== ATeT

== Microelectronics

ATT92010 Hobbit™ Microprocessor

Programmer’s Reference Manual

© 1993 AT&T ' January 1993

Copyright

©Copyright 1992, 1993 by AT&T Microelectronics. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of AT&T
Microelectronics.

Disclaimers

AT&T Microelectronics makes no representations or warranties with respect to the design and
documentation herein described and especially disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, AT&T Microelectronics reserves the
right to revise this design and associated documentation and to make changes from time to time in
the content without obligation of AT&T Microelectronics to notify any person of such revisions or

changes.

Trademarks
Hobbit™ is a trademark of AT&T.

Many of the designations used by manufacturers and sellers to distinguish their product are
claimed as trademarks. Where those designations appear in this document, and AT&T
Microelectronics was aware of a trademark claim, the designations have been printed in initial
caps or all caps. Some trademark claims are distinguished by their mark (TM).

Printed in the United States of America

Contents

Chapter 1

Functional Description

1.1
1.2
13

14

1.5

1.6

List of Features 1-1
Data Types 1-3

Addressing and Alignment Restrictions

1.3.1 Big-endian Byte Ordering 14
1.3.2 Little-endian Byte Ordering 14
133 Alignment 14

Stack Cache 1-5

1.4.1 Organization 1-5

142 Maintenance 1-6

143 Integer Accumulator 1-7
144 Precautions 1-8

Control Registers 1-8

1.5.1 Configuration Register 1-9
1.5.2 Fault Register 1-10

1.5.3 JTAGID Register 1-11

1.54 Interrupt Stack Pointer 1-12
1.5.5 Maximum Stack Pointer 1-12
1.5.6 Program Counter 1-13

1.5.7 Program Status Word 1-14
1.5.8 Shadow Register 1-16

1.5.9 Stack Pointer 1-17

1.5.10 Segment Table Base 1-18
1.5.11 TimeOne 1-19

1.5.12 TimerTwo 1-19

1.5.13 Victory Base 1-20

Instruction Format 1-21

1.6.1 One-Parcel Format 1-21
1.6.2 Three-Parcel Format 1-23
1.6.3 Five-Parcel Format 1-24

1-3

© 1992, 1993 AT&T

January 1993

ATT92010 Programmer’s Reference Manual

Chapter 2

1.7
1.8

1.9
1.10

1.11

Operand Addressing Modes 1-27

Integer Arithmetic Operation 1-28

1.8.1 CarryBit 1-29

1.8.2 Overflow Bit 1-29

1.8.3 Division and Remainders 1-30
1.8.4 Tagged Integer Arithmetic 1-30

Fast Calling Sequence 1-30

Prefetching Strategy 1-32

1.10.1 Branch Prediction and Branch Folding 1-33
1.10.2 Conditional Branches 1-33
1.10.3 Tracing 1-33 e

Event Processing 1-34

1.11.1 Reset 1-35

1.11.2 Interrupt 1-36

1.11.3 Exceptions 1-38

1.11.4 Unimplemented Instruction 1-39
1.11.5 Event Processing Priority 1-40

Memory Management

2.1
22

23

24
25
2.6

Address Translation 2-1

Address Mapping 2-3

2.2.1 Paged Segment Addresses 2-4
2.2.2 Nonpaged Segment Addresses 2-4

Segment Tables 2-4

2.3.1 Paged Segment Table Entries 2-5
2.3.2 Nonpaged Segment Table Entries 2-5
2.3.3 Mixed Paged and Nonpaged Segment Tables 2-6

Page Tables 2-6
Memory Management Operations 2-8

MMU Performance 2-9

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Chapter 3

Instruction Set

Chapter 4

3.1
32
33

Format 3-1
Pipeline Considerations 3-3
Descriptions 34

Performance

Appendix A

4.1
4.2
43

Execution Time 4-1
Delays 4-5
Branch Folding 4-7

Bus Arbitration and Electrical Characteristics

Al
A2
A3

A4

Bus Protocol A-1
Surrendering the Bus A-2

Bus Transaction Types A-4

A.3.1 Read Transactions A-4

A.3.2 Write Transactions A-4
A.3.3 Interlocked Bus Transfer A-6
A.3.4 Block Data Transfer A-6

Exception Handling A-6

A4.1 BusRetry A-6
A42 BusErmor A-6
A43 Rest A-8

© 1992, 1993 AT&T

January 1993

ATT92010 Programmer'’s Reference Manual

Appendix B

Electrical Characteristics

Appendix C

B.1
B.2

Absolute Maximum Ratings B-1

Handling Precautions B-1

Testability

Glossary

Index

cl
c2

Test Access Port C-1

TAP Controller C-2

C.2.1 Instruction Register C-5
C.2.2 By-Pass Register C-5

C.2.3 Boundary-Scan Register C-6
C.2.4 Identification Register C-7

iv

January 1993

© 1992, 1993 AT&T

Preface

The ATT92010 Hobbit™ Microprocessor is the culmination of years of research
on computer architecture and software design at AT&T Bell Laboratories. The
ATT92010 Hobbit Microprocessor is a second generation implementation of the
CRISP architecture. This architecture combines salient features of the RISC and
CISC design philosophy to simultaneously optimize high performance and high
code density.

This Programmer’s Reference Manual is intended for the experienced design
engineer. The material presented in this manual assumes familiarity with micro-
processors and is organized into the following section.

Chapter 1 Functional Description—A detailed discussion of the A’I'l‘92010
Hobbit Microprocessor and its features.

Chapter 2 Memory Management—An overview of the ATT92010 Hobbit
Microprocessor memory management unit.

Chapter 3 Instruction Set—A detailed description of each instruction
arranged alphabetically. For quick reference, the instruction name appears at
the top of each page in this chapter.

Chapter 4 Performance—This chapter describes discusses performance data based
on detailed parameters.

Appendix A, B and C—These appendixes present hardware information as a
point of reference.

© 1992, 1993 AT&T

January 1993 v

Chapter 1

Functional Description

11

The ATT92010 Hobbit™ Microprocessor is a high-performance 32-bit central
processing unit. Derived from AT&T Bell Laboratories’ CRISP (C-Language
Reduced Instruction Set Processor) architecture, the microprocessor combines
the best of RISC (Reduced Instruction Set Computing) devices, such as high
performance, with the best of CISC (Complex Instruction Set Computing)
devices, such as high code density.

List of Features

Major implementation features of the ATT92010 include:

¢ High Performance
—Single-cycle instruction execution (for most instructions)
—Operand bypass mechanism
—Branch prediction and Branch folding
¢ On-Chip Integrated Resources
—3 Kbyte encoded instruction cache (organized as 3-way set associative)
—256 byte stack cache that holds top of user stack
—32-entry, direct-mapped, decoded instruction cache

—Memory Management Unit (MMU) with dual 32-entry translation look-
aside buffers (TLB) for text and data address translation

¢ Big-endian/ Little-endian Data Byte Ordering
e Low Power Consumption
—250 mW at 3.3V, 20 MHz
—900 mW at 5.0V, 30 MHz
— <50p.A in standby mode
¢ High Code Density
—Rationalized Instruction set
—Variable length instruction format
—Memory-to-Memory architecture

© 1992, 1993 AT&T

January 1993 1-1

ATT92010 Programmer'’s Reference Manual

Figure 1-1

e Low I/O Traffic

—Integrated caches and Operand bypass

¢ Simple Programming Model
—No programmer-visible registers

The ATT92010 Hobbit Microprocessor block diagram is shown in Figure 1-1.

ATT92010 Block Diagram

DATA IN (32)

v

PREFETCH BUFFER
CACHE

1024 x 3 bytes

64
/
\

PREFETCH/DECODE
UNIT

VIRTUAL ADDRESS

3-STAGE PIPELINE

19g/
)

|

DECODED INSTRUCTION
CACHE

32 x 192 bits

y
192/

!

STACK
CACHE
64x32x2
bits

Y Y

MEMORY
MANAGEMENT
UNIT

l[e}

PHYSICAL
ADDRESS

2x 32 PAGE TLB
2x 1 SEG NPSR

32/
7

32/

4

EXECUTION
UNIT

\

3-STAGE PIPELINE

|

VIRTUAL ADDRESS

DATA OUT (32)

| Ncacme
10C[1:0]
LOCK

HA[31:2]
HD[31:0]

JTAG

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.2 Data Types

Six integer data types are supported:

¢ Signed and unsigned bytes (8-bit)

¢ Signed and unsigned half-words (16-bit)
¢ Signed and unsigned words (32-bit)

Non-word operands are aligned and then expanded to 32-bit through sign exten-
sion (if signed) or clearing high-order bits (if unsigned).

The 32-bit ALU performs the requested function after alignment and expansion.
Carry and overflow are determined relative to the 32-bit result.

For destinations less than 32-bit, the least significant bits of the 32-bit ALU
result are selected. Changing a value by truncation constitutes neither overflow

nor carry.

True three-operand (triadic) instructions are not provided. However, instruction
encoding that provide two source operands and store the full 32-bit result in the
accumulator are provided. This instruction is called a two-and-a-half-operand
instruction.

For example, the mnemonic for an addition instruction is ADD3, while a two-
operand (dyadic) addition is ADD. For this instruction, the two source operands
are added and the full 32-bit result is stored in the accumulator.

1.3 Addressing and Alignment Restrictions

Numbering of bits within bytes is the same as with the Intel™ 80x86, Motorola™
680x0 and the DEC™ VAX™. The numbering of bytes, within data words, is
selectable for the User and Kernel modes. The User mode is set via the program
status word (PSW) UL-bit (User Little endian-bit). The Kernel mode is set via
the configuration register (CONFIG) KL-bit (Kernel Little endian-bit).

© 1992, 1993 AT&T January 1993 1-3

ATT92010 Programmer’s Reference Manual

1.3.1 Big-endian Byte Ordering

When the PSW user little-endian bit and CONFIG kernel little-endian bit equals
zero (0), the numbering of bytes within data words corresponds to that in the
IBM 370 user mode and Motorola 680X0 kernel mode (see Figure 1-2).

Figure 1-2 Big-endian Byte Ordering
[31 BYTEO 24 |23 BYTE1 % |15 BYTE2 8|7 BYTE3 o

Note Text is always in big-endian order.

1.3.2 Little-endian Byte Ordering

When the PSW user little-endian bit and CONFIG kernel little-endian bit equals
one (1), the numbering of bytes within data words corresponds to that in the
VAX user mode and Intel 80X86 kernel mode (see Figure 1-3).

Figure 1-3 Little-endian Byte Ordering
[a1 BYTE3 24 [23 BYTE2 s |15 BYTE1 8|7 BYTEO of

1.3.3 Alignment

The ATT92010 Hobbit Microprocessor fetches words only; bytes and half-
words are accessed by extracting them from the surrounding word. Likewise, all
stores are done to word-addresses, with the appropriate write strobes enabled.
However during reads, the byte-strobes indicate which bytes, within the word
being fetched, will ultimately be extracted by the instruction.

All operand addresses should be naturally aligned for the operand type. If an
operand fetch (or operand store) is to an address that is not properly aligned for
the data type, an alignment exception is signaled. Instructions can only be
fetched on half-word boundaries and should be suitably aligned even though no
exception is signaled. Alignment occurs as the least significant bit of the address
is ignored for text fetches.

14 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

1.4 Stack Cache

Registers are typically used to hold frequently referenced variables inside a
CPU to reduce memory traffic and speed up operand accesses. The traditional
stack holds local variables, incoming and outgoing arguments, compiler tempo-
raries and registers being saved during procedure calls. Measurements have
shown that these accesses to the stack are typically only a few tens of words
concentrated around the top of the stack. The compiler attempts to move this
data into registers whenever possible. The result is a substantial amount of
memory traffic between a small number of general purpose registers and a few
locations on the stack.

The ATT90210 Hobbit Microprocessor allocates data registers in a way that is
radically different from traditional machines. Rather than have the compiler
allocate registers and generate code to move data back and forth between regis-
ters and the stack, the microprocessor automatically maps the stack onto
machine registers, called the Stack Cache. By tracking the top of the stack in
high speed machine registers, useless traffic to and from the stack is avoided
and a high degree of register allocation is achieved.

Registers are allocated by the hardware, rather than by a software compiler and
general purpose registers are eliminated.

1.4.1 Organization
The stack cache consists of a bank of 64 registers (4 bytes wide) organized as a
circular buffer maintained by two 28-bit registers holding quad-word addresses.
These registers are:

e The Maximum Stack Pointer (MSP) — contains the address above the high-
est address of the data that is currently kept in the stack cache registers

¢ The Stack Pointer (SP) — delimits the lowest address of data in the stack
cache

Only a simple range-check is needed to determine if an address resides within
the stack cache. If SP <ADDR <MSP, it falls within the stack cache. Even
though the stack cache limits are maintained on quad-word boundaries, the
stack cache is byte addressable and appears as normal memory. All virtual
addresses, generated to access data, can freely reference the stack cache.

© 1992, 1993 AT&T January 1993 15

ATT92010 Programmer’s Reference Manual

14.2

Since, the stack cache can contain the top 64 words of the stack, most automatic
variables and incoming and outgoing arguments will be in the stack cache. The
stack cache is, therefore, a major factor in efficient instruction execution.

Maintenance
Six instructions maintain the stack cache:

e CALL — moves the return address onto the top of the stack and branches to
the target address

e CATCH — guarantees the stack cache is filled at least as deep as the number
of the bytes specified in its operand and is used after a CALL instruction to
ensure an optimal portion of the stack is on-chip

e CRET — used by the kemnel to load a new SP and MSP and execute the
CATCH instruction. CRET also loads a new program status word (PSW) and
program counter address and is used for context switches

e ENTER — allocates space on the new stack frame by subtracting its oper-
and, the size of the new stack frame, from the SP

e POPN — deallocates the current stack frame by adding its argument to the
SP

e RETURN — deallocates the current stack frame by adding its argument to
the SP, then branches to the return value previously placed on the stack

ENTER and CATCH are also used when the stack cache circular buffer is not
large enough to accommodate the entire stack frame. When a new procedure is
entered, the ENTER instruction attempts to allocate a new set of registers equal
to the size of the new stack frame. If free register space exists in the circular
buffer, then only the SP needs to be modified. If not, then the entries nearest the
MSP are flushed back to main memory.

¢ If the new stack frame size is less than 256 bytes, only the stack frame size,
minus the number of free entries, must be flushed.

e If the new stack frame size is greater than or equal to 256 bytes, all valid
stack cache entries are flushed and only part of the new stack frame nearest
the SP is kept in the stack cache.

1-6

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

When control has returned to the calling procedure, flushed entries may need to
be restored to the Stack Cache, via the CATCH instruction. The CATCH
instruction argument specifies the number of stack cache entries that must be
valid before the flow of execution can resume. The argument is used as a stack
offset and a virtual address is generated. If this calculated address resides within
the stack cache, execution continues.

However, if the calculated address resides outside the address range of valid
stack cache entries, quad-words pointed to by the MSP are restored to the stack
cache from off-chip memory. Then the MSP is incremented until CATCH is sat-
isfied or the stack cache is full.

1.4.3 Integer Accumulator

The integer accumulator is not an actual hardware register. It is the word in
memory above the word addressed by the current stack pointer (CSP). The CSP
is either the stack pointer (SP) or the interrupt stack pointer (ISP) as determined
by the program status word (PSW).

The integer accumulator normally resides on-chip in the stack cache, but it may
be off-chip if the SP = MSP or CSP = ISP.

Figure 1-4 integer Accumulator

31 0
OXFFFFFFFC
ACCUMULATOR | «CSP+4
PC SAVE AREA ~CsP
0

© 1992, 1993 AT&T January 1993 1-7

ATT92010 Programmer’s Reference Manual

144

1.5

Precautions

If an address is generated in any processing stage (an indirect address calcula-
tions, for example) the stack cache is referenced if that address is greater than or
equal to the SP and less than the MSP. This conceptual model is violated when
executing with CSP = ISP. There are no problems with memory accesses as long
as the stack cache, based at the SP, and the interrupt stack, based at the ISP, do
not overlap. For similar reasons, the following addresses must not lie between
the SP and MSP:

e The vector table, defined by the vector base (VB)
e The address translation tables used by the memory management unit (MMU)
e Any text address

Control Registers

The ATT92010 Hobbit Microprocessor control registers are shown in Table 1-1.
Each register is describe in the sections that follow.

Table 1-1 Control Registers
Name Description
CONFIG Configuration Register
FAULT Fault Register
ID Identification Register
ISP Interrupt Stack Pointer
MSP Maximum Stack Pointer
PC Program Counter
PSW Program Status Word
SHAD Shadow Register
SP Stack Pointer
STB Segment Table Base
TIMER1 Timer1 Register
TIMER2 Timer2 Register
VB Vector Base
1-8 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Man

ual

1.5.1 Configuration Register

BIT(s)[

The configuration register (CONFIG) is set to 0x0 upon reset.

31:25 | 24:22 |21]2019{18]17]16] 15:0]

LESERVED
KERNEL LITTLE ENDIAN
PC EXTENSION
STACK CACHE ENABLE
INSTRUCTION CACHE ENABLE

PREFETCH BUFFER ENABLE
PREFETCH MODE
TIMER1 CONFIGURATION
TIMER2 CONFIGURATION

Table 1-2 Configuration Register (Sheet 1 of 2)

Bit(s)

Description

31:25

Timer2 Configuration. A 7-bit field that configures Timer2.

Bit 31. If 0, Timer2 does not generate an interrupt. If 1, Timer2 generates an interrupt
using a Timer2 vector when an overflow occurs (goes from OxFFFFFFFF to 0x0).
This is a level one interrupt. An extemal level one interrupt and a Timer1 interrupt
have priority over Timer2.

Bit 30. If 0, Timer2 is on all the time (with reference to bits 29:25). If 1, the timer only
increments in kemel mode (PSW execution level bit is 0).

Bit 29:25 selects the internal event to increment Timer2.

Bit29 Bit28 Bit27 Bit26 Bit25 Event

0 0 0 0 0 Count clock cycles.

0 0 0 0 1 Count completed instructions (folded
branches are not counted).

1 1 1 1 1 Do not increment the timer; a low
power feature.

24:22

Timer1 Configuration. A 3-bit field that configures Timer1.

Bit 24. If 0, Timer1 does not generate an interrupt. If 1, Timer1 generates an interrupt
using a Timer1 vector when an overflow occurs (goes from OxFFFFFFFF to 0x0).
This is a level one interrupt. An external level one interrupt has priority over Timer1.

Bit 23. If 0, Timer1 is on all the time (with reference to bit 22). If 1, the timer only incre-
ments in kemel mode (PSW execution level bit is 0).

Bit 22. If 0, Timer1 counts clock cycles. If 1, Timer1 counts completed instructions
(folded branches are not counted).

21

Prefetch Mode. This bit controls prefetching of instructions. If 0, prefetching off-chip is
not performed; predecoding from the prefetch buffer into the instruction cache is per-
formed. If 1, aggressive prefetching is performed.

© 1992, 1993 AT&T

January 1993

1-9

ATT92010 Programmer’s Reference Manual

Table 1-2

Configuration Register (Sheet 2 of 2)

Bit(s)

Description

20

Prefetch Buffer Enable. A 0 disables the prefetch buffer from hitting; a 1 enables it. The
prefetch buffer is neither flushed nor altered when this bit is modified.

19

Instruction Cache Enable. A 0 disables the instruction cache from accessing; a 1
enables it. The instruction cache_is neither flushed nor altered when this bit is modified.

18

Stack Cache Enable. A 0 disables the stack cache from accessing; a 1 enables it. The
stack cache is neither flushed nor altered when this bit is modified.

17

PC Extension. A 0 selects 0 extension of 16-bit absolute addresses; a 1 selects the
extension of 16-bit absolute addresses where bits 31:29 are copied from bits 31:29 of the
PC and bits 28:16 are set to 0.

16

Kernel Little Endian. A 0 selects data as big endian in kemel mode; a 1 selects data as
little endian in kernel mode.

15:0

Reserved. They retum 0 when read and should be written with 0 on CONFIG writes.

Special precautions must be taken when modifying the configuration register.
The number of no-operation instructions (NOPs) that must follow the register
write varies according to the bit(s) being modified and the number of wait-states
being used by I/O transactions.

Modify CONFIG by following the CONFIG write with either a context return
from kernel (CRET) instruction or kernel return (KRET) instruction.

1.5.2 Fault Register

This s reports the 32-bit operand aligned virtual address for the processing of
exception IDs 0x8 and 0x9.

BIT(S)| 31:0]

|
FAULT ADDRESS

1-10

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table 1-3 Fault Register

Bit(s) Description

Fault Address. The address causing the current exception for use by

310 the exception handler.

1.5.3 JTAG ID Register

This register is the JTAG device identification (ID) register. It is readable by
serial shifting through the test access port (TAP) and through normal register
access. This register is read only. If this register is written to, no operation is

performed.
BIT(S)| 31:28 | 27:12 | 11:0]
1MANUFACTURER CODE
PART CODE
VERSION CODE
Table 1-4 Identification (ID) Register
Bit(s) Description

31:28 | Version Code. This field is 0x0 for mask one and Ox1 for mask two.

27:12 | Part Code. This field is 0x0 for the ATT92010 Hobbit Microprocessor.

11:0 | Manufacturer Code. This field is 0x3B for AT&T Microelectronics.

© 1992, 1993 AT&T January 1993 1-1

ATT92010 Programmer’s Reference Manual

1.5.4 Interrupt Stack Pointer (ISP)

The interrupt stack pointer (ISP) is used to generate addresses whenever the
program status word (PSW) current stack pointer bit is zero (0). For example,
the address in stack offset modes, to locate the accumulator, and as the pointer
manipulated by the instructions CALL, RETURN, POPN, and ENTER. The
ISP is not associated with the stack cache.

