 3-41

SHR-arithmetic shift righ

Name:

Format:

Operation:

Description:

ATI'92010 Programmer's Reference Manual

SHR-arithmetic shift right

SHR[3] src, dst

SHR:
dst>>= src
HR3:
Ace = dst >> src

The destination operand is shifted right by the number of bits indicated by the
source operand. The sign bit of the destination is copied as bits are shifted right­
ward. Only the low-order 5 bits of src are used for the shift amount. The upper
bits are ignored. For SHR3, the result is placed in the accumulator and the desti­
nation is left unchanged.

Encodings:

length opcode instructlon src eist

2 Ox1F SHR3 uimm5, stk5

6 Ox2C SHR gen16, gen16
6 Ox3C SHR3 gen16, gen16
10 Ox2C SHR gen32, gen32
10 OX3C SHR3 gen32, gen32

January 1993 01992, 1993 AT&T

AT/'92010 Programmer's Rejerence Manual SUB-subtract

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

SUB-subtract

SUB[3] src, dst

SUB:
dst-= src
''unsigned borrow" ? PSW.C = 1 : PSW.C = 0
"signed borrow" ? PSW.V = 1 : PSW.V = 0

SUB3:
Ace = dst - src
''unsigned borrow" ? PSW.C = 1 : PSW.C = 0
"signed borrow" ? PSW.V = 1 : PSW. V= 0

The source operand is subtracted from the destination operand, and the differ­
ence is placed in either the destination (SUB) or the accumulator (SUB3). The
PSW cany bit is set on unsigned overftow and the PSW overftow bit is set on
signed overftow; otherwise, the PSW cany and overftow bits are set to 0.

Encodings:

length opcode lnstructlon src eist

6 Ox20 SUB gen16, gen16

6 Ox30 SUB3 gen16, gen16

10 Ox20 SUB gen32, gen32

10 Ox30 SUB3 gen32, gen32

January 1993

TADD-tagged addition

Name:

Fonnat:

Operation:

Description:

A11Y2010 Programmer's Reference Manual

TADD-tagged addition

TADD src, dst

if ((src[l:O] != OxO) 11 (dst[l:O] != OxO))
PSW.F=l

eise
{
dst + src
''unsigned overftow" ? PSW.C = 1 : PSW.C = 0
"signed overftow" ? PSW. V = 1 : PSW. V = 0
PSW.F = PSW.V
}

if (PSW.F = 0)
dst = dst + src

The source operand is added to the destination operand, and the sum is placed
in the destination if the PSW ftag bit is set to 0. The PSW ftag bit is set to 1 if
the low 2 bits of either the source and destination operands are non zero or the
PSW overftow bit is set to 1. The PSW cany bit is set to 1 on unsigned over­
ftow, and the PSW overftow bit is set to 1 on signed overftow; otherwise, the
PSW carry and overftow bits are set to 0. See Section 3.3 for a description of
integer arithmetic.

Encodings:

length opcode lnstructlon arc dst

6 OxOC TADD gen16, gen16
10 OxOC TADD gen32, gen32

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Rejerence Manual TESTC-test PSW carry

01992, 1993 AT&T

Name:

Format:

Operation:

Description:

TESTC-test PSW carry

TESTC

PSW.F = PSW.C
PSW.C=O

The PSW carry bit is copied into the PSW ftag bit, and the PSW carry bit is set
toO.

Encodings:

length opcode 8Ubcode lnstructlon

2 OxOB OX9 TESTC

January 1993

TES7V-test PSW overftow

Name:

Format:

Operation:

Description:

ATIY2010 Programmer's Reference Manual

TESTV-test PSW overftow

TESTV

PSW.F = PSW.V
PSW.V=O

The PSW overftow bit is copied into the PSW ftag bit, and the PSW overftow bit
is set to 0.

Encodings:

January 1993 01992, 1993 AT&T

ATT92010 Programmer's Reference Manual TSUB--taggedsubtraction

01992, 1993 AT&T

Name:

Fonnat:

Operation:

Description:

TSUB-tagged subtraction

TSUB src, dst

if ((src[l :O] != OxO) II (dst[l :O] != OxO))
PSW.F= 1

eise
{
dst-src
''unsigned borrow" ? PSW.C = 1 : PSW.C = 0
"signed borrow" ? PSW.V = 1 : PSW.V = 0
PSW.F = PSW.V
}

if (PSW.F = 0)
dst = dst - src

The source operand is subtracted from the destination operand, and the differ­
ence is placed in the destination if the PSW ftag bit is set to 0. The PSW ftag bit
is set to 1 if the low 2 bits of either the source and destination operands are non­
zero or the overflow bit is set to 1. The PSW carry bit is set to 1 on unsigned
overflow, and the PSW overflow bit is set to 1 on signed overflow; otherwise,
the PSW carry and overflow bits are set to 0. See Section 3.3 for a description of
integer arithmetic.

Encodings:

length opcode lnstruction src dst

6 OxOD TSUB gen16, gen16

10 OxOD TSUB gen32, gen32

January 1993 3-47

UDN-unsigned divide ATI'92010 Programmer'.r Reference Manual

Name: UDIV-unsigned divide

Format: UDIV src, dst

Operation: dst += dst src

Description:

The destination operand is divided by the source operand and the quotient is
placed in the destination. Unsigned division is performed.

Encodings:

length opcode instructlon src dst

6 Ox2F UDIV gen16, gen16

10 Ox2F UDIV gen32, gen32

Notes:

Division by zero results in a zero divide exception. The PSW carry bit is always
cleared by UDIV, and the overflow bit is unchanged in all the cases.

January 1993 C 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual UREM-unsigned remainder

01992, 1993 AT&T

Name: UREM-unsigned remainder

Format: UREM src, dst

Operation: dst % = src

Description: .

Tue destination operand is divided by the source operand, and the remainder is
placed in the destination. Unsigned division is performed. See Chapter 1 for a
description of integer arithmetic.

Encodings:

length opcode lnstructlon arc dat

6 0x05 UREM gen16, gen16

10 0x05 UREM gen32, gen32

Notes:

Division by zero results in a zero divide exception. Tue PSW carry bit is always
cleared by UDIY, and the PSW overftow bit is unchanged in all the cases.

January 1993 3-49

USHR-unsigned shift right

Name:

Format:

Operation:

Description:

AT1'92010 Programmer's Reference Manual

USBR-unsigned shift right

SHR[3] src, dst

USHR:
dst >> = Unsigned(src)

USHR3:
Ace= dst >> Unsigned(src)

The destination operand is shifted right by the number of bits indicated by the
source operand. Z.Cros replace the bits shifted out of the most significant bit of
destination operand. Only the low 5 bits of the source operand are used for the
shift amount. The upper bits are ignored. For USHR3, the result is placed in the
accumulator and the destination is left unchanged.

Encodings:

length opcode lnstructlon arc dat

6 Ox2D USHR gen16, gen16

6 Ox3D USHR3 gen16, gen16

10 Ox2D USHR gen32, gen32

10 Ox3D USHR3 gen32, gen32

January 1993 01992, 1993 AT&T

ATI92010 Programmer's Reference Manual XOR-bitwise logical exclusive OR

01992, 1993 AT&T

Name:

Fonnat:

Operation:

Description:

XOR-bitwise logical exclusive OR

XOR[3] src, dst

XOR:
dst /1. = src

OR3:
Ace = dst /1. src

A bitwise logical exclusive OR operation is performed on the source and desti­
nation operands, and the result is placed in either the destination (XOR) or the
accumulator (XOR3).

Encodings:

length opcode lnstructlon src dst

6 Ox24 XOR gen16, gen16

6 Ox34 XOR3 gen16, gen16

10 Ox24 XOR gen32, gen32

10 Ox34 XOR3 gen32, gen32

January 1993 3-51

Chapter 4

01992, 1993 AT&T

Performance

The bottom line in performance is the length of time required to execute a pro­
gram. This is usually factored into three areas:

• the total number ofinstructions required (for the program)

• the average number of cycles per instruction

• the clock rate

Because of the highly pipelined nature of the ATI'92010 Bobbit Microproces­
sor, it is difficult to measure how long it takes to execute a single instruction.
Many instructions can be executed at the rate of one per cycle, since pipelining
allows the execution of instructions to overlap. This section provides perfor­
mance data based on parameters detailed in the next section.

4.1 Execution Time

In order to describe the time it takes to execute an instruction, execution times
are specified assuming the following conditions:

• Instruction fetches must access in the instruction cache

• Only the stack offset, immediate, register, absolute (for jumps and calls
only), or program counter relative addressing modes are used

• All stack offset accesses are captured in the stack cache

• No data hazards occur between instructions

There are a some pipeline delays that may cause an instruction to take longer to
execute. These delays (see section 4-2) should be added to the base execution
time.

January 1993 4-1

A17Y2010 Programmers Rejerence Manual

4-2

Throughout this section abbreviations are used, in tables, to represent
performance cycles. These abbreviation are:

IC - decoded instruction cache
PDU - prefetch and decode unit
A - memory access time for a single word access
D - memory access time for a double word access
Q- memory access time for a quad word access
M-memory
N - number of va]i<J entries in the stack cache
SC - stack cache
E-ENTER size
EU - Execution unit

For the purpose of estimating execution time, instructions fall into five groups:

• Simple

• Multi-Cycle Arithmetic

• DQM

• Conditional Jump

• Miscellaneous

Delays are also grouped into four types:

• Fetch and Empty Pipeline

• Operand Access

• Data 'fype

• Miscellaneous

Listings of execution times for each instruction group are shown in Table 4-1
through Table 4-5. Delays are listed in Table 4-6 through Table 4-9.

January 1993 01992, 1993 AT&T

A1T92010 Programmer's Reference Manual

Table 4-32 Simple lnstruction

01992, 1993 ATllT

lnatructlon Min Max lnstructlon Min Max

ADD 1 1 OR 1 1

ADD3 1 1 OR3 1 1

ADD1 2 2 ORI 2 2

AND 1 1 RETURN 2 2

AND3 1 1 POPN 2 2

ANDI 2 2 SHL 1 1

CALL 1 1 SHL3 1 1

CLRE 1 1 SHR 1 1

CMP 1 1 SHR3 1 1

CPU 0 0 SUB 1 1

FLUSHI 1 1 SUB3 1 1

FLUSHP 1 1 TADD 1 1

FLUSHPBE 1 1 TESTC 1 1

FLUSHPTE 1 1 TESTV 1 1

JMP 0 1 TSUB 1 1

LDRAA 1 1 USHR 1 1

MOV 1 1 USHR3 1 1

MOVA 1 1 XOR 1 1

NOP 1 1 XOR3 1 1

Note that RETURNs are always indirect, do not add delay for indirection. If an
unconditional jump is folded into the previous instruction, it takes no time to
execute; otherwise, it takes one cycle.

Tbe execution times for multi-cycle arithmetic instructions are data dependent.
For these instructions, instruction fetch, operand access and data type delays are
possible.

January 1993

A1T92010 Programmers Reference Manual

Table 4-33

Table 4-34

Multl-Cycle Arlthmetic lnstructlons

lnstructlon Min Max

DIV 38 38

DIV3 38 38

MUL 3 20

MUL3 3 20

REM 38 38

REM3 38 38

UDIV 38 38

UREM 38 38

For DQM type, instruction fetch delays are possible.

DQM lnstructions

TypeofDQM Cycles

Constant to SC double-word 3

Constant to SC quad-word 5

Constant to M double-word 1+0

Constant to M quad-word 1+Q

SC double-word to SC double-word 4

SC quad-word to SC quad-word 8

SC/M double-word to M/SC double-word 2+0

SC/M quad-word to M/SC quad-word 4+0

M double-word to M double-word 2.0

M quad-word to M quad-word 9.s

For conditional jump instructions, fetch delays are possible if the branch is not
folded.

January 1993 01992, 1993 AT&T

Table 4-35

Table 4-36

ATIY2010 Programmer :S- Rejerence Manual

Conditlonal Jump lnstruction

lnstructlon Cycles

Correct precliction, folded 0

Correct precliction, unfolded 1

lncorrect precliction, jump after compare 3

lncorrect precliction, jump 2 instructions after compare 2

lncorrect precliction, jump 3 instructions after compare 1

lncorrect precliction, unfolded, 4 or more instructions after compare 1

lncorrect precliction, folded, 4 or more instructions after compare 0

For the remaining miscellaneous instructions, instruction fetch and miscella­
neous delays are possible.

Miscellaneous lnstruction

lnstructlon Cycles

CATCH 1

CRET 11 +Q

ENTER 1 + (Q. E)

KCALL S+D+A

KRET 10+0

Unimplemented opcocle 7+A

Exception 9+D+A

4.2 Delays

Instruction fetch delays occur when the instruction is not immediately available
for execution by the execution unit (EU). The instruction misses the IC and the
EU reset the PDU to fetch the desired instruction. If the EU is using 1/0, the
PDU is accomplishing a unrelated memory access at the time of reset, or if the
PDU is handling a previously received fault, the delays may be extended. Table
4-6 lists the Fetch and Empty Pipeline Delays.

01992, 1993 AT&T January 1993 4-5

ATI92010 Programmers Reference Manual

Table 4-37

Table 4-38

Fetch and Empty Pipeline Delays

Condltlon Penalty

IC miss, instruction contained in prefetch buffer 3

IC miss, instruction contained in single double-word
5+0 in rnemory

IC miss, instruction contained in single quad-word
memory 5+20

IC miss, instruction contained in 2 quad-words in
8+20 mernory

IC miss and instruction is a CPU-prefix operation 1

EU pipeline empty 2

Operand accesses may also take longer than predicted (using these tables)
because of the possibility of a data hazard or intemal contention for 1/0. Data
hazards occur when a previous instmctions tires to write to a memory location
that overlaps the location being read by a subsequent instmction.

1/0 contention occurs when the EU wants to make an extemal memory access
while the PDU is in the middle of an access. Tue Operand Access Delays are
listed in Table 4-7 followed by the Data TYPe and Miscellaneous Delay tables.

Operand Access Delays

Condltlon Penalty

One operand in memory 1+A

Two operancls in mernory 1 +2A

One or two operancls indirect, both pointers in stack
1 cache

One or two operands indirect, one pointer in rnemory 1+A

Two operancls indirect, both pointers in memory 1 +2A

Destination in memory A

January 1993 01992, 1993 AT&T

Table 4-39

Table 4-40

ATI92010 Programmer's Reference Manual

Data iype Delays

Condltlon Penalty

One operand not word type 1

Two operands not word type 2

Mlscellaneous Delays

Condltlon Penalty

One or two operands indirect, both pointers in stacl< cache 1

One or two operands lndlrect, one pointer In memory 1+A

Two operands indirect, both pointers In memory 1 +2A

4.3 Branch Folding

The A'IT92010 Hobbit Microprocessor provides a next address field witb each
decoded instruction. Wben tbe PDU detects a non-branching operation followed
by a branch, itfolds tbe two instructions to form a single instructionlbranch
operation.