The instructions CRET, KCALL, and KRET, and operating system sequences,
interrupts, and exceptions use the ISP to maintain a stack of event blocks. The
ISP must be valid at all times. A fault, on any ISP based address, during event
processing will reset the ATT92010 Hobbit Microprocessor. Address translation
is performed if the MMU is enabled by setting the PSW virtual/physical
addressing mode bit to one (1).

BIT(S)| 31:4 | 30 |

|
RESERVED
QUAD-ALIGNED INTERRUPT STACK POINTER

Table 1-5 interrupt Stack Pointer (ISP)

Bit(s) Description

31:4 | Quad-Aligned Interrupt Stack Pointer. This is the address of the
interrupt stack.

3.0 Reserved. These bits retum 0 when read.

1.5.5 Maximum Stack Pointer (MSP)

The maximum stack pointer (MSP), in conjunction with the SP, is associated
with the on-chip stack cache. If the stack cache is enabled and the current stack
pointer is the SP, then any address greater than, or equal to, the SP and less than
the MSP hits the stack cache.

Stack cache hits when SP < address < MSP

1-12 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

With a memory access that hits the stack cache, data is fetched or stored in the
cache, not in external memory. The MSP must be greater than or equal to the SP
and less than or equal to SP + 256 (stack cache size), or the result of stack cache
accesses are dependent upon context and therefore are unpredictable.

When the SP is the direct destination of an instruction, through a CPU-prefixed
instruction with the SP as the destination, the MSP is updated with the same
value. This defines an empty stack cache (SP = MSP). The MSP is manipulated
implicitly by CATCH, CRET, ENTER, POPN, and RETURN. Consequently,
the MSP should only be modified by stack manipulation instructions. Address
translation is performed if the MMU is enabled by setting the PSW virtual/
physical addressing mode bit to one (virtual addressing is enabled).

BIT(S)

31:4 | 80 |

|
RESERVED
QUAD-ALIGNED MAXIMUM STACK POINTER

Table 1-6 Maximum Stack Pointer

Bit(s) Description

Quad-Aligned Maximum Stack Pointer. This is the address above

31:4 top of user stack.

3.0 Reserved. These bits return 0 when read.

1.5.6 Program Counter (PC)

The program counter (PC) addresses the instruction currently being executed.
Instructions are aligned on parcel (half-word) boundaries. Since parcels are
composed of 2 bytes, the PC is always a multiple of two and the low-order bit is
always 0. The PC cannot be directly manipulated by a general instruction. It can
only be read or modified by control-flow instructions CALL, CRET, JMP,
KCALL, KRET, and RETURN and read by the move instruction LDRAA
(Load Relative Address into Accumulator).

BIT(S)|

31:1 —_ 1o}

|
RESERVED
PROGRAM COUNTER

© 1992, 1993 AT&T

January 1993 1-13

ATT92010 Programmer’s Reference Manual

Table 1-7 Program Counter

Bit(s) Description

31:1 | Program Counter. This is the address of the current instruction.

0 Reserved.

1.5.7 Program Status Word (PSW)
The program status word (PSW) is set to 0x0 upon reset.

BIT(S) | 31:17 ~ 1el15] 14:12 J11j10f9f8f7|6]5{4] 3:0 |

IRESEHVED
FLAG
CARRY
OVERFLOW
TRACE INSTRUCTION
TRACE BASIC BLOCK
CURRENT STACK POINTER
EXECUTION LEVEL
ENTER GUARD
NTERRUPT PRIORITY LEVEL
USER LITTLE ENDIAN
VIRTUAL/PHYSICAL ADDRESSING MODE

RESERVED

Table 1-8 Program Status Word (Sheet 1 of 3)

Bit(s) Description

31:17 | Reserved.

16 Virtual/Physical Addressing Mode. If 0, physical addressing (memory management
disabled) is enabled, and NCACHE is asserted. If 1, virtual addressing is enabled (mem-
ory management enabled). Special precautions must be taken when explicitly modifying
this bit. If it is explicitly modified, the section of code executing must be mapped physical
address = virtual address. The safest means of manipulating this bit is through KRET.

15 User Little-Endian. If 0, data is selected as big-endian in user mode. If 1, data is
selected as little-endian in user mode.

1-14 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table 1-8 Program Status Word (Sheet 2 of 3)

Bit(s) Description

14:12 | Interrupt Priority Level. Interrupts are accepted when the requesting device level
(IL[2:0)) is less than interrupt priority level or equal to 0. When these bits equal 7, all inter-
rupts are enabled.

11 Enter Guard. Set on an ENTER instruction that does not result in any stack cache flush.
This bit is not cleared when the PSW is read.

10 Execution Level. If 0, execution at the kernel level is performed. If 1, execution at the
user level is performed.

9 Current Stack Pointer. If 0, the ISP is used as the CSP for stack operations. If 1, the SP
is used as the CSP for stack operations. If this bit is modified by a direct write to the
PSW, thereby changing the CSP, it is necessary to update SHAD to the value of the new
SP. This update is handled automatically by the CRET, KCALL, and KRET instructions.

If this bit is set to 1, and it was previously 0, the instruction modifying the PSW should be
followed by the instruction MOV %SP,%SHAD. If this bit is set to 0 when it was previously
1, the next instruction should be MOV %ISP,%SHAD. Due to interrupts and exceptions, it
is recommended that this bit not be modified by a direct write to the PSW since the above
operations cannot be guaranteed to be atomic.

8 Trace Basic Block. Controls basic block tracing. If 1, the ATT92010 Hobbit Microproces-
sor executes instructions until a CALL, RETURN, or any jump (folded or not) instruction,
referred to as the N instruction, executes. The instruction following instruction N, referred
to as N + 1, is not permitted in the execution unit, and a trace instruction is generated
internally.

This trace instruction blocks the pipeline and forces the ATT92010 Hobbit Microproces-
sor to take a trace exception using the PC of the N + 1 instruction as the exception PC.
As branch folding is performed prior to the trace identifier, folded branches are not explic-
itly traceable. If both the trace instruction and the trace basic block bits are set to 1, the
function is that of the trace instruction.

7 Trace Instruction. Controls instruction tracing. When 1, the ATT92010 Hobbit Micropro-
cessor allows the next instruction, N, to execute normally. The instruction following
instruction N, referred to as N + 1, is not permitted in the execution unit, and a trace
instruction is generated on the fly.

This trace instruction blocks the pipeline and forces the ATT92010 Hobbit Microproces-
sor to take a trace exception using the PC of the N + 1 instruction as the exception PC.
As branch folding is performed prior to the trace identifier, folded branches are not explic-
itly traceable. If both the trace instruction and the trace basic block bits are set to 1, the
function is that of the trace instruction.

© 1992, 1993 AT&T January 1993 1-15

ATT92010 Programmer’s Reference Manual

Table 1-8 Program Status Word (Sheet 3 of 3)

Bit(s)

Description

6

Overflow. If 0, this bit indicates that an operation did not generate a signed overflow. If 1,
this bit indicates that an operation generated a signed overflow. This bit is not cleared by
a read of the PSW.

Carry. If 0, this bit indicates that an operation did not generate an unsigned overfiow. If 1,
this bit indicates that an operation generated an unsigned overflow. This bit is not cleared
by a read of the PSW.

Flag. Set/cleared by CMP, TADD, TESTC, TESTV, and TSUB instructions. This bit is not
cleared by a read of the PSW.

3.0

Reserved. These bits are reserved. Théy retum 0 when read and must be written with 0
on PSW writes.

1.5.

The exception and interrupt sequences alter only the lower 16-bits of the pro-
gram status word (PSW). To remain restartable, the carry and overflow bits are
not cleared on reading the PSW until the instruction completes. Reads of the

- PSW are not interlocked against flag setting. If an instruction sets the flag, carry,
or overflow bits, there must be at least two intervening instructions, which do
not use or modify these bits, before the PSW can be read accurately.

8 Shadow Register (SHAD)

The shadow register (SHAD) is a copy of the current stack pointer (CSP). It is
maintained by the ATT92010 Hobbit Microprocessor's internal sequences to
facilitate restarting of instructions. In the course of the CRET, ENTER,
KCALL, KRET, and RETURN instructions, or any time the CSP is modified,
SHAD is automatically updated to be consistent with the CSP.

BIT(S) |

31:4 | 30 |

|
RESERVED
QUAD-ALIGNED CSP SHADOW

1-16

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table 1-9 Shadow Register

Bit(s) Description

31:4 | Quad-Aligned CSP Shadow. These bits contain a copy of the CSP.

3.0 Reserved. These bits return 0 when read.

If the program status word (PSW) current stack pointer (CSP) bit is modified by
a direct write to the PSW, thereby changing the CSP, it is necessary to update
SHAD to the value of the new SP. The instructions KCALL and KRET handle
this automatically.

159 Stack Pointer (SP)

The stack pointer (SP) addresses the top of the stack. The stack grows down-
wards toward memory location zero (0). The SP is used to generate addresses
(i.e., as the base address in offset modes, to locate the accumulator, and as the
pointer manipulated by CALL, ENTER, POPN, and RETURN) whenever the
PSW current stack pointer bit is one (1). Address translation is performed if the
MMU is enabled by setting the PSW virtual/physical addressing mode bit to
one (1).

BIT(S)| 31:4 1 30 |
|
RESERVED

QUAD-ALIGNED USER STACK POINTER

Table 1-10 Stack Pointer

Bit(s) Description

31:4 | Quad-Aligned User Stack Pointer. This is the user stack address.

3.0 Reserved. These bits return 0 when read.

© 1992, 1993 AT&T January 1993 1-17

ATT92010 Programmer’s Reference Manual

1.5.10 Segment Table Base (STB)

When virtual addressing is turned on by the program status word (PSW) virtual/
physical addressing mode bit, the segment table base (STB) contains a pointer
to the start of the segment table used in address translation.

The base of the segment table is always page-size aligned, 4 Kbyte boundary.
The STB is only used during miss processing, which in turn is used to fill
entries in the on-chip translation look-aside buffer (TLB) or segment registers.

When the STB is written, the TLBs and segment registers of the memory man-
agement unit (MMU) are flushed, invalidating all entries. Neither the physically
addressed prefetch buffer (PFB), the virtually addressed instruction cache (IC),
nor the virtually addressed stack cache (SC) are flushed. Cache coherency is the
responsibility of the user.

BIT(S)| 31:12 K| 10:0 |
I
RESERVED

CACHE BIT
SEGMENT TABLE BASE ADDRESS

Table 1-11 Segment Table Base

Bit(s) Description

31:12 | Segment Table Base Address. This is the page-aligned base address of the
segment table.

1 Cache Bit. A cacheable bit that is copied to the cacheable pin whenever a seg-
ment table access is made during misprocessing, indicating if segment table
entries should be cached. If 1, NCACHE is deasserted and caching of segment
table entries is allowed.

10:0 Reserved. Retumn 0 when read.

1-18 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.5.11 Timer One (TIMER1)

This register is a 32-bit internal register that is configured by the 3-bit field
(24:22) of CONFIG to count various events.

BIT(S)] 31:0 |
!I’IMEm VALUE
Table 1-12 Timert
Bit(s) Description

31:0 | Timer1 Value. These bits contain the count value for Timer1.

1.5.12 Timer Two (TIMER2)

This register is a 32-bit internal register that is configured by the 7-bit field
(31:25) of CONFIG to count various events.

BIT(S)| 31:0 |
!I'IMERZ VALUE
Table 1-13 Timer2
Bit(s) Description

31:0 | Timer2 Value. These bits contain the count vaiue for Timer1.

© 1992, 1993 AT&T January 1993 1-19

ATT92010 Programmer’s Reference Manual

Table 1-14

1.5.13

Vector Base (VB)

The vector base (VB) is used as a table base that contains transfer addresses
used by interrupts, exceptions and the KCALL instruction. Address translation
is performed when the memory management unit (MMU) is enabled by setting
the PSW virtual/physical bit to one (1). The Vector Table (see Table 1-14)
should always be available. If access to the Vector Table is faulted, the
ATT92010 Hobbit Microprocessor resets.

A memory fault causes an infinite loop until the interrupt stack is exhausted and
the ATT92010 Hobbit Microprocessor resets. Consequently, an exception pro-
gram counter (PC) should be present in memory. In addition, the niladic trap
and unimplemented instruction handler must be in user memory space so that
the handler can be accessed while in user mode.

BIT(S) |

31:4 | 30 |

|
RESERVED
QUAD-ALIGNED VECTOR TABLE BASE

Vector Base (VB)

Bit(s) Description

31:4

Quad-Aligned Vector Table Base. The vector table (shown below) should always
be available.

VB + 52— FP EXCEPTION

VB + 48— TIMER2 INTERRUPT

VB + 44— TIMER1 INTERRUPT

VB + 40— INTERRUPT 6

VB + 36— INTERRUPT 5

VB + 32— INTERRUPT 4

VB + 28— INTERRUPT 3

VB + 24— INTERRUPT 2

VB + 20— INTERRUPT 1

VB + 165 NONMASKABLE INTERRUPT

VB + 12— UNIMPLEMENTED INSTRUCTION

VB + 8— NILADIC TRAPS

VB + 4> EXCEPTION PC

VB- KCALL PC

3:0

Reserved. These bits retum 0 when read.

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.6 Instruction Format

1.6.1

NILADIC| o oxB SUBCODE

(NO OPERAND) | 45 |14 109 0
MONADIC| o OPCODE SOURCE

(ONE OPERAND)| 45 |44 10{e 0

— SUB- |

stack| © 02 SOURCE CODE

15 |14 10|19 2|1 0

DYADIC| o OPCODE SOURCE |DESTINATION

(TWO OPERANDS) | 45 |14 10le sla 0

Instructions are composed of two-byte long parcels and are encoded in one-,
three- and five-parcel lengths. A simple instruction is encoded in five-parcels,
allowing for encoding of two complete 32-bit addresses in each instruction. In
general, the one- and three-parcel instructions are more compact encoding of
five-parcel instructions.

Instructions have a maximum of two operands that can be used for addressing
modes. For the dyadic instructions, one source doubles as destination or the
accumulator is selected to serve as an implicit destination. The instruction for-
mats are

* One-parcel — for zero-, one- and two-operand instructions

e Three-parcel — for one- and two-operand instructions

¢ Five-parcel — for two-operand instructions

One-Parcel Format

Many of the most common zero-, one- and two-operand instruction types are
encoded in one-parcel.

A zero (0) in the most significant bit distinguishes all one-parcel instruction for-
mats. The subcode field distinguishes the niladic and stack instructions.

For operands, 5-bit immediate fields are sign extended and 5-bit stack offset
fields are zero extended. All 10-bit fields are zero extended except for the CALL
and JMP instruction which are sign extended. The 8-bit fields are zero extended,
except for the ENTER instruction, which is one-filled. Tables 1-15,

1-16 and 1-17 detail the one-parcel instruction encoding.

© 1992, 1993 AT&T

January 1993 1-21

ATT92010 Programmer'’s Reference Manual

Note that operand alignment restrictions allow some address offsets to be
scaled; extending the effective addressing range. The scaling of certain immedi-
ate constants is possible by the specific operand value restrictions of the corre-
sponding instructions. Five-bit offset values are multiplied by four before they
are added to the stack pointer (SP). The 10-bit PC-relative offsets in the JMP
and CALL instructions are multiplied by 2 before they are used; the other 10-bit
values are multiplied by four before they are used.

Table 1-15 Monadics/Dyadics Encoding (One-Parcel)

opcode[2:0]
opcode(4:3]
000 001 010 on 100 101 110 mn
00 KCALL CALL stack JMP JMPFN JMPFY JMPTN JMPTY
01 unimp* unimp* MOV.WS niladic unimp* ADD3WS | AND3.CS AND.SS
10 CMPEQ.CS | CMPGT.SS | CMPGT.CS | CMPEQ.SS | ADD.CS ADD3.CS ADD.SS ADD3.SS
1" MOV.SS MOV.IS MOV.SI MOV.II MOV.CS MOVA.SS SHL3.CS SHR3.CS

*The unimplemented instruction sequence is performed
C=5-bit immediate, I=5-bit indirect stack offset, S=5-bit word-aligned immediate

Table 1-16 Encoding Stack (One-Parcel)

subcode[1:0]
00 01 10 1
ENTER CATCH RETURN POPN

Table 1-17 Niladics Encoding (One-Parcel)

subcode[2:0] o
subcode[9:3] -\
000 001 010 o011 100 101 110 111
0000000 CPU KRET NOP FLUSHI FLUSHP CRET FLUSHOQ" unimp*
0000001 TESTV TESTC CLRE unimp* | unimp* | unimp* /d;r; unimp*
000001x unimp* unimp* unimp* unimp* unimp* unimp* \uﬁmp' unimp*
00001xx unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
0001xxx unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
001000x unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
01>000(x unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
1500000¢ trap! trap' trap! trapt trap’ trap’ trap? trap'

*The unimplemented instruction sequence is performed
The niladic trap through VB + 8 is performed

1-22 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

1.6.2 Three-Parcel Format

Three-parcel instructions are distinguished by a ‘10’ in the two most significant
bits. The subcode field distinguishes the different monadic instructions. The
notation operand-Ilo represents the low-order 16-bits and operand-hi represents
the high-order 16-bits. A similar convention applies to the source and destina-
tion operands of the five-parcel dyadic instructions. The three-parcel formats
are shown below.

Monadic (One Operand)
1st PARCEL| 10 OPCODE SMODE |SUBCODE
15 14113 817 4)3 0
2nd PARCEL OPERAND-HI
15 0
3nd PARCEL OPERAND-LO
15 0
Dyadic (Two Operand)
1st PARCELl 10 OPCODE SMODE | DMODE
15 1413 87 413 0
2nd PARCEL | SOURCE ,
3nd PARCEL DESTINATION
15 0

The 16-bit source and destination fields are sign extended to 32-bit when they

are used in immediate or offset modes. When the 16-bit source and destination
fields are used as absolute addresses, extension of the upper 16-bit depends on
the setting of the CONFIG PC extension bit.

If the CONFIG PC extension bit is 1, bits 28:16 are replaced with 0 and bits
31:29 (the high-order 3 bits) are copied from bits 31:29 of the program counter.
If the CONFIG PC extension bit is zero (0), the upper 16-bits are set to zero (0).
The source and destination addressing mode fields are encoded in the same way
for both three- and five-parcel instructions. Tables 1-18 and 1-19 detail the
three-parcel instruction encoding.

© 1992, 1993 AT&T

January 1993 1-23

ATT92010 Programmer’s Reference Manual

Table 1-18 Encoding (Three-Parcel)
opcode[2:0]
opcode[5:3]
000 001 010 oM 100 101 110 111
000 monadic ORI ANDI ADDI MOVA UREM MOV DQM
001 unimp* unimp* unimp* unimp* TADD TSUB unimp* unimp*
010 unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
o1 unimp* unimp* unimp* unimp* unimp* CMPGT CMPHI CMPEQ
100 suB OR AND ADD XOR REM MUL DIV
101 unimp* unimp* unimp* unimp* SHR USHR SHL ubIv
110 SuB3 OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3
11 unimp* unimp* unimp* unimp* SHR3 USHR3 SHL3 unimp*
*The unimplemented instruction sequence is performed.
Table 1-19 Monadic Subcoding (Three-Parcel)
subcode[2:0]
subcode[9:3]
000 001 010 on 100 101 110 M
0 KCALL CALL RETURN JMP JMPFN JMPFY JMPTN JMPTY
1 CATCH ENTER LDRAA FLUSHPTE | FLUSHPBE |FLUSHDCE*| unimp* POPN
*The unimplemented instruction sequence is performed.
1.6.3 Five-Parcel Format
Five-parcel instructions are distinguished by a ‘11’ in the two most significant
bits. Five-parcel instructions are encoded similarly to three-parcel instructions.
1st PARCEL| 1 OPCODE SMODE | DMODE
15 1413 8}7 413 0
2nd PARCEL | SOURCE-HI \
3nd PARCEL | SOURCE-LO .
4nd PARCEL DESTINATION-HI
15 0
5nd PARCEL DESTINATION-LO
15 0
Table 1-20 details the five-parcel encoding.
1-24 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table 1-20 Encoding (Five-Parcel)

opcode[5:3] opcode(2:0]
000 001 010 o1 100 101 110 M
000 unimp* ORI ANDI ADDI MOVA UREM MOV DQM
001 unimp* unimp* unimp* unimp* TADD TSuB unimp* unimp*
010 unimp* unimp* unimp* unimp* unimp* unimp* unimp* unimp*
o011 unimp* unimp* unimp* unimp* unimp* CMPGT CMPHI CMPEQ
100 suB OR AND ADD XOR REM MUL DIV
101 unimp* unimp* unimp* unimp* SHR USHR SHL ublv
110 SuB3 OR3 AND3 ADD3 XOR3 REM3 MUL3 DIV3
1M1 unimp* unimp* unimp*- unimp* SHR3 USHR3 SHL3 unimp*

The source and destination addressing mode field for three-parcel and five-
parcel instructions are encoded the same way (see Table 1-21 thru Table 1-24).

Table 1-21 General Addressing Mode Encoding

Code Mode Description

0x0 *$addr:B | Byte absolute

Ox1 *$addr:UB | Unsigned byte absolute

0x2 *$addr:H | Half-word absolute

0x3 *$addr:UH | Unsigned half-word absolute
0x4 Roffset.B | Byte stack offset

0x5 Roffset:UB | Unsigned byte stack offset

0x6 Roffset:H | Half-word stack offset

0x7 Roffset:UH | Unsigned half-word stack offset
0x8 *Roffset:B | Byte stack offset indirect

0x9 *Roffset:UB | Unsigned byte stack offset indirect
OxA *Roffset:H | Half-word stack offset indirect

Unsigned half-word stack offset
indirect

0xC *$addrW | Word absolute

0xD Roffset:W | Word stack offset

OxE *Roffset:W | Word stack offset indirect
OxF $data Immediate

0xB *Roffset:UH

© 1992, 1993 AT&T January 1993 1-25

ATT92010 Programmer’s Reference Manual

Table 1-22 CPU Modified Addressing Mode Encoding
Code Mode Description
0x7 register CPU prefixed
0xC *$addr'W | Word absolute
0xD Roffset:W | Word stack offset
OxE *RoffsetW | Word stack offset indirect
OxF $data Immediate
Table 1-23 CALL/JMP Addressing Mode Encoding
Code Mode Description
0xC =+$addr | Absolute indirect
oxD *Roffset | Stack offset indirect
OxE Label Program counter relative
OxF *$addr Absolute
Table 1-24 Source/Destination Register Encoding
Code Register
Ox1 MSP
0x2 ISP
0x3 SP
Ox4 CONFIG
0x5 PSW
0x6 SHAD
0x7 VB
0x8 STB
0x9 FAULT
OxA ID
0xB TIMER1
oxC TIMER2
0xD unimp
OxE unimp
OxF unimp
1-26 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

1.7 Operand Addressing Modes

The ATT92010 Hobbit Microprocessor architecture uses seven addressing
modes for accessing data.

Immediate — mode addressing allows a constant to be embedded in the
instruction itself. Values up to 32-bits in length are permitted. Shorter values
are appropriately sign or 0 extended before use.

Absolute — addressing uses an absolute address in the instruction to access
data. Absolute addressing is typically used to reference global variables.

Stack Offset — addressing develops the address of an operand by adding a
constant offset in the instruction to the address of the current stack pointer
(CSP). For negative offsets, off-chip stack accesses are performed and cache
coherency is not maintained. This addressing mode is used to access local
variables, temporaries and incoming and outgoing arguments.

Stack Offset Indirect — addressing adds a constant offset in the instruction
to the address of the current stack pointer (CSP). The word at this address is
fetched and then used as an address to obtain the data operand. The offset
must be word aligned. An alignment fault (0x4) is executed if the offset is
not word aligned.

Absolute Indirect — addressing stores the operand’s address in the instruc-
tion. This mode is used for the JMP (Jump), CALL and LDRAA (Load Rel-
ative Address into Accumulator) instructions. The operand value should be
an instruction address that is parcel (half-word) aligned.

Program Counter Relative — addressing adds a signed, two’s complement
offset stored in the instruction to the address of the instruction to obtain the
operand value. This mode is used only with the JMP (Jump), CALL and
LDRAA (Load Relative Address into Accumulator) instructions.

Register — addressing precedes the instruction with a CPU instruction. The
CPU instruction is never directly executed but rather it modifies the next
instruction’s addressing modes for both operands. Code 0x7 allows access to
the internal register for use as data. The register number is specified in the
operand (source/destination field). Only bits 3:0 are considered for determin-
ing the register number. The upper bits are ignored but should be 0 for com-
patibility.

At most, one register may be read per instruction. If register 0x0 or OxD
through OxF is specified, an unimplemented register exception sequence,
exception ID 0x6, is performed. Registers can be read in user mode, but if
there is a register write in user mode, a privilege violation exception
sequence, exception ID 0x5, is performed.

© 1992, 1993 AT&T

January 1993 1-27

ATT92010 Programmer’s Reference Manual

1.8

The arithmetic logic unit (ALU) operations generally permit any of the first four
addressing modes (Immediate, Absolute, Stack Offset and Stack Offset Indi-
rect) to be used with either operand. Any mode not explicitly mentioned for a
given instruction should not be used.

The operand can also have a suffix. The suffixes indicate the size of data oper-
ands while a missing suffix implies signed word operands.

e :B —ssigned byte

e :UB — unsigned byte

e :UH — signed half-word

e :W—word

Integer Arithmetic Operation

The ATT92010 Hobbit Microprocessor offers seven arithmetic instructions:

e ADD a,b jaddatob

e DIV a,b ;divide b by a, signed

e MUL a,b ;multiplybbya

e REM a,b ;calculate the remainder of signed division of b by a

e SUB a,b ;subtractafromb

e UDIV a,b ;divideb by a, unsigned

e UREM a,b ;calculate the remainder of unsigned division of b by a

REM and UREM are defined in terms of DIV and UDIYV, respectively. Operands
a and b may be referenced using a variety of addressing modes, with sign inter-
pretation given for byte and half-word arguments.

For the instructions above, the result is stored in b. ADD, DIV, MUL, REM, and
SUB as well as other instructions also have a 2 1/2 address version (denoted by
a trailing 3) where the result is stored in the accumulator (R4).

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.8.1 Carry Bit

The program status word (PSW) carry bit indicates the occurrence of a borrow
during unsigned subtraction or of overflow during unsigned addition or multi-
plication. Unsigned overflow arises when a result exceeds unsigned
(OxFFFFFFFF). In these operations, the PSW carry bit is set when:

Unsigned(b) — Unsigned(a) < 0
or unsigned overflow on an addition or multiplication:
Unsigned(b) {+ or *} Unsigned(a) > Unsigned(OxFFFFFFFF)
Unsigned overflow cannot occur in UDIV and UREM.

In the ADD operation, the adder computes the sum of a and b; the word result is
delivered and, if carry-out occurs, the PSW carry bit is set. In the SUB opera-
tion, the two's complement of a is added to b, and the PSW carry bit is set only
if no carry-out occurs.

1.8.2 Overflow Bit

The program status word (PSW) overflow bit signals the occurrence of signed
overflow of the word result of an arithmetic operation; this is a result outside the
interval:

[Signed(0x80000000) to Signed(0x7FFFFFFF)]
In terms of the operations above, the PSW overflow bit is set unless:
Signed(0x80000000) (Signed(b) {+, —, or«} Signed(a)) Signed(0x7FFFFFFF)

Signed overflow cannot occur in REM. Signed overflow does arise in DIV in
precisely the case of 0x80000000 divided by -1, that is OXFFFFFFFF.

© 1992, 1993 AT&T January 1993 1-29

ATT92010 Programmer’s Reference Manual

1.83

184

1.9

Division and Remainders

Unsigned overflow does not apply to UDIV because its dividend is at most
unsigned (OxFFFFFFFF) and its divisor is no less than 1 (except for a zero divi-
sor, which triggers a divide-by-zero exception), so its result is no greater than its
dividend. A similar argument applies to DIV, except for the case of overflow.

Like UDIYV, unsigned overflow does not apply to UREM. UD and UR are the
word results of the UDIV and UREM operations, respectively. Apply these
results to operands a and b. UDIV and UREM are related by the formula:

b =(UD+a) + UR, where0 UR<a

with all values unsigned. UR is no greater than a and therefore no greater than
unsigned (OxFFFFFFFF); consequently overflow cannot occur. A similar argu-
ment applies to REM.

Tagged Integer Arithmetic

These instructions are useful in object-oriented languages where a given vari-
able may represent different data types at different times during program execu-
tion.

e TADD a,b ;tagged addaintob
e TSUB a,b ;tagged subtracta fromb

The tagged instructions ensure that the low 2 bits, called tags, of both operands
are zero (0), prior to performing the arithmetic operation. If either tag is non-
zero, the program status word (PSW) flag bit is set to one (1), and the result is
not stored. If both tags are zero, the result is stored only if the operation doesn’t
result in an arithmetic overflow. If the arithmetic overflow occurs, the PSW flag
bit is set to one (1) and the result is not stored.

Fast Calling Sequence

The ATT90210 Hobbit Microprocessor provides an efficient procedure calling
sequence. Outgoing arguments are moved onto the stack frame. For word argu-
ments, the first argument is stored at current stack pointer (CSP) + 4, the second
at CSP + 8, and so one.

1-30

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Figure 1-5 Stack Frame

The CALL instruction performs an atomic move and jump operation, saving the
return point at the CSP and loading the program counter (PC) with the address
of the first instruction of the called function. The first instruction of the called
function is usually ENTER which adjusts the CSP to allocate its new stack
frame.

The last instruction of the called function, RETURN, readjusts the CSP to
deallocate its stack frame and then branches to the address pointed to by the
CSP. Customarily, a CATCH follows the RETURN in user mode or when the
user stack is enabled to refill the stack cache.

This function call overhead—call, allocate, deallocate, and return—can be as
little as four clock cycles. Figure 1-5 shows a typical stack frame from the
called function‘s point of view.

INCOMING ARGUMENT N HIGHER MEMORY
INCOMING ARGUMENT N - 1

INCOMING ARGUMENT 1/
INTEGER FUNCTION RETURN
VALUE

OLD SP - SAVED PC OF CALLER
LOCAL VARIABLE N DIRECTION OF
LOCAL VARIABLE N - 1 STACK ?ROWTH

LOCAL VARIABLE 1
TEMPORARY VARIABLES
OUTGOING ARGUMENT N

OUTGOING ARGUMENT N - 1

OUTGOING ARGUMENT 1
SP - EMPTY (PC SAVE AREA) LOWER MEMORY

The stack grows downward in memory with the stack pointer (SP) always
pointing to the top of the stack. The program counter (PC) is stored in this free
slot on a function call (or unimplemented instruction exception). This avoids
having to adjust the current stack pointer (CSP) to save or restore the PC. The
PC is the only machine register implicitly saved during a function call.

© 1992, 1993 AT&T

January 1993 1-31

ATT92010 Programmer’s Reference Manual

1.10

Above the saved PC slot in the stack frame is a large area to store outgoing
arguments for any call from the current function. Above the outgoing arguments
temporary values and local variables are stored. This permits outgoing argu-
ments to be calculated in place with stack offset addressing modes. This stati-
cally allocated stack frame allows the CSP to be updated only on function entry
and function return.

Traditional PUSH or POP instructions that automatically adjust the CSP are
intentionally avoided. POPN is provided to deallocate from the stack frame and
is useful in tail recursion. Side effects to the CSP are nearly eliminated and
operand address generation for subsequent instructions can smoothly proceed in
a pipeline implementation.

Prefetching Strategy

The ATT92010 Hobbit Microprocessor has two types of instruction fetching.
Both are selectable through the CONFIG prefetch mode bit.

e Aggressive Prefetching
¢ Demand Fetching

When aggressive prefetching is enabled (CONFIG prefetch mode bit = 1), the
microprocessor prefetch unit fetches text (not been previously fetched and
stored in the prefetch buffer memory), in quad-word pieces consisting of two
double-word /O requests.

Text is prefetched sequentially until a branch (predicted jump, unconditional
jump, CALL, CRET, KCALL, KRET, or RETURN) is decoded. If the target of
the branch is encoded in the instruction (non-indirect), prefetching continues
from the target (if it is not already in the prefetch buffer). If the target is indirect,
prefetching stops and waits for a demand fetch request from the execution unit.

A demand fetch is requested if the execution unit takes a unpredicted or indirect
branch and the target has not been previously decoded. If at any time while the
prefetch unit is prefetching sequential code and following predicted branches a
demand fetch is requested, any I/O requested by the unit will complete, and
prefetching begins anew from the execution unit requested target.

1-32

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.10.1

1.10.2

1.10.3

Branch Prediction and Branch Folding

Branches break the flow of instruction execution and may degrade the perfor-
mance of a pipelined microprocessor. More important, the target of a condi-
tional jump is not known until the instruction is executed. The ATT90210
Hobbit Microprocessor solves these problems in two ways:

¢ Static Branch Prediction
¢ Prefetch Decode Unit (PDU)

The instruction format provides a static branch prediction field. The field is set
at compile time and can indicate whether it is likely to take the conditional
branch or not. The prefetch decode unit (PDU) continues prefetching along the
predicted path of a conditional jump, the instructions can be issued and exe-
cuted into the pipeline without any discontinuity.

Second, the PDU assigns a next-PC (program counter) and alternate-next-PC
field for each decoded instruction.

Conditional Branches

Conditional branches are specified by first setting the program status word
(PSW) flag bit using one of the compare instructions (CMPEQ, CMPGT,
CMPHI) or using a miscellaneous instruction (TESTC or TESTV). Then, finish
with a conditional jump instruction (JMPTY, JMPTN, JMPFY, or JMPEN).

The jump doesn’t need to be the next instruction after the flag is set. The pipe-
line runs more efficiently if three instructions, which do not reference off-chip
memory, are sandwiched between the compare instructions and the jump.

The Y or N at the end of the conditional jump instruction is the prediction of the
branch (Y-jump, N-continue).

Tracing

Instruction tracing is supported by the program status word trace basic block or
trace instruction bits. These bits control when tracing is enabled. If an instruc-
tion is traceable, a trace exception is taken after the instruction completes exe-
cution. The program counter (PC) saved on the interrupt stack is the next
instruction PC.

© 1992, 1993 AT&T

January 1993 1-33

ATT92010 Programmer’s Reference Manual

1.1

Instructions before folded branches cannot be traced. For example, if a jump is
folded into the previous instruction, the trace will occur after the jump. To avoid
jumps being folded, all jumps must be encoded as three-parcel.

Event sequences are nontraceable, including exceptions and interrupts. The

unimplemented instruction sequence is traceable if the trace bits are not altered.
CRET, KCALL, and KRET are always non-traceable.

Event Processing

There are several sequences that trigger the ATT92010 Hobbit Microprocessor
that are not invoked by the regular instruction set. These events include, in order

of priority:

e Reset

e Interrupt
¢ Exception

The sequences executed by the ATT92010 Hobbit Microprocessor for each of
these events are discussed in the following sections. In all cases, interrupts are
inhibited while an event processing sequence (the sequence that initiates the
event handler) is in progress.

The processing of exceptions and interrupts includes saving the program
counter (PC) and the program status word (PSW) on the interrupt stack. For
instructions that change the PC, the current PC is defined as one of the follow-
ing.

e CALL and JUMP — If the location pointed to by the instruction cannot be
referenced, a fetch-fault results and the PC stored on the interrupt stack is the
target PC, not the PC of the instruction. If the indirection word of an indirect
instruction cannot be referenced, a read-fault results and the PC stored on the
interrupt stack is that of the instruction.

e KCALL — If the location pointed to by the KCALL PC entry in the vector
cannot be referenced, a fetch-fault results and the PC stored on the interrupt
stack is the target PC, not the PC of the original KCALL.

e CRET, KRET, and RETURN — If the location pointed to by the new PC
value cannot be referenced, a fetch-fault results and the PC stored on the
interrupt stack is the new PC value, not the address of the instruction.

/

1-34

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

1.11.1 Reset
The ATT92010 Hobbit Microprocessor enters the reset sequence when:

The external reset pin (HRESET) is asserted.

A memory fault, which is signaled either externally or by the memory man-

agement unit (MMU), occurs

—when attempting to read or write the interrupt stack during any event pro-
cessing sequence.

—when attempting to read from the vector table during any event processing
sequence.

The reset sequence is:

Disable interrupts
Flush the PFB and IC
if reset

SHAD = 0x0
else

SHAD = PSW
PSW = 0x0
CONFIG = 0x0
PC = 0x0
Enable NMI interrupts

The shadow register (SHAD) is set either to 0x0 or the current program status
word (PSW) depending on the reset type. Independent of the reset type, the
prefetch buffer (PFB) and instruction cache (IC) are flushed and the PSW,
CONFIG, and program counter (PC) are initialized to 0x0. Initialization of the
PSW register sets:

the execution level to kernel mode

physical addressing to enable

tracing to disable

interrupts are inhibited

the interrupt stack pointer (ISP) as the current stack pointer (CSP)

© 1992, 1993 AT&T

January 1993 1-35

ATT92010 Programmer’s Reference Manual

1.11.2

Initialization of the CONFIG register sets:

e disables all on-chip caches
e disables timer interrupts
¢ and selects demand prefetching

Initialization in the PC register starts executing instructions at physical address
0x0.

Note If the reset sequence was initiated by the external reset pin, the stack
pointer (SP) and the maximum stack pointer (MSP) are undefined. The
caches should not be enabled until these registers are assigned values
since the range check circuitry would not know whether an address
should access the on-chip stack cache or off-chip memory.

Interrupt

An interrupt is signaled when an external device requests service on the inter-
rupt request input lines (IL[2:0]) or either Timer1 or Timer2 overflows with the
interrupts enabled.

The three input lines associated with external interrupts and the timer interrupts,
which are asserted at level 1, are compared with the program status word (PSW)
interrupt priority level (IPL) field. If the interrupt request is less than the IPL
field, the interrupt can be serviced. An IPL field of 7 allows interrupts at levels 0
through 6. An IPL field of 0 inhibits interrupts 1 through 6 and allows interrupts
at level 0 only. This is referred to as a nonmaskable interrupt (NMI). Table 1-25
list the interrupt levels.

Table 1-25 Interrupt Levels
IL[2:0] | Interrupt Level
000 NMI
001 Level 1
010 Level 2
011 Level 3
100 Level 4
101 Level 5
110 Level 6
1k No interrupt
1-36 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

The interrupt request input lines IL[2:0] must be asserted with the same value
for at least two cycles before an interrupt is recognized by the ATT92010
Hobbit Microprocessor. The interrupt should remain asserted until the interrupt
handler clears it. If the interrupt is accepted, the request enters at the top of the
execution unit pipeline. Then all further interrupts are disabled until completion
of the interrupt sequence. The ATT92010 Hobbit Microprocessor does not
indicate when it is servicing an interrupt other than the I/O caused by the
interrupt handler.

Nonmaskable Interrupt

A nonmaskable interrupt (NMI) is generated by setting IL[2:0] to 0x0. An inter-
rupt at level O is edge sensitive, that is, it must be deasserted for at least two
cycles before another interrupt at any level is recognized. When an interrupt
enters the execution pipeline, all interrupts are disabled, including NMI. After
the interrupt sequence completes, the NMI will be serviced if it is still asserted.

Most instructions complete execution before the interrupt request enters the top
of the execution unit pipeline. CATCH, ENTER, MUL[3], DIV[3], REM[3],
UDIV, and UREM are interruptible. The CATCH portion of CRET is interrupt-
ible. The PC stored on the interrupt stack is the address of the interrupted
instruction for transparently resuming execution. CATCH, ENTER, and the
CATCH portion of CRET continues (as opposed to restarting).

Interrupt Sequence

When the interrupt is serviced, the sequence is:

Disable interrupts
if (CSP == ISP) ISP = SHAD

else SP =SHAD

(ISP-8) = PC of interrupted instruction ~ / Becomes R8 with respect to new ISP */
(ISP—4) = PSW /+ Becomes R12 with respect to new ISP */
ISP —=16

SHAD = ISP

PC =*(VB + 16 + (4 x interrupt level))
PSW &= OxFFFF0000
Enable NMI interrupts

Where interrupt level is the value of the IL[2:0] lines producing the interrupt.
Note that the interrupt sequence is almost the same as the KCALL sequence
(the event frame left on the interrupt stack is the same). Consequently, a KRET
instruction is sufficient for returning from an interrupt; interrupts are disabled
during this processing.

© 1992, 1993 AT&T

January 1993 1-37

ATT92010 Programmer’s Reference Manual

1.11.3 Exceptions

Exceptions signal an error in a pfogram. The ATT92010 Hobbit Microprocessor

recognizes the exceptions listed in Table 1-26.

Table 1-26 Exception Identifier
Code Exception
Ox1 Integer zero-divide
0x2 Trace
0x3 lllegal instruction
Ox4 Alignment fault
0x5 Privilege violation
0x6 Unimplemented register
0x7 Fetch fault
0x8 Data read fault
0x9 Data write fault
OxA Memory access /O bus fault
0xB MMU table walk bus fault
The exception handler must always be present. - —
Exception Sequence
The sequence is similar to the KCALL sequence. If the target address of a
CALL, CRET, JMP, KCALL, KRET, or RETURN instruction, or of an inter-
rupt, causes a memory fault, the PC saved on the interrupt stack is the target PC,
not the address of the current instruction. The sequence is:
Disable interrupts
if (CSP == ISP) ISP = SHAD
else SP = SHAD
* (ISP-12) = exception identifier /* Becomes R4 with respect to new ISP */
*(ISP-8) = PC of faulted instruction /= Becomes R8 with respect to new ISP */
*(ISP—4) = PSW /= Becomes R12 with respect to new ISP */
ISP —= 16 :
SHAD = ISP
PC =+(VB + 4)
PSW &= OxFFFF0000
Enable NMI interrupts
1-38 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

1.114

In exception IDs 0x8 and 0x9, the 32-bit operand aligned virtual address of
faulted access is saved in the Fault Register.

For a text fetch bus error or a data read bus error, the program counter (PC)
placed on the interrupt stack is the address of the instruction with the faulting
address.

For a data write bus error, the PC placed on the interrupt stack is not the PC of
the instruction associated with the faulted access. Because of the unhinged
nature of the stores in the ATT92010 Hobbit Microprocessor, the PC stored is
the PC of the instruction which was at the bottom of the execution pipeline
when the fault occurred, and not the PC of the instruction with which the faulted
store is associated.

Unimplemented Instruction

An attempt to execute an unimplemented opcode results in an unimplemented
instruction sequence. This sequence is faster than the exception sequence for
software emulation of extended instructions. Since an unimplemented instruc-
tion can occur in either execution mode, the unimplemented instruction handler
should be in both the user and kernel address space.

If an unimplemented instruction has an addressing mode that is illegal for that
instruction class, it is considered an illegal instruction (exception ID 0x3). Spe-
cifically:

¢ An unimplemented monadic instruction is illegal if it has a nonword
addressing mode (<0xC).

e An unimplemented instruction is illegal if it follows a CPU instruction and
contains an illegal addressing mode, or combination of modes.

e A RETURN instruction with a negative operand.

There are no tests performed on the addressing modes of unimplemented dyadic
instructions which do not follow CPU instructions.
Unimplemented Instruction Sequence
The sequence is:
*(CSP) = PC of unimplemented opcode
PC =*(VB + 12)

Where current stack pointer (CSP) is either stack pointer (SP) or interrupt stack
pointer (ISP), depending on the state of the PSW current stack pointer bit.