As a result, branches are rarely explicitly executed because tbey are folded and
executed along witb otber instructions. A one-parcel branch will fold into a pre­
vious one- or three-parcel instruction and execute togetber except when tbe pre­
vious instruction is:

• anotber jump of any kind

• any one-parcel instruction witb a five-bit opcode in tbe range 00000->00111

• any three-parcel monadic instruction (for example, opcode equals 000000)

01992, 1993 AT&T January 1993 4-7

Appendix A

01992, 1993 AT&T

Bus Arbitration and
Electrical Characteristics

To facilitate multiple bus masters, the bus arbitration protocol does not make the
ATI'92010 the default bus master. A centrali7.ed arbiter selects the current bus
master and controls transactions over the bus. A synchronous bus protocol is
used to exchange ownership of the bus from one master to another. The central
bus arbiter must execute this protocol, asserting and negating eaRANT to the var­
ious bus masters in a consistent manner.

A.1 Bus Protocol

The signals involved in this protocol generated by the central bus arbiter are
RRESB'I', 8GRANT, and tmTRY. There is a eGRANT for each bus master, with the other
signals shared among bus masters.

The signals involved in this protocol generated by the bus masters are BlrnO.
ftXRT, IOC[l :O], and ~. There is a 'BlmO for each bus master, with the other
signals shared among bus masters. Finally, the device being accessed generates
J5Tim{,

Upon reset of the system, which must be synchronous, the arbiter selects one of
the requesting bus masters as current bus master by asserting its 8öRANT. Having
received BGRANT, the master takes ownership of the bus. The bus arbiter moni­
tors the bus, keeping track of the state of the bus. The asserts ~ when an UO
transaction is pending (upon reset, the ATf92010 Hobbit Microprocessors want
to start execution at address OxO).

The arbiter selects a new bus master by deasserting BGRANT to the current bus
master and asserting BGRANT to the next bus master at the end of any outstanding
bus transactions. If the current bus master loses eGRANT with an outstanding
transaction on the bus, that master~ remains on the bus until ~ is
asserted with IOC[l :0] equal to zero and ~ is deasserted.

January 1993 A·1

ATI'92010 Programmer's Reference Manual

The new bus master takes ownership of the bus at the beginning of the next bus
cycle after receipt of BGRANT. The arbiter must assert BGRANT in a manner which
inserts a dead cycle between the end of the previous bus owner's BGRANT and
the beginning of the next bus owner's 8GRANT.

The A'ITI'92010 asserts ~ to indicate that it has bus ownership, and it
deasserts~ to indicate that it has relinquished the bus. In Figure A-1, bus
cycles 1 through 4 show a typical bus request and acquisition.

A.2 Surrendering the Bus -------------------

A·2

The arbiter signals the A'IT92010 Hobbit microprocessor to relinquish the bus
by deasserting BGRANT. When BGRANT is deasserted, the A'IT92010 will relin­
quish ownership of the bus and deassert ~. lf the microprocessor is running
a bus transaction and 8GRANT is deasserted, ownership of the bus will be relin­
quished after receipt of 15TÄeK with IOC[l :O] equal to zero and ~ is deas­
serted.

lf the microprocessor is not running a bus transaction and BGRANT is deasserted,
ownership of the bus will be relinquished at the beginning of the next bus cycle.
~ is deasserted by the microprocessor in the same bus cycle that ownership
of the bus is being relinquished.

Most arbitration protocols will want to continue to grant the bus to the current
bus master if it continues to request the bus by asserting its ~.

In Figure A-1, bus cycles 15 through 17 show a typical release of the bus.

Figure A-1 represents a cacheable single-word data read followed by a double­
word text read. The accesses are not interlocked and don't produce bus errors.

January 1993 01992, 1993 AT&T

Flgure A-2

AT/'92010 Programmer's Reference Manual

Read BUS Cycles wlth BUS Arbltration

BUS 1
CYCLE 2 3 4 s a 1 e 9 ! 10 j 11 j 12 13 j 14 l 1s 1a j 11 1e l 19 l 20

1 : :

START

AD

NCACHE

-+--L 1 1

1 1
1 1
1 1

;----;--..... --~~~--..... -+---+---+---l---+----+---+--+---+----1---..... _,r,
(r--r--'"""T':--..,...--.,........,--'-'",.... ... ,....~--...,..--.,....--,.~

!--~---!---~, 1 1 1 ,----------

IOC[1:0] 1 ~ '. '. '.oxo: '. : X : Ox~ X '.ox~ ~--
Di'f

LOCK

HA[31:2)

BE[3:0]

HD[31:0]

DTACK

BERR

HOLD

RETRY

BREQ

BGRANT

BGACK

IL[2:0]

STOP

DTRI 1
1

HRESET:
1

CLK34

CLK23

' 1

1
·I
1

01992, 1993 AT&T January 1993 A-3

AT/'92010 Programmer's Reference Manual

A.3 Bus Transaction Types
~~~~~~~~~-

A-4 

Nonnal bus transfers begin with the assertion o:t'nÄRT and end with the asser­
tion of DTACK. In case of an error during a bus transfer, the transaction may be 
ended by the assertion of :mrnsm' or mnm with ~. Interlocked bus transfers 
end with the deassertion of ~ following a ~. Multiple word transfers end 
when IOC[l :0] = 0 with assertion of D'i'ACK. Sub-word accesses are the same as 
single-word accesses with the exception that only the appropriate byte enables 
are asserted. 

A .3 .1 Read Transactions 

Read transactions may fetch text or data. Text reads are always double-word 
transfers. Data reads are either single-, double- or quad-word transfers. After 
completion of a read transaction, a loopback is performed if the microprocessor 
remains owner of the bus and there are no pending bus transactions. See Figure 
A-1 for the following example. 

Bus cycles 4 through 6 show a typical read transaction. In bus cycles 7 through 
10, a loopback cycle is performed. In bus cycles 11 and 15, a double-word 
transaction is performed. In bus cycle 16, another loopback cycle is performed. 
The ATT92010 holds all bus signals at their previous values and loops back the 
data read on the previous cycle. 

Note The bus transaction may be ended by Hmm' or mmR with ~ to 
signal an error. 

A .3 .2 Write Transactions 

Write transactions are either single-, double-, or quad-word transfers. Refer to 
Figure A-2 for the following example. 

Bus cycles 4 through 7 show a typical write transaction. In bus cycles 8 through 
10, the microprocessor rnaintains the previous bus cycles values on rnost sig­
nals. In bus cycles 11 through 13 and bus cycles 14 through 15, two more write 
transactions are performed. 

Note The bus transaction rnay be ended by Hmm' or JJmm with I>'l'ACK to 
signal an error. 

January 1993 01992, 1993 AT&T 



AT1'92010 Programmer's Reference Manual 

Figura A-3 Wrlte BUS Cycles wlth BUS Arbltration 

BUS 
1 2 CYCLE s s 1 1 1 s 1 s l 10 j 11 j 12 j 1a l 14 j 1s l 1s j 11 

1 1 1 1 

START 
-~-!---+---!-, -~~ : : -+--L 

1 ,:'--+--+--+-~ 
1 1 

Ro 

NCACHE 
: ~ ... _...._ ...... ___ __ 

IOC[1:0] 1 : : :~:: x'.0xi ~:~ ~~-
oif : : : : : ~ ......... ,.__,._"'I""'"__, 

1 1 1 1 1 1 
1 1 1 1 1 1 

;, 1 1 1 1 1 ' 
-----, 1 1 1 1 1 1"--+--o!-o-+--! 

-K'. '. '. '. '. '. ~'.: ~: '. ~~--
---------'k:::::: x::::: >---

LI5CK 

HA[31:2] 

BE[3:0] 

HD[31:0] i----+--1---+-C<: '. '. : : '. X '. : : X : ; )>-+-~ 
öTÄCK 

BERR 1 

HOLD 1 

RETRY 1 1 1 
1 1 

BReäf"\ 
1 1 1 

'--4 __ .......,l \~----+---~,,........;~;...-,._....,_-;-~ 

BGRANT 

BGACK 

IL[2:0] 1 

STOP 1 

Oml 1 

HRESET 1 

CLK34 

CLK23 

O 1992, 1993 AT&T January 1993 A-5 



A1T92010 Programmer's Rejerence Manual 

A .3 .3 lnterlocked Bus Transfer 

This is a read-modify-write type bus operation. This sequence of operations is 
not interruptible. The bus remains locked through the write. If BGRANT is de­
asserted during an interlocked operation, the operation is completed and transfer 
of bus ownership is delayed a clock cycle. Refer to Figure A-3 for the following 
example. 

Bus cycles 2 through 4 show the read portion of the RMW operation. Bus cycles 
7 through 8 show the write portion of the RMW operation. In bus cycle 9, ~ 
remains asserted by the microprocessor adding a dead cycle. In bus cycle 11, the 
next bus cycle begins. 

A .3 .4 Block Data Transfer 

The block transfer sizes that are supported are double- and quad-word. The 
block transfer looks like a series of single-word bus transfers with the micropro­
cessor incrementing address bits HA[3:2] and decrementing IOC[l :0] for each 
access. Blocktransfers are not interruptible. Block transfers may be retried with 
the transfer resuming where it was aborted when Iml'RY is deasserted. 

A.4 Exception Handling 
~~~~~~~~~-