© 1992, 1993 AT&T

January 1993 1-39

ATT92010 Programmer'’s Reference Manual

1.115

Trapped Niladic Exception

An attempt to execute a one-parcel niladic with an opcode in the range 0x200
through 0x3FF results in a variant of an unimplemented instruction sequence
known as a trapped niladic exception. This sequence is the same as the unim-
plemented instruction sequence except VB + 8 is used for the vector. The
trapped niladic handler should be in both the user and kernel address space. The
sequence is:

*(CSP) = PC of unimplemented opcode

PC = +(VB + 8)

‘Where current stack pointer (CSP) is either stack pointer (SP) or interrupt stack
pointer (ISP), depending on the state of the PSW current stack pointer bit.

Event Processing Priority

Since several event requests can be generated simultaneously, an event process-
ing priority has been established. The priorities assigned to each event type
request are:

1 Reset

Interrupts

Trace

Instruction fetch faults

Illegal instructions

Unimplemented instructions/trapped niladic
Unimplemented registers

Alignment faults

Data read and write and read bus error faults
Privilege violation

11 Divide by zero

© ® N O 0 A N

-
o

The high-priority events (reset and interrupts) occur independently of an
instruction execution. All other events are associated with a particular instruc-
tion. During some internal sequences, interrupts are disabled. Many events are
mutually exclusive of each other and cannot occur at the same time or within
the same instruction.

1-40

January 1993 © 1992, 1993 AT&T

Chapter 2

Memory Management

2.1

The ATT92010 Hobbit Microprocessor has an on-chip memory management
unit (MMU), which can translate virtual addresses, as seen by a programmer,
into physical addresses. The two methods for address translation are:

e Paged segments
¢ Nonpaged segments

The 32-bit virtual address space is divided into 1,024 segments, each
representing 4 MB of virtual addresses with a 4 MB alignment. Paged segments
are further divided into 1024-word pages (see Figure 2-1). Nonpaged segments
provide a variable-sized contiguous segment of memory (see Figure 2-2). In
paged segment address translation, each page can be mapped anywhere in the
32-bit physical address space.

Address Translation

Address translation is enabled by setting the program status word (PSW) vir-
tual/physical bit to 1 (VP-1). To speed paged segment address translation, the
ATT92010 Hobbit Microprocessor has two translation lookaside buffers
(TLBs)—one for text addresses and one for data addresses. Each TLB has 32
entries and is fully associative. Two nonpaged segment registers (NPSRs), one
for a text address and one for a data address, speed nonpaged segment address
translation.

Additionally, to provide a physical prefetch buffer, a micro-TLB is provided for
text references in the present page. This micro-TLB contains the last translation
used by the prefetch unit and provides zero-cycle address translation. If the
micro-TLB misses, one cycle is required for update if the address translation
hits in the text TLB or text NPSR.

If an address is not contained in the appropriate TLB or NPSR, the on-chip
MMU automatically fetches the appropriate entry by walking the memory man-
agement tables.

© 1992, 1993 AT&T

January 1993 21

ATT92010 Programmer’s Reference Manual

Figure 2-1 Paged Segment Address Mapping
PAGED VIRTUAL ADDRESS |31 SEGMENT # 22|21 PAGE# 12|11PAGE OFFSET o|
J
SEGMENT PAGE PAGE
TABLE TABLE FRAME
PHYSICAL
»| PAGETBL WORD
SEGMENT TBL ENTRY
—® " ENTRY
) 4
PAGE TABLE BASE PAGE FRAME BASE
SEGMENT TABLE BASE
Figure 2-2 Nonpaged Segment Address Mapping
NONPAGED VIRTUAL ADDRESS[31SEGMENT #2221 SEGMENT OFFSET o
SEGMENT
FRAME
SEGMENT |BOUND
TABLE
PHYSICAL
WORD [
SEGMENT T8L]
—®1 ENTRY [
BASE
[SEGMENT TABLE BASE
2-2 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

2.2 Address Mapping

All addresses in the ATT92010 Hobbit Microprocessor are translated by walk-
ing a series of map tables. All map tables in the ATT92010 memory mapping
scheme are 4,096 bytes long (one-page frame). All addresses contained within a
memory management table are physical addresses, so address translation is not
recursive.

Address mapping checks the validity of virtual addresses and translates them
into physical addresses. A virtual address is flagged as illegal if one of the fol-
lowing happens:

There is no valid physical mapping

User execution level code attempts to access kernel execution level
addresses

A store is attempted to read-only data
Any violation is signaled as a memory fault:

Fetch fault — If, during an address translation for text, there is no physical
mapping or an attempt is made to access a kernel only page while in user
mode, this fault is signaled. Note that a fetch fault is generated only on
demand fetches and only stops fetching, until a demand fetch, if aggressive
fetching is enabled by the PSW prefetch bit.

Read fault — If, during an address translation for reading data, there is no
physical mapping or an attempt is made to access a kernel only page while in
user mode, this fault is signaled. This fault can be ignored if the read was
requested because of a mispredicted branch.

Write fault — If, during an address translation for either writing data or
while executing one of the stack manipulation instructions, there is no phys-
ical page, an attempt is made to access a kernel only page in user mode, or an
attempt is made to write to a nonwritable page, this fault is signaled.

© 1992, 1993 AT&T

January 1993 2-3

ATT92010 Programmer’s Reference Manual

221

2.2.2

2.3

Paged Segment Addresses

A page frame is a contiguous region of 4,096 bytes, beginning at an address
evenly divisible by 4,096 (the low 12-bits of the address are all 0). Because all
page frames begin on page boundaries, additions are not necessary to calculate
addresses. When paged segment translation is in use, virtual addresses are
divided into the following three fields:

e Segment number
e Page number

e Page offset

Nonpaged Segment Addresses

When nonpaged segment translation is in use, virtual addresses are divided into
the following two fields:

e Segment number
e Segment offset

Segment Tables

The segment number selects one entry from 1,024 entries in the segment
table—a 4 KB table located in one page frame in physical memory. Each seg-
ment table entry is 4 bytes long and contains the base address of a page table or
the base address and size of a nonpaged segment. The base address of the seg-
ment table is contained in the segment table base (STB) register.

The address of a segment table entry is formed by concatenating the upper 20
bits of the segment table base register with the upper 10 bits of the virtual
address: the base address field in the segment table base defines the beginning
of a segment table in physical memory, and the segment number field of the vir-
tual address defines a word within the segment table.

There are two possible formats for a segment table entry. Paged segments have
referenced and modified bits for enhanced memory management. Nonpaged
segments only require the segment table to resolve references.

24

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

2.3.1 Paged Segment Table Entries

The segment table for paged segments defines 1,024 segments, each 1,024
pages long (for a total of 4,294,967,296 bytes). Segments are defined as a series
of pages, so there may be holes in a segment's address space. There is no length
specification for a segment: the validity of constituent pages defines a segment's
extent. Each paged segment table entry defines the base of a page table.

BIT(S) | 31:12 [11] 10:4 3] 2:1 Jo]
lVALID
RESERVED
SEGMENT
RESERVED
CACHE
PAGE TABLE BASE ADDRESS

Table 2-1 Paged Segment Table Entry

Bit(s) Name/Description

Page Table Base Address. The base address in physical

st:12 memory of the page table.

Cache. If 1, NCACHE is deasserted when fetching page table

1 entries.

10:4 | Reserved.

3 Segment. O for paged segment translation.
2:1 | Reserved.
0 Valid. If 1, the entry is valid.

2.3.2 Nonpaged Segment Table Entries
The segment table for nonpaged segments defines the base and bound of a seg-

ment.
BIT(S)] 31:22 | 21:12 J11] 10:4 13]2]1]o}
{IALID
WRITABLE
USER
SEGMENT
RESERVED
CACHE
SEGMENT BOUND
SEGMENT BASE ADDRESS

© 1992, 1993 AT&T January 1993 2-5

ATT92010 Programmer’s Reference Manual

Table 2-2

Nonpaged Segment Table Entry

23.3

24

Bit(s) Name/Description

Segment Base Address. These bits contain the base address of the

31:22 segment in physical memory.

Segment Bound. These bits contain the size of the segment, ranging

21:12 | from 4,096 bytes (0x0) to 4 MBs (OX3FF) in increments of 4,096 bytes.

Cache. If 0, NCACHE is asserted when accessing this segment. Text
fetches will not be cached in the prefetch buffer cache, but they will be
11 cached in the decoded instruction cache. If 1, NCACHE is deasserted
when accessing nonpaged segments. This bit has no effect on the use
of the stack cache.

10:4 | Reserved.

3 Segment. A 1 for nonpaged segment translation.

User. If 1, the segment can be accessed at user execution level (all
valid segments can be accessed at kernel level).

Wiritable. If 1, the segment can be written (all valid segments can be
read).

0 Valid. If 1, the segment is valid.

The segment offset field of the virtual address defines the byte within the seg-
ment frame in which the virtual address is mapped. The physical address con-
sists of the segment base address from the segment table entry concatenated
with the segment offset field of the virtual address. If a protection violation is
detected, no memory access is made and a memory fault exception is executed.

Mixed Paged and Nonpaged Segment Tables

Since the segment bit in the segment table entry controls if the segment table
entry is paged or nonpaged, a segment table can contain both paged and non-
paged entries.

Page Tables

The address of a page table entry is formed by concatenating the upper 20 bits
of the segment table entry with bits 21:12 of the virtual address (the page num-
ber).

2-6

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

A page table entry defines the physical address corresponding to the virtual

address and provides protection information and other data available for paging
algorithms. The reference and modified bits are automatically set by the on-chip
MMU, but they must be cleared by software when needed.

BIT(S)|

31:12 [11] 10:5 [4]13]2]1]0]

Table 2-3 Page Table Entry

USER

MODIFIED
RESERVED

CACHE
PAGE FRAME BASE ADDRESS

Bit(s)

Name/Description

31:12

Page Frame Base Address. These bits contain the base address in
physical memory of the page frame.

11

Cache. If 0, NCACHE is asserted when accessing this page. Text
fetches will not be cached in the prefetch buffer cache, but they will be
cached in the decoded instruction cache. If 1, NCACHE is deasserted
when accessing this page. This bit has no effect on the use of the stack
cache.

10:5

Reserved.

Modified. Set to 1 when a write occurs within the page. On subsequent
writes to this page, the memory copy of the page table entry is not
accessed to set this bit again. If a direct write to the memory copy of the
page table entry changes this bit, the entry should be flushed from the
TLB using the FLUSHPTE instruction.

Referenced. Set to 1 when a page is first referenced. On subsequent
references to this page, the memory copy of the PTE is not accessed to
set this bit again. If a direct write to the memory copy of the PTE
changes this bit, the entry should be flushed from the TLB using the
FLUSHPTE instruction.

User Bit. If 1, the page can be accessed at user execution level (all
valid pages can be accessed by the kemel).

Writable. If 1, the page can be written (all valid pages can be read).

Valid. If 1, the page is valid.

1
VALID
WRITABLE

REFERENCED

© 1992, 1993 AT&T

January 1993

2-7

ATT92010 Programmer’s Reference Manual

2.5

The page offset field of the virtual address defines the byte within the page
frame in which the virtual address is mapped. The physical address consists of
the page frame base address from the page table entry concatenated with the
page offset field of the virtual address. If a protection violation is detected, no
memory access is made and a memory fault exception is executed.

Memory Management Operations

Both translation lookaside buffers (TLBs) and nonpaged segment registers
(NPSRs) are completely flushed whenever the ATT92010 Hobbit Microproces-
sor is reset (either by asserting the external reset pin, or the detection of an inter-
nal event that causes the ATT92010 to reset). The TLBs and NPSRs are also
flushed whenever the segment table base register is written.

Individual TLB and NPSR entries may be flushed using the FLUSHPTE
instruction. If the effective address in the FLUSHPTE instruction is cached in
either the translation lookaside buffer or the nonpaged segment register, the
TLB or NPSR entry is marked invalid. Any subsequent access of that virtual
address will be translated by the full memory map table walk.

The FLUSHPTE instruction is not privileged, so a user process may flush any or
all entries in the on-chip TLBs or NPSRs. Although this may degrade the per-
formance of the process, it does not affect correctness, since the memory man-
agement tables in physical memory define the address mapping and the
FLUSHPTE instruction does not alter the tables in memory.

LOCK is asserted when page table entries are fetched. If the R and M bits of the
entry are current, LOCK is cleared. If either R or M bits must be updated, the
page table entry is written back to memory with COCK still asserted. COCK is de-
asserted when the write completes.

If there is an external bus error signaled during the memory management table
walk, the ATT92010 Hobbit Microprocessor will take an exception.

2-8

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

2.6 MMU Performance

Table 2-4 details the performance of address translation. These performance
numbers do not include the time required to access the actual item. In the table
an A represents the I/O delay for a single word access.

Table 2-4 Address Translation Performance

Condition Penalty

Text reference, micro-TLB miss, TLB/NPSR miss, paged segment

walk, R bit modified SA+3

Text reference, micro-TLB miss, TLB/NPSR miss, paged segment 2A+3
walk, R bit previously set

Text reference, micro-TLB miss, TLB/NPSR miss, nonpaged

segment walk A+1
Text reference, micro-TLB miss, TLB/NPSR hit 1
Text reference, micro-TLB hit 0

Data read, TLB/NPSR miss, paged segment walk, R bit modified 3A+3

Data read, TLB/NPSR miss, paged segment walk, R bit previously

set 2A+3
Data read, TLB/NPSR miss, nonpaged segment walk A+3
Data read, TLB/NPSR hit 0
Datq yvrite, TLB/NPSR miss, paged segment walk, R and/or M bit 3A+3
modified

Datg write, TLB/NPSR miss, paged segment walk, R and M bit 2A+3
previously set

Data write, TLB/NPSR miss, nonpaged segment walk A+3
Data write, TLB/NPSR hit and M bit previously set 0

© 1992, 1993 AT&T January 1993 29

Chapter 3

Instruction Set

3.1

The instruction set falls into eight categories: Arithmetic, Compare, Logical,
Move, Program Control, Shift, Tagged, and Other. There are two special nota-
tions used within these categories: [] and (I). For example, ADD[3] indicates
that both the ADD and ADD3 instructions apply. JMP (FIT)(YIN) indicates that
JMPFY, JMPEN, JMPTY, and JMPTN instructions exist.

Format

Table 3-1

The general instruction format is:
Instruction source, destination

where the instruction can contain a 3 indicating that the destination is the accu-

mulator (R4). Otherwise, the destination is the second operand.

Table 3-1 list the instructions, in alphabetic order, identifies the type and

function.

Instructions (Sheet 1 of 2)

Instruction Function Type
ADDI[3] Add Arithmetic
ADDI Add interlocked Arithmetic
ANDI[3] Bitwise logical AND Logical
ANDI Bitwise logical AND interlocked Logical
CALL Call subroutine C Program Control
CATCH Fill stack cache Program Control
CLRE Clear PSW enter guard bit Other
CMPEQ Equality comparison Compare
CMPGT Signed greater than comparison Compare
CMPHI High comparison (unsigned greater than) Compare
CPU Register access escape Other
CRET Return from kernel with context Program Control

© 1992, 1993 AT&T

January 1993

3-1

ATT92010 Programmer’s Reference Manual

Table 3-31

Instructions (Sheet2 of 2)

Instruction Function Type
DIV[3] Divide Arithmetic
DQM Double-word or Quad-word move Move
ENTER Enter subroutine Program Control
FLUSHD Flush data cache Other
FLUSHDCE Flush data cache entry Other
FLUSHI Flush the decoded instruction cache Other
FLUSHP Flush the prefetch buffer Other
FLUSHPBE Flush an entry in prefetch buffer Other
FLUSHPTE Flush a page table entry in the TLBs Other
JMP Unconditional Jump Program Control
JMP(FIT) (YIN)| Conditional jump based on PSW flag bit Program Control
KCALL Kemnel call Program Control
KRET Retum from kemel Program Control
LDRAA Load relative address into the accumulator Move
MOV Move Move
MOVA Move address "Move
MULI[3] Multiply Arithmetic
NOP No operation Other
OR[3] Bitwise logical OR Logical
ORI Bitwise logical OR interlocked Logical
POPN Free n entries from stack space Program Control
RETURN "Retum from subroutine Program Control
REM[3] Remainder Arithmetic
SHL[3] Left shift Shift
SHR(3] Arithmetic right shift Shift
SUBI3] Subtract Arithmetic
TADD Tagged addition Tagged
TESTC Test program status word carry Other
TESTV Test program status word overflow Other
TSUB Tagged subtraction Tagged
ubDiv Unsigned divide Arithmetic
UREM Unsigned remainder Arithmetic
USHR(3] Logical right shift Shift
XOR[3] Bitwise logical exclusive OR Shift

3-2

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

3.2 Pipeline Considerations

Certain combinations of instructions may produce unexpected results because of
the pipelining within the microprocessor. Most of these cases are noted in the
descriptions of each instruction that follows this section. The following is a
summary of these combinations.

® There must be at least two instructions separating an instructions that sets the
Carry and Overflow bits (such as ADD or MUL) and an instruction that
explicitly reads the program status word, using the CPU prefix. The interven-
ing instructions are not necessary if the Carry and Overflow bits are queried
with the TESTC or TESTV instructions.

¢ An ENTER cannot immediately follow the invalidation of the page into
which it enters. There should be two instructions between the invalidation of
the page and the ENTER instruction to allow the memory table to update.

e Ifan ADD, SHL, or MUL instruction with a destination size of byte or half-
word results in a number that overflows the destination size, but can fit in a
32-bit word, a subsequent instruction may use the 32-bit version of the
result, rather than a truncated 8- or 16-bit result. The non-truncated result
may affect the computation if the MUL, USHR, or ADD overflows its byte
or half-word destination and

—the following instruction is a divide or a right shift and it uses the
destination of the first instruction as one of its operands, or

—the destination of the second instruction is larger than the destination of
the first instruction. '

Using the truncated version of the result can be forced by interposing two
instructions between the MUL, SHL, or ADD and the following instruction.

For example:
MUL $0x&F,R4:BMULS$0x7F, R4:B$$
USHR $4,R4:B — instr

instr

USHR$4,R4:B
MUL $0x7F,R4:BMUL$0x&F,R4:B
MOV R4:B, R8:L —instr

nstr ,

MOVR4:B, R8:L

© 1992, 1993 AT&T January 1993 3-3

ATT92010 Programmer’s Reference Manual

¢ An instruction that reads the SHAD register cannot be executed immediately
after ENTER or RETURN. Two NOPs should be placed between such
instructions to permit the writing of the SHAD register. For example:

ENTER R-16ENTERR-16
MOV $new,%SHADNOP
NOP
MOV$new,%SHAD
CALL routineCALLroutine
ADD $16,%SHADNOP
NOP
ADD$16,%SHAD

3.3 Descriptions

The following pages contain detailed descriptions of the instruction set. Abbre-
viations used in the following pages are defined in Table 3-2.

Table 3-2 Abbreviations
Abv. Description
abs32 | A 32-bit value with any of the two-word operand addressing modes: PC-relative or absolute
fgenin] Any of the following modes with a value that can fit in n-bits: absolute, immediate, stack offset or stack
ge offset indirect.
flow32 A 32-bit value with any of the four-word operand addressing modes (modes > 0xC): absolute, absolute
indirect, PC-relative or stack offset indirect mode.
enin] Any of the following modes with a value that can fit in n-bits: absolute, immediate, stack offset or stack
9 offset indirect. Note that the CPU prefix instruction modifies the meaning of theses addressing modes.
imm[n] | A two’s complement constant in the range -2 through 2™ -1
istk5 An Indirect Stack Offset mode of type word with the offset a number divisible by four in the range 0
through 124.
pvtrii0 | A PC-offset mode where the offset is a number divisible by 2 in the range -1024 through -1022
Stk A Stack Offset mode with the offset number in the range 0 through 124 and is divisible by four, (the
operand size of word).
stk8 A Stack Offset mode which is operand size of word.
stk32 | A Stack Offset mode with the offset any 32-bit number.
uimm([n] | An unsigned constant in the range 0 through 2"-1
wai[n] | An unsigned constant in the range 0 through 2"-1 which is muiltiplied by 4 (word-aligned).
rd32 A 32-bit value with any of the four word operand addressing modes (modes > = Ox C): absolute,
wo immediate modes, stack offset or stack offset indirect.
34 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

ADD—Addition

Name:

Format:

Operation:

Description:

ADD—Addition

ADDJ3] src, dst

ADD:

dst +=dst

“unsigned overflow” 7 PSW.C=1:PSW.C=0
“signed overflow” ?PSW.V=1:PSW.V=0

ADD3:

Acc =dst + src

“unsigned overflow” ?PSW.C=1:PSW.C=0
“signed overflow” 7 PSW.V=1:PSW.V=0

The source operand is added to the destination operand and the sum is placed in

either the destination (ADD) or the Accumulator (ADD3).

The PSW C-bit is set to 1 on unsigned overflow and the PSW V-bit is set to 1 on

signed overflow, otherwise the PSW C- and V-bits are set to 0 (zero).

Encodings:

length | opcode |instruction| src dst
2 0x0D ADD3 wai5, | stk5
2 Ox14 ADD imm5, | stk5
2 0x15 ADD3 imm5, | stkb
2 0x16 ADD stk5, | stk5
2 0x17 ADD3 stkS stk5
6 0x23 ADD geni6, | gen16
6 0x33 ADD3 geni6, | gen16
10 0x23 ADD gen32, | gen32
10 0x33 ADD3 gen32, | gen32

© 1992, 1993 AT&T

January 1993

35

ADDI—addition interlocked

ATT92010 Programmer’s Reference Manual

Name: ADDI—addition interlocked
Format: ADDI src, dst

Operation: hidden dst
dst +=src
Acc = hidden

Description:

The source operand is added to the destination operand, and the sum is placed
in the destination. COCK is asserted during the fetch of dst if dst is in memory
and not in the stack cache-TOCK is deasserted at the completion of the final
store to dst. No other accesses are done between the fetch and store of dst. The
original value of dst is placed in the accumulator. If the accumulator is not in
the stack cache, a store is made after the interlocked I/O completes.

The PSW carry and overflow bits are not affected by ADDI.

Encodings:

length | opcode |instruction| src dst

6 0x03 ADDI gen16 | gen16

10 0x03 ADDI gen32 | gen32

Notes

Pipeline bypass hazards associated with semaphore operations are avoided in
the ATT92010 Hobbit Microprocessor by clearing the pipeline before an inter-
locked instruction enters the first pipeline stage. No other instruction is allowed
into the pipeline until the executing interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the
previous value of R4; hence, no operation is performed.

If the accumulator is not in the stack cache, CSP == MSP, an I/O access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner; ADDI is not restartable from this
point of the operation.

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual AND—bitwise logical AND

Name: AND—Dbitwise logical AND
Format: ANDI3] src, dst
Operation: AND:
dst & = src
AND3:
Acc =dst & src
Description:

A bitwise logical AND operation is performed on the source and destination
operands. The result is placed in either the destination (AND) or the accumula-

tor (AND?3).
Encodings:
length | opcode | instruction| src dst

2 OxO0E AND3 immS5, | stk5
2 OxOF AND stk5 stk5
6 0x22 AND geni6 | gen16
6 0x32 AND3 gen16 | gen16
10 0x22 AND gen32 | gen32
10 0x32 AND3 gen32 | gen32

© 1992, 1993 AT&T January 1993 3-7

ANDI—bitwise logical AND interlocked ATT92010 Programmer’s Reference Manual

Name: ANDI—bitwise logical AND interlocked
Format: ANDI src, dst
Operation: hidden = dst
dst & = src
Acc = hidden
Description:

A bitwise logical AND operation is performed on the source and destination
operands, and the result is placed in the destination. COCK is asserted during the
fetch of dst if dst is in memory and not in the stack cache. LOCK is deasserted at
the completion of the final store to dst. No other accesses are done between the
fetch and store of dst. The original value of dst is placed in the accumulator. If
the accumulator is not in the stack cache, a store is made after the interlocked I/

O completes.

Encodings:

length | opcode |instruction| src dst
6 0x02 ANDI gen16 | gen16
10 0x02 ANDI gen32 | gen32

Notes:

Pipeline bypass hazards associated with semaphore operations are avoided in
the Hobbit microprocessor by clearing the pipeline before an interlocked
instruction enters the first pipeline stage. No other instruction is allowed into the
pipeline until the executing interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the
previous value of R4; hence, no operation is performed. .

If the accumulator is not in the stack cache, CSP == MSP, an I/O access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner; ANDI is not restartable from this
point of the operation.

3-8 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual CALL—subroutine C

Name: CALL—subroutine C

Format: CALL src

Operation: * (CSP) = next PC /*save return PC in RO*/
PC =src

Description:

The next program counter (PC) value (return address) is stored at the location
indicated by the stack pointer (SP) or the interrupt stack pointer (ISP), which-
ever is the current stack pointer (CSP). The source operand (subroutine entry

point) becomes the new PC value.

Encodings:

length | opcode | subcode |instruction| src
2 0x01 — CALL perel10
6 0x00 Ox1 CALL |flow 32

Notes:

If the location pointed to by CALL cannot be referenced, a fetch-fault results. In
this case, the PC stored on the interrupt stack is the target PC, not the PC of the
original CALL. The address of the original CALL instruction is not saved. In
the event of an indirect CALL, if the ATT92010 Hobbit Microprocessor cannot
reference the indirection word, a read-fault results and the PC stored on the
interrupt stack is that of the indirect CALL. In either case, fetch-fault or read-
fault, the correct return PC is saved in RO.

© 1992, 1993 AT&T January 1993 3-9

CATCH—ill stack cache

ATT92010 Programmer’s Reference Manual

Name: CATCH—ill stack cache

Format: CATCH src

Operation: if (CSP == SP)

{
while ((MSP < (CSP + src)) && ((MSP - SP)<

SCSIZE))

{
stack_cache [MSP] = memory [MSP]

stack_cache [MSP + 4] = memory [MSP + 4]
stack_cache [MSP + 8] = memory [MSP + 8]
stack_cache [MSP + 12] = memory [MSP + 12]
MSP =MSP + 16

}
}

Description:

If the CSP is SP, the stack cache is filled to the extent indicated by the source
operand. The semantics of CATCH are somewhat different depending upon the
address mode of src.

If the source operand is defined with a stack offset mode (Roffset), the
address is formed by adding the offset to the SP to determine the target value
for the MSP (MSP = SP + offset).

If the source operand is defined with an immediate mode ($data), the imme-
diate value is used as the target for the MSP (MSP = data).

If the source operand is defined with a stack offset indirect mode (*Roffset),
the target value for the MSP is fetched from memory (or the stack cache) at
the address formed by adding the offset to SP (MSP = *(offset + SP)). '

If the source operand is defined with an absolute mode ($addr), the target
value for the MSP is fetched from memory (or the stack cache) at the address
specified in the absolute address (MSP = *(addr)).

In no case will the MSP be incremented beyond the size of the on-chip stack
cache. If the CSP is the ISP, CATCH is a no-op.

3-10

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual CATCH—ill stack cache

Encodings:
length | opcode | subcode |instruction| src
2 0x02 Ox1 CATCH stkga
6 0x00 0x8 CATCH |word32

*, The 8-bit stack offset is zero-extended and multiplied by six-
teen, providing an effective range of 0-4080 in quad-aligned
increments.

Notes:

The MSP must be greater than or equal to the SP when CATCH executes; other-
wise, instruction operation depends upon context and is therefore unpredictable.

If virtual addressing is enabled, and the MSP is updated, the new value is
checked to verify that stores are valid at the current execution level. If the
address is not valid, either a read fault, exception ID 0x8, or a MMU Table Walk
Fault, exception ID 0xB, is flagged for CATCH.

Since the lower 4 bits of the SP do not exist, cache filling is done in 16-byte
blocks. If the source operand to CATCH is not divisible by 16, the cache is filled
to the next multiple of 16.

© 1992, 1993 AT&T

January 1993 3-11

CLRE—clear PSW E- bit ATT92010 Programmer’s Reference Manual

Name: CLRE—<clear PSW E- bit
Format: CLRE
Description:

CLRE clears the PSW enter guard bit. The PSW enter guard bit is set by
ENTER which has successfully completed execution.

Encodings:

length | opcode | subcode |instruction
2 0x0B OxA CLRE

3-12 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual CMP—compare

Name: " CMP—compare

Format: CMPrel srcl, src2

Operation: srcl rel stcc2 ?PSWF=1: PSWF =0
Description:

The program status word (PSW) flag bit is set to 1 if the comparison between
the two source operands is true. If the comparison is false, the PSW flag bit is
set to 0. Rel is one of the following:

EQ—equal to
GT—signed greater than
HI—higher (unsigned greater than)

Encodings:

length | opcode | instruction| src1 src2

2 0x10 CMPEQ | imm5 | stk5
Ox11 CMPGT stk6 | stk5
0x12 CMPGT | imm5 | stk5

0x13 CMPEQ stkS stkS

Ox1E CMPHI geni6 | geni6

2
2
6 0x1D CMPGT | geni6 | gen16
6
6

Ox1F CMPEQ | gen16 | gen16
10 0x1D CMPGT | gen32 | gen32
10 Ox1E CMPH!I | gen32 | gen32
10 Ox1F CMPEQ | gen32 | gen32

Notes:

srcl is specified in the source operand field. src2 is specified in the destination
operand field.

CMPEQ can test either = or # , CMPGT can test signed >, 2, <, < and CMPHI
can test unsigned >, 2, <, <. In the latter case, it is a matter of ordering the oper-
ands properly and testing the correct sense of the PSW flag bit.

© 1992, 1993 AT&T

January 1993 3-13

CPU—register access escape ATT92010 Programmer's Reference Manual

Name: CPU—register access escape
Format: CPU
Description:

CPU is a prefix that changes the meaning of the instruction that follows the
CPU instruction. Specifically, it changes the definition of address modes to
enable access to the internal registers. All word-sized address modes remain the
same, while mode 0x7 becomes the register addressing mode. The register
number is stored in the operand field.

The low 4 bits of the operand are used as the register number; the high-order
bits are ignored, but should be zero. Accessing the undefined register 0 results
in an unimplemented instruction exception.

Encodings:

length | opcode | subcode |instruction
2 0x0B 0x0 CPU

Notes:

The instruction following CPU is considered part of the CPU instruction. If an
exception or interrupt occurs, the program counter (PC) saved on the interrupt
stack is the PC of the CPU instruction. In the prefetch and decode section of the
ATT92010 Hobbit Microprocessor, the PC is incremented by four or six par-
cels, depending on whether the instruction following the CPU instruction is
three or five parcels.

Caution:

The CPU is an interlocked instruction in that no other instruction is started until
the CPU reaches the result register pipeline stage. It is possible to cause a
hazard between instructions that modify the program status word (PSW) flag,
carry, overflow, or enter guard bits. If either of the two instructions proceeding
CPU modify the PSW flag, carry, overflow, or enter guard bits, any access of
the PSW should be padded by two no-operation instructions (NOPs).

3-14 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual CRET—context return from kernel

Name: * CRET—context return from kernel
Format: CRET
Operation: disable interrupts
SP = *(ISP + 0) /* RO wrt ISP */
fetch *(ISP + 4)

enable interrupts
CATCH (MSP - SP)
disable interrupts
MSP = *(ISP + 4) /* R4 wrt ISP */
PC = *(ISP + 8) /* R8 wrt ISP */
PSW = *(ISP + 12) /* R12 wrt ISP */
ISP=ISP + 16
if (CSP ==ISP)
SHAD = ISP
else
SHAD = SP
enable interrupts

Description:

A new stack pointer (SP) is loaded from the interrupt stack. The current contents
of the stack cache are discarded and an unconditional CATCH is performed fill-
ing the stack cache to the maximum stack pointer (MSP). The program status
word (PSW) and program counter (PC) values are restored by popping the inter-
rupt stack.

Encodings:

length | opcode | subcode | instruction
2 0x0B 0x5 CRET

Notes:

The target MSP is fetched prior to the CATCH portion executing, but the MSP
is not updated until the CATCH portion completes. Interrupts are disabled dur-
ing a portion of CRET. Interrupts are enabled during the CATCH portion of
CRET at the level of the restored PSW. The CATCH portion of CRET is per-
formed consistently with the restored PSW current stack pointer and virtual/
physical addressing mode bits.

© 1992, 1993 AT&T

January 1993 3-15

CRET—context return from kernel ATT92010 Programmer’s Reference Manual

If a memory fault occurs while reading from the interrupt stack, the ATT92010
Hobbit Microprocessor resets.

CRET is privileged. If CRET is initiated at the user level, a privilege exception
is executed.

CRET cannot be traced.

If the location pointed to by the new PC value cannot be referenced, a fetch-
fault results. In this case, the PC stored on the interrupt stack is the new PC
value, not the address of CRET.

3-16

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

DIV—divide

Format:

Operation:

Description:

DIV—divide

DIV[3] src, dst

DIV:

dst /=dst src

DIV3:

Acc=dst /src

The destination operand is divided by the source operand, and the quotient is
placed in either the destination (DIV) or the accumulator (DIV3). Two’s com-
plement division is performed. See Section 3.3 for a description of integer arith-

metic.
Encodings:
length | opcode |instruction| src dst

6 0x27 DIV geni6 | gen16
6 0x37 Div3 geni6 | gen16
10 0x27 DIV gen32 | gen32
10 0x37 DIvV3 gen32 | gen32

Notes:

Division by zero results in a zero divide exception. Division of 0x80000000 by
OxFFFFFFFF sets the program status word (PSW) overflow bit and returns the

result 0x80000000. The overflow bit is cleared in all other cases. The carry bit is
unchanged in all cases.

© 1992, 1993 AT&T

January 1993

3-17

DQM—double-word or quad-word move ATT92010 Programmer’s Reference Manual

Name: DQM—double-word or quad-word move
Format: DQM src, dst

Operation: dst = src

Description:

Double- or quad-word move moves either two or four contiguous words from
the source to the destination. The size of the transfer is determined by the desti-
nation address mode field.

Double-word data size is encoded in the destination mode field as 0x0, 0x4, or
0x8. Quad-word data size is encoded in the destination mode field as 0xC, 0xD,
or OxE.

If the source mode is OxF, the constant is replicated either two or four times
depending upon the destination mode. If the destination mode is OxF, an illegal
instruction exception is taken. All other addressing modes result in an align-

ment fault.
Encodings:
length | opcode | instruction| src® dst*
6 0x07 DQM geni6 | gen16
10 0x07 DQM gen32 | gen32

a. The limitations given in the description and note apply.

Notes:

Source and destination addresses of quad-word operands must be divisible by
16 (quad-aligned) and addresses of double-word operands must be divisible by
8 (double-aligned). Otherwise, an alignment exception occurs. Only word
addressing modes are permitted for the source and the special modes for the
destination. Other modes cause an illegal instruction sequence to occur.

3-18 January 1993 © 1992, 1993 AT&T

ATT92010 ngrdmmer's Reference Manual ENTER—enter subroutine

Name: EN’I'ER—enter subroutine
Format: ENTER src
Operation: if (CSP = ISP)

{
SHAD = ISP = target
}
if ((CSP == SP) && (src address mode!= stack offset))
{
/*flush stack cache unconditionally*/
while (MSP > SHAD)
{
memory[MSP - 16] = stack_cache[MSP — 16]
memory[MSP - 12] = stack_cache[MSP - 12]
memory[MSP - 8] = stack_cache[MSP - 8]
memory[MSP - 4] = stack_cache[MSP - 4]
MSP - =16
}
/*force stack cache to be empty*/
SHAD = MSP = SP = target
}
if ((CSP == SP) & & (src address mode == stack offset))
{
/*flush only as much of the stack cache as is necessary*/
if (MSP - target > SCSIZE)
{
while (MSP SHAD) && (MSP - taget > SCSIZE))
{
memory[MSP - 16] = stack_cache[MSP-16]
memory[MSP - 12] = stack_cache[MSP - 12]
memory[MSP - 8] = stack_cache[MSP - 8]
memory[MSP - 4] = stack_cache[MSP — 4]
MSP - =16
}
if (MSP > (target + SCSIZE))
MSP = target + SCSIZE
}
SHAD = SP = target

}
PSWE=1

© 1992, 1993 AT&T

January 1993 3-19

ENTER—enter subroutine

ATT92010 Programmer’s Reference Manual

Description:

The CSP is altered either by adding the source operand (stack offset addressing
mode) or replacing it with a new value (all other addressing modes). If the SP is
not the CSP, no data traffic between the stack cache and memory is performed,
and the MSP is not updated. If the SP is the CSP, the contents of the stack cache
are written to memory (if necessary) in quad-word transfers until no more than
SCSIZE bytes are held in the cache. The semantics of ENTER are somewhat
different depending upon the address mode of src.

1. If the source operand is defined with a stack offset mode (Roffset), the
address formed by adding the offset to the CSP is used to determine the tar-
get value (MSP = CSP + offset). The bounds of the stack cache are set to
encompass the full amount of ENTER, within the limits of SCSIZE.

2. If the source operand is defined with an immediate mode ($data), the imme-
diate value is used as the target value (MSP = data) and the stack cache is
set empty at the completion of ENTER.

3. If the source operand is defined with a stack offset indirect mode (*Roffset),
the target value is fetched from memory (or the stack cache) using the
address formed by adding the offset to the CSP (MSP = *(offset + CSP))
and the stack cache is set empty at the completion of ENTER.

4. If the source operand is defined with an absolute mode (*$addr), the target
value for the CSP is fetched from memory (or the stack cache) using the
address specified in the absolute address (MSP = *(addr)) and the stack
cache is set empty at the completion of ENTER.

Upon successful completion of ENTER, the PSW enter guard bit is set. This bit
is cleared with CLRE.

Encodings:

length | opcode | subcode |instruction| src

2 0x02 0x0 ENTER stkg?

6 0x00 0x9 ENTER |word32

a. The 8-bit stack offset is left padded with ones and multi-
plied by 16 giving it an effective range of -16 to -4096 in
quad-aligned decrements.

3-20

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual ENTER—enter subroutine

Notes:

If the 6-byte form of ENTER is used with a stack offset mode for src, the magni-
tude of the offset must be greater than SCSIZE, and the offset must be less than
or equal to 0, or unpredictable results may occur. The MSP must be greater than
or equal to the SP when ENTER begins; otherwise, instruction operation
depends upon context and, therefore, is unpredictable.

For the stack offset addressing model, only negative stack offsets are legal; pos-
itive stack offsets trigger an illegal instruction sequence. This includes ENTER
RO.

If virtual addressing is enabled, the target address and the new MSP, if the MSP
is updated, are checked to verify that stores are valid at the current execution
level. If the addresses are not valid, a read fault exception, exception type 8, or
MMU an MMU table walk fault, exception ID 0xB, is flagged for ENTER. The
exception is processed after any stack flushing is completed. Since the lower 4
bits of the SP do not exist, the lower 4 bits of the source operand are ignored.

© 1992, 1993 AT&T

January 1993 3-21

FLUSHD—flush data cache ATT92010 Programmer’s Reference Manual
Name: FLUSHD—flush data cache
Format: FLUSHD
Description:
The data cache is flushed; all entries are marked invalid.
Encodings:
length | opcode | subcode |instruction
2 0x0B 0x6 FLUSHD
Notes:
Since there is no data cache, FLUSHD is not implemented in hardware. An
unimplemented instruction sequence is taken.
3-22 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

FLUSHDCE—flush a data cache entry

Name:

Format:

Description:

The quad-word at src is flushed from the data cache.

FLUSHDCE—flush a data cache entry

FLUSHDCE src

Encodings:

length | opcode | subcode |instruction| src
6 ~0x00 0xD FLUSHDCE | word32

Notes:

Since there is no data cache, FLUSHDCE is not implemented in hardware. An
unimplemented instruction sequence is taken.

© 1992, 1993 AT&T

January 1993

3-23

FLUSHI—flush decoded instruction cache

ATT92010 Programmer’s Reference Manual

Name:

Format:

Description:

FLUSHI—flush decoded instruction cache

FLUSHI

The decoded instruction cache is flushed: all entries are marked invalid.

Encodings:
length | opcode | subcode |instruction
2 0x0B 0x3 FLUSHI
3-24 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

FLUSHP—{flush prefetch buffer cache

Name:

Format:

Description:

FLUSHP—Aflush prefetch buffer cache

FLUSHP

The prefetch buffer cache is flushed: all entries are marked invalid.

Encodings:
length | opcode | subcode | instruction
2 0x0B Ox4 FLUSHP
© 1992, 1993 AT&T January 1993 3-25

FLUSHPBE—{lush a prefetch buffer entry ATT92010 Programmer's Reference Manual

Name: FLUSHPBE—flush a prefetch buffer entry
Format: FLUSHPBE src

Description:

The quad-word at src is marked invalid in the PFB. No other caches are
affected.

Encodings:

length | opcode | subcode |instruction| src
6 0x00 0xC FLUSHPBE | word32

3-26 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual FLUSHPTE—flush a page table entry from the TLBs

Name: FLUSHPTE—{lush a page table entry from the TLBs
Format: FLUSHPTE src
Description:

If there is a page table entry for the address defined by src, in either the text or
data TLBs, the entry is marked invalid. Both the text and data nonpaged seg-
ment registers are invalidated.

Encodings:

length | opcode | subcode |instruction| src
6 0x00 0xB FLUSHPTE | word32

Notes:

For FLUSHPTE, the src operand is an address. Normally, the address is moved
into the stack cache and the stack offset indirect addressing mode is used for src.

© 1992, 1993 AT&T

January 1993 3-27

JMP—jump ATT92010 Programmer's Reference Manual
Name: JMP—jump
Format: JMP dst
JMPT(YIN) dst
JMPE(YIN) dst
Operation: JMP:
= &dst
JMPT:
if (PSW.F) PC = &adst
JMPF:
if ('PSW.F) PC = &dst
Description:
The jump instructions cause the address of the destination operand to become
the new PC value unconditionally (JMP), if the PSW flag bit is 1 (JMPT), or if
the PSW flag bit is 0 (JMPF). A branch prediction bit is available for the condi-
tional jumps to indicate that the jump more likely will (Y), or will not (N) be
taken. Conditional jumps cannot use indirect addressing modes.
Encodings:
length | opcode | subcode |instruction| src(dst)
2 0x03 — JMP pcrel10
2 0x04 — JMPFN pcrel10
2 0x05 — JMPFY pcrel10
2 0x06 —_ JMPTN perel1i0
2 0x07 — JMPTY pcrel10
6 0x00 0x3 JMP flow32
6 0x00 Ox4 JMPFN abs32
6 0x00 0x5 JMPFY abs32
6 0x00 0x6 JMPTN abs32
6 0x00 0x7 JMPTY abs32
Notes:
If the location pointed to by the jump instruction cannot be refcrenced, a fetch-
fault results. In this case, the PC stored on the interrupt stack is the target PC,
not the PC of the original jump. The address of the original jump instruction is
not saved. In the event of an indirect jump, if the ATT92010 Hobbit Micropro-
cessor cannot reference the indirection word, a read-fault results and the PC
stored on the interrupt stack is that of the indirect jump.
3-28 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual ' : KCALL—kernel call

Name: KCALL—Xkernel call

Format: KCALL src

Operation:

disable interrupts

*(ISP - 12) = src /*R4 wrt new ISP*/
*(ISP — 8) = PC of next instruction /*R8 wrt new ISP*/
*(ISP - 4) =PSW /*R12 wrt new ISP*/
ISP-=16

SHAD = ISP

PC=#%(VB +0)

PSW = PSW & OxFFFF0000

enable interrupts

Description:

The PSW, PC (return point), and src operand values are saved on the interrupt
stack as quad-words. The new PC value is read from the memory location
pointed to by the vector base register. The low-order 16 bits of the PSW are set
to 0, which selects kernel execution level, selects the ISP as the CSP, disables
tracing, and inhibits interrupts. The PSW virtual physical addressing mode bit
does not change.