A-6

The exception/error signals provide a means by which external devices can
inform the ATI'92010 of an unusual condition which requires the processor to
deviate from its normal execution.

A .4 .1 Bus Retry

RETRY is asserted to retry the current bus transaction. When RBTRY is asserted
during a valid bus transaction, the ATI'92010 Hobbit Microprocessor aborts the
current bus transfer and masks the ~ input. After ImTRY is deasserted, the
bus transaction is rerun after the microprocessor obtains ownership of the bus as
ImTRY is orthogonal to bus arbitration. In systems with gateways through which
two buses communicate with each other, the retry feature is required to break
deadlock conditions when the two buses have simultaneous requests for their
respective counterpart bus.

A .4 .2 Bus Error

The assertion of BERR indicates an error in a bus transaction of any type. An
internal YO fault is generated when nmm: is asserted and a MÄN is received.
When mMR is asserted and~ received, the exception taken depends upon
the type of bus transaction being terminated.

January 1993 01992, 1993 AT&T

Flgure A-4

AT/'92010 Programmer'.r Reference Manual

lnterlocked BUS Transfer wlth and wlthout Entry

BUS
CYCLE

START

NCACHE

2 3 4 5 6 7 8 9 10 l 11 l 12 13 14 l 1s 1s l 11 l 1s 19 20

1 1 : :

: ,_ !-----i"--+---~'---+-' --+---i---t

1
1

IOC{1 :0) i---i---;.-.;..--;---;.-..;..-.....,.--;-...,_-;..--;,__...;.-_,,..~r.----+------

Dfi

LOCK

H~31~]:=x : : : : : : : : X : : :)~__
BE[3:0] :::X : : : : : : : : X : : :)>--r--,,,_.............,.---.,---,
HD[31:0]~ (: : :x: : : :x: : : : >---

DTACK:
--~:---1---.;---t---;---..... --;---;.---;---.;---;---T----1---.;---t---;---.;---;---;.---;---;
BERRI

1

HOLD:
1

RETRY:
1

BREQ f'""'"\! '/ : f\.....I.
1 1

_B_G_RA_NT_ 1

IL[2:0]

STOP

HRESET 1

CLK34

CLK23

V
1 1
1 1
1 1

1
1

01992, 1993 AT&T January 1993 A-7

A1T92010 Programmer's Rejerence Manual

A-8

A.4.3 Reset

lf RRESBT is asserted, the ATI'92010 Hobbit Microprocessor is reset and any
current bus cycle is aborted.

Signal Prlorlty Level

HRESBT Highest

RBTRY 0

~ Lowest

January 1993 01992, 1993 AT&T

Appendix B Electrical Characteristics

This appendix. presents reference infonnation on the electrical characteristics of
the ATI'92010 Hobbit Microprocessor. This information is presented in table
format as well as diagrams.

B.1 Absolute Maximum Ratings

Stresses in excess of the Absolute Maximum Ratings can cause permanent dam­
age to the device. These are absolute stress ratings only. Functional operation of
the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to Absolute Maxi­
mum Ratings for extended periods can adversely affect device reliability.