Encodings:
length | opcode | subcode |instruction| src
2 0x00 — KCALL [imm10°
6 0x00 0x0 KCALL |word32

* The 10-bit immediate value is zero-extended and multiplied by
four giving it an effective range of 0 through 4092 in increments
of 4.

Notes:

Interrupts are disabled while KCALL is processing. If a memory fault occurs
while writing to the interrupt stack or reading from the table pointed to by the
vector base, the Hobbit microprocessor resets. '

If the location pointed to by the KCALL PC entry in the vector table cannot be
referenced, a fetch-fault results. In this case, the PC stored on the interrupt stack
is the target PC (the value in the location pointed to by the VB), not the PC of the
original KCALL instruction.

© 1992, 1993 AT&T

January 1993 3-29

KRET—kernel return ATT92010 Programmer’s Reference Manual

Name: KRET—kernel return
Format: KRET
Operation:
disable interrupts
PC =*(ISP + 8) /*R8 wrt ISP*/
PSW= (ISP + 12) /*R12 wrt ISP*/
ISP + =16
if (CSP ==ISP)
SHAD = ISP
else
SHAD = SP
enable interrupts
Description:

The PSW and PC values are restored from the interrupt stack.

Encodings:

length | opcode | subcode |instruction
2 0x0B Ox1 KRET

Notes:

Interrupts are disabled while KRET is processing. If a memory fault occurs
while reading from the interrupt stack the ATT92010 resets. KRET is privi-
leged. If KRET is executed at the user level, a privilege exception is executed.

KRET cannot be traced.

If the location pointed to by the new PC value cannot be referenced, a fetch-
fault results. In this case, the PC stored on the interrupt stack is the new PC
value, not the address of KRET.

3-30 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual LDRAA—Iload relative address into accumulator

Name: LDRAA—]oad relative address into accumulator
Format: LDRAA dst

Operation: Acc = &dst

Description

The destination address is calculated as if a JMP instruction was being executed
and stored in the accumulator.

Encodings:

length | opcode | subcode |instruction| src
6 0x00 OxA LDRAA | flow32

© 1992, 1993 AT&T January 1993 3-31

MOV—move S ATT92010 Programmer’s Reference Manual

Name: MOV—move
Format: MOV src, dst
Operation: dst = src
Description:

The value of the source operand is stored in the destination.

Encodings:

length | opcode | instruction| src dst
2 O0x0A MoV wai5, | stk5
2 0x18 MoV stk5, | stk5
2 0x19 MOV istk5, | stkb
2 Ox1A MOV stk5, | istk5
2 0x1B MoV istk5, | istkS
2 0x1C MoV imm5, | stk5
6 0x06 MOV geni6, | gen16
10 0x06 MoV gen32, | gen32

3-32 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual MOVA—move address

- Name: MOVA—move address
Format: MOVA src, dst
Operation: dst = &src
Description:

The address of the source operand is calculated and stored in the destination.

Encodings:

length | opcode |instruction| src dst
2 0x1D MOVA stk5, | stk5
6 0x04 MOVA |gen16*,| gen16

10 0x04 MOVA |gen32*,| gen32

* The source operand must use a word addressing mode
(that is modes 2 0xC) except for immediate as aiready
noted. Any other mode causes an illegal instruction
exception.

Notes:

If the size of the destination is byte or half-word, the calculated address is trun-
cated (or sign-extended) to 8 or 16 bits. An immediate source operand as well as
a register source or destination causes an illegal instruction exception.

© 1992, 1993 AT&T

January 1993 3-33

MUL—multiply

ATT92010 Programmer’s Reference Manual

Name: MUL—multiply
Format: MUL[3] src, dst
Operation: MUL:

dst * =src

“unsigned overflow” ?PSW.C=1:PSW.C=0
“signed overflow” 7PSW.V=1:PSW.V=0

MUL3:

Acc =dst * src

“unsigned overflow” 7 PSW.C=1:PSW.C=0
“signed overflow” 7PSW.V=1:PSW.V=0

Description:

The source operand is multiplied by the destination operand and the product is
placed in either the destination (MUL) or the accumulator (MUL3). The PSW
carry bit is set to 1 if the product of the operands as unsigned values overflows
the destination (or accumulator); similarly, the PSW overflow bit is set to 1 if
the product of the operands as signed values overflows the destination (or accu-
mulator). Otherwise, the PSW carry and overflow bits are set to 0. See Section
3.3 for a description of integer arithmetic.

Encodings:
length | opcode |instruction| src dst
6 0x26 MUL gen16, | gen16
6 0x36 MUL3 geni6, | gen16
10 0x26 MUL gen32, | gen32
10 0x36 MUL3 gen32, | gen32
3-34 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual NOP—no-operation

Name: NOP—no-operation
Format: NOP

Description:

No operation is performed.

Encodings:

length | opcode | subcode | instruction
2 0x0B 0x2 NOP

© 1992, 1993 AT&T January 1993 3-35

OR—bitwise logical OR ATT92010 Programmer's Reference Manual

Name: OR—Dbitwise logical OR
Format: OR[3] src, dst
Operation: OR:

dst | = src

OR3:

Acc =dst | src
Description:

A bitwise logical OR is performed on the source and destination operands, and
the result is placed in either the destination (OR) or the accumulator (OR3).

Encodings:
length | opcode |instruction| src dst
6 0x21 OR geni6, | gen16
6 0x31 OR3 geni6, | gen16
10 0x21 OR gen32, | gen32
10 031 OR3 gen32, | gen32

3-36 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual ORI—bitwise logical OR interlocked

Name: ORI—bitwise logical OR interlocked
Format: ORI src, dst
Operation: hidden = dst
dst | = src
Acc = hidden
Description:

A bitwise logical OR operation is performed on the source and destination
operands and the result is placed in the destination. COCK is asserted during the
fetch of dst if dst is in memory and not in the stack cache. LOCK is deasserted at
the completion of the store to dst. No other accesses are done between the fetch
and store of dst. The original value of dst is placed in the accumulator. If the
accumulator is not in the stack cache, a store is made after the interlocked I/O

completes.

Encodings:

length | opcode | instruction| src dst
6 0x01 ORI gen16, | gen16
10 0x01 ORI gen32, | gen32

Notes:

Pipeline bypass hazards associated with semaphore operations are avoided in
the Hobbit microprocessor by clearing the pipeline before an interlocked
instruction enters the first pipeline stage. No other instruction is allowed into the
pipeline until the executing interlocked instruction completes.

If R4 is the destination, after the interlocked instruction completes, R4 is the
previous value of R4; hence, no operation is performed.

If the accumulator is not in the stack cache, CSP == MSP, an I/O access is made
to update the accumulator after the interlocked accesses complete. The access to
the accumulator must not fault in any manner, since ORI is not restartable from
this point of the operation.

© 1992, 1993 AT&T January 1993 3-37

POPN—pop n entries from stack cache ATT92010 Programmer’s Reference Manual

Name: POPN—pop n entries from stack cache
Format: POPN src
Operation: disable interrupts

SHAD = CSP = CSP + src

if ((CSP == SP) && (CSP > MSP))
MSP SP

enable interrupts

Description:

The src operand is fetched, and added to the CSP and SHAD. If the CSP is SP,
and the new SP value exceeds the MSP, the MSP is also updated to the new
value. If the CSP is ISP, the MSP is not updated.

Encodings:
length | opcode | subcode |instruction| src
2 0x02 0x3 POPN stk8*
6 0x00 OxF POPN stk32

* The 8-bit stack offset is zero extended and multiplied by 16
giving it an effective range of 0 through 4080 in quad-aligned
increments.

Notes:

Only the stack offset addressing mode is legal; any other mode results in an ille-
gal instruction exception sequence. Negative stack offsets are illegal.

3-38 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual REM—remainder

Name: REM—remainder
Format: REMI3] src, dst
Operation: REM:

dst % = src

REM3:

Acc =dst % src
Description:

The destination operand is divided by the source operand, and the remainder is
placed in either the destination (REM) or the accumulator (REM3). Two’s com-
plement division is performed. See Section 3.3 for a description of integer arith-
metic.

Encodings:
length | opcode |instruction| src dst
6 0x25 REM gen16, | gen16
6 0x35 REM3 | geni6, | gen16
10 0x25 REM gen32, | gen32

10 0x35 REM3 gen32, | gen32

Notes:

Division by zero results in a zero divide exception. The PSW overflow bit is
always cleared by REM, and the carry bit is unchanged in all the cases.

© 1992, 1993 AT&T

January 1993 3-39

RETURN—return from subroutine ATT92010 Programmer’s Reference Manual

Name: RETURN—return from subroutine
Format: RETURN src
Operation: disable interrupts

PC =PC * (CSP + src)

SHAD = CSP = CSP + src

if ((CSP == SP) && (CSP > MSP))
MSP = SP

enable interrupts

Description:

The src operand is fetched and used as the new PC value. If the CSP is SP, and
the new SP value exceeds the MSP, the MSP is also updated to the new value. If
the CSP is ISP, the MSP is not updated.

Encodings:
length | opcode | subcode |instruction| src
2 0x02 0x2 RETURN | stk8*
6 0x00 0x2 RETURN | stk32

* The 8-bit stack offset is zero extended and multiplied by 16
giving it an effective range of 0 through 4080 in quad-aligned
increments.

Notes:

Only the stack offset addressing mode is legal; any other mode results in an ille-
gal instruction exception sequence. Even though the lower 4 bits of the SP do
not exist, RETURN can obtain a new PC for a word-aligned register offset that
is not a multiple of 16; but when adjusting the SP, the lower 4 bits of the offset
are ignored. For example:

RETURN R4

obtains the new PC from R4, but the SP does not change. Similarly,
RETURN R20

obtains the new PC from R20, but the SP only increments 16. Only positive off-
sets are legal. Negative offsets result in an illegal instruction exception
sequence. If the location pointed to by the new PC value cannot be referenced, a
fetch-fault results. In this case, the PC stored on the interrupt stack is the new
PC values, not the address of RETURN.

3-40 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

SHL—shift left

Name:

Format:

Operation:

Description:

SHL—shift left

SHL[3] src, dst

SHL:

dst << = Unsigned(src)

SHL3:

Acc = dst << Unsigned(src)

The destination operand is shifted left by the number of bits indicated by the
source operand. Zeros replace the bits shifted out of the least significant bit of
dst. Only the low-order 5 bits of src are used for the shift amount. The upper bits
are ignored. For SHL3, the result is placed in the accumulator and the destina-

tion is left unchanged.
Encodings:
length | opcode | instruction | - src dst
2 Ox1E SHL3 uimm5, | stk5
6 Ox2E SHL gen16, | gen16
6 Ox3E SHL3 geni6, | gen16
10 O0x2E SHL gen32, | gen32
10 0X3E SHL3 gen32, | gen32
© 1992, 1993 AT&T January 1993 3-41

SHR—arithmetic shift righ

ATT92010 Programmer’s Reference Manual

Name:

Format:

Operation:

Description:

SHR—arithmetic shift right

SHR[3] src, dst

SHR:

dst >> = src

HR3:

Acc =dst >> src

The destination operand is shifted right by the number of bits indicated by the
source operand. The sign bit of the destination is copied as bits are shifted right-
ward. Only the low-order 5 bits of src are used for the shift amount. The upper
bits are ignored. For SHR3, the result is placed in the accumulator and the desti-

nation is left unchanged.
Encodings:
length | opcode |instruction| src dst
2 Ox1F SHR3 {uimmb5,| stk5
6 0x2C SHR gen16, | gen16
6 0x3C SHR3 gen16, | gen16
10 0x2C SHR gen32, | gen32
10 0X3C SHR3 gen32, | gen32
3-42 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Name:

Format:

Operation:

Description:

The source operand is subtracted from the destination operand, and the differ-
ence is placed in either the destination (SUB) or the accumulator (SUB3). The
PSW carry bit is set on unsigned overflow and the PSW overflow bit is set on

signed overflow; otherwise, the PSW carry and overflow bits are set to 0.

SUB—subtract

SUBJ[3] src, dst

SUB:

dst —=src

“unsigned borrow” ?PSW.C=1:PSW.C=0
“signed borrow” 7 PSW.V=1:PSWV =0

SUB3:

Acc =dst - src

“unsigned borrow” ?PSW.C=1:PSW.C=0
“signed borrow” 7 PSW.V=1:PSW.V=0

Encodings:
length | opcode |instruction| src dst
6 0x20 SuB geni6, | gen16
6 0x30 SUB3 geni6, | gen16
10 0x20 SuB gen32, | gen32
10 0x30 SuUB3 gen32, | gen32
© 1992, 1993 AT&T January 1993

SUB—subtract

TADD—tagged addition ATT92010 Programmer’s Reference Manual

Name: TADD—tagged addition
Format: TADD src, dst
Operation: if ((src[1:0] != 0x0) Il (dst[1:0] != 0x0))

PSWF=1

else
{
dst + src
“unsigned overflow” 7PSW.C=1:PSW.C=0
“signed overflow” 7PSW.V=1:PSW.V=0
PSWF =PSW.V
}

if PSWF==0)
dst = dst + src

Description:

The source operand is added to the destination operand, and the sum is placed
in the destination if the PSW flag bit is set to 0. The PSW flag bit is set to 1 if
the low 2 bits of either the source and destination operands are non zero or the
PSW overflow bit is set to 1. The PSW carry bit is set to 1 on unsigned over-
flow, and the PSW overflow bit is set to 1 on signed overflow; otherwise, the
PSW carry and overflow bits are set to 0. See Section 3.3 for a description of
integer arithmetic.

Encodings:
length | opcode |instruction| src dst
6 0x0C TADD geni6, | gen16
10 0x0C TADD gen32, | gen32
3-44 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

TESTC—test PSW carry

Name: TESTC—test PSW carry
Format: TESTC
Operation: PSWF=PSW.C
PSW.C=0
Description:
Thg PSW carry bit is copied into the PSW flag bit, and the PSW carry bit is set
to 0.
Encodings:
length | opcode | subcode |instruction
2 0x0B 0x9 TESTC
© 1992, 1993 AT&T January 1993 3-45

TESTV—test PSW overflow ATT92010 Programmer’s Reference Manual

Name: TESTV—test PSW overflow
Format: TESTV
Operation: PSWF =PSW.V
PSWV =0
Description:
The PSW overflow bit is copied into the PSW flag bit, and the PSW overflow bit
is set to 0.
Encodings:

length | opcode | subcode |instruction
2 0x0B 0x8 TESTV

3-46 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual TSUB—tagged subtraction

Name: TSUB—tagged subtraction
Format: TSUB src, dst
Operation: if ((src[1:0] != 0x0) Il (dst[1:0] != 0x0))
PSWF=1
else
{
dst — src

“unsigned borrow” ?PSW.C=1:PSW.C=0
“signed borrow” ?PSW.V=1:PSWV =0
PSW.F =PSW.V
}

if PSW.F =0)
dst = dst — src

Description:

The source operand is subtracted from the destination operand, and the differ-
ence is placed in the destination if the PSW flag bit is set to 0. The PSW flag bit
is set to 1 if the low 2 bits of either the source and destination operands are non-
zero or the overflow bit is set to 1. The PSW carry bit is set to 1 on unsigned
overflow, and the PSW overflow bit is set to 1 on signed overflow; otherwise,
the PSW carry and overflow bits are set to 0. See Section 3.3 for a description of
integer arithmetic.

Encodings:

length | opcode | instruction| src dst

6 0x0D TSuUB geni6, | gen16

10 0x0D TSUB gen32, | gen32

© 1992, 1993 AT&T

January 1993 3-47

UDIV—unsigned divide ATT92010 Programmer’s Reference Manual
Name: UDIV—unsigned divide
Format: UDIV src, dst
Operation: dst +=dst src
Description:
The destination operand is divided by the source operand and the quotient is
placed in the destination. Unsigned division is performed.
Encodings:
length | opcode |instruction| src dst
6 Ox2F uDIv gen16, | geni16
10 Ox2F ubiv gen32, | gen32
Notes:
Division by zero results in a zero divide exception. The PSW carry bit is always
cleared by UDIV, and the overflow bit is unchanged in all the cases.
3-48 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual UREM—unsigned remainder

Name: UREM—unsigned remainder
Format: UREM src, dst

Operation: dst % = src

Description:

The destination operand is divided by the source operand, and the remainder is
placed in the destination. Unsigned division is performed. See Chapter 1 for a
description of integer arithmetic.

Encodings:

length | opcode | instruction| src dst
6 0x05 UREM | geni6, | gen16

10 0x05 UREM | gen32, | gen32

Notes:

Division by zero results in a zero divide exception. The PSW carry bit is always
cleared by UDIV, and the PSW overflow bit is unchanged in all the cases.

© 1992, 1993 AT&T

January 1993 3-49

USHR—unsigned shift right ATT92010 Programmer’s Reference Manual
Name: USHR—unsigned shift right
Format: SHR[3] src, dst
Operation: USHR:
dst >> = Unsigned(src)
USHR3:
Acc = dst >> Unsigned(src)
Description:
The destination operand is shifted right by the number of bits indicated by the
source operand. Zeros replace the bits shifted out of the most significant bit of
destination operand. Only the low 5 bits of the source operand are used for the
shift amount. The upper bits are ignored. For USHR3, the result is placed in the
accumulator and the destination is left unchanged.
Encodings:
length | opcode |instruction| src dst
6 0x2D USHR geni6, | gen16
6 0x3D USHR3 | geni6, | gen16
10 0x2D USHR gen32, | gen32
10 0x3D USHR3 | gen32, | gen32
3-50 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual XOR—bitwise logical exclusive OR

Name: XOR—bitwise logical exclusive OR
Format: XOR[3] src, dst
Operation: XOR:
dst A = src
OR3:

Acc =dst A src
Description:

A bitwise logical exclusive OR operation is performed on the source and desti-
nation operands, and the result is placed in either the destination (XOR) or the
accumulator (XOR3).

Encodings:
length | opcode |instruction| src dst
6 0x24 XOR gen16, | gen16
6 0x34 XOR3 geni6, | gen16
10 0x24 XOR gen32, | gen32

10 0x34 XOR3 gen32, | gen32

© 1992, 1993 AT&T

January 1993 3-51

Chapter 4

Performance

4.1

The bottom line in performance is the length of time required to execute a pro-
gram. This is usually factored into three areas:

o the total number of instructions required (for the program)

o the average number of cycles per instruction

e the clock rate

Because of the highly pipelined nature of the ATT92010 Hobbit Microproces-
sor, it is difficult to measure how long it takes to execute a single instruction.
Many instructions can be executed at the rate of one per cycle, since pipelining

allows the execution of instructions to overlap. This section provides perfor-
mance data based on parameters detailed in the next section.

Execution Time

In order to describe the time it takes to execute an instruction, execution times
are specified assuming the following conditions:

o Instruction fetches must access in the instruction cache

e Only the stack offset, immediate, register, absolute (for jumps and calls
only), or program counter relative addressing modes are used

o All stack offset accesses are captured in the stack cache
* No data hazards occur between instructions
There are a some pipeline delays that may cause an instruction to take longer to

execute. These delays (see section 4-2) should be added to the base execution
time.

© 1992, 1993 AT&T

January 1993 4-1

ATT92010 Programmers Reference Manual

Throughout this section abbreviations are used, in tables, to represent
performance cycles. These abbreviation are:
IC — decoded instruction cache
PDU — prefetch and decode unit
A — memory access time for a single word access
D — memory access time for a double word access
Q — memory access time for a quad word access
M — memory
N — number of valid entries in the stack cache
SC — stack cache
E — ENTER size
EU — Execution unit

For the purpose of estimating execution time, instructions fall into five groups:
e Simple
Multi-Cycle Arithmetic

« DQM
Conditional Jump

Miscellaneous

Delays are also grouped into four types:
¢ Fetch and Empty Pipeline
e Operand Access

e Data Type
e Miscellaneous

Listings of execution times for each instruction group are shown in Table 4-1
through Table 4-5. Delays are listed in Table 4-6 through Table 4-9.

4-2 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Table 4-32 Simple Instruction
Instruction| Min Max Jinstruction| Min Max
ADD 1 1 OR 1 1
ADD3 1 1 OR3 1 1
ADD1 2 2 ORI 2 2
AND 1 1 RETURN 2 2
AND3 1 1 POPN 2 2
ANDI 2 2 SHL 1 1
CALL 1 1 SHL3 1 1
CLRE 1 1 SHR 1 1
CMP 1 1 SHR3 1 1
CPU 0 0 SuB 1 1
FLUSHI 1 1 SuB3 1 1
FLUSHP 1 1 TADD 1 1
FLUSHPBE 1 1 TESTC 1 1
FLUSHPTE 1 1 TESTV 1 1
JMP 0 1 TSUB 1 1
LDRAA 1 1 USHR 1 1
MOV 1 1 USHR3 1 1
MOVA 1 1 XOR 1 1
NOP 1 1 XOR3 1 1

Note that RETURN:S are always indirect, do not add delay for indirection. If an
unconditional jump is folded into the previous instruction, it takes no time to
execute; otherwise, it takes one cycle.

The execution times for multi-cycle arithmetic instructions are data dependent.
For these instructions, instruction fetch, operand access and data type delays are
possible.

© 1992, 1993 AT&T January 1993 43

ATT92010 Programmers Reference Manual

Table 4-33 Multi-Cycle Arithmetic Instructions

Instruction| Min Max
DIV 38 38
DIv3 38 38
MUL 3 20
MUL3 3 20
REM 38 38
REM3 38 38
ubIv 38 38
UREM 38 38

For DQM type, instruction fetch delays are possible.