Parameter Symbol Min Max Unlt

ldc Supply Voltage Voo -0.5 7.0 V

Ambient Operating Temperature TA 0 70 c
Storage Temperature Tstg -40 125 c

B.2 Handling Precautions
~~~~~~~~~~ 

01992, 1993 AT&T 

All MOS devices must be handled with certain precautions to avoid damage due 
to the accumulation of static charge. Although input protection circuitry has 
been incorporated to minimize the effect of statics buildup, proper cautions 
should be taken to avoid exposure to electrostatic discharge (ESD) during han­
dling and mounting. AT &T employs a human-body model (HBM) for ESD sus­
ceptibility testing. 

January 1993 B-1 



A1T92010 Programmer's Reference Manual 

Table B-1 

B-2 

Since the failure voltage of electrostatic devices is dependent on the current and 
voltage and, hence, the resistance and capacitance, it is important that standard 
values be employed to establish a reference by which to compare test data. Val­
ues of 100 pF and 15000 are the most common and are the values used in the 
AT &T HBM test circuit. The breakdown voltage for the ATl'92010 Bobbit 
Microprocessor is l ,OOOV, according to the HBM, and it is 2,000V according to 
the charged-device model (CDM). 

20 MHz Recommended Operating Conditions 

(Von= 3.3 V 10%; CLK34 and CLK23 = 20 MHz) 

Parameter Symbol Min Typ Max Unlt 

Input High Voltage VIH 2.2 - Voo+0.3 V 

Input Low Voltage VtL -0.3 - 0.6 V 

Output High Voltage 
ICH= 5.7 mA (pins HD[31:0]) VCH 2.5 - - V 
ICH = 2.5 mA (all pins except HD[31 :0)) 

Output Low Voltage 
IOL = 5.7 mA (pins HD[31:0]) VOL - - 0.3 V 
IOL = 2.5 mA (all pins except HD[31 :0)) 

TDI Input Low Current ITDI - - -1.73 mA 

TMS Input Low Current ITMS - - -0.87 mA 

TCK Input Low Current ITCK - - -0.87 mA 

TRST Input High Current ITRST - - -1.16 mA 

Input Leakage Current 
II -0.01 - 0.01 mA OVS VINS Voo 

3-Stated Output Leakage Current lan -0.01 - 0.01 mA 

Supply Current 
Output Load = 10 pF IDD - 75 95 mA 
Output Load = 50 pF IDD - 125 150 mA 

Standby Current ISB 0 6 30 uA 

January 1993 01992, 1993 AT&T 



Table B-2 

A1T92010 Programmer'.r Referrmce Manual 

30 MHz Recommended Operating Condltions 

(VDD = 5.0 V ±10%; CLK34 and CLK23 = 30 MHz) 

Parameter Symbol Min Typ Max Unlt 

Input High Voltage VIH 3.2 - Voo+0.4 V 

Input Low Voltage VIL -0.4 - 0.8 V 

Output High Voltage 
IOH = 8 mA (pins H0[31:0]) VOH 3.6 - - V 
IOH = 3.5 mA (all pins except HD[31 :O]) 

Output Low Voltage 
IOL = 8 mA (plns HD[31 :O]) VOL - - 0.4 V 
IOL = 3.5 mA (all pins except H0[31 :O]) 

TDI Input Low Current ITDI - - -2.63 mA 

TMS Input Low Current " ITMs - - -1.31 mA 

TCK Input Low Current ITCK - - -1.31 mA 

TRST Input High Current ITRST - - -1.75 mA 

Input Leakage Current II -0.01 - 0.01 mA OVS VINS Voo 

3-Stated Output Leakage Current IOTI -0.01 - 0.01 mA 

Supply Current 
Output Load = 10 pF IDD - 175 220 mA 
Output Load = 50 pF IDD - 285 340 mA 

Standby Current Iss - 9 50 uA 

All timing is based on a 70 pF load under worst-case conditions, although the 
device is capable of driving heavier loads. 

01992, 1993 AT&T January 1993 



A1T92010 Programmer's Rejerence Manual 

Table B-3 

B-4 

Test Loading and Output Derating Factors 

Output Slgnal MaxLoad Test Load Output Derating (nalpF 

(pF) (pF) VDD=3.3V ±10% VDD=S.OV ±10% 

HA[31:2] 100 50 0.09 0.06 

BGACK 100 50 0.09 0.06 

BE[3:0] 100 50 0.09 0.06 

BREQ 100 50 0.09 0.06 

Dif 100 50 0.09 0.06 

IOC[1:0] 100 50 0.09 0.06 

LOCK 100 50 0.09 0.06 

NCACHE 100 50 0.09 0.06 

START 100 50 0.09 0.06 

TDO 100 50 0.09 0.06 

AD 100 50 0.09 0.06 

HD[31:0] 150 50 0.06 0.04 

The Output Derating factor shown above is used to obtain an approximate 
increase rate of output valid delay time with increasing load capacitance up to 
the maximum loading specified. 

January 1993 01992, 1993 AT&T 



Flgure B-1 

Table 8-4 

A1T92010 Programmer's Reference Manual 

Qock 

Two lx clocks in quadrature are required by the ATI'92010 Hobbit Microprocessor. The 
internal clocks are decoded from these inputs. The internal clocks can be stopped in 
phase 1 by asserting 'STO'P prior to phase 1 allowing for burst-mode, single-stepping, and 
suspended operation 

Clock Input Timing 

PHASE 2 3 4 2 

Clock Input Timing Table 

3.3V 5.0V 
Symbol Parameter Unlt 

Min Max Min Max 

t1 RiseTime - 3.0 - 3.0 ns 

t2 Pulse High 22.5 27.5 14.5 18.5 ns 

t3 Fall Time - 3.0 - 3.0 ns 

t4 Pulse Low 22.5 27.5 14.5 18.5 ns 

t5 Period 50.0 100 33.2 50.0 ns 

t6 Delay 10.5 14.5 6.3 10.2 ns 

C 1992, 1993 AT&T January 1993 8·5 



AT1'92010 Programmer's Rejerence Manual 

Flgure B-2 Synchronous Input Timlng 

17--... 

ts--+ 

~ 

1 

~ 

1 

HRESET 
1 

HD[31:0] 

CLK23 t---d: 14-t1 

BGRANT 1\. 
j_ 1 

j_ 1 

!+-

../ 

~ 
../ 

~ 
j~ 

t11~ 

t1~ 1 t1 

IL[2:0]----..... r-----3.---....... ..__--------------­
STOP------------t:"...J..-ns~-------------

January 1993 01992, 1993 AT&T 



ATI92010 Programmer's Rejermce Manual 

Table B-5 Synchronous Input Timing Table 

3.3V 5.0V 
Symbol Signal Type Refer'ence Unlt 

Min Max Min Max 

t7 HD[31:0] Input Hold CLK34Rise 7 - 6 - ns 

5TACK Input Hold CLK34Rlse 5 - 4 - ns 

t8 BERR Input Hold CLK34 Rise 5 - 4 - ns 

HRESET Input Hold CLK34Rise 5 - 4 - ns 

HD[31:0] Input Setup CLK34Rise 3 - 2 - ns 

DTACK 
t9 

Input Setup CLK34Rise 3 - 2 - ns 

BERR Input Setup CLK34Rise 3 - 2 - ns 

HRESET Input Setup CLK34Rise 3 - 2 - ns 

BGRANT Input Setup CLK23Rise 3 - 2 - ns 

t10 HOLD Input Setup CLK23 Rise 3 - 2 - ns 

RETRY Input Setup CLK23 Rise 3 - 2 - ns 

BGRANT Input Hold CLK23Rise 5 - 4 - ns 

t11 HOLD Input Hold CLK2S Rise 5 - 4 - ns 

RETRY Input Hold CLK23Rise 5 - 4 - ns 

t12 IL[2:0] Input Setup CLK23 Fall 3 - 2 - ns 

t13 IL[2:0] Input Hold CLK23 Fall 5 - 4 - ns 

t14 STOP Input Setup CLK34 Fall 5 - 4 - ns 

t15 STOP Input Hold CLK34 Fall 3 - 2 - ns 

01992, 1993 ATl&T January 1993 B-7 



ATI'92010 Programmer's Reference Manlllll 

Figura B-3 Output Timing 

CLK34 -{ ... ~-------11-----'-===~----------..Jr­
START 

NCACHE 

IOC[1:0] 

ofi 

HA[31:2] 

BE[3:0] 

CLK23 ________ 1. tt7~ i--------
HD[31:0] ---------

Table B-6 Output Timing Table 

3.3V s.ov 
Symbol Signal Type Reference UnH 

Min Max Min Max 

START Output Valid CLK34Rise - 23 - 18 ns 

RD Output Valid CLK34Rise - 23 - 18 ns 

NCACHE Output Valid CLK34Rise - 23 - 18 ns 

IOC[1:0] Output Valid CLK34Rise - 23 - 18 ns 
t16 

oif Output Valid CLK34Rise - 23 - 18 ns 

LOCK Output Valid CLK34Rise - 23 - 18 ns 

HA[31:2] Output Valid CLK34Rise - 19 - 15 ns 

BE[3:0] Output Valid CLK34Rise - 23 - 18 ns 

t17 HD[31:0] Output Valid CLK23 Fall - 24 - 19 ns 

8-8 January 1993 01992, 1993 AT&T 



Figura B-4 BUS Rellnqulsh Cycle Output Timing 

NCACHE 

IOq1:0] 

HA(31:2] 

BE(3:0] 

ATT92010 Pmg~r!r Reference Manual 

CLK23 ___________ 1~4u~ ~--------