Table 4-34 DQM Instructions

Type of DQM Cycles
Constant to SC double-word 3
Constant to SC quad-word 5
Constant to M double-word 1+D
Constant to M quad-word 1+Q
SC double-word to SC double-word 4
SC quad-word to SC quad-word 8
SC/M double-word to M/SC double-word 2+D
SCM quad-word to M/SC quad-word 4+D
M double-word to M double-word 2.D
M quad-word to M quad-word 8.8

For conditional jump instructions, fetch delays are possible if the branch is not
folded.

4-4 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table 4-35 Conditional Jump Instruction

Instruction Cycles
Correct prediction, folded 0
Correct prediction, unfolded 1
Incorrect prediction, jump after compare 3
Incorrect prediction, jump 2 instructions after compare 2
Incorrect prediction, jump 3 instructions after compare 1
Incorrect prediction, unfolded, 4 or more instructions after compare 1
Incorrect prediction, folded, 4 or more instructions after compare 0

For the remaining miscellaneous instructions, instruction fetch and miscella-
neous delays are possible.

Table 4-36 Miscellaneous Instruction

Instruction Cycles
CATCH 1

CRET 11+Q
ENTER 1+(Q-.E)
KCALL 8+D+A

KRET 10+D

Unimplemented opcode 7+A
Exception 9+D+A

4.2 Delays

Instruction fetch delays occur when the instruction is not immediately available
for execution by the execution unit (EU). The instruction misses the IC and the
EU reset the PDU to fetch the desired instruction. If the EU is using I/O, the
PDU is accomplishing a unrelated memory access at the time of reset, or if the
PDU is handling a previously received fault, the delays may be extended. Table
4-6 lists the Fetch and Empty Pipeline Delays.

© 1992, 1993 AT&T January 1993 4-5

ATT92010 Programmers Reference Manual

Table 4-37 Fetch and Empty Pipeline Delays
Condition Penalty
IC miss, instruction contained in prefetch buffer 3
IC miss, instruction contained in single double-word 5+D
in memory
IC miss, instruction contained in single quad-word 54+ 2D
memory
IC miss, instruction contained in 2 quad-words in 842D
memory
IC miss and instruction is a CPU-prefix operation 1
EU pipeline empty 2
Operand accesses may also take longer than predicted (using these tables)
because of the possibility of a data hazard or internal contention for I/O. Data
hazards occur when a previous instructions tires to write to a memory location
that overlaps the location being read by a subsequent instruction.
I/O contention occurs when the EU wants to make an external memory access
while the PDU is in the middle of an access. The Operand Access Delays are
listed in Table 4-7 followed by the Data Type and Miscellaneous Delay tables.
Table 4-38 Operand Access Delays
Condition Penalty
One operand in memory 1+A
Two operands in memory 1+2A
One or two operands indirect, both pointers in stack 1
cache
One or two operands indirect, one pointer in memory 1+A
Two operands indirect, both pointers in memory 1+2A
Destination in memory A
4-6 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Table 4-39 Data Type Delays

Condition Penalty
One operand not word type 1
Two operands not word type 2
Table 4-40 Miscellaneous Delays
Condition Penalty

One or two operands indirect, both pointers in stack cache 1
One or two operands indirect, one pointer in memory 1+A
Two operands indirect, both pointers in memory 1+2A

4.3 Branch Folding

The ATT92010 Hobbit Microprocessor provides a next address field with each
decoded instruction. When the PDU detects a non-branching operation followed
by a branch, it folds the two instructions to form a single instruction/branch
operation.

As a result, branches are rarely explicitly executed because they are folded and
executed along with other instructions. A one-parcel branch will fold into a pre-
vious one- or three-parcel instruction and execute together except when the pre-
vious instruction is:

e another jump of any kind
e any one-parcel instruction with a five-bit opcode in the range 00000->00111
¢ any three-parcel monadic instruction (for example, opcode equals 000000)

© 1992, 1993 AT&T January 1993 4-7

Appendix A

Bus Arbitration and
Electrical Characteristics

A1

To facilitate multiple bus masters, the bus arbitration protocol does not make the
ATT92010 the default bus master. A centralized arbiter selects the current bus
master and controls transactions over the bus. A synchronous bus protocol is
used to exchange ownership of the bus from one master to another. The central
bus arbiter must execute this protocol, asserting and negating BGRANT to the var-
ious bus masters in a consistent manner.

Bus Protocol

The signals involved in this protocol generated by the central bus arbiter are
HRESET, BORANT, and RETRY. There is a BGRANT for each bus master, with the other
signals shared among bus masters.

The signals involved in this protocol generated by the bus masters are BREQ,
START, IOC[1:0], and LOCK. There is a BREQ for each bus master, with the other
signals shared among bus masters. Finally, the device being accessed generates
DTACK.

Upon reset of the system, which must be synchronous, the arbiter selects one of
the requesting bus masters as current bus master by asserting its BGRANT. Having
received BGRANT, the master takes ownership of the bus. The bus arbiter moni-
tors the bus, keeping track of the state of the bus. The asserts BREQ when an I/O
transaction is pending (upon reset, the ATT92010 Hobbit Microprocessors want
to start execution at address 0x0).

The arbiter selects a new bus master by deasserting BGRANT to the current bus
master and asserting BGRANT to the next bus master at the end of any outstanding
bus transactions. If the current bus master loses BGRANT with an outstanding
transaction on the bus, that master COCK remains on the bus until DTACK is
asserted with IOC[1:0] equal to zero and LOCK is deasserted.

© 1992, 1993 AT&T

January 1993 A-1

ATT92010 Programmer's Reference Manual

The new bus master takes ownership of the bus at the beginning of the next bus
cycle after receipt of BGRANT. The arbiter must assert BGRANT in a manner which
inserts a dead cycle between the end of the previous bus owner’s BGRANT and
the beginning of the next bus owner’s BGRANT.

The ATTT92010 asserts BGACK to indicate that it has bus ownership, and it
deasserts BGACK to indicate that it has relinquished the bus. In Figure A-1, bus
cycles 1 through 4 show a typical bus request and acquisition.

A.2 Surrendering the Bus

The arbiter signals the ATT92010 Hobbit microprocessor to relinquish the bus
by deasserting BGRANT. When BGRANT is deasserted, the ATT92010 will relin-
quish ownership of the bus and deassert BGACK. If the microprocessor is running
a bus transaction and BGRANT is deasserted, ownership of the bus will be relin-
quished after receipt of BTACK with IOC[1:0] equal to zero and LCOCK is deas-
serted.

If the microprocessor is not running a bus transaction and BGRANT is deasserted,
ownership of the bus will be relinquished at the beginning of the next bus cycle.
BGACK is deasserted by the microprocessor in the same bus cycle that ownership
of the bus is being relinquished.

Most arbitration protocols will want to continue to grant the bus to the current
bus master if it continues to request the bus by asserting its BREQ.

In Figure A-1, bus cycles 15 through 17 show a typical release of the bus.

Figure A-1 represents a cacheable single-word data read followed by a double-
word text read. The accesses are not interlocked and don’t produce bus errors.

A-2 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Read BUS Cycles with BUS Arbitration

Figure A-2

~

©

-

e = —] m b e

&

|__>< 7~

R I.A —_—

A

— - f---,.--- -I--
_] IR I I Y -] HY£---
(T2

< T 01 11] 1 ll\l [T
o | 11T T 7T T 1T
. S IS NURUR VRN NN NN NN NN N
e B B e s e S T S

R

[—

e —

CLK23

A-3

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

A3

Bus Transaction Types

A3

A3.2

Normal bus transfers begin with the assertion of START and end with the asser-
tion of DTACK. In case of an error during a bus transfer, the transaction may be
ended by the assertion of HRESET or BERR with DTACK. Interlocked bus transfers
end with the deassertion of LOCK following a BTACK. Multiple word transfers end
when IOC[1:0] = 0 with assertion of BTACK. Sub-word accesses are the same as
single-word accesses with the exception that only the appropriate byte enables
are asserted.

Read Transactions

Read transactions may fetch text or data. Text reads are always double-word
transfers. Data reads are either single-, double- or quad-word transfers. After
completion of a read transaction, a loopback is performed if the microprocessor
remains owner of the bus and there are no pending bus transactions. See Figure
A-1 for the following example.

Bus cycles 4 through 6 show a typical read transaction. In bus cycles 7 through
10, a loopback cycle is performed. In bus cycles 11 and 15, a double-word
transaction is performed. In bus cycle 16, another loopback cycle is performed.
The ATT92010 holds all bus signals at their previous values and loops back the
data read on the previous cycle.

Note The bus transaction may be ended by HRESET or BERR with DTACK to
signal an error.

Write Transactions

Write transactions are either single-, double-, or quad-word transfers. Refer to
Figure A-2 for the following example.

Bus cycles 4 through 7 show a typical write transaction. In bus cycles 8 through
10, the microprocessor maintains the previous bus cycles values on most sig-
nals. In bus cycles 11 through 13 and bus cycles 14 through 15, two more write
transactions are performed.

Note The bus transaction may be ended by HRESET or BERR with DTACK to
signal an error.

A-4

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Figure A-3 Write BUS Cycles with BUS Arbitration

b — —

- ——

b - -

b = ——

- ——

- ——

HD[31:0]

- — -

-~ —

PEF N NS SR .
B L] NEEDNRYE (NEpERpER [

-——t-—F--4----1

B

A-5

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

A33

A3.4

A4

interlocked Bus Transfer

This is a read-modify-write type bus operation. This sequence of operations is
not interruptible. The bus remains locked through the write. If BGRANT is de-
asserted during an interlocked operation, the operation is completed and transfer
of bus ownership is delayed a clock cycle. Refer to Figure A-3 for the following
example.

Bus cycles 2 through 4 show the read portion of the RMW operation. Bus cycles
7 through 8 show the write portion of the RMW operation. In bus cycle 9, LOCK
remains asserted by the microprocessor adding a dead cycle. In bus cycle 11, the
next bus cycle begins.

Block Data Transfer

The block transfer sizes that are supported are double- and quad-word. The
block transfer looks like a series of single-word bus transfers with the micropro-
cessor incrementing address bits HA[3:2] and decrementing IOC[1:0] for each
access. Block transfers are not interruptible. Block transfers may be retried with
the transfer resuming where it was aborted when RETRY is deasserted.

Exception Handling

A4

A4.2

The exception/error signals provide a means by which external devices can
inform the ATT92010 of an unusual condition which requires the processor to
deviate from its normal execution.

Bus Retry

RETRY is asserted to retry the current bus transaction. When RETRY is asserted
during a valid bus transaction, the ATT92010 Hobbit Microprocessor aborts the
current bus transfer and masks the DTACK input. After RETRY is deasserted, the
bus transaction is rerun after the microprocessor obtains ownership of the bus as
RETRY is orthogonal to bus arbitration. In systems with gateways through which
two buses communicate with each other, the retry feature is required to break
deadlock conditions when the two buses have simultaneous requests for their
respective counterpart bus.

Bus Error _
The assertion of BERR indicates an error in a bus transaction of any type. An
internal /O fault is generated when BERR is asserted and a DTACK is received.
When BERR is asserted and DTACK received, the exception taken depends upon
the type of bus transaction being terminated.

A6

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

interlocked BUS Transfer with and without Entry

Figure A-4

9 i B D T T 77
Mmlll ——bee e e N NN DR
Mlll:lllnllnlll. JEPHUIS SRR DN PN PN SNy DUV SN N R 4 R PR PPN S
lﬂ”l..lll. ———f - - — 4 III#.!IIIII. ———pme—de—t e e] - —— Illﬁllll
Mlll bbadesd phadads fadalel Ealaled o R R CEEEEE EERT RN SR By DN WIS PRI S —— 4!." —— - —
—— e e i N DN

2 L AN % g

——— -y Ny

WWHWHm.ux.uxnx”HH---.---.v.

- 1 F&---1--1---+F-----}F--4-}--1

—-1---t-—-- AU N [—— s . . PSR [N S)SIE [IpUY QUININ S S— -} ---

=TT e]

- N
—_— -) W I RE—— 4 H H F--4-F--4---}--Ff----}--} —
<

——f e e e t—-——-Ft-----1 - 4 e il Rl ety [SIg [SN S, - - -

2 |
N
L\
—A
A

BE[3:0]

L
HA[31:2]

A-7

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer'’s Reference Manual

A 4.3 Reset

If ARESET is asserted, the ATT92010 Hobbit Microprocessor is reset and any
current bus cycle is aborted.

Signal Priority Level
HRESET Highest
RETRY o
DTACK Lowest
A-8 January 1993 © 1992, 1993 AT&T

Appendix B

Electrical Characteristics

B.1

This appendix presents reference information on the electrical characteristics of
the ATT92010 Hobbit Microprocessor. This information is presented in table
format as well as diagrams.

Absolute Maximum Ratings

B.2

Stresses in excess of the Absolute Maximum Ratings can cause permanent dam-
age to the device. These are absolute stress ratings only. Functional operation of
the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to Absolute Maxi-
mum Ratings for extended periods can adversely affect device reliability.

Parameter Symbol Min Max Unit

Idc Supply Voltage VoD -05 7.0 \"

Ambient Operating Temperature TA 0 70 C

Storage Temperature Tstg -40 125 Cc

Handling Precautions

All MOS devices must be handled with certain precautions to avoid damage due
to the accumulation of static charge. Although input protection circuitry has
been incorporated to minimize the effect of statics buildup, proper cautions
should be taken to avoid exposure to electrostatic discharge (ESD) during han-
dling and mounting. AT&T employs a human-body model (HBM) for ESD sus-
ceptibility testing.

© 1992, 1993 AT&T

January 1993 B-1

ATT92010 Programmer's Reference Manual

Since the failure voltage of electrostatic devices is dependent on the current and
voltage and, hence, the resistance and capacitance, it is important that standard
values be employed to establish a reference by which to compare test data. Val-
ues of 100 pF and 1500Q are the most common and are the values used in the
AT&T HBM test circuit. The breakdown voltage for the ATT92010 Hobbit
Microprocessor is 1,000V, according to the HBM, and it is 2,000V according to
the charged-device model (CDM).

20 MHz Recommended Operating Conditions

(Vpbp=3.3V 10%; CLK34 and CLK23 = 20 MHz)

Parameter Symbol Min Typ Max Unit
Input High Voltage VH 2.2 — Vop + 0.3 \
Input Low Voltage ViL -0.3 - 0.6 v
Output High Voltage
loH = 5.7 mA (pins HD[31:0]) VoH 25 - — v
loH = 2.5 mA (all pins except HD[31:0])
Output Low Voltage
loL = 5.7 mA (pins HD[31:0]) VoL — - 0.3 v
loL = 2.5 mA (all pins except HD[31:0])
TDI Input Low Current ITDI — —_ -1.73 mA
TMS Input Low Current IT™Ms — — -0.87 mA
TCK Input Low Current ITck —_ —_ -0.87 mA
TRST Input High Current ITRST —_ — -1.16 mA
Input Leakage Current
0V< VIN< Vb h -0.01 — 0.01 mA
3-Stated Output Leakage Current lom -0.01 —_ 0.01 mA
Supply Current
Output Load = 10 pF IoD — 75 95 mA
Output Load = 50 pF oo — 125 150 mA
Standby Current IsB 0 6 30 uA

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table B-2 30 MHz Recommended Operating Conditions
(VDD=5.0V +10%; CLK34 and CLK23 = 30 MHz)

Parameter Symbol Min Typ Max Unit
Input High Voltage VIH 3.2 - Vop + 0.4 \
Input Low Voltage » viL 0.4 —_ 0.8 \'
Output High Voitage
loH = 8 mA (pins HD[31:0]) ’ VoH 36 — — \
loH = 3.5 mA (all pins except HD[31:0])
Output Low Voltage
loL = 8 mA (pins HD[31:0)) VoL —_ —_ 0.4 v
loL = 3.5 mA (all pins except HD[31:0])
TDI Input Low Current] —_ - -2.63 mA
TMS Input Low Current .~ - : ltMs — — -1.31 mA
TCK Input Low Current ITcK — — -1.31 mA
TRST Input High Current ITRST - — -1.75 mA
Input Leakage Current _
OV< VIN< VDD l -0.01 0.01 mA
3-Stated Output Leakage Current lom -0.01 — 0.01 mA
Supply Current
Output Load = 10 pF Iop - 175 220 mA
Output Load = 50 pF {[]y] — 285 340 mA
Standby Current IsB - 9 50 uA

All timing is based on a 70 pF load under worst-case conditions, although the
device is capable of driving heavier loads.

© 1992, 1993 AT&T January 1993 B-3

ATT92010 Programmer ‘s Reference Manual

Table B-3 Test Loading and Output Derating Factors

Output Signal Max Load | Test Load Output Derating (ns/pF

(pF) (PF) |vDD=3.3V +10%|VDD=5.0V +10%

HA[31:2] 100 50 0.09 0.06

BGACK 100 50 0.09 0.06

BE[3:0] 100 50 0.09 0.06

BREQ 100 50 0.09 0.06

DT 100 50 0.09 0.06

10C[1:0] 100 50 0.09 0.06

. LOCK 100 50 0.09 0.06

NCACHE 100 50 0.09 0.06

START 100 50 0.09 0.06

TDO 100 50 0.09 0.06

RD 100 50 0.09 0.06

HD[31:0] 150 50 0.06 0.04

The Output Derating factor shown above is used to obtain an approximate
increase rate of output valid delay time with increasing load capacitance up to
the maximum loading specified.

B4 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Clock

Two 1x clocks in quadrature are required by the ATT92010 Hobbit Microprocessor. The
internal clocks are decoded from these inputs. The internal clocks can be stopped in
phase 1 by asserting STOP prior to phase 1 allowing for burst-mode, single-stepping, and
suspended operation

Figure B-1 Clock Input Timing

— 2ttt
t1——| j— | —] r— 3
CLK23 ;‘ S__]{
o - t5 >
: ' & t
1 -—I [l-té
CLK34 1 ;l 5\ ;l
PHASE 2 3 4 1 2
Table B-4 Clock Input Timing Table
33V 50V
Symbol Parameter Unit
Min Max Min Max
t Rise Time — 3.0 — 3.0 ns
2 Pulse High 225 275 145 18.5 ns
t3 Fall Time — 3.0 —_ 3.0 ns
t4 Pulse Low 225 275 145 18.5 ns
t5 Period 50.0 100 33.2 50.0 ns
t6 Delay 10.5 14.5 6.3 10.2 ns

© 1992, 1993 AT&T January 1993 B-5

ATT92010 Programmer's Reference Manual

Figure B-2 Synchronous Input Timing

L SN _]“
jt— {8

DTACK

BERR

HRESET

HD{[31:0])(

CLK23 i
t t11

BGRANT

HOLD

RETRY

- J{c-uz-vl«m—l —
_ {tﬂ ns—»}L

B-6 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table B-5 Synchronous Input Timing Table

a3V 50V
Symbol Signal Type Reference i o - o Unit
7 HD[31:0] Input Hold | CLK34 Rise 7 — 6 ns
DTACK | InputHold | CLK34Rise | 5 — 4 ns
t8 BERR Input Hold | CLK34Rise [& - 4 ns
HRESET | InputHold [CLK34Rise | 5 - 4 ns
HD[31:0] Input Setup | CLK34 Rise 3 - 2 ns
DTACK | Input Setup| CLK34Rise | 3 - 2 ns
® BERR Input Setup | CLK34 Rise | 3 - 2 ns
HRESET | InputSetup| CLK34Rise | 3 - 2 ns
BGRANT | Input Setup| CLK23Rise | 3 - 2 ns
t10 HOLD | Input Setup| CLK23Rise | 3 - 2 ns
RETRY | Input Setup| CLK23Rise | 3 -— 2 ns
BGRANT | InputHold | CLK23Rise [5 - 4 ns
tm HOLD Input Hold [CLK25Rise | 5 — 4 ns
RETRY | InputHold | CLK23Rise [5 — 4 ns
t12 IL[2:0] Input Setup | CLK23 Fall 3 —_ 2 ns
113 IL[2:0] input Hold | CLK23 Fall 5 - 4 ns
t14 STOP | Input Setup| CLK34 Fall 5 — 4 ns
t15 STOP Input Hold | CLK34 Fall 3 - 2 ns
© 1992, 1993 AT&T January 1993 B-7

ATT92010 Programmer's Reference Manual

Figure B-3 Output Timing

NCACHE
10C[1:0]
DfT
LOCK
HA[31:2]
BE[3:0]

CLK23

HD[31:0]

Table B-6

/
L 117.
Output Timing Table
Symbol| Signal Type | Reference 33V i Unit
Min Max Min Max

START | Output Valid| CLK34 Rise | — 23 - 18 ns
RD Output Valid| CLK34 Rise | — 23 — 18 ns
NCACHE |Output Valid| CLK34 Rise | — 23 - 18 ns
I0C[1:0] |Output Valid| CLK34 Rise | — 23 - 18 ns
ne DT Output Valid| CLK34 Rise | — 23 — 18 ns
L[OCK |Output valid| CLK34 Rise | — 23 - 18 ns
HA[31:2] |Output Valid| CLK34 Rise | — 19 - 15 ns
BE[3:0] |Output Valid| CLK34Rise | — 23 - 18 ns
117 HD[31:0] |Output Valid| CLK23Fall | — 24 - 19 ns

B-8

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

Figure B-4

BUS Relinquish Cycle Output Timing

\

118 >
START
RD
NCACHE
10C{1:0]
DT
LOCK
HA[31:2]
BE[3:0)
CLK23 /
119 >
HD{31:0)
Table B-7 BUS Relinquish Cycle Output Timing Table
Symbol| Signal Type Ret 33V S0V Unit
nal eterence ni
ym 9 Min Max Min Max

START Output Hi-Z| CLK34Rise | — 26 - 22 ns

RD Output Hi-Z| CLK34 Rise | — 26 — 22 ns

NCACHE |OutputHi-Z| CLK34Rise | — 26 - 22 ns

8 10C[1:0] |OutputHi-Z| CLK34Rise | — 26 - 22 ns

t —

DT Output Hi-Z| CLK34 Rise | — 26 - 22 ns

LOCK Output Hi-Z| CLK34Rise | — 26 - 22 ns

HA[31:2) |OutputHi-Z| CLK34Rise | — 26 - 22 ns

BE[3:0) |OutputHi-Z| CLK34Rise | — 26 - 22 ns

119 HD[31:0] | Output Hi-Z| CLK23 Fall - 26 -— 22 ns

© 1992, 1993 AT&T January 1993 B-9

ATT92010 Programmer's Reference Manual

Figure B-5 DTRI TO Data Output Timing

DTRI 1: ;l(
- 120 > - 21 -

¥

wops) A

Table B-8 DTRI to Data Output Timing at 50 pF Loading Table

Symbol| Signal Type | Referen 33V Sov Unit
n ce n
ym 9 Min Max Min Max
t20 HD[31:0] | OutputHi-Z| DTRI Fall —_ 26 — 22 ns
t21 HD[31:0] |Output Valid] DTRI Rise —_ 24 —_ 19 ns
Figure B-6 BREQ and BGACK Timing Diagram
arEa ——X0OOXOOOON
|- 22 :!
CLK23 7|‘ \ /
CLK34 ,t \
= t23 >
—

BGACK

Table B-9 BREQ and BGACK Output Timing at 50 pF Loading Table

33v 50V

Symbol Signal Type Reference i o i o
22 BREQ |Output Valid| CLK23 Rise | — 23 — | 18
123 BGACK |Output Valid| CLK34Rise | — 32 — 25

B-10 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table B-10 JTAG BUS Timing Specifications

33V 50V
Signal Type Reference i o - . Unit
TCK Period - 400.0 —_ 200.0 —_ ns
TCK Pulse High —_ 200.0 - 100.0 - ns
TCK Pulse Low — 2000 | — 1000 | — ns
TDI Input Setup TCK rise 50.0 — 25.0 —_ ns
TDI Input Hold TCK rise 50.0 — 25.0 — ns
T™MS Input Setup TCK rise 50.0 —_ 25.0 — ns
TMS Input Hold TCK rise 50.0 — 25.0 — ns
TDO | Output Valid TCK fall — | 1000 — 50.0 ns
TDO Output Hi-Z TCK fall —_— 100.0 —_ 50.0 ns

© 1992, 1993 AT&T January 1993 B-11

Appendix C

Testability

C1

The ATT92010 Hobbit Microprocessor is a highly testable design providing
access to all testability features via the IEEE 1149.1/D5 interface. These
features are:

¢ Single clock delay by-pass
e Boundary-scan of I/O signals

e Embedded memory built-in test (BIT) and scan features
e Embedded programmable logic array (PLA) built-in test features

Test Access Port (TAP)

The test access port (TAP) consists of five I/O pins and a sequential 16 state
controller. The signals in the TAP are defined as follows.