HD[31:0) ______ __. 

Table B-7 BUS Rellnqulsh Cycle Output Timing Table 

3.3V 5.0V 
Symbol Slgnal Type Reference Unlt 

Min Mu Min Mu 

START OUtput Hl·Z CLK34Rlse - 26 - 22 ns 

RD OutputHl·Z CLK34Rlse - 26 - 22 ns 

NCACHE Output Hl-Z CLK34Rlse - 26 - 22 ns 

100(1:0) Output Hl-Z CLK34Rlse - 28 - 22 ns 
t18 

oif OutputHl-Z CLK34Rlse - 26 - 22 ns 

LOCK Output Hl-Z CLK34Rlse - 28 - 22 ns 

HA[31:2) OutputHl-Z CLK34Rlse - 28 - 22 ns 

BE[3:0] Output Hl-Z CLK34Rlse - 26 - 22 ns 

t19 HD[31:0) Output Hl-Z CLK23 Fall - 26 - 22 ns 

01992, 1993 AT&T January 1993 



A7T92010 Programmer's Reference Manual 

Flgure B-5 DTRI TO Data Output Timlng 

DTRll { 
HD[31:0] ~--------OOOOOOOOöOOOooC 

Table 8-8 DTRI to Data Output Timing at 50 pF Loading Table 

3.3V 5.0V 
Symbol Signal Type Reference Unlt 

Min Max Min Max 

t20 HD[31:0] OutputHi-Z DTRI Fall - 26 - 22 ns 

121 HD[31:0] OutputVBlid DTRI Rise - 24 - 19 ns 

Flgure B-6 8REQ and 8GACK Timing Diagram 

BREQ--------------
CLK23 ~122 \ ___________ ___,;---

CLK34 -------' '---·-----

BGACK ---------·~-----

Table 8-9 8REQ and 8GACK Output Timing at 50 pF Loading Table 

3.3V s.ov 
Symbol Signal Type Reference 

Min Max Min Max 

t22 BREQ Output Valid CLK23 Rise - 23 - 18 

123 BGACK Output Valid CLK34Rise - 32 - 25 

B-10 January 1993 01992, 1993 AT&T 



ATT92010 Programmer~ Reference Manual 

Table 8-10 JTAG BUS Timing Speclfications 

3.3 V 5.0V 
Signal Type Reference UnH 

Min Max Min Max 

TCK Period - 400.0 - 200.0 - ns 

TCK Pulse High - 200.0 - 100.0 - ns 

TCK Pulselow - 200.0 - 100.0 - ns 

TDI Input Setup TCK rise 50.0 - 25.0 - ns 

TDI Input Hold TCK rise 50.0 - 25.0 - ns 

TMS Input Setup TCK rise 50.0 - 25.0 - ns 

TMS Input Hold TCK rise 50.0 - 25.0 - ns 

TDO Output Valid TCKfall - 100.0 - 50.0 ns 

TDO Output Hi-Z TCKfall - 100.0 - 50.0 ns 

01992, 1993 AT&T January 1993 B-11 





Appendix C Testability 

The ATI'92010 Hobbit Microprocessor is a highly testable design providing 
access to all testability features via the IEEE 1149 .1/05 interface. These 
features are: 

• Single clock delay by-pass 

• Boundary-scan of 1/0 signals 

• Embedded memory built-in test (BIT) and scan features 

• Embedded programmable logic array (PLA) built-in test features 

C.1 Test Access Port (TAP) 
---------------------

01992, 1993 AT&T 

The test access port (TAP) consists of five 1/0 pins and a sequential 16 state 
controller. The signals in the TAP are defined as follows. 

TCK Test Clock-Input-An extemally gated clock signal with a 50% 
duty cycle. The changes on the TAP input signals (TMS and TDI) are 
clocked into the TAP controller, instruction register or selected test 
data register on the rising edge of TCK. 

Changes at the TAP output signal (TDO) occur on the falling edge of 
TCK. This signal does not conform to IEE 1149.1/05 requirement of 
TCK being a free running clock. TCK must be stopped at one (1). The 
TCK input has a built-in pull-up resistor to ensure that a high signal is 
seen on an unconnected input. 

TMS Test Mode Select-Input-A serial control input that is clocked into 
the TAP controller on the rising edge of TCK. The TMS input has a 
built-in pull-up resistor to ensure a high signal value is seen on an 
unconnected input. 

January 1993 C-1 



ATT92010 Programmer's Reference Manual 

Table C-1 

C-2 

TDI Test Data lnput-Input-TDI is clocked into the least significant bit 
of the selected register, data or instruction, on the rising edge of TCK. 
The TDI input has a built-in pull-up resistor to ensure a high signal 
value is seen on an unconnected input. 

TDO Test Data Output-Output-Tue contents of the MSB of the selected 
register, data or instruction, is shifted out of the TDO on the falling 
edge of TCK. TDO is tri-stated except when scanning of data is in 
progress. 

TRST Test Reset-Active low input-TRST is the reset input to the TAP 
controller. Assertion of this input forces the TAP controller into the 
reset state. The TRST input has a built-in pull-down resistor to ensure 
a low signal values is seen on an unconnected input to force the TAP 
controller into the reset state. 

C.2 TAP Controller (TAPC) 

The tap controller (TAPC) is a synchronous finite state machine. This is where, 
under control of the TMS, sequencing through the various operations of the test­
ability circuitry occurs. A definition of each TAPC state is listed in Table C-1 
and a state diagram appears in Figure C-1. 

TAP Controller States (Sheet 1 of 2) 

State Descriptlon 

Exlt(2)-DR. This is a temporary controller state. All test data registers and the instruction reg-
OxO ister retain their previous state. A high signal on the TMS line while in this state causes termi-

nation of the scanning process; a low causes entry into the Shift-DR state. 

Exlt(1)-DR. This is a temporary controller state. All test data registers and the instruction reg-
Ox1 ister retain their previous state. TMS = 1 in this state causes termination of the scanning pro-

cess; TMS = 0 causes entry into the Pause-DR state. 

Shlft-DR. In this controller state, the selected data register shifts data one stage towards its 
Ox2 serial output on each rising edge of TCK. All registers other than the selected test data regis-

ter retain their previous state. 

Pause-DR. This controller state allows shifting of the selected test data register to be tempo-

Ox3 
rarily halted. All test data registers and the instruction register retain their previous state. The 
controller remains in this state while TMS = 0. When TMS goes high, the controller advances 
to the Exit(2)-DR state. 

Select-IR-Scan. This is a temporary controller state in which all test logic retains its previous 
Ox4 state. lf TMS = 0 when the controller is in this state, then a scan sequence for the instruction 

register is initiated. 

January 1993 01992, 1993 AT&T 



ATIY2010 Programmer's Reference Manual 

Table C-1 TAP Controller States (Sheet 2 of 2) 

State Descrlptlon 

Update-DR. During this controller state, data is transterred trom each shift-register stage into 
Ox5 the corresponding parallel output latch (if the selected test data register includes a parallel 

output latch). All shitt-register stages in the selected register retain their previous stete. 

Cspture-DR. In this controller state, data is parallel loaded into the selected test data register. 
Ox6 lt the register does not have a parallel input, or if capturing is not required tor the selected test, 

the register retains its previous state unchanged. 

Select-DR-Scan. This is a temporary controller state in which all test logic retains its previous 
Ox7 state. lf TMS = 0 when the controller is in this state, then a scan sequence tor the selected test 

data register is initiated. 

Exlt(2)-IR. This is a temporary controller state. All test data registers and the instruction regis• 
OxB ter retain their previous state. A high signal on the TMS line while in this state causes termina-

tion ot the scanning process; a low causes entry into the Shift-IR state. 

Exlt(1)-IR. This is a temporary controller state. All test data registers and the instruction regis-
Ox9 ter retain their previous state. lt TMS = 1 while in this state, the scanning process is termi-

nated; if 0, the Pause-IR state is entered. 

OxA 
Shlft·IR. In this controller state, the instruction register shifts data one stage towards its serial 
output on each rising edge ot TCK. 

Pause-IR. This controller state allows shifting ot the instruction register to be temporarily 

OxB 
halted. All test data registers and the instruction register retain their previous state. The con-
troller remains in this state while TMS = 0. When TMS goes high, the controller advances to 
the Exit(2)-DR state. 

Run-Test/ldle. The controller state between scan operations where an intemal test previously 
selected by setting the instruction register may be executed. Registers not involved in the 

OxC application of the test retain their previous state. lt the data in the instruction register does not 
indicate that a test should be executed, then all test logic must retain their previous state. 
Once entered, the controller will remain in the Run-Test/ldle state as long as TMS = 0. 

Update-IR. During this controller state, the instruction is transterred trom each shift-register 
OxD stage of the instruction register into the parallel output latch ot the instruction register. All shitt-

register stages in the instruction register retain their previous state. 

Capture-IR. In this controller state, data is parallel loaded into the instruction register. lt the 
OxE register does not have a parallel input, or it capturing is not required for the selected test, the 

register retains its previous state unchanged. 

Test-Logic-Reset. While in this state, all test circuitry is disabled. The instruction register (IR) 
OxF is raset to select the by-pass register. The controller remains in this state as long as TMS = 1 

or TRST is asserted. 

C 1992, 1993 AT&T January 1993 C-3 



ATT92010 Programmer's Reference Manual 

Figure C ·1 TAP Controller State Diagram 

January 1993 C 1992, 1993 AT&T 



AT192010 Programmer's Reference Manual 

C. 2. 1 lnstruction Register 

The instruction register (IR) allows a test instruction to be shifted into the 
A1T92010 Hobbit Microprocessor. The IR is used to select the test to be per­
fonned or the test data register to be accessed. The IR is seven (7) bits in length. 
Table C-2 identifies the instruction encoding. 

Table C-2 TAP lnstruction Register Encoding 

01992, 1993 AT&T 

lnstructlon 
Register lnstructlon 

Descrlptlon Selected Mnemonlc 

0000000 BS EXTEST BS selected with BS extemal test. 

0000001 BS SAMPLE BS selected with BS sample. 

0000010 BS INTEST BS selected with BS intemal test. 

0000011 PPLA IRPPLA PPLA selected with PPLA seH-test. 

0000100 ICD IRICD lnstruction cache data selected with ICD self-test. 

0000101 SC IRSC Stack cache selected with SC self-test. 

0000110 PFD IRPFD Prefetch cache data selected with PFD seH-test. 

0000111 PFT IRPFT Prefetch cache tag selected with PFT self-test. 

0001xxx NA NA Reserved. 

001xxxx BP BP BP selected with all seH-test. 

01xxxxx BP BP BP selected and BS sample. 

10xxxxx ID ID ID selected and BS sample. 

11xxxxx BP BP BP selected and BS sample. 

C. 2. 2 By-Pass Register 

The by-pass (BP) register provides a single TCK delay path frorn TDI to TDO. 
When the BP register is selected, a 0 is loaded on the rising edge of TCK in the 
Capture-DR controller state. When the Test-Logic-Reset controller state is 
entered, the BP register retains its last value. 

January 1993 C-5 



ATI'92010 Programmer's Reference Manual 

Table c-3 

C. 2. 3 Boundary-Scan Register 

The boundary-scan register (BS) allows testing of circuitry extemal to the 
A1T92010 Hobbit Microprocessor. Additionally, BS provides for sampling and 
examination of the 1/0 values without impacting the operation of the system 
logic. Ninety shift elements are in the boundary-scan shift chain. Ninety-one 
TCKs are required to shift the entire chain from TDI through to TDO. Position 
is given from TDI to TDO. 

Boundary-Scan Shift Chaln ( Sheet 1 of 2) 

Position Name Deacrlptlon Position Name Descrlptlon 

1 HRESET 1 2 CLK23 Sample Only 1 

3 STOP Sample Only 1 4 CLK34 Sample Only 1 

5 DTRI 1 6 3-data Control for VO 

7 031 1/0 8 HD30 vo 
9 HA22 3-State O 10 HD4 110 

11 HA15 3-State 0 12 HD3 110 

13 HA3 3-StateO 14 HD29 1/0 

15 HA14 3-StateO 16 HD28 1/0 

17 HA2 3-State 0 18 HD27 1/0 

19 HA13 3-StateO 20 HD26 1/0 

21 HA31 3-State 0 22 HD25 1/0 

23 HA30 3-State 0 24 HD24 1/0 

25 HA29 3-StateO 26 HD23 1/0 

27 HA12 3-State 0 28 HD22 1/0 

29 HA21 3-State O 30 HD21 1/0 

31 HA11 3-State 0 32 HD20 1/0 

33 HA20 3-StateO 34 HD7 1/0 

35 HA10 3-State 0 36 HD6 1/0 

37 HA19 3-State 0 38 HD5 1/0 

39 HA9 3-State 0 40 HD19 1/0 

41 HA28 3-State 0 42 HD18 1/0 

43 HAB 3-State 0 44 HD17 1/0 

45 HA27 3-State O 46 HD16 1/0 

January 1993 01992, 1993 AT&T 



A7T92010 Programmer's Reference Manual 

Table c-3 Boundary-Scan Shfft Chain { Sheet 2 of 2) 

01992, 1993 AT&T 

Position Name Descriptlon Position Name Descriptlon 

47 HA26 3-State O 48 HD15 110 

49 HA25 3-StateO 50 HD14 1/0 

51 HA7 3-StateO 52 HD13 1/0 

53 HA18 3-StateO 54 HD2 1/0 

55 HA6 3-StateO 56 HD1 1/0 

57 HA17 3-StateO 58 HDO 1/0 

59 HAS 3-StateO 60 HD12 1/0 

61 HA16 3-StateO 62 HD11 1/0 

63 HA4 3-State 0 64 HD10 1/0 

65 HA24 3-StateO 66 HD9 1/0 

67 HA23 3-StateO 68 HD8 110 

69 DIT 3-State 0 70 NCACHE 3-StateO 

71 RD 3-StateO 72 BEO 3-StateO 

73 BE1 3-StateO 74 BE2 3-StateO 

75 BE3 3-State 0 76 IOC1 3-State 0 

n IOCO 3-State 0 78 LOCK 3-StateO 

79 START 3-State 0 80 BGACK 0 

81 BREQ 0 82 3-bus Control for 3-State 0 

83 BGRANT 1 84 RETRY 1 

85 BERR 1 86 HOLD 1 

87 DTACK 1 88 IL2 1 

89 IL1 1 90 ILO 1 

C. 2. 4 ldentlfication Register 

The ID register is readable by serial shifting through the TAP and through nor­
mal register access. This register is described in detail in section 1.5.3. 

January 1993 C-7 





A 

c 

D 

01992, 1993 AT&T 

Glossary 

ALU 

Arithmetic Logic Unit 

CISC 

Complex Instruction Set Computing 

CMOS 

Complementary Metal-Oxide Semiconductor 

CRISP 

C-Language Reduced lnstruction Set Processor 

CSP 

Current Stack Pointer 

DRAM 

DynamicRAM 

DQM 

Double-word or Quad-word Move 

January 1993 G-1 



ATT92010 Programmer's Reference Manual 

E 

J 

M 

G-2 

EU 

Execution Unit 

EPROM 

Erasable Programmahle Read-Only Memory 

IC 

Instruction Cache 

IR 