TCK

Test Clock—Input—An externally gated clock signal with a 50%
duty cycle. The changes on the TAP input signals (TMS and TDI) are
clocked into the TAP controller, instruction register or selected test
data register on the rising edge of TCK.

Changes at the TAP output signal (TDO) occur on the falling edge of
TCK. This signal does not conform to IEE 1149.1/D5 requirement of
TCK being a free running clock. TCK must be stopped at one (1). The
TCK input has a built-in pull-up resistor to ensure that a high signal is
seen on an unconnected input.

Test Mode Select—Input—A serial control input that is clocked into
the TAP controller on the rising edge of TCK. The TMS input has a
built-in pull-up resistor to ensure a high signal value is seen on an
unconnected input.

© 1992, 1993 AT&T

January 1993 Cc-1

ATT92010 Programmer's Reference Manual

TDI Test Data Input—Input—TDI is clocked into the least significant bit
of the selected register, data or instruction, on the rising edge of TCK.
The TDI input has a built-in pull-up resistor to ensure a high signal
value is seen on an unconnected input.

TDO Test Data Output—Output—The contents of the MSB of the selected
register, data or instruction, is shifted out of the TDO on the falling
edge of TCK. TDO is tri-stated except when scanning of data is in

progress.

TRST Test Reset—Active low input—TRST is the reset input to the TAP
controller. Assertion of this input forces the TAP controller into the
reset state. The TRST input has a built-in pull-down resistor to ensure
a low signal values is seen on an unconnected input to force the TAP
controller into the reset state.

C.2 TAP Controller (TAPC)

Table C-1

The tap controller (TAPC) is a synchronous finite state machine. This is where,
under control of the TMS, sequencing through the various operations of the test-
ability circuitry occurs. A definition of each TAPC state is listed in Table C-1
and a state diagram appears in Figure C-1.

TAP Controller States (Sheet 1 of 2)

State

Description

0x0

Exit(2)-DR. This is a temporary controller state. All test data registers and the instruction reg-
ister retain their previous state. A high signal on the TMS line while in this state causes termi-
nation of the scanning process; a low causes entry into the Shift-DR state.

Ox1

Exit(1)-DR. This is a temporary controller state. All test data registers and the instruction reg-
ister retain their previous state. TMS = 1 in this state causes termination of the scanning pro-
cess; TMS = 0 causes entry into the Pause-DR state.

0x2

Shift-DR. In this controller state, the selected data register shifts data one stage towards its
serial output on each rising edge of TCK. All registers other than the selected test data regis-
ter retain their previous state.

0x3

Pause-DR. This controller state allows shifting of the selected test data register to be tempo-
rarily halted. All test data registers and the instruction register retain their previous state. The
controller remains in this state while TMS = 0. When TMS goes high, the controller advances
to the Exit(2)-DR state.

Ox4

Select-IR-Scan. This is a temporary controller state in which all test logic retains its previous
state. If TMS = 0 when the controller is in this state, then a scan sequence for the instruction
register is initiated.

C-2

January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table C-1 TAP Controller States (Sheet 2 of 2)

State

Description

0x5

Update-DR. During this controller state, data is transferred from each shift-register stage into
the corresponding parallel output latch (if the selected test data register includes a parallel
output latch). All shift-register stages in the selected register retain their previous state.

0x6

Capture-DR. In this controller state, data is parallel loaded into the selected test data register.
If the register does not have a parallel input, or if capturing is not required for the selected test,
the register retains its previous state unchanged.

0x7

Select-DR-Scan. This is a temporary controller state in which all test logic retains its previous
state. If TMS = 0 when the controller is in this state, then a scan sequence for the selected test
data register is initiated.

0x8

Exit(2)-IR. This is a temporary controller state. All test data registers and the instruction regis-
ter retain their previous state. A high signal on the TMS line while in this state causes termina-
tion of the scanning process; a low causes entry into the Shift-IR state.

0x9

Exit(1)-IR. This is a temporary controller state. All test data registers and the instruction regis-
ter retain their previous state. If TMS = 1 while in this state, the scanning process is termi-
nated; if 0, the Pause-IR state is entered.

OxA

Shift-IR. In this controller state, the instruction register shifts data one stage towards its serial
output on each rising edge of TCK.

0xB

Pause-IR. This controller state allows shifting of the instruction register to be temporarily
halted. All test data registers and the instruction register retain their previous state. The con-
troller remains in this state while TMS = 0. When TMS goes high, the controller advances to
the Exit(2)-DR state.

0xC

Run-Test/ldle. The controller state between scan operations where an internal test previously
selected by setting the instruction register may be executed. Registers not involved in the
application of the test retain their previous state. If the data in the instruction register does not
indicate that a test should be executed, then all test logic must retain their previous state.
Once entered, the controller will remain in the Run-TesVldle state as long as TMS = 0.

oxD

Update-IR. During this controller state, the instruction is transferred from each shift-register
stage of the instruction register into the parallel output latch of the instruction register. All shift-
register stages in the instruction register retain their previous state.

OxE

Capture-IR. In this controller state, data is parallel loaded into the instruction register. If the
register does not have a parallel input, or if capturing is not required for the selected test, the
register retains its previous state unchanged.

OxF

Test-Logic-Reset. While in this state, all test circuitry is disabled. The instruction register (IR)
is reset to select the by-pass register. The controller remains in this state as long as TMS = 1
or TRST is asserted.

© 1992, 1993 AT&T

January 1993 C-3

ATT92010 Programmer'’s Reference Manual

Figure C -1 TAP Controller State Diagram
. ™S
ITMS
™S
RUN-TEST/IDLI SEL-DR-SCAN SEL-IR-SCAN
1100 0111 0100
1 ' ™S M | ™S
TMS /CAPTURE-DR CAPTURE-IR \ TMS
0110 1110
™S IT™MS
Y ™S mvs_Y
SHIFT-DR SHIFT-IR
0010 1010
/ ™S ™S
ITMS 1 IT™MS
EXIT(2)-DR EXIT(1)-DR EXIT(1)-IR EXIT(2-IR
0000 0001 1001 1000
™
™S ™S
Y T™S | Y | TMS
PAUSE-DR UPDATE-DR \TMS TMS /" UPDATE-IR PAUSE-IR
0011 0101 1101 1011
ITMS ™S ™S IT™MS '
- V
c4 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Table C-2

C. 2.1 Instruction Register

The instruction register (IR) allows a test instruction to be shifted into the
ATT92010 Hobbit Microprocessor. The IR is used to select the test to be per-
formed or the test data register to be accessed. The IR is seven (7) bits in length.
Table C-2 identifies the instruction encoding.

TAP Instruction Register Encoding

Register

Instruction

Instruction Selected Mnemonic Description
0000000 BS EXTEST | BS selected with BS extemnal test.
0000001 BS SAMPLE | BS selected with BS sample.
0000010 BS INTEST | BS selected with BS intemal test.
0000011 PPLA IRPPLA | PPLA selected with PPLA self-test.
0000100 ICD IRICD Instruction cache data selected with ICD self-test.
0000101 SC IRSC Stack cache selected with SC self-test.
0000110 PFD IRPFD Prefetch cache data selected with PFD self-test.
0000111 PFT IRPFT Prefetch cache tag selected with PFT self-test.
000100 NA NA Reserved.
001000 BP BP BP selected with all self-test.
010000 BP BP BP selected and BS sample.
100000 ID ID ID selected and BS sample.
1120000 BP BP BP selected and BS sample.

C. 2.2 By-Pass Register

The by-pass (BP) register provides a single TCK delay path from TDI to TDO.
When the BP register is selected, a O is loaded on the rising edge of TCK in the
Capture-DR controller state. When the Test-Logic-Reset controller state is
entered, the BP register retains its last value.

© 1992, 1993 AT&T

January 1993

C-5

ATT92010 Programmer’s Reference Manual

C. 2.3 Boundary-Scan Register

The boundary-scan register (BS) allows testing of circuitry external to the
ATT92010 Hobbit Microprocessor. Additionally, BS provides for sampling and
examination of the I/O values without impacting the operation of the system
logic. Ninety shift elements are in the boundary-scan shift chain. Ninety-one
TCKs are required to shift the entire chain from TDI through to TDO. Position

is given from TDI to TDO.
Table C-3 Boundary-Scan Shift Chain (Sheet 1 of 2)
Position Name Description Position Name Description

1 HRESET I 2 CLK23 Sample Only |
3 STOP Sample Only | 4 CLK34 Sample Only |
5 DTRI I 6 3-data Control for /O
7 D31 110 8 HD30 /0

9 HA22 3-State O 10 HD4 110

11 HA15 3-State O 12 HD3 110

13 HA3 3-State O 14 HD29 110

15 HA14 3-State O 16 HD28 110

17 HA2 3-State O 18 HD27 110

19 HA13 3-State O 20 HD26 /10
21 HA31 3-State O 22 HD25 110
23 HA30 3-State O 24 HD24 110
25 HA29 3-State O 26 HD23 110
27 HA12 3-State O 28 HD22 110
29 HA21 3-State O 30 HD21 110
31 HA11 3-State O 32 HD20 110
33 HA20 3-State O 34 HD7 110

35 HA10 3-State O 36 HD6 110

37 HA19 3-State O 38 HD5 /10

39 HA9 3-State O 40 HD19 10
41 HA28 3-State O 42 HD18 110

43 HA8 3-State O 44 HD17 110
45 HA27 3-State O 46 HD16 1/0
C-6 January 1993 © 1992, 1993 AT&T

ATT92010 Programmer'’s Reference Manual

Table C-3 Boundary-Scan Shift Chain (Sheet 2 of 2)

Position Name Description Position Name Description
47 HA26 3-State O 48 HD15 1o}
49 HA25 3-State O 50 HD14 o)
51 HA7 3-State O 52 HD13 o
53 HA18 3-State O 54 HD2 Vo
55 HA6 3-State O 56 HD1 /0
57 HA17 3-State O 58 HDO /o
59 HAS 3-State O 60 HD12 10
61 HA16 3-State O 62 HD11 /o
63 HA4 3-State O 64 HD10 /o
65 HA24 3-State O 66 HD9 o)
67 HA23 3-State O 68 HD8 10
69 DT 3-State O 70 | NCACHE 3-State O
7 RD 3-State O 72 BEO 3-State O
73 BET 3-State O 74 BE2 3-State O
75 BE3 3-State O 76 loc1 3-State O
77 10co 3-State O 78 LOCK 3-State O
79 START 3-State O 80 BGACK o)
81 BREQ o 82 3-bus | Control for 3-State O
83 BGRANT I 84 RETRY I
85 BERR I 86 HOLD |
87 DTACK I 88 L2 I
89 IL1 I 90 ILO I

C. 2. 4 Identification Register

The ID register is readable by serial shifting through the TAP and through nor-
mal register access. This register is described in detail in section 1.5.3.

© 1992, 1993 AT&T

January 1993

C-7

Glossary

ALU
Arithmetic Logic Unit

CISC
Complex Instruction Set Computing

CMOS
Complementary Metal-Oxide Semiconductor

CRISP

C-Language Reduced Instruction Set Processor

CSp

Current Stack Pointer

DRAM
Dynamic RAM
DQM
Double-word or Quad-word Move

© 1992, 1993 AT&T

January 1993

G-1

ATT92010 Programmer’s Reference Manual

EU

Execution Unit

EPROM
Erasable Programmable Read-Only Memory

IC

Instruction Cache

IR

Instruction Register

ISP

Interrupt Stack Pointer

JTAG

Joint Test Action Group

MHBI
Multiplexed Hobbit Bus Interface

MIL
Machine Interface Layer

MSP

Maximum Stack Pointer

G-2

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

NOP
No-Operation

NPSR

Nonpaged Segment Register

PBR
Prefetch Buffer Register

PC
Program Counter

PCMCIA

Personal Computer Memory Card International Association

PDU
Prefetch Decode Unit

PDR
Prefetch Decode Register

PFB
Prefetch Buffer

PIR

Prefetch Instruction Register

PSW
Program Status Word

© 1992, 1993 AT&T January 1993 G-3

ATT92010 Programmer’s Reference Manual

RISC
Reduced Instruction Set Computing

RR
Result Register

SC
Stack Cache

SHAD
Shadow

SP

Stack Pointer

TAP

Test Access Port

TAPC

Test Access Port Controller

TCK
Test Clock

TLB

Translation Lookaside Buffer

TMS
Test Mode Select

G4 January 1993

© 1992, 1993 AT&T

ATT92010 Programmer's Reference Manual

VB
Vector Base
VP-1
Virtual/Physical Addressing Bit 1

VRAM
Video RAM

© 1992, 1993 AT&T January 1993 G-5

Index

A

Address
fault 2-3
mapping 2-3
nonpaged segment 2-4
page tables 2-6
paged segment 2-4
virtual 2-3

Addressing 1-3
Addressing modes 1-27
Alignment

half-words 1-4
Architecture 1-1
Arithmetic

division and remainders 1-30

instruction
integer operation 1-28
tagged integer 1-30

B
Bits

numbering 1-3
Block Diagram 1-2

Branches
conditional 1-33
prediction

folding 1-33

Buffer
translation look-aside 1-18

Bus
central arbiter A-1
cycles A-3
error A-6
exception handling A-6
interlocked transfer A-6
protocol A-1
read transactions A-4
reset A-8
retry A-6
surrendering A-2
transaction types A-4
write transactions A-4

Bus master A-1

Byte
Big-endian 1-4
Little-endian 1-4

Bytes
numbering 1-3
C
Carry bit
unsigned overflow 1-29
CISC 1-1
CRISP architecture 1-1

© 1992, 1993 AT&T

January 1993

-1

ATT92010 Programmer's Reference Manual

D Event processing
exception sequence 1-38

Data type 1-3 exceptions 1-38
interrupt 1-36

Delays nonmaskable interrupt 1-37
data type 4-7 priority 1-40
direct 4-3 reset 1-35
empty pipeline 4-6 interrupt
fetch 4-5 exception 1-34
hazards 4-6 trapped niladic exception 1-40
indirect 4-3 unimplemented instruction 1-39

internal contention 4-6
miscellaneous 4-7
operand access 4-6

unimplemented instruction sequence 1-39

Event processing interrupt sequence 1-37

E F

Electrical Features 1-1

BREQ and BGACK B-10

bus relinquish cycle B-9 |
clock input timing B-5 .
DTRI to DATA B-10 Instruction
handling precautions B-1 LDRAA 1-13
JTAG bus B-11 Instruction fetching
maximum ratings B-1 aggressive
operating conditions (20MHz) B-2 demand 1-32
operating conditions (30MHz) B-3 Instruction set
output derating factors B-4 ADD 3-5
output timing B-8 ADDI 3-6
synchronous input timing B-6 AND 3-7
test loading B4 ANDI 3-8
Electrical characteristics CALL 39
handling precautions B-1 CATCH 3-10
. CLRE 3-12
Encoding CMP 3-13
five-parcel 1-25 CPU 3-14
general addressing mode 1-25 CRET 3-15
one-parcel 1-22 DIV 3.17
three-parcel 1-24 DQM 3-18

January 1993

© 1992, 1993 AT&T

ATT92010 Programmer’s Reference Manual

Instruction set (continued)
ENTER 3-19
FLUSHD 3-22
FLUSHDCE 3-23
FLUSHI 3-24
FLUSHP 3-25
FLUSHPBE 3-26
FLUSHPTE 3-27
format 3-1
JMP 3-28
KCALL 3-29
KRET 3-30
LDRAA 3-31
MOV 3-32
MOVA 3-33
MUL 3-34
NOP 3-35
OR 3-36
ORI 3-37
pipeline consideration 3-3
POPN 3-38
REM 3-39
RETURN 3-40
SHL 3-41
SHR 3-42
SUB 3-43
TADD 3-44
TESTC 3-44, 3-45
TESTV 346
TSUB 3-47
types 3-1
UDIV 3-48
UREM 3-49
USHR 3-50
XOR 3-51

Instructions
five-parcel format 1-24
one-parcel format 1-21
three-parcel format 1-23
tracing 1-33
unimplemented 1-39

Integer accumulator 1-7

Memory management, see MMU

MMU
address translation 2-1
nonpaged segments 2-1
operations 2-8
paged segments 2-1
performance 2-9
physical prefetch buffer 2-1
TLBs 2-1

MSP
see registers 1-5

o

Overflow bit
signed 1-29

P

Performance
branch folding 4-7
conditional jump 4-5
delays 4-2
DQM instructions 4-4
execution time 4-1
multi-cycle instructions 4-4

Pipeline 3-3

Procedure
fast calling 1-30

Registers
configuration 1-9
control 1-8
fault 1-10
ID 1-11
interrupt stack pointer 1-12

© 1992, 1993 AT&T

January 1993

ATT92010 Programmer’s Reference Manual

Registers (continued)
JTAG, see ID
maximum stack pointer 1-12

stack pointer 1-5

program counter 1-13
program status word 1-14
segment table base 1-18
shadow 1-16
stack pointer 1-17
timerl 1-19
timer2 1-19
vector base 1-20

RISC 1-1

S

Segment tables 2-4
formats 2-4
mixed paged 2-6
nonpaged 2-6

Sequence
fast calling 1-30

Sp

see registers 1-5

Stack cache
instructions 1-6
maintenance 1-6
organization 1-5
precautions 1-8
register allocation 1-5

Stack frame 1-6, 1-31
T

Test
access port C-1
boundary-scan register C-6
by-pass register C-5
clock C-1
controller (TAPC) C-2

Test (continued)
data input C-2
data output C-2
external circuit C-6
instruction register C-5
mode select C-1
reset C-2

Testability
features C-1
Timing
see Electrical
TLB

micro 2-1

Translation lookaside buffers, see TLB

w

Word
double 3-18

quad 3-18

-4

January 1993

© 1992, 1993 AT&T

For additional information, contact your AT&T Account Manager or the following:
U.S.A.: AT&T Microelectronics, Dept. AL-500404200, 555 Union Boulevard, Allentown, PA 18103
1-800-372-2447, FAX 215-778-4106 (In CANADA: 1-800-553-2448, FAX 215-778-4106)
ASIA PACIFIC: AT&T Microelectronics Asia/Pacific, 14 Science Park Drive, #03-02A/04 The Maxwell, Singapore 0511
Tel. (65) 778-8833, FAX (65) 777-7495, Telex RS 42898 ATTM
JAPAN: AT&T Microelectronics, AT&T Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3-5421-1600, FAX (81) 3-5421-1700
For data requests in Europe:
AT&T DATALINE: Tel. (44) 732 742 999, FAX (44) 732 741 221
For technical inquires in Europe:
CENTRAL EUROPE: (49) 89 950 860 (Munich), NORTHERN EUROPE: (44) 344 48711 (Bracknell UK), FRANCE: (33) 47 67 47 67,
SOUTHERN EUROPE: (39) 266 011 800 (Milan) or (34) 1 807 1441 (Madrid)
ATE&T reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any
patent accompany the sale of any such product(s) or information.
Capyright © 1983 AT&T
All Rights Reserved

Printed in US.A.
January 1993
MN91 MCP ﬁ

Recyoled Paper

— N
——
% Microelectronics