Instruction Register 

ISP 

Interrupt Stack Pointer 

JTAG 

Joint Test Action Group 

MHBI 

Multiplexed Hobbit Bus Interface 

MIL 

Machine Interface Layer 

MSP 

Maximum Stack Pointer 

January 1993 01992, 1993 AT&T 



N 

p 

C 1992, 1993 AT&T 

NOP 

No-Operation 

NPSR 

Nonpaged Segment Register 

PBR 

Prefetch Buffer Register 

PC 

Program Counter 

PCMCIA 

A1T92010 Programmer's Reference Manual 

Personal Computer Memory Card International Association 

PDU 

Prefetch Decode Unit 

PDR 

Prefetch Decode Register 

PFB 

Prefetch Buffer 

PIR 

Pref etch Instruction Register 

PSW 

Program Status Word 

January 1993 G-3 



AT/92010 Programmer's Reference Manual 

R 

s 

T 

G-4 

RISC 

Reduced Instruction Set Computing 

RR 

Result Register 

SC 

Stack Cache 

SHAD 

Shadow 

SP 

Stack Pointer 

TAP 

Test Access Port 

TAPC 

Test Access Port Controller 

TCK 

Test Clock 

TLB 

Translation Lookaside Buffer 

TMS 

Test Mode Select 

January 1993 C 1992, 1993 AT&T 



V 

01992, 1993 AT&T 

VB 

VectorBase 

VP-1 

VutuaJ/Physical Addressing Bit 1 

VRAM 

Video RAM 

January 1993 

A1792010 Programmer's Reference Manual 





01992, 1993 AT&T 

Index 

A 

Address 

fault 2-3 
mapping 2-3 
nonpaged segment 2-4 
page tables 2-6 
paged segment 2-4 
virtual 2-3 

Addressing 1-3 

Addressing modes 1-27 

Alignment 
half-words 1-4 

Architecture 1-1 

Arithmetic 

B 

division and remainders 1-30 
instruction 

integer operation 1-28 
tagged integer 1-30 

Bits 

numbering 1-3 

Block Diagram 1-2 

Branches 
conditional 1-33 
prediction 

folding 1-33 

January 1993 

Duffer 
translation look-aside 1-18 

Bus 
central arbiter A-1 
cycles A-3 
error A-6 

exception handling A-6 

interlocked transfer A-6 

protocol A-1 
read transactions A-4 
reset A-8 
retry A-6 

surrendering A-2 
transaction types A-4 

write transactions A-4 

Busmaster A-1 

Byte 

Big-endian 1-4 
Little-endian 1-4 

Bytes 

numbering 1-3 

c 
Carry bit 

unsigned overftow 1-29 

CISC 1-1 

CRISP architecture 1-1 

1-1 



A7792010 Programmer's Reference Manual 

1-2 

D 

Data type 1-3 

Delays 
data type 4-7 
direct 4-3 
empty pipeline 4-6 
fetch 4-5 
1187.ards 4-6 
indirect 4-3 
intemal contention 4-6 

miscellaneous 4-7 
operand access 4-6 

E 

Electrical 
BREQ and BGACK B-10 

bus relinquish cycle B-9 

clock input timing B-5 
DTRltoDATA B-10 

handling precautions B-1 
JTAG bus B-11 

maximum ratings B-1 

operating conditions (20MHz) B-2 
operating conditions (30MHz) B-3 

output derating factors B-4 
output timing B-8 

synchronous input timing B-6 
test loading B-4 

Electrical characteristics 
handling precautions B-1 

Encoding 
five-parcel 1-25 
general addressing mode 1-25 
one-parcel 1-22 
three-parcel 1-24 

January 1993 

Event processing 
exception sequence 1-38 
exceptions 1-38 
intetTupt 1-36 
nonmaskable intetTupt 1-37 
priority 1-40 

reset 1-35 
interrupt 

exception 1-34 

trapped niladic exception 1-40 

unimplemented insbuetion 1-39 
unimplemented insbuetion sequence 1-39 

Event processing interrupt sequence 1-37 

F 

Features 1-1 

lnstruction 
LDRAA 1-13 

lnstruction fetching 
aggressive 

demand 1-32 

lnstruction set 
ADD 3-5 
ADDI 3-6 
AND 3-7 
ANDI 3-8 
CALL 3-9 
CATCH 3-10 

CLRE 3-12 
CMP 3-13 
CPU 3-14 
CRET 3-15 
DIV 3-17 
DQM 3-18 

01992, 1993 AT&T . 



01992, 1993 AT&T 

Instruction set (ci>ntinued) 
ENTER 3-19 

FLUSHD 3-22 

FLUSHDCE 3-23 
FLUSlß 3-24 
FLUSHP 3-25 
FLUSHPBE 3-26 
FLUSIIPTE 3-27 
formal 3-1 
JMP 3-28 
KCAU.. 3-29 
KRET 3-30 

LDRAA 3-31 
MOV 3-32 
MOVA 3-33 
MUL 3-34 
NOP 3-35 
OR 3-36 
ORI 3-37 
pipeline consideration 3-3 

POPN 3-38 
REM 3-39 
RETURN 3-40 
SHL 3-41 
SHR 3-42 
SUB 3-43 
TADD 3-44 
TESTC 3-44,3-45 
TESTV 3-46 

TSUB 3-47 
types 3-1 
UDIV 3-48 
UREM 3-49 

USHR 3-50 
XOR 3-51 

Instructions 
five-parcel format 1-24 
one-parcel format 1-21 
three-parcel format 1-23 

tracing 1-33 
unimplemented 1-39 

Integer accumulator 1-7 

January 1993 

ATI92010 Programmer's Reference Manual 

M 

Memory management, see MMU 

MMU 
address ttanslation 2-1 
nonpaged segments 2-1 
Operations 2-8 
paged segments 2-1 
perfonnance 2-9 
physical prefetch buffer 2-1 
1LBs 2-1 

MSP 
see registers 1-5 

0 

Overflow bit 
signed 1-29 

p 

Performance 
branch folding 4-7 
conditional jump 4-5 
delays 4-2 
DQM insttuctions 4-4 

execution time 4-1 
multi-cycle insttuctions 4-4 

Pipeline 3-3 

Procedure 
fast calling 1-30 

R 

Registers 
configuration 1-9 
control 1-8 
fault 1-10 

ID 1-11 

interrupt stack pointer 1-12 



A1T92010 Programmer's Reference Manual 

1-4 

Registers (continued) 

ITAG, seeID 

maximum stack pointer 1-12 
Stack pointer 1-5 

program counter 1-13 

program status word 1-14 
segment table base 1-18 

shadow 1-16 
Stack pointer 1-17 

timerl 1-19 
timer2 1-19 
vector base 1-20 

RISC 1-1 

s 
Segment tables 2-4 

formats 2-4 

mixed pagcd 2-6 
nonpaged 2-6 

Sequence 

fast calling 1-30 

SP 
see registers 1-5 

Stack cache 

instructions 1-6 
maintenance 1-6 
organization 1-5 

precautions 1-8 
register allocation 1-5 

Stack frame 1-6, 1-31 

T 

Test 

access port C-1 
boundary-scan register C-6 

by-pass register C-5 
clock C-1 
controller (TAPC) C-2 

January 1993 

Test (continued) 

data input C-2 

data output C-2 

external circuit C-6 

instruction register C-5 
mode select C-1 

reset C-2 

Testability 

features C-1 

Tnning 

see Electrical 

TLB 
micro 2-1 

Translation lookaside buffers, sec TLB 

w 
Word 

double 3-18 

quad 3-18 

01992, 1993 AT&T 





For additional information, contact your AT& T Acxx>unt Manager or the foUowing: 
U.S.A.: AT&T Microelectronics, Dept AL-500404200, 555 Union Boulevard, AUentown, PA 18103 

1-800-372·2447, FAX 215-778-4106 (In CANADA: 1-800-553·2448, FAX 215-778-4106) 
ASIA PACIFIC: AT&T MicroelectronicsAsia/Pacific:, 14 Science Park Drive, #03-02AI04 The Maxwell, Singapore 0511 

Tel. (65) 778-8833, FAX (65) m-7495, Telex RS 42898 ATTM 
JAPAN: AT&T Microelectronics,AT&T Japan Ltd., 7-18, Higashi-Ootanda 2-chome, Shinagawa-ku, Tokyo 141, Japan 

Tel. (81) 3-5421-1600, FAX (81) 3-5421-1700 
For data requests in Europe: 

AT&T DATAUNE: Tel. (44) 732 742 999, FAX (44) 732 741 221 
For 18Chnical inquires in Europe: 

CENTRAL EUROPE: (49) 89150 860 (Munich), NORTHERN EUROPE: (44) 344 48711 (Bracknell UK), FRANCE: (33) 47 n 47 n, 
SOUTHERN EUROPE: (39) 266 011 800 (Milan) or (34) 1 8071441 (Madrid) 

AT& T - lhe righl IO llllke changea III lhe product(I) or lnformllllon Clll1laNd ....... " wllhDul nolicll. No lilbilly II aaUITlld •• •ul ol lheir UM or lllPkallon. No rtghla undw any 
pa1e111~lheaaleol111)' such produc:l(s) or lnformllllon. 

Ccpyrtghl 0 111113 AT& T 
All Rlghls RalaMd 
Prlnled In U.S.A. 

January 1993 
MN91-043MCP 0 

~AlaT V Microelectronics 




